WorldWideScience

Sample records for cell seeded hydrogel

  1. Degradation of polysaccharide hydrogels seeded with bone marrow stromal cells.

    Science.gov (United States)

    Jahromi, Shiva H; Grover, Liam M; Paxton, Jennifer Z; Smith, Alan M

    2011-10-01

    In order to produce hydrogel cell culture substrates that are fit for the purpose, it is important that the mechanical properties are well understood not only at the point of cell seeding but throughout the culture period. In this study the change in the mechanical properties of three biopolymer hydrogels alginate, low methoxy pectin and gellan gum have been assessed in cell culture conditions. Samples of the gels were prepared encapsulating rat bone marrow stromal cells which were then cultured in osteogenic media. Acellular samples were also prepared and incubated in standard cell culture media. The rheological properties of the gels were measured over a culture period of 28 days and it was found that the gels degraded at very different rates. The degradation occurred most rapidly in the order alginate > Low methoxy pectin > gellan gum. The ability of each hydrogel to support differentiation of bone marrow stromal cells to osteoblasts was also verified by evidence of mineral deposits in all three of the materials. These results highlight that the mechanical properties of biopolymer hydrogels can vary greatly during in vitro culture, and provide the potential of selecting hydrogel cell culture substrates with mechanical properties that are tissue specific.

  2. Intramyocardial Delivery of Mesenchymal Stem Cell-Seeded Hydrogel Preserves Cardiac Function and Attenuates Ventricular Remodeling after Myocardial Infarction

    Science.gov (United States)

    Mathieu, Eva; Lamirault, Guillaume; Toquet, Claire; Lhommet, Pierre; Rederstorff, Emilie; Sourice, Sophie; Biteau, Kevin; Hulin, Philippe; Forest, Virginie; Weiss, Pierre

    2012-01-01

    Background To improve the efficacy of bone marrow-derived mesenchymal stem cell (MSC) therapy targeted to infarcted myocardium, we investigated whether a self-setting silanized hydroxypropyl methylcellulose (Si-HPMC) hydrogel seeded with MSC (MSC+hydrogel) could preserve cardiac function and attenuate left ventricular (LV) remodeling during an 8-week follow-up study in a rat model of myocardial infarction (MI). Methodology/Principal Finding Si-HPMC hydrogel alone, MSC alone or MSC+hydrogel were injected into the myocardium immediately after coronary artery ligation in female Lewis rats. Animals in the MSC+hydrogel group showed an increase in cardiac function up to 28 days after MI and a mid-term prevention of cardiac function alteration at day 56. Histological analyses indicated that the injection of MSC+hydrogel induced a decrease in MI size and an increase in scar thickness and ultimately limited the transmural extent of MI. These findings show that intramyocardial injection of MSC+hydrogel induced short-term recovery of ventricular function and mid-term attenuation of remodeling after MI. Conclusion/Significance These beneficial effects may be related to the specific scaffolding properties of the Si-HPMC hydrogel that may provide the ability to support MSC injection and engraftment within myocardium. PMID:23284842

  3. Intramyocardial delivery of mesenchymal stem cell-seeded hydrogel preserves cardiac function and attenuates ventricular remodeling after myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Eva Mathieu

    Full Text Available BACKGROUND: To improve the efficacy of bone marrow-derived mesenchymal stem cell (MSC therapy targeted to infarcted myocardium, we investigated whether a self-setting silanized hydroxypropyl methylcellulose (Si-HPMC hydrogel seeded with MSC (MSC+hydrogel could preserve cardiac function and attenuate left ventricular (LV remodeling during an 8-week follow-up study in a rat model of myocardial infarction (MI. METHODOLOGY/PRINCIPAL FINDING: Si-HPMC hydrogel alone, MSC alone or MSC+hydrogel were injected into the myocardium immediately after coronary artery ligation in female Lewis rats. Animals in the MSC+hydrogel group showed an increase in cardiac function up to 28 days after MI and a mid-term prevention of cardiac function alteration at day 56. Histological analyses indicated that the injection of MSC+hydrogel induced a decrease in MI size and an increase in scar thickness and ultimately limited the transmural extent of MI. These findings show that intramyocardial injection of MSC+hydrogel induced short-term recovery of ventricular function and mid-term attenuation of remodeling after MI. CONCLUSION/SIGNIFICANCE: These beneficial effects may be related to the specific scaffolding properties of the Si-HPMC hydrogel that may provide the ability to support MSC injection and engraftment within myocardium.

  4. Cell proliferation, viability, and in vitro differentiation of equine mesenchymal stem cells seeded on bacterial cellulose hydrogel scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Favi, Pelagie M.; Benson, Roberto S. [Department of Materials Science and Engineering, College of Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Neilsen, Nancy R. [Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States); Hammonds, Ryan L. [Department of Materials Science and Engineering, College of Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Bates, Cassandra C. [Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States); Stephens, Christopher P. [Department of Surgery, Graduate School of Medicine, University of Tennessee, Knoxville, TN 37996 (United States); Center for Materials Processing, University of Tennessee, Knoxville, TN 37996 (United States); Dhar, Madhu S., E-mail: mdhar@utk.edu [Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States)

    2013-05-01

    The culture of multipotent mesenchymal stem cells on natural biopolymers holds great promise for treatments of connective tissue disorders such as osteoarthritis. The safety and performance of such therapies relies on the systematic in vitro evaluation of the developed stem cell-biomaterial constructs prior to in vivo implantation. This study evaluates bacterial cellulose (BC), a biocompatible natural polymer, as a scaffold for equine-derived bone marrow mesenchymal stem cells (EqMSCs) for application in bone and cartilage tissue engineering. An equine model was chosen due to similarities in size, load and types of joint injuries suffered by horses and humans. Lyophilized and critical point dried BC hydrogel scaffolds were characterized using scanning electron microscopy (SEM) to confirm nanostructure morphology which demonstrated that critical point drying induces fibre bundling unlike lyophilisation. EqMSCs positively expressed the undifferentiated pluripotent mesenchymal stem cell surface markers CD44 and CD90. The BC scaffolds were shown to be cytocompatible, supporting cellular adhesion and proliferation, and allowed for osteogenic and chondrogenic differentiation of EqMSCs. The cells seeded on the BC hydrogel were shown to be viable and metabolically active. These findings demonstrate that the combination of a BC hydrogel and EqMSCs are promising constructs for musculoskeletal tissue engineering applications. - Highlights: ► Critical point drying induces fibre bundling unlike lyophilisation. ► Cells positively expressed undifferentiated pluripotent stem cell markers. ► BCs were cytocompatible, supported cell adhesion, proliferation and differentiation ► Cells seeded on BC scaffolds were viable and metabolically active. ► Findings demonstrate that BC and EqMSCs are promising tissue engineered constructs.

  5. Sliding contact loading enhances the tensile properties of mesenchymal stem cell-seeded hydrogels

    Directory of Open Access Journals (Sweden)

    AH Huang

    2012-07-01

    Full Text Available The primary goal of cartilage tissue engineering is to recapitulate the functional properties and structural features of native articular cartilage. While there has been some success in generating near-native compressive properties, the tensile properties of cell-seeded constructs remain poor, and key features of cartilage, including inhomogeneity and anisotropy, are generally absent in these engineered constructs. Therefore, in an attempt to instill these hallmark properties of cartilage in engineered cell-seeded constructs, we designed and characterized a novel sliding contact bioreactor to recapitulate the mechanical stimuli arising from physiologic joint loading (two contacting cartilage layers. Finite element modeling of this bioreactor system showed that tensile strains were direction-dependent, while both tensile strains and fluid motion were depth-dependent and highest in the region closest to the contact surface. Short-term sliding contact of mesenchymal stem cell (MSC-seeded agarose improved chondrogenic gene expression in a manner dependent on both the axial strain applied and transforming growth factor-β supplementation. Using the optimized loading parameters derived from these short-term studies, long-term sliding contact was applied to MSC-seeded agarose constructs for 21 d. After 21 d, sliding contact significantly improved the tensile properties of MSC-seeded constructs and elicited alterations in type II collagen and proteoglycan accumulation as a function of depth; staining for these matrix molecules showed intense localization in the surface regions. These findings point to the potential of sliding contact to produce engineered cartilage constructs that begin to recapitulate the complex mechanical features of the native tissue.

  6. Evaluation of a mPEG-polyester-based hydrogel as cell carrier for chondrocytes.

    Science.gov (United States)

    Peng, Sydney; Yang, Shu-Rui; Ko, Chao-Yin; Peng, Yu-Shiang; Chu, I-Ming

    2013-11-01

    Temperature-sensitive hydrogels are attractive alternatives to porous cell-seeded scaffolds and is minimally invasive through simple injection and in situ gelling. In this study, we compared the performance of two types of temperature-sensitive hydrogels on chondrocytes encapsulation for the use of tissue engineering of cartilage. The two hydrogels are composed of methoxy poly(ethylene glycol)- poly(lactic-co-valerolactone) (mPEG-PVLA), and methoxy poly(ethylene glycol)-poly(lactic- co-glycolide) (mPEG-PLGA). Osmolarity and pH were optimized through the manipulation of polymer concentration and dispersion medium. Chondrocytes proliferation in mPEG-PVLA hydrogels was observed as well as accumulation of GAGs and collagen. On the other hand, chondrocytes encapsulated in mPEG-PLGA hydrogels showed low viability and chondrogenesis. Also, mPEG-PVLA hydrogel, which is more hydrophobic, retained physical integrity after 14 days while mPEG-PLGA hydrogel underwent full degradation due to faster hydrolysis rate and more pronounced acidic self-catalyzed degradation. The mPEG-PVLA hydrogel can be furthered tuned by manipulation of molecular weights to obtain hydrogels with different swelling and degradation characteristics, which may be useful as producing a selection of hydrogels compatible with different cell types. Taken together, these results demonstrate that mPEG-PVLA hydrogels are promising to serve as three-dimensional cell carriers for chondrocytes and potentially applicable in cartilage tissue engineering.

  7. Thermo-responsive methylcellulose hydrogels as temporary substrate for cell sheet biofabrication.

    Science.gov (United States)

    Altomare, Lina; Cochis, Andrea; Carletta, Andrea; Rimondini, Lia; Farè, Silvia

    2016-05-01

    Methylcellulose (MC), a water-soluble polymer derived from cellulose, was investigated as a possible temporary substrate having thermo-responsive properties favorable for cell culturing. MC-based hydrogels were prepared by a dispersion technique, mixing MC powder (2, 4, 6, 8, 10, 12 % w/v) with selected salts (sodium sulphate, Na2SO4), sodium phosphate, calcium chloride, or phosphate buffered saline, to evaluate the influence of different compositions on the thermo-responsive behavior. The inversion test was used to determine the gelation temperatures of the different hydrogel compositions; thermo-mechanical properties and thermo-reversibility of the MC hydrogels were investigated by rheological analysis. Gelation temperatures and rheological behavior depended on the MC concentration and type and concentration of salt used in hydrogel preparation. In vitro cytotoxicity tests, performed using L929 mouse fibroblasts, showed no toxic release from all the tested hydrogels. Among the investigated compositions, the hydrogel composed of 8 % w/v MC with 0.05 M Na2SO4 had a thermo-reversibility temperature at 37 °C. For that reason, this formulation was thus considered to verify the possibility of inducing in vitro spontaneous detachment of cells previously seeded on the hydrogel surface. A continuous cell layer (cell sheet) was allowed to grow and then detached from the hydrogel surface without the use of enzymes, thanks to the thermo-responsive behavior of the MC hydrogel. Immunofluorescence observation confirmed that the detached cell sheet was composed of closely interacting cells.

  8. Improving the stability of chitosan-gelatin-based hydrogels for cell delivery using transglutaminase and controlled release of doxycycline.

    Science.gov (United States)

    Tormos, Christian J; Abraham, Carol; Madihally, Sundararajan V

    2015-12-01

    Although local cell delivery is an option to repair tissues, particularly using chitosan-based hydrogels, significant attrition of injected cells prior to engraftment has been a problem. To address this problem, we explored the possibility of stabilizing the chitosan-gelatin (CG) injectable hydrogels using (1) controlled release of doxycycline (DOX) to prevent premature degradation due to increased gelatinase activity (MMP-2 and MMP-9), and (2) transglutaminase (TG) to in situ cross-link gelatin to improve the mechanical stability. We prepared DOX-loaded PLGA nanoparticles, loaded into the CG hydrogels, measured DOX release for 5 days, and modeled using a single-compartmental assumption. Next, we assessed the influence of TG and DOX on hydrogel compression properties by incubating hydrogels for 7 days in PBS. We evaluated the effect of these changes on retention of fibroblasts and alterations in MMP-2/MMP-9 activity by seeding 500,000 fibroblasts for 5 days. These results showed that 90 % of DOX released from cross-linked CG hydrogels after 4 days, unlike CG hydrogels where 90 % of DOX was released within the first day. Addition of TG enhanced the CG hydrogel stability significantly. More than 60 % of seeded fibroblasts were recovered from the CG-TG hydrogels at day 5, unlike 40 % recovered from CG-hydrogels. Inhibition of MMP-2/MMP-9 were observed. In summary, controlled release of DOX from CG hydrogels cross-linked with TG shows a significant potential as a carrier for cell delivery.

  9. Cytocompatibility of Self-assembled Hydrogel from IKVAV-containing Peptide Amphiphile with Neural Stem Cells

    Institute of Scientific and Technical Information of China (English)

    SONG Yulin; ZHENG Qixin; GUO Xiaodong; ZHENG Jianfeng

    2009-01-01

    Neural Stem Cells(NSCs)were incubated with self-assembled hydrogel from IKVAV-containing peptide amphiphile(IKVAV-PA)for one week.The cytocompatibility of hydrogel was evaluated.NSCs were seeded in three-dimensional(3D)hydrogels(Experimental Group,EG)or surface of coverslips(Control Group,CG),double-labeled with Calcein-AM and PI.A growth curve of cells was obtained according to CCK-8.TEM study of hydrogel revealed a network of nanofibers. NSCs began to proliferate after 24 h of incubation,and formed bigger neurospheres at 48 h in EG than in CG.Cell proliferation activity was higher in EG than in CG(P<0.05).The self-assembled Hydrogel had good cytocompatibility and promoted the proliferation of NSCs.

  10. Gellan gum microgel-reinforced cell-laden gelatin hydrogels

    OpenAIRE

    Shin, Hyeongho; Olsen, Bradley D.; Khademhosseini, Ali

    2013-01-01

    The relatively weak mechanical properties of hydrogels remain a major drawback for their application as load-bearing tissue scaffolds. Previously, we developed cell-laden double-network (DN) hydrogels that were composed of photocrosslinkable gellan gum (GG) and gelatin. Further research into the materials as tissue scaffolds determined that the strength of the DN hydrogels decreased when they were prepared at cell-compatible conditions, and the encapsulated cells in the DN hydrogels did not f...

  11. Electrochemical Hydrogel Lithography of Calcium-Alginate Hydrogels for Cell Culture

    Directory of Open Access Journals (Sweden)

    Fumisato Ozawa

    2016-08-01

    Full Text Available Here we propose a novel electrochemical lithography methodology for fabricating calcium-alginate hydrogels having controlled shapes. We separated the chambers for Ca2+ production and gel formation with alginate with a semipermeable membrane. Ca2+ formed in the production chamber permeated through the membrane to fabricate a gel structure on the membrane in the gel formation chamber. When the calcium-alginate hydrogels were modified with collagen, HepG2 cells proliferated on the hydrogels. These results show that electrochemical hydrogel lithography is useful for cell culture.

  12. Biochemical and structural characterization of neocartilage formed by mesenchymal stem cells in alginate hydrogels.

    Directory of Open Access Journals (Sweden)

    Magnus Ø Olderøy

    Full Text Available A popular approach to make neocartilage in vitro is to immobilize cells with chondrogenic potential in hydrogels. However, functional cartilage cannot be obtained by control of cells only, as function of cartilage is largely dictated by architecture of extracellular matrix (ECM. Therefore, characterization of the cells, coupled with structural and biochemical characterization of ECM, is essential in understanding neocartilage assembly to create functional implants in vitro. We focused on mesenchymal stem cells (MSC immobilized in alginate hydrogels, and used immunohistochemistry (IHC and gene expression analysis combined with advanced microscopy techniques to describe properties of cells and distribution and organization of the forming ECM. In particular, we used second harmonic generation (SHG microscopy and focused ion beam/scanning electron microscopy (FIB/SEM to study distribution and assembly of collagen. Samples with low cell seeding density (1e7 MSC/ml showed type II collagen molecules distributed evenly through the hydrogel. However, SHG microscopy clearly indicated only pericellular localization of assembled fibrils. Their distribution was improved in hydrogels seeded with 5e7 MSC/ml. In those samples, FIB/SEM with nm resolution was used to visualize distribution of collagen fibrils in a three dimensional network extending from the pericellular region into the ECM. In addition, distribution of enzymes involved in procollagen processing were investigated in the alginate hydrogel by IHC. It was discovered that, at high cell seeding density, procollagen processing and fibril assembly was also occurring far away from the cell surface, indicating sufficient transport of procollagen and enzymes in the intercellular space. At lower cell seeding density, the concentration of enzymes involved in procollagen processing was presumably too low. FIB/SEM and SHG microscopy combined with IHC localization of specific proteins were shown to provide

  13. Modeling Alveolar Epithelial Cell Behavior In Spatially Designed Hydrogel Microenvironments

    Science.gov (United States)

    Lewis, Katherine Jean Reeder

    The alveolar epithelium consists of two cell phenotypes, elongated alveolar type I cells (AT1) and rounded alveolar type II cells (ATII), and exists in a complex three-dimensional environment as a polarized cell layer attached to a thin basement membrane and enclosing a roughly spherical lumen. Closely surrounding the alveolar cysts are capillary endothelial cells as well as interstitial pulmonary fibroblasts. Many factors are thought to influence alveolar epithelial cell differentiation during lung development and wound repair, including physical and biochemical signals from the extracellular matrix (ECM), and paracrine signals from the surrounding mesenchyme. In particular, disrupted signaling between the alveolar epithelium and local fibroblasts has been implicated in the progression of several pulmonary diseases. However, given the complexity of alveolar tissue architecture and the multitude of signaling pathways involved, designing appropriate experimental platforms for this biological system has been difficult. In order to isolate key factors regulating cellular behavior, the researcher ideally should have control over biophysical properties of the ECM, as well as the ability to organize multiple cell types within the scaffold. This thesis aimed to develop a 3D synthetic hydrogel platform to control alveolar epithelial cyst formation, which could then be used to explore how extracellular cues influence cell behavior in a tissue-relevant cellular arrangement. To accomplish this, a poly(ethylene glycol) (PEG) hydrogel network containing enzymatically-degradable crosslinks and bioadhesive pendant peptides was employed as a base material for encapsulating primary alveolar epithelial cells. First, an array of microwells of various cross-sectional shapes was photopatterned into a PEG gel containing photo-labile crosslinks, and primary ATII cells were seeded into the wells to examine the role of geometric confinement on differentiation and multicellular arrangement

  14. 3D Cell Culture in Alginate Hydrogels

    Directory of Open Access Journals (Sweden)

    Therese Andersen

    2015-03-01

    Full Text Available This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent, and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue.

  15. Controlled Heterogeneous Stem Cell Differentiation on a Shape Memory Hydrogel Surface

    Science.gov (United States)

    Han, Yanjiao; Bai, Tao; Liu, Wenguang

    2014-01-01

    The success of stem cell therapies is highly dependent on the ability to control their programmed differentiation. So far, it is commonly believed that the differentiation behavior of stem cells is supposed to be identical when they are cultured on the same homogeneous platform. However, in this report, we show that this is not always true. By utilizing a double-ion-triggered shape memory effect, the pre-seeded hMSCs were controllably located in different growth positions. Here, we demonstrate for the first time that the differentiation behavior of hMSCs is highly sensitive to their growth position on a hydrogel scaffold. This work will not only enrich the mechanisms for controlling the differentiation of stem cells, but also offer a one-of-a-kind platform to achieve a heterogeneously differentiated stem cell-seeded hydrogel scaffold for complex biological applications. PMID:25068211

  16. Engineering three-dimensional cell mechanical microenvironment with hydrogels.

    Science.gov (United States)

    Huang, Guoyou; Wang, Lin; Wang, Shuqi; Han, Yulong; Wu, Jinhui; Zhang, Qiancheng; Xu, Feng; Lu, Tian Jian

    2012-12-01

    Cell mechanical microenvironment (CMM) significantly affects cell behaviors such as spreading, migration, proliferation and differentiation. However, most studies on cell response to mechanical stimulation are based on two-dimensional (2D) planar substrates, which cannot mimic native three-dimensional (3D) CMM. Accumulating evidence has shown that there is a significant difference in cell behavior in 2D and 3D microenvironments. Among the materials used for engineering 3D CMM, hydrogels have gained increasing attention due to their tunable properties (e.g. chemical and mechanical properties). In this paper, we provide an overview of recent advances in engineering hydrogel-based 3D CMM. Effects of mechanical cues (e.g. hydrogel stiffness and externally induced stress/strain in hydrogels) on cell behaviors are described. A variety of approaches to load mechanical stimuli in 3D hydrogel-based constructs are also discussed.

  17. Synthetic hydrogels as scaffolds for manipulating endothelium cell behaviors

    OpenAIRE

    2011-01-01

    Synthetic hydrogels can be used as scaffolds that not only favor endothelial cells (ECs) proliferation but also manipulate the behaviors and functions of the ECs. In this review paper, the effect of chemical structure, Young's modulus (E) and zeta potential (ζ) of synthetic hydrogel scaffolds on static cell behaviors, including cell morphology, proliferation, cytoskeleton structure and focal adhesion, and on dynamic cell behaviors, including migration velocity and morphology oscillation, as w...

  18. Injectable shear-thinning nanoengineered hydrogels for stem cell delivery

    Science.gov (United States)

    Thakur, Ashish; Jaiswal, Manish K.; Peak, Charles W.; Carrow, James K.; Gentry, James; Dolatshahi-Pirouz, Alireza; Gaharwar, Akhilesh K.

    2016-06-01

    Injectable hydrogels are investigated for cell encapsulation and delivery as they can shield cells from high shear forces. One of the approaches to obtain injectable hydrogels is to reinforce polymeric networks with high aspect ratio nanoparticles such as two-dimensional (2D) nanomaterials. 2D nanomaterials are an emerging class of ultrathin materials with a high degree of anisotropy and they strongly interact with polymers resulting in the formation of shear-thinning hydrogels. Here, we present 2D nanosilicate reinforced kappa-carrageenan (κCA) hydrogels for cellular delivery. κCA is a natural polysaccharide that resembles native glycosaminoglycans and can form brittle hydrogels via ionic crosslinking. The chemical modification of κCA with photocrosslinkable methacrylate groups renders the formation of a covalently crosslinked network (MκCA). Reinforcing the MκCA with 2D nanosilicates results in shear-thinning characteristics, and enhanced mechanical stiffness, elastomeric properties, and physiological stability. The shear-thinning characteristics of nanocomposite hydrogels are investigated for human mesenchymal stem cell (hMSC) delivery. The hMSCs showed high cell viability after injection and encapsulated cells showed a circular morphology. The proposed shear-thinning nanoengineered hydrogels can be used for cell delivery for cartilage tissue regeneration and 3D bioprinting.

  19. Carbon nanotubes increase the electrical conductivity of fibroblast-seeded collagen hydrogels.

    Science.gov (United States)

    MacDonald, Rebecca A; Voge, Christopher M; Kariolis, Mihalis; Stegemann, Jan P

    2008-11-01

    Carbon nanotubes are attractive as additives in fiber-reinforced composites due to their high aspect ratio, strength and electrical conductivity. In the present study, solubilized collagen Type I was polymerized in the presence of dispersed single-walled carbon nanotubes (SWNT) and human dermal fibroblast cells (HDF) to produce collagen-SWNT composite biomaterials with HDF embedded directly in the matrix. The resulting constructs, with SWNT loadings of 0 (control), 0.8, 2.0 and 4.0 wt.% SWNT, were cultured and electrical properties were evaluated in the frequency range 5-500 kHz at days 3 and 7. All collagen-SWNT hydrogel matrices underwent HDF-mediated gel compaction over time in culture, but the presence of SWNT significantly decreased the rate and extent of gel compaction. Viability of HDF in all constructs was consistently high and cell morphology was not affected by the presence of SWNT. However, cell number at day 7 in culture decreased with increasing SWNT loading. Electrical conductivity of the constructs varied from 3 to 7 mS cm(-1), depending on SWNT loading level. Conductivity increased uniformly with increasing wt.% of SWNT (R=0.78) and showed a modest frequency dependence, suggesting that the electrical percolation threshold had not been reached in these materials. These data demonstrate that the electrical conductivity of cell-seeded collagen gels can be increased through the incorporation of carbon nanotubes. Protein-SWNT composite materials may have application as scaffolds for tissue engineering, as substrates to study electrical stimulation of cells, and as transducers or leads for biosensors.

  20. Injectable shear-thinning nanoengineered hydrogels for stem cell delivery

    DEFF Research Database (Denmark)

    Thakur, Ashish; Jaiswal, Manish K.; Peak, Charles W.

    2016-01-01

    -thinning characteristics, and enhanced mechanical stiffness, elastomeric properties, and physiological stability. The shear-thinning characteristics of nanocomposite hydrogels are investigated for human mesenchymal stem cell (hMSC) delivery. The hMSCs showed high cell viability after injection and encapsulated cells......Injectable hydrogels are investigated for cell encapsulation and delivery as they can shield cells from high shear forces. One of the approaches to obtain injectable hydrogels is to reinforce polymeric networks with high aspect ratio nanoparticles such as two-dimensional (2D) nanomaterials. 2D...... showed a circular morphology. The proposed shear-thinning nanoengineered hydrogels can be used for cell delivery for cartilage tissue regeneration and 3D bioprinting....

  1. Layer-shaped alginate hydrogels enhance the biological performance of human adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Galateanu Bianca

    2012-06-01

    Full Text Available Abstract Background The reconstruction of adipose tissue defects is often challenged by the complications that may occur following plastic and reconstructive surgery, including donor-site morbidity, implant migration and foreign body reaction. To overcome these problems, adipose tissue engineering (ATE using stem cell-based regeneration strategies has been widely explored in the last years. Mounting evidence has shown that adipose-derived stem cells (ADSCs represent a promising cell source for ATE. In the context of a small number of reports concerning adipose tissue regeneration using three-dimensional (3-D systems, the present study was designed to evaluate the biological performance of a novel alginate matrix that incorporates human ADSCs (hADSCs. Results Culture-expanded cells isolated from the stromal vascular fraction (SVF, corresponding to the third passage which showed the expression of mesenchymal stem cell (MSC markers, were used in the 3-D culture systems. The latter represented a calcium alginate hydrogel, obtained by the diffusion of calcium gluconate (CGH matrix, and shaped as discoid-thin layer. For comparative purposes, a similar hADSC-laden alginate hydrogel cross-linked with calcium chloride was considered as reference hydrogel (RH matrix. Both hydrogels showed a porous structure under scanning electron microscopy (SEM and the hADSCs embedded displayed normal spherical morphologies, some of them showing signs of mitosis. More than 85% of the entrapped cells survived throughout the incubation period of 7 days. The percentage of viable cells was significantly higher within CGH matrix at 2 days post-seeding, and approximately similar within both hydrogels after 7 days of culture. Moreover, both alginate-based hydrogels stimulated cell proliferation. The number of hADSC within hydrogels has increased during the incubation period of 7 days and was higher in the case of CGH matrix. Cells grown under adipogenic conditions for

  2. SYNTHETIC HYDROGELS AS SCAFFOLDS FOR MANIPULATING ENDOTHELIUM CELL BEHAVIORS

    Institute of Scientific and Technical Information of China (English)

    Yong-mei Chen; Jing-jing Yang; Yoshihito Osada; Jian Ping Gong

    2011-01-01

    Synthetic hydrogels can be used as scaffolds that not only favor endothelial cells (ECs) proliferation but also manipulate the behaviors and functions of the ECs. In this review paper, the effect of chemical structure, Young’s modulus (E) and zeta potential (ζ) of synthetic hydrogel scaffolds on static cell behaviors, including cell morphology, proliferation,cytoskeleton structure and focal adhesion, and on dynamic cell behaviors, including migration velocity and morphology oscillation, as well as on EC function such as anti-platelet adhesion, are reported. It was found that negatively charged hydrogels, poly(2-acrylamido-2-methylpropanesulfonie sodium) (PNaAMPS) and poly(sodium p-styrene sulphonate) (PNaSS), can directly promote cell proliferation, with no need of surface modification by any cell-adhesive proteins or peptides at the environment of serum-containing medium. In addition, the Young’s modulus (E) and zeta potential (ζ) of hydrogel scaffolds are quantitatively tuned by copolymer hydrogels, poly(NaAMPS-co-DMAAm) and poly(NaSS-co-DMAAm), in which the two kinds of negatively charged monomers NaAMPS and NaSS are copolymerized with neutral monomer, N,N-dimethylacrylamide (DMAAm). It was found that the critical zeta potential of hydrogels manipulating EC morphology, proliferation, and motility is ζcritical = -20.83 mV and ζcritical = -14.0 mV for poly(NaAMPS-co-DMAAm) and poly(NaSS-co-DMAAm), respectively. The above mentioned EC behaviors well correlate with the adsorption of fibronectin,a kind of cell-adhesive protein, on the hydrogel surfaces. Furthermore, adhered platelets on the EC monolayers cultured on the hydrogel scaffolds obviously decreases with an increase of the Young’s modulus (E) of the hydrogels, especially when E > 60 kPa. Glycocalyx assay and gene expression of ECs demonstrate that the anti-platelet adhesion well correlates with the EC-specific glycocalyx. The above investigation suggests that understanding the relationship

  3. Production of endothelial cell-enclosing alginate-based hydrogel fibers with a cell adhesive surface through simultaneous cross-linking by horseradish peroxidase-catalyzed reaction in a hydrodynamic spinning process.

    Science.gov (United States)

    Liu, Yang; Sakai, Shinji; Taya, Masahito

    2012-09-01

    We developed an alginate-based hydrogel fiber enabling to enclose endothelial cells, degradable on-demand by alginate lyase, and having a cell adhesive surface. The hydrogel fiber was obtained by extruding an aqueous solution of 4% (w/v) alginate derivative possessing phenolic hydroxyl moieties (Alg-Ph) and horseradish peroxidase (HRP) into a flow of aqueous solution containing 0.3 mM H(2)O(2) and gelatin derivative possessing Ph moieties (Gelatin-Ph). In the process, cross-linking of Alg-Ph resulting in a hydrogel fiber and immobilization of Gelatin-Ph on the surface of the hydrogel fiber were simultaneously accomplished by an HRP-catalyzed cross-linking reaction between Ph moieties. The diameter of the hydrogel fiber and the quantity of immobilized Gelatin-Ph on the fiber were controllable by changing the flow rates of the solutions and the concentration of HRP in the Alg-Ph-containing solution, respectively. The viability of the human endothelial cells enclosed in the hydrogel fibers obtained by 10 s of flowing in the H(2)O(2)-containing solution was 87.1%. In addition, the cells harvested from the hydrogel fibers through degradation using alginate lyase grew on tissue culture dishes in the same fashion as the cells seeded by a conventional subculture protocol. Human smooth muscle cells adhered, grew and achieved confluence on the surface of the hydrogel fibers. By degrading the hydrogel fibers using alginate lyase, a tubular cell construct was successfully obtained.

  4. Injectable, Biomolecule-Responsive Polypeptide Hydrogels for Cell Encapsulation and Facile Cell Recovery through Triggered Degradation.

    Science.gov (United States)

    Xu, Qinghua; He, Chaoliang; Zhang, Zhen; Ren, Kaixuan; Chen, Xuesi

    2016-11-16

    Injectable hydrogels have been widely investigated in biomedical applications, and increasing demand has been proposed to achieve dynamic regulation of physiological properties of hydrogels. Herein, a new type of injectable and biomolecule-responsive hydrogel based on poly(l-glutamic acid) (PLG) grafted with disulfide bond-modified phloretic acid (denoted as PLG-g-CPA) was developed. The hydrogels formed in situ via enzymatic cross-linking under physiological conditions in the presence of horseradish peroxidase and hydrogen peroxide. The physiochemical properties of the hydrogels, including gelation time and the rheological property, were measured. Particularly, the triggered degradation of the hydrogel in response to a reductive biomolecule, glutathione (GSH), was investigated in detail. The mechanical strength and inner porous structure of the hydrogel were influenced by the addition of GSH. The polypeptide hydrogel was used as a three-dimensional (3D) platform for cell encapsulation, which could release the cells through triggered disruption of the hydrogel in response to the addition of GSH. The cells released from the hydrogel were found to maintain high viability. Moreover, after subcutaneous injection into rats, the PLG-g-CPA hydrogels with disulfide-containing cross-links exhibited a markedly faster degradation behavior in vivo compared to that of the PLG hydrogels without disulfide cross-links, implying an interesting accelerated degradation process of the disulfide-containing polypeptide hydrogels in the physiological environment in vivo. Overall, the injectable and biomolecule-responsive polypeptide hydrogels may serve as a potential platform for 3D cell culture and easy cell collection.

  5. Investigation of hydrogel isolated from seeds of Ocimum basilicum as binder

    Directory of Open Access Journals (Sweden)

    Bhosale A

    2009-01-01

    Full Text Available Ayurvedic powders are widely used as therapeutic agents but most of them have unpleasant taste and large doses. One of the possible approach to overcome these drawbacks is to represent them in unit dosage form i.e. tablet dosage form. The purpose of this study is to elucidate and quantify the compressibility and compactibility of herbal granules prepared by using hydrogel isolated from whole seeds of Ocimum basilicum as a novel binder. The compressibility is the ability of the powder to deform under pressure and the compactibility is the ability of a powder to form coherent compacts. To test the functionality of novel excipients, Sonnergaard proved a simple linear model to confirm compactability, which is an uncomplicated tool for quantification. The tablets were compressed at increasing compression pressures and were evaluated for various mechanical properties. The linear relationship between specific crushing strength and compression pressure revealed the compactibility of the herbal granules and the linear relationship between porosity and logarithm of compression pressure revealed the compressible nature of the herbal granules according to the model developed by Sonnergaard. Thus the hydrogel isolated from whole seeds of Ocimum basillicum had potential as a granulating and binding agent.

  6. Biocompatible Hydrogels for Microarray Cell Printing and Encapsulation

    Directory of Open Access Journals (Sweden)

    Akshata Datar

    2015-10-01

    Full Text Available Conventional drug screening processes are a time-consuming and expensive endeavor, but highly rewarding when they are successful. To identify promising lead compounds, millions of compounds are traditionally screened against therapeutic targets on human cells grown on the surface of 96-wells. These two-dimensional (2D cell monolayers are physiologically irrelevant, thus, often providing false-positive or false-negative results, when compared to cells grown in three-dimensional (3D structures such as hydrogel droplets. However, 3D cell culture systems are not easily amenable to high-throughput screening (HTS, thus inherently low throughput, and requiring relatively large volume for cell-based assays. In addition, it is difficult to control cellular microenvironments and hard to obtain reliable cell images due to focus position and transparency issues. To overcome these problems, miniaturized 3D cell cultures in hydrogels were developed via cell printing techniques where cell spots in hydrogels can be arrayed on the surface of glass slides or plastic chips by microarray spotters and cultured in growth media to form cells encapsulated 3D droplets for various cell-based assays. These approaches can dramatically reduce assay volume, provide accurate control over cellular microenvironments, and allow us to obtain clear 3D cell images for high-content imaging (HCI. In this review, several hydrogels that are compatible to microarray printing robots are discussed for miniaturized 3D cell cultures.

  7. Sliding Hydrogels with Mobile Molecular Ligands and Crosslinks as 3D Stem Cell Niche.

    Science.gov (United States)

    Tong, Xinming; Yang, Fan

    2016-09-01

    The development of a sliding hydrogel with mobile crosslinks and biochemical ligands as a 3D stem cell niche is reported. The molecular mobility of this sliding hydrogel allows stem cells to reorganize the surrounding ligands and change their morphology in 3D. Without changing matrix stiffness, sliding hydrogels support efficient stem cell differentiation toward multiple lineages including adipogenesis, chondrogenesis, and osteogenesis.

  8. Hydrogel formulation determines cell fate of fetal and adult neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Emily R. Aurand

    2014-01-01

    Full Text Available Hydrogels provide a unique tool for neural tissue engineering. These materials can be customized for certain functions, i.e. to provide cell/drug delivery or act as a physical scaffold. Unfortunately, hydrogel complexities can negatively impact their biocompatibility, resulting in unintended consequences. These adverse effects may be combated with a better understanding of hydrogel chemical, physical, and mechanical properties, and how these properties affect encapsulated neural cells. We defined the polymerization and degradation rates and compressive moduli of 25 hydrogels formulated from different concentrations of hyaluronic acid (HA and poly(ethylene glycol (PEG. Changes in compressive modulus were driven primarily by the HA concentration. The in vitro biocompatibility of fetal-derived (fNPC and adult-derived (aNPC neural progenitor cells was dependent on hydrogel formulation. Acute survival of fNPC benefited from hydrogel encapsulation. NPC differentiation was divergent: fNPC differentiated into mostly glial cells, compared with neuronal differentiation of aNPC. Differentiation was influenced in part by the hydrogel mechanical properties. This study indicates that there can be a wide range of HA and PEG hydrogels compatible with NPC. Additionally, this is the first study comparing hydrogel encapsulation of NPC derived from different aged sources, with data suggesting that fNPC and aNPC respond dissimilarly within the same hydrogel formulation.

  9. Stem cells and injectable hydrogels: Synergistic therapeutics in myocardial repair.

    Science.gov (United States)

    Sepantafar, Mohammadmajid; Maheronnaghsh, Reihan; Mohammadi, Hossein; Rajabi-Zeleti, Sareh; Annabi, Nasim; Aghdami, Nasser; Baharvand, Hossein

    2016-01-01

    One of the major problems in the treatment of cardiovascular diseases is the inability of myocardium to self-regenerate. Current therapies are unable to restore the heart's function after myocardial infarction. Myocardial tissue engineering is potentially a key approach to regenerate damaged heart muscle. Myocardial patches are applied surgically, whereas injectable hydrogels provide effective minimally invasive approaches to recover functional myocardium. These hydrogels are easily administered and can be either cell free or loaded with bioactive agents and/or cardiac stem cells, which may apply paracrine effects. The aim of this review is to investigate the advantages and disadvantages of injectable stem cell-laden hydrogels and highlight their potential applications for myocardium repair.

  10. Cell-mediated Delivery and Targeted Erosion of Noncovalently Crosslinked Hydrogels

    Science.gov (United States)

    Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor)

    2013-01-01

    A method for targeted delivery of therapeutic compounds from hydrogels is presented. The method involves administering to a cell a hydrogel in which a therapeutic compound is noncovalently bound to heparin.

  11. Cell-friendly inverse opal-like hydrogels for a spatially separated co-culture system.

    Science.gov (United States)

    Kim, Jaeyun; Bencherif, Sidi A; Li, Weiwei Aileen; Mooney, David J

    2014-09-01

    Three-dimensional macroporous scaffolds have extensively been studied for cell-based tissue engineering but their use is mostly limited to mechanical support for cell adhesion and growth on the surface of macropores. Here, a templated fabrication method is described to prepare cell-friendly inverse opal-like hydrogels (IOHs) allowing both cell encapsulation within the hydrogel matrix and cell seeding on the surface of macropores. Ionically crosslinked alginate microbeads and photocrosslinkable biocompatible polymers are used as a sacrificial template and as a matrix, respectively. The alginate microbeads are easily removed by a chelating agent, with minimal toxicity for the encapsulated cells during template removal. The outer surface of macropores in IOHs can also provide a space for cell adherence. The cells encapsulated or attached in IOHs are able to remain viable and to proliferate over time. The elastic modulus and cell-adhesion properties of IOHs can be easily controlled and tuned. Finally, it is demonstrated that IOH can be used to co-culture two distinct cell populations in different spatial positions. This cell-friendly IOH system provides a 3D scaffold for organizing different cell types in a controllable microenvironment to investigate biological processes such as stem cell niches or tumor microenvironments.

  12. Derivation of epithelial-like cells from eyelid fat-derived stem cells in thermosensitive hydrogel.

    Science.gov (United States)

    Heidari Keshel, Saeed; Rostampour, Maryam; Khosropour, Golbahar; Bandbon B, Atefehsadat; Baradaran-Rafii, Alireza; Biazar, Esmaeil

    2016-01-01

    Injectable hydrogel is one of the great interests for tissue engineering and cell encapsulation. In the study, the thermosensitive chitosan/gelatin/β-glycerol phosphate (C/G/GP) disodium salt hydrogels were designed and investigated by different analyses. The eye fat-derived stem cells were used to evaluate the biocompatibility of hydrogels based on their phenotypic profile, viability, proliferation, and attachment ability. The results show that the sol/gel transition temperature of the C/G/GP hydrogel was in the range of 31.1-33.8 °C at neutral pH value, the gelation time was shortened, and the gel strength also improved at body temperature when compared with the C/GP hydrogel. In vitro cell culture experiments with eyelid fat-derived stem cells in hydrogel showed beneficial effects on the cell phenotypic morphology, proliferation, and differentiation. Microscopic figures showed that the eyelid fat stem cell were firmly anchored to the substrates and were able to retain a normal stem cell phenotype. Immunocytochemistry (ICC) and real-time-PCR results revealed change in the expression profile of eyelid fat stem cells grown with hydrogels when compared to those grown on control in epithelial induction condition. This study indicates that using chitosan/gelatin/β-glycerol phosphate hydrogel for cell culture is feasible and may apply in minimal invasive surgery in the future.

  13. Stiffening hydrogels for investigating the dynamics of hepatic stellate cell mechanotransduction during myofibroblast activation

    Science.gov (United States)

    Caliari, Steven R.; Perepelyuk, Maryna; Cosgrove, Brian D.; Tsai, Shannon J.; Lee, Gi Yun; Mauck, Robert L.; Wells, Rebecca G.; Burdick, Jason A.

    2016-02-01

    Tissue fibrosis contributes to nearly half of all deaths in the developed world and is characterized by progressive matrix stiffening. Despite this, nearly all in vitro disease models are mechanically static. Here, we used visible light-mediated stiffening hydrogels to investigate cell mechanotransduction in a disease-relevant system. Primary hepatic stellate cell-seeded hydrogels stiffened in situ at later time points (following a recovery phase post-isolation) displayed accelerated signaling kinetics of both early (Yes-associated protein/Transcriptional coactivator with PDZ-binding motif, YAP/TAZ) and late (alpha-smooth muscle actin, α-SMA) markers of myofibroblast differentiation, resulting in a time course similar to observed in vivo activation dynamics. We further validated this system by showing that α-SMA inhibition following substrate stiffening resulted in attenuated stellate cell activation, with reduced YAP/TAZ nuclear shuttling and traction force generation. Together, these data suggest that stiffening hydrogels may be more faithful models for studying myofibroblast activation than static substrates and could inform the development of disease therapeutics.

  14. Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets.

    Science.gov (United States)

    Moon, SangJun; Hasan, Syed K; Song, Young S; Xu, Feng; Keles, Hasan Onur; Manzur, Fahim; Mikkilineni, Sohan; Hong, Jong Wook; Nagatomi, Jiro; Haeggstrom, Edward; Khademhosseini, Ali; Demirci, Utkan

    2010-02-01

    The ability to bioengineer three-dimensional (3D) tissues is a potentially powerful approach to treat diverse diseases such as cancer, loss of tissue function, or organ failure. Traditional tissue engineering methods, however, face challenges in fabricating 3D tissue constructs that resemble the native tissue microvasculature and microarchitectures. We have developed a bioprinter that can be used to print 3D patches of smooth muscle cells (5 mm x 5 mm x 81 microm) encapsulated within collagen. Current inkjet printing systems suffer from loss of cell viability and clogging. To overcome these limitations, we developed a system that uses mechanical valves to print high viscosity hydrogel precursors containing cells. The bioprinting platform that we developed enables (i) printing of multilayered 3D cell-laden hydrogel structures (16.2 microm thick per layer) with controlled spatial resolution (proximal axis: 18.0 +/- 7.0 microm and distal axis: 0.5 +/- 4.9 microm), (ii) high-throughput droplet generation (1 s per layer, 160 droplets/s), (iii) cell seeding uniformity (26 +/- 2 cells/mm(2) at 1 million cells/mL, 122 +/- 20 cells/mm(2) at 5 million cells/mL, and 216 +/- 38 cells/mm(2) at 10 million cells/mL), and (iv) long-term viability in culture (>90%, 14 days). This platform to print 3D tissue constructs may be beneficial for regenerative medicine applications by enabling the fabrication of printed replacement tissues.

  15. Chitosan chemical hydrogel electrode binder for direct borohydride fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Nurul A.; Sahai, Yogeshwar; Buchheit, Rudolph G. [Department of Materials Science and Engineering, Ohio State University, Columbus, OH (United States)

    2011-01-15

    A novel and cost-effective electrode binder consisting of chitosan chemical hydrogel (CCH) is reported for direct borohydride fuel cells (DBFCs). The DBFCs have been assembled with Misch-metal-based AB{sub 5} alloy as anode, carbon-supported palladium (Pd/C) as cathode and polyvinyl alcohol (PVA) hydrogel membrane electrolyte (PHME) as well as Nafion {sup registered} -117 membrane electrolyte (NME) as separators. Operating in passive mode without using peristaltic pump and under ambient conditions of temperature as well as pressure, the DBFC exhibited a maximum peak power density of about 81 mW cm{sup -2}. (author)

  16. Sundew-Inspired Adhesive Hydrogels Combined with Adipose-Derived Stem Cells for Wound Healing.

    Science.gov (United States)

    Sun, Leming; Huang, Yujian; Bian, Zehua; Petrosino, Jennifer; Fan, Zhen; Wang, Yongzhong; Park, Ki Ho; Yue, Tao; Schmidt, Michael; Galster, Scott; Ma, Jianjie; Zhu, Hua; Zhang, Mingjun

    2016-01-27

    The potential to harness the unique physical, chemical, and biological properties of the sundew (Drosera) plant's adhesive hydrogels has long intrigued researchers searching for novel wound-healing applications. However, the ability to collect sufficient quantities of the sundew plant's adhesive hydrogels is problematic and has eclipsed their therapeutic promise. Inspired by these natural hydrogels, we asked if sundew-inspired adhesive hydrogels could overcome the drawbacks associated with natural sundew hydrogels and be used in combination with stem-cell-based therapy to enhance wound-healing therapeutics. Using a bioinspired approach, we synthesized adhesive hydrogels comprised of sodium alginate, gum arabic, and calcium ions to mimic the properties of the natural sundew-derived adhesive hydrogels. We then characterized and showed that these sundew-inspired hydrogels promote wound healing through their superior adhesive strength, nanostructure, and resistance to shearing when compared to other hydrogels in vitro. In vivo, sundew-inspired hydrogels promoted a "suturing" effect to wound sites, which was demonstrated by enhanced wound closure following topical application of the hydrogels. In combination with mouse adipose-derived stem cells (ADSCs) and compared to other therapeutic biomaterials, the sundew-inspired hydrogels demonstrated superior wound-healing capabilities. Collectively, our studies show that sundew-inspired hydrogels contain ideal properties that promote wound healing and suggest that sundew-inspired-ADSCs combination therapy is an efficacious approach for treating wounds without eliciting noticeable toxicity or inflammation.

  17. Osteogenic differentiation of human adipose-derived mesenchymal stem cells on gum tragacanth hydrogel.

    Science.gov (United States)

    Haeri, Seyed Mohammad Jafar; Sadeghi, Yousef; Salehi, Mohammad; Farahani, Reza Masteri; Mohsen, Nourozian

    2016-05-01

    Currently, natural polymer based hydrogels has attracted great attention of orthopedic surgeons for application in bone tissue engineering. With this aim, osteoinductive capacity of Gum Tragacanth (GT) based hydrogel was compared to collagen hydrogel and tissue culture plate (TCPS). For this purpose, adipose-derived mesenchymal stem cells (AT-MSCs) was cultured on the hydrogels and TCPS and after investigating the biocompatibility of hydrogels using MTT assay, osteoinductivity of hydrogels were evaluated using pan osteogenic markers such as Alizarin red staining, alkaline phosphatase (ALP) activity, calcium content and osteo-related genes. Increasing proliferation trend of AT-MSCs on GT hydrogel demonstrated that TG has no-cytotoxicity and can even be better than the other groups i.e., highest proliferation at day 5. GT hydrogel displayed highest ALP activity and mineralization when compared to the collagen hydrogel and TCPS. Relative gene expression levels have demonstrated that highest expression of Runx2, osteonectin and osteocalcin in the cells cultured GT hydrogel but the expression of collagen type-1 remains constant in hydrogels. Above results demonstrate that GT hydrogel could be an appropriate scaffold for accelerating and supporting the adhesion, proliferation and osteogenic differentiation of stem cells which further can be used for orthopedic applications.

  18. Expression of COLLAGEN 1 and ELASTIN Genes in Mitral Valvular Interstitial Cells within Microfiber Reinforced Hydrogel

    Directory of Open Access Journals (Sweden)

    Eslami Maryam

    2015-10-01

    Full Text Available Objective The incidence of heart valve disease is increasing worldwide and the number of heart valve replacements is expected to increase in the future. By mimicking the main tissue structures and properties of heart valve, tissue engineering offers new options for the replacements. Applying an appropriate scaffold in fabricating tissue-engineered heart valves (TEHVs is of importance since it affects the secretion of the main extracellular matrix (ECM components, collagen 1 and elastin, which are crucial in providing the proper mechanical properties of TEHVs. Materials and Methods Using real-time polymerase chain reaction (PCR in this experi- mental study, the relative expression levels of COLLAGEN 1 and ELASTIN were obtained for three samples of each examined sheep mitral valvular interstitial cells (MVICs-seeded onto electrospun poly (glycerol sebacate (PGS-poly (ε-caprolactone (PCL microfibrous, gelatin and hyaluronic acid based hydrogel-only and composite (PGS-PCL/hydrogel scaffolds. This composite has been shown to create a synthetic three-dimensional (3D microenvironment with appropriate mechanical and biological properties for MVICs. Results Cell viability and metabolic activity were similar among all scaffold types. Our results showed that the level of relative expression of COLLAGEN 1 and ELASTIN genes was higher in the encapsulated composite scaffolds compared to PGS-PCL-only and hydrogel-only scaffolds with the difference being statistically significant (P<0.05. Conclusion The encapsulated composite scaffolds are more conducive to ECM secretion over the PGS-PCL-only and hydrogel-only scaffolds. This composite scaffold can serve as a model scaffold for heart valve tissue engineering.

  19. Poly(amidoamine Hydrogels as Scaffolds for Cell Culturing and Conduits for Peripheral Nerve Regeneration

    Directory of Open Access Journals (Sweden)

    Fabio Fenili

    2011-01-01

    Full Text Available Biodegradable and biocompatible poly(amidoamine-(PAA- based hydrogels have been considered for different tissue engineering applications. First-generation AGMA1 hydrogels, amphoteric but prevailing cationic hydrogels containing carboxylic and guanidine groups as side substituents, show satisfactory results in terms of adhesion and proliferation properties towards different cell lines. Unfortunately, these hydrogels are very swellable materials, breakable on handling, and have been found inadequate for other applications. To overcome this problem, second-generation AGMA1 hydrogels have been prepared adopting a new synthetic method. These new hydrogels exhibit good biological properties in vitro with satisfactory mechanical characteristics. They are obtained in different forms and shapes and successfully tested in vivo for the regeneration of peripheral nerves. This paper reports on our recent efforts in the use of first-and second-generation PAA hydrogels as substrates for cell culturing and tubular scaffold for peripheral nerve regeneration.

  20. Enzymatically crosslinked gelatin hydrogel promotes the proliferation of adipose tissue-derived stromal cells

    Science.gov (United States)

    Ren, Xiaomei; Long, Haiyan; Qian, Hong; Ma, Kunlong

    2016-01-01

    Gelatin hydrogel crosslinked by microbial transglutaminase (mTG) exhibits excellent performance in cell adhesion, proliferation, and differentiation. We examined the gelation time and gel strength of gelatin/mTG hydrogels in various proportions to investigate their physical properties and tested their degradation performances in vitro. Cell morphology and viability of adipose tissue-derived stromal cells (ADSCs) cultured on the 2D gel surface or in 3D hydrogel encapsulation were evaluated by immunofluorescence staining. Cell proliferation was tested via Alamar Blue assay. To investigate the hydrogel effect on cell differentiation, the cardiac-specific gene expression levelsof Nkx2.5, Myh6, Gja1, and Mef2c in encapsulated ADSCs with or without cardiac induction medium were detected by real-time RT-PCR. Cell release from the encapsulated status and cell migration in a 3D hydrogel model were assessed in vitro. Results show that the gelatin/mTG hydrogels are not cytotoxic and that their mechanical properties are adjustable. Hydrogel degradation is related to gel concentration and the resident cells. Cell growth morphology and proliferative capability in both 2D and 3D cultures were mainly affected by gel concentration. PCR result shows that hydrogel modulus together with induction medium affects the cardiac differentiation of ADSCs. The cell migration experiment and subcutaneous implantation show that the hydrogels are suitable for cell delivery. PMID:27703850

  1. Microfluidic-Based Synthesis of Hydrogel Particles for Cell Microencapsulation and Cell-Based Drug Delivery

    Directory of Open Access Journals (Sweden)

    Jiandi Wan

    2012-04-01

    Full Text Available Encapsulation of cells in hydrogel particles has been demonstrated as an effective approach to deliver therapeutic agents. The properties of hydrogel particles, such as the chemical composition, size, porosity, and number of cells per particle, affect cellular functions and consequently play important roles for the cell-based drug delivery. Microfluidics has shown unparalleled advantages for the synthesis of polymer particles and been utilized to produce hydrogel particles with a well-defined size, shape and morphology. Most importantly, during the encapsulation process, microfluidics can control the number of cells per particle and the overall encapsulation efficiency. Therefore, microfluidics is becoming the powerful approach for cell microencapsulation and construction of cell-based drug delivery systems. In this article, I summarize and discuss microfluidic approaches that have been developed recently for the synthesis of hydrogel particles and encapsulation of cells. I will start by classifying different types of hydrogel material, including natural biopolymers and synthetic polymers that are used for cell encapsulation, and then focus on the current status and challenges of microfluidic-based approaches. Finally, applications of cell-containing hydrogel particles for cell-based drug delivery, particularly for cancer therapy, are discussed.

  2. Fabrication of supramolecular hydrogels for drug delivery and stem cell encapsulation.

    Science.gov (United States)

    Wu, De-Qun; Wang, Tao; Lu, Bo; Xu, Xiao-Ding; Cheng, Si-Xue; Jiang, Xue-Jun; Zhang, Xian-Zheng; Zhuo, Ren-Xi

    2008-09-16

    Supramolecular hydrogels self-assembled by alpha-cyclodextrin and methoxypolyethylene glycol-poly(caprolactone)-(dodecanedioic acid)-poly(caprolactone)-methoxypolyethylene glycol (MPEG-PCL-MPEG) triblock polymers were prepared and characterized in vitro and in vivo. The sustained release of dextran-fluorescein isothiocyanate (FITC) from the hydrogels lasted for more than 1 month, which indicated that the hydrogels were promising for controlled drug delivery. ECV304 cells and marrow mesenchymal stem cells (MSC) were encapsulated and cultured in the hydrogels, during which the morphologies of the cells could be kept. The in vitro cell viability studies and the in vivo histological studies demonstrated that the hydrogels were non-cytotoxic and biocompatible, which indicated that the hydrogels prepared were promising candidates as injectable scaffolds for tissue engineering applications.

  3. 3-Dimensional cell-laden nano-hydroxyapatite/protein hydrogels for bone regeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Sadat-Shojai, Mehdi, E-mail: msadatshojai@gmail.com [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Khorasani, Mohammad-Taghi [Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Jamshidi, Ahmad [Department of Novel Drug Delivery Systems, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of)

    2015-04-01

    The ability to encapsulate cells in three-dimensional (3D) protein-based hydrogels is potentially of benefit for tissue engineering and regenerative medicine. However, as a result of their poor mechanical strength, protein-based hydrogels have traditionally been considered for soft tissue engineering only. Hence, in this study we tried to render these hydrogels suitable for hard tissue regeneration, simply by incorporation of bioactive nano-hydroxyapatite (HAp) into a photocrosslinkable gelatin hydrogel. Different cell types were also encapsulated in three dimensions in the resulting composites to prepare cell-laden constructs. According to the results, HAp significantly improves the stiffness of gelatin hydrogels, while it maintains their structural integrity and swelling ratio. It was also found that while the bare hydrogel (control) was completely inert in terms of bioactivity, a homogeneous 3D mineralization occurs throughout the nanocomposites after incubation in simulated body fluid. Moreover, encapsulated cells readily elongated, proliferated, and formed a 3D interconnected network with neighboring cells in the nanocomposite, showing the suitability of the nano-HAp/protein hydrogels for cellular growth in 3D. Therefore, the hydrogel nanocomposites developed in this study may be promising candidates for preparing cell-laden tissue-like structures with enhanced stiffness and increased osteoconductivity to induce bone formation in vivo. - Highlights: • We tried to render protein-based hydrogels suitable for hard tissue regeneration. • We developed a three-component system comprising hydrogel, nano-HAp, and cells. • Nano-HAp significantly improved the mechanical strength of hydrogel. • Encapsulated cells readily elongated and proliferated in 3D cell-laden nanocomposite. • 3D deposition of bone crystals occurred in the hydrogel nanocomposites.

  4. Injectable in situ forming xylitol-PEG-based hydrogels for cell encapsulation and delivery.

    Science.gov (United States)

    Selvam, Shivaram; Pithapuram, Madhav V; Victor, Sunita P; Muthu, Jayabalan

    2015-02-01

    Injectable in situ crosslinking hydrogels offer unique advantages over conventional prefabricated hydrogel methodologies. Herein, we synthesize poly(xylitol-co-maleate-co-PEG) (pXMP) macromers and evaluate their performance as injectable cell carriers for tissue engineering applications. The designed pXMP elastomers were non-toxic and water-soluble with viscosity values permissible for subcutaneous injectable systems. pXMP-based hydrogels prepared via free radical polymerization with acrylic acid as crosslinker possessed high crosslink density and exhibited a broad range of compressive moduli that could match the natural mechanical environment of various native tissues. The hydrogels displayed controlled degradability and exhibited gradual increase in matrix porosity upon degradation. The hydrophobic hydrogel surfaces preferentially adsorbed albumin and promoted cell adhesion and growth in vitro. Actin staining on cells cultured on thin hydrogel films revealed subconfluent cell monolayers composed of strong, adherent cells. Furthermore, fabricated 3D pXMP cell-hydrogel constructs promoted cell survival and proliferation in vitro. Cumulatively, our results demonstrate that injectable xylitol-PEG-based hydrogels possess excellent physical characteristics and exhibit exceptional cytocompatibility in vitro. Consequently, they show great promise as injectable hydrogel systems for in situ tissue repair and regeneration.

  5. Synthesis and Characterization of Carboxymethylcellulose-Methacrylate Hydrogel Cell Scaffolds

    Directory of Open Access Journals (Sweden)

    Andreia Ribeiro

    2010-08-01

    Full Text Available Many carbohydrates pose advantages for tissue engineering applications due to their hydrophilicity, degradability, and availability of chemical groups for modification. For example, carboxymethylcellulose (CMC is a water-soluble cellulose derivative that is degradable by cellulase. Though this enzyme is not synthesized by mammalian cells, cellulase and the fragments derived from CMC degradation are biocompatible. With this in mind, we created biocompatible, selectively degradable CMC-based hydrogels that are stable in routine culture, but degrade when exposed to exogenous cellulase. Solutions of CMC-methacrylate and polyethylene glycol dimethacrylate (PEG-DM were co-crosslinked to form stable hydrogels; we found that greater CMC-methacrylate content resulted in increased gel swelling, protein diffusion and rates of degradation by cellulase, as well as decreased gel shear modulus. CMC-methacrylate/PEG-DM gels modified with the adhesive peptide RGD supported fibroblast adhesion and viability. We conclude that hydrogels based on CMC-methacrylate are suitable for bioengineering applications where selective degradability may be favorable, such as cell scaffolds or controlled release devices.

  6. Chitosan hydrogels enriched with polyphenols: Antibacterial activity, cell adhesion and growth and mineralization.

    Science.gov (United States)

    Lišková, Jana; Douglas, Timothy E L; Beranová, Jana; Skwarczyńska, Agata; Božič, Mojca; Samal, Sangram Keshari; Modrzejewska, Zofia; Gorgieva, Selestina; Kokol, Vanja; Bačáková, Lucie

    2015-09-20

    Injectable hydrogels for bone regeneration consisting of chitosan, sodium beta-glycerophosphate (Na-β-GP) and alkaline phosphatase (ALP) were enriched with the polyphenols phloroglucinol (PG) and gallic acid (GA) and characterized physicochemically and biologically with respect to properties relevant for applications in bone regeneration, namely gelation kinetics, mineralizability, antioxidant properties, antibacterial activity, cytocompatibility and ability to support adhesion and growth of human osteoblast-like MG63 cells. Enrichment with PG and GA had no negative effect on gelation kinetics and mineralizability. PG and GA both enhanced antioxidant activity of unmineralized hydrogels. Mineralization reduced antioxidant activity of hydrogels containing GA. Hydrogels containing GA, PG and without polyphenols reduced colony forming ability of Escherichia coli after 1h, 3h and 6h incubation and slowed E. coli growth in liquid culture for 150min. Hydrogels containing GA were cytotoxic and supported cell growth more poorly than polyphenol-free hydrogels. PG had no negative effect on cell adhesion and growth.

  7. Temperature-sensitivity and cell biocompatibility of freeze-dried nanocomposite hydrogels incorporated with biodegradable PHBV

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qingsong, E-mail: zqs8011@163.com; Chen, Li, E-mail: chenlis@tjpu.edu.cn; Dong, Youyu; Lu, Si

    2013-04-01

    The structure, morphology, thermal behaviors and cytotoxicity of novel hydrogels, composed of poly(N-isopropylacrylamide)(PNIPAM) and biodegradable polyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) under nanoclay hectorite “Laponite XLG” severed as physical cross-linker, were characterized by X-ray diffraction, scanning electron microscopy, gravimetric method, differential scanning calorimetry, and cell culture experiments. It was found that, due to the introduction of hydrophobic PHBV, the homogeneity of interior pore in the pure PNIPAM nanocomposite hydrogel was disrupted, the transparency and swelling degree gradually decreased. Although the weight ratio between PHBV and NIPAM increased from 5 to 40 wt.%, the volume phase transition temperature (VPTTs) of hydrogel were not altered compared with the pure PNIPAM nanocomposite hydrogel. No matter what PHBV content, the PHBV/PNIPAM/Hectorite hydrogels always exhibit good stimuli-responsibility. In addition, human hepatoma cells(HepG2) adhesion and spreading on the surface of PHBV-based hydrogels was greatly improved than that of pure PNIPAM nanocomposite hydrogel at 37 °C due to the introduction of PHBV. Highlights: ► Thermo-responsive and cell biocompatible hydrogels incorporated PHBV was synthesized. ► The introduction of PHBV decreases the transparency of nanocomposite hydrogel. ► The introduction of PHBV has a little shift on VPTTs of nanocomposite hydrogel. ► The HepG2 cells could adhere and spread on the surface of PHBV-based hydrogels. ► Cell sheet could be detached simultaneously from the surface of hydrogels.

  8. Oxidized alginate hydrogels as niche environments for corneal epithelial cells.

    Science.gov (United States)

    Wright, Bernice; De Bank, Paul A; Luetchford, Kim A; Acosta, Fernando R; Connon, Che J

    2014-10-01

    Chemical and biochemical modification of hydrogels is one strategy to create physiological constructs that maintain cell function. The aim of this study was to apply oxidised alginate hydrogels as a basis for development of a biomimetic niche for limbal epithelial stem cells that may be applied to treating corneal dysfunction. The stem phenotype of bovine limbal epithelial cells (LEC) and the viability of corneal epithelial cells (CEC) were examined in oxidised alginate gels containing collagen IV over a 3-day culture period. Oxidation increased cell viability (P ≤ 0.05) and this improved further with addition of collagen IV (P ≤ 0.01). Oxidised gels presented larger internal pores (diameter: 0.2-0.8 µm) than unmodified gels (pore diameter: 0.05-0.1 µm) and were significantly less stiff (P ≤ 0.001), indicating that an increase in pore size and a decrease in stiffness contributed to improved cell viability. The diffusion of collagen IV from oxidised alginate gels was similar to that of unmodified gels suggesting that oxidation may not affect the retention of extracellular matrix proteins in alginate gels. These data demonstrate that oxidised alginate gels containing corneal extracellular matrix proteins can influence corneal epithelial cell function in a manner that may impact beneficially on corneal wound healing therapy.

  9. Periodontal tissue regeneration using enzymatically solidified chitosan hydrogels with or without cell loading

    NARCIS (Netherlands)

    Yan, X.Z.; Beucken, J.J.J.P van den; Cai, X; Yu, N.; Jansen, J.A.; Yang, F.

