WorldWideScience

Sample records for cell signaling network

  1. Primary Cilia, Signaling Networks and Cell Migration

    DEFF Research Database (Denmark)

    Veland, Iben Rønn

    Primary cilia are microtubule-based, sensory organelles that emerge from the centrosomal mother centriole to project from the surface of most quiescent cells in the human body. Ciliary entry is a tightly controlled process, involving diffusion barriers and gating complexes that maintain a unique...... this controls directional cell migration as a physiological response. The ciliary pocket is a membrane invagination with elevated activity of clathrin-dependent endocytosis (CDE). In paper I, we show that the primary cilium regulates TGF-β signaling and the ciliary pocket is a compartment for CDE...... on formation of the primary cilium and CDE at the pocket region. The ciliary protein Inversin functions as a molecular switch between canonical and non-canonical Wnt signaling. In paper II, we show that Inversin and the primary cilium control Wnt signaling and are required for polarization and cell migration...

  2. Hierarchical feedback modules and reaction hubs in cell signaling networks.

    Directory of Open Access Journals (Sweden)

    Jianfeng Xu

    Full Text Available Despite much effort, identification of modular structures and study of their organizing and functional roles remain a formidable challenge in molecular systems biology, which, however, is essential in reaching a systematic understanding of large-scale cell regulation networks and hence gaining capacity of exerting effective interference to cell activity. Combining graph theoretic methods with available dynamics information, we successfully retrieved multiple feedback modules of three important signaling networks. These feedbacks are structurally arranged in a hierarchical way and dynamically produce layered temporal profiles of output signals. We found that global and local feedbacks act in very different ways and on distinct features of the information flow conveyed by signal transduction but work highly coordinately to implement specific biological functions. The redundancy embodied with multiple signal-relaying channels and feedback controls bestow great robustness and the reaction hubs seated at junctions of different paths announce their paramount importance through exquisite parameter management. The current investigation reveals intriguing general features of the organization of cell signaling networks and their relevance to biological function, which may find interesting applications in analysis, design and control of bio-networks.

  3. Regulatory Roles of Metabolites in Cell Signaling Networks

    Institute of Scientific and Technical Information of China (English)

    Feng Li; Wei Xu; Shimin Zhao

    2013-01-01

    Mounting evidence suggests that cellular metabolites,in addition to being sources of fuel and macromolecular substrates,are actively involved in signaling and epigenetic regulation.Many metabolites,such as cyclic AMP,which regulates phosphorylation/dephosphorylation,have been identified to modulate DNA and histone methylation and protein stability.Metabolite-driven cellular regulation occurs through two distinct mechanisms:proteins allosterically bind or serve as substrates for protein signaling pathways,and metabolites covalently modify proteins to regulate their functions.Such novel protein metabolites include fumarate,succinyl-CoA,propionyl-CoA,butyryl-CoA and crontonyl-CoA.Other metabolites,including α-ketoglutarate,succinate and fumarate,regulate epigenetic processes and cell signaling via protein binding.Here,we summarize recent progress in metabolite-derived post-translational protein modification and metabolite-binding associated signaling regulation.Uncovering metabolites upstream of cell signaling and epigenetic networks permits the linkage of metabolic disorders and human diseases,and suggests that metabolite modulation may be a strategy for innovative therapeutics and disease prevention techniques.

  4. Construction of cell type-specific logic models of signaling networks using CellNOpt.

    Science.gov (United States)

    Morris, Melody K; Melas, Ioannis; Saez-Rodriguez, Julio

    2013-01-01

    Mathematical models are useful tools for understanding protein signaling networks because they provide an integrated view of pharmacological and toxicological processes at the molecular level. Here we describe an approach previously introduced based on logic modeling to generate cell-specific, mechanistic and predictive models of signal transduction. Models are derived from a network encoding prior knowledge that is trained to signaling data, and can be either binary (based on Boolean logic) or quantitative (using a recently developed formalism, constrained fuzzy logic). The approach is implemented in the freely available tool CellNetOptimizer (CellNOpt). We explain the process CellNOpt uses to train a prior knowledge network to data and illustrate its application with a toy example as well as a realistic case describing signaling networks in the HepG2 liver cancer cell line.

  5. Signal Transduction at the Single-Cell Level: Approaches to Study the Dynamic Nature of Signaling Networks.

    Science.gov (United States)

    Handly, L Naomi; Yao, Jason; Wollman, Roy

    2016-09-25

    Signal transduction, or how cells interpret and react to external events, is a fundamental aspect of cellular function. Traditional study of signal transduction pathways involves mapping cellular signaling pathways at the population level. However, population-averaged readouts do not adequately illuminate the complex dynamics and heterogeneous responses found at the single-cell level. Recent technological advances that observe cellular response, computationally model signaling pathways, and experimentally manipulate cells now enable studying signal transduction at the single-cell level. These studies will enable deeper insights into the dynamic nature of signaling networks.

  6. Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling.

    Directory of Open Access Journals (Sweden)

    Song Li

    2006-10-01

    Full Text Available Plants both lose water and take in carbon dioxide through microscopic stomatal pores, each of which is regulated by a surrounding pair of guard cells. During drought, the plant hormone abscisic acid (ABA inhibits stomatal opening and promotes stomatal closure, thereby promoting water conservation. Dozens of cellular components have been identified to function in ABA regulation of guard cell volume and thus of stomatal aperture, but a dynamic description is still not available for this complex process. Here we synthesize experimental results into a consistent guard cell signal transduction network for ABA-induced stomatal closure, and develop a dynamic model of this process. Our model captures the regulation of more than 40 identified network components, and accords well with previous experimental results at both the pathway and whole-cell physiological level. By simulating gene disruptions and pharmacological interventions we find that the network is robust against a significant fraction of possible perturbations. Our analysis reveals the novel predictions that the disruption of membrane depolarizability, anion efflux, actin cytoskeleton reorganization, cytosolic pH increase, the phosphatidic acid pathway, or K(+ efflux through slowly activating K(+ channels at the plasma membrane lead to the strongest reduction in ABA responsiveness. Initial experimental analysis assessing ABA-induced stomatal closure in the presence of cytosolic pH clamp imposed by the weak acid butyrate is consistent with model prediction. Simulations of stomatal response as derived from our model provide an efficient tool for the identification of candidate manipulations that have the best chance of conferring increased drought stress tolerance and for the prioritization of future wet bench analyses. Our method can be readily applied to other biological signaling networks to identify key regulatory components in systems where quantitative information is limited.

  7. Spatiotemporal Properties of Intracellular Calcium Signaling in Osteocytic and Osteoblastic Cell Networks under Fluid Flow

    OpenAIRE

    Jing, Da; Lu, X. Lucas; Luo, Erping; Sajda, Paul; Leong, Pui L.; Guo, X. Edward

    2013-01-01

    Mechanical stimuli can trigger intracellular calcium (Ca2+) responses in osteocytes and osteoblasts. Successful construction of bone cell networks necessitates more elaborate and systematic analysis for the spatiotemporal properties of Ca2+ signaling in the networks. In the present study, an unsupervised algorithm based on independent component analysis (ICA) was employed to extract the Ca2+ signals of bone cells in the network. We demonstrated that the ICA-based technology could yield higher...

  8. Interrogating a cell signalling network sensitively monitors cell fate transition during early differentiation of mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    LIU; Yi-Hsin; HO; Chih-ming

    2010-01-01

    The different cell types in an animal are often considered to be specified by combinations of transcription factors,and defined by marker gene expression.This paradigm is challenged,however,in stem cell research and application.Using a mouse embryonic stem cell(mESC) culture system,here we show that the expression level of many key stem cell marker genes/transcription factors such as Oct4,Sox2 and Nanog failed to monitor cell status transition during mESC differentiation.On the other hand,the response patterns of cell signalling network to external stimuli,as monitored by the dynamics of protein phosphorylation,changed dramatically.Our results also suggest that an irreversible alternation in the cell signalling network precedes the adjustment of transcription factor levels.This is consistent with the notion that signal transduction events regulate cell fate specification.We propose that interrogating a cell signalling network can assess the cell property more precisely,and provide a sensitive measurement for the early events in cell fate transition.We wish to bring attention to the potential problem of cell identification using a few marker genes,and suggest a novel methodology to address this issue.

  9. Spatiotemporal properties of intracellular calcium signaling in osteocytic and osteoblastic cell networks under fluid flow.

    Science.gov (United States)

    Jing, Da; Lu, X Lucas; Luo, Erping; Sajda, Paul; Leong, Pui L; Guo, X Edward

    2013-04-01

    Mechanical stimuli can trigger intracellular calcium (Ca(2+)) responses in osteocytes and osteoblasts. Successful construction of bone cell networks necessitates more elaborate and systematic analysis for the spatiotemporal properties of Ca(2+) signaling in the networks. In the present study, an unsupervised algorithm based on independent component analysis (ICA) was employed to extract the Ca(2+) signals of bone cells in the network. We demonstrated that the ICA-based technology could yield higher signal fidelity than the manual region of interest (ROI) method. Second, the spatiotemporal properties of Ca(2+) signaling in osteocyte-like MLO-Y4 and osteoblast-like MC3T3-E1 cell networks under laminar and steady fluid flow stimulation were systematically analyzed and compared. MLO-Y4 cells exhibited much more active Ca(2+) transients than MC3T3-E1 cells, evidenced by more Ca(2+) peaks, less time to the 1st peak and less time between the 1st and 2nd peaks. With respect to temporal properties, MLO-Y4 cells demonstrated higher spike rate and Ca(2+) oscillating frequency. The spatial intercellular synchronous activities of Ca(2+) signaling in MLO-Y4 cell networks were higher than those in MC3T3-E1 cell networks and also negatively correlated with the intercellular distance, revealing faster Ca(2+) wave propagation in MLO-Y4 cell networks. Our findings show that the unsupervised ICA-based technique results in more sensitive and quantitative signal extraction than traditional ROI analysis, with the potential to be widely employed in Ca(2+) signaling extraction in the cell networks. The present study also revealed a dramatic spatiotemporal difference in Ca(2+) signaling for osteocytic and osteoblastic cell networks in processing the mechanical stimulus. The higher intracellular Ca(2+) oscillatory behaviors and intercellular coordination of MLO-Y4 cells provided further evidences that osteocytes may behave as the major mechanical sensor in bone modeling and remodeling

  10. Experimental and computational tools for analysis of signaling networks in primary cells

    DEFF Research Database (Denmark)

    Schoof, Erwin M; Linding, Rune

    2014-01-01

    ; this information is critical when trying to elucidate key proteins involved in specific cellular responses. Here, methods to generate high-quality quantitative phosphorylation data from cell lysates originating from primary cells, and how to analyze the generated data to construct quantitative signaling network...

  11. Yamanaka factors critically regulate the developmental signaling network in mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    Xiaosong Liu; Jinyan Huang; Taotao Chen; Ying Wang; Shunmei Xin; Jian Li; Gang Pei; Jiuhong Kang

    2008-01-01

    Yamanaka factors (Oct3/4,Sox2,KIf4,c-Myc) are highly expressed in embryonic stem (ES) cells,and their overexpression can induce pluripotency in both mouse and human somatic cells,indicating that these factors regulate the developmental signaling network necessary for ES cell pluripotency.However,systemic analysis of the signaling pathways regulated by Yamanaka factors has not yet been fully described.In this study,we identified the target promoters of endogenous Yamanaka factors on a whole genome scale using ChIP (chromatin immunoprecipitation)-on-chip in E14.1 mouse ES cells,and we found that these four factors co-occupied 58 promoters.Interestingly,when Oct4 and Sox2 were analyzed as core factors,Kif4 functioned to enhance the core factors for development regulation,whereas c-Myc seemed to play a distinct role in regulating metabolism.The pathway analysis revealed that Yamanaka factors collectively regulate a developmental signaling network composed of 16 developmental signaling pathways,nine of which represent earlier unknown pathways in ES cells,including apoptosis and cellcycle pathways.We further analyzed data from a recent study examining Yamanaka factors in mouse ES cells.Interestingly,this analysis also revealed 16 developmental signaling pathways,of which 14 pathways overlap with the ones revealed by this study,despite that the target genes and the signaling pathways regulated by each individual Yamanaka factor differ significantly between these two datasets.We suggest that Yamanaka factors critically regulate a developmental signaling network composed of approximately a dozen crucial developmental signaling pathways to maintain the pluripotency of ES cells and probably also to induce pluripotent stem cells.

  12. Signaling and Gene Regulatory Networks Governing Definitive Endoderm Derivation From Pluripotent Stem Cells.

    Science.gov (United States)

    Mohammadnia, Abdulshakour; Yaqubi, Moein; Pourasgari, Farzaneh; Neely, Eric; Fallahi, Hossein; Massumi, Mohammad

    2016-09-01

    The generation of definitive endoderm (DE) from pluripotent stem cells (PSCs) is a fundamental stage in the formation of highly organized visceral organs, such as the liver and pancreas. Currently, there is a need for a comprehensive study that illustrates the involvement of different signaling pathways and their interactions in the derivation of DE cells from PSCs. This study aimed to identify signaling pathways that have the greatest influence on DE formation using analyses of transcriptional profiles, protein-protein interactions, protein-DNA interactions, and protein localization data. Using this approach, signaling networks involved in DE formation were constructed using systems biology and data mining tools, and the validity of the predicted networks was confirmed experimentally by measuring the mRNA levels of hub genes in several PSCs-derived DE cell lines. Based on our analyses, seven signaling pathways, including the BMP, ERK1-ERK2, FGF, TGF-beta, MAPK, Wnt, and PIP signaling pathways and their interactions, were found to play a role in the derivation of DE cells from PSCs. Lastly, the core gene regulatory network governing this differentiation process was constructed. The results of this study could improve our understanding surrounding the efficient generation of DE cells for the regeneration of visceral organs. J. Cell. Physiol. 231: 1994-2006, 2016. © 2016 Wiley Periodicals, Inc. PMID:26755186

  13. Synaptic network activity induces neuronal differentiation of adult hippocampal precursor cells through BDNF signaling

    Directory of Open Access Journals (Sweden)

    Harish Babu

    2009-09-01

    Full Text Available Adult hippocampal neurogenesis is regulated by activity. But how do neural precursor cells in the hippocampus respond to surrounding network activity and translate increased neural activity into a developmental program? Here we show that long-term potential (LTP-like synaptic activity within a cellular network of mature hippocampal neurons promotes neuronal differentiation of newly generated cells. In co-cultures of precursor cells with primary hippocampal neurons, LTP-like synaptic plasticity induced by addition of glycine in Mg2+-free media for 5 min, produced synchronous network activity and subsequently increased synaptic strength between neurons. Furthermore, this synchronous network activity led to a significant increase in neuronal differentiation from the co-cultured neural precursor cells. When applied directly to precursor cells, glycine and Mg2+-free solution did not induce neuronal differentiation. Synaptic plasticity-induced neuronal differentiation of precursor cells was observed in the presence of GABAergic neurotransmission blockers but was dependent on NMDA-mediated Ca2+ influx. Most importantly, neuronal differentiation required the release of brain-derived neurotrophic factor (BDNF from the underlying substrate hippocampal neurons as well as TrkB receptor phosphorylation in precursor cells. This suggests that activity-dependent stem cell differentiation within the hippocampal network is mediated via synaptically evoked BDNF signaling.

  14. Signaling network of dendritic cells in response to pathogens: a community-input supported knowledgebase

    Directory of Open Access Journals (Sweden)

    Nudelman Irina

    2010-10-01

    Full Text Available Abstract Background Dendritic cells are antigen-presenting cells that play an essential role in linking the innate and adaptive immune systems. Much research has focused on the signaling pathways triggered upon infection of dendritic cells by various pathogens. The high level of activity in the field makes it desirable to have a pathway-based resource to access the information in the literature. Current pathway diagrams lack either comprehensiveness, or an open-access editorial interface. Hence, there is a need for a dependable, expertly curated knowledgebase that integrates this information into a map of signaling networks. Description We have built a detailed diagram of the dendritic cell signaling network, with the goal of providing researchers with a valuable resource and a facile method for community input. Network construction has relied on comprehensive review of the literature and regular updates. The diagram includes detailed depictions of pathways activated downstream of different pathogen recognition receptors such as Toll-like receptors, retinoic acid-inducible gene-I-like receptors, C-type lectin receptors and nucleotide-binding oligomerization domain-like receptors. Initially assembled using CellDesigner software, it provides an annotated graphical representation of interactions stored in Systems Biology Mark-up Language. The network, which comprises 249 nodes and 213 edges, has been web-published through the Biological Pathway Publisher software suite. Nodes are annotated with PubMed references and gene-related information, and linked to a public wiki, providing a discussion forum for updates and corrections. To gain more insight into regulatory patterns of dendritic cell signaling, we analyzed the network using graph-theory methods: bifan, feedforward and multi-input convergence motifs were enriched. This emphasis on activating control mechanisms is consonant with a network that subserves persistent and coordinated responses to

  15. Vestibular and Attractor Network Basis of the Head Direction Cell Signal in Subcortical Circuits

    Directory of Open Access Journals (Sweden)

    Benjamin J Clark

    2012-03-01

    Full Text Available Accurate navigation depends on a network of neural systems that encode the moment-to-moment changes in an animal’s directional orientation and location in space. Within this navigation system are head direction (HD cells, which fire persistently when an animal’s head is pointed in a particular direction (Sharp et al., 2001a; Taube, 2007. HD cells are widely thought to underlie an animal’s sense of spatial orientation, and research over the last 25+ years has revealed that this robust spatial signal is widely distributed across subcortical and cortical limbic areas. Much of this work has been directed at understanding the functional organization of the HD cell circuitry, and precisely how this signal is generated from sensory and motor systems. The purpose of the present review is to summarize some of the recent studies arguing that the HD cell circuit is largely processed in a hierarchical fashion, following a pathway involving the dorsal tegmental nuclei → lateral mammillary nuclei → anterior thalamus → parahippocampal and retrosplenial cortical regions. We also review recent work identifying bursting cellular activity in the HD cell circuit after lesions of the vestibular system, and relate these observations to the long held view that attractor network mechanisms underlie HD signal generation. Finally, we summarize the work to date suggesting that this network architecture may reside within the tegmento-mammillary circuit.

  16. Hypoxia induces a phase transition within a kinase signaling network in cancer cells.

    Science.gov (United States)

    Wei, Wei; Shi, Qihui; Remacle, Francoise; Qin, Lidong; Shackelford, David B; Shin, Young Shik; Mischel, Paul S; Levine, R D; Heath, James R

    2013-04-01

    Hypoxia is a near-universal feature of cancer, promoting glycolysis, cellular proliferation, and angiogenesis. The molecular mechanisms of hypoxic signaling have been intensively studied, but the impact of changes in oxygen partial pressure (pO2) on the state of signaling networks is less clear. In a glioblastoma multiforme (GBM) cancer cell model, we examined the response of signaling networks to targeted pathway inhibition between 21% and 1% pO2. We used a microchip technology that facilitates quantification of a panel of functional proteins from statistical numbers of single cells. We find that near 1.5% pO2, the signaling network associated with mammalian target of rapamycin (mTOR) complex 1 (mTORC1)--a critical component of hypoxic signaling and a compelling cancer drug target--is deregulated in a manner such that it will be unresponsive to mTOR kinase inhibitors near 1.5% pO2, but will respond at higher or lower pO2 values. These predictions were validated through experiments on bulk GBM cell line cultures and on neurosphere cultures of a human-origin GBM xenograft tumor. We attempt to understand this behavior through the use of a quantitative version of Le Chatelier's principle, as well as through a steady-state kinetic model of protein interactions, both of which indicate that hypoxia can influence mTORC1 signaling as a switch. The Le Chatelier approach also indicates that this switch may be thought of as a type of phase transition. Our analysis indicates that certain biologically complex cell behaviors may be understood using fundamental, thermodynamics-motivated principles. PMID:23530221

  17. Best Signal Quality in Cellular Networks: Asymptotic Properties and Applications to Mobility Management in Small Cell Networks

    Directory of Open Access Journals (Sweden)

    Baccelli François

    2010-01-01

    Full Text Available The quickly increasing data traffic and the user demand for a full coverage of mobile services anywhere and anytime are leading mobile networking into a future of small cell networks. However, due to the high-density and randomness of small cell networks, there are several technical challenges. In this paper, we investigate two critical issues: best signal quality and mobility management. Under the assumptions that base stations are uniformly distributed in a ring-shaped region and that shadowings are lognormal, independent, and identically distributed, we prove that when the number of sites in the ring tends to infinity, then (i the maximum signal strength received at the center of the ring tends in distribution to a Gumbel distribution when properly renormalized, and (ii it is asymptotically independent of the interference. Using these properties, we derive the distribution of the best signal quality. Furthermore, an optimized random cell scanning scheme is proposed, based on the evaluation of the optimal number of sites to be scanned for maximizing the user data throughput.

  18. Selective control of the apoptosis signaling network in heterogeneous cell populations.

    Directory of Open Access Journals (Sweden)

    Diego Calzolari

    Full Text Available BACKGROUND: Selective control in a population is the ability to control a member of the population while leaving the other members relatively unaffected. The concept of selective control is developed using cell death or apoptosis in heterogeneous cell populations as an example. Control of apoptosis is essential in a variety of therapeutic environments, including cancer where cancer cell death is a desired outcome and Alzheimer's disease where neuron survival is the desired outcome. However, in both cases these responses must occur with minimal response in other cells exposed to treatment; that is, the response must be selective. METHODOLOGY AND PRINCIPAL FINDINGS: Apoptosis signaling in heterogeneous cells is described by an ensemble of gene networks with identical topology but different link strengths. Selective control depends on the statistics of signaling in the ensemble of networks, and we analyze the effects of superposition, non-linearity and feedback on these statistics. Parallel pathways promote normal statistics while series pathways promote skew distributions, which in the most extreme cases become log-normal. We also show that feedback and non-linearity can produce bimodal signaling statistics, as can discreteness and non-linearity. Two methods for optimizing selective control are presented. The first is an exhaustive search method and the second is a linear programming based approach. Though control of a single gene in the signaling network yields little selectivity, control of a few genes typically yields higher levels of selectivity. The statistics of gene combinations susceptible to selective control in heterogeneous apoptosis networks is studied and is used to identify general control strategies. CONCLUSIONS AND SIGNIFICANCE: We have explored two methods for the study of selectivity in cell populations. The first is an exhaustive search method limited to three node perturbations. The second is an effective linear model, based on

  19. Three-dimensional WS2 nanosheet networks for H2O2 produced for cell signaling

    Science.gov (United States)

    Tang, Jing; Quan, Yingzhou; Zhang, Yueyu; Jiang, Min; Al-Enizi, Abdullah M.; Kong, Biao; An, Tiance; Wang, Wenshuo; Xia, Limin; Gong, Xingao; Zheng, Gengfeng

    2016-03-01

    Hydrogen peroxide (H2O2) is an important molecular messenger for cellular signal transduction. The capability of direct probing of H2O2 in complex biological systems can offer potential for elucidating its manifold roles in living systems. Here we report the fabrication of three-dimensional (3D) WS2 nanosheet networks with flower-like morphologies on a variety of conducting substrates. The semiconducting WS2 nanosheets with largely exposed edge sites on flexible carbon fibers enable abundant catalytically active sites, excellent charge transfer, and high permeability to chemicals and biomaterials. Thus, the 3D WS2-based nano-bio-interface exhibits a wide detection range, high sensitivity and rapid response time for H2O2, and is capable of visualizing endogenous H2O2 produced in living RAW 264.7 macrophage cells and neurons. First-principles calculations further demonstrate that the enhanced sensitivity of probing H2O2 is attributed to the efficient and spontaneous H2O2 adsorption on WS2 nanosheet edge sites. The combined features of 3D WS2 nanosheet networks suggest attractive new opportunities for exploring the physiological roles of reactive oxygen species like H2O2 in living systems.Hydrogen peroxide (H2O2) is an important molecular messenger for cellular signal transduction. The capability of direct probing of H2O2 in complex biological systems can offer potential for elucidating its manifold roles in living systems. Here we report the fabrication of three-dimensional (3D) WS2 nanosheet networks with flower-like morphologies on a variety of conducting substrates. The semiconducting WS2 nanosheets with largely exposed edge sites on flexible carbon fibers enable abundant catalytically active sites, excellent charge transfer, and high permeability to chemicals and biomaterials. Thus, the 3D WS2-based nano-bio-interface exhibits a wide detection range, high sensitivity and rapid response time for H2O2, and is capable of visualizing endogenous H2O2 produced in

  20. Activated PTHLH Coupling Feedback Phosphoinositide to G-Protein Receptor Signal-Induced Cell Adhesion Network in Human Hepatocellular Carcinoma by Systems-Theoretic Analysis

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2012-01-01

    Full Text Available Studies were done on analysis of biological processes in the same high expression (fold change ≥2 activated PTHLH feedback-mediated cell adhesion gene ontology (GO network of human hepatocellular carcinoma (HCC compared with the corresponding low expression activated GO network of no-tumor hepatitis/cirrhotic tissues (HBV or HCV infection. Activated PTHLH feedback-mediated cell adhesion network consisted of anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolism, cell adhesion, cell differentiation, cell-cell signaling, G-protein-coupled receptor protein signaling pathway, intracellular transport, metabolism, phosphoinositide-mediated signaling, positive regulation of transcription, regulation of cyclin-dependent protein kinase activity, regulation of transcription, signal transduction, transcription, and transport in HCC. We proposed activated PTHLH coupling feedback phosphoinositide to G-protein receptor signal-induced cell adhesion network. Our hypothesis was verified by the different activated PTHLH feedback-mediated cell adhesion GO network of HCC compared with the corresponding inhibited GO network of no-tumor hepatitis/cirrhotic tissues, or the same compared with the corresponding inhibited GO network of HCC. Activated PTHLH coupling feedback phosphoinositide to G-protein receptor signal-induced cell adhesion network included BUB1B, GNG10, PTHR2, GNAZ, RFC4, UBE2C, NRXN3, BAP1, PVRL2, TROAP, and VCAN in HCC from GEO dataset using gene regulatory network inference method and our programming.

  1. Antithetical NFATc1-Sox2 and p53-miR200 signaling networks govern pancreatic cancer cell plasticity.

    Science.gov (United States)

    Singh, Shiv K; Chen, Nai-Ming; Hessmann, Elisabeth; Siveke, Jens; Lahmann, Marlen; Singh, Garima; Voelker, Nadine; Vogt, Sophia; Esposito, Irene; Schmidt, Ansgar; Brendel, Cornelia; Stiewe, Thorsten; Gaedcke, Jochen; Mernberger, Marco; Crawford, Howard C; Bamlet, William R; Zhang, Jin-San; Li, Xiao-Kun; Smyrk, Thomas C; Billadeau, Daniel D; Hebrok, Matthias; Neesse, Albrecht; Koenig, Alexander; Ellenrieder, Volker

    2015-02-12

    In adaptation to oncogenic signals, pancreatic ductal adenocarcinoma (PDAC) cells undergo epithelial-mesenchymal transition (EMT), a process combining tumor cell dedifferentiation with acquisition of stemness features. However, the mechanisms linking oncogene-induced signaling pathways with EMT and stemness remain largely elusive. Here, we uncover the inflammation-induced transcription factor NFATc1 as a central regulator of pancreatic cancer cell plasticity. In particular, we show that NFATc1 drives EMT reprogramming and maintains pancreatic cancer cells in a stem cell-like state through Sox2-dependent transcription of EMT and stemness factors. Intriguingly, NFATc1-Sox2 complex-mediated PDAC dedifferentiation and progression is opposed by antithetical p53-miR200c signaling, and inactivation of the tumor suppressor pathway is essential for tumor dedifferentiation and dissemination both in genetically engineered mouse models (GEMM) and human PDAC. Based on these findings, we propose the existence of a hierarchical signaling network regulating PDAC cell plasticity and suggest that the molecular decision between epithelial cell preservation and conversion into a dedifferentiated cancer stem cell-like phenotype depends on opposing levels of p53 and NFATc1 signaling activities.

  2. The biological networks in studying cell signal transduction complexity: The examples of sperm capacitation and of endocannabinoid system

    Science.gov (United States)

    Bernabò, Nicola; Barboni, Barbara; Maccarrone, Mauro

    2014-01-01

    Cellular signal transduction is a complex phenomenon, which plays a central role in cell surviving and adaptation. The great amount of molecular data to date present in literature, together with the adoption of high throughput technologies, on the one hand, made available to scientists an enormous quantity of information, on the other hand, failed to provide a parallel increase in the understanding of biological events. In this context, a new discipline arose, the systems biology, aimed to manage the information with a computational modeling-based approach. In particular, the use of biological networks has allowed the making of huge progress in this field. Here we discuss two possible application of the use of biological networks to explore cell signaling: the study of the architecture of signaling systems that cooperate in determining the acquisition of a complex cellular function (as it is the case of the process of activation of spermatozoa) and the organization of a single specific signaling systems expressed by different cells in different tissues (i.e. the endocannabinoid system). In both the cases we have found that the networks follow a scale free and small world topology, likely due to the evolutionary advantage of robustness against random damages, fastness and specific of information processing, and easy navigability. PMID:25379139

  3. The Wnt pathway: a key network in cell signalling dysregulated by viruses.

    Science.gov (United States)

    van Zuylen, Wendy J; Rawlinson, William D; Ford, Caroline E

    2016-09-01

    Viruses are obligate parasites dependent on host cells for survival. Viral infection of a cell activates a panel of pattern recognition receptors that mediate antiviral host responses to inhibit viral replication and dissemination. Viruses have evolved mechanisms to evade and subvert this antiviral host response, including encoding proteins that hijack, mimic and/or manipulate cellular processes such as the cell cycle, DNA damage repair, cellular metabolism and the host immune response. Currently, there is an increasing interest whether viral modulation of these cellular processes, including the cell cycle, contributes to cancer development. One cellular pathway related to cell cycle signalling is the Wnt pathway. This review focuses on the modulation of this pathway by human viruses, known to cause (or associated with) cancer development. The main mechanisms where viruses interact with the Wnt pathway appear to be through (i) epigenetic modification of Wnt genes; (ii) cellular or viral miRNAs targeting Wnt genes; (iii) altering specific Wnt pathway members, often leading to (iv) nuclear translocation of β-catenin and activation of Wnt signalling. Given that diverse viruses affect this signalling pathway, modulating Wnt signalling could be a generalised critical process for the initiation or maintenance of viral pathogenesis, with resultant dysregulation contributing to virus-induced cancers. Further study of this virus-host interaction may identify options for targeted therapy against Wnt signalling molecules as a means to reduce virus-induced pathogenesis and the downstream consequences of infection. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Transcriptional Regulatory Networks Activated by PI3K and ERK Transduced Growth Signals in Human Glioblastoma Cells

    Institute of Scientific and Technical Information of China (English)

    Peter M. Haverty; Zhi-Ping Weng; Ulla Hansen

    2005-01-01

    Determining how cells regulate their transcriptional response to extracellular signals is key to the understanding of complex eukaryotic systems. This study was initiated with the goals of furthering the study of mammalian transcriptional regulation and analyzing the relative benefits of related computational methodologies. One dataset available for such an analysis involved gene expression profiling of the early growth factor response to platelet derived growth factor (PDGF)in a human glioblastoma cell line; this study differentiated genes whose expression was regulated by signaling through the phosphoinositide-3-kinase (PI3K) versus the extracellular-signal regulated kinase (ERK) pathways. We have compared the inferred transcription factors from this previous study with additional predictions of regulatory transcription factors using two alternative promoter sequence analysis techniques. This comparative analysis, in which the algorithms predict overlapping,although not identical, sets of factors, argues for meticulous benchmarking of promoter sequence analysis methods to determine the positive and negative attributes that contribute to their varying results. Finally, we inferred transcriptional regulatory networks deriving from various signaling pathways using the CARRIE program suite. These networks not only included previously described transcriptional features of the response to growth signals, but also predicted new regulatory features for the propagation and modulation of the growth signal.

  5. Transforming growth factor-beta signaling network regulates plasticity and lineage commitment of lung cancer cells

    OpenAIRE

    Ischenko, I; Liu, J.; Petrenko, O; Hayman, M J

    2014-01-01

    Identification of target cells in lung tumorigenesis and characterization of the signals that control their behavior is an important step toward improving early cancer diagnosis and predicting tumor behavior. We identified a population of cells in the adult lung that bear the EpCAM+CD104+CD49f+CD44+CD24loSCA1+ phenotype and can be clonally expanded in culture, consistent with the properties of early progenitor cells. We show that these cells, rather than being restricted to one tumor type, ca...

  6. Stochastic responses may allow genetically diverse cell populations to optimize performance with simpler signaling networks.

    Directory of Open Access Journals (Sweden)

    Christopher C Govern

    Full Text Available Two theories have emerged for the role that stochasticity plays in biological responses: first, that it degrades biological responses, so the performance of biological signaling machinery could be improved by increasing molecular copy numbers of key proteins; second, that it enhances biological performance, by enabling diversification of population-level responses. Using T cell biology as an example, we demonstrate that these roles for stochastic responses are not sufficient to understand experimental observations of stochastic response in complex biological systems that utilize environmental and genetic diversity to make cooperative responses. We propose a new role for stochastic responses in biology: they enable populations to make complex responses with simpler biochemical signaling machinery than would be required in the absence of stochasticity. Thus, the evolution of stochastic responses may be linked to the evolvability of different signaling machineries.

  7. Networks in Cell Biology

    Science.gov (United States)

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, Michele

    2010-05-01

    Introduction; 1. Network views of the cell Paolo De Los Rios and Michele Vendruscolo; 2. Transcriptional regulatory networks Sarath Chandra Janga and M. Madan Babu; 3. Transcription factors and gene regulatory networks Matteo Brilli, Elissa Calistri and Pietro Lió; 4. Experimental methods for protein interaction identification Peter Uetz, Björn Titz, Seesandra V. Rajagopala and Gerard Cagney; 5. Modeling protein interaction networks Francesco Rao; 6. Dynamics and evolution of metabolic networks Daniel Segré; 7. Hierarchical modularity in biological networks: the case of metabolic networks Erzsébet Ravasz Regan; 8. Signalling networks Gian Paolo Rossini; Appendix 1. Complex networks: from local to global properties D. Garlaschelli and G. Caldarelli; Appendix 2. Modelling the local structure of networks D. Garlaschelli and G. Caldarelli; Appendix 3. Higher-order topological properties S. Ahnert, T. Fink and G. Caldarelli; Appendix 4. Elementary mathematical concepts A. Gabrielli and G. Caldarelli; References.

  8. Signaling networks and cell motility: a computational approach using a phase field description.

    Science.gov (United States)

    Marth, Wieland; Voigt, Axel

    2014-07-01

    The processes of protrusion and retraction during cell movement are driven by the turnover and reorganization of the actin cytoskeleton. Within a reaction-diffusion model which combines processes along the cell membrane with processes within the cytoplasm a Turing type instability is used to form the necessary polarity to distinguish between cell front and rear and to initiate the formation of different organizational arrays within the cytoplasm leading to protrusion and retraction. A simplified biochemical network model for the activation of GTPase which accounts for the different dimensionality of the cell membrane and the cytoplasm is used for this purpose and combined with a classical Helfrich type model to account for bending and stiffness effects of the cell membrane. In addition streaming within the cytoplasm and the extracellular matrix is taken into account. Combining these phenomena allows to simulate the dynamics of cells and to reproduce the primary phenomenology of cell motility. The coupled model is formulated within a phase field approach and solved using adaptive finite elements. PMID:23835784

  9. Quantitative phosphoproteomics to characterize signaling networks

    DEFF Research Database (Denmark)

    Rigbolt, Kristoffer T G; Blagoev, Blagoy

    2012-01-01

    and quantify thousands of phosphorylations, thus providing extensive overviews of the cellular signaling networks. As a result of these developments quantitative phosphoproteomics have been applied to study processes as diverse as immunology, stem cell biology and DNA damage. Here we review the developments...... in phosphoproteomics technology that have facilitated the application of phosphoproteomics to signaling networks and introduce examples of recent system-wide applications of quantitative phosphoproteomics. Despite the great advances in phosphoproteomics technology there are still several outstanding issues and we...

  10. PPARγ Networks in Cell Signaling: Update and Impact of Cyclic Phosphatidic Acid

    Directory of Open Access Journals (Sweden)

    Tamotsu Tsukahara

    2013-01-01

    Full Text Available Lysophospholipid (LPL has long been recognized as a membrane phospholipid metabolite. Recently, however, the LPL has emerged as a candidate for diagnostic and pharmacological interest. LPLs include lysophosphatidic acid (LPA, alkyl glycerol phosphate (AGP, cyclic phosphatidic acid (cPA, and sphingosine-1-phosphate (S1P. These biologically active lipid mediators serve to promote a variety of responses that include cell proliferation, migration, and survival. These LPL-related responses are mediated by cell surface G-protein-coupled receptors and also intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ. In this paper, we focus mainly on the most recent findings regarding the biological function of nuclear receptor-mediated lysophospholipid signaling in mammalian systems, specifically as they relate to health and diseases. Also, we will briefly review the biology of PPARγ and then provide an update of lysophospholipids PPARγ ligands that are under investigation as a therapeutic compound and which are targets of PPARγ relevant to diseases.

  11. Bistability in the Rac1, PAK, and RhoA Signaling Network Drives Actin Cytoskeleton Dynamics and Cell Motility Switches

    Science.gov (United States)

    Byrne, Kate M.; Monsefi, Naser; Dawson, John C.; Degasperi, Andrea; Bukowski-Wills, Jimi-Carlo; Volinsky, Natalia; Dobrzyński, Maciej; Birtwistle, Marc R.; Tsyganov, Mikhail A.; Kiyatkin, Anatoly; Kida, Katarzyna; Finch, Andrew J.; Carragher, Neil O.; Kolch, Walter; Nguyen, Lan K.; von Kriegsheim, Alex; Kholodenko, Boris N.

    2016-01-01

    Summary Dynamic interactions between RhoA and Rac1, members of the Rho small GTPase family, play a vital role in the control of cell migration. Using predictive mathematical modeling, mass spectrometry-based quantitation of network components, and experimental validation in MDA-MB-231 mesenchymal breast cancer cells, we show that a network containing Rac1, RhoA, and PAK family kinases can produce bistable, switch-like responses to a graded PAK inhibition. Using a small chemical inhibitor of PAK, we demonstrate that cellular RhoA and Rac1 activation levels respond in a history-dependent, bistable manner to PAK inhibition. Consequently, we show that downstream signaling, actin dynamics, and cell migration also behave in a bistable fashion, displaying switches and hysteresis in response to PAK inhibition. Our results demonstrate that PAK is a critical component in the Rac1-RhoA inhibitory crosstalk that governs bistable GTPase activity, cell morphology, and cell migration switches. PMID:27136688

  12. Cell signaling review series

    Institute of Scientific and Technical Information of China (English)

    Aiming Lin; Zhenggang Liu

    2008-01-01

    @@ Signal transduction is pivotal for many, if not all, fundamental cellular functions including proliferation, differentiation, transformation and programmed cell death. Deregulation of cell signaling may result in certain types of cancers and other human diseases.

  13. Functional characterization of FLT3 receptor signaling deregulation in acute myeloid leukemia by single cell network profiling (SCNP.

    Directory of Open Access Journals (Sweden)

    David B Rosen

    Full Text Available BACKGROUND: Molecular characterization of the FMS-like tyrosine kinase 3 receptor (FLT3 in cytogenetically normal acute myeloid leukemia (AML has recently been incorporated into clinical guidelines based on correlations between FLT3 internal tandem duplications (FLT3-ITD and decreased disease-free and overall survival. These mutations result in constitutive activation of FLT3, and FLT3 inhibitors are currently undergoing trials in AML patients selected on FLT3 molecular status. However, the transient and partial responses observed suggest that FLT3 mutational status alone does not provide complete information on FLT3 biological activity at the individual patient level. Examination of variation in cellular responsiveness to signaling modulation may be more informative. METHODOLOGY/PRINCIPAL FINDINGS: Using single cell network profiling (SCNP, cells were treated with extracellular modulators and their functional responses were quantified by multiparametric flow cytometry. Intracellular signaling responses were compared between healthy bone marrow myeloblasts (BMMb and AML leukemic blasts characterized as FLT3 wild type (FLT3-WT or FLT3-ITD. Compared to healthy BMMb, FLT3-WT leukemic blasts demonstrated a wide range of signaling responses to FLT3 ligand (FLT3L, including elevated and sustained PI3K and Ras/Raf/Erk signaling. Distinct signaling and apoptosis profiles were observed in FLT3-WT and FLT3-ITD AML samples, with more uniform signaling observed in FLT3-ITD AML samples. Specifically, increased basal p-Stat5 levels, decreased FLT3L induced activation of the PI3K and Ras/Raf/Erk pathways, decreased IL-27 induced activation of the Jak/Stat pathway, and heightened apoptotic responses to agents inducing DNA damage were observed in FLT3-ITD AML samples. Preliminary analysis correlating these findings with clinical outcomes suggests that classification of patient samples based on signaling profiles may more accurately reflect FLT3 signaling

  14. PPAR γ Networks in Cell Signaling: Update and Impact of Cyclic Phosphatidic Acid.

    Science.gov (United States)

    Tsukahara, Tamotsu

    2013-01-01

    Lysophospholipid (LPL) has long been recognized as a membrane phospholipid metabolite. Recently, however, the LPL has emerged as a candidate for diagnostic and pharmacological interest. LPLs include lysophosphatidic acid (LPA), alkyl glycerol phosphate (AGP), cyclic phosphatidic acid (cPA), and sphingosine-1-phosphate (S1P). These biologically active lipid mediators serve to promote a variety of responses that include cell proliferation, migration, and survival. These LPL-related responses are mediated by cell surface G-protein-coupled receptors and also intracellular receptor peroxisome proliferator-activated receptor gamma (PPAR γ ). In this paper, we focus mainly on the most recent findings regarding the biological function of nuclear receptor-mediated lysophospholipid signaling in mammalian systems, specifically as they relate to health and diseases. Also, we will briefly review the biology of PPAR γ and then provide an update of lysophospholipids PPAR γ ligands that are under investigation as a therapeutic compound and which are targets of PPAR γ relevant to diseases. PMID:23476786

  15. Integrated transcriptomic and proteomic analysis identifies protein kinase CK2 as a key signaling node in an inflammatory cytokine network in ovarian cancer cells

    Science.gov (United States)

    Kulbe, Hagen; Iorio, Francesco; Chakravarty, Probir; Milagre, Carla S.; Moore, Robert; Thompson, Richard G.; Everitt, Gemma; Canosa, Monica; Montoya, Alexander; Drygin, Denis; Braicu, Ioana; Sehouli, Jalid; Saez-Rodriguez, Julio; Cutillas, Pedro R.; Balkwill, Frances R.

    2016-01-01

    We previously showed how key pathways in cancer-related inflammation and Notch signaling are part of an autocrine malignant cell network in ovarian cancer. This network, which we named the “TNF network”, has paracrine actions within the tumor microenvironment, influencing angiogenesis and the immune cell infiltrate. The aim of this study was to identify critical regulators in the signaling pathways of the TNF network in ovarian cancer cells that might be therapeutic targets. To achieve our aim, we used a systems biology approach, combining data from phospho-proteomic mass spectrometry and gene expression array analysis. Among the potential therapeutic kinase targets identified was the protein kinase Casein kinase II (CK2). Knockdown of CK2 expression in malignant cells by siRNA or treatment with the specific CK2 inhibitor CX-4945 significantly decreased Notch signaling and reduced constitutive cytokine release in ovarian cancer cell lines that expressed the TNF network as well as malignant cells isolated from high grade serous ovarian cancer ascites. The expression of the same cytokines was also inhibited after treatment with CX-4945 in a 3D organotypic model. CK2 inhibition was associated with concomitant inhibition of proliferative activity, reduced angiogenesis and experimental peritoneal ovarian tumor growth. In conclusion, we have identified kinases, particularly CK2, associated with the TNF network that may play a central role in sustaining the cytokine network and/or mediating its effects in ovarian cancer. PMID:26871292

  16. Engineering cell-cell signaling.

    Science.gov (United States)

    Blagovic, Katarina; Gong, Emily S; Milano, Daniel F; Natividad, Robert J; Asthagiri, Anand R

    2013-10-01

    Juxtacrine cell-cell signaling mediated by the direct interaction of adjoining mammalian cells is arguably the mode of cell communication that is most recalcitrant to engineering. Overcoming this challenge is crucial for progress in biomedical applications, such as tissue engineering, regenerative medicine, immune system engineering and therapeutic design. Here, we describe the significant advances that have been made in developing synthetic platforms (materials and devices) and synthetic cells (cell surface engineering and synthetic gene circuits) to modulate juxtacrine cell-cell signaling. In addition, significant progress has been made in elucidating design rules and strategies to modulate juxtacrine signaling on the basis of quantitative, engineering analysis of the mechanical and regulatory role of juxtacrine signals in the context of other cues and physical constraints in the microenvironment. These advances in engineering juxtacrine signaling lay a strong foundation for an integrative approach to utilize synthetic cells, advanced 'chassis' and predictive modeling to engineer the form and function of living tissues.

  17. ALDH1A1 maintains ovarian cancer stem cell-like properties by altered regulation of cell cycle checkpoint and DNA repair network signaling.

    Directory of Open Access Journals (Sweden)

    Erhong Meng

    Full Text Available OBJECTIVE: Aldehyde dehydrogenase (ALDH expressing cells have been characterized as possessing stem cell-like properties. We evaluated ALDH+ ovarian cancer stem cell-like properties and their role in platinum resistance. METHODS: Isogenic ovarian cancer cell lines for platinum sensitivity (A2780 and platinum resistant (A2780/CP70 as well as ascites from ovarian cancer patients were analyzed for ALDH+ by flow cytometry to determine its association to platinum resistance, recurrence and survival. A stable shRNA knockdown model for ALDH1A1 was utilized to determine its effect on cancer stem cell-like properties, cell cycle checkpoints, and DNA repair mediators. RESULTS: ALDH status directly correlated to platinum resistance in primary ovarian cancer samples obtained from ascites. Patients with ALDHHIGH displayed significantly lower progression free survival than the patients with ALDHLOW cells (9 vs. 3 months, respectively p<0.01. ALDH1A1-knockdown significantly attenuated clonogenic potential, PARP-1 protein levels, and reversed inherent platinum resistance. ALDH1A1-knockdown resulted in dramatic decrease of KLF4 and p21 protein levels thereby leading to S and G2 phase accumulation of cells. Increases in S and G2 cells demonstrated increased expression of replication stress associated Fanconi Anemia DNA repair proteins (FANCD2, FANCJ and replication checkpoint (pS317 Chk1 were affected. ALDH1A1-knockdown induced DNA damage, evidenced by robust induction of γ-H2AX and BAX mediated apoptosis, with significant increases in BRCA1 expression, suggesting ALDH1A1-dependent regulation of cell cycle checkpoints and DNA repair networks in ovarian cancer stem-like cells. CONCLUSION: This data suggests that ovarian cancer cells expressing ALDH1A1 may maintain platinum resistance by altered regulation of cell cycle checkpoint and DNA repair network signaling.

  18. The Emerging Role of the Phosphatidylinositol 3-Kinase/ Akt/Mammalian Target of Rapamycin Signaling Network in Cancer Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    James A. McCubrey

    2010-08-01

    Full Text Available The cancer stem cell theory entails the existence of a hierarchically organized, rare population of cells which are responsible for tumor initiation, self-renewal/maintenance, and mutation accumulation. The cancer stem cell proposition could explain the high frequency of cancer relapse and resistance to currently available therapies. The phosphatidylinositol 3-kinase (PI3K/Akt/mammalian target of rapamycin (mTOR signaling pathway regulates a wide array of physiological cell functions which include differentiation, proliferation, survival, metabolism, autophagy, and motility. Dysregulated PI3K/Akt/mTOR signaling has been documented in many types of neoplasias. It is now emerging that this signaling network plays a key role in cancer stem cell biology. Interestingly, cancer stem cells displayed preferential sensitivity to pathway inhibition when compared to healthy stem cells. This observation provides the proof-of-principle that functional differences in signaling pathways between neoplastic stem cells and healthy stem cells could be identified. In this review, we present the evidence which links the signals emanating from the PI3K/Akt/mTOR cascade with the functions of cancer stem cells, both in solid and hematological tumors. We then highlight how targeting PI3K/Akt/mTOR signaling with small molecules could improve cancer patient outcome.

  19. Retrograde signaling: Organelles go networking.

    Science.gov (United States)

    Kleine, Tatjana; Leister, Dario

    2016-08-01

    The term retrograde signaling refers to the fact that chloroplasts and mitochondria utilize specific signaling molecules to convey information on their developmental and physiological states to the nucleus and modulate the expression of nuclear genes accordingly. Signals emanating from plastids have been associated with two main networks: 'Biogenic control' is active during early stages of chloroplast development, while 'operational' control functions in response to environmental fluctuations. Early work focused on the former and its major players, the GUN proteins. However, our view of retrograde signaling has since been extended and revised. Elements of several 'operational' signaling circuits have come to light, including metabolites, signaling cascades in the cytosol and transcription factors. Here, we review recent advances in the identification and characterization of retrograde signaling components. We place particular emphasis on the strategies employed to define signaling components, spanning the entire spectrum of genetic screens, metabolite profiling and bioinformatics. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26997501

  20. Mathematical Modelling Plant Signalling Networks

    KAUST Repository

    Muraro, D.

    2013-01-01

    During the last two decades, molecular genetic studies and the completion of the sequencing of the Arabidopsis thaliana genome have increased knowledge of hormonal regulation in plants. These signal transduction pathways act in concert through gene regulatory and signalling networks whose main components have begun to be elucidated. Our understanding of the resulting cellular processes is hindered by the complex, and sometimes counter-intuitive, dynamics of the networks, which may be interconnected through feedback controls and cross-regulation. Mathematical modelling provides a valuable tool to investigate such dynamics and to perform in silico experiments that may not be easily carried out in a laboratory. In this article, we firstly review general methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more comprehensive modelling studies of hormonal transport and signalling in a multi-scale setting. © EDP Sciences, 2013.

  1. Twist induces epithelial-mesenchymal transition and cell motility in breast cancer via ITGB1-FAK/ILK signaling axis and its associated downstream network.

    Science.gov (United States)

    Yang, Jiajia; Hou, Yixuan; Zhou, Mingli; Wen, Siyang; Zhou, Jian; Xu, Liyun; Tang, Xi; Du, Yan-e; Hu, Ping; Liu, Manran

    2016-02-01

    Twist, a highly conserved basic Helix-Loop-Helix transcription factor, functions as a major regulator of epithelial-mesenchymal transition (EMT) and tumor metastasis. In different cell models, signaling pathways such as TGF-β, MAPK/ERK, WNT, AKT, JAK/STAT, Notch, and P53 have also been shown to play key roles in the EMT process, yet little is known about the signaling pathways regulated by Twist in tumor cells. Using iTRAQ-labeling combined with 2D LC-MS/MS analysis, we identified 194 proteins with significant changes of expression in MCF10A-Twist cells. These proteins reportedly play roles in EMT, cell junction organization, cell adhesion, and cell migration and invasion. ECM-receptor interaction, MAPK, PI3K/AKT, P53 and WNT signaling were found to be aberrantly activated in MCF10A-Twist cells. Ingenuity Pathways Analysis showed that integrin β1 (ITGB1) acts as a core regulator in linking integrin-linked kinase (ILK), Focal-adhesion kinase (FAK), MAPK/ERK, PI3K/AKT, and WNT signaling. Increased Twist and ITGB1 are associated with breast tumor progression. Twist transcriptionally regulates ITGB1 expression. Over-expression of ITGB1 or Twist in MCF10A led to EMT, activation of FAK/ILK, MAPK/ERK, PI3K/AKT, and WNT signaling. Knockdown of Twist or ITGB1 in BT549 and Hs578T cells decreased activity of FAK, ILK, and their downstream signaling, thus specifically impeding EMT and cell invasion. Knocking down ILK or inhibiting FAK, MAPK/ERK, or PI3K/AKT signaling also suppressed Twist-driven EMT and cell invasion. Thus, the Twist-ITGB1-FAK/ILK pathway and their downstream signaling network dictate the Twist-induced EMT process in human mammary epithelial cells and breast cancer cells. PMID:26693891

  2. The cancer stem-cell signaling network and resistance to therapy.

    Science.gov (United States)

    Carnero, A; Garcia-Mayea, Y; Mir, C; Lorente, J; Rubio, I T; LLeonart, M E

    2016-09-01

    The study of cancer stem cells (CSCs) has shown that tumors are driven by a subpopulation of self-renewing CSCs that retain the capacity to engender the various differentiated cell populations that form tumors. The characterization of CSCs has indicated that CSCs are remarkably resistant to conventional radio- and chemo-therapy. Clinically, the remaining populations of CSC are responsible for metastasis and recurrence in patients with cancer, which can lead to the disease becoming chronic and incurable. Therefore, the elimination of CSCs is an important goal of cancer treatments. Furthermore, CSCs are subject to strong regulation by the surrounding microenvironment, which also impacts tumor responses. In this review, we discuss the mechanisms by which pathways that are defective in CSCs influence ultimately therapeutic and clinical outcomes. PMID:27434881

  3. Stem Cell Networks

    OpenAIRE

    Werner, Eric

    2016-01-01

    We present a general computational theory of stem cell networks and their developmental dynamics. Stem cell networks are special cases of developmental control networks. Our theory generates a natural classification of all possible stem cell networks based on their network architecture. Each stem cell network has a unique topology and semantics and developmental dynamics that result in distinct phenotypes. We show that the ideal growth dynamics of multicellular systems generated by stem cell ...

  4. A Cell-Signaling Network Temporally Resolves Specific versus Promiscuous Phosphorylation

    Directory of Open Access Journals (Sweden)

    Evgeny Kanshin

    2015-02-01

    Full Text Available If specific and functional kinase- or phosphatase-substrate interactions are optimized for binding compared to promiscuous interactions, then changes in phosphorylation should occur faster on functional versus promiscuous substrates. To test this hypothesis, we designed a high temporal resolution global phosphoproteomics protocol to study the high-osmolarity glycerol (HOG response in the budding yeast Saccharomyces cerevisiae. The method provides accurate, stimulus-specific measurement of phosphoproteome changes, quantitative analysis of phosphodynamics at sub-minute temporal resolution, and detection of more phosphosites. Rates of evolution of dynamic phosphosites were comparable to those of known functional phosphosites and significantly lower than static or longer-time-frame dynamic phosphosites. Kinetic profile analyses indicated that putatively functional kinase- or phosphatase-substrate interactions occur more rapidly, within 60 s, than promiscuous interactions. Finally, we report many changes in phosphorylation of proteins implicated in cytoskeletal and mitotic spindle dynamics that may underlie regulation of cell cycle and morphogenesis.

  5. Engineering Cell-Cell Signaling

    OpenAIRE

    Blagovic, Katarina; Gong, Emily S.; Milano, Daniel F.; Natividad, Robert J.; Asthagiri, Anand R

    2013-01-01

    Juxtacrine cell-cell signaling mediated by the direct interaction of adjoining mammalian cells is arguably the mode of cell communication that is most recalcitrant to engineering. Overcoming this challenge is crucial for progress in biomedical applications, such as tissue engineering, regenerative medicine, immune system engineering and therapeutic design. Here, we describe the significant advances that have been made in developing synthetic platforms (materials and devices) and synthetic cel...

  6. Bioinformatics analyses for signal transduction networks

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Research in signaling networks contributes to a deeper understanding of organism living activities. With the development of experimental methods in the signal transduction field, more and more mechanisms of signaling pathways have been discovered. This paper introduces such popular bioin-formatics analysis methods for signaling networks as the common mechanism of signaling pathways and database resource on the Internet, summerizes the methods of analyzing the structural properties of networks, including structural Motif finding and automated pathways generation, and discusses the modeling and simulation of signaling networks in detail, as well as the research situation and tendency in this area. Now the investigation of signal transduction is developing from small-scale experiments to large-scale network analysis, and dynamic simulation of networks is closer to the real system. With the investigation going deeper than ever, the bioinformatics analysis of signal transduction would have immense space for development and application.

  7. Protein evolution on a human signaling network

    OpenAIRE

    Purisima Enrico O; Cui Qinghua; Wang Edwin

    2009-01-01

    Abstract Background The architectural structure of cellular networks provides a framework for innovations as well as constraints for protein evolution. This issue has previously been studied extensively by analyzing protein interaction networks. However, it is unclear how signaling networks influence and constrain protein evolution and conversely, how protein evolution modifies and shapes the functional consequences of signaling networks. In this study, we constructed a human signaling networ...

  8. Collective Calcium Signaling of Defective Multicellular Networks

    Science.gov (United States)

    Potter, Garrett; Sun, Bo

    2015-03-01

    A communicating multicellular network processes environmental cues into collective cellular dynamics. We have previously demonstrated that, when excited by extracellular ATP, fibroblast monolayers generate correlated calcium dynamics modulated by both the stimuli and gap junction communication between the cells. However, just as a well-connected neural network may be compromised by abnormal neurons, a tissue monolayer can also be defective with cancer cells, which typically have down regulated gap junctions. To understand the collective cellular dynamics in a defective multicellular network we have studied the calcium signaling of co-cultured breast cancer cells and fibroblast cells in various concentrations of ATP delivered through microfluidic devices. Our results demonstrate that cancer cells respond faster, generate singular spikes, and are more synchronous across all stimuli concentrations. Additionally, fibroblast cells exhibit persistent calcium oscillations that increase in regularity with greater stimuli. To interpret these results we quantitatively analyzed the immunostaining of purigenic receptors and gap junction channels. The results confirm our hypothesis that collective dynamics are mainly determined by the availability of gap junction communications.

  9. Brachyury and SMAD signalling collaboratively orchestrate distinct mesoderm and endoderm gene regulatory networks in differentiating human embryonic stem cells.

    Science.gov (United States)

    Faial, Tiago; Bernardo, Andreia S; Mendjan, Sasha; Diamanti, Evangelia; Ortmann, Daniel; Gentsch, George E; Mascetti, Victoria L; Trotter, Matthew W B; Smith, James C; Pedersen, Roger A

    2015-06-15

    The transcription factor brachyury (T, BRA) is one of the first markers of gastrulation and lineage specification in vertebrates. Despite its wide use and importance in stem cell and developmental biology, its functional genomic targets in human cells are largely unknown. Here, we use differentiating human embryonic stem cells to study the role of BRA in activin A-induced endoderm and BMP4-induced mesoderm progenitors. We show that BRA has distinct genome-wide binding landscapes in these two cell populations, and that BRA interacts and collaborates with SMAD1 or SMAD2/3 signalling to regulate the expression of its target genes in a cell-specific manner. Importantly, by manipulating the levels of BRA in cells exposed to different signalling environments, we demonstrate that BRA is essential for mesoderm but not for endoderm formation. Together, our data illuminate the function of BRA in the context of human embryonic development and show that the regulatory role of BRA is context dependent. Our study reinforces the importance of analysing the functions of a transcription factor in different cellular and signalling environments.

  10. Defining a Modular Signalling Network from the Fly Interactome

    Directory of Open Access Journals (Sweden)

    Jacq Bernard

    2008-05-01

    Full Text Available Abstract Background Signalling pathways relay information by transmitting signals from cell surface receptors to intracellular effectors that eventually activate the transcription of target genes. Since signalling pathways involve several types of molecular interactions including protein-protein interactions, we postulated that investigating their organization in the context of the global protein-protein interaction network could provide a new integrated view of signalling mechanisms. Results Using a graph-theory based method to analyse the fly protein-protein interaction network, we found that each signalling pathway is organized in two to three different signalling modules. These modules contain canonical proteins of the signalling pathways, known regulators as well as other proteins thereby predicted to participate to the signalling mechanisms. Connections between the signalling modules are prominent as compared to the other network's modules and interactions within and between signalling modules are among the more central routes of the interaction network. Conclusion Altogether, these modules form an interactome sub-network devoted to signalling with particular topological properties: modularity, density and centrality. This finding reflects the integration of the signalling system into cell functioning and its important role connecting and coordinating different biological processes at the level of the interactome.

  11. The biological networks in studying cell signal transduction complexity: The examples of sperm capacitation and of endocannabinoid system

    OpenAIRE

    Nicola Bernabò; Barbara Barboni; Mauro Maccarrone

    2014-01-01

    Cellular signal transduction is a complex phenomenon, which plays a central role in cell surviving and adaptation. The great amount of molecular data to date present in literature, together with the adoption of high throughput technologies, on the one hand, made available to scientists an enormous quantity of information, on the other hand, failed to provide a parallel increase in the understanding of biological events. In this context, a new discipline arose, the systems biology, aimed to ma...

  12. Decoding signalling networks by mass spectrometry-based proteomics

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Mann, Matthias

    2010-01-01

    Signalling networks regulate essentially all of the biology of cells and organisms in normal and disease states. Signalling is often studied using antibody-based techniques such as western blots. Large-scale 'precision proteomics' based on mass spectrometry now enables the system-wide characteriz......Signalling networks regulate essentially all of the biology of cells and organisms in normal and disease states. Signalling is often studied using antibody-based techniques such as western blots. Large-scale 'precision proteomics' based on mass spectrometry now enables the system...... perturbation. Current studies focus on phosphorylation, but acetylation, methylation, glycosylation and ubiquitylation are also becoming amenable to investigation. Large-scale proteomics-based signalling research will fundamentally change our understanding of signalling networks....

  13. ErbB2-Driven Breast Cancer Cell Invasion Depends on a Complex Signaling Network Activating Myeloid Zinc Finger-1-Dependent Cathepsin B Expression

    DEFF Research Database (Denmark)

    Rafn, Bo; Nielsen, Christian Thomas Friberg; Andersen, Sofie Hagel;

    2012-01-01

    signaling network activates the transcription of cathepsin B gene (CTSB) via myeloid zinc finger-1 transcription factor that binds to an ErbB2-responsive enhancer element in the first intron of CTSB. This work provides a model system for ErbB2-induced breast cancer cell invasiveness, reveals a signaling......Aberrant ErbB2 receptor tyrosine kinase activation in breast cancer is strongly linked to an invasive disease. The molecular basis of ErbB2-driven invasion is largely unknown. We show that cysteine cathepsins B and L are elevated in ErbB2 positive primary human breast cancer and function...... as effectors of ErbB2-induced invasion in vitro. We identify Cdc42-binding protein kinase beta, extracellular regulated kinase 2, p21-activated protein kinase 4, and protein kinase C alpha as essential mediators of ErbB2-induced cysteine cathepsin expression and breast cancer cell invasiveness. The identified...

  14. Placing Ion Channels into a Signaling Network of T Cells: From Maturing Thymocytes to Healthy T Lymphocytes or Leukemic T Lymphoblasts

    Directory of Open Access Journals (Sweden)

    Oxana Dobrovinskaya

    2015-01-01

    Full Text Available T leukemogenesis is a multistep process, where the genetic errors during T cell maturation cause the healthy progenitor to convert into the leukemic precursor that lost its ability to differentiate but possesses high potential for proliferation, self-renewal, and migration. A new misdirecting “leukemogenic” signaling network appears, composed by three types of participants which are encoded by (1 genes implicated in determined stages of T cell development but deregulated by translocations or mutations, (2 genes which normally do not participate in T cell development but are upregulated, and (3 nondifferentially expressed genes which become highly interconnected with genes expressed differentially. It appears that each of three groups may contain genes coding ion channels. In T cells, ion channels are implicated in regulation of cell cycle progression, differentiation, activation, migration, and cell death. In the present review we are going to reveal a relationship between different genetic defects, which drive the T cell neoplasias, with calcium signaling and ion channels. We suggest that changes in regulation of various ion channels in different types of the T leukemias may provide the intracellular ion microenvironment favorable to maintain self-renewal capacity, arrest differentiation, induce proliferation, and enhance motility.