    2015-01-01

    This study is aimed to evaluate the in vivo biocompatibility and periodontal regenerative potential of enzymatically solidified chitosan hydrogels with or without incorporated periodontal ligament cells (PDLCs). To this end, chitosan hydrogels, with (n=8; CHIT+CELL) or without (n=8; CHIT) fluorescen

  10. Utilizing cell-matrix interactions to modulate gene transfer to stem cells inside hyaluronic acid hydrogels.

    Science.gov (United States)

    Gojgini, Shiva; Tokatlian, Talar; Segura, Tatiana

    2011-10-01

    The effective delivery of DNA locally would increase the applicability of gene therapy in tissue regeneration, where diseased tissue is to be repaired in situ. One promising approach is to use hydrogel scaffolds to encapsulate and deliver plasmid DNA in the form of nanoparticles to the diseased tissue, so that cells infiltrating the scaffold are transfected to induce regeneration. This study focuses on the design of a DNA nanoparticle-loaded hydrogel scaffold. In particular, this study focuses on understanding how cell-matrix interactions affect gene transfer to adult stem cells cultured inside matrix metalloproteinase (MMP) degradable hyaluronic acid (HA) hydrogel scaffolds. HA was cross-linked to form a hydrogel material using a MMP degradable peptide and Michael addition chemistry. Gene transfer inside these hydrogel materials was assessed as a function of polyplex nitrogen to phosphate ratio (N/P = 5 to 12), matrix stiffness (100-1700 Pa), RGD (Arg-Gly-Asp) concentration (10-400 μM), and RGD presentation (0.2-4.7 RGDs per HA molecule). All variables were found to affect gene transfer to mouse mensenchymal stem cells culture inside the DNA loaded hydrogels. As expected, higher N/P ratios lead to higher gene transfer efficiency but also higher toxicity; softer hydrogels resulted in higher transgene expression than stiffer hydrogels, and an intermediate RGD concentration and RGD clustering resulted in higher transgene expression. We believe that the knowledge gained through this in vitro model can be utilized to design better scaffold-mediated gene delivery for local gene therapy.

  11. Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties.

    Science.gov (United States)

    Tong, Xinming; Yang, Fan

    2014-02-01

    Hydrogels have been widely used as artificial cell niche to mimic extracellular matrix with tunable properties. However, changing biochemical cues in hydrogels developed-to-date would often induce simultaneous changes in mechanical properties, which do not support mechanistic studies on stem cell-niche interactions. Here we report the development of a PEG-based interpenetrating network (IPN), which is composed of two polymer networks that can independently and simultaneously crosslink to form hydrogels in a cell-friendly manner. The resulting IPN hydrogel allows independently tunable biochemical and mechanical properties, as well as stable and more homogeneous presentation of biochemical ligands in 3D than currently available methods. We demonstrate the potential of our IPN platform for elucidating stem cell-niche interactions by modulating osteogenic differentiation of human adipose-derived stem cells. The versatility of such IPN hydrogels is further demonstrated using three distinct and widely used polymers to form the mechanical network while keeping the biochemical network constant.

  12. Cell-mediated remodeling of biomimetic encapsulating hydrogels triggered by adipogenic differentiation of adipose stem cells

    Science.gov (United States)

    Clevenger, Tracy N; Luna, Gabriel; Boctor, Daniel; Fisher, Steven K; Clegg, Dennis O

    2016-01-01

    One of the most common regenerative therapies is autologous fat grafting, which frequently suffers from unexpected volume loss. One approach is to deliver adipose stem cells encapsulated in the engineered hydrogels supportive of cell survival, differentiation, and integration after transplant. We describe an encapsulating, biomimetic poly(ethylene)-glycol hydrogel, with embedded peptides for attachment and biodegradation. Poly(ethylene)-glycol hydrogels containing an Arg–Gly–Asp attachment sequence and a matrix metalloprotease 3/10 cleavage site supported adipose stem cell survival and showed remodeling initiated by adipogenic differentiation. Arg–Gly–Asp–matrix metalloprotease 3/10 cleavage site hydrogels showed an increased number and area of lacunae or holes after adipose stem cell differentiation. Image analysis of adipose stem cells in Arg–Gly–Asp–matrix metalloprotease 3/10 cleavage site hydrogels showed larger Voronoi domains, while cell density remained unchanged. The differentiated adipocytes residing within these newly remodeled spaces express proteins and messenger RNAs indicative of adipocytic differentiation. These engineered scaffolds may provide niches for stem cell differentiation and could prove useful in soft tissue regeneration. PMID:27733898

  13. Viral infection of human progenitor and liver-derived cells encapsulated in three-dimensional PEG-based hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam-Joon; Elazar, Menashe; Xiong, Anming; Glenn, Jeffrey S [Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, CCSR Building Room 3115A, 269 Campus Drive, Stanford, CA 94305 (United States); Lee, Wonjae [Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States); Chiao, Eric; Baker, Julie [Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 (United States); Frank, Curtis W, E-mail: jeffrey.glenn@stanford.ed, E-mail: curt.frank@stanford.ed [Department of Chemical Engineering, Stanford University, Stanford, CA 94305 (United States)

    2009-02-15

    We have studied the encapsulation of human progenitor cells into 3D PEG hydrogels. Replication-incompetent lentivirus promoter reporter vectors were found to efficiently detect the in vivo expression of human hepatic genes in hydrogel-encapsulated liver progenitor cells. Similarly, hydrogel-encapsulated cells could be efficiently infected with hepatitis C virus, and progeny infectious virus could be recovered from the media supernatants of the hydrogels. Provocatively, the diameters of these virus particles range from {approx}50 to 100 nm, while the calculated mesh size of the 8 k hydrogel is 44.6 +- 1.7 A. To reconcile how viral particles can penetrate the hydrogels to infect the encapsulated cells, we propose that microfractures/defects of the hydrogel result in a functional pore size of up to 20 fold greater than predicted by theoretical mesh calculations. These results suggest a new model of hydrogel structure, and have exciting implications for tissue engineering and hepatitis virus studies. (communication)

  14. Cartilage repair by human umbilical cord blood-derived mesenchymal stem cells with different hydrogels in a rat model.

    Science.gov (United States)

    Park, Yong-Beom; Song, Minjung; Lee, Choong-Hee; Kim, Jin-A; Ha, Chul-Won

    2015-11-01

    This study was carried out to assess the feasibility of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in articular cartilage repair and to further determine a suitable delivering hydrogel in a rat model. Critical sized full thickness cartilage defects were created. The hUCB-MSCs and three different hydrogel composites (hydrogel A; 4% hyaluronic acid/30% pluronic (1:1, v/v), hydrogel B; 4% hyaluronic acid, and hydrogel C; 4% hyaluronic acid/30% pluronic/chitosan (1:1:2, v/v)) were implanted into the experimental knee (right knee) and hydrogels without hUCB-MSCs were implanted into the control knee (left knee). Defects were evaluated after 8 weeks. The hUCB-MSCs with hydrogels composites resulted in a better repair as seen by gross and histological evaluation compared with hydrogels without hUCB-MSCs. Among the three different hydrogels, the 4% hyaluronic acid hydrogel composite (hydrogel B) showed the best result in cartilage repair as seen by the histological evaluation compared with the other hydrogel composites (hydrogel A and C). The results of this study suggest that hUCB-MSCs may be a promising cell source in combination with 4% hyaluronic acid hydrogels in the in vivo repair of cartilage defects.

  15. Hydrogel-Based Nanocomposites and Mesenchymal Stem Cells: A Promising Synergistic Strategy for Neurodegenerative Disorders Therapy

    Directory of Open Access Journals (Sweden)

    Diego Albani

    2013-01-01

    Full Text Available Hydrogel-based materials are widely employed in the biomedical field. With regard to central nervous system (CNS neurodegenerative disorders, the design of injectable nanocomposite hydrogels for in situ drug or cell release represents an interesting and minimally invasive solution that might play a key role in the development of successful treatments. In particular, biocompatible and biodegradable hydrogels can be designed as specific injectable tools and loaded with nanoparticles (NPs, to improve and to tailor their viscoelastic properties upon injection and release profile. An intriguing application is hydrogel loading with mesenchymal stem cells (MSCs that are a very promising therapeutic tool for neurodegenerative or traumatic disorders of the CNS. This multidisciplinary review will focus on the basic concepts to design acellular and cell-loaded materials with specific and tunable rheological and functional properties. The use of hydrogel-based nanocomposites and mesenchymal stem cells as a synergistic strategy for nervous tissue applications will be then discussed.

  16. Thermal-Responsive Behavior of a Cell Compatible Chitosan/Pectin Hydrogel.

    Science.gov (United States)

    Birch, Nathan P; Barney, Lauren E; Pandres, Elena; Peyton, Shelly R; Schiffman, Jessica D

    2015-06-01

    Biopolymer hydrogels are important materials for wound healing and cell culture applications. While current synthetic polymer hydrogels have excellent biocompatibility and are nontoxic, they typically function as a passive matrix that does not supply any additional bioactivity. Chitosan (CS) and pectin (Pec) are natural polymers with active properties that are desirable for wound healing. Unfortunately, the synthesis of CS/Pec materials have previously been limited by harsh acidic synthesis conditions, which further restricted their use in biomedical applications. In this study, a zero-acid hydrogel has been synthesized from a mixture of chitosan and pectin at biologically compatible conditions. For the first time, we demonstrated that salt could be used to suppress long-range electrostatic interactions to generate a thermoreversible biopolymer hydrogel that has temperature-sensitive gelation. Both the hydrogel and the solution phases are highly elastic, with a power law index of close to -1. When dried hydrogels were placed into phosphate buffered saline solution, they rapidly rehydrated and swelled to incorporate 2.7× their weight. As a proof of concept, we removed the salt from our CS/Pec hydrogels, thus, creating thick and easy to cast polyelectrolyte complex hydrogels, which proved to be compatible with human marrow-derived stem cells. We suggest that our development of an acid-free CS/Pec hydrogel system that has excellent exudate uptake, holds potential for wound healing bandages.

  17. Self-healing polysaccharide-based hydrogels as injectable carriers for neural stem cells

    Science.gov (United States)

    Wei, Zhao; Zhao, Jingyi; Chen, Yong Mei; Zhang, Pengbo; Zhang, Qiqing

    2016-11-01

    Self-healing injectable hydrogels can be formulated as three-dimensional carriers for the treatment of neurological diseases with desirable advantages, such as avoiding the potential risks of cell loss during injection, protecting cells from the shearing force of injection. However, the demands for biocompatible self-healing injectable hydrogels to meet above requirements and to promote the differentiation of neural stem cells (NSCs) into neurons remain a challenge. Herein, we developed a biocompatible self-healing polysaccharide-based hydrogel system as a novel injectable carrier for the delivery of NSCs. N-carboxyethyl chitosan (CEC) and oxidized sodium alginate (OSA) are the main backbones of the hydrogel networks, denoted as CEC-l-OSA hydrogel (“l” means “linked-by”). Owing to the dynamic imine cross-links formed by a Schiff reaction between amino groups on CEC and aldehyde groups on OSA, the hydrogel possesses the ability to self-heal into a integrity after being injected from needles under physiological conditions. The CEC-l-OSA hydrogel in which the stiffness mimicking nature brain tissues (100~1000 Pa) can be finely tuned to support the proliferation and neuronal differentiation of NSCs. The multi-functional, injectable, and self-healing CEC-l-OSA hydrogels hold great promises for NSC transplantation and further treatment of neurological diseases.

  18. Biodegradation and Osteosarcoma Cell Cultivation on Poly(aspartic acid) Based Hydrogels.

    Science.gov (United States)

    Juriga, Dávid; Nagy, Krisztina; Jedlovszky-Hajdú, Angéla; Perczel-Kovách, Katalin; Chen, Yong Mei; Varga, Gábor; Zrínyi, Miklós

    2016-09-14

    Development of novel biodegradable and biocompatible scaffold materials with optimal characteristics is important for both preclinical and clinical applications. The aim of the present study was to analyze the biodegradability of poly(aspartic acid)-based hydrogels, and to test their usability as scaffolds for MG-63 osteoblast-like cells. Poly(aspartic acid) was fabricated from poly(succinimide) and hydrogels were prepared using natural amines as cross-linkers (diaminobutane and cystamine). Disulfide bridges were cleaved to thiol groups and the polymer backbone was further modified with RGD sequence. Biodegradability of the hydrogels was evaluated by experiments on the base of enzymes and cell culture medium. Poly(aspartic acid) hydrogels possessing only disulfide bridges as cross-links proved to be degradable by collagenase I. The MG-63 cells showed healthy, fibroblast-like morphology on the double cross-linked and RGD modified hydrogels. Thiolated poly(aspartic acid) based hydrogels provide ideal conditions for adhesion, survival, proliferation, and migration of osteoblast-like cells. The highest viability was found on the thiolated PASP gels while the RGD motif had influence on compacted cluster formation of the cells. These biodegradable and biocompatible poly(aspartic acid)-based hydrogels are promising scaffolds for cell cultivation.

  19. Microfabrication of proangiogenic cell-laden alginate-g-pyrrole hydrogels.

    Science.gov (United States)

    DeVolder, Ross J; Zill, Andrew T; Jeong, Jae H; Kong, Hyunjoon

    2012-11-01

    Cells have been extensively studied for their uses in various therapies because of their capacities to produce therapeutic proteins and recreate new tissues. It has often been suggested that the efficacy of cell therapies can greatly be improved through the ability to localize and regulate cellular activities at a transplantation site; however, the technologies for this control are lacking. Therefore, this study reports a cell-Laden hydrogel patch engineered to support the proliferation and angiogenic growth factor expression of cells adhered to their surfaces, and to further promote neovascularization. Hydrogels consisting of alginate chemically linked with pyrrole units, termed alginate-g-pyrrole, were prepared through an oxidative cross-linking reaction between pyrrole units. Fibroblasts adhered to the alginate-g-pyrrole hydrogels, and exhibited increased proliferation and overall vascular endothelial growth factor (VEGF) expression, compared to those on pyrrole-free hydrogels. Furthermore, the alginate-g-pyrrole hydrogel surfaces were modified to present microposts, subsequently increasing the amount of pyrrole units on their surfaces. Cells adhered to the microfabricated gel surfaces exhibited increased proliferation and overall VEGF expression proportional to the density of the microposts. The resulting micropatterned alginate-g-pyrrole hydrogels exhibited increases in the size and density of mature blood vessels when implanted on chick chorioallantoic membranes (CAMs). The hydrogel system developed in this study will be broadly useful for improving the efficacy of a wide array of cell-based wound healing and tissue regenerative therapies.

  20. Collagen hydrogel as an immunomodulatory scaffold in cartilage tissue engineering.

    Science.gov (United States)

    Yuan, Tun; Zhang, Li; Li, Kuifeng; Fan, Hongsong; Fan, Yujiang; Liang, Jie; Zhang, Xingdong

    2014-02-01

    A collagen type I hydrogel was constructed and used as the scaffold for cartilage tissue engineering. Neonatal rabbit chondrocytes were seeded into the hydrogel, and the constructs were cultured in vitro for 7, 14, and 28 days. The immunomodulatory effect of the hydrogel on seeded chondrocytes was carefully investigated. The expressions of major histocompatibility complex classes I and II of seeded chondrocytes increased with the time, which indicated that the immunogenicity also increased with the time. Meanwhile, the properly designed collagen type I hydrogel could prompt the chondrogenesis of engineered cartilage. The extracellular matrix (ECM) synthesis ability of seeded chondrocytes and the accumulated ECM in the constructs continuously increased with the culture time. Both the isolation and protection, which come from formed ECM and hydrogel scaffold, can effectively control the adverse immunogenicity of seeded chondrocytes and even help to lessen the immunogenicity of the whole engineered cartilage. As the result, the levels of mixed lymphocyte chondrocyte reactions of seed cells and the constructs decreased gradually. The stimulation on allogeneic lymphocytes of the whole constructs was obviously lower than that of the retrieved cells from the constructs. Therefore, properly designed collagen type I hydrogel can give certain immunogenicity-reducing effects on engineered cartilage based on chondrocytes, and it may be a potential immunomodulatory biomaterial in tissue engineering.

  1. Structural and permeability characterization of biosynthetic PVA hydrogels designed for cell-based therapy.

    Science.gov (United States)

    Nafea, Eman H; Poole-Warren, Laura A; Martens, Penny J

    2014-01-01

    Incorporation of extracellular matrix (ECM) components to synthetic hydrogels has been shown to be the key for successful cell encapsulation devices, by providing a biofunctional microenvironment for the encapsulated cells. However, the influence of adding ECM components into synthetic hydrogels on the permeability as well as the physical and mechanical properties of the hydrogel has had little attention. Therefore, the aim of this study was to investigate the effect of incorporated ECM analogues on the permeability performance of permselective synthetic poly(vinyl alcohol) (PVA) hydrogels in addition to examining the physico-mechanical characteristics. PVA was functionalized with a systematically increased number of methacrylate functional groups per chain (FG/c) to tailor the permselectivity of UV photopolymerized hydrogel network. Heparin and gelatin were successfully incorporated into PVA network at low percentage (1%), and co-hydrogels were characterized for network properties and permeability to bovine serum albumin (BSA) and immunoglobulin G (IgG) proteins. Incorporation of these ECM analogues did not interfere with the base PVA network characteristics, as the controlled hydrogel mesh sizes, swelling and compressive modulii remained unchanged. While the permeation profiles of both BSA and IgG were not affected by the addition of heparin and gelatin as compared with pure PVA, increasing the FG/c from 7 to 20 significantly limited the diffusion of the larger IgG. Consequently, biosynthetic hydrogels composed of PVA with high FG/c and low percent ECM analogues show promise in their ability to be permselective for various biomedical applications.

  2. Hydrogels with tunable stress relaxation regulate stem cell fate and activity

    Science.gov (United States)

    Chaudhuri, Ovijit; Gu, Luo; Klumpers, Darinka; Darnell, Max; Bencherif, Sidi A.; Weaver, James C.; Huebsch, Nathaniel; Lee, Hong-Pyo; Lippens, Evi; Duda, Georg N.; Mooney, David J.

    2016-03-01

    Natural extracellular matrices (ECMs) are viscoelastic and exhibit stress relaxation. However, hydrogels used as synthetic ECMs for three-dimensional (3D) culture are typically elastic. Here, we report a materials approach to tune the rate of stress relaxation of hydrogels for 3D culture, independently of the hydrogel's initial elastic modulus, degradation, and cell-adhesion-ligand density. We find that cell spreading, proliferation, and osteogenic differentiation of mesenchymal stem cells (MSCs) are all enhanced in cells cultured in gels with faster relaxation. Strikingly, MSCs form a mineralized, collagen-1-rich matrix similar to bone in rapidly relaxing hydrogels with an initial elastic modulus of 17 kPa. We also show that the effects of stress relaxation are mediated by adhesion-ligand binding, actomyosin contractility and mechanical clustering of adhesion ligands. Our findings highlight stress relaxation as a key characteristic of cell-ECM interactions and as an important design parameter of biomaterials for cell culture.

  3. Osteogenic differentiation of human mesenchymal stem cells promotes mineralization within a biodegradable peptide hydrogel

    Directory of Open Access Journals (Sweden)

    Luis A Castillo Diaz

    2016-07-01

    Full Text Available An attractive strategy for the regeneration of tissues has been the use of extracellular matrix analogous biomaterials. Peptide-based fibrillar hydrogels have been shown to mimic the structure of extracellular matrix offering cells a niche to undertake their physiological functions. In this study, the capability of an ionic-complementary peptide FEFEFKFK (F, E, and K are phenylalanine, glutamic acid, and lysine, respectively hydrogel to host human mesenchymal stem cells in three dimensions and induce their osteogenic differentiation is demonstrated. Assays showed sustained cell viability and proliferation throughout the hydrogel over 12 days of culture and these human mesenchymal stem cells differentiated into osteoblasts simply upon addition of osteogenic stimulation. Differentiated osteoblasts synthesized key bone proteins, including collagen-1 (Col-1, osteocalcin, and alkaline phosphatase. Moreover, mineralization occurred within the hydrogel. The peptide hydrogel is a naturally biodegradable material as shown by oscillatory rheology and reversed-phase high-performance liquid chromatography, where both viscoelastic properties and the degradation of the hydrogel were monitored over time, respectively. These findings demonstrate that a biodegradable octapeptide hydrogel can host and induce the differentiation of stem cells and has the potential for the regeneration of hard tissues such as alveolar bone.

  4. Nanofiber density determines endothelial cell behavior on hydrogel matrix

    Energy Technology Data Exchange (ETDEWEB)

    Berti, Fernanda V., E-mail: fernanda@intelab.ufsc.br [Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Rambo, Carlos R. [Department of Electrical Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Dias, Paulo F. [Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Porto, Luismar M. [Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil)

    2013-12-01

    When cultured under static conditions, bacterial cellulose pellicles, by the nature of the polymer synthesis that involves molecular oxygen, are characterized by two distinct surface sides. The upper surface is denser in fibers (entangled) than the lower surface that shows greater surface porosity. Human umbilical vein endothelial cells (HUVECs) were used to exploit how the microarchitecture (i.e., surface porosity, fiber network structure, surface topology, and fiber density) of bacterial cellulose pellicle surfaces influence cell–biomaterial interaction and therefore cell behavior. Adhesion, cell ingrowth, proliferation, viability and cell death mechanisms were evaluated on the two pellicle surface sides. Cell behavior, including secondary necrosis, is influenced only by the microarchitecture of the surface, since the biomaterial is extremely pure (constituted of cellulose and water only). Cell–cellulose fiber interaction is the determinant signal in the cell–biomaterial responses, isolated from other frequently present interferences such as protein and other chemical traces usually present in cell culture matrices. Our results suggest that microarchitecture of hydrogel materials might determine the performance of biomedical products, such as bacterial cellulose tissue engineering constructs (BCTECs). - Highlights: • Topography of BC pellicle is relevant to determine endothelial cells' fate. • Cell–biomaterial response is affected by the topography of BC-pellicle surface. • Endothelial cells exhibit different behavior depending on the BC topography. • Apoptosis and necrosis of endothelial cells were affected by the BC topography.

  5. Seed train optimization for cell culture.

    Science.gov (United States)

    Frahm, Björn

    2014-01-01

    For the production of biopharmaceuticals a seed train is required to generate an adequate number of cells for inoculation of the production bioreactor. This seed train is time- and cost-intensive but offers potential for optimization. A method and a protocol are described for the seed train mapping, directed modeling without major effort, and its optimization regarding selected optimization criteria such as optimal points in time for cell passaging. Furthermore, the method can also be applied for the set-up of a new seed train, for example for a new cell line. Although the chapter is directed towards suspension cell lines, the method is also generally applicable, e.g. for adherent cell lines.

  6. Balancing Cell Migration with Matrix Degradation Enhances Gene Delivery to Cells Cultured Three-Dimensionally Within Hydrogels

    Science.gov (United States)

    Shepard, Jaclyn A.; Huang, Alyssa; Shikanova, Ariella; Shea, Lonnie D.

    2010-01-01

    In regenerative medicine, hydrogels are employed to fill defects and support the infiltration of cells that can ultimately regenerate tissue. Gene delivery within hydrogels targeting infiltrating cells has the potential to promote tissue formation, but the delivery efficiency of nonviral vectors within hydrogels is low hindering their applicability in tissue regeneration. To improve their functionality, we have conducted a mechanistic study to investigate the contribution of cell migration and matrix degradation on gene delivery. In this report, lipoplexes were entrapped within hydrogels based on poly(ethylene glycol) (PEG) crosslinked with peptides containing matrix metalloproteinase degradable sequences. The mesh size of these hydrogels is substantially less than the size of the entrapped lipoplexes, which can function to retain vectors. Cell migration and transfection were simultaneously measured within hydrogels with varying density of cell adhesion sites (Arg-Gly-Asp peptides) and solids content. Increasing RGD density increased expression levels up to 100-fold, while greater solids content sustained expression levels for 16 days. Increasing RGD density and decreasing solids content increased cell migration, which indicates expression levels increase with increased cell migration. Initially exposing cells to vector resulted in transient expression that declined after 2 days, verifying the requirement of migration to sustain expression. Transfected cells were predominantly located within the population of migrating cells for hydrogels that supported cell migration. Although the small mesh size retained at least 70% of the lipoplexes in the absence of cells after 32 days, the presence of cells decreased retention to 10% after 16 days. These results indicate that vectors retained within hydrogels contact migrating cells, and that persistent cell migration can maintain elevated expression levels. Thus matrix degradation and cell migration are fundamental design

  7. Nano-hydroxyapatite/polyacrylamide composite hydrogels with high mechanical strengths and cell adhesion properties.

    Science.gov (United States)

    Li, Zhiyong; Mi, Wenying; Wang, Huiliang; Su, Yunlan; He, Changcheng

    2014-11-01

    Nano-hydroxyapatite/polyacrylamide composite hydrogels were successfully fabricated by physically mixing nano-hydroxyapatite (nHAp) particles into a peroxidized micelles initiated and cross-linked (pMIC) polyacrylamide (PAAm) hydrogel. The nanocomposite hydrogels exhibited excellent mechanical properties. The fracture tensile stresses of the gels were in the range of 0.21-0.86 MPa and the fracture tensile strains were up to 30 mm/mm, and the compressive strengths were up to 35.8 MPa. Meanwhile the introduction of nHAp endowed the composite hydrogels with good cell adhesion properties. This nHAp/PAAm nanocomposite hydrogel is expected to find potential applications in tissue engineering.

  8. Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation.

    Science.gov (United States)

    Chan, Vincent; Zorlutuna, Pinar; Jeong, Jae Hyun; Kong, Hyunjoon; Bashir, Rashid

    2010-08-21

    Cell-encapsulated hydrogels with complex three-dimensional (3D) structures were fabricated from photopolymerizable poly(ethylene glycol) diacrylate (PEGDA) using modified 'top-down' and 'bottoms-up' versions of a commercially available stereolithography apparatus (SLA). Swelling and mechanical properties were measured for PEGDA hydrogels with molecular weights (M(w)) ranging from 700 to 10 000 Daltons (Da). Long-term viability of encapsulated NIH/3T3 cells was quantitatively evaluated using an MTS assay and shown to improve over 14 days by increasing the M(w) of the hydrogels. Addition of adhesive RGDS peptide sequences resulted in increased cell viability, proliferation, and spreading compared to pristine PEG hydrogels of the same M(w). Spatial 3D layer-by-layer cell patterning was successfully demonstrated, and the feasibility of depositing multiple cell types and material compositions into distinct layers was established.

  9. Effect of mechanical and electrical behavior of gelatin hydrogels on drug release and cell proliferation.

    Science.gov (United States)

    Biswal, Dibyajyoti; Anupriya, B; Uvanesh, K; Anis, Arfat; Banerjee, Indranil; Pal, Kunal

    2016-01-01

    The present study was aimed to explore the effect of the mechanical and the electrical properties of the gelatin hydrogels on the mammalian cell proliferation and drug release properties. FTIR analysis of the hydrogels suggested that gelatin retained its secondary protein structure. A decrease in the diffusion constant of the water molecules was observed with the increase in the gelatin concentration in the hydrogels. The mechanical and the electrical stabilities of the hydrogels were enhanced with the increase in the gelatin content. Stress relaxation and creep studies were modeled using Weichert and Burger׳s models, respectively. The relaxation time (stress relaxation study) did not follow a concentration-dependent relationship and was found to affect the MG-63 cell (human osteoblast) proliferation. The impedance profile of the hydrogels was modeled using a (RQ)Q model. Release of ciprofloxacin from the hydrogels was inversely dependent on the rate of swelling. The release of the drug was not only dependent on the Fickian diffusion but also on the relaxation process of the gelatin chains. The inhomogeneous constant of the constant phase element representing the hydrogel-electrode interface indicated improved cell proliferation rate with a decrease in the inhomogeneous constant. In gist, the rate of cell proliferation could be related to the relaxation time (stress relaxation) and the inhomogeneous constant of the sample-electrode constant phase element (electrical study) properties, whereas, the drug release properties can be related to the bulk resistance of the formulations.

  10. Reporter cell activity within hydrogel constructs quantified from oxygen-independent bioluminescence.

    Science.gov (United States)

    Lambrechts, Dennis; Roeffaers, Maarten; Kerckhofs, Greet; Hofkens, Johan; Van de Putte, Tom; Schrooten, Jan; Van Oosterwyck, Hans

    2014-09-01

    By providing a three-dimensional (3D) support to cells, hydrogels offer a more relevant in vivo tissue-like environment as compared to two-dimensional cell cultures. Hydrogels can be applied as screening platforms to investigate in 3D the role of biochemical and biophysical cues on cell behaviour using bioluminescent reporter cells. Gradients in oxygen concentration that result from the interplay between molecular transport and cell metabolism can however cause substantial variability in the observed bioluminescent reporter cell activity. To assess the influence of these oxygen gradients on the emitted bioluminescence for various hydrogel geometries, a combined experimental and modelling approach was implemented. We show that the applied model is able to predict oxygen gradient independent bioluminescent intensities which correlate better to the experimentally determined viable cell numbers, as compared to the experimentally measured bioluminescent intensities. By analysis of the bioluminescence reaction dynamics we obtained a quantitative description of cellular oxygen metabolism within the hydrogel, which was validated by direct measurements of oxygen concentration within the hydrogel. Bioluminescence peak intensities can therefore be used as a quantitative measurement of reporter cell activity within a hydrogel, but an unambiguous interpretation of these intensities requires a compensation for the influence of cell-induced oxygen gradients on the luciferase activity.

  11. Three-dimensional bioprinting of complex cell laden alginate hydrogel structures.

    Science.gov (United States)

    Tabriz, Atabak Ghanizadeh; Hermida, Miguel A; Leslie, Nicholas R; Shu, Wenmiao

    2015-12-21

    Different bioprinting techniques have been used to produce cell-laden alginate hydrogel structures, however these approaches have been limited to 2D or simple three-dimension (3D) structures. In this study, a new extrusion based bioprinting technique was developed to produce more complex alginate hydrogel structures. This was achieved by dividing the alginate hydrogel cross-linking process into three stages: primary calcium ion cross-linking for printability of the gel, secondary calcium cross-linking for rigidity of the alginate hydrogel immediately after printing and tertiary barium ion cross-linking for long-term stability of the alginate hydrogel in culture medium. Simple 3D structures including tubes were first printed to ensure the feasibility of the bioprinting technique and then complex 3D structures such as branched vascular structures were successfully printed. The static stiffness of the alginate hydrogel after printing was 20.18 ± 1.62 KPa which was rigid enough to sustain the integrity of the complex 3D alginate hydrogel structure during the printing. The addition of 60 mM barium chloride was found to significantly extend the stability of the cross-linked alginate hydrogel from 3 d to beyond 11 d without compromising the cellular viability. The results based on cell bioprinting suggested that viability of U87-MG cells was 93 ± 0.9% immediately after bioprinting and cell viability maintained above 88% ± 4.3% in the alginate hydrogel over the period of 11 d.

  12. Controlling the rheology of gellan gum hydrogels in cell culture conditions

    OpenAIRE

    Moxon, Samuel R.; Smith, Alan M.

    2016-01-01

    Successful culturing of tissues within polysaccharide hydrogels is reliant upon specific mechanical properties. Namely, the stiffness and elasticity of the gel have been shown to have a profound effect on cell behaviour in 3D cell cultures and correctly tuning these mechanical properties is critical to the success of culture. The usual way of tuning mechanical properties of a hydrogel to suit tissue engineering applications is to change the concentration of polymer or its cross-linking agents...

  13. Bioprinting Organotypic Hydrogels with Improved Mesenchymal Stem Cell Remodeling and Mineralization Properties for Bone Tissue Engineering.

    Science.gov (United States)

    Duarte Campos, Daniela Filipa; Blaeser, Andreas; Buellesbach, Kate; Sen, Kshama Shree; Xun, Weiwei; Tillmann, Walter; Fischer, Horst

    2016-06-01

    3D-manufactured hydrogels with precise contours and biological adhesion motifs are interesting candidates in the regenerative medicine field for the culture and differentiation of human bone-marrow-derived mesenchymal stem cells (MSCs). 3D-bioprinting is a powerful technique to approach one step closer the native organization of cells. This study investigates the effect of the incorporation of collagen type I in 3D-bioprinted polysaccharide-based hydrogels to the modulation of cell morphology, osteogenic remodeling potential, and mineralization. By combining thermo-responsive agarose hydrogels with collagen type I, the mechanical stiffness and printing contours of printed constructs can be improved compared to pure collagen hydrogels which are typically used as standard materials for MSC osteogenic differentiation. The results presented here show that MSC not only survive the 3D-bioprinting process but also maintain the mesenchymal phenotype, as proved by live/dead staining and immunocytochemistry (vimentin positive, CD34 negative). Increased solids concentrations of collagen in the hydrogel blend induce changes in cell morphology, namely, by enhancing cell spreading, that ultimately contribute to enhanced and directed MSC osteogenic differentiation. 3D-bioprinted agarose-collagen hydrogels with high-collagen ratio are therefore feasible for MSC osteogenic differentiation, contrarily to low-collagen blends, as proved by two-photon microscopy, Alizarin Red staining, and real-time polymerase chain reaction.

  14. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.

    Science.gov (United States)

    Zhu, Zhi; Yang, Chaoyong James

    2017-01-17

    Heterogeneity among individual molecules and cells has posed significant challenges to traditional bulk assays, due to the assumption of average behavior, which would lose important biological information in heterogeneity and result in a misleading interpretation. Single molecule/cell analysis has become an important and emerging field in biological and biomedical research for insights into heterogeneity between large populations at high resolution. Compared with the ensemble bulk method, single molecule/cell analysis explores the information on time trajectories, conformational states, and interactions of individual molecules/cells, all key factors in the study of chemical and biological reaction pathways. Various powerful techniques have been developed for single molecule/cell analysis, including flow cytometry, atomic force microscopy, optical and magnetic tweezers, single-molecule fluorescence spectroscopy, and so forth. However, some of them have the low-throughput issue that has to analyze single molecules/cells one by one. Flow cytometry is a widely used high-throughput technique for single cell analysis but lacks the ability for intercellular interaction study and local environment control. Droplet microfluidics becomes attractive for single molecule/cell manipulation because single molecules/cells can be individually encased in monodisperse microdroplets, allowing high-throughput analysis and manipulation with precise control of the local environment. Moreover, hydrogels, cross-linked polymer networks that swell in the presence of water, have been introduced into droplet microfluidic systems as hydrogel droplet microfluidics. By replacing an aqueous phase with a monomer or polymer solution, hydrogel droplets can be generated on microfluidic chips for encapsulation of single molecules/cells according to the Poisson distribution. The sol-gel transition property endows the hydrogel droplets with new functionalities and diversified applications in single

  15. Photoclick Hydrogels Prepared from Functionalized Cyclodextrin and Poly(ethylene glycol) for Drug Delivery and in Situ Cell Encapsulation.

    Science.gov (United States)

    Shih, Han; Lin, Chien-Chi

    2015-07-13

    Polymers or hydrogels containing modified cyclodextrin (CD) are highly useful in drug delivery applications, as CD is a cytocompatible amphiphilic molecule that can complex with a variety of hydrophobic drugs. Here, we designed modular photoclick thiol-ene hydrogels from derivatives of βCD and poly(ethylene glycol) (PEG), including βCD-allylether (βCD-AE), βCD-thiol (βCD-SH), PEG-thiol (PEGSH), and PEG-norbornene (PEGNB). Two types of CD-PEG hybrid hydrogels were prepared using radical-mediated thiol-ene photoclick reactions. Specifically, thiol-allylether hydrogels were formed by reacting multiarm PEGSH and βCD-AE, and thiol-norbornene hydrogels were formed by cross-linking βCD-SH and multiarm PEGNB. We characterized the properties of these two types of thiol-ene hydrogels, including gelation kinetics, gel fractions, hydrolytic stability, and cytocompatibility. Compared with thiol-allylether hydrogels, thiol-norbornene photoclick reaction formed hydrogels with faster gelation kinetics at equivalent macromer contents. Using curcumin, an anti-inflammatory and anticancer hydrophobic molecule, we demonstrated that CD-cross-linked PEG-based hydrogels, when compared with pure PEG-based hydrogels, afforded higher drug loading efficiency and prolonged delivery in vitro. Cytocompatibility of these CD-cross-linked hydrogels were evaluated by in situ encapsulation of radical sensitive pancreatic MIN6 β-cells. All formulations and cross-linking conditions tested were cytocompatible for cell encapsulation. Furthermore, hydrogels cross-linked by βCD-SH showed enhanced cell proliferation and insulin secretion as compared to gels cross-linked by either dithiothreitol (DTT) or βCD-AE, suggesting the profound impact of both macromer compositions and gelation chemistry on cell fate in chemically cross-linked hydrogels.

  16. Biomimetic poly(amidoamine hydrogels as synthetic materials for cell culture

    Directory of Open Access Journals (Sweden)

    Lenardi Cristina

    2008-11-01

    Full Text Available Abstract Background Poly(amidoamines (PAAs are synthetic polymers endowed with many biologically interesting properties, being highly biocompatible, non toxic and biodegradable. Hydrogels based on PAAs can be easily modified during the synthesis by the introduction of functional co-monomers. Aim of this work is the development and testing of novel amphoteric nanosized poly(amidoamine hydrogel film incorporating 4-aminobutylguanidine (agmatine moieties to create RGD-mimicking repeating units for promoting cell adhesion. Results A systematic comparative study of the response of an epithelial cell line was performed on hydrogels with agmatine and on non-functionalized amphoteric poly(amidoamine hydrogels and tissue culture plastic substrates. The cell adhesion on the agmatine containing substrates was comparable to that on plastic substrates and significantly enhanced with respect to the non-functionalized controls. Interestingly, spreading and proliferation on the functionalized supports are slower than on plastic exhibiting the possibility of an easier control of the cell growth kinetics. In order to favor the handling of the samples, a procedure for the production of bi-layered constructs was also developed by means the deposition via spin coating of a thin layer of hydrogel on a pre-treated cover slip. Conclusion The obtained results reveal that PAAs hydrogels can be profitably functionalized and, in general, undergo physical and chemical modifications to meet specific requirements. In particular the incorporation of agmatine warrants good potential in the field of cell culturing and the development of supported functionalized hydrogels on cover glass are very promising substrates for applications in cell screening devices.

  17. Chondroitin Sulfate Glycosaminoglycan Hydrogels Create Endogenous Niches for Neural Stem Cells.

    Science.gov (United States)

    Karumbaiah, Lohitash; Enam, Syed Faaiz; Brown, Ashley C; Saxena, Tarun; Betancur, Martha I; Barker, Thomas H; Bellamkonda, Ravi V

    2015-12-16

    Neural stem cells (NSCs) possess great potential for neural tissue repair after traumatic injuries to the central nervous system (CNS). However, poor survival and self-renewal of NSCs after injury severely limits its therapeutic potential. Sulfated chondroitin sulfate glycosaminoglycans (CS-GAGs) linked to CS proteoglycans (CSPGs) in the brain extracellular matrix (ECM) have the ability to bind and potentiate trophic factor efficacy, and promote NSC self-renewal in vivo. In this study, we investigated the potential of CS-GAG hydrogels composed of monosulfated CS-4 (CS-A), CS-6 (CS-C), and disulfated CS-4,6 (CS-E) CS-GAGs as NSC carriers, and their ability to create endogenous niches by enriching specific trophic factors to support NSC self-renewal. We demonstrate that CS-GAG hydrogel scaffolds showed minimal swelling and degradation over a period of 15 days in vitro, absorbing only 6.5 ± 0.019% of their initial weight, and showing no significant loss of mass during this period. Trophic factors FGF-2, BDNF, and IL10 bound with high affinity to CS-GAGs, and were significantly (p hydrogels when compared to unsulfated hyaluronic acid (HA) hydrogels. Dissociated rat subventricular zone (SVZ) NSCs when encapsulated in CS-GAG hydrogels demonstrated ∼88.5 ± 6.1% cell viability in vitro. Finally, rat neurospheres in CS-GAG hydrogels conditioned with the mitogen FGF-2 demonstrated significantly (p hydrogels. Taken together, these findings demonstrate the ability of CS-GAG based hydrogels to regulate NSC self-renewal, and facilitate growth factor enrichment locally.

  18. The incorporation of extracellular matrix proteins in protein polymer hydrogels to improve encapsulated beta-cell function.

    Science.gov (United States)

    Beenken-Rothkopf, Liese N; Karfeld-Sulzer, Lindsay S; Davis, Nicolynn E; Forster, Ryan; Barron, Annelise E; Fontaine, Magali J

    2013-01-01

    Biomaterial encapsulation of islets has been proposed to improve the long-term success of islet transplantation by recreating a suitable microenvironment and enhancing cell-matrix interactions that affect cellular function. Protein polymer hydrogels previously showed promise as a biocompatible scaffold by maintaining high cell viability. Here, enzymatically-crosslinked protein polymers were used to investigate the effects of varying scaffold properties and of introducing ECM proteins on the viability and function of encapsulated MIN6 β-cells. Chemical and mechanical properties of the hydrogel were modified by altering the protein concentrations while collagen IV, fibronectin, and laminin were incorporated to reestablish cell-matrix interactions lost during cell isolation. Rheology indicated all hydrogels formed quickly, resulting in robust, elastic hydrogels with Young's moduli similar to soft tissue. All hydrogels tested supported both high MIN6 β-cell viability and function and have the potential to serve as an encapsulation platform for islet cell delivery in vivo.

  19. Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response.

    Directory of Open Access Journals (Sweden)

    Raimon Sunyer

    Full Text Available Many fundamental cell processes, such as angiogenesis, neurogenesis and cancer metastasis, are thought to be modulated by extracellular matrix stiffness. Thus, the availability of matrix substrates having well-defined stiffness profiles can be of great importance in biophysical studies of cell-substrate interaction. Here, we present a method to fabricate biocompatible hydrogels with a well defined and linear stiffness gradient. This method, involving the photopolymerization of films by progressively uncovering an acrylamide/bis-acrylamide solution initially covered with an opaque mask, can be easily implemented with common lab equipment. It produces linear stiffness gradients of at least 115 kPa/mm, extending from ∼1 kPa to 240 kPa (in units of Young's modulus. Hydrogels with less steep gradients and narrower stiffness ranges can easily be produced. The hydrogels can be covalently functionalized with uniform coatings of proteins that promote cell adhesion. Cell spreading on these hydrogels linearly correlates with hydrogel stiffness, indicating that this technique effectively modifies the mechanical environment of living cells. This technique provides a simple approach that produces steeper gradients, wider rigidity ranges, and more accurate profiles than current methods.

  20. Guidance of mesenchymal stem cells on fibronectin structured hydrogel films.

    Directory of Open Access Journals (Sweden)

    Annika Kasten

    Full Text Available Designing of implant surfaces using a suitable ligand for cell adhesion to stimulate specific biological responses of stem cells will boost the application of regenerative implants. For example, materials that facilitate rapid and guided migration of stem cells would promote tissue regeneration. When seeded on fibronectin (FN that was homogeneously immmobilized to NCO-sP(EO-stat-PO, which otherwise prevents protein binding and cell adhesion, human mesenchymal stem cells (MSC revealed a faster migration, increased spreading and a more rapid organization of different cellular components for cell adhesion on fibronectin than on a glass surface. To further explore, how a structural organization of FN controls the behavior of MSC, adhesive lines of FN with varying width between 10 µm and 80 µm and spacings between 5 µm and 20 µm that did not allow cell adhesion were generated. In dependance on both line width and gaps, cells formed adjacent cell contacts, were individually organized in lines, or bridged the lines. With decreasing sizes of FN lines, speed and directionality of cell migration increased, which correlated with organization of the actin cytoskeleton, size and shape of the nuclei as well as of focal adhesions. Together, defined FN lines and gaps enabled a fine tuning of the structural organization of cellular components and migration. Microstructured adhesive substrates can mimic the extracellular matrix in vivo and stimulate cellular mechanisms which play a role in tissue regeneration.

  1. The collagen I mimetic peptide DGEA enhances an osteogenic phenotype in mesenchymal stem cells when presented from cell-encapsulating hydrogels.

    Science.gov (United States)

    Mehta, Manav; Madl, Christopher M; Lee, Shimwoo; Duda, Georg N; Mooney, David J

    2015-11-01

    Interactions between cells and the extracellular matrix (ECM) are known to play critical roles in regulating cell phenotype. The identity of ECM ligands presented to mesenchymal stem cells (MSCs) has previously been shown to direct the cell fate commitment of these cells. To enhance osteogenic differentiation of MSCs, alginate hydrogels were prepared that present the DGEA ligand derived from collagen I. When presented from hydrogel surfaces in 2D, the DGEA ligand did not facilitate cell adhesion, while hydrogels presenting the RGD ligand derived from fibronectin did encourage cell adhesion and spreading. However, the osteogenic differentiation of MSCs encapsulated within alginate hydrogels presenting the DGEA ligand was enhanced when compared with unmodified alginate hydrogels and hydrogels presenting the RGD ligand. MSCs cultured in DGEA-presenting gels exhibited increased levels of osteocalcin production and mineral deposition. These data suggest that the presentation of the collagen I-derived DGEA ligand is a feasible approach for selectively inducing an osteogenic phenotype in encapsulated MSCs.

  2. Effect of drying history on swelling properties and cell attachment to oligo(poly(ethylene glycol) fumarate) hydrogels for guided tissue regeneration applications.

    Science.gov (United States)

    Temenoff, Johnna S; Steinbis, Emily S; Mikos, Antonios G

    2003-01-01

    In these experiments, the effects of the drying history of hydrogels made from a novel polymer, oligo(poly(ethylene glycol) fumarate) (OPF) with two different poly(ethylene glycol) (PEG) molecular weights (approximately 920 (1K) and 9110 (10K) g/mol), were investigated. The hydrogels were either formed, dried and then swelled, representing what may occur in the case of a pre-formed membrane for guided tissue regeneration, or were formed and swelled immediately, as may occur with an injectable material for such applications. Subsequently, swelling properties, sol fraction and polymer network structure (as indicated by differential scanning calorimetry), as well as attachment of human dermal fibroblasts to these hydrogels at 4 and 24 h was examined. It was found that drying before swelling caused a significant reduction in final fold swelling of OPF hydrogels, regardless of OPF formulation or method of drying (air-dried or vacuum-dried) (e.g. PEG 10K swollen first: 13.94 +/- 0.35 vs. vacuum first: 6.53 +/- 0.12; PEG 1K swollen first: 8.99 +/- 0.47 vs. vacuum first: 2.26 +/- 0.08). This decreased swelling correlated to significantly higher cell attachment (% seeded) to these hydrogels at 24 h (PEG 10K vacuum first: 21.1 +/- 4.7% vs. swollen first: 7.1 +/- 5.5%; PEG 1K vacuum first: 58.2 +/- 2% vs. swollen first: 7.4 +/- 2.2%). LIVE/DEAD staining followed by microscopic analysis revealed attached cells were viable, yet rounded, and that, in the case of the PEG 1K dried-first samples, undulations in the surface visible in the hydrated state may have affected cell adhesion. Regardless of treatment, all hydrogels showed significantly less cell attachment than the tissue culture polystyrene control after 24 h (104.9 +/- 4.4%). These results suggest that, by altering the PEG molecular weight used in synthesis, OPF hydrogels may be tailored to produce desired swelling properties and reduce non-specific cell adhesion for either injectable or pre-formed applications, thus

  3. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds

    Science.gov (United States)

    Lee, Wonjae; Park, Jon

    2016-07-01

    Tissue-specific patterned stem cell differentiation serves as the basis for the development, remodeling, and regeneration of the multicellular structure of the native tissues. We herein proposed a cytocompatible 3D casting process to recapitulate this patterned stem cell differentiation for reconstructing multicellular tissues in vitro. We first reconstituted the 2D culture conditions for stem cell fate control within 3D hydrogel by incorporating the sets of the diffusible signal molecules delivered through drug-releasing microparticles. Then, utilizing thermo-responsivity of methylcellulose (MC), we developed a cytocompatible casting process to mold these hydrogels into specific 3D configurations, generating the targeted spatial gradients of diffusible signal molecules. The liquid phase of the MC solution was viscous enough to adopt the shapes of 3D impression patterns, while the gelated MC served as a reliable mold for patterning the hydrogel prepolymers. When these patterned hydrogels were integrated together, the stem cells in each hydrogel distinctly differentiated toward individually defined fates, resulting in the formation of the multicellular tissue structure bearing the very structural integrity and characteristics as seen in vascularized bones and osteochondral tissues.

  4. A photonic crystal hydrogel suspension array for the capture of blood cells from whole blood

    Science.gov (United States)

    Zhang, Bin; Cai, Yunlang; Shang, Luoran; Wang, Huan; Cheng, Yao; Rong, Fei; Gu, Zhongze; Zhao, Yuanjin

    2016-02-01

    Diagnosing hematological disorders based on the separation and detection of cells in the patient's blood is a significant challenge. We have developed a novel barcode particle-based suspension array that can simultaneously capture and detect multiple types of blood cells. The barcode particles are polyacrylamide (PAAm) hydrogel inverse opal microcarriers with characteristic reflection peak codes that remain stable during cell capture on their surfaces. The hydrophilic PAAm hydrogel scaffolds of the barcode particles can entrap various plasma proteins to capture different cells in the blood, with little damage to captured cells.Diagnosing hematological disorders based on the separation and detection of cells in the patient's blood is a significant challenge. We have developed a novel barcode particle-based suspension array that can simultaneously capture and detect multiple types of blood cells. The barcode particles are polyacrylamide (PAAm) hydrogel inverse opal microcarriers with characteristic reflection peak codes that remain stable during cell capture on their surfaces. The hydrophilic PAAm hydrogel scaffolds of the barcode particles can entrap various plasma proteins to capture different cells in the blood, with little damage to captured cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06368j

  5. Dynamic three-dimensional micropatterned cell co-cultures within photocurable and chemically degradable hydrogels.

    Science.gov (United States)

    Sugiura, Shinji; Cha, Jae Min; Yanagawa, Fumiki; Zorlutuna, Pinar; Bae, Hojae; Khademhosseini, Ali

    2016-08-01

    In this paper we report on the development of dynamically controlled three-dimensional (3D) micropatterned cellular co-cultures within photocurable and chemically degradable hydrogels. Specifically, we generated dynamic co-cultures of micropatterned murine embryonic stem (mES) cells with human hepatocellular carcinoma (HepG2) cells within 3D hydrogels. HepG2 cells were used due to their ability to direct the differentiation of mES cells through secreted paracrine factors. To generate dynamic co-cultures, mES cells were first encapsulated within micropatterned photocurable poly(ethylene glycol) (PEG) hydrogels. These micropatterned cell-laden PEG hydrogels were subsequently surrounded by calcium alginate (Ca-Alg) hydrogels containing HepG2 cells. After 4 days, the co-culture step was halted by exposing the system to sodium citrate solution, which removed the alginate gels and the encapsulated HepG2 cells. The encapsulated mES cells were then maintained in the resulting cultures for 16 days and cardiac differentiation was analysed. We observed that the mES cells that were exposed to HepG2 cells in the co-cultures generated cells with higher expression of cardiac genes and proteins, as well as increased spontaneous beating. Due to its ability to control the 3D microenvironment of cells in a spatially and temporally regulated manner, the method presented in this study is useful for a range of cell-culture applications related to tissue engineering and regenerative medicine. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Enhanced infarct myocardium repair mediated by thermosensitive copolymer hydrogel-based stem cell transplantation

    Science.gov (United States)

    Xia, Yu; Zhu, Kai; Lai, Hao; Lang, Meidong; Xiao, Yan; Lian, Sheng

    2015-01-01

    Mesenchymal stem cell (MSC) transplantation by intramyocardial injection has been proposed as a promising therapy strategy for cardiac repair after myocardium infarction. However, low retention and survival of grafted MSCs hinder its further application. In this study, copolymer with N-isopropylacrylamide/acrylic acid/2-hydroxylethyl methacrylate-poly(ɛ-caprolactone) ratio of 88:9.6:2.4 was bioconjugated with type I collagen to construct a novel injectable thermosensitive hydrogel. The injectable and biocompatible hydrogel-mediated MSC transplantation could enhance the grafted cell survival in the myocardium, which contributed to the increased neovascularization, decreased interstitial fibrosis, and ultimately improved heart function to a significantly greater degree than regular MSC transplantation. We suggest that this novel hydrogel has the potential for future stem cell transplantation. PMID:25432986

  7. Enhanced infarct myocardium repair mediated by thermosensitive copolymer hydrogel-based stem cell transplantation.

    Science.gov (United States)

    Xia, Yu; Zhu, Kai; Lai, Hao; Lang, Meidong; Xiao, Yan; Lian, Sheng; Guo, Changfa; Wang, Chunsheng

    2015-05-01

    Mesenchymal stem cell (MSC) transplantation by intramyocardial injection has been proposed as a promising therapy strategy for cardiac repair after myocardium infarction. However, low retention and survival of grafted MSCs hinder its further application. In this study, copolymer with N-isopropylacrylamide/acrylic acid/2-hydroxylethyl methacrylate-poly(ɛ-caprolactone) ratio of 88:9.6:2.4 was bioconjugated with type I collagen to construct a novel injectable thermosensitive hydrogel. The injectable and biocompatible hydrogel-mediated MSC transplantation could enhance the grafted cell survival in the myocardium, which contributed to the increased neovascularization, decreased interstitial fibrosis, and ultimately improved heart function to a significantly greater degree than regular MSC transplantation. We suggest that this novel hydrogel has the potential for future stem cell transplantation.

  8. Controlling the rheology of gellan gum hydrogels in cell culture conditions.

    Science.gov (United States)

    Moxon, Samuel R; Smith, Alan M

    2016-03-01

    Successful culturing of tissues within polysaccharide hydrogels is reliant upon specific mechanical properties. Namely, the stiffness and elasticity of the gel have been shown to have a profound effect on cell behaviour in 3D cell cultures and correctly tuning these mechanical properties is critical to the success of culture. The usual way of tuning mechanical properties of a hydrogel to suit tissue engineering applications is to change the concentration of polymer or its cross-linking agents. In this study sonication applied at various amplitudes was used to control mechanical properties of gellan gum solutions and gels. This method enables the stiffness and elasticity of gellan gum hydrogels cross-linked with DMEM to be controlled without changing either polymer concentration or cross-linker concentration. Controlling the mechanical behaviour of gellan hydrogels impacted upon the activity of alkaline phosphatase (ALP) in encapsulated MC3T3 pre-osteoblasts. This shows the potential of applying a simple technique to generate hydrogels where tissue-specific mechanical properties can be produced that subsequently influence cell behaviour.

  9. Micropatterned sensing hydrogels integrated with reconfigurable microfluidics for detecting protease release from cells.

    Science.gov (United States)

    Son, Kyung Jin; Shin, Dong-Sik; Kwa, Timothy; Gao, Yandong; Revzin, Alexander

    2013-12-17

    Matrix metalloproteinases (MMPs) play a central role in the breakdown of the extracellular matrix and are typically upregulated in cancer cells. The goal of the present study is to develop microwells suitable for capture of cells and detection of cell-secreted proteases. Hydrogel microwells comprised of poly(ethylene glycol) (PEG) were photopatterned on glass and modified with ligands to promote cell adhesion. To sense protease release, peptides cleavable by MMP9 were designed to contain a donor/acceptor FRET pair (FITC and DABCYL). These sensing molecules were incorporated into the walls of the hydrogel wells to enable a detection scheme where cells captured within the wells secreted protease molecules which diffused into the gel, cleaved the peptide, and caused a fluorescence signal to come on. By challenging sensing hydrogel microstructures to known concentrations of recombinant MMP9, the limit of detection was determined to be 0.625 nM with a linear range extending to 40 nM. To enhance sensitivity and to limit cross-talk between adjacent sensing sites, microwell arrays containing small groups (∼20 cells/well) of lymphoma cells were integrated into reconfigurable PDMS microfluidic devices. Using this combination of sensing hydrogel microwells and reconfigurable microfluidics, detection of MMP9 release from as few as 11 cells was demonstrated. Smart hydrogel microstructures capable of sequestering small groups of cells and sensing cell function have multiple applications ranging from diagnostics to cell/tissue engineering. Further development of this technology will include single-cell analysis and function-based cell sorting capabilities.

  10. A flow cytometer-based whole cell screening toolbox for directed hydrolase evolution through fluorescent hydrogels.

    Science.gov (United States)

    Lülsdorf, Nina; Pitzler, Christian; Biggel, Michael; Martinez, Ronny; Vojcic, Ljubica; Schwaneberg, Ulrich

    2015-05-21

    A high throughput whole cell flow cytometer screening toolbox was developed and validated by identifying improved variants (1.3-7-fold) for three hydrolases (esterase, lipase, cellulase). The screening principle is based on coupled enzymatic reaction using glucose derivatives which yield upon hydrolysis a fluorescent-hydrogel-layer on the surface of E. coli cells.

  11. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels.

    Science.gov (United States)

    Bertassoni, Luiz E; Cardoso, Juliana C; Manoharan, Vijayan; Cristino, Ana L; Bhise, Nupura S; Araujo, Wesleyan A; Zorlutuna, Pinar; Vrana, Nihal E; Ghaemmaghami, Amir M; Dokmeci, Mehmet R; Khademhosseini, Ali

    2014-06-01

    Fabrication of three dimensional (3D) organoids with controlled microarchitectures has been shown to enhance tissue functionality. Bioprinting can be used to precisely position cells and cell-laden materials to generate controlled tissue architecture. Therefore, it represents an exciting alternative for organ fabrication. Despite the rapid progress in the field, the development of printing processes that can be used to fabricate macroscale tissue constructs from ECM-derived hydrogels has remained a challenge. Here we report a strategy for bioprinting of photolabile cell-laden methacrylated gelatin (GelMA) hydrogels. We bioprinted cell-laden GelMA at concentrations ranging from 7 to 15% with varying cell densities and found a direct correlation between printability and the hydrogel mechanical properties. Furthermore, encapsulated HepG2 cells preserved cell viability for at least eight days following the bioprinting process. In summary, this work presents a strategy for direct-write bioprinting of a cell-laden photolabile ECM-derived hydrogel, which may find widespread application for tissue engineering, organ printing and the development of 3D drug discovery platforms.

  12. Cells Attachment Property of PVA Hydrogel Nanofibers Incorporating Hyaluronic Acid for Tissue Engineering

    OpenAIRE

    2011-01-01

    In this work, we report the fabrication and cell affinity studies of the poly(vinyl alcohol) (PVA)/hyaluronic acid (HA) cross-linked nanofibers via electrospinning and post cross-linking. FT-IR and TGA analysis demonstrate that HA is not influenced by acid environment such as HCl vapor during cross-linking, and well incorporated into PVA nanofibers. Swelling behavior and cell adhesion of the PVA/HA hydrogel nanofibers are investigated and compared with pure PVA hydrogel nanofibers. It is expe...

  13. Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel.

    Science.gov (United States)

    Wang, Zheng; Zhang, Yeshun; Zhang, Jinxiang; Huang, Lei; Liu, Jia; Li, Yongkui; Zhang, Guozheng; Kundu, Subhas C; Wang, Lin

    2014-11-20

    Sericin, a major component of silk, has a long history of being discarded as a waste during silk processing. The value of sericin for tissue engineering is underestimated and its potential application in regenerative medicine has just begun to be explored. Here we report the successful fabrication and characterization of a covalently-crosslinked 3D pure sericin hydrogel for delivery of cells and drugs. This hydrogel is injectable, permitting its implantation through minimally invasive approaches. Notably, this hydrogel is found to exhibit photoluminescence, enabling bioimaging and in vivo tracking. Moreover, this hydrogel system possesses excellent cell-adhesive capability, effectively promoting cell attachment, proliferation and long-term survival of various types of cells. Further, the sericin hydrogel releases bioactive reagents in a sustained manner. Additionally, this hydrogel demonstrates good elasticity, high porosity, and pH-dependent degradation dynamics, which are advantageous for this sericin hydrogel to serve as a delivery vehicle for cells and therapeutic drugs. With all these unique features, it is expected that this sericin hydrogel will have wide utility in the areas of tissue engineering and regenerative medicine.

  14. Fabrication of tubular tissue constructs by centrifugal casting of cells suspended in an in situ crosslinkable hyaluronan-gelatin hydrogel.

    Science.gov (United States)

    Mironov, Vladimir; Kasyanov, Vladimir; Zheng Shu, Xiao; Eisenberg, Carol; Eisenberg, Leonard; Gonda, Steve; Trusk, Thomas; Markwald, Roger R; Prestwich, Glenn D

    2005-12-01

    Achieving the optimal cell density and desired cell distribution in scaffolds is a major goal of cell seeding technologies in tissue engineering. In order to reach this goal, a novel centrifugal casting technology was developed using in situ crosslinkable hyaluronan-based (HA) synthetic extracellular matrix (sECM). Living cells were suspended in a viscous solution of thiol-modified HA and thiol-modified gelatin, a polyethyleneglycol diacrylate crosslinker was added, and a hydrogel was formed during rotation. The tubular tissue constructs consisting of a densely packed cell layer were fabricated with the rotation device operating at 2000 rpm for 10 min. The majority of cells suspended in the HA mixture before rotation were located inside the layer after centrifugal casting. Cells survived the effect of the centrifugal forces experienced under the rotational regime employed. The volume cell density (65.6%) approached the maximal possible volume density based on theoretical sphere packing models. Thus, centrifugal casting allows the fabrication of tubular constructs with the desired redistribution, composition and thickness of cell layers that makes the maximum efficient use of available cells. Centrifugal casting in this sECM would enable rapid fabrication of tissue-engineered vascular grafts, as well as other tubular and planar tissue-engineered constructs.

  15. The self-crosslinking smart hyaluronic acid hydrogels as injectable three-dimensional scaffolds for cells culture.

    Science.gov (United States)

    Bian, Shaoquan; He, Mengmeng; Sui, Junhui; Cai, Hanxu; Sun, Yong; Liang, Jie; Fan, Yujiang; Zhang, Xingdong

    2016-04-01

    Although the disulfide bond crosslinked hyaluronic acid hydrogels have been reported by many research groups, the major researches were focused on effectively forming hydrogels. However, few researchers paid attention to the potential significance of controlling the hydrogel formation and degradation, improving biocompatibility, reducing the toxicity of exogenous and providing convenience to the clinical operations later on. In this research, the novel controllable self-crosslinking smart hydrogels with in-situ gelation property was prepared by a single component, the thiolated hyaluronic acid derivative (HA-SH), and applied as a three-dimensional scaffold to mimic native extracellular matrix (ECM) for the culture of fibroblasts cells (L929) and chondrocytes. A series of HA-SH hydrogels were prepared depending on different degrees of thiol substitution (ranging from 10 to 60%) and molecule weights of HA (0.1, 0.3 and 1.0 MDa). The gelation time, swelling property and smart degradation behavior of HA-SH hydrogel were evaluated. The results showed that the gelation and degradation time of hydrogels could be controlled by adjusting the component of HA-SH polymers. The storage modulus of HA-SH hydrogels obtained by dynamic modulus analysis (DMA) could be up to 44.6 kPa. In addition, HA-SH hydrogels were investigated as a three-dimensional scaffold for the culture of fibroblasts cells (L929) and chondrocytes cells in vitro and as an injectable hydrogel for delivering chondrocytes cells in vivo. These results illustrated that HA-SH hydrogels with controllable gelation process, intelligent degradation behavior, excellent biocompatibility and convenient operational characteristics supplied potential clinical application capacity for tissue engineering and regenerative medicine.

  16. Effect of decellularized adipose tissue particle size and cell density on adipose-derived stem cell proliferation and adipogenic differentiation in composite methacrylated chondroitin sulphate hydrogels.

    Science.gov (United States)

    Brown, Cody F C; Yan, Jing; Han, Tim Tian Y; Marecak, Dale M; Amsden, Brian G; Flynn, Lauren E

    2015-07-30

    An injectable composite scaffold incorporating decellularized adipose tissue (DAT) as a bioactive matrix within a hydrogel phase capable of in situ polymerization would be advantageous for adipose-derived stem cell (ASC) delivery in the filling of small or irregular soft tissue defects. Building on previous work, the current study investigates DAT milling methods and the effects of DAT particle size and cell seeding density on the response of human ASCs encapsulated in photo-cross-linkable methacrylated chondroitin sulphate (MCS)-DAT composite hydrogels. DAT particles were generated by milling lyophilized DAT and the particle size was controlled through the processing conditions with the goal of developing composite scaffolds with a tissue-specific 3D microenvironment tuned to enhance adipogenesis. ASC proliferation and adipogenic differentiation were assessed in vitro in scaffolds incorporating small (average diameter of 38   ±   6 μm) or large (average diameter of 278   ±   3 μm) DAT particles in comparison to MCS controls over a period of up to 21 d. Adipogenic differentiation was enhanced in the composites incorporating the smaller DAT particles and seeded at the higher density of 5   ×   10(5) ASCs/scaffold, as measured by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, semi-quantitative analysis of perilipin expression and oil red O staining of intracellular lipid accumulation. Overall, this study demonstrates that decellularized tissue particle size can impact stem cell differentiation through cell-cell and cell-matrix interactions, providing relevant insight towards the rational design of composite biomaterial scaffolds for adipose tissue engineering.