  15. Evaluation of phosphopeptide enrichment strategies for quantitative TMT analysis of complex network dynamics in cancer-associated cell signalling

    Directory of Open Access Journals (Sweden)

    Benedetta Lombardi

    2015-03-01

    Full Text Available Defining alterations in signalling pathways in normal and malignant cells is becoming a major field in proteomics. A number of different approaches have been established to isolate, identify and quantify phosphorylated proteins and peptides. In the current report, a comparison between SCX prefractionation versus an antibody based approach, both coupled to TiO2 enrichment and applied to TMT labelled cellular lysates, is described. The antibody strategy was more complete for enriching phosphopeptides and allowed the identification of a large set of proteins known to be phosphorylated (715 protein groups with a minimum number of not previously known phosphorylated proteins (2.

  16. Origin of cells and network information

    Institute of Scientific and Technical Information of China (English)

    Shihori Tanabe

    2015-01-01

    All cells are derived from one cell, and the origin ofdifferent cell types is a subject of curiosity. Cells constructlife through appropriately timed networks at each stageof development. Communication among cells andintracellular signaling are essential for cell differentiationand for life processes. Cellular molecular networksestablish cell diversity and life. The investigation ofthe regulation of each gene in the genome within thecellular network is therefore of interest. Stem cellsproduce various cells that are suitable for specificpurposes. The dynamics of the information in thecellular network changes as the status of cells isaltered. The components of each cell are subject toinvestigation.

  17. SIMULATING BIOCHEMICAL SIGNALING NETWORKS IN COMPLEX MOVING GEOMETRIES.

    Science.gov (United States)

    Strychalski, Wanda; Adalsteinsson, David; Elston, Timothy C

    2010-01-01

    Signaling networks regulate cellular responses to environmental stimuli through cascades of protein interactions. External signals can trigger cells to polarize and move in a specific direction. During migration, spatially localized activity of proteins is maintained. To investigate the effects of morphological changes on intracellular signaling, we developed a numerical scheme consisting of a cut cell finite volume spatial discretization coupled with level set methods to simulate the resulting advection-reaction-diffusion system. We then apply the method to several biochemical reaction networks in changing geometries. We found that a Turing instability can develop exclusively by cell deformations that maintain constant area. For a Turing system with a geometry-dependent single or double peak solution, simulations in a dynamically changing geometry suggest that a single peak solution is the only stable one, independent of the oscillation frequency. The method is also applied to a model of a signaling network in a migrating fibroblast. PMID:24086102

  18. Profiling Signaling Polarity in Chemotactic Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yingchun; Ding, Shi-Jian; Wang, Wei; Jacobs, Jon M.; Qian, Weijun; Moore, Ronald J.; Yang, Feng; Camp, David G.; Smith, Richard D.; Klemke, Richard L.

    2007-05-15

    While directional movement requires morphological polarization characterized by formation of a leading pseudopodium at the front and a trailing rear at the back, little is known about how protein networks are spatially integrated to regulate this process. Here, we utilize a unique pseudopodial purification system and quantitative proteomics and phosphoproteomics to map the spatial relationship of 3509 proteins and 228 distinct sites of phosphorylation in polarized cells. Networks of signaling proteins, metabolic pathways, actin regulatory proteins, and kinase-substrate cascades were found to partition to different poles of the cell including components of the Ras/ERK pathway. Also, several novel proteins were found to be differentially phosphorylated at the front or rear of polarized cells and to localize to distinct subcellular structures. Our findings provide insight into the spatial organization of signaling networks that control cell movement and provide a comprehensive profile of proteins and their sites of phosphorylation that control cell polarization.

  19. Interleukin-7 Receptor Signaling Network: An Integrated Systems Perspective

    Institute of Scientific and Technical Information of China (English)

    Megan J. Palmer; Vinay S. Mahajan; Lily C. Trajman; Darrell J. Irvine; Douglas A.Lauffenburger; Jianzhu Chen

    2008-01-01

    Interleukin-7 (IL-7) is an essential cytokine for the development and homeostatic maintenance of T and B lymphocytes. Binding of IL-7 to its cognate receptor, the IL-7 receptor (IL-7R), activates multiple pathways that regulate lymphocyte survival, glucose uptake, proliferation and differentiation. There has been much interest in understanding how IL-7 receptor signaling is modulated at multiple interconnected network levels. This review examines how the strength of the signal through the IL-7 receptor is modulated in T and B cells, including the use of shared receptor components, signaling crosstaik, shared interaction domains, feedback loops, integrated gene regulation, muitimerization and ligand competition. We discuss how these network control mechanisms could integrate to govern the properties of IL-7R signaling in lymphocytes in health and disease. Analysis of IL-7receptor signaling at a network level in a systematic manner will allow for a comprehensive approach to understanding the impact of multiple signaling pathways on lymphocyte biology.

  20. Community detection by signaling on complex networks

    Science.gov (United States)

    Hu, Yanqing; Li, Menghui; Zhang, Peng; Fan, Ying; di, Zengru

    2008-07-01

    Based on a signaling process of complex networks, a method for identification of community structure is proposed. For a network with n nodes, every node is assumed to be a system which can send, receive, and record signals. Each node is taken as the initial signal source to excite the whole network one time. Then the source node is associated with an n -dimensional vector which records the effects of the signaling process. By this process, the topological relationship of nodes on the network could be transferred into a geometrical structure of vectors in n -dimensional Euclidean space. Then the best partition of groups is determined by F statistics and the final community structure is given by the K -means clustering method. This method can detect community structure both in unweighted and weighted networks. It has been applied to ad hoc networks and some real networks such as the Zachary karate club network and football team network. The results indicate that the algorithm based on the signaling process works well.

  1. Reconstruction of periodic signals using neural networks

    Directory of Open Access Journals (Sweden)

    José Danilo Rairán Antolines

    2014-01-01

    Full Text Available In this paper, we reconstruct a periodic signal by using two neural networks. The first network is trained to approximate the period of a signal, and the second network estimates the corresponding coefficients of the signal's Fourier expansion. The reconstruction strategy consists in minimizing the mean-square error via backpro-pagation algorithms over a single neuron with a sine transfer function. Additionally, this paper presents mathematical proof about the quality of the approximation as well as a first modification of the algorithm, which requires less data to reach the same estimation; thus making the algorithm suitable for real-time implementations.

  2. Organization of signal flow in directed networks

    International Nuclear Information System (INIS)

    Confining an answer to the question of whether and how the coherent operation of network elements is determined by the network structure is the topic of our work. We map the structure of signal flow in directed networks by analysing the degree of edge convergence and the overlap between the in- and output sets of an edge. Definitions of convergence degree and overlap are based on the shortest paths, thus they encapsulate global network properties. Using the defining notions of convergence degree and overlapping set we clarify the meaning of network causality and demonstrate the crucial role of chordless circles. In real-world networks the flow representation distinguishes nodes according to their signal transmitting, processing and control properties. The analysis of real-world networks in terms of flow representation was in accordance with the known functional properties of the network nodes. It is shown that nodes with different signal processing, transmitting and control properties are randomly connected at the global scale, while local connectivity patterns depart from randomness. The grouping of network nodes according to their signal flow properties was unrelated to the network's community structure. We present evidence that the signal flow properties of small-world-like, real-world networks cannot be reconstructed by algorithms used to generate small-world networks. Convergence degree values were calculated for regular oriented trees, and the probability density function for networks grown with the preferential attachment mechanism. For Erdos–Rényi graphs we calculated the probability density function of both convergence degrees and overlaps

  3. Deep Proteomics of Breast Cancer Cells Reveals that Metformin Rewires Signaling Networks Away from a Pro-growth State.

    Science.gov (United States)

    Sacco, Francesca; Silvestri, Alessandra; Posca, Daniela; Pirrò, Stefano; Gherardini, Pier Federico; Castagnoli, Luisa; Mann, Matthias; Cesareni, Gianni

    2016-03-23

    Metformin is the most frequently prescribed drug for type 2 diabetes. In addition to its hypoglycemic effects, metformin also lowers cancer incidence. This anti-cancer activity is incompletely understood. Here, we profiled the metformin-dependent changes in the proteome and phosphoproteome of breast cancer cells using high-resolution mass spectrometry. In total, we quantified changes of 7,875 proteins and 15,813 phosphosites after metformin changes. To interpret these datasets, we developed a generally applicable strategy that overlays metformin-dependent changes in the proteome and phosphoproteome onto a literature-derived network. This approach suggested that metformin treatment makes cancer cells more sensitive to apoptotic stimuli and less sensitive to pro-growth stimuli. These hypotheses were tested in vivo; as a proof-of-principle, we demonstrated that metformin inhibits the p70S6K-rpS6 axis in a PP2A-phosphatase dependent manner. In conclusion, analysis of deep proteomics reveals both detailed and global mechanisms that contribute to the anti-cancer activity of metformin. PMID:27135362

  4. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    Directory of Open Access Journals (Sweden)

    Andre Terzic

    2009-04-01

    Full Text Available Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7 are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network.

  5. Learning robust cell signalling models from high throughput proteomic data

    OpenAIRE

    Koch, Mitchell; Broom, Bradley M.; Subramanian, Devika

    2009-01-01

    We propose a framework for learning robust Bayesian network models of cell signalling from high-throughput proteomic data. We show that model averaging using Bayesian bootstrap resampling generates more robust structures than procedures that learn structures using all of the data. We also develop an algorithm for ranking the importance of network features using bootstrap resample data. We apply our algorithms to derive the T-cell signalling network from the flow cytometry data of Sachs et al....

  6. The fidelity of dynamic signaling by noisy biomolecular networks.

    Directory of Open Access Journals (Sweden)

    Clive G Bowsher

    Full Text Available Cells live in changing, dynamic environments. To understand cellular decision-making, we must therefore understand how fluctuating inputs are processed by noisy biomolecular networks. Here we present a general methodology for analyzing the fidelity with which different statistics of a fluctuating input are represented, or encoded, in the output of a signaling system over time. We identify two orthogonal sources of error that corrupt perfect representation of the signal: dynamical error, which occurs when the network responds on average to other features of the input trajectory as well as to the signal of interest, and mechanistic error, which occurs because biochemical reactions comprising the signaling mechanism are stochastic. Trade-offs between these two errors can determine the system's fidelity. By developing mathematical approaches to derive dynamics conditional on input trajectories we can show, for example, that increased biochemical noise (mechanistic error can improve fidelity and that both negative and positive feedback degrade fidelity, for standard models of genetic autoregulation. For a group of cells, the fidelity of the collective output exceeds that of an individual cell and negative feedback then typically becomes beneficial. We can also predict the dynamic signal for which a given system has highest fidelity and, conversely, how to modify the network design to maximize fidelity for a given dynamic signal. Our approach is general, has applications to both systems and synthetic biology, and will help underpin studies of cellular behavior in natural, dynamic environments.

  7. Rhomboids, signalling and cell biology.

    Science.gov (United States)

    Freeman, Matthew

    2016-06-15

    Here, I take a somewhat personal perspective on signalling control, focusing on the rhomboid-like superfamily of proteins that my group has worked on for almost 20 years. As well as describing some of the key and recent advances, I attempt to draw out signalling themes that emerge. One important message is that the genetic and biochemical perspective on signalling has tended to underplay the importance of cell biology. There is clear evidence that signalling pathways exploit the control of intracellular trafficking, protein quality control and degradation and other cell biological phenomena, as important regulatory opportunities.

  8. Proteomic Study of the Brassinosteroid Signalling Network

    Institute of Scientific and Technical Information of China (English)

    Zhiyong Wang

    2012-01-01

    Plant growth is controlled by multiple environmental signals and endogenous hormones.In particular,brassinosteroid (BR) regulates a wide range of developmental processes throughout the life cycle of plants.BR acts through a receptor kinase signalling pathway,and BR signalling crosstalk with many other signalling pathways including light and gibberellin pathways as well as other receptor kinase pathways.My lab uses a combination of genetic,proteomic,and genomic approaches to elucidate not only the BR signaling pathway but also the global organization of the signaling network.We have successfully used proteomics to identify new components of the BR signalling pathway and to elucidated the mechanisms of signal transduction from the BRI1 receptor kinase to the BZR1 transcription factor.We have further uncovered mechanisms of crosstalk between different receptor kinase pathways,and we are dissecting the molecular mechanisms underlying signalling crosstalk and specificity.Our recent proteomic analysis of BR-regulated nuclear proteins has identified a potential link for BR regulation of flowering through RNA splicing and epigenetic mechanisms.I will discuss strategies and potential pitfalls in using proteomics to study signal transduction in plants.

  9. Signaling in large-scale neural networks

    DEFF Research Database (Denmark)

    Berg, Rune W; Hounsgaard, Jørn

    2009-01-01

    We examine the recent finding that neurons in spinal motor circuits enter a high conductance state during functional network activity. The underlying concomitant increase in random inhibitory and excitatory synaptic activity leads to stochastic signal processing. The possible advantages of this m...

  10. Novel links in the plant TOR kinase signaling network.

    Science.gov (United States)

    Xiong, Yan; Sheen, Jen

    2015-12-01

    Nutrient and energy sensing and signaling mechanisms constitute the most ancient and fundamental regulatory networks to control growth and development in all life forms. The target of rapamycin (TOR) protein kinase is modulated by diverse nutrient, energy, hormone and stress inputs and plays a central role in regulating cell proliferation, growth, metabolism and stress responses from yeasts to plants and animals. Recent chemical, genetic, genomic and metabolomic analyses have enabled significant progress toward molecular understanding of the TOR signaling network in multicellular plants. This review discusses the applications of new chemical tools to probe plant TOR functions and highlights recent findings and predictions on TOR-mediate biological processes. Special focus is placed on novel and evolutionarily conserved TOR kinase effectors as positive and negative signaling regulators that control transcription, translation and metabolism to support cell proliferation, growth and maintenance from embryogenesis to senescence in the plant system. PMID:26476687

  11. Novel links in the plant TOR kinase signaling network.

    Science.gov (United States)

    Xiong, Yan; Sheen, Jen

    2015-12-01

    Nutrient and energy sensing and signaling mechanisms constitute the most ancient and fundamental regulatory networks to control growth and development in all life forms. The target of rapamycin (TOR) protein kinase is modulated by diverse nutrient, energy, hormone and stress inputs and plays a central role in regulating cell proliferation, growth, metabolism and stress responses from yeasts to plants and animals. Recent chemical, genetic, genomic and metabolomic analyses have enabled significant progress toward molecular understanding of the TOR signaling network in multicellular plants. This review discusses the applications of new chemical tools to probe plant TOR functions and highlights recent findings and predictions on TOR-mediate biological processes. Special focus is placed on novel and evolutionarily conserved TOR kinase effectors as positive and negative signaling regulators that control transcription, translation and metabolism to support cell proliferation, growth and maintenance from embryogenesis to senescence in the plant system.

  12. Redefining Signaling Pathways with an Expanding Single-Cell Toolbox.

    Science.gov (United States)

    Gaudet, Suzanne; Miller-Jensen, Kathryn

    2016-06-01

    Genetically identical cells respond heterogeneously to uniform environmental stimuli. Consequently, investigating the signaling networks that control these cell responses using 'average' bulk cell measurements can obscure underlying mechanisms and misses information emerging from cell-to-cell variability. Here we review recent technological advances including live-cell fluorescence imaging-based approaches and microfluidic devices that enable measurements of signaling networks, dynamics, and responses in single cells. We discuss how these single-cell tools have uncovered novel mechanistic insights for canonical signaling pathways that control cell proliferation (ERK), DNA-damage responses (p53), and innate immune and stress responses (NF-κB). Future improvements in throughput and multiplexing, analytical pipelines, and in vivo applicability will all significantly expand the biological information gained from single-cell measurements of signaling pathways. PMID:26968612

  13. Redefining Signaling Pathways with an Expanding Single-Cell Toolbox.

    Science.gov (United States)

    Gaudet, Suzanne; Miller-Jensen, Kathryn

    2016-06-01

    Genetically identical cells respond heterogeneously to uniform environmental stimuli. Consequently, investigating the signaling networks that control these cell responses using 'average' bulk cell measurements can obscure underlying mechanisms and misses information emerging from cell-to-cell variability. Here we review recent technological advances including live-cell fluorescence imaging-based approaches and microfluidic devices that enable measurements of signaling networks, dynamics, and responses in single cells. We discuss how these single-cell tools have uncovered novel mechanistic insights for canonical signaling pathways that control cell proliferation (ERK), DNA-damage responses (p53), and innate immune and stress responses (NF-κB). Future improvements in throughput and multiplexing, analytical pipelines, and in vivo applicability will all significantly expand the biological information gained from single-cell measurements of signaling pathways.

  14. The statistical mechanics of complex signaling networks: nerve growth factor signaling

    Science.gov (United States)

    Brown, K. S.; Hill, C. C.; Calero, G. A.; Myers, C. R.; Lee, K. H.; Sethna, J. P.; Cerione, R. A.

    2004-10-01

    The inherent complexity of cellular signaling networks and their importance to a wide range of cellular functions necessitates the development of modeling methods that can be applied toward making predictions and highlighting the appropriate experiments to test our understanding of how these systems are designed and function. We use methods of statistical mechanics to extract useful predictions for complex cellular signaling networks. A key difficulty with signaling models is that, while significant effort is being made to experimentally measure the rate constants for individual steps in these networks, many of the parameters required to describe their behavior remain unknown or at best represent estimates. To establish the usefulness of our approach, we have applied our methods toward modeling the nerve growth factor (NGF)-induced differentiation of neuronal cells. In particular, we study the actions of NGF and mitogenic epidermal growth factor (EGF) in rat pheochromocytoma (PC12) cells. Through a network of intermediate signaling proteins, each of these growth factors stimulates extracellular regulated kinase (Erk) phosphorylation with distinct dynamical profiles. Using our modeling approach, we are able to predict the influence of specific signaling modules in determining the integrated cellular response to the two growth factors. Our methods also raise some interesting insights into the design and possible evolution of cellular systems, highlighting an inherent property of these systems that we call 'sloppiness.'

  15. Signaling pathway networks mined from human pituitary adenoma proteomics data

    Directory of Open Access Journals (Sweden)

    Zhan Xianquan

    2010-04-01

    Full Text Available Abstract Background We obtained a series of pituitary adenoma proteomic expression data, including protein-mapping data (111 proteins, comparative proteomic data (56 differentially expressed proteins, and nitroproteomic data (17 nitroproteins. There is a pressing need to clarify the significant signaling pathway networks that derive from those proteins in order to clarify and to better understand the molecular basis of pituitary adenoma pathogenesis and to discover biomarkers. Here, we describe the significant signaling pathway networks that were mined from human pituitary adenoma proteomic data with the Ingenuity pathway analysis system. Methods The Ingenuity pathway analysis system was used to analyze signal pathway networks and canonical pathways from protein-mapping data, comparative proteomic data, adenoma nitroproteomic data, and control nitroproteomic data. A Fisher's exact test was used to test the statistical significance with a significance level of 0.05. Statistical significant results were rationalized within the pituitary adenoma biological system with literature-based bioinformatics analyses. Results For the protein-mapping data, the top pathway networks were related to cancer, cell death, and lipid metabolism; the top canonical toxicity pathways included acute-phase response, oxidative-stress response, oxidative stress, and cell-cycle G2/M transition regulation. For the comparative proteomic data, top pathway networks were related to cancer, endocrine system development and function, and lipid metabolism; the top canonical toxicity pathways included mitochondrial dysfunction, oxidative phosphorylation, oxidative-stress response, and ERK/MAPK signaling. The nitroproteomic data from a pituitary adenoma were related to cancer, cell death, lipid metabolism, and reproductive system disease, and the top canonical toxicity pathways mainly related to p38 MAPK signaling and cell-cycle G2/M transition regulation. Nitroproteins from a

  16. Signalling network construction for modelling plant defence response.

    Directory of Open Access Journals (Sweden)

    Dragana Miljkovic

    Full Text Available Plant defence signalling response against various pathogens, including viruses, is a complex phenomenon. In resistant interaction a plant cell perceives the pathogen signal, transduces it within the cell and performs a reprogramming of the cell metabolism leading to the pathogen replication arrest. This work focuses on signalling pathways crucial for the plant defence response, i.e., the salicylic acid, jasmonic acid and ethylene signal transduction pathways, in the Arabidopsis thaliana model plant. The initial signalling network topology was constructed manually by defining the representation formalism, encoding the information from public databases and literature, and composing a pathway diagram. The manually constructed network structure consists of 175 components and 387 reactions. In order to complement the network topology with possibly missing relations, a new approach to automated information extraction from biological literature was developed. This approach, named Bio3graph, allows for automated extraction of biological relations from the literature, resulting in a set of (component1, reaction, component2 triplets and composing a graph structure which can be visualised, compared to the manually constructed topology and examined by the experts. Using a plant defence response vocabulary of components and reaction types, Bio3graph was applied to a set of 9,586 relevant full text articles, resulting in 137 newly detected reactions between the components. Finally, the manually constructed topology and the new reactions were merged to form a network structure consisting of 175 components and 524 reactions. The resulting pathway diagram of plant defence signalling represents a valuable source for further computational modelling and interpretation of omics data. The developed Bio3graph approach, implemented as an executable language processing and graph visualisation workflow, is publically available at http://ropot.ijs.si/bio3graph/and can be

  17. Gene Network Analysis of Glucose Linked Signaling Pathways and Their Role in Human Hepatocellular Carcinoma Cell Growth and Survival in HuH7 and HepG2 Cell Lines

    Directory of Open Access Journals (Sweden)

    Emmanuelle Berger

    2015-01-01

    Full Text Available Cancer progression may be affected by metabolism. In this study, we aimed to analyze the effect of glucose on the proliferation and/or survival of human hepatocellular carcinoma (HCC cells. Human gene datasets regulated by glucose were compared to gene datasets either dysregulated in HCC or regulated by other signaling pathways. Significant numbers of common genes suggested putative involvement in transcriptional regulations by glucose. Real-time proliferation assays using high (4.5 g/L versus low (1 g/L glucose on two human HCC cell lines and specific inhibitors of selected pathways were used for experimental validations. High glucose promoted HuH7 cell proliferation but not that of HepG2 cell line. Gene network analyses suggest that gene transcription by glucose could be mediated at 92% through ChREBP in HepG2 cells, compared to 40% in either other human cells or rodent healthy liver, with alteration of LKB1 (serine/threonine kinase 11 and NOX (NADPH oxidases signaling pathways and loss of transcriptional regulation of PPARGC1A (peroxisome-proliferator activated receptors gamma coactivator 1 target genes by high glucose. Both PPARA and PPARGC1A regulate transcription of genes commonly regulated by glycolysis, by the antidiabetic agent metformin and by NOX, suggesting their major interplay in the control of HCC progression.

  18. T cell traffic signals

    OpenAIRE

    Van Epps, Heather L.

    2005-01-01

    In 1990, Charles Mackay and colleagues combined classical physiology with modern molecular biology to provide the first concrete evidence that naive and memory T cells follow distinct migratory routes out of the bloodstream— a discovery that helped invigorate the field of lymphocyte homing.

  19. Calcium signaling in taste cells.

    Science.gov (United States)

    Medler, Kathryn F

    2015-09-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.

  20. Signal detection, modularity and the correlation between extrinsic and intrinsic noise in biochemical networks

    OpenAIRE

    Tanase-Nicola, Sorin; Warren, Patrick B.; Wolde, Pieter Rein ten

    2005-01-01

    Understanding cell function requires an accurate description of how noise is transmitted through biochemical networks. We present an analytical result for the power spectrum of the output signal of a biochemical network that takes into account the correlations between the noise in the input signal (the extrinsic noise) and the noise in the reactions that constitute the network (the intrinsic noise). These correlations arise from the fact that the reactions by which biochemical signals are det...

  1. Sweet Taste Receptor Signaling Network: Possible Implication for Cognitive Functioning

    Directory of Open Access Journals (Sweden)

    Menizibeya O. Welcome

    2015-01-01

    Full Text Available Sweet taste receptors are transmembrane protein network specialized in the transmission of information from special “sweet” molecules into the intracellular domain. These receptors can sense the taste of a range of molecules and transmit the information downstream to several acceptors, modulate cell specific functions and metabolism, and mediate cell-to-cell coupling through paracrine mechanism. Recent reports indicate that sweet taste receptors are widely distributed in the body and serves specific function relative to their localization. Due to their pleiotropic signaling properties and multisubstrate ligand affinity, sweet taste receptors are able to cooperatively bind multiple substances and mediate signaling by other receptors. Based on increasing evidence about the role of these receptors in the initiation and control of absorption and metabolism, and the pivotal role of metabolic (glucose regulation in the central nervous system functioning, we propose a possible implication of sweet taste receptor signaling in modulating cognitive functioning.

  2. Non-Invasive Green Small Cell Network

    OpenAIRE

    Mawlawi, Baher; Bastug, Ejder; Nerguizian, Chahé; Azarian, Sylvain; Debbah, Mérouane

    2011-01-01

    Future low cost wireless networks are expected to provide high data rates with low power consumption. A dense deployment of distributed small-cells, within the existing network infrastructure, is one of the candidate solutions to achieve this goal. Unfortunately, the aggregate signal resulting from the transmission of these multiples small cells can be considered as an electromagnetic (EM) pollution for passive users who do not carry wireless devices. These users are victim of primary electro...

  3. Cell signalling and phospholipid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Boss, W.F.

    1990-01-01

    These studies explored whether phosphoinositide (PI) has a role in plants analogous to its role in animal cells. Although no parallel activity of PI in signal transduction was found in plant cells, activity of inositol phospholipid kinase was found to be modulated by light and by cell wall degrading enzymes. These studies indicate a major role for inositol phospholipids in plant growth and development as membrane effectors but not as a source of second messengers.

  4. Network regulation of calcium signal in stomatal development

    Institute of Scientific and Technical Information of China (English)

    Zhu-xia SHEN; Gen-xuan WANG; Zhi-qiang LIU; Hao ZHANG; Mu-qing QIU; Xing-zheng ZHAO; Yi GAN

    2006-01-01

    Aim: Each cell is the production of multiple signal transduction programs involving the expression of thousands of genes. This study aims to gain insights into the gene regulation mechanisms of stomatal development and will investigate the relationships among some signaling transduction pathways. Methods: Nail enamel printing was conducted to observe the stomatal indices of wild type and 10 mutants (plant hormone mutants, Pi-starvation induced CaM mutants and Pi-starvation-response mutant) in Arabidopsis, and their stomatal indices were analyzed by ANOVA. We analyzed the stomatal indices of 10 Arabidopsis mutants were analyzed by a model PRGE (potential relative effect of genes) to research relations among these genes. Results: In wild type and 10 mutants, the stomatal index didn't differ with respect to location on the lower epidermis. Compared with wild type, the stomatal indices of 10 mutants all decreased significantly. Moreover, significant changes and interactions might exist between some mutant genes. Conclusion: It was the stomatal intensity in Arabidopsis might be highly sensitive to most mutations in genome. While the effect of many gene mutations on the stomatal index might be negative, we also could assume the stomatal development was regulated by a signal network in which one signal transduction change might influence the stomatal development more or less, and the architecture might be reticulate. Furthermore, we could speculate that calcium was a hub in stomatal development signal regulation network, and other signal transduction pathways regulated stomtal development by influencing or being influenced by calcium signal transduction pathways.

  5. NT2 derived neuronal and astrocytic network signalling.

    Directory of Open Access Journals (Sweden)

    Eric J Hill

    Full Text Available A major focus of stem cell research is the generation of neurons that may then be implanted to treat neurodegenerative diseases. However, a picture is emerging where astrocytes are partners to neurons in sustaining and modulating brain function. We therefore investigated the functional properties of NT2 derived astrocytes and neurons using electrophysiological and calcium imaging approaches. NT2 neurons (NT2Ns expressed sodium dependent action potentials, as well as responses to depolarisation and the neurotransmitter glutamate. NT2Ns exhibited spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling. Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, NT2 astrocytes (NT2As exhibited morphology and functional properties consistent with this glial cell type. NT2As responded to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. NT2As also generated propagating calcium waves that were gap junction and purinergic signalling dependent. Our results show that NT2 derived astrocytes exhibit appropriate functionality and that NT2N networks interact with NT2A networks in co-culture. These findings underline the utility of such cultures to investigate human brain cell type signalling under controlled conditions. Furthermore, since stem cell derived neuron function and survival is of great importance therapeutically, our findings suggest that the presence of complementary astrocytes may be valuable in supporting stem cell derived neuronal networks. Indeed, this also supports the intriguing possibility of selective therapeutic replacement of astrocytes in diseases where these cells are either lost or lose functionality.

  6. Phosphoproteomics-based systems analysis of signal transduction networks

    Directory of Open Access Journals (Sweden)

    Hiroko eKozuka-Hata

    2012-01-01

    Full Text Available Signal transduction systems coordinate complex cellular information to regulate biological events such as cell proliferation and differentiation. Although the accumulating evidence on widespread association of signaling molecules has revealed essential contribution of phosphorylation-dependent interaction networks to cellular regulation, their dynamic behavior is mostly yet to be analyzed. Recent technological advances regarding mass spectrometry-based quantitative proteomics have enabled us to describe the comprehensive status of phosphorylated molecules in a time-resolved manner. Computational analyses based on the phosphoproteome dynamics accelerate generation of novel methodologies for mathematical analysis of cellular signaling. Phosphoproteomics-based numerical modeling can be used to evaluate regulatory network elements from a statistical point of view. Integration with transcriptome dynamics also uncovers regulatory hubs at the transcriptional level. These omics-based computational methodologies, which have firstly been applied to representative signaling systems such as the epidermal growth factor receptor pathway, have now opened up a gate for systems analysis of signaling networks involved in immune response and cancer.

  7. Reverse engineering GTPase programming languages with reconstituted signaling networks.

    Science.gov (United States)

    Coyle, Scott M

    2016-07-01

    The Ras superfamily GTPases represent one of the most prolific signaling currencies used in Eukaryotes. With these remarkable molecules, evolution has built GTPase networks that control diverse cellular processes such as growth, morphology, motility and trafficking. (1-4) Our knowledge of the individual players that underlie the function of these networks is deep; decades of biochemical and structural data has provided a mechanistic understanding of the molecules that turn GTPases ON and OFF, as well as how those GTPase states signal by controlling the assembly of downstream effectors. However, we know less about how these different activities work together as a system to specify complex dynamic signaling outcomes. Decoding this molecular "programming language" would help us understand how different species and cell types have used the same GTPase machinery in different ways to accomplish different tasks, and would also provide new insights as to how mutations to these networks can cause disease. We recently developed a bead-based microscopy assay to watch reconstituted H-Ras signaling systems at work under arbitrary configurations of regulators and effectors. (5) Here we highlight key observations and insights from this study and propose extensions to our method to further study this and other GTPase signaling systems.

  8. Reverse engineering GTPase programming languages with reconstituted signaling networks.

    Science.gov (United States)

    Coyle, Scott M

    2016-07-01

    The Ras superfamily GTPases represent one of the most prolific signaling currencies used in Eukaryotes. With these remarkable molecules, evolution has built GTPase networks that control diverse cellular processes such as growth, morphology, motility and trafficking. (1-4) Our knowledge of the individual players that underlie the function of these networks is deep; decades of biochemical and structural data has provided a mechanistic understanding of the molecules that turn GTPases ON and OFF, as well as how those GTPase states signal by controlling the assembly of downstream effectors. However, we know less about how these different activities work together as a system to specify complex dynamic signaling outcomes. Decoding this molecular "programming language" would help us understand how different species and cell types have used the same GTPase machinery in different ways to accomplish different tasks, and would also provide new insights as to how mutations to these networks can cause disease. We recently developed a bead-based microscopy assay to watch reconstituted H-Ras signaling systems at work under arbitrary configurations of regulators and effectors. (5) Here we highlight key observations and insights from this study and propose extensions to our method to further study this and other GTPase signaling systems. PMID:27128855

  9. Qualitative networks: a symbolic approach to analyze biological signaling networks

    Directory of Open Access Journals (Sweden)

    Henzinger Thomas A

    2007-01-01

    Full Text Available Abstract Background A central goal of Systems Biology is to model and analyze biological signaling pathways that interact with one another to form complex networks. Here we introduce Qualitative networks, an extension of Boolean networks. With this framework, we use formal verification methods to check whether a model is consistent with the laboratory experimental observations on which it is based. If the model does not conform to the data, we suggest a revised model and the new hypotheses are tested in-silico. Results We consider networks in which elements range over a small finite domain allowing more flexibility than Boolean values, and add target functions that allow to model a rich set of behaviors. We propose a symbolic algorithm for analyzing the steady state of these networks, allowing us to scale up to a system consisting of 144 elements and state spaces of approximately 1086 states. We illustrate the usefulness of this approach through a model of the interaction between the Notch and the Wnt signaling pathways in mammalian skin, and its extensive analysis. Conclusion We introduce an approach for constructing computational models of biological systems that extends the framework of Boolean networks and uses formal verification methods for the analysis of the model. This approach can scale to multicellular models of complex pathways, and is therefore a useful tool for the analysis of complex biological systems. The hypotheses formulated during in-silico testing suggest new avenues to explore experimentally. Hence, this approach has the potential to efficiently complement experimental studies in biology.

  10. Computational models of signalling networks for non-linear control.

    Science.gov (United States)

    Fuente, Luis A; Lones, Michael A; Turner, Alexander P; Stepney, Susan; Caves, Leo S; Tyrrell, Andy M

    2013-05-01

    Artificial signalling networks (ASNs) are a computational approach inspired by the signalling processes inside cells that decode outside environmental information. Using evolutionary algorithms to induce complex behaviours, we show how chaotic dynamics in a conservative dynamical system can be controlled. Such dynamics are of particular interest as they mimic the inherent complexity of non-linear physical systems in the real world. Considering the main biological interpretations of cellular signalling, in which complex behaviours and robust cellular responses emerge from the interaction of multiple pathways, we introduce two ASN representations: a stand-alone ASN and a coupled ASN. In particular we note how sophisticated cellular communication mechanisms can lead to effective controllers, where complicated problems can be divided into smaller and independent tasks.

  11. Control of cancer-related signal transduction networks

    Science.gov (United States)

    Albert, Reka

    2013-03-01

    Intra-cellular signaling networks are crucial to the maintenance of cellular homeostasis and for cell behavior (growth, survival, apoptosis, movement). Mutations or alterations in the expression of elements of cellular signaling networks can lead to incorrect behavioral decisions that could result in tumor development and/or the promotion of cell migration and metastasis. Thus, mitigation of the cascading effects of such dysregulations is an important control objective. My group at Penn State is collaborating with wet-bench biologists to develop and validate predictive models of various biological systems. Over the years we found that discrete dynamic modeling is very useful in molding qualitative interaction information into a predictive model. We recently demonstrated the effectiveness of network-based targeted manipulations on mitigating the disease T cell large granular lymphocyte (T-LGL) leukemia. The root of this disease is the abnormal survival of T cells which, after successfully fighting an infection, should undergo programmed cell death. We synthesized the relevant network of within-T-cell interactions from the literature, integrated it with qualitative knowledge of the dysregulated (abnormal) states of several network components, and formulated a Boolean dynamic model. The model indicated that the system possesses a steady state corresponding to the normal cell death state and a T-LGL steady state corresponding to the abnormal survival state. For each node, we evaluated the restorative manipulation consisting of maintaining the node in the state that is the opposite of its T-LGL state, e.g. knocking it out if it is overexpressed in the T-LGL state. We found that such control of any of 15 nodes led to the disappearance of the T-LGL steady state, leaving cell death as the only potential outcome from any initial condition. In four additional cases the probability of reaching the T-LGL state decreased dramatically, thus these nodes are also possible control

  12. Magnetoencephalography from signals to dynamic cortical networks

    CERN Document Server

    Aine, Cheryl

    2014-01-01

    "Magnetoencephalography (MEG) provides a time-accurate view into human brain function. The concerted action of neurons generates minute magnetic fields that can be detected---totally noninvasively---by sensitive multichannel magnetometers. The obtained millisecond accuracycomplements information obtained by other modern brain-imaging tools. Accurate timing is quintessential in normal brain function, often distorted in brain disorders. The noninvasiveness and time-sensitivityof MEG are great assets to developmental studies, as well. This multiauthored book covers an ambitiously wide range of MEG research from introductory to advanced level, from sensors to signals, and from focal sources to the dynamics of cortical networks. Written by active practioners of this multidisciplinary field, the book contains tutorials for newcomers and chapters of new challenging methods and emerging technologies to advanced MEG users. The reader will obtain a firm grasp of the possibilities of MEG in the study of audition, vision...

  13. Genetic and logic networks with the signal-inhibitor-activator structure are dynamically robust

    Institute of Scientific and Technical Information of China (English)

    LI Fangting; TAN Ning

    2006-01-01

    The proteins, DNA and RNA interaction networks govern various biological functions in living cells, these networks should be dynamically robust in the intracellular and environmental fluctuations. Here, we use Boolean network to study the robust structure of both genetic and logic networks. First, SOS network in bacteria E. coli, which regulates cell survival and repair after DNA damage, is shown to be dynamically robust. Comparing with cell cycle network in budding yeast and flagella network in E. coli, we find the signal-inhibitor-activator (SIA) structure in transcription regulatory networks. Second, under the dynamical rule that inhibition is much stronger than activation, we have searched 3-node non-self-loop logical networks that are dynamically robust, and that if the attractive basin of a final attractor is as large as seven, and the final attractor has only one active node, then the active node acts as inhibitor, and the SIA and signal-inhibitor (SI) structures are fundamental architectures of robust networks. SIA and SI networks with dynamic robustness against environment uncertainties may be selected and maintained over the course of evolution, rather than blind trial-error testing and be ing an accidental consequence of particular evolutionary history. SIA network can perform a more complex process than SI network, andSIA might be used to design robust artificial genetic network. Our results provide dynamical support for why the inhibitors and SIA/SI structures are frequently employed in cellular regulatory networks.

  14. Global Optimization for Transport Network Expansion and Signal Setting

    Directory of Open Access Journals (Sweden)

    Haoxiang Liu

    2015-01-01

    Full Text Available This paper proposes a model to address an urban transport planning problem involving combined network design and signal setting in a saturated network. Conventional transport planning models usually deal with the network design problem and signal setting problem separately. However, the fact that network capacity design and capacity allocation determined by network signal setting combine to govern the transport network performance requires the optimal transport planning to consider the two problems simultaneously. In this study, a combined network capacity expansion and signal setting model with consideration of vehicle queuing on approaching legs of intersection is developed to consider their mutual interactions so that best transport network performance can be guaranteed. We formulate the model as a bilevel program and design an approximated global optimization solution method based on mixed-integer linearization approach to solve the problem, which is inherently nnonlinear and nonconvex. Numerical experiments are conducted to demonstrate the model application and the efficiency of solution algorithm.

  15. Networks in Cell Biology = Modelling cell biology with networks

    OpenAIRE

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, M.

    2010-01-01

    The science of complex biological networks is transforming research in areas ranging from evolutionary biology to medicine. This is the first book on the subject, providing a comprehensive introduction to complex network science and its biological applications. With contributions from key leaders in both network theory and modern cell biology, this book discusses the network science that is increasingly foundational for systems biology and the quantitative understanding of living systems. It ...

  16. RMOD: a tool for regulatory motif detection in signaling network.

    Directory of Open Access Journals (Sweden)

    Jinki Kim

    Full Text Available Regulatory motifs are patterns of activation and inhibition that appear repeatedly in various signaling networks and that show specific regulatory properties. However, the network structures of regulatory motifs are highly diverse and complex, rendering their identification difficult. Here, we present a RMOD, a web-based system for the identification of regulatory motifs and their properties in signaling networks. RMOD finds various network structures of regulatory motifs by compressing the signaling network and detecting the compressed forms of regulatory motifs. To apply it into a large-scale signaling network, it adopts a new subgraph search algorithm using a novel data structure called path-tree, which is a tree structure composed of isomorphic graphs of query regulatory motifs. This algorithm was evaluated using various sizes of signaling networks generated from the integration of various human signaling pathways and it showed that the speed and scalability of this algorithm outperforms those of other algorithms. RMOD includes interactive analysis and auxiliary tools that make it possible to manipulate the whole processes from building signaling network and query regulatory motifs to analyzing regulatory motifs with graphical illustration and summarized descriptions. As a result, RMOD provides an integrated view of the regulatory motifs and mechanism underlying their regulatory motif activities within the signaling network. RMOD is freely accessible online at the following URL: http://pks.kaist.ac.kr/rmod.

  17. Network modeling reveals prevalent negative regulatory relationships between signaling sectors in Arabidopsis immune signaling.

    Directory of Open Access Journals (Sweden)

    Masanao Sato

    Full Text Available Biological signaling processes may be mediated by complex networks in which network components and network sectors interact with each other in complex ways. Studies of complex networks benefit from approaches in which the roles of individual components are considered in the context of the network. The plant immune signaling network, which controls inducible responses to pathogen attack, is such a complex network. We studied the Arabidopsis immune signaling network upon challenge with a strain of the bacterial pathogen Pseudomonas syringae expressing the effector protein AvrRpt2 (Pto DC3000 AvrRpt2. This bacterial strain feeds multiple inputs into the signaling network, allowing many parts of the network to be activated at once. mRNA profiles for 571 immune response genes of 22 Arabidopsis immunity mutants and wild type were collected 6 hours after inoculation with Pto DC3000 AvrRpt2. The mRNA profiles were analyzed as detailed descriptions of changes in the network state resulting from the genetic perturbations. Regulatory relationships among the genes corresponding to the mutations were inferred by recursively applying a non-linear dimensionality reduction procedure to the mRNA profile data. The resulting static network model accurately predicted 23 of 25 regulatory relationships reported in the literature, suggesting that predictions of novel regulatory relationships are also accurate. The network model revealed two striking features: (i the components of the network are highly interconnected; and (ii negative regulatory relationships are common between signaling sectors. Complex regulatory relationships, including a novel negative regulatory relationship between the early microbe-associated molecular pattern-triggered signaling sectors and the salicylic acid sector, were further validated. We propose that prevalent negative regulatory relationships among the signaling sectors make the plant immune signaling network a "sector

  18. Proteomics, pathway array and signaling network-based medicine in cancer

    Directory of Open Access Journals (Sweden)

    Xu Hong

    2009-10-01

    Full Text Available Abstract Cancer is a multifaceted disease that results from dysregulated normal cellular signaling networks caused by genetic, genomic and epigenetic alterations at cell or tissue levels. Uncovering the underlying protein signaling network changes, including cell cycle gene networks in cancer, aids in understanding the molecular mechanism of carcinogenesis and identifies the characteristic signaling network signatures unique for different cancers and specific cancer subtypes. The identified signatures can be used for cancer diagnosis, prognosis, and personalized treatment. During the past several decades, the available technology to study signaling networks has significantly evolved to include such platforms as genomic microarray (expression array, SNP array, CGH array, etc. and proteomic analysis, which globally assesses genetic, epigenetic, and proteomic alterations in cancer. In this review, we compared Pathway Array analysis with other proteomic approaches in analyzing protein network involved in cancer and its utility serving as cancer biomarkers in diagnosis, prognosis and therapeutic target identification. With the advent of bioinformatics, constructing high complexity signaling networks is possible. As the use of signaling network-based cancer diagnosis, prognosis and treatment is anticipated in the near future, medical and scientific communities should be prepared to apply these techniques to further enhance personalized medicine.

  19. The EEG signal prediction bz using neural network

    OpenAIRE

    Babušiak, B.; Mohylová, J.

    2008-01-01

    The neural network is computational model based on the features abstraction of biological neural systems. The neural networks have many ways of usage in technical field. They have been applied successfully to speech recognition, image analysis and adaptive control, in order to construct software agents or autonomous robots. In this paper is described usage of neural networks for ECG signal prediction. The ECG signal prediction can be used for automated detection of irregular heart...

  20. The EEG Signal Prediction by Using Neural Network

    OpenAIRE

    Branko Babusiak; Jitka Mohylova

    2008-01-01

    The neural network is computational model based on the features abstraction of biological neural systems. The neural networks have many ways of usage in technical field. They have been applied successfully to speech recognition, image analysis and adaptive control, in order to construct software agents or autonomous robots. In this paper is described usage of neural networks for ECG signal prediction. The ECG signal prediction can be used for  automated detection of irregular heartbeat – extr...

  1. Cell signalling pathways underlying induced pluripotent stem cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Kate; Hawkins; Shona; Joy; Tristan; Mc; Kay

    2014-01-01

    Induced pluripotent stem(i PS) cells, somatic cells reprogrammed to the pluripotent state by forced expression of defined factors, represent a uniquely valuable resource for research and regenerative medicine. However, this methodology remains inefficient due to incomplete mechanistic understanding of the reprogramming process. In recent years, various groups have endeavoured to interrogate the cell signalling that governs the reprogramming process, including LIF/STAT3, BMP, PI3 K, FGF2, Wnt, TGFβ and MAPK pathways, with the aim of increasing our understanding and identifying new mechanisms of improving safety, reproducibility and efficiency. This has led to a unified model of reprogramming that consists of 3 stages: initiation, maturation and stabilisation. Initiation of reprogramming occurs in almost all cells that receive the reprogramming transgenes; most commonly Oct4, Sox2, Klf4 and c Myc, and involves a phenotypic mesenchymal-to-epithelial transition. The initiation stage is also characterised by increased proliferation and a metabolic switch from oxidative phosphorylation to glycolysis. The maturation stage is considered the major bottleneck within the process, resulting in very few "stabilisation competent" cells progressing to the final stabilisation phase. To reach this stage in both mouse and human cells, pre-i PS cells must activate endogenous expression of the core circuitry of pluripotency, comprising Oct4, Sox2, and Nanog, and thus reach a state of transgene independence. By the stabilisation stage, i PS cells generally use the same signalling networks that govern pluripotency in embryonic stem cells. These pathways differ between mouse and human cells although recent work has demonstrated that this is context dependent. As i PS cell generation technologies move forward, tools are being developed to interrogate the process in more detail, thus allowing a greater understanding of this intriguing biological phenomenon.

  2. Cell Wall Integrity Signaling in Saccharomyces cerevisiae

    OpenAIRE

    Levin, David E.

    2005-01-01

    The yeast cell wall is a highly dynamic structure that is responsible for protecting the cell from rapid changes in external osmotic potential. The wall is also critical for cell expansion during growth and morphogenesis. This review discusses recent advances in understanding the various signal transduction pathways that allow cells to monitor the state of the cell wall and respond to environmental challenges to this structure. The cell wall integrity signaling pathway controlled by the small...

  3. Topological basis of signal integration in the transcriptional-regulatory network of the yeast, Saccharomyces cerevisiae

    OpenAIRE

    Chennubhotla Chakra; Wu Chuang; Farkas Illés J; Bahar Ivet; Oltvai Zoltán N

    2006-01-01

    Abstract Background Signal recognition and information processing is a fundamental cellular function, which in part involves comprehensive transcriptional regulatory (TR) mechanisms carried out in response to complex environmental signals in the context of the cell's own internal state. However, the network topological basis of developing such integrated responses remains poorly understood. Results By studying the TR network of the yeast Saccharomyces cerevisiae we show that an intermediate l...

  4. Knowledge representation model for systems-level analysis of signal transduction networks.

    Science.gov (United States)

    Lee, Dong-Yup; Zimmer, Ralf; Lee, Sang-Yup; Hanisch, Daniel; Park, Sunwon

    2004-01-01

    A Petri-net based model for knowledge representation has been developed to describe as explicitly and formally as possible the molecular mechanisms of cell signaling and their pathological implications. A conceptual framework has been established for reconstructing and analyzing signal transduction networks on the basis of the formal representation. Such a conceptual framework renders it possible to qualitatively understand the cell signaling behavior at systems-level. The mechanisms of the complex signaling network are explored by applying the established framework to the signal transduction induced by potent proinflammatory cytokines, IL-1beta and TNF-alpha The corresponding expert-knowledge network is constructed to evaluate its mechanisms in detail. This strategy should be useful in drug target discovery and its validation.

  5. Intelligent sensor networks the integration of sensor networks, signal processing and machine learning

    CERN Document Server

    Hu, Fei

    2012-01-01

    Although governments worldwide have invested significantly in intelligent sensor network research and applications, few books cover intelligent sensor networks from a machine learning and signal processing perspective. Filling this void, Intelligent Sensor Networks: The Integration of Sensor Networks, Signal Processing and Machine Learning focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on the world-class research of award-winning authors, the book provides a firm grounding in the fundamentals of intelligent sensor networks, incl

  6. Network modules help the identification of key transport routes, signaling pathways in cellular and other networks

    CERN Document Server

    Palotai, Robin

    2009-01-01

    Complex systems are successfully reduced to interacting elements via the network concept. Transport plays a key role in the survival of networks. For example the specialized signaling cascades of cellular networks filter noise and efficiently adapt the network structure to new stimuli. However, our general understanding of transport mechanisms and signaling pathways in complex systems is yet limited. Here we summarize the key network structures involved in transport, list the solutions available to overloaded systems for relaxing their load and outline a possible method for the computational determination of signaling pathways. We highlight that in addition to hubs, bridges and the network skeleton, the overlapping modular structure is also essential in network transport. Moreover, by locating network elements in the space of overlapping network modules and evaluating their distance in this "module space", it may be possible to approximate signaling pathways computationally, which, in turn could serve the ide...

  7. A modular analysis of the auxin signalling network.

    Directory of Open Access Journals (Sweden)

    Etienne Farcot

    Full Text Available Auxin is essential for plant development from embryogenesis onwards. Auxin acts in large part through regulation of transcription. The proteins acting in the signalling pathway regulating transcription downstream of auxin have been identified as well as the interactions between these proteins, thus identifying the topology of this network implicating 54 Auxin Response Factor (ARF and Aux/IAA (IAA transcriptional regulators. Here, we study the auxin signalling pathway by means of mathematical modeling at the single cell level. We proceed analytically, by considering the role played by five functional modules into which the auxin pathway can be decomposed: the sequestration of ARF by IAA, the transcriptional repression by IAA, the dimer formation amongst ARFs and IAAs, the feedback loop on IAA and the auxin induced degradation of IAA proteins. Focusing on these modules allows assessing their function within the dynamics of auxin signalling. One key outcome of this analysis is that there are both specific and overlapping functions between all the major modules of the signaling pathway. This suggests a combinatorial function of the modules in optimizing the speed and amplitude of auxin-induced transcription. Our work allows identifying potential functions for homo- and hetero-dimerization of transcriptional regulators, with ARF:IAA, IAA:IAA and ARF:ARF dimerization respectively controlling the amplitude, speed and sensitivity of the response and a synergistic effect of the interaction of IAA with transcriptional repressors on these characteristics of the signaling pathway. Finally, we also suggest experiments which might allow disentangling the structure of the auxin signaling pathway and analysing further its function in plants.

  8. Modeling Signal Transduction and Lipid Rafts in Immune Cells

    Science.gov (United States)

    Prasad, Ashok

    2011-03-01

    Experimental evidence increasingly suggests that lipid rafts are nanometer sized cholesterol dependent dynamic assemblies enriched in sphingolipids and associated proteins. Lipid rafts are dynamic structures that break-up and reform on a relatively short time-scale, and are believed to facilitate the interactions of raft-associated proteins. The role of these rafts in signaling has been controversial, partly due to controversies regarding the existence and nature of the rafts themselves. Experimental evidence has indicated that in several cell types, especially T cells, rafts do influence signal transduction and T cell activation. Given the emerging consensus on the biophysical character of lipid rafts, the question can be asked as to what roles they possibly play in signal transduction. Here we carry out simulations of minimal models of the signal transduction network that regulates Src-family kinase dynamics in T cells and other cell types. By separately treating raft-based biochemical interactions, we find that rafts can indeed putatively play an important role in signal transduction, and in particular may affect the sensitivity of signal transduction. This illuminates possible functional consequences of membrane heterogeneities on signal transduction and points towards mechanisms for spatial control of signaling by cells.

  9. Bio-inspired signal transduction with heterogeneous networks of nanoscillators

    Science.gov (United States)

    Cervera, Javier; Manzanares, José A.; Mafé, Salvador

    2012-02-01

    Networks of single-electron transistors mimic some of the essential properties of neuron populations, because weak electrical signals trigger network oscillations with a frequency proportional to the input signal. Input potentials representing the pixel gray level of a grayscale image can then be converted into rhythms and the image can be recovered from these rhythms. Networks of non-identical nanoscillators complete the noisy transduction more reliably than identical ones. These results are important for signal processing schemes and could support recent studies suggesting that neuronal variability enhances the processing of biological information.

  10. An extended signal control strategy for urban network traffic flow

    Science.gov (United States)

    Yan, Fei; Tian, Fuli; Shi, Zhongke

    2016-03-01

    Traffic flow patterns are in general repeated on a daily or weekly basis. To improve the traffic conditions by using the inherent repeatability of traffic flow, a novel signal control strategy for urban networks was developed via iterative learning control (ILC) approach. Rigorous analysis shows that the proposed learning control method can guarantee the asymptotic convergence. The impacts of the ILC-based signal control strategy on the macroscopic fundamental diagram (MFD) were analyzed by simulations on a test road network. The results show that the proposed ILC strategy can evenly distribute the accumulation in the network and improve the network mobility.

  11. Methods for the Analysis of Protein Phosphorylation–Mediated Cellular Signaling Networks

    Science.gov (United States)

    White, Forest M.; Wolf-Yadlin, Alejandro

    2016-06-01

    Protein phosphorylation–mediated cellular signaling networks regulate almost all aspects of cell biology, including the responses to cellular stimulation and environmental alterations. These networks are highly complex and comprise hundreds of proteins and potentially thousands of phosphorylation sites. Multiple analytical methods have been developed over the past several decades to identify proteins and protein phosphorylation sites regulating cellular signaling, and to quantify the dynamic response of these sites to different cellular stimulation. Here we provide an overview of these methods, including the fundamental principles governing each method, their relative strengths and weaknesses, and some examples of how each method has been applied to the analysis of complex signaling networks. When applied correctly, each of these techniques can provide insight into the topology, dynamics, and regulation of protein phosphorylation signaling networks.

  12. DEVELOPMENT OF NEURAL NETWORK MODEL FOR CLASSIFICATION OF CAVITATION SIGNALS

    Directory of Open Access Journals (Sweden)

    KALYANASUNDARAM PERUMAL

    2011-10-01

    Full Text Available This paper deals with the early detection of cavitation by classification of cavitation signal into no, incipient and developed cavitation signal using artificial neural network model. This ANN model diagnoses the cavitation signal based on amplitude of rms vibration signal acquired from accelerometer, in order to find the different stages of cavitation. The classification results shows that feed forward network employing resilient back propagation algorithm was effective to distinct between the classes based on the good selection of input files for training the network. The proposed ANN model with resilient algorithm gives better performance and classification rate. The classification rate was 72.96% for the training sets and 75.57% for test data sets. It is concluded that the performance of the neural network is carried out irrespective of zones and it is optimum, and the errors are very less. The paper also discusses the future research directions.

  13. Processing of seismic signals from a seismometer network

    International Nuclear Information System (INIS)

    A description is given of the Seismometer Network Analysis Computer (SNAC) which processes short period data from a network of seismometers (UKNET). The nine stations of the network are distributed throughout the UK and their outputs are transmitted to a control laboratory (Blacknest) where SNAC monitors the data for seismic signals. The computer gives an estimate of the source location of the detected signals and stores the waveforms. The detection logic is designed to maintain high sensitivity without excessive ''false alarms''. It is demonstrated that the system is able to detect seismic signals at an amplitude level consistent with a network of single stations and, within the limitations of signal onset time measurements made by machine, can locate the source of the seismic disturbance. (author)

  14. Neural network signal understanding for instrumentation

    DEFF Research Database (Denmark)

    Pau, L. F.; Johansen, F. S.

    1990-01-01

    A report is presented on the use of neural signal interpretation theory and techniques for the purpose of classifying the shapes of a set of instrumentation signals, in order to calibrate devices, diagnose anomalies, generate tuning/settings, and interpret the measurement results. Neural signal...... understanding research is surveyed, and the selected implementation and its performance in terms of correct classification rates and robustness to noise are described. Formal results on neural net training time and sensitivity to weights are given. A theory for neural control using functional link nets is given......, and an explanation facility designed to help neural signal understanding is described. The results are compared to those obtained with a knowledge-based signal interpretation system using the same instrument and data...

  15. Signaling Over Protocols Gateways in Next-Generation Networks

    OpenAIRE

    Akinwande, Gbenga Segun

    2009-01-01

    In this thesis, I examined various signalling both in wired and mobile networks, with more emphasis on SIGTRAN. The SIGTRAN is the protocol suite applicable in the current new generation and next-generation networks, most especially as it enables service provider to be able to interpolate both wireline and wireless services within the same architecture. This concept is an important component in today’s Triple-play communication, and hence this thesis has provided a broad view on Signalling an...

  16. Detection of Gaussian signals via hexagonal sensor networks

    OpenAIRE

    Frasca, Paolo; Mason, Paolo; Piccoli, Benedetto

    2009-01-01

    This paper considers a special case of the problem of identifying a static scalar signal, depending on the location, using a planar network of sensors in a distributed fashion. Motivated by the application to monitoring wild-fires spreading and pollutants dispersion, we assume the signal to be Gaussian in space. Using a network of sensors positioned to form a regular hexagonal tessellation, we prove that each node can estimate the parameters of the Gaussian from local measurements. Moreover, ...

  17. Calcium signaling in pluripotent stem cells.

    Science.gov (United States)

    Apáti, Ágota; Pászty, Katalin; Erdei, Zsuzsa; Szebényi, Kornélia; Homolya, László; Sarkadi, Balázs

    2012-04-28

    Pluripotent stem cells represent a new source of biological material allowing the exploration of signaling phenomena during normal cell development and differentiation. Still, the calcium signaling pathways and intracellular calcium responses to various ligands or stress conditions have not been sufficiently explored as yet in embryonic or induced pluripotent stem cells and in their differentiated offspring. This is partly due to the special culturing conditions of these cell types, the rapid morphological and functional changes in heterogeneous cell populations during early differentiation, and methodological problems in cellular calcium measurements. In this paper, we review the currently available data in the literature on calcium signaling in pluripotent stem cells and discuss the potential shortcomings of these studies. Various assay methods are surveyed for obtaining reliable data both in undifferentiated embryonic stem cells and in specific, stem cell-derived human tissues. In this paper, we present the modulation of calcium signaling in human embryonic stem cells (hESC) and in their derivates; mesenchymal stem cell like (MSCl) cells and cardiac tissues using the fluorescent calcium indicator Fluo-4 and confocal microscopy. LPA, trypsin and angiotensin II were effective in inducing calcium signals both in HUES9 and MSCl cells. Histamine and thrombin induced calcium signal exclusively in the MSCl cells, while ATP was effective only in HUES9 cells. There was no calcium signal evoked by GABA, even at relatively high concentrations. In stem cell-derived cardiomyocytes a rapid increase in the beating rate and an increase of the calcium signal peaks could be observed after the addition of adrenaline, while verapamil led to a strong decrease in cellular calcium and stopped spontaneous contractions in a relaxed state.

  18. Wnt signalling pathway parameters for mammalian cells.

    Directory of Open Access Journals (Sweden)

    Chin Wee Tan

    Full Text Available Wnt/β-catenin signalling regulates cell fate, survival, proliferation and differentiation at many stages of mammalian development and pathology. Mutations of two key proteins in the pathway, APC and β-catenin, have been implicated in a range of cancers, including colorectal cancer. Activation of Wnt signalling has been associated with the stabilization and nuclear accumulation of β-catenin and consequential up-regulation of β-catenin/TCF gene transcription. In 2003, Lee et al. constructed a computational model of Wnt signalling supported by experimental data from analysis of time-dependent concentration of Wnt signalling proteins in Xenopus egg extracts. Subsequent studies have used the Xenopus quantitative data to infer Wnt pathway dynamics in other systems. As a basis for understanding Wnt signalling in mammalian cells, a confocal live cell imaging measurement technique is developed to measure the cell and nuclear volumes of MDCK, HEK293T cells and 3 human colorectal cancer cell lines and the concentrations of Wnt signalling proteins β-catenin, Axin, APC, GSK3β and E-cadherin. These parameters provide the basis for formulating Wnt signalling models for kidney/intestinal epithelial mammalian cells. There are significant differences in concentrations of key proteins between Xenopus extracts and mammalian whole cell lysates. Higher concentrations of Axin and lower concentrations of APC are present in mammalian cells. Axin concentrations are greater than APC in kidney epithelial cells, whereas in intestinal epithelial cells the APC concentration is higher than Axin. Computational simulations based on Lee's model, with this new data, suggest a need for a recalibration of the model.A quantitative understanding of Wnt signalling in mammalian cells, in particular human colorectal cancers requires a detailed understanding of the concentrations of key protein complexes over time. Simulations of Wnt signalling in mammalian cells can be initiated

  19. Crosstalk between pathways enhances the controllability of signalling networks.

    Science.gov (United States)

    Wang, Dingjie; Jin, Suoqin; Zou, Xiufen

    2016-02-01

    The control of complex networks is one of the most challenging problems in the fields of biology and engineering. In this study, the authors explored the controllability and control energy of several signalling networks, which consisted of many interconnected pathways, including networks with a bow-tie architecture. On the basis of the theory of structure controllability, they revealed that biological mechanisms, such as cross-pathway interactions, compartmentalisation and so on make the networks easier to fully control. Furthermore, using numerical simulations for two realistic examples, they demonstrated that the control energy of normal networks with crosstalk is lower than in networks without crosstalk. These results indicate that the biological networks are optimally designed to achieve their normal functions from the viewpoint of the control theory. The authors' work provides a comprehensive understanding of the impact of network structures and properties on controllability. PMID:26816393

  20. Signal propagation through feedforward neuronal networks with different operational modes

    Science.gov (United States)

    Li, Jie; Liu, Feng; Xu, Ding; Wang, Wei

    2009-02-01

    How neuronal activity is propagated across multiple layers of neurons is a fundamental issue in neuroscience. Using numerical simulations, we explored how the operational mode of neurons —coincidence detector or temporal integrator— could affect the propagation of rate signals through a 10-layer feedforward network with sparse connectivity. Our study was based on two kinds of neuron models. The Hodgkin-Huxley (HH) neuron can function as a coincidence detector, while the leaky integrate-and-fire (LIF) neuron can act as a temporal integrator. When white noise is afferent to the input layer, rate signals can be stably propagated through both networks, while neurons in deeper layers fire synchronously in the absence of background noise; but the underlying mechanism for the development of synchrony is different. When an aperiodic signal is presented, the network of HH neurons can represent the temporal structure of the signal in firing rate. Meanwhile, synchrony is well developed and is resistant to background noise. In contrast, rate signals are somewhat distorted during the propagation through the network of LIF neurons, and only weak synchrony occurs in deeper layers. That is, coincidence detectors have a performance advantage over temporal integrators in propagating rate signals. Therefore, given weak synaptic conductance and sparse connectivity between layers in both networks, synchrony does greatly subserve the propagation of rate signals with fidelity, and coincidence detection could be of considerable functional significance in cortical processing.

  1. Social multimedia signals a signal processing approach to social network phenomena

    CERN Document Server

    Roy, Suman Deb

    2014-01-01

    This book provides a comprehensive coverage of the state-of-the-art in understanding media popularity and trends in online social networks through social multimedia signals. With insights from the study of popularity and sharing patterns of online media, trend spread in social media, social network analysis for multimedia and visualizing diffusion of media in online social networks. In particular, the book will address the following important issues: Understanding social network phenomena from a signal processing point of view; The existence and popularity of multimedia as shared and social me

  2. Wnt Signaling in Cancer Stem Cell Biology.

    Science.gov (United States)

    de Sousa E Melo, Felipe; Vermeulen, Louis

    2016-06-27

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer.

  3. Wnt Signaling in Cancer Stem Cell Biology

    Science.gov (United States)

    de Sousa e Melo, Felipe; Vermeulen, Louis

    2016-01-01

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer. PMID:27355964

  4. Inferring signalling networks from longitudinal data using sampling based approaches in the R-package 'ddepn'

    Directory of Open Access Journals (Sweden)

    Korf Ulrike

    2011-07-01

    Full Text Available Abstract Background Network inference from high-throughput data has become an important means of current analysis of biological systems. For instance, in cancer research, the functional relationships of cancer related proteins, summarised into signalling networks are of central interest for the identification of pathways that influence tumour development. Cancer cell lines can be used as model systems to study the cellular response to drug treatments in a time-resolved way. Based on these kind of data, modelling approaches for the signalling relationships are needed, that allow to generate hypotheses on potential interference points in the networks. Results We present the R-package 'ddepn' that implements our recent approach on network reconstruction from longitudinal data generated after external perturbation of network components. We extend our approach by two novel methods: a Markov Chain Monte Carlo method for sampling network structures with two edge types (activation and inhibition and an extension of a prior model that penalises deviances from a given reference network while incorporating these two types of edges. Further, as alternative prior we include a model that learns signalling networks with the scale-free property. Conclusions The package 'ddepn' is freely available on R-Forge and CRAN http://ddepn.r-forge.r-project.org, http://cran.r-project.org. It allows to conveniently perform network inference from longitudinal high-throughput data using two different sampling based network structure search algorithms.

  5. The EEG Signal Prediction by Using Neural Network

    Directory of Open Access Journals (Sweden)

    Jitka Mohylova

    2008-01-01

    Full Text Available The neural network is computational model based on the features abstraction of biological neural systems. The neural networks have many ways of usage in technical field. They have been applied successfully to speech recognition, image analysis and adaptive control, in order to construct software agents or autonomous robots. In this paper is described usage of neural networks for ECG signal prediction. The ECG signal prediction can be used for  automated detection of irregular heartbeat – extrasystole. The automated detection system of unexpected abnormalities is also described in this paper

  6. Towards the systematic discovery of signal transduction networks using phosphorylation dynamics data

    Directory of Open Access Journals (Sweden)

    Yachie Nozomu

    2010-05-01

    Full Text Available Abstract Background Phosphorylation is a ubiquitous and fundamental regulatory mechanism that controls signal transduction in living cells. The number of identified phosphoproteins and their phosphosites is rapidly increasing as a result of recent mass spectrometry-based approaches. Results We analyzed time-course phosphoproteome data obtained previously by liquid chromatography mass spectrometry with the stable isotope labeling using amino acids in cell culture (SILAC method. This provides the relative phosphorylation activities of digested peptides at each of five time points after stimulating HeLa cells with epidermal growth factor (EGF. We initially calculated the correlations between the phosphorylation dynamics patterns of every pair of peptides and connected the strongly correlated pairs to construct a network. We found that peptides extracted from the same intracellular fraction (nucleus vs. cytoplasm tended to be close together within this phosphorylation dynamics-based network. The network was then analyzed using graph theory and compared with five known signal-transduction pathways. The dynamics-based network was correlated with known signaling pathways in the NetPath and Phospho.ELM databases, and especially with the EGF receptor (EGFR signaling pathway. Although the phosphorylation patterns of many proteins were drastically changed by the EGF stimulation, our results suggest that only EGFR signaling transduction was both strongly activated and precisely controlled. Conclusions The construction of a phosphorylation dynamics-based network provides a useful overview of condition-specific intracellular signal transduction using quantitative time-course phosphoproteome data under specific experimental conditions. Detailed prediction of signal transduction based on phosphoproteome dynamics remains challenging. However, since the phosphorylation profiles of kinase-substrate pairs on the specific pathway were localized in the dynamics

  7. Human Identification with Electrocardiogram Signals: a Neural Network Approach

    Science.gov (United States)

    Wan, Yongbo; Yao, Jianchu

    2009-05-01

    This paper presents a neural network developed to identify human subjects using electrocardiogram (ECG) signals collected from an "in-house" wearable electrocardiogram (ECG) sensor. In this project, noises were first removed from the raw signals with wavelet filters. ECG cycles were then extracted from the filtered signals and decomposed into wavelet coefficient structures. These coefficient structures were used as input vectors to a 3-layer feedforward neural network that generates the identification results. In the current study, 61 datasets collected from 23 subjects were utilized to train the neural network, which thereafter was tested with 15 new datasets from 15 different subjects. All the 15 subjects in the experiment were successfully identified. The testing results demonstrate that the neural network is effective.

  8. Robust Signal Processing in Living Cells

    Science.gov (United States)

    Steuer, Ralf; Waldherr, Steffen; Sourjik, Victor; Kollmann, Markus

    2011-01-01

    Cellular signaling networks have evolved an astonishing ability to function reliably and with high fidelity in uncertain environments. A crucial prerequisite for the high precision exhibited by many signaling circuits is their ability to keep the concentrations of active signaling compounds within tightly defined bounds, despite strong stochastic fluctuations in copy numbers and other detrimental influences. Based on a simple mathematical formalism, we identify topological organizing principles that facilitate such robust control of intracellular concentrations in the face of multifarious perturbations. Our framework allows us to judge whether a multiple-input-multiple-output reaction network is robust against large perturbations of network parameters and enables the predictive design of perfectly robust synthetic network architectures. Utilizing the Escherichia coli chemotaxis pathway as a hallmark example, we provide experimental evidence that our framework indeed allows us to unravel the topological organization of robust signaling. We demonstrate that the specific organization of the pathway allows the system to maintain global concentration robustness of the diffusible response regulator CheY with respect to several dominant perturbations. Our framework provides a counterpoint to the hypothesis that cellular function relies on an extensive machinery to fine-tune or control intracellular parameters. Rather, we suggest that for a large class of perturbations, there exists an appropriate topology that renders the network output invariant to the respective perturbations. PMID:22215991

  9. Timing and time signal distribution in digital communications networks

    Science.gov (United States)

    Kihara, Masami; Imaoka, Atushi

    1992-06-01

    The timing signal distribution characteristics of a digital communications network are evaluated to determine the Maximum Time Interval Error (MTIE) of the network; reference is made to the performance of network components such as transmission systems, slave clocks and timing distribution systems in intraoffices. The MTIE of each component is measured and used to determine the allowable MTIE of that component. The maximum number of slave node chains is shown to be 20. Time signal distribution performance is detailed. It is shown that time synchronization accuracy is of the order of submicroseconds between nodes separated by 2400 km over a two year period. For intra-office time signal distribution, the relative time accuracy is less than 3 nanoseconds using an 8 Mb/s round trip digital interface to connect a time signal supply in an office to dispersed equipment.

  10. Prioritizing Signaling Information Transmission in Next Generation Networks

    Directory of Open Access Journals (Sweden)

    Jasmina Baraković

    2011-01-01

    Full Text Available Next generation transport network is characterized by the use of in-band signaling, where Internet Protocol (IP packets carrying signaling or media information are mixed in transmission. Since transport resources are limited, when any segment of access or core network is congested, IP packets carrying signaling information may be discarded. As a consequence, it may be impossible to implement reachability and quality of service (QoS. Since present approaches are insufficient to completely address this problem, a novel approach is proposed, which is based on prioritizing signaling information transmission. To proof the concept, a simulation study was performed using Network Simulator version 2 (ns-2 and independently developed Session Initiation Protocol (SIP module. The obtained results were statistically processed using Statistical Package for the Social Sciences (SPSS version 15.0. Summarizing our research results, several issues are identified for future work.

  11. Structural permeability of complex networks to control signals

    Science.gov (United States)

    Lo Iudice, Francesco; Garofalo, Franco; Sorrentino, Francesco

    2015-09-01

    Many biological, social and technological systems can be described as complex networks. The goal of affecting their behaviour has motivated recent work focusing on the relationship between the network structure and its propensity to be controlled. While this work has provided insight into several relevant problems, a comprehensive approach to address partial and complete controllability of networks is still lacking. Here, we bridge this gap by developing a framework to maximize the diffusion of the control signals through a network, while taking into account physical and economic constraints that inevitably arise in applications. This approach allows us to introduce the network permeability, a unified metric of the propensity of a network to be controllable. The analysis of the permeability of several synthetic and real networks enables us to extract some structural features that deepen our quantitative understanding of the ease with which specific controllability requirements can be met.

  12. Identification of melanoma biomarkers based on network modules by integrating the human signaling network with microarrays

    OpenAIRE

    Chunyun Huang; Youyu Sheng; Jack Jia; Lianjun Chen

    2014-01-01

    Background: Melanoma is a leading cause of cancer death. Thus, accurate prognostic biomarkers that will assist rational treatment planning need to be identified. Methods: Microarray analysis of melanoma and normal tissue samples was performed to identify differentially expressed modules (DEMs) from the signaling network and ultimately detect molecular markers to support histological examination. Network motifs were extracted from the human signaling network. Then, significant expression-c...

  13. Kinome-wide Decoding of Network-Attacking Mutations Rewiring Cancer Signaling

    DEFF Research Database (Denmark)

    Creixell, Pau; Schoof, Erwin M; Simpson, Craig D.;

    2015-01-01

    Cancer cells acquire pathological phenotypes through accumulation of mutations that perturb signaling networks. However, global analysis of these events is currently limited. Here, we identify six types of network-attacking mutations (NAMs), including changes in kinase and SH2 modulation, network...... rewiring, and the genesis and extinction of phosphorylation sites. We developed a computational platform (ReKINect) to identify NAMs and systematically interpreted the exomes and quantitative (phospho-)proteomes of five ovarian cancer cell lines and the global cancer genome repository. We identified...

  14. Signaling network dynamics investigated by quantitative phosphoproteomics

    NARCIS (Netherlands)

    Giansanti, Piero

    2014-01-01

    This thesis describes the application of proteomics technologies to get insight into several aspects of phosphorylation signaling dynamics. The core tool in all performed experiments is mass spectrometry (MS)-based phosphoproteomics. In Chapter 1, a general introduction is given into proteomics and

  15. Insights into biological information processing: structural and dynamical analysis of a human protein signalling network

    Energy Technology Data Exchange (ETDEWEB)

    Fuente, Alberto de la; Fotia, Giorgio; Maggio, Fabio; Mancosu, Gianmaria; Pieroni, Enrico [CRS4 Bioinformatica, Parco Tecnologico POLARIS, Ed.1, Loc Piscinamanna, Pula (Italy)], E-mail: alf@crs4.it

    2008-06-06

    We present an investigation on the structural and dynamical properties of a 'human protein signalling network' (HPSN). This biological network is composed of nodes that correspond to proteins and directed edges that represent signal flows. In order to gain insight into the organization of cell information processing this network is analysed taking into account explicitly the edge directions. We explore the topological properties of the HPSN at the global and the local scale, further applying the generating function formalism to provide a suitable comparative model. The relationship between the node degrees and the distribution of signals through the network is characterized using degree correlation profiles. Finally, we analyse the dynamical properties of small sub-graphs showing high correlation between their occurrence and dynamic stability.

  16. The AII Amacrine Cell Connectome: A Dense Network Hub

    OpenAIRE

    Marc, Robert E.; James Russell Anderson; Bryan William Jones; Crystal Lynn Sigulinsky; James Scott Lauritzen

    2014-01-01

    The mammalian AII retinal amacrine cell is a narrow-field, multistratified glycinergic neuron best known for its role in collecting scotopic signals from rod bipolar cells and distributing them to ON and OFF cone pathways in a crossover network via a combination of inhibitory synapses and heterocellular AII::ON cone bipolar cell gap junctions. Long considered a simple cell, a full connectomics analysis shows that AII cells possess the most complex interaction repertoire of any known vertebrat...

  17. Network Non-Neutrality through Preferential Signaling

    OpenAIRE

    Hanawal, Manjesh Kumar; Altman, Eitan

    2013-01-01

    One of the central issues in the debate on network neutrality has been whether one should allow or prevent preferential treatment by an internet service provider (ISP) of traffic according to its origin. This raised the question of whether to allow an ISP to have exclusive agreement with a content provider (CP). In this paper we consider discrimination in the opposite direction. We study the impact that a CP can have on the benefits of several competing ISPs by sharing private information con...

  18. Comparing signaling networks between normal and transformed hepatocytes using discrete logical models.

    Science.gov (United States)

    Saez-Rodriguez, Julio; Alexopoulos, Leonidas G; Zhang, Mingsheng; Morris, Melody K; Lauffenburger, Douglas A; Sorger, Peter K

    2011-08-15

    Substantial effort in recent years has been devoted to constructing and analyzing large-scale gene and protein networks on the basis of "omic" data and literature mining. These interaction graphs provide valuable insight into the topologies of complex biological networks but are rarely context specific and cannot be used to predict the responses of cell signaling proteins to specific ligands or drugs. Conversely, traditional approaches to analyzing cell signaling are narrow in scope and cannot easily make use of network-level data. Here, we combine network analysis and functional experimentation by using a hybrid approach in which graphs are converted into simple mathematical models that can be trained against biochemical data. Specifically, we created Boolean logic models of immediate-early signaling in liver cells by training a literature-based prior knowledge network against biochemical data obtained from primary human hepatocytes and 4 hepatocellular carcinoma cell lines exposed to combinations of cytokines and small-molecule kinase inhibitors. Distinct families of models were recovered for each cell type, and these families clustered topologically into normal and diseased sets.

  19. Emerging connections in the ethylene signaling network

    OpenAIRE

    Yoo, Sang-Dong; Cho, Younghee; Sheen, Jen

    2009-01-01

    The gaseous plant hormone ethylene acts as a pivotal mediator to respond to and coordinate internal and external cues in modulating plant growth dynamics and developmental programs. Genetic analysis of Arabidopsis thaliana has been used to identify key components and to build a linear ethylene-signaling pathway from the receptors through to the nuclear transcription factors. Studies applying integrative approaches have revealed new regulators, molecular connections and mechanisms in ethylene ...

  20. Articular cartilage stem cell signalling

    OpenAIRE

    Karlsson, Camilla; Lindahl, Anders

    2009-01-01

    The view of articular cartilage as a non-regeneration organ has been challenged in recent years. The articular cartilage consists of distinct zones with different cellular and molecular phenotypes, and the superficial zone has been hypothesized to harbour stem cells. Furthermore, the articular cartilage demonstrates a distinct pattern regarding stem cell markers (that is, Notch-1, Stro-1, and vascular cell adhesion molecule-1). These results, in combination with the positive identification of...

  1. Autonomous Traffic Signal Control Model with Neural Network Analogy

    CERN Document Server

    Ohira, T

    1997-01-01

    We propose here an autonomous traffic signal control model based on analogy with neural networks. In this model, the length of cycle time period of traffic lights at each signal is autonomously adapted. We find a self-organizing collective behavior of such a model through simulation on a one-dimensional lattice model road: traffic congestion is greatly diffused when traffic signals have such autonomous adaptability with suitably tuned parameters. We also find that effectiveness of the system emerges through interactions between units and shows a threshold transition as a function of proportion of adaptive signals in the model.

  2. Wnt signaling and stem cell control

    Institute of Scientific and Technical Information of China (English)

    Roel Nusse

    2008-01-01

    Wnt signaling has been implicated in the control over various types of stem cells and may act as a niche factor to maintain stem cells in a self-renewing state.As currently understood,Wnt proteins bind to receptors of the Frizzled and LRP families on the cell surface.Through several cytoplasmic relay components,the signal is transduced to B-catenin,which then enters the nucleus and forms a complex with TCF to activate transcription of Wnt target genes.Wnts can also signal through tyrosine kinase receptors,in particular the ROR and RYK receptors,leading to alternative modes of Wnt signaling.During the growth of tissues,these ligands and receptors are dynamically expressed,often transcriptionally controlled by Wnt signals themselves,to ensure the right balance between proliferation and differentiation.Isolated Wnt proteins are active on a variety of stem cells,including neural,mammary and embryonic stem cells.In general,Wnt proteins act to maintain the undifferentiated state of stem cells,while other growth factors instruct the cells to proliferate.These other factors include FGF and EGF,signaling through tyrosine kinase pathways.

  3. P-Finder: Reconstruction of Signaling Networks from Protein-Protein Interactions and GO Annotations.

    Science.gov (United States)

    Young-Rae Cho; Yanan Xin; Speegle, Greg

    2015-01-01

    Because most complex genetic diseases are caused by defects of cell signaling, illuminating a signaling cascade is essential for understanding their mechanisms. We present three novel computational algorithms to reconstruct signaling networks between a starting protein and an ending protein using genome-wide protein-protein interaction (PPI) networks and gene ontology (GO) annotation data. A signaling network is represented as a directed acyclic graph in a merged form of multiple linear pathways. An advanced semantic similarity metric is applied for weighting PPIs as the preprocessing of all three methods. The first algorithm repeatedly extends the list of nodes based on path frequency towards an ending protein. The second algorithm repeatedly appends edges based on the occurrence of network motifs which indicate the link patterns more frequently appearing in a PPI network than in a random graph. The last algorithm uses the information propagation technique which iteratively updates edge orientations based on the path strength and merges the selected directed edges. Our experimental results demonstrate that the proposed algorithms achieve higher accuracy than previous methods when they are tested on well-studied pathways of S. cerevisiae. Furthermore, we introduce an interactive web application tool, called P-Finder, to visualize reconstructed signaling networks.

  4. Ceramide signaling in cancer and stem cells

    OpenAIRE

    Bieberich, Erhard

    2008-01-01

    Most of the previous work on the sphingolipid ceramide has been devoted to its function as an apoptosis inducer. Recent studies, however, have shown that in stem cells, ceramide has additional nonapoptotic functions. In this article, ceramide signaling will be reviewed in light of ‘systems interface biology’: as an interconnection of sphingolipid metabolism, membrane biophysics and cell signaling. The focus will be on the metabolic interconversion of ceramide and sphingomyelin or sphingosine-...

  5. Cell signaling underlying epileptic behavior

    Directory of Open Access Journals (Sweden)

    Yuri eBozzi

    2011-08-01

    Full Text Available Epilepsy is a complex disease, characterized by the repeated occurrence of bursts of electrical activity (seizures in specific brain areas. The behavioral outcome of seizure events strongly depends on the brain regions that are affected by overactivity. Here we review the intracellular signaling pathways involved in the generation of seizures in epileptogenic areas. Pathways activated by modulatory neurotransmitters (dopamine, norepinephrine and serotonin, involving the activation of extracellular-regulated kinases (ERKs and the induction of immediate early genes (IEGs will be first discussed in relation to the occurrence of acute seizure events. Activation of immediate early genes has been proposed to lead to long-term molecular and behavioral responses induced by acute seizures. We also review deleterious consequences of seizure activity, focusing on the contribution of apoptosis-associated signaling pathways to the progression of the disease. A deep understanding of signaling pathways involved in both acute and long-term responses to seizures continues to be crucial to unravel the origins of epileptic behaviors and ultimately identify novel therapeutic targets for the cure of epilepsy.

  6. N-Acetylglucosamine Functions in Cell Signaling

    Directory of Open Access Journals (Sweden)

    James B. Konopka

    2012-01-01

    Full Text Available The amino sugar N-acetylglucosamine (GlcNAc is well known for the important structural roles that it plays at the cell surface. It is a key component of bacterial cell wall peptidoglycan, fungal cell wall chitin, and the extracellular matrix of animal cells. Interestingly, recent studies have also identified new roles for GlcNAc in cell signaling. For example, GlcNAc stimulates the human fungal pathogen Candida albicans to undergo changes in morphogenesis and expression of virulence genes. Pathogenic E. coli responds to GlcNAc by altering the expression of fimbriae and CURLI fibers that promote biofilm formation and GlcNAc stimulates soil bacteria to undergo changes in morphogenesis and production of antibiotics. Studies with animal cells have revealed that GlcNAc influences cell signaling through the posttranslational modification of proteins by glycosylation. O-linked attachment of GlcNAc to Ser and Thr residues regulates a variety of intracellular proteins, including transcription factors such as NFκB, c-myc, and p53. In addition, the specificity of Notch family receptors for different ligands is altered by GlcNAc attachment to fucose residues in the extracellular domain. GlcNAc also impacts signal transduction by altering the degree of branching of N-linked glycans, which influences cell surface signaling proteins. These emerging roles of GlcNAc as an activator and mediator of cellular signaling in fungi, animals, and bacteria will be the focus of this paper.

  7. Efficient Mobility Management Signalling in Network Mobility Supported PMIPV6.

    Science.gov (United States)

    Samuelraj, Ananthi Jebaseeli; Jayapal, Sundararajan

    2015-01-01

    Proxy Mobile IPV6 (PMIPV6) is a network based mobility management protocol which supports node's mobility without the contribution from the respective mobile node. PMIPV6 is initially designed to support individual node mobility and it should be enhanced to support mobile network movement. NEMO-BSP is an existing protocol to support network mobility (NEMO) in PMIPV6 network. Due to the underlying differences in basic protocols, NEMO-BSP cannot be directly applied to PMIPV6 network. Mobility management signaling and data structures used for individual node's mobility should be modified to support group nodes' mobility management efficiently. Though a lot of research work is in progress to implement mobile network movement in PMIPV6, it is not yet standardized and each suffers with different shortcomings. This research work proposes modifications in NEMO-BSP and PMIPV6 to achieve NEMO support in PMIPV6. It mainly concentrates on optimizing the number and size of mobility signaling exchanged while mobile network or mobile network node changes its access point.

  8. Optical Performance Monitoring and Signal Optimization in Optical Networks

    DEFF Research Database (Denmark)

    Petersen, Martin Nordal

    2006-01-01

    -optical-electrical regeneration points decreases. This thesis evaluates the impact of signal degrading effects that are becoming of increasing concern in all-optical high-speed networks due to all-optical switching and higher bit-rates. Especially group-velocity-dispersion (GVD) and a number of nonlinear effects will require...... enhanced attention to avoid signal degradations. The requirements for optical performance monitoring features are discussed, and the thesis evaluates the advantages and necessity of increasing the level of performance monitoring parameters in the physical layer. In particular, methods for optical......The thesis studies performance monitoring for the next generation optical networks. The focus is on all-optical networks with bit-rates of 10 Gb/s or above. Next generation all-optical networks offer large challenges as the optical transmitted distance increases and the occurrence of electrical...

  9. Janus kinases in immune cell signaling

    OpenAIRE

    Ghoreschi, Kamran; Laurence, Arian; O’Shea, John J.

    2009-01-01

    The Janus family kinases (Jaks), Jak1, Jak2, Jak3, and Tyk2, form one subgroup of the non-receptor protein tyrosine kinases. They are involved in cell growth, survival, development, and differentiation of a variety of cells but are critically important for immune cells and hematopoietic cells. Data from experimental mice and clinical observations have unraveled multiple signaling events mediated by Jak in innate and adaptive immunity. Deficiency of Jak3 or Tyk2 results in defined clinical dis...

  10. Syndecans, signaling, and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Woods, A

    1996-01-01

    Syndecans are transmembrane proteoglycans which can participate in diverse cell surface interactions, involving extracellular matrix macromolecules, growth factors, protease inhibitors, and even viral entry. Currently, all extracellular interactions are believed to be mediated by distinct...... structures within the heparan sulfate chains, leaving the roles of chondroitin sulfate chains and extracellular portion of the core proteins to be elucidated. Evidence that syndecans are a class of receptor involved in cell adhesion is mounting, and their small cytoplasmic domains may link...

  11. 1st International Conference on Signal, Networks, Computing, and Systems

    CERN Document Server

    Mohapatra, Durga; Nagar, Atulya; Sahoo, Manmath

    2016-01-01

    The book is a collection of high-quality peer-reviewed research papers presented in the first International Conference on Signal, Networks, Computing, and Systems (ICSNCS 2016) held at Jawaharlal Nehru University, New Delhi, India during February 25–27, 2016. The book is organized in to two volumes and primarily focuses on theory and applications in the broad areas of communication technology, computer science and information security. The book aims to bring together the latest scientific research works of academic scientists, professors, research scholars and students in the areas of signal, networks, computing and systems detailing the practical challenges encountered and the solutions adopted.

  12. Radar signal design problem with neural network processing

    Indian Academy of Sciences (India)

    C Krishnamohan Rao; P S Moharir

    2001-06-01

    Binary and ternary sequences with peaky autocorrelation, measured in terms of high discrimination and merit factor have been searched earlier, using optimization techniques. It is shown that the use of neural network processing of the return signal is much more advantageous. It opens up a new signal design problem, which is solved by an optimization technique called Hamming scan, for both binary and ternary sequences.

  13. Altered calcium signaling in cancer cells.

    Science.gov (United States)

    Stewart, Teneale A; Yapa, Kunsala T D S; Monteith, Gregory R

    2015-10-01

    It is the nature of the calcium signal, as determined by the coordinated activity of a suite of calcium channels, pumps, exchangers and binding proteins that ultimately guides a cell's fate. Deregulation of the calcium signal is often deleterious and has been linked to each of the 'cancer hallmarks'. Despite this, we do not yet have a full understanding of the remodeling of the calcium signal associated with cancer. Such an understanding could aid in guiding the development of therapies specifically targeting altered calcium signaling in cancer cells during tumorigenic progression. Findings from some of the studies that have assessed the remodeling of the calcium signal associated with tumorigenesis and/or processes important in invasion and metastasis are presented in this review. The potential of new methodologies is also discussed. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

  14. An artificial network model for estimating the network structure underlying partially observed neuronal signals.

    Science.gov (United States)

    Komatsu, Misako; Namikawa, Jun; Chao, Zenas C; Nagasaka, Yasuo; Fujii, Naotaka; Nakamura, Kiyohiko; Tani, Jun

    2014-01-01

    Many previous studies have proposed methods for quantifying neuronal interactions. However, these methods evaluated the interactions between recorded signals in an isolated network. In this study, we present a novel approach for estimating interactions between observed neuronal signals by theorizing that those signals are observed from only a part of the network that also includes unobserved structures. We propose a variant of the recurrent network model that consists of both observable and unobservable units. The observable units represent recorded neuronal activity, and the unobservable units are introduced to represent activity from unobserved structures in the network. The network structures are characterized by connective weights, i.e., the interaction intensities between individual units, which are estimated from recorded signals. We applied this model to multi-channel brain signals recorded from monkeys, and obtained robust network structures with physiological relevance. Furthermore, the network exhibited common features that portrayed cortical dynamics as inversely correlated interactions between excitatory and inhibitory populations of neurons, which are consistent with the previous view of cortical local circuits. Our results suggest that the novel concept of incorporating an unobserved structure into network estimations has theoretical advantages and could provide insights into brain dynamics beyond what can be directly observed.

  15. Neuroblastoma tyrosine kinase signaling networks involve FYN and LYN in endosomes and lipid rafts.

    Directory of Open Access Journals (Sweden)

    Juan Palacios-Moreno

    2015-04-01

    Full Text Available Protein phosphorylation plays a central role in creating a highly dynamic network of interacting proteins that reads and responds to signals from growth factors in the cellular microenvironment. Cells of the neural crest employ multiple signaling mechanisms to control migration and differentiation during development. It is known that defects in these mechanisms cause neuroblastoma, but how multiple signaling pathways interact to govern cell behavior is unknown. In a phosphoproteomic study of neuroblastoma cell lines and cell fractions, including endosomes and detergent-resistant membranes, 1622 phosphorylated proteins were detected, including more than half of the receptor tyrosine kinases in the human genome. Data were analyzed using a combination of graph theory and pattern recognition techniques that resolve data structure into networks that incorporate statistical relationships and protein-protein interaction data. Clusters of proteins in these networks are indicative of functional signaling pathways. The analysis indicates that receptor tyrosine kinases are functionally compartmentalized into distinct collaborative groups distinguished by activation and intracellular localization of SRC-family kinases, especially FYN and LYN. Changes in intracellular localization of activated FYN and LYN were observed in response to stimulation of the receptor tyrosine kinases, ALK and KIT. The results suggest a mechanism to distinguish signaling responses to activation of different receptors, or combinations of receptors, that govern the behavior of the neural crest, which gives rise to neuroblastoma.

  16. Force-dependent cell signaling in stem cell differentiation

    OpenAIRE

    Yim, Evelyn KF; Sheetz, Michael P.

    2012-01-01

    Stem cells interact with biochemical and biophysical signals in their extracellular environment. The biophysical signals are transduced to the stem cells either through the underlying extracellular matrix or externally applied forces. Increasing evidence has shown that these biophysical cues such as substrate stiffness and topography can direct stem cell differentiation and determine the cell fate. The mechanism of the biophysically induced differentiation is not understood; however, several ...

  17. B Cell Autonomous TLR Signaling and Autoimmunity

    Science.gov (United States)

    Meyer-Bahlburg, Almut; Rawlings, David J

    2009-01-01

    B cells play a central role in the pathogenesis of multiple autoimmune diseases and the recognition of importance of B cells in these disorders has grown dramatically in association with the remarkable success of B-cell depletion as a treatment for autoimmunity. The precise mechanisms that promote alterations in B cell tolerance remain incompletely defined. There is increasing evidence, however, that TLRs play a major role in these events. Stimulation of B cells via the TLR pathway not only leads to an increase in antibody production but also promotes additional changes including cytokine production and upregulation of activation markers increasing the effectiveness of B cells as APCs. Understanding the role of TLRs in systemic autoimmunity will not only provide insight into the disease pathogenesis but may also lead to the development of novel therapies. This article gives an overview of TLR signaling in B cells and the possible involvement of such signals in autoimmune diseases. PMID:18295736

  18. Cell cycle and cell signal transduction in marine phytoplankton

    Institute of Scientific and Technical Information of China (English)

    LIU Jingwen; JIAO Nianzhi; CAI Huinong

    2006-01-01

    As unicellular phytoplankton, the growth of a marine phytoplankton population results directly from the completion of a cell cycle, therefore, cell-environment communication is an important way which involves signal transduction pathways to regulate cell cycle progression and contribute to growth, metabolism and primary production and respond to their surrounding environment in marine phytoplankton. Cyclin-CDK and CaM/Ca2+ are essentially key regulators in control of cell cycle and signal transduction pathway, which has important values on both basic research and applied biotechnology. This paper reviews progress made in this research field, which involves the identification and characterization of cyclins and cell signal transduction system, cell cycle control mechanisms in marine phytoplankton cells, cell cycle proteins as a marker of a terminal event to estimate the growth rate of phytoplankton at the species level, cell cycle-dependent toxin production of toxic algae and cell cycle progression regulated by environmental factors.

  19. β-Spectrin regulates the hippo signaling pathway and modulates the basal actin network.

    Science.gov (United States)

    Wong, Kenneth Kin Lam; Li, Wenyang; An, Yanru; Duan, Yangyang; Li, Zhuoheng; Kang, Yibin; Yan, Yan

    2015-03-01

    Emerging evidence suggests functional regulation of the Hippo pathway by the actin cytoskeleton, although the detailed molecular mechanism remains incomplete. In a genetic screen, we identified a requirement for β-Spectrin in the posterior follicle cells for the oocyte repolarization process during Drosophila mid-oogenesis. β-spectrin mutations lead to loss of Hippo signaling activity in the follicle cells. A similar reduction of Hippo signaling activity was observed after β-Spectrin knockdown in mammalian cells. We further demonstrated that β-spectrin mutations disrupt the basal actin network in follicle cells. The abnormal stress fiber-like actin structure on the basal side of follicle cells provides a likely link between the β-spectrin mutations and the loss of the Hippo signaling activity phenotype.

  20. Topological basis of signal integration in the transcriptional-regulatory network of the yeast, Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Chennubhotla Chakra

    2006-10-01

    Full Text Available Abstract Background Signal recognition and information processing is a fundamental cellular function, which in part involves comprehensive transcriptional regulatory (TR mechanisms carried out in response to complex environmental signals in the context of the cell's own internal state. However, the network topological basis of developing such integrated responses remains poorly understood. Results By studying the TR network of the yeast Saccharomyces cerevisiae we show that an intermediate layer of transcription factors naturally segregates into distinct subnetworks. In these topological units transcription factors are densely interlinked in a largely hierarchical manner and respond to external signals by utilizing a fraction of these subnets. Conclusion As transcriptional regulation represents the 'slow' component of overall information processing, the identified topology suggests a model in which successive waves of transcriptional regulation originating from distinct fractions of the TR network control robust integrated responses to complex stimuli.

  1. Subsurface Event Detection and Classification Using Wireless Signal Networks

    Directory of Open Access Journals (Sweden)

    Muhannad T. Suleiman

    2012-11-01

    Full Text Available Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs. The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events.

  2. Subsurface event detection and classification using Wireless Signal Networks.

    Science.gov (United States)

    Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T

    2012-01-01

    Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events. PMID:23202191

  3. Patterns of human gene expression variance show strong associations with signaling network hierarchy

    Directory of Open Access Journals (Sweden)

    Ram Prahlad T

    2010-11-01

    Full Text Available Abstract Background Understanding organizational principles of cellular networks is one of the central goals of systems biology. Although much has been learnt about gene expression programs under specific conditions, global patterns of expressional variation (EV of genes and their relationship to cellular functions and physiological responses is poorly understood. Results To understand global principles of relationship between transcriptional regulation of human genes and their functions, we have leveraged large-scale datasets of human gene expression measurements across a wide spectrum of cell conditions. We report that human genes are highly diverse in terms of their EV; while some genes have highly variable expression pattern, some seem to be relatively ubiquitously expressed across a wide range of conditions. The wide spectrum of gene EV strongly correlates with the positioning of proteins within the signaling network hierarchy, such that, secreted extracellular receptor ligands and membrane receptors have the highest EV, and intracellular signaling proteins have the lowest EV in the genome. Our analysis shows that this pattern of EV reflects functional centrality: proteins with highly specific signaling functions are modulated more frequently than those with highly central functions in the network, which is also consistent with previous studies on tissue-specific gene expression. Interestingly, these patterns of EV along the signaling network hierarchy have significant correlations with promoter architectures of respective genes. Conclusion Our analyses suggest a generic systems level mechanism of regulation of the cellular signaling network at the transcriptional level.

  4. New Twists in Drosophila Cell Signaling.

    Science.gov (United States)

    Shilo, Ben-Zion

    2016-04-01

    The discovery of a handful of conserved signaling pathways that dictate most aspects of embryonic and post-embryonic development of multicellular organisms has generated a universal view of animal development (Perrimon, N., Pitsouli, C., and Shilo, B. Z. (2012)Cold Spring Harb. Perspect. Biol.4, a005975). Although we have at hand most of the "hardware" elements that mediate cell communication events that dictate cell fate choices, we are still far from a comprehensive mechanistic understanding of these processes. One of the next challenges entails an analysis of developmental signaling pathways from the cell biology perspective. Where in the cell does signaling take place, and how do general cellular machineries and structures contribute to the regulation of developmental signaling? Another challenge is to examine these signaling pathways from a quantitative perspective, rather than as crude on/off switches. This requires more precise measurements, and incorporation of the time element to generate a dynamic sequence instead of frozen snapshots of the process. The quantitative outlook also brings up the issue of precision, and the unknown mechanisms that buffer variability in signaling between embryos, to produce a robust and reproducible output. Although these issues are universal to all multicellular organisms, they can be effectively tackled in theDrosophilamodel, by a combination of genetic manipulations, biochemical analyses, and a variety of imaging techniques. This review will present some of the recent advances that were accomplished by utilizing the versatility of theDrosophilasystem. PMID:26907691

  5. Application of the minimum fuel neural network to music signals

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour

    2004-01-01

    Finding an optimal representation of a signal in an over-complete dictionary is often quite difficult. Since general results in this field are not very application friendly it truly helps to specify the framework as much as possible. We investigate the method Minimum Fuel Neural Network (MFNN) fo...

  6. Cell signalling and phospholipid metabolism. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Boss, W.F.

    1990-12-31

    These studies explored whether phosphoinositide (PI) has a role in plants analogous to its role in animal cells. Although no parallel activity of PI in signal transduction was found in plant cells, activity of inositol phospholipid kinase was found to be modulated by light and by cell wall degrading enzymes. These studies indicate a major role for inositol phospholipids in plant growth and development as membrane effectors but not as a source of second messengers.

  7. Noise Filtering and Prediction in Biological Signaling Networks

    CERN Document Server

    Hathcock, David; Weisenberger, Casey; Ilker, Efe; Hinczewski, Michael

    2016-01-01

    Information transmission in biological signaling circuits has often been described using the metaphor of a noise filter. Cellular systems need accurate, real-time data about their environmental conditions, but the biochemical reaction networks that propagate, amplify, and process signals work with noisy representations of that data. Biology must implement strategies that not only filter the noise, but also predict the current state of the environment based on information delayed due to the finite speed of chemical signaling. The idea of a biochemical noise filter is actually more than just a metaphor: we describe recent work that has made an explicit mathematical connection between signaling fidelity in cellular circuits and the classic theories of optimal noise filtering and prediction that began with Wiener, Kolmogorov, Shannon, and Bode. This theoretical framework provides a versatile tool, allowing us to derive analytical bounds on the maximum mutual information between the environmental signal and the re...

  8. Multiplexed Signal Distribution Using Fiber Network For Radar Applications

    Science.gov (United States)

    Meena, D.; Prakasam, L. G. M.; Pandey, D. C.; Shivaleela, E. S.; Srinivas, T.

    2011-10-01

    Most of the modern Active phased Array Radars consist of multiple receive modules in an Antenna array. This demands the distribution of various Local Oscillator Signals (LOs) for the down conversion of received signals to the Intermediate Frequency (IF) band signals. This is normally achieved through Radio Frequency (RF) cables with Complex distribution networks which adds additional weight to the Arrays. Similarly these kinds of receivers require Control/Clock signals which are digital in nature, for the synchronization of all receive modules of the radar system which are also distributed through electrical cables. In addition some of the control messages (Digital in nature) are distributed through Optical interfaces. During Transmit operation, the RF transmit Signal is also distributed through the same receiver modules which will in turn distribute to all the elements of the Array which require RF cables which are bulky in nature. So it is very essential to have a multiplexed Signal distribution scheme through the existing Optical Interface for distribution of these signals which are RF and Digital in nature. This paper discusses about various distribution schemes for the realization in detail. We propose a distribution network architecture where existing fibers can be further extended for the distribution of other types of signals also. In addition, it also briefs about a comparative analysis done on these schemes by considering the complexity and space constraint factors. Thus we bring out an optimum scheme which will lead to the reduction in both hardware complexity and weight of the array systems. In addition, being an Optical network it is free from Electromagnetic interference which is a crucial requirement in an array environment.

  9. Creating and analyzing pathway and protein interaction compendia for modelling signal transduction networks

    Directory of Open Access Journals (Sweden)

    Kirouac Daniel C

    2012-05-01

    Full Text Available Abstract Background Understanding the information-processing capabilities of signal transduction networks, how those networks are disrupted in disease, and rationally designing therapies to manipulate diseased states require systematic and accurate reconstruction of network topology. Data on networks central to human physiology, such as the inflammatory signalling networks analyzed here, are found in a multiplicity of on-line resources of pathway and interactome databases (Cancer CellMap, GeneGo, KEGG, NCI-Pathway Interactome Database (NCI-PID, PANTHER, Reactome, I2D, and STRING. We sought to determine whether these databases contain overlapping information and whether they can be used to construct high reliability prior knowledge networks for subsequent modeling of experimental data. Results We have assembled an ensemble network from multiple on-line sources representing a significant portion of all machine-readable and reconcilable human knowledge on proteins and protein interactions involved in inflammation. This ensemble network has many features expected of complex signalling networks assembled from high-throughput data: a power law distribution of both node degree and edge annotations, and topological features of a “bow tie” architecture in which diverse pathways converge on a highly conserved set of enzymatic cascades focused around PI3K/AKT, MAPK/ERK, JAK/STAT, NFκB, and apoptotic signaling. Individual pathways exhibit “fuzzy” modularity that is statistically significant but still involving a majority of “cross-talk” interactions. However, we find that the most widely used pathway databases are highly inconsistent with respect to the actual constituents and interactions in this network. Using a set of growth factor signalling networks as examples (epidermal growth factor, transforming growth factor-beta, tumor necrosis factor, and wingless, we find a multiplicity of network topologies in which receptors couple to downstream

  10. Knowledge-guided fuzzy logic modeling to infer cellular signaling networks from proteomic data

    Science.gov (United States)

    Liu, Hui; Zhang, Fan; Mishra, Shital Kumar; Zhou, Shuigeng; Zheng, Jie

    2016-01-01

    Modeling of signaling pathways is crucial for understanding and predicting cellular responses to drug treatments. However, canonical signaling pathways curated from literature are seldom context-specific and thus can hardly predict cell type-specific response to external perturbations; purely data-driven methods also have drawbacks such as limited biological interpretability. Therefore, hybrid methods that can integrate prior knowledge and real data for network inference are highly desirable. In this paper, we propose a knowledge-guided fuzzy logic network model to infer signaling pathways by exploiting both prior knowledge and time-series data. In particular, the dynamic time warping algorithm is employed to measure the goodness of fit between experimental and predicted data, so that our method can model temporally-ordered experimental observations. We evaluated the proposed method on a synthetic dataset and two real phosphoproteomic datasets. The experimental results demonstrate that our model can uncover drug-induced alterations in signaling pathways in cancer cells. Compared with existing hybrid models, our method can model feedback loops so that the dynamical mechanisms of signaling networks can be uncovered from time-series data. By calibrating generic models of signaling pathways against real data, our method supports precise predictions of context-specific anticancer drug effects, which is an important step towards precision medicine. PMID:27774993

  11. Model calibration and uncertainty analysis in signaling networks.

    Science.gov (United States)

    Heinemann, Tim; Raue, Andreas

    2016-06-01

    For a long time the biggest challenges in modeling cellular signal transduction networks has been the inference of crucial pathway components and the qualitative description of their interactions. As a result of the emergence of powerful high-throughput experiments, it is now possible to measure data of high temporal and spatial resolution and to analyze signaling dynamics quantitatively. In addition, this increase of high-quality data is the basis for a better understanding of model limitations and their influence on the predictive power of models. We review established approaches in signal transduction network modeling with a focus on ordinary differential equation models as well as related developments in model calibration. As central aspects of the calibration process we discuss possibilities of model adaptation based on data-driven parameter optimization and the concomitant objective of reducing model uncertainties. PMID:27085224

  12. Cytokine signalling in embryonic stem cells

    DEFF Research Database (Denmark)

    Kristensen, David Møbjerg; Kalisz, Mark; Nielsen, Jens Høiriis

    2006-01-01

    pathways seem to converge on c-myc as a common target to promote self-renewal. Whereas LIF does not seem to stimulate self-renewal in human embryonic stem cells it cannot be excluded that other cytokines are involved. The pleiotropic actions of the increasing number of cytokines and receptors signalling......Cytokines play a central role in maintaining self-renewal in mouse embryonic stem (ES) cells through a member of the interleukin-6 type cytokine family termed leukemia inhibitory factor (LIF). LIF activates the JAK-STAT3 pathway through the class I cytokine receptor gp130, which forms a trimeric...... signalling pathways have been documented. In addition, gp130 activation leads to both PI3K and Src activation. The canonical Wnt pathway is sufficient to maintain self-renewal of both human ES cells and mouse ES cells. It seems quite possible that the main pathway maintaining self-renewal in ES cells...

  13. A special issue on cell signaling, disease, and stem cells

    Institute of Scientific and Technical Information of China (English)

    Dangsheng Li

    2012-01-01

    As the basic unit of life,cells utilize signaling pathways to receive inputs from the environment and translate such information into appropriate cellular behaviors and responses.Cell signaling is also pivotal for multicellular organisms such as mammals,as cells need to communicate extensively among each other and with the environment in order to orchestrate appropriate actions,which are in turn integrated at the system level for the proper functioning and well-being of the organism.Thus,understanding the molecular mechanisms of cell signaling constitutes a fundamental quest of today's life science research.Not surprisingly,dysregulation of cell signaling causes many diseases such as cancer,and in such cases,a thorough understanding of the nature of cell signaling under disease states would provide an important basis to the efforts of developing novel therapeutic strategies.In this context,we are pleased to present this 2012 Cell Research Special Issue focusing on "Cell signaling,disease,and stem cells".

  14. Early-warning signals of topological collapse in interbank networks

    CERN Document Server

    Squartini, Tiziano; Garlaschelli, Diego

    2013-01-01

    The financial crisis marked a paradigm shift, from traditional studies of individual risk to recent research on the "systemic risk" generated by whole networks of institutions. However, the reverse effects of realized defaults on network topology are poorly understood. Here we analyze the Dutch interbank network over the period 1998-2008, ending with the global crisis. We find that many topological properties, after controlling for overall density effects, display an abrupt change in 2008, thus providing a clear but unpredictable signature of the crisis. By contrast, if the intrinsic heterogeneity of banks is controlled for, the same properties undergo a slow and continuous transition, gradually connecting the crisis period to a much earlier stationary phase. This early-warning signal begins in 2005, and is preceded by an even earlier period of "risk autocatalysis" characterized by anomalous debt loops. These remarkable precursors are undetectable if the network is reconstructed from partial bank-specific inf...

  15. Classification of Epileptic EEG Signals using Time-Delay Neural Networks and Probabilistic Neural Networks

    Directory of Open Access Journals (Sweden)

    Ateke Goshvarpour

    2013-05-01

    Full Text Available The aim of this paper is to investigate the performance of time delay neural networks (TDNNs and the probabilistic neural networks (PNNs trained with nonlinear features (Lyapunov exponents and Entropy on electroencephalogram signals (EEG in a specific pathological state. For this purpose, two types of EEG signals (normal and partial epilepsy are analyzed. To evaluate the performance of the classifiers, mean square error (MSE and elapsed time of each classifier are examined. The results show that TDNN with 12 neurons in hidden layer result in a lower MSE with the training time of about 19.69 second. According to the results, when the sigma values are lower than 0.56, the best performance in the proposed probabilistic neural network structure is achieved. The results of present study show that applying the nonlinear features to train these networks can serve as useful tool in classifying of the EEG signals.

  16. Force-dependent cell signaling in stem cell differentiation.

    Science.gov (United States)

    Yim, Evelyn K F; Sheetz, Michael P

    2012-01-01

    Stem cells interact with biochemical and biophysical signals in their extracellular environment. The biophysical signals are transduced to the stem cells either through the underlying extracellular matrix or externally applied forces. Increasing evidence has shown that these biophysical cues such as substrate stiffness and topography can direct stem cell differentiation and determine the cell fate. The mechanism of the biophysically induced differentiation is not understood; however, several key signaling components have been demonstrated to be involved in the force-mediated differentiation. This review will focus on focal adhesions, cytoskeletal contractility, Rho GTPase signaling and nuclear regulation in connection with biophysically induced differentiation. We will briefly introduce the important components of the mechanotransduction machinery, and the recent developments in the study of force-dependent stem cell differentiation.

  17. Small Cell Network Topology Comparison

    Directory of Open Access Journals (Sweden)

    Jan Oppolzer

    2013-01-01

    Full Text Available One of the essential problems in a mobile network with small cells is that there is only a limited number of (PCIs available. Due to this fact, operators face the inevitable need for reusing (PCIs. In our contribution, we are dealing with a (PCI assignment to FAPs in three different topologies. The first model places FAPs randomly within the network while respecting overlapping defined. The second model places FAPs in a grid without other restrictions. The third model forms a grid as well, although buildings and roads are taken into account and (FAPs are always inside buildings. The proposed models are compared and a conclusion is made based on simulation results.

  18. Signal Processing in Periodically Forced Gradient Frequency Neural Networks.

    Science.gov (United States)

    Kim, Ji Chul; Large, Edward W

    2015-01-01

    Oscillatory instability at the Hopf bifurcation is a dynamical phenomenon that has been suggested to characterize active non-linear processes observed in the auditory system. Networks of oscillators poised near Hopf bifurcation points and tuned to tonotopically distributed frequencies have been used as models of auditory processing at various levels, but systematic investigation of the dynamical properties of such oscillatory networks is still lacking. Here we provide a dynamical systems analysis of a canonical model for gradient frequency neural networks driven by a periodic signal. We use linear stability analysis to identify various driven behaviors of canonical oscillators for all possible ranges of model and forcing parameters. The analysis shows that canonical oscillators exhibit qualitatively different sets of driven states and transitions for different regimes of model parameters. We classify the parameter regimes into four main categories based on their distinct signal processing capabilities. This analysis will lead to deeper understanding of the diverse behaviors of neural systems under periodic forcing and can inform the design of oscillatory network models of auditory signal processing.

  19. Regulation of Akt/FOXO3a/GSK-3β/AR Signaling Network by Isoflavone in Prostate Cancer Cells*

    OpenAIRE

    Li, Yiwei; Wang, Zhiwei; Kong, Dejuan; Li, Ran; Sarkar, Sanila H.; Sarkar, Fazlul H

    2008-01-01

    We have previously shown that genistein could inhibit Akt activation and down-regulate AR (androgen receptor) and PSA (prostate-specific antigen) expression in prostate cancer (PCa) cells. However, pure genistein showed increased lymph node metastasis in an animal model, but such an adverse effect was not seen with isoflavone, suggesting that further mechanistic studies are needed for elucidating the role of isoflavone in PCa. It is known that FOXO3a and GSK-3β, target...

  20. Design principles of nuclear receptor signaling: How complex networking improves signal transduction

    NARCIS (Netherlands)

    A.N. Kolodkin (Alexey); F.J. Bruggeman (Frank); N. Plant (Nick); M.J. Moné (Martijn); B.M. Bakker (Barbara); M.J. Campbell (Moray); J.P.T.M. van Leeuwen (Hans); C. Carlberg (Carsten); J.L. Snoep (Jacky); H.V. Westerhoff (Hans)

    2010-01-01

    textabstractThe topology of nuclear receptor (NR) signaling is captured in a systems biological graphical notation. This enables us to identify a number of design aspects of the topology of these networks that might appear unnecessarily complex or even functionally paradoxical. In realistic kinetic

  1. Design principles of nuclear receptor signaling : how complex networking improves signal transduction

    NARCIS (Netherlands)

    Kolodkin, Alexey N.; Bruggeman, Frank J.; Plant, Nick; Mone, Martijn J.; Bakker, Barbara M.; Campbell, Moray J.; van Leeuwen, Johannes P. T. M.; Carlberg, Carsten; Snoep, Jacky L.; Westerhoff, Hans V.

    2010-01-01

    The topology of nuclear receptor (NR) signaling is captured in a systems biological graphical notation. This enables us to identify a number of 'design' aspects of the topology of these networks that might appear unnecessarily complex or even functionally paradoxical. In realistic kinetic models of

  2. Image and signal processing for networked eHealth applications

    CERN Document Server

    Maglogiannis, Ilias

    2006-01-01

    E-health is closely related with networks and telecommunications when dealing with applications of collecting or transferring medical data from distant locations for performing remote medical collaborations and diagnosis. In this book we provide an overview of the fields of image and signal processing for networked and distributed e-health applications and their supporting technologies. The book is structured in 10 chapters, starting the discussion from the lower end, that of acquisition and processing of biosignals and medical images and ending in complex virtual reality systems and technique

  3. A Cell Phone Positioning Method Based on the Intelligent Received Signal Strength Pattern Recognition in GSM Network for Implementing Mobile Advertisement Services

    Directory of Open Access Journals (Sweden)

    M. F Sabahi

    2013-06-01

    Full Text Available Cellular positioning methods in urban environments suffer from a significant error due to multipath and fading phenomena. In this paper, regarding the implementation location-based services, one pattern recognition positioning method based on the signal strength is presented, which provides proper results in urban areas. Although many works have been done in this field, the main challenge is to create and to update the database and heavy calculation to estimate the position .In this paper, some practical and intelligent solutions for overcoming the mentioned problems, enhancing the accuracy and reducing the computational load of this positioning method are presented. Specially, some intelligent filtering methods are presented for reducing the search region in the database and also increasing the accuracy of position estimation. Real measurements obtained in Isfahan, illustrate the high accuracy of the proposed techniques. In addition, an advertising service based on the proposed method is presented. User’s interest and local time is considered as well as him/her position for enhancing the efficiency of the mentioned service.

  4. Erythropoietin signaling promotes transplanted progenitor cell survival

    OpenAIRE

    Jia, Yi; Warin, Renaud; Yu, Xiaobing; Epstein, Reed; Noguchi, Constance Tom

    2009-01-01

    We examine the potential for erythropoietin signaling to promote donor cell survival in a model of myoblast transplantation. Expression of a truncated erythropoietin receptor in hematopoietic stem cells has been shown to promote selective engraftment in mice. We previously demonstrated expression of endogenous erythropoietin receptor on murine myoblasts, and erythropoietin treatment can stimulate myoblast proliferation and delay differentiation. Here, we report that enhanced erythropoietin re...

  5. Designer cell signal processing circuits for biotechnology.

    Science.gov (United States)

    Bradley, Robert W; Wang, Baojun

    2015-12-25

    Microorganisms are able to respond effectively to diverse signals from their environment and internal metabolism owing to their inherent sophisticated information processing capacity. A central aim of synthetic biology is to control and reprogramme the signal processing pathways within living cells so as to realise repurposed, beneficial applications ranging from disease diagnosis and environmental sensing to chemical bioproduction. To date most examples of synthetic biological signal processing have been built based on digital information flow, though analogue computing is being developed to cope with more complex operations and larger sets of variables. Great progress has been made in expanding the categories of characterised biological components that can be used for cellular signal manipulation, thereby allowing synthetic biologists to more rationally programme increasingly complex behaviours into living cells. Here we present a current overview of the components and strategies that exist for designer cell signal processing and decision making, discuss how these have been implemented in prototype systems for therapeutic, environmental, and industrial biotechnological applications, and examine emerging challenges in this promising field.

  6. High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals.

    Science.gov (United States)

    Marcon, Luciano; Diego, Xavier; Sharpe, James; Müller, Patrick

    2016-04-08

    The Turing reaction-diffusion model explains how identical cells can self-organize to form spatial patterns. It has been suggested that extracellular signaling molecules with different diffusion coefficients underlie this model, but the contribution of cell-autonomous signaling components is largely unknown. We developed an automated mathematical analysis to derive a catalog of realistic Turing networks. This analysis reveals that in the presence of cell-autonomous factors, networks can form a pattern with equally diffusing signals and even for any combination of diffusion coefficients. We provide a software (available at http://www.RDNets.com) to explore these networks and to constrain topologies with qualitative and quantitative experimental data. We use the software to examine the self-organizing networks that control embryonic axis specification and digit patterning. Finally, we demonstrate how existing synthetic circuits can be extended with additional feedbacks to form Turing reaction-diffusion systems. Our study offers a new theoretical framework to understand multicellular pattern formation and enables the wide-spread use of mathematical biology to engineer synthetic patterning systems.

  7. High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals

    Science.gov (United States)

    Marcon, Luciano; Diego, Xavier; Sharpe, James; Müller, Patrick

    2016-01-01

    The Turing reaction-diffusion model explains how identical cells can self-organize to form spatial patterns. It has been suggested that extracellular signaling molecules with different diffusion coefficients underlie this model, but the contribution of cell-autonomous signaling components is largely unknown. We developed an automated mathematical analysis to derive a catalog of realistic Turing networks. This analysis reveals that in the presence of cell-autonomous factors, networks can form a pattern with equally diffusing signals and even for any combination of diffusion coefficients. We provide a software (available at http://www.RDNets.com) to explore these networks and to constrain topologies with qualitative and quantitative experimental data. We use the software to examine the self-organizing networks that control embryonic axis specification and digit patterning. Finally, we demonstrate how existing synthetic circuits can be extended with additional feedbacks to form Turing reaction-diffusion systems. Our study offers a new theoretical framework to understand multicellular pattern formation and enables the wide-spread use of mathematical biology to engineer synthetic patterning systems. DOI: http://dx.doi.org/10.7554/eLife.14022.001 PMID:27058171

  8. High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals.

    Science.gov (United States)

    Marcon, Luciano; Diego, Xavier; Sharpe, James; Müller, Patrick

    2016-01-01

    The Turing reaction-diffusion model explains how identical cells can self-organize to form spatial patterns. It has been suggested that extracellular signaling molecules with different diffusion coefficients underlie this model, but the contribution of cell-autonomous signaling components is largely unknown. We developed an automated mathematical analysis to derive a catalog of realistic Turing networks. This analysis reveals that in the presence of cell-autonomous factors, networks can form a pattern with equally diffusing signals and even for any combination of diffusion coefficients. We provide a software (available at http://www.RDNets.com) to explore these networks and to constrain topologies with qualitative and quantitative experimental data. We use the software to examine the self-organizing networks that control embryonic axis specification and digit patterning. Finally, we demonstrate how existing synthetic circuits can be extended with additional feedbacks to form Turing reaction-diffusion systems. Our study offers a new theoretical framework to understand multicellular pattern formation and enables the wide-spread use of mathematical biology to engineer synthetic patterning systems. PMID:27058171

  9. Distributed Signal Processing for Wireless EEG Sensor Networks.

    Science.gov (United States)

    Bertrand, Alexander

    2015-11-01

    Inspired by ongoing evolutions in the field of wireless body area networks (WBANs), this tutorial paper presents a conceptual and exploratory study of wireless electroencephalography (EEG) sensor networks (WESNs), with an emphasis on distributed signal processing aspects. A WESN is conceived as a modular neuromonitoring platform for high-density EEG recordings, in which each node is equipped with an electrode array, a signal processing unit, and facilities for wireless communication. We first address the advantages of such a modular approach, and we explain how distributed signal processing algorithms make WESNs more power-efficient, in particular by avoiding data centralization. We provide an overview of distributed signal processing algorithms that are potentially applicable in WESNs, and for illustration purposes, we also provide a more detailed case study of a distributed eye blink artifact removal algorithm. Finally, we study the power efficiency of these distributed algorithms in comparison to their centralized counterparts in which all the raw sensor signals are centralized in a near-end or far-end fusion center.

  10. Regulation of the BMP Signaling-Responsive Transcriptional Network in the Drosophila Embryo.

    Science.gov (United States)

    Deignan, Lisa; Pinheiro, Marco T; Sutcliffe, Catherine; Saunders, Abbie; Wilcockson, Scott G; Zeef, Leo A H; Donaldson, Ian J; Ashe, Hilary L

    2016-07-01

    The BMP signaling pathway has a conserved role in dorsal-ventral axis patterning during embryonic development. In Drosophila, graded BMP signaling is transduced by the Mad transcription factor and opposed by the Brinker repressor. In this study, using the Drosophila embryo as a model, we combine RNA-seq with Mad and Brinker ChIP-seq to decipher the BMP-responsive transcriptional network underpinning differentiation of the dorsal ectoderm during dorsal-ventral axis patterning. We identify multiple new BMP target genes, including positive and negative regulators of EGF signaling. Manipulation of EGF signaling levels by loss- and gain-of-function studies reveals that EGF signaling negatively regulates embryonic BMP-responsive transcription. Therefore, the BMP gene network has a self-regulating property in that it establishes a balance between its activity and that of the antagonistic EGF signaling pathway to facilitate correct patterning. In terms of BMP-dependent transcription, we identify key roles for the Zelda and Zerknüllt transcription factors in establishing the resulting expression domain, and find widespread binding of insulator proteins to the Mad and Brinker-bound genomic regions. Analysis of embryos lacking the BEAF-32 insulator protein shows reduced transcription of a peak BMP target gene and a reduction in the number of amnioserosa cells, the fate specified by peak BMP signaling. We incorporate our findings into a model for Mad-dependent activation, and discuss its relevance to BMP signal interpretation in vertebrates. PMID:27379389

  11. MAPK Cascades in Guard Cell Signal Transduction

    Science.gov (United States)

    Lee, Yuree; Kim, Yun Ju; Kim, Myung-Hee; Kwak, June M.

    2016-01-01

    Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK) cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions. PMID:26904052

  12. MAPK cascades in guard cell signal transduction

    Directory of Open Access Journals (Sweden)

    Yuree eLee

    2016-02-01

    Full Text Available Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions.

  13. Signaling involved in stem cell reprogramming and differentiation

    Institute of Scientific and Technical Information of China (English)

    Shihori; Tanabe

    2015-01-01

    Stem cell differentiation is regulated by multiple signaling events. Recent technical advances have reve-aled that differentiated cells can be reprogrammed into stem cells. The signals involved in stem cell pro-gramming are of major interest in stem cell research. The signaling mechanisms involved in regulating stem cell reprogramming and differentiation are the subject of intense study in the field of life sciences. In this review,the molecular interactions and signaling pathways related to stem cell differentiation are discussed.

  14. Chloroplast signaling within, between and beyond cells.

    Directory of Open Access Journals (Sweden)

    Krzysztof eBobik

    2015-10-01

    Full Text Available The most conspicuous function of the plastid is oxygenic photosynthesis of chloroplasts, yet plastids are super-factories that produce a plethora of compounds that are indispensable for proper plant physiology and development. Given their origins as free-living prokaryotes, it is not surprising that the plastid possesses its own genome whose expression is essential to plastid function. This semi-autonomous character of plastids requires the existence of sophisticated regulatory mechanisms that provide reliable communication between them and other cellular compartments. Such intracellular signaling is necessary for coordinating whole-cell responses to constantly varying environmental cues and cellular metabolic needs. This is achieved by plastids acting as receivers and transmitters of specific signals that coordinate expression of the nuclear and plastid genomes according to particular needs. In this review we will consider the so-called retrograde signaling occurring between plastids and nucleus, and between plastids and other organelles. Another important role of the plastid we will discuss is the involvement of plastid signaling in biotic and abiotic stress that, in addition to influencing retrograde signaling has direct effects on several cellular compartments including the cell wall. We will also review recent evidence pointing to an intriguing function of chloroplasts in regulating intercellular symplasmic transport. Finally, we consider an intriguing yet neglected aspect of plant biology, chloroplast signaling from the perspective of the entire plant. Thus, accumulating evidence highlights that chloroplasts, with their complex signaling pathways, provide a mechanism for exquisite regulation of plant development, metabolism and responses to the environment. As chloroplast processes are targeted for engineering for improved productivity the effect of such modifications on chloroplast signaling will have to be carefully considered in order

  15. Dynamical Adaptation in Terrorist Cells/Networks

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Ahmed, Zaki

    2010-01-01

    Typical terrorist cells/networks have dynamical structure as they evolve or adapt to changes which may occur due to capturing or killing of a member of the cell/network. Analytical measures in graph theory like degree centrality, betweenness and closeness centralities are very common and have long...... history of their successful use in revealing the importance of various members of the network. However, modeling of covert, terrorist or criminal networks through social graph dose not really provide the hierarchical structure which exist in these networks as these networks are composed of leaders...