  17. PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids.

    Science.gov (United States)

    Lin, Chien-Chi; Raza, Asad; Shih, Han

    2011-12-01

    Hydrogels provide three-dimensional frameworks with tissue-like elasticity and high permeability for culturing therapeutically relevant cells or tissues. While recent research efforts have created diverse macromer chemistry to form hydrogels, the mechanisms of hydrogel polymerization for in situ cell encapsulation remain limited. Hydrogels prepared from chain-growth photopolymerization of poly(ethylene glycol) diacrylate (PEGDA) are commonly used to encapsulate cells. However, free radical associated cell damage poses significant limitation for this gel platform. More recently, PEG hydrogels formed by thiol-ene photo-click chemistry have been developed for cell encapsulation. While both chain-growth and step-growth photopolymerizations offer spatial-temporal control over polymerization kinetics, step-growth thiol-ene hydrogels offer more diverse and preferential properties. Here, we report the superior properties of step-growth thiol-ene click hydrogels, including cytocompatibility of the reactions, improved hydrogel physical properties, and the ability for 3D culture of pancreatic β-cells. Cells encapsulated in thiol-ene hydrogels formed spherical clusters naturally and were retrieved via rapid chymotrypsin-mediated gel erosion. The recovered cell spheroids released insulin in response to glucose treatment, demonstrating the cytocompatibility of thiol-ene hydrogels and the enzymatic mechanism of cell spheroids recovery. Thiol-ene click reactions provide an attractive means to fabricate PEG hydrogels with superior gel properties for in situ cell encapsulation, as well as to generate and recover 3D cellular structures for regenerative medicine applications.

  18. Application of hydrogels in heart valve tissue engineering.

    Science.gov (United States)

    Zhang, Xing; Xu, Bin; Puperi, Daniel S; Wu, Yan; West, Jennifer L; Grande-Allen, K Jane

    2015-01-01

    With an increasing number of patients requiring valve replacements, there is heightened interest in advancing heart valve tissue engineering (HVTE) to provide solutions to the many limitations of current surgical treatments. A variety of materials have been developed as scaffolds for HVTE including natural polymers, synthetic polymers, and decellularized valvular matrices. Among them, biocompatible hydrogels are generating growing interest. Natural hydrogels, such as collagen and fibrin, generally show good bioactivity but poor mechanical durability. Synthetic hydrogels, on the other hand, have tunable mechanical properties; however, appropriate cell-matrix interactions are difficult to obtain. Moreover, hydrogels can be used as cell carriers when the cellular component is seeded into the polymer meshes or decellularized valve scaffolds. In this review, we discuss current research strategies for HVTE with an emphasis on hydrogel applications. The physicochemical properties and fabrication methods of these hydrogels, as well as their mechanical properties and bioactivities are described. Performance of some hydrogels including in vitro evaluation using bioreactors and in vivo tests in different animal models are also discussed. For future HVTE, it will be compelling to examine how hydrogels can be constructed from composite materials to replicate mechanical properties and mimic biological functions of the native heart valve.

  19. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation

    Science.gov (United States)

    Huebsch, Nathaniel; Lippens, Evi; Lee, Kangwon; Mehta, Manav; Koshy, Sandeep T.; Darnell, Max C.; Desai, Rajiv M.; Madl, Christopher M.; Xu, Maria; Zhao, Xuanhe; Chaudhuri, Ovijit; Verbeke, Catia; Kim, Woo Seob; Alim, Karen; Mammoto, Akiko; Ingber, Donald E.; Duda, Georg N.; Mooney, David J.

    2015-12-01

    The effectiveness of stem cell therapies has been hampered by cell death and limited control over fate. These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype. Stem cell behaviour can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials, yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel’s elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel’s elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem cell behaviours in situ.

  20. A photolabile hydrogel for guided three-dimensional cell growth and migration

    Science.gov (United States)

    Luo, Ying; Shoichet, Molly S.

    2004-04-01

    Tissue engineering aims to replace, repair or regenerate tissue/organ function, by delivering signalling molecules and cells on a three-dimensional (3D) biomaterials scaffold that supports cell infiltration and tissue organization. To control cell behaviour and ultimately induce structural and functional tissue formation on surfaces, planar substrates have been patterned with adhesion signals that mimic the spatial cues to guide cell attachment and function. The objective of this study is to create biochemical channels in 3D hydrogel matrices for guided axonal growth. An agarose hydrogel modified with a cysteine compound containing a sulphydryl protecting group provides a photolabile substrate that can be patterned with biochemical cues. In this transparent hydrogel we immobilized the adhesive fibronectin peptide fragment, glycine-arginine-glycine-aspartic acid-serine (GRGDS), in selected volumes of the matrix using a focused laser. We verified in vitro the guidance effects of GRGDS oligopeptide-modified channels on the 3D cell migration and neurite outgrowth. This method for immobilizing biomolecules in 3D matrices can generally be applied to any optically clear hydrogel, offering a solution to construct scaffolds with programmed spatial features for tissue engineering applications.

  1. Formulation Changes Affect Material Properties and Cell Behavior in HA-Based Hydrogels

    Directory of Open Access Journals (Sweden)

    Thomas Lawyer

    2012-01-01

    Full Text Available To develop and optimize new scaffold materials for tissue engineering applications, it is important to understand how changes to the scaffold affect the cells that will interact with that scaffold. In this study, we used a hyaluronic acid- (HA- based hydrogel as a synthetic extracellular matrix, containing modified HA (CMHA-S, modified gelatin (Gtn-S, and a crosslinker (PEGda. By varying the concentrations of these components, we were able to change the gelation time, enzymatic degradation, and compressive modulus of the hydrogel. These changes also affected fibroblast spreading within the hydrogels and differentially affected the proliferation and metabolic activity of fibroblasts and mesenchymal stem cells (MSCs. In particular, PEGda concentration had the greatest influence on gelation time, compressive modulus, and cell spreading. MSCs appeared to require a longer period of adjustment to the new microenvironment of the hydrogels than fibroblasts. Fibroblasts were able to proliferate in all formulations over the course of two weeks, but MSCs did not. Metabolic activity changed for each cell type during the two weeks depending on the formulation. These results highlight the importance of determining the effect of matrix composition changes on a particular cell type of interest in order to optimize the formulation for a given application.

  2. Influence of Calcium Ions on Cell Survival and Proliferation in the Context of an Alginate Hydrogel

    OpenAIRE

    Cao, N.; X.B. Chen; Schreyer, D. J.

    2012-01-01

    One goal of biofabrication is to incorporate living cells into artificial scaffolds in order to repair damaged tissues or organs. Although there are many studies on various biofabrication techniques, the maintenance of cell viability during the biofabrication process and cell proliferation after the process is still a challenging issue. Construction of scaffolds using hydrogels composed of natural materials can avoid exposure of cells to harsh chemicals or temperature extremes but can still e...

  3. Development of 3-D Hydrogel Culture Systems With On-Demand Cell Separation

    OpenAIRE

    Hamilton, Sharon K.; Bloodworth, Nathaniel C.; Massad, Christopher S.; Hammoudi, Taymour M.; Suri, Shalu; Yang, Peter J.; Lu, Hang; Temenoff, Johnna S

    2013-01-01

    Recently there has been an increased interest in the effects of paracrine signaling between groups of cells, particularly in the context of better understanding how stem cells contribute to tissue repair. Most current 3-D co-culture methods lack the ability to effectively separate 2 cell populations after the culture period, which is important for simultaneously analyzing the reciprocal effects of each cell type on the other. Here, we detail the development of a 3-D hydrogel co-culture system...

  4. Bone marrow stem cells implantation with alpha-cyclodextrin/MPEG-PCL-MPEG hydrogel improves cardiac function after myocardial infarction.

    Science.gov (United States)

    Wang, Tao; Jiang, Xue-Jun; Tang, Qi-Zhu; Li, Xiao-Yan; Lin, Tao; Wu, De-Qun; Zhang, Xian-Zheng; Okello, Emmy

    2009-10-01

    Cellular transplantation represents a promising therapy for myocardial infarction (MI). However, it is limited by low transplanted cell retention and survival within the ischemic tissue. This study was designed to investigate whether injectable alpha-cyclodextrin/poly(ethylene glycol)-b-polycaprolactone-(dodecanedioic acid)-polycaprolactone-poly(ethylene glycol) (MPEG-PCL-MPEG) hydrogel could improve cell transplant retention and survival, reduce infarct expansion and inhibit left ventricle (LV) remodeling. Bone marrow-derived stem cells (BMSCs) were encapsulated in alpha-cyclodextrin/MPEG-PCL-MPEG hydrogel and maintained their morphologies during the cell culturing. MTT assays were used for in vitro cell viability studies of the hydrogel and were shown to be non-cytotoxic. Seven days after MI, 100 microl of alpha-cyclodextrin solution containing 2 x 10(7) BMSCs and 100mul of MPEG-PCL-MPEG solution were injected into the infarcted myocardium simultaneously and the solutions solidified immediately. Injection of culture medium or cell alone served as controls. Four weeks after treatment, histological analysis indicated that the hydrogel was absorbed, and the injection of BMSCs with hydrogel had increased cell retention and vessel density around the infarct, and subsequently prevented scar expansion compared with BMSCs injection alone. Echocardiography studies showed that injection of BMSCs with hydrogel increased the LV ejection function and attenuated left ventricular dilatation. This study indicated that the injection of BMSCs with alpha-cyclodextrin/MPEG-PCL-MPEG hydrogel was an effective strategy which could enhance the effect of cellular transplantation therapy for myocardial infarction.

  5. Spontaneous Packaging and Hypothermic Storage of Mammalian Cells with a Cell-Membrane-Mimetic Polymer Hydrogel in a Microchip.

    Science.gov (United States)

    Xu, Yan; Mawatari, Kazuma; Konno, Tomohiro; Kitamori, Takehiko; Ishihara, Kazuhiko

    2015-10-21

    Currently, continuous culture/passage and cryopreservation are two major, well-established methods to provide cultivated mammalian cells for experiments in laboratories. Due to the lack of flexibility, however, both laboratory-oriented methods are unable to meet the need for rapidly growing cell-based applications, which require cell supply in a variety of occasions outside of laboratories. Herein, we report spontaneous packaging and hypothermic storage of mammalian cells under refrigerated (4 °C) and ambient conditions (25 °C) using a cell-membrane-mimetic methacryloyloxyethyl phosphorylcholine (MPC) polymer hydrogel incorporated within a glass microchip. Its capability for hypothermic storage of cells was comparatively evaluated over 16 days. The results reveal that the cytocompatible MPC polymer hydrogel, in combination with the microchip structure, enabled hypothermic storage of cells with quite high viability, high intracellular esterase activity, maintained cell membrane integrity, and small morphological change for more than 1 week at 4 °C and at least 4 days at 25 °C. Furthermore, the stored cells could be released from the hydrogel and exhibited the ability to adhere to a surface and achieve confluence under standard cell culture conditions. Both hypothermic storage conditions are ordinary flexible conditions which can be easily established in places outside of laboratories. Therefore, cell packaging and storage using the hydrogel incorporated within the microchip would be a promising miniature and portable solution for flexible supply and delivery of small amounts of cells from bench to bedside.

  6. Administration of cells with thermosensitive hydrogel enhances the functional recovery in ischemic rat heart

    Directory of Open Access Journals (Sweden)

    Satoshi Matsushita

    2016-04-01

    Full Text Available The lack of cell retention clearly represents a potentially serious limitation for therapeutic efficacy of stem cells. To enhance the efficacy, we developed a novel hydrogel that is thermosensitive and biodegradable and possesses desirable stiffness in a solid form. Immediately after induction of myocardial infarction of male rat, cardiac outgrowth cells embedded in hydrogel (HG or saline (CO were injected directly into the peri-infarct area. Left ventricular ejection fraction, cell retention rate, and a spectrum of biochemical markers were measured to evaluate the effect of the treatment. Left ventricular ejection fraction was significantly higher in the cell-injected groups (HG and CO than in the control group at 1 week after treatment. This functional benefit was continued only in the HG group, accompanied with more retained cells. Furthermore, the expression of insulin-like growth factor-1 was significantly higher in the HG group with less progression of cell apoptosis.

  7. An Optimized Injectable Hydrogel Scaffold Supports Human Dental Pulp Stem Cell Viability and Spreading

    Directory of Open Access Journals (Sweden)

    T. D. Jones

    2016-01-01

    Full Text Available Introduction. HyStem-C™ is a commercially available injectable hydrogel composed of polyethylene glycol diacrylate (PEGDA, hyaluronan (HA, and gelatin (Gn. These components can be mechanically tuned to enhance cell viability and spreading. Methods. The concentration of PEGDA with an added disulfide bond (PEGSSDA was varied from 0.5 to 8.0% (w/v to determine the optimal concentration for injectable clinical application. We evaluated the cell viability of human dental pulp stem cells (hDPSCs embedded in 2% (w/v PEGSSDA-HA-Gn hydrogels. Volume ratios of HA : Gn from 100 : 0 to 25 : 75 were varied to encourage hDPSC spreading. Fibronectin (Fn was added to our model to determine the effect of extracellular matrix protein concentration on hDPSC behavior. Results. Our preliminary data suggests that the hydrogel gelation time decreased as the PEGSSDA cross-linker concentration increased. The PEGSSDA-HA-Gn was biocompatible with hDPSCs, and increased ratios of HA : Gn enhanced cell viability for 14 days. Additionally, cell proliferation with added fibronectin increased significantly over time at concentrations of 1.0 and 10.0 μg/mL in PEGDA-HA-Gn hydrogels, while cell spreading significantly increased at Fn concentrations of 0.1 μg/mL. Conclusions. This study demonstrates that PEG-based injectable hydrogels maintain hDPSC viability and facilitate cell spreading, mainly in the presence of extracellular matrix (ECM proteins.

  8. Cellular behavior in micropatterned hydrogels by bioprinting system depended on the cell types and cellular interaction.

    Science.gov (United States)

    Hong, Soyoung; Song, Seung-Joon; Lee, Jae Yeon; Jang, Hwanseok; Choi, Jaesoon; Sun, Kyung; Park, Yongdoo

    2013-08-01

    The fabrication of patterned microstructures within three-dimensional (3D) matrices is a challenging subject in tissue engineering and regenerative medicine. A 3D, free-moving bioprinting system was developed and hydrogels were patterned by varying the process parameters of z-axis moving velocity and ejection velocity. The patterning of hydrogel based microfibers in a 3D matrigel was achieved with dimensions of 4.5 mm length and widths from 79 to 200 μm. Hyaluronan-based hydrogels mixed with fibroblasts (L929), mouse endothelial cells (MS1), or human mesenchymal stem cells (hMSCs) were patterned using a 3D moving axis bioprinter and cell behavior was monitored in culture for up to 16 days. L929 and MS1 cells and hMSCs in patterned hydrogel revealed cell-cell interactions and a morphological dependency on cell types. HMSCs formed spheres through cell aggregation, while L929 cells increased in cellular mass without cell aggregation and MS1 dispersed into the matrix instead of aggregating. The aggregation of hMSCs was attenuated by treatment with Rho kinase (ROCK) inhibitor and cadherin antibody. This reflected the close relationship between cell aggregation and migration with RhoA and cell-cell adhesion molecules. Angiogenic-specific gene expression profiles showed that expression of CD105 decreased to 22% in the ROCK inhibitor group compared to control group. These results showed that cell-based patterns in a 3D matrix are highly dependent on both cell aggregation and migration over time.

  9. Self-assembling DNA hydrogel-based delivery of immunoinhibitory nucleic acids to immune cells.

    Science.gov (United States)

    Nishida, Yu; Ohtsuki, Shozo; Araie, Yuki; Umeki, Yuka; Endo, Masayuki; Emura, Tomoko; Hidaka, Kumi; Sugiyama, Hiroshi; Takahashi, Yuki; Takakura, Yoshinobu; Nishikawa, Makiya

    2016-01-01

    Immunoinhibitory oligodeoxynucleotides (INH-ODNs) are promising inhibitors of Toll-like receptor 9 (TLR9) activation. To efficiently deliver INH-ODNs to TLR9-positive cells, we designed a Takumi-shaped DNA (Takumi) consisting of two partially complementary ODNs as the main component of a DNA hydrogel. Polyacrylamide gel electrophoresis showed that Takumi-containing INH-ODNs (iTakumi) and iTakumi-based DNA hydrogel (iTakumiGel) were successfully generated. Their activity was examined in murine macrophage-like RAW264.7 cells and DC2.4 dendritic cells by measuring tumor necrosis factor-α and interleukin-6 release after the addition of a TLR9 ligand (CpG ODN). Cytokine release was efficiently inhibited by the iTakumiGel. Flow cytometry analysis and confocal microscopy showed that cellular uptake of INH-ODN was greatly increased by the iTakumiGel. These results indicate that a Takumi-based DNA hydrogel is useful for the delivery of INH-ODNs to immune cells to inhibit TLR9-mediated hyperinduction of proinflammatory cytokines. From the Clinical Editor: Toll-like receptor 9 activation has been reported to be associated with many autoimmune diseases. DNA inhibition using oligodeoxynucleotides is one of the potential treatments. In this article, the authors described hydrogel-based platform for the delivery of the inhibitory oligodeoxynucleotides for enhanced efficacy. The positive findings could indicate a way for the future.

  10. Stretchable living materials and devices with hydrogel-elastomer hybrids hosting programmed cells.

    Science.gov (United States)

    Liu, Xinyue; Tang, Tzu-Chieh; Tham, Eléonore; Yuk, Hyunwoo; Lin, Shaoting; Lu, Timothy K; Zhao, Xuanhe

    2017-02-28

    Living systems, such as bacteria, yeasts, and mammalian cells, can be genetically programmed with synthetic circuits that execute sensing, computing, memory, and response functions. Integrating these functional living components into materials and devices will provide powerful tools for scientific research and enable new technological applications. However, it has been a grand challenge to maintain the viability, functionality, and safety of living components in freestanding materials and devices, which frequently undergo deformations during applications. Here, we report the design of a set of living materials and devices based on stretchable, robust, and biocompatible hydrogel-elastomer hybrids that host various types of genetically engineered bacterial cells. The hydrogel provides sustainable supplies of water and nutrients, and the elastomer is air-permeable, maintaining long-term viability and functionality of the encapsulated cells. Communication between different bacterial strains and with the environment is achieved via diffusion of molecules in the hydrogel. The high stretchability and robustness of the hydrogel-elastomer hybrids prevent leakage of cells from the living materials and devices, even under large deformations. We show functions and applications of stretchable living sensors that are responsive to multiple chemicals in a variety of form factors, including skin patches and gloves-based sensors. We further develop a quantitative model that couples transportation of signaling molecules and cellular response to aid the design of future living materials and devices.

  11. Magnetic nanohydroxyapatite/PVA composite hydrogels for promoted osteoblast adhesion and proliferation.

    Science.gov (United States)

    Hou, Ruixia; Zhang, Guohua; Du, Gaolai; Zhan, Danxia; Cong, Yang; Cheng, Yajun; Fu, Jun

    2013-03-01

    This paper reports on the systematic investigation of novel magnetic nano-hydroxyapatite/PVA composite hydrogels through cyclic freeze-thawing with controllable structure, mechanical properties, and cell adhesion and proliferation properties. The content of the magnetic nano-hydroxyapatite-coated γ-Fe(2)O(3) (m-nHAP) particles exhibited remarkable influence on the porous structures and compressive strength of the nanocomposite hydrogels. The average pore diameter of the nanocomposite hydrogels exhibited a minimum of 1.6 ± 0.3 μm whereas the compressive strength reached a maximum of about 29.6 ± 6.5 MPa with the m-nHAP content of around 10 wt% in the nanocomposite hydrogels. In order to elucidate the influence of the composite m-nHAP on the cell adhesion and proliferation on the composite hydrogels, the PVA, γ-Fe(2)O(3)/PVA, nHAP/PVA and m-nHAP/PVA hydrogels were seeded and cultured with osteoblasts. The results demonstrated that the osteoblasts preferentially adhered to and proliferated on the m-nHAP/PVA hydrogels, in comparison to the PVA and nHAP/PVA hydrogels, whereas the γ-Fe(2)O(3)/PVA hydrogels appeared most favorable to the osteoblasts. Moreover, with the increasing m-nHAP content in the composite hydrogels, the adhesion density and proliferation of the osteoblasts were significantly promoted, especially at the content of around 50 wt%.

  12. Design of Decorated Self-Assembling Peptide Hydrogels as Architecture for Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Annj Zamuner

    2016-08-01

    Full Text Available Hydrogels from self-assembling ionic complementary peptides have been receiving a lot of interest from the scientific community as mimetic of the extracellular matrix that can offer three-dimensional supports for cell growth or can become vehicles for the delivery of stem cells, drugs or bioactive proteins. In order to develop a 3D “architecture” for mesenchymal stem cells, we propose the introduction in the hydrogel of conjugates obtained by chemoselective ligation between a ionic-complementary self-assembling peptide (called EAK and three different bioactive molecules: an adhesive sequence with 4 Glycine-Arginine-Glycine-Aspartic Acid-Serine-Proline (GRGDSP motifs per chain, an adhesive peptide mapped on h-Vitronectin and the growth factor Insulin-like Growth Factor-1 (IGF-1. The mesenchymal stem cell adhesion assays showed a significant increase in adhesion and proliferation for the hydrogels decorated with each of the synthesized conjugates; moreover, such functionalized 3D hydrogels support cell spreading and elongation, validating the use of this class of self-assembly peptides-based material as very promising 3D model scaffolds for cell cultures, at variance of the less realistic 2D ones. Furthermore, small amplitude oscillatory shear tests showed that the presence of IGF-1-conjugate did not alter significantly the viscoelastic properties of the hydrogels even though differences were observed in the nanoscale structure of the scaffolds obtained by changing their composition, ranging from long, well-defined fibers for conjugates with adhesion sequences to the compact and dense film for the IGF-1-conjugate.

  13. Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth

    Directory of Open Access Journals (Sweden)

    Lim HN

    2011-08-01

    Full Text Available HN Lim1, NM Huang2, SS Lim3, I Harrison3, CH Chia41Centre for Ionics University of Malaya, Physics Department, Faculty of Science, University of Malaya, Kuala Lumpur, 2Low Dimensional Materials Research Centre, Physics Department, Faculty of Science, University of Malaya, Kuala Lumpur, 3School of Chemical and Environmental Engineering, Faculty of Engineering, The University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, Selangor, 4School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, MalaysiaBackground: Three-dimensional assembly of graphene hydrogel is rapidly attracting the interest of researchers because of its wide range of applications in energy storage, electronics, electrochemistry, and waste water treatment. Information on the use of graphene hydrogel for biological purposes is lacking, so we conducted a preliminary study to determine the suitability of graphene hydrogel as a substrate for cell growth, which could potentially be used as building blocks for biomolecules and tissue engineering applications.Methods: A three-dimensional structure of graphene hydrogel was prepared via a simple hydrothermal method using two-dimensional large-area graphene oxide nanosheets as a precursor.Results: The concentration and lateral size of the graphene oxide nanosheets influenced the structure of the hydrogel. With larger-area graphene oxide nanosheets, the graphene hydrogel could be formed at a lower concentration. X-ray diffraction patterns revealed that the oxide functional groups on the graphene oxide nanosheets were reduced after hydrothermal treatment. The three-dimensional graphene hydrogel matrix was used as a scaffold for proliferation of a MG63 cell line.Conclusion: Guided filopodia protrusions of MG63 on the hydrogel were observed on the third day of cell culture, demonstrating compatibility of the graphene hydrogel structure for bioapplications.Keywords: cell culture, graphene

  14. Adapting biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels for pigment epithelial cell encapsulation and lens regeneration.

    Science.gov (United States)

    Zhang, Mimi W; Park, Hansoo; Guo, Xuan; Nakamura, Kenta; Raphael, Robert M; Kasper, F Kurtis; Mikos, Antonios G; Tsonis, Panagiotis A

    2010-04-01

    This study investigated the encapsulation of newt iris pigment epithelial cells (PECs), which have the ability to regenerate a lens by trans-differentiation in vivo, within a biodegradable hydrogel of oligo(poly(ethylene glycol) fumarate) crosslinked with poly(ethylene glycol)-diacrylate. Hydrogel beads of initial diameter of 1 mm were fabricated by a molding technique. The swelling ratio and degradation rate of the hydrogel beads decreased with increasing crosslinking ratios. Confocal microscopy confirmed the cytocompatibility of crosslinking hydrogel formulations as evidenced by the viability of an encapsulated model cell line within a crosslinked hydrogel bead. Hydrogel beads encapsulating iris PECs were also implanted into lentectomized newts in vivo; histological evaluation of explants after 30 days revealed a regenerated lens, thus demonstrating that the presence of degrading hydrogel did not adversely affect lens regeneration. The results of this study suggest the potential of a method for lens regeneration involving oligo(poly(ethylene glycol) fumarate) hydrogels for iris PEC encapsulation and transplantation.

  15. Development of a morphogenetically active scaffold for three-dimensional growth of bone cells: biosilica-alginate hydrogel for SaOS-2 cell cultivation.

    Science.gov (United States)

    Müller, Werner E G; Schröder, Heinz C; Feng, Qingling; Schlossmacher, Ute; Link, Thorben; Wang, Xiaohong

    2015-11-01

    Polymeric silica is formed from ortho-silicate during a sol-gel formation process, while biosilica is the product of an enzymatically driven bio-polycondensation reaction. Both polymers have recently been described as a template that induces an increased expression of the genes encoding bone morphogenetic protein 2 (BMP-2) and osteoprotegerin in osteoblast-related SaOS-2 cells; simultaneously or subsequently the cells respond with enhanced hydroxyapatite formation. In order to assess whether the biocompatible polymeric silica/biosilica can serve as a morphogenetically active matrix suitable for three-dimensional (3D) cell growth, or even for 3D cell bioprinting, SaOS-2 cells were embedded into a Na-alginate-based hydrogel. Four different gelatinous hydrogel matrices were used for suspending SaOS-2 cells: (a) the hydrogel alone; (b) the hydrogel with 400 μM ortho-silicate; (c) the hydrogel supplemented with 400 μM ortho-silicate and recombinant silicatein to allow biosilica synthesis to occur; and (d) the hydrogel with ortho-silicate and BSA. The SaOS-2 cells showed an increased growth if silica/biosilica components were present in the hydrogel. Likewise intensified was the formation of hydroxyapatite nodules in the silica-containing hydrogels. After an incubation period of 2 weeks, cells present in silica-containing hydrogels showed a significantly higher expression of the genes encoding the cytokine BMP-2, the major fibrillar structural protein collagen 1 and likewise of carbonic anhydrase. It is concluded that silica, and to a larger extent biosilica, retains its morphogenetic/osteogenic potential after addition to Na-alginate-based hydrogels. This property might qualify silica hydrogels to be also used as a matrix for 3D cell printing.

  16. Application of UVA-riboflavin crosslinking to enhance the mechanical properties of extracellular matrix derived hydrogels.

    Science.gov (United States)

    Ahearne, Mark; Coyle, Aron

    2016-02-01

    Hydrogels derived from extracellular matrix (ECM) have become increasing popular in recent years, particularly for use in tissue engineering. One limitation with ECM hydrogels is that they tend to have poor mechanical properties compared to native tissues they are trying to replicate. To address this problem, a UVA (ultraviolet-A) riboflavin crosslinking technique was applied to ECM hydrogels to determine if it could be used to improve their elastic modulus. Hydrogels fabricated from corneal, cardiac and liver ECM were used in this study. The mechanical properties of the hydrogels were characterized using a spherical indentation technique. The microstructure of the hydrogels and the cytotoxic effect of crosslinking on cell seeded hydrogels were also evaluated. The combination of UVA light and riboflavin solution led to a significant increase in elastic modulus from 6.8kPa to 24.7kPa, 1.4kPa to 6.9kPa and 0.9kPa to 1.6kPa for corneal, cardiac and liver ECM hydrogels respectively. The extent of this increase was dependent on a number of factors including the UVA exposure time and the initial hydrogel concentration. There were also a high percentage of viable cells within the cell seeded hydrogels with 94% of cells remaining viable after 90min exposure to UVA light. These results suggest that UVA-riboflavin crosslinking is an effective approach for improving the mechanical properties of ECM hydrogels without resulting in a significant reduction of cell viability.

  17. Synthesis of Thermal Polymerizable Alginate-GMA Hydrogel for Cell Encapsulation

    Directory of Open Access Journals (Sweden)

    Xiaokun Wang

    2015-01-01

    Full Text Available Alginate is a negative ionic polysaccharide that is found abundantly in nature. Calcium is usually used as a cross-linker for alginate. However, calcium cross-linked alginate is used only for in vitro culture. In the present work, alginate was modified with glycidyl methacrylate (GMA to produce a thermal polymerizable alginate-GMA (AA-GMA macromonomer. The molecular structure and methacrylation (%DM of the macromonomer were determined by 1H NMR. After mixing with the correct amount of initiator, the AA-GMA aqueous solution can be polymerized at physiological temperature. The AA-GMA hydrogels exhibited a three-dimensional porous structure with an average pore size ranging from 50 to 200 μm, directly depending on the macromonomer concentration. Biocompatibility of the AA-GMA hydrogel was determined by in vivo muscle injection and cell encapsulation. Muscle injection in vivo showed that the AA-GMA solution mixed with initiator could form a hydrogel in situ and had a mild inflammatory effect. Human umbilical vein endothelial cells (HUVECs were encapsulated in the AA-GMA hydrogels in situ at 37°C. Cell viability and proliferation were unaffected by macromonomer concentrations, which suggests that AA-GMA has a potential application in the field of tissue engineering, especially for myocardial repair.

  18. The application of plastic compression to modulate fibrin hydrogel mechanical properties.

    Science.gov (United States)

    Haugh, Matthew G; Thorpe, Stephen D; Vinardell, Tatiana; Buckley, Conor T; Kelly, Daniel J

    2012-12-01

    The inherent biocompatibility of fibrin hydrogels makes them an attractive material for use in a wide range of tissue engineering applications. Despite this, their relatively low stiffness and high compliance limits their potential for certain orthopaedic applications. Enhanced mechanical properties are desirable so as to withstand surgical handling and in vivo loading after implantation and additionally, can provide important cues to cells seeded within the hydrogel. Standard methods used to enhance the mechanical properties of biological scaffolds such as chemical or thermal crosslinking cannot be used with fibrin hydrogels as cell seeding and gel formation occurs simultaneously. The objective of this study was to investigate the use of plastic compression as a means to improve the mechanical properties of chondrocyte-seeded fibrin hydrogels and to determine the influence of such compression on cell viability within these constructs. It was found that the application of 80% strain to fibrin hydrogels for 30 min (which resulted in a permanent strain of 47.4%) produced a 2.1-fold increase in the subsequent compressive modulus. Additionally, chondrocyte viability was maintained in the plastically compressed gels with significant cellular proliferation and extracellular matrix accumulation observed over 28 days of culture. In conclusion, plastic compression can be used to modulate the density and mechanical properties of cell-seeded fibrin hydrogels and represents a useful tool for both in theatre and in vitro tissue engineering applications.

  19. The use of covalently immobilized stem cell factor to selectively affect hematopoietic stem cell activity within a gelatin hydrogel

    Science.gov (United States)

    Mahadik, B.P.; Haba, S. Pedron; Skertich, L.J.; Harley, B.A.C.

    2015-01-01

    Hematopoietic stem cells (HSCs) are a rare stem cell population found primarily in the bone marrow and responsible for the production of the body’s full complement of blood and immune cells. Used clinically to treat a range of hematopoietic disorders, there is a significant need to identify approaches to selectively expand their numbers ex vivo. Here we describe a methacrylamide-functionalized gelatin (GelMA) hydrogel for in vitro culture of primary murine HSCs. Stem cell factor (SCF) is a critical biomolecular component of native HSC niches in vivo and is used in large dosages in cell culture media for HSC expansion in vitro. We report a photochemistry based approach to covalently immobilize SCF within GelMA hydrogels via acrylate-functionalized polyethylene glycol (PEG) tethers. PEG-functionalized SCF retains the native bioactivity of SCF but can be stably incorporated and retained within the GelMA hydrogel over 7 days. Freshly-isolated murine HSCs cultured in GelMA hydrogels containing covalently-immobilized SCF showed reduced proliferation and improved selectivity for maintaining primitive HSCs. Comparatively, soluble SCF within the GelMA hydrogel network induced increased proliferation of differentiating hematopoietic cells. We used a microfluidic templating approach to create GelMA hydrogels containing gradients of immobilized SCF that locally direct HSC response. Together, we report a biomaterial platform to examine the effect of the local presentation of soluble vs. matrix-immobilized biomolecular signals on HSC expansion and lineage specification. This approach may be a critical component of a biomaterial-based artificial bone marrow to provide the correct sequence of niche signals to grow HSCs in the laboratory. PMID:26232879

  20. Gelatin-Based Hydrogels Promote Chondrogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Achim Salamon

    2014-02-01

    Full Text Available Due to the weak regeneration potential of cartilage, there is a high clinical incidence of articular joint disease, leading to a strong demand for cartilaginous tissue surrogates. The aim of this study was to evaluate a gelatin-based hydrogel for its suitability to support chondrogenic differentiation of human mesenchymal stem cells. Gelatin-based hydrogels are biodegradable, show high biocompatibility, and offer possibilities to introduce functional groups and/or ligands. In order to prove their chondrogenesis-supporting potential, a hydrogel film was developed and compared with standard cell culture polystyrene regarding the differentiation behavior of human mesenchymal stem cells. Cellular basis for this study were human adipose tissue-derived mesenchymal stem cells, which exhibit differentiation potential along the adipogenic, osteogenic and chondrogenic lineage. The results obtained show a promotive effect of gelatin-based hydrogels on chondrogenic differentiation of mesenchymal stem cells in vitro and therefore encourage subsequent in vivo studies.

  1. Rapid Fabrication of Cell-Laden Alginate Hydrogel 3D Structures by Micro Dip-Coating

    Science.gov (United States)

    Ghanizadeh Tabriz, Atabak; Mills, Christopher G.; Mullins, John J.; Davies, Jamie A.; Shu, Wenmiao

    2017-01-01

    Development of a simple, straightforward 3D fabrication method to culture cells in 3D, without relying on any complex fabrication methods, remains a challenge. In this paper, we describe a new technique that allows fabrication of scalable 3D cell-laden hydrogel structures easily, without complex machinery: the technique can be done using only apparatus already available in a typical cell biology laboratory. The fabrication method involves micro dip-coating of cell-laden hydrogels covering the surface of a metal bar, into the cross-linking reagents calcium chloride or barium chloride to form hollow tubular structures. This method can be used to form single layers with thickness ranging from 126 to 220 µm or multilayered tubular structures. This fabrication method uses alginate hydrogel as the primary biomaterial and a secondary biomaterial can be added depending on the desired application. We demonstrate the feasibility of this method, with survival rate over 75% immediately after fabrication and normal responsiveness of cells within these tubular structures using mouse dermal embryonic fibroblast cells and human embryonic kidney 293 cells containing a tetracycline-responsive, red fluorescent protein (tHEK cells). PMID:28286747

  2. 3D differentiation of neural stem cells in macroporous photopolymerizable hydrogel scaffolds.

    Directory of Open Access Journals (Sweden)

    Hang Li

    Full Text Available Neural stem/progenitor cells (NSPCs are the stem cell of the adult central nervous system (CNS. These cells are able to differentiate into the major cell types found in the CNS (neurons, oligodendrocytes, astrocytes, thus NSPCs are the mechanism by which the adult CNS could potentially regenerate after injury or disorder. Microenviromental factors are critical for guiding NSPC differentiation and are thus important for neural tissue engineering. In this study, D-mannitol crystals were mixed with photocrosslinkable methacrylamide chitosan (MAC as a porogen to enhance pore size during hydrogel formation. D-mannitol was admixed to MAC at 5, 10 and 20 wt% D-mannitol per total initial hydrogel weight. D-mannitol crystals were observed to dissolve and leave the scaffold within 1 hr. Quantification of resulting average pore sizes showed that D-mannitol addition resulted in larger average pore size (5 wt%, 4060±160 µm(2, 10 wt%, 6330±1160 µm(2, 20 wt%, 7600±1550 µm(2 compared with controls (0 wt%, 3150±220 µm(2. Oxygen diffusion studies demonstrated that larger average pore area resulted in enhanced oxygen diffusion through scaffolds. Finally, the differentiation responses of NSPCs to phenotypic differentiation conditions were studied for neurons, astrocytes and oligodendrocytes in hydrogels of varied porosity over 14 d. Quantification of total cell numbers at day 7 and 14, showed that cell numbers decreased with increased porosity and over the length of the culture. At day 14 immunohistochemistry quantification for primary cell types demonstrated significant differentiation to the desired cells types, and that total percentages of each cell type was greatest when scaffolds were more porous. These results suggest that larger pore sizes in MAC hydrogels effectively promote NSPC 3D differentiation.

  3. Osteoblastic differentiation of stem cells from human exfoliated deciduous teeth induced by thermosensitive hydrogels with strontium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Su, Wen-Ta, E-mail: f10549@ntut.edu.tw [Department of Chemical Engineering and Biotechnology National Taipei University of Technology, Taipei, Taiwan (China); Chou, Wei-Ling [Department of Chemical Engineering and Biotechnology National Taipei University of Technology, Taipei, Taiwan (China); Chou, Chih-Ming [Department of Biochemistry, Taipei Medical University, Taipei, Taiwan (China)

    2015-07-01

    Stem cells from human exfoliated deciduous teeth (SHEDs) are a novel source of multi-potential stem cells for tissue engineering because of their potential to differentiate into multiple cell lineages. Strontium exhibits an important function in bone remodeling because it can simulate bone formation and decrease bone resorption. Hydrogels can mimic the natural cellular environment. The association of hydrogels with cell viability is determined using biological tests, including rheological experiments. In this study, osteogenic differentiation was investigated through SHED encapsulation in hydrogels containing strontium phosphate. Results of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and proliferating cell nuclear antigen (PCNA) immunofluorescence staining indicated that the cells grew well and SHEDs proliferated in the hydrogels. Strontium-loaded chitosan-based hydrogels induced the biomineralization and high expression of alkaline phosphatase. Moreover, the expression levels of bone-related genes, including type-I collagen, Runx2, osteopontin (OP), and osteonectin (ON), were up-regulated during the osteogenic differentiation of SHEDs. This study demonstrated that strontium can be an effective inducer of osteogenesis for SHEDs. Elucidating the function of bioceramics (such as strontium) is useful in designing and developing strategies for bone tissue engineering. - Highlights: • SHEDs have been considered as alternative sources of adult stem cells in tissue engineering. • Strontium phosphate can enhance the osteogenic differentiation of SHEDs. • Hydrogels can mimic the natural cellular environment. • Bioceramics (such as strontium) is useful in designing and developing strategies for bone tissue engineering.

  4. In-situ formation of growth-factor-loaded coacervate microparticle-embedded hydrogels for directing encapsulated stem cell fate.

    Science.gov (United States)

    Jeon, Oju; Wolfson, David W; Alsberg, Eben

    2015-04-01

    The spontaneous formation of coacervate microdroplet-laden photo-crosslinked hydrogels derived from the simple mixing of oxidized, methacrylated alginate (OMA) and methacrylated gelatin (GelMA) enables simultaneous creation of drug-laden microdroplets and encapsulation of stem cells in photopolymerized coacervate hydrogels under physiological conditions. This can be utilized as a novel platform for in situ formation of localized, sustained bioactive molecule delivery to encapsulate stem cells for therapeutic applications.

  5. Bio-inspired microstructures in collagen type I hydrogel.

    Science.gov (United States)

    Hosseini, Yahya; Verbridge, Scott S; Agah, Masoud

    2015-06-01

    This article presents a novel technique to fabricate complex type I collagen hydrogel structures, with varying depth and width defined by a single fabrication step. This technique takes advantage of reactive ion etching lag to fabricate three-dimensional (3-D) structures in silicon. Then, a polydimethylsiloxane replica was fabricated utilizing soft lithography and used as a stamp on collagen hydrogel to transfer these patterns. Endothelial cells were seeded on the hydrogel devices to measure their interaction with these more physiologically relevant cell culture surfaces. Confocal imaging was utilized to image the hydrogel devices to demonstrate the robustness of the fabrication technique, and to study the cell-extracellular matrix interaction after cell seeding. In this study, we observed that endothelial cells remodeled the sharp scallops of collagen hydrogel structures and compressed the structures with low degree of slope. Such patterning techniques will enhance the physiological relevance of existing 3-D cell culture platforms by providing a technical bridge between the high resolution yet planar techniques of standard lithography with more complex yet low resolution 3-D printing methods.

  6. Local Mechanical Stimulation of Mardin-Darby Canine Kidney Cell Sheets on Temperature-Responsive Hydrogel

    Directory of Open Access Journals (Sweden)

    Toshihiro Akaike

    2012-01-01

    Full Text Available Collective motion of cell sheets plays a role not only in development and repair, but also in devastating diseases such as cancer. However, unlike single-cell motility, collective motion of cell sheets involves complex cell-cell communication during migration; therefore, its mechanism is largely unknown. To elucidate propagation of signaling transduced by cell-cell interaction, we designed a hydrogel substrate that can cause local mechanical stretching of cell sheets. Poly (N-isopropyl acrylamide (PNIPAAm hydrogel is a temperature-responsive polymer gel whose volume changes isotropically in response to temperature changes below 37 °C. We designed a combined hydrogel substrate consisting of collagen-immobilized PNIPAAm as the local stimulation side and polyacrylamide (PAAm as the non-stimulation side to assess propagation of mechanical transduction. Mardin-Darby canine kidney (MDCK cells adhered to the collagen-immobilized PNIPAAm gel increased it area and were flattened as the gel swelled with temperature decrease. E-cadherin in these cells became undetectable in some domains, and actin stress fibers were more clearly observed at the cell base. In contrast, E-cadherin in cells adhered to the collagen-immobilized PAAm side was equally stained as that in cells adhered to the collagen-immobilized PAAm side even after temperature decrease. ERK1/2 MAPK activation of cells on the non-stimulated substrate occurred after partial stretching of the cell sheet suggesting the propagation of signaling. These results indicate that a change in the balance of mechanical tension induced by partial stretching of cell sheets leads to activation and propagation of the cell signaling.

  7. Responsive hydrogels produced via organic sol-gel chemistry for cell culture applications.

    Science.gov (United States)

    Patil, Smruti; Chaudhury, Pulkit; Clarizia, Lisa; McDonald, Melisenda; Reynaud, Emmanuelle; Gaines, Peter; Schmidt, Daniel F

    2012-08-01

    In this study, we report the synthesis of novel environmentally responsive polyurea hydrogel networks prepared via organic sol-gel chemistry and demonstrate that the networks can stabilize pH while releasing glucose both in simple aqueous media and in mammalian cell culture settings. Hydrogel formulations have been developed based on the combination of an aliphatic triisocyanate with pH-insensitive amine functional polyether and pH-sensitive poly(ethyleneimine) segments in a minimally toxic solvent suitable for the sol-gel reaction. The polyether component of the polyurea network is sufficiently hydrophilic to give rise to some level of swelling independent of environmental pH, while the poly(ethyleneimine) component contains tertiary amine groups providing pH sensitivity to the network in the form of enhanced swelling and release under acidic conditions. The reaction of these materials to form a network is rapid and requires no catalyst. The resultant material exhibits the desired pH-responsive swelling behavior and demonstrates its ability to simultaneously neutralize lactic acid and release glucose in both cell-free culture media and mammalian cell culture, with no detectable evidence of cytotoxicity or changes in cell behavior, in the case of either SA-13 human hybridomas or mouse embryonic stem cells. Furthermore, pH is observed to have a clear effect on the rate at which glucose is released from the hydrogel network. Such characteristics promise to maintain a favorable cell culture environment in the absence of human intervention.

  8. Wet-laid soy fiber reinforced hydrogel scaffold: Fabrication, mechano-morphological and cell studies.

    Science.gov (United States)

    Wood, Andrew T; Everett, Dominique; Budhwani, Karim I; Dickinson, Brenna; Thomas, Vinoy

    2016-06-01

    Among materials used in biomedical applications, hydrogels have received consistent linear growth in interest over the past decade due to their large water volume and saliency to the natural extracellular matrix. These materials are often limited due to their sub-optimal mechanical properties which are typically improved via chemical or physical crosslinking. Chemical crosslinking forms strong inter-polymer bonds but typically uses reagents that are cytotoxic while physical crosslinking is more temperamental to environmental changes but can be formed without these toxic reagents. In this study, we added a fiber-reinforcement phase to a poly(vinyl alcohol) (PVA) hydrogel formed through successive freezing-thawing cycles by incorporating a non-woven microfiber mat formed by the wet-lay process. By reinforcing the hydrogel with a wet-laid fibrous mat, the ultimate tensile strength and modulus increased from 0.11 ± 0.01 MPa and 0.17 ± 0.02 kPa to 0.24 ± 0.02 MPa and 5.76 ± 1.12 kPa, respectively. An increase in toughness and elongation was also found increasing from 2.52 ± 0.37 MPa to 25.6 ± 3.84 and 51.89 ± 5.16% to 111.16 ± 9.68%, respectively. The soy fibers were also found to induce minimal cytotoxicity with endothelial cell viability showing 96.51% ± 1.91 living cells after a 48 h incubation. This approach to hydrogel-reinforcement presents a rapid, tunable method by which hydrogels can attain increased mechanical properties without sacrificing their inherent biologically favorable properties.

  9. An injectable hydrogel incorporating mesenchymal precursor cells and pentosan polysulphate for intervertebral disc regeneration.

    Science.gov (United States)

    Frith, Jessica E; Cameron, Andrew R; Menzies, Donna J; Ghosh, Peter; Whitehead, Darryl L; Gronthos, Stan; Zannettino, Andrew C W; Cooper-White, Justin J

    2013-12-01

    Intervertebral disc (IVD) degeneration is one of the leading causes of lower back pain and a major health problem worldwide. Current surgical treatments include excision or immobilisation, with neither approach resulting in the repair of the degenerative disc. As such, a tissue engineering-based approach in which stem cells, coupled with an advanced delivery system, could overcome this deficiency and lead to a therapy that encourages functional fibrocartilage generation in the IVD. In this study, we have developed an injectable hydrogel system based on enzymatically-crosslinked polyethylene glycol and hyaluronic acid. We examined the effects of adding pentosan polysulphate (PPS), a synthetic glycosaminoglycan-like factor that has previously been shown (in vitro and in vivo) to this gel system in order to induce chondrogenesis in mesenchymal precursor cells (MPCs) when added as a soluble factor, even in the absence of additional growth factors such as TGF-β. We show that both the gelation rate and mechanical strength of the resulting hydrogels can be tuned in order to optimise the conditions required to produce gels with the desired combination of properties for an IVD scaffold. Human immunoselected STRO-1+ MPCs were then incorporated into the hydrogels. They were shown to retain good viability after both the initial formation of the gel and for longer-term culture periods in vitro. Furthermore, MPC/hydrogel composites formed cartilage-like tissue which was significantly enhanced by the incorporation of PPS into the hydrogels, particularly with respect to the deposition of type-II-collagen. Finally, using a wild-type rat subcutaneous implantation model, we examined the extent of any immune reaction and confirmed that this matrix is well tolerated by the host. Together these data provide evidence that such a system has significant potential as both a delivery vehicle for MPCs and as a matrix for fibrocartilage tissue engineering applications.

  10. Bioresponsive hydrogels

    Directory of Open Access Journals (Sweden)

    Rein V. Ulijn

    2007-04-01

    Full Text Available We highlight recent developments in hydrogel materials with biological responsiveness built in. These ‘smart’ biomaterials change properties in response to selective biological recognition events. When exposed to a biological target (nutrient, growth factor, receptor, antibody, enzyme, or whole cell, molecular recognition events trigger changes in molecular interactions that translate into macroscopic responses, such as swelling/collapse or solution-to-gel transitions. The hydrogel transitions may be used directly as optical readouts for biosensing, linked to the release of actives for drug delivery, or instigate biochemical signaling events that control or direct cellular behavior. Accordingly, bioresponsive hydrogels have gained significant interest for application in diagnostics, drug delivery, and tissue regeneration/wound healing.

  11. Characterization of novel photocrosslinked carboxymethylcellulose hydrogels for encapsulation of nucleus pulposus cells.

    Science.gov (United States)

    Reza, Anna T; Nicoll, Steven B

    2010-01-01

    Back pain is a significant clinical concern often associated with degeneration of the intervertebral disc (IVD). Tissue engineering strategies may provide a viable IVD replacement therapy; however, an ideal biomaterial scaffold has yet to be identified. One candidate material is carboxymethylcellulose (CMC), a water-soluble derivative of cellulose. In this study, 90 and 250 kDa CMC polymers were modified with functional methacrylate groups and photocrosslinked to produce hydrogels at different macromer concentrations. At 7 days, bovine nucleus pulposus (NP) cells encapsulated in these hydrogels were viable, with values for the elastic modulus ranging from 1.07 + or - 0.06 to 4.29 + or - 1.25 kPa. Three specific formulations were chosen for further study based on cell viability and mechanical integrity assessments: 4% 90 kDa, 2% 250 kDa and 3% 250 kDa CMC. The equilibrium weight swelling ratio of these formulations remained steady throughout the 2 week study (46.45 + or - 3.14, 48.55 + or - 2.91 and 42.41 + or - 3.06, respectively). The equilibrium Young's modulus of all cell-laden and cell-free control samples decreased over time, with the exception of cell-laden 3% 250 kDa CMC constructs, indicating an interplay between limited hydrolysis of interchain crosslinks and the elaboration of a functional matrix. Histological analyses of 3% 250 kDa CMC hydrogels confirmed the presence of rounded cells in lacunae and the pericellular deposition of chondroitin sulfate proteoglycan, a phenotypic NP marker. Taken together, these studies support the use of photocrosslinked CMC hydrogels as tunable biomaterials for NP cell encapsulation.

  12. Guiding intracortical brain tumour cells to an extracortical cytotoxic hydrogel using aligned polymeric nanofibres

    Science.gov (United States)

    Jain, Anjana; Betancur, Martha; Patel, Gaurangkumar D.; Valmikinathan, Chandra M.; Mukhatyar, Vivek J.; Vakharia, Ajit; Pai, S. Balakrishna; Brahma, Barunashish; MacDonald, Tobey J.; Bellamkonda, Ravi V.

    2014-03-01

    Glioblastoma multiforme is an aggressive, invasive brain tumour with a poor survival rate. Available treatments are ineffective and some tumours remain inoperable because of their size or location. The tumours are known to invade and migrate along white matter tracts and blood vessels. Here, we exploit this characteristic of glioblastoma multiforme by engineering aligned polycaprolactone (PCL)-based nanofibres for tumour cells to invade and, hence, guide cells away from the primary tumour site to an extracortical location. This extracortial sink is a cyclopamine drug-conjugated, collagen-based hydrogel. When aligned PCL-nanofibre films in a PCL/polyurethane carrier conduit were inserted in the vicinity of an intracortical human U87MG glioblastoma xenograft, a significant number of human glioblastoma cells migrated along the aligned nanofibre films and underwent apoptosis in the extracortical hydrogel. Tumour volume in the brain was significantly lower following insertion of aligned nanofibre implants compared with the application of smooth fibres or no implants.

  13. Biofunctionalization of conductive hydrogel coatings to support olfactory ensheathing cells at implantable electrode interfaces.

    Science.gov (United States)

    Hassarati, Rachelle T; Marcal, Helder; John, L; Foster, R; Green, Rylie A

    2016-05-01

    Mechanical discrepancies between conventional platinum (Pt) electrodes and neural tissue often result in scar tissue encapsulation of implanted neural recording and stimulating devices. Olfactory ensheathing cells (OECs) are a supportive glial cell in the olfactory nervous system which can transition through glial scar tissue while supporting the outgrowth of neural processes. It has been proposed that this function can be used to reconnect implanted electrodes with the target neural pathways. Conductive hydrogel (CH) electrode coatings have been proposed as a substrate for supporting OEC survival and proliferation at the device interface. To determine an ideal CH to support OECs, this study explored eight CH variants, with differing biochemical composition, in comparison to a conventional Pt electrodes. All CH variants were based on a biosynthetic hydrogel, consisting of poly(vinyl alcohol) and heparin, through which the conductive polymer (CP) poly(3,4-ethylenedioxythiophene) was electropolymerized. The biochemical composition was varied through incorporation of gelatin and sericin, which were expected to provide cell adherence functionality, supporting attachment, and cell spreading. Combinations of these biomolecules varied from 1 to 3 wt %. The physical, electrical, and biological impact of these molecules on electrode performance was assessed. Cyclic voltammetry and electrochemical impedance spectroscopy demonstrated that the addition of these biological molecules had little significant effect on the coating's ability to safely transfer charge. Cell attachment studies, however, determined that the incorporation of 1 wt % gelatin in the hydrogel was sufficient to significantly increase the attachment of OECs compared to the nonfunctionalized CH.

  14. Static versus vacuum cell seeding on high and low porosity ceramic scaffolds

    NARCIS (Netherlands)

    Buizer, Arina T.; Veldhuizen, Albert G.; Bulstra, Sjoerd K.; Kuijer, Roelof

    2014-01-01

    An adequate cell seeding technique is essential for effective bone regeneration on cell seeded constructs of porous tricalcium phosphates. In previous studies, dynamic cell seeding, in which an external force is applied to seed cells on a biomaterial, resulted in more homogeneous cell seeding in low

  15. Cell protective, ABC triblock polymer-based thermoresponsive hydrogels with ROS-triggered degradation and drug release.

    Science.gov (United States)

    Gupta, Mukesh K; Martin, John R; Werfel, Thomas A; Shen, Tianwei; Page, Jonathan M; Duvall, Craig L

    2014-10-22

    A combination of anionic and RAFT polymerization was used to synthesize an ABC triblock polymer poly[(propylenesulfide)-block-(N,N-dimethylacrylamide)-block-(N-isopropylacrylamide)] (PPS-b-PDMA-b-PNIPAAM) that forms physically cross-linked hydrogels when transitioned from ambient to physiologic temperature and that incorporates mechanisms for reactive oxygen species (ROS) triggered degradation and drug release. At ambient temperature (25 °C), PPS-b-PDMA-b-PNIPAAM assembled into 66 ± 32 nm micelles comprising a hydrophobic PPS core and PNIPAAM on the outer corona. Upon heating to physiologic temperature (37 °C), which exceeds the lower critical solution temperature (LCST) of PNIPAAM, micelle solutions (at ≥2.5 wt %) sharply transitioned into stable, hydrated gels. Temperature-dependent rheology indicated that the equilibrium storage moduli (G') of hydrogels at 2.5, 5.0, and 7.5 wt % were 20, 380, and 850 Pa, respectively. The PPS-b-PDMA-b-PNIPAAM micelles were preloaded with the model drug Nile red, and the resulting hydrogels demonstrated ROS-dependent drug release. Likewise, exposure to the peroxynitrite generator SIN-1 degraded the mechanical properties of the hydrogels. The hydrogels were cytocompatible in vitro and were demonstrated to have utility for cell encapsulation and delivery. These hydrogels also possessed inherent cell-protective properties and reduced ROS-mediated cellular death in vitro. Subcutaneously injected PPS-b-PDMA-b-PNIPAAM polymer solutions formed stable hydrogels that sustained local release of the model drug Nile red for 14 days in vivo. These collective data demonstrate the potential use of PPS-b-PDMA-b-PNIPAAM as an injectable, cyto-protective hydrogel that overcomes conventional PNIPAAM hydrogel limitations such as syneresis, lack of degradability, and lack of inherent drug loading and environmentally responsive release mechanisms.

  16. Enhancing neural stem cell response to SDF-1α gradients through hyaluronic acid-laminin hydrogels.

    Science.gov (United States)

    Addington, C P; Heffernan, J M; Millar-Haskell, C S; Tucker, E W; Sirianni, R W; Stabenfeldt, S E

    2015-12-01

    Traumatic brain injury (TBI) initiates an expansive biochemical insult that is largely responsible for the long-term dysfunction associated with TBI; however, current clinical treatments fall short of addressing these underlying sequelae. Pre-clinical investigations have used stem cell transplantation with moderate success, but are plagued by staggeringly low survival and engraftment rates (2-4%). As such, providing cell transplants with the means to better dynamically respond to injury-related signals within the transplant microenvironment may afford improved transplantation survival and engraftment rates. The chemokine stromal cell-derived factor-1α (SDF-1α) is a potent chemotactic signal that is readily present after TBI. In this study, we sought to develop a transplantation vehicle to ultimately enhance the responsiveness of neural transplants to injury-induced SDF-1α. Specifically, we hypothesize that a hyaluronic acid (HA) and laminin (Lm) hydrogel would promote 1. upregulated expression of the SDF-1α receptor CXCR4 in neural progenitor/stem cells (NPSCs) and 2. enhanced NPSC migration in response to SDF-1α gradients. We demonstrated successful development of a HA-Lm hydrogel and utilized standard protein and cellular assays to probe NPSC CXCR4 expression and NPSC chemotactic migration. The findings demonstrated that NPSCs significantly increased CXCR4 expression after 48 h of culture on the HA-Lm gel in a manner critically dependent on both HA and laminin. Moreover, the HA-Lm hydrogel significantly increased NPSC chemotactic migration in response to SDF-1α at 48 h, an effect that was critically dependent on HA, laminin and the SDF-1α gradient. Therefore, this hydrogel serves to 1. prime NPSCs for the injury microenvironment and 2. provide the appropriate infrastructure to support migration into the surrounding tissue, equipping cells with the tools to more effectively respond to the injury microenvironment.

  17. Hydrogel Macroporosity and the Prolongation of Transgene Expression and the Enhancement of Angiogenesis

    Science.gov (United States)

    Shepard, Jaclyn A.; Virani, Farrukh R.; Goodman, Ashley G.; Gossett, Timothy D.; Shin, Seungjin; Shea, Lonnie D.

    2012-01-01

    The utility of hydrogels for regenerative medicine can be improved through localized gene delivery to enhance their bioactivity. However, current systems typically lead to low-level transgene expression located in host tissue surrounding the implant. Herein, we investigated the inclusion of macropores into hydrogels to facilitate cell ingrowth and enhance gene delivery within the macropores in vivo. Macropores were created within PEG hydrogels by gelation around gelatin microspheres, with gelatin subsequently dissolved by incubation at 37°C. The macropores were interconnected, as evidenced by homogeneous cell seeding in vitro and complete cell infiltration in vivo. Lentivirus loaded within hydrogels following gelation retained its activity relative to the unencapsulated control virus. In vivo, macroporous PEG demonstrated sustained, elevated levels of transgene expression for 6 weeks, while hydrogels without macropores had transient expression. Transduced cells were located throughout the macroporous structure, while non-macroporous PEG hydrogels had transduction only in the adjacent host tissue. Delivery of lentivirus encoding for VEGF increased vascularization relative to the control, with vessels throughout the macropores of the hydrogel. The inclusion of macropores within the hydrogel to enhance cell infiltration enhances transduction and influences tissue development, which has implications for multiple regenerative medicine applications. PMID:22800542

  18. Stem cell secretome-rich nanoclay hydrogel: a dual action therapy for cardiovascular regeneration

    Science.gov (United States)

    Waters, Renae; Pacelli, Settimio; Maloney, Ryan; Medhi, Indrani; Ahmed, Rafeeq P. H.; Paul, Arghya

    2016-03-01

    A nanocomposite hydrogel with photocrosslinkable micro-porous networks and a nanoclay component was successfully prepared to control the release of growth factor-rich stem cell secretome. The proven pro-angiogenic and cardioprotective potential of this new bioactive system provides a valuable therapeutic platform for cardiac tissue repair and regeneration.A nanocomposite hydrogel with photocrosslinkable micro-porous networks and a nanoclay component was successfully prepared to control the release of growth factor-rich stem cell secretome. The proven pro-angiogenic and cardioprotective potential of this new bioactive system provides a valuable therapeutic platform for cardiac tissue repair and regeneration. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07806g

  19. Enhanced infarct myocardium repair mediated by thermosensitive copolymer hydrogel-based stem cell transplantation

    OpenAIRE

    Xia, Yu; Zhu, Kai; Lai, Hao; Lang, Meidong; Xiao, Yan; Lian, Sheng; Guo, Changfa; Wang, Chunsheng

    2015-01-01

    Mesenchymal stem cell (MSC) transplantation by intramyocardial injection has been proposed as a promising therapy strategy for cardiac repair after myocardium infarction. However, low retention and survival of grafted MSCs hinder its further application. In this study, copolymer with N-isopropylacrylamide/acrylic acid/2-hydroxylethyl methacrylate-poly(ɛ-caprolactone) ratio of 88:9.6:2.4 was bioconjugated with type I collagen to construct a novel injectable thermosensitive hydrogel. The inject...

  20. Integration of microfluidic chip with biomimetic hydrogel for 3D controlling and monitoring of cell alignment and migration.

    Science.gov (United States)

    Lee, Kwang Ho; Lee, Ki Hwa; Lee, Jeonghoon; Choi, Hyuk; Lee, Donghee; Park, Yongdoo; Lee, Sang-Hoon

    2014-04-01

    A biomimetic hydrogel was integrated into microfluidic chips to monitor glioma cell alignment and migration. The extracellular matrix-based biomimetic hydrogel was remodeled by matrix metalloprotease (MMP) secreted by glioma cells and the hydrogel could thus be used to assess cellular behavior. Both static and dynamic cell growth conditions (flow rate of 0.1 mL/h) were used. Cell culture medium with and without vascular endothelial growth factor (VEGF), insensitive VEGF and tissue inhibitor of metalloproteinases (TIMP) were employed to monitor cell behavior. A concentration gradient formed in the hydrogel resulted in differences in cell behavior. Glioma cell viability in the microchannel was 75-85%. Cells in the VEGF-loaded microchannels spread extensively, degrading the MMP-sensitive hydrogel, and achieved cell sizes almost fivefold larger than seen in the control medium. Our integrated system can be used as a model for the study of cellular behavior in a controlled microenvironment generated by fluidic conditions in a biomimetic matrix.

  1. Effect of bioglass on growth and biomineralization of SaOS-2 cells in hydrogel after 3D cell bioprinting.

    Science.gov (United States)

    Wang, Xiaohong; Tolba, Emad; Schröder, Heinz C; Neufurth, Meik; Feng, Qingling; Diehl-Seifert, Bärbel; Müller, Werner E G

    2014-01-01

    We investigated the effect of bioglass (bioactive glass) on growth and mineralization of bone-related SaOS-2 cells, encapsulated into a printable and biodegradable alginate/gelatine hydrogel. The hydrogel was supplemented either with polyphosphate (polyP), administered as polyP • Ca2+-complex, or silica, or as biosilica that had been enzymatically prepared from ortho-silicate by silicatein. These hydrogels, together with SaOS-2 cells, were bioprinted to computer-designed scaffolds. The results revealed that bioglass (nano)particles, with a size of 55 nm and a molar ratio of SiO2 : CaO : P2O5 of 55 : 40 : 5, did not affect the growth of the encapsulated cells. If silica, biosilica, or polyP • Ca2+-complex is co-added to the cell-containing alginate/gelatin hydrogel the growth behavior of the cells is not changed. Addition of 5 mg/ml of bioglass particles to this hydrogel significantly enhanced the potency of the entrapped SaOS-2 cells to mineralize. If compared with the extent of the cells to form mineral deposits in the absence of bioglass, the cells exposed to bioglass together with 100 µmoles/L polyP • Ca2+-complex increased their mineralization activity from 2.1- to 3.9-fold, or with 50 µmoles/L silica from 1.8- to 2.9-fold, or with 50 µmoles/L biosilica from 2.7- to 4.8-fold or with the two components together (100 µmoles/L polyP • Ca2+-complex and 50 µmoles/L biosilica) from 4.1- to 6.8-fold. Element analysis by EDX spectrometry of the mineral nodules formed by SaOS-2 revealed an accumulation of O, P, Ca and C, indicating that the mineral deposits contain, besides Ca-phosphate also Ca-carbonate. The results show that bioglass added to alginate/gelatin hydrogel increases the proliferation and mineralization of bioprinted SaOS-2 cells. We conclude that the development of cell-containing scaffolds consisting of a bioprintable, solid and cell-compatible inner matrix surrounded by a printable hard and flexible outer matrix containing bioglass, provide

  2. Effect of bioglass on growth and biomineralization of SaOS-2 cells in hydrogel after 3D cell bioprinting.

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    Full Text Available We investigated the effect of bioglass (bioactive glass on growth and mineralization of bone-related SaOS-2 cells, encapsulated into a printable and biodegradable alginate/gelatine hydrogel. The hydrogel was supplemented either with polyphosphate (polyP, administered as polyP • Ca2+-complex, or silica, or as biosilica that had been enzymatically prepared from ortho-silicate by silicatein. These hydrogels, together with SaOS-2 cells, were bioprinted to computer-designed scaffolds. The results revealed that bioglass (nanoparticles, with a size of 55 nm and a molar ratio of SiO2 : CaO : P2O5 of 55 : 40 : 5, did not affect the growth of the encapsulated cells. If silica, biosilica, or polyP • Ca2+-complex is co-added to the cell-containing alginate/gelatin hydrogel the growth behavior of the cells is not changed. Addition of 5 mg/ml of bioglass particles to this hydrogel significantly enhanced the potency of the entrapped SaOS-2 cells to mineralize. If compared with the extent of the cells to form mineral deposits in the absence of bioglass, the cells exposed to bioglass together with 100 µmoles/L polyP • Ca2+-complex increased their mineralization activity from 2.1- to 3.9-fold, or with 50 µmoles/L silica from 1.8- to 2.9-fold, or with 50 µmoles/L biosilica from 2.7- to 4.8-fold or with the two components together (100 µmoles/L polyP • Ca2+-complex and 50 µmoles/L biosilica from 4.1- to 6.8-fold. Element analysis by EDX spectrometry of the mineral nodules formed by SaOS-2 revealed an accumulation of O, P, Ca and C, indicating that the mineral deposits contain, besides Ca-phosphate also Ca-carbonate. The results show that bioglass added to alginate/gelatin hydrogel increases the proliferation and mineralization of bioprinted SaOS-2 cells. We conclude that the development of cell-containing scaffolds consisting of a bioprintable, solid and cell-compatible inner matrix surrounded by a printable hard and flexible outer matrix containing

  3. Light-Addressable Electrodeposition of Magnetically-Guided Cells Encapsulated in Alginate Hydrogels for Three-Dimensional Cell Patterning

    Directory of Open Access Journals (Sweden)

    Shih-Hao Huang

    2014-11-01

    Full Text Available This paper describes a light-addressable electrolytic system used to perform an electrodeposition of magnetically-guided cells encapsulated in alginate hydrogels using a digital micromirror device (DMD for three-dimensional cell patterning. In this system, the magnetically-labeled cells were first manipulated into a specific arrangement by changing the orientation of the magnetic field, and then a patterned light illumination was projected onto a photoconductive substrate serving as a photo-anode to cause gelation of calcium alginate through sol-gel transition. By controlling the illumination pattern on the DMD, we first successfully produced cell-encapsulated multilayer alginate hydrogels with different shapes and sizes in each layer via performing multiplexed micropatterning. By combining the magnetically-labeled cells, light-addressable electrodeposition, and orientation of the magnetic fields, we have successfully demonstrated to fabricate two layers of the cell-encapsulated alginate hydrogels, where cells in each layer can be manipulated into cross-directional arrangements that mimic natural tissue. Our proposed method provides a programmable method for the spatiotemporally controllable assembly of cell populations into three-dimensional cell patterning and could have a wide range of biological applications in tissue engineering, toxicology, and drug discovery.