  16. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells.

    Science.gov (United States)

    Luo, Yuping; Coskun, Volkan; Liang, Aibing; Yu, Juehua; Cheng, Liming; Ge, Weihong; Shi, Zhanping; Zhang, Kunshan; Li, Chun; Cui, Yaru; Lin, Haijun; Luo, Dandan; Wang, Junbang; Lin, Connie; Dai, Zachary; Zhu, Hongwen; Zhang, Jun; Liu, Jie; Liu, Hailiang; deVellis, Jean; Horvath, Steve; Sun, Yi Eve; Li, Siguang

    2015-05-21

    The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133(+)/GFAP(-) ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133(+)/GFAP(-) quiescent cells were enriched for immune-responsive genes, as well as genes encoding receptors for angiogenic factors. Administration of vascular endothelial growth factor (VEGF) activated CD133(+) ependymal neural stem cells (NSCs), lining not only the lateral but also the fourth ventricles and, together with basic fibroblast growth factor (bFGF), elicited subsequent neural lineage differentiation and migration. This study revealed the existence of dormant ependymal NSCs throughout the ventricular surface of the CNS, as well as signals abundant after injury for their activation. PMID:26000486

  17. Feasibility of RFID signal denoising using neural network

    OpenAIRE

    Vojtěch, Lukáš

    2010-01-01

    Radio Frequency Identification signal denoising can be a perspective method for the future intelligent Radio Frequency Identification readers with high reading distances capability. This paper deals with the Group Method of Data Handling neural network denoising filter experiments. Capability of the probability learning of the Group Method of Data Handling filters is an effective instrument in more exacting applications in comparison with classical Finite Impulse Respo...

  18. Homeostatic interplay between bacterial cell-cell signaling and iron in virulence.

    Directory of Open Access Journals (Sweden)

    Ronen Hazan

    2010-03-01

    Full Text Available Pathogenic bacteria use interconnected multi-layered regulatory networks, such as quorum sensing (QS networks to sense and respond to environmental cues and external and internal bacterial cell signals, and thereby adapt to and exploit target hosts. Despite the many advances that have been made in understanding QS regulation, little is known regarding how these inputs are integrated and processed in the context of multi-layered QS regulatory networks. Here we report the examination of the Pseudomonas aeruginosa QS 4-hydroxy-2-alkylquinolines (HAQs MvfR regulatory network and determination of its interaction with the QS acyl-homoserine-lactone (AHL RhlR network. The aim of this work was to elucidate paradigmatically the complex relationships between multi-layered regulatory QS circuitries, their signaling molecules, and the environmental cues to which they respond. Our findings revealed positive and negative homeostatic regulatory loops that fine-tune the MvfR regulon via a multi-layered dependent homeostatic regulation of the cell-cell signaling molecules PQS and HHQ, and interplay between these molecules and iron. We discovered that the MvfR regulon component PqsE is a key mediator in orchestrating this homeostatic regulation, and in establishing a connection to the QS rhlR system in cooperation with RhlR. Our results show that P. aeruginosa modulates the intensity of its virulence response, at least in part, through this multi-layered interplay. Our findings underscore the importance of the homeostatic interplay that balances competition within and between QS systems via cell-cell signaling molecules and environmental cues in the control of virulence gene expression. Elucidation of the fine-tuning of this complex relationship offers novel insights into the regulation of these systems and may inform strategies designed to limit infections caused by P. aeruginosa and related human pathogens.

  19. Spontaneous calcium signals induced by gap junctions in a network model of astrocytes

    Science.gov (United States)

    Kazantsev, V. B.

    2009-01-01

    The dynamics of a network model of astrocytes coupled by gap junctions is investigated. Calcium dynamics of the single cell is described by the biophysical model comprising the set of three nonlinear differential equations. Intercellular dynamics is provided by the diffusion of inositol 1,4,5-trisphosphate (IP3) through gap junctions between neighboring astrocytes. It is found that the diffusion induces the appearance of spontaneous activity patterns in the network. Stability of the network steady state is analyzed. It is proved that the increase of the diffusion coefficient above a certain critical value yields the generation of low-amplitude subthreshold oscillatory signals in a certain frequency range. It is shown that such spontaneous oscillations can facilitate calcium pulse generation and provide a certain time scale in astrocyte signaling.

  20. Neurotrophin signaling in cancer stem cells.

    Science.gov (United States)

    Chopin, Valérie; Lagadec, Chann; Toillon, Robert-Alain; Le Bourhis, Xuefen

    2016-05-01

    Cancer stem cells (CSCs), are thought to be at the origin of tumor development and resistance to therapies. Thus, a better understanding of the molecular mechanisms involved in the control of CSC stemness is essential to the design of more effective therapies for cancer patients. Cancer cell stemness and the subsequent expansion of CSCs are regulated by micro-environmental signals including neurotrophins. Over the years, the roles of neurotrophins in tumor development have been well established and regularly reviewed. Especially, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are reported to stimulate tumor cell proliferation, survival, migration and/or invasion, and favors tumor angiogenesis. More recently, neurotrophins have been reported to regulate CSCs. This review briefly presents neurotrophins and their receptors, summarizes their roles in different cancers, and discusses the emerging evidence of neurotrophins-induced enrichment of CSCs as well as the involved signaling pathways.

  1. [Neural stem cells and Notch signalling].

    Science.gov (United States)

    Traiffort, Elisabeth; Ferent, Julien

    2015-12-01

    Development and repair of the nervous system are based on the existence of neural stem cells (NSCs) able to generate neurons and glial cells. Among the mechanisms that are involved in the control of embryo or adult NSCs, the Notch signalling plays a major role. In embryo, the pathway participates in the maintenance of NSCs during all steps of development of the central nervous system which starts with the production of neurons also called neurogenesis and continues with gliogenesis giving rise to astrocytes and oligodendrocytes. During the postnatal and adult period, Notch signalling is still present in the major neurogenic areas, the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus. In these regions, Notch maintains NSC quiescence, contributes to the heterogeneity of these cells and displays pleiotropic effects during the regeneration process occurring after a lesion. PMID:26672665

  2. Monitoring Breathing via Signal Strength in Wireless Networks

    CERN Document Server

    Patwari, Neal; R., Sai Ananthanarayanan P; Kasera, Sneha K; Westenskow, Dwayne

    2011-01-01

    This paper shows experimentally that standard wireless networks which measure received signal strength (RSS) can be used to reliably detect human breathing and estimate the breathing rate, an application we call "BreathTaking". We show that although an individual link cannot reliably detect breathing, the collective spectral content of a network of devices reliably indicates the presence and rate of breathing. We present a maximum likelihood estimator (MLE) of breathing rate, amplitude, and phase, which uses the RSS data from many links simultaneously. We show experimental results which demonstrate that reliable detection and frequency estimation is possible with 30 seconds of data, within 0.3 breaths per minute (bpm) RMS error. Use of directional antennas is shown to improve robustness to motion near the network.

  3. Intracellular Signals of T Cell Costimulation

    Institute of Scientific and Technical Information of China (English)

    Jianxun Song; Fengyang Tylan Lei; Xiaofang Xiong; Rizwanul Haque

    2008-01-01

    Ligation of T cell receptor (TCR) alone is insufficient to induce full activation of T lymphocytes. Additional ligand-receptor interactions (costimulation) on antigen presenting cells (APCs) and T cells are required. T cell costimulation has been shown to be essential for eliciting efficient T cell responses, involving all phases during T cell development. However, the mechanisms by which costimulation affects the function of T cells still need to be elucidated. In recent years, advances have been made in studies of costimulation as potential therapies in cancer, infectious disease as well as autoimmune disease. In this review, we discussed intracellular costimulation signals that regulate T cell proliferation, cell cycle progression, cytokine production, survival, and memory development. In general, the pathway of phosphoinositide-3 kinase (PBK)/protein kinase B (PKB, also known as Akt)/nuclear factor κB (NF-κB) might be central to many costimulatory effects. Through these pathways, costimulation controls T-cell expansion and proliferation by maintenance of survivin and aurora B expression, and sustains long-term T-cell survival and memory development by regulating the expression of bci-2 family members. Cellular & Molecular Immunology.2008;5(4):239-247.

  4. Modeling of cortical signals using echo state networks

    Science.gov (United States)

    Zhou, Hanying; Wang, Yongji; Huang, Jiangshuai

    2009-10-01

    Diverse modeling frameworks have been utilized with the ultimate goal of translating brain cortical signals into prediction of visible behavior. The inputs to these models are usually multidimensional neural recordings collected from relevant regions of a monkey's brain while the outputs are the associated behavior which is typically the 2-D or 3-D hand position of a primate. Here our task is to set up a proper model in order to figure out the move trajectories by input the neural signals which are simultaneously collected in the experiment. In this paper, we propose to use Echo State Networks (ESN) to map the neural firing activities into hand positions. ESN is a newly developed recurrent neural network(RNN) model. Besides its dynamic property and short term memory just as other recurrent neural networks have, it has a special echo state property which endows it with the ability to model nonlinear dynamic systems powerfully. What distinguished it from transitional recurrent neural networks most significantly is its special learning method. In this paper we train this net with a refined version of its typical training method and get a better model.

  5. From cell signaling to cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Jin DING; Yun FENG; Hong-yang WANG

    2007-01-01

    Cancer has been seriously threatening the health and life of humans for a long period. Despite the intensive effort put into revealing the underlying mechanisms of cancer, the detailled machinery of carcinogenesis is still far from fully understood.Numerous studies have illustrated that cell signaling is extensively involved in tumor initiation, promotion and progression. Therefore, targeting the key mol-ecules in the oncogenic signaling pathway might be one of the most promising ways to conquer cancer. Some targeted drugs, such as imatinib mesylate (Gleevec),herceptin, gefitinib (Iressa), sorafenib (Nexavar) and sunitinib (Sutent), which evolve from monotarget drug into multitarget ones, have been developed with encouraging effects.

  6. Phosphoinositide pathway and the signal transduction network in neural development

    Institute of Scientific and Technical Information of China (English)

    Vincenza Rita Lo Vasco

    2012-01-01

    The development of the nervous system is under the strict control of a number of signal transduction pathways,often interconnected.Among them,the phosphoinositide (PI) pathway and the related phospholipase C (PI-PLC) family of enzymes have been attracting much attention.Besides their well-known role in the regulation of intracellular calcium levels,PI-PLC enzymes interact with a number of molecules belonging to further signal transduction pathways,contributing to a specific and complex network in the developing nervous system.In this review,the connections of PI signalling with further transduction pathways acting during neural development are discussed,with special regard to the role of the PI-PLC family of enzymes.

  7. Transduction motif analysis of gastric cancer based on a human signaling network

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G.; Li, D.Z.; Jiang, C.S.; Wang, W. [Fuzhou General Hospital of Nanjing Command, Department of Gastroenterology, Fuzhou, China, Department of Gastroenterology, Fuzhou General Hospital of Nanjing Command, Fuzhou (China)

    2014-04-04

    To investigate signal regulation models of gastric cancer, databases and literature were used to construct the signaling network in humans. Topological characteristics of the network were analyzed by CytoScape. After marking gastric cancer-related genes extracted from the CancerResource, GeneRIF, and COSMIC databases, the FANMOD software was used for the mining of gastric cancer-related motifs in a network with three vertices. The significant motif difference method was adopted to identify significantly different motifs in the normal and cancer states. Finally, we conducted a series of analyses of the significantly different motifs, including gene ontology, function annotation of genes, and model classification. A human signaling network was constructed, with 1643 nodes and 5089 regulating interactions. The network was configured to have the characteristics of other biological networks. There were 57,942 motifs marked with gastric cancer-related genes out of a total of 69,492 motifs, and 264 motifs were selected as significantly different motifs by calculating the significant motif difference (SMD) scores. Genes in significantly different motifs were mainly enriched in functions associated with cancer genesis, such as regulation of cell death, amino acid phosphorylation of proteins, and intracellular signaling cascades. The top five significantly different motifs were mainly cascade and positive feedback types. Almost all genes in the five motifs were cancer related, including EPOR, MAPK14, BCL2L1, KRT18, PTPN6, CASP3, TGFBR2, AR, and CASP7. The development of cancer might be curbed by inhibiting signal transductions upstream and downstream of the selected motifs.

  8. Signaling involved in stem cell reprogramming and differentiation

    OpenAIRE

    Tanabe, Shihori

    2015-01-01

    Stem cell differentiation is regulated by multiple signaling events. Recent technical advances have revealed that differentiated cells can be reprogrammed into stem cells. The signals involved in stem cell programming are of major interest in stem cell research. The signaling mechanisms involved in regulating stem cell reprogramming and differentiation are the subject of intense study in the field of life sciences. In this review, the molecular interactions and signaling pathways related to s...

  9. Prediction of oncogenic interactions and cancer-related signaling networks based on network topology.

    Directory of Open Access Journals (Sweden)

    Marcio Luis Acencio

    Full Text Available Cancer has been increasingly recognized as a systems biology disease since many investigators have demonstrated that this malignant phenotype emerges from abnormal protein-protein, regulatory and metabolic interactions induced by simultaneous structural and regulatory changes in multiple genes and pathways. Therefore, the identification of oncogenic interactions and cancer-related signaling networks is crucial for better understanding cancer. As experimental techniques for determining such interactions and signaling networks are labor-intensive and time-consuming, the development of a computational approach capable to accomplish this task would be of great value. For this purpose, we present here a novel computational approach based on network topology and machine learning capable to predict oncogenic interactions and extract relevant cancer-related signaling subnetworks from an integrated network of human genes interactions (INHGI. This approach, called graph2sig, is twofold: first, it assigns oncogenic scores to all interactions in the INHGI and then these oncogenic scores are used as edge weights to extract oncogenic signaling subnetworks from INHGI. Regarding the prediction of oncogenic interactions, we showed that graph2sig is able to recover 89% of known oncogenic interactions with a precision of 77%. Moreover, the interactions that received high oncogenic scores are enriched in genes for which mutations have been causally implicated in cancer. We also demonstrated that graph2sig is potentially useful in extracting oncogenic signaling subnetworks: more than 80% of constructed subnetworks contain more than 50% of original interactions in their corresponding oncogenic linear pathways present in the KEGG PATHWAY database. In addition, the potential oncogenic signaling subnetworks discovered by graph2sig are supported by experimental evidence. Taken together, these results suggest that graph2sig can be a useful tool for investigators involved

  10. From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks

    Science.gov (United States)

    Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming

    2016-03-01

    The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains.

  11. Identification and analysis of signaling networks potentially involved in breast carcinoma metastasis to the brain.

    Directory of Open Access Journals (Sweden)

    Feng Li

    Full Text Available Brain is a common site of breast cancer metastasis associated with significant neurologic morbidity, decreased quality of life, and greatly shortened survival. However, the molecular and cellular mechanisms underpinning brain colonization by breast carcinoma cells are poorly understood. Here, we used 2D-DIGE (Difference in Gel Electrophoresis proteomic analysis followed by LC-tandem mass spectrometry to identify the proteins differentially expressed in brain-targeting breast carcinoma cells (MB231-Br compared with parental MDA-MB-231 cell line. Between the two cell lines, we identified 12 proteins consistently exhibiting greater than 2-fold (p<0.05 difference in expression, which were associated by the Ingenuity Pathway Analysis (IPA with two major signaling networks involving TNFα/TGFβ-, NFκB-, HSP-70-, TP53-, and IFNγ-associated pathways. Remarkably, highly related networks were revealed by the IPA analysis of a list of 19 brain-metastasis-associated proteins identified recently by the group of Dr. A. Sierra using MDA-MB-435-based experimental system (Martin et al., J Proteome Res 2008 7:908-20, or a 17-gene classifier associated with breast cancer brain relapse reported by the group of Dr. J. Massague based on a microarray analysis of clinically annotated breast tumors from 368 patients (Bos et al., Nature 2009 459: 1005-9. These findings, showing that different experimental systems and approaches (2D-DIGE proteomics used on brain targeting cell lines or gene expression analysis of patient samples with documented brain relapse yield highly related signaling networks, suggest strongly that these signaling networks could be essential for a successful colonization of the brain by metastatic breast carcinoma cells.

  12. Analysis on Design of Kohonen-network System Based on Classification of Complex Signals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The key methods of detection and classification of the electroencephalogram(EEG) used in recent years are introduced . Taking EEG for example, the design plan of Kohonen neural network system based on detection and classification of complex signals is proposed, and both the network design and signal processing are analyzed, including pre-processing of signals, extraction of signal features, classification of signal and network topology, etc.

  13. Cytometry-based single-cell analysis of intact epithelial signaling reveals MAPK activation divergent from TNF-α-induced apoptosis in vivo

    OpenAIRE

    Simmons, Alan J; Banerjee, Amrita; McKinley, Eliot T; Scurrah, Cherie' R; Herring, Charles A; Gewin, Leslie S; Masuzaki, Ryota; Karp, Seth J.; Franklin, Jeffrey L.; Gerdes, Michael J.; Irish, Jonathan M.; Coffey, Robert J.; Lau, Ken S.

    2015-01-01

    Understanding heterogeneous cellular behaviors in a complex tissue requires the evaluation of signaling networks at single-cell resolution. However, probing signaling in epithelial tissues using cytometry-based single-cell analysis has been confounded by the necessity of single-cell dissociation, where disrupting cell-to-cell connections inherently perturbs native cell signaling states. Here, we demonstrate a novel strategy (Disaggregation for Intracellular Signaling in Single Epithelial Cell...

  14. A network map of Interleukin-10 signaling pathway.

    Science.gov (United States)

    Verma, Renu; Balakrishnan, Lavanya; Sharma, Kusum; Khan, Aafaque Ahmad; Advani, Jayshree; Gowda, Harsha; Tripathy, Srikanth Prasad; Suar, Mrutyunjay; Pandey, Akhilesh; Gandotra, Sheetal; Prasad, T S Keshava; Shankar, Subramanian

    2016-03-01

    Interleukin-10 (IL-10) is an anti-inflammatory cytokine with important immunoregulatory functions. It is primarily secreted by antigen-presenting cells such as activated T-cells, monocytes, B-cells and macrophages. In biologically functional form, it exists as a homodimer that binds to tetrameric heterodimer IL-10 receptor and induces downstream signaling. IL-10 is associated with survival, proliferation and anti-apoptotic activities of various cancers such as Burkitt lymphoma, non-Hodgkins lymphoma and non-small scell lung cancer. In addition, it plays a central role in survival and persistence of intracellular pathogens such as Leishmania donovani, Mycobacterium tuberculosis and Trypanosoma cruzi inside the host. The signaling mechanisms of IL-10 cytokine are not well explored and a well annotated pathway map has been lacking. To this end, we developed a pathway resource by manually annotating the IL-10 induced signaling molecules derived from literature. The reactions were categorized under molecular associations, activation/inhibition, catalysis, transport and gene regulation. In all, 37 molecules and 76 reactions were annotated. The IL-10 signaling pathway can be freely accessed through NetPath, a resource of signal transduction pathways previously developed by our group. PMID:26253919

  15. Dose-to-duration encoding and signaling beyond saturation in intracellular signaling networks.

    Directory of Open Access Journals (Sweden)

    Marcelo Behar

    2008-10-01

    Full Text Available The cellular response elicited by an environmental cue typically varies with the strength of the stimulus. For example, in the yeast Saccharomyces cerevisiae, the concentration of mating pheromone determines whether cells undergo vegetative growth, chemotropic growth, or mating. This implies that the signaling pathways responsible for detecting the stimulus and initiating a response must transmit quantitative information about the intensity of the signal. Our previous experimental results suggest that yeast encode pheromone concentration as the duration of the transmitted signal. Here we use mathematical modeling to analyze possible biochemical mechanisms for performing this "dose-to-duration" conversion. We demonstrate that modulation of signal duration increases the range of stimulus concentrations for which dose-dependent responses are possible; this increased dynamic range produces the counterintuitive result of "signaling beyond saturation" in which dose-dependent responses are still possible after apparent saturation of the receptors. We propose a mechanism for dose-to-duration encoding in the yeast pheromone pathway that is consistent with current experimental observations. Most previous investigations of information processing by signaling pathways have focused on amplitude encoding without considering temporal aspects of signal transduction. Here we demonstrate that dose-to-duration encoding provides cells with an alternative mechanism for processing and transmitting quantitative information about their surrounding environment. The ability of signaling pathways to convert stimulus strength into signal duration results directly from the nonlinear nature of these systems and emphasizes the importance of considering the dynamic properties of signaling pathways when characterizing their behavior. Understanding how signaling pathways encode and transmit quantitative information about the external environment will not only deepen our

  16. Identification of melanoma biomarkers based on network modules by integrating the human signaling network with microarrays

    Directory of Open Access Journals (Sweden)

    Chunyun Huang

    2014-01-01

    Full Text Available Background: Melanoma is a leading cause of cancer death. Thus, accurate prognostic biomarkers that will assist rational treatment planning need to be identified. Methods: Microarray analysis of melanoma and normal tissue samples was performed to identify differentially expressed modules (DEMs from the signaling network and ultimately detect molecular markers to support histological examination. Network motifs were extracted from the human signaling network. Then, significant expression-correlation differential modules were identified by comparing the network module expression-correlation differential scores under normal and disease conditions using the gene expression datasets. Finally, we obtained DEMs by the Wilcoxon rank test and considered the average gene expression level in these modules as the classification features for diagnosing melanoma. Results: In total, 99 functional DEMs were identified from the signaling network and gene expression profiles. The area under the curve scores for cancer module genes, melanoma module genes, and whole network modules are 92.4%, 90.44%, and 88.45%, respectively. The classification efficiency rates for nonmodule features are 71.04% and 79.38%, which correspond to the features of cancer genes and melanoma cancer genes, respectively. Finally, we acquired six significant molecular biomarkers, namely, module 10 (CALM3, Ca 2+ , PKC, PDGFRA, phospholipase-g, PIB5PA, and phosphatidylinositol-3-kinase, module 14 (SRC, Src homology 2 domain-containing [SHC], SAM68, GIT1, transcription factor-4, CBLB, GRB2, VAV2, LCK, YES, PTCH2, downstream of tyrosine kinase [DOK], and KIT, module 16 (ELK3, p85beta, SHC, ZFYVE9, TGFBR1, TGFBR2, CITED1, SH3KBP1, HCK, DOK, and KIT, module 45 (RB, CCND3, CCNA2, CDK4, and CDK6, module 75 (PCNA, CDK4, and CCND1, and module 114 (PSD93, NMDAR, and FYN. Conclusion: We explored the gene expression profile and signaling network in a global view and identified DEMs that can be used as

  17. Biasing vector network analyzers using variable frequency and amplitude signals

    Science.gov (United States)

    Nobles, J. E.; Zagorodnii, V.; Hutchison, A.; Celinski, Z.

    2016-08-01

    We report the development of a test setup designed to provide a variable frequency biasing signal to a vector network analyzer (VNA). The test setup is currently used for the testing of liquid crystal (LC) based devices in the microwave region. The use of an AC bias for LC based devices minimizes the negative effects associated with ionic impurities in the media encountered with DC biasing. The test setup utilizes bias tees on the VNA test station to inject the bias signal. The square wave biasing signal is variable from 0.5 to 36.0 V peak-to-peak (VPP) with a frequency range of DC to 10 kHz. The test setup protects the VNA from transient processes, voltage spikes, and high-frequency leakage. Additionally, the signals to the VNA are fused to ½ amp and clipped to a maximum of 36 VPP based on bias tee limitations. This setup allows us to measure S-parameters as a function of both the voltage and the frequency of the applied bias signal.

  18. The Ballistocardiogram Signal Monitoring System Based on the GSM Network

    Institute of Scientific and Technical Information of China (English)

    WANG Chun-wu; WANG Xu; LONG Zhe; ZHANG Ke-xin; YANG Dan

    2015-01-01

    Ballistocardiogram signal monitoring system based on GSM network was put forward in this paper. The system included a BCG signal acquisition module, a data processing module, a display module and a GSM module. The STM32F103VB microprocessor was used as the controlling core of the signal acquisition module. BCG signal acquisition, amplification, filtering and A/D conversion were completed by the resistance strain sensor and high precision A/D conversion chip of TM7708; VB6.0 software was used to realize the BCG signal analysis and processing;the SD card and LCD completed data storage and waveform display; the BCG data remote transmission and alarm function were realized through the GSM module. The system cannot only real-time monitor the changes of heart rate of patients by non-contact means, and can process data automatically, timely detection of arrhythmia and automatic alarm. The system is particularly suitable for heart disease patients receiving long-term home care;therefore, it has a broad application prospect.

  19. Stability of multispecies bacterial communities: signaling networks may stabilize microbiomes.

    Directory of Open Access Journals (Sweden)

    Ádám Kerényi

    Full Text Available Multispecies bacterial communities can be remarkably stable and resilient even though they consist of cells and species that compete for environmental resources. In silico models suggest that common signals released into the environment may help selected bacterial species cluster at common locations and that sharing of public goods (i.e. molecules produced and released for mutual benefit can stabilize this coexistence. In contrast, unilateral eavesdropping on signals produced by a potentially invading species may protect a community by keeping invaders away from limited resources. Shared bacterial signals, such as those found in quorum sensing systems, may thus play a key role in fine tuning competition and cooperation within multi-bacterial communities. We suggest that in addition to metabolic complementarity, signaling dynamics may be important in further understanding complex bacterial communities such as the human, animal as well as plant microbiomes.

  20. Molecular signal transduction in vascular cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Apoptosis is a form of genetically programmed cell death, which plays a key role in regulation of cellularity in a variety of tissue and cell types including the cardiovascular tissues. Under both physiological and pathophysiological conditions, various biophysiological and biochemical factors, including mechanical forces, reactive oxygen and nitrogen species, cytokines, growth factors, oxidized lipoproteins, etc., may influence apoptosis of vascular cells. The Fas/Fas ligand/caspase death-signaling pathway, Bcl-2 protein family/mitochondria, the tumor suppressive gene p53, and the proto-oncogene c-myc may be activated in atherosclerotic lesions, and mediates vascular apoptosis during the development of atherosclerosis. Abnormal expression and dysfunction of these apoptosis-regulating genes may attenuate or accelerate vascular cell apoptosis and affect the integrity and stability of atherosclerotic plaques. Clarification of the molecular mechanism that regulates apoptosis may help design a new strategy for treatment of atherosclerosis and its major complication, the acute vascular syndromes.

  1. Wnt-signalling pathways and microRNAs network in carcinogenesis: experimental and bioinformatics approaches.

    Science.gov (United States)

    Onyido, Emenike K; Sweeney, Eloise; Nateri, Abdolrahman Shams

    2016-01-01

    Over the past few years, microRNAs (miRNAs) have not only emerged as integral regulators of gene expression at the post-transcriptional level but also respond to signalling molecules to affect cell function(s). miRNAs crosstalk with a variety of the key cellular signalling networks such as Wnt, transforming growth factor-β and Notch, control stem cell activity in maintaining tissue homeostasis, while if dysregulated contributes to the initiation and progression of cancer. Herein, we overview the molecular mechanism(s) underlying the crosstalk between Wnt-signalling components (canonical and non-canonical) and miRNAs, as well as changes in the miRNA/Wnt-signalling components observed in the different forms of cancer. Furthermore, the fundamental understanding of miRNA-mediated regulation of Wnt-signalling pathway and vice versa has been significantly improved by high-throughput genomics and bioinformatics technologies. Whilst, these approaches have identified a number of specific miRNA(s) that function as oncogenes or tumour suppressors, additional analyses will be necessary to fully unravel the links among conserved cellular signalling pathways and miRNAs and their potential associated components in cancer, thereby creating therapeutic avenues against tumours. Hence, we also discuss the current challenges associated with Wnt-signalling/miRNAs complex and the analysis using the biomedical experimental and bioinformatics approaches. PMID:27590724

  2. Nano-guided cell networks as conveyors of molecular communication.

    Science.gov (United States)

    Terrell, Jessica L; Wu, Hsuan-Chen; Tsao, Chen-Yu; Barber, Nathan B; Servinsky, Matthew D; Payne, Gregory F; Bentley, William E

    2015-01-01

    Advances in nanotechnology have provided unprecedented physical means to sample molecular space. Living cells provide additional capability in that they identify molecules within complex environments and actuate function. We have merged cells with nanotechnology for an integrated molecular processing network. Here we show that an engineered cell consortium autonomously generates feedback to chemical cues. Moreover, abiotic components are readily assembled onto cells, enabling amplified and 'binned' responses. Specifically, engineered cell populations are triggered by a quorum sensing (QS) signal molecule, autoinducer-2, to express surface-displayed fusions consisting of a fluorescent marker and an affinity peptide. The latter provides means for attaching magnetic nanoparticles to fluorescently activated subpopulations for coalescence into colour-indexed output. The resultant nano-guided cell network assesses QS activity and conveys molecular information as a 'bio-litmus' in a manner read by simple optical means.

  3. Signal integration in the galactose network of Escherichia coli.

    Science.gov (United States)

    Semsey, Szabolcs; Krishna, Sandeep; Sneppen, Kim; Adhya, Sankar

    2007-07-01

    The gal regulon of Escherichia coli contains genes involved in galactose transport and metabolism. Transcription of the gal regulon genes is regulated in different ways by two iso-regulatory proteins, Gal repressor (GalR) and Gal isorepressor (GalS), which recognize the same binding sites in the absence of d-galactose. DNA binding by both GalR and GalS is inhibited in the presence of d-galactose. Many of the gal regulon genes are activated in the presence of the adenosine cyclic-3',5'-monophosphate (cAMP)-cAMP receptor protein (CRP) complex. We studied transcriptional regulation of the gal regulon promoters simultaneously in a purified system and attempted to integrate the two small molecule signals, d-galactose and cAMP, that modulate the isoregulators and CRP respectively, at each promoter, using Boolean logic. Results show that similarly organized promoters can have different input functions. We also found that in some cases the activity of the promoter and the cognate gene can be described by different logic gates. We combined the transcriptional network of the galactose regulon, obtained from our experiments, with literature data to construct an integrated map of the galactose network. Structural analysis of the network shows that at the interface of the genetic and metabolic network, feedback loops are by far the most common motif. PMID:17630975

  4. RECEIVED SIGNAL STRENGTH INDICATION MODELING IN INDOOR WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    Edson Taira Procopio

    2013-01-01

    Full Text Available This study aims to identify mathematical models that represent the relation between Received Signal Strength Indication (RSSI and objects in an indoor Wireless Sensor Network (WSN. Using the Least Squares Method, four linear models have been identified: The first one relates uplink RSSI and objects; the second one relates downlink RSSI and objects; the third one relates uplink RSSI and obstacles and the fourth one relates downlink RSSI and obstacles. The obtained results, characterized by small residual values, attest the validation of all four models.

  5. Fault Tolerant Neural Network for ECG Signal Classification Systems

    Directory of Open Access Journals (Sweden)

    MERAH, M.

    2011-08-01

    Full Text Available The aim of this paper is to apply a new robust hardware Artificial Neural Network (ANN for ECG classification systems. This ANN includes a penalization criterion which makes the performances in terms of robustness. Specifically, in this method, the ANN weights are normalized using the auto-prune method. Simulations performed on the MIT ? BIH ECG signals, have shown that significant robustness improvements are obtained regarding potential hardware artificial neuron failures. Moreover, we show that the proposed design achieves better generalization performances, compared to the standard back-propagation algorithm.

  6. Plant morphogenesis, auxin, and the signal-trafficking network incompleteness theorem

    Directory of Open Access Journals (Sweden)

    Karl J. Niklas

    2012-03-01

    Full Text Available Plant morphogenesis (the development of form and function requires signal-trafficking and cross-talking among all levels of organization to coordinate the operation of metabolic and genomic networked systems. Many if not all of these biological features can be rendered as logic circuits supervising the operation of one or more signal-activated metabolic or genome networks. This approach simplifies complex morphogenetic phenomena and allows for their aggregation into diagrams of larger, more "global" networked systems. This conceptualization is illustrated for morphogenesis in model plants such as maize (Zea mays and Thale cress (Arabidopsis thaliana from an evolutionary perspective. The phytohormone indole-acetic acid (IAA is used as an example for a well-known signaling chemical and discussed in terms of the logic circuits and signal-activated sub-systems for hormone-mediated wall loosening and cell expansion as well as polar/lateral intercellular IAA transport. For each of these phenomena, a circuit/sub-system diagram highlights missing components, either in the logic circuit or in the sub-system it supervises, that must be identified experimentally if each of these basic phenomena is to be fully understood within a phylogen

  7. Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Pan, Cuiping; Olsen, Jesper V; Daub, Henrik;

    2009-01-01

    to identify the direct targets of kinase inhibitors upon affinity purification from cellular extracts. Here we introduce a complementary approach to evaluate the effects of kinase inhibitors on the entire cell signaling network. We used triple labeling SILAC (stable isotope labeling by amino acids in cell......-ABL, which is the cause of chronic myelogenous leukemia, affected nearly 1,000 phosphopeptides. In addition to the proximal effects on ABL and its immediate targets, dasatinib broadly affected the downstream MAPK pathways. Pathway mapping of regulated sites implicated a variety of cellular functions...

  8. A Probabilistic Boolean Network Approach for the Analysis of Cancer-Specific Signalling: A Case Study of Deregulated PDGF Signalling in GIST.

    Directory of Open Access Journals (Sweden)

    Panuwat Trairatphisan

    Full Text Available Signal transduction networks are increasingly studied with mathematical modelling approaches while each of them is suited for a particular problem. For the contextualisation and analysis of signalling networks with steady-state protein data, we identified probabilistic Boolean network (PBN as a promising framework which could capture quantitative changes of molecular changes at steady-state with a minimal parameterisation.In our case study, we successfully applied the PBN approach to model and analyse the deregulated Platelet-Derived Growth Factor (PDGF signalling pathway in Gastrointestinal Stromal Tumour (GIST. We experimentally determined a rich and accurate dataset of steady-state profiles of selected downstream kinases of PDGF-receptor-alpha mutants in combination with inhibitor treatments. Applying the tool optPBN, we fitted a literature-derived candidate network model to the training dataset consisting of single perturbation conditions. Model analysis suggested several important crosstalk interactions. The validity of these predictions was further investigated experimentally pointing to relevant ongoing crosstalk from PI3K to MAPK signalling in tumour cells. The refined model was evaluated with a validation dataset comprising multiple perturbation conditions. The model thereby showed excellent performance allowing to quantitatively predict the combinatorial responses from the individual treatment results in this cancer setting. The established optPBN pipeline is also widely applicable to gain a better understanding of other signalling networks at steady-state in a context-specific fashion.

  9. Orchestrating redox signaling networks through regulatory cysteine switches.

    Science.gov (United States)

    Paulsen, Candice E; Carroll, Kate S

    2010-01-15

    Hydrogen peroxide (H(2)O(2)) acts as a second messenger that can mediate intracellular signal transduction via chemoselective oxidation of cysteine residues in signaling proteins. This Review presents current mechanistic insights into signal-mediated H(2)O(2) production and highlights recent advances in methods to detect reactive oxygen species (ROS) and cysteine oxidation both in vitro and in cells. Selected examples from the recent literature are used to illustrate the diverse mechanisms by which H(2)O(2) can regulate protein function. The continued development of methods to detect and quantify discrete cysteine oxoforms should further our mechanistic understanding of redox regulation of protein function and may lead to the development of new therapeutic strategies.

  10. Role of inositol phospholipid signaling in natural killer cell biology

    Directory of Open Access Journals (Sweden)

    Matthew eGumbleton

    2013-03-01

    Full Text Available Natural Killer (NK cells are important in the host defense against malignancy and infection. At a cellular level NK cells are activated when signals from activating receptors exceed signaling from inhibitory receptors. At a molecular level NK cells undergo an education process to prevent autoimmunity. Mouse models have shown important roles for inositol phospholipid signaling in lymphocytes. NK cells from mice with deletion in different members of the PI3K signaling pathway have defective development, natural killer cell repertoire expression (NKRR and effector function. Here we review the role of inositol phospholipid signaling in NK cell biology.

  11. Heparan Sulfate Proteoglycans Regulate Fgf Signaling and Cell Polarity during Collective Cell Migration

    Directory of Open Access Journals (Sweden)

    Marina Venero Galanternik

    2015-01-01

    Full Text Available Collective cell migration is a highly regulated morphogenetic movement during embryonic development and cancer invasion that involves the precise orchestration and integration of cell-autonomous mechanisms and environmental signals. Coordinated lateral line primordium migration is controlled by the regulation of chemokine receptors via compartmentalized Wnt/β-catenin and fibroblast growth factor (Fgf signaling. Analysis of mutations in two exostosin glycosyltransferase genes (extl3 and ext2 revealed that loss of heparan sulfate (HS chains results in a failure of collective cell migration due to enhanced Fgf ligand diffusion and loss of Fgf signal transduction. Consequently, Wnt/β-catenin signaling is activated ectopically, resulting in the subsequent loss of the chemokine receptor cxcr7b. Disruption of HS proteoglycan (HSPG function induces extensive, random filopodia formation, demonstrating that HSPGs are involved in maintaining cell polarity in collectively migrating cells. The HSPGs themselves are regulated by the Wnt/β-catenin and Fgf pathways and thus are integral components of the regulatory network that coordinates collective cell migration with organ specification and morphogenesis.

  12. Automated Measurement and Signaling Systems for the Transactional Network

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann; Brown, Richard; Price, Phillip; Page, Janie; Granderson, Jessica; Riess, David; Czarnecki, Stephen; Ghatikar, Girish; Lanzisera, Steven

    2013-12-31

    The Transactional Network Project is a multi-lab activity funded by the US Department of Energy?s Building Technologies Office. The project team included staff from Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory and Oak Ridge National Laboratory. The team designed, prototyped and tested a transactional network (TN) platform to support energy, operational and financial transactions between any networked entities (equipment, organizations, buildings, grid, etc.). PNNL was responsible for the development of the TN platform, with agents for this platform developed by each of the three labs. LBNL contributed applications to measure the whole-building electric load response to various changes in building operations, particularly energy efficiency improvements and demand response events. We also provide a demand response signaling agent and an agent for cost savings analysis. LBNL and PNNL demonstrated actual transactions between packaged rooftop units and the electric grid using the platform and selected agents. This document describes the agents and applications developed by the LBNL team, and associated tests of the applications.

  13. Gene network and pathway analysis of bovine mammary tissue challenged with Streptococcus uberis reveals induction of cell proliferation and inhibition of PPARγ signaling as potential mechanism for the negative relationships between immune response and lipid metabolism

    Directory of Open Access Journals (Sweden)

    Rodriguez-Zas Sandra L

    2009-11-01

    Full Text Available Abstract Background Information generated via microarrays might uncover interactions between the mammary gland and Streptococcus uberis (S. uberis that could help identify control measures for the prevention and spread of S. uberis mastitis, as well as improve overall animal health and welfare, and decrease economic losses to dairy farmers. The main objective of this study was to determine the most affected gene networks and pathways in mammary tissue in response to an intramammary infection (IMI with S. uberis and relate these with other physiological measurements associated with immune and/or metabolic responses to mastitis challenge with S. uberis O140J. Results Streptococcus uberis IMI resulted in 2,102 (1,939 annotated differentially expressed genes (DEG. Within this set of DEG, we uncovered 20 significantly enriched canonical pathways (with 20 to 61 genes each, the majority of which were signaling pathways. Among the most inhibited were LXR/RXR Signaling and PPARα/RXRα Signaling. Pathways activated by IMI were IL-10 Signaling and IL-6 Signaling which likely reflected counter mechanisms of mammary tissue to respond to infection. Of the 2,102 DEG, 1,082 were up-regulated during IMI and were primarily involved with the immune response, e.g., IL6, TNF, IL8, IL10, SELL, LYZ, and SAA3. Genes down-regulated (1,020 included those associated with milk fat synthesis, e.g., LPIN1, LPL, CD36, and BTN1A1. Network analysis of DEG indicated that TNF had positive relationships with genes involved with immune system function (e.g., CD14, IL8, IL1B, and TLR2 and negative relationships with genes involved with lipid metabolism (e.g., GPAM, SCD, FABP4, CD36, and LPL and antioxidant activity (SOD1. Conclusion Results provided novel information into the early signaling and metabolic pathways in mammary tissue that are associated with the innate immune response to S. uberis infection. Our study indicated that IMI challenge with S. uberis (strain O140J elicited

  14. Bifurcation mechanisms of regular and chaotic network signaling in brain astrocytes

    Science.gov (United States)

    Matrosov, V. V.; Kazantsev, V. B.

    2011-06-01

    Bifurcation mechanisms underlying calcium oscillations in the network of astrocytes are investigated. Network model includes the dynamics of intracellular calcium concentration and intercellular diffusion of inositol 1,4,5-trisphosphate through gap junctions. Bifurcation analysis of underlying nonlinear dynamical system is presented. Parameter regions and principle bifurcation boundaries have been delineated and described. We show how variations of the diffusion rate can lead to generation of network calcium oscillations in originally nonoscillating cells. Different scenarios of regular activity and its transitions to chaotic dynamics have been obtained. Then, the bifurcations have been associated with statistical characteristics of calcium signals showing that different bifurcation scenarios yield qualitative changes in experimentally measurable quantities of the astrocyte activity, e.g., statistics of calcium spikes.

  15. Identifying Network Motifs that Buffer Front-to-Back Signaling in Polarized Neutrophils

    Directory of Open Access Journals (Sweden)

    Yanqin Wang

    2013-05-01

    Full Text Available Neutrophil polarity relies on local, mutual inhibition to segregate incompatible signaling circuits to the leading and trailing edges. Mutual inhibition alone should lead to cells having strong fronts and weak backs or vice versa. However, analysis of cell-to-cell variation in human neutrophils revealed that back polarity remains consistent despite changes in front strength. How is this buffering achieved? Pharmacological perturbations and mathematical modeling revealed a functional role for microtubules in buffering back polarity by mediating positive, long-range crosstalk from front to back; loss of microtubules inhibits buffering and results in anticorrelation between front and back signaling. Furthermore, a systematic, computational search of network topologies found that a long-range, positive front-to-back link is necessary for back buffering. Our studies suggest a design principle that can be employed by polarity networks: short-range mutual inhibition establishes distinct signaling regions, after which directed long-range activation insulates one region from variations in the other.

  16. Pattern recognition for electroencephalographic signals based on continuous neural networks.

    Science.gov (United States)

    Alfaro-Ponce, M; Argüelles, A; Chairez, I

    2016-07-01

    This study reports the design and implementation of a pattern recognition algorithm to classify electroencephalographic (EEG) signals based on artificial neural networks (NN) described by ordinary differential equations (ODEs). The training method for this kind of continuous NN (CNN) was developed according to the Lyapunov theory stability analysis. A parallel structure with fixed weights was proposed to perform the classification stage. The pattern recognition efficiency was validated by two methods, a generalization-regularization and a k-fold cross validation (k=5). The classifier was applied on two different databases. The first one was made up by signals collected from patients suffering of epilepsy and it is divided in five different classes. The second database was made up by 90 single EEG trials, divided in three classes. Each class corresponds to a different visual evoked potential. The pattern recognition algorithm achieved a maximum correct classification percentage of 97.2% using the information of the entire database. This value was similar to some results previously reported when this database was used for testing pattern classification. However, these results were obtained when only two classes were considered for the testing. The result reported in this study used the whole set of signals (five different classes). In comparison with similar pattern recognition methods that even considered less number of classes, the proposed CNN proved to achieve the same or even better correct classification results.

  17. Mapping the functional versatility and fragility of Ras GTPase signaling circuits through in vitro network reconstitution.

    Science.gov (United States)

    Coyle, Scott M; Lim, Wendell A

    2016-01-01

    The Ras-superfamily GTPases are central controllers of cell proliferation and morphology. Ras signaling is mediated by a system of interacting molecules: upstream enzymes (GEF/GAP) regulate Ras's ability to recruit multiple competing downstream effectors. We developed a multiplexed, multi-turnover assay for measuring the dynamic signaling behavior of in vitro reconstituted H-Ras signaling systems. By including both upstream regulators and downstream effectors, we can systematically map how different network configurations shape the dynamic system response. The concentration and identity of both upstream and downstream signaling components strongly impacted the timing, duration, shape, and amplitude of effector outputs. The distorted output of oncogenic alleles of Ras was highly dependent on the balance of positive (GAP) and negative (GEF) regulators in the system. We found that different effectors interpreted the same inputs with distinct output dynamics, enabling a Ras system to encode multiple unique temporal outputs in response to a single input. We also found that different Ras-to-GEF positive feedback mechanisms could reshape output dynamics in distinct ways, such as signal amplification or overshoot minimization. Mapping of the space of output behaviors accessible to Ras provides a design manual for programming Ras circuits, and reveals how these systems are readily adapted to produce an array of dynamic signaling behaviors. Nonetheless, this versatility comes with a trade-off of fragility, as there exist numerous paths to altered signaling behaviors that could cause disease. PMID:26765565

  18. Chemokines: a new dendritic cell signal for T cell activation

    Directory of Open Access Journals (Sweden)

    Christoph A Thaiss

    2011-08-01

    Full Text Available Dendritic cells (DCs are the main inducers and regulators of cytotoxic T lymphocyte (CTL responses against viruses and tumors. One checkpoint to avoid misguided CTL activation, which might damage healthy cells of the body, is the necessity for multiple activation signals, involving both antigenic as well as additional signals that reflect the presence of pathogens. DCs provide both signals when activated by ligands of pattern recognition receptors and licensed by helper lymphocytes. Recently, it has been established that such T cell licensing can be facilitated by CD4+ T helper cells (classical licensing or by NKT cells (alternative licensing. Licensing regulates the DC/CTL cross-talk at multiple layers. Direct recruitment of CTLs through chemokines released by licensed DCs has recently emerged as a common theme and has a crucial impact on the efficiency of CTL responses. Here, we discuss recent advances in our understanding of DC licensing for cross-priming and implications for the temporal and spatial regulation underlying this process. Future vaccination strategies will benefit from a deeper insight into the mechanisms that govern CTL activation.

  19. Computational study of noise in a large signal transduction network

    Directory of Open Access Journals (Sweden)

    Ruohonen Keijo

    2011-06-01

    Full Text Available Abstract Background Biochemical systems are inherently noisy due to the discrete reaction events that occur in a random manner. Although noise is often perceived as a disturbing factor, the system might actually benefit from it. In order to understand the role of noise better, its quality must be studied in a quantitative manner. Computational analysis and modeling play an essential role in this demanding endeavor. Results We implemented a large nonlinear signal transduction network combining protein kinase C, mitogen-activated protein kinase, phospholipase A2, and β isoform of phospholipase C networks. We simulated the network in 300 different cellular volumes using the exact Gillespie stochastic simulation algorithm and analyzed the results in both the time and frequency domain. In order to perform simulations in a reasonable time, we used modern parallel computing techniques. The analysis revealed that time and frequency domain characteristics depend on the system volume. The simulation results also indicated that there are several kinds of noise processes in the network, all of them representing different kinds of low-frequency fluctuations. In the simulations, the power of noise decreased on all frequencies when the system volume was increased. Conclusions We concluded that basic frequency domain techniques can be applied to the analysis of simulation results produced by the Gillespie stochastic simulation algorithm. This approach is suited not only to the study of fluctuations but also to the study of pure noise processes. Noise seems to have an important role in biochemical systems and its properties can be numerically studied by simulating the reacting system in different cellular volumes. Parallel computing techniques make it possible to run massive simulations in hundreds of volumes and, as a result, accurate statistics can be obtained from computational studies.

  20. Molecular signaling networks in regulation of immunity and disease

    DEFF Research Database (Denmark)

    Laursen, Janne Marie; Jensen, Stina Rikke; Sørensen, Morten;

    the proinflammatory properties of common gut commensals. We are currently looking into the mechanisms behind the antiinflammatory effects of the microbial fermentation products with a specific interest in the complex interactions between enzymes catalyzing posttranslational modifications, transcription factors......The gut microbiota, host tissues, and the immune system form a complex network where extensive crosstalk and molecular interactions substantially impact the overall state of the system. Concomitantly, modulation of host immune function is recurrently a result of the interaction of complex...... and dynamic microbial communities with the immune cell compartment in the gut, and therefore the interaction between components from different gut bacteria can efficiently shape the phenotype of the immune response. A specialized antigenpresenting cell present at mucosal surfaces, the dendritic cell (DC...

  1. Identification of Major Signaling Pathways in Prion Disease Progression Using Network Analysis.

    Science.gov (United States)

    Newaz, Khalique; Sriram, K; Bera, Debajyoti

    2015-01-01

    Prion diseases are transmissible neurodegenerative diseases that arise due to conformational change of normal, cellular prion protein (PrPC) to protease-resistant isofrom (rPrPSc). Deposition of misfolded PrpSc proteins leads to an alteration of many signaling pathways that includes immunological and apoptotic pathways. As a result, this culminates in the dysfunction and death of neuronal cells. Earlier works on transcriptomic studies have revealed some affected pathways, but it is not clear which is (are) the prime network pathway(s) that change during the disease progression and how these pathways are involved in crosstalks with each other from the time of incubation to clinical death. We perform network analysis on large-scale transcriptomic data of differentially expressed genes obtained from whole brain in six different mouse strain-prion strain combination models to determine the pathways involved in prion diseases, and to understand the role of crosstalks in disease propagation. We employ a notion of differential network centrality measures on protein interaction networks to identify the potential biological pathways involved. We also propose a crosstalk ranking method based on dynamic protein interaction networks to identify the core network elements involved in crosstalk with different pathways. We identify 148 DEGs (differentially expressed genes) potentially related to the prion disease progression. Functional association of the identified genes implicates a strong involvement of immunological pathways. We extract a bow-tie structure that is potentially dysregulated in prion disease. We also propose an ODE model for the bow-tie network. Predictions related to diseased condition suggests the downregulation of the core signaling elements (PI3Ks and AKTs) of the bow-tie network. In this work, we show using transcriptomic data that the neuronal dysfunction in prion disease is strongly related to the immunological pathways. We conclude that these

  2. Identification of Major Signaling Pathways in Prion Disease Progression Using Network Analysis.

    Directory of Open Access Journals (Sweden)

    Khalique Newaz

    Full Text Available Prion diseases are transmissible neurodegenerative diseases that arise due to conformational change of normal, cellular prion protein (PrPC to protease-resistant isofrom (rPrPSc. Deposition of misfolded PrpSc proteins leads to an alteration of many signaling pathways that includes immunological and apoptotic pathways. As a result, this culminates in the dysfunction and death of neuronal cells. Earlier works on transcriptomic studies have revealed some affected pathways, but it is not clear which is (are the prime network pathway(s that change during the disease progression and how these pathways are involved in crosstalks with each other from the time of incubation to clinical death. We perform network analysis on large-scale transcriptomic data of differentially expressed genes obtained from whole brain in six different mouse strain-prion strain combination models to determine the pathways involved in prion diseases, and to understand the role of crosstalks in disease propagation. We employ a notion of differential network centrality measures on protein interaction networks to identify the potential biological pathways involved. We also propose a crosstalk ranking method based on dynamic protein interaction networks to identify the core network elements involved in crosstalk with different pathways. We identify 148 DEGs (differentially expressed genes potentially related to the prion disease progression. Functional association of the identified genes implicates a strong involvement of immunological pathways. We extract a bow-tie structure that is potentially dysregulated in prion disease. We also propose an ODE model for the bow-tie network. Predictions related to diseased condition suggests the downregulation of the core signaling elements (PI3Ks and AKTs of the bow-tie network. In this work, we show using transcriptomic data that the neuronal dysfunction in prion disease is strongly related to the immunological pathways. We conclude that

  3. Simulation study on effects of signaling network structure on the developmental increase in complexity

    Energy Technology Data Exchange (ETDEWEB)

    Keranen, Soile V.E.

    2003-04-02

    The developmental increase in structural complexity in multicellular life forms depends on local, often non-periodic differences in gene expression. These depend on a network of gene-gene interactions coded within the organismal genome. To better understand how genomic information generates complex expression patterns, I have modeled the pattern forming behavior of small artificial genomes in virtual blastoderm embryos. I varied several basic properties of these genomic signaling networks, such as the number of genes, the distributions of positive (inductive) and negative (repressive) interactions, and the strengths of gene-gene interactions, and analyzed their effects on developmental pattern formation. The results show how even simple genomes can generate complex non-periodic patterns under suitable conditions. They also show how the frequency of complex patterns depended on the numbers and relative arrangements of positive and negative interactions. For example, negative co-regulation of signaling pathway components increased the likelihood of (complex) patterns relative to differential negative regulation of the pathway components. Interestingly, neither quantitative differences either in strengths of signaling interactions nor multiple response thresholds to signal concentration (as in morphogen gradients) were essential for formation of multiple, spatially unique cell types. Thus, with combinatorial code of gene regulation and hierarchical signaling interactions, it is theoretically possible to organize metazoan embryogenesis with just a small fraction of the metazoan genome. Because even small networks can generate complex patterns when they contain a suitable set of connections, evolution of metazoan complexity may have depended more on selection for favourable configurations of signaling interactions than on the increase in numbers of regulatory genes.

  4. Mapping the spatiotemporal dynamics of calcium signaling in cellular neural networks using optical flow

    CERN Document Server

    Buibas, Marius; Nizar, Krystal; Silva, Gabriel A

    2009-01-01

    An optical flow gradient algorithm was applied to spontaneously forming networks of neurons and glia in culture imaged by fluorescence optical microscopy in order to map functional calcium signaling with single pixel resolution. Optical flow estimates the direction and speed of motion of objects in an image between subsequent frames in a recorded digital sequence of images (i.e. a movie). Computed vector field outputs by the algorithm were able to track the spatiotemporal dynamics of calcium signaling patterns. We begin by briefly reviewing the mathematics of the optical flow algorithm, describe how to solve for the displacement vectors, and how to measure their reliability. We then compare computed flow vectors with manually estimated vectors for the progression of a calcium signal recorded from representative astrocyte cultures. Finally, we applied the algorithm to preparations of primary astrocytes and hippocampal neurons and to the rMC-1 Muller glial cell line in order to illustrate the capability of the ...

  5. Cisplatin ototoxicity involves cytokines and STAT6 signaling network

    Institute of Scientific and Technical Information of China (English)

    Hyung-Jin Kim; Jeong-Dug Sul; Channy Park; Sang-Young Chung; Sung-Kyun Moon; David J Lim; Hong-Seob So; Raekil Park; Gi-Su Oh; Jeong-Han Lee; Ah-Ra Lyu; Hye-Min Ji; Sang-Heon Lee; Jeho Song; Sung-Joo Park; Yong-Ouk You

    2011-01-01

    We herein investigated the role of the STAT signaling cascade in the production of pro-inflammatory cytokines and cisplatin ototoxicity. A significant hearing impairment caused by cisplatin injection was observed in Balb/c (wild type,WT) and STAT4-/-,but not in STAT6-/- mice. Moreover,the expression levels of the protein and mRNA of proinflammatory cytokines,including TNF-α,IL-1β,and IL-6,were markedly increased in the serum and cochlea of WT and STAT4+,but not STAT6-/- mice. Organotypic culture revealed that the shape of stereocilia bundles and arrays of sensory hair cell layers in the organ of Corti from STAT6-/- mice were intact after treatment with cisplatin,whereas those from WT and STAT4-/- mice were highly distorted and disarrayed after the treatment. Cisplatin induced the phosphorylation of STAT6 in HEI-OC1 auditory cells,and the knockdown of STAT6 by STAT6-specific siRNA significantly protected HEI-OC1 auditory cells from cisplatin-induced cell death and inhibited pro-inflammatory cytokine production. We further demonstrated that IL-4 and IL-13 induced by cisplatin modulated the phosphorylation of STAT6 by binding with IL-4 receptor alpha and IL-13Rα1. These findings suggest that STAT6 signaling plays a pivotal role in cisplatin-mediated pro-inflammatory cytokine production and ototoxicity.

  6. Network Analysis of Epidermal Growth Factor Signaling using Integrated Genomic, Proteomic and Phosphorylation Data

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Katrina M.; Liu, Tao; Quesenberry, Ryan D.; Willse, Alan R.; Bandyopadhyay, Somnath; Kathmann, Loel E.; Weber, Thomas J.; Smith, Richard D.; Wiley, H. S.; Thrall, Brian D.

    2012-03-29

    To understand how integration of multiple data types can help decipher cellular responses at the systems level, we analyzed the mitogenic response of human mammary epithelial cells to epidermal growth factor (EGF) using whole genome microarrays, mass spectrometry-based proteomics and large-scale western blots with over 1000 antibodies. A time course analysis revealed significant differences in the expression of 3172 genes and 596 proteins, including protein phosphorylation changes measured by western blot. Integration of these disparate data types showed that each contributed qualitatively different components to the observed cell response to EGF and that varying degrees of concordance in gene expression and protein abundance measurements could be linked to specific biological processes. Networks inferred from individual data types were relatively limited, whereas networks derived from the integrated data recapitulated the known major cellular responses to EGF and exhibited more highly connected signaling nodes than networks derived from any individual dataset. While cell cycle regulatory pathways were altered as anticipated, we found the most robust response to mitogenic concentrations of EGF was induction of matrix metalloprotease cascades, highlighting the importance of the EGFR system as a regulator of the extracellular environment. These results demonstrate the value of integrating multiple levels of biological information to more accurately reconstruct networks of cellular response.

  7. Network analysis of epidermal growth factor signaling using integrated genomic, proteomic and phosphorylation data.

    Directory of Open Access Journals (Sweden)

    Katrina M Waters

    Full Text Available To understand how integration of multiple data types can help decipher cellular responses at the systems level, we analyzed the mitogenic response of human mammary epithelial cells to epidermal growth factor (EGF using whole genome microarrays, mass spectrometry-based proteomics and large-scale western blots with over 1000 antibodies. A time course analysis revealed significant differences in the expression of 3172 genes and 596 proteins, including protein phosphorylation changes measured by western blot. Integration of these disparate data types showed that each contributed qualitatively different components to the observed cell response to EGF and that varying degrees of concordance in gene expression and protein abundance measurements could be linked to specific biological processes. Networks inferred from individual data types were relatively limited, whereas networks derived from the integrated data recapitulated the known major cellular responses to EGF and exhibited more highly connected signaling nodes than networks derived from any individual dataset. While cell cycle regulatory pathways were altered as anticipated, we found the most robust response to mitogenic concentrations of EGF was induction of matrix metalloprotease cascades, highlighting the importance of the EGFR system as a regulator of the extracellular environment. These results demonstrate the value of integrating multiple levels of biological information to more accurately reconstruct networks of cellular response.

  8. Semantic Mining based on graph theory and ontologies. Case Study: Cell Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Carlos R. Rangel

    2016-08-01

    Full Text Available In this paper we use concepts from graph theory and cellular biology represented as ontologies, to carry out semantic mining tasks on signaling pathway networks. Specifically, the paper describes the semantic enrichment of signaling pathway networks. A cell signaling network describes the basic cellular activities and their interactions. The main contribution of this paper is in the signaling pathway research area, it proposes a new technique to analyze and understand how changes in these networks may affect the transmission and flow of information, which produce diseases such as cancer and diabetes. Our approach is based on three concepts from graph theory (modularity, clustering and centrality frequently used on social networks analysis. Our approach consists into two phases: the first uses the graph theory concepts to determine the cellular groups in the network, which we will call them communities; the second uses ontologies for the semantic enrichment of the cellular communities. The measures used from the graph theory allow us to determine the set of cells that are close (for example, in a disease, and the main cells in each community. We analyze our approach in two cases: TGF-ß and the Alzheimer Disease.

  9. Dynamic Bayesian Network Modeling of the Interplay between EGFR and Hedgehog Signaling.

    Science.gov (United States)

    Fröhlich, Holger; Bahamondez, Gloria; Götschel, Frank; Korf, Ulrike

    2015-01-01

    Aberrant activation of sonic Hegdehog (SHH) signaling has been found to disrupt cellular differentiation in many human cancers and to increase proliferation. The SHH pathway is known to cross-talk with EGFR dependent signaling. Recent studies experimentally addressed this interplay in Daoy cells, which are presumable a model system for medulloblastoma, a highly malignant brain tumor that predominately occurs in children. Currently ongoing are several clinical trials for different solid cancers, which are designed to validate the clinical benefits of targeting the SHH in combination with other pathways. This has motivated us to investigate interactions between EGFR and SHH dependent signaling in greater depth. To our knowledge, there is no mathematical model describing the interplay between EGFR and SHH dependent signaling in medulloblastoma so far. Here we come up with a fully probabilistic approach using Dynamic Bayesian Networks (DBNs). To build our model, we made use of literature based knowledge describing SHH and EGFR signaling and integrated gene expression (Illumina) and cellular location dependent time series protein expression data (Reverse Phase Protein Arrays). We validated our model by sub-sampling training data and making Bayesian predictions on the left out test data. Our predictions focusing on key transcription factors and p70S6K, showed a high level of concordance with experimental data. Furthermore, the stability of our model was tested by a parametric bootstrap approach. Stable network features were in agreement with published data. Altogether we believe that our model improved our understanding of the interplay between two highly oncogenic signaling pathways in Daoy cells. This may open new perspectives for the future therapy of Hedghog/EGF-dependent solid tumors. PMID:26571415

  10. Dynamic Bayesian Network Modeling of the Interplay between EGFR and Hedgehog Signaling.

    Directory of Open Access Journals (Sweden)

    Holger Fröhlich

    Full Text Available Aberrant activation of sonic Hegdehog (SHH signaling has been found to disrupt cellular differentiation in many human cancers and to increase proliferation. The SHH pathway is known to cross-talk with EGFR dependent signaling. Recent studies experimentally addressed this interplay in Daoy cells, which are presumable a model system for medulloblastoma, a highly malignant brain tumor that predominately occurs in children. Currently ongoing are several clinical trials for different solid cancers, which are designed to validate the clinical benefits of targeting the SHH in combination with other pathways. This has motivated us to investigate interactions between EGFR and SHH dependent signaling in greater depth. To our knowledge, there is no mathematical model describing the interplay between EGFR and SHH dependent signaling in medulloblastoma so far. Here we come up with a fully probabilistic approach using Dynamic Bayesian Networks (DBNs. To build our model, we made use of literature based knowledge describing SHH and EGFR signaling and integrated gene expression (Illumina and cellular location dependent time series protein expression data (Reverse Phase Protein Arrays. We validated our model by sub-sampling training data and making Bayesian predictions on the left out test data. Our predictions focusing on key transcription factors and p70S6K, showed a high level of concordance with experimental data. Furthermore, the stability of our model was tested by a parametric bootstrap approach. Stable network features were in agreement with published data. Altogether we believe that our model improved our understanding of the interplay between two highly oncogenic signaling pathways in Daoy cells. This may open new perspectives for the future therapy of Hedghog/EGF-dependent solid tumors.

  11. Image informatics for studying signal transduction in cells interacting with 3D matrices

    Science.gov (United States)

    Tzeranis, Dimitrios S.; Guo, Jin; Chen, Chengpin; Yannas, Ioannis V.; Wei, Xunbin; So, Peter T. C.