  4. Cell differentiation on disk- and string-shaped hydrogels fabricated from Ca(2+) -responsive self-assembling peptides.

    Science.gov (United States)

    Fukunaga, Kazuto; Tsutsumi, Hiroshi; Mihara, Hisakazu

    2016-11-04

    We recently developed a self-assembling peptide, E1Y9, that self-assembles into nanofibers and forms a hydrogel in the presence of Ca(2+) . E1Y9 derivatives conjugated with functional peptide sequences derived from extracellular matrices (ECMs) reportedly self-assemble into peptide nanofibers that enhance cell adhesion and differentiation. In this study, E1Y9/E1Y9-IKVAV-mixed hydrogels were constructed to serve as artificial ECMs that promote cell differentiation. E1Y9 and E1Y9-IKVAV co-assembled into networked nanofibers, and hydrogels with disk and string shapes were formed in response to Ca(2+) treatment. The neuronal differentiation of PC12 cells was facilitated on hydrogels of both shapes that contained the IKVAV motifs. Moreover, long neurites extended along the long axis of the string-shaped gel, suggesting that the structure of hydrogels of this shape can affect cellular orientation. Thus, E1Y9 hydrogels can potentially be used as artificial ECMs with desirable bioactivities and shapes that could be useful in tissue engineering applications. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 476-483, 2016.

  5. Promotion of Cell Growth and Adhesion of a Peptide Hydrogel Scaffold via mTOR/Cadherin Signaling.

    Science.gov (United States)

    Wei, Guojun; Wang, Liping; Dong, Daming; Teng, Zhaowei; Shi, Zuowei; Wang, Kaifu; An, Gang; Guan, Ying; Han, Bo; Yao, Meng; Xian, Cory J

    2017-02-18

    Understanding neurite outgrowth, orientation, and migration is important for the design of biomaterials that interface with the neural tissue. However, the molecular signaling alternations have not been well elucidated to explain the impact of hydrogels on cell morphology. In our previous studies, a silk fibroin peptide (SF16) hydrogel was found to be an effective matrix for the viability, morphology and proliferation of PC12 rat pheocrhomocytoma cells. We found that PC12 cells in the peptide hydrogel exhibited adhesive morphology compared to those cultured in agarose or collagen. Moreover, we identified that cell adhesion molecules (E- and N-cadherin) controlled by mTOR signaling were highly induced in PC12 cells cultured in the SF16 peptide hydrogel. Our findings suggest that the SF16 peptide might be suitable to be a cell-adhesion material in cell culture or tissue engineering, and mTOR/cadherin signaling is required for the cell adhesion in the SF16-peptide hydrogel. This article is protected by copyright. All rights reserved.

  6. Length-scale mediated adhesion and directed growth of neural cells by surface-patterned poly(ethylene glycol) hydrogels.

    Science.gov (United States)

    Krsko, Peter; McCann, Thomas E; Thach, Thu-Trang; Laabs, Tracy L; Geller, Herbert M; Libera, Matthew R

    2009-02-01

    We engineered surfaces that permit the adhesion and directed growth of neuronal cell processes but that prevent the adhesion of astrocytes. This effect was achieved based on the spatial distribution of sub-micron-sized cell-repulsive poly(ethylene glycol) [PEG] hydrogels patterned on an otherwise cell-adhesive substrate. Patterns were identified that promoted cellular responses ranging from complete non-attachment, selective attachment, and directed growth at both cellular and subcellular length scales. At the highest patterning density where the individual hydrogels almost overlapped, there was no cellular adhesion. As the spacing between individual hydrogels was increased, patterns were identified where neurites could grow on the adhesive surface between hydrogels while astrocytes were unable to adhere. Patterns such as lines or arrays were identified that could direct the growth of these subcellular neuronal processes. At higher hydrogel spacings, both neurons and astrocytes adhered and grew in a manner approaching that of unpatterned control surfaces. Patterned lines could once again direct growth at cellular length scales. Significantly, we have demonstrated that the patterning of sub-micron/nano scale cell-repulsive features at microscale lengths on an otherwise cell-adhesive surface can differently control the adhesion and growth of cells and cell processes based on the difference in their characteristic sizes. This concept could potentially be applied to an implantable nerve-guidance device that would selectively enable regrowing axons to bridge a spinal-cord injury without interference from the glial scar.

  7. Peptide hydrogels – versatile matrices for 3D cell culture in cancer medicine

    Directory of Open Access Journals (Sweden)

    Peter eWorthington

    2015-04-01

    Full Text Available Traditional two-dimensional (2D cell culture systems have contributed tremendously to our understanding of cancer biology but have significant limitations in mimicking in vivo conditions such as the tumor microenvironment. In vitro, three-dimensional (3D cell culture models represent a more accurate, intermediate platform between simplified 2D culture models and complex and expensive in vivo models. 3D in vitro models can overcome 2D in vitro limitations caused by the oversupply of nutrients, and unphysiological cell-cell and cell-material interactions, and allow for dynamic interactions between cells, stroma, and extracellular matrix. In addition, 3D cultures allow for the development of concentration gradients, including oxygen, metabolites and growth factors, with chemical gradients playing an integral role in many cellular functions ranging from development to signaling in normal epithelia and cancer environments in vivo. Currently, the most common matrices used for 3D culture are biologically derived materials such as matrigel and collagen. However, in recent years, more defined, synthetic materials have become available as scaffolds for 3D culture with the advantage of forming well-defined, designed, tunable materials to control matrix charge, stiffness, porosity, nanostructure, degradability and adhesion properties, in addition to other material and biological properties. One important area of synthetic materials currently available for 3D cell culture are short sequence, self-assembling peptide hydrogels. In addition to the review of recent work towards the control of material, structure, and mechanical properties, we will also discuss the biochemical functionalization of peptide hydrogels and how this functionalization, coupled with desired hydrogel material characteristics, affects tumor cell behavior in 3D culture.

  8. pH dependent poly[2-(methacryloyloxyethyl)trimetylammonium chloride-co-methacrylic acid]hydrogels for enhanced targeted delivery of 5-fluorouracil in colon cancer cells.

    Science.gov (United States)

    Mishra, R K; Ramasamy, K; Ahmad, N A; Eshak, Z; Majeed, A B A

    2014-04-01

    Stimuli responsive hydrogels have shown enormous potential as a carrier for targeted drug delivery. In this study we have developed novel pH responsive hydrogels for the delivery of 5-fluorouracil (5-FU) in order to alleviate its antitumor activity while reducing its toxicity. We used 2-(methacryloyloxyethyl) trimetylammonium chloride a positively charged monomer and methacrylic acid for fabricating the pH responsive hydrogels. The released 5-FU from all except hydrogel (GEL-5) remained biologically active against human colon cancer cell lines [HT29 (IC50 = 110-190 μg ml(-1)) and HCT116 (IC50 = 210-390 μg ml(-1))] but not human skin fibroblast cells [BJ (CRL2522); IC50 ≥ 1000 μg ml(-1)]. This implies that the copolymer hydrogels (1-4) were able to release 5-FU effectively to colon cancer cells but not normal human skin fibroblast cells. This is probably due to the shorter doubling time that results in reduced pH in colon cancer cells when compared to fibroblast cells. These pH sensitive hydrogels showed well defined cell apoptosis in HCT116 cells through series of events such as chromatin condensation, membrane blebbing, and formation of apoptotic bodies. No cell killing was observed in the case of blank hydrogels. The results showed the potential of these stimuli responsive polymer hydrogels as a carrier for colon cancer delivery.

  9. Antibacterial and cell-adhesive polypeptide and poly(ethylene glycol) hydrogel as a potential scaffold for wound healing.

    Science.gov (United States)

    Song, Airong; Rane, Aboli A; Christman, Karen L

    2012-01-01

    The ideal wound-healing scaffold should provide the appropriate physical and mechanical properties to prevent secondary infection, as well as an excellent physiological environment to facilitate cell adhesion, proliferation and/or differentiation. Therefore, we developed a synthetic cell-adhesive polypeptide hydrogel with inherent antibacterial activity. A series of polypeptides, poly(Lys)(x)(Ala)(y) (x+y=100), with varied hydrophobicity via metal-free ring-opening polymerization of NCA-Lys(Boc) and NCA-Ala monomers (NCA=N-carboxylic anhydride) mediated by hexamethyldisilazane (HMDS) were synthesized. These polypeptides were cross-linked with 6-arm polyethylene glycol (PEG)-amide succinimidyl glutarate (ASG) (M(w)=10K) to form hydrogels with a gelation time of five minutes and a storage modulus (G') of 1400-3000 Pa as characterized by rheometry. The hydrogel formed by cross-linking of poly(Lys)(60)(Ala)(40) (5 wt.%) and 6-arm PEG-ASG (16 wt.%) (Gel-III) exhibited cell adhesion and cell proliferation activities superior to other polypeptide hydrogels. In addition, Gel-III displays significant antibacterial activity against Escherichia coli JM109 and Staphylococcus aureus ATCC25923. Thus, we have developed a novel, cell-adhesive hydrogel with inherent antibacterial activity as a potential scaffold for cutaneous wound healing.

  10. Production of Prednisolone by Pseudomonas oleovorans Cells Incorporated Into PVP/PEO Radiation Crosslinked Hydrogels

    Directory of Open Access Journals (Sweden)

    Abeer Abd El-Hady

    2004-01-01

    Full Text Available In order to rise the yield of prednisolone from hydrocortisone, the Pseudomonas oleovorans cells were entrapped into radiation crosslinked poly (vinyl pyrrolidone/poly(ethylene oxide (PVP/PEO hydrogel of different gel contents. The factors affecting the gel content and swelling behavior of the polymeric gel, such as polymer composition, polymer blend concentration, and irradiation doses, were investigated. The formation of gels having a good strength with the ability to retain a desirable amount of water in their three-dimensional network can be achieved by using PVP/PEO copolymer of composition (90:10 and concentration of 15% prepared at 20 kGy irradiation dose. At these conditions the prepared hydrogel is considered the most favorable one that gave the highest hydrocortisone bioconversion and prednisolone yield, 81% and 62.8%, respectively. The improvement of prednisolone yield was also achieved by increasing substrate concentration. Maximum hydrocortisone bioconversion (86.44 was obtained at 18 hours by using substrate concentration of 30 mg. Reusability of immobilized Pseudomonas oleovorans entrapped into PVP/PEO copolymer hydrogel was studied. The results indicated that the transformation capacity of hydrocortisone to prednisolone highly increased by the repeated use of copolymer for 4 times. This was accompanied by an increase in prednisolone yield to 89% and the bioconversion of hydrocortisone was 98.8%.

  11. Engineered HA hydrogel for stem cell transplantation in the brain: Biocompatibility data using a design of experiment approach.

    Science.gov (United States)

    Nih, Lina R; Moshayedi, Pouria; Llorente, Irene L; Berg, Andrew R; Cinkornpumin, Jessica; Lowry, William E; Segura, Tatiana; Carmichael, S Thomas

    2017-02-01

    This article presents data related to the research article "Systematic optimization of an engineered hydrogel allows for selective control of human neural stem cell survival and differentiation after transplantation in the stroke brain" (P. Moshayedi, L.R. Nih, I.L. Llorente, A.R. Berg, J. Cinkornpumin, W.E. Lowry et al., 2016) [1] and focuses on the biocompatibility aspects of the hydrogel, including its stiffness and the inflammatory response of the transplanted organ. We have developed an injectable hyaluronic acid (HA)-based hydrogel for stem cell culture and transplantation, to promote brain tissue repair after stroke. This 3D biomaterial was engineered to bind bioactive signals such as adhesive motifs, as well as releasing growth factors while supporting cell growth and tissue infiltration. We used a Design of Experiment approach to create a complex matrix environment in vitro by keeping the hydrogel platform and cell type constant across conditions while systematically varying peptide motifs and growth factors. The optimized HA hydrogel promoted survival of encapsulated human induced pluripotent stem cell derived-neural progenitor cells (iPS-NPCs) after transplantation into the stroke cavity and differentially tuned transplanted cell fate through the promotion of glial, neuronal or immature/progenitor states. The highlights of this article include: (1) Data of cell and bioactive signals addition on the hydrogel mechanical properties and growth factor diffusion, (2) the use of a design of Experiment (DOE) approach (M.W. 2 Weible and T. Chan-Ling, 2007) [2] to select multi-factorial experimental conditions, and (3) Inflammatory response and cell survival after transplantation.

  12. Engineered HA hydrogel for stem cell transplantation in the brain: Biocompatibility data using a design of experiment approach

    Directory of Open Access Journals (Sweden)

    Lina R. Nih

    2017-02-01

    Full Text Available This article presents data related to the research article “Systematic optimization of an engineered hydrogel allows for selective control of human neural stem cell survival and differentiation after transplantation in the stroke brain” (P. Moshayedi, L.R. Nih, I.L. Llorente, A.R. Berg, J. Cinkornpumin, W.E. Lowry et al., 2016 [1] and focuses on the biocompatibility aspects of the hydrogel, including its stiffness and the inflammatory response of the transplanted organ. We have developed an injectable hyaluronic acid (HA-based hydrogel for stem cell culture and transplantation, to promote brain tissue repair after stroke. This 3D biomaterial was engineered to bind bioactive signals such as adhesive motifs, as well as releasing growth factors while supporting cell growth and tissue infiltration. We used a Design of Experiment approach to create a complex matrix environment in vitro by keeping the hydrogel platform and cell type constant across conditions while systematically varying peptide motifs and growth factors. The optimized HA hydrogel promoted survival of encapsulated human induced pluripotent stem cell derived-neural progenitor cells (iPS-NPCs after transplantation into the stroke cavity and differentially tuned transplanted cell fate through the promotion of glial, neuronal or immature/progenitor states. The highlights of this article include: (1 Data of cell and bioactive signals addition on the hydrogel mechanical properties and growth factor diffusion, (2 the use of a design of Experiment (DOE approach (M.W. 2 Weible and T. Chan-Ling, 2007 [2] to select multi-factorial experimental conditions, and (3 Inflammatory response and cell survival after transplantation.

  13. Electrical detachment of cells for engineering capillary-like structures in a photocrosslinkable hydrogel.

    Science.gov (United States)

    Osaki, Tatsuya; Kakegawa, Takahiro; Suzuki, Hiroaki; Fukuda, Junji

    2011-01-01

    A major challenge in tissue engineering is the fabrication of vascular networks capable of delivering oxygen and nutrients throughout tissue constructs. Because cells located more than a few hundred micrometers away from the nearest capillaries are susceptible to oxygen shortages, it is crucial to develop microscale technologies for engineering a vascular structure in three-dimensionally thick tissues. This study describes an electrochemical approach for fabricating capillary-like structures precisely aligned within micrometer distances, the internal surfaces of which are covered with vascular endothelial cells in a photocrosslinkable hydrogel.

  14. Injectable, Pore-Forming Hydrogels for In Vivo Enrichment of Immature Dendritic Cells.

    Science.gov (United States)

    Verbeke, Catia S; Mooney, David J

    2015-12-01

    Biomaterials-based vaccines have emerged as a powerful method to evoke potent immune responses directly in vivo, without the need for ex vivo cell manipulation, and modulating dendritic cell (DC) responses in a noninflammatory context could enable the development of tolerogenic vaccines to treat autoimmunity. This study describes the development of a noninflammatory, injectable hydrogel system to locally enrich DCs in vivo without inducing their maturation or activation, as a first step toward this goal. Alginate hydrogels that form pores in situ are characterized and used as a physical scaffold for cell infiltration. These gels are also adapted to control the release of granulocyte-macrophage colony stimulating factor (GM-CSF), a potent inducer of DC recruitment and proliferation. In vivo, sustained release of GM-CSF from the pore-forming gels leads to the accumulation of millions of cells in the material. These cells are highly enriched in CD11b(+) CD11c(+) DCs, and further analysis of cell surface marker expression indicates these DCs are immature. This study demonstrates that a polymeric delivery system can mediate the accumulation of a high number and percentage of immature DCs, and may provide the basis for further development of materials-based, therapeutic vaccines.

  15. Alginate hydrogel protects encapsulated hepatic HuH-7 cells against hepatitis C virus and other viral infections.

    Directory of Open Access Journals (Sweden)

    Nhu-Mai Tran

    Full Text Available Cell microencapsulation in alginate hydrogel has shown interesting applications in regenerative medicine and the biomedical field through implantation of encapsulated tissue or for bioartificial organ development. Although alginate solution is known to have low antiviral activity, the same property regarding alginate gel has not yet been studied. The aim of this work is to investigate the potential protective effect of alginate encapsulation against hepatitis C virus (HCV infection for a hepatic cell line (HuH-7 normally permissive to the virus. Our results showed that alginate hydrogel protects HuH-7 cells against HCV when the supernatant was loaded with HCV. In addition, alginate hydrogel blocked HCV particle release out of the beads when the HuH-7 cells were previously infected and encapsulated. There was evidence of interaction between the molecules of alginate hydrogel and HCV, which was dose- and incubation time-dependent. The protective efficiency of alginate hydrogel towards HCV infection was confirmed against a variety of viruses, whether or not they were enveloped. This promising interaction between an alginate matrix and viruses, whose chemical mechanisms are discussed, is of great interest for further medical therapeutic applications based on tissue engineering.

  16. Performance study of direct borohydride fuel cells employing polyvinyl alcohol hydrogel membrane and nickel-based anode

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.; Choudhury, N.A.; Sahai, Y.; Buchheit, R.G. [Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210 (United States)

    2011-10-15

    A direct borohydride fuel cell (DBFC) employing a polyvinyl alcohol (PVA) hydrogel membrane and a nickel-based composite anode is reported. Carbon-supported platinum and sputtered gold have been employed as cathode catalysts. Oxygen, air and acidified hydrogen peroxide have been used as oxidants in the DBFC. Performance of the PVA hydrogel membrane-based DBFC was tested at different temperatures and compared with similar DBFCs employing Nafion registered membrane electrolytes under identical conditions. The borohydride-oxygen fuel cell employing PVA hydrogel membrane yielded a maximum peak power density of 242 mW cm{sup -2} at 60 C. The peak power densities of the PVA hydrogel membrane-based DBFCs were comparable or a little higher than those using Nafion registered 212 membranes at 60 C. The fuel efficiency of borohydride-oxygen fuel cell based on PVA hydrogel membrane and Ni-based composite anode was found to be between 32 and 41%. The cell was operated for more than 100 h and its performance stability was recorded. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. A new three dimensional biomimetic hydrogel to deliver factors secreted by human mesenchymal stem cells in spinal cord injury.

    Science.gov (United States)

    Caron, Ilaria; Rossi, Filippo; Papa, Simonetta; Aloe, Rossella; Sculco, Marika; Mauri, Emanuele; Sacchetti, Alessandro; Erba, Eugenio; Panini, Nicolò; Parazzi, Valentina; Barilani, Mario; Forloni, Gianluigi; Perale, Giuseppe; Lazzari, Lorenza; Veglianese, Pietro

    2016-01-01

    Stem cell therapy with human mesenchymal stem cells (hMSCs) represents a promising strategy in spinal cord injury (SCI). However, both systemic and parenchymal hMSCs administrations show significant drawbacks as a limited number and viability of stem cells in situ. Biomaterials able to encapsulate and sustain hMSCs represent a viable approach to overcome these limitations potentially improving the stem cell therapy. In this study, we evaluate a new agarose/carbomer based hydrogel which combines different strategies to optimize hMSCs viability, density and delivery of paracrine factors. Specifically, we evaluate a new loading procedure on a lyophilized scaffold (soaked up effect) that reduces mechanical stress in encapsulating hMSCs into the hydrogel. In addition, we combine arginine-glycine-aspartic acid (RGD) tripeptide and 3D extracellular matrix deposition to increase the capacity to attach and maintain healthy hMSCs within the hydrogel over time. Furthermore, the fluidic diffusion from the hydrogel toward the injury site is improved by using a cling film that oriented efficaciously the delivery of paracrine factors in vivo. Finally, we demonstrate that an improved combination as here proposed of hMSCs and biomimetic hydrogel is able to immunomodulate significantly the pro-inflammatory environment in a SCI mouse model, increasing M2 macrophagic population and promoting a pro-regenerative environment in situ.

  18. Increased Survival and Function of Mesenchymal Stem Cell Spheroids Entrapped in Instructive Alginate Hydrogels

    Science.gov (United States)

    Ho, Steve S.; Murphy, Kaitlin C.; Binder, Bernard Y.K.; Vissers, Caroline B.

    2016-01-01

    Mesenchymal stem cell (MSC)-based therapies are under broad investigation for applications in tissue repair but suffer from poor cell persistence and engraftment upon transplantation. MSC spheroids exhibit improved survival, anti-inflammatory, and angiogenic potential in vitro, while also promoting vascularization when implanted in vivo. However, these benefits are lost once cells engage the tissue extracellular matrix and migrate from the aggregate. The efficacy of cell therapy is consistently improved when using engineered materials, motivating the need to investigate the role of biomaterials to instruct spheroid function. In order to assess the contribution of adhesivity on spheroid activity in engineered materials and promote the bone-forming potential of MSCs, we compared the function of MSC spheroids when entrapped in Arg-Gly-Asp (RGD)-modified alginate hydrogels to nonfouling unmodified alginate. Regardless of material, MSC spheroids exhibited reduced caspase activity and greater vascular endothelial growth factor (VEGF) secretion compared with equal numbers of dissociated cells. MSC spheroids in RGD-modified hydrogels demonstrated significantly greater cell survival than spheroids in unmodified alginate. After 5 days in culture, spheroids in RGD-modified gels had similar levels of apoptosis, but more than a twofold increase in VEGF secretion compared with spheroids in unmodified gels. All gels contained mineralized tissue 8 weeks after subcutaneous implantation, and cells entrapped in RGD-modified alginate exhibited greater mineralization versus cells in unmodified gels. Immunohistochemistry confirmed more diffuse osteocalcin staining in gels containing spheroids compared with dissociated controls. This study demonstrates the promise of cell-instructive biomaterials to direct survival and function of MSC spheroids for bone tissue engineering applications. Significance Mesenchymal stem cell (MSC) spheroids exhibit improved therapeutic potential in vitro

  19. Programmed cell death of Ulmus pumila L. seeds during aging

    Institute of Scientific and Technical Information of China (English)

    Yulan ZHANG; Ming ZHANG; Fang LI; Xiaofeng WANG

    2008-01-01

    The programmed cell death (PCD) character-istics of Ulmus pumila L. seeds were investigated. The seeds were treated at a high temperature of 37℃ and 100% relative humidity for six days. DAPI (4'6-diami-dino-2-phenylindole) staining revealed that the aging treatment induced condensation and margination of chro-matin, as well as the formation of apoptotic bodies. DNA electrophoresis results of U. pumila seeds on an agarose gel showed a characteristic "ladder" pattern. Levels of electrolyte leakage of seed cells showed that membranes retained their integral form during almost the entire aging time. There was an immediate increase in the production rate of superoxide anion (O2-) and in the amount of hydrogen peroxide (H2O2), which remained at a μmol level. All of these common characteristics indicate that seed aging can be classified as PCD.

  20. Three-dimensional hydrogel cell culture systems for modeling neural tissue

    Science.gov (United States)

    Frampton, John

    Two-dimensional (2-D) neural cell culture systems have served as physiological models for understanding the cellular and molecular events that underlie responses to physical and chemical stimuli, control sensory and motor function, and lead to the development of neurological diseases. However, the development of three-dimensional (3-D) cell culture systems will be essential for the advancement of experimental research in a variety of fields including tissue engineering, chemical transport and delivery, cell growth, and cell-cell communication. In 3-D cell culture, cells are provided with an environment similar to tissue, in which they are surrounded on all sides by other cells, structural molecules and adhesion ligands. Cells grown in 3-D culture systems display morphologies and functions more similar to those observed in vivo, and can be cultured in such a way as to recapitulate the structural organization and biological properties of tissue. This thesis describes a hydrogel-based culture system, capable of supporting the growth and function of several neural cell types in 3-D. Alginate hydrogels were characterized in terms of their biomechanical and biochemical properties and were functionalized by covalent attachment of whole proteins and peptide epitopes. Methods were developed for rapid cross-linking of alginate hydrogels, thus permitting the incorporation of cells into 3-D scaffolds without adversely affecting cell viability or function. A variety of neural cell types were tested including astrocytes, microglia, and neurons. Cells remained viable and functional for longer than two weeks in culture and displayed process outgrowth in 3-D. Cell constructs were created that varied in cell density, type and organization, providing experimental flexibility for studying cell interactions and behavior. In one set of experiments, 3-D glial-endothelial cell co-cultures were used to model blood-brain barrier (BBB) structure and function. This co-culture system was

  1. For whom the cells pull: Hydrogel and micropost devices for measuring traction forces.

    Science.gov (United States)

    Ribeiro, Alexandre J S; Denisin, Aleksandra K; Wilson, Robin E; Pruitt, Beth L

    2016-02-01

    While performing several functions, adherent cells deform their surrounding substrate via stable adhesions that connect the intracellular cytoskeleton to the extracellular matrix. The traction forces that deform the substrate are studied in mechanotrasduction because they are affected by the mechanics of the extracellular milieu. We review the development and application of two methods widely used to measure traction forces generated by cells on 2D substrates: (i) traction force microscopy with polyacrylamide hydrogels and (ii) calculation of traction forces with arrays of deformable microposts. Measuring forces with these methods relies on measuring substrate displacements and converting them into forces. We describe approaches to determine force from displacements and elaborate on the necessary experimental conditions for this type of analysis. We emphasize device fabrication, mechanical calibration of substrates and covalent attachment of extracellular matrix proteins to substrates as key features in the design of experiments to measure cell traction forces with polyacrylamide hydrogels or microposts. We also report the challenges and achievements in integrating these methods with platforms for the mechanical stimulation of adherent cells. The approaches described here will enable new studies to understand cell mechanical outputs as a function of mechanical inputs and advance the understanding of mechanotransduction mechanisms.

  2. Natural polysaccharides promote chondrocyte adhesion and proliferation on magnetic nanoparticle/PVA composite hydrogels.

    Science.gov (United States)

    Hou, Ruixia; Nie, Lei; Du, Gaolai; Xiong, Xiaopeng; Fu, Jun

    2015-08-01

    This paper aims to investigate the synergistic effects of natural polysaccharides and inorganic nanoparticles on cell adhesion and growth on intrinsically cell non-adhesive polyvinyl alcohol (PVA) hydrogels. Previously, we have demonstrated that Fe2O3 and hydroxyapatite (nHAP) nanoparticles are effective in increasing osteoblast growth on PVA hydrogels. Herein, we blended hyaluronic acid (HA) and chondroitin sulfate (CS), two important components of cartilage extracellular matrix (ECM), with Fe2O3/nHAP/PVA hydrogels. The presence of these natural polyelectrolytes dramatically increased the pore size and the equilibrium swelling ratio (ESR) while maintaining excellent compressive strength of hydrogels. Chondrocytes were seeded and cultured on composite PVA hydrogels containing Fe2O3, nHAP and Fe2O3/nHAP hybrids and Fe2O3/nHAP with HA or CS. Confocal laser scanning microscopy (CLSM) and cell counting kit-8 (CCK-8) assay consistently confirmed that the addition of HA or CS promotes chondrocyte adhesion and growth on PVA and composite hydrogels. Particularly, the combination of HA and CS exhibited further promotion to cell adhesion and proliferation compared with any single polysaccharide. The results demonstrated that the magnetic composite nanoparticles and polysaccharides provided synergistic promotion to cell adhesion and growth. Such polysaccharide-augmented composite hydrogels may have potentials in biomedical applications.

  3. Cell-seeded polyurethane-fibrin structures – A possible system for intervertebral disc regeneration

    Directory of Open Access Journals (Sweden)

    C Mauth

    2009-10-01

    Full Text Available Nowadays, intervertebral disc (IVD degeneration is one of the principal causes of low back pain involving high expense within the health care system. The long-term goal is the development of a medical treatment modality focused on a more biological regeneration of the inner nucleus pulposus (NP. Hence, interest in the endoscopic implantation of an injectable material took center stage in the recent past. We report on the development of a novel polyurethane (PU scaffold as a mechanically stable carrier system for the reimplantation of expanded autologous IVD-derived cells (disc cells to stimulate regenerative processes and restore the chondrocyte-like tissue within the NP. Primary human disc cells were seeded into newly developed PU spheroids which were subsequently encapsulated in fibrin hydrogel. The study aims to analyze adhesion properties, proliferation capacity and phenotypic characterization of these cells. Polymerase chain reaction was carried out to detect the expression of genes specifically expressed by native IVD cells. Biochemical analyses showed an increased DNA content, and a progressive enhancement of total collagen and glycosaminoglycans (GAG was observed during cell culture. The results suggest the synthesis of an appropriate extracellular matrix as well as a stable mRNA expression of chondrogenic and/or NP specific markers. In conclusion, the data presented indicate an alternative medical approach to current treatment options of degenerated IVD tissue.

  4. Crystalline calcium carbonate and hydrogels as microenvironment for stem cells.

    Science.gov (United States)

    Astachov, Liliana; Nevo, Zvi; Aviv, Moran; Vago, Razi

    2011-01-01

    Stem cell development and fate decisions are dictated by the microenvironment in which the stem cell is embedded. Among the advanced goals of tissue engineering is the creation of a microenvironment that will support the maintenance and differentiation of the stem cell--based on embryonic and adult stem cells as potent, cellular sources--for a variety of clinical applications. This review discusses some of the approaches used to create regulatory and instructive microenvironments for the directed differentiation of mesenchymal stem cells (MSCs) using three-dimensional crystalline calcium carbonate biomaterials of marine origin combined with a hydrated gel based on hyaluronan.

  5. Fabrication of 3D cell-laden hydrogel microstructures through photo-mold patterning.

    Science.gov (United States)

    Occhetta, P; Sadr, N; Piraino, F; Redaelli, A; Moretti, M; Rasponi, M

    2013-09-01

    Native tissues are characterized by spatially organized three-dimensional (3D) microscaled units which functionally define cells-cells and cells-extracellular matrix interactions. The ability to engineer biomimetic constructs mimicking these 3D microarchitectures is subject to the control over cell distribution and organization. In the present study we introduce a novel protocol to generate 3D cell laden hydrogel micropatterns with defined size and shape. The method, named photo-mold patterning (PMP), combines hydrogel micromolding within polydimethylsiloxane (PDMS) stamps and photopolymerization through a recently introduced biocompatible ultraviolet (UVA) activated photoinitiator (VA-086). Exploiting PDMS micromolds as geometrical constraints for two methacrylated prepolymers (polyethylene glycol diacrylate and gelatin methacrylate), micrometrically resolved structures were obtained within a 3 min exposure to a low cost and commercially available UVA LED. The PMP was validated both on a continuous cell line (human umbilical vein endothelial cells expressing green fluorescent protein, HUVEC GFP) and on primary human bone marrow stromal cells (BMSCs). HUVEC GFP and BMSCs were exposed to 1.5% w/v VA-086 and UVA light (1 W, 385 nm, distance from sample = 5 cm). Photocrosslinking conditions applied during the PMP did not negatively affect cells viability or specific metabolic activity. Quantitative analyses demonstrated the potentiality of PMP to uniformly embed viable cells within 3D microgels, creating biocompatible and favorable environments for cell proliferation and spreading during a seven days' culture. PMP can thus be considered as a promising and cost effective tool for designing spatially accurate in vitro models and, in perspective, functional constructs.

  6. Cell-type specific four-component hydrogel.

    Directory of Open Access Journals (Sweden)

    Timo Aberle

    Full Text Available In the field of regenerative medicine we aim to develop implant matrices for specific tissue needs. By combining two per se, cell-permissive gel systems with enzymatic crosslinkers (gelatin/transglutaminase and fibrinogen/thrombin to generate a blend (technical term: quattroGel, an unexpected cell-selectivity evolved. QuattroGels were porous and formed cavities in the cell diameter range, possessed gelation kinetics in the minute range, viscoelastic properties and a mechanical strength appropriate for general cell adhesion, and restricted diffusion. Cell proliferation of endothelial cells, chondrocytes and fibroblasts was essentially unaffected. In contrast, on quattroGels neither endothelial cells formed vascular tubes nor did primary neurons extend neurites in significant amounts. Only chondrocytes differentiated properly as judged by collagen isoform expression. The biophysical quattroGel characteristics appeared to leave distinct cell processes such as mitosis unaffected and favored differentiation of sessile cells, but hampered differentiation of migratory cells. This cell-type selectivity is of interest e.g. during articular cartilage or invertebral disc repair, where pathological innervation and angiogenesis represent adverse events in tissue engineering.

  7. Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels

    Science.gov (United States)

    Lai, Janice H.; Kajiyama, Glen; Smith, Robert Lane; Maloney, William; Yang, Fan

    2013-12-01

    Cartilage loss is a leading cause of disability among adults and effective therapy remains elusive. Neonatal chondrocytes (NChons) are an attractive allogeneic cell source for cartilage repair, but their clinical translation has been hindered by scarce donor availability. Here we examine the potential for catalyzing cartilage tissue formation using a minimal number of NChons by co-culturing them with adipose-derived stem cells (ADSCs) in 3D hydrogels. Using three different co-culture models, we demonstrated that the effects of co-culture on cartilage tissue formation are dependent on the intercellular distance and cell distribution in 3D. Unexpectedly, increasing ADSC ratio in mixed co-culture led to increased synergy between NChons and ADSCs, and resulted in the formation of large neocartilage nodules. This work raises the potential of utilizing stem cells to catalyze tissue formation by neonatal chondrocytes via paracrine signaling, and highlights the importance of controlling cell distribution in 3D matrices to achieve optimal synergy.

  8. Improving Joint Function Using Photochemical Hydrogels for Articular Surface Repair

    Science.gov (United States)

    2013-10-01

    solution over 1 hour. The precipitate is then sieved to 300 – 500μm size and sterilized prior to cell seeding [13]. Swine mesenchymal stem cells (MSCs...this system takes advantage of a radical-mediated chemical reaction that selectively bonds thiols to molecules containing carbon - carbon double bonds...often necessitate localized presentation.12Since diffusion of lower molecular weight proteins in hydrogels can be quite rapid, some researchers have

  9. In vitro-ex vivo correlations between a cell-laden hydrogel and mucosal tissue for screening composite delivery systems.

    Science.gov (United States)

    Blakney, Anna K; Little, Adam B; Jiang, Yonghou; Woodrow, Kim A

    2016-11-01

    Composite delivery systems where drugs are electrospun in different layers and vary the drug stacking-order are posited to affect bioavailability. We evaluated how the formulation characteristics of both burst- and sustained-release electrospun fibers containing three physicochemically diverse drugs: dapivirine (DPV), maraviroc (MVC) and tenofovir (TFV) affect in vitro and ex vivo release. We developed a poly(hydroxyethyl methacrylate) (pHEMA) hydrogel release platform for the rapid, inexpensive in vitro evaluation of burst- and sustained-release topical or dermal drug delivery systems with varying microarchitecture. We investigated properties of the hydrogel that could recapitulate ex vivo release into nonhuman primate vaginal tissue. Using a dimethyl sulfoxide extraction protocol and high-performance liquid chromatography analysis, we achieved >93% recovery from the hydrogels and >88% recovery from tissue explants for all three drugs. We found that DPV loading, but not stacking order (layers of fiber containing a single drug) or microarchitecture (layers with isolated drug compared to all drugs in the same layer) impacted the burst release in vitro and ex vivo. Our burst-release formulations showed a correlation for DPV accumulation between the hydrogel and tissue (R(2)=( )0.80), but the correlation was not significant for MVC or TFV. For the sustained-release formulations, the PLGA/PCL content did not affect TFV release in vitro or ex vivo. Incorporation of cells into the hydrogel matrix improved the correlation between hydrogel and tissue explant release for TFV. We expect that this hydrogel-tissue mimic may be a promising preclinical model to evaluate topical or transdermal drug delivery systems with complex microarchitectures.

  10. Hydrogel limits stem cell dispersal in the deaf cochlea: implications for cochlear implants

    Science.gov (United States)

    Nayagam, Bryony A.; Backhouse, Steven S.; Cimenkaya, Cengiz; Shepherd, Robert K.

    2012-12-01

    Auditory neurons provide the critical link between a cochlear implant and the brain in deaf individuals, therefore their preservation and/or regeneration is important for optimal performance of this neural prosthesis. In cases where auditory neurons are significantly depleted, stem cells (SCs) may be used to replace the lost population of neurons, thereby re-establishing the critical link between the periphery (implant) and the brain. For such a therapy to be therapeutically viable, SCs must be differentiated into neurons, retained at their delivery site and damage caused to the residual auditory neurons minimized. Here we describe the transplantation of SC-derived neurons into the deaf cochlea, using a peptide hydrogel to limit their dispersal. The described approach illustrates that SCs can be delivered to and are retained within the basal turn of the cochlea, without a significant loss of endogenous auditory neurons. In addition, the tissue response elicited from this surgical approach was restricted to the surgical site and did not extend beyond the cochlear basal turn. Overall, this approach illustrates the feasibility of targeted cell delivery into the mammalian cochlea using hydrogel, which may be useful for future cell-based transplantation strategies, for combined treatment with a cochlear implant to restore function.

  11. Low-cost polyvinyl alcohol hydrogel membrane electrolyte for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, Y. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    2010-07-01

    This paper presented a newly developed polyvinyl alcohol (PVA) chemical hydrogel membrane electrolyte (PCHME) for use in proton exchange membrane (PEM) fuel cells. The method of PCHME preparation was described along with its properties. The membrane is much less expensive than the commonly used Nafion membrane. A direct borohydride fuel cell (DBFC) using a polyvinyl alcohol (PVA) chemical hydrogel membrane electrolyte and a nickel-based composite anode was assembled in order to test the performance of the new membrane. The cathode catalysts were carbon-supported platinum and sputtered gold. Oxygen, air, and acidified hydrogen peroxide were used as oxidants in the DBFC. Performance characteristics of the PCHME-based DBFC were obtained at different temperatures and compared with similar DBFCs using Nafion membrane electrolytes under the same operating conditions. The peak power density of the PCHME-based DBFC was somewhat higher than that of the Nafion membrane electrolyte based DBFC at 60 degrees C. The borohydride-oxygen fuel cell with PCHME yielded a maximum peak power density of 242 mW cm{sup -2} at 60 degrees C. It was concluded that the membrane presents an inexpensive alternative to widely used polymer membrane electrolytes.

  12. Critical early events in hematopoietic cell seeding and engraftment.

    Directory of Open Access Journals (Sweden)

    Jerry Stein

    2005-12-01

    Full Text Available Durable hematopoietic stem cell engraftment requires efficient homing to and seeding in the recipient bone marrow. Dissection of cellular and molecular mechanisms by retrospective analysis of functional engraftment studies imposes severe limitations on the understanding of the early stages of this process. We have established an experimental approach for in vivo functional imaging of labeled cells at the level of recipient bone marrow in real time. The adhesive interaction of hematopoietic cells with the bone marrow stroma evolves as the most important early event. Adhesion to the marrow, rather than the vascular endothelium, determines the efficiency of both homing and seeding, and is absolutely essential to maintain cell viability in the marrow. Seeding and engraftment may be improved either by bypassing homing or by localized transplant of a large number of cells in a relatively small marrow space. There is functional redundancy in the molecular pathways that mediate the cell-stroma interaction, such that blockage of a single pathway has only minor effect on homing and seeding. We hypothesize that successfully seeding-engrafting cells undergo extensive phenotypic changes as a consequence of interaction with the stroma, without engaging in rapid proliferation. Surprisingly, Fas-ligand appears to promote hematopoietic cell engraftment by immunomodulatory and trophic effects.

  13. Critical early events in hematopoietic cell seeding and engraftment.

    Science.gov (United States)

    Stein, Jerry; Yaniv, Isaac; Askenasy, Nadir

    2005-01-01

    Durable hematopoietic stem cell engraftment requires efficient homing to and seeding in the recipient bone marrow. Dissection of cellular and molecular mechanisms by retrospective analysis of functional engraftment studies imposes severe limitations on the understanding of the early stages of this process. We have established an experimental approach for in vivo functional imaging of labeled cells at the level of recipient bone marrow in real time. The adhesive interaction of hematopoietic cells with the bone marrow stroma evolves as the most important early event. Adhesion to the marrow, rather than the vascular endothelium, determines the efficiency of both homing and seeding, and is absolutely essential to maintain cell viability in the marrow. Seeding and engraftment may be improved either by bypassing homing or by localized transplant of a large number of cells in a relatively small marrow space. There is functional redundancy in the molecular pathways that mediate the cell-stroma interaction, such that blockage of a single pathway has only minor effect on homing and seeding. We hypothesize that successfully seeding-engrafting cells undergo extensive phenotypic changes as a consequence of interaction with the stroma, without engaging in rapid proliferation. Surprisingly, Fas-ligand appears to promote hematopoietic cell engraftment by immunomodulatory and trophic effects.

  14. Catechol-Functionalized Hyaluronic Acid Hydrogels Enhance Angiogenesis and Osteogenesis of Human Adipose-Derived Stem Cells in Critical Tissue Defects.

    Science.gov (United States)

    Park, Hyun-Ji; Jin, Yoonhee; Shin, Jisoo; Yang, Kisuk; Lee, Changhyun; Yang, Hee Seok; Cho, Seung-Woo

    2016-06-13

    Over the last few decades, stem cell therapies have been highlighted for their potential to heal damaged tissue and aid in tissue reconstruction. However, materials used to deliver and support implanted cells often display limited efficacy, which has resulted in delaying translation of stem cell therapies into the clinic. In our previous work, we developed a mussel-inspired, catechol-functionalized hyaluronic acid (HA-CA) hydrogel that enabled effective cell transplantation due to its improved biocompatibility and strong tissue adhesiveness. The present study was performed to further expand the utility of HA-CA hydrogels for use in stem cell therapies to treat more clinically relevant tissue defect models. Specifically, we utilized HA-CA hydrogels to potentiate stem cell-mediated angiogenesis and osteogenesis in two tissue defect models: critical limb ischemia and critical-sized calvarial bone defect. HA-CA hydrogels were found to be less cytotoxic to human adipose-derived stem cells (hADSCs) in vitro compared to conventional photopolymerized HA hydrogels. HA-CA hydrogels also retained the angiogenic functionality of hADSCs and supported osteogenic differentiation of hADSCs. Because of their superior tissue adhesiveness, HA-CA hydrogels were able to mediate efficient engraftment of hADSCs into the defect regions. When compared to photopolymerized HA hydrogels, HA-CA hydrogels significantly enhanced hADSC-mediated therapeutic angiogenesis (promoted capillary/arteriole formation, improved vascular perfusion, attenuated ischemic muscle degeneration/fibrosis, and reduced limb amputation) and bone reconstruction (mineralized bone formation, enhanced osteogenic marker expression, and collagen deposition). This study proves the feasibility of using bioinspired HA-CA hydrogels as functional biomaterials for improved tissue regeneration in critical tissue defects.

  15. Hidrogel como substituto da irrigação complementar em viveiro telado de mudas de cafeeiro Hydrogel as a substitute for irrigation in screened seed nursery coffee

    Directory of Open Access Journals (Sweden)

    Patricia Angélica Alves Marques

    2013-01-01

    Full Text Available O cafeeiro, em sua fase inicial de mudas, requer um adequado suprimento de água, pois o estresse hídrico pode causar reduções no crescimento e subsequentemente na produção em campo. A hipótese deste trabalho foi que o uso do hidrogel como substituto da irrigação de mudas de café cv. 'Iapar 59' proporciona mudas de qualidade igual ou superior àquelas irrigadas. O experimento foi conduzido em viveiro telado (50% sombrite em Presidente Prudente - SP - de fevereiro a outubro de 2008. Utilizou-se o delineamento inteiramente casualizado, com cinco tratamentos (sem polímero e irrigado diariamente; 0,0; 1,0; 2,0 e 3,0g por saco de polietileno sem irrigação e 20 repetições. Realizaram-se seis avaliações periódicas: número de folhas (NF, matéria seca da parte aérea (MSPA e raízes (MSR; comprimento da parte aérea (CPA e raízes (CR e MSPA/MSR. Para as condições do ensaio, o uso do hidrogel na dose de 2g por saco de polietileno proporcionou mudas de mesma qualidade que aquelas irrigadas. A relação MSPA/MSR foi superior para o tratamento irrigado.The coffee seedlings require an adequate water supply because the water stress can cause reductions in growth and subsequently in the production field. The hypothesis of this research was that the hydrogel used as a substitute for the irrigation of seedlings of 'Iapar 59' coffee provides quality equal or higher seedling irrigated. The experiment was conducted in a screened seed nursery (50 shading in Presidente Prudente city, São Paulo State, Brazil, since February to October 2008. The statistical design was completely randomized, with 5 treatments (without polymer and without irrigation; 0.0; 1.0; 2.0 and 3.0g of hydrogel per polythene bag without irrigation and 20 repetitions. We conducted six periodic evaluations: number of leaves (NF, dry matter of aerial part (MSPA and roots (MSR; length of aerial part (CPA and roots (CR and the MSPA/MSR. Under test conditions, the use of hydrogel

  16. Hydrogel-coated microfluidic channels for cardiomyocyte culture

    Science.gov (United States)

    Annabi, Nasim; Selimović, Šeila; Cox, Juan Pablo Acevedo; Ribas, João; Bakooshli, Mohsen Afshar; Heintze, Déborah; Weiss, Anthony S.; Cropek, Donald; Khademhosseini, Ali

    2013-01-01

    The research areas of tissue engineering and drug development have displayed increased interest in organ-on-a-chip studies, in which physiologically or pathologically relevant tissues can be engineered to test pharmaceutical candidates. Microfluidic technologies enable the control of the cellular microenvironment for these applications through the topography, size, and elastic properties of the microscale cell culture environment, while delivering nutrients and chemical cues to the cells through continuous media perfusion. Traditional materials used in the fabrication of microfluidic devices, such as poly(dimethylsiloxane) (PDMS), offer high fidelity and high feature resolution, but do not facilitate cell attachment. To overcome this challenge, we have developed a method for coating microfluidic channels inside a closed PDMS device with a cell-compatible hydrogel layer. We have synthesized photocrosslinkable gelatin and tropoelastin-based hydrogel solutions that were used to coat the surfaces under continuous flow inside 50 μm wide, straight microfluidic channels to generate a hydrogel layer on the channel walls. Our observation of primary cardiomyocytes seeded on these hydrogel layers showed preferred attachment as well as higher spontaneous beating rates on tropoelastin coatings compared to gelatin. In addition, cellular attachment, alignment and beating were stronger on 5 % (w/v) hydrogel-coated devices than on 10 % (w/v) gel-coated channels. Our results demonstrate that cardiomyocytes respond favorably to the elastic, soft tropoelastin culture substrates, indicating that tropoelastin-based hydrogels may be a suitable coating choice for some organ-on-a-chip applications. We anticipate that the proposed hydrogel coating method and tropoelastin as a cell culture substrate may be useful for the generation of elastic tissues, e.g. blood vessels, using microfluidic approaches. PMID:23728018

  17. Salivary gland acinar cells regenerate functional glandular structures in modified hydrogels

    Science.gov (United States)

    Pradhan, Swati

    Xerostomia, a condition resulting from irradiation of the head and neck, affects over 40,000 cancer patients each year in the United States. Direct radiation damage of the acinar cells that secrete fluid and protein results in salivary gland hypofunction. Present medical management for xerostomia for patients treated for upper respiratory cancer is largely ineffective. Patients who have survived their terminal diagnosis are often left with a diminished quality of life and are unable to enjoy the simple pleasures of eating and drinking. This project aims to ultimately reduce human suffering by developing a functional implantable artificial salivary gland. The goal was to create an extracellular matrix (ECM) modified hyaluronic acid (HA) based hydrogel culture system that allows for the growth and differentiation of salivary acinar cells into functional acini-like structures capable of secreting large amounts of protein and fluid unidirectionally and to ultimately engineer a functional artificial salivary gland that can be implanted into an animal model. A tissue collection protocol was established and salivary gland tissue was obtained from patients undergoing head and neck surgery. The tissue specimen was assessed by histology and immunohistochemistry to establish the phenotype of normal salivary gland cells including the native basement membranes. Hematoxylin and eosin staining confirmed normal glandular tissue structures including intercalated ducts, striated ducts and acini. alpha-Amylase and periodic acid schiff stain, used for structures with a high proportion of carbohydrate macromolecules, preferentially stained acinar cells in the tissue. Intercalated and striated duct structures were identified using cytokeratins 19 and 7 staining. Myoepithelial cells positive for cytokeratin 14 were found wrapped around the serous and mucous acini. Tight junction components including ZO-1 and E-cadherin were present between both ductal and acinar cells. Ductal and acinar

  18. 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair.

    Science.gov (United States)

    Hsieh, Fu-Yu; Lin, Hsin-Hua; Hsu, Shan-Hui

    2015-12-01

    The 3D bioprinting technology serves as a powerful tool for building tissue in the field of tissue engineering. Traditional 3D printing methods involve the use of heat, toxic organic solvents, or toxic photoinitiators for fabrication of synthetic scaffolds. In this study, two thermoresponsive water-based biodegradable polyurethane dispersions (PU1 and PU2) were synthesized which may form gel near 37 °C without any crosslinker. The stiffness of the hydrogel could be easily fine-tuned by the solid content of the dispersion. Neural stem cells (NSCs) were embedded into the polyurethane dispersions before gelation. The dispersions containing NSCs were subsequently printed and maintained at 37 °C. The NSCs in 25-30% PU2 hydrogels (∼680-2400 Pa) had excellent proliferation and differentiation but not in 25-30% PU1 hydrogels. Moreover, NSC-laden 25-30% PU2 hydrogels injected into the zebrafish embryo neural injury model could rescue the function of impaired nervous system. However, NSC-laden 25-30% PU1 hydrogels only showed a minor repair effect in the zebrafish model. In addition, the function of adult zebrafish with traumatic brain injury was rescued after implantation of the 3D-printed NSC-laden 25% PU2 constructs. Therefore, the newly developed 3D bioprinting technique involving NSCs embedded in the thermoresponsive biodegradable polyurethane ink offers new possibilities for future applications of 3D bioprinting in neural tissue engineering.

  19. Type II collagen-hyaluronan hydrogel – a step towards a scaffold for intervertebral disc tissue engineering

    Directory of Open Access Journals (Sweden)

    L Calderon

    2010-09-01

    Full Text Available Intervertebral disc regeneration strategies based on stem cell differentiation in combination with the design of functional scaffolds is an attractive approach towards repairing/regenerating the nucleus pulposus. The specific aim of this study was to optimise a composite hydrogel composed of type II collagen and hyaluronic acid (HA as a carrier for mesenchymal stem cells. Hydrogel stabilisation was achieved by means of 1-ethyl-3(3-dimethyl aminopropyl carbodiimide (EDC and N-hydroxysuccinimide (NHS cross-linking. Optimal hydrogel properties were determined by investigating different concentrations of EDC (8mM, 24mM and 48mM. Stable hydrogels were obtained independent of the concentration of carbodiimide used. The hydrogels cross-linked by the lowest concentration of EDC (8mM demonstrated high swelling properties. Additionally, improved proliferation of seeded rat mesenchymal stem cells (rMSCs and hydrogel stability levels in culture were observed with this 8mM cross-linked hydrogel. Results from this study indicate that EDC/NHS (8mM cross-linked type II collagen/HA hydrogel was capable of supporting viability of rMSCs, and furthermore their differentiation into a chondrogenic lineage. Further investigations should be conducted to determine its potential as scaffold for nucleus pulposus regeneration/repair.

  20. Photothermal Therapy of Cancer Cells mediated by Blue Hydrogel Nanoparticles

    Science.gov (United States)

    Curry, Taeyjuana; Epstein, Tamir; Kopelman, Raoul

    2012-10-01

    Coomassie Blue dye has been covalently linked into a polyacrylamide nanoparticle matrix, so as to form nontoxic, biologically compatible, biodegradable and cell-specific targetable nanoparticles for photothermal therapy (PTT) of cancer. The nanoparticles were found to be approximately 80-95 nm in diameter, with an absorbance value of 0.52. Using an inexpensive, low intensity LED array light source (590nm, 25mW/cm^2), with 20 minute excitation times, at 37 , PTT induced hyperthermia/thermolysis in HeLa cells, in vitro, resulting in virtually complete cell death when observed 3 hours after exposure. These multifunctional particles have been previously used in cancer delineation, for surgery, and in photoacoustic imaging studies; the addition of the PTT function now enables a multi-pronged medical approach to cancer.

  1. Multi-compartment encapsulation of communicating droplets and droplet networks in hydrogel as a model for artificial cells

    Science.gov (United States)

    Bayoumi, Mariam; Bayley, Hagan; Maglia, Giovanni; Sapra, K. Tanuj

    2017-01-01

    Constructing a cell mimic is a major challenge posed by synthetic biologists. Efforts to this end have been primarily focused on lipid- and polymer-encapsulated containers, liposomes and polymersomes, respectively. Here, we introduce a multi-compartment, nested system comprising aqueous droplets stabilized in an oil/lipid mixture, all encapsulated in hydrogel. Functional capabilities (electrical and chemical communication) were imparted by protein nanopores spanning the lipid bilayer formed at the interface of the encapsulated aqueous droplets and the encasing hydrogel. Crucially, the compartmentalization enabled the formation of two adjoining lipid bilayers in a controlled manner, a requirement for the realization of a functional protocell or prototissue. PMID:28367984

  2. On the role of hydrogel structure and degradation in controlling the transport of cell-secreted matrix molecules for engineered cartilage.

    Science.gov (United States)

    Dhote, Valentin; Skaalure, Stacey; Akalp, Umut; Roberts, Justine; Bryant, Stephanie J; Vernerey, Franck J

    2013-03-01

    Damage to cartilage caused by injury or disease can lead to pain and loss of mobility, diminishing one's quality of life. Because cartilage has a limited capacity for self-repair, tissue engineering strategies, such as cells encapsulated in synthetic hydrogels, are being investigated as a means to restore the damaged cartilage. However, strategies to date are suboptimal in part because designing degradable hydrogels is complicated by structural and temporal complexities of the gel and evolving tissue along multiple length scales. To address this problem, this study proposes a multi-scale mechanical model using a triphasic formulation (solid, fluid, unbound matrix molecules) based on a single chondrocyte releasing extracellular matrix molecules within a degrading hydrogel. This model describes the key players (cells, proteoglycans, collagen) of the biological system within the hydrogel encompassing different length scales. Two mechanisms are included: temporal changes of bulk properties due to hydrogel degradation, and matrix transport. Numerical results demonstrate that the temporal change of bulk properties is a decisive factor in the diffusion of unbound matrix molecules through the hydrogel. Transport of matrix molecules in the hydrogel contributes both to the development of the pericellular matrix and the extracellular matrix and is dependent on the relative size of matrix molecules and the hydrogel mesh. The numerical results also demonstrate that osmotic pressure, which leads to changes in mesh size, is a key parameter for achieving a larger diffusivity for matrix molecules in the hydrogel. The numerical model is confirmed with experimental results of matrix synthesis by chondrocytes in biodegradable poly(ethylene glycol)-based hydrogels. This model may ultimately be used to predict key hydrogel design parameters towards achieving optimal cartilage growth.

  3. Scalable Production of Glioblastoma Tumor-initiating Cells in 3 Dimension Thermoreversible Hydrogels

    Science.gov (United States)

    Li, Qiang; Lin, Haishuang; Wang, Ou; Qiu, Xuefeng; Kidambi, Srivatsan; Deleyrolle, Loic P.; Reynolds, Brent A.; Lei, Yuguo

    2016-08-01

    There is growing interest in developing drugs that specifically target glioblastoma tumor-initiating cells (TICs). Current cell culture methods, however, cannot cost-effectively produce the large numbers of glioblastoma TICs required for drug discovery and development. In this paper we report a new method that encapsulates patient-derived primary glioblastoma TICs and grows them in 3 dimension thermoreversible hydrogels. Our method allows long-term culture (~50 days, 10 passages tested, accumulative ~>1010-fold expansion) with both high growth rate (~20-fold expansion/7 days) and high volumetric yield (~2.0 × 107 cells/ml) without the loss of stemness. The scalable method can be used to produce sufficient, affordable glioblastoma TICs for drug discovery.

  4. Repair of osteochondral defects with biodegradable hydrogel composites encapsulating marrow mesenchymal stem cells in a rabbit model.

    NARCIS (Netherlands)

    Guo, X.; Park, H.; Young, S.; Kretlow, J.D.; Beucken, J.J.J.P. van den; Baggett, L.S.; Tabata, Y.; Kasper, F.K.; Mikos, A.G.; Jansen, J.A.

    2010-01-01

    This work investigated the delivery of marrow mesenchymal stem cells (MSCs), with or without the growth factor transforming growth factor-beta1 (TGF-beta1), from biodegradable hydrogel composites on the repair of osteochondral defects in a rabbit model. Three formulations of oligo(poly(ethylene glyc

  5. Synthesis and Characterization of Carboxymethylcellulose-Methacrylate Hydrogel Cell Scaffolds

    OpenAIRE

    2010-01-01

    Many carbohydrates pose advantages for tissue engineering applications due to their hydrophilicity, degradability, and availability of chemical groups for modification. For example, carboxymethylcellulose (CMC) is a water-soluble cellulose derivative that is degradable by cellulase. Though this enzyme is not synthesized by mammalian cells, cellulase and the fragments derived from CMC degradation are biocompatible. With this in mind, we created biocompatible, selectively degradable CMC-based h...

  6. Bioprinting 3D cell-laden hydrogel microarray for screening human periodontal ligament stem cell response to extracellular matrix.

    Science.gov (United States)

    Ma, Yufei; Ji, Yuan; Huang, Guoyou; Ling, Kai; Zhang, Xiaohui; Xu, Feng

    2015-12-22

    Periodontitis is an inflammatory disease negatively affecting up to 15% of adults worldwide. Periodontal ligament stem cells (PDLSCs) hold great promises for periodontal tissue regeneration, where it is necessary to find proper extracellular matrix (ECM) materials (e.g., composition, concentration). In this study, we proposed a bioprinting-based approach to generate nano-liter sized three-dimensional (3D) cell-laden hydrogel array with gradient of ECM components, through controlling the volume ratio of two hydrogels, such as gelatin methacrylate (GelMA) and poly(ethylene glycol) (PEG) dimethacrylate. The resulting cell-laden array with a gradient of GelMA/PEG composition was used to screen human PDLSC response to ECM. The behavior (e.g., cell viability, spreading) of human PDLSCs in GelMA/PEG array were found to be depended on the volume ratios of GelMA/PEG, with cell viability and spreading area decreased along with increasing the ratio of PEG. The developed approach would be useful for screening cell-biomaterial interaction in 3D and promoting regeneration of functional tissue.

  7. Screening of hyaluronic acid-poly(ethylene glycol) composite hydrogels to support intervertebral disc cell biosynthesis using artificial neural network analysis.

    Science.gov (United States)

    Jeong, Claire G; Francisco, Aubrey T; Niu, Zhenbin; Mancino, Robert L; Craig, Stephen L; Setton, Lori A

    2014-08-01

    Hyaluronic acid (HA)-poly(ethylene glycol) (PEG) composite hydrogels have been widely studied for both cell delivery and soft tissue regeneration applications. A very broad range of physical and biological properties have been engineered into HA-PEG hydrogels that may differentially affect cellular "outcomes" of survival, synthesis and metabolism. The objective of this study was to rapidly screen multiple HA-PEG composite hydrogel formulations for an effect on matrix synthesis and behaviors of nucleus pulposus (NP) and annulus fibrosus (AF) cells of the intervertebral disc (IVD). A secondary objective was to apply artificial neural network analysis to identify relationships between HA-PEG composite hydrogel formulation parameters and biological outcome measures for each cell type of the IVD. Eight different hydrogels were developed from preparations of thiolated HA (HA-SH) and PEG vinylsulfone (PEG-VS) macromers, and used as substrates for NP and AF cell culture in vitro. Hydrogel mechanical properties ranged from 70 to 489kPa depending on HA molecular weight, and measures of matrix synthesis, metabolite consumption and production and cell morphology were obtained to study relationships to hydrogel parameters. Results showed that NP and AF cell numbers were highest upon the HA-PEG hydrogels formed from the lower-molecular-weight HA, with evidence of higher sulfated glycosaminoglycan production also upon lower-HA-molecular-weight composite gels. All cells formed more multi-cell clusters upon any HA-PEG composite hydrogel as compared to gelatin substrates. Formulations were clustered into neurons based largely on their HA molecular weight, with few effects of PEG molecular weight observed on any measured parameters.

  8. Fabrication of keratin-silica hydrogel for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kakkar, Prachi; Madhan, Balaraman, E-mail: bmadhan76@yahoo.co.in

    2016-09-01

    In the recent past, keratin has been fabricated into different forms of biomaterials like scaffold, gel, sponge, film etc. In lieu of the myriad advantages of the hydrogels for biomedical applications, a keratin-silica hydrogel was fabricated using tetraethyl orthosilicate (TEOS). Textural analysis shed light on the physical properties of the fabricated hydrogel, inturn enabling the optimization of the hydrogel. The optimized keratin-silica hydrogel was found to exhibit instant springiness, optimum hardness, with ease of spreadability. Moreover, the hydrogel showed excellent swelling with highly porous microarchitecture. MTT assay and DAPI staining revealed that keratin-silica hydrogel was biocompatible with fibroblast cells. Collectively, these properties make the fabricated keratin-silica hydrogel, a suitable dressing material for biomedical applications. - Highlights: • Keratin-silica hydrogel has been fabricated using sol–gel technique. • The hydrogel shows appropriate textural properties. • The hydrogel promotes fibroblast cells proliferation. • The hydrogel has potential soft tissue engineering applications like wound healing.

  9. Differentiation Induction of Mouse Neural Stem Cells in Hydrogel Tubular Microenvironments with Controlled Tube Dimensions.

    Science.gov (United States)

    Onoe, Hiroaki; Kato-Negishi, Midori; Itou, Akane; Takeuchi, Shoji

    2016-05-01

    In this paper, a tubular 3D microenvironment created in a calcium alginate hydrogel microtube with respect to the effect of scaffold dimensions on the differentiation of mouse neuronal stem cells (mNSCs) is evaluated. Five types of hydrogel microtubes with different core diameters (≈65-200 μm) and shell thicknesses (≈30-110 μm) are fabricated by using a double coaxial microfluidic device, and differentiation of encapsulated mNSCs is induced by changing the growth medium to the differentiation medium. The influence of the microtube geometries is examined by using quantitative real-time polymerase chain reaction and fluorescent immunocytochemistry. The analyses reveal that differences in microtube thickness within 30-110 μm affected the relative Tuj1 expression but do not affect the morphology of encapsulated mNSCs. The diameters of cores influence both the relative Tuj1 expression and morphology of the differentiated neurons. It is found that the tubular microenvironment with a core diameter of less than ≈100 μm contributes to forming highly viable and aligned neural tissue. The tubular microenvironment can provide an effective method for constructing microfiber-shaped neural tissues with geometrically controlled differentiation induction.