    2014-03-01

    Cells sense and respond to chemical stimuli on their environment via signal transduction pathways, complex networks of proteins whose interactions transmit chemical information. This work describes an implementation of image informatics, imaging-based methodologies for studying signal transduction networks. The methodology developed focuses on studying signal transduction networks in cells that interact with 3D matrices. It utilizes shRNA-based knock down of network components, 3D high-content imaging of cells inside the matrix by spectral multi-photon microscopy, and single-cell quantification using features that describe both cell morphology and cell-matrix adhesion pattern. The methodology is applied in a pilot study of TGFβ signaling via the SMAD pathway in fibroblasts cultured inside porous collagen-GAG scaffolds, biomaterials similar to the ones used clinically to induce skin regeneration. Preliminary results suggest that knocking down all rSMAD components affects fibroblast response to TGFβ1 and TGFβ3 isoforms in different ways, and suggest a potential role for SMAD1 and SMAD5 in regulating TGFβ isoform response. These preliminary results need to be verified with proteomic results that can provide solid evidence about the particular role of individual components of the SMAD pathway.

  12. Signal integration by chloroplast phosphorylation networks: An update

    Directory of Open Access Journals (Sweden)

    Anna eSchoenberg

    2012-11-01

    Full Text Available Forty years after the initial discovery of light-dependent protein phosphorylation at the thylakoid membrane system, we are now beginning to understand the roles of chloroplast phosphorylation networks in their function to decode and mediate information on the metabolic status of the organelle to long-term adaptations in plastid and nuclear gene expression. With the help of genetics and functional genomics tools, chloroplast kinases and several hundred phosphoproteins were identified that now await detailed functional characterization. The regulation and the target protein spectrum of some kinases are understood, but this information is fragmentary with respect to kinase and target protein crosstalk in a changing environment. In this review we will highlight the most recent advances in the field and discuss approaches that might lead to a comprehensive understanding of plastid signal integration by protein phosphorylation.

  13. Oscillations and temporal signalling in cells.

    Science.gov (United States)

    Tiana, G; Krishna, S; Pigolotti, S; Jensen, M H; Sneppen, K

    2007-06-01

    The development of new techniques to quantitatively measure gene expression in cells has shed light on a number of systems that display oscillations in protein concentration. Here we review the different mechanisms which can produce oscillations in gene expression or protein concentration using a framework of simple mathematical models. We focus on three eukaryotic genetic regulatory networks which show 'ultradian' oscillations, with a time period of the order of hours, and involve, respectively, proteins important for development (Hes1), apoptosis (p53) and immune response (NF-kappaB). We argue that underlying all three is a common design consisting of a negative feedback loop with time delay which is responsible for the oscillatory behaviour. PMID:17664651

  14. In-vitro exposure of neuronal networks to the GSM-1800 signal.

    Science.gov (United States)

    Moretti, Daniela; Garenne, André; Haro, Emmanuelle; Poulletier de Gannes, Florence; Lagroye, Isabelle; Lévêque, Philippe; Veyret, Bernard; Lewis, Noëlle

    2013-12-01

    The central nervous system is the most likely target of mobile telephony radiofrequency (RF) field exposure in terms of biological effects. Several electroencephalography (EEG) studies have reported variations in the alpha-band power spectrum during and/or after RF exposure, in resting EEG and during sleep. In this context, the observation of the spontaneous electrical activity of neuronal networks under RF exposure can be an efficient tool to detect the occurrence of low-level RF effects on the nervous system. Our research group has developed a dedicated experimental setup in the GHz range for the simultaneous exposure of neuronal networks and monitoring of electrical activity. A transverse electromagnetic (TEM) cell was used to expose the neuronal networks to GSM-1800 signals at a SAR level of 3.2 W/kg. Recording of the neuronal electrical activity and detection of the extracellular spikes and bursts under exposure were performed using microelectrode arrays (MEAs). This work provides the proof of feasibility and preliminary results of the integrated investigation regarding exposure setup, culture of the neuronal network, recording of the electrical activity, and analysis of the signals obtained under RF exposure. In this pilot study on 16 cultures, there was a 30% reversible decrease in firing rate (FR) and bursting rate (BR) during a 3 min exposure to RF. Additional experiments are needed to further characterize this effect.

  15. Network coding based joint signaling and dynamic bandwidth allocation scheme for inter optical network unit communication in passive optical networks

    Science.gov (United States)

    Wei, Pei; Gu, Rentao; Ji, Yuefeng

    2014-06-01

    As an innovative and promising technology, network coding has been introduced to passive optical networks (PON) in recent years to support inter optical network unit (ONU) communication, yet the signaling process and dynamic bandwidth allocation (DBA) in PON with network coding (NC-PON) still need further study. Thus, we propose a joint signaling and DBA scheme for efficiently supporting differentiated services of inter ONU communication in NC-PON. In the proposed joint scheme, the signaling process lays the foundation to fulfill network coding in PON, and it can not only avoid the potential threat to downstream security in previous schemes but also be suitable for the proposed hybrid dynamic bandwidth allocation (HDBA) scheme. In HDBA, a DBA cycle is divided into two sub-cycles for applying different coding, scheduling and bandwidth allocation strategies to differentiated classes of services. Besides, as network traffic load varies, the entire upstream transmission window for all REPORT messages slides accordingly, leaving the transmission time of one or two sub-cycles to overlap with the bandwidth allocation calculation time at the optical line terminal (the OLT), so that the upstream idle time can be efficiently eliminated. Performance evaluation results validate that compared with the existing two DBA algorithms deployed in NC-PON, HDBA demonstrates the best quality of service (QoS) support in terms of delay for all classes of services, especially guarantees the end-to-end delay bound of high class services. Specifically, HDBA can eliminate queuing delay and scheduling delay of high class services, reduce those of lower class services by at least 20%, and reduce the average end-to-end delay of all services over 50%. Moreover, HDBA also achieves the maximum delay fairness between coded and uncoded lower class services, and medium delay fairness for high class services.

  16. Oncogenic KRAS Regulates Tumor Cell Signaling via Stromal Reciprocation.

    Science.gov (United States)

    Tape, Christopher J; Ling, Stephanie; Dimitriadi, Maria; McMahon, Kelly M; Worboys, Jonathan D; Leong, Hui Sun; Norrie, Ida C; Miller, Crispin J; Poulogiannis, George; Lauffenburger, Douglas A; Jørgensen, Claus

    2016-05-01

    Oncogenic mutations regulate signaling within both tumor cells and adjacent stromal cells. Here, we show that oncogenic KRAS (KRAS(G12D)) also regulates tumor cell signaling via stromal cells. By combining cell-specific proteome labeling with multivariate phosphoproteomics, we analyzed heterocellular KRAS(G12D) signaling in pancreatic ductal adenocarcinoma (PDA) cells. Tumor cell KRAS(G12D) engages heterotypic fibroblasts, which subsequently instigate reciprocal signaling in the tumor cells. Reciprocal signaling employs additional kinases and doubles the number of regulated signaling nodes from cell-autonomous KRAS(G12D). Consequently, reciprocal KRAS(G12D) produces a tumor cell phosphoproteome and total proteome that is distinct from cell-autonomous KRAS(G12D) alone. Reciprocal signaling regulates tumor cell proliferation and apoptosis and increases mitochondrial capacity via an IGF1R/AXL-AKT axis. These results demonstrate that oncogene signaling should be viewed as a heterocellular process and that our existing cell-autonomous perspective underrepresents the extent of oncogene signaling in cancer. VIDEO ABSTRACT. PMID:27087446

  17. Role of inositol phospholipid signaling in natural killer cell biology

    OpenAIRE

    Gumbleton, Matthew; Kerr, William G.

    2013-01-01

    Natural killer (NK) cells are important for host defense against malignancy and infection. At a cellular level NK cells are activated when signals from activating receptors exceed signaling from inhibitory receptors. At a molecular level NK cells undergo an education process to both prevent autoimmunity and acquire lytic capacity. Mouse models have shown important roles for inositol phospholipid signaling in lymphocytes. NK cells from mice with deletion in different members of the inositol ph...

  18. Sunitinib activates Axl signaling in renal cell cancer.

    Science.gov (United States)

    van der Mijn, Johannes C; Broxterman, Henk J; Knol, Jaco C; Piersma, Sander R; De Haas, Richard R; Dekker, Henk; Pham, Thang V; Van Beusechem, Victor W; Halmos, Balazs; Mier, James W; Jiménez, Connie R; Verheul, Henk M W

    2016-06-15

    Mass spectrometry-based phosphoproteomics provides a unique unbiased approach to evaluate signaling network in cancer cells. The tyrosine kinase inhibitor sunitinib is registered as treatment for patients with renal cell cancer (RCC). We investigated the effect of sunitinib on tyrosine phosphorylation in RCC tumor cells to get more insight in its mechanism of action and thereby to find potential leads for combination treatment strategies. Sunitinib inhibitory concentrations of proliferation (IC50) of 786-O, 769-p and A498 RCC cells were determined by MTT-assays. Global tyrosine phosphorylation was measured by LC-MS/MS after immunoprecipitation with the antiphosphotyrosine antibody p-TYR-100. Phosphoproteomic profiling of 786-O cells yielded 1519 phosphopeptides, corresponding to 675 unique proteins including 57 different phosphorylated protein kinases. Compared to control, incubation with sunitinib at its IC50 of 2 µM resulted in downregulation of 86 phosphopeptides including CDK5, DYRK3, DYRK4, G6PD, PKM and LDH-A, while 94 phosphopeptides including Axl, FAK, EPHA2 and p38α were upregulated. Axl- (y702), FAK- (y576) and p38α (y182) upregulation was confirmed by Western Blot in 786-O and A498 cells. Subsequent proliferation assays revealed that inhibition of Axl with a small molecule inhibitor (R428) sensitized 786-O RCC cells and immortalized endothelial cells to sunitinib up to 3 fold. In conclusion, incubation with sunitinib of RCC cells causes significant upregulation of multiple phosphopeptides including Axl. Simultaneous inhibition of Axl improves the antitumor activity of sunitinib. We envision that evaluation of phosphoproteomic changes by TKI treatment enables identification of new targets for combination treatment strategies. PMID:26815723

  19. Construction of a computable cell proliferation network focused on non-diseased lung cells

    Directory of Open Access Journals (Sweden)

    Veljkovic Emilija

    2011-07-01

    Full Text Available Abstract Background Critical to advancing the systems-level evaluation of complex biological processes is the development of comprehensive networks and computational methods to apply to the analysis of systems biology data (transcriptomics, proteomics/phosphoproteomics, metabolomics, etc.. Ideally, these networks will be specifically designed to capture the normal, non-diseased biology of the tissue or cell types under investigation, and can be used with experimentally generated systems biology data to assess the biological impact of perturbations like xenobiotics and other cellular stresses. Lung cell proliferation is a key biological process to capture in such a network model, given the pivotal role that proliferation plays in lung diseases including cancer, chronic obstructive pulmonary disease (COPD, and fibrosis. Unfortunately, no such network has been available prior to this work. Results To further a systems-level assessment of the biological impact of perturbations on non-diseased mammalian lung cells, we constructed a lung-focused network for cell proliferation. The network encompasses diverse biological areas that lead to the regulation of normal lung cell proliferation (Cell Cycle, Growth Factors, Cell Interaction, Intra- and Extracellular Signaling, and Epigenetics, and contains a total of 848 nodes (biological entities and 1597 edges (relationships between biological entities. The network was verified using four published gene expression profiling data sets associated with measured cell proliferation endpoints in lung and lung-related cell types. Predicted changes in the activity of core machinery involved in cell cycle regulation (RB1, CDKN1A, and MYC/MYCN are statistically supported across multiple data sets, underscoring the general applicability of this approach for a network-wide biological impact assessment using systems biology data. Conclusions To the best of our knowledge, this lung-focused Cell Proliferation Network

  20. Asymmetric PI3K Signaling Driving Developmental and Regenerative Cell Fate Bifurcation

    Directory of Open Access Journals (Sweden)

    Wen-Hsuan W. Lin

    2015-12-01

    Full Text Available Metazoan sibling cells often diverge in activity and identity, suggesting links between growth signals and cell fate. We show that unequal transduction of nutrient-sensitive PI3K/AKT/mTOR signaling during cell division bifurcates transcriptional networks and fates of kindred cells. A sibling B lymphocyte with stronger signaling, indexed by FoxO1 inactivation and IRF4 induction, undergoes PI3K-driven Pax5 repression and plasma cell determination, while its sibling with weaker PI3K activity renews a memory or germinal center B cell fate. PI3K-driven effector T cell determination silences TCF1 in one sibling cell, while its PI3K-attenuated sibling self-renews in tandem. Prior to bifurcations achieving irreversible plasma or effector cell fate determination, asymmetric signaling during initial divisions specifies a more proliferative, differentiation-prone lymphocyte in tandem with a more quiescent memory cell sibling. By triggering cell division but transmitting unequal intensity between sibling cells, nutrient-sensitive signaling may be a frequent arbiter of cell fate bifurcations during development and repair.

  1. Integrative Network Analysis of Signaling in Human CD34+ Hematopoietic Progenitor Cells by Global Phosphoproteomic Profiling Using TiO2 Enrichment Combined with 2D LC-MS/MS and Pathway Mapping

    OpenAIRE

    Guo, Hongbo; Isserlin, Ruth; Chen, Xiaoji; Wang, Weijia; Phanse, Sadhna; Zandstra, Peter W.; Bader, Gary; Paddison, Patrick; Emili, Andrew

    2013-01-01

    Protein kinase signaling regulates human hematopoietic stem/progenitor cell (HSPC) fate, yet little is known about critical pathway substrates. To address this, we have developed and applied a large-scale, empirically-optimized phosphopeptide affinity enrichment strategy with high-throughput 2D LC-MS/MS screening to evaluate the phosphoproteome of an isolated human CD34+ HSPC population. We first used hydrophilic interaction chromatography (HILIC) as a first dimension separation to separate a...

  2. Application of computational approaches to study signalling networks of nuclear and Tyrosine kinase receptors

    Directory of Open Access Journals (Sweden)

    Rebaï Ahmed

    2010-10-01

    Full Text Available Abstract Background Nuclear receptors (NRs and Receptor tyrosine kinases (RTKs are essential proteins in many cellular processes and sequence variations in their genes have been reported to be involved in many diseases including cancer. Although crosstalk between RTK and NR signalling and their contribution to the development of endocrine regulated cancers have been areas of intense investigation, the direct coupling of their signalling pathways remains elusive. In our understanding of the role and function of nuclear receptors on the cell membrane the interactions between nuclear receptors and tyrosine kinase receptors deserve further attention. Results We constructed a human signalling network containing nuclear receptors and tyrosine kinase receptors that identified a network topology involving eleven highly connected hubs. We further developed an integrated knowledge database, denominated NR-RTK database dedicated to human RTKs and NRs and their vertebrate orthologs and their interactions. These interactions were inferred using computational tools and those supported by literature evidence are indicated. NR-RTK database contains links to other relevant resources and includes data on receptor ligands. It aims to provide a comprehensive interaction map that identifies complex dynamics and potential crosstalk involved. Availability: NR-RTK database is accessible at http://www.bioinfo-cbs.org/NR-RTK/ Conclusions We infer that the NR-RTK interaction network is scale-free topology. We also uncovered the key receptors mediating the signal transduction between these two types of receptors. Furthermore, NR-RTK database is expected to be useful for researchers working on various aspects of the molecular basis of signal transduction by RTKs and NRs. Reviewers This article was reviewed by Professor Paul Harrison (nominated by Dr. Mark Gerstein, Dr. Arcady Mushegian and Dr. Anthony Almudevar.

  3. Integrative Signaling Networks of Membrane Guanylate Cyclases: Biochemistry and Physiology

    Science.gov (United States)

    Sharma, Rameshwar K.; Duda, Teresa; Makino, Clint L.

    2016-01-01

    This monograph presents a historical perspective of cornerstone developments on the biochemistry and physiology of mammalian membrane guanylate cyclases (MGCs), highlighting contributions made by the authors and their collaborators. Upon resolution of early contentious studies, cyclic GMP emerged alongside cyclic AMP, as an important intracellular second messenger for hormonal signaling. However, the two signaling pathways differ in significant ways. In the cyclic AMP pathway, hormone binding to a G protein coupled receptor leads to stimulation or inhibition of an adenylate cyclase, whereas the cyclic GMP pathway dispenses with intermediaries; hormone binds to an MGC to affect its activity. Although the cyclic GMP pathway is direct, it is by no means simple. The modular design of the molecule incorporates regulation by ATP binding and phosphorylation. MGCs can form complexes with Ca2+-sensing subunits that either increase or decrease cyclic GMP synthesis, depending on subunit identity. In some systems, co-expression of two Ca2+ sensors, GCAP1 and S100B with ROS-GC1 confers bimodal signaling marked by increases in cyclic GMP synthesis when intracellular Ca2+ concentration rises or falls. Some MGCs monitor or are modulated by carbon dioxide via its conversion to bicarbonate. One MGC even functions as a thermosensor as well as a chemosensor; activity reaches a maximum with a mild drop in temperature. The complexity afforded by these multiple limbs of operation enables MGC networks to perform transductions traditionally reserved for G protein coupled receptors and Transient Receptor Potential (TRP) ion channels and to serve a diverse array of functions, including control over cardiac vasculature, smooth muscle relaxation, blood pressure regulation, cellular growth, sensory transductions, neural plasticity and memory.

  4. Cell–cell signaling drives the evolution of complex traits: introduction—lung evo-devo

    OpenAIRE

    Torday, John S.; Rehan, V.K.

    2009-01-01

    Physiology integrates biology with the environment through cell–cell interactions at multiple levels. The evolution of the respiratory system has been “deconvoluted” (Torday and Rehan in Am J Respir Cell Mol Biol 31:8–12, 2004) through Gene Regulatory Networks (GRNs) applied to cell–cell communication for all aspects of lung biology development, homeostasis, regeneration, and aging. Using this approach, we have predicted the phenotypic consequences of failed signaling for lung development, ho...

  5. Genome-Wide Analysis of the TORC1 and Osmotic Stress Signaling Network in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Jeremy Worley

    2016-02-01

    Full Text Available The Target of Rapamycin kinase Complex I (TORC1 is a master regulator of cell growth and metabolism in eukaryotes. Studies in yeast and human cells have shown that nitrogen/amino acid starvation signals act through Npr2/Npr3 and the small GTPases Gtr1/Gtr2 (Rags in humans to inhibit TORC1. However, it is unclear how other stress and starvation stimuli inhibit TORC1, and/or act in parallel with the TORC1 pathway, to control cell growth. To help answer these questions, we developed a novel automated pipeline and used it to measure the expression of a TORC1-dependent ribosome biogenesis gene (NSR1 during osmotic stress in 4700 Saccharomyces cerevisiae strains from the yeast knock-out collection. This led to the identification of 440 strains with significant and reproducible defects in NSR1 repression. The cell growth control and stress response proteins deleted in these strains form a highly connected network, including 56 proteins involved in vesicle trafficking and vacuolar function; 53 proteins that act downstream of TORC1 according to a rapamycin assay—including components of the HDAC Rpd3L, Elongator, and the INO80, CAF-1 and SWI/SNF chromatin remodeling complexes; over 100 proteins involved in signaling and metabolism; and 17 proteins that directly interact with TORC1. These data provide an important resource for labs studying cell growth control and stress signaling, and demonstrate the utility of our new, and easily adaptable, method for mapping gene regulatory networks.

  6. Epigenetic disruption of cell signaling in nasopharyngeal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Li-Li Li; Xing-Sheng Shu; Zhao-Hui Wang; Ya Cao; Qian Tao

    2011-01-01

    Nasopharyngeal carcinoma (NPC) is a malignancy with remarkable ethnic and geographic distribution in southern China and Southeast Asia. Alternative to genetic changes, aberrant epigenetic events disrupt multiple genes involved in cell signaling pathways through DNA methylation of promoter CpG islands and/ or histone modifications. These epigenetic alterations grant cell growth advantage and contribute to the initiation and progression of NPC. In this review, we summariye the epigenetic deregulation of cell signaling in NPC tumorigenesis and highlight the importance of identifying epigenetic cell signaling regulators in NPC research. Developing pharmacologic strategies to reverse the epigenetic-silencing of cell signaling regulators might thus be useful to NPC prevention and therapy.

  7. Integration of Signaling Pathways with the Epigenetic Machinery in the Maintenance of Stem Cells

    Directory of Open Access Journals (Sweden)

    Luca Fagnocchi

    2016-01-01

    Full Text Available Stem cells balance their self-renewal and differentiation potential by integrating environmental signals with the transcriptional regulatory network. The maintenance of cell identity and/or cell lineage commitment relies on the interplay of multiple factors including signaling pathways, transcription factors, and the epigenetic machinery. These regulatory modules are strongly interconnected and they influence the pattern of gene expression of stem cells, thus guiding their cellular fate. Embryonic stem cells (ESCs represent an invaluable tool to study this interplay, being able to indefinitely self-renew and to differentiate towards all three embryonic germ layers in response to developmental cues. In this review, we highlight those mechanisms of signaling to chromatin, which regulate chromatin modifying enzymes, histone modifications, and nucleosome occupancy. In addition, we report the molecular mechanisms through which signaling pathways affect both the epigenetic and the transcriptional state of ESCs, thereby influencing their cell identity. We propose that the dynamic nature of oscillating signaling and the different regulatory network topologies through which those signals are encoded determine specific gene expression programs, leading to the fluctuation of ESCs among multiple pluripotent states or to the establishment of the necessary conditions to exit pluripotency.

  8. Gene network homology in prokaryotes using a similarity search approach: queries of quorum sensing signal transduction.

    Directory of Open Access Journals (Sweden)

    David N Quan

    Full Text Available Bacterial cell-cell communication is mediated by small signaling molecules known as autoinducers. Importantly, autoinducer-2 (AI-2 is synthesized via the enzyme LuxS in over 80 species, some of which mediate their pathogenicity by recognizing and transducing this signal in a cell density dependent manner. AI-2 mediated phenotypes are not well understood however, as the means for signal transduction appears varied among species, while AI-2 synthesis processes appear conserved. Approaches to reveal the recognition pathways of AI-2 will shed light on pathogenicity as we believe recognition of the signal is likely as important, if not more, than the signal synthesis. LMNAST (Local Modular Network Alignment Similarity Tool uses a local similarity search heuristic to study gene order, generating homology hits for the genomic arrangement of a query gene sequence. We develop and apply this tool for the E. coli lac and LuxS regulated (Lsr systems. Lsr is of great interest as it mediates AI-2 uptake and processing. Both test searches generated results that were subsequently analyzed through a number of different lenses, each with its own level of granularity, from a binary phylogenetic representation down to trackback plots that preserve genomic organizational information. Through a survey of these results, we demonstrate the identification of orthologs, paralogs, hitchhiking genes, gene loss, gene rearrangement within an operon context, and also horizontal gene transfer (HGT. We found a variety of operon structures that are consistent with our hypothesis that the signal can be perceived and transduced by homologous protein complexes, while their regulation may be key to defining subsequent phenotypic behavior.

  9. Method for analyzing signaling networks in complex cellular systems.

    Science.gov (United States)

    Plavec, Ivan; Sirenko, Oksana; Privat, Sylvie; Wang, Yuker; Dajee, Maya; Melrose, Jennifer; Nakao, Brian; Hytopoulos, Evangelos; Berg, Ellen L; Butcher, Eugene C

    2004-02-01

    Now that the human genome has been sequenced, the challenge of assigning function to human genes has become acute. Existing approaches using microarrays or proteomics frequently generate very large volumes of data not directly related to biological function, making interpretation difficult. Here, we describe a technique for integrative systems biology in which: (i) primary cells are cultured under biologically meaningful conditions; (ii) a limited number of biologically meaningful readouts are measured; and (iii) the results obtained under several different conditions are combined for analysis. Studies of human endothelial cells overexpressing different signaling molecules under multiple inflammatory conditions show that this system can capture a remarkable range of functions by a relatively small number of simple measurements. In particular, measurement of seven different protein levels by ELISA under four different conditions is capable of reconstructing pathway associations of 25 different proteins representing four known signaling pathways, implicating additional participants in the NF-kappaBorRAS/mitogen-activated protein kinase pathways and defining additional interactions between these pathways. PMID:14745015

  10. GLYCINE AND GLYCINE RECEPTOR SIGNALING IN IMMUNE CELLS

    OpenAIRE

    Van den Eynden, Jimmy

    2010-01-01

    The central nervous system (CNS) is an integration center for signal processing, receiving signals from the different sensory systems and transmitting signals to the motor system. The main cells conducting signals are neurons, and for the largest part of the 20th century most attention of neuroscientist was focused on neurons. A role of glial cells, for a long time considered as passive connective tissue elements, in normal physiology and pathophysiology is now becoming increasingly appreciat...

  11. Temporal modulation of collective cell behavior controls vascular network topology.

    Science.gov (United States)

    Kur, Esther; Kim, Jiha; Tata, Aleksandra; Comin, Cesar H; Harrington, Kyle I; Costa, Luciano da F; Bentley, Katie; Gu, Chenghua

    2016-01-01

    Vascular network density determines the amount of oxygen and nutrients delivered to host tissues, but how the vast diversity of densities is generated is unknown. Reiterations of endothelial-tip-cell selection, sprout extension and anastomosis are the basis for vascular network generation, a process governed by the VEGF/Notch feedback loop. Here, we find that temporal regulation of this feedback loop, a previously unexplored dimension, is the key mechanism to determine vascular density. Iterating between computational modeling and in vivo live imaging, we demonstrate that the rate of tip-cell selection determines the length of linear sprout extension at the expense of branching, dictating network density. We provide the first example of a host tissue-derived signal (Semaphorin3E-Plexin-D1) that accelerates tip cell selection rate, yielding a dense network. We propose that temporal regulation of this critical, iterative aspect of network formation could be a general mechanism, and additional temporal regulators may exist to sculpt vascular topology.

  12. Wnt signaling in adult intestinal stem cells and cancer

    OpenAIRE

    Krausová, M. (Michaela); Kořínek, V. (Vladimír)

    2014-01-01

    Signaling initiated by secreted glycoproteins of the Wnt family regulates many aspects of embryonic development and it is involved in homeostasis of adult tissues. In the gastrointestinal (GI) tract the Wnt pathway maintains the self-renewal capacity of epithelial stem cells. The stem cell attributes are conferred by mutual interactions of the stem cell with its local microenvironment, the stem cell niche. The niche ensures that the threshold of Wnt signaling in the stem cell is kept in physi...

  13. Dissection of the cis-2-decenoic acid signaling network in Pseudomonas aeruginosa using microarray technique

    Directory of Open Access Journals (Sweden)

    Azadeh eRahmani-Badi

    2015-04-01

    Full Text Available Many bacterial pathogens use quorum-sensing (QS signaling to regulate the expression of factors contributing to virulence and persistence. Bacteria produce signals of different chemical classes. The signal molecule, known as diffusible signal factor (DSF, is a cis-unsaturated fatty acid that was first described in the plant pathogen Xanthomonas campestris. Previous works have shown that human pathogen, Pseudomonas aeruginosa, also synthesizes a structurally related molecule, characterized as cis-2-decenoic acid (C10: Δ2, CDA that induces biofilm dispersal by multiple types of bacteria. Furthermore, CDA has been shown to be involved in inter-kingdom signaling that modulates fungal behavior. Therefore, an understanding of its signaling mechanism could suggest strategies for interference, with consequences for disease control. To identify the components of CDA signaling pathway in this pathogen, a comparative transcritpome analysis was conducted, in the presence and absence of CDA. A protein-protein interaction (PPI network for differentially expressed (DE genes with known function was then constructed by STRING and Cytoscape. In addition, the effects of CDA in combination with antimicrobial agents on the biofilm surface area and bacteria viability were evaluated using fluorescence microscopy and digital image analysis. Microarray analysis identified 666 differentially expressed genes in the presence of CDA and gene ontology (GO analysis revealed that in P. aeruginosa, CDA mediates dispersion of biofilms through signaling pathways, including enhanced motility, virulence as well as persistence at different temperatures. PPI data suggested that a cluster of five genes (PA4978, PA4979, PA4980, PA4982, PA4983 is involved in the CDA synthesis and perception. Combined treatments using both CDA and antimicrobial agents showed that following exposure of the biofilms to CDA, remaining cells on the surface were easily removed and killed by antimicrobials.

  14. SLIT/ROBO2 Signaling Promotes Mammary Stem Cell Senescence by Inhibiting Wnt Signaling

    Directory of Open Access Journals (Sweden)

    Gwyndolen Harburg

    2014-09-01

    Full Text Available WNT signaling stimulates the self-renewal of many types of adult stem cells, including mammary stem cells (MaSCs, but mechanisms that limit this activity are poorly understood. Here, we demonstrate that SLIT2 restricts stem cell renewal by signaling through ROBO2 in a subset of basal cells to negatively regulate WNT signaling. The absence of SLIT/ROBO2 signaling leads to increased levels of nuclear β-catenin. Robo2 loss does not increase the number of stem cells; instead, stem cell renewal is enhanced in the absence of SLIT/ROBO2 signaling. This is due to repressed expression of p16 INK4a, which, in turn, delays MaSC senescence. Together, our studies support a model in which SLITs restrict the expansion of MaSCs by countering the activity of WNTs and limiting self-renewal.

  15. Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Arjun Verma

    2016-07-01

    Full Text Available We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed.

  16. Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications.

    Science.gov (United States)

    Verma, Arjun; Fratto, Brian E; Privman, Vladimir; Katz, Evgeny

    2016-07-05

    We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s) as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed.

  17. Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications.

    Science.gov (United States)

    Verma, Arjun; Fratto, Brian E; Privman, Vladimir; Katz, Evgeny

    2016-01-01

    We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s) as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed. PMID:27399702

  18. Hybrid modeling of cell signaling and transcriptional reprogramming and its application in C. elegans development

    Directory of Open Access Journals (Sweden)

    Elana J Fertig

    2011-11-01

    Full Text Available Modeling of signal driven transcriptional reprogramming is critical for understanding of organism development, human disease, and cell biology. Many current modeling techniques discount key features of the biological sub-systems when modeling multi-scale, organism level processes. We present a mechanistic hybrid model, GESSA, which integrates a novel pooled probabilistic Boolean network model of cell signaling and a stochastic simulation of transcription and translation responding to a diffusion model of extra-cellular signals. We apply the model to simulate the well studied cell fate decision process of the vulval precursor cells (VPCs in C. elegans, using experimentally derived rate constants wherever possible and shared parameters to avoid overfitting. We demonstrate that GESSA recovers (1 the effects of varying scaffold protein concentration on signal strength, (2 amplification of signals in expression, (3 the relative external ligand concentration in a known geometry, and (4 feedback in biochemical networks. We demonstrate that setting model parameters based on wild-type and LIN-12 loss-of-function mutants in C. elegans leads to correct prediction of a wide variety of mutants including partial penetrance of phenotypes. Moreover, the model is relatively insensitive to parameters, retaining the wild-type phenotype for a wide range of cell signaling rate parameters.

  19. Regulation of embryonic stem cell self-renewal and differentiation by TGF-β family signaling

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Embryonic stem (ES) cells are characterized by their ability to indefinitely self-renew and potential to differentiate into all the cell lineages of the body. ES cells are considered to have potential applications in regenerative medicine. In particular, the emergence of an ES cell analogue-induced pluripotent stem (iPS) cells via somatic cell reprogramming by co-expressing a limited number of critical stemness-related transcriptional factors has solved the problem of obtaining patient-specific pluripotent cells, encouraging researchers to develop more specific and functional cell lineages from ES or iPS cells for broad therapeutic applications. ES cell fate choice is delicately controlled by a core transcriptional network, epigenetic modification profiles and complex signaling cascades both intrinsically and extrinsically. Of these signals, transforming growth factor β (TGF-β) family members, including TGF-β, bone morphogenetic protein (BMP), Activin and Nodal, have been reported to influence cell self-renewal and a broad spectrum of lineage differentiation in ES cells, in accordance with the key roles of TGF-β family signaling in early embryo development. In this review, the roles of TGF-β family signals in coordinating ES cell fate determination are summarized.

  20. Information theory and signal transduction systems: from molecular information processing to network inference.

    Science.gov (United States)

    Mc Mahon, Siobhan S; Sim, Aaron; Filippi, Sarah; Johnson, Robert; Liepe, Juliane; Smith, Dominic; Stumpf, Michael P H

    2014-11-01

    Sensing and responding to the environment are two essential functions that all biological organisms need to master for survival and successful reproduction. Developmental processes are marshalled by a diverse set of signalling and control systems, ranging from systems with simple chemical inputs and outputs to complex molecular and cellular networks with non-linear dynamics. Information theory provides a powerful and convenient framework in which such systems can be studied; but it also provides the means to reconstruct the structure and dynamics of molecular interaction networks underlying physiological and developmental processes. Here we supply a brief description of its basic concepts and introduce some useful tools for systems and developmental biologists. Along with a brief but thorough theoretical primer, we demonstrate the wide applicability and biological application-specific nuances by way of different illustrative vignettes. In particular, we focus on the characterisation of biological information processing efficiency, examining cell-fate decision making processes, gene regulatory network reconstruction, and efficient signal transduction experimental design.

  1. Robust Clustering of Acoustic Emission Signals Using Neural Networks and Signal Subspace Projections

    Directory of Open Access Journals (Sweden)

    Shi Zhiqiang

    2003-01-01

    Full Text Available Acoustic emission-based techniques are being used for the nondestructive inspection of mechanical systems. For reliable automatic fault monitoring related to the generation and propagation of cracks, it is important to identify the transient crack-related signals in the presence of strong time-varying noise and other interference. A prominent difficulty is the inability to differentiate events due to crack growth from noise of various origins. This work presents a novel algorithm for automatic clustering and separation of acoustic emission (AE events based on multiple features extracted from the experimental data. The algorithm consists of two steps. In the first step, the noise is separated from the events of interest and subsequently removed using a combination of covariance analysis, principal component analysis (PCA, and differential time delay estimates. The second step processes the remaining data using a self-organizing map (SOM neural network, which outputs the noise and AE signals into separate neurons. To improve the efficiency of classification, the short-time Fourier transform (STFT is applied to retain the time-frequency features of the remaining events, reducing the dimension of the data. The algorithm is verified with two sets of data, and a correct classification ratio over 95% is achieved.

  2. Circadian period integrates network information through activation of the BMP signaling pathway.

    Directory of Open Access Journals (Sweden)

    Esteban J Beckwith

    2013-12-01

    Full Text Available Living organisms use biological clocks to maintain their internal temporal order and anticipate daily environmental changes. In Drosophila, circadian regulation of locomotor behavior is controlled by ∼150 neurons; among them, neurons expressing the PIGMENT DISPERSING FACTOR (PDF set the period of locomotor behavior under free-running conditions. To date, it remains unclear how individual circadian clusters integrate their activity to assemble a distinctive behavioral output. Here we show that the BONE MORPHOGENETIC PROTEIN (BMP signaling pathway plays a crucial role in setting the circadian period in PDF neurons in the adult brain. Acute deregulation of BMP signaling causes period lengthening through regulation of dClock transcription, providing evidence for a novel function of this pathway in the adult brain. We propose that coherence in the circadian network arises from integration in PDF neurons of both the pace of the cell-autonomous molecular clock and information derived from circadian-relevant neurons through release of BMP ligands.

  3. 47 CFR 73.4157 - Network signals which adversely affect affiliate broadcast service.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Network signals which adversely affect affiliate broadcast service. 73.4157 Section 73.4157 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....4157 Network signals which adversely affect affiliate broadcast service. See Public Notice, FCC...

  4. Signal processing using artificial neural network for BOTDA sensor system.

    Science.gov (United States)

    Azad, Abul Kalam; Wang, Liang; Guo, Nan; Tam, Hwa-Yaw; Lu, Chao

    2016-03-21

    We experimentally demonstrate the use of artificial neural network (ANN) to process sensing signals obtained from Brillouin optical time domain analyzer (BOTDA). The distributed temperature information is extracted directly from the local Brillouin gain spectra (BGSs) along the fiber under test without the process of determination of Brillouin frequency shift (BFS) and hence conversion from BFS to temperature. Unlike our previous work for short sensing distance where ANN is trained by measured BGSs, here we employ ideal BGSs with different linewidths to train the ANN in order to take the linewidth variation due to different conditions from the training and testing phases into account, making it feasible for long distance sensing. Moreover, the performance of ANN is compared with other two techniques, Lorentzian curve fitting and cross-correlation method, and our results show that ANN has higher accuracy and larger tolerance to measurement error, especially at large frequency scanning step. We also show that the temperature extraction from BOTDA measurements employing ANN is significantly faster than the other two approaches. Hence ANN can be an excellent alternative tool to process BGSs measured by BOTDA and obtain temperature distribution along the fiber, especially when large frequency scanning step is adopted to significantly reduce the measurement time but without sacrifice of sensing accuracy. PMID:27136863

  5. Research on Characteristics of RC Polyphase Network for Quadrature Signal Generator

    Directory of Open Access Journals (Sweden)

    Hu Yi-ming

    2013-12-01

    Full Text Available The quadrature signal generator is widely used in devices such as the quadrature modulator and image rejection frequency converter. An RC polyphase network is commonly used as a quadrature signal generator because of its simple structure and perfect linear performance. This study derives explicit transfer functions for the RC polyphase network based on the complex signal properties and the matrix theory. Moreover, build-related parameters are determined to analyze the I/Q amplitude and phase balance characteristic of the RC polyphase network, thus providing a theoretical guideline for the design of a high-balance quadrature signal generator.

  6. Network dynamics for optimal compressive-sensing input-signal recovery.

    Science.gov (United States)

    Barranca, Victor J; Kovačič, Gregor; Zhou, Douglas; Cai, David

    2014-10-01

    By using compressive sensing (CS) theory, a broad class of static signals can be reconstructed through a sequence of very few measurements in the framework of a linear system. For networks with nonlinear and time-evolving dynamics, is it similarly possible to recover an unknown input signal from only a small number of network output measurements? We address this question for pulse-coupled networks and investigate the network dynamics necessary for successful input signal recovery. Determining the specific network characteristics that correspond to a minimal input reconstruction error, we are able to achieve high-quality signal reconstructions with few measurements of network output. Using various measures to characterize dynamical properties of network output, we determine that networks with highly variable and aperiodic output can successfully encode network input information with high fidelity and achieve the most accurate CS input reconstructions. For time-varying inputs, we also find that high-quality reconstructions are achievable by measuring network output over a relatively short time window. Even when network inputs change with time, the same optimal choice of network characteristics and corresponding dynamics apply as in the case of static inputs.

  7. The yeast Sks1p kinase signaling network regulates pseudohyphal growth and glucose response.

    Directory of Open Access Journals (Sweden)

    Cole Johnson

    2014-03-01

    Full Text Available The yeast Saccharomyces cerevisiae undergoes a dramatic growth transition from its unicellular form to a filamentous state, marked by the formation of pseudohyphal filaments of elongated and connected cells. Yeast pseudohyphal growth is regulated by signaling pathways responsive to reductions in the availability of nitrogen and glucose, but the molecular link between pseudohyphal filamentation and glucose signaling is not fully understood. Here, we identify the glucose-responsive Sks1p kinase as a signaling protein required for pseudohyphal growth induced by nitrogen limitation and coupled nitrogen/glucose limitation. To identify the Sks1p signaling network, we applied mass spectrometry-based quantitative phosphoproteomics, profiling over 900 phosphosites for phosphorylation changes dependent upon Sks1p kinase activity. From this analysis, we report a set of novel phosphorylation sites and highlight Sks1p-dependent phosphorylation in Bud6p, Itr1p, Lrg1p, Npr3p, and Pda1p. In particular, we analyzed the Y309 and S313 phosphosites in the pyruvate dehydrogenase subunit Pda1p; these residues are required for pseudohyphal growth, and Y309A mutants exhibit phenotypes indicative of impaired aerobic respiration and decreased mitochondrial number. Epistasis studies place SKS1 downstream of the G-protein coupled receptor GPR1 and the G-protein RAS2 but upstream of or at the level of cAMP-dependent PKA. The pseudohyphal growth and glucose signaling transcription factors Flo8p, Mss11p, and Rgt1p are required to achieve wild-type SKS1 transcript levels. SKS1 is conserved, and deletion of the SKS1 ortholog SHA3 in the pathogenic fungus Candida albicans results in abnormal colony morphology. Collectively, these results identify Sks1p as an important regulator of filamentation and glucose signaling, with additional relevance towards understanding stress-responsive signaling in C. albicans.

  8. The Brassinosteroid Signaling Pathway—New Key Players and Interconnections with Other Signaling Networks Crucial for Plant Development and Stress Tolerance

    Directory of Open Access Journals (Sweden)

    Damian Gruszka

    2013-04-01

    Full Text Available Brassinosteroids (BRs are a class of steroid hormones regulating a wide range of physiological processes during the plant life cycle from seed development to the modulation of flowering and senescence. The last decades, and recent years in particular, have witnessed a significant advance in the elucidation of the molecular mechanisms of BR signaling from perception by the transmembrane receptor complex to the regulation of transcription factors influencing expression of the target genes. Application of the new approaches shed light on the molecular functions of the key players regulating the BR signaling cascade and allowed identification of new factors. Recent studies clearly indicated that some of the components of BR signaling pathway act as multifunctional proteins involved in other signaling networks regulating diverse physiological processes, such as photomorphogenesis, cell death control, stomatal development, flowering, plant immunity to pathogens and metabolic responses to stress conditions, including salinity. Regulation of some of these processes is mediated through a crosstalk between BR signalosome and the signaling cascades of other hormones, including auxin, abscisic acid, ethylene and salicylic acid. Unravelling the complicated mechanisms of BR signaling and its interconnections with other molecular networks may be of great importance for future practical applications in agriculture.

  9. The brassinosteroid signaling pathway-new key players and interconnections with other signaling networks crucial for plant development and stress tolerance.

    Science.gov (United States)

    Gruszka, Damian

    2013-01-01

    Brassinosteroids (BRs) are a class of steroid hormones regulating a wide range of physiological processes during the plant life cycle from seed development to the modulation of flowering and senescence. The last decades, and recent years in particular, have witnessed a significant advance in the elucidation of the molecular mechanisms of BR signaling from perception by the transmembrane receptor complex to the regulation of transcription factors influencing expression of the target genes. Application of the new approaches shed light on the molecular functions of the key players regulating the BR signaling cascade and allowed identification of new factors. Recent studies clearly indicated that some of the components of BR signaling pathway act as multifunctional proteins involved in other signaling networks regulating diverse physiological processes, such as photomorphogenesis, cell death control, stomatal development, flowering, plant immunity to pathogens and metabolic responses to stress conditions, including salinity. Regulation of some of these processes is mediated through a crosstalk between BR signalosome and the signaling cascades of other hormones, including auxin, abscisic acid, ethylene and salicylic acid. Unravelling the complicated mechanisms of BR signaling and its interconnections with other molecular networks may be of great importance for future practical applications in agriculture. PMID:23615468

  10. Cytokine signaling in the differentiation of innate effector cells

    OpenAIRE

    Huang, Hua; Li, Yapeng; Qi, Xiaopeng

    2013-01-01

    Innate effector cells, including innate effector cells of myeloid and lymphoid lineages, are crucial components of various types of immune responses. Bone marrow progenitors differentiate into many subsets of innate effector cells after receiving instructional signals often provided by cytokines. Signal transducer and activator of transcription (STATs) have been shown to be essential in the differentiation of various types of innate effector cells. In this review, we focus specifically on the...

  11. Encoding network states by striatal cell assemblies.

    Science.gov (United States)

    Carrillo-Reid, Luis; Tecuapetla, Fatuel; Tapia, Dagoberto; Hernández-Cruz, Arturo; Galarraga, Elvira; Drucker-Colin, René; Bargas, José

    2008-03-01

    Correlated activity in cortico-basal ganglia circuits plays a key role in the encoding of movement, associative learning and procedural memory. How correlated activity is assembled by striatal microcircuits is not understood. Calcium imaging of striatal neuronal populations, with single-cell resolution, reveals sporadic and asynchronous activity under control conditions. However, N-methyl-d-aspartate (NMDA) application induces bistability and correlated activity in striatal neurons. Widespread neurons within the field of observation present burst firing. Sets of neurons exhibit episodes of recurrent and synchronized bursting. Dimensionality reduction of network dynamics reveals functional states defined by cell assemblies that alternate their activity and display spatiotemporal pattern generation. Recurrent synchronous activity travels from one cell assembly to the other often returning to the original assembly; suggesting a robust structure. An initial search into the factors that sustain correlated activity of neuronal assemblies showed a critical dependence on both intrinsic and synaptic mechanisms: blockage of fast glutamatergic transmission annihilates all correlated firing, whereas blockage of GABAergic transmission locked the network into a single dominant state that eliminates assembly diversity. Reduction of L-type Ca(2+)-current restrains synchronization. Each cell assembly comprised different cells, but a small set of neurons was shared by different assemblies. A great proportion of the shared neurons was local interneurons with pacemaking properties. The network dynamics set into action by NMDA in the striatal network may reveal important properties of striatal microcircuits under normal and pathological conditions. PMID:18184883

  12. Research on Characteristics of RC Polyphase Network for Quadrature Signal Generator

    OpenAIRE

    Hu Yi-ming; Yu Guo-wen; Zhang Yuan-fa

    2013-01-01

    The quadrature signal generator is widely used in devices such as the quadrature modulator and image rejection frequency converter. An RC polyphase network is commonly used as a quadrature signal generator because of its simple structure and perfect linear performance. This study derives explicit transfer functions for the RC polyphase network based on the complex signal properties and the matrix theory. Moreover, build-related parameters are determined to analyze the I/Q amplitude and phase ...

  13. Excellence in cell signaling research recognized with major new award.

    Science.gov (United States)

    Feller, Stephan M

    2013-01-01

    The newly installed Life Sciences Breakthrough Prize (http://www.breakthroughprizeinlifesciences.org/), which comes with more than double the financial reward of the Nobel Prize, has been awarded to several world-leaders in the field of cancer-related cell signaling and therapy research: Lewis C. Cantley (PI3 kinase), Hans Clevers (Wnt signaling), Charles L. Sawyers (signaling-targeted cancer therapy), Bert Vogelstein (colorectal cancer signaling) and Robert Weinberg (Ras & other cancer-relevant genes). They have all made remarkable contributions to our understanding of cell communication and malignancies over the last decades. Needless to say that virtually all other awardees of the 11 scientists honored in 2013 have also, in one way or another, touched upon signaling molecules, highlighting the fundamental interdisciplinarity and significance of signal transduction for living cells in general. For example, Shinya Yamanaka's exciting work was built on the four transcriptional signaling proteins, Oct3/4, Sox2, Klf4 and c-Myc. PMID:23497077

  14. Activation of cell signaling via optical manipulation of gold-coated liposomes encapsulating signaling molecules

    Science.gov (United States)

    Orsinger, Gabriel V.; Leung, Sarah J.; Romanowski, Marek

    2013-02-01

    Many diseases involve changes in cell signaling cascades, as seen commonly in drug resistant cancers. To better understand these intricate signaling events in diseased cells and tissues, experimental methods of probing cellular communication at a single to multi-cell level are required. We recently introduced a general platform for activation of selected signaling pathways by optically controlled delivery and release of water soluble factors using gold-coated liposomes. In the example presented here, we encapsulated inositol trisphosphate (IP3), a ubiquitous intracellular secondary messenger involved in GPCR and Akt signaling cascades, within 100 nm gold-coated liposomes. The high polarizability of the liposome's unique gold pseudo-shell allows stable optical trapping for subcellular manipulation in the presence of cells. We take this optical manipulation further by optically injecting IP3-containing liposomes into the cytosol of a single cell to initiate localized cell signaling. Upon optical injection of liposomal IP3 into a single ovarian carcinoma cell, we observed localized activation as reported by changes in Indo-1 fluorescence intensity. With established gap junctions between the injected cell and neighboring cells, we monitored propagation of this signaling to and through nearby cells.

  15. The alterations in biochemical signaling of hippocampal network activity in the autism brain The alterations in biochemical signaling of hippocampal network activity in the autism brain The alterations in biochemical signaling of hippocampal network activity in the autism brain

    Institute of Scientific and Technical Information of China (English)

    田允; 黄继云; 王锐; 陶蓉蓉; 卢应梅; 廖美华; 陆楠楠; 李静; 芦博; 韩峰

    2012-01-01

    Autism is a highly heritable neurodevelopmental condition characterized by impaired social interaction and communication. However, the role of synaptic dysfunction during development of autism remains unclear. In the present study, we address the alterations of biochemical signaling in hippocampal network following induction of the autism in experimental animals. Here, the an- imal disease model and DNA array being used to investigate the differences in transcriptome or- ganization between autistic and normal brain by gene co--expression network analysis.

  16. Calcium signals and calcium channels in osteoblastic cells

    Science.gov (United States)

    Duncan, R. L.; Akanbi, K. A.; Farach-Carson, M. C.

    1998-01-01

    Calcium (Ca2+) channels are present in non-excitable as well as in excitable cells. In bone cells of the osteoblast lineage, Ca2+ channels play fundamental roles in cellular responses to external stimuli including both mechanical forces and hormonal signals. They are also proposed to modulate paracrine signaling between bone-forming osteoblasts and bone-resorbing osteoclasts at local sites of bone remodeling. Calcium signals are characterized by transient increases in intracellular Ca2+ levels that are associated with activation of intracellular signaling pathways that control cell behavior and phenotype, including patterns of gene expression. Development of Ca2+ signals is a tightly regulated cellular process that involves the concerted actions of plasma membrane and intracellular Ca2+ channels, along with Ca2+ pumps and exchangers. This review summarizes the current state of knowledge concerning the structure, function, and role of Ca2+ channels and Ca2+ signals in bone cells, focusing on the osteoblast.

  17. Simultaneous multichannel signal transfers via chaos in a recurrent neural network.

    Science.gov (United States)

    Soma, Ken-ichiro; Mori, Ryota; Sato, Ryuichi; Furumai, Noriyuki; Nara, Shigetoshi

    2015-05-01

    We propose neural network model that demonstrates the phenomenon of signal transfer between separated neuron groups via other chaotic neurons that show no apparent correlations with the input signal. The model is a recurrent neural network in which it is supposed that synchronous behavior between small groups of input and output neurons has been learned as fragments of high-dimensional memory patterns, and depletion of neural connections results in chaotic wandering dynamics. Computer experiments show that when a strong oscillatory signal is applied to an input group in the chaotic regime, the signal is successfully transferred to the corresponding output group, although no correlation is observed between the input signal and the intermediary neurons. Signal transfer is also observed when multiple signals are applied simultaneously to separate input groups belonging to different memory attractors. In this sense simultaneous multichannel communications are realized, and the chaotic neural dynamics acts as a signal transfer medium in which the signal appears to be hidden.

  18. Diffusion wave and signal transduction in biological live cells

    CERN Document Server

    Fan, Tian You

    2012-01-01

    Transduction of mechanical stimuli into biochemical signals is a fundamental subject for cell physics. In the experiments of FRET signal in cells a wave propagation in nanoscope was observed. We here develop a diffusion wave concept and try to give an explanation to the experimental observation. The theoretical prediction is in good agreement to result of the experiment.

  19. An Approach to High-Order Cumulants Used to Detect Multifrequency Signals in Telephone Networks

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In accordance with the detecting process of multi-frequency signals between the offices in telephone networks, and in contrast with the autocorrelation method used to handle the multi-frequency signals, a fast,inexpensive and unbiased of cumulants estimation method is adopted in detecting signals. This detecting method is better for resisting noise performance and more practical than the autocorrelation method.

  20. Deep sequencing and in silico analyses identify MYB-regulated gene networks and signaling pathways in pancreatic cancer.

    Science.gov (United States)

    Azim, Shafquat; Zubair, Haseeb; Srivastava, Sanjeev K; Bhardwaj, Arun; Zubair, Asif; Ahmad, Aamir; Singh, Seema; Khushman, Moh'd; Singh, Ajay P

    2016-06-29

    We have recently demonstrated that the transcription factor MYB can modulate several cancer-associated phenotypes in pancreatic cancer. In order to understand the molecular basis of these MYB-associated changes, we conducted deep-sequencing of transcriptome of MYB-overexpressing and -silenced pancreatic cancer cells, followed by in silico pathway analysis. We identified significant modulation of 774 genes upon MYB-silencing (p networks by in silico analysis. Further analyses placed genes in our RNA sequencing-generated dataset to several canonical signalling pathways, such as cell-cycle control, DNA-damage and -repair responses, p53 and HIF1α. Importantly, we observed downregulation of the pancreatic adenocarcinoma signaling pathway in MYB-silenced pancreatic cancer cells exhibiting suppression of EGFR and NF-κB. Decreased expression of EGFR and RELA was validated by both qPCR and immunoblotting and they were both shown to be under direct transcriptional control of MYB. These observations were further confirmed in a converse approach wherein MYB was overexpressed ectopically in a MYB-null pancreatic cancer cell line. Our findings thus suggest that MYB potentially regulates growth and genomic stability of pancreatic cancer cells via targeting complex gene networks and signaling pathways. Further in-depth functional studies are warranted to fully understand MYB signaling in pancreatic cancer.

  1. Low-dose radiation affects cardiac physiology: gene networks and molecular signaling in cardiomyocytes.

    Science.gov (United States)

    Coleman, Matthew A; Sasi, Sharath P; Onufrak, Jillian; Natarajan, Mohan; Manickam, Krishnan; Schwab, John; Muralidharan, Sujatha; Peterson, Leif E; Alekseyev, Yuriy O; Yan, Xinhua; Goukassian, David A

    2015-12-01

    There are 160,000 cancer patients worldwide treated with particle radiotherapy (RT). With the advent of proton, and high (H) charge (Z) and energy (E) HZE ionizing particle RT, the cardiovascular diseases risk estimates are uncertain. In addition, future deep space exploratory-type missions will expose humans to unknown but low doses of particle irradiation (IR). We examined molecular responses using transcriptome profiling in left ventricular murine cardiomyocytes isolated from mice that were exposed to 90 cGy, 1 GeV proton ((1)H) and 15 cGy, 1 GeV/nucleon iron ((56)Fe) over 28 days after exposure. Unsupervised clustering analysis of gene expression segregated samples according to the IR response and time after exposure, with (56)Fe-IR showing the greatest level of gene modulation. (1)H-IR showed little differential transcript modulation. Network analysis categorized the major differentially expressed genes into cell cycle, oxidative responses, and transcriptional regulation functional groups. Transcriptional networks identified key nodes regulating expression. Validation of the signal transduction network by protein analysis and gel shift assay showed that particle IR clearly regulates a long-lived signaling mechanism for ERK1/2, p38 MAPK signaling and identified NFATc4, GATA4, STAT3, and NF-κB as regulators of the response at specific time points. These data suggest that the molecular responses and gene expression to (56)Fe-IR in cardiomyocytes are unique and long-lasting. Our study may have significant implications for the efforts of National Aeronautics and Space Administration to develop heart disease risk estimates for astronauts and for patients receiving conventional and particle RT via identification of specific HZE-IR molecular markers. PMID:26408534

  2. NMU signaling promotes endometrial cancer cell progression by modulating adhesion signaling.

    Science.gov (United States)

    Lin, Ting-Yu; Wu, Fang-Ju; Chang, Chia-Lin; Li, Zhongyou; Luo, Ching-Wei

    2016-03-01

    Neuromedin U (NMU) was originally named based on its strong uterine contractile activity, but little is known regarding its signaling/functions in utero. We identified that NMU and one of its receptors, NMUR2, are not only present in normal uterine endometrium but also co-expressed in endometrial cancer tissues, where the NMU level is correlated with the malignant grades and survival of patients. Cell-based assays further confirmed that NMU signaling can promote cell motility and proliferation of endometrial cancer cells derived from grade II tumors. Activation of NMU pathway in these endometrial cancer cells is required in order to sustain expression of various adhesion molecules, such as CD44 and integrin alpha1, as well as production of their corresponding extracellular matrix ligands, hyaluronan and collagen IV; it also increased the activity of SRC and its downstream proteins RHOA and RAC1. Thus, it is concluded that NMU pathway positively controls the adhesion signaling-SRC-Rho GTPase axis in the tested endometrial cancer cells and that changes in cell motility and proliferation can occur when there is manipulation of NMU signaling in these cells either in vitro or in vivo. Intriguingly, this novel mechanism also explains how NMU signaling promotes the EGFR-driven and TGFβ receptor-driven mesenchymal transitions. Through the above axis, NMU signaling not only can promote malignancy of the tested endometrial cancer cells directly, but also helps these cells to become more sensitive to niche growth factors in their microenvironment. PMID:26849234

  3. G-protein coupled receptor signaling architecture of mammalian immune cells.

    Directory of Open Access Journals (Sweden)

    Natalia Polouliakh

    Full Text Available A series of recent studies on large-scale networks of signaling and metabolic systems revealed that a certain network structure often called "bow-tie network" are observed. In signaling systems, bow-tie network takes a form with diverse and redundant inputs and outputs connected via a small numbers of core molecules. While arguments have been made that such network architecture enhances robustness and evolvability of biological systems, its functional role at a cellular level remains obscure. A hypothesis was proposed that such a network function as a stimuli-reaction classifier where dynamics of core molecules dictate downstream transcriptional activities, hence physiological responses against stimuli. In this study, we examined whether such hypothesis can be verified using experimental data from Alliance for Cellular Signaling (AfCS that comprehensively measured GPCR related ligands response for B-cell and macrophage. In a GPCR signaling system, cAMP and Ca2+ act as core molecules. Stimuli-response for 32 ligands to B-Cells and 23 ligands to macrophages has been measured. We found that ligands with correlated changes of cAMP and Ca2+ tend to cluster closely together within the hyperspaces of both cell types and they induced genes involved in the same cellular processes. It was found that ligands inducing cAMP synthesis activate genes involved in cell growth and proliferation; cAMP and Ca2+ molecules that increased together form a feedback loop and induce immune cells to migrate and adhere together. In contrast, ligands without a core molecules response are scattered throughout the hyperspace and do not share clusters. G-protein coupling receptors together with immune response specific receptors were found in cAMP and Ca2+ activated clusters. Analyses have been done on the original software applicable for discovering 'bow-tie' network architectures within the complex network of intracellular signaling where ab initio clustering has been

  4. Analysis of Intracellular Calcium Signaling in Human Embryonic Stem Cells.

    Science.gov (United States)

    Péntek, Adrienn; Pászty, Katalin; Apáti, Ágota

    2016-01-01

    Measurement of changes in intracellular calcium concentration is one of the most common and useful tools for studying signal transduction pathways or cellular responses in basic research and drug screening purposes as well. Increasing number of such applications using human pluripotent stem cells and their derivatives requires development of calcium signal measurements for this special cell type. Here we describe a modified protocol for analysis of calcium signaling events in human embryonic stem cells, which can be used for other pluripotent cell types (such as iPSC) or their differentiated offspring as well.

  5. Stochastic effects as a force to increase the complexity of signaling networks

    KAUST Repository

    Kuwahara, Hiroyuki

    2013-07-29

    Cellular signaling networks are complex and appear to include many nonfunctional elements. Recently, it was suggested that nonfunctional interactions of proteins cause signaling noise, which, perhaps, shapes the signal transduction mechanism. However, the conditions under which molecular noise influences cellular information processing remain unclear. Here, we explore a large number of simple biological models of varying network sizes to understand the architectural conditions under which the interactions of signaling proteins can exhibit specific stochastic effects - called deviant effects - in which the average behavior of a biological system is substantially altered in the presence of molecular noise. We find that a small fraction of these networks does exhibit deviant effects and shares a common architectural feature whereas most of the networks show only insignificant levels of deviations. Interestingly, addition of seemingly unimportant interactions into protein networks gives rise to deviant effects.

  6. Discovery of intramolecular signal transduction network based on a new protein dynamics model of energy dissipation.

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Ma

    Full Text Available A novel approach to reveal intramolecular signal transduction network is proposed in this work. To this end, a new algorithm of network construction is developed, which is based on a new protein dynamics model of energy dissipation. A key feature of this approach is that direction information is specified after inferring protein residue-residue interaction network involved in the process of signal transduction. This enables fundamental analysis of the regulation hierarchy and identification of regulation hubs of the signaling network. A well-studied allosteric enzyme, E. coli aspartokinase III, is used as a model system to demonstrate the new method. Comparison with experimental results shows that the new approach is able to predict all the sites that have been experimentally proved to desensitize allosteric regulation of the enzyme. In addition, the signal transduction network shows a clear preference for specific structural regions, secondary structural types and residue conservation. Occurrence of super-hubs in the network indicates that allosteric regulation tends to gather residues with high connection ability to collectively facilitate the signaling process. Furthermore, a new parameter of propagation coefficient is defined to determine the propagation capability of residues within a signal transduction network. In conclusion, the new approach is useful for fundamental understanding of the process of intramolecular signal transduction and thus has significant impact on rational design of novel allosteric proteins.

  7. Impulse-Induced Optimum Signal Amplification in Scale-Free Networks

    CERN Document Server

    Martínez, Pedro J

    2015-01-01

    Optimizing information transmission across a network is an essential task for controlling and manipulating generic information-processing systems. Here, we show how topological amplification effects in scale-free networks of signaling devices are optimally enhanced when the $\\it{impulse}$ transmitted by periodic external signals (time integral over two consecutive zeros) is maximum. This is demonstrated theoretically by means of a star-like network of overdamped bistable systems subjected to $\\it{generic}$ zero-mean periodic signals, and confirmed numerically by simulations of scale-free networks of such systems. Our results show that the enhancer effect of increasing values of the signal's impulse is due to a correlative increase of the energy transmitted by the periodic signals, while it is found to be resonant-like with respect to the topology-induced amplification mechanism.

  8. Atlas of Cancer Signalling Network: a systems biology resource for integrative analysis of cancer data with Google Maps.