  10. Corneal cell adhesion to contact lens hydrogel materials enhanced via tear film protein deposition.

    Directory of Open Access Journals (Sweden)

    Claire M Elkins

    Full Text Available Tear film protein deposition on contact lens hydrogels has been well characterized from the perspective of bacterial adhesion and viability. However, the effect of protein deposition on lens interactions with the corneal epithelium remains largely unexplored. The current study employs a live cell rheometer to quantify human corneal epithelial cell adhesion to soft contact lenses fouled with the tear film protein lysozyme. PureVision balafilcon A and AirOptix lotrafilcon B lenses were soaked for five days in either phosphate buffered saline (PBS, borate buffered saline (BBS, or Sensitive Eyes Plus Saline Solution (Sensitive Eyes, either pure or in the presence of lysozyme. Treated contact lenses were then contacted to a live monolayer of corneal epithelial cells for two hours, after which the contact lens was sheared laterally. The apparent cell monolayer relaxation modulus was then used to quantify the extent of cell adhesion to the contact lens surface. For both lens types, lysozyme increased corneal cell adhesion to the contact lens, with the apparent cell monolayer relaxation modulus increasing up to an order of magnitude in the presence of protein. The magnitude of this increase depended on the identity of the soaking solution: lenses soaked in borate-buffered solutions (BBS, Sensitive Eyes exhibited a much greater increase in cell attachment upon protein addition than those soaked in PBS. Significantly, all measurements were conducted while subjecting the cells to moderate surface pressures and shear rates, similar to those experienced by corneal cells in vivo.

  11. Chondrogenic differentiation of adipose-derived stromal cells in combinatorial hydrogels containing cartilage matrix proteins with decoupled mechanical stiffness.

    Science.gov (United States)

    Wang, Tianyi; Lai, Janice H; Han, Li-Hsin; Tong, Xinming; Yang, Fan

    2014-08-01

    Adipose-derived stromal cells (ADSCs) are attractive autologous cell sources for cartilage repair given their relative abundance and ease of isolation. Previous studies have demonstrated the potential of extracellular matrix (ECM) molecules as three-dimensional (3D) scaffolds for promoting chondrogenesis. However, few studies have compared the effects of varying types or doses of ECM molecules on chondrogenesis of ADSCs in 3D. Furthermore, increasing ECM molecule concentrations often result in simultaneous changes in the matrix stiffness, which makes it difficult to elucidate the relative contribution of biochemical cues or matrix stiffness on stem cell fate. Here we report the development of an ECM-containing hydrogel platform with largely decoupled biochemical and mechanical cues by modulating the degree of methacrylation of ECM molecules. Specifically, we incorporated three types of ECM molecules that are commonly found in the cartilage matrix, including chondroitin sulfate (CS), hyaluronic acid (HA), and heparan sulfate (HS). To elucidate the effects of interactive biochemical and mechanical signaling on chondrogenesis, ADSCs were encapsulated in 39 combinatorial hydrogel compositions with independently tunable ECM types (CS, HA, and HS), concentrations (0.5%, 1.25%, 2.5%, and 5% [w/v]), and matrix stiffness (3, 30, and 90 kPa). Our results show that the effect of ECM composition on chondrogenesis is dependent on the matrix stiffness of hydrogels, suggesting that matrix stiffness and biochemical cues interact in a nonlinear manner to regulate chondrogenesis of ADSCs in 3D. In soft hydrogels (~3 kPa), increasing HA concentrations resulted in substantial upregulation of aggrecan and collagen type II expression in a dose-dependent manner. This trend was reversed in HA-containing hydrogels with higher stiffness (~90 kPa). The platform reported herein could provide a useful tool for elucidating how ECM biochemical cues and matrix stiffness interact together to

  12. Hydrosoluble, UV-crosslinkable and injectable chitosan for patterned cell-laden microgel and rapid transdermal curing hydrogel in vivo.

    Science.gov (United States)

    Li, Baoqiang; Wang, Lei; Xu, Feng; Gang, Xiaomin; Demirci, Utkan; Wei, Daqing; Li, Ying; Feng, Yujie; Jia, Dechang; Zhou, Yu

    2015-08-01

    Natural and biodegradable chitosan with unique amino groups has found widespread applications in tissue engineering and drug delivery. However, its applications have been limited by the poor solubility of native chitosan in neutral pH solution, which subsequently fails to achieve cell-laden hydrogel at physiological pH. To address this, we incorporated UV crosslinking ability in chitosan, allowing fabrication of patterned cell-laden and rapid transdermal curing hydrogel in vivo. The hydrosoluble, UV crosslinkable and injectable N-methacryloyl chitosan (N-MAC) was synthesized via single-step chemoselective N-acylation reaction, which simultaneously endowed chitosan with well solubility in neutral pH solution, UV crosslinkable ability and injectability. The solubility of N-MAC in neutral pH solution increased 2.21-fold with substitution degree increasing from 10.9% to 28.4%. The N-MAC allowed fabrication of cell-laden microgels with on-demand patterns via photolithography, and the cell viability in N-MAC hydrogel maintained 96.3 ± 1.3% N-MAC allowed rapid transdermal curing hydrogel in vivo within 60s through minimally invasive clinical surgery. Histological analysis revealed that low-dose UV irradiation hardly induced skin injury and acute inflammatory response disappeared after 7 days. N-MAC would allow rapid, robust and cost-effective fabrication of patterned cell-laden polysaccharide microgels with unique amino groups serving as building blocks for tissue engineering and rapid transdermal curing hydrogel in vivo for localized and sustained protein delivery.

  13. A novel honeycomb cell assay kit designed for evaluating horizontal cell migration in response to functionalized self-assembling peptide hydrogels

    Science.gov (United States)

    Guan, Fengyi; Lu, Jiaju; Wang, Xiumei

    2017-01-01

    A clear understanding on cell migration behaviors contributes to designing novel biomaterials in tissue engineering and elucidating related tissue regeneration processes. Many traditional evaluation methods on cell migration including scratch assay and transwell migration assay possess all kinds of limitations. In this study, a novel honeycomb cell assay kit was designed and made of photosensitive resin by 3D printing. This kit has seven hexagonal culture chambers so that it can evaluate the horizontal cell migration behavior in response to six surrounding environments simultaneously, eliminating the effect of gravity on cells. Here this cell assay kit was successfully applied to evaluate endothelial cell migration cultured on self-assembling peptide (SAP) RADA (AcN-RADARADARADARADA-CONH2) nanofiber hydrogel toward different functionalized SAP hydrogels. Our results indicated that the functionalized RADA hydrogels with different concentration of bioactive motifs of KLT or PRG could induce cell migration in a dose-dependent manner. The total number and migration distance of endothelial cells on functionalized SAP hydrogels significantly increased with increasing concentration of bioactive motif PRG or KLT. Therefore, the honeycomb cell assay kit provides a simple, efficient and convenient tool to investigate cell migration behavior in response to multi-environments simultaneously.

  14. The Effect of Non Freeze-dried Hydrogel-CHA on Fibroblast Proliferation

    Directory of Open Access Journals (Sweden)

    Ivan Arie Wahyudi

    2015-05-01

    Full Text Available Bone damage can be caused by variety of surgical procedures. Bone reconstruction has been developed lately is tissue engineering techniques. One of materials that proved to be effective as a scaffold in tissue engineering is a hydrogel. The addition of carbonate apatite (CHA will produce a hydrogel-CHA material which is believed to improve the mechanical properties and biological similarities with the original bone. Scaffold is considered an important aspect in the field of tissue engineering, because it’s ability to mimic extracellular matrix of the damaged tissue. Fibroblasts are mesenchymal cells that can be readily cultured in the laboratory and play a significant role in epithelial-mesenchymal interactions, secreting various growth factors and cytokines. On certain condition, Fibroblast will differentiate into bone-forming cells, osteoblasts. Objective: to determine the effect of non freezedried hydrogels - CHA on the number of fibroblasts. Methods: In the treatment groups (hydrogel and hydrogel-CHA group, the static seeding, where cells and scaffolds were simply brought into contact, was performed. The other group contained only cells and growth media. Cells were seeded at a density of 2x104 cells/ml in a 96-well plate. Number of fibroblasts cell in each group was observed by light microscopy and quantitified by MTT assay on days 1, 2 and 3 post-application. Results: Proliferation of fibroblasts increased significantly on day 3rd after application of non freeze-dried hydrogel - CHA (p< 0.05. Conclusion: Application of non freeze-dried hydrogel - CHA may induce fibroblasts proliferation.

  15. Enzymatically degradable poly(ethylene glycol) hydrogels for the 3D culture and release of human embryonic stem cell derived pancreatic precursor cell aggregates.

    Science.gov (United States)

    Amer, Luke D; Holtzinger, Audrey; Keller, Gordon; Mahoney, Melissa J; Bryant, Stephanie J

    2015-08-01

    This study aimed to develop a three dimensional culture platform for aggregates of human embryonic stem cell (hESC)-derived pancreatic progenitors that enables long-term culture, maintains aggregate size and morphology, does not adversely affect differentiation and provides a means for aggregate recovery. A platform was developed with poly(ethylene glycol) hydrogels containing collagen type I, for cell-matrix interactions, and peptide crosslinkers, for facile recovery of aggregates. The platform was first demonstrated with RIN-m5F cells, showing encapsulation and subsequent release of single cells and aggregates without adversely affecting viability. Aggregates of hESC-derived pancreatic progenitors with an effective diameter of 82 (15)μm were either encapsulated in hydrogels or cultured in suspension for 28 days. At day 14, aggregate viability was maintained in the hydrogels, but significantly reduced (88%) in suspension culture. However by day 28, viability was reduced under both culture conditions. Aggregate size was maintained in the hydrogels, but in suspension was significantly higher (∼ 2-fold) by day 28. The ability to release aggregates followed by a second enzyme treatment to achieve single cells enabled assessment by flow cytometry. Prior to encapsulation, there were 39% Pdx1(+)/Nkx6.1(+) cells, key endocrine markers required for β-cell maturation. The fraction of doubly positive cells was not affected in hydrogels but was slightly and significantly lower in suspension culture by 28 days. In conclusion, we demonstrate that a MMP-sensitive PEG hydrogel containing collagen type I is a promising platform for hESC-derived pancreatic progenitors that maintains viable aggregates, aggregate size, and progenitor state and offers facile recovery of aggregates.

  16. Multi-lineage differentiation of hMSCs encapsulated in thermo-reversible hydrogel using a co-culture system with differentiated cells.

    Science.gov (United States)

    Park, Ji Sun; Yang, Han Na; Woo, Dae Gyun; Kim, Hyemin; Na, Kun; Park, Keun-Hong

    2010-10-01

    The micro-environment is an important factor in the differentiation of cultured stem cells for the purpose of site specific transplantation. In an attempt to optimize differentiation conditions, co-culture systems composed of both stem cells and primary cells or cell lines were used in hydrogel with in vitro and in vivo systems. Stem cells encapsulated in hydrogel, under certain conditions, can undergo increased differentiation both in vitro and in vivo; therefore, reconstruction of transplanted stem cells in a hydrogel co-culture system is important for tissue regeneration. In order to construct such a co-culture system, we attempted to create a hydrogel scaffold which could induce neo-tissue growth from the recipient bed into the material. This material would enable encapsulation of stem cells in vitro after which they could be transferred to an in vivo system utilizing nude mice. In this case, the hydrogel was implanted in the subfascial space of nude mice and excised 4 weeks later. Cross-sections of the excised samples were stained with von Kossa or safranin-O and tubular formations into the gel were observed with and tested by doppler imaging. The data showed that the hydrogel markedly induced growth of osteogenic, chondrogenic, and vascular-rich tissue into the hydrogel by 4 weeks, which surpassed that after transplantation in a co-culture system. Further, a co-culture system with differentiated cells and stem cells potentially enhanced chondrogenesis, osteogenesis, and vascularization. These findings suggest that a co-culture system with hydrogel as scaffold material for neo-tissue formation is a useful tools for multi-lineage stem cell differentiation.

  17. Injectable skeletal muscle matrix hydrogel promotes neovascularization and muscle cell infiltration in a hindlimb ischemia model

    Directory of Open Access Journals (Sweden)

    JA DeQuach

    2012-06-01

    Full Text Available Peripheral artery disease (PAD currently affects approximately 27 million patients in Europe and North America, and if untreated, may progress to the stage of critical limb ischemia (CLI, which has implications for amputation and potential mortality. Unfortunately, few therapies exist for treating the ischemic skeletal muscle in these conditions. Biomaterials have been used to increase cell transplant survival as well as deliver growth factors to treat limb ischemia; however, existing materials do not mimic the native skeletal muscle microenvironment they are intended to treat. Furthermore, no therapies involving biomaterials alone have been examined. The goal of this study was to develop a clinically relevant injectable hydrogel derived from decellularized skeletal muscle extracellular matrix and examine its potential for treating PAD as a stand-alone therapy by studying the material in a rat hindlimb ischemia model. We tested the mitogenic activity of the scaffold’s degradation products using an in vitro assay and measured increased proliferation rates of smooth muscle cells and skeletal myoblasts compared to collagen. In a rat hindlimb ischemia model, the femoral artery was ligated and resected, followed by injection of 150 µL of skeletal muscle matrix or collagen 1 week post-injury. We demonstrate that the skeletal muscle matrix increased arteriole and capillary density, as well as recruited more desmin-positive and MyoD-positive cells compared to collagen. Our results indicate that this tissue-specific injectable hydrogel may be a potential therapy for treating ischemia related to PAD, as well as have potential beneficial effects on restoring muscle mass that is typically lost in CLI.

  18. Bioactive polyacrylamide hydrogels with gradients in mechanical stiffness.

    Science.gov (United States)

    Diederich, Vincent E G; Studer, Peter; Kern, Anita; Lattuada, Marco; Storti, Giuseppe; Sharma, Ram I; Snedeker, Jess G; Morbidelli, Massimo

    2013-05-01

    We propose a novel, single step method for the production of polyacrylamide hydrogels with a gradient in mechanical properties. In contrast to already existing techniques such as UV photo-polymerization with photomasks (limited penetration depth) or microfluidic gradient mixers (complex microfluidic chip), this technique is not suffering such limitations. Young's modulus of the hydrogels was varied by changing the total monomer concentration of the hydrogel precursor solution. Using programmable syringe pumps, the total monomer concentration in the solution fed to the hydrogel mold was varied from 16 wt% down to 5 wt% over the feeding time to obtain a gradient in compliance ranging from 150 kPa down to 20 kPa over a length of 10 mm down to 2.5 mm. Polymerization was achieved with the dual initiation system composed of ammonium persulfate and N,N,N',N'-tetramethylethylenediamine, which were both fed through separate capillaries to avoid premature polymerization. Functionalized with the model ligand collagen I, the substrates were bioactive and supported the attachment of human foreskin fibroblasts (around 30% of the cells seeded attached after 1 h). A kinetic morphology study on homogeneous hydrogels of different stiffness's indicated that fibroblasts tend to spread to their final size within 2 h on stiff substrates, while the spreading time was much longer (ca. 4-5 h) on soft substrates. These trends were confirmed on hydrogels with compliance gradients, showing well spread fibroblasts on the stiff end of the hydrogel after 2 h, while the cells on the soft end still had small area and rounded morphology.

  19. Data concerning the proteolytic resistance and oxidative stress in LAN5 cells after treatment with BSA hydrogels

    Directory of Open Access Journals (Sweden)

    Pasquale Picone

    2016-12-01

    Full Text Available Proteolytic resistance is a relevant aspect to be tested in the formulation of new nanoscale biomaterials. The action of proteolytic enzymes is a very fast process occurring in the range of few minutes. Here, we report data concerning the proteolytic resistance of a heat-set BSA hydrogel obtained after 20-hour incubation at 60 °C prepared at the pH value of 3.9, pH at which the hydrogel presents the highest elastic character with respect to gel formed at pH 5.9 and 7.4 “Heat-and pH-induced BSA conformational changes, hydrogel formation and application as 3D cell scaffold” (G. Navarra, C. Peres, M. Contardi, P. Picone, P.L. San Biagio, M. Di Carlo, D. Giacomazza, V. Militello, 2016 [1]. We show that the BSA hydrogel produced by heating treatment is protected by the action of proteinase K enzyme. Moreover, we show that LAN5 cells cultured in presence of BSA hydrogels formed at pH 3.9, 5.9 and 7.4 did not exhibit any oxidative stress, one of the first and crucial events causing cell death “Are oxidative stress and mitochondrial dysfunction the key players in the neurodegenerative diseases?” (M. Di Carlo, D. Giacomazza, P. Picone, D. Nuzzo, P.L. San Biagio, 2012 [2] “Effect of zinc oxide nanomaterials induced oxidative stress on the p53 pathway” (M.I. Setyawati, C.Y. Tay, D.T. Leaong, 2013 [3].

  20. Therapeutic angiogenesis by a myoblast layer harvested by tissue transfer printing from cell-adhesive, thermosensitive hydrogels.

    Science.gov (United States)

    Kim, Dong Wan; Jun, Indong; Lee, Tae-Jin; Lee, Ji Hye; Lee, Young Jun; Jang, Hyeon-Ki; Kang, Seokyung; Park, Ki Dong; Cho, Seung-Woo; Kim, Byung-Soo; Shin, Heungsoo

    2013-11-01

    Peripheral arterial disease (PAD) is characterized by the altered structure and function of arteries caused by accumulated plaque. There have been many studies on treating this disease by the direct injection of various types of therapeutic cells, however, the low cell engraftment efficiency and diffusion of the transplanted cells have been major problems. In this study, we developed an approach (transfer printing) to deliver monolayer of cells to the hindlimb ischemic tissue using thermosensitive hydrogels, and investigated its efficacy in long term retention upon transplantation and therapeutic angiogenesis. We first investigated the in vitro maintenance of robust cell-cell contacts and stable expression of the ECM proteins in myoblast layer following transfer printing process. In order to confirm the therapeutic effect of the myoblasts in vivo, we cultured a monolayer of C2C12 myoblasts on thermosensitive hydrogels, which was then transferred to the hindlimb ischemia tissue of athymic mice directly from the hydrogel by conformal contact. The transferred myoblast layer was retained for a longer period of time than an intramuscularly injected cell suspension. In addition, the morphology of the mice and laser Doppler perfusion (28 days after treatment) supported that the myoblast layer enhanced the therapeutic effects on the ischemic tissue. In summary, the transplantation of the C2C12 myoblast layer using a tissue transfer printing method could represent a new approach for the treatment of PAD by therapeutic angiogenesis.

  1. Fabrication and optimization of alginate hydrogel constructs for use in 3D neural cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Frampton, J P; Hynd, M R; Shain, W [Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12210 (United States); Shuler, M L, E-mail: jf7674@albany.edu [Department of Biomedical Engineering, 270 Olin Hall, Cornell University, Ithaca, NY 14850 (United States)

    2011-02-15

    Two-dimensional (2D) culture systems provide useful information about many biological processes. However, some applications including tissue engineering, drug transport studies, and analysis of cell growth and dynamics are better studied using three-dimensional (3D) culture systems. 3D culture systems can potentially offer higher degrees of organization and control of cell growth environments, more physiologically relevant diffusion characteristics, and permit the formation of more extensive 3D networks of cell-cell interactions. A 3D culture system has been developed using alginate as a cell scaffold, capable of maintaining the viability and function of a variety of neural cell types. Alginate was functionalized by the covalent attachment of a variety of whole proteins and peptide epitopes selected to provide sites for cell attachment. Alginate constructs were used to entrap a variety of neural cell types including astroglioma cells, astrocytes, microglia and neurons. Neural cells displayed process outgrowth over time in culture. Cell-seeded scaffolds were characterized in terms of their biochemical and biomechanical properties, effects on seeded neural cells, and suitability for use as 3D neural cell culture models.

  2. Combination of hydrogel nanoparticles and proteomics to reveal secreted proteins associated with decidualization of human uterine stromal cells

    Directory of Open Access Journals (Sweden)

    Stephens Andrew N

    2011-09-01

    Full Text Available Abstract Background Identification of secreted proteins of low abundance is often limited by abundant and high molecular weight (MW proteins. We have optimised a procedure to overcome this limitation. Results Low MW proteins in the conditioned media of cultured cells were first captured using dual-size exclusion/affinity hydrogel nanoparticles and their identities were then revealed by proteomics. Conclusions This technique enables the analysis of secreted proteins of cultured cells low MW and low abundance.

  3. Preparation, fabrication and biocompatibility of novel injectable temperature-sensitive chitosan/glycerophosphate/collagen hydrogels.

    Science.gov (United States)

    Song, Kedong; Qiao, Mo; Liu, Tianqing; Jiang, Bo; Macedo, Hugo M; Ma, Xuehu; Cui, Zhanfeng

    2010-10-01

    This paper introduces a novel type of injectable temperature-sensitive chitosan/glycerophosphate/collagen (C/GP/Co) hydrogel that possesses great biocompatibility for the culture of adipose tissue-derived stem cells. The C/GP/Co hydrogel is prepared by mixing 2.2% (v/v) chitosan with 50% (w/w) β-glycerophosphate at different proportions and afterwards adding 2 mg/ml of collagen. The gelation time of the prepared solution at 37°C was found to be of around 12 min. The inner structure of the hydrogel presented a porous spongy structure, as observed by scanning electron microscopy. Moreover, the osmolality of the medium in contact with the hydrogel was in the range of 310-330 mmol kg(-1). These analyses have shown that the C/GP/Co hydrogels are structurally feasible for cell culture, while their biocompatibility was further examined. Human adipose tissue-derived stem cells (ADSCs) were seeded into the developed C/GP and C/GP/Co hydrogels (The ratios of C/GP and C/GP/Co were 5:1 and 5:1:6, respectively), and the cellular growth was periodically observed under an inverted microscope. The proliferation of ADSCs was detected using cck-8 kits, while cell apoptosis was determined by a Live/Dead Viability/Cytotoxicity kit. After 7 days of culture, cells within the C/GP/Co hydrogels displayed a typical adherent cell morphology and good proliferation with very high cellular viability. It was thus demonstrated that the novel C/GP/Co hydrogel herein described possess excellent cellular compatibility, representing a new alternative as a scaffold for tissue engineering, with the added advantage of being a gel at the body's temperature that turns liquid at room temperature.

  4. Tumor Seeding With Renal Cell Carcinoma After Renal Biopsy

    OpenAIRE

    M.F.B. Andersen; Norus, T.P.

    2016-01-01

    Tumor seeding following biopsy of renal cell carcinoma is extremely rare with an incidence of 1:10.000. In this paper two cases with multiple recurrent RRC metastasis in the biopsy tract following biopsy of renal tumor is presented and the current literature is shortly discussed.

  5. Mesenchymal stem cell seeding promotes reendothelialization of the endovascular stent.

    Science.gov (United States)

    Wu, Xue; Wang, Guixue; Tang, Chaojun; Zhang, Dechuan; Li, Zhenggong; Du, Dingyuan; Zhang, Zhengcai

    2011-09-01

    This study is designed to make a novel cell seeding stent and to evaluate reendothelialization and anti-restenosis after the stent implantation. In comparison with cell seeding stents utilized in previous studies, Mesenchymal stem cells (MSCs) have advantages on promoting of issue repair. Thus it was employed to improve the reendothelialization effects of endovascular stent in present work. MSCs were isolated by density gradient centrifugation and determined as CD29(+) CD44(+) CD34(-) cells by immunofluorescence and immunocytochemistry; gluten and polylysine coated stents were prepared by ultrasonic atomization spray, and MSCs seeded stents were made through rotation culture according to the optimized conditions that were determined in previous studies. The results from animal experiments, in which male New Zealand white rabbits were used, show that the reendothelialization of MSCs coated stents can be completed within one month; in comparison with 316L stainless steel stents (316L SS stents) and gluten and polylysine coated stents, the intimal hyperplasia and in-stent restenosis are significantly inhibited by MSCs coated stents. Endovascular stent seeded with MSCs promotes reendothelialization and inhibits the intimal hyperplasia and in-stent restenosis compared with the 316L SS stents and the gluten and polylysine coated stents.

  6. Incorporation of DMSO and dextran-40 into a gelatin/alginate hydrogel for controlled assembled cell cryopreservation.

    Science.gov (United States)

    Wang, Xiaohong; Xu, Huirong

    2010-12-01

    A new cell cryopreservation strategy for cell-assembling constructs was proposed. With this strategy, different concentrations of dimethysulfoxide (DMSO) and dextran-40 were directly incorporated into the cell/gelatin/alginate systems, prototyped according to a predesigned structure, cryopreserved at -80 °C for 10 days and followed a thawing process at 17 °C. The rheological properties, bonding water contents and melting points of the gelatin/alginate hydrogel systems were changed with the addition of different amounts of DMSO. The microscopy analysis, (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrasodium bromide (MTT) and hematoxylin and eosin (HE) staining indicated that the cell numbers were progressively in a selected DMSO concentration range. With DMSO 5% (v/v) alone, the metabolic rate in the construct attained (81.3±5.7)%. A synergistic effect was achieved with the combination of the DMSO/gelatin/alginate and dextran-40/gelatin/alginate hydrogel systems. These results indicated that the inclusion of DMSO and dextran-40 in the hydrogel could effectively enhance the cell preservation effects. This cryopreservation strategy holds the ability to be widely used in organ manufacturing techniques.

  7. Injectable hydrogel as stem cell scaffolds from the thermosensitive terpolymer of NIPAAm/AAc/HEMAPCL

    Science.gov (United States)

    Lian, Sheng; Xiao, Yan; Bian, Qingqing; Xia, Yu; Guo, Changfa; Wang, Shenguo; Lang, Meidong

    2012-01-01

    A series of biodegradable thermosensitive copolymers was synthesized by free radical polymerization with N-isopropylacrylamide (NIPAAm), acrylic acid (AAc) and macromer 2-hydroxylethyl methacrylate-poly(ɛ-caprolactone) (HEMAPCL). The structure and composition of the obtained terpolymers were confirmed by proton nuclear magnetic resonance spectroscopy, while their molecular weight was measured using gel permeation chromatography. The copolymers were dissolved in phosphate-buffered saline (PBS) solution (pH = 7.4) with different concentrations to prepare hydrogels. The lower critical solution temperature (LCST), cloud point, and rheological property of the hydrogels were determined by differential scanning calorimetry, ultraviolet-visible spectrometry, and rotational rheometry, respectively. It was found that LCST of the hydrogel increased significantly with the increasing NIPAAm content, and hydrogel with higher AAc/HEMAPCL ratio exhibited better storage modulus, water content, and injectability. The hydrogels were formed by maintaining the copolymer solution at 37°C. The degradation experiment on the formed hydrogels was conducted in PBS solution for 2 weeks and demonstrated a less than 20% weight loss. Scanning electron microscopy was also used to study the morphology of the hydrogel. The copolymer with NIPAAm/AAc/HEMAPCL ratio of 88:9.6:2.4 was bioconjugated with type I collagen for the purpose of biocompatibility enhancement. In-vitro cytotoxicity of the hydrogels both with and without collagen was also addressed. PMID:23028218

  8. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Mirahmadi, Fereshteh [Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Tafazzoli-Shadpour, Mohammad, E-mail: Tafazoli@aut.ac.ir [Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali, E-mail: mashokrgozar@pasteur.ac.ir [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Bonakdar, Shahin [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of)

    2013-12-01

    Articular cartilage has limited repair capability following traumatic injuries and current methods of treatment remain inefficient. Reconstructing cartilage provides a new way for cartilage repair and natural polymers are often used as scaffold because of their biocompatibility and biofunctionality. In this study, we added degummed chopped silk fibers and electrospun silk fibers to the thermosensitive chitosan/glycerophosphate hydrogels to reinforce two hydrogel constructs which were used as scaffold for hyaline cartilage regeneration. The gelation temperature and gelation time of hydrogel were analyzed by the rheometer and vial tilting method. Mechanical characterization was measured by uniaxial compression, indentation and dynamic mechanical analysis assay. Chondrocytes were then harvested from the knee joint of the New Zealand white rabbits and cultured in constructs. The cell proliferation, viability, production of glycosaminoglycans and collagen type II were assessed. The results showed that mechanical properties of the hydrogel were significantly enhanced when a hybrid with two layers of electrospun silk fibers was made. The results of GAG and collagen type II in cell-seeded scaffolds indicate support of the chondrogenic phenotype for chondrocytes with a significant increase in degummed silk fiber–hydrogel composite for GAG content and in two-layer electrospun fiber–hydrogel composite for Col II. It was concluded that these two modified scaffolds could be employed for cartilage tissue engineering. - Highlights: • Chitosan hydrogel composites fabricated by two forms of silk fiber • Silk fibers provide structural support for the hydrogel matrix. • The mechanical properties of hydrogel significantly improved by associating with silk. • Production of GAG and collagen type II was demonstrated within the scaffolds.

  9. Critical early events in hematopoietic cell seeding and engraftment.

    OpenAIRE

    Jerry Stein; Isaac Yaniv; Nadir Askenasy

    2005-01-01

    Durable hematopoietic stem cell engraftment requires efficient homing to and seeding in the recipient bone marrow. Dissection of cellular and molecular mechanisms by retrospective analysis of functional engraftment studies imposes severe limitations on the understanding of the early stages of this process. We have established an experimental approach for in vivo functional imaging of labeled cells at the level of recipient bone marrow in real time. The adhesive interaction of hematopoietic ce...

  10. Cytocompatible cellulose hydrogels containing trace lignin.

    Science.gov (United States)

    Nakasone, Kazuki; Kobayashi, Takaomi

    2016-07-01

    Sugarcane bagasse was used as a cellulose resource to prepare transparent and flexible cellulose hydrogel films. On the purification process from bagasse to cellulose, the effect of lignin residues in the cellulose was examined for the properties and cytocompatibility of the resultant hydrogel films. The cellulose was dissolved in lithium chloride/N,N-dimethylacetamide solution and converted to hydrogel films by phase inversion. In the purification process, sodium hydroxide (NaOH) treatment time was changed from 1 to 12h. This resulted in cellulose hydrogel films having small amounts of lignin from 1.62 to 0.68%. The remaining lignin greatly affected hydrogel properties. Water content of the hydrogel films was increased from 1153 to 1525% with a decrease of lignin content. Moreover, lower lignin content caused weakening of tensile strength from 0.80 to 0.43N/mm(2) and elongation from 45.2 to 26.5%. Also, similar tendency was observed in viscoelastic behavior of the cellulose hydrogel films. Evidence was shown that the lignin residue was effective for the high strength of the hydrogel films. In addition, scanning probe microscopy in the morphological observation was suggested that the trace lignin in the cellulose hydrogel affected the cellulose fiber aggregation in the hydrogel network. The trace of lignin in the hydrogels also influenced fibroblast cell culture on the hydrogel films. The hydrogel film containing 1.68% lignin showed better fibroblast compatibility as compared to cell culture polystyrene dish used as reference.

  11. Preparation of hydrogel hollow particles for cell encapsulation by a method of polyester core degradation.

    Science.gov (United States)

    Rabanel, J-M; Hildgen, P

    2004-06-01

    Implantation of encapsulated cells in particles of less than 1 mm (micro-encapsulation) has been proposed as a cell synthesized bio-molecule delivery system. Encapsulation provides immuno-isolation, protecting foreign cells from host immune system while nutrients, oxygen and therapeutic products can diffuse freely across capsule walls. A new method is described for the synthesis of a new family of hollow microparticles for cell encapsulation. Unlike other micro-encapsulation methods, encapsulation in those devices will take place after capsule synthesis, by micro-injection. The microcapsules were prepared by a three-steps original procedure: first, synthesis of a core particle, followed by coating with a layer of epichlorohydrin cross-linked amylo-pectin gel and, finally, selective degradation of the core particle to create the cavity. Initial experiments make use of amylo-pectin cross-linked with trimetaphosphate as core particle material. However, selective degradation was difficult to achieve. In further essays, polyesters were used successfully for the preparation of core particles. Optimizations were carried out and the permeability and morphology of the hollow particles were investigated. The preliminary results show that the new method has the potential to become a standard procedure to obtain hydrogel hollow particles. Moreover, the permeability study seems to be in accordance with specifications for immuno-isolation.

  12. Development of Hydrogel with Anti-Inflammatory Properties Permissive for the Growth of Human Adipose Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    R. Sánchez-Sánchez

    2016-01-01

    Full Text Available Skin wound repair requires the development of different kinds of biomaterials that must be capable of restoring the damaged tissue. Type I collagen and chitosan have been widely used to develop scaffolds for skin engineering because of their cell-related signaling properties such as proliferation, migration, and survival. Collagen is the major component of the skin extracellular matrix (ECM, while chitosan mimics the structure of the native polysaccharides and glycosaminoglycans in the ECM. Chitosan and its derivatives are also widely used as drug delivery vehicles since they are biodegradable and noncytotoxic. Regulation of the inflammatory response is crucial for wound healing and tissue regeneration processes; and, consequently, the development of biomaterials such as hydrogels with anti-inflammatory properties is very important and permissive for the growth of cells. In the last years, it has been shown that mesenchymal stem cells have clinical importance in the treatment of different pathologies, for example, skin injuries. In this paper, we describe the anti-inflammatory activity of collagen type 1/chitosan/dexamethasone hydrogel, which is permissive for the culture of human adipose-derived mesenchymal stem cells (hADMSC. Our results show that hADMSC cultured in the hydrogel are viable, proliferate, and secrete the anti-inflammatory cytokine interleukin-10 (IL-10 but not the inflammatory cytokine Tumor Necrosis Factor-alpha (TNF-α.

  13. A degradable, bioactive, gelatinized alginate hydrogel to improve stem cell/growth factor delivery and facilitate healing after myocardial infarction.

    Science.gov (United States)

    Della Rocca, Domenico G; Willenberg, Bradley J; Ferreira, Leonardo F; Wate, Prateek S; Petersen, John W; Handberg, Eileen M; Zheng, Tong; Steindler, Dennis A; Terada, Naohiro; Batich, Christopher D; Byrne, Barry J; Pepine, Carl J

    2012-11-01

    Despite remarkable effectiveness of reperfusion and drug therapies to reduce morbidity and mortality following myocardial infarction (MI), many patients have debilitating symptoms and impaired left ventricular (LV) function highlighting the need for improved post-MI therapies. A promising concept currently under investigation is intramyocardial injection of high-water content, polymeric biomaterial gels (e.g., hydrogels) to modulate myocardial scar formation and LV adverse remodeling. We propose a degradable, bioactive hydrogel that forms a unique microstructure of continuous, parallel capillary-like channels (Capgel). We hypothesize that the innovative architecture and composition of Capgel can serve as a platform for endogenous cell recruitment and drug/cell delivery, therefore facilitating myocardial repair after MI.

  14. Characterizing natural hydrogel for reconstruction of three-dimensional lymphoid stromal network to model T-cell interactions.

    Science.gov (United States)

    Kim, Jiwon; Wu, Biming; Niedzielski, Steven M; Hill, Matthew T; Coleman, Rhima M; Ono, Akira; Shikanov, Ariella

    2015-08-01

    Hydrogels have been used in regenerative medicine because they provide a three-dimensional environment similar to soft tissues, allow diffusion of nutrients, present critical biological signals, and degrade via endogenous enzymatic mechanisms. Herein, we developed in vitro system mimicking cell-cell and cell-matrix interactions in secondary lymphoid organs (SLOs). Existing in vitro culture systems cannot accurately represent the complex interactions happening between T-cells and stromal cells in immune response. To model T-cell interaction in SLOs in vitro, we encapsulated stromal cells in fibrin, collagen, or fibrin-collagen hydrogels and studied how different mechanical and biological properties affect stromal network formation. Overall, fibrin supplemented with aprotinin was superior to collagen and fibrin-collagen in terms of network formation and promotion of T-cell penetration. After 8 days of culture, stromal networks formed through branching and joining with other adjacent cell populations. T-cells added to the newly formed stromal networks migrated and attached to stromal cells, similar to the T-cell zones of the lymph nodes in vivo. Our results suggest that the constructed three-dimensional lymphoid stromal network can mimic the in vivo environment and allow the modeling of T-cell interaction in SLOs.

  15. Hydrogels with covalent and noncovalent crosslinks

    Science.gov (United States)

    Kilck, Kristi L. (Inventor); Yamaguchi, Nori (Inventor)

    2013-01-01

    A method for targeted delivery of therapeutic compounds from hydrogels is presented. The method involves administering to a cell a hydrogel in which a therapeutic compound is noncovalently bound to heparin. The hydrogel may contain covalent and non-covalent crosslinks.

  16. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    Science.gov (United States)

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate.

  17. Polysaccharide hydrogel combined with mesenchymal stem cells promotes the healing of corneal alkali burn in rats.

    Directory of Open Access Journals (Sweden)

    Yifeng Ke

    Full Text Available Corneal chemical burns are common ophthalmic injuries that may result in permanent visual impairment. Although significant advances have been achieved on the treatment of such cases, the structural and functional restoration of a chemical burn-injured cornea remains challenging. The applications of polysaccharide hydrogel and subconjunctival injection of mesenchymal stem cells (MSCs have been reported to promote the healing of corneal wounds. In this study, polysaccharide was extracted from Hardy Orchid and mesenchymal stem cells (MSCs were derived from Sprague-Dawley rats. Supplementation of the polysaccharide significantly enhanced the migration rate of primarily cultured rat corneal epithelial cells. We examined the therapeutic effects of polysaccharide in conjunction with MSCs application on the healing of corneal alkali burns in rats. Compared with either treatment alone, the combination strategy resulted in significantly better recovery of corneal epithelium and reduction in inflammation, neovascularization and opacity of healed cornea. Polysaccharide and MSCs acted additively to increase the expression of anti-inflammatory cytokine (TGF-β, antiangiogenic cytokine (TSP-1 and decrease those promoting inflammation (TNF-α, chemotaxis (MIP-1α and MCP-1 and angiogenesis (VEGF and MMP-2. This study provided evidence that Hardy Orchid derived polysaccharide and MSCs are safe and effective treatments for corneal alkali burns and that their benefits are additive when used in combination. We concluded that combination therapy with polysaccharide and MSCs is a promising clinical treatment for corneal alkali burns and may be applicable for other types of corneal disorder.

  18. Poly (vinyl alcohol) hydrogel membrane as electrolyte for direct borohydride fuel cells

    Indian Academy of Sciences (India)

    N A Choudhury; S K Prashant; S Pitchumani; P Sridhar; A K Shukla

    2009-09-01

    A direct borohydride fuel cell (DBFC) employing a poly (vinyl alcohol) hydrogel membrane electrolyte (PHME) is reported. The DBFC employs an AB5 Misch metal alloy as anode and a goldplated stainless steel mesh as cathode in conjunction with aqueous alkaline solution of sodium borohydride as fuel and aqueous acidified solution of hydrogen peroxide as oxidant. Room temperature performances of the PHME-based DBFC in respect of peak power outputs; ex-situ cross-over of oxidant, fuel, anolyte and catholyte across the membrane electrolytes; utilization efficiencies of fuel and oxidant, as also cell performance durability are compared with a similar DBFC employing a Nafion®-117 membrane electrolyte (NME). Peak power densities of ∼30 and ∼40 mW cm-2 are observed for the DBFCs with PHME and NME, respectively. The crossover of NaBH4 across both the membranes has been found to be very low. The utilization efficiencies of NaBH4 and H2O2 are found to be ∼24 and ∼59%, respectively for the PHME-based DBFC; ∼18 and ∼62%, respectively for the NME-based DBFC. The PHME and NME-based DBFCs exhibit operational cell potentials of ∼ 1.2 and ∼ 1.4 V, respectively at a load current density of 10 mA cm-2 for ∼100 h.

  19. Evaluation of Photocrosslinked Lutrol Hydrogel for Tissue Printing Applications

    NARCIS (Netherlands)

    Fedorovich, Natalja E.; Swennen, Ives; Girones, Jordi; Moroni, Lorenzo; Blitterswijk, van Clemens A.; Schacht, Etienne; Alblas, Jacqueline; Dhert, Wouter J.A.

    2009-01-01

    Application of hydrogels in tissue engineering and innovative strategies such as organ printing, which is based on layered 3D deposition of cell-laden hydrogels, requires design of novel hydrogel matrices. Hydrogel demands for 3D printing include: 1) preservation of the printed shape after the depos

  20. Switchable antimicrobial and antifouling hydrogels with enhanced mechanical properties.

    Science.gov (United States)

    Cao, Bin; Tang, Qiong; Li, Linlin; Humble, Jayson; Wu, Haiyan; Liu, Lingyun; Cheng, Gang

    2013-08-01

    New switchable hydrogels are developed. Under acidic conditions, hydrogels undergo self-cyclization and can catch and kill bacteria. Under neutral/basic conditions, hydrogels undergo ring-opening and can release killed bacterial cells and resist protein adsorption and bacterial attachment. Smart hydrogels also show a dramatically improved mechanical property, which is highly desired for biomedical applications.

  1. Comparative study on seeding methods of human bone marrow stromal cells in bone tissue engineering

    Institute of Scientific and Technical Information of China (English)

    齐欣; 刘建国; 常颖; 徐莘香

    2004-01-01

    Background In general the traditional static seeding method has its limitation while the dynamic seeding method reveals its advantages over traditional static method. We compared static and dynamic seeding method for human bone marrow stromal cells (hBMSCs) in bone tissue engineering.Methods DNA assay was used for detecting the maximal initial seeding concentration for static seeding. Dynamic and static seeding methods were compared, when scaffolds were loaded with hBMSCs at this maximal initial cell seeding concentration. Histology and scanning electron microscope (SEM) were examined to evaluate the distribution of cells inside the constructs. Markers encoding osteogenic genes were measured by fluorescent RT-PCR. The protocol for dynamic seeding of hBMSCs was also investigated.Results DNA assay showed that the static maximal initial seeding concentration was lower than that in dynamic seeding. Histology and SEM showed even distribution and spread of cells in the dynamically seeded constructs, while their statically seeded counterparts showed cell aggregation.Fluorescent RT-PCR again showed stronger osteogenic potential of dynamically seeded constructs.Conclusion dynamic seeding of hBMSCs is a promising technique in bone tissue engineering.

  2. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering.

    Science.gov (United States)

    Mirahmadi, Fereshteh; Tafazzoli-Shadpour, Mohammad; Shokrgozar, Mohammad Ali; Bonakdar, Shahin

    2013-12-01

    Articular cartilage has limited repair capability following traumatic injuries and current methods of treatment remain inefficient. Reconstructing cartilage provides a new way for cartilage repair and natural polymers are often used as scaffold because of their biocompatibility and biofunctionality. In this study, we added degummed chopped silk fibers and electrospun silk fibers to the thermosensitive chitosan/glycerophosphate hydrogels to reinforce two hydrogel constructs which were used as scaffold for hyaline cartilage regeneration. The gelation temperature and gelation time of hydrogel were analyzed by the rheometer and vial tilting method. Mechanical characterization was measured by uniaxial compression, indentation and dynamic mechanical analysis assay. Chondrocytes were then harvested from the knee joint of the New Zealand white rabbits and cultured in constructs. The cell proliferation, viability, production of glycosaminoglycans and collagen type II were assessed. The results showed that mechanical properties of the hydrogel were significantly enhanced when a hybrid with two layers of electrospun silk fibers was made. The results of GAG and collagen type II in cell-seeded scaffolds indicate support of the chondrogenic phenotype for chondrocytes with a significant increase in degummed silk fiber-hydrogel composite for GAG content and in two-layer electrospun fiber-hydrogel composite for Col II. It was concluded that these two modified scaffolds could be employed for cartilage tissue engineering.

  3. In Vivo Chondrogenesis in 3D Bioprinted Human Cell-laden Hydrogel Constructs

    Science.gov (United States)

    Möller, Thomas; Hägg, Daniel; Brantsing, Camilla; Rotter, Nicole; Apelgren, Peter; Lindahl, Anders; Kölby, Lars; Gatenholm, Paul

    2017-01-01

    Background: The three-dimensional (3D) bioprinting technology allows creation of 3D constructs in a layer-by-layer fashion utilizing biologically relevant materials such as biopolymers and cells. The aim of this study is to investigate the use of 3D bioprinting in a clinically relevant setting to evaluate the potential of this technique for in vivo chondrogenesis. Methods: Thirty-six nude mice (Balb-C, female) received a 5- × 5- × 1-mm piece of bioprinted cell-laden nanofibrillated cellulose/alginate construct in a subcutaneous pocket. Four groups of printed constructs were used: (1) human (male) nasal chondrocytes (hNCs), (2) human (female) bone marrow–derived mesenchymal stem cells (hBMSCs), (3) coculture of hNCs and hBMSCs in a 20/80 ratio, and (4) Cell-free scaffolds (blank). After 14, 30, and 60 days, the scaffolds were harvested for histological, immunohistochemical, and mechanical analysis. Results: The constructs had good mechanical properties and keep their structural integrity after 60 days of implantation. For both the hNC constructs and the cocultured constructs, a gradual increase of glycosaminoglycan production and hNC proliferation was observed. However, the cocultured group showed a more pronounced cell proliferation and enhanced deposition of human collagen II demonstrated by immunohistochemical analysis. Conclusions: In vivo chondrogenesis in a 3D bioprinted human cell-laden hydrogel construct has been demonstrated. The trophic role of the hBMSCs in stimulating hNC proliferation and matrix deposition in the coculture group suggests the potential of 3D bioprinting of human cartilage for future application in reconstructive surgery. PMID:28280669

  4. Rectified cell migration on saw-like micro-elastically patterned hydrogels with asymmetric gradient ratchet teeth.

    Directory of Open Access Journals (Sweden)

    Satoru Kidoaki

    Full Text Available To control cell motility is one of the essential technologies for biomedical engineering. To establish a methodology of the surface design of elastic substrate to control the long-range cell movements, here we report a sophisticated cell culture hydrogel with a micro-elastically patterned surface that allows long-range durotaxis. This hydrogel has a saw-like pattern with asymmetric gradient ratchet teeth, and rectifies random cell movements. Durotaxis only occurs at boundaries in which the gradient strength of elasticity is above a threshold level. Consequently, in gels with unit teeth patterns, durotaxis should only occur at the sides of the teeth in which the gradient strength of elasticity is above this threshold level. Therefore, such gels are expected to support the long-range biased movement of cells via a mechanism similar to the Feynman-Smoluchowski ratchet, i.e., rectified cell migration. The present study verifies this working hypothesis by using photolithographic microelasticity patterning of photocurable gelatin gels. Gels in which each teeth unit was 100-120 µm wide with a ratio of ascending:descending elasticity gradient of 1:2 and a peak elasticity of ca. 100 kPa supported the efficient rectified migration of 3T3 fibroblast cells. In addition, long-range cell migration was most efficient when soft lanes were introduced perpendicular to the saw-like patterns. This study demonstrates that asymmetric elasticity gradient patterning of cell culture gels is a versatile means of manipulating cell motility.

  5. Heat- and pH-induced BSA conformational changes, hydrogel formation and application as 3D cell scaffold.

    Science.gov (United States)

    Navarra, Giovanna; Peres, Chiara; Contardi, Marco; Picone, Pasquale; San Biagio, Pier Luigi; Di Carlo, Marta; Giacomazza, Daniela; Militello, Valeria

    2016-09-15

    Aggregation and gelation of globular proteins can be an advantage to generate new forms of nanoscale biomaterials based on the fibrillar architecture. Here, we report results obtained by exploiting the proteins' natural tendency to self-organize in 3D network, for the production of new material based on BSA for medical application. In particular, at five different pH values the conformational and structural changes of the BSA during all the steps of the thermal aggregation and gelation have been analyzed by FTIR spectroscopy. The macroscopic mechanical properties of these hydrogels have been obtained by rheological measurements. The microscopic structure of the gels have been studied by AFM and SEM images to have a picture of their different spatial arrangement. Finally, the use of the BSA hydrogels as scaffold has been tested in two different cell cultures.

  6. A kind of novel biodegradable hydrogel made from copolymerization of gelatin with polypseudorotaxanes based on {alpha}-CDs

    Energy Technology Data Exchange (ETDEWEB)

    Hou Dandan; Tong Xinming; Yu Huaiqing; Zhang Aiying; Feng Zengguo [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2007-09-15

    A kind of novel biodegradable supramolecular hydrogel was synthesized via copolymerization of gelatin methacrylamide with photocurable and biodegradable polypseudorotaxanes under UV irradiation. These polypseudorotaxanes were prepared by supramolecular self-assemblies of {alpha}-cyclodextrins threaded onto amphiphilic LA-PEG-LA copolymers end-capped with methacryloyl groups. The hydrogels are injectable, and their structure was characterized in detail with FTIR, {sup 1}H NMR, XRD, TG and DSC techniques. Their swelling behaviour and morphologies were also examined. The analytical results demonstrated that the channel-type crystalline structure of the polypseudorotaxanes remains in the as-obtained hydrogels. Moreover, the SEM pictures showed that the hydrogels having gelatin methacrylamide are more suitable for cell seeding and proliferation than those without gelatin added.

  7. Development of a cell-seeded modified small intestinal submucosa for urethroplasty

    Directory of Open Access Journals (Sweden)

    Long Zhang

    2016-03-01

    Conclusions: A modified 3D porous SIS scaffold seeded with UC and treated with PAA produces better urethroplasty results than cell-seeded untreated SIS scaffolds, or unseeded PAA treated SIS scaffolds.

  8. Injectable hydrogel as stem cell scaffolds from the thermosensitive terpolymer of NIPAAm/AAc/HEMAPCL

    Directory of Open Access Journals (Sweden)

    Lian S

    2012-09-01

    Full Text Available Sheng Lian,1Yan Xiao,1 Qingqing Bian,1Yu Xia,2 Changfa Guo,2 Shenguo Wang,2 Meidong Lang11Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, People's Republic of China; 2Department of Cardiac Surgery, Zhongshan Hospital, Fudan University and Shanghai Institute of Cardiovascular Diseases, Shanghai, People's Republic of ChinaAbstract: A series of biodegradable thermosensitive copolymers was synthesized by free radical polymerization with N-isopropylacrylamide (NIPAAm, acrylic acid (AAc and macromer 2-hydroxylethyl methacrylate-poly(ε-caprolactone (HEMAPCL. The structure and composition of the obtained terpolymers were confirmed by proton nuclear magnetic resonance spectroscopy, while their molecular weight was measured using gel permeation chromatography. The copolymers were dissolved in phosphate-buffered saline (PBS solution (pH = 7.4 with different concentrations to prepare hydrogels. The lower critical solution temperature (LCST, cloud point, and rheological property of the hydrogels were determined by differential scanning calorimetry, ultraviolet-visible spectrometry, and rotational rheometry, respectively. It was found that LCST of the hydrogel increased significantly with the increasing NIPAAm content, and hydrogel with higher AAc/HEMAPCL ratio exhibited better storage modulus, water content, and injectability. The hydrogels were formed by maintaining the copolymer solution at 37°C. The degradation experiment on the formed hydrogels was conducted in PBS solution for 2 weeks and demonstrated a less than 20% weight loss. Scanning electron microscopy was also used to study the morphology of the hydrogel. The copolymer with NIPAAm/AAc/HEMAPCL ratio of 88:9.6:2.4 was bioconjugated with type I collagen for the purpose of biocompatibility enhancement. In-vitro cytotoxicity

  9. Enzymatically cross-linked gelatin-phenol hydrogels with a broader stiffness range for osteogenic differentiation of human mesenchymal stem cells.

    Science.gov (United States)

    Wang, Li-Shan; Du, Chan; Chung, Joo Eun; Kurisawa, Motoichi

    2012-05-01

    An injectable hydrogel system, composed of gelatin-hydroxyphenylpropionic acid (Gtn-HPA) conjugates chemically cross-linked by an enzyme-mediated oxidation reaction, has been designed as a biodegradable scaffold for tissue engineering. In light of the role of substrate stiffness on cell differentiation, we herein report a newly improved Gtn hydrogel system with a broader range of stiffness control that uses Gtn-HPA-tyramine (Gtn-HPA-Tyr) conjugates to stimulate the osteogenic differentiation of human mesenchymal stem cells (hMSCs). The Gtn-HPA-Tyr conjugate was successfully synthesized through a further conjugation of Tyr to Gtn-HPA conjugate by means of a general carbodiimide/active ester-mediated coupling reaction. Proton nuclear magnetic resonance and UV-visible measurements showed a higher total phenol content in the Gtn-HPA-Tyr conjugate than that content in the Gtn-HPA conjugate. The Gtn-HPA-Tyr hydrogels were formed by the oxidative coupling of phenol moieties catalyzed by hydrogen peroxide (H(2)O(2)) and horseradish peroxidase (HRP). Rheological studies revealed that a broader range of storage modulus (G') of Gtn-HPA-Tyr hydrogel (600-26,800 Pa) was achieved using different concentrations of H(2)O(2), while the G' of the predecessor Gtn-HPA hydrogels was limited to the range of 1000 to 13,500 Pa. The hMSCs on Gtn-HPA-Tyr hydrogel with G' greater than 20,000 showed significantly up-regulated expressions of osteocalcin and runt-related transcription factor 2 (RUNX2) on both the gene and protein level, with the presence of alkaline phosphatase, and the evidence of calcium accumulation. These studies with the Gtn-HPA-Tyr hydrogel with G' greater than 20,000 collectively suggest the stimulation of the hMSCs into osteogenic differentiation, while these same observations were not found with the Gtn-HPA hydrogel with a G' of 13,500.

  10. Bubble dynamics inside an outgassing hydrogel confined in a Hele-Shaw cell

    Science.gov (United States)

    Haudin, Florence; Noblin, Xavier; Bouret, Yann; Argentina, Médéric; Raufaste, Christophe

    2016-08-01

    We report an experimental study of bubble dynamics in a non-Newtonian fluid subjected to a pressure decrease. The fluid is a hydrogel, composed of water and a synthetic clay, prepared and sandwiched between two glass plates in a Hele-Shaw geometry. The rheological properties of the material can be tuned by the clay concentration. As the imposed pressure decreases, the gas initially dissolved in the hydrogel triggers bubble formation. Different stages of the process are observed: bubble nucleation, growth, interaction, and creation of domains by bubble contact or coalescence. Initially bubble behave independently. They are trapped and advected by the mean deformation of the hydrogel, and the bubble growth is mainly driven by the diffusion of the dissolved gas through the hydrogel and its outgassing at the reactive-advected hydrogel-bubble interface. In this regime, the rheology of the fluid does not play a significant role on the bubble growth. A model is proposed and gives a simple scaling that relates the bubble growth rate and the imposed pressure. Carbon dioxide is shown to be the gas at play, and the hydrogel is degassing at the millimeter scale as a water solution does at a smaller scale. Later, bubbles are not independent anymore. The growth rate decreases, and the morphology becomes more anisotropic as bubbles interact because they are separated by a distance smaller than the individual stress field extension. Our measurements show that the interaction distance scales with the bubbles' size.

  11. Cytocompatibility of chitosan -based thermosensitive hydrogel to human periodontal ligament cell

    Institute of Scientific and Technical Information of China (English)

    PAN Jian-feng; Ji Qiu-xia; Lv Bing-hua; Li Chang-chun; Wu Hong; Li Dan-dan; Li-Hui

    2015-01-01

    Objective:To investigate the ef ect of thermosensitive chitosan /β-glycerophosphate (CS /β-GP)hydrogel on proliferation of human periodontal ligament cel s (HPDLCs). Methods:CS /β-GP were prepared into a thermosensitive hydrogel and its three -dimensional structure was observed under electron microscope.HPDLCs harvested and cultured in vitro were co -cultured with the thermosensitive CS /β-GP hydrogel.Growth of the cel s in the hydrogel was observed with HE staining,and the ef ect of the extract on proliferation of HPDLCs was exam-ined by CCK -8 assay.Results:Observations of SEMand HE staining showed that the thermosensitive CS /β-GP hydrogel was large in pore size and appropriate for cel growth.Dif erent levels of CS /α,β-GP extracts could promote proliferation of HPDLCs.Conclusion:Thermosensitive CS /β-GP hydrogel can promote proliferation of HPDLCs and be a good carrier for periodontal tis-sue engineering because of its thermosensitivity.

  12. Photopatterning of hydrogel scaffolds coupled to filter materials using stereolithography for perfused 3D culture of hepatocytes.

    Science.gov (United States)

    Neiman, Jaclyn A Shepard; Raman, Ritu; Chan, Vincent; Rhoads, Mary G; Raredon, Micha Sam B; Velazquez, Jeremy J; Dyer, Rachel L; Bashir, Rashid; Hammond, Paula T; Griffith, Linda G

    2015-04-01

    In vitro models that recapitulate the liver's structural and functional complexity could prolong hepatocellular viability and function to improve platforms for drug toxicity studies and understanding liver pathophysiology. Here, stereolithography (SLA) was employed to fabricate hydrogel scaffolds with open channels designed for post-seeding and perfused culture of primary hepatocytes that form 3D structures in a bioreactor. Photopolymerizable polyethylene glycol-based hydrogels were fabricated coupled to chemically activated, commercially available filters (polycarbonate and polyvinylidene fluoride) using a chemistry that permitted cell viability, and was robust enough to withstand perfused culture of up to 1 µL/s for at least 7 days. SLA energy dose, photoinitiator concentrations, and pretreatment conditions were screened to determine conditions that maximized cell viability and hydrogel bonding to the filter. Multiple open channel geometries were readily achieved, and included ellipses and rectangles. Rectangular open channels employed for subsequent studies had final dimensions on the order of 350 µm by 850 µm. Cell seeding densities and flow rates that promoted cell viability were determined. Perfused culture of primary hepatocytes in hydrogel scaffolds in the presence of soluble epidermal growth factor (EGF) prolonged the maintenance of albumin production throughout the 7-day culture relative to 2D controls. This technique of bonding hydrogel scaffolds can be employed to fabricate soft scaffolds for a number of bioreactor configurations and applications.

  13. Biological evaluation of alginate-based hydrogels, with antimicrobial features by Ce(III) incorporation, as vehicles for a bone substitute.

    Science.gov (United States)

    Morais, D S; Rodrigues, M A; Lopes, M A; Coelho, M J; Maurício, A C; Gomes, R; Amorim, I; Ferraz, M P; Santos, J D; Botelho, C M

    2013-09-01

    A novel hydrogel, based on an alginate/hyaluronate mixture and Ce(III) ions, with effective bioactive and antimicrobial ability was developed to be used as vehicle of a synthetic bone substitute producing an injectable substitute (IBS). Firstly, three different IBSs were prepared using three developed alginate-based hydrogels, the hydrogel Alg composed by alginate, the hydrogel Alg/Ch composed by an alginate/chitosan mixture and the hydrogel Alg/HA composed by an alginate/hyaluronate mixture. MG63 cells viability on the IBSs was evaluated, being observed a significantly higher cell viability on the Alg/HA_IBS at all time points, which indicates a better cell adaptation to the material, increasing their predisposition to produce extracellular matrix and thus allowing a better bone regeneration. Moreover, SEM analysis showed evident filopodia and a spreader shape of MG63 cells when seeded on Alg/HA_IBS. This way, based upon the in vitro results, the hydrogel Alg/HA was chosen to the in vivo study by subcutaneous implantation in an animal model, promoting a slight irritating tissue response and visible tissue repairing. The next step was to grant antimicrobial properties to the hydrogel that showed the best biological behavior by incorporation of Ce(III) ions into the Alg/HA, producing the hydrogel Alg/HA2. The antimicrobial activity of these hyaluronate-based hydrogels was evaluated against Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa and Candida albicans. Results showed that Ce(III) ions can significantly enhance the hydrogel antimicrobial ability without compromising the osteoconductivity improvement promoted by the vehicle association to the synthetic bone substitute.

  14. Novel three-dimensional cocoon-like hydrogels for soft tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Recouvreux, Derce O.S. [Integrated Technologies Laboratory, Chemical and Food Engineering Department, Federal University of Santa Catarina, Florianopolis-SC (Brazil); Rambo, Carlos R., E-mail: rambo@intelab.ufsc.br [Integrated Technologies Laboratory, Chemical and Food Engineering Department, Federal University of Santa Catarina, Florianopolis-SC (Brazil); Berti, Fernanda V.; Carminatti, Claudimir A. [Integrated Technologies Laboratory, Chemical and Food Engineering Department, Federal University of Santa Catarina, Florianopolis-SC (Brazil); Antonio, Regina V. [Biochemistry and Molecular Biology of Microorganisms Laboratory, Biochemistry Department, Federal University of Santa Catarina, Florianopolis-SC (Brazil); Porto, Luismar M. [Integrated Technologies Laboratory, Chemical and Food Engineering Department, Federal University of Santa Catarina, Florianopolis-SC (Brazil); Biomedical Engineering Centre, Harvard-MIT Health Sciences and Technology Division, Cambridge-MA (United States)

    2011-03-12

    Large three-dimensional hydrogels (> 150 cm{sup 3}) of bacterial cellulose (BC) were synthesized by using Gluconacetobacter hansenii ATCC 23769 under controlled agitated culture conditions. The macroscopic cocoon-like structures are gelatinous and translucent and may find applications in several areas, particularly in tissue and organ engineering. Internal microstructure was investigated by scanning electron microscopy (SEM) and field emission scanning electron microscopy (FESEM), which revealed that the cocoons are composed of cellulosic nanofibres randomly and three-dimensionally dispersed. The macroscopic bodies are delimited by a dense semi-permeable membrane with thickness between 0.2 and 2 mm, also composed of cellulosic nanofibres. Endothelial cells were seeded on the hydrogels and incubated for 7 days. HUVECs grew and migrated into the inner part of the structure. The three-dimensional BC hydrogel structures can be directly implanted in tissue deficient regions as scaffolds containing the appropriate cultured cells.

  15. A Hyaluronan-Based Injectable Hydrogel Improves the Survival and Integration of Stem Cell Progeny following Transplantation

    Directory of Open Access Journals (Sweden)

    Brian G. Ballios

    2015-06-01

    Full Text Available The utility of stem cells and their progeny in adult transplantation models has been limited by poor survival and integration. We designed an injectable and bioresorbable hydrogel blend of hyaluronan and methylcellulose (HAMC and tested it with two cell types in two animal models, thereby gaining an understanding of its general applicability for enhanced cell distribution, survival, integration, and functional repair relative to conventional cell delivery in saline. HAMC improves cell survival and integration of retinal stem cell (RSC-derived rods in the retina. The pro-survival mechanism of HAMC is ascribed to the interaction of the CD44 receptor with HA. Transient disruption of the retinal outer limiting membrane, combined with HAMC delivery, results in significantly improved rod survival and visual function. HAMC also improves the distribution, viability, and functional repair of neural stem and progenitor cells (NSCs. The HAMC delivery system improves cell transplantation efficacy in two CNS models, suggesting broad applicability.

  16. Injectable hydrogel promotes early survival of induced pluripotent stem cell-derived oligodendrocytes and attenuates longterm teratoma formation in a spinal cord injury model.

    Science.gov (United States)

    Führmann, T; Tam, R Y; Ballarin, B; Coles, B; Elliott Donaghue, I; van der Kooy, D; Nagy, A; Tator, C H; Morshead, C M; Shoichet, M S

    2016-03-01

    Transplantation of pluripotent stem cells and their differentiated progeny has the potential to preserve or regenerate functional pathways and improve function after central nervous system injury. However, their utility has been hampered by poor survival and the potential to form tumors. Peptide-modified biomaterials influence cell adhesion, survival and differentiation in vitro, but their effectiveness in vivo remains uncertain. We synthesized a peptide-modified, minimally invasive, injectable hydrogel comprised of hyaluronan and methylcellulose to enhance the survival and differentiation of human induced pluripotent stem cell-derived oligodendrocyte progenitor cells. Cells were transplanted subacutely after a moderate clip compression rat spinal cord injury. The hydrogel, modified with the RGD peptide and platelet-derived growth factor (PDGF-A), promoted early survival and integration of grafted cells. However, prolific teratoma formation was evident when cells were transplanted in media at longer survival times, indicating that either this cell line or the way in which it was cultured is unsuitable for human use. Interestingly, teratoma formation was attenuated when cells were transplanted in the hydrogel, where most cells differentiated to a glial phenotype. Thus, this hydrogel promoted cell survival and integration, and attenuated teratoma formation by promoting cell differentiation.

  17. Needle tract seeding following percutaneous biopsy of renal cell carcinoma.

    Science.gov (United States)

    Chang, Dwayne T S; Sur, Hariom; Lozinskiy, Mikhail; Wallace, David M A

    2015-09-01

    A 66-year-old man underwent computed tomography-guided needle biopsy of a suspicious renal mass. Two months later he underwent partial nephrectomy. Histology revealed a 30-mm clear cell renal cell carcinoma, up to Fuhrman grade 3. An area of the capsule was interrupted, which corresponded to a hemorrhagic area on the cortical surface. Under microscopy, this area showed a tongue of tumor tissue protruding through the renal capsule. A tumor deposit was found in the perinephric fat. These features suggest that tumor seeding may have occurred during the needle biopsy.

  18. Hydrogel based occlusion systems

    OpenAIRE

    Stam, F.A.; Jackson, N.; Dubruel, P.; Adesanya, K.; Embrechts, A; Mendes, E.; Neves, H.P.; Herijgers, P; Verbrugghe, Y.; Shacham, Y.; Engel, L.; Krylov, V

    2013-01-01

    A hydrogel based occlusion system, a method for occluding vessels, appendages or aneurysms, and a method for hydrogel synthesis are disclosed. The hydrogel based occlusion system includes a hydrogel having a shrunken and a swollen state and a delivery tool configured to deliver the hydrogel to a target occlusion location. The hydrogel is configured to permanently occlude the target occlusion location in the swollen state. The hydrogel may be an electro-activated hydrogel (EAH) which could be ...

  19. Synthetic hydrogel matrices for guided bladder tissue regeneration.

    Science.gov (United States)

    Adelöw, Catharina A M; Frey, Peter

    2007-01-01

    Tissue engineering aims to provide a temporary scaffold for repair at the site of injury or disease that is able to support cell attachment and growth while synthesis of matrix proteins and reorganization take place. Although relatively successful, bladder tissue engineering suffers from the formation of scar tissue at the scaffold implant site partly due to the phenotypic switch of smooth muscle cells (SMCs) from a quiescent contractile phenotype to a synthetic proliferative phenotype, known as myofibroblast. We hypothesize that culturing human SMCs in enzymatically degradable poly(ethylene) glycol (PEG) hydrogels modified with integrin-binding peptides, and in co-culture with human urothelial cells (UCs), will offer some insight as to the required environment for their subsequent differentiation into quiescent SMCs. We have established protocols for isolation, culture, and characterization of human bladder UCs, SMCs, and fibroblasts and investigated co-culture conditions for SMCs and UCs. The optimal PEG hydrogel properties, promoting growth of these cells, have been investigated by varying the amounts of cell adhesion peptide, PEG, and crosslinker and examined using light and fluorescence microscopy. Furthermore, the cell organization within and on top of gels 14 days post seeding has been examined by histology and immunohistochemistry. We have investigated a co-culture model for UCs and SMCs integrated into PEG hydrogels, mimicking a section of the bladder wall for reconstructive purposes that also could contribute to the understanding of the underlying basic mechanisms of SMC differentiation.

  20. Studying the Effects of Matrix Stiffness on Cellular Function using Acrylamide-based Hydrogels

    Science.gov (United States)

    Cretu, Alexandra; Castagnino, Paola; Assoian, Richard

    2010-01-01

    Tissue stiffness is an important determinant of cellular function, and changes in tissue stiffness are commonly associated with fibrosis, cancer and cardiovascular disease1-11. Traditional cell biological approaches to studying cellular function involve culturing cells on a rigid substratum (plastic dishes or glass coverslips) which cannot account for the effect of an elastic ECM or the variations in ECM stiffness between tissues. To model in vivo tissue compliance conditions in vitro, we and others use ECM-coated hydrogels. In our laboratory, the hydrogels are based on polyacrylamide which can mimic the range of tissue compliances seen biologically12. "Reactive" cover slips are generated by incubation with NaOH followed by addition of 3-APTMS. Glutaraldehyde is used to cross-link the 3-APTMS and the polyacrylamide gel. A solution of acrylamide (AC), bis-acrylamide (Bis-AC) and ammonium persulfate is used for the polymerization of the hydrogel. N-hydroxysuccinimide (NHS) is incorporated into the AC solution to crosslink ECM protein to the hydrogel. Following polymerization of the hydrogel, the gel surface is coated with an ECM protein of choice such as fibronectin, vitronectin, collagen, etc. The stiffness of a hydrogel can be determined by rheology or atomic force microscopy (AFM) and adjusted by varying the percentage of AC and/or bis-AC in the solution12. In this manner, substratum stiffness can be matched to the stiffness of biological tissues which can also be quantified using rheology or AFM. Cells can then be seeded on these hydrogels and cultured based upon the experimental conditions required. Imaging of the cells and their recovery for molecular analysis is straightforward. For this article, we define soft substrata as those having elastic moduli (E) 20,000 Pascal. PMID:20736914

  1. Epitaxially grown polycrystalline silicon thin-film solar cells on solid-phase crystallised seed layers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei, E-mail: weili.unsw@gmail.com; Varlamov, Sergey; Xue, Chaowei

    2014-09-30

    Highlights: • Crystallisation kinetic is used to analyse seed layer surface cleanliness. • Simplified RCA cleaning for the seed layer can shorten the epitaxy annealing duration. • RTA for the seed layer can improve the quality for both seed layer and epi-layer. • Epitaxial poly-Si solar cell performance is improved by RTA treated seed layer. - Abstract: This paper presents the fabrication of poly-Si thin film solar cells on glass substrates using seed layer approach. The solid-phase crystallised P-doped seed layer is not only used as the crystalline template for the epitaxial growth but also as the emitter for the solar cell structure. This paper investigates two important factors, surface cleaning and intragrain defects elimination for the seed layer, which can greatly influence the epitaxial grown solar cell performance. Shorter incubation and crystallisation time is observed using a simplified RCA cleaning than the other two wet chemical cleaning methods, indicating a cleaner seed layer surface is achieved. Cross sectional transmission microscope images confirm a crystallographic transferal of information from the simplified RCA cleaned seed layer into the epi-layer. RTA for the SPC seed layer can effectively eliminate the intragrain defects in the seed layer and improve structural quality of both of the seed layer and the epi-layer. Consequently, epitaxial grown poly-Si solar cell on the RTA treated seed layer shows better solar cell efficiency, V{sub oc} and J{sub sc} than the one on the seed layer without RTA treatment.

  2. Cultivation of human neural progenitor cells in a 3-dimensional self-assembling peptide hydrogel.

    Science.gov (United States)

    Liedmann, Andrea; Rolfs, Arndt; Frech, Moritz J

    2012-01-11

    The influence of 3-dimensional (3D) scaffolds on growth, proliferation and finally neuronal differentiation is of great interest in order to find new methods for cell-based and standardised therapies in neurological disorders or neurodegenerative diseases. 3D structures are expected to provide an environment much closer to the in vivo situation than 2D cultures. In the context of regenerative medicine, the combination of biomaterial scaffolds with neural stem and progenitor cells holds great promise as a therapeutic tool. Culture systems emulating a three dimensional environment have been shown to influence proliferation and differentiation in different types of stem and progenitor cells. Herein, the formation and functionalisation of the 3D-microenviroment is important to determine the survival and fate of the embedded cells. Here we used PuraMatrix (RADA16, PM), a peptide based hydrogel scaffold, which is well described and used to study the influence of a 3D-environment on different cell types. PuraMatrix can be customised easily and the synthetic fabrication of the nano-fibers provides a 3D-culture system of high reliability, which is in addition xeno-free. Recently we have studied the influence of the PM-concentration on the formation of the scaffold. In this study the used concentrations of PM had a direct impact on the formation of the 3D-structure, which was demonstrated by atomic force microscopy. A subsequent analysis of the survival and differentiation of the hNPCs revealed an influence of the used concentrations of PM on the fate of the embedded cells. However, the analysis of survival or neuronal differentiation by means of immunofluorescence techniques posses some hurdles. To gain reliable data, one has to determine the total number of cells within a matrix to obtain the relative number of e.g. neuronal cells marked by βIII-tubulin. This prerequisites a technique to analyse the scaffolds in all 3-dimensions by a confocal microscope or a comparable

  3. Local evolution of seed flotation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Susana Saez-Aguayo

    2014-03-01

    Full Text Available Arabidopsis seeds rapidly release hydrophilic polysaccharides from the seed coat on imbibition. These form a heavy mucilage layer around the seed that makes it sink in water. Fourteen natural Arabidopsis variants from central Asia and Scandinavia were identified with seeds that have modified mucilage release and float. Four of these have a novel mucilage phenotype with almost none of the released mucilage adhering to the seed and the absence of cellulose microfibrils. Mucilage release was modified in the variants by ten independent causal mutations in four different loci. Seven distinct mutations affected one locus, coding the MUM2 β-D-galactosidase, and represent a striking example of allelic heterogeneity. The modification of mucilage release has thus evolved a number of times independently in two restricted geographical zones. All the natural mutants identified still accumulated mucilage polysaccharides in seed coat epidermal cells. Using nuclear magnetic resonance (NMR relaxometry their production and retention was shown to reduce water mobility into internal seed tissues during imbibition, which would help to maintain seed buoyancy. Surprisingly, despite released mucilage being an excellent hydrogel it did not increase the rate of water uptake by internal seed tissues and is more likely to play a role in retaining water around the seed.

  4. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.

    Science.gov (United States)

    Wang, Christine; Tong, Xinming; Yang, Fan

    2014-07-01

    Glioblastoma (GBM) is the most common and aggressive form of primary brain tumor with a median survival of 12-15 months, and the mechanisms underlying GBM tumor progression remain largely elusive. Given the importance of tumor niche signaling in driving GBM progression, there is a strong need to develop in vitro models to facilitate analysis of brain tumor cell-niche interactions in a physiologically relevant and controllable manner. Here we report the development of a bioengineered 3D brain tumor model to help elucidate the effects of matrix stiffness on GBM cell fate using poly(ethylene-glycol) (PEG)-based hydrogels with brain-mimicking biochemical and mechanical properties. We have chosen PEG given its bioinert nature and tunable physical property, and the resulting hydrogels allow tunable matrix stiffness without changing the biochemical contents. To facilitate cell proliferation and migration, CRGDS and a MMP-cleavable peptide were chemically incorporated. Hyaluronic acid (HA) was also incorporated to mimic the concentration in the brain extracellular matrix. Using U87 cells as a model GBM cell line, we demonstrate that such biomimetic hydrogels support U87 cell growth, spreading, and migration in 3D over the course of 3 weeks in culture. Gene expression analyses showed U87 cells actively deposited extracellular matrix and continued to upregulate matrix remodeling genes. To examine the effects of matrix stiffness on GBM cell fate in 3D, we encapsulated U87 cells in soft (1 kPa) or stiff (26 kPa) hydrogels, which respectively mimics the matrix stiffness of normal brain or GBM tumor tissues. Our results suggest that changes in matrix stiffness induce differential GBM cell proliferation, morphology, and migration modes in 3D. Increasing matrix stiffness led to delayed U87 cell proliferation inside hydrogels, but cells formed denser spheroids with extended cell protrusions. Cells cultured in stiff hydrogels also showed upregulation of HA synthase 1 and matrix

  5. A feeder-free, human plasma-derived hydrogel for maintenance of a human embryonic stem cell phenotype in vitro

    Directory of Open Access Journals (Sweden)

    Lewis Fiona C

    2012-08-01

    Full Text Available Abstract Background Human embryonic stem cells (hESCs represent a tremendous resource for cell therapies and the study of human development; however to maintain their undifferentiated state in vitro they routinely require the use of mouse embryonic fibroblast (MEF feeder-layers and exogenous protein media supplementation. Results These well established requirements can be overcome and in this study, it will be demonstrated that phenotypic stability of hESCs can be maintained using a novel, human plasma protein-based hydrogel as an extracellular culture matrix without the use of feeder cell co-culture. hESCs were resuspended in human platelet poor plasma (PPP, which was gelled by the addition of calcium containing DMEM-based hESC culture medium. Phenotypic and genomic expression of the pluripotency markers OCT4, NANOG and SOX2 were measured using immunohistochemistry and qRT-PCR respectively. Typical hESC morphology was demonstrated throughout in vitro culture and both viability and phenotypic stability were maintained throughout extended culture, up to 25 passages. Conclusions PPP-derived hydrogel has demonstrated to be an efficacious alternative to MEF co-culture with its hydrophilicity allowing for this substrate to be delivered via minimally invasive procedures in a liquid phase with polymerization ensuing in situ. Together this provides a novel technique for the study of this unique group of stem cells in either 2D or 3D both in vitro and in vivo.

  6. Hydrogels for Engineering of Perfusable Vascular Networks.

    Science.gov (United States)

    Liu, Juan; Zheng, Huaiyuan; Poh, Patrina S P; Machens, Hans-Günther; Schilling, Arndt F

    2015-07-14

    Hydrogels are commonly used biomaterials for tissue engineering. With their high-water content, good biocompatibility and biodegradability they resemble the natural extracellular environment and have been widely used as scaffolds for 3D cell culture and studies of cell biology. The possible size of such hydrogel constructs with embedded cells is limited by the cellular demand for oxygen and nutrients. For the fabrication of large and complex tissue constructs, vascular structures become necessary within the hydrogels to supply the encapsulated cells. In this review, we discuss the types of hydrogels that are currently used for the fabrication of constructs with embedded vascular networks, the key properties of hydrogels needed for this purpose and current techniques to engineer perfusable vascular structures into these hydrogels. We then discuss directions for future research aimed at engineering of vascularized tissue for implantation.

  7. Microstructured multi-well plate for three-dimensional packed cell seeding and hepatocyte cell culture.

    Science.gov (United States)

    Goral, Vasiliy N; Au, Sam H; Faris, Ronald A; Yuen, Po Ki

    2014-07-01

    In this article, we present a microstructured multi-well plate for enabling three-dimensional (3D) high density seeding and culture of cells through the use of a standard laboratory centrifuge to promote and maintain 3D tissue-like cellular morphology and cell-specific functionality in vitro without the addition of animal derived or synthetic matrices or coagulants. Each well has microfeatures on the bottom that are comprised of a series of ditches/open microchannels. The dimensions of the microchannels promote and maintain 3D tissue-like cellular morphology and cell-specific functionality in vitro. After cell seeding with a standard pipette, the microstructured multi-well plates were centrifuged to tightly pack cells inside the ditches in order to enhance cell-cell interactions and induce formation of 3D cellular structures during cell culture. Cell-cell interactions were optimized based on cell packing by considering dimensions of the ditches/open microchannels, orientation of the microstructured multi-well plate during centrifugation, cell seeding density, and the centrifugal force and time. With the optimized cell packing conditions, we demonstrated that after 7 days of cell culture, primary human hepatocytes adhered tightly together to form cord-like structures that resembled 3D tissue-like cellular architecture. Importantly, cell membrane polarity was restored without the addition of animal derived or synthetic matrices or coagulants.

  8. The matrix reloaded: the evolution of regenerative hydrogels

    Directory of Open Access Journals (Sweden)

    Esmaiel Jabbari

    2016-05-01

    Full Text Available Cell-laden hydrogels can regenerate lost, damaged or malfunctioning tissues. Clinical success of such hydrogels is strongly dependent on the ability to tune their chemical, physico-mechanical, and biological properties to a specific application. In particular, mimicking the intricate arrangement of cell-interactive ligands of natural tissues is crucial to proper tissue function. Natural extracellular matrix elements represent a unique source for generating such interactions. A plethora of extracellular matrix-based approaches have been explored to augment the regenerative potential of hydrogels. These efforts include the development of matrix-like hydrogels, hydrogels containing matrix-like molecules, hydrogels containing decellularized matrix, hydrogels derived from decellularized matrix, and decellularized tissues as reimplantable matrix hydrogels. Here we review the evolution, strengths and weaknesses of these developments from the perspective of creating tissue regenerating hydrogels.

  9. Processing silk hydrogel and its applications in biomedical materials.

    Science.gov (United States)

    Wang, Hai-Yan; Zhang, Yu-Qing

    2015-01-01

    This review mainly introduces the types of silk hydrogels, their processing methods, and applications. There are various methods for hydrogel preparation, and many new processes are being developed for various applications. Silk hydrogels can be used in cartilage tissue engineering, drug release materials, 3D scaffolds for cells, and artificial skin, among other applications because of their porous structure and high porosity and the large surface area for growth, migration, adhesion and proliferation of cells that the hydrogels provide. All of these advantages have made silk hydrogels increasingly attractive. In addition, silk hydrogels have wide prospects for application in the field of biomedical materials.

  10. A Hydrogel Bridge Incorporating Immobilized Growth Factors and Neural Stem/Progenitor Cells to Treat Spinal Cord Injury.

    Science.gov (United States)

    Li, Hang; Ham, Trevor R; Neill, Nicholas; Farrag, Mahmoud; Mohrman, Ashley E; Koenig, Andrew M; Leipzig, Nic D

    2016-04-06

    Spinal cord injury (SCI) causes permanent, often complete disruption of central nervous system (CNS) function below the damaged region, leaving patients without the ability to regenerate lost tissue. To engineer new CNS tissue, a unique spinal cord bridge is created to deliver stem cells and guide their organization and development with site-specifically immobilized growth factors. In this study, this bridge is tested, consisting of adult neural stem/progenitor cells contained within a methacrylamide chitosan (MAC) hydrogel and protected by a chitosan conduit. Interferon-γ (IFN-γ) and platelet-derived growth factor-AA (PDGF-AA) are recombinantly produced and tagged with an N-terminal biotin. They are immobilized to streptavidin-functionalized MAC to induce either neuronal or oligodendrocytic lineages, respectively. These bridges are tested in a rat hemisection model of SCI between T8 and T9. After eight weeks treatments including chitosan conduits result in a significant reduction in lesion area and macrophage infiltration around the lesion site (p < 0.0001). Importantly, neither immobilized IFN-γ nor PDGF-AA increased macrophage infiltration. Retrograde tracing demonstrates improved neuronal regeneration through the use of immobilized growth factors. Immunohistochemistry staining demonstrates that immobilized growth factors are effective in differentiating encapsulated cells into their anticipated lineages within the hydrogel, while qualitatively reducing glial fibrillary acid protein expression.

  11. Clusters of neural stem/progenitor cells cultured on a soft poly(vinyl alcohol) hydrogel crosslinked by gamma irradiation.

    Science.gov (United States)

    Mori, Hideki; Hara, Masayuki

    2016-05-01

    Neural stem/progenitor cells (NSPCs) in the central nervous system (CNS) have the capacity to self-renew by proliferation and are multipotent, giving rise to neurons, astrocytes, and oligodendrocytes. NSPCs can be amplified in neurosphere suspension cultures for cell transplantation therapy to treat CNS diseases as well as for in vitro pharmacological/toxicological assays; however, these suspension cultures have certain limitations, including the inconvenience of changing the culture medium as well as difficulty of live imaging. In the present study, we prepared a gamma-crosslinked poly(vinyl alcohol) (PVA) hydrogel and assessed its suitability as a substrate for adherent NSPC cultures. Differentiation was determined by evaluating the expression of the markers nestin (progenitors), βIII tubulin (neurons), and glial fibrillary acidic protein and S100β (glia) by immunocytochemistry and quantitative reverse transcriptase PCR. The levels of the marker genes were similar between the two types of culture; although some variability was observed, there were no fold differences in expression. NSPCs adhered to the PVA gel as clusters and grew without differentiating into neurons and glia. The proliferation rate of cells grown on the soft PVA gel [3.75-7.5% (w/v) PVA] was approximately 70% of that of neurospheres in suspension. We conclude that gamma-crosslinked PVA hydrogels can function as a novel scaffold for maintaining adherent NSPCs in an undifferentiated state.

  12. Direct hydrogel encapsulation of pluripotent stem cells enables ontomimetic differentiation and growth of engineered human heart tissues.

    Science.gov (United States)

    Kerscher, Petra; Turnbull, Irene C; Hodge, Alexander J; Kim, Joonyul; Seliktar, Dror; Easley, Christopher J; Costa, Kevin D; Lipke, Elizabeth A

    2016-03-01

    Human engineered heart tissues have potential to revolutionize cardiac development research, drug-testing, and treatment of heart disease; however, implementation is limited by the need to use pre-differentiated cardiomyocytes (CMs). Here we show that by providing a 3D poly(ethylene glycol)-fibrinogen hydrogel microenvironment, we can directly differentiate human pluripotent stem cells (hPSCs) into contracting heart tissues. Our straight-forward, ontomimetic approach, imitating the process of development, requires only a single cell-handling step, provides reproducible results for a range of tested geometries and size scales, and overcomes inherent limitations in cell maintenance and maturation, while achieving high yields of CMs with developmentally appropriate temporal changes in gene expression. We demonstrate that hPSCs encapsulated within this biomimetic 3D hydrogel microenvironment develop into functional cardiac tissues composed of self-aligned CMs with evidence of ultrastructural maturation, mimicking heart development, and enabling investigation of disease mechanisms and screening of compounds on developing human heart tissue.

  13. Single-Step RNA Extraction from Different Hydrogel-Embedded Mesenchymal Stem Cells for Quantitative Reverse Transcription-Polymerase Chain Reaction Analysis.

    Science.gov (United States)

    Köster, Natascha; Schmiermund, Alexandra; Grubelnig, Stefan; Leber, Jasmin; Ehlicke, Franziska; Czermak, Peter; Salzig, Denise

    2016-06-01

    For many tissue engineering applications, cells such as human mesenchymal stem cells (hMSCs) must be embedded in hydrogels. The analysis of embedded hMSCs requires RNA extraction, but common extraction procedures often produce low yields and/or poor quality RNA. We systematically investigated four homogenization methods combined with eight RNA extraction protocols for hMSCs embedded in three common hydrogel types (alginate, agarose, and gelatin). We found for all three hydrogel types that using liquid nitrogen or a rotor-stator produced low RNA yields, whereas using a microhomogenizer or enzymatic/chemical hydrogel digestion achieved better yields regardless of which extraction protocol was subsequently applied. The hot phenol extraction protocol generally achieved the highest A260 values (representing up to 40.8 μg RNA per 10(6) cells), but the cetyltrimethylammonium bromide (CTAB) method produced RNA of better quality, with A260/A280 and A260/A230 ratios and UV spectra similar to the pure RNA control. The RNA produced by this method was also suitable as a template for endpoint and quantitative reverse transcription-PCR (qRT-PCR), achieving low Ct values of ∼20. The prudent choice of hydrogel homogenization and RNA extraction methods can ensure the preparation of high-quality RNA that generates reliable endpoint and quantitative RT-PCR data. We therefore propose a universal method that is suitable for the extraction of RNA from cells embedded in all three hydrogel types commonly used for tissue engineering.

  14. F 2 excimer laser (157 nm) radiation modification and surface ablation of PHEMA hydrogels and the effects on bioactivity: Surface attachment and proliferation of human corneal epithelial cells

    Science.gov (United States)

    Zainuddin; Chirila, Traian V.; Barnard, Zeke; Watson, Gregory S.; Toh, Chiong; Blakey, Idriss; Whittaker, Andrew K.; Hill, David J. T.

    2011-02-01

    Physical and chemical changes at the surface of poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels modified by ablation with an F 2 excimer laser were investigated experimentally. An important observation was that only the outer exposed surface layers of the hydrogel were affected by the exposure to 157 nm radiation. The effect of the surface changes on the tendency of cells to adhere to the PHEMA was also investigated. A 0.5 cm 2 area of the hydrogel surfaces was exposed to laser irradiation at 157 nm to fluences of 0.8 and 4 J cm -2. The changes in surface topography were analysed by light microscopy and atomic force microscopy, while the surface chemistry was characterized by attenuated total reflection infrared and X-ray photoelectron spectroscopies. Cell-interfacial interactions were examined based on the proliferation of human corneal limbal epithelial (HLE) cells cultured on the laser-modified hydrogels, and on the unexposed hydrogels and tissue culture plastic for comparison. It was observed that the surface topography of laser-exposed hydrogels showed rippled patterns with a surface roughness increasing at the higher exposure dose. The changes in surface chemistry were affected not only by an indirect effect of hydrogen and hydroxyl radicals, formed by water photolysis, on the PHEMA, but also by the direct action of laser radiation on PHEMA if the surface layers of the gel become depleted of water. The laser treatment led to a change in the surface characteristics, with a lower concentration of ester side-chains and the formation of new oxygenated species at the surface. The surface also became more hydrophobic. Most importantly, the surface chemistry and the newly created surface topographical features were able to improve the attachment, spreading and growth of HLE cells.

  15. Odontogenic cell culture in PEGDA hydrogel scaffolds for use in tooth regeneration protocols.

    Science.gov (United States)

    Jaramillo, Lorenza; Briceño, Ignacio; Durán, Camilo

    2012-01-01

    In order to obtain a tooth-like structure, embryonic oral ectoderm cells (EOE) and bone marrow-derived stem cells (BMSC) were stratified within a synthetic hydrogel matrix (PEGDA) and implanted in the ileal mesentery of adult male Lewis rats. Whole-mount in situ hybridization was used to evaluate the expression of Pitx2, Shh and Wnt10a signals indicative of tooth initiation. In rats, expression of the three markers was present in the oral ectoderm starting at embryonic stage E12.5. which was therefore selected for cell harvesting. Embryos were obtained by controlled service of young female Lewis rats in which estrus was detected by impedance reading. At E12.5, pregnant rats were humanely euthanized and embryos were collected. The mandibular segment of the first branchial arch was dissected and the mesenchyme separated from the ectoderm by enzymatic digestion with pancreatin trypsin solution. BMSCs were collected by flushing the marrow of tibiae and femurs of adult Lewis rats with alpha-MEM and cultured in alpha-MEM in 25 cm2 flasks. Second passage BMSC's were recombined with competent oral ectoderm (E12.5-E13) stratifying them within a 3D PEGDA scaffold polymerized by exposure to UV (365 nm) inside a pyramidal polypropylene mold. Constructs were incubated from 24 to 48 hrs in alpha-MEM and then implanted for four to six weeks in the mesentery of adult male (3-6 month old) Lewis rats. 76 constructs were implanted (37 experimental, 27 negative controls and 12 positive controls). Upon maturation, constructs were harvested, fixed in buffered formalin, processed and stained with hematoxylin eosin (HE). Histological evaluation of the experimental and negative constructs showed that BMSCs underwent an apoptotic process due to lack of matrix interactions, known as anoikis, and were thus incapable of interacting with the competent ectoderm. In contrast, embryonic oral ectoderm was able to proliferate during the mesenteric implantation. In conclusion, PEGDA scaffolds are

  16. Epitaxially grown polycrystalline silicon thin-film solar cells on solid-phase crystallised seed layers

    Science.gov (United States)

    Li, Wei; Varlamov, Sergey; Xue, Chaowei

    2014-09-01

    This paper presents the fabrication of poly-Si thin film solar cells on glass substrates using seed layer approach. The solid-phase crystallised P-doped seed layer is not only used as the crystalline template for the epitaxial growth but also as the emitter for the solar cell structure. This paper investigates two important factors, surface cleaning and intragrain defects elimination for the seed layer, which can greatly influence the epitaxial grown solar cell performance. Shorter incubation and crystallisation time is observed using a simplified RCA cleaning than the other two wet chemical cleaning methods, indicating a cleaner seed layer surface is achieved. Cross sectional transmission microscope images confirm a crystallographic transferal of information from the simplified RCA cleaned seed layer into the epi-layer. RTA for the SPC seed layer can effectively eliminate the intragrain defects in the seed layer and improve structural quality of both of the seed layer and the epi-layer. Consequently, epitaxial grown poly-Si solar cell on the RTA treated seed layer shows better solar cell efficiency, Voc and Jsc than the one on the seed layer without RTA treatment.

  17. Injectable hydrogel delivery plus preconditioning of mesenchymal stem cells: exploitation of SDF-1/CXCR4 axis toward enhancing the efficacy of stem cells' homing.

    Science.gov (United States)

    Naderi-Meshkin, Hojjat; Matin, Maryam M; Heirani-Tabasi, Asieh; Mirahmadi, Mahdi; Irfan-Maqsood, Muhammad; Edalatmanesh, Mohmmad Amin; Shahriyari, Mina; Ahmadiankia, Naghmeh; Moussavi, Nasser Sanjar; Bidkhori, Hamid Reza; Bahrami, Ahmad Reza

    2016-07-01

    Clinical applications of mesenchymal stem cells (MSCs) rely on their capacity to home and engraft in the appropriate target injury tissues for the long term. However, their homing efficiency has been observed to be very poor because of the lack or modifications of homing factors SDF-1α and CXCR4 receptors. Hence, this study was designed to investigate the homing and retention of pretreated human adipose tissue-derived MSCs (hASCs) from three different delivery routes in response to SDF-1α, released from chitosan-based injectable hydrogels. After stimulation of ASCs with a hypoxia mimicking agent, the expression level and functionality of CXCR4 were analyzed by flowcytometric analysis (FACS), transwell migration assay and qPCR. Then, the homing/retention of pretreated DiI-labeled hASCs were compared through three different in vivo delivery routes, 2 weeks after transplantation in Wistar rats. The cells were tracked histologically by fluorescent microscope and by PCR for human-specific CXCR4 gene. Results showed CXCR4 has dynamic expression pattern and pretreatment of hASCs significantly up-regulates CXCR4, leading to an increase in migration capacity toward 100 ng/mL SDF-1α in vitro and homing into the subcutaneously implanted hydrogel releasing SDF-1α in vivo. Furthermore, it seems that SDF-1α is particularly important in the retention of ASCs, in addition to its chemoattraction role. In summary, the delivery route in which the ASCs were mixed with the hydrogel rather than systemic delivery and local injection and preconditioning undertaken to increase CXCR4 expression concomitant with SDF-1α delivery by the injectable hydrogel, allowed for further homing/retention of ASCs. This might be a promising way to get better therapeutic outcomes in stem cell therapy.

  18. Human dental pulp stem cell is a promising autologous seed cell for bone tissue engineering

    Institute of Scientific and Technical Information of China (English)

    LI Jing-hui; LIU Da-yong; ZHANG Fang-ming; WANG Fan; ZHANG Wen-kui; ZHANG Zhen-ting

    2011-01-01

    Background The seed cell is a core problem in bone tissue engineering research.Recent research indicates that human dental pulp stem cells (hDPSCs) can differentiate into osteoblasts in vitro,which suggests that they may become a new kind of seed cells for bone tissue engineering.The aim of this study was to evaluate the osteogenic differentiation of hDPSCs in vitro and bone-like tissue formation when transplanted with three-dimensional gelatin scaffolds in vivo,and hDPSCs may become appropriate seed cells for bone tissue engineering.Methods We have utilized enzymatic digestion to obtain hDPSCs from dental pulp tissue extracted during orthodontic treatment.After culturing and expansion to three passages,the cells were seeded in 6-well plates or on three-dimensional gelatin scaffolds and cultured in osteogenic medium.After 14 days in culture,the three-dimensional gelatin scaffolds were implanted subcutaneously in nude mice for 4 weeks.In 6-well plate culture,osteogenesis was assessed by alkaline phosphatase staining,Von Kossa staining,and reverse transcription-polymerase chain reaction (RT-PCR) analysis of the osteogenesis-specific genes type I collagen (COL l),bone sialoprotein (BSP),osteocalcin (OCN),RUNX2,and osterix (OSX).In three-dimensional gelatin scaffold culture,X-rays,hematoxylin/eosin staining,and immunohistochemical staining were used to examine bone formation.Results In vitro studies revealed that hDPSCs do possess osteogenic differentiation potential.In vivo studies revealed that hDPSCs seeded on gelatin scaffolds can form bone structures in heterotopic sites of nude mice.Conclusions These findings suggested that hDPSCs may be valuable as seed cells for bone tissue engineering.As a special stem cell source,hDPSCs may blaze a new path for bone tissue engineering.

  19. Programmed cell death during development of cowpea (Vigna unguiculata (L.) Walp.) seed coat.

    Science.gov (United States)

    Lima, Nathália Bastos; Trindade, Fernanda Gomes; da Cunha, Maura; Oliveira, Antônia Elenir Amâncio; Topping, Jennifer; Lindsey, Keith; Fernandes, Kátia Valevski Sales

    2015-04-01

    The seed coat develops primarily from maternal tissues and comprises multiple cell layers at maturity, providing a metabolically dynamic interface between the developing embryo and the environment during embryogenesis, dormancy and germination of seeds. Seed coat development involves dramatic cellular changes, and the aim of this research was to investigate the role of programmed cell death (PCD) events during the development of seed coats of cowpea [Vigna unguiculata (L.) Walp.]. We demonstrate that cells of the developing cowpea seed coats undergo a programme of autolytic cell death, detected as cellular morphological changes in nuclei, mitochondria, chloroplasts and vacuoles, DNA fragmentation and oligonucleosome accumulation in the cytoplasm, and loss of membrane viability. We show for the first time that classes 6 and 8 caspase-like enzymes are active during seed coat development, and that these activities may be compartmentalized by translocation between vacuoles and cytoplasm during PCD events.

  20. Cell patch seeding and functional analysis of cellularized scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P R Anil [Division of Implant Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 (India); Varma, H K [Bioceramics Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 (India); Kumary, T V [Division of Implant Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 (India)

    2007-03-01

    Cell seeding has a direct impact on the final structure and function of tissue constructs, especially for applications like tissue engineering and regeneration. In this study seeding cell patches retrieved from the thermoresponsive poly(N-isopropylacrylamide) surface were used to generate in vitro tissue constructs. Porous and dense bone substitute materials were cellularized using osteoblast cells by a patch transfer and a trypsin method. The function and proliferation of cells was analyzed after 7 days of culture. The relative cell growth rate was found to be higher in cellularized porous hydroxyapatite (PHA) than in dense hydroxyapatite. Live-dead staining confirmed viable cells inside the pores of PHA. Increased alkaline phosphatase activity of cells transferred by the cell patch over the trypsin method revealed the significance of cell patch seeding. This novel method of generating tissue constructs by cell patch seeding was successful in cellularizing scaffolds with intact cell function.

  1. Cell patch seeding and functional analysis of cellularized scaffolds for tissue engineering.

    Science.gov (United States)

    Anil Kumar, P R; Varma, H K; Kumary, T V

    2007-03-01

    Cell seeding has a direct impact on the final structure and function of tissue constructs, especially for applications like tissue engineering and regeneration. In this study seeding cell patches retrieved from the thermoresponsive poly(N-isopropylacrylamide) surface were used to generate in vitro tissue constructs. Porous and dense bone substitute materials were cellularized using osteoblast cells by a patch transfer and a trypsin method. The function and proliferation of cells was analyzed after 7 days of culture. The relative cell growth rate was found to be higher in cellularized porous hydroxyapatite (PHA) than in dense hydroxyapatite. Live-dead staining confirmed viable cells inside the pores of PHA. Increased alkaline phosphatase activity of cells transferred by the cell patch over the trypsin method revealed the significance of cell patch seeding. This novel method of generating tissue constructs by cell patch seeding was successful in cellularizing scaffolds with intact cell function.

  2. Double-Network Hydrogel with Tunable Mechanical Performance and Biocompatibility for the Fabrication of Stem Cells-Encapsulated Fibers and 3D Assemble

    Science.gov (United States)

    Liang, Zhe; Liu, Chenguang; Li, Lili; Xu, Peidi; Luo, Guoan; Ding, Mingyu; Liang, Qionglin

    2016-01-01

    Fabrication of cell-encapsulated fibers could greatly contribute to tissue engineering and regenerative medicine. However, existing methods suffered from not only unavoidability of cell damaging conditions and/or sophisticated equipment, but also unavailability of proper materials to satisfy both mechanical and biological expectations. In this work, a simple method is proposed to prepare cell-encapsulated fibers with tunable mechanical strength and stretching behavior as well as diameter and microstructure. The hydrogel fibers are made from optimal combination of alginate and poly(N-iso-propylacrylamide)-poly(ethylene glycol), characteristics of double-network hydrogel, with enough stiffness and flexibility to create a variety of three dimensional structures like parallel helical and different knots without crack. Furthermore, such hydrogel fibers exhibit better compatibility as indicated by the viability, proliferation and expression of pluripotency markers of embryonic stem cells encapsulated after 4-day culture. The double-network hydrogel possesses specific quick responses to either of alginate lyase, EDTA or lower environmental temperature which facilitate the optional degradation of fibers or fibrous assemblies to release the cells encapsulated for subsequent assay or treatment. PMID:27628933

  3. Tissue Equivalents Based on Cell-Seeded Biodegradable Microfluidic Constructs

    Directory of Open Access Journals (Sweden)

    Sarah L. Tao

    2010-03-01

    Full Text Available One of the principal challenges in the field of tissue engineering and regenerative medicine is the formation of functional microvascular networks capable of sustaining tissue constructs. Complex tissues and vital organs require a means to support oxygen and nutrient transport during the development of constructs both prior to and after host integration, and current approaches have not demonstrated robust solutions to this challenge. Here, we present a technology platform encompassing the design, construction, cell seeding and functional evaluation of tissue equivalents for wound healing and other clinical applications. These tissue equivalents are comprised of biodegradable microfluidic scaffolds lined with microvascular cells and designed to replicate microenvironmental cues necessary to generate and sustain cell populations to replace dermal and/or epidermal tissues lost due to trauma or disease. Initial results demonstrate that these biodegradable microfluidic devices promote cell adherence and support basic cell functions. These systems represent a promising pathway towards highly integrated three-dimensional engineered tissue constructs for a wide range of clinical applications.

  4. Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D,L-lactide)-based resins.

    Science.gov (United States)

    Seck, Tetsu M; Melchels, Ferry P W; Feijen, Jan; Grijpma, Dirk W

    2010-11-20

    Designed three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared for the first time by stereolithography at high resolutions. A photo-polymerisable aqueous resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibitor in DMSO/water was used to build the structures. Porous and non-porous hydrogels with well-defined architectures and good mechanical properties were prepared. Porous hydrogel structures with a gyroid pore network architecture showed narrow pore size distributions, excellent pore interconnectivity and good mechanical properties. The structures showed good cell seeding characteristics, and human mesenchymal stem cells adhered and proliferated well on these materials.

  5. PRAGMATIC HYDROGELS

    Directory of Open Access Journals (Sweden)

    Patil S.A.

    2011-03-01

    Full Text Available Man has always been plagued with many ailments and diseases. The field of pharmaceutical science has today become more invaluable in helping to keep us healthy and prevent disease. The availability of large molecular weight protein and peptide-based drugs due to the recent advances has given us a new ways to treat a number of diseases. I wish to present new and promising techniques for the production of drug and protein delivery formulations that have been developed that is Hydrogel. These are presently under investigation as a delivery system for bioactive molecules as having similar physical properties as that of living tissue, which is due to their high water content, soft and rubbery consistency and low interfacial tension with water and biological fluids. Hydrogels are three-dimensional, hydrophilic, polymeric networks capable of imbibing large amounts of water or biological fluids. The networks are composed of homopolymers or copolymers, and are insoluble due to the presence of chemical crosslink (tie-points, junctions or physical crosslink, such as entanglements or crystallite. The latter provide the network structure and physical integrity. These hydrogels exhibit a thermodynamic compatibility with water which allows them to swell in aqueous media. The nature of the degradation product can be tailored by a rational and proper selection of building blocks. The soft and rubbery nature of hydrogels minimizes irritation to surrounding tissues. In general, hydrogels possess good biocompatibility and biodegradability.

  6. Pulmonary heart valve replacement using stabilized acellular xenogeneic scaffolds; effects of seeding with autologous stem cells

    Directory of Open Access Journals (Sweden)

    Harpa Marius Mihai

    2015-12-01

    Full Text Available Background: We hypothesized that an ideal heart valve replacement would be acellular valve root scaffolds seeded with autologous stem cells. To test this hypothesis, we prepared porcine acellular pulmonary valves, seeded them with autologous adipose derived stem cells (ADSCs and implanted them in sheep and compared them to acellular valves.

  7. A 1-min method for homogenous cell seeding in porous scaffolds

    NARCIS (Netherlands)

    Tan, Lijun; Ren, Yijin; Kuijer, Roel

    2012-01-01

    The aim of this study was to develop and evaluate a simple and rapid cell seeding procedure for both calcium phosphate ceramic scaffolds and polymer scaffolds. Poly(D,L-lactic acid) and beta-tri-calcium phosphate scaffolds were seeded with MC3T3-E1 cells in a syringe. Scaffolds were put in the syrin

  8. In Vivo Cell Wall Loosening by Hydroxyl Radicals during Cress Seed Germination and Elongation Growth

    NARCIS (Netherlands)

    Muller, K.; Linkies, A.; Vreeburg, R.A.M.; Fry, S.C.; Krieger-Liszkay, A.; Leubner-Metzger, G.

    2009-01-01

    Loosening of cell walls is an important developmental process in key stages of the plant life cycle, including seed germination, elongation growth, and fruit ripening. Here, we report direct in vivo evidence for hydroxyl radical (·OH)-mediated cell wall loosening during plant seed germination and se

  9. Development of Electrically Conductive Double-Network Hydrogels via One-Step Facile Strategy for Cardiac Tissue Engineering.

    Science.gov (United States)

    Yang, Boguang; Yao, Fanglian; Hao, Tong; Fang, Wancai; Ye, Lei; Zhang, Yabin; Wang, Yan; Li, Junjie; Wang, Changyong

    2016-02-18

    Cardiac tissue engineering is an effective method to treat the myocardial infarction. However, the lack of electrical conductivity of biomaterials limits their applications. In this work, a homogeneous electronically conductive double network (HEDN) hydrogel via one-step facile strategy is developed, consisting of a rigid/hydrophobic/conductive network of chemical crosslinked poly(thiophene-3-acetic acid) (PTAA) and a flexible/hydrophilic/biocompatible network of photo-crosslinking methacrylated aminated gelatin (MAAG). Results suggest that the swelling, mechanical, and conductive properties of HEDN hydrogel can be modulated via adjusting the ratio of PTAA network to MAAG network. HEDN hydrogel has Young's moduli ranging from 22.7 to 493.1 kPa, and its conductivity (≈10(-4) S cm(-1)) falls in the range of reported conductivities for native myocardium tissue. To assess their biological activity, the brown adipose-derived stem cells (BADSCs) are seeded on the surface of HEDN hydrogel with or without electrical stimulation. Our data show that the HEDN hydrogel can support the survival and proliferation of BADSCs, and that it can improve the cardiac differentiation efficiency of BADSCs and upregulate the expression of connexin 43. Moreover, electrical stimulation can further improve this effect. Overall, it is concluded that the HEDN hydrogel may represent an ideal scaffold for cardiac tissue engineering.

  10. Encapsulation of bone morphogenic protein-2 with Cbfa1-overexpressing osteogenic cells derived from human embryonic stem cells in hydrogel accelerates bone tissue regeneration.

    Science.gov (United States)

    Kim, Min Jung; Park, Ji Sun; Kim, Sinae; Moon, Sung-Hwan; Yang, Han Na; Park, Keun-Hong; Chung, Hyung-Min

    2011-08-01

    Bone tissue defects caused by trauma and disease are significant problems in orthopedic surgery. Human embryonic stem cells (hESCs) hold great promise for the treatment of bone tissue disease in regenerative medicine. In this study, we have established an effective method for the differentiation of osteogenic cells derived from hESCs using a lentiviral vector containing the transcription factor Cbfa1. Differentiation was initiated in embryoid body formation of Cbfa1-expressing hESCs, resulting in a highly purified population of osteogenic cells based on flow cytometric analysis. These cells also showed characteristics of osteogenic cells in vitro, as determined by reverse-transcription (RT)-polymerase chain reaction and immunocytochemistry using osteoblast-specific markers. We also evaluated the regenerative potential of Cbfa1-expressing cells derived from hESCs (hESC-CECs) compared with hESCs and the osteogenic effects of bone morphogenic protein-2 (BMP2) encapsulated in thermoreversible hydrogel in vivo. hESC-CECs were embedded in hydrogel constructs enriched with BMP2 to promote bone regeneration. We observed prominent mineralization and the formation of nodule-like structures using von Kossa and alizarin red S staining. In addition, the expression patterns of osteoblast-specific genes were verified by RT-polymerase chain reaction, and immunohistochemical analysis revealed that collagen type 1 and Cbfa1 were highly expressed in hESC-CECs compared with other cell types. Taken together, our results suggest that encapsulation of hESC-CECs with BMP2 in hydrogel constructs appears to be a promising method to enhance the in vitro osteoblastic differentiation and in vivo osteogenic activity of hESC-CECs.

  11. Hydrogel based occlusion systems

    NARCIS (Netherlands)

    Stam, F.A.; Jackson, N.; Dubruel, P.; Adesanya, K.; Embrechts, A.; Mendes, E.; Neves, H.P.; Herijgers, P.; Verbrugghe, Y.; Shacham, Y.; Engel, L.; Krylov, V.

    2013-01-01

    A hydrogel based occlusion system, a method for occluding vessels, appendages or aneurysms, and a method for hydrogel synthesis are disclosed. The hydrogel based occlusion system includes a hydrogel having a shrunken and a swollen state and a delivery tool configured to deliver the hydrogel to a tar

  12. Model-based strategy for cell culture seed train layout verified at lab scale.

    Science.gov (United States)

    Kern, Simon; Platas-Barradas, Oscar; Pörtner, Ralf; Frahm, Björn

    2016-08-01

    Cell culture seed trains-the generation of a sufficient viable cell number for the inoculation of the production scale bioreactor, starting from incubator scale-are time- and cost-intensive. Accordingly, a seed train offers potential for optimization regarding its layout and the corresponding proceedings. A tool has been developed to determine the optimal points in time for cell passaging from one scale into the next and it has been applied to two different cell lines at lab scale, AGE1.HN AAT and CHO-K1. For evaluation, experimental seed train realization has been evaluated in comparison to its layout. In case of the AGE1.HN AAT cell line, the results have also been compared to the formerly manually designed seed train. The tool provides the same seed train layout based on the data of only two batches.

  13. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells.

    Science.gov (United States)

    Neufurth, Meik; Wang, Xiaohong; Schröder, Heinz C; Feng, Qingling; Diehl-Seifert, Bärbel; Ziebart, Thomas; Steffen, Renate; Wang, Shunfeng; Müller, Werner E G

    2014-10-01

    Sodium alginate hydrogel, stabilized with gelatin, is a suitable, biologically inert matrix that can be used for encapsulating and 3D bioprinting of bone-related SaOS-2 cells. However, the cells, embedded in this matrix, remain in a non-proliferating state. Here we show that addition of an overlay onto the bioprinted alginate/gelatine/SaOS-2 cell scaffold, consisting of agarose and the calcium salt of polyphosphate [polyP·Ca(2+)-complex], resulted in a marked increase in cell proliferation. In the presence of 100 μm polyP·Ca(2+)-complex, the cells proliferate with a generation time of approximately 47-55 h. In addition, the hardness of the alginate/gelatin hydrogel substantially increases in the presence of the polymer. The reduced Young's modulus for the alginate/gelatin hydrogel is approximately 13-14 kPa, and this value drops to approximately 0.5 kPa after incubation of the cell containing scaffolds for 5 d. In the presence of 100 μm polyP·Ca(2+)-complex, the reduced Young's modulus increases to about 22 kPa. The hardness of the polyP·Ca(2+)-complex containing hydrogel remains essentially constant if cells are absent in the matrix, but it drops to 3.2 kPa after a 5 d incubation period in the presence of SaOS-2 cells, indicating that polyP·Ca(2+)-complex becomes metabolized, degraded, by the cells. The alginate/gelatine-agarose system with polyP·Ca(2+)-complex cause a significant increase in the mineralization of the cells. SEM analyses revealed that the morphology of the mineral nodules formed on the surface of the cells embedded in the alginate/gelatin hydrogel do not significantly differ from the nodules on cells growing in monolayer cultures. The newly developed technique, using cells encapsulated into an alginate/gelatin hydrogel and a secondary layer containing the morphogenetically active, growth promoting polymer polyP·Ca(2+)-complex opens new possibilities for the application of 3D bioprinting in bone tissue engineering.

  14. Bilayer Hydrogel with Autologous Stem Cells Derived from Debrided Human Burn Skin for Improved Skin Regeneration

    Science.gov (United States)

    2013-02-01

    to assess tis- sue viability and burn depth, and an abdominoplasty procedure skin sample was used as a control. The granulated skin tissue from the...BD Bioscience, San Jose, CA), or platelet -derived growth factor receptor beta (PDGFRβ; 50 μg/ml; BD Bioscience, San Jose, CA). The slides were...bilayer hydrogels alone showed an increase in granulation tissue formation by day 8 (Figure 6E; serrated line across wound bed and Figure 6F) and by

  15. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels.

    Science.gov (United States)

    Rutz, Alexandra L; Hyland, Kelly E; Jakus, Adam E; Burghardt, Wesley R; Shah, Ramille N

    2015-03-04

    A multimaterial bio-ink method using polyethylene glycol crosslinking is presented for expanding the biomaterial palette required for 3D bioprinting of more mimetic and customizable tissue and organ constructs. Lightly crosslinked, soft hydrogels are produced from precursor solutions of various materials and 3D printed. Rheological and biological characterizations are presented, and the promise of this new bio-ink synthesis strategy is discussed.

  16. One-dimensional self-assembly of mouse embryonic stem cells using an array of hydrogel microstrands.

    Science.gov (United States)

    Raof, Nurazhani Abdul; Padgen, Michael R; Gracias, Alison R; Bergkvist, Magnus; Xie, Yubing

    2011-07-01

    The ability of embryonic stem (ES) cells to self-renew indefinitely and to differentiate into multiple cell lineages holds promise for advances in modeling disease progression, screening drugs and treating diseases. To realize these potentials, it is imperative to study self-assembly in an embryonic microenvironment, as this may increase our understanding of ES cell maintenance and differentiation. In this study, we synthesized an array of one-dimensional alginate gel microstrands and aqueous microstrands through an SU-8 filter device by means of capillary action. Furthermore, we investigated self-assembly behaviors and differentiation potentials of mouse ES cells cultured in microstrands of varying diameters. We found that microstrands with an aqueous interior facilitated high density cell culture and formed compact microtissue structures, while microstrands with gelled interiors promote smaller cell aggregate structures. In particular, we noticed that ES cells collected from one-dimensional aqueous microstrands favored the differentiation towards cell lineages of endoderm and mesoderm, whereas those from gelled microstrands preferred to differentiate into ectoderm and mesoderm lineages. In addition to providing a "liquid-like" tubular microenvironment to understand one-dimensional self-assembly process of ES cells, this alginate hydrogel microstrand system also offers an alternative way to manipulate the stem cell fate-decision using bioengineered microenvironments.

  17. Culture phases, cytotoxicity and protein expressions of agarose hydrogel induced Sp2/0, A549, MCF-7 cell line 3D cultures.

    Science.gov (United States)

    Ravi, Maddaly; Kaviya, S R; Paramesh, V

    2016-05-01

    Advancements in cell cultures are occurring at a rapid pace, an important direction is culturing cells in 3D conditions. We demonstrate the usefulness of agarose hydrogels in obtaining 3 dimensional aggregates of three cell lines, A549, MCF-7 and Sp2/0. The differences in culture phases, susceptibility to cisplatin-induced cytotoxicity are studied. Also, the 3D aggregates of the three cell lines were reverted into 2D cultures and the protein profile differences among the 2D, 3D and revert cultures were studied. The analysis of protein profile differences using UniProt data base further augment the usefulness of agarose hydrogels for obtaining 3D cell cultures.

  18. An amidated carboxymethylcellulose hydrogel for cartilage regeneration.

    Science.gov (United States)

    Leone, Gemma; Fini, Milena; Torricelli, Paola; Giardino, Roberto; Barbucci, Rolando

    2008-08-01

    An amidic derivative of carboxymethylcellulose was synthesized (CMCA). The new polysaccharide was obtained by converting a large percentage of carboxylic groups ( approximately 50%) of carboxymethylcellulose into amidic groups rendering the macromolecule quite similar to hyaluronan. Then, the polysaccharide (CMCA) was crosslinked. The behavior of CMCA hydrogel towards normal human articular chondrocytes (NHAC) was in vitro studied monitoring the cell proliferation and synthesis of extra cellular matrix (ECM) components and compared with a hyaluronan based hydrogel (Hyal). An extracellular matrix rich in cartilage-specific collagen and proteoglycans was secreted in the presence of hydrogels. The injectability of the new hydrogels was also analysed. An experimental in vivo model was realized to study the effect of CMCA and Hyal hydrogels in the treatment of surgically created partial thickness chondral defects in the rabbit knee. The preliminary results pointed out that CMCA hydrogel could be considered as a potential compound for cartilage regeneration.

  19. Fabrication of Negative Charged Poly (Ethylene glycol)-diacrylate Hydrogel as a Bone Tissue Engineering scaffold

    Institute of Scientific and Technical Information of China (English)

    WANG Ya-qi; LIU Jie; TAN Fei; XIE Wei

    2016-01-01

    Objective To improve the cell attachment of PEGDA hydrogel, the SMAS small molecule was used to modify the PEGDA hydrogel. The charged hydrogel would show improved cell attachment and enhanced protein adsorption caused by enhancement of electrostatic adsorption.Method In this study, a series of charged hydrogels were produced by adding different concentrations of charged small molecule monomer into the PEGDA solution. Then, we investigate the physicochemical and biological characteristics of charged hydrogels, including FTIR, swelling ratio, contact angle, cell attachment.Result The results indicate that the charged monomer had been successfully incorporated into PEGDA hydrogel. Meanwhile, the protein adsorption of the hydrogel increased with increasing concentration of charge modification. Moreover, compared to PEGDA hydrogel, the cell attachment significantly improved on the charged hydrogel.Conclusion The charged hydrogel would be a promising scaffold candidate for bone tissue engineering.

  20. Injectable, Biodegradable Hydrogels for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Huaping Tan

    2010-03-01

    Full Text Available Hydrogels have many different applications in the field of regenerative medicine. Biodegradable, injectable hydrogels could be utilized as delivery systems, cell carriers, and scaffolds for tissue engineering. Injectable hydrogels are an appealing scaffold because they are structurally similar to the extracellular matrix of many tissues, can often be processed under relatively mild conditions, and may be delivered in a minimally invasive manner. This review will discuss recent advances in the field of injectable hydrogels, including both synthetic and native polymeric materials, which can be potentially used in cartilage and soft tissue engineering applications.

  1. Evaluation of TPGS-modified thermo-sensitive Pluronic PF127 hydrogel as a potential carrier to reverse the resistance of P-gp-overexpressing SMMC-7721 cell lines.

    Science.gov (United States)

    Gao, Lei; Wang, Xiaoqing; Ma, Jianli; Hao, Daifeng; Wei, Pei; Zhou, Liang; Liu, Guiyang

    2016-04-01

    In the present studies locally injectable docetaxel nanocrystals loaded d-alpha tocopheryl polyethylene glycol 1000 succinate-modified Pluronic F127 (DOC-NCs-TPGS-PF127) thermo-sensitive hydrogels were prepared to reverse drug resistance of P-glycoprotein (P-gp)-overexpressing human liver cancer SMMC-7721 tumors. Firstly, DOC nanosuspensions with mean particle size of 196nm were prepared and dispersed into series of mixed solutions containing PF127 and TPGS of different ratios to obtain DOC-NCs-TPGS-PF127 hydrogels. DOC NCs, exhibiting a uniform distribution and very good physical stability during three sol-gel cycles in the hydrogel network, did not influence the gelation temperature. Swelling-dependent release pattern was found for DOC NCs from hydrogels and release profiles could be well fitted by the Peppas equation. MTT test showed that hydrogels containing 0% or 0.1% TPGS had no cytotoxicity against L929 fibroblasts. Both DOC solution and DOC-NCs-TPGS-PF127 hydrogels exhibited obvious cytotoxicity against sensitive SMMC-7721 cells. When resistant SMMC7721 cells were treated, DOC-NCs-TPGS-PF127 hydrogels showed significantly higher cytotoxicity compared with DOC solution and hydrogels containing no TPGS (DOC-NCs-PF127), with markedly lower IC50 and resistant index (RI). After intratumoral injection in SMMC-7721/RT tumor xenograft Balb/c mice model, DOC-NCs-TPGS-PF127 hydrogels exhibited about 5-fold increase and 1.8-fold increase in the inhibition rate of tumor growth compared with intravenous and intratumoral injection of DOC solution, respectively. It could be concluded that TPGS-modified PF127 thermo-sensitive hydrogel was an excellent locally injectable carrier to reverse P-gp overexpression associated multi-drug resistance.

  2. Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering.

    Science.gov (United States)

    Zhao, Xin; Lang, Qi; Yildirimer, Lara; Lin, Zhi Yuan; Cui, Wenguo; Annabi, Nasim; Ng, Kee Woei; Dokmeci, Mehmet R; Ghaemmaghami, Amir M; Khademhosseini, Ali

    2016-01-01

    Natural hydrogels are promising scaffolds to engineer epidermis. Currently, natural hydrogels used to support epidermal regeneration are mainly collagen- or gelatin-based, which mimic the natural dermal extracellular matrix but often suffer from insufficient and uncontrollable mechanical and degradation properties. In this study, a photocrosslinkable gelatin (i.e., gelatin methacrylamide (GelMA)) with tunable mechanical, degradation, and biological properties is used to engineer the epidermis for skin tissue engineering applications. The results reveal that the mechanical and degradation properties of the developed hydrogels can be readily modified by varying the hydrogel concentration, with elastic and compressive moduli tuned from a few kPa to a few hundred kPa, and the degradation times varied from a few days to several months. Additionally, hydrogels of all concentrations displayed excellent cell viability (>90%) with increasing cell adhesion and proliferation corresponding to increases in hydrogel concentrations. Furthermore, the hydrogels are found to support keratinocyte growth, differentiation, and stratification into a reconstructed multilayered epidermis with adequate barrier functions. The robust and tunable properties of GelMA hydrogels suggest that the keratinocyte laden hydrogels can be used as epidermal substitutes, wound dressings, or substrates to construct various in vitro skin models.

  3. Fabrication and development of artificial osteochondral constructs based on cancellous bone/hydrogel hybrid scaffold.

    Science.gov (United States)

    Song, Kedong; Li, Liying; Yan, Xinyu; Zhang, Yu; Li, Ruipeng; Wang, Yiwei; Wang, Ling; Wang, Hong; Liu, Tianqing

    2016-06-01

    Using tissue engineering techniques, an artificial osteochondral construct was successfully fabricated to treat large osteochondral defects. In this study, porcine cancellous bones and chitosan/gelatin hydrogel scaffolds were used as substitutes to mimic bone and cartilage, respectively. The porosity and distribution of pore size in porcine bone was measured and the degradation ratio and swelling ratio for chitosan/gelatin hydrogel scaffolds was also determined in vitro. Surface morphology was analyzed with the scanning electron microscope (SEM). The physicochemical properties and the composition were tested by using an infrared instrument. A double layer composite scaffold was constructed via seeding adipose-derived stem cells (ADSCs) induced to chondrocytes and osteoblasts, followed by inoculation in cancellous bones and hydrogel scaffolds. Cell proliferation was assessed through Dead/Live staining and cellular activity was analyzed with IpWin5 software. Cell growth, adhesion and formation of extracellular matrix in composite scaffolds blank cancellous bones or hydrogel scaffolds were also analyzed. SEM analysis revealed a super porous internal structure of cancellous bone scaffolds and pore size was measured at an average of 410 ± 59 μm while porosity was recorded at 70.6 ± 1.7 %. In the hydrogel scaffold, the average pore size was measured at 117 ± 21 μm and the porosity and swelling rate were recorded at 83.4 ± 0.8 % and 362.0 ± 2.4 %, respectively. Furthermore, the remaining hydrogel weighed 80.76 ± 1.6 % of the original dry weight after hydration in PBS for 6 weeks. In summary, the cancellous bone and hydrogel composite scaffold is a promising biomaterial which shows an essential physical performance and strength with excellent osteochondral tissue interaction in situ. ADSCs are a suitable cell source for osteochondral composite reconstruction. Moreover, the bi-layered scaffold significantly enhanced cell proliferation compared to the cells seeded on

  4. Research on the printability of hydrogels in 3D bioprinting

    OpenAIRE

    Yong He; FeiFei Yang; HaiMing Zhao; Qing Gao; Bing Xia; JianZhong Fu

    2016-01-01

    As the biocompatible materials, hydrogels have been widely used in three- dimensional (3D) bioprinting/organ printing to load cell for tissue engineering. It is important to precisely control hydrogels deposition during printing the mimic organ structures. However, the printability of hydrogels about printing parameters is seldom addressed. In this paper, we systemically investigated the printability of hydrogels from printing lines (one dimensional, 1D structures) to printing lattices/films ...

  5. Bacterial cellulose-polyaniline nano-biocomposite: A porous media hydrogel bioanode enhancing the performance of microbial fuel cell

    Science.gov (United States)

    Mashkour, Mehrdad; Rahimnejad, Mostafa; Mashkour, Mahdi

    2016-09-01

    Microbial fuel cells (MFCs) are one of the possible renewable energy supplies which microorganisms play an active role in bio-oxidize reactions of a substrate such as glucose. Electrode materials and surface modifications are highly effective tools in enhancing MFCs' Performance. In this study, new composite anodes are fabricated. Bacterial cellulose (BC) is used as continuous phase and polyaniline (PANI) as dispersed one which is synthesized by in situ chemical oxidative polymerization on BC's fibers. With hydrogel nature of BC as a novel feature and polyaniline conductivity there meet the favorable conditions to obtain an active microbial biofilm on anode surface. Maximum power density of 117.76 mW/m2 in current density of 617 mA/m2 is achieved for BC/PANI anode. The amounts demonstrate a considerable enhancement compared with graphite plate (1 mW/m2 and 10 mA/m2).

  6. Controlled mineralisation and recrystallisation of brushite within alginate hydrogels.

    Science.gov (United States)

    Bjørnøy, Sindre H; Bassett, David C; Ucar, Seniz; Andreassen, Jens-Petter; Sikorski, Pawel

    2016-02-02

    Due to high solubility and fast resorption behaviour under physiological conditions, brushite (CaHPO4⋅2H2O, calcium monohydrogen phosphate dihydrate, dicalcium phosphate dihydrate) has great potential in bone regeneration applications, both in combination with scaffolds or as a component of calcium phosphate cements. The use of brushite in combination with hydrogels opens up possibilities for new cell-based tissue engineering applications of this promising material. However, published preparation methods of brushite composites, in which the mineral phase is precipitated within the hydrogel network, fail to offer the necessary degree of control over the mineral phase, content and distribution within the hydrogel matrix. The main focus of this study is to address these shortcomings by determining the precise fabrication parameters needed to prepare composites with controlled composition and properties. Composite alginate microbeads were prepared using a counter-diffusion technique, which allows for the simultaneous crosslinking of the hydrogel and precipitation of an inorganic mineral phase. Reliable nucleation of a desired mineral phase within the alginate network proved more challenging than simple aqueous precipitation. This was largely due to ion transport within the hydrogel producing concentration gradients that modified levels of supersaturation and favoured the nucleation of other phases such as hydroxyapatite and octacalcium phosphate, which would otherwise not form. To overcome this, the incorporation of brushite seed crystals resulted in good control during the mineral phase, and by adjusting the number of seeds and amount of precursor concentration, the amount of mineral could be tuned. The material was characterised with a range of physical techniques, including scanning electron microscopy, powder x-ray diffraction and Rietveld refinement, Fourier transform infrared spectroscopy, and thermogravimetric analysis, in order to assess the mineral

  7. Cytotoxic activity of kenaf (Hibiscus cannabinus L.) seed extract and oil against human cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Yu Hua Wong; Wai Yan Tan; Chin Ping Tan; Kamariah Long; Kar Lin Nyam

    2014-01-01

    Objective: To examine the cytotoxic properties of both the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cervical cancer, human breast cancer, human colon cancer and human lung cancer cell lines.Methods:kenaf seed oil on human cancer cell lines was evaluated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and sulforhodamine B assays. Cell morphological changes were observed by using an inverted light microscope.Results:The in vitro cytotoxic activity of the kenaf (Hibiscus cannabinus L.) seed extract and cancer cell lines. Morphological alterations in the cell lines after KSE and KSO treatment were observed. KSE and KSO possessed effective cytotoxic activities against all the cell lines been selected.Conclusions:KSE and KSO could be potential sources of natural anti-cancer agents. Further The kenaf seed extract (KSE) exhibited a lower IC50 than kenaf seed oil (KSO) in all of the investigations on using kenaf seeds for anti-proliferative properties are warranted.

  8. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting.

    Science.gov (United States)

    Wüst, Silke; Godla, Marie E; Müller, Ralph; Hofmann, Sandra

    2014-02-01

    Three-dimensional (3-D) bioprinting is the layer-by-layer deposition of biological material with the aim of achieving stable 3-D constructs for application in tissue engineering. It is a powerful tool for the spatially directed placement of multiple materials and/or cells within the 3-D sample. Encapsulated cells are protected by the bioink during the printing process. Very few materials are available that fulfill requirements for bioprinting as well as provide adequate properties for cell encapsulation during and after the printing process. A hydrogel composite including alginate and gelatin precursors was tuned with different concentrations of hydroxyapatite (HA) and characterized in terms of rheology, swelling behavior and mechanical properties to assess the versatility of the system. Instantaneous as well as long-term structural integrity of the printed hydrogel was achieved with a two-step mechanism combining the thermosensitive properties of gelatin with chemical crosslinking of alginate. Novel syringe tip heaters were developed for improved temperature control of the bioink to avoid clogging. Human mesenchymal stem cells mixed into the hydrogel precursor survived the printing process and showed high cell viability of 85% living cells after 3 days of subsequent in vitro culture. HA enabled the visualization of the printed structures with micro-computed tomography. The inclusion of HA also favors the use of the bioink for bone tissue engineering applications. By adding factors other than HA, the composite could be used as a bioink for applications in drug delivery, microsphere deposition or soft tissue engineering.

  9. Penile urethra replacement with autologous cell-seeded tubularized collagen matrices.

    Science.gov (United States)

    De Filippo, Roger E; Kornitzer, Benjamin S; Yoo, James J; Atala, Anthony

    2015-03-01

    Acellular collagen matrices have been used as an onlay material for urethral reconstruction. However, cell-seeded matrices have been recommended for tubularized urethral repairs. In this study we investigated whether long segmental penile urethral replacement using autologous cell-seeded tubularized collagen-based matrix is feasible. Autologous bladder epithelial and smooth muscle cells from nine male rabbits were grown and seeded onto preconfigured tubular matrices constructed from decellularized bladder matrices obtained from lamina propria. The entire anterior penile urethra was resected in 15 rabbits. Urethroplasties were performed with tubularized matrices seeded with cells in nine animals, and with matrices without cells in six. Serial urethrograms were performed at 1, 3 and 6 months. Retrieved urethral tissues were analysed using histo- and immunohistochemistry, western blot analyses and organ bath studies. The urethrograms showed that animals implanted with cell-seeded matrices maintained a wide urethral calibre without strictures. In contrast, the urethras with unseeded scaffolds collapsed and developed strictures. Histologically, a transitional cell layer surrounded by muscle was observed in the cell-seeded constructs. The epithelial and smooth muscle phenotypes were confirmed with AE1/AE3 and α-actin antibodies. Organ bath studies of the neourethras confirmed both physiological contractility and the presence of neurotransmitters. Tubularized collagen matrices seeded with autologous cells can be used successfully for long segmental penile urethra replacement, while implantation of tubularized collagen matrices without cells leads to poor tissue development and stricture formation. The cell-seeded collagen matrices are able to form new tissue, which is histologically similar to native urethra.