    Science.gov (United States)

    Kuperstein, I; Bonnet, E; Nguyen, H-A; Cohen, D; Viara, E; Grieco, L; Fourquet, S; Calzone, L; Russo, C; Kondratova, M; Dutreix, M; Barillot, E; Zinovyev, A

    2015-01-01

    Cancerogenesis is driven by mutations leading to aberrant functioning of a complex network of molecular interactions and simultaneously affecting multiple cellular functions. Therefore, the successful application of bioinformatics and systems biology methods for analysis of high-throughput data in cancer research heavily depends on availability of global and detailed reconstructions of signalling networks amenable for computational analysis. We present here the Atlas of Cancer Signalling Network (ACSN), an interactive and comprehensive map of molecular mechanisms implicated in cancer. The resource includes tools for map navigation, visualization and analysis of molecular data in the context of signalling network maps. Constructing and updating ACSN involves careful manual curation of molecular biology literature and participation of experts in the corresponding fields. The cancer-oriented content of ACSN is completely original and covers major mechanisms involved in cancer progression, including DNA repair, cell survival, apoptosis, cell cycle, EMT and cell motility. Cell signalling mechanisms are depicted in detail, together creating a seamless 'geographic-like' map of molecular interactions frequently deregulated in cancer. The map is browsable using NaviCell web interface using the Google Maps engine and semantic zooming principle. The associated web-blog provides a forum for commenting and curating the ACSN content. ACSN allows uploading heterogeneous omics data from users on top of the maps for visualization and performing functional analyses. We suggest several scenarios for ACSN application in cancer research, particularly for visualizing high-throughput data, starting from small interfering RNA-based screening results or mutation frequencies to innovative ways of exploring transcriptomes and phosphoproteomes. Integration and analysis of these data in the context of ACSN may help interpret their biological significance and formulate mechanistic hypotheses

  9. Matrix-dependent adhesion mediates network responses to physiological stimulation of the osteocyte cell process.

    Science.gov (United States)

    Wu, Danielle; Schaffler, Mitchell B; Weinbaum, Sheldon; Spray, David C

    2013-07-16

    Osteocytes are bone cells that form cellular networks that sense mechanical loads distributed throughout the bone tissue. Interstitial fluid flow in the lacunar canalicular system produces focal strains at localized attachment sites around the osteocyte cell process. These regions of periodic attachment between the osteocyte cell membrane and its canalicular wall are sites where pN-level fluid-flow induced forces are generated in vivo. In this study, we show that focally applied forces of this magnitude using a newly developed Stokesian fluid stimulus probe initiate rapid and transient intercellular electrical signals in vitro. Our experiments demonstrate both direct gap junction coupling and extracellular purinergic P2 receptor signaling between MLO-Y4 cells in a connected bone cell network. Intercellular signaling was initiated by pN-level forces applied at integrin attachment sites along both appositional and distal unapposed cell processes, but not initiated at their cell bodies with equivalent forces. Electrical coupling was evident in 58% of all cell pairs tested with appositional connections; coupling strength increased with the increasing number of junctional connections. Apyrase, a nucleotide-degrading enzyme, suppressed and abolished force-induced effector responses, indicating a contribution from ATP released by the stimulated cell. This work extends the understanding of how osteocytes modulate their microenvironment in response to mechanical signals and highlights mechanisms of intercellular relay of mechanoresponsive signals in the bone network. PMID:23818616

  10. Spectrin-based skeleton as an actor in cell signaling.

    Science.gov (United States)

    Machnicka, B; Grochowalska, R; Bogusławska, D M; Sikorski, A F; Lecomte, M C

    2012-01-01

    This review focuses on the recent advances in functions of spectrins in non-erythroid cells. We discuss new data concerning the commonly known role of the spectrin-based skeleton in control of membrane organization, stability and shape, and tethering protein mosaics to the cellular motors and to all major filament systems. Particular effort has been undertaken to highlight recent advances linking spectrin to cell signaling phenomena and its participation in signal transduction pathways in many cell types.

  11. Digital Signal Processing and Control for the Study of Gene Networks.

    Science.gov (United States)

    Shin, Yong-Jun

    2016-04-22

    Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.

  12. Resolving dynamics of cell signaling via real-time imaging of the immunological synapse.

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Mark A.; Pfeiffer, Janet R. (University of New Mexico, Albuquerque, NM); Wilson, Bridget S. (University of New Mexico, Albuquerque, NM); Timlin, Jerilyn Ann; Thomas, James L. (University of New Mexico, Albuquerque, NM); Lidke, Keith A. (University of New Mexico, Albuquerque, NM); Spendier, Kathrin (University of New Mexico, Albuquerque, NM); Oliver, Janet M. (University of New Mexico, Albuquerque, NM); Carroll-Portillo, Amanda (University of New Mexico, Albuquerque, NM); Aaron, Jesse S.; Mirijanian, Dina T.; Carson, Bryan D.; Burns, Alan Richard; Rebeil, Roberto

    2009-10-01

    This highly interdisciplinary team has developed dual-color, total internal reflection microscopy (TIRF-M) methods that enable us to optically detect and track in real time protein migration and clustering at membrane interfaces. By coupling TIRF-M with advanced analysis techniques (image correlation spectroscopy, single particle tracking) we have captured subtle changes in membrane organization that characterize immune responses. We have used this approach to elucidate the initial stages of cell activation in the IgE signaling network of mast cells and the Toll-like receptor (TLR-4) response in macrophages stimulated by bacteria. To help interpret these measurements, we have undertaken a computational modeling effort to connect the protein motion and lipid interactions. This work provides a deeper understanding of the initial stages of cellular response to external agents, including dynamics of interaction of key components in the signaling network at the 'immunological synapse,' the contact region of the cell and its adversary.

  13. Adipocyte activation of cancer stem cell signaling in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Benjamin; Wolfson; Gabriel; Eades; Qun; Zhou

    2015-01-01

    Signaling within the tumor microenvironment has a critical role in cancer initiation and progression. Adipocytes, one of the major components of the breast microenvironment,have been shown to provide pro-tumorigenic signals that promote cancer cell proliferation and invasiveness in vitro and tumorigenicity in vivo. Adipocyte secreted factors such as leptin and interleukin-6(IL-6) have a paracrine effect on breast cancer cells. In adipocyte-adjacent breast cancer cells, the leptin and IL-6 signaling pathways activate janus kinase 2/signal transducer and activatorof transcription 5, promoting the epithelial-mesenchymal transition, and upregulating stemness regulators such as Notch, Wnt and the Sex determining region Y-box 2/octamer binding transcription factor 4/Nanog signaling axis. In this review we will summarize the major signaling pathways that regulate cancer stem cells in breast cancer and describe the effects that adipocyte secreted IL-6 and leptin have on breast cancer stem cell signaling. Finally we will introduce a new potential treatment paradigm of inhibiting the adipocyte-breast cancer cell signaling via targeting the IL-6 or leptin pathways.

  14. ECG Signals Classification Based on Wavelet Transform and Probabilistic Neural Networks

    OpenAIRE

    Iman Moazen; Mohamadreza Ahmadzadeh

    2009-01-01

    In this paper a very intelligent tool with low computational complexity is presented for Electroencephalogram (ECG) signal classification. The proposed classifier is based on Discrete Wavelet Transform (DWT) and Probabilistic Neural Network (PNN). The novelty of this approach is that signal statistics, morphological analysis and DWT of the histogram of signal (density estimation) altogether have been used to achieve a higher recognition rate. ECG signals and their density estimation are decom...

  15. Endothelial-mural cell signaling in vascular development and angiogenesis.

    Science.gov (United States)

    Gaengel, Konstantin; Genové, Guillem; Armulik, Annika; Betsholtz, Christer

    2009-05-01

    Mural cells are essential components of blood vessels and are necessary for normal development, homeostasis, and organ function. Alterations in mural cell density or the stable attachment of mural cells to the endothelium is associated with several human diseases such as diabetic retinopathy, venous malformation, and hereditary stroke. In addition mural cells are implicated in regulating tumor growth and have thus been suggested as potential antiangiogenic targets in tumor therapy. In recent years our knowledge of mural cell function and endothelial-mural cell signaling has increased dramatically, and we now begin to understand the mechanistic basis of the key signaling pathways involved. This is mainly thanks to sophisticated in vivo experiments using a broad repertoire of genetic technologies. In this review, we summarize the five currently best understood signaling pathways implicated in mural cell biology. We discuss PDGFB/PDGFRbeta- dependent pericyte recruitment, as well as the role of angiopoietins and Tie receptors in vascular maturation. In addition, we highlight the effects of sphingosine-1-phosphate signaling on adherens junction assembly and vascular stability, as well as the role of TGF-beta-signaling in mural cell differentiation. We further reflect recent data suggesting an important function for Notch3 signaling in mural cell maturation.

  16. Elimination of spiral waves and spatiotemporal chaos by the synchronization transmission technology of network signals

    Institute of Scientific and Technical Information of China (English)

    Zhang Qing-Ling; Lu Ling; Zhang Yi

    2011-01-01

    A method to eliminate spiral waves and spatiotemporal chaos by using the synchronization transmission technology of network signals is proposed in this paper. The character of the spiral waves and the spatiotemporal chaos in the Fitzhugh-Nagumo model is presented. The network error evolution equation with spatiotemporal variables and the corresponding eigenvalue equation are determined based on the stability theory,and the global synchronization condition is obtained. Simulations are made in a complex network with Fitzhugh-Nagumo models as the nodes to verify the effectiveness of the synchronization transmission principle of the network signal.

  17. A Stochastic Geometry Framework for LOS/NLOS Propagation in Dense Small Cell Networks

    DEFF Research Database (Denmark)

    Galiotto, Carlo; Kiilerich Pratas, Nuno; Marchetti, Nicola;

    2015-01-01

    -loss model is taken into account. We first propose a stochastic geometry based framework for small cell networks where the signal propagation accounts for both the Line-of-Sight (LOS) and Non-Line-Of-Sight (NLOS) components, such as the model provided by the 3GPP for evaluation of pico-cells in Heterogeneous...

  18. Dissecting Germ Cell Metabolism through Network Modeling.

    Directory of Open Access Journals (Sweden)

    Leanne S Whitmore

    Full Text Available Metabolic pathways are increasingly postulated to be vital in programming cell fate, including stemness, differentiation, proliferation, and apoptosis. The commitment to meiosis is a critical fate decision for mammalian germ cells, and requires a metabolic derivative of vitamin A, retinoic acid (RA. Recent evidence showed that a pulse of RA is generated in the testis of male mice thereby triggering meiotic commitment. However, enzymes and reactions that regulate this RA pulse have yet to be identified. We developed a mouse germ cell-specific metabolic network with a curated vitamin A pathway. Using this network, we implemented flux balance analysis throughout the initial wave of spermatogenesis to elucidate important reactions and enzymes for the generation and degradation of RA. Our results indicate that primary RA sources in the germ cell include RA import from the extracellular region, release of RA from binding proteins, and metabolism of retinal to RA. Further, in silico knockouts of genes and reactions in the vitamin A pathway predict that deletion of Lipe, hormone-sensitive lipase, disrupts the RA pulse thereby causing spermatogenic defects. Examination of other metabolic pathways reveals that the citric acid cycle is the most active pathway. In addition, we discover that fatty acid synthesis/oxidation are the primary energy sources in the germ cell. In summary, this study predicts enzymes, reactions, and pathways important for germ cell commitment to meiosis. These findings enhance our understanding of the metabolic control of germ cell differentiation and will help guide future experiments to improve reproductive health.

  19. DMPD: The interferon signaling network and transcription factor C/EBP-beta. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18163952 The interferon signaling network and transcription factor C/EBP-beta. Li H... The interferon signaling network and transcription factor C/EBP-beta. PubmedID 18163952 Title The interfero...n signaling network and transcription factor C/EBP-beta. Authors Li H, Gade P, Xi

  20. Synaptic signal streams generated by ex vivo neuronal networks contain non-random, complex patterns.

    Science.gov (United States)

    Lee, Sangmook; Zemianek, Jill M; Shultz, Abraham; Vo, Anh; Maron, Ben Y; Therrien, Mikaela; Courtright, Christina; Guaraldi, Mary; Yanco, Holly A; Shea, Thomas B

    2014-11-01

    Cultured embryonic neurons develop functional networks that transmit synaptic signals over multiple sequentially connected neurons as revealed by multi-electrode arrays (MEAs) embedded within the culture dish. Signal streams of ex vivo networks contain spikes and bursts of varying amplitude and duration. Despite the random interactions inherent in dissociated cultures, neurons are capable of establishing functional ex vivo networks that transmit signals among synaptically connected neurons, undergo developmental maturation, and respond to exogenous stimulation by alterations in signal patterns. These characteristics indicate that a considerable degree of organization is an inherent property of neurons. We demonstrate herein that (1) certain signal types occur more frequently than others, (2) the predominant signal types change during and following maturation, (3) signal predominance is dependent upon inhibitory activity, and (4) certain signals preferentially follow others in a non-reciprocal manner. These findings indicate that the elaboration of complex signal streams comprised of a non-random distribution of signal patterns is an emergent property of ex vivo neuronal networks.

  1. Iterative Learning Control Approach for Signaling Split in Urban Traffic Networks with Macroscopic Fundamental Diagrams

    Directory of Open Access Journals (Sweden)

    Fei Yan

    2015-01-01

    Full Text Available Recent analysis of field experiments in cities revealed that a macroscopic fundamental diagram (MFD relating network outflow and network vehicle accumulation exists in the urban traffic networks. It has been further confirmed that an MFD is well defined if the network has regular network topology and homogeneous spatial distribution of vehicle accumulation. However, many real urban networks have different levels of heterogeneity in the spatial distribution of vehicle accumulation. In order to improve the mobility in heterogeneously congested networks, we propose an iterative learning control approach for signaling split, which aims at distributing the accumulation in the networks as homogeneously as possible and ensuring the networks have a larger outflow. The asymptotic convergence of the proposed approach is proved by rigorous analysis and the effectiveness is further demonstrated by extensive simulations.

  2. Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control.

    Science.gov (United States)

    Clevers, Hans; Loh, Kyle M; Nusse, Roel

    2014-10-01

    Stem cells fuel tissue development, renewal, and regeneration, and these activities are controlled by the local stem cell microenvironment, the "niche." Wnt signals emanating from the niche can act as self-renewal factors for stem cells in multiple mammalian tissues. Wnt proteins are lipid-modified, which constrains them to act as short-range cellular signals. The locality of Wnt signaling dictates that stem cells exiting the Wnt signaling domain differentiate, spatially delimiting the niche in certain tissues. In some instances, stem cells may act as or generate their own niche, enabling the self-organization of patterned tissues. In this Review, we discuss the various ways by which Wnt operates in stem cell control and, in doing so, identify an integral program for tissue renewal and regeneration.

  3. Speech Subvocal Signal Processing using Packet Wavelet and Neuronal Network

    OpenAIRE

    Luis E. Mendoza; Jesus Peña; Luis A. Muñoz-Bedoya; Hernando J. Velandia-Villamizar

    2013-01-01

    This paper presents the results obtained from the recording, processing and classification of words in the Spanish language by means of the analysis of subvocal speech signals. The processed database has six words (forward, backward, right, left, start and stop). In this work, the signals were sensed with surface electrodes placed on the surface of the throat and acquired with a sampling frequency of 50 kHz. The signal conditioning consisted in: the location of area of interest using energy a...

  4. Microtubule networks for plant cell division.

    Science.gov (United States)

    de Keijzer, Jeroen; Mulder, Bela M; Janson, Marcel E

    2014-09-01

    During cytokinesis the cytoplasm of a cell is divided to form two daughter cells. In animal cells, the existing plasma membrane is first constricted and then abscised to generate two individual plasma membranes. Plant cells on the other hand divide by forming an interior dividing wall, the so-called cell plate, which is constructed by localized deposition of membrane and cell wall material. Construction starts in the centre of the cell at the locus of the mitotic spindle and continues radially towards the existing plasma membrane. Finally the membrane of the cell plate and plasma membrane fuse to form two individual plasma membranes. Two microtubule-based cytoskeletal networks, the phragmoplast and the pre-prophase band (PPB), jointly control cytokinesis in plants. The bipolar microtubule array of the phragmoplast regulates cell plate deposition towards a cortical position that is templated by the ring-shaped microtubule array of the PPB. In contrast to most animal cells, plants do not use centrosomes as foci of microtubule growth initiation. Instead, plant microtubule networks are striking examples of self-organizing systems that emerge from physically constrained interactions of dispersed microtubules. Here we will discuss how microtubule-based activities including growth, shrinkage, severing, sliding, nucleation and bundling interrelate to jointly generate the required ordered structures. Evidence mounts that adapter proteins sense the local geometry of microtubules to locally modulate the activity of proteins involved in microtubule growth regulation and severing. Many of the proteins and mechanisms involved have roles in other microtubule assemblies as well, bestowing broader relevance to insights gained from plants. PMID:25136380

  5. Elucidation of tonic and activated B-cell receptor signaling in Burkitt's lymphoma provides insights into regulation of cell survival.

    Science.gov (United States)

    Corso, Jasmin; Pan, Kuan-Ting; Walter, Roland; Doebele, Carmen; Mohr, Sebastian; Bohnenberger, Hanibal; Ströbel, Philipp; Lenz, Christof; Slabicki, Mikolaj; Hüllein, Jennifer; Comoglio, Federico; Rieger, Michael A; Zenz, Thorsten; Wienands, Jürgen; Engelke, Michael; Serve, Hubert; Urlaub, Henning; Oellerich, Thomas

    2016-05-17

    Burkitt's lymphoma (BL) is a highly proliferative B-cell neoplasm and is treated with intensive chemotherapy that, because of its toxicity, is often not suitable for the elderly or for patients with endemic BL in developing countries. BL cell survival relies on signals transduced by B-cell antigen receptors (BCRs). However, tonic as well as activated BCR signaling networks and their relevance for targeted therapies in BL remain elusive. We have systematically characterized and compared tonic and activated BCR signaling in BL by quantitative phosphoproteomics to identify novel BCR effectors and potential drug targets. We identified and quantified ∼16,000 phospho-sites in BL cells. Among these sites, 909 were related to tonic BCR signaling, whereas 984 phospho-sites were regulated upon BCR engagement. The majority of the identified BCR signaling effectors have not been described in the context of B cells or lymphomas yet. Most of these newly identified BCR effectors are predicted to be involved in the regulation of kinases, transcription, and cytoskeleton dynamics. Although tonic and activated BCR signaling shared a considerable number of effector proteins, we identified distinct phosphorylation events in tonic BCR signaling. We investigated the functional relevance of some newly identified BCR effectors and show that ACTN4 and ARFGEF2, which have been described as regulators of membrane-trafficking and cytoskeleton-related processes, respectively, are crucial for BL cell survival. Thus, this study provides a comprehensive dataset for tonic and activated BCR signaling and identifies effector proteins that may be relevant for BL cell survival and thus may help to develop new BL treatments. PMID:27155012

  6. Model-based design of self-Adapting networked signal processing systems

    NARCIS (Netherlands)

    Oliveira Filho, J.A. de; Papp, Z.; Djapic, R.; Oostveen, J.C.

    2013-01-01

    The paper describes a model based approach for architecture design of runtime reconfigurable, large-scale, networked signal processing applications. A graph based modeling formalism is introduced to describe all relevant aspects of the design (functional, concurrency, hardware, communication, energy

  7. Proceedings of the IEEE 2003 Neural Networks for Signal Processing Workshop

    DEFF Research Database (Denmark)

    Larsen, Jan

    This proceeding contains refereed papers presented at the thirteenth IEEE Workshop on Neural Networks for Signal Processing (NNSP’2003), held at the Atria-Mercure Conference Center, Toulouse, France, September 17-19, 2003. The Neural Networks for Signal Processing Technical Committee of the IEEE...... Signal Processing Society organized the workshop with sponsorship of the Signal Processing Society and the co-operation of the IEEE Neural Networks Society. The IEEE Press published the previous twelve volumes of the NNSP Workshop proceedings in a hardbound volume. This year, the bound volume...... is to be published by IEEE following the workshop, and we are pleased to inaugurate a new CDROM electronic format, which maintains the same standard as the printed version and facilitates the reading and searching of the papers. In recent years, the field of neural networks has matured considerably in both...

  8. Research on the Wire Network Signal Prediction Based on the Improved NNARX Model

    Science.gov (United States)

    Zhang, Zipeng; Fan, Tao; Wang, Shuqing

    It is difficult to obtain accurately the wire net signal of power system's high voltage power transmission lines in the process of monitoring and repairing. In order to solve this problem, the signal measured in remote substation or laboratory is employed to make multipoint prediction to gain the needed data. But, the obtained power grid frequency signal is delay. In order to solve the problem, an improved NNARX network which can predict frequency signal based on multi-point data collected by remote substation PMU is describes in this paper. As the error curved surface of the NNARX network is more complicated, this paper uses L-M algorithm to train the network. The result of the simulation shows that the NNARX network has preferable predication performance which provides accurate real time data for field testing and maintenance.

  9. Experimental Demonstration of Mixed Formats and Bit Rates Signal Allocation for Spectrum-flexible Optical Networking

    OpenAIRE

    Borkowski, Robert; Karinou, Fotini; Angelou, Marianna; Arlunno, Valeria; Zibar, Darko; Klonidis, Dimitrios; Guerrero Gonzalez, Neil; Caballero Jambrina, Antonio; Tomkos, Ioannis; Monroy, Idelfonso Tafur

    2012-01-01

    We report on an extensive experimental study for adaptive allocation of 16-QAM and QPSK signals inside spectrum flexible heterogeneous superchannel. Physical-layer performance parameters are extracted for use in resource allocation mechanisms of future flexible networks.

  10. Cell death signalling mechanisms in heart failure

    OpenAIRE

    Mughal, Wajihah; Kirshenbaum, Lorrie A.

    2011-01-01

    In 2003, cardiovascular disease was the most costly disease in Canada, and it is still on the rise. The loss of properly functioning cardiomyocytes leads to cardiac impairment, which is a consequence of heart failure. Therefore, understanding the pathways of cell death (necrosis and apoptosis) has potential implications for the development of therapeutic strategies. In addition, the role of B-cell lymphoma-2 family members is discussed and the importance of mitochondria in directing cell deat...

  11. Suprachiasmatic Nucleus: Cell Autonomy and Network Properties

    Science.gov (United States)

    Welsh, David K.; Takahashi, Joseph S.; Kay, Steve A.

    2013-01-01

    The suprachiasmatic nucleus (SCN) is the primary circadian pacemaker in mammals. Individual SCN neurons in dispersed culture can generate independent circadian oscillations of clock gene expression and neuronal firing. However, SCN rhythmicity depends on sufficient membrane depolarization and levels of intracellular calcium and cAMP. In the intact SCN, cellular oscillations are synchronized and reinforced by rhythmic synaptic input from other cells, resulting in a reproducible topographic pattern of distinct phases and amplitudes specified by SCN circuit organization. The SCN network synchronizes its component cellular oscillators, reinforces their oscillations, responds to light input by altering their phase distribution, increases their robustness to genetic perturbations, and enhances their precision. Thus, even though individual SCN neurons can be cell-autonomous circadian oscillators, neuronal network properties are integral to normal function of the SCN. PMID:20148688

  12. A pseudokinase couples signaling pathways to enable asymmetric cell division in a bacterium

    Directory of Open Access Journals (Sweden)

    W. Seth Childers

    2014-12-01

    Full Text Available Bacteria face complex decisions when initiating developmental events such as sporulation, nodulation, virulence, and asymmetric cell division. These developmental decisions require global changes in genomic readout, and bacteria typically employ intricate (yet poorly understood signaling networks that enable changes in cell function. The bacterium Caulobacter crescentus divides asymmetrically to yield two functionally distinct cells: a motile, chemotactic swarmer cell, and a sessile stalked cell with replication and division capabilities. Work from several Caulobacter labs has revealed that differentiation requires concerted regulation by several two-component system (TCS signaling pathways that are differentially positioned at the poles of the predivisional cell (Figure 1. The strict unidirectional flow from histidine kinase (HK to the response regulator (RR, observed in most studied TCS, is difficult to reconcile with the notion that information can be transmitted between two or more TCS signaling pathways. In this study, we uncovered a mechanism by which daughter cell fate, which is specified by the DivJ-DivK-PleC system and effectively encoded in the phosphorylation state of the single-domain RR DivK, is communicated to the CckA-ChpT-CtrA signaling pathway that regulates more than 100 genes for polar differentiation, replication initiation and cell division. Using structural biology and biochemical findings we proposed a mechanistic basis for TCS pathway coupling in which the DivL pseudokinase is repurposed as a sensor rather than participant in phosphotransduction.

  13. A comprehensive map of the toll-like receptor signaling network

    OpenAIRE

    Oda, Kanae; Kitano, Hiroaki

    2006-01-01

    Recognition of pathogen-associated molecular signatures is critically important in proper activation of the immune system. The toll-like receptor (TLR) signaling network is responsible for innate immune response. In mammalians, there are 11 TLRs that recognize a variety of ligands from pathogens to trigger immunological responses. In this paper, we present a comprehensive map of TLRs and interleukin 1 receptor signaling networks based on papers published so far. The map illustrates the possib...

  14. Sensor selection for received signal strength-based source localization in wireless sensor networks

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Generally, localization is a nonlinear problem, while linearization is used to simplify this problem. Reasonable approximations could be achieved when signal-to-noise ratio (SNR) is large enough. Energy is a critical resource in wireless sensor networks, and system lifetime needs to be prolonged through the use of energy efficient strategies during system operation. In this paper, a closed-form solution for received signal strength (RSS)-based source localization in wireless sensor network (WSN) is obtained...

  15. Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in Arabidopsis roots

    KAUST Repository

    Muraro, D.

    2013-12-31

    As multicellular organisms grow, positional information is continually needed to regulate the pattern in which cells are arranged. In the Arabidopsis root, most cell types are organized in a radially symmetric pattern; however, a symmetry-breaking event generates bisymmetric auxin and cytokinin signaling domains in the stele. Bidirectional cross-talk between the stele and the surrounding tissues involving a mobile transcription factor, SHORT ROOT (SHR), and mobile microRNA species also determines vascular pattern, but it is currently unclear how these signals integrate. We use a multicellular model to determine a minimal set of components necessary for maintaining a stable vascular pattern. Simulations perturbing the signaling network show that, in addition to the mutually inhibitory interaction between auxin and cytokinin, signaling through SHR, microRNA165/6, and PHABULOSA is required to maintain a stable bisymmetric pattern. We have verified this prediction by observing loss of bisymmetry in shr mutants. The model reveals the importance of several features of the network, namely the mutual degradation of microRNA165/6 and PHABULOSA and the existence of an additional negative regulator of cytokinin signaling. These components form a plausible mechanism capable of patterning vascular tissues in the absence of positional inputs provided by the transport of hormones from the shoot.

  16. Towards systematic discovery of signaling networks in budding yeast filamentous growth stress response using interventional phosphorylation data.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available Reversible phosphorylation is one of the major mechanisms of signal transduction, and signaling networks are critical regulators of cell growth and development. However, few of these networks have been delineated completely. Towards this end, quantitative phosphoproteomics is emerging as a useful tool enabling large-scale determination of relative phosphorylation levels. However, phosphoproteomics differs from classical proteomics by a more extensive sampling limitation due to the limited number of detectable sites per protein. Here, we propose a comprehensive quantitative analysis pipeline customized for phosphoproteome data from interventional experiments for identifying key proteins in specific pathways, discovering the protein-protein interactions and inferring the signaling network. We also made an effort to partially compensate for the missing value problem, a chronic issue for proteomics studies. The dataset used for this study was generated using SILAC (Stable Isotope Labeling with Amino acids in Cell culture technique with interventional experiments (kinase-dead mutations. The major components of the pipeline include phosphopeptide meta-analysis, correlation network analysis and causal relationship discovery. We have successfully applied our pipeline to interventional experiments identifying phosphorylation events underlying the transition to a filamentous growth form in Saccharomyces cerevisiae. We identified 5 high-confidence proteins from meta-analysis, and 19 hub proteins from correlation analysis (Pbi2p and Hsp42p were identified by both analyses. All these proteins are involved in stress responses. Nine of them have direct or indirect evidence of involvement in filamentous growth. In addition, we tested four of our predicted proteins, Nth1p, Pbi2p, Pdr12p and Rcn2p, by interventional phenotypic experiments and all of them present differential invasive growth, providing prospective validation of our approach. This comprehensive

  17. Cell Multiprocessor Communication Network: Built for Speed

    International Nuclear Information System (INIS)

    The existence of major obstacles to the traditional path to processor performance improvement has led chip manufacturers to consider multi-core designs. These architectural solutions promise a variety of power/performance and area/performance benefits. But additional care must be taken to ensure that these benefits are not lost due to inadequate design of the on-chip communication network. This paper presents the design challenges of the on-chip network of the Cell Broadband Engine (Cell BE) processor, and describes in detail its architectural design and the network, communication and synchronization protocols. In the experimental evaluation, performed on an early prototype, we analyze the communication characteristics of the Cell BE processor, using a series of microbenchmarks involving various DMA traffic patterns and synchronization protocols. We find that the on-chip communication subsystem is well matched to the to computational capacity of the processor. A Synergistic Processing Element (SPE) can issue an internal direct memory access (DMA) operation in less than 4 nanoseconds, and a DMA of a single cache line can be executed in less the than 100 nanoseconds. SPEs can achieve the optimal bandwidth of 25.6 GB/second in point to point communication with surprisingly small messages ?only a few KB, using batches of non-blocking DMAs. The aggregate network behavior under heavy load is also remarkably efficient, reaching almost 200 GB/second with collective patterns and optimal contention resolution under hot-spot traffic. Additionally, we demonstrate the consistency of these hardware results with identical experiments carried out using the Mambo simulator software for Cell BE

  18. Retinoic acid signalling in thymocytes regulates T cell development

    DEFF Research Database (Denmark)

    Wendland, Kerstin; Sitnik, Katarzyna Maria; Kotarsky, Knut;

    The Vitamin A derivative retinoic acid (RA) has emerged as an important regulator of peripheral T cell responses. However, whether there is endogenous retinoic acid receptor (RAR) signaling in developing thymocytes and the potential impact of such signals in thymocyte development remains unclear...

  19. Computationally efficient locally-recurrent neural networks for online signal processing

    CERN Document Server

    Hussain, A; Shim, I

    1999-01-01

    A general class of computationally efficient locally recurrent networks (CERN) is described for real-time adaptive signal processing. The structure of the CERN is based on linear-in-the- parameters single-hidden-layered feedforward neural networks such as the radial basis function (RBF) network, the Volterra neural network (VNN) and the functionally expanded neural network (FENN), adapted to employ local output feedback. The corresponding learning algorithms are derived and key structural and computational complexity comparisons are made between the CERN and conventional recurrent neural networks. Two case studies are performed involving the real- time adaptive nonlinear prediction of real-world chaotic, highly non- stationary laser time series and an actual speech signal, which show that a recurrent FENN based adaptive CERN predictor can significantly outperform the corresponding feedforward FENN and conventionally employed linear adaptive filtering models. (13 refs).

  20. DNA damage activates a spatially distinct late cytoplasmic cell-cycle checkpoint network controlled by MK2-mediated RNA stabilization

    DEFF Research Database (Denmark)

    Reinhardt, H Christian; Hasskamp, Pia; Schmedding, Ingolf;

    2010-01-01

    Following genotoxic stress, cells activate a complex kinase-based signaling network to arrest the cell cycle and initiate DNA repair. p53-defective tumor cells rewire their checkpoint response and become dependent on the p38/MK2 pathway for survival after DNA damage, despite a functional ATR-Chk1...... expression as part of the DNA damage response in cancer cells....

  1. Stem cell signaling. An integral program for tissue renewal and regeneration : Wnt signaling and stem cell control

    NARCIS (Netherlands)

    Clevers, Hans; Loh, Kyle M; Nusse, Roel

    2014-01-01

    Stem cells fuel tissue development, renewal, and regeneration, and these activities are controlled by the local stem cell microenvironment, the "niche." Wnt signals emanating from the niche can act as self-renewal factors for stem cells in multiple mammalian tissues. Wnt proteins are lipid-modified,

  2. Discrimination of Cylinders with Different Wall Thicknesses using Neural Networks and Simulated Dolphin Sonar Signals

    DEFF Research Database (Denmark)

    Andersen, Lars Nonboe; Au, Whitlow; Larsen, Jan;

    1999-01-01

    This paper describes a method integrating neural networks into a system for recognizing underwater objects. The system is based on a combination of simulated dolphin sonar signals, simulated auditory filters and artificial neural networks. The system is tested on a cylinder wall thickness...

  3. Modeling of inclined fracture network and calculation of fracture effect on seismic signal spectrum

    International Nuclear Information System (INIS)

    The paper considers modeling technique for the medium with a network of inclined fractures and calculations for completing seismic tasks for such a medium. The network of plane-parallel fractures has controlled dip angle and fluid saturation. The time section for a model with water-saturated fractures is produced. The comparison of incident and transmitted signal spectra is made

  4. Dynamical patterns of calcium signaling in a functional model of neuron–astrocyte networks

    OpenAIRE

    Postnov, D. E.; Koreshkov, R. N.; Brazhe, N. A.; Brazhe, A. R.; Sosnovtseva, O. V.

    2009-01-01

    We propose a functional mathematical model for neuron-astrocyte networks. The model incorporates elements of the tripartite synapse and the spatial branching structure of coupled astrocytes. We consider glutamate-induced calcium signaling as a specific mode of excitability and transmission in astrocytic–neuronal networks. We reproduce local and global dynamical patterns observed experimentally.

  5. Frequency Sensitivity of Signal Detection in Scale-Free Networks

    Institute of Scientific and Technical Information of China (English)

    LU Fa-Ming; LIU Zong-Hua

    2009-01-01

    @@ It has been recently reported that scale-free topology favors the detection of a weak signal because of the higher amplification at the hub node than that at other nodes [Phys. Ref. E 78 (2008)046111]. We investigate the corresponding synchronization behaviors and find that the favorite detection depends not only on the coupling and noise strengths but also on the frequency of the external signal. We reveal theoretically and numerically that the amplification effect of the hub node will decrease monotonously with the externai frequency, which is useful to understand the high sensitivity of animal visual and auditory systems to weak external signals.

  6. Spectrin-based skeleton as an actor in cell signaling

    OpenAIRE

    Machnicka, B.; Grochowalska, R.; Bogusławska, D. M.; Sikorski, A F; Lecomte, M C

    2011-01-01

    This review focuses on the recent advances in functions of spectrins in non-erythroid cells. We discuss new data concerning the commonly known role of the spectrin-based skeleton in control of membrane organization, stability and shape, and tethering protein mosaics to the cellular motors and to all major filament systems. Particular effort has been undertaken to highlight recent advances linking spectrin to cell signaling phenomena and its participation in signal transduction pathways in man...

  7. Wnt signaling control of bone cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    Peter V N Bodine

    2008-01-01

    Wnts are a large family of growth factors that mediate essential biological processes like embryogenesis, morphogenesis and organogenesis. These proteins also play a role in oncogenesis, and they regulate apoptosis in many tissues. Wnts bind to a membrane receptor complex comprised of a frizzled (FZD) G-protein-coupled receptor and a low-density , lipoprotein (LDL) receptor-related protein (LRP). The formation of this ligand-receptor complex initiates a number of signaling cascades that include the canonical/beta-catenin pathway as well as several noncanonical pathways. In recent years, canonical Wnt signaling has been reported to play a significant role in the control of bone formation. Clinical studies have found that mutations in LRP-5 are associated with reduced bone mineral density (BMD) and fractures. Investigations of knockout and transgenic mouse models of Wnt pathway components have shown that canonical Wnt signaling modulates most aspects of osteoblast physiology including proliferation, differentiation, function and apoptosis. Transgenic mice expressing a gain of function mutant of LRP-5 in bone, or mice lacking the Wnt antagonist secreted frizzled-related protein-1, exhibit elevated BMD and suppressed osteoblast apoptosis. In addition, preclinical studies with pharmacologic compounds such as those that inhibit glycogen synthase kinase-3p support the importance of the canonical Wnt pathway in modulation of bone formation and osteoblast apoptosis.

  8. Cellular Interrogation: Exploiting Cell-to-Cell Variability to Discriminate Regulatory Mechanisms in Oscillatory Signalling

    Science.gov (United States)

    Gibson, Daniel; Chang, Frederick; Gnad, Florian; Gunawardena, Jeremy

    2016-01-01

    The molecular complexity within a cell may be seen as an evolutionary response to the external complexity of the cell’s environment. This suggests that the external environment may be harnessed to interrogate the cell’s internal molecular architecture. Cells, however, are not only nonlinear and non-stationary, but also exhibit heterogeneous responses within a clonal, isogenic population. In effect, each cell undertakes its own experiment. Here, we develop a method of cellular interrogation using programmable microfluidic devices which exploits the additional information present in cell-to-cell variation, without requiring model parameters to be fitted to data. We focussed on Ca2+ signalling in response to hormone stimulation, which exhibits oscillatory spiking in many cell types and chose eight models of Ca2+ signalling networks which exhibit similar behaviour in simulation. We developed a nonlinear frequency analysis for non-stationary responses, which could classify models into groups under parameter variation, but found that this question alone was unable to distinguish critical feedback loops. We further developed a nonlinear amplitude analysis and found that the combination of both questions ruled out six of the models as inconsistent with the experimentally-observed dynamics and heterogeneity. The two models that survived the double interrogation were mathematically different but schematically identical and yielded the same unexpected predictions that we confirmed experimentally. Further analysis showed that subtle mathematical details can markedly influence non-stationary responses under parameter variation, emphasising the difficulty of finding a “correct” model. By developing questions for the pathway being studied, and designing more versatile microfluidics, cellular interrogation holds promise as a systematic strategy that can complement direct intervention by genetics or pharmacology. PMID:27367445

  9. Microfluidic perfusion for regulating diffusible signaling in stem cells.

    Directory of Open Access Journals (Sweden)

    Katarina Blagovic

    Full Text Available BACKGROUND: Autocrine & paracrine signaling are widespread both in vivo and in vitro, and are particularly important in embryonic stem cell (ESC pluripotency and lineage commitment. Although autocrine signaling via fibroblast growth factor-4 (FGF4 is known to be required in mouse ESC (mESC neuroectodermal specification, the question of whether FGF4 autocrine signaling is sufficient, or whether other soluble ligands are also involved in fate specification, is unknown. The spatially confined and closed-loop nature of diffusible signaling makes its experimental control challenging; current experimental approaches typically require prior knowledge of the factor/receptor in order to modulate the loop. A new approach explored in this work is to leverage transport phenomena at cellular resolution to downregulate overall diffusible signaling through the physical removal of cell-secreted ligands. METHODOLOGY/PRINCIPAL FINDINGS: We develop a multiplex microfluidic platform to continuously remove cell-secreted (autocrine\\paracrine factors to downregulate diffusible signaling. By comparing cell growth and differentiation in side-by-side chambers with or without added cell-secreted factors, we isolate the effects of diffusible signaling from artifacts such as shear, nutrient depletion, and microsystem effects, and find that cell-secreted growth factor(s are required during neuroectodermal specification. Then we induce FGF4 signaling in minimal chemically defined medium (N2B27 and inhibit FGF signaling in fully supplemented differentiation medium with cell-secreted factors to determine that the non-FGF cell-secreted factors are required to promote growth of differentiating mESCs. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate for the first time that flow can downregulate autocrine\\paracrine signaling and examine sufficiency of extracellular factors. We show that autocrine\\paracrine signaling drives neuroectodermal commitment of mESCs through both FGF4

  10. The influence of cell crawling onto cell-cell chemical signaling

    Science.gov (United States)

    Bouffanais, Roland

    2012-11-01

    Chemotactic cells such as amoebae and leukocytes are able to aggregate and self-organize by means of local cell-cell chemical signaling. The chemical cAMP, which is produced by the cell, diffuses through the fluid from the emitting cell's membrane and binds to the neighboring cells' chemoreceptors. Such a purely diffusive view of this chemical signaling process fails to account for the fact that the cell's membrane constantly underges motions in relation with the specific motile behavior of these cells, namely crawling. We investigate the influence of cell motion/crawling onto the effectiveness of short-range chemical signaling. Our model is built on the study of an advection-diffusion process at the microscale of a cell for which diffusion is relatively ``fast,'' and the flow generated by the cell while crawling is an incompressible Stokes flow given the smallness of the Reynolds number. A particular emphasis is placed on the effects of advection onto the generation of a steeper chemical gradient which can have a significant impact onto the chemosensing effectiveness.

  11. The effect of suppressor of cytokine signaling 3 on GH signaling in beta-cells

    DEFF Research Database (Denmark)

    Rønn, Sif G; Hansen, Johnny A; Lindberg, Karen;

    2002-01-01

    GH is an important regulator of cell growth and metabolism. In the pancreas, GH stimulates mitogenesis as well as insulin production in beta-cells. The cellular effects of GH are exerted mainly through activation of the Janus kinase-signal transducer and activator of transcription (STAT) pathway....

  12. Hedgehog signaling in myofibroblasts directly promotes prostate tumor cell growth†

    Science.gov (United States)

    Domenech, Maribella; Bjerregaard, Robert; Bushman, Wade; Beebe, David J.

    2012-01-01

    Despite strong evidence for the involvement of the stroma in Hedgehog signaling, little is known about the identity of the stromal cells and the signaling mechanisms that mediate the growth promoting effect of Hh signaling. We developed an in vitro co-culture model using microchannel technology to examine the effect of paracrine Hh signaling on proliferation of prostate cancer cells. We show here that activation of Hh signaling in myofibroblasts is sufficient to accelerate tumor cell growth. This effect was independent of any direct effect of Hh ligand on tumor cells or other cellular components of the tumor stroma. Further, the trophic effect of Hh pathway activation in myofibroblasts does not require collaboration of other elements of the stroma or direct physical interaction with the cancer cells. By isolating the tropic effect of Hh pathway activation in prostate stroma, we have taken the first step toward identifying cell-specific mechanisms that mediate the effect of paracrine Hh signaling on tumor growth. PMID:22234342

  13. Array signal processing in the NASA Deep Space Network

    Science.gov (United States)

    Pham, Timothy T.; Jongeling, Andre P.

    2004-01-01

    In this paper, we will describe the benefits of arraying and past as well as expected future use of this application. The signal processing aspects of array system are described. Field measurements via actual tracking spacecraft are also presented.

  14. Paper-based microreactor array for rapid screening of cell signaling cascades.

    Science.gov (United States)

    Huang, Chia-Hao; Lei, Kin Fong; Tsang, Ngan-Ming

    2016-08-01

    Investigation of cell signaling pathways is important for the study of pathogenesis of cancer. However, the related operations used in these studies are time consuming and labor intensive. Thus, the development of effective therapeutic strategies may be hampered. In this work, gel-free cell culture and subsequent immunoassay has been successfully integrated and conducted in a paper-based microreactor array. Study of the activation level of different kinases of cells stimulated by different conditions, i.e., IL-6 stimulation, starvation, and hypoxia, was demonstrated. Moreover, rapid screening of cell signaling cascades after the stimulations of HGF, doxorubicin, and UVB irradiation was respectively conducted to simultaneously screen 40 kinases and transcription factors. Activation of multi-signaling pathways could be identified and the correlation between signaling pathways was discussed to provide further information to investigate the entire signaling network. The present technique integrates most of the tedious operations using a single paper substrate, reduces sample and reagent consumption, and shortens the time required by the entire process. Therefore, it provides a first-tier rapid screening tool for the study of complicated signaling cascades. It is expected that the technique can be developed for routine protocol in conventional biological research laboratories. PMID:27377153

  15. Sensitivity of Dendritic Cells to Microenvironment Signals

    Science.gov (United States)

    Motta, Juliana Maria; Rumjanek, Vivian Mary

    2016-01-01

    Dendritic cells are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. They do this by integrating stimuli from the environment and changing their functional status as a result of plasticity. The modifications suffered by these cells have consequences in the way the organism may respond. In the present work two opposing situations known to affect dendritic cells are analyzed: tumor growth, leading to a microenvironment that favors the induction of a tolerogenic profile, and organ transplantation, which leads to a proinflammatory profile. Lessons learned from these situations may help to understand the mechanisms of modulation resulting not only from the above circumstances, but also from other pathologies. PMID:27088097

  16. Sensitivity of Dendritic Cells to Microenvironment Signals

    Directory of Open Access Journals (Sweden)

    Juliana Maria Motta

    2016-01-01

    Full Text Available Dendritic cells are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. They do this by integrating stimuli from the environment and changing their functional status as a result of plasticity. The modifications suffered by these cells have consequences in the way the organism may respond. In the present work two opposing situations known to affect dendritic cells are analyzed: tumor growth, leading to a microenvironment that favors the induction of a tolerogenic profile, and organ transplantation, which leads to a proinflammatory profile. Lessons learned from these situations may help to understand the mechanisms of modulation resulting not only from the above circumstances, but also from other pathologies.

  17. Stimulation of vascular cells by extracellular signals - A biophysical analysis

    OpenAIRE

    Biela, Sarah A.

    2009-01-01

    Stimulation of vascular cells by extracellullar signals Treatment of vascular diseases often requires the selective addressing of endothelial (ECs) and smooth muscle cells (SMCs). The two vascular cell types are important for the wound healing after stent implantation. Recent research designs new materials and coatings for stents to improve the complex healing process. The aim of my work was to find and investigate different reactions in the two vascular cell types (ECs and SMCs) through surf...

  18. Hypergravity signal transduction and gene expression in cultured mammalian cells

    Science.gov (United States)

    Kumei, Y.; Whitson, P. A.

    1994-01-01

    A number of studies have been conducted during space flight and with clinostats and centrifuges, suggesting that gravity effects the proliferation and differentiation of mammalian cells in vitro. However, little is known about the mechanisms by which mammalian cells respond to changes in gravitational stress. This paper summarizes studies designed to clarify the effects of hypergravity on the cultured human HeLa cells and to investigate the mechanism of hypergravity signal transduction in these cells.

  19. Adaptive classification of temporal signals in fixed-weights recurrent neural networks: an existence proof

    CERN Document Server

    Tyukin, Ivan; van Leeuwen, Cees

    2007-01-01

    We address the important theoretical question why a recurrent neural network with fixed weights can adaptively classify time-varied signals in the presence of additive noise and parametric perturbations. We provide a mathematical proof assuming that unknown parameters are allowed to enter the signal nonlinearly and the noise amplitude is sufficiently small.

  20. Information in a Network of Neuronal Cells: Effect of Cell Density and Short-Term Depression

    KAUST Repository

    Onesto, Valentina

    2016-05-10

    Neurons are specialized, electrically excitable cells which use electrical to chemical signals to transmit and elaborate information. Understanding how the cooperation of a great many of neurons in a grid may modify and perhaps improve the information quality, in contrast to few neurons in isolation, is critical for the rational design of cell-materials interfaces for applications in regenerative medicine, tissue engineering, and personalized lab-on-a-chips. In the present paper, we couple an integrate-and-fire model with information theory variables to analyse the extent of information in a network of nerve cells. We provide an estimate of the information in the network in bits as a function of cell density and short-term depression time. In the model, neurons are connected through a Delaunay triangulation of not-intersecting edges; in doing so, the number of connecting synapses per neuron is approximately constant to reproduce the early time of network development in planar neural cell cultures. In simulations where the number of nodes is varied, we observe an optimal value of cell density for which information in the grid is maximized. In simulations in which the posttransmission latency time is varied, we observe that information increases as the latency time decreases and, for specific configurations of the grid, it is largely enhanced in a resonance effect.

  1. Information in a Network of Neuronal Cells: Effect of Cell Density and Short-Term Depression

    Science.gov (United States)

    Onesto, Valentina; Cosentino, Carlo; Di Fabrizio, Enzo; Cesarelli, Mario; Amato, Francesco; Gentile, Francesco

    2016-01-01

    Neurons are specialized, electrically excitable cells which use electrical to chemical signals to transmit and elaborate information. Understanding how the cooperation of a great many of neurons in a grid may modify and perhaps improve the information quality, in contrast to few neurons in isolation, is critical for the rational design of cell-materials interfaces for applications in regenerative medicine, tissue engineering, and personalized lab-on-a-chips. In the present paper, we couple an integrate-and-fire model with information theory variables to analyse the extent of information in a network of nerve cells. We provide an estimate of the information in the network in bits as a function of cell density and short-term depression time. In the model, neurons are connected through a Delaunay triangulation of not-intersecting edges; in doing so, the number of connecting synapses per neuron is approximately constant to reproduce the early time of network development in planar neural cell cultures. In simulations where the number of nodes is varied, we observe an optimal value of cell density for which information in the grid is maximized. In simulations in which the posttransmission latency time is varied, we observe that information increases as the latency time decreases and, for specific configurations of the grid, it is largely enhanced in a resonance effect.

  2. Information in a Network of Neuronal Cells: Effect of Cell Density and Short-Term Depression

    Directory of Open Access Journals (Sweden)

    Valentina Onesto

    2016-01-01

    Full Text Available Neurons are specialized, electrically excitable cells which use electrical to chemical signals to transmit and elaborate information. Understanding how the cooperation of a great many of neurons in a grid may modify and perhaps improve the information quality, in contrast to few neurons in isolation, is critical for the rational design of cell-materials interfaces for applications in regenerative medicine, tissue engineering, and personalized lab-on-a-chips. In the present paper, we couple an integrate-and-fire model with information theory variables to analyse the extent of information in a network of nerve cells. We provide an estimate of the information in the network in bits as a function of cell density and short-term depression time. In the model, neurons are connected through a Delaunay triangulation of not-intersecting edges; in doing so, the number of connecting synapses per neuron is approximately constant to reproduce the early time of network development in planar neural cell cultures. In simulations where the number of nodes is varied, we observe an optimal value of cell density for which information in the grid is maximized. In simulations in which the posttransmission latency time is varied, we observe that information increases as the latency time decreases and, for specific configurations of the grid, it is largely enhanced in a resonance effect.

  3. Information in a Network of Neuronal Cells: Effect of Cell Density and Short-Term Depression.

    Science.gov (United States)

    Onesto, Valentina; Cosentino, Carlo; Di Fabrizio, Enzo; Cesarelli, Mario; Amato, Francesco; Gentile, Francesco

    2016-01-01

    Neurons are specialized, electrically excitable cells which use electrical to chemical signals to transmit and elaborate information. Understanding how the cooperation of a great many of neurons in a grid may modify and perhaps improve the information quality, in contrast to few neurons in isolation, is critical for the rational design of cell-materials interfaces for applications in regenerative medicine, tissue engineering, and personalized lab-on-a-chips. In the present paper, we couple an integrate-and-fire model with information theory variables to analyse the extent of information in a network of nerve cells. We provide an estimate of the information in the network in bits as a function of cell density and short-term depression time. In the model, neurons are connected through a Delaunay triangulation of not-intersecting edges; in doing so, the number of connecting synapses per neuron is approximately constant to reproduce the early time of network development in planar neural cell cultures. In simulations where the number of nodes is varied, we observe an optimal value of cell density for which information in the grid is maximized. In simulations in which the posttransmission latency time is varied, we observe that information increases as the latency time decreases and, for specific configurations of the grid, it is largely enhanced in a resonance effect. PMID:27403421

  4. Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway

    OpenAIRE

    Levin, David E.

    2011-01-01

    The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to...

  5. Altered B cell receptor signaling in human systemic lupus erythematosus

    Science.gov (United States)

    Jenks, Scott A.; Sanz, Iñaki

    2009-01-01

    Regulation of B cell receptor signaling is essential for the development of specific immunity while retaining tolerance to self. Systemic lupus erythematosus (SLE) is characterized by a loss of B cell tolerance and the production of anti-self antibodies. Accompanying this break down in tolerance are alterations in B cell receptor signal transduction including elevated induced calcium responses and increased protein phosphorylation. Specific pathways that negatively regulate B cell signaling have been shown to be impaired in some SLE patients. These patients have reduced levels of the kinase Lyn in lipid raft microdomains and this reduction is inversely correlated with increased CD45 in lipid rafts. Function and expression of the inhibitory immunoglobulin receptor FcγRIIB is also reduced in Lupus IgM- CD27+ memory cells. Because the relative contribution of different memory and transitional B cell subsets can be abnormal in SLE patients, we believe studies targeted to well defined B cell subsets will be necessary to further our understanding of signaling abnormalities in SLE. Intracellular flow cytometric analysis of signaling is a useful approach to accomplish this goal. PMID:18723129

  6. Estimation of azimuth and slowness of teleseismic signals recorded by a local seismic network

    Institute of Scientific and Technical Information of China (English)

    靳平; 潘常周

    2002-01-01

    A new method that is applicable to local seismic networks to estimate the azimuth and slowness of teleseismic signals is introduced in the paper. The method is based on the correlation between the arrival times and station positions. The analyzed results indicate that the azimuth and slowness of teleseismic signals can be accurately estimated by the method. Average errors for azimuth and slowness measurements obtained by this method using data of Xi(an Digital Telemetry Seismic Network are 2.0o and 0.34 s/(o), respectively. The conclusions drawn from this study indicate that this method may be very useful to interpret teleseismic records of local seismic networks.

  7. An improved response surface methodology algorithm with an application to traffic signal optimization for urban networks

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, S.S.; Rathi, A.K. [Oak Ridge National Lab., TN (United States); Tew, J.D. [Consolidated Freightways, Inc., Portland, OR (United States). ISQ Dept.

    1995-12-31

    This paper illustrates the use of the simulation-optimization technique of response surface methodology (RSM) in traffic signal optimization of urban networks. It also quantifies the gains of using the common random number (CRN) variance reduction strategy in such an optimization procedure. An enhanced RSM algorithm which employs conjugate gradient search techniques and successive second-order models is presented instead of the conventional approach. An illustrative example using an urban traffic network exhibits the superiority of using the CRN strategy ovr direct simulation in performing traffic signal optimization. Relative performance of the two strategies is quantified with computational results using the total network-wide delay as the measure of effectivness.

  8. Three-Dimensional Gradients of Cytokine Signaling between T Cells.

    Directory of Open Access Journals (Sweden)

    Kevin Thurley

    2015-04-01

    Full Text Available Immune responses are regulated by diffusible mediators, the cytokines, which act at sub-nanomolar concentrations. The spatial range of cytokine communication is a crucial, yet poorly understood, functional property. Both containment of cytokine action in narrow junctions between immune cells (immunological synapses and global signaling throughout entire lymph nodes have been proposed, but the conditions under which they might occur are not clear. Here we analyze spatially three-dimensional reaction-diffusion models for the dynamics of cytokine signaling at two successive scales: in immunological synapses and in dense multicellular environments. For realistic parameter values, we observe local spatial gradients, with the cytokine concentration around secreting cells decaying sharply across only a few cell diameters. Focusing on the well-characterized T-cell cytokine interleukin-2, we show how cytokine secretion and competitive uptake determine this signaling range. Uptake is shaped locally by the geometry of the immunological synapse. However, even for narrow synapses, which favor intrasynaptic cytokine consumption, escape fluxes into the extrasynaptic space are expected to be substantial (≥20% of secretion. Hence paracrine signaling will generally extend beyond the synapse but can be limited to cellular microenvironments through uptake by target cells or strong competitors, such as regulatory T cells. By contrast, long-range cytokine signaling requires a high density of cytokine producers or weak consumption (e.g., by sparsely distributed target cells. Thus in a physiological setting, cytokine gradients between cells, and not bulk-phase concentrations, are crucial for cell-to-cell communication, emphasizing the need for spatially resolved data on cytokine signaling.

  9. Gasotransmitters are emerging as new guard cell signaling molecules and regulators of leaf gas exchange.

    Science.gov (United States)

    García-Mata, Carlos; Lamattina, Lorenzo

    2013-03-01

    Specialized guard cells modulate plant gas exchange through the regulation of stomatal aperture. The size of the stomatal pore is a direct function of the volume of the guard cells. The transport of solutes across channels in plasma membrane is a crucial process in the maintenance of guard cell water status. The fine tuned regulation of that transport requires an integrated convergence of multiple endogenous and exogenous signals perceived at both the cellular and the whole plant level. Gasotransmitters are novel signaling molecules with key functions in guard cell physiology. Three gasotransmitters, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H(2)S) are involved in guard cell regulatory processes. These molecules are endogenously produced by plant cells and are part of the guard cells responses to drought stress conditions through ABA-dependent pathways. In this review, we summarize the current knowledge of gasotransmitters as versatile molecules interacting with different components of guard cell signaling network and propose them as players in new paradigms to study ABA-independent guard cell responses to water deficit.

  10. Single-Cell Transcriptome Analyses Reveal Signals to Activate Dormant Neural Stem Cells

    OpenAIRE

    Luo, Yuping; Coskun, Volkan; Liang, Aibing; Yu, Juehua; Cheng, Liming; Ge, Weihong; Shi, Zhanping; Zhang, Kunshan; Li, Chun; Cui, Yaru; Lin, Haijun; Luo, Dandan; Wang, Junbang; Lin, Connie; Dai, Zachary

    2015-01-01

    The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133+/GFAP− ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133+/GFAP− quiescent cells were enriched...

  11. Deep sequencing and in silico analyses identify MYB-regulated gene networks and signaling pathways in pancreatic cancer.

    Science.gov (United States)

    Azim, Shafquat; Zubair, Haseeb; Srivastava, Sanjeev K; Bhardwaj, Arun; Zubair, Asif; Ahmad, Aamir; Singh, Seema; Khushman, Moh'd; Singh, Ajay P

    2016-01-01

    We have recently demonstrated that the transcription factor MYB can modulate several cancer-associated phenotypes in pancreatic cancer. In order to understand the molecular basis of these MYB-associated changes, we conducted deep-sequencing of transcriptome of MYB-overexpressing and -silenced pancreatic cancer cells, followed by in silico pathway analysis. We identified significant modulation of 774 genes upon MYB-silencing (p RELA was validated by both qPCR and immunoblotting and they were both shown to be under direct transcriptional control of MYB. These observations were further confirmed in a converse approach wherein MYB was overexpressed ectopically in a MYB-null pancreatic cancer cell line. Our findings thus suggest that MYB potentially regulates growth and genomic stability of pancreatic cancer cells via targeting complex gene networks and signaling pathways. Further in-depth functional studies are warranted to fully understand MYB signaling in pancreatic cancer. PMID:27354262

  12. Wound signaling of regenerative cell reprogramming.

    Science.gov (United States)

    Lup, Samuel Daniel; Tian, Xin; Xu, Jian; Pérez-Pérez, José Manuel

    2016-09-01

    Plants are sessile organisms that must deal with various threats resulting in tissue damage, such as herbivore feeding, and physical wounding by wind, snow or crushing by animals. During wound healing, phytohormone crosstalk orchestrates cellular regeneration through the establishment of tissue-specific asymmetries. In turn, hormone-regulated transcription factors and their downstream targets coordinate cellular responses, including dedifferentiation, cell cycle reactivation and vascular regeneration. By comparing different examples of wound-induced tissue regeneration in the model plant Arabidopsis thaliana, a number of key regulators of developmental plasticity of plant cells have been identified. We present the relevance of these findings and of the dynamic establishment of differential auxin gradients for cell reprogramming after wounding. PMID:27457994

  13. New Modeling Approaches to Investigate Cell Signaling in Radiation Response

    Science.gov (United States)

    Plante, Ianik; Cucinotta, Francis A.; Ponomarev, Artem L.

    2011-01-01

    Ionizing radiation damages individual cells and tissues leading to harmful biological effects. Among many radiation-induced lesions, DNA double-strand breaks (DSB) are considered the key precursors of most early and late effects [1] leading to direct mutation or aberrant signal transduction processes. In response to damage, a flow of information is communicated to cells not directly hit by the radiation through signal transduction pathways [2]. Non-targeted effects (NTE), which includes bystander effects and genomic instability in the progeny of irradiated cells and tissues, may be particularly important for space radiation risk assessment [1], because astronauts are exposed to a low fluence of heavy ions and only a small fraction of cells are traversed by an ion. NTE may also have important consequences clinical radiotherapy [3]. In the recent years, new simulation tools and modeling approaches have become available to study the tissue response to radiation. The simulation of signal transduction pathways require many elements such as detailed track structure calculations, a tissue or cell culture model, knowledge of biochemical pathways and Brownian Dynamics (BD) propagators of the signaling molecules in their micro-environment. Recently, the Monte-Carlo simulation code of radiation track structure RITRACKS was used for micro and nano-dosimetry calculations [4]. RITRACKS will be used to calculate the fraction of cells traversed by an ion and delta-rays and the energy deposited in cells in a tissue model. RITRACKS also simulates the formation of chemical species by the radiolysis of water [5], notably the .OH radical. This molecule is implicated in DNA damage and in the activation of the transforming growth factor beta (TGF), a signaling molecule involved in NTE. BD algorithms for a particle near a membrane comprising receptors were also developed and will be used to simulate trajectories of signaling molecules in the micro-environment and characterize autocrine

  14. Shared signaling pathways in normal and breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Gautam K Malhotra

    2011-01-01

    Full Text Available Recent advances in our understanding of breast cancer biology have led to the identification of a subpopulation of cells within tumors that appear to be responsible for initiating and propagating the cancer. These tumor initiating cells are not only unique in their ability to generate tumors, but also share many similarities with elements of normal adult tissue stem cells, and have therefore been termed cancer stem cells (CSCs. These CSCs often inappropriately use many of the same signaling pathways utilized by their normal stem cell counterparts which may present a challenge to the development of CSC specific therapies. Here, we discuss three major stem cell signaling pathways (Notch, Wnt, and Hedgehog; with a focus on their function in normal mammary gland development and their misuse in breast cancer stem cell fate determination.

  15. MAPKs and Signal Transduction in the Control of Gastrointestinal Epithelial Cell Proliferation and Differentiation

    Directory of Open Access Journals (Sweden)

    Luciana H. Osaki

    2013-05-01

    Full Text Available Mitogen-activated protein kinase (MAPK pathways are activated by several stimuli and transduce the signal inside cells, generating diverse responses including cell proliferation, differentiation, migration and apoptosis. Each MAPK cascade comprises a series of molecules, and regulation takes place at different levels. They communicate with each other and with additional pathways, creating a signaling network that is important for cell fate determination. In this review, we focus on ERK, JNK, p38 and ERK5, the major MAPKs, and their interactions with PI3K-Akt, TGFβ/Smad and Wnt/β-catenin pathways. More importantly, we describe how MAPKs regulate cell proliferation and differentiation in the rapidly renewing epithelia that lines the gastrointestinal tract and, finally, we highlight the recent findings on nutritional aspects that affect MAPK transduction cascades.

  16. Modeling Signal Transduction Networks: A comparison of two Stochastic Kinetic Simulation Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Pettigrew, Michel F.; Resat, Haluk

    2005-09-15

    Simulations of a scalable four compartment reaction model based on the well known epidermal growth factor receptor (EGFR) signal transduction system are used to compare two stochastic algorithms ? StochSim and the Gibson-Gillespie. It is concluded that the Gibson-Gillespie is the algorithm of choice for most realistic cases with the possible exception of signal transduction networks characterized by a moderate number (< 100) of complex types, each with a very small population, but with a high degree of connectivity amongst the complex types. Keywords: Signal transduction networks, Stochastic simulation, StochSim, Gillespie

  17. Regulation of Hedgehog Signalling Inside and Outside the Cell

    Science.gov (United States)

    Ramsbottom, Simon A.; Pownall, Mary E.

    2016-01-01

    The hedgehog (Hh) signalling pathway is conserved throughout metazoans and plays an important regulatory role in both embryonic development and adult homeostasis. Many levels of regulation exist that control the release, reception, and interpretation of the hedgehog signal. The fatty nature of the Shh ligand means that it tends to associate tightly with the cell membrane, and yet it is known to act as a morphogen that diffuses to elicit pattern formation. Heparan sulfate proteoglycans (HSPGs) play a major role in the regulation of Hh distribution outside the cell. Inside the cell, the primary cilium provides an important hub for processing the Hh signal in vertebrates. This review will summarise the current understanding of how the Hh pathway is regulated from ligand production, release, and diffusion, through to signal reception and intracellular transduction.

  18. A Method to Design Synthetic Cell-Cycle Networks

    Institute of Scientific and Technical Information of China (English)

    MIAO Ke-Ke

    2009-01-01

    The interactions among proteins, DNA and RNA in an organism form elaborate cell-cycle networks which govern cell growth and proliferation. Understanding the common structure of ce11-cycle networks will be of great benefit to science research. Here, inspired by the importance of the cell-cycle regulatory network of yeast which has been studied intensively, we focus on small networks with 11 nodes, equivalent to that of the cell-cycle regulatory network used by Li et al. [Proc. Natl. Acad. Sci. USA 101(2004)4781] Using a Boolean model, we study the correlation between structure and function, and a possible common structure. It is found that cascade-like networks with a great number of interactions between nodes are stable. Based on these findings, we are able to construct synthetic networks that have the same functions as the cell-cycle regulatory network.

  19. Integrating in silico resources to map a signaling network.

    Science.gov (United States)

    Liu, Hanqing; Beck, Tim N; Golemis, Erica A; Serebriiskii, Ilya G

    2014-01-01

    The abundance of publicly available life science databases offers a wealth of information that can support interpretation of experimentally derived data and greatly enhance hypothesis generation. Protein interaction and functional networks are not simply new renditions of existing data: they provide the opportunity to gain insights into the specific physical and functional role a protein plays as part of the biological system. In this chapter, we describe different in silico tools that can quickly and conveniently retrieve data from existing data repositories and we discuss how the available tools are best utilized for different purposes. While emphasizing protein-protein interaction databases (e.g., BioGrid and IntAct), we also introduce metasearch platforms such as STRING and GeneMANIA, pathway databases (e.g., BioCarta and Pathway Commons), text mining approaches (e.g., PubMed and Chilibot), and resources for drug-protein interactions, genetic information for model organisms and gene expression information based on microarray data mining. Furthermore, we provide a simple step-by-step protocol for building customized protein-protein interaction networks in Cytoscape, a powerful network assembly and visualization program, integrating data retrieved from these various databases. As we illustrate, generation of composite interaction networks enables investigators to extract significantly more information about a given biological system than utilization of a single database or sole reliance on primary literature. PMID:24233784

  20. Wnt Signaling in Stem Cells and Cancer

    NARCIS (Netherlands)

    Y. Atlasi (Yaser)

    2013-01-01

    markdownabstract__Abstract__ Mammalian development starts from a fertilized egg that initially generates few pluripotent cells which eventually give rise to the embryo proper. Different ‘flavors’ of pluripotency have been captured in vitro which led to the establishment of different pluripotent cel

  1. Establishing and maintaining the Langerhans cell network.

    Science.gov (United States)

    Chopin, Michaël; Nutt, Stephen L

    2015-05-01

    Langerhans cells (LCs) are the unique antigen-presenting cell of the epidermis. LCs have long been depicted in textbooks as the archetypical dendritic cell that alerts the immune system upon pathogen induced skin barrier breakage, however recent findings argue instead for a more tolerogenic function. While the LCs that populate the epidermis in steady-state arise from progenitors that seed the skin during embryogenesis, it is now apparent that a second pathway generating LCs from a bone marrow derived progenitor is active in inflammatory settings. This review emphasizes the determinants underpinning the establishment of the LC network in steady-state and under inflammatory conditions, as well as the transcriptional machinery governing their differentiation. The dual origin of LCs raises important questions about the functional differences between these subsets in balancing the epidermal immune response between immunity and tolerance.

  2. Surface code—biophysical signals for apoptotic cell clearance

    Science.gov (United States)

    Biermann, Mona; Maueröder, Christian; Brauner, Jan M.; Chaurio, Ricardo; Janko, Christina; Herrmann, Martin; Muñoz, Luis E.

    2013-12-01

    Apoptotic cell death and the clearance of dying cells play an important and physiological role in embryonic development and normal tissue turnover. In contrast to necrosis, apoptosis proceeds in an anti-inflammatory manner. It is orchestrated by the timed release and/or exposure of so-called ‘find-me’, ‘eat me’ and ‘tolerate me’ signals. Mononuclear phagocytes are attracted by various ‘find-me’ signals, including proteins, nucleotides, and phospholipids released by the dying cell, whereas the involvement of granulocytes is prevented via ‘stay away’ signals. The exposure of anionic phospholipids like phosphatidylserine (PS) by apoptotic cells on the outer leaflet of the plasma membrane is one of the main ‘eat me’ signals. PS is recognized by a number of innate receptors as well as by soluble bridging molecules on the surface of phagocytes. Importantly, phagocytes are able to discriminate between viable and apoptotic cells both exposing PS. Due to cytoskeleton remodeling PS has a higher lateral mobility on the surfaces of apoptotic cells thereby promoting receptor clustering on the phagocyte. PS not only plays an important role in the engulfment process, but also acts as ‘tolerate me’ signal inducing the release of anti-inflammatory cytokines by phagocytes. An efficient and fast clearance of apoptotic cells is required to prevent secondary necrosis and leakage of intracellular danger signals into the surrounding tissue. Failure or prolongation of the clearance process leads to the release of intracellular antigens into the periphery provoking inflammation and development of systemic inflammatory autoimmune disease like systemic lupus erythematosus. Here we review the current findings concerning apoptosis-inducing pathways, important players of apoptotic cell recognition and clearance as well as the role of membrane remodeling in the engulfment of apoptotic cells by phagocytes.

  3. Surface code—biophysical signals for apoptotic cell clearance

    International Nuclear Information System (INIS)

    Apoptotic cell death and the clearance of dying cells play an important and physiological role in embryonic development and normal tissue turnover. In contrast to necrosis, apoptosis proceeds in an anti-inflammatory manner. It is orchestrated by the timed release and/or exposure of so-called ‘find-me’, ‘eat me’ and ‘tolerate me’ signals. Mononuclear phagocytes are attracted by various ‘find-me’ signals, including proteins, nucleotides, and phospholipids released by the dying cell, whereas the involvement of granulocytes is prevented via ‘stay away’ signals. The exposure of anionic phospholipids like phosphatidylserine (PS) by apoptotic cells on the outer leaflet of the plasma membrane is one of the main ‘eat me’ signals. PS is recognized by a number of innate receptors as well as by soluble bridging molecules on the surface of phagocytes. Importantly, phagocytes are able to discriminate between viable and apoptotic cells both exposing PS. Due to cytoskeleton remodeling PS has a higher lateral mobility on the surfaces of apoptotic cells thereby promoting receptor clustering on the phagocyte. PS not only plays an important role in the engulfment process, but also acts as ‘tolerate me’ signal inducing the release of anti-inflammatory cytokines by phagocytes. An efficient and fast clearance of apoptotic cells is required to prevent secondary necrosis and leakage of intracellular danger signals into the surrounding tissue. Failure or prolongation of the clearance process leads to the release of intracellular antigens into the periphery provoking inflammation and development of systemic inflammatory autoimmune disease like systemic lupus erythematosus. Here we review the current findings concerning apoptosis-inducing pathways, important players of apoptotic cell recognition and clearance as well as the role of membrane remodeling in the engulfment of apoptotic cells by phagocytes. (paper)

  4. Traffic analysis and signal processing in optical packet switched networks

    DEFF Research Database (Denmark)

    Fjelde, Tina

    2002-01-01

    Gbit/s demultiplexing and 2x10 to 20 Gbit/s multiplexing. Lastly, the IWC’s capabilities as an optical logic gate for enabling more complex signal processing are demonstrated and four applications hereof are discussed. Logic OR and AND are verified in full at 10 Gbit/s using PRBS sequences coupled......, involving all-optical pattern recognition by bit-wise sampling at multiple wavelengths, optical identification of bit differences in data segments through a combination of logic XOR and AND, and all optical bit sequence replacement through logic OR and AND. The schemes enable important signal processing...

  5. Signaling-based path-segment protection in mesh optical networks

    Institute of Scientific and Technical Information of China (English)

    Yueming Lu; Chao Zou; Qiushi Wang; Yuefeng Ji

    2011-01-01

    Path protections have become increasingly important for current mesh optical networks because fast restorations in generalized multiprotocol label switching (GMPLS) networks are uncertain. However, setting up additional disjoint paths to protect connections leads to more path setup blocking and signaling collisions. We analyze signaling collisions, path blocking and blocking probability, as well as calculate node-to-node blocking probabilities. A signaling-based path-segment protection (PSP) is proposed, which integrates segment protections and path protections as well as enhances the performance of path protections and ring protections. The setup of PSP connections causes less blocking probability than the setup of path protection connections in the simulations.%Path protections have become increasingly important for current mesh optical networks because fast restorations in generalized multiprotocol label switching (GMPLS) networks are uncertain.However,setting up additional disjoint paths to protect connections leads to more path setup blocking and signaling collisions.We analyze signaling collisions,path blocking and blocking probability,as well as calculate node-to-node blocking probabilities.A signaling-based path-segment protection (PSP) is proposed,which integrates segment protections and path protections as well as enhances the performance of path protections and ring protections.The setup of PSP connections causes less blocking probability than the setup of path protection connections in the simulations.Recently,with the emergence of new protection and restoration methods,mesh topologies have gradually replaced ring topologies,especially in optical transport networks (OTNs)[1],automatically switched optical networks (ASONs)[2],generalized multiprotocol label switching (GMPLS) protocol networks[3,4],and packet transport networks (PTNs)[5].However,fast restoration methods currently face some challenges in China.

  6. Hydrogen peroxide homeostasis and signaling in plant cells

    Institute of Scientific and Technical Information of China (English)

    CHENG; Yanli; SONG; Chunpen

    2006-01-01

    The increases of H2O2 concentrations in plant cells often occur under biotic and abiotic stress conditions (e.g. light, environmental stresses and plant hormone abscisic acid).Atmospheric H2O2 as an ancient signal molecule not only plays the key role in inducing evolution of oxygenic photosynthesis, but also modulates many physiological events, such as stomatal movement, hypersensitive responses, programmed cell death and gene expressions. H2O2 levels in cells must sustain a fine equilibrium between production and scavenging. H2O2 enters cells from the apoplast or generated sources, and in turn is distributed in sub-cellular compartments.H2O2 can modulate the activities of many components in signaling, such as protein phosphatases,protein kinases, transcription factors (TFs), and calcium channels. Elevated cytosolic calcium concentrations will initiate further downstream responses, via the action of calcium-binding proteins. On the other hand, the research of H2O2 as a signal molecule is still in a comparatively juvenile stage, for example, little is known about how the cells sense H2O2, what the rate-limiting steps and most important cellular events are in cell signaling and what kind of genes is specific or necessary to H2O2 signaling. The answers to all the questions depend on the functional genomic and molecular genetics analysis.

  7. Resveratrol engages selective apoptotic signals in gastric adenocarcinoma cells

    Institute of Scientific and Technical Information of China (English)

    William L Riles; Jason Erickson; Sanjay Nayyar; Mary Jo Atten; Bashar M Attar; Oksana Holian

    2006-01-01

    AIM: To investigate the intracellular apoptotic signals engaged by resveratrol in three gastric adenocarcinoma cancer cell lines, two of which (AGS and SNU-1) express p53 and one (KATO-Ⅲ) with deleted p53.METHODS: Nuclear fragmentation was used to quantitate apoptotic cells; caspase activity was determined by photometric detection of cleaved substrates; formation of oxidized cytochrome C was used to measure cytochrome C activity, and Western blot analysis was used to determine protein expression.RESULTS: Gastric cancer cells, irrespective of their p53 status, responded to resveratrol with fragmentation of DNA and cleavage of nuclear lamins A and B and PARP, Resveratrol, however, has no effect on mitochondria-associated apoptotic proteins Bcl-2, Bclxl, Bax, Bid or Smac/Diablo, and did not promote subcellular redistribution of cytochrome C, indicating that resveratrol-induced apoptosis of gastric carcinoma cells does not require breakdown of mitochondrial membrane integrity. Resveratrol up-regulated p53 protein in SNU-1 and AGS cells but there was a difference in response of intracellular apoptotic signals between these cell lines.SNU-1 cells responded to resveratrol treatment with down-regulation of survivin, whereas in AGS and KATO-Ⅲ cells resveratrol stimulated caspase 3 and cytochrome C oxidase activities.CONCLUSION: These findings indicate that even within a specific cancer the intracellular apoptotic signals engaged by resveratrol are cell type dependent and suggest that such differences may be related to differentiation or lack of differentiation of these cells.

  8. BMP2 Transfer to Neighboring Cells and Activation of Signaling.

    Science.gov (United States)

    Alborzinia, Hamed; Shaikhkarami, Marjan; Hortschansky, Peter; Wölfl, Stefan

    2016-09-01

    Morphogen gradients and concentration are critical features during early embryonic development and cellular differentiation. Previously we reported the preparation of biologically active, fluorescently labeled BMP2 and quantitatively analyzed their binding to the cell surface and followed BMP2 endocytosis over time on the level of single endosomes. Here we show that this internalized BMP2 can be transferred to neighboring cells and, moreover, also activates downstream BMP signaling in adjacent cells, indicated by Smad1/5/8 phosphorylation and activation of the downstream target gene id1. Using a 3D matrix to modulate cell-cell contacts in culture we could show that direct cell-cell contact significantly increased BMP2 transfer. Using inhibitors of vesicular transport, transfer was strongly inhibited. Interestingly, cotreatment with the physiological BMP inhibitor Noggin increased BMP2 uptake and transfer, albeit activation of Smad signaling in neighboring cells was completely suppressed. Our findings present a novel and interesting mechanism by which morphogens such as BMP2 can be transferred between cells and how this is modulated by BMP antagonists such as Noggin, and how this influences activation of Smad signaling by BMP2 in neighboring cells. PMID:27306974

  9. Cilia and coordination of signaling networks during heart development

    DEFF Research Database (Denmark)

    Koefoed, Karen; Veland, Iben Rønn; Pedersen, Lotte Bang;

    2014-01-01

    Primary cilia are unique sensory organelles that coordinate a wide variety of different signaling pathways to control cellular processes during development and in tissue homeostasis. Defects in function or assembly of these antenna-like structures are therefore associated with a broad range...

  10. Exploring signal transduction networks using mass spectrometry-based proteomics

    NARCIS (Netherlands)

    Meijer, L.A.T.

    2012-01-01

    Mass spectrometry (MS)-based proteomics can be used to answer a diversity of biological questions. In this thesis, we describe the application of several MS-based proteomics approaches to get insight into several aspects of signal transduction. In Chapter 2, quantitative global phosphoproteomics are

  11. Single-Cell Phosphoproteomics Resolves Adaptive Signaling Dynamics and Informs Targeted Combination Therapy in Glioblastoma.

    Science.gov (United States)

    Wei, Wei; Shin, Young Shik; Xue, Min; Matsutani, Tomoo; Masui, Kenta; Yang, Huijun; Ikegami, Shiro; Gu, Yuchao; Herrmann, Ken; Johnson, Dazy; Ding, Xiangming; Hwang, Kiwook; Kim, Jungwoo; Zhou, Jian; Su, Yapeng; Li, Xinmin; Bonetti, Bruno; Chopra, Rajesh; James, C David; Cavenee, Webster K; Cloughesy, Timothy F; Mischel, Paul S; Heath, James R; Gini, Beatrice

    2016-04-11

    Intratumoral heterogeneity of signaling networks may contribute to targeted cancer therapy resistance, including in the highly lethal brain cancer glioblastoma (GBM). We performed single-cell phosphoproteomics on a patient-derived in vivo GBM model of mTOR kinase inhibitor resistance and coupled it to an analytical approach for detecting changes in signaling coordination. Alterations in the protein signaling coordination were resolved as early as 2.5 days after treatment, anticipating drug resistance long before it was clinically manifest. Combination therapies were identified that resulted in complete and sustained tumor suppression in vivo. This approach may identify actionable alterations in signal coordination that underlie adaptive resistance, which can be suppressed through combination drug therapy, including non-obvious drug combinations. PMID:27070703

  12. DrCell – A Software Tool for the Analysis of Cell Signals Recorded with Extracellular Microelectrodes

    Directory of Open Access Journals (Sweden)

    Christoph Nick

    2013-09-01

    Full Text Available Microelectrode arrays (MEAs have been applied for in vivo and in vitro recording and stimulation of electrogenic cells, namely neurons and cardiac myocytes, for almost four decades. Extracellular recordings using the MEA technique inflict minimum adverse effects on cells and enable long term applications such as implants in brain or heart tissue. Hence, MEAs pose a powerful tool for studying the processes of learning and memory, investigating the pharmacological impacts of drugs and the fundamentals of the basic electrical interface between novel electrode materials and biological tissue. Yet in order to study the areas mentioned above, powerful signal processing and data analysis tools are necessary. In this paper a novel toolbox for the offline analysis of cell signals is presented that allows a variety of parameters to be detected and analyzed. We developed an intuitive graphical user interface (GUI that enables users to perform high quality data analysis. The presented MATLAB® based toolbox gives the opportunity to examine a multitude of parameters, such as spike and neural burst timestamps, network bursts, as well as heart beat frequency and signal propagation for cardiomyocytes, signal-to-noise ratio and many more. Additionally a spike-sorting tool is included, offering a powerful tool for cases of multiple cell recordings on a single microelectrode. For stimulation purposes, artifacts caused by the stimulation signal can be removed from the recording, allowing the detection of field potentials as early as 5 ms after the stimulation.

  13. Integrating signals from the T-cell receptor and the interleukin-2 receptor.

    Directory of Open Access Journals (Sweden)

    Tilo Beyer

    2011-08-01

    Full Text Available T cells orchestrate the adaptive immune response, making them targets for immunotherapy. Although immunosuppressive therapies prevent disease progression, they also leave patients susceptible to opportunistic infections. To identify novel drug targets, we established a logical model describing T-cell receptor (TCR signaling. However, to have a model that is able to predict new therapeutic approaches, the current drug targets must be included. Therefore, as a next step we generated the interleukin-2 receptor (IL-2R signaling network and developed a tool to merge logical models. For IL-2R signaling, we show that STAT activation is independent of both Src- and PI3-kinases, while ERK activation depends upon both kinases and additionally requires novel PKCs. In addition, our merged model correctly predicted TCR-induced STAT activation. The combined network also allows information transfer from one receptor to add detail to another, thereby predicting that LAT mediates JNK activation in IL-2R signaling. In summary, the merged model not only enables us to unravel potential cross-talk, but it also suggests new experimental designs and provides a critical step towards designing strategies to reprogram T cells.

  14. Cross talk Initiated by Endothelial Cells Enhances Migration and Inhibits Anoikis of Squamous Cell Carcinoma Cells through STAT3/Akt/ERK Signaling

    Directory of Open Access Journals (Sweden)

    Kathleen G. Neiva

    2009-06-01

    Full Text Available It is well known that cancer cells secrete angiogenic factors to recruit and sustain tumor vascular networks. However, little is known about the effect of endothelial cell-secreted factors on the phenotype and behavior of tumor cells. The hypothesis underlying this study is that endothelial cells initiate signaling pathways that enhance tumor cell survival and migration. Here, we observed that soluble mediators from primary human dermal microvascular endothelial cells induce phosphorylation of signal transducer and activator of transcription 3 (STAT3, Akt, and extracellular signal-regulated kinase (ERK in a panel of head and neck squamous cell carcinoma (HNSCC cells (OSCC-3, UM-SCC-1, UM-SCC-17B, UM-SCC-74A. Gene expression analysis demonstrated that interleukin-6 (IL- 6, interleukin-8 (CXCL8, and epidermal growth factor (EGF are upregulated in endothelial cells cocultured with HNSCC. Blockade of endothelial cell-derived IL-6, CXCL8, or EGF by gene silencing or neutralizing antibodies inhibited phosphorylation of STAT3, Akt, and ERK in tumor cells, respectively. Notably, activation of STAT3, Akt, and ERK by endothelial cells enhanced migration and inhibited anoikis of tumor cells. We have previously demonstrated that Bcl-2 is upregulated in tumor microvessels in patients with HNSCC. Here, we observed that Bcl-2 signaling induces expression of IL-6, CXCL8, and EGF, providing a mechanism for the upregulation of these cytokines in tumor-associated endothelial cells. This study expands the contribution of endothelial cells to the pathobiology of tumor cells. It unveils a new mechanism in which endothelial cells function as initiators of molecular crosstalks that enhance survival and migration of tumor cells.

  15. Influence of smartphone Wi-Fi signals on adipose-derived stem cells.

    Science.gov (United States)

    Lee, Sang-Soon; Kim, Hyung-Rok; Kim, Min-Sook; Park, Sanghoon; Yoon, Eul-Sik; Park, Seung-Ha; Kim, Deok-Woo

    2014-09-01

    The use of smartphones is expanding rapidly around the world, thus raising the concern of possible harmful effects of radiofrequency generated by smartphones. We hypothesized that Wi-Fi signals from smartphones may have harmful influence on adipose-derived stem cells (ASCs). An in vitro study was performed to assess the influence of Wi-Fi signals from smartphones. The ASCs were incubated under a smartphone connected to a Wi-Fi network, which was uploading files at a speed of 4.8 Mbps for 10 hours a day, for a total of 5 days. We constructed 2 kinds of control cells, one grown in 37°C and the other grown in 39°C. After 5 days of Wi-Fi exposure from the smartphone, the cells underwent cell proliferation assay, apoptosis assay, and flow cytometry analysis. Three growth factors, vascular endothelial growth factor, hepatocyte growth factor, and transforming growth factor-β, were measured from ASC-conditioned media. Cell proliferation rate was higher in Wi-Fi-exposed cells and 39°C control cells compared with 37°C control cells. Apoptosis assay, flow cytometry analysis, and growth factor concentrations showed no remarkable differences among the 3 groups. We could not find any harmful effects of Wi-Fi electromagnetic signals from smartphones. The increased proliferation of ASCs under the smartphone, however, might be attributable to the thermal effect.

  16. Cytokinin signaling regulates pavement cell morphogenesis in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Hongjiang Li; Tongda Xu; Deshu Lin; Mingzhang Wen; Mingtang Xie; Jér(o)me Duclercq; Agnieszka Bielach

    2013-01-01

    The puzzle piece-shaped Arabidopsis leaf pavement cells (PCs) with interdigitated lobes and indents is a good model system to investigate the mechanisms that coordinate cell polarity and shape formation within a tissue.Auxin has been shown to coordinate the interdigitation by activating ROP GTPase-dependent signaling pathways.To identify additional components or mechanisms,we screened for mutants with abnormal PC morphogenesis and found that cytokinin signaling regulates the PC interdigitation pattern.Reduction in cytokinin accumulation and defects in cytokinin signaling (such as in ARR7-over-expressing lines,the ahk3cre1 cytokinin receptor mutant,and the ahp12345 cytokinin signaling mutant) enhanced PC interdigitation,whereas over-production of cytokinin and over-activation of cytokinin signaling in an ARR20 over-expression line delayed or abolished PC interdigitation throughout the cotyledon.Genetic and biochemical analyses suggest that cytokinin signaling acts upstream of ROPs to suppress the formation of interdigitated pattern.Our results provide novel mechanistic understanding of the pathways controlling PC shape and uncover a new role for cytokinin signaling in cell morphogenesis.

  17. Copper as a key regulator of cell signalling pathways.

    Science.gov (United States)

    Grubman, Alexandra; White, Anthony R

    2014-05-22

    Copper is an essential element in many biological processes. The critical functions associated with copper have resulted from evolutionary harnessing of its potent redox activity. This same property also places copper in a unique role as a key modulator of cell signal transduction pathways. These pathways are the complex sequence of molecular interactions that drive all cellular mechanisms and are often associated with the interplay of key enzymes including kinases and phosphatases but also including intracellular changes in pools of smaller molecules. A growing body of evidence is beginning to delineate the how, when and where of copper-mediated control over cell signal transduction. This has been driven by research demonstrating critical changes to copper homeostasis in many disorders including cancer and neurodegeneration and therapeutic potential through control of disease-associated cell signalling changes by modulation of copper-protein interactions. This timely review brings together for the first time the diverse actions of copper as a key regulator of cell signalling pathways and discusses the potential strategies for controlling disease-associated signalling processes using copper modulators. It is hoped that this review will provide a valuable insight into copper as a key signal regulator and stimulate further research to promote our understanding of copper in disease and therapy.

  18. Integrating In Silico Resources to Map a Signaling Network

    OpenAIRE

    Liu, Hanqing; Beck, Tim N.; Golemis, Erica A.; Serebriiskii, Ilya G.

    2014-01-01

    The abundance of publicly available life science databases offer a wealth of information that can support interpretation of experimentally derived data and greatly enhance hypothesis generation. Protein interaction and functional networks are not simply new renditions of existing data: they provide the opportunity to gain insights into the specific physical and functional role a protein plays as part of the biological system. In this chapter, we describe different in silico tools that can qui...

  19. Inhibition of GSK3 by lithium, from single molecules to signaling networks

    Directory of Open Access Journals (Sweden)

    Laure eFreland

    2012-02-01

    Full Text Available For more than 60 years, the mood stabilizer lithium has been used alone or in combination for the treatment of bipolar disorder, schizophrenia, depression and other mental illnesses. Despite this long history, the molecular mechanisms trough which lithium regulates behavior are still poorly understood. Among several targets, lithium has been shown to directly inhibit glycogen synthase kinase 3 alpha and beta (GSK3α and GSK3β. However in vivo, lithium also inhibits GSK3 by regulating the activity of other mechanisms like the formation of a signaling complex comprised of beta-arrestin 2 and Akt. Here, we provide an overview of in vivo evidence supporting a role for inhibition of GSK3 in some behavioral effects of lithium. We also explore how regulation of GSK3 by lithium within a signaling network involving several molecular targets and cell surface receptors (e.g. G protein coupled receptors and receptor tyrosine kinases may provide cues to its relative pharmacological selectivity and its effects on disease mechanisms. A better understanding of these intricate actions of lithium at a systems level may allow the rational development of better mood stabilizer drugs with enhanced selectivity, efficacy and lesser side effects.

  20. Calcium signaling as a mediator of cell energy demand and a trigger to cell death.

    Science.gov (United States)

    Bhosale, Gauri; Sharpe, Jenny A; Sundier, Stephanie Y; Duchen, Michael R

    2015-09-01

    Calcium signaling is pivotal to a host of physiological pathways. A rise in calcium concentration almost invariably signals an increased cellular energy demand. Consistent with this, calcium signals mediate a number of pathways that together serve to balance energy supply and demand. In pathological states, calcium signals can precipitate mitochondrial injury and cell death, especially when coupled to energy depletion and oxidative or nitrosative stress. This review explores the mechanisms that couple cell signaling pathways to metabolic regulation or to cell death. The significance of these pathways is exemplified by pathological case studies, such as those showing loss of mitochondrial calcium uptake 1 in patients and ischemia/reperfusion injury.

  1. Integrated signaling networks in plant responses to sedentary endoparasitic nematodes: a perspective.

    Science.gov (United States)

    Li, Ruijuan; Rashotte, Aaron M; Singh, Narendra K; Weaver, David B; Lawrence, Kathy S; Locy, Robert D

    2015-01-01

    Sedentary plant endoparasitic nematodes can cause detrimental yield losses in crop plants making the study of detailed cellular, molecular, and whole plant responses to them a subject of importance. In response to invading nematodes and nematode-secreted effectors, plant susceptibility/resistance is mainly determined by the coordination of different signaling pathways including specific plant resistance genes or proteins, plant hormone synthesis and signaling pathways, as well as reactive oxygen signals that are generated in response to nematode attack. Crosstalk between various nematode resistance-related elements can be seen as an integrated signaling network regulated by transcription factors and small RNAs at the transcriptional, posttranscriptional, and/or translational levels. Ultimately, the outcome of this highly controlled signaling network determines the host plant susceptibility/resistance to nematodes.

  2. Cancer signaling networks and their implications for personalized medicine

    DEFF Research Database (Denmark)

    Creixell, Pau

    Amongst the unique features of cancer cells perhaps the most crucial one is the change in the cellular decision-making process. While both non-cancer and cancer cells are constantly integrating different external cues that reach them and computing cellular decisions (e.g. proliferation or apoptos...

  3. Genome-wide network analysis of Wnt signaling in three pediatric cancers

    Science.gov (United States)

    Bao, Ju; Lee, Ho-Jin; Zheng, Jie J.

    2013-10-01

    Genomic structural alteration is common in pediatric cancers, and analysis of data generated by the Pediatric Cancer Genome Project reveals such tumor-related alterations in many Wnt signaling-associated genes. Most pediatric cancers are thought to arise within developing tissues that undergo substantial expansion during early organ formation, growth and maturation, and Wnt signaling plays an important role in this development. We examined three pediatric tumors--medullobastoma, early T-cell precursor acute lymphoblastic leukemia, and retinoblastoma--that show multiple genomic structural variations within Wnt signaling pathways. We mathematically modeled this pathway to investigate the effects of cancer-related structural variations on Wnt signaling. Surprisingly, we found that an outcome measure of canonical Wnt signaling was consistently similar in matched cancer cells and normal cells, even in the context of different cancers, different mutations, and different Wnt-related genes. Our results suggest that the cancer cells maintain a normal level of Wnt signaling by developing multiple mutations.

  4. Determinants of Cell-to-Cell Variability in Protein Kinase Signaling

    OpenAIRE

    Matthias Jeschke; Stephan Baumgärtner; Stefan Legewie

    2013-01-01

    Cells reliably sense environmental changes despite internal and external fluctuations, but the mechanisms underlying robustness remain unclear. We analyzed how fluctuations in signaling protein concentrations give rise to cell-to-cell variability in protein kinase signaling using analytical theory and numerical simulations. We characterized the dose-response behavior of signaling cascades by calculating the stimulus level at which a pathway responds ('pathway sensitivity') and the maximal act...

  5. Key cancer cell signal transduction pathways as therapeutic targets.

    Science.gov (United States)

    Bianco, Roberto; Melisi, Davide; Ciardiello, Fortunato; Tortora, Giampaolo

    2006-02-01

    Growth factor signals are propagated from the cell surface, through the action of transmembrane receptors, to intracellular effectors that control critical functions in human cancer cells, such as differentiation, growth, angiogenesis, and inhibition of cell death and apoptosis. Several kinases are involved in transduction pathways via sequential signalling activation. These kinases include transmembrane receptor kinases (e.g., epidermal growth factor receptor EGFR); or cytoplasmic kinases (e.g., PI3 kinase). In cancer cells, these signalling pathways are often altered and results in a phenotype characterized by uncontrolled growth and increased capability to invade surrounding tissue. Therefore, these crucial transduction molecules represent attractive targets for cancer therapy. This review will summarize current knowledge of key signal transduction pathways, that are altered in cancer cells, as therapeutic targets for novel selective inhibitors. The most advanced targeted agents currently under development interfere with function and expression of several signalling molecules, including the EGFR family; the vascular endothelial growth factor and its receptors; and cytoplasmic kinases such as Ras, PI3K and mTOR.

  6. Mapping Complex Networks: Exploring Boolean Modeling of Signal Transduction Pathways

    OpenAIRE

    Bhardwaj, Gaurav; Wells, Christine P.; Albert, Reka; van Rossum, Damian B.; Patterson, Randen L

    2009-01-01

    In this study, we explored the utility of a descriptive and predictive bionetwork model for phospholipase C-coupled calcium signaling pathways, built with non-kinetic experimental information. Boolean models generated from these data yield oscillatory activity patterns for both the endoplasmic reticulum resident inositol-1,4,5-trisphosphate receptor (IP3R) and the plasma-membrane resident canonical transient receptor potential channel 3 (TRPC3). These results are specific as randomization of ...

  7. Control and Communication Network in Hybrid Fuel Cell Vehicles

    Institute of Scientific and Technical Information of China (English)

    朱元; 吴昊; 田光宇; 阳宪惠; 赵立安; 周伟波

    2004-01-01

    This paper describes the control and communication network in fuel cell vehicles, including both the protocol and the hardware.Based on the current protocol (ISO-11898 and SAE J1939), a new practical protocol is proposed and implemented for the control and communication network in fuel cell vehicles.To improve the reliability of data communication and to unify the network management, a new network system based on dual-port RAM is also implemented.

  8. Signals and Cells Involved in Regulating Liver Regeneration

    Directory of Open Access Journals (Sweden)

    Liang-I. Kang

    2012-12-01

    Full Text Available Liver regeneration is a complex phenomenon aimed at maintaining a constant liver mass in the event of injury resulting in loss of hepatic parenchyma. Partial hepatectomy is followed by a series of events involving multiple signaling pathways controlled by mitogenic growth factors (HGF, EGF and their receptors (MET and EGFR. In addition multiple cytokines and other signaling molecules contribute to the orchestration of a signal which drives hepatocytes into DNA synthesis. The other cell types of the liver receive and transmit to hepatocytes complex signals so that, in the end of the regenerative process, complete hepatic tissue is assembled and regeneration is terminated at the proper time and at the right liver size. If hepatocytes fail to participate in this process, the biliary compartment is mobilized to generate populations of progenitor cells which transdifferentiate into hepatocytes and restore liver size.

  9. Hedgehog signaling regulates telomerase reverse transcriptase in human cancer cells.

    Directory of Open Access Journals (Sweden)

    Tapati Mazumdar

    Full Text Available The Hedgehog (HH signaling pathway is critical for normal embryonic development, tissue patterning and cell differentiation. Aberrant HH signaling is involved in multiple human cancers. HH signaling involves a multi-protein cascade activating the GLI proteins that transcriptionally regulate HH target genes. We have previously reported that HH signaling is essential for human colon cancer cell survival and inhibition of this signal induces DNA damage and extensive cell death. Here we report that the HH/GLI axis regulates human telomerase reverse transcriptase (hTERT, which determines the replication potential of cancer cells. Suppression of GLI1/GLI2 functions by a C-terminus truncated GLI3 repressor mutant (GLI3R, or by GANT61, a pharmacological inhibitor of GLI1/GLI2, reduced hTERT protein expression in human colon cancer, prostate cancer and Glioblastoma multiforme (GBM cell lines. Expression of an N-terminus deleted constitutively active mutant of GLI2 (GLI2ΔN increased hTERT mRNA and protein expression and hTERT promoter driven luciferase activity in human colon cancer cells while GANT61 inhibited hTERT mRNA expression and hTERT promoter driven luciferase activity. Chromatin immunoprecipitation with GLI1 or GLI2 antibodies precipitated fragments of the hTERT promoter in human colon cancer cells, which was reduced upon exposure to GANT61. In contrast, expression of GLI1 or GLI2ΔN in non-malignant 293T cells failed to alter the levels of hTERT mRNA and protein, or hTERT promoter driven luciferase activity. Further, expression of GLI2ΔN increased the telomerase enzyme activity, which was reduced by GANT61 administration in human colon cancer, prostate cancer, and GBM cells. These results identify hTERT as a direct target of the HH signaling pathway, and reveal a previously unknown role of the HH/GLI axis in regulating the replication potential of cancer cells. These findings are of significance in understanding the important regulatory

  10. Predicted molecular signaling guiding photoreceptor cell migration following transplantation into damaged retina

    Science.gov (United States)

    Unachukwu, Uchenna John; Warren, Alice; Li, Ze; Mishra, Shawn; Zhou, Jing; Sauane, Moira; Lim, Hyungsik; Vazquez, Maribel; Redenti, Stephen

    2016-03-01

    To replace photoreceptors lost to disease or trauma and restore vision, laboratories around the world are investigating photoreceptor replacement strategies using subretinal transplantation of photoreceptor precursor cells (PPCs) and retinal progenitor cells (RPCs). Significant obstacles to advancement of photoreceptor cell-replacement include low migration rates of transplanted cells into host retina and an absence of data describing chemotactic signaling guiding migration of transplanted cells in the damaged retinal microenvironment. To elucidate chemotactic signaling guiding transplanted cell migration, bioinformatics modeling of PPC transplantation into light-damaged retina was performed. The bioinformatics modeling analyzed whole-genome expression data and matched PPC chemotactic cell-surface receptors to cognate ligands expressed in the light-damaged retinal microenvironment. A library of significantly predicted chemotactic ligand-receptor pairs, as well as downstream signaling networks was generated. PPC and RPC migration in microfluidic ligand gradients were analyzed using a highly predicted ligand-receptor pair, SDF-1α - CXCR4, and both PPCs and RPCs exhibited significant chemotaxis. This work present a systems level model and begins to elucidate molecular mechanisms involved in PPC and RPC migration within the damaged retinal microenvironment.

  11. Predicted molecular signaling guiding photoreceptor cell migration following transplantation into damaged retina.

    Science.gov (United States)

    Unachukwu, Uchenna John; Warren, Alice; Li, Ze; Mishra, Shawn; Zhou, Jing; Sauane, Moira; Lim, Hyungsik; Vazquez, Maribel; Redenti, Stephen

    2016-01-01

    To replace photoreceptors lost to disease or trauma and restore vision, laboratories around the world are investigating photoreceptor replacement strategies using subretinal transplantation of photoreceptor precursor cells (PPCs) and retinal progenitor cells (RPCs). Significant obstacles to advancement of photoreceptor cell-replacement include low migration rates of transplanted cells into host retina and an absence of data describing chemotactic signaling guiding migration of transplanted cells in the damaged retinal microenvironment. To elucidate chemotactic signaling guiding transplanted cell migration, bioinformatics modeling of PPC transplantation into light-damaged retina was performed. The bioinformatics modeling analyzed whole-genome expression data and matched PPC chemotactic cell-surface receptors to cognate ligands expressed in the light-damaged retinal microenvironment. A library of significantly predicted chemotactic ligand-receptor pairs, as well as downstream signaling networks was generated. PPC and RPC migration in microfluidic ligand gradients were analyzed using a highly predicted ligand-receptor pair, SDF-1α - CXCR4, and both PPCs and RPCs exhibited significant chemotaxis. This work present a systems level model and begins to elucidate molecular mechanisms involved in PPC and RPC migration within the damaged retinal microenvironment. PMID:26935401

  12. Protein conservation and variation suggest mechanisms of cell type-specific modulation of signaling pathways.

    Science.gov (United States)

    Schaefer, Martin H; Yang, Jae-Seong; Serrano, Luis; Kiel, Christina

    2014-06-01

    Many proteins and signaling pathways are present in most cell types and tissues and yet perform specialized functions. To elucidate mechanisms by which these ubiquitous pathways are modulated, we overlaid information about cross-cell line protein abundance and variability, and evolutionary conservation onto functional pathway components and topological layers in the pathway hierarchy. We found that the input (receptors) and the output (transcription factors) layers evolve more rapidly than proteins in the intermediary transmission layer. In contrast, protein expression variability decreases from the input to the output layer. We observed that the differences in protein variability between the input and transmission layer can be attributed to both the network position and the tendency of variable proteins to physically interact with constitutively expressed proteins. Differences in protein expression variability and conservation are also accompanied by the tendency of conserved and constitutively expressed proteins to acquire somatic mutations, while germline mutations tend to occur in cell type-specific proteins. Thus, conserved core proteins in the transmission layer could perform a fundamental role in most cell types and are therefore less tolerant to germline mutations. In summary, we propose that the core signal transmission machinery is largely modulated by a variable input layer through physical protein interactions. We hypothesize that the bow-tie organization of cellular signaling on the level of protein abundance variability contributes to the specificity of the signal response in different cell types. PMID:24922536

  13. Protein conservation and variation suggest mechanisms of cell type-specific modulation of signaling pathways.

    Directory of Open Access Journals (Sweden)

    Martin H Schaefer

    2014-06-01

    Full Text Available Many proteins and signaling pathways are present in most cell types and tissues and yet perform specialized functions. To elucidate mechanisms by which these ubiquitous pathways are modulated, we overlaid information about cross-cell line protein abundance and variability, and evolutionary conservation onto functional pathway components and topological layers in the pathway hierarchy. We found that the input (receptors and the output (transcription factors layers evolve more rapidly than proteins in the intermediary transmission layer. In contrast, protein expression variability decreases from the input to the output layer. We observed that the differences in protein variability between the input and transmission layer can be attributed to both the network position and the tendency of variable proteins to physically interact with constitutively expressed proteins. Differences in protein expression variability and conservation are also accompanied by the tendency of conserved and constitutively expressed proteins to acquire somatic mutations, while germline mutations tend to occur in cell type-specific proteins. Thus, conserved core proteins in the transmission layer could perform a fundamental role in most cell types and are therefore less tolerant to germline mutations. In summary, we propose that the core signal transmission machinery is largely modulated by a variable input layer through physical protein interactions. We hypothesize that the bow-tie organization of cellular signaling on the level of protein abundance variability contributes to the specificity of the signal response in different cell types.

  14. Keeping Signals Straight: How Cells Process Information and Make Decisions.

    Science.gov (United States)

    Laub, Michael T

    2016-07-01

    As we become increasingly dependent on electronic information-processing systems at home and work, it's easy to lose sight of the fact that our very survival depends on highly complex biological information-processing systems. Each of the trillions of cells that form the human body has the ability to detect and respond to a wide range of stimuli and inputs, using an extraordinary set of signaling proteins to process this information and make decisions accordingly. Indeed, cells in all organisms rely on these signaling proteins to survive and proliferate in unpredictable and sometimes rapidly changing environments. But how exactly do these proteins relay information within cells, and how do they keep a multitude of incoming signals straight? Here, I describe recent efforts to understand the fidelity of information flow inside cells. This work is providing fundamental insight into how cells function. Additionally, it may lead to the design of novel antibiotics that disrupt the signaling of pathogenic bacteria or it could help to guide the treatment of cancer, which often involves information-processing gone awry inside human cells. PMID:27427909

  15. Bioelectric signal classification using a recurrent probabilistic neural network with time-series discriminant component analysis.

    Science.gov (United States)

    Hayashi, Hideaki; Shima, Keisuke; Shibanoki, Taro; Kurita, Yuichi; Tsuji, Toshio

    2013-01-01

    This paper outlines a probabilistic neural network developed on the basis of time-series discriminant component analysis (TSDCA) that can be used to classify high-dimensional time-series patterns. TSDCA involves the compression of high-dimensional time series into a lower-dimensional space using a set of orthogonal transformations and the calculation of posterior probabilities based on a continuous-density hidden Markov model that incorporates a Gaussian mixture model expressed in the reduced-dimensional space. The analysis can be incorporated into a neural network so that parameters can be obtained appropriately as network coefficients according to backpropagation-through-time-based training algorithm. The network is considered to enable high-accuracy classification of high-dimensional time-series patterns and to reduce the computation time taken for network training. In the experiments conducted during the study, the validity of the proposed network was demonstrated for EEG signals.

  16. Plasma membrane rafts engaged in T cell signalling: new developments in an old concept

    Directory of Open Access Journals (Sweden)

    Sangani Dhaval

    2009-09-01

    Full Text Available Abstract Considerable controversy arose over the concept that cholesterol/sphingolipid-rich rafts in the T cell plasma membrane serve as a platform for TCR signalling reactions. This controversy was founded on the initial definition of rafts as detergent resistant membranes which later turned out to misrepresent many features of cell membrane organisation under physiological conditions. Raft-organisation was subsequently studied using a number of detergent-free experimental approaches. The results led to a refined perception of membrane rafts which resolves the controversies. Here we review new biophysical and biochemical data which provide an updated picture of the highly dynamic nanometer-sized cholesterol/sphingolipid-rich raft domains stabilised by protein-networks to form TCR signalling platforms in the T cell plasma membrane.

  17. Plant gravitropic signal transduction: A network analysis leads to gene discovery

    Science.gov (United States)

    Wyatt, Sarah

    Gravity plays a fundamental role in plant growth and development. Although a significant body of research has helped define the events of gravity perception, the role of the plant growth regulator auxin, and the mechanisms resulting in the gravity response, the events of signal transduction, those that link the biophysical action of perception to a biochemical signal that results in auxin redistribution, those that regulate the gravitropic effects on plant growth, remain, for the most part, a “black box.” Using a cold affect, dubbed the gravity persistent signal (GPS) response, we developed a mutant screen to specifically identify components of the signal transduction pathway. Cloning of the GPS genes have identified new proteins involved in gravitropic signaling. We have further exploited the GPS response using a multi-faceted approach including gene expression microarrays, proteomics analysis, and bioinformatics analysis and continued mutant analysis to identified additional genes, physiological and biochemical processes. Gene expression data provided the foundation of a regulatory network for gravitropic signaling. Based on these gene expression data and related data sets/information from the literature/repositories, we constructed a gravitropic signaling network for Arabidopsis inflorescence stems. To generate the network, both a dynamic Bayesian network approach and a time-lagged correlation coefficient approach were used. The dynamic Bayesian network added existing information of protein-protein interaction while the time-lagged correlation coefficient allowed incorporation of temporal regulation and thus could incorporate the time-course metric from the data set. Thus the methods complemented each other and provided us with a more comprehensive evaluation of connections. Each method generated a list of possible interactions associated with a statistical significance value. The two networks were then overlaid to generate a more rigorous, intersected

  18. Cell wall integrity signalling in human pathogenic fungi.

    Science.gov (United States)

    Dichtl, Karl; Samantaray, Sweta; Wagener, Johannes

    2016-09-01

    Fungi are surrounded by a rigid structure, the fungal cell wall. Its plasticity and composition depend on active regulation of the underlying biosynthesis and restructuring processes. This involves specialised signalling pathways that control gene expression and activities of biosynthetic enzymes. The cell wall integrity (CWI) pathway is the central signalling cascade required for the adaptation to a wide spectrum of cell wall perturbing conditions, including heat, oxidative stress and antifungals. In the recent years, great efforts were made to analyse the CWI pathway of diverse fungi. It turned out that the CWI signalling cascade is mostly conserved in the fungal kingdom. In this review, we summarise as well as compare the current knowledge on the canonical CWI pathway in the human pathogenic fungi Candida albicans, Candida glabrata, Aspergillus fumigatus and Cryptococcus neoformans. Understanding the differences and similarities in the stress responses of these organisms could become a key to improving existing or developing new antifungal therapies. PMID:27155139

  19. AlliedSignal solid oxide fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Minh, N.; Barr, K.; Kelly, P.; Montgomery, K. [AlliedSignal Aerospace Equipment Systems, Torrance, CA (United States)

    1996-12-31

    AlliedSignal has been developing high-performance, lightweight solid oxide fuel cell (SOFC) technology for a broad spectrum of electric power generation applications. This technology is well suited for use in a variety of power systems, ranging from commercial cogeneration to military mobile power sources. The AlliedSignal SOFC is based on stacking high-performance thin-electrolyte cells with lightweight metallic interconnect assemblies to form a compact structure. The fuel cell can be operated at reduced temperatures (600{degrees} to 800{degrees}C). SOFC stacks based on this design has the potential of producing 1 kW/kg and 1 ML. This paper summarizes the technical status of the design, manufacture, and operation of AlliedSignal SOFCs.

  20. Cell outage compensation in LTE networks: Algorithms and performance assessment

    NARCIS (Netherlands)

    Amirijoo, M.; Jorguseski, L.; Litjens, R.; Schmelz, L.C.

    2011-01-01

    Cell outage compensation is a self-healing function and as such part of the Self-Organising Networks concept for mobile wireless networks. It aims at mitigating the degradation of coverage, capacity and service quality caused by a cell or site level outage. Upon detection of such an outage, cell out

  1. Cell-to-Cell stochastic fluctuations in apoptotic signaling can decide between life and death

    CERN Document Server

    Raychaudhuri, S; Nguyen, T; Khan, E M; Goldkorn, T

    2007-01-01

    Apoptosis, or genetically programmed cell death, is a crucial cellular process that maintains the balance between life and death in cells. The precise molecular mechanism of apoptosis signaling and how these two pathways are differentially activated under distinct apoptotic stimuli is poorly understood. We developed a Monte Carlo-based stochastic simulation model that can characterize distinct signaling behaviors in the two major pathways of apoptotic signaling using a novel probability distribution-based approach. Specifically, we show that for a weak death signal, such as low levels of death ligand Fas (CD95) binding or under stress conditions, the type 2 mitochondrial pathway dominates apoptotic signaling. Our results also show signaling in the type 2 pathway is stochastic, where the population average over many cells does not capture the cell-to-cell fluctuations in the time course (~1 - 10 hours) of downstream caspase-3 activation. On the contrary, the probability distribution of caspase-3 activation for...

  2. Regulation of interferon gamma signaling by suppressors of cytokine signaling and regulatory T cells

    Directory of Open Access Journals (Sweden)

    Joseph eLarkin

    2013-12-01

    Full Text Available Regulatory T cells (Tregs play an indispensable role in the prevention of autoimmune disease, as interferon gamma (IFN mediated, lethal autoimmunity occurs (in both mice and humans in their absence. In addition, regulatory T cells have been implicated in preventing the onset of autoimmune and auto-inflammatory conditions associated with aberrant IFN signaling such as type 1 diabetes, lupus, and LPS mediated endotoxemia. Notably, suppressor of cytokine signaling 1 deficient (SOCS1-/- mice also succumb to a lethal auto-inflammatory disease, dominated by excessive IFN signaling and bearing similar disease course kinetics to Treg deficient mice. Moreover SOCS1 deficiency has been implicated in lupus progression, and increased susceptibility to LPS mediated endotoxemia. Although it has been established that Tregs and SOCS1 play a critical role in the regulation of IFN signaling, and the prevention of lethal auto-inflammatory disease, the role of Treg/SOCS1 cross-talk in the regulation of IFN signaling has been essentially unexplored. This is especially pertinent as recent publications have implicated a role of SOCS1 in the stability of peripheral Tregs. This review will examine the emerging research findings implicating a critical role of the intersection of the SOCS1 and Treg regulatory pathways in the control of IFN gamma signaling and immune system function.

  3. Tolerance to drought and salt stress in plants: Unraveling the signaling networks

    Directory of Open Access Journals (Sweden)

    Dortje eGolldack

    2014-04-01

    Full Text Available Tolerance of plants to abiotic stressors such as drought and salinity is triggered by complex multicomponent signaling pathways to restore cellular homeostasis and promote survival. Major plant transcription factor families such as bZIP, NAC, AP2/ERF and MYB orchestrate regulatory networks underlying abiotic stress tolerance. Sucrose nonfermenting 1-related protein kinase 2 (SnRK2 and MAPK pathways contribute to initiation of stress adaptive downstream responses and promote plant growth and development. As a convergent point of multiple abiotic cues, cellular effects of environmental stresses are not only imbalances of ionic and osmotic homeostasis but also impaired photosynthesis, cellular energy depletion, and redox imbalances. Recent evidence of regulatory systems that link sensing and signaling of environmental conditions and the intracellular redox status have shed light on interfaces of stress and energy signaling. ROS (reactive oxygen species cause severe cellular damage by peroxidation and de-esterification of membrane lipids, however, current models also define a pivotal signaling function of ROS in triggering tolerance against stress. Recent research advances suggest and support a regulatory role of ROS in the cross talks of stress triggered hormonal signaling such as the abscisic acid (ABA pathway and endogenously induced redox and metabolite signals. Here, we discuss and review the versatile molecular convergence in the abiotic stress responsive signaling networks in the context of ROS and lipid derived signals and the specific role of stomatal signaling.

  4. Traffic Signal Synchronization in the Saturated High-Density Grid Road Network

    Directory of Open Access Journals (Sweden)

    Xiaojian Hu

    2015-01-01

    Full Text Available Most existing traffic signal synchronization strategies do not perform well in the saturated high-density grid road network (HGRN. Traffic congestion often occurs in the saturated HGRN, and the mobility of the network is difficult to restore. In order to alleviate traffic congestion and to improve traffic efficiency in the network, the study proposes a regional traffic signal synchronization strategy, named the long green and long red (LGLR traffic signal synchronization strategy. The essence of the strategy is to control the formation and dissipation of queues and to maximize the efficiency of traffic flows at signalized intersections in the saturated HGRN. With this strategy, the same signal control timing plan is used at all signalized intersections in the HGRN, and the straight phase of the control timing plan has a long green time and a long red time. Therefore, continuous traffic flows can be maintained when vehicles travel, and traffic congestion can be alleviated when vehicles stop. Using the strategy, the LGLR traffic signal synchronization model is developed, with the objective of minimizing the number of stops. Finally, the simulation is executed to analyze the performance of the model by comparing it to other models, and the superiority of the LGLR model is evident in terms of delay, number of stops, queue length, and overall performance in the saturated HGRN.

  5. Traffic signal synchronization in the saturated high-density grid road network.

    Science.gov (United States)

    Hu, Xiaojian; Lu, Jian; Wang, Wei; Zhirui, Ye

    2015-01-01

    Most existing traffic signal synchronization strategies do not perform well in the saturated high-density grid road network (HGRN). Traffic congestion often occurs in the saturated HGRN, and the mobility of the network is difficult to restore. In order to alleviate traffic congestion and to improve traffic efficiency in the network, the study proposes a regional traffic signal synchronization strategy, named the long green and long red (LGLR) traffic signal synchronization strategy. The essence of the strategy is to control the formation and dissipation of queues and to maximize the efficiency of traffic flows at signalized intersections in the saturated HGRN. With this strategy, the same signal control timing plan is used at all signalized intersections in the HGRN, and the straight phase of the control timing plan has a long green time and a long red time. Therefore, continuous traffic flows can be maintained when vehicles travel, and traffic congestion can be alleviated when vehicles stop. Using the strategy, the LGLR traffic signal synchronization model is developed, with the objective of minimizing the number of stops. Finally, the simulation is executed to analyze the performance of the model by comparing it to other models, and the superiority of the LGLR model is evident in terms of delay, number of stops, queue length, and overall performance in the saturated HGRN.

  6. Glycosynapses: microdomains controlling carbohydrate-dependent cell adhesion and signaling

    Directory of Open Access Journals (Sweden)

    Hakomori Senitiroh

    2004-01-01

    Full Text Available The concept of microdomains in plasma membranes was developed over two decades, following observation of polarity of membrane based on clustering of specific membrane components. Microdomains involved in carbohydrate-dependent cell adhesion with concurrent signal transduction that affect cellular phenotype are termed "glycosynapse". Three types of glycosynapse have been distinguished: "type 1" having glycosphingolipid associated with signal transducers (small G-proteins, cSrc, Src family kinases and proteolipids; "type 2" having O-linked mucin-type glycoprotein associated with Src family kinases; and "type 3" having N-linked integrin receptor complexed with tetraspanin and ganglioside. Different cell types are characterized by presence of specific types of glycosynapse or their combinations, whose adhesion induces signal transduction to either facilitate or inhibit signaling. E.g., signaling through type 3 glycosynapse inhibits cell motility and differentiation. Glycosynapses are distinct from classically-known microdomains termed "caveolae", "caveolar membrane", or more recently "lipid raft", which are not involved in carbohydrate-dependent cell adhesion. Type 1 and type 3 glycosynapses are resistant to cholesterol-binding reagents, whereas structure and function of "caveolar membrane" or "lipid raft" are disrupted by these reagents. Various data indicate a functional role of glycosynapses during differentiation, development, and oncogenic transformation.

  7. The Primary Cilium in Cell Signaling and Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Michaud III, Edward J [ORNL; Yoder, Bradley [University of Alabama, Birmingham

    2006-01-01

    The primary cilium is a microtubule-based antenna-like structure that emanates from the surface of virtually all cells in the mammalian body. It is anchored to the cell by the basal body, which develops from the mother centriole of the centrosome in a manner that is coordinately regulated with the cell cycle. The primary cilium is a sensory organelle that receives both mechanical and chemical signals from other cells and the environment, and transmits these signals to the nucleus to elicit a cellular response. Recent studies revealed that multiple components of the Sonic hedgehog and plateletderived growth factor receptor-A signal transduction pathways localize to the primary cilium, and that loss of the cilium blocks ligand-induced signaling by both pathways. In light of the major role that these pathways play in numerous types of cancer, we anticipate that the emerging discoveries being made about the function of the primary cilium in signaling pathways that are critical for embryonic development and tissue homeostasis in adults will also provide novel insights into the molecular mechanisms of carcinogenesis. (Cancer Res 2006; 66 13): 6463-7)

  8. Cell to Cell Signalling via Exosomes Through esRNA

    OpenAIRE

    Lotvall, Jan; Valadi, Hadi

    2007-01-01

    Exosomes are small vesicles of endosomal origin that can be released by many different cells to the microenvironment. Exosomes have been shown to participate in the immune system, by mediating antigen presentation. We have recently shown the presence of both mRNA and microRNA in exosomes, specifically in exosomes derived from mast cells. This RNA can be transferred between one mast cell to another, most likely through fusion of the exosome to the recipient cell membrane. The delivered RNA is ...

  9. Vitamin D cell signalling in health and disease.

    Science.gov (United States)

    Berridge, Michael J

    2015-04-24

    Vitamin D deficiency has been linked to many human diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), hypertension and cardiovascular disease. A Vitamin D phenotypic stability hypothesis, which is developed in this review, attempts to describe how this vital hormone acts to maintain healthy cellular functions. This role of Vitamin D as a guardian of phenotypic stability seems to depend on its ability to maintain the redox and Ca(2+) signalling systems. It is argued that its primary action is to maintain the expression of those signalling components responsible for stabilizing the low resting state of these two signalling pathways. This phenotypic stability role is facilitated through the ability of vitamin D to increase the expression of both Nrf2 and the anti-ageing protein Klotho, which are also major regulators of Ca(2+) and redox signalling. A decline in Vitamin D levels will lead to a decline in the stability of this regulatory signalling network and may account for why so many of the major diseases in man, which have been linked to vitamin D deficiency, are associated with a dysregulation in both ROS and Ca(2+) signalling. PMID:25998734

  10. Multimodal signalling in the North American barn swallow: a phenotype network approach

    Science.gov (United States)

    Wilkins, Matthew R.; Shizuka, Daizaburo; Joseph, Maxwell B.; Hubbard, Joanna K.; Safran, Rebecca J.

    2015-01-01

    Complex signals, involving multiple components within and across modalities, are common in animal communication. However, decomposing complex signals into traits and their interactions remains a fundamental challenge for studies of phenotype evolution. We apply a novel phenotype network approach for studying complex signal evolution in the North American barn swallow (Hirundo rustica erythrogaster). We integrate model testing with correlation-based phenotype networks to infer the contributions of female mate choice and male–male competition to the evolution of barn swallow communication. Overall, the best predictors of mate choice were distinct from those for competition, while moderate functional overlap suggests males and females use some of the same traits to assess potential mates and rivals. We interpret model results in the context of a network of traits, and suggest this approach allows researchers a more nuanced view of trait clustering patterns that informs new hypotheses about the evolution of communication systems. PMID:26423842

  11. Multimodal signalling in the North American barn swallow: a phenotype network approach.

    Science.gov (United States)

    Wilkins, Matthew R; Shizuka, Daizaburo; Joseph, Maxwell B; Hubbard, Joanna K; Safran, Rebecca J

    2015-10-01

    Complex signals, involving multiple components within and across modalities, are common in animal communication. However, decomposing complex signals into traits and their interactions remains a fundamental challenge for studies of phenotype evolution. We apply a novel phenotype network approach for studying complex signal evolution in the North American barn swallow (Hirundo rustica erythrogaster). We integrate model testing with correlation-based phenotype networks to infer the contributions of female mate choice and male-male competition to the evolution of barn swallow communication. Overall, the best predictors of mate choice were distinct from those for competition, while moderate functional overlap suggests males and females use some of the same traits to assess potential mates and rivals. We interpret model results in the context of a network of traits, and suggest this approach allows researchers a more nuanced view of trait clustering patterns that informs new hypotheses about the evolution of communication systems.

  12. Multimodal signalling in the North American barn swallow: a phenotype network approach.

    Science.gov (United States)

    Wilkins, Matthew R; Shizuka, Daizaburo; Joseph, Maxwell B; Hubbard, Joanna K; Safran, Rebecca J

    2015-10-01

    Complex signals, involving multiple components within and across modalities, are common in animal communication. However, decomposing complex signals into traits and their interactions remains a fundamental challenge for studies of phenotype evolution. We apply a novel phenotype network approach for studying complex signal evolution in the North American barn swallow (Hirundo rustica erythrogaster). We integrate model testing with correlation-based phenotype networks to infer the contributions of female mate choice and male-male competition to the evolution of barn swallow communication. Overall, the best predictors of mate choice were distinct from those for competition, while moderate functional overlap suggests males and females use some of the same traits to assess potential mates and rivals. We interpret model results in the context of a network of traits, and suggest this approach allows researchers a more nuanced view of trait clustering patterns that informs new hypotheses about the evolution of communication systems. PMID:26423842

  13. Self-Organization in Disaster Resilient Heterogeneous Small Cell Networks

    OpenAIRE

    Zhang, Haijun; Jiang, Chunxiao; Hu, Rose Qingyang; Qian, Yi

    2015-01-01

    Heterogeneous small cell networks with overlay femtocells and macrocell is a promising solution for future heterogeneous wireless cellular communications. However, great resilience is needed in heterogeneous small cells in case of accidents, attacks and natural disasters. In this article, we first describe the network architecture of disaster resilient heterogeneous small cell networks (DRHSCNs), where several self-organization inspired approaches are applied. Based on the proposed resilient ...

  14. G-Protein Coupled Receptor Signaling Architecture of Mammalian Immune Cells

    OpenAIRE

    Natalia Polouliakh; Richard Nock; Frank Nielsen; Hiroaki Kitano

    2009-01-01

    A series of recent studies on large-scale networks of signaling and metabolic systems revealed that a certain network structure often called "bow-tie network" are observed. In signaling systems, bow-tie network takes a form with diverse and redundant inputs and outputs connected via a small numbers of core molecules. While arguments have been made that such network architecture enhances robustness and evolvability of biological systems, its functional role at a cellular level remains obscure....

  15. Communication efficiency and congestion of signal traffic in large-scale brain networks.

    Science.gov (United States)

    Mišić, Bratislav; Sporns, Olaf; McIntosh, Anthony R

    2014-01-01

    The complex connectivity of the cerebral cortex suggests that inter-regional communication is a primary function. Using computational modeling, we show that anatomical connectivity may be a major determinant for global information flow in brain networks. A macaque brain network was implemented as a communication network in which signal units flowed between grey matter nodes along white matter paths. Compared to degree-matched surrogate networks, information flow on the macaque brain network was characterized by higher loss rates, faster transit times and lower throughput, suggesting that neural connectivity may be optimized for speed rather than fidelity. Much of global communication was mediated by a "rich club" of hub regions: a sub-graph comprised of high-degree nodes that are more densely interconnected with each other than predicted by chance. First, macaque communication patterns most closely resembled those observed for a synthetic rich club network, but were less similar to those seen in a synthetic small world network, suggesting that the former is a more fundamental feature of brain network topology. Second, rich club regions attracted the most signal traffic and likewise, connections between rich club regions carried more traffic than connections between non-rich club regions. Third, a number of rich club regions were significantly under-congested, suggesting that macaque connectivity actively shapes information flow, funneling traffic towards some nodes and away from others. Together, our results indicate a critical role of the rich club of hub nodes in dynamic aspects of global brain communication.

  16. Plant Cell and Signaling Biology Blooms in the Wuyi Mountain

    Institute of Scientific and Technical Information of China (English)

    Jianping Hu

    2011-01-01

    @@ INTRODUCTION The Eighth International Conference on Plant Biology Fron-tiers, organized by Zhenbiao Yang, Chentao Lin, and Xing-wang Deng, was convened in the Wuyi Mountain Yeohwa Resort in Fujian, China, 23-27 September 2010.The meeting's main theme was Cells and Signals, featuring four keynote speeches, 45 plenary talks, and over 40 poster presentations that covered a wide range of topics, from dynamic cellular structures to how developmental and environmental signals control various plant processes at the juncture of cells.

  17. Phosphorylation site dynamics of early T-cell receptor signaling

    DEFF Research Database (Denmark)

    Chylek, Lily A; Akimov, Vyacheslav; Dengjel, Jörn;

    2014-01-01

    In adaptive immune responses, T-cell receptor (TCR) signaling impacts multiple cellular processes and results in T-cell differentiation, proliferation, and cytokine production. Although individual protein-protein interactions and phosphorylation events have been studied extensively, we lack...... with central roles in TCR signaling. The model was used to generate predictions suggesting unexpected roles for the phosphatase PTPN6 (SHP-1) and shortcut recruitment of the actin regulator WAS. Predictions were validated experimentally. This integration of proteomics and modeling illustrates a novel...