  10. Fabrication of keratin-silica hydrogel for biomedical applications.

    Science.gov (United States)

    Kakkar, Prachi; Madhan, Balaraman

    2016-09-01

    In the recent past, keratin has been fabricated into different forms of biomaterials like scaffold, gel, sponge, film etc. In lieu of the myriad advantages of the hydrogels for biomedical applications, a keratin-silica hydrogel was fabricated using tetraethyl orthosilicate (TEOS). Textural analysis shed light on the physical properties of the fabricated hydrogel, inturn enabling the optimization of the hydrogel. The optimized keratin-silica hydrogel was found to exhibit instant springiness, optimum hardness, with ease of spreadability. Moreover, the hydrogel showed excellent swelling with highly porous microarchitecture. MTT assay and DAPI staining revealed that keratin-silica hydrogel was biocompatible with fibroblast cells. Collectively, these properties make the fabricated keratin-silica hydrogel, a suitable dressing material for biomedical applications.

  11. In Vivo Assessment of Bone Regeneration in Alginate/Bone ECM Hydrogels with Incorporated Skeletal Stem Cells and Single Growth Factors

    Science.gov (United States)

    Gothard, David; Smith, Emma L.; Kanczler, Janos M.; Black, Cameron R.; Wells, Julia A.; Roberts, Carol A.; White, Lisa J.; Qutachi, Omar; Peto, Heather; Rashidi, Hassan; Rojo, Luis; Stevens, Molly M.; El Haj, Alicia J.; Rose, Felicity R. A. J.; Shakesheff, Kevin M.; Oreffo, Richard O. C.

    2015-01-01

    The current study has investigated the use of decellularised, demineralised bone extracellular matrix (ECM) hydrogel constructs for in vivo tissue mineralisation and bone formation. Stro-1-enriched human bone marrow stromal cells were incorporated together with select growth factors including VEGF, TGF-β3, BMP-2, PTHrP and VitD3, to augment bone formation, and mixed with alginate for structural support. Growth factors were delivered through fast (non-osteogenic factors) and slow (osteogenic factors) release PLGA microparticles. Constructs of 5 mm length were implanted in vivo for 28 days within mice. Dense tissue assessed by micro-CT correlated with histologically assessed mineralised bone formation in all constructs. Exogenous growth factor addition did not enhance bone formation further compared to alginate/bone ECM (ALG/ECM) hydrogels alone. UV irradiation reduced bone formation through degradation of intrinsic growth factors within the bone ECM component and possibly also ECM cross-linking. BMP-2 and VitD3 rescued osteogenic induction. ALG/ECM hydrogels appeared highly osteoinductive and delivery of angiogenic or chondrogenic growth factors led to altered bone formation. All constructs demonstrated extensive host tissue invasion and vascularisation aiding integration and implant longevity. The proposed hydrogel system functioned without the need for growth factor incorporation or an exogenous inducible cell source. Optimal growth factor concentrations and spatiotemporal release profiles require further assessment, as the bone ECM component may suffer batch variability between donor materials. In summary, ALG/ECM hydrogels provide a versatile biomaterial scaffold for utilisation within regenerative medicine which may be tailored, ultimately, to form the tissue of choice through incorporation of select growth factors. PMID:26675008

  12. Pharmacologically active microcarriers delivering BDNF within a hydrogel: Novel strategy for human bone marrow-derived stem cells neural/neuronal differentiation guidance and therapeutic secretome enhancement.

    Science.gov (United States)

    Kandalam, Saikrishna; Sindji, Laurence; Delcroix, Gaëtan J-R; Violet, Fabien; Garric, Xavier; André, Emilie M; Schiller, Paul C; Venier-Julienne, Marie-Claire; des Rieux, Anne; Guicheux, Jérôme; Montero-Menei, Claudia N

    2017-02-01

    Stem cells combined with biodegradable injectable scaffolds releasing growth factors hold great promises in regenerative medicine, particularly in the treatment of neurological disorders. We here integrated human marrow-isolated adult multilineage-inducible (MIAMI) stem cells and pharmacologically active microcarriers (PAMs) into an injectable non-toxic silanized-hydroxypropyl methylcellulose (Si-HPMC) hydrogel. The goal is to obtain an injectable non-toxic cell and growth factor delivery device. It should direct the survival and/or neuronal differentiation of the grafted cells, to safely transplant them in the central nervous system, and enhance their tissue repair properties. A model protein was used to optimize the nanoprecipitation conditions of the neuroprotective brain-derived neurotrophic factor (BDNF). BDNF nanoprecipitate was encapsulated in fibronectin-coated (FN) PAMs and the in vitro release profile evaluated. It showed a prolonged, bi-phasic, release of bioactive BDNF, without burst effect. We demonstrated that PAMs and the Si-HPMC hydrogel increased the expression of neural/neuronal differentiation markers of MIAMI cells after 1week. Moreover, the 3D environment (PAMs or hydrogel) increased MIAMI cells secretion of growth factors (b-NGF, SCF, HGF, LIF, PlGF-1, SDF-1α, VEGF-A & D) and chemokines (MIP-1α & β, RANTES, IL-8). These results show that PAMs delivering BDNF combined with Si-HPMC hydrogel represent a useful novel local delivery tool in the context of neurological disorders. It not only provides neuroprotective BDNF but also bone marrow-derived stem cells that benefit from that environment by displaying neural commitment and an improved neuroprotective/reparative secretome. It provides preliminary evidence of a promising pro-angiogenic, neuroprotective and axonal growth-promoting device for the nervous system.

  13. Self-assembled rosette nanotubes and poly(2-hydroxyethyl methacrylate) hydrogels promote skin cell functions.

    Science.gov (United States)

    Sun, Linlin; Li, Dongni; Hemraz, Usha D; Fenniri, Hicham; Webster, Thomas J

    2014-10-01

    The next generation skin of wound healing materials should stimulate skin regeneration by actively promoting appropriate cellular adhesion and proliferation. As materials with novel self-assembling and solidification properties when transitioning from room to body temperatures, rosette nanotubes (RNTs) may be such a proactive material. RNTs resemble naturally occurring nanostructures in the skin (such as collagen and keratin) assembling with noncovalent forces in physiological environments. Presenting desirable bioactive properties, RNTs have been used for various tissue engineering applications including increasing in vivo bone and cartilage regeneration. The objective of the current in vitro study was, for the first time, to improve properties of a commonly used hydrogel (poly(2-hydroxyethyl methacrylate) or pHEMA) for skin regeneration by incorporating one type of novel self-assembled RNTs, called TBL. Results showed for the first time increased keratinocyte and fibroblast proliferation on hydrogels coated with TBLs compared to those not coated with TBL. In this manner, this study provides the first evidence that TBL RNTs are promising for wound healing applications due to their optimal cytocompatibility, solidification, and mechanical properties and, thus, should be further studied for such applications.

  14. The Effect of Cumin Seed Extracts against Herpes Simplex Virus Type 1 in Vero Cell Culture

    Directory of Open Access Journals (Sweden)

    Mohammad Motamedifar

    2010-12-01

    Full Text Available Background: Cumin (Cuminum cyminum L. [family Apiaceae]seed essential oil is reported to have antiseptic activity.Until now the antiviral properties of cumin seed extracts onviruses such as herpes simplex virus-1 (HSV-1 have not beenstudied. The objective of this study was to investigate the invitro effects of aqueous, methanolic and hydroalcoholic extractsof cumin seed on HSV-1 growth in Vero cell line.Methods: Antiviral activity of various concentrations aqueous,hydroalcoholic and methanolic extracts of cumin seed in Verocells were studied using plaque reduction assays. The 50%cytotoxic concentration (CC50, 50% inhibitory concentration(IC50, and therapeutic index of the effective extracts were calculated.Results: Methanolic extract of cumin seed showed a significantantiviral activity on HSV-1 in Vero cell line. Its CC50 forVero cells, IC50 and the therapeutic index for HSV-1 were0.45, 0.18 mg/mL and 2.5, respectively. Aqueous and hydroalcoholicextracts of cumin seeds showed no inhibitory effecton HSV-1.Conclusion: The methanolic extract of cumin seed producesanti-HSV-1 effect. Probable interference of phenolic compoundswith fusion of Vero cell membrane and HSV-1 envelopemight be the mechanism of such inhibitory effect. Furtherstudies are required to ascertain its in vivo antiviral propertiesand potential toxicity.Iran J Med Sci 2010; 35(4: 304-309.

  15. Point-of-care seeding of nitinol stents with blood-derived endothelial cells.

    Science.gov (United States)

    Jantzen, Alexandra E; Noviani, Maria; Mills, James S; Baker, Katherine M; Lin, Fu-Hsiung; Truskey, George A; Achneck, Hardean E

    2016-11-01

    Nitinol-based vascular devices, for example, peripheral and intracranial stents, are limited by thrombosis and restenosis. To ameliorate these complications, we developed a technology to promote vessel healing by rapidly seeding (QuickSeeding) autologous blood-derived endothelial cells (ECs) onto modified self-expanding nitinol stent delivery systems immediately before implantation. Several thousand micropores were laser-drilled into a delivery system sheath surrounding a commercial nitinol stent to allow for exit of an infused cell suspension. As suspension medium flowed outward through the micropores, ECs flowed through the delivery system attaching to the stent surface. The QuickSeeded ECs adhered to and spread on the stent surface following 24-h in vitro culture under static or flow conditions. Further, QuickSeeded ECs on stents that were deployed into porcine carotid arteries spread to endothelialize stent struts within 48 h (n = 4). The QuickSeeded stent struts produced significantly more nitric oxide in ex vivo flow circuits after 24 h, as compared to static conditions (n = 5). In conclusion, ECs QuickSeeded onto commercial nitinol stents within minutes of implantation spread to form a functional layer in vitro and in vivo, providing proof of concept that the novel QuickSeeding method with modified delivery systems can be used to seed functional autologous endothelium at the point of care. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1658-1665, 2016.

  16. The sequential seeding of epithelial and mesenchymal cells for tissue-engineered tooth regeneration.

    Science.gov (United States)

    Honda, Masaki J; Tsuchiya, Shuhei; Sumita, Yoshinori; Sagara, Hiroshi; Ueda, Minoru

    2007-02-01

    Progress is being made toward regenerating teeth by seeding dissociated postnatal odontogenic cells onto scaffolds and implanting them in vivo, but tooth morphology remains difficult to control. In this study, we aimed to facilitate tooth regeneration using a novel technique to sequentially seed epithelial cells and mesenchymal cells so that they formed appropriate interactions in the scaffold. Dental epithelium and mesenchyme from porcine third molar teeth were enzymatically separated and dissociated into single cells. Mesenchymal cells were seeded onto the surface of the scaffold and epithelial cells were then plated on top so that the two cell types were in direct contact. The cell-scaffold constructs were evaluated in vitro and also implanted into immunocompromised rats for in vivo analysis. Control groups included constructs where direct contact between the two cell types was prevented. In scaffolds seed using the novel technique, alkaline phosphatase activity was significantly greater than controls, the tooth morphology in vivo was developed in similar to that of natural tooth, and only one tooth structure formed in each scaffold. These results suggest that the novel cell-seeding technique could be useful for regulating the morphology of regenerated teeth.

  17. The topologic and chronologic patterns of hematopoietic cell seeding in host femoral bone marrow after transplantation.

    Science.gov (United States)

    Askenasy, Nadir; Stein, Jeremiah; Yaniv, Isaac; Farkas, Daniel L

    2003-08-01

    The early stages of homing, seeding, and engraftment of hematopoietic stem and progenitor cells are poorly characterized. We have developed an optical technique that allows in vivo tracking of transplanted, fluorescent-tagged cells in the host femurs. In this study we used fluorescence microscopy to monitor the topologic and chronologic patterns of hematopoietic cell seeding in the femoral bone marrow (BM) of mice. PKH-labeled cells homed to the femur within minutes after injection into a peripheral vein. Most cells drifted within the marrow space and gradually seeded in clusters close to the endosteal surface of the epiphyseal cortex. Three days after transplantation 85% to 94% (14%) of PKH-labeled cells in the femoral marrow were located within 100 microm of the epiphyseal bone surface (P <.001 versus the more central cells), whereas labeled cells were absent in the femoral diaphysis. Primary seeding of juxtaendosteal, epiphyseal marrow occurred independently of recipient conditioning (myeloablated and nonconditioned hosts), donor-recipient antigen disparity, or the phenotype of the injected cells (whole BM and lineage-negative cells) and was consistently observed in secondary recipients of BM-homed cells. Seeding in regions close to the epiphyseal bone was also observed in freshly excised femurs perfused ex vivo and in femurs assessed without prior placement of optical windows, indicating that the site of primary seeding was not affected by surgical placement of optical windows. Four to 5 days after transplantation, cellular clusters appeared in the more central regions of the epiphyses and in the diaphyses. Centrally located cells showed decreased PKH fluorescence, suggesting that they were progeny of the seeding cells, and brightly fluorescent cells (quiescent first-generation seeding cells) were observed close to the bone surface for as long as 24 days after transplantation. These data indicate that the periphery of the femoral marrow hosts primary seeding

  18. Orthogonal Enzymatic Reactions to Control Supramolecular Hydrogelations%Orthogonal Enzymatic Reactions to Control Supramolecular Hydrogelations

    Institute of Scientific and Technical Information of China (English)

    陈国钦; 任春华; 王玲; 徐兵; 杨志谋

    2012-01-01

    Enzyme-responsive hydrogels have great potential in applications of controlled drug release, tissue engineering, etc. In this study, we reported on a supramolecular hydrogel that showed responses to two enzymes, phosphatase which was used to form the hydrogels and esterase which could trigger gelsol phase transitions. The gelation process and visco-elasticity property of the resulting gel, morphology of the nanostructures in hydrogel, and peptide conformation in the self-assembled nanostructure were characterized by theology, transmission electron microscope (TEM), and circular dichroism (CD), respectively. Potential application of the enzyme-responsive hydrogel in drug release was also demonstrated in this study. Though only one potential application of drug release was proved in this study, the responsive hydrogel system in this study might have potentials for the applications in fields of cell culture, controlled-drug release, etc.

  19. RGDS-functionalized polyethylene glycol hydrogel-coated magnetic iron oxide nanoparticles enhance specific intracellular uptake by HeLa cells

    OpenAIRE

    Nazli C; Ergenc TI; Yar Y; Acar HY; Kizilel S

    2012-01-01

    © 2012 Nazli et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited. International Journal of Nanomedicine 2012:7 1903–1920 International Journal of Nanomedicine RGDS-functionalized polyethylene glycol hydrogel-coated magnetic iron oxide nanoparticles enhance specific intracellular uptake by HeLa cells Caner Nazli1 Tugba Ipek Ergenc2 Yasemin Ya...

  20. Concentration dependent survival and neural differentiation of murine embryonic stem cells cultured on polyethylene glycol dimethacrylate hydrogels possessing a continuous concentration gradient of n-cadherin derived peptide His-Ala-Val-Asp-Lle.

    Science.gov (United States)

    Lim, Hyun Ju; Mosley, Matthew C; Kurosu, Yuki; Smith Callahan, Laura A

    2016-12-01

    N-cadherin cell-cell signaling plays a key role in the structure and function of the nervous system. However, few studies have incorporated bioactive signaling from n-cadherin into tissue engineering matrices. The present study uses a continuous gradient approach in polyethylene glycol dimethacrylate hydrogels to identify concentration dependent effects of n-cadherin peptide, His-Ala-Val-Asp-Lle (HAVDI), on murine embryonic stem cell survival and neural differentiation. The n-cadherin peptide was found to affect the expression of pluripotency marker, alkaline phosphatase, in murine embryonic stem cells cultured on n-cadherin peptide containing hydrogels in a concentration dependent manner. Increasing n-cadherin peptide concentrations in the hydrogels elicited a biphasic response in neurite extension length and mRNA expression of neural differentiation marker, neuron-specific class III β-tubulin, in murine embryonic stem cells cultured on the hydrogels. High concentrations of n-cadherin peptide in the hydrogels were found to increase the expression of apoptotic marker, caspase 3/7, in murine embryonic stem cells compared to that of murine embryonic stem cell cultures on hydrogels containing lower concentrations of n-cadherin peptide. Increasing the n-cadherin peptide concentration in the hydrogels facilitated greater survival of murine embryonic stem cells exposed to increasing oxidative stress caused by hydrogen peroxide exposure. The combinatorial approach presented in this work demonstrates concentration dependent effects of n-cadherin signaling on mouse embryonic stem cell behavior, underscoring the need for the greater use of systematic approaches in tissue engineering matrix design in order to understand and optimize bioactive signaling in the matrix for tissue formation.

  1. Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization.

    Science.gov (United States)

    Carrier, R L; Papadaki, M; Rupnick, M; Schoen, F J; Bursac, N; Langer, R; Freed, L E; Vunjak-Novakovic, G

    1999-09-01

    Cardiac tissue engineering has been motivated by the need to create functional tissue equivalents for scientific studies and cardiac tissue repair. We previously demonstrated that contractile cardiac cell-polymer constructs can be cultivated using isolated cells, 3-dimensional scaffolds, and bioreactors. In the present work, we examined the effects of (1) cell source (neonatal rat or embryonic chick), (2) initial cell seeding density, (3) cell seeding vessel, and (4) tissue culture vessel on the structure and composition of engineered cardiac muscle. Constructs seeded under well-mixed conditions with rat heart cells at a high initial density ((6-8) x 10(6) cells/polymer scaffold) maintained structural integrity and contained macroscopic contractile areas (approximately 20 mm(2)). Seeding in rotating vessels (laminar flow) rather than mixed flasks (turbulent flow) resulted in 23% higher seeding efficiency and 20% less cell damage as assessed by medium lactate dehydrogenase levels (p laminar and dynamic, yielded constructs with a more active, aerobic metabolism as compared to constructs cultured in mixed or static flasks. After 1-2 weeks of cultivation, tissue constructs expressed cardiac specific proteins and ultrastructural features and had approximately 2-6 times lower cellularity (p < 0.05) but similar metabolic activity per unit cell when compared to native cardiac tissue.

  2. Hyaluronic acid-laminin hydrogels increase neural stem cell transplant retention and migratory response to SDF-1α.

    Science.gov (United States)

    Addington, C P; Dharmawaj, S; Heffernan, J M; Sirianni, R W; Stabenfeldt, S E

    2016-09-17

    The chemokine SDF-1α plays a critical role in mediating stem cell response to injury and disease and has specifically been shown to mobilize neural progenitor/stem cells (NPSCs) towards sites of neural injury. Current neural transplant paradigms within the brain suffer from low rates of retention and engraftment after injury. Therefore, increasing transplant sensitivity to injury-induced SDF-1α represents a method for increasing neural transplant efficacy. Previously, we have reported on a hyaluronic acid-laminin based hydrogel (HA-Lm gel) that increases NPSC expression of SDF-1α receptor, CXCR4, and subsequently, NPSC chemotactic migration towards a source of SDF-1α in vitro. The study presented here investigates the capacity of the HA-Lm gel to promote NPSC response to exogenous SDF-1α in vivo. We observed the HA-Lm gel to significantly increase NPSC transplant retention and migration in response to SDF-1α in a manner critically dependent on signaling via the SDF-1α-CXCR4 axis. This work lays the foundation for development of a more effective cell therapy for neural injury, but also has broader implications in the fields of tissue engineering and regenerative medicine given the essential roles of SDF-1α across injury and disease states.

  3. Flow Cytometry Detection of Bacterial Cell Entrapment within the Chitosan Hydrogel and Antibacterial Property of Extracted Chitosan

    Directory of Open Access Journals (Sweden)

    Nafise Sadat Majidi

    2016-09-01

    Full Text Available Background:   Chitosan is unbranched polysaccharide composed of D-glucosamine and N-acetyl-D-glucosamine. Chitosan, derived from shrimp shell, has broad antimicrobial properties against Gram-negative, Gram-positive bacteria and fungi. Methods:  Chitosan was extracted from shrimp shell and studied for cell entrapment and anti-bacterial properties. The hydrogel chitosan was used as the beads for cell entrapment and chitosan beads were designed to deliver cells and nutrients. These data confirmed with flow cytometric analyses.                 Results:   Experimental results exhibited that internal diffusion through the chitosan matrix was the main mechanism for whole gelation by TPP (Tri-polyphosphate. The minimum inhibitory concentration (MIC for chitosan against Staphylococcus aureus and Escherichia coli was 16 and 32 μg/ml respectively. Conclusion:  Despite the antimicrobial properties of chitosan, trapped bacteria in the gel network were alive and were chelated indicating that their access to the outside was limited.

  4. Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Baei, Payam [Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of); Cardiovascular Engineering Laboratory, Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Jalili-Firoozinezhad, Sasan [Department of Biomedicine and Surgery, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel (Switzerland); Department of Bioengineeringand IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Rajabi-Zeleti, Sareh [Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of); Tafazzoli-Shadpour, Mohammad [Cardiovascular Engineering Laboratory, Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Baharvand, Hossein, E-mail: Baharvand@royaninstitute.org [Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of); Department of Developmental Biology, University of Science and Culture, ACECR, Tehran (Iran, Islamic Republic of); Aghdami, Nasser, E-mail: Nasser.Aghdami@royaninstitute.org [Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of)

    2016-06-01

    Injectable hydrogels that resemble electromechanical properties of the myocardium are crucial for cardiac tissue engineering prospects. We have developed a facile approach that uses chitosan (CS) to generate a thermosensitive conductive hydrogel with a highly porous network of interconnected pores. Gold nanoparticles (GNPs) were evenly dispersed throughout the CS matrix in order to provide electrical cues. The gelation response and electrical conductivity of the hydrogel were controlled by different concentrations of GNPs. The CS-GNP hydrogels were seeded with mesenchymal stem cells (MSCs) and cultivated for up to 14 days in the absence of electrical stimulations. CS-GNP scaffolds supported viability, metabolism, migration and proliferation of MSCs along with the development of uniform cellular constructs. Immunohistochemistry for early and mature cardiac markers showed enhanced cardiomyogenic differentiation of MSCs within the CS-GNP compared to the CS matrix alone. The results of this study demonstrate that incorporation of nanoscale electro-conductive GNPs into CS hydrogels enhances the properties of myocardial constructs. These constructs could find utilization for regeneration of other electroactive tissues. - Highlights: • Thermosensitive electro-conductive hydrogels were prepared from CS and GNPs. • Gelation time and conductivity were tuned by varying concentration of GNPs. • CS-2GNP with gelation time of 25.7 min and conductivity of 0.13 S·m{sup −1} was selected for in vitro studies. • CS-2GNP supported active metabolism, migration and proliferation of MSCs. • Expression of cardiac markers increased about two-fold in CS-2GNP compared to CS.

  5. Programmed cell death (PCD an essential process of cereal seed development and germination

    Directory of Open Access Journals (Sweden)

    Fernando eDomínguez

    2014-07-01

    Full Text Available The life cycle of cereal seeds can be divided into two phases, development and germination, separated by a quiescent period. Seed development and germination require the growth and differentiation of new tissues, but also the ordered disappearance of cells, which takes place by a process of programmed cell death (PCD. For this reason, cereal seeds have become excellent model systems for the study of developmental PCD in plants. At early stages of seed development, maternal tissues such as the nucellus, the pericarp and the nucellar projections undergo a progressive degeneration by PCD, which allows the remobilization of their cellular contents for nourishing new filial tissues such as the embryo and the endosperm. At a later stage, during seed maturation, the endosperm undergoes PCD, but these cells remain intact in the mature grain and their contents will not be remobilized until germination. Thus, the only tissues that remain alive when seed development is completed are the embryo axis, the scutellum and the aleurone layer. In germinating seeds, both the scutellum and the aleurone layer play essential roles in producing the hydrolytic enzymes for the mobilization of the storage compounds of the starchy endosperm, which serve to support early seedling growth. Once this function is completed, scutellum and aleurone cells undergo PCD; their contents being used to support the growth of the germinated embryo. PCD occurs with tightly controlled spatial-temporal patterns allowing coordinated fluxes of nutrients between the different seed tissues. In this review, we will summarize the current knowledge of the tissues undergoing PCD in developing and germinating cereal seeds, focussing on the biochemical features of the process. The effect of hormones and redox regulation on PCD control will be discussed.

  6. Thermo-mechanical behavior of graphene oxide hydrogel

    Science.gov (United States)

    Ghosh, Rituparna; Deka Boruah, Buddha; Misra, Abha

    2017-02-01

    Graphene oxide hydrogel with encapsulated water presents a unique structural characteristic similar to open cell foam. It is demonstrated that the encapsulated water plays a vital role in tailoring compressive behavior of graphene oxide hydrogel under varying thermal conditions. The present study is focused on systematically evaluating both the temperature and frequency dependence on compressive behavior of hydrogel to elucidate the evolution of stiffness in a wider temperature range. The stiffness of the hydrogel is further tailored through encapsulation of nanoparticles to achieve an extraordinary enhancement in storage modulus. It is concluded that the change in phase of water provides a large gradient in the stiffness of the hydrogel.

  7. Fiber diameter and seeding density influence chondrogenic differentiation of mesenchymal stem cells seeded on electrospun poly(ε-caprolactone) scaffolds.

    Science.gov (United States)

    Bean, Allison C; Tuan, Rocky S

    2015-01-29

    Chondrogenic differentiation of mesenchymal stem cells is strongly influenced by the surrounding chemical and structural milieu. Since the majority of the native cartilage extracellular matrix is composed of nanofibrous collagen fibrils, much of recent cartilage tissue engineering research has focused on developing and utilizing scaffolds with similar nanoscale architecture. However, current literature lacks consensus regarding the ideal fiber diameter, with differences in culture conditions making it difficult to compare between studies. Here, we aimed to develop a more thorough understanding of how cell-cell and cell-biomaterial interactions drive in vitro chondrogenic differentiation of bone-marrow-derived mesenchymal stem cells (MSCs). Electrospun poly(ε-caprolactone) microfibers (4.3  ±  0.8 µm diameter, 90 μm(2) pore size) and nanofibers (440  ±  20 nm diameter, 1.2 μm(2) pore size) were seeded with MSCs at initial densities ranging from 1  ×  10(5) to 4  ×  10(6) cells cm(-3)-scaffold and cultured under transforming growth factor-β (TGF-β) induced chondrogenic conditions for 3 or 6 weeks. Chondrogenic gene expression, cellular proliferation, as well as sulfated glycosaminoglycan and collagen production were enhanced on microfiber in comparison to nanofiber scaffolds, with high initial seeding densities being required for significant chondrogenic differentiation and extracellular matrix deposition. Both cell-cell and cell-material interactions appear to play important roles in chondrogenic differentiation of MSCs in vitro and consideration of several variables simultaneously is essential for understanding cell behavior in order to develop an optimal tissue engineering strategy.

  8. Fewer Bacteria Adhere to Softer Hydrogels.

    Science.gov (United States)

    Kolewe, Kristopher W; Peyton, Shelly R; Schiffman, Jessica D

    2015-09-01

    Clinically, biofilm-associated infections commonly form on intravascular catheters and other hydrogel surfaces. The overuse of antibiotics to treat these infections has led to the spread of antibiotic resistance and underscores the importance of developing alternative strategies that delay the onset of biofilm formation. Previously, it has been reported that during surface contact, bacteria can detect surfaces through subtle changes in the function of their motors. However, how the stiffness of a polymer hydrogel influences the initial attachment of bacteria is unknown. Systematically, we investigated poly(ethylene glycol) dimethacrylate (PEGDMA) and agar hydrogels that were 20 times thicker than the cumulative size of bacterial cell appendages, as a function of Young's moduli. Soft (44.05-308.5 kPa), intermediate (1495-2877 kPa), and stiff (5152-6489 kPa) hydrogels were synthesized. Escherichia coli and Staphylococcus aureus attachment onto the hydrogels was analyzed using confocal microscopy after 2 and 24 h incubation periods. Independent of hydrogel chemistry and incubation time, E. coli and S. aureus attachment correlated positively to increasing hydrogel stiffness. For example, after a 24 h incubation period, there were 52 and 82% fewer E. coli adhered to soft PEGDMA hydrogels than to the intermediate and stiff PEGDMA hydrogels, respectively. A 62 and 79% reduction in the area coverage by the Gram-positive microbe S. aureus occurred after 24 h incubation on the soft versus intermediate and stiff PEGDMA hydrogels. We suggest that hydrogel stiffness is an easily tunable variable that could potentially be used synergistically with traditional antimicrobial strategies to reduce early bacterial adhesion and therefore the occurrence of biofilm-associated infections.

  9. Fewer Bacteria Adhere to Softer Hydrogels

    Science.gov (United States)

    Kolewe, Kristopher W.; Peyton, Shelly R.; Schiffman, Jessica D.

    2015-01-01

    Clinically, biofilm-associated infections commonly form on intravascular catheters and other hydrogel surfaces. The overuse of antibiotics to treat these infections has led to the spread of antibiotic resistance and underscores the importance of developing alternative strategies that delay the onset of biofilm formation. Previously, it has been reported that during surface contact, bacteria can detect surfaces through subtle changes in the function of their motors. However, how the stiffness of a polymer hydrogel influences the initial attachment of bacteria is unknown. Systematically, we investigated poly(ethylene glycol) dimethacrylate (PEGDMA) and agar hydrogels that were twenty times thicker than the cumulative size of bacterial cell appendages, as a function of Young’s moduli. Soft (44.05 – 308.5 kPa), intermediate (1495 – 2877 kPa), and stiff (5152 – 6489 kPa) hydrogels were synthesized. Escherichia coli and Staphylococcus aureus attachment onto the hydrogels was analyzed using confocal microscopy after 2 and 24 hr incubation periods. Independent of hydrogel chemistry and incubation time, E. coli and S. aureus attachment correlated positively to increasing hydrogel stiffness. For example, after a 24 hr incubation period, there were 52% and 82% less E. coli adhered to soft PEGDMA hydrogels, than to the intermediate and stiff PEGDMA hydrogels, respectively. A 62% and 79% reduction in the area coverage by the Gram-positive microbe S. aureus occurred after 24 hr incubation on the soft versus intermediate and stiff PEGDMA hydrogels. We suggest that hydrogel stiffness is an easily tunable variable that, potentially, could be used synergistically with traditional antimicrobial strategies to reduce early bacterial adhesion, and therefore the occurrence of biofilm-associated infections. PMID:26291308

  10. Time-Dependent Effect of Encapsulating Alginate Hydrogel on Neurogenic Potential

    Science.gov (United States)

    Razavi, Shahnaz; Khosravizadeh, Zahra; Bahramian, Hamid; Kazemi, Mohammad

    2015-01-01

    Objective Due to the restricted potential of neural stem cells for regeneration of central nervous system (CNS) after injury, providing an alternative source for neural stem cells is essential. Adipose derived stem cells (ADSCs) are multipotent cells with properties suitable for tissue engineering. In addition, alginate hydrogel is a biocompatible polysaccharide polymer that has been used to encapsulate many types of cells. The aim of this study was to assess the proliferation rate and level of expression of neural markers; NESTIN, glial fibrillary acidic protein (GFAP) and microtubule-associated protein 2 (MAP2) in encapsulated human ADSCs (hADSCs) 10 and14 days after neural induction. Materials and Methods In this experimental study, ADSCs isolated from human were cultured in neural induction media and seeded into alginate hydrogel. The rate of proliferation and differentiation of encapsulated cells were evaluated by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide (MTT) assay, immunocytoflourescent and realtime reverse transcriptase polymerase chain reaction (RT-PCR) analyzes 10 and 14 days after induction. Results The rate of proliferation of encapsulated cells was not significantly changed with time passage. The expression of NESTIN and GFAP significantly decreased on day 14 relative to day 10 (P<0.001) but MAP2 expression was increased. Conclusion Alginate hydrogel can promote the neural differentiation of encapsulated hADSCs with time passage. PMID:26199909

  11. Alpha-synuclein cell-to-cell transfer and seeding in grafted dopaminergic neurons in vivo.

    Directory of Open Access Journals (Sweden)

    Elodie Angot

    Full Text Available Several people with Parkinson's disease have been treated with intrastriatal grafts of fetal dopaminergic neurons. Following autopsy, 10-22 years after surgery, some of the grafted neurons contained Lewy bodies similar to those observed in the host brain. Numerous studies have attempted to explain these findings in cell and animal models. In cell culture, α-synuclein has been found to transfer from one cell to another, via mechanisms that include exosomal transport and endocytosis, and in certain cases seed aggregation in the recipient cell. In animal models, transfer of α-synuclein from host brain cells to grafted neurons has been shown, but the reported frequency of the event has been relatively low and little is known about the underlying mechanisms as well as the fate of the transferred α-synuclein. We now demonstrate frequent transfer of α-synuclein from a rat brain engineered to overexpress human α-synuclein to grafted dopaminergic neurons. Further, we show that this model can be used to explore mechanisms underlying cell-to-cell transfer of α-synuclein. Thus, we present evidence both for the involvement of endocytosis in α-synuclein uptake in vivo, and for seeding of aggregation of endogenous α-synuclein in the recipient neuron by the transferred α-synuclein. Finally, we show that, at least in a subset of the studied cells, the transmitted α-synuclein is sensitive to proteinase K. Our new model system could be used to test compounds that inhibit cell-to-cell transfer of α-synuclein and therefore might retard progression of Parkinson neuropathology.

  12. Design of Hydrogels for Biomedical Applications.

    Science.gov (United States)

    Kamata, Hiroyuki; Li, Xiang; Chung, Ung-Il; Sakai, Takamasa

    2015-11-18

    Hydrogels are considered key tools for the design of biomaterials, such as wound dressings, drug reservoirs, and temporary scaffolds for cells. Despite their potential, conventional hydrogels have limited applicability under wet physiological conditions because they suffer from the uncontrollable temporal change in shape: swelling takes place immediately after the installation. Swollen hydrogels easily fail under mechanical stress. The morphological change may cause not only the slippage from the installation site but also local nerve compression. The design of hydrogels that can retain their original shape and mechanical properties in an aqueous environment is, therefore, of great importance. On the one hand, the controlled degradation of used hydrogels has to be realized in some biomedical applications. This Progress Report provides a brief overview of the recent progress in the development of hydrogels for biomedical applications. Practical approaches to control the swelling properties of hydrogels are discussed. The designs of hydrogels with controlled degradation properties as well as the theoretical models to predict the degradation behavior are also introduced. Moreover, current challenges and limitation toward biomedical applications are discussed, and future directions are offered.

  13. In vitro and in vivo co-culture of chondrocytes and bone marrow stem cells in photocrosslinked PCL-PEG-PCL hydrogels enhances cartilage formation.

    Science.gov (United States)

    Ko, Chao-Yin; Ku, Kuan-Lin; Yang, Shu-Rui; Lin, Tsai-Yu; Peng, Sydney; Peng, Yu-Shiang; Cheng, Ming-Huei; Chu, I-Ming

    2016-10-01

    Chondrocytes (CH) and bone marrow stem cells (BMSCs) are sources that can be used in cartilage tissue engineering. Co-culture of CHs and BMSCs is a promising strategy for promoting chondrogenic differentiation. In this study, articular CHs and BMSCs were encapsulated in PCL-PEG-PCL photocrosslinked hydrogels for 4 weeks. Various ratios of CH:BMSC co-cultures were investigated to identify the optimal ratio for cartilage formation. The results thus obtained revealed that co-culturing CHs and BMSCs in hydrogels provides an appropriate in vitro microenvironment for chondrogenic differentiation and cartilage matrix production. Co-culture with a 1:4 CH:BMSC ratio significantly increased the synthesis of GAGs and collagen. In vivo cartilage regeneration was evaluated using a co-culture system in rabbit models. The co-culture system exhibited a hyaline chondrocyte phenotype with excellent regeneration, resembling the morphology of native cartilage. This finding suggests that the co-culture of these two cell types promotes cartilage regeneration and that the system, including the hydrogel scaffold, has potential in cartilage tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.

  14. A novel polysulfide hydrogel electrolyte based on low molecular mass organogelator for quasi-solid-state quantum dot-sensitized solar cells

    Science.gov (United States)

    Huo, Zhipeng; Tao, Li; Wang, Shimao; Wei, Junfeng; Zhu, Jun; Dong, Weiwei; Liu, Feng; Chen, Shuanghong; Zhang, Bing; Dai, Songyuan

    2015-06-01

    A quasi-solid-state quantum dot-sensitized solar cell (QDSSC) is fabricated by using 12-hydroxystearic acid as a low molecular mass organogelator to gelate the polysulfide electrolyte. Noticeably, the gel to liquid transition temperature of this polysulfide hydrogel electrolyte is 96 °C, which contributes to the long-term stability of the quasi-solid-state QDSSC (QS-QDSSC). The influences of gelation on the charge transport, electron recombination and photovoltaic performance of the QS-QDSSC are investigated by electrochemical impedance spectroscopy. Moreover, the network of the hydrogel is investigated by the Field emission scanning electron microscopy and polarized optical light microscopy. It is found that the charge transport is influenced by the network in the hydrogel electrolyte, and the accelerated electron recombination at the photoanode/electrolyte interface leads to the decreased open-circuit voltage. The QS-QDSSC exhibits an energy conversion efficiency of 2.40% at AM 1.5 (100 mW cm-2) which is slightly lower than that of liquid electrolyte based cell (2.88%). However, the QS-QDSSC exhibits significantly improved stability during the accelerated thermal test. Especially, during the accelerated aging test, the short-circuit current density (Jsc) of the liquid electrolyte based QDSSC sharply decreased to nearly 35% of its initial value, while there is relatively less change in the Jsc for the QS-QDSSC.

  15. Hydrogel-laden paper scaffold system for origami-based tissue engineering.

    Science.gov (United States)

    Kim, Su-Hwan; Lee, Hak Rae; Yu, Seung Jung; Han, Min-Eui; Lee, Doh Young; Kim, Soo Yeon; Ahn, Hee-Jin; Han, Mi-Jung; Lee, Tae-Ik; Kim, Taek-Soo; Kwon, Seong Keun; Im, Sung Gap; Hwang, Nathaniel S

    2015-12-15

    In this study, we present a method for assembling biofunctionalized paper into a multiform structured scaffold system for reliable tissue regeneration using an origami-based approach. The surface of a paper was conformally modified with a poly(styrene-co-maleic anhydride) layer via initiated chemical vapor deposition followed by the immobilization of poly-l-lysine (PLL) and deposition of Ca(2+). This procedure ensures the formation of alginate hydrogel on the paper due to Ca(2+) diffusion. Furthermore, strong adhesion of the alginate hydrogel on the paper onto the paper substrate was achieved due to an electrostatic interaction between the alginate and PLL. The developed scaffold system was versatile and allowed area-selective cell seeding. Also, the hydrogel-laden paper could be folded freely into 3D tissue-like structures using a simple origami-based method. The cylindrically constructed paper scaffold system with chondrocytes was applied into a three-ring defect trachea in rabbits. The transplanted engineered tissues replaced the native trachea without stenosis after 4 wks. As for the custom-built scaffold system, the hydrogel-laden paper system will provide a robust and facile method for the formation of tissues mimicking native tissue constructs.

  16. A Role for Reactive Oxygen Species Produced by NADPH Oxidases in the Embryo and Aleurone Cells in Barley Seed Germination

    OpenAIRE

    Yushi Ishibashi; Shinsuke Kasa; Masatsugu Sakamoto; Nozomi Aoki; Kyohei Kai; Takashi Yuasa; Atsushi Hanada; Shinjiro Yamaguchi; Mari Iwaya-Inoue

    2015-01-01

    Reactive oxygen species (ROS) promote the germination of several seeds, and antioxidants suppress it. However, questions remain regarding the role and production mechanism of ROS in seed germination. Here, we focused on NADPH oxidases, which produce ROS. After imbibition, NADPH oxidase mRNAs were expressed in the embryo and in aleurone cells of barley seed; these expression sites were consistent with the sites of ROS production in the seed after imbibition. To clarify the role of NADPH oxidas...

  17. The tale of early hematopoietic cell seeding in the bone marrow niche.

    Science.gov (United States)

    Yaniv, Isaac; Stein, Jerry; Farkas, Daniel L; Askenasy, Nadir

    2006-02-01

    Since introduction of the notion of a "niche" that hosts engraftment and activity of hematopoietic cells, there is a massive effort to discover its structure and decipher its function. Our understanding of the niche is continuously changing with reinterpretation of traditional concepts and apprehension of new insights into the biology of hematopoietic cell homing, seeding, and engraftment. Here we discuss some of the early events in hematopoietic stem cell seeding and engraftment and propose a perspective based on visualization of labeled bone marrow cells in real time in vivo. Primary seeding of hematopoietic cells in the bone marrow niches evolves as a complex and dynamic process; however, it follows discrete topological and chronological patterns. Initial seeding occurs on the endosteal surface of the marrow, which includes heterogeneous niches for primary seeding. Several days after transplantation the endosteal niches become more restrictive, hosting primarily mitotically quiescent cells, and gradual centripetal migration is accompanied by engagement in proliferation and differentiation. The hematopoietic niches evolve as heterogeneous three-dimensional microenvironments that are continuously changing over time.

  18. FGL-functionalized self-assembling nanofiber hydrogel as a scaffold for spinal cord-derived neural stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Zheng, Jin [Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Zheng, Qixin, E-mail: zheng-qx@163.com [Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Wu, Yongchao; Wu, Bin; Huang, Shuai; Fang, Weizhi; Guo, Xiaodong [Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China)

    2015-01-01

    A class of designed self-assembling peptide nanofiber scaffolds has been shown to be a good biomimetic material in tissue engineering. Here, we specifically made a new peptide hydrogel scaffold FGLmx by mixing the pure RADA{sub 16} and designer functional peptide RADA{sub 16}-FGL solution, and we analyzed the physiochemical properties of each peptide with atomic force microscopy (AFM) and circular dichroism (CD). In addition, we examined the biocompatibility and bioactivity of FGLmx as well as RADA{sub 16} scaffold on spinal cord-derived neural stem cells (SC-NSCs) isolated from neonatal rats. Our results showed that RADA{sub 16}-FGL displayed a weaker β-sheet structure and FGLmx could self-assemble into nanofibrous morphology. Moreover, we found that FGLmx was not only noncytotoxic to SC-NSCs but also promoted SC-NSC proliferation and migration into the three-dimensional (3-D) scaffold, meanwhile, the adhesion and lineage differentiation of SC-NSCs on FGLmx were similar to that on RADA{sub 16}. Our results indicated that the FGL-functionalized peptide scaffold might be very beneficial for tissue engineering and suggested its further application for spinal cord injury (SCI) repair. - Highlights: • RADA{sub 16} and RADA{sub 16}-FGL peptides were synthesized and characterized. • Rat spinal cord neural stem cells were successfully isolated and characterized. • We provided an induction method for mixed differentiation of neural stem cells. • FGL scaffold had good biocompatibility and bioactivity with neural stem cells.

  19. Foamed oligo(poly(ethylene glycol)fumarate) hydrogels as versatile prefabricated scaffolds for tissue engineering.

    Science.gov (United States)

    Henke, Matthias; Baumer, Julia; Blunk, Torsten; Tessmar, Joerg

    2014-03-01

    Radically cross-linked hydrogels are frequently used as cell carriers due to their excellent biocompatibility and their tissue-like mechanical properties. Through frequent investigation, PEG-based polymers such as oligo(poly(ethylene glycol)fumarate [OPF] have proven to be especially suitable as cell carriers by encapsulating cells during hydrogel formation. In some cases, NaCl or biodegradable gelatin microparticles were added prior to cross-linking in order to provide space for the proliferating cells, which would otherwise stay embedded in the hydrogel matrix. However, all of these immediate cross-linking procedures involve time consuming sample preparation and sterilization directly before cell culture and often show notable swelling after their preparation. In this study, ready to use OPF-hydrogel scaffolds were prepared by gas foaming, freeze drying, individual packing into bags and subsequent γ-sterilization. The scaffolds could be stored and used "off-the-shelf" without any need for further processing prior to cell culture. Thus the handling was simplified and the sterility of the cell carrier was assured. Further improvement of the gel system was achieved using a two component injectable system, which may be used for homogenous injection molding in order to create individually shaped three dimensional scaffolds. In order to evaluate the suitability of the scaffolds for tissue engineering, constructs were seeded with juvenile bovine chondrocytes and cultured for 28 days. Cross-sections of the respective constructs showed an intense and homogenous red staining of GAG with safranin O, indicating a homogenous cell distribution within the scaffolds and the production of substantial amounts of GAG-rich matrix.

  20. Design of an Os Complex-Modified Hydrogel with Optimized Redox Potential for Biosensors and Biofuel Cells.

    Science.gov (United States)

    Pinyou, Piyanut; Ruff, Adrian; Pöller, Sascha; Ma, Su; Ludwig, Roland; Schuhmann, Wolfgang

    2016-04-01

    Multistep synthesis and electrochemical characterization of an Os complex-modified redox hydrogel exhibiting a redox potential ≈+30 mV (vs. Ag/AgCl 3 M KCl) is demonstrated. The careful selection of bipyridine-based ligands bearing N,N-dimethylamino moieties and an amino-linker for the covalent attachment to the polymer backbone ensures the formation of a stable redox polymer with an envisaged redox potential close to 0 V. Most importantly, the formation of an octahedral N6-coordination sphere around the Os central atoms provides improved stability concomitantly with the low formal potential, a low reorganization energy during the Os(3+/2+) redox conversion and a negligible impact on oxygen reduction. By wiring a variety of enzymes such as pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase, flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase and the FAD-dependent dehydrogenase domain of cellobiose dehydrogenase, low-potential glucose biosensors could be obtained with negligible co-oxidation of common interfering compounds such as uric acid or ascorbic acid. In combination with a bilirubin oxidase-based biocathode, enzymatic biofuel cells with open-circuit voltages of up to 0.54 V were obtained.

  1. Photochemical Patterning of Ionically Cross-Linked Hydrogels

    Directory of Open Access Journals (Sweden)

    Marion Bruchet

    2013-08-01

    Full Text Available Iron(III cross-linked alginate hydrogel incorporating sodium lactate undergoes photoinduced degradation, thus serving as a biocompatible positive photoresist suitable for photochemical patterning. Alternatively, surface etching of iron(III cross-linked hydrogel contacting lactic acid solution can be used for controlling the thickness of the photochemical pattering. Due to biocompatibility, both of these approaches appear potentially useful for advanced manipulation with cell cultures including growing cells on the surface or entrapping them within the hydrogel.

  2. Enhanced ALP activity of MG63 cells cultured on hydroxyapatite-poly(ethylene glycol) hydrogel composites prepared using EDTA-OH.

    Science.gov (United States)

    Ito, Temmei; Sasaki, Makoto; Taguchi, Tetsushi

    2015-03-02

    In order to obtain a hydroxyapatite (HAp)-poly(ethylene glycol) (PEG) composite, tetra amine-terminated PEG was crosslinked using disuccinimidyl tartrate to obtain a PEG hydrogel. Using two kinds of chelators with different stability constants for Ca ion (N-(2-hydroxyethyl) ethylenediamine-N,N',N'-triacetic acid (EDTA-OH, 8.14), and ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA, 10.96)), calcium phosphate was deposited within PEG hydrogels by heating the chelator-containing calcium phosphate solution at 90 °C. X-ray diffraction analysis showed that the deposited calcium phosphate was HAp. The crystallinity of the HAp deposited using EDTA-OH was low compared with that obtained using EDTA, but the amount of HAp deposited within the PEG hydrogel using EDTA-OH was higher than that deposited using EDTA. Significantly more human osteoblast-like MG-63 cells adhered on the HAp-PEG composite prepared using EDTA-OH than on the HAp-PEG composites prepared using EDTA. Furthermore, the alkaline phosphatase activity of MG-63 cultured on the HAp-PEG composite prepared using EDTA-OH was four times higher than that on the HAp-PEG composite prepared using EDTA. Therefore, the HAp-PEG composite prepared using EDTA-OH has potential as a bone substitute material.

  3. BMP2 induced osteogenic differentiation of human umbilical cord stem cells in a peptide-based hydrogel scaffold

    Science.gov (United States)

    Lakshmana, Shruthi M.

    Craniofacial tissue loss due to traumatic injuries and congenital defects is a major clinical problem around the world. Cleft palate is the second most common congenital malformation in the United States occurring with an incidence of 1 in 700. Some of the problems associated with this defect are feeding difficulties, speech abnormalities and dentofacial anomalies. Current treatment protocol offers repeated surgeries with extended healing time. Our long-term goal is to regenerate bone in the palatal region using tissue-engineering approaches. Bone tissue engineering utilizes osteogenic cells, osteoconductive scaffolds and osteoinductive signals. Mesenchymal stem cells derived from human umbilical cord (HUMSCs) are highly proliferative with the ability to differentiate into osteogenic precursor cells. The primary objective of the study was to characterize HUMSCs and culture them in a 3D hydrogel scaffold and investigate their osteogenic potential. PuraMatrix(TM) is an injectable 3D nanofiber scaffold capable of self-assembly when exposed to physiologic conditions. Our second objective was to investigate the effect of Bone Morphogenic Protein 2 (BMP2) in enhancing the osteogenic differentiation of HUMSCs encapsulated in PuraMatrix(TM). We isolated cells isolated from Wharton's Jelly region of the umbilical cord obtained from NDRI (New York, NY). Isolated cells satisfied the minimal criteria for mesenchymal stem cells (MSCs) as defined by International Society of Cell Therapy in terms of plastic adherence, fibroblastic phenotype, surface marker expression and osteogenic differentiation. Flow Cytometry analysis showed that cells were positive for CD73, CD90 and CD105 while negative for hematopoietic marker CD34. Alkaline phosphatase activity (ALP) of HUMSCs showed peak activity at 2 weeks (pBMP2 at doses of 50ng/ml, 100ng/ml and 200ng/ml. A significant upregulation of ALP gene in BMP2 treated cells was seen compared to HUMSCs treated in osteogenic medium (pBMP2 dose of

  4. Hydrogels for therapeutic cardiovascular angiogenesis.

    Science.gov (United States)

    Rufaihah, Abdul Jalil; Seliktar, Dror

    2016-01-15

    Acute myocardial infarction (MI) caused by ischemia is the most common cause of cardiac dysfunction. While growth factor or cell therapy is promising, the retention of bioactive agents in the highly vascularized myocardium is limited and prevents sustained activation needed for adequate cellular responses. Various types of biomaterials with different physical and chemical properties have been developed to improve the localized delivery of growth factor and/or cells for therapeutic angiogenesis in ischemic tissues. Hydrogels are particularly advantageous as carrier systems because they are structurally similar to the tissue extracellular matrix (ECM), they can be processed under relatively mild conditions and can be delivered in a minimally invasive manner. Moreover, hydrogels can be designed to degrade in a timely fashion that coincides with the angiogenic process. For these reasons, hydrogels have shown great potential as pro-angiogenic matrices. This paper reviews a few of the hydrogel systems currently being applied together with growth factor delivery and/or cell therapy to promote therapeutic angiogenesis in ischemic tissues, with emphasis on myocardial applications.

  5. Tumor Growth Suppression Induced by Biomimetic Silk Fibroin Hydrogels

    Science.gov (United States)

    Yan, Le-Ping; Silva-Correia, Joana; Ribeiro, Viviana P.; Miranda-Gonçalves, Vera; Correia, Cristina; da Silva Morais, Alain; Sousa, Rui A.; Reis, Rui M.; Oliveira, Ana L.; Oliveira, Joaquim M.; Reis, Rui L.

    2016-08-01

    Protein-based hydrogels with distinct conformations which enable encapsulation or differentiation of cells are of great interest in 3D cancer research models. Conformational changes may cause macroscopic shifts in the hydrogels, allowing for its use as biosensors and drug carriers. In depth knowledge on how 3D conformational changes in proteins may affect cell fate and tumor formation is required. Thus, this study reports an enzymatically crosslinked silk fibroin (SF) hydrogel system that can undergo intrinsic conformation changes from random coil to β-sheet conformation. In random coil status, the SF hydrogels are transparent, elastic, and present ionic strength and pH stimuli-responses. The random coil hydrogels become β-sheet conformation after 10 days in vitro incubation and 14 days in vivo subcutaneous implantation in rat. When encapsulated with ATDC-5 cells, the random coil SF hydrogel promotes cell survival up to 7 days, whereas the subsequent β-sheet transition induces cell apoptosis in vitro. HeLa cells are further incorporated in SF hydrogels and the constructs are investigated in vitro and in an in vivo chick chorioallantoic membrane model for tumor formation. In vivo, Angiogenesis and tumor formation are suppressed in SF hydrogels. Therefore, these hydrogels provide new insights for cancer research and uses of biomaterials.

  6. Transplanted hematopoietic cells seed in clusters in recipient bone marrow in vivo.

    Science.gov (United States)

    Askenasy, Nadir; Zorina, Tatiana; Farkas, Daniel L; Shalit, Itamar

    2002-01-01

    The process of hematopoietic stem and progenitor cell (HSPC) seeding in recipient bone marrow (BM) early after transplantation is not fully characterized. In vivo tracking of HSPCs, labeled with PKH dyes, through an optical window surgically implanted on the mouse femur revealed that transplanted cells cluster in the recipient BM. Within the first day after intravenous injection, 86 +/- 6% of the cells seeded in clusters (p < 0.001 versus scattered cells) in the endosteal surfaces of the epiphyses. The primary clusters were formed by concomitant seeding of 6-10 cells over an area of approximately 70 microm, and secondarily injected cells did not join the already existing clusters but formed new clusters. Major antigen-disparate HSPCs participated in formation of the primary clusters, and T lymphocytes were also incorporated. After 4 to 5 days, some cellular clusters were observed in the more central regions of the BM, where the brightness of PKH fluorescence decreased, indicating cellular division. These later clusters were classified as secondary, assuming that the mechanisms of migration in the BM might be different from those of primary seeding. Some clusters remained in the periphery of the BM and retained bright fluorescence, indicating cellular quiescence. The number of brightly fluorescent cells in the clusters decreased exponentially to two to three cells after 24 days (p < 0.001). The data suggest that the hematopoietic niche is a functional unit of the BM stromal microenvironment that hosts seeding of a number of transplanted cells, which form a cluster. This may be the site where auxiliary non-HSPC cells, such as T lymphocytes, act in support of HSPC engraftment.

  7. A Self-Folding Hydrogel In Vitro Model for Ductal Carcinoma.

    Science.gov (United States)

    Kwag, Hye Rin; Serbo, Janna V; Korangath, Preethi; Sukumar, Saraswati; Romer, Lewis H; Gracias, David H

    2016-04-01

    A significant challenge in oncology is the need to develop in vitro models that accurately mimic the complex microenvironment within and around normal and diseased tissues. Here, we describe a self-folding approach to create curved hydrogel microstructures that more accurately mimic the geometry of ducts and acini within the mammary glands, as compared to existing three-dimensional block-like models or flat dishes. The microstructures are composed of photopatterned bilayers of poly (ethylene glycol) diacrylate (PEGDA), a hydrogel widely used in tissue engineering. The PEGDA bilayers of dissimilar molecular weights spontaneously curve when released from the underlying substrate due to differential swelling ratios. The photopatterns can be altered via AutoCAD-designed photomasks so that a variety of ductal and acinar mimetic structures can be mass-produced. In addition, by co-polymerizing methacrylated gelatin (methagel) with PEGDA, microstructures with increased cell adherence are synthesized. Biocompatibility and versatility of our approach is highlighted by culturing either SUM159 cells, which were seeded postfabrication, or MDA-MB-231 cells, which were encapsulated in hydrogels; cell viability is verified over 9 and 15 days, respectively. We believe that self-folding processes and associated tubular, curved, and folded constructs like the ones demonstrated here can facilitate the design of more accurate in vitro models for investigating ductal carcinoma.

  8. Studies on the PEO-PPO-PEO Block Copolymer Release from Alginate Hydrogel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Introduction Alginate hydrogel is one of the most widely used carriers for the immobilization of micro bial cells. If surfactants are encapsulated with alginate hydrogel, increasing temperature or concentration can make the encapsulated surfactants aggregate and form micelle.

  9. Cell-laden photocrosslinked GelMA-DexMA copolymer hydrogels with tunable mechanical properties for tissue engineering.

    Science.gov (United States)

    Wang, Hang; Zhou, Lei; Liao, Jingwen; Tan, Ying; Ouyang, Kongyou; Ning, Chenyun; Ni, Guoxin; Tan, Guoxin

    2014-09-01

    To effectively repair or replace damaged tissues, it is necessary to design three dimensional (3D) extracellular matrix (ECM) mimicking scaffolds with tunable biomechanical properties close to the desired tissue application. In the present work, gelatin methacrylate (GelMA) and dextran glycidyl methacrylate (DexMA) with tunable mechanical and biological properties were utilized to prepared novel bicomponent polymeric hydrogels by cross-linking polymerization using photoinitiation. We controlled the degree of substitution (DS) of glycidyl methacrylate in DexMA so that they could obtain relevant mechanical properties. The results indicated that copolymer hydrogels demonstrated a lower swelling ratio and higher compressive modulus as compared to the GelMA. Moreover, all of the hydrogels exhibited a honeycomb-like architecture, the pore sizes decreased as DS increased, and NIH-3T3 fibroblasts encapsulated in these hydrogels all exhibited excellent viability. These characteristics suggest a class of photocrosslinkable, tunable mechanically copolymer hydrogels that may find potential application in tissue engineering and regenerative medicine applications.

  10. Human iPSC-Derived Endothelial Cell Sprouting Assay in Synthetic Hydrogel Arrays

    Science.gov (United States)

    Activation of vascular endothelial cells (ECs) by growth factors initiates a cascade of events in vivo consisting of EC tip cell selection, sprout formation, EC stalk cell proliferation, and ultimately vascular stabilization by support cells. Although EC functional assays can rec...

  11. Cytotoxic Effects of Alcoholic Extract of Dorema Glabrum Seed on Cancerous Cells Viability

    Directory of Open Access Journals (Sweden)

    Maryam Bannazadeh Amirkhiz

    2013-08-01

    Full Text Available Purpose: In the present study cytotoxic effects of the alcoholic extract of Dorema Glabrum seed on viability of WEHI-164 cells, mouse Fibrosarcoma cell line and L929 normal cells were compared with the cytotoxic effects of Taxol (anticancer and apoptosis inducer drug. Methods: To find out the plant extract cytotoxic effects, MTT test and DNA fragmentation assay, the biochemical hallmark of apoptosis were performed on cultured and treated cells. Results: According to the findings the alcoholic extract of Dorema Glabrum seed can alter cells morphology and because of chromatin condensation and other changes they shrink and take a spherical shape, and lose their attachment too. So the plant extract inhibits cell growth albeit in a time and dose dependent manner and results in degradation of chromosomal DNA. Conclusion: Our data well established the anti-proliferative effect of methanolic extract of Dorema Glabrum seed and clearly showed that the plant extract can induce apoptosis and not necrosis in vitro, but the mechanism of its activities remained unknown. These results demonstrated that Dorema Glabrum seed might be a novel and attractive therapeutic candidate for tumor treatment in clinical practices.

  12. Designing hydrogels for controlled drug delivery

    Science.gov (United States)

    Li, Jianyu; Mooney, David J.

    2016-12-01

    Hydrogel delivery systems can leverage therapeutically beneficial outcomes of drug delivery and have found clinical use. Hydrogels can provide spatial and temporal control over the release of various therapeutic agents, including small-molecule drugs, macromolecular drugs and cells. Owing to their tunable physical properties, controllable degradability and capability to protect labile drugs from degradation, hydrogels serve as a platform on which various physiochemical interactions with the encapsulated drugs occur to control drug release. In this Review, we cover multiscale mechanisms underlying the design of hydrogel drug delivery systems, focusing on physical and chemical properties of the hydrogel network and the hydrogel-drug interactions across the network, mesh and molecular (or atomistic) scales. We discuss how different mechanisms interact and can be integrated to exert fine control in time and space over drug presentation. We also collect experimental release data from the literature, review clinical translation to date of these systems and present quantitative comparisons between different systems to provide guidelines for the rational design of hydrogel delivery systems.

  13. Induction of Apoptosis and Cell Cycle Arrest in Human Colorectal Carcinoma by Litchi Seed Extract

    Directory of Open Access Journals (Sweden)

    Chih-Ping Hsu

    2012-01-01

    Full Text Available The Litchi (Litchi chinensis fruit products possess rich amounts of flavanoids and proanthocyanidins. Its pericarp has been shown to inhibit breast and liver cancer cell growth. However, the anticolorectal cancer effect of Litchi seed extract has not yet been reported. In this study, the effects of polyphenol-rich Litchi seed ethanol extract (LCSP on the proliferation, cell cycle, and apoptosis of two colorectal cancer cell lines Colo320DM and SW480 were examined. The results demonstrated that LCSP significantly induced apoptotic cell death in a dose-dependent manner and arrested cell cycle in G2/M in colorectal carcinoma cells. LCSP also suppressed cyclins and elevated the Bax : Bcl-2 ratio and caspase 3 activity. This study provides in vitro evidence that LCSP serves as a potential chemopreventive agent for colorectal cancer.

  14. Apoptosis of hepatoma cells SMMC-7721 induced by Ginkgo biloba seed polysaccharide

    Institute of Scientific and Technical Information of China (English)

    Qun Chen; Gui-Wen Yang; Li-Guo An

    2002-01-01

    AIM: To study the apoptosis of hepatoma cells SMMC-7721induced by polysaccharide isolated from Ginkgo biloba seed.METHODS: Ginkgo biloba seed polysaccharide (GBSP) wasisolated by ethanol fractionation of Ginkgo biloba seed andpurified by Sephadex G-200 chromatography. The purity ofGBSP was verified by reaction with iodine-potassium iodideand ninhydrin and confirmed by UV spectrophotometer,cellulose acetate membrane electrophoresis and Sepharose4B gel filtration chromatography. The Scanning ElectronMicroscope (SEM) and Flow Cytometrv (FCM) were used toexamine the SMMC-7721 cells with and without GBSPtreatment at 500 mg/ml for 36 h.RESULTS: GBSP product obtained was of high purity withthe average molecular weight of 1.86 × 105. Quantitativeanalysis of SMMC-7721 cells in vitro with FCM showed thatthe percentages of G2-M cells without and with GBSPtreatment were 17.01±1.28 % and 11.77±1.50% (P<0.05),the debds ratio of the cells were 0.46±0.12 % and 0.06±0 .06 %(P<0.01), and the apoptosis ratio of cells was 3.84±0 .55 %and 9.13±1.48 %(P<0.01) respectively. Following GBSPtreatment, microvilli of SMMC-7721 cells appeared thinnerand the number of spherical cells increased markedly. Mostsignificantly, the apoptosis bodies were formed on andaround the spherical cells treated with GBSP.CONCLUSION: GBSP could potentially induce the apoptosisof SMMC-7721 cells.

  15. Engineered collagen hydrogels for the sustained release of biomolecules and imaging agents: promoting the growth of human gingival cells.

    Science.gov (United States)

    Choi, Jonghoon; Park, Hoyoung; Kim, Taeho; Jeong, Yoon; Oh, Myoung Hwan; Hyeon, Taeghwan; Gilad, Assaf A; Lee, Kwan Hyi

    2014-01-01

    We present here the in vitro release profiles of either fluorescently labeled biomolecules or computed tomography contrast nanoagents from engineered collagen hydrogels under physiological conditions. The collagen constructs were designed as potential biocompatible inserts into wounded human gingiva. The collagen hydrogels were fabricated under a variety of conditions in order to optimize the release profile of biomolecules and nanoparticles for the desired duration and amount. The collagen constructs containing biomolecules/nanoconstructs were incubated under physiological conditions (ie, 37°C and 5% CO2) for 24 hours, and the release profile was tuned from 20% to 70% of initially loaded materials by varying the gelation conditions of the collagen constructs. The amounts of released biomolecules and nanoparticles were quantified respectively by measuring the intensity of fluorescence and X-ray scattering. The collagen hydrogel we fabricated may serve as an efficient platform for the controlled release of biomolecules and imaging agents in human gingiva to facilitate the regeneration of oral tissues.

  16. Synthesis of hyaluronan haloacetates and biology of novel cross-linker-free synthetic extracellular matrix hydrogels.

    Science.gov (United States)

    Serban, Monica A; Prestwich, Glenn D

    2007-09-01

    Hyaluronan (HA) derivatives containing thiol-reactive electrophilic esters were prepared to react with thiol-modified macromolecules to give cross-linker-free hydrogels. Specifically, HA was converted to two haloacetate derivatives, HA bromoacetate (HABA) and HA iodoacetate (HAIA). In cytotoxicity assays, these reactive macromolecules predictably induced cell death in a dose-dependent manner. Cross-linker-free synthetic extracellular matrix (sECM) hydrogels were prepared by thiol alkylation using HAIA and HABA as polyvalent electrophiles and thiol-modified HA (CMHA-S) with or without thiol-modified gelatin (Gtn-DTPH) as polyvalent nucleophiles. When primary human fibroblasts were seeded on the surface of the sECMs containing only the electrophilic HA haloacetate and nucleophilic CMHA-S components, no significant cytoadherence was observed. Cell attachment and viability was 17% (HABA) to 30% (HAIA) lower on HA haloacetate cross-linked hydrogels than on CMHA-S that had been oxidatively cross-linked via disulfide-bonds. In contrast, sECMs that included Gtn-DTPH allowed fibroblasts to attach, spread, and proliferate. Taken together, the HA haloacetates are attractive candidates for producing cross-linker-free sECM biomaterials that can function either as anti-adhesive barriers or as cytoadhesive sECMs for cell culture in pseudo-3-D.