  18. Extracellular ATP signaling and homeostasis in plant cells

    OpenAIRE

    Sun, Jian; Zhang, Chunlan; Zhang, Xuan; Deng, Shurong; Zhao, Rui; Shen, Xin; Chen, Shaoliang

    2012-01-01

    Extracellular ATP (eATP) is now recognized as an important signaling agent in plant growth and defense response to environmental stimuli. eATP has dual functions in plant cell signaling, which is largely dependent on its concentration in the extracellular matrix (ECM). A lethal level of eATP (extremely low or high) causes cell death, whereas a moderate level of eATP benefits plant growth and development. Ecto-apyrases (Nucleoside Triphosphate-Diphosphohydrolase) help control the eATP concentr...

  19. Functional and gene network analyses of transcriptional signatures characterizing pre-weaned bovine mammary parenchyma or fat pad uncovered novel inter-tissue signaling networks during development

    Directory of Open Access Journals (Sweden)

    Lewin Harris A

    2010-05-01

    Full Text Available Abstract Background The neonatal bovine mammary fat pad (MFP surrounding the mammary parenchyma (PAR is thought to exert proliferative effects on the PAR through secretion of local modulators of growth induced by systemic hormones. We used bioinformatics to characterize transcriptomics differences between PAR and MFP from ~65 d old Holstein heifers. Data were mined to uncover potential crosstalk through the analyses of signaling molecules preferentially expressed in one tissue relative to the other. Results Over 9,000 differentially expressed genes (DEG; False discovery rate ≤ 0.05 were found of which 1,478 had a ≥1.5-fold difference between PAR and MFP. Within the DEG highly-expressed in PAR vs. MFP (n = 736 we noted significant enrichment of functions related to cell cycle, structural organization, signaling, and DNA/RNA metabolism. Only actin cytoskeletal signaling was significant among canonical pathways. DEG more highly-expressed in MFP vs. PAR (n = 742 belong to lipid metabolism, signaling, cell movement, and immune-related functions. Canonical pathways associated with metabolism and signaling, particularly immune- and metabolism-related were significantly-enriched. Network analysis uncovered a central role of MYC, TP53, and CTNNB1 in controlling expression of DEG highly-expressed in PAR vs. MFP. Similar analysis suggested a central role for PPARG, KLF2, EGR2, and EPAS1 in regulating expression of more highly-expressed DEG in MFP vs. PAR. Gene network analyses revealed putative inter-tissue crosstalk between cytokines and growth factors preferentially expressed in one tissue (e.g., ANGPTL1, SPP1, IL1B in PAR vs. MFP; ADIPOQ, IL13, FGF2, LEP in MFP vs. PAR with DEG preferentially expressed in the other tissue, particularly transcription factors or pathways (e.g., MYC, TP53, and actin cytoskeletal signaling in PAR vs. MFP; PPARG and LXR/RXR Signaling in MFP vs. PAR. Conclusions Functional analyses underscored a reciprocal influence in

  20. Adaptive coded spreading OFDM signal for dynamic-λ optical access network

    Science.gov (United States)

    Liu, Bo; Zhang, Lijia; Xin, Xiangjun

    2015-12-01

    This paper proposes and experimentally demonstrates a novel adaptive coded spreading (ACS) orthogonal frequency division multiplexing (OFDM) signal for dynamic distributed optical ring-based access network. The wavelength can be assigned to different remote nodes (RNs) according to the traffic demand of optical network unit (ONU). The ACS can provide dynamic spreading gain to different signals according to the split ratio or transmission length, which offers flexible power budget for the network. A 10×13.12 Gb/s OFDM access with ACS is successfully demonstrated over two RNs and 120 km transmission in the experiment. The demonstrated method may be viewed as one promising for future optical metro access network.

  1. Reduced-Dimension Linear Transform Coding of Correlated Signals in Networks

    CERN Document Server

    Goela, Naveen

    2012-01-01

    A model, called the linear transform network (LTN), is proposed to analyze the compression and estimation of correlated signals transmitted over directed acyclic graphs (DAGs). An LTN is a DAG network with multiple source and receiver nodes. Source nodes transmit subspace projections of random correlated signals by applying reduced-dimension linear transforms. The subspace projections are linearly processed by multiple relays and routed to intended receivers. Each receiver applies a linear estimator to approximate a subset of the sources with minimum mean squared error (MSE) distortion. The model is extended to include noisy networks with power constraints on transmitters. A key task is to compute all local compression matrices and linear estimators in the network to minimize end-to-end distortion. The non-convex problem is solved iteratively within an optimization framework using constrained quadratic programs (QPs). The proposed algorithm recovers as special cases the regular and distributed Karhunen-Loeve ...

  2. Drastic disorded-induced reduction of signal amplification in scale-free networks

    CERN Document Server

    Chacón, Ricardo

    2014-01-01

    Understanding information transmission across a network is a fundamental task for controlling and manipulating both biological and man-made information processing systems. Here, we show how topological resonant-like amplification effects in scale-free networks of signaling devices are drastically reduced when phase disorder in the external signals is considered. This is demonstrated theoretically by means of a star-like network of overdamped bistable systems, and confirmed numerically by simulations of scale-free networks of such systems. The taming effect of the phase disorder is found to be sensitive to the amplification's strength, while the topology-induced amplification mechanism is robust against this kind of quenched disorder in the sense that it does not significantly change the values of the coupling strength where amplification is maximum in its absence.

  3. Random matrix analysis for gene interaction networks in cancer cells

    CERN Document Server

    Kikkawa, Ayumi

    2016-01-01

    Motivation: The investigation of topological modifications of the gene interaction networks in cancer cells is essential for understanding the desease. We study gene interaction networks in various human cancer cells with the random matrix theory. This study is based on the Cancer Network Galaxy (TCNG) database which is the repository of huge gene interactions inferred by Bayesian network algorithms from 256 microarray experimental data downloaded from NCBI GEO. The original GEO data are provided by the high-throughput microarray expression experiments on various human cancer cells. We apply the random matrix theory to the computationally inferred gene interaction networks in TCNG in order to detect the universality in the topology of the gene interaction networks in cancer cells. Results: We found the universal behavior in almost one half of the 256 gene interaction networks in TCNG. The distribution of nearest neighbor level spacing of the gene interaction matrix becomes the Wigner distribution when the net...

  4. Apoptosis and signalling in acid sphingomyelinase deficient cells

    Directory of Open Access Journals (Sweden)

    Sillence Dan J

    2001-11-01

    Full Text Available Abstract Background Recent evidence suggests that the activation of a non-specific lipid scramblase during apoptosis induces the flipping of sphingomyelin from the cell surface to the cytoplasmic leaftet of the plasma membrane. Inner leaflet sphingomyelin is then cleaved to ceramide by a neutral sphingomyelinase. The production of this non-membrane forming lipid induces blebbing of the plasma membrane to aid rapid engulfment by professional phagocytes. However contrary evidence suggests that cells which are deficient in acid sphingomyelinase are defective in apoptosis signalling. This data has been interpreted as support for the activation of acid sphingomyelinase as an early signal in apoptosis. Hypothesis An alternative explanation is put forward whereby the accumulation of intracellular sphingomyelin in sphingomyelinase deficient cells leads to the formation of intracellular rafts which lead to the sequestration of important signalling molecules that are normally present on the cell surface where they perform their function. Testing the hypothesis It is expected that the subcellular distribution of important signalling molecules is altered in acid sphingomyelinase deficient cells, leading to their sequestration in late endosomes / lysosomes. Other sphingolipid storage diseases such as Niemann-Pick type C which have normal acid sphingomyelinase activity would also be expected to show the same phenotype. Implications of the hypothesis If true the hypothesis would provide a mechanism for the pathology of the sphingolipid storage diseases at the cellular level and also have implications for the role of ceramide in apoptosis.

  5. Lipid body accumulation alters calcium signaling dynamics in immune cells.

    Science.gov (United States)

    Greineisen, William E; Speck, Mark; Shimoda, Lori M N; Sung, Carl; Phan, Nolwenn; Maaetoft-Udsen, Kristina; Stokes, Alexander J; Turner, Helen

    2014-09-01

    There is well-established variability in the numbers of lipid bodies (LB) in macrophages, eosinophils, and neutrophils. Similarly to the steatosis observed in adipocytes and hepatocytes during hyperinsulinemia and nutrient overload, immune cell LB hyper-accumulate in response to bacterial and parasitic infection and inflammatory presentations. Recently we described that hyperinsulinemia, both in vitro and in vivo, drives steatosis and phenotypic changes in primary and transformed mast cells and basophils. LB reach high numbers in these steatotic cytosols, and here we propose that they could dramatically impact the transcytoplasmic signaling pathways. We compared calcium release and influx responses at the population and single cell level in normal and steatotic model mast cells. At the population level, all aspects of FcɛRI-dependent calcium mobilization, as well as activation of calcium-dependent downstream signaling targets such as NFATC1 phosphorylation are suppressed. At the single cell level, we demonstrate that LB are both sources and sinks of calcium following FcɛRI cross-linking. Unbiased analysis of the impact of the presence of LB on the rate of trans-cytoplasmic calcium signals suggest that LB enrichment accelerates calcium propagation, which may reflect a Bernoulli effect. LB abundance thus impacts this fundamental signaling pathway and its downstream targets.

  6. Regulation of rhythm genesis by volume-limited, astroglia-like signals in neural networks

    OpenAIRE

    Savtchenko, L P; Rusakov, D. A.

    2014-01-01

    Rhythmic activity of the brain often depends on synchronized spiking of interneuronal networks interacting with principal neurons. The quest for physiological mechanisms regulating network synchronization has therefore been firmly focused on synaptic circuits. However, it has recently emerged that synaptic efficacy could be influenced by astrocytes that release signalling molecules into their macroscopic vicinity. To understand how this volume-limited synaptic regulation can affect oscillatio...

  7. Power network transient stability electronics emulator using mixed-signal calibration

    OpenAIRE

    Lanz, Guillaume; Fabre, Laurent; Lilis, Georgios; Kyriakidis, Theodoros; Sallin, Denis; Cherkaoui, Rachid; Kayal, Maher

    2013-01-01

    The emerging field of power system emulation for real time smart grid management is very demanding in terms of speed and accuracy. This paper provides detailed information about the electronics calibration process of a high-speed power network emulator dedicated to the transient stability analysis of power systems. This emulator uses mixed-signal hardware to model the dynamic behavior of a power network. Special design allows the self-calibration of the analog electronics through successive m...

  8. Joint Implementation of Signal Control and Congestion Pricing in Transportation Network

    Directory of Open Access Journals (Sweden)

    Wei Mao

    2013-01-01

    Full Text Available The policy of jointly implementing signal control and congestion pricing in the transportation network is investigated. Bilevel programs are developed to model the simultaneous optimization of signal setting and congestion toll. The upper level aims to maximize the network reserve capacity or minimize the total travel time, subject to signal setting and toll constraints. The lower level is a deterministic user equilibrium problem given a plan of signal setting and congestion charge. Then the bilevel programs are transferred into the equivalent single level programs, and the solution methods are discussed. Finally, a numerical example is presented to illustrate the concepts and methods, and it is shown that the joint implementation policy can achieve promising results.

  9. Research of Crossbar Switch of High Performance Network of Signal Processing System

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The new type of embedded signal processing system based on the packet switched network is achieved. According to the application field and the characteristics of signal processing system, the RapidIO protocol is used to solve the high-speed interconnection of multi-digital signal processor (DSP). Based on this protocol, a kind of crossbar switch module which is used to interconnect multi-DSP in the system is introduced. A route strategy, some flow control rules and error control rules, which adapt to different RapidIO network topology are also introduced. Crossbar switch performance is analyzed in detail by the probability module. By researching the technique of crossbar switch and analyzing the system performance, it has a significant meaning for building the general signal processing system.

  10. Neighbor Discovery in a Wireless Sensor Network: Multipacket Reception Capability and Physical-Layer Signal Processing

    CERN Document Server

    Jeon, Jeongho

    2011-01-01

    In randomly deployed networks, such as sensor networks, an important problem for each node is to discover its \\textit{neighbor} nodes so that the connectivity amongst nodes can be established. In this paper, we consider this problem by incorporating the physical layer parameters in contrast to the most of the previous work which assumed a collision channel. Specifically, the pilot signals that nodes transmit are successfully decoded if the strength of the received signal relative to the interference is sufficiently high. Thus, each node must extract signal parameter information from the superposition of an unknown number of received signals. This problem falls naturally in the purview of random set theory (RST) which generalizes standard probability theory by assigning \\textit{sets}, rather than values, to random outcomes. The contributions in the paper are twofold: first, we introduce the realistic effect of physical layer considerations in the evaluation of the performance of \\textit{logical} discovery algo...

  11. ECG Signals Classification Based on Wavelet Transform and Probabilistic Neural Networks

    Directory of Open Access Journals (Sweden)

    Iman Moazen

    2009-09-01

    Full Text Available In this paper a very intelligent tool with low computational complexity is presented for Electroencephalogram (ECG signal classification. The proposed classifier is based on Discrete Wavelet Transform (DWT and Probabilistic Neural Network (PNN. The novelty of this approach is that signal statistics, morphological analysis and DWT of the histogram of signal (density estimation altogether have been used to achieve a higher recognition rate. ECG signals and their density estimation are decomposed into sub-classes using DWT. A PNN is used to classify ECG signals using statistical discriminating features which are extracted from ECG and its sub-classes. Experimental results on five classes of ECG signals from MIT-BIH arrhythmia database show that the proposed method learns very fast, low computational complexity, and a very high performance compared to the previous methods.

  12. Signal reconstruction in wireless sensor networks based on a cubature Kalman particle filter

    International Nuclear Information System (INIS)

    For solving the issues of the signal reconstruction of nonlinear non-Gaussian signals in wireless sensor networks (WSNs), a new signal reconstruction algorithm based on a cubature Kalman particle filter (CKPF) is proposed in this paper. We model the reconstruction signal first and then use the CKPF to estimate the signal. The CKPF uses a cubature Kalman filter (CKF) to generate the importance proposal distribution of the particle filter and integrates the latest observation, which can approximate the true posterior distribution better. It can improve the estimation accuracy. CKPF uses fewer cubature points than the unscented Kalman particle filter (UKPF) and has less computational overheads. Meanwhile, CKPF uses the square root of the error covariance for iterating and is more stable and accurate than the UKPF counterpart. Simulation results show that the algorithm can reconstruct the observed signals quickly and effectively, at the same time consuming less computational time and with more accuracy than the method based on UKPF. (general)

  13. Regulation of osteoprotegerin expression by Notch signaling in human oral squamous cell carcinoma cell line

    Institute of Scientific and Technical Information of China (English)

    Jeeranan Manokawinchoke; Thanaphum Osathanon; Prasit Pavasant

    2016-01-01

    Objective: To investigate the influence of Notch signaling on osteoprotegerin (OPG) expression in a human oral squamous cell carcinoma cell line. Methods: Activation of Notch signaling was performed by seeding cells on Jagged1 immobilized surfaces. In other experiments, a γ-secretase inhibitor was added to the culture medium to inhibit intracellular Notch signaling. OPG mRNA and protein were determined by real-time PCR and ELISA, respectively. Finally, publicly available microarray database analysis was performed using connection up- or down-regulation expression analysis of microarrays software. Results: Jagged1-treatment of HSC-4 cells enhanced HES1 and HEY1 mRNA expres-sion, confirming the intracellular activation of Notch signaling. OPG mRNA and protein levels were significantly suppressed upon Jagged1 treatment. Correspondingly, HSC-4 cells treated with a γ-secretase inhibitor resulted in a significant reduction of HES1 and HEY1 mRNA levels, and a marked increase in OPG protein expression was observed. These results implied that Notch signaling regulated OPG expression in HSC-4 cells. However, Jagged1 did not alter OPG expression in another human oral squamous cell carcinoma cell line (HSC-5) or a human head and neck squamous cell carcinoma cell line (HN22). Conclusions: Notch signaling regulated OPG expression in an HSC-4 cell line and this mechanism could be cell line specific.

  14. Network Signaling Channel for Improving ZigBee Performance in Dynamic Cluster-Tree Networks

    Directory of Open Access Journals (Sweden)

    D. Hämäläinen

    2008-03-01

    Full Text Available ZigBee is one of the most potential standardized technologies for wireless sensor networks (WSNs. Yet, sufficient energy-efficiency for the lowest power WSNs is achieved only in rather static networks. This severely limits the applicability of ZigBee in outdoor and mobile applications, where operation environment is harsh and link failures are common. This paper proposes a network channel beaconing (NCB algorithm for improving ZigBee performance in dynamic cluster-tree networks. NCB reduces the energy consumption of passive scans by dedicating one frequency channel for network beacon transmissions and by energy optimizing their transmission rate. According to an energy analysis, the power consumption of network maintenance operations reduces by 70%–76% in dynamic networks. In static networks, energy overhead is negligible. Moreover, the service time for data routing increases up to 37%. The performance of NCB is validated by ns-2 simulations. NCB can be implemented as an extension on MAC and NWK layers and it is fully compatible with ZigBee.

  15. Inquiry into Chemotherapy-Induced P53 Activation in Cancer Cells as a Model for Teaching Signal Transduction

    Science.gov (United States)

    Srougi, Melissa C.; Carson, Susan

    2013-01-01

    Intracellular and extracellular communication is conducted through an intricate and interwoven network of signal transduction pathways. The mechanisms for how cells speak with one another are of significant biological importance to both basic and industrial scientists from a number of different disciplines. We have therefore developed and…

  16. MONITORING NETWORK STRUCTURE AND CONTENT QUALITY OF SIGNAL PROCESSING ARTICLES ON WIKIPEDIA

    OpenAIRE

    Lee, Tao-Chun; Unnikrishnan, Jayakrishnan

    2013-01-01

    Wikipedia has become a widely-used resource on signal processing. However, the freelance-editing model of Wikipedia makes it challenging to maintain a high content quality. We develop techniques to monitor the network structure and content quality of Signal Processing (SP) articles on Wikipedia. Using metrics to quantify the importance and quality of articles, we generate a list of SP articles on Wikipedia arranged in the order of their need for improvement. The tools we use include the HITS ...

  17. A Neural Network Approach to Blind Estimation of PN Spreading Sequence in DS/SS Signals

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tian-qi; ZHOU Zheng-zhong

    2004-01-01

    In this paper, a new approach is proposed to estimate pseudo noise(PN) sequence in the lower SNR DS/SS signals blindly. This method utilizes the characteristics of self-organization, principal components analysis and extraction of unsupervised neural networks adequately, in addition to its higher-speed operation ability, successfully solve the difficult problem about PN sequence blind estimation. The theoretic analysis and experimental results show that this approach can work very well on lower SNR input signals.

  18. Exhaustively characterizing feasible logic models of a signaling network using Answer Set Programming

    OpenAIRE

    Guziolowski, Carito; Videla, Santiago; Eduati, Federica; Thiele, Sven; Cokelaer, Thomas; Siegel, Anne; Saez-Rodriguez, Julio

    2013-01-01

    Motivation: Logic modeling is a useful tool to study signal transduction across multiple pathways. Logic models can be generated by training a network containing the prior knowledge to phospho-proteomics data. The training can be performed using stochastic optimization procedures, but these are unable to guarantee a global optima or to report the complete family of feasible models. This, however, is essential to provide precise insight in the mechanisms underlaying signal transduction and gen...

  19. Paradigms and Paradox in the Ethylene Signaling Pathway and Interaction Network

    Institute of Scientific and Technical Information of China (English)

    Qiong Zhao; Hong-Wei Guo

    2011-01-01

    Phytohormone ethylene plays pivotal roles in plant response to developmental and environmental signals.During the past few years, the emerging evidence has led us to a new understanding of the signaling mechanisms and regulatory networks of the ethylene action. In this review, we focus on the major advances made in the past three years,particularly the findings leading to new paradigms and the observations under debate. With the recent demonstration of the regulation of the protein stability of numerous key signaling components including EIN3, ELL1, EIN2, ETR2, EBF1/EBF2,and ETP1/ETP2, we highlight proteasome-dependent protein degradation as an essential regulatory mechanism that is widely adopted in the ethylene signaling pathway. We also discuss the implication of the negative feedback mechanism in the ethylene signaling pathway in light of ethylene-induced ETR2 and EBF2 gene expression. Meanwhile, we summarize the controversy on the involvement of MKK9-MPK3/6 cascade in the ethylene signaling versus biosynthesis pathway, and discuss the possible role of this MAPK module in the ethylene action. Finally, we describe the complex interactions be-tween ethylene and other signaling pathways including auxin, light, and plant innate immunity, and propose that EIN3/ElL1 act as a convergence point in the ethylene-initiated signaling network.

  20. Turing instabilities in a mathematical model for signaling networks

    CERN Document Server

    Rätz, Andreas

    2011-01-01

    GTPase molecules are important regulators in cells that continuously run through an activation/deactivation and membrane-attachment/membrane-detachment cycle. Activated GTPase is able to localize in parts of the membranes and to induce cell polarity. As feedback loops contribute to the GTPase cycle and as the coupling between membrane-bound and cytoplasmic processes introduces different diffusion coefficients a Turing mechanism is a natural candidate for this symmetry breaking. We formulate a mathematical model that couples a reaction-diffusion system in the inner volume to a reaction-diffusion system on the membrane via a flux condition and an attachment/detachment law at the membrane. We present a reduction to a simpler non-local reaction-diffusion model and perform a stability analysis and numerical simulations for this reduction. Our model in principle does support Turing instabilities but only if the lateral diffusion of inactivated GTPase is much faster than the diffusion of activated GTPase.

  1. Modulation of host-cell MAPkinase signaling during fungal infection

    OpenAIRE

    Nir Osherov

    2015-01-01

    Fungal infections contribute substantially to human suffering and mortality. The interaction between fungal pathogens and their host involves the invasion and penetration of the surface epithelium, activation of cells of the innate immune system and the generation of an effective response to block infection. Numerous host-cell signaling pathways are activated during fungal infection. This review will focus on the main fungal pathogens Aspergillus fumigatus, Candida albicans and Cryptococcus n...

  2. The Signaling Mechanisms Underlying Cell Polarity and Chemotaxis

    OpenAIRE

    Wang, Fei

    2009-01-01

    Chemotaxis—the directed movement of cells in a gradient of chemoattractant—is essential for neutrophils to crawl to sites of inflammation and infection and for Dictyostelium discoideum (D. discoideum) to aggregate during morphogenesis. Chemoattractant-induced activation of spatially localized cellular signals causes cells to polarize and move toward the highest concentration of the chemoattractant. Extensive studies have been devoted to achieving a better understanding of the mechanism(s) use...

  3. Curcumin blocks interleukin-1 signaling in chondrosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Thomas Kalinski

    Full Text Available Interleukin (IL-1 signaling plays an important role in inflammatory processes, but also in malignant processes. The essential downstream event in IL-1 signaling is the activation of nuclear factor (NF-κB, which leads to the expression of several genes that are involved in cell proliferation, invasion, angiogenesis and metastasis, among them VEGF-A. As microenvironment-derived IL-1β is required for invasion and angiogenesis in malignant tumors, also in chondrosarcomas, we investigated IL-1β-induced signal transduction and VEGF-A expression in C3842 and SW1353 chondrosarcoma cells. We additionally performed in vitro angiogenesis assays and NF-κB-related gene expression analyses. Curcumin is a substance which inhibits IL-1 signaling very early by preventing the recruitment of IL-1 receptor associated kinase (IRAK to the IL-1 receptor. We demonstrate that IL-1 signaling and VEGF-A expression are blocked by Curcumin in chondrosarcoma cells. We further show that Curcumin blocks IL-1β-induced angiogenesis and NF-κB-related gene expression. We suppose that IL-1 blockade is an additional treatment option in chondrosarcoma, either by Curcumin, its derivatives or other IL-1 blocking agents.

  4. Gene network and pathway analysis of bovine mammary tissue challenged with Streptococcus uberis reveals induction of cell proliferation and inhibition of PPARγ signaling as potential mechanism for the negative relationships between immune response and lipid metabolism

    OpenAIRE

    Rodriguez-Zas Sandra L; Bionaz Massimo; Morin Dawn E; Drackley James K; Moyes Kasey M; Everts Robin E; Lewin Harris A; Loor Juan J

    2009-01-01

    Abstract Background Information generated via microarrays might uncover interactions between the mammary gland and Streptococcus uberis (S. uberis) that could help identify control measures for the prevention and spread of S. uberis mastitis, as well as improve overall animal health and welfare, and decrease economic losses to dairy farmers. The main objective of this study was to determine the most affected gene networks and pathways in mammary tissue in response to an intramammary infection...

  5. Quality-on-Demand Compression of EEG Signals for Telemedicine Applications Using Neural Network Predictors

    Directory of Open Access Journals (Sweden)

    N. Sriraam

    2011-01-01

    Full Text Available A telemedicine system using communication and information technology to deliver medical signals such as ECG, EEG for long distance medical services has become reality. In either the urgent treatment or ordinary healthcare, it is necessary to compress these signals for the efficient use of bandwidth. This paper discusses a quality on demand compression of EEG signals using neural network predictors for telemedicine applications. The objective is to obtain a greater compression gains at a low bit rate while preserving the clinical information content. A two-stage compression scheme with a predictor and an entropy encoder is used. The residue signals obtained after prediction is first thresholded using various levels of thresholds and are further quantized and then encoded using an arithmetic encoder. Three neural network models, single-layer and multi-layer perceptrons and Elman network are used and the results are compared with linear predictors such as FIR filters and AR modeling. The fidelity of the reconstructed EEG signal is assessed quantitatively using parameters such as PRD, SNR, cross correlation and power spectral density. It is found from the results that the quality of the reconstructed signal is preserved at a low PRD thereby yielding better compression results compared to results obtained using lossless scheme.

  6. Cellular Signaling Networks Function as Generalized Wiener-Kolmogorov Filters to Suppress Noise

    Science.gov (United States)

    Hinczewski, Michael; Thirumalai, D.

    2014-10-01

    Cellular signaling involves the transmission of environmental information through cascades of stochastic biochemical reactions, inevitably introducing noise that compromises signal fidelity. Each stage of the cascade often takes the form of a kinase-phosphatase push-pull network, a basic unit of signaling pathways whose malfunction is linked with a host of cancers. We show that this ubiquitous enzymatic network motif effectively behaves as a Wiener-Kolmogorov optimal noise filter. Using concepts from umbral calculus, we generalize the linear Wiener-Kolmogorov theory, originally introduced in the context of communication and control engineering, to take nonlinear signal transduction and discrete molecule populations into account. This allows us to derive rigorous constraints for efficient noise reduction in this biochemical system. Our mathematical formalism yields bounds on filter performance in cases important to cellular function—such as ultrasensitive response to stimuli. We highlight features of the system relevant for optimizing filter efficiency, encoded in a single, measurable, dimensionless parameter. Our theory, which describes noise control in a large class of signal transduction networks, is also useful both for the design of synthetic biochemical signaling pathways and the manipulation of pathways through experimental probes such as oscillatory input.

  7. A wireless sensor network for monitoring volcano-seismic signals

    Science.gov (United States)

    Lopes Pereira, R.; Trindade, J.; Gonçalves, F.; Suresh, L.; Barbosa, D.; Vazão, T.

    2014-12-01

    Monitoring of volcanic activity is important for learning about the properties of each volcano and for providing early warning systems to the population. Monitoring equipment can be expensive, and thus the degree of monitoring varies from volcano to volcano and from country to country, with many volcanoes not being monitored at all. This paper describes the development of a wireless sensor network (WSN) capable of collecting geophysical measurements on remote active volcanoes. Our main goals were to create a flexible, easy-to-deploy and easy-to-maintain, adaptable, low-cost WSN for temporary or permanent monitoring of seismic tremor. The WSN enables the easy installation of a sensor array in an area of tens of thousands of m2, allowing the location of the magma movements causing the seismic tremor to be calculated. This WSN can be used by recording data locally for later analysis or by continuously transmitting it in real time to a remote laboratory for real-time analyses. We present a set of tests that validate different aspects of our WSN, including a deployment on a suspended bridge for measuring its vibration.

  8. CLASSIFICATIONS OF EEG SIGNALS FOR MENTAL TASKS USING ADAPTIVE RBF NETWORK

    Institute of Scientific and Technical Information of China (English)

    薛建中; 郑崇勋; 闫相国

    2004-01-01

    Objective This paper presents classifications of mental tasks based on EEG signals using an adaptive Radial Basis Function (RBF) network with optimal centers and widths for the Brain-Computer Interface (BCI) schemes. Methods Initial centers and widths of the network are selected by a cluster estimation method based on the distribution of the training set. Using a conjugate gradient descent method, they are optimized during training phase according to a regularized error function considering the influence of their changes to output values. Results The optimizing process improves the performance of RBF network, and its best cognition rate of three task pairs over four subjects achieves 87.0%. Moreover, this network runs fast due to the fewer hidden layer neurons. Conclusion The adaptive RBF network with optimal centers and widths has high recognition rate and runs fast. It may be a promising classifier for on-line BCI scheme.

  9. Mastoparan-Induced Cell Death Signalling in Chlamydomonas Reinhardtii

    NARCIS (Netherlands)

    Yordanova, Z.P.; Kapchina-Toteva, V.M.; Woltering, E.J.; Cristescu, S.M.; Harren, F.J.M.; Yakimova, E.T.

    2009-01-01

    The present study was focused on the elucidation of stress-induced cell death signaling events in the unicellular alga Chlamydomonas reinhardtii exposed to treatment with wasp venom mastoparan. By applying pharmacological approach with specific inhibitors, we have investigated the involvement of eth

  10. Lipid signalling dynamics at the β-cell plasma membrane.

    Science.gov (United States)

    Wuttke, Anne

    2015-04-01

    Pancreatic β-cells are clustered in islets of Langerhans and secrete insulin in response to increased concentrations of circulating glucose. Insulin in turn acts on liver, muscle and fat tissue to store energy and normalize the blood glucose level. Inappropriate insulin release may lead to impaired glucose tolerance and diabetes. In addition to glucose, other nutrients, neural stimuli and hormonal stimuli control insulin secretion. Many of these signals are perceived at the plasma membrane, which is also the site where insulin granules undergo exocytosis. Therefore, it is not surprising that membrane lipids play an important role in the regulation of insulin secretion. β-cells release insulin in a pulsatile fashion. Signalling lipids integrate the nutrient and neurohormonal inputs to fine-tune, shape and co-ordinate the pulsatility. An important group of signalling lipids are phosphoinositides and their downstream messengers. This MiniReview will discuss new insights into lipid signalling dynamics in β-cells obtained from live-cell imaging experiments with fluorescent translocation biosensors. The plasma membrane concentration of several phosphoinositides and of their downstream messengers changes rapidly upon nutrient or neurohormonal stimulation. Glucose induces the most complex spatio-temporal patterns, typically involving oscillations of messenger concentrations, which sometimes are locally restricted. The tightly controlled levels of lipid messengers can mediate specific binding of downstream effectors to the plasma membrane, contributing to the appropriate regulation of insulin secretion.

  11. A signal processing analysis of Purkinje cells in vitro

    Directory of Open Access Journals (Sweden)

    Ze'ev R Abrams

    2010-05-01

    Full Text Available Cerebellar Purkinje cells in vitro fire recurrent sequences of Sodium and Calcium spikes. Here, we analyze the Purkinje cell using harmonic analysis, and our experiments reveal that its output signal is comprised of three distinct frequency bands, which are combined using Amplitude and Frequency Modulation (AM/FM. We find that the three characteristic frequencies - Sodium, Calcium and Switching – occur in various combinations in all waveforms observed using whole-cell current clamp recordings. We found that the Calcium frequency can display a frequency doubling of its frequency mode, and the Switching frequency can act as a possible generator of pauses that are typically seen in Purkinje output recordings. Using a reversibly photo-switchable kainate receptor agonist, we demonstrate the external modulation of the Calcium and Switching frequencies. These experiments and Fourier analysis suggest that the Purkinje cell can be understood as a harmonic signal oscillator, enabling a higher level of interpretation of Purkinje signaling based on modern signal processing techniques.

  12. Signal transduction events in aluminum-induced cell death in tomato suspension cells

    NARCIS (Netherlands)

    Iakimova, E.T.; Kapchina-Toteva, V.M.; Woltering, E.J.

    2007-01-01

    In this study, some of the signal transduction events involved in AlCl3-induced cell death in tomato (Lycopersicon esculentum Mill.) suspension cells were elucidated. Cells treated with 100 ¿M AlCl3 showed typical features of programmed cell death (PCD) such as nuclear and cytoplasmic condensation.

  13. Deciphering Signaling Pathway Networks to Understand the Molecular Mechanisms of Metformin Action.

    Directory of Open Access Journals (Sweden)

    Jingchun Sun

    2015-06-01

    Full Text Available A drug exerts its effects typically through a signal transduction cascade, which is non-linear and involves intertwined networks of multiple signaling pathways. Construction of such a signaling pathway network (SPNetwork can enable identification of novel drug targets and deep understanding of drug action. However, it is challenging to synopsize critical components of these interwoven pathways into one network. To tackle this issue, we developed a novel computational framework, the Drug-specific Signaling Pathway Network (DSPathNet. The DSPathNet amalgamates the prior drug knowledge and drug-induced gene expression via random walk algorithms. Using the drug metformin, we illustrated this framework and obtained one metformin-specific SPNetwork containing 477 nodes and 1,366 edges. To evaluate this network, we performed the gene set enrichment analysis using the disease genes of type 2 diabetes (T2D and cancer, one T2D genome-wide association study (GWAS dataset, three cancer GWAS datasets, and one GWAS dataset of cancer patients with T2D on metformin. The results showed that the metformin network was significantly enriched with disease genes for both T2D and cancer, and that the network also included genes that may be associated with metformin-associated cancer survival. Furthermore, from the metformin SPNetwork and common genes to T2D and cancer, we generated a subnetwork to highlight the molecule crosstalk between T2D and cancer. The follow-up network analyses and literature mining revealed that seven genes (CDKN1A, ESR1, MAX, MYC, PPARGC1A, SP1, and STK11 and one novel MYC-centered pathway with CDKN1A, SP1, and STK11 might play important roles in metformin's antidiabetic and anticancer effects. Some results are supported by previous studies. In summary, our study 1 develops a novel framework to construct drug-specific signal transduction networks; 2 provides insights into the molecular mode of metformin; 3 serves a model for exploring

  14. New results on anti-synchronization of switched neural networks with time-varying delays and lag signals.

    Science.gov (United States)

    Cao, Yuting; Wen, Shiping; Chen, Michael Z Q; Huang, Tingwen; Zeng, Zhigang

    2016-09-01

    This paper investigates the problem of global exponential anti-synchronization of a class of switched neural networks with time-varying delays and lag signals. Considering the packed circuits, the controller is dependent on the output of the system as the inner states are very hard to measure. Therefore, it is necessary to investigate the controller based on the output of the neuron cell. Through theoretical analysis, it is obvious that the obtained ones improve and generalize the results derived in the previous literature. To illustrate the effectiveness, a simulation example with applications in image encryptions is also presented in the paper. PMID:27295505

  15. Cell cycle networks link gene expression dysregulation, mutation, and brain maldevelopment in autistic toddlers.

    Science.gov (United States)

    Pramparo, Tiziano; Lombardo, Michael V; Campbell, Kathleen; Barnes, Cynthia Carter; Marinero, Steven; Solso, Stephanie; Young, Julia; Mayo, Maisi; Dale, Anders; Ahrens-Barbeau, Clelia; Murray, Sarah S; Lopez, Linda; Lewis, Nathan; Pierce, Karen; Courchesne, Eric

    2015-12-01

    Genetic mechanisms underlying abnormal early neural development in toddlers with Autism Spectrum Disorder (ASD) remain uncertain due to the impossibility of direct brain gene expression measurement during critical periods of early development. Recent findings from a multi-tissue study demonstrated high expression of many of the same gene networks between blood and brain tissues, in particular with cell cycle functions. We explored relationships between blood gene expression and total brain volume (TBV) in 142 ASD and control male toddlers. In control toddlers, TBV variation significantly correlated with cell cycle and protein folding gene networks, potentially impacting neuron number and synapse development. In ASD toddlers, their correlations with brain size were lost as a result of considerable changes in network organization, while cell adhesion gene networks significantly correlated with TBV variation. Cell cycle networks detected in blood are highly preserved in the human brain and are upregulated during prenatal states of development. Overall, alterations were more pronounced in bigger brains. We identified 23 candidate genes for brain maldevelopment linked to 32 genes frequently mutated in ASD. The integrated network includes genes that are dysregulated in leukocyte and/or postmortem brain tissue of ASD subjects and belong to signaling pathways regulating cell cycle G1/S and G2/M phase transition. Finally, analyses of the CHD8 subnetwork and altered transcript levels from an independent study of CHD8 suppression further confirmed the central role of genes regulating neurogenesis and cell adhesion processes in ASD brain maldevelopment. PMID:26668231

  16. Cell cycle networks link gene expression dysregulation, mutation, and brain maldevelopment in autistic toddlers.

    Science.gov (United States)

    Pramparo, Tiziano; Lombardo, Michael V; Campbell, Kathleen; Barnes, Cynthia Carter; Marinero, Steven; Solso, Stephanie; Young, Julia; Mayo, Maisi; Dale, Anders; Ahrens-Barbeau, Clelia; Murray, Sarah S; Lopez, Linda; Lewis, Nathan; Pierce, Karen; Courchesne, Eric

    2015-12-14

    Genetic mechanisms underlying abnormal early neural development in toddlers with Autism Spectrum Disorder (ASD) remain uncertain due to the impossibility of direct brain gene expression measurement during critical periods of early development. Recent findings from a multi-tissue study demonstrated high expression of many of the same gene networks between blood and brain tissues, in particular with cell cycle functions. We explored relationships between blood gene expression and total brain volume (TBV) in 142 ASD and control male toddlers. In control toddlers, TBV variation significantly correlated with cell cycle and protein folding gene networks, potentially impacting neuron number and synapse development. In ASD toddlers, their correlations with brain size were lost as a result of considerable changes in network organization, while cell adhesion gene networks significantly correlated with TBV variation. Cell cycle networks detected in blood are highly preserved in the human brain and are upregulated during prenatal states of development. Overall, alterations were more pronounced in bigger brains. We identified 23 candidate genes for brain maldevelopment linked to 32 genes frequently mutated in ASD. The integrated network includes genes that are dysregulated in leukocyte and/or postmortem brain tissue of ASD subjects and belong to signaling pathways regulating cell cycle G1/S and G2/M phase transition. Finally, analyses of the CHD8 subnetwork and altered transcript levels from an independent study of CHD8 suppression further confirmed the central role of genes regulating neurogenesis and cell adhesion processes in ASD brain maldevelopment.

  17. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa.

    Science.gov (United States)

    Pesci, E C; Milbank, J B; Pearson, J P; McKnight, S; Kende, A S; Greenberg, E P; Iglewski, B H

    1999-09-28

    Numerous species of bacteria use an elegant regulatory mechanism known as quorum sensing to control the expression of specific genes in a cell-density dependent manner. In Gram-negative bacteria, quorum sensing systems function through a cell-to-cell signal molecule (autoinducer) that consists of a homoserine lactone with a fatty acid side chain. Such is the case in the opportunistic human pathogen Pseudomonas aeruginosa, which contains two quorum sensing systems (las and rhl) that operate via the autoinducers, N-(3-oxododecanoyl)-L-homoserine lactone and N-butyryl-L-homoserine lactone. The study of these signal molecules has shown that they bind to and activate transcriptional activator proteins that specifically induce numerous P. aeruginosa virulence genes. We report here that P. aeruginosa produces another signal molecule, 2-heptyl-3-hydroxy-4-quinolone, which has been designated as the Pseudomonas quinolone signal. It was found that this unique cell-to-cell signal controlled the expression of lasB, which encodes for the major virulence factor, LasB elastase. We also show that the synthesis and bioactivity of Pseudomonas quinolone signal were mediated by the P. aeruginosa las and rhl quorum sensing systems, respectively. The demonstration that 2-heptyl-3-hydroxy-4-quinolone can function as an intercellular signal sheds light on the role of secondary metabolites and shows that P. aeruginosa cell-to-cell signaling is not restricted to acyl-homoserine lactones.

  18. Effect of signal noise on the learning capability of an artificial neural network

    International Nuclear Information System (INIS)

    Digital Pulse Shape Analysis (DPSA) by artificial neural networks (ANN) is becoming an important tool to extract relevant information from digitized signals in different areas. In this paper, we present a systematic evidence of how the concomitant noise that distorts the signals or patterns to be identified by an ANN set limits to its learning capability. Also, we present evidence that explains overtraining as a competition between the relevant pattern features, on the one side, against the signal noise, on the other side, as the main cause defining the shape of the error surface in weight space and, consequently, determining the steepest descent path that controls the ANN adaptation process.

  19. Neural Network Based Recognition of Signal Patterns in Application to Automatic Testing of Rails

    Directory of Open Access Journals (Sweden)

    Tomasz Ciszewski

    2006-01-01

    Full Text Available The paper describes the application of neural network for recognition of signal patterns in measuring data gathered by the railroad ultrasound testing car. Digital conversion of the measuring signal allows to store and process large quantities of data. The elaboration of smart, effective and automatic procedures recognizing the obtained patterns on the basisof measured signal amplitude has been presented. The test shows only two classes of pattern recognition. In authors’ opinion if we deliver big enough quantity of training data, presented method is applicable to a system that recognizes many classes.

  20. Towards convergence of wireless and wireline signal transport in broadband access networks

    DEFF Research Database (Denmark)

    Yu, Xianbin; Prince, Kamau; Tafur Monroy, Idelfonso

    2010-01-01

    Hybrid optical wireless access networks are to play an important role in the realization of the vision of delivery of broadband services to the end-user any time, anywhere and at affordable costs. We present results of experiments conducted over a field deployed optical fibre links we successfull...... demonstrated converged wireless and wireline signal transport over a common fibre infrastructure. The type of signal used in this field deployed experiments cover WiMax, Impulse-radio ultra-wideband (UWB) and coherent transmission of baseband QPSK and radio-over-fibre signals....

  1. Resolving Early Signaling Events in T-Cell Activation Leading to IL-2 and FOXP3 Transcription

    Directory of Open Access Journals (Sweden)

    Jeffrey P. Perley

    2014-11-01

    Full Text Available Signal intensity and feedback regulation are known to be major factors in the signaling events stemming from the T-cell receptor (TCR and its various coreceptors, but the exact nature of these relationships remains in question. We present a mathematical model of the complex signaling network involved in T-cell activation with cross-talk between the Erk, calcium, PKC and mTOR signaling pathways. The model parameters are adjusted to fit new and published data on TCR trafficking, Zap70, calcium, Erk and Isignaling. The regulation of the early signaling events by phosphatases, CD45 and SHP1, and the TCR dynamics are critical to determining the behavior of the model. Additional model corroboration is provided through quantitative and qualitative agreement with experimental data collected under different stimulating and knockout conditions. The resulting model is analyzed to investigate how signal intensity and feedback regulation affect TCR- and coreceptor-mediated signal transduction and their downstream transcriptional profiles to predict the outcome for a variety of stimulatory and knockdown experiments. Analysis of the model shows that: (1 SHP1 negative feedback is necessary for preventing hyperactivity in TCR signaling; (2 CD45 is required for TCR signaling, but also partially suppresses it at high expression levels; and (3 elevated FOXP3 and reduced IL-2 signaling, an expression profile often associated with T regulatory cells (Tregs, is observed when the system is subjected to weak TCR and CD28 costimulation or a severe reduction in CD45 activity.

  2. Targeting stem cell signaling pathways for drug discovery: advances in the Notch and Wnt pathways.

    Science.gov (United States)

    An, Songzhu Michael; Ding, Qiang; Zhang, Jie; Xie, JingYi; Li, LingSong

    2014-06-01

    Signaling pathways transduce extracellular stimuli into cells through molecular cascades to regulate cellular functions. In stem cells, a small number of pathways, notably those of TGF-β/BMP, Hedgehog, Notch, and Wnt, are responsible for the regulation of pluripotency and differentiation. During embryonic development, these pathways govern cell fate specifications as well as the formation of tissues and organs. In adulthood, their normal functions are important for tissue homeostasis and regeneration, whereas aberrations result in diseases, such as cancer and degenerative disorders. In complex biological systems, stem cell signaling pathways work in concert as a network and exhibit crosstalk, such as the negative crosstalk between Wnt and Notch. Over the past decade, genetic and genomic studies have identified a number of potential drug targets that are involved in stem cell signaling pathways. Indeed, discovery of new targets and drugs for these pathways has become one of the most active areas in both the research community and pharmaceutical industry. Remarkable progress has been made and several promising drug candidates have entered into clinical trials. This review focuses on recent advances in the discovery of novel drugs which target the Notch and Wnt pathways.

  3. A network signal amplification strategy of ultrasensitive photoelectrochemical immunosensing carcinoembryonic antigen based on CdSe/melamine network as label.

    Science.gov (United States)

    Li, Jiaojiao; Zhang, Yong; Kuang, Xuan; Wang, Zhiling; Wei, Qin

    2016-11-15

    Taking advantage of CdSe/melamine network as label and Au-TiO2 as substrate, this work developed a novel kind of signal amplification strategy for fabricating photoelectrochemical (PEC) immunoassay. The melamine, a star-shaped triamino molecule, was firstly used for readily capturing CdSe QDs and forming a CdSe/melamine network, which was formed through strong interactions between the carboxyl groups of TGA-stabilized CdSe QDs and the three amino groups of each melamine molecule. In this strategy, the primary antibody (Ab1) was immobilized onto Au-TiO2 substrate, which made the photoelectric conversion efficiency increase significantly. After the formed Ab2-CdSe/melamine network labels were captured onto the electrode surface via the specific antibody-antigen interaction, the photoelectric activity could be further enhanced via the interaction between the Au-TiO2 substrate and CdSe/melamine network. Due to this amplification of PEC signals and the special structure of the label, the fabricated PEC immunosensor was applied for sensitive and specific detection of cancer biomarker carcinoembryonic antigen (CEA), and displayed a wide linear range (0.005-1000ngmL(-1)) and low detection limit (5pgmL(-1)). In addition, the immunosensor was performed with good stability and reproducibility, and the results to analyze human serum samples were satisfactory. PMID:27281106

  4. Neuroprotection Signaling of Nuclear Akt in Neuronal Cells

    OpenAIRE

    Ahn, Jee-Yin

    2014-01-01

    Akt is one of the central kinases that perform a pivotal function in mediating survival signaling in a wide range of neuronal cell types in response to growth factor stimulation. The recent findings of a number of targets for Akt suggest that it prohibits neuronal death by both impinging on the cytoplasmic cell death machinery and by regulating nuclear proteins. The presence of active Akt in the nuclei of mammalian cells is no longer debatable, and this has been corroborated by the finding of...

  5. Insulin signaling regulates mitochondrial function in pancreatic beta-cells.

    Directory of Open Access Journals (Sweden)

    Siming Liu

    Full Text Available Insulin/IGF-I signaling regulates the metabolism of most mammalian tissues including pancreatic islets. To dissect the mechanisms linking insulin signaling with mitochondrial function, we first identified a mitochondria-tethering complex in beta-cells that included glucokinase (GK, and the pro-apoptotic protein, BAD(S. Mitochondria isolated from beta-cells derived from beta-cell specific insulin receptor knockout (betaIRKO mice exhibited reduced BAD(S, GK and protein kinase A in the complex, and attenuated function. Similar alterations were evident in islets from patients with type 2 diabetes. Decreased mitochondrial GK activity in betaIRKOs could be explained, in part, by reduced expression and altered phosphorylation of BAD(S. The elevated phosphorylation of p70S6K and JNK1 was likely due to compensatory increase in IGF-1 receptor expression. Re-expression of insulin receptors in betaIRKO cells partially restored the stoichiometry of the complex and mitochondrial function. These data indicate that insulin signaling regulates mitochondrial function and have implications for beta-cell dysfunction in type 2 diabetes.

  6. STAT3 interrupts ATR-Chk1 signaling to allow oncovirus-mediated cell proliferation.

    Science.gov (United States)

    Koganti, Siva; Hui-Yuen, Joyce; McAllister, Shane; Gardner, Benjamin; Grasser, Friedrich; Palendira, Umaimainthan; Tangye, Stuart G; Freeman, Alexandra F; Bhaduri-McIntosh, Sumita

    2014-04-01

    DNA damage response (DDR) is a signaling network that senses DNA damage and activates response pathways to coordinate cell-cycle progression and DNA repair. Thus, DDR is critical for maintenance of genome stability, and presents a powerful defense against tumorigenesis. Therefore, to drive cell-proliferation and transformation, viral and cellular oncogenes need to circumvent DDR-induced cell-cycle checkpoints. Unlike in hereditary cancers, mechanisms that attenuate DDR and disrupt cell-cycle checkpoints in sporadic cancers are not well understood. Using Epstein-Barr virus (EBV) as a source of oncogenes, we have previously shown that EBV-driven cell proliferation requires the cellular transcription factor STAT3. EBV infection is rapidly followed by activation and increased expression of STAT3, which mediates relaxation of the intra-S phase cell-cycle checkpoint; this facilitates viral oncogene-driven cell proliferation. We now show that replication stress-associated DNA damage, which results from EBV infection, is detected by DDR. However, signaling downstream of ATR is impaired by STAT3, leading to relaxation of the intra-S phase checkpoint. We find that STAT3 interrupts ATR-to-Chk1 signaling by promoting loss of Claspin, a protein that assists ATR to phosphorylate Chk1. This loss of Claspin which ultimately facilitates cell proliferation is mediated by caspase 7, a protein that typically promotes cell death. Our findings demonstrate how STAT3, which is constitutively active in many human cancers, suppresses DDR, fundamental to tumorigenesis. This newly recognized role for STAT3 in attenuation of DDR, discovered in the context of EBV infection, is of broad interest as the biology of cell proliferation is central to both health and disease.

  7. A structured approach for the engineering of biochemical network models, illustrated for signalling pathways

    NARCIS (Netherlands)

    Breitling, Rainer; Gilbert, David; Heiner, Monika; Orton, Richard

    2008-01-01

    Quantitative models of biochemical networks (signal transduction cascades, metabolic pathways, gene regulatory circuits) are a central component of modern systems biology. Building and managing these complex models is a major challenge that can benefit from the application of formal methods adopted

  8. Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks

    DEFF Research Database (Denmark)

    Postnov, D.E.; Koreshkov, R.N.; Brazhe, N.A.;

    2009-01-01

    We propose a functional mathematical model for neuron-astrocyte networks. The model incorporates elements of the tripartite synapse and the spatial branching structure of coupled astrocytes. We consider glutamate-induced calcium signaling as a specific mode of excitability and transmission...

  9. Ca2+ signaling in pancreatic acinar cells: physiology and pathophysiology

    Directory of Open Access Journals (Sweden)

    O.H. Petersen

    2009-01-01

    Full Text Available The pancreatic acinar cell is a classical model for studies of secretion and signal transduction mechanisms. Because of the extensive endoplasmic reticulum and the large granular compartment, it has been possible - by direct measurements - to obtain considerable insights into intracellular Ca2+ handling under both normal and pathological conditions. Recent studies have also revealed important characteristics of stimulus-secretion coupling mechanisms in isolated human pancreatic acinar cells. The acinar cells are potentially dangerous because of the high intra-granular concentration of proteases, which become inappropriately activated in the human disease acute pancreatitis. This disease is due to toxic Ca2+ signals generated by excessive liberation of Ca2+ from both the endoplasmic reticulum and the secretory granules.

  10. Signalling networks associated with urokinase-type plasminogen activator (uPA) and its inhibitor PAI-1 in breast cancer tissues: new insights from protein microarray analysis.

    Science.gov (United States)

    Wolff, Claudia; Malinowsky, Katharina; Berg, Daniela; Schragner, Kerstin; Schuster, Tibor; Walch, Axel; Bronger, Holger; Höfler, Heinz; Becker, Karl-Friedrich

    2011-01-01

    The urokinase-type plasminogen activator (uPA) and the main uPA inhibitor PAI-1 play important roles in cell migration and invasion in both physiological and pathological contexts. Both factors are clinically applicable predictive markers in node-negative breast cancer patients that are used to stratify patients for adjuvant chemotherapy. In addition to their classical functions in plasmin regulation, both factors are key components in cancer-related cell signalling. Such signalling cascades are well described in cell culture systems, but a better understanding of uPA- and PAI-1-associated signalling networks in clinical tissues is needed. We examined the expression of uPA, PAI-1, and 21 signalling molecules in 201 primary breast cancer tissues using protein microarrays. Expression of uPA was significantly correlated with the expression of ERK and Stat3, while expression of PAI-1 was correlated with the uPA receptor and Akt activation, presumably via integrin and HER-receptor signalling. Analysis of uPA expression did not reveal any significant correlation with staging, grading or age of the patients. The PAI-1 expression was correlated with nodal stage. Network monitoring for uPA and PAI-1 in breast cancer reveals interactions with main signalling cascades and extends the findings from cell culture experiments. Our results reveal possible mechanisms underlying cancer development.

  11. LRP-1 promotes cancer cell invasion by supporting ERK and inhibiting JNK signaling pathways.

    Directory of Open Access Journals (Sweden)

    Benoit Langlois

    Full Text Available BACKGROUND: The low-density lipoprotein receptor-related protein-1 (LRP-1 is an endocytic receptor mediating the clearance of various extracellular molecules involved in the dissemination of cancer cells. LRP-1 thus appeared as an attractive receptor for targeting the invasive behavior of malignant cells. However, recent results suggest that LRP-1 may facilitate the development and growth of cancer metastases in vivo, but the precise contribution of the receptor during cancer progression remains to be elucidated. The lack of mechanistic insights into the intracellular signaling networks downstream of LRP-1 has prevented the understanding of its contribution towards cancer. METHODOLOGY/PRINCIPAL FINDINGS: Through a short-hairpin RNA-mediated silencing approach, we identified LRP-1 as a main regulator of ERK and JNK signaling in a tumor cell context. Co-immunoprecipitation experiments revealed that LRP-1 constitutes an intracellular docking site for MAPK containing complexes. By using pharmacological agents, constitutively active and dominant-negative kinases, we demonstrated that LRP-1 maintains malignant cells in an adhesive state that is favorable for invasion by activating ERK and inhibiting JNK. We further demonstrated that the LRP-1-dependent regulation of MAPK signaling organizes the cytoskeletal architecture and mediates adhesive complex turnover in cancer cells. Moreover, we found that LRP-1 is tethered to the actin network and to focal adhesion sites and controls ERK and JNK targeting to talin-rich structures. CONCLUSIONS: We identified ERK and JNK as the main molecular relays by which LRP-1 regulates focal adhesion disassembly of malignant cells to support invasion.

  12. Cell cycle-dependent gene networks relevant to cancer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The analysis of sophisticated interplays between cell cycle-dependent genes in a disease condition is one of the largely unexplored areas in modern tumor biology research. Many cell cycle-dependent genes are either oncogenes or suppressor genes, or are closely asso- ciated with the transition of a cell cycle. However, it is unclear how the complicated relationships between these cell cycle-dependent genes are, especially in cancers. Here, we sought to identify significant expression relationships between cell cycle-dependent genes by analyzing a HeLa microarray dataset using a local alignment algorithm and constructed a gene transcriptional network specific to the cancer by assembling these newly identified gene-gene relationships. We further characterized this global network by partitioning the whole network into several cell cycle phase-specific sub-networks. All generated networks exhibited the power-law node-degree dis- tribution, and the average clustering coefficients of these networks were remarkably higher than those of pure scale-free networks, indi- cating a property of hierarchical modularity. Based on the known protein-protein interactions and Gene Ontology annotation data, the proteins encoded by cell cycle-dependent interacting genes tended to share the same biological functions or to be involved in the same biological processes, rather than interacting by physical means. Finally, we identified the hub genes related to cancer based on the topo- logical importance that maintain the basic structure of cell cycle-dependent gene networks.

  13. MAPK signal pathways in the regulation of cell proliferation in mammalian cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    MAPK families play an important role in complex cellular programs like proliferation, differentiation,development, transformation, and apoptosis. At least three MAPK families have been characterized: extracellular signal-regulated kinase (ERK), Jun kinase (JNK/SAPK) and p38 MAPK. The above effects are fulfilled by regulation of cell cycle engine and other cell proliferation related proteins. In this paper we discussed their functions and cooperation with other signal pathways in regulation of cell proliferation.

  14. 14-3-3 proteins in guard cell signaling

    Directory of Open Access Journals (Sweden)

    Valérie eCotelle

    2016-01-01

    Full Text Available Guard cells are specialized cells located at the leaf surface delimiting pores which control gas exchanges between the plant and the atmosphere. To optimize the CO2 uptake necessary for photosynthesis while minimizing water loss, guard cells integrate environmental signals to adjust stomatal aperture. The size of the stomatal pore is regulated by movements of the guard cells driven by variations in their volume and turgor. As guard cells perceive and transduce a wide array of environmental cues, they provide an ideal system to elucidate early events of plant signaling. Reversible protein phosphorylation events are known to play a crucial role in the regulation of stomatal movements. However, in some cases, phosphorylation alone is not sufficient to achieve complete protein regulation, but is necessary to mediate the binding of interactors that modulate protein function. Among the phosphopeptide-binding proteins, the 14-3-3 proteins are the best characterized in plants. The 14-3-3s are found as multiple isoforms in eukaryotes and have been shown to be involved in the regulation of stomatal movements. In this review, we describe the current knowledge about 14-3-3 roles in the regulation of their binding partners in guard cells: receptors, ion pumps, channels, protein kinases and some of their substrates. Regulation of these targets by 14-3-3 proteins is discussed and related to their function in guard cells during stomatal movements in response to abiotic or biotic stresses.

  15. BTK Signaling in B Cell Differentiation and Autoimmunity.

    Science.gov (United States)

    Corneth, Odilia B J; Klein Wolterink, Roel G J; Hendriks, Rudi W

    2016-01-01

    Since the original identification of Bruton's tyrosine kinase (BTK) as the gene defective in the primary immunodeficiency X-linked agammaglobulinemia (XLA) in 1993, our knowledge on the physiological function of BTK has expanded impressively. In this review, we focus on the role of BTK during B cell differentiation in vivo, both in the regulation of expansion and in the developmental progression of pre-B cells in the bone marrow and as a crucial signal transducer of signals downstream of the IgM or IgG B cell antigen receptor (BCR) in mature B cells governing proliferation, survival, and differentiation. In particular, we highlight BTK function in B cells in the context of host defense and autoimmunity. Small-molecule inhibitors of BTK have very recently shown impressive anti-tumor activity in clinical studies in patients with various B cell malignancies. Since promising effects of BTK inhibition were also seen in experimental animal models for lupus and rheumatoid arthritis, BTK may be a good target for controlling autoreactive B cells in patients with systemic autoimmune disease.

  16. The Signal Extraction of Fetal Heart Rate Based on Wavelet Transform and BP Neural Network

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-hong; ZHANG Bang-cheng; FU Hu-dai

    2005-01-01

    This paper briefly introduces the collection and recognition of biomedical signals, designs the method to collect FM signals. A detailed discussion on the system hardware, structure and functions is also given. Under LabWindows/CVI, the hardware and the driver do compatible, the hardware equipment work properly actively. The paper adopts multi threading technology for real-time analysis and makes use of latency time of CPU effectively, expedites program reflect speed, improves the program to perform efficiency. One threading is collecting data; the other threading is analyzing data. Using the method, it is broaden to analyze the signal in real-time. Wavelet transform to remove the main interference in the FM and by adding time-window to recognize with BP network; Finally the results of collecting signals and BP networks are discussed. 8 pregnant women' s signals of FM were collected successfully by using the sensor. The correct of BP network recognition is about 83.3% by using the above measure.

  17. Integrative modelling of the influence of MAPK network on cancer cell fate decision.

    Directory of Open Access Journals (Sweden)

    Luca Grieco

    2013-10-01

    Full Text Available The Mitogen-Activated Protein Kinase (MAPK network consists of tightly interconnected signalling pathways involved in diverse cellular processes, such as cell cycle, survival, apoptosis and differentiation. Although several studies reported the involvement of these signalling cascades in cancer deregulations, the precise mechanisms underlying their influence on the balance between cell proliferation and cell death (cell fate decision in pathological circumstances remain elusive. Based on an extensive analysis of published data, we have built a comprehensive and generic reaction map for the MAPK signalling network, using CellDesigner software. In order to explore the MAPK responses to different stimuli and better understand their contributions to cell fate decision, we have considered the most crucial components and interactions and encoded them into a logical model, using the software GINsim. Our logical model analysis particularly focuses on urinary bladder cancer, where MAPK network deregulations have often been associated with specific phenotypes. To cope with the combinatorial explosion of the number of states, we have applied novel algorithms for model reduction and for the compression of state transition graphs, both implemented into the software GINsim. The results of systematic simulations for different signal combinations and network perturbations were found globally coherent with published data. In silico experiments further enabled us to delineate the roles of specific components, cross-talks and regulatory feedbacks in cell fate decision. Finally, tentative proliferative or anti-proliferative mechanisms can be connected with established bladder cancer deregulations, namely Epidermal Growth Factor Receptor (EGFR over-expression and Fibroblast Growth Factor Receptor 3 (FGFR3 activating mutations.

  18. Observation and inverse problems in coupled cell networks

    International Nuclear Information System (INIS)

    A coupled cell network is a model for many situations such as food webs in ecosystems, cellular metabolism and economic networks. It consists in a directed graph G, each node (or cell) representing an agent of the network and each directed arrow representing which agent acts on which. It yields a system of differential equations .x(t)=f(x(t)), where the component i of f depends only on the cells xj(t) for which the arrow j → i exists in G. In this paper, we investigate the observation problems in coupled cell networks: can one deduce the behaviour of the whole network (oscillations, stabilization, etc) by observing only one of the cells? We show that the natural observation properties hold for almost all the interactions f

  19. Reconstruction of Protein-Protein Interaction Network of Insulin Signaling in Homo Sapiens

    OpenAIRE

    Saliha Durmuş Tekir; Pelin Ümit; Aysun Eren Toku; Kutlu Ö. Ülgen

    2010-01-01

    Diabetes is one of the most prevalent diseases in the world. Type 1 diabetes is characterized by the failure of synthesizing and secreting of insulin because of destroyed pancreatic β-cells. Type 2 diabetes, on the other hand, is described by the decreased synthesis and secretion of insulin because of the defect in pancreatic β-cells as well as by the failure of responding to insulin because of malfunctioning of insulin signaling. In order to understand the signaling mechanisms of responding ...

  20. Digital Signal Processing for a Sliceable Transceiver for Optical Access Networks

    DEFF Research Database (Denmark)

    Saldaña Cercos, Silvia; Wagner, Christoph; Vegas Olmos, Juan José;

    2015-01-01

    Methods to upgrade the network infrastructure to cope with current traffic demands has attracted increasing research efforts. A promising alternative is signal slicing. Signal slicing aims at re-using low bandwidth equipment to satisfy high bandwidth traffic demands. This technique has been used......, a comprehensive DSP power consumption analysis for both WDM and TDM systems at 1 Gbps and 10 Gbps, discussing latency penalties for each approach. For 1 Gbps WDM system 278 pJ per information bit for 4 slices is reported at 105 ns latency penalties, whereas 3898.4 pJ per information bit at 183.5 µs latency...... penalty is reported for 10 Gbps. Power savings of the order of hundreds of Watts can be obtained when using signal slicing as an alternative to 10 Gbps implemented access networks....