  17. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells

    Science.gov (United States)

    Chamieh, Frédéric; Collignon, Anne-Margaux; Coyac, Benjamin R.; Lesieur, Julie; Ribes, Sandy; Sadoine, Jérémy; Llorens, Annie; Nicoletti, Antonino; Letourneur, Didier; Colombier, Marie-Laure; Nazhat, Showan N.; Bouchard, Philippe; Chaussain, Catherine; Rochefort, Gael Y.

    2016-12-01

    Therapies using mesenchymal stem cell (MSC) seeded scaffolds may be applicable to various fields of regenerative medicine, including craniomaxillofacial surgery. Plastic compression of collagen scaffolds seeded with MSC has been shown to enhance the osteogenic differentiation of MSC as it increases the collagen fibrillary density. The aim of the present study was to evaluate the osteogenic effects of dense collagen gel scaffolds seeded with mesenchymal dental pulp stem cells (DPSC) on bone regeneration in a rat critical-size calvarial defect model. Two symmetrical full-thickness defects were created (5 mm diameter) and filled with either a rat DPSC-containing dense collagen gel scaffold (n = 15), or an acellular scaffold (n = 15). Animals were imaged in vivo by microcomputer tomography (Micro-CT) once a week during 5 weeks, whereas some animals were sacrificed each week for histology and histomorphometry analysis. Bone mineral density and bone micro-architectural parameters were significantly increased when DPSC-seeded scaffolds were used. Histological and histomorphometrical data also revealed significant increases in fibrous connective and mineralized tissue volume when DPSC-seeded scaffolds were used, associated with expression of type I collagen, osteoblast-associated alkaline phosphatase and osteoclastic-related tartrate-resistant acid phosphatase. Results demonstrate the potential of DPSC-loaded-dense collagen gel scaffolds to benefit of bone healing process.

  18. Role of TMS1 Silencing in the Resistance of Breast Cancer Cells to Apoptosis

    Science.gov (United States)

    2006-08-01

    culture dishes are coated with poly(2- hydroxyethyl-methacrylate), which is a hydrogel used to prevent adhesion of cells to growth surfaces. Seeding...Procaspase-8m* Cleaved Caspase-8 - 22. TMS1 ’ Amp -WM fk-ubulin m- Figure 6. Loss of TMS 1 expression in MB468 cells causes a reduction in caspase-8

  19. Electrostatic endothelial cell seeding technique for small-diameter (<6 mm) vascular prostheses: feasibility testing.

    Science.gov (United States)

    Bowlin, G L; Rittgers, S E

    1997-01-01

    Multiple studies have indicated the importance of surface charge in the adhesion of multiple cardiovascular cell lines including platelets and endothelial cells on the substrate materials (1,4,7-10,12-15). It is the purpose of this article to report a feasibility study conducted using an electrostatic endothelial cell seeding technique. The feasibility study was conducted using human umbilical vein endothelial cells (HUVEC), a static pool apparatus, a voltage source, and a parallel plate capacitor. The HUVEC concentration and seeding times were constant at 560,000 HUVEC/ml and 30 min, respectively. Scanning electron microscopy examination of the endothelial cell adhesion indicated that an induced temporary positive surface charge on e-PTFE graft material enhances the number and the maturation (flattening) of HUVECs adhered. The results indicated that the total number of endothelial cells adhered (70.9 mm2) was increased from 9198 +/- 1194 HUVECs on the control (no induced surface charge) e-PTFE to 22,482 +/- 4814 HUVECs (2.4 x control) on the maximum induced positive surface charge. The total number of cells in the flattened phase of adhesion increased from 837 +/- 275 to 6785 +/- 1012 HUVECs (8.1x) under identical conditions. Thus, the results of the feasibility study support the premise that electrostatic interaction is an important factor in both the endothelial cell adhesion and spreading processes and suggest that the electrostatic seeding technique may lead to an increased patency of small diameter (<6 mm) vascular prostheses.

  20. Water Stress and Foliar Boron Application Altered Cell Wall Boron and Seed Nutrition in Near-Isogenic Cotton Lines Expressing Fuzzy and Fuzzless Seed Phenotypes.

    Directory of Open Access Journals (Sweden)

    Nacer Bellaloui

    Full Text Available Our previous research, conducted under well-watered conditions without fertilizer application, showed that fuzziness cottonseed trait resulted in cottonseed nutrition differences between fuzzy (F and fuzzless (N cottonseed. Under water stress conditions, B mobility is further limited, inhibiting B movement within the plant, affecting seed nutrition (quality. Therefore, we hypothesized that both foliar B and water stress can affect B mobility, altering cottonseed protein, oil, and mineral nutrition. The objective of the current research was to evaluate the effects of the fuzziness seed trait on boron (B and seed nutrition under water stress and foliar B application using near-isogenic cotton lines (NILs grown in a repeated greenhouse experiment. Plants were grown under-well watered conditions (The soil water potential was kept between -15 to -20 kPa, considered field capacity and water stress conditions (soil water potential between -100 and -150 kPa, stressed conditions. Foliar B was applied at a rate of 1.8 kg B ha(-1 as H3BO3. Under well-watered conditions without B the concentrations of seed oil in N lines were higher than in F lines, and seed K and N levels were lower in N lines than in F lines. Concentrations of K, N, and B in leaves were higher in N lines than in F lines, opposing the trend in seeds. Water-stress resulted in higher seed protein concentrations, and the contribution of cell wall (structural B to the total B exceeded 90%, supporting the structural role of B in plants. Foliar B application under well-watered conditions resulted in higher seed protein, oil, C, N, and B in only some lines. This research showed that cottonseed nutrition differences can occur due to seed fuzziness trait, and water stress and foliar B application can alter cottonseed nutrition.

  1. Water Stress and Foliar Boron Application Altered Cell Wall Boron and Seed Nutrition in Near-Isogenic Cotton Lines Expressing Fuzzy and Fuzzless Seed Phenotypes.

    Science.gov (United States)

    Bellaloui, Nacer; Turley, Rickie B; Stetina, Salliana R

    2015-01-01

    Our previous research, conducted under well-watered conditions without fertilizer application, showed that fuzziness cottonseed trait resulted in cottonseed nutrition differences between fuzzy (F) and fuzzless (N) cottonseed. Under water stress conditions, B mobility is further limited, inhibiting B movement within the plant, affecting seed nutrition (quality). Therefore, we hypothesized that both foliar B and water stress can affect B mobility, altering cottonseed protein, oil, and mineral nutrition. The objective of the current research was to evaluate the effects of the fuzziness seed trait on boron (B) and seed nutrition under water stress and foliar B application using near-isogenic cotton lines (NILs) grown in a repeated greenhouse experiment. Plants were grown under-well watered conditions (The soil water potential was kept between -15 to -20 kPa, considered field capacity) and water stress conditions (soil water potential between -100 and -150 kPa, stressed conditions). Foliar B was applied at a rate of 1.8 kg B ha(-1) as H3BO3. Under well-watered conditions without B the concentrations of seed oil in N lines were higher than in F lines, and seed K and N levels were lower in N lines than in F lines. Concentrations of K, N, and B in leaves were higher in N lines than in F lines, opposing the trend in seeds. Water-stress resulted in higher seed protein concentrations, and the contribution of cell wall (structural) B to the total B exceeded 90%, supporting the structural role of B in plants. Foliar B application under well-watered conditions resulted in higher seed protein, oil, C, N, and B in only some lines. This research showed that cottonseed nutrition differences can occur due to seed fuzziness trait, and water stress and foliar B application can alter cottonseed nutrition.

  2. Bioprinting of 3D hydrogels.

    Science.gov (United States)

    Stanton, M M; Samitier, J; Sánchez, S

    2015-08-07

    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models.

  3. Grape seed extract prevents gentamicin-induced nephrotoxicity and genotoxicity in bone marrow cells of mice.

    Science.gov (United States)

    El-Ashmawy, Ibrahim M; El-Nahas, Abeer F; Salama, Osama M

    2006-09-01

    The protection conferred by grape seed extract against gentamicin-induced nephrotoxicity and bone marrow chromosomal aberrations have been evaluated in adult Swiss albino mice. The activity of reduced glutathione peroxidase (GSH peroxidase), the levels of glutathione (GSH) and lipid peroxidation as malondialdehyde (MDA) in the kidneys homogenates, serum urea and creatinine were measured, and in addition the changes in kidney histology and bone marrow chromosomes were investigated. Gentamicin (80 mg/kg b.wt. intraperitoneally for 2 weeks) induced kidney damage as indicated from a pronounced changes in kidney histology, a significant increase in serum urea and creatinine and MDA content in the kidney homogenate. While the activity of the antioxidant enzyme GSH peroxidase and the level of GSH were significantly decreased. Gentamicin induced genotoxicity indicated by increased the number of aberrant cells and different types of structural chromosomal aberrations (fragment, deletion and ring chromosome) and showed no effect on mitotic activity of the cell. Pretreatment with grape seed extract (7 days) and simultaneously (14 days) with gentamicin significantly protected the kidney tissue by ameliorating its antioxidant activity. Moreover, grape seed extract significantly protected bone marrow chromosomes from gentamicin induced genotoxicity by reducing the total number of aberrant cells, and different types of structural chromosomal aberrations. It could be concluded that grape seed extract acts as a potent antioxidant prevented kidney damage and genotoxicity of bone marrow cells.

  4. Clinical outcomes after cell-seeded autologous chondrocyte implantation of the knee

    DEFF Research Database (Denmark)

    Pestka, Jan M; Bode, Gerrit; Salzmann, Gian;

    2014-01-01

    BACKGROUND: Autologous chondrocyte implantation (ACI) has been associated with satisfying results. Still, it remains unclear when success or failure after ACI can be estimated. PURPOSE: To evaluate the clinical outcomes of cell-seeded collagen matrix-supported ACI (ACI-Cs) for the treatment of ca...

  5. Versatile click alginate hydrogels crosslinked via tetrazine-norbornene chemistry.

    Science.gov (United States)

    Desai, Rajiv M; Koshy, Sandeep T; Hilderbrand, Scott A; Mooney, David J; Joshi, Neel S

    2015-05-01

    Alginate hydrogels are well-characterized, biologically inert materials that are used in many biomedical applications for the delivery of drugs, proteins, and cells. Unfortunately, canonical covalently crosslinked alginate hydrogels are formed using chemical strategies that can be biologically harmful due to their lack of chemoselectivity. In this work we introduce tetrazine and norbornene groups to alginate polymer chains and subsequently form covalently crosslinked click alginate hydrogels capable of encapsulating cells without damaging them. The rapid, bioorthogonal, and specific click reaction is irreversible and allows for easy incorporation of cells with high post-encapsulation viability. The swelling and mechanical properties of the click alginate hydrogel can be tuned via the total polymer concentration and the stoichiometric ratio of the complementary click functional groups. The click alginate hydrogel can be modified after gelation to display cell adhesion peptides for 2D cell culture using thiol-ene chemistry. Furthermore, click alginate hydrogels are minimally inflammatory, maintain structural integrity over several months, and reject cell infiltration when injected subcutaneously in mice. Click alginate hydrogels combine the numerous benefits of alginate hydrogels with powerful bioorthogonal click chemistry for use in tissue engineering applications involving the stable encapsulation or delivery of cells or bioactive molecules.

  6. Fabrication of dye-sensitized solar cell (DSSC) using annato seeds (Bixa orellana Linn)

    Energy Technology Data Exchange (ETDEWEB)

    Haryanto, Ditia Allindira; Landuma, Suarni; Purwanto, Agus [Department of Chemical Engineering, Sebelas Maret University, Surakarta 632112 (Indonesia)

    2014-02-24

    The Fabrication of dye sensitized solar cell (DSSC) using Annato seeds has been conducted in this study. Annato seeds (Bixa orellana Linn) used as a sensitizer for dye sensitized solar cell. The experimental parameter was concentration of natural dye. Annato seeds was extracted using etanol solution and the concentration was controlled by varying mass of Annato seeds. A semiconductor TiO{sub 2} was prepared by a screen printing method for coating glass use paste of TiO{sub 2}. Construction DSSC used layered systems (sandwich) consists of working electrode (TiO{sub 2} semiconductor-dye) and counter electrode (platina). Both are placed on conductive glass and electrolytes that occur electrons cycle. The characterization of thin layer of TiO{sub 2} was conducted using SEM (Scanning Electron Microscpy) analysis showed the surface morphology of TiO{sub 2} thin layer and the cross section of a thin layer of TiO{sub 2} with a thickness of 15–19 μm. Characterization of natural dye extract was determined using UV-Vis spectrometry analysis shows the wavelength range annato seeds is 328–515 nm, and the voltage (V{sub oc}) and electric current (I{sub sc}) resulted in keithley test for 30 gram, 40 gram, and 50 gram were 0,4000 V; 0,4251 V; 0,4502 V and 0,000074 A; 0,000458 A; 0,000857 A, respectively. The efficiencies of the fabricated solar cells using annato seeds as senstizer for each varying mass are 0,00799%, 0,01237%, and 0,05696%.

  7. F{sub 2} excimer laser (157 nm) radiation modification and surface ablation of PHEMA hydrogels and the effects on bioactivity: Surface attachment and proliferation of human corneal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Zainuddin, E-mail: z.zainuddin@uq.edu.a [Queensland Eye Institute, 41 Annerley Road, South Brisbane, Queensland 4101 (Australia); University of Queensland, School of Medicine, Herston, Queensland 4006 (Australia); University of Queensland, Centre for Advanced Imaging, St. Lucia, Queensland 4072 (Australia); Chirila, Traian V. [Queensland Eye Institute, 41 Annerley Road, South Brisbane, Queensland 4101 (Australia); University of Queensland, School of Medicine, Herston, Queensland 4006 (Australia); Queensland University of Technology, School of Physical and Chemical Sciences, Brisbane, Queensland 4001 (Australia); University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St. Lucia, Queensland 4072 (Australia); Barnard, Zeke [Queensland Eye Institute, 41 Annerley Road, South Brisbane, Queensland 4101 (Australia); Watson, Gregory S. [James Cook University, School of Pharmacy and Molecular Sciences, Townsville, Queensland 4811 (Australia); Toh, Chiong; Blakey, Idriss [University of Queensland, Centre for Advanced Imaging, St. Lucia, Queensland 4072 (Australia); University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St. Lucia, Queensland 4072 (Australia); Whittaker, Andrew K. [Queensland Eye Institute, 41 Annerley Road, South Brisbane, Queensland 4101 (Australia); University of Queensland, Centre for Advanced Imaging, St. Lucia, Queensland 4072 (Australia); University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St. Lucia, Queensland 4072 (Australia); Hill, David J.T. [The University of Queensland, School of Chemistry and Molecular Biosciences, St. Lucia, Queensland 4072 (Australia)

    2011-02-15

    Physical and chemical changes at the surface of poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels modified by ablation with an F{sub 2} excimer laser were investigated experimentally. An important observation was that only the outer exposed surface layers of the hydrogel were affected by the exposure to 157 nm radiation. The effect of the surface changes on the tendency of cells to adhere to the PHEMA was also investigated. A 0.5 cm{sup 2} area of the hydrogel surfaces was exposed to laser irradiation at 157 nm to fluences of 0.8 and 4 J cm{sup -2}. The changes in surface topography were analysed by light microscopy and atomic force microscopy, while the surface chemistry was characterized by attenuated total reflection infrared and X-ray photoelectron spectroscopies. Cell-interfacial interactions were examined based on the proliferation of human corneal limbal epithelial (HLE) cells cultured on the laser-modified hydrogels, and on the unexposed hydrogels and tissue culture plastic for comparison. It was observed that the surface topography of laser-exposed hydrogels showed rippled patterns with a surface roughness increasing at the higher exposure dose. The changes in surface chemistry were affected not only by an indirect effect of hydrogen and hydroxyl radicals, formed by water photolysis, on the PHEMA, but also by the direct action of laser radiation on PHEMA if the surface layers of the gel become depleted of water. The laser treatment led to a change in the surface characteristics, with a lower concentration of ester side-chains and the formation of new oxygenated species at the surface. The surface also became more hydrophobic. Most importantly, the surface chemistry and the newly created surface topographical features were able to improve the attachment, spreading and growth of HLE cells.

  8. Alyssum homolocarpum seeds: phytochemical analysis and effects of the seed oil on neural stem cell proliferation and differentiation.

    Science.gov (United States)

    Hamedi, Azadeh; Ghanbari, Amir; Razavipour, Razieh; Saeidi, Vahid; Zarshenas, Mohammad M; Sohrabpour, Maryam; Azari, Hassan

    2015-07-01

    Pharmacognostic evaluation of medicinal plants may assess their current applications and possibly results in finding new active components. In this study, ash and extractive values and high performance thin layer chromatography fingerprints of Alyssum homolocarpum (Brassicaceae) seed extracts were investigated to elucidate its composition. Differential scanning calorimetry and gas chromatography-mass spectrometry analysis were employed to determine the components of A. homolocarpum seed oil (AHO). Neurosphere assay, in vitro differentiation and immunofluorescence analysis were performed to evaluate the effects of oral administration of AHO (0.5 or 1 g/kg/day for 14 days) on proliferation and differentiation of neural stem cells (NSCs) in adult male BALB/c mice. Total, acid-insoluble and water-soluble ash values were determined as 45.83 ± 5.85, 6.67 ± 2.89 and 28.33 ± 2.89 mg/g, respectively. The extractive values were 4.90, 0.43 and 0.56 % (w/w) for n-hexane, dichloromethane and ethanolic extracts, respectively. Interestingly, AHO was mainly composed of α-linolenic acid (89.71 %), β-sitosterol (3.3 mg/g) and campesterol (0.86 mg/g). Administration of AHO at 1 g/kg/day significantly increased proliferation of NSCs, as evidenced by an increase in mean neurosphere-forming frequency per brain (872.7 ± 15.17) and neurosphere diameter (101 ± 2.48 µm) compared to the control group (424.3 ± 59.29 and 78.63 ± 1.7 µm, respectively; P < 0.05). AHO treatment did not affect in vitro differentiation of the harvested NSCs. Our data show that A. homolocarpum seed oil is a rich source of α-linolenic acid and β-sitosterol with potential therapeutic application to enhance NSC proliferation and recruitment in neurological diseases.

  9. Enzymatic regulation of functional vascular networks using gelatin hydrogels.

    Science.gov (United States)

    Chuang, Chia-Hui; Lin, Ruei-Zeng; Tien, Han-Wen; Chu, Ya-Chun; Li, Yen-Cheng; Melero-Martin, Juan M; Chen, Ying-Chieh

    2015-06-01

    To manufacture tissue engineering-based functional tissues, scaffold materials that can be sufficiently vascularized to mimic the functionality and complexity of native tissues are needed. Currently, vascular network bioengineering is largely carried out using natural hydrogels as embedding scaffolds, but most natural hydrogels have poor mechanical stability and durability, factors that critically limit their widespread use. In this study, we examined the suitability of gelatin-phenolic hydroxyl (gelatin-Ph) hydrogels that can be enzymatically crosslinked, allowing tuning of the storage modulus and the proteolytic degradation rate, for use as injectable hydrogels to support the human progenitor cell-based formation of a stable and mature vascular network. Porcine gelatin-Ph hydrogels were found to be cytocompatible with human blood-derived endothelial colony-forming cells and white adipose tissue-derived mesenchymal stem cells, resulting in >87% viability, and cell proliferation and spreading could be modulated by using hydrogels with different proteolytic degradability and stiffness. In addition, gelatin was extracted from mouse dermis and murine gelatin-Ph hydrogels were prepared. Importantly, implantation of human cell-laden porcine or murine gelatin-Ph hydrogels into immunodeficient mice resulted in the rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, the degree of enzymatic crosslinking of the gelatin-Ph hydrogels could be used to modulate cell behavior and the extent of vascular network formation in vivo. Our report details a technique for the synthesis of gelatin-Ph hydrogels from allogeneic or xenogeneic dermal skin and suggests that these hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues.

  10. Sustained PDGF-BB release from PHBHHx loaded nanoparticles in 3D hydrogel/stem cell model.

    Science.gov (United States)

    Dong, Cui-Ling; Webb, William R; Peng, Qiang; Tang, James Z; Forsyth, Nicholas R; Chen, Guo-Qiang; El Haj, Alicia J

    2015-01-01

    This study aimed to design a growth factor loaded copolyester of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx) nanoparticles containing 3D collagen matrix to achieve growth factor sustained release for long-term stimulation of human mesenchymal stem cells (hMSCs) proliferation/differentiation for tissue engineer application. Platelet-derived growth factor-BB (PDGF-BB), which is known to enhance hMSCs proliferation in human serum, was selected as a model growth factor, and biodegradable copolyester of PHBHHx was chosen to be the sustained release vehicle. PDGF-BB phospholipid complex encapsulated PHBHHx nanoparticles were fabricated, and their effect on hMSCs proliferation was investigated via assays of CCK-8 and live-dead staining to cells inoculated in 2D tissue culture plates and 3D collagen gel scaffolds, respectively. The resulting spherical PHBHHx nanoparticles were stable in terms of their mean particle size, polydispersity index and zeta potential before and after lyophilization. In vitro study revealed a sustained release of PDGF-BB with a low burst release. Furthermore, sustained released PDGF-BB was revealed to significantly promote hMSCs proliferation in both cell monolayer and cell seeded 3D collagen scaffolds inoculated in serum-free media. Therefore, the 3D collagen matrices with locally sustained release growth factor nanoparticles hold promise to be used for stem cell tissue engineering.

  11. Human adipose-derived stromal cells in a clinically applicable injectable alginate hydrogel

    DEFF Research Database (Denmark)

    Larsen, Bjarke Follin; Juhl, Morten; Cohen, Smadar

    2015-01-01

    . Hepatocyte growth factor mRNA was increased in ASCs cultivated in alginates compared with monolayer controls. Alginates and alginates containing ASCs did not induce dendritic cell maturation. ASCs in alginate responded like controls to interferon-gamma stimulation (licensing), and alginate culture increased...... determined by confocal microscopy, dendritic cell co-culture, flow cytometry, reverse transcriptase quantitative polymerase chain reaction, Luminex multiplex, and lymphocyte proliferation experiments. RESULTS: ASCs performed equally well in alginate and RGD-alginate. After 1 week of alginate culture, cell...

  12. Peptide-functionalized starPEG/heparin Hydrogels Direct Mitogenicity, Cell Morphology and Cartilage Matrix Distribution in vitro and in vivo.

    Science.gov (United States)

    Hesse, Eliane; Freudenberg, Uwe; Niemietz, Thomas; Greth, Carina; Weisser, Melanie; Hagmann, Sébastien; Binner, Marcus; Werner, Carsten; Richter, Wiltrud

    2017-01-13

    Cell-based tissue engineering is a promising approach for treating cartilage lesions, but available strategies still provide a distinct composition of the extracellular matrix and an inferior mechanical property compared to native cartilage. To achieve fully functional tissue replacement more rationally designed biomaterials may be needed, introducing bioactive molecules which modulate cell behavior and guide tissue regeneration. This study aimed at exploring the impact of cell instructive, adhesion (GCWGGRGDSP called RGD) and collagen-binding (CKLER/CWYRGRL) peptides, incorporated in a tunable, matrixmetalloprotease (MMP)-responsive multi-arm poly(ethylene glycol) (starPEG)/heparin hydrogel on cartilage regeneration parameters in vitro and in vivo. MMP-responsive-starPEG-conjugates with cysteine termini and heparin-maleimide, optionally pre-functionalized with RGD, CKLER, CWYRGRL or control peptides, were cross-linked by Michael type addition to embed and grow mesenchymal stromal cells (MSC) or chondrocytes. While starPEG/heparin-hydrogel strongly supported chondrogenesis of MSC according to COL2A1, BGN and ACAN induction, MMP-degradability enhanced cell viability and proliferation. RGD-modification of the gels promoted cell spreading with intense cell network formation without negative effects on chondrogenesis. However, CKLER and CWYRGRL were unable to enhance the collagen content of constructs. RGD-modification allowed more even collagen type II distribution by chondrocytes throughout the MMP-responsive constructs especially in vivo. Collectively, peptide-instruction via heparin-enriched MMP-degradable starPEG allowed adjustment of self-renewal, cell morphology and cartilage matrix distribution in order to guide MSC and chondrocyte-based cartilage regeneration towards an improved outcome.

  13. Cartilage tissue engineering application of injectable gelatin hydrogel with in situ visible-light-activated gelation capability in both air and aqueous solution.

    Science.gov (United States)

    Lin, Hang; Cheng, Anthony Wai-Ming; Alexander, Peter G; Beck, Angela M; Tuan, Rocky S

    2014-09-01

    Chondroprogenitor cells encapsulated in a chondrogenically supportive, three-dimensional hydrogel scaffold represents a promising, regenerative approach to articular cartilage repair. In this study, we have developed an injectable, biodegradable methacrylated gelatin (mGL)-based hydrogel capable of rapid gelation via visible light (VL)-activated crosslinking in air or aqueous solution. The mild photocrosslinking conditions permitted the incorporation of cells during the gelation process. Encapsulated human-bone-marrow-derived mesenchymal stem cells (hBMSCs) showed high, long-term viability (up to 90 days) throughout the scaffold. To assess the applicability of the mGL hydrogel for cartilage tissue engineering, we have evaluated the efficacy of chondrogenesis of the encapsulated hBMSCs, using hBMSCs seeded in agarose as control. The ability of hBMSC-laden mGL constructs to integrate with host tissues after implantation was further investigated utilizing an in vitro cartilage repair model. The results showed that the mGL hydrogel, which could be photopolymerized in air and aqueous solution, supports hBMSC growth and TGF-β3-induced chondrogenesis. Compared with agarose, mGL constructs laden with hBMSCs are mechanically stronger with time, and integrate well with native cartilage tissue upon implantation based on push-out mechanical testing. VL-photocrosslinked mGL scaffold thus represents a promising scaffold for cell-based repair and resurfacing of articular cartilage defects.

  14. Toxicity assessment and modelling of Moringa oleifera seeds in water purification by whole cell bioreporter.

    Science.gov (United States)

    Al-Anizi, Ali Adnan; Hellyer, Maria Theresa; Zhang, Dayi

    2014-06-01

    Moringa oleifera has been used as a coagulation reagent for drinking water purification, especially in developing countries such as Malawi. This research revealed the cytoxicity and genotoxicity of M. oleifera by Acinetobacter bioreporter. The results indicated that significant cytoxicity effects were observed when the powdered M. oleifera seeds concentration is from 1 to 50 mg/L. Through direct contact, ethanolic-water extraction and hexane extraction, the toxic effects of hydrophobic and hydrophilic components in M. oleifera seeds were distinguished. It suggested that the hydrophobic lipids contributed to the dominant cytoxicity, consequently resulting in the dominant genotoxicity in the water-soluble fraction due to limited dissolution when the M. oleifera seeds granule concentration was from 10 to 1000 mg/L. Based on cytoxicity and genotoxicity model, the LC50 and LC90 of M. oleifera seeds were 8.5 mg/L and 300 mg/L respectively and their genotoxicity was equivalent to 8.3 mg mitomycin C per 1.0 g dry M. oleifera seed. The toxicity of M. oleifera has also remarkable synergistic effects, suggesting whole cell bioreporter as an appropriate and complementary tool to chemical analysis for environmental toxicity assessment.

  15. Physically crosslinked-sacran hydrogel films for wound dressing application.

    Science.gov (United States)

    Wathoni, Nasrul; Motoyama, Keiichi; Higashi, Taishi; Okajima, Maiko; Kaneko, Tatsuo; Arima, Hidetoshi

    2016-08-01

    The thin hydrogel films consisting of water-swollen polymer networks can potentially be applied for biomedical fields. Recently, natural polysaccharides have great attentions to be developed as wound healing and protection. In the present study, we newly prepared and characterized a physically crosslinked-hydrogel film composed of a novel megamolecular polysaccharide sacran for wound dressing application. We successfully fabricated a physically crosslinked-sacran hydrogel film by a solvent-casting method. The thickness of a sacran hydrogel film was lower than that of a sodium alginate (Na-alginate) film. Importantly, the swollen ratio of a sacran hydrogel film in water at 24h was 19-fold, compared to initial weight. Meanwhile, a Na-alginate hydrogel film was completely broken apart after rehydration. Moreover, a sacran hydrogel film did not show any cytotoxicity on NIH3T3 cells, a murine fibroblast cell line. The in vivo skin hydration study revealed that a sacran hydrogel film significantly increased the moisture content on hairless mice skin and considerably improved wound healing ability, compared to control (non-treated), probably due to not only the moisturing effect but also the anti-inflammatory effect of sacran. These results suggest that sacran has the potential properties as a basic biomaterial in a hydrogel film for wound dressing application.

  16. Investigation of the Viability, Adhesion, and Migration of Human Fibroblasts in a Hyaluronic Acid/Gelatin Microgel-Reinforced Composite Hydrogel for Vocal Fold Tissue Regeneration.

    Science.gov (United States)

    Heris, Hossein K; Daoud, Jamal; Sheibani, Sara; Vali, Hojatollah; Tabrizian, Maryam; Mongeau, Luc

    2016-01-21

    The potential use of a novel scaffold biomaterial consisting of cross-linked hyaluronic acid (HA)-gelatin (Ge) composite microgels is investigated for use in treating vocal fold injury and scarring. Cell adhesion integrins and kinematics of cell motion are investigated in 2D and 3D culture conditions, respectively. Human vocal fold fibroblast (hVFF) cells are seeded on HA-Ge microgels attached to a HA hydrogel thin film. The results show that hVFF cells establish effective adhesion to HA-Ge microgels through the ubiquitous expression of β1 integrin in the cell membrane. The microgels are then encapsulated in a 3D HA hydrogel for the study of cell migration. The cells within the HA-Ge microgel-reinforced composite hydrogel (MRCH) scaffold have an average motility speed of 0.24 ± 0.08 μm min(-1) . The recorded microscopic images reveal features that are presumably associated with lobopodial and lamellipodial cell migration modes within the MRCH scaffold. Average cell speed during lobopodial migration is greater than that during lamellipodial migration. The cells move faster in the MRCH than in the HA-Ge gel without microgels. These findings support the hypothesis that HA-Ge MRCH promotes cell adhesion and migration; thereby they constitute a promising biomaterial for vocal fold repair.

  17. Three-dimensional culture of single embryonic stem-derived neural/stem progenitor cells in fibrin hydrogels: neuronal network formation and matrix remodelling.

    Science.gov (United States)

    Bento, Ana R; Quelhas, Pedro; Oliveira, Maria J; Pêgo, Ana P; Amaral, Isabel F

    2016-12-29

    In an attempt to improve the efficacy of neural stem/progenitor cell (NSPC) based therapies, fibrin hydrogels are being explored to provide a favourable microenvironment for cell survival and differentiation following transplantation. In the present work, the ability of fibrin to support the survival, proliferation, and neuronal differentiation of NSPCs derived from embryonic stem (ES) cells under monolayer culture was explored. Single mouse ES-NSPCs were cultured within fibrin (fibrinogen concentration: 6 mg/ml) under neuronal differentiation conditions up to 14 days. The ES-NSPCs retained high cell viability and proliferated within small-sized spheroids. Neuronal differentiation was confirmed by an increase in the levels of βIII-tubulin and NF200 over time. At day 14, cell-matrix constructs mainly comprised NSPCs and neurons (46.5% βIII-tubulin(+) cells). Gamma-aminobutyric acid (GABA)ergic and dopaminergic/noradrenergic neurons were also observed, along with a network of synaptic proteins. The ES-NSPCs expressed matriptase and secreted MMP-2/9, with MMP-2 activity increasing along time. Fibronectin, laminin and collagen type IV deposition was also detected. Fibrin gels prepared with higher fibrinogen concentrations (8/10 mg/ml) were less permissive to neurite extension and neuronal differentiation, possibly owing to their smaller pore area and higher rigidity. Overall, it is shown that ES-NSPCs within fibrin are able to establish neuronal networks and to remodel fibrin through MMP secretion and extracellular matrix (ECM) deposition. This three-dimensional (3D) culture system was also shown to support cell viability, neuronal differentiation and ECM deposition of human ES-NSPCs. The settled 3D platform is expected to constitute a valuable tool to develop fibrin-based hydrogels for ES-NSPC delivery into the injured central nervous system. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Induced Pluripotent Stem Cell-derived Mesenchymal Stem Cell Seeding on Biofunctionalized Calcium Phosphate Cements

    Institute of Scientific and Technical Information of China (English)

    WahWah TheinHan; Jun Liu; Minghui Tang; Wenchuan Chen; Linzhao Cheng; Hockin H. K. Xu

    2013-01-01

    Induced pluripotent stem cells (iPSCs) have great potential due to their proliferation and differentiation capability. The objectives of this study were to generate iPSC-derived mesenchymal stem cells (iPSC-MSCs), and investigate iPSC-MSC proliferation and osteogenic differentiation on calcium phosphate cement (CPC) containing biofunctional agents for the first time. Human iPSCs were derived from marrow CD34+ cells which were reprogrammed by a single episomal vector. iPSCs were cultured to form embryoid bodies (EBs), and MSCs migrated out of EBs. Five biofunctional agents were incorporated into CPC:RGD (Arg-Gly-Asp) peptides, fibronectin (Fn), fibronectin-like engineered polymer protein (FEPP), extracellular matrix Geltrex, and platelet concentrate. iPSC-MSCs were seeded on five biofunctionalized CPCs:CPC-RGD, CPC-Fn, CPC-FEPP, CPC-Geltrex, and CPC-Platelets. iPSC-MSCs on biofunctional CPCs had enhanced proliferation, actin fiber expression, osteogenic differentiation and mineralization, compared to control. Cell proliferation was greatly increased on biofunctional CPCs. iPSC-MSCs underwent osteogenic differentiation with increased alkaline phosphatase, Runx2 and collagen-I expressions. Mineral synthesis by iPSC-MSCs on CPC-Platelets was 3-fold that of CPC control. In conclusion, iPSCs showed high potential for bone engineering. iPSC-MSCs on biofunctionalized CPCs had cell proliferation and bone mineralization that were much better than traditional CPC. iPSC-MSC-CPC constructs are promising to promote bone regeneration in craniofacial/orthopedic repairs.

  19. A composite hydrogel platform for the dissection of tumor cell migration at tissue interfaces.

    Science.gov (United States)

    Rape, Andrew D; Kumar, Sanjay

    2014-10-01

    Glioblastoma multiforme (GBM), the most prevalent primary brain cancer, is characterized by diffuse infiltration of tumor cells into brain tissue, which severely complicates surgical resection and contributes to tumor recurrence. The most rapid mode of tissue infiltration occurs along blood vessels or white matter tracts, which represent topological interfaces thought to serve as "tracks" that speed cell migration. Despite this observation, the field lacks experimental paradigms that capture key features of these tissue interfaces and allow reductionist dissection of mechanisms of this interfacial motility. To address this need, we developed a culture system in which tumor cells are sandwiched between a fibronectin-coated ventral surface representing vascular basement membrane and a dorsal hyaluronic acid (HA) surface representing brain parenchyma. We find that inclusion of the dorsal HA surface induces formation of adhesive complexes and significantly slows cell migration relative to a free fibronectin-coated surface. This retardation is amplified by inclusion of integrin binding peptides in the dorsal layer and expression of CD44, suggesting that the dorsal surface slows migration through biochemically specific mechanisms rather than simple steric hindrance. Moreover, both the reduction in migration speed and assembly of dorsal adhesions depend on myosin activation and the stiffness of the ventral layer, implying that mechanochemical feedback directed by the ventral layer can influence adhesive signaling at the dorsal surface.

  20. Membraneless glucose/oxygen enzymatic fuel cells using redox hydrogel films containing carbon nanotubes.

    Science.gov (United States)

    MacAodha, Domhnall; Ó Conghaile, Peter; Egan, Brenda; Kavanagh, Paul; Leech, Dónal

    2013-07-22

    Co-immobilisation of three separate multiple blue copper oxygenases, a Myceliophthora thermophila laccase, a Streptomyces coelicolor laccase and a Myrothecium verrucaria bilirubin oxidase, with an [Os(2,2'-bipyridine)2 (polyvinylimidazole)10Cl](+/2+) redox polymer in the presence of multi-walled carbon nanotubes (MWCNTs) on graphite electrodes results in enzyme electrodes that produce current densities above 0.5 mA cm(-2) for oxygen reduction at an applied potential of 0 V versus Ag/AgCl. Fully enzymatic membraneless fuel cells are assembled with the oxygen-reducing enzyme electrodes connected to glucose-oxidising anodes based on co-immobilisation of glucose oxidase or a flavin adenine dinucleotide-dependent glucose dehydrogenase with an [Os(4,4'-dimethyl-2,2'-bipyridine)2(polyvinylimidazole)10Cl](+/2+) redox polymer in the presence of MWCNTs on graphite electrodes. These fuel cells can produce power densities of up to 145 μW cm(-2) on operation in pH 7.4 phosphate buffer solution at 37 °C containing 150 mM NaCl, 5 mM glucose and 0.12 mM O2. The fuel cells based on Myceliophthora thermophila laccase enzyme electrodes produce the highest power density if combined with glucose oxidase-based anodes. Although the maximum power density of a fuel cell of glucose dehydrogenase and Myceliophthora thermophila laccase enzyme electrodes decreases from 110 μW cm(-2) in buffer to 60 μW cm(-2) on testing in artificial plasma, it provides the highest power output reported to date for a fully enzymatic glucose-oxidising, oxygen-reducing fuel cell in artificial plasma.

  1. Potential of centrifugal seeding method in improving cells distribution and proliferation on demineralized cancellous bone scaffolds for tissue-engineered meniscus.

    Science.gov (United States)

    Zhang, Zheng-Zheng; Jiang, Dong; Wang, Shao-Jie; Qi, Yan-Song; Zhang, Ji-Ying; Yu, Jia-Kuo

    2015-07-22

    Tissue-engineered meniscus offers a possible solution to the regeneration and replacement problem of meniscectomy. However, the nonuniform distribution and declined proliferation of seeded cells on scaffolds hinder the application of tissue-engineered meniscus as a new generation of meniscus graft. This study systematically investigated the performances of different seeding techniques by using the demineralized cancellous bone (DCB) as the scaffold. Static seeding, injection seeding, centrifugal seeding, and vacuum seeding methods were used to seed the meniscal fibrochondrocytes (MFCs) and mesenchymal stem cells (MSCs) to scaffolds. Cell-binding efficiency, survival rate, distribution ability, and long-term proliferation effects on scaffolds were quantitatively evaluated. Cell adhesion was compared via cell-binding kinetics. Cell viability and morphology were assessed by using fluorescence staining. Combined with the reconstructed three-dimensional image, the distribution of seeded cells was investigated. The Cell Counting Kit-8 assay and DNA assay were employed to assess cell proliferation. Cell-binding kinetics and cell survival of the MFCs were improved via centrifugal seeding compared to injection or vacuum seeding methods. Seeded MFCs by centrifugation showed a more homogeneous distribution throughout the scaffold than cells seeded by other methods. Moreover, the penetration depth in the scaffold of seeded MFCs by centrifugation was 300-500 μm, much higher than the value of 100-300 μm by the surface static and injection seeding. The long-term proliferation of the MFCs in the centrifugal group was also significantly higher than that in the other groups. The results of the MSCs were similar to those of the MFCs. The centrifugal seeding method could significantly improve MFCs or MSCs distribution and proliferation on the DCB scaffolds, thus providing a simple, cost-effective, and effective cell-seeding protocol for tissue-engineered meniscus.

  2. A prospective study: intraoperative 125|radioactive seed implant therapy in advanced esophageal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Jin Lü; Xiufeng Cao; Bin Zhu; Lü Ji

    2009-01-01

    Objective: To investigated the role of in traoperative iodine-125 (125I) brachytherapy as a treatment option for advanced thoracic esophageal squamous cell carcinoma (ESCC). Methods: Using preoperative computed tomography (CT)-based staging criteria, between 2000 and 2008, 298 patients with ESCC (stage II-III) were enrolled in this prospective study. With informed consent, patients were randomized into two groups: intraoperative 125I seed implantation and surgery alone (control group). Twenty to forty 125I seeds (0.5 mCi per seed), with a total activity in 10-30 mCi, and a matched peripheral dose (MPD) of 60~70 Gy, were implanted under direct visualization. The surgical procedure used in this study was either a radical resection, which involved an esophagectomy through a left thoracotomy with two-field lymphadenectomy, or palliative resection. The postoperative complications were observedand recorded. The location and quality assessment of 125I seeds were assessed using CT scans or X-ray imaging. The short-term efficacy was evaluated according to WHO criteria. The 1, 3, 5 and 7-year survival rates were determined on follow-up. Results: There was no displacement or loss of 125I seeds. The local recurrence rates in the intraoperative 125I seed implantation group and control group were 14.9% and 38.7%, respectively (P 0.05). The 1-year survival rate of the two groups were not significantly different (P > 0.05). However, the 3, 5 and 7-year survival rates in the united 125I group (64%, 55.3% and 8%, respectively) were statistically different from those in the control group (52%, 29.1% and 1.4%,respectively)(P < 0.05). Conclusion: Intraoperative 125I seed implantation is safe and effective for advanced ESCC. Seed implantation may reduce the local recurrence rate and improve survival in patients with ESCC. The MPD of 60~70 Gy, with single 125I seed activity of 0.5 mCi, is reasonable.

  3. Dye-sensitized solar cells with natural dyes extracted from plant seeds

    Science.gov (United States)

    El-Ghamri, Hatem S.; El-Agez, Taher M.; Taya, Sofyan A.; Abdel-Latif, Monzir S.; Batniji, Amal Y.

    2014-12-01

    The application of natural dyes extracted from plant seeds in the fabrication of dye-sensitized solar cells (DSSCs) has been explored. Ten dyes were extracted from different plant seeds and used as sensitizers for DSSCs. The dyes were characterized using UV-Vis spectrophotometry. DSSCs were prepared using TiO2 and ZnO nanostructured mesoporous films. The highest conversion efficiency of 0.875 % was obtained with an allium cepa (onion) extract-sensitized TiO2 solar cell. The process of TiO2-film sintering was studied and it was found that the sintering procedure significantly affects the response of the cell. The short circuit current of the DSSC was found to be considerably enhanced when the TiO2 semiconducting layer was sintered gradually.

  4. Biodegradable Cell-Seeded Nanofiber Scaffolds for Neural Repair

    Directory of Open Access Journals (Sweden)

    Karen C. Cheung

    2011-10-01

    Full Text Available Central and peripheral neural injuries are traumatic and can lead to loss of motor and sensory function, chronic pain, and permanent disability. Strategies that bridge the site of injury and allow axonal regeneration promise to have a large impact on restoring quality of life for these patients. Engineered materials can be used to guide axonal growth. Specifically, nanofiber structures can mimic the natural extracellular matrix, and aligned nanofibers have been shown to direct neurite outgrowth and support axon regeneration. In addition, cell-seeded scaffolds can assist in the remyelination of the regenerating axons. The electrospinning process allows control over fiber diameter, alignment, porosity, and morphology. Biodegradable polymers have been electrospun and their use in tissue engineering has been demonstrated. This paper discusses aspects of electrospun biodegradable nanofibers for neural regeneration, how fiber alignment affects cell alignment, and how cell-seeded scaffolds can increase the effectiveness of such implants.

  5. Activation of the cell cycle in tomato (Lycopersicon esculentum Mill.) seeds during osmoconditioning as related to temperature and oxygen

    NARCIS (Netherlands)

    Ozbingöl, N.; Corbineau, F.; Groot, S.P.C.; Bino, R.J.; Côme, D.

    1999-01-01

    Using flow cytometric analyses of the nuclear DNA content, we studied the effects of various conditions of osmopriming on the activation of the cell cycle in embryo root tips of tomato (Lycopersicon esculentum‘Elko’) seeds. In dry untreated seeds, 90.7% of the nuclei revealed 2C signals. Priming of

  6. Synthetic virus seeds for improved vaccine safety: Genetic reconstruction of poliovirus seeds for a PER.C6 cell based inactivated poliovirus vaccine.

    Science.gov (United States)

    Sanders, Barbara P; Edo-Matas, Diana; Papic, Natasa; Schuitemaker, Hanneke; Custers, Jerome H H V

    2015-10-13

    Safety of vaccines can be compromised by contamination with adventitious agents. One potential source of adventitious agents is a vaccine seed, typically derived from historic clinical isolates with poorly defined origins. Here we generated synthetic poliovirus seeds derived from chemically synthesized DNA plasmids encoding the sequence of wild-type poliovirus strains used in marketed inactivated poliovirus vaccines. The synthetic strains were phenotypically identical to wild-type polioviruses as shown by equivalent infectious titers in culture supernatant and antigenic content, even when infection cultures are scaled up to 10-25L bioreactors. Moreover, the synthetic seeds were genetically stable upon extended passaging on the PER.C6 cell culture platform. Use of synthetic seeds produced on the serum-free PER.C6 cell platform ensures a perfectly documented seed history and maximum control over starting materials. It provides an opportunity to maximize vaccine safety which increases the prospect of a vaccine end product that is free from adventitious agents.

  7. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.

    Science.gov (United States)

    Knowlton, Stephanie; Yu, Chu Hsiang; Ersoy, Fulya; Emadi, Sharareh; Khademhosseini, Ali; Tasoglu, Savas

    2016-06-20

    Three-dimensional (3D) printing offers potential to fabricate high-throughput and low-cost fabrication of microfluidic devices as a promising alternative to traditional techniques which enables efficient design iterations in the development stage. In this study, we demonstrate a single-step fabrication of a 3D transparent microfluidic chip using two alternative techniques: a stereolithography-based desktop 3D printer and a two-step fabrication using an industrial 3D printer based on polyjet technology. This method, compared to conventional fabrication using relatively expensive materials and labor-intensive processes, presents a low-cost, rapid prototyping technique to print functional 3D microfluidic chips. We enhance the capabilities of 3D-printed microfluidic devices by coupling 3D cell encapsulation and spatial patterning within photocrosslinkable gelatin methacryloyl (GelMA). The platform presented here serves as a 3D culture environment for long-term cell culture and growth. Furthermore, we have demonstrated the ability to print complex 3D microfluidic channels to create predictable and controllable fluid flow regimes. Here, we demonstrate the novel use of 3D-printed microfluidic chips as controllable 3D cell culture environments, advancing the applicability of 3D printing to engineering physiological systems for future applications in bioengineering.

  8. Boron nitride nanotube-mediated stimulation of cell co-culture on micro-engineered hydrogels.

    Directory of Open Access Journals (Sweden)

    Leonardo Ricotti

    Full Text Available In this paper, we describe the effects of the combination of topographical, mechanical, chemical and intracellular electrical stimuli on a co-culture of fibroblasts and skeletal muscle cells. The co-culture was anisotropically grown onto an engineered micro-grooved (10 µm-wide grooves polyacrylamide substrate, showing a precisely tuned Young's modulus (∼ 14 kPa and a small thickness (∼ 12 µm. We enhanced the co-culture properties through intracellular stimulation produced by piezoelectric nanostructures (i.e., boron nitride nanotubes activated by ultrasounds, thus exploiting the ability of boron nitride nanotubes to convert outer mechanical waves (such as ultrasounds in intracellular electrical stimuli, by exploiting the direct piezoelectric effect. We demonstrated that nanotubes were internalized by muscle cells and localized in both early and late endosomes, while they were not internalized by the underneath fibroblast layer. Muscle cell differentiation benefited from the synergic combination of topographical, mechanical, chemical and nanoparticle-based stimuli, showing good myotube development and alignment towards a preferential direction, as well as high expression of genes encoding key proteins for muscle contraction (i.e., actin and myosin. We also clarified the possible role of fibroblasts in this process, highlighting their response to the above mentioned physical stimuli in terms of gene expression and cytokine production. Finally, calcium imaging-based experiments demonstrated a higher functionality of the stimulated co-cultures.

  9. Antianaphylactic and mast cell stabilization activity of Strychnos potatorum Linn. seed

    Directory of Open Access Journals (Sweden)

    Umesh Jayantarao Patil

    2011-01-01

    Full Text Available Aim: The antianaphylactic activity of Strychnos potatorum Linn seed extract was evaluated by using compound 48/80 induced anaphylaxis and mast cell stabilization was studied by using peritoneal mast cells of rats. The possible antianaphylactic and mast cell stabilization mechanism was evaluated by using compound 48/80 induced mast cell activation and level of nitric oxide in rat peritoneal mast cells. Materials and Methods: Anaphylactic shock in mice was induced by the intraperitoneal administration of 8 mg/kg compound 48/80, prior to induction of anaphylaxis the animals were treated with S. potatorum Linn. seed extract administered orally 1 h before administration of compound 48/80, the rate mortality was observed in each group of animals. Mast cell stabilization was seen by preincubation of mast cells with the compound 48/80 and the extracts. Results: This study indicates that the chloroform, petroleum ether, and methanolic extracts were shown potent and has significant (P < 0.01 and P < 0.001 inhibitory effects on compound 48/80 induced anaphylactic reaction and mast cell activation. This compound also inhibited significantly compound 48/80 induced increased level of nitric oxide in rat peritoneal mast cells. Conclusion: We conclude from this study that the different extracts of S. potatorum seed have potent antianaphylactic activity through mast cell stabilization and inhibition of nitric oxide synthesis. The inhibitory effect of S. potatorum Linn. on release of histamine and nitric oxide protects from compound 48/80 induced anaphylactic reaction may be through blocking vasodilatation, decrease vascular resistance, hypotension and tachycardia induced by immunogenic agent used in this study.

  10. A Role for Reactive Oxygen Species Produced by NADPH Oxidases in the Embryo and Aleurone Cells in Barley Seed Germination.

    Directory of Open Access Journals (Sweden)

    Yushi Ishibashi

    Full Text Available Reactive oxygen species (ROS promote the germination of several seeds, and antioxidants suppress it. However, questions remain regarding the role and production mechanism of ROS in seed germination. Here, we focused on NADPH oxidases, which produce ROS. After imbibition, NADPH oxidase mRNAs were expressed in the embryo and in aleurone cells of barley seed; these expression sites were consistent with the sites of ROS production in the seed after imbibition. To clarify the role of NADPH oxidases in barley seed germination, we examined gibberellic acid (GA / abscisic acid (ABA metabolism and signaling in barley seeds treated with diphenylene iodonium chloride (DPI, an NADPH oxidase inhibitor. DPI significantly suppressed germination, and suppressed GA biosynthesis and ABA catabolism in embryos. GA, but not ABA, induced NADPH oxidase activity in aleurone cells. Additionally, DPI suppressed the early induction of α-amylase by GA in aleurone cells. These results suggest that ROS produced by NADPH oxidases promote GA biosynthesis in embryos, that GA induces and activates NADPH oxidases in aleurone cells, and that ROS produced by NADPH oxidases induce α-amylase in aleurone cells. We conclude that the ROS generated by NADPH oxidases regulate barley seed germination through GA / ABA metabolism and signaling in embryo and aleurone cells.

  11. A Role for Reactive Oxygen Species Produced by NADPH Oxidases in the Embryo and Aleurone Cells in Barley Seed Germination.

    Science.gov (United States)

    Ishibashi, Yushi; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Kai, Kyohei; Yuasa, Takashi; Hanada, Atsushi; Yamaguchi, Shinjiro; Iwaya-Inoue, Mari

    2015-01-01

    Reactive oxygen species (ROS) promote the germination of several seeds, and antioxidants suppress it. However, questions remain regarding the role and production mechanism of ROS in seed germination. Here, we focused on NADPH oxidases, which produce ROS. After imbibition, NADPH oxidase mRNAs were expressed in the embryo and in aleurone cells of barley seed; these expression sites were consistent with the sites of ROS production in the seed after imbibition. To clarify the role of NADPH oxidases in barley seed germination, we examined gibberellic acid (GA) / abscisic acid (ABA) metabolism and signaling in barley seeds treated with diphenylene iodonium chloride (DPI), an NADPH oxidase inhibitor. DPI significantly suppressed germination, and suppressed GA biosynthesis and ABA catabolism in embryos. GA, but not ABA, induced NADPH oxidase activity in aleurone cells. Additionally, DPI suppressed the early induction of α-amylase by GA in aleurone cells. These results suggest that ROS produced by NADPH oxidases promote GA biosynthesis in embryos, that GA induces and activates NADPH oxidases in aleurone cells, and that ROS produced by NADPH oxidases induce α-amylase in aleurone cells. We conclude that the ROS generated by NADPH oxidases regulate barley seed germination through GA / ABA metabolism and signaling in embryo and aleurone cells.

  12. Tunable Biodegradable Nanocomposite Hydrogel for Improved Cisplatin Efficacy on HCT-116 Colorectal Cancer Cells and Decreased Toxicity in Rats.

    Science.gov (United States)

    Abdel-Bar, Hend Mohamed; Osman, Rihab; Abdel-Reheem, Amal Youssef; Mortada, Nahed; Awad, Gehanne A S

    2016-02-08

    This work describes the development of a modified nanocomposite thermosensitive hydrogel for controlled cisplatin release and improved cytotoxicity with decreased side effects. The system was characterized in terms of physical properties, morphological architecture and in vitro cisplatin release. Cytotoxicity was tested against human colorectal carcinoma HCT-116. In vivo studies were conducted to evaluate the acute toxicity in terms of rats' survival rate and body weight loss. Nephro and hepatotoxicities were evaluated followed by histopathological alterations of various tissue organs. Nanocomposite thermosensitive hydrogel containing nanosized carrier conferred density and stiffness allowing a zero order drug release for 14 days. Enhanced cytotoxicity with 2-fold decrease in cisplatin IC50 was accomplished. A linear in vivo-in vitro correlation was proved for the system degradation. Higher animal survival rate and lower tissue toxicities proved the decreased toxicity of cisplatin nanocomposite compared to its solution.

  13. In situ spatiotemporal mapping of flow fields around seeded stem cells at the subcellular length scale.

    Directory of Open Access Journals (Sweden)

    Min Jae Song

    Full Text Available A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms.

  14. Effects of seed layer on the performance of microcrystalline silicon germanium solar cells

    Institute of Scientific and Technical Information of China (English)

    Cao Yu; Zhang Jianjun; Li Tianwei; Huang Zhenhua; Ma Jun; Yang Xu; Ni Jian

    2013-01-01

    Using plasma enhanced chemical vapor deposition (PECVD) at 13.56 MHz,a seed layer is fabricated at the initial growth stage of the hydrogenated microcrystalline silicon germanium (μc-Si1-xGex:H) i-layer.The effects of seeding processes on the growth of μc-Si 1-x Gex:H i-layers and the performance of μc-Si1-x Gex:H p-in single junction solar cells are investigated.By applying this seeding method,the μc-Si 1-xGex:H solar cell shows a significant improvement in short circuit current density (Jsc) and fill factor (FF) with an acceptable performance of blue response as a μc-Si:H solar cell even when the Ge content x increases up to 0.3.Finally,an improved efficiency of 7.05% is achieved for the μc-Sio.7Ge0.3:H solar cell.

  15. Novel method to dynamically load cells in 3D-hydrogels culture for blast injury studies

    Science.gov (United States)

    Sory, David R.; Areias, Anabela C.; Overby, Darryl R.; Proud, William G.

    2017-01-01

    For at least a century explosive devices have been one of the most important causes of injuries in military conflicts as well as in terrorist attacks. Although significant experimental and modelling efforts have been focussed on blast injuries at the organ or tissue level, few studies have investigated the mechanisms of blast injuries at the cellular level. This paper introduces an in vitro method compatible with living cells to examine the effects of high stress and short-duration pulses relevant to blast loadings and blunt trauma. The experimental phase involves high strain-rate axial compression of cylindrical specimens within an hermetically sealed chamber made of biocompatible polymer. Numerical simulations were performed in order to verify the experimental loading conditions and to characterize the loading path within the sample. A proof of concept is presented so as to establish a new window to address fundamental questions regarding blast injury at the cellular level.

  16. Raspberry-like poly(γ-glutamic acid hydrogel particles for pH-dependent cell membrane passage and controlled cytosolic delivery of antitumor drugs

    Directory of Open Access Journals (Sweden)

    Cho SH

    2016-10-01

    Full Text Available Sun-Hee Cho,1,* Ji Hyeon Hong,2,* Young-Woock Noh,1 Eunji Lee,2 Chang-Soo Lee,3 Yong Taik Lim1 1SKKU Advanced Institute of Nanotechnology, School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 2Graduate School of Analytical Science and Technology, Chungnam National University, 3Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea *These authors contributed equally to this work Abstract: In this research, we synthesized bioderived poly(amino acid hydrogel particles that showed pH-dependent membrane-disrupting properties and controlled cytosolic delivery of antitumor drugs. Poly(γ-glutamic acid (γ-PGA that has been produced extensively using bacteria, especially those of Bacillus subtilis species, was modified with cholesterol (γ-PGA/Chol, and the γ-PGA/Chol conjugates were used to form polymeric nanoparticles the size of 21.0±1.1 nm in aqueous solution. When the polymeric nanoparticles were mixed with doxorubicin (Dox, raspberry-like hydrogel particles (RBHPs were formed by the electrostatic interaction between the cationically charged Dox and the anionically charged nanoparticles. The average size and surface charge of the RBHPs in aqueous solution were 444.9±122.5 nm and -56.44 mV, respectively. The loaded amount of Dox was approximately 63.9 µg/mg of RBHPs. The RBHPs showed controlled drug release behavior in both in vitro and ex vivo cell-based experiments. Through fluorescence microscopy and fluorescence-activated cell sorting, the cellular uptake of RBHPs into human cervical cancer cells (HeLa was analyzed. The cytotoxic effect, evaluated by the methyl tetrazolium salt assay, was dependent on both the concentration of RBHPs and the treatment time. The pH-dependent membrane-disrupting properties of the RBHPs and the subsequent cytosolic delivery of Dox were evaluated using a standard hemolysis assay. Upon an increase in

  17. The role of biodegradable engineered scaffolds seeded with Schwann cells for spinal cord regeneration.

    Science.gov (United States)

    Tabesh, H; Amoabediny, Gh; Nik, N Salehi; Heydari, M; Yosefifard, M; Siadat, S O Ranaei; Mottaghy, K

    2009-02-01

    Spinal cord injury is very complicated, as there are factors in the body that inhibit its repair. Although regeneration of the mammalian central nervous system (CNS) was once thought to be impossible, studies over the past two decades have shown that axonal growth after spinal cord injury can occur when provided with the correct substratum. Traditionally, tissue transplantation or peripheral nerve grafting are used to repair damaged or diseased regions of the CNS, but donor shortage and immunological problems associated with infectious disease are often encountered. Fortunately, recent advances in neuroscience, cell culture, and biomaterials provide optimistic future using new treatments for nerve injuries. Biomaterial scaffold creates substrate within which cells are instructed to form a tissue or an organ in a highly controlled way. The principal function of a scaffold is to direct cell behavior such as migration, proliferation, differentiation, maintenance of phenotype, and apoptosis by facilitating sensing and responding to the environment via cell-matrix and cell-cell communications. Therefore, having such abilities provides scaffolds seeded with a special type of cell as an important part of tissue engineering and regenerative medicine which spinal cord regeneration is an example of. Nevertheless, the vast number of biodegradable synthetic and natural biopolymers makes choosing the right one very difficult. In this review article, it was tried to provide an inclusive survey of biopolymers seeded with Schwann cells (SCs) to be used for axonal regeneration in the nervous system.

  18. Tumor Cell Seeding During Surgery—Possible Contribution to Metastasis Formations

    Energy Technology Data Exchange (ETDEWEB)

    Katharina, Pachmann [Department of Experimental Hematology and Oncology, Clinic for Internal Medicine II, Friedrich Schiller University, Jena D-07747 (Germany)

    2011-06-08

    In spite of optimal local control in breast cancer, distant metastases can develop as a systemic part of this disease. Surgery is suspected to contribute to metastasis formation activating dormant tumor cells. Here we add data that seeding of cells during surgery may add to the risk of metastasis formation. The change in circulating epithelial tumor cells (CETC) was monitored in 66 breast cancer patients operated on with breast conserving surgery or mastectomy and during the further course of the disease, analyzing CETC from unseparated white blood cells stained with FITC-anti-EpCAM. An increase in cell numbers lasting until the start of chemotherapy was observed in about one third of patients. It was more preeminent in patients with low numbers of CETC before surgery and, surprisingly, in patients without involved lymph nodes. Patients with the previously reported behavior—Reincrease in cell numbers during adjuvant chemotherapy and subsequent further increase during maintenance therapy—were at increased risk of relapse. In addition to tumor cells already released during growth of the tumor, cell seeding during surgery may contribute to the early peak of relapses observed after removal of the primary tumor and chemotherapy may only marginally postpone relapse in patients with aggressively growing tumors.

  19. Dyes extracted from Trigonella seeds as photosensitizers for dye-sensitized solar cells

    Science.gov (United States)

    Batniji, Amal; Abdel-Latif, Monzir S.; El-Agez, Taher M.; Taya, Sofyan A.; Ghamri, Hatem

    2016-12-01

    In this paper, the extract of Trigonella seeds was used as sensitizer for dye-sensitized solar cells (DSSCs). The natural dye was extracted from the seeds using water and alcohol as solvents for the raw material. The UV-Vis absorption spectra of Trigonella extract solution and dye adsorbed on TiO2 film were measured. DSSCs sensitized by Trigonella extracted using water as a solvent exhibited better performance with efficiency of 0.215 %. The performance of the fabricated DSSCs was attempted to enhance by acid treatment of the FTO substrates with HNO3, H3PO4, and H2SO4. Electrochemical impedance spectroscopy of the fabricated cells was also carried out.

  20. Dyes extracted from Trigonella seeds as photosensitizers for dye-sensitized solar cells

    Science.gov (United States)

    Batniji, Amal; Abdel-Latif, Monzir S.; El-Agez, Taher M.; Taya, Sofyan A.; Ghamri, Hatem

    2016-06-01

    In this paper, the extract of Trigonella seeds was used as sensitizer for dye-sensitized solar cells (DSSCs). The natural dye was extracted from the seeds using water and alcohol as solvents for the raw material. The UV-Vis absorption spectra of Trigonella extract solution and dye adsorbed on TiO2 film were measured. DSSCs sensitized by Trigonella extracted using water as a solvent exhibited better performance with efficiency of 0.215 %. The performance of the fabricated DSSCs was attempted to enhance by acid treatment of the FTO substrates with HNO3, H3PO4, and H2SO4. Electrochemical impedance spectroscopy of the fabricated cells was also carried out.

  1. Evaluation of fibroblasts adhesion and proliferation on alginate-gelatin crosslinked hydrogel.

    Directory of Open Access Journals (Sweden)

    Bapi Sarker

    Full Text Available Due to the relatively poor cell-material interaction of alginate hydrogel, alginate-gelatin crosslinked (ADA-GEL hydrogel was synthesized through covalent crosslinking of alginate di-aldehyde (ADA with gelatin that supported cell attachment, spreading and proliferation. This study highlights the evaluation of the physico-chemical properties of synthesized ADA-GEL hydrogels of different compositions compared to alginate in the form of films. Moreover, in vitro cell-material interaction on ADA-GEL hydrogels of different compositions compared to alginate was investigated by using normal human dermal fibroblasts. Viability, attachment, spreading and proliferation of fibroblasts were significantly increased on ADA-GEL hydrogels compared to alginate. Moreover, in vitro cytocompatibility of ADA-GEL hydrogels was found to be increased with increasing gelatin content. These findings indicate that ADA-GEL hydrogel is a promising material for the biomedical applications in tissue-engineering and regeneration.

  2. Effect of cell-seeded hydroxyapatite scaffolds on rabbit radius bone regeneration.

    Science.gov (United States)

    Rathbone, C R; Guda, T; Singleton, B M; Oh, D S; Appleford, M R; Ong, J L; Wenke, J C

    2014-05-01

    Highly porous hydroxyapatite (HA) scaffolds were developed as bone graft substitutes using a template coating process, characterized, and seeded with bone marrow-derived mesenchymal stem cells (BMSCs). To test the hypothesis that cell-seeded HA scaffolds improve bone regeneration, HA scaffolds without cell seeding (HA-empty), HA scaffolds with 1.5 × 10(4) BMSCs (HA-low), and HA scaffolds with 1.5 × 10(6) BMSCs (HA-high) were implanted in a 10-mm rabbit radius segmental defect model for 4 and 8 weeks. Three different fluorochromes were administered at 2, 4, and 6 weeks after implantation to identify differences in temporal bone growth patterns. It was observed from fluorescence histomorphometry analyses that an increased rate of bone infiltration occurred from 0 to 2 weeks (p < 0.05) of implantation for the HA-high group (2.9 ± 0.5 mm) as compared with HA-empty (1.8 ± 0.8 mm) and HA-low (1.3 ± 0.2 mm) groups. No significant differences in bone formation within the scaffold or callus formation was observed between all groups after 4 weeks, with a significant increase in bone regenerated for all groups from 4 to 8 weeks (28.4% across groups). Although there was no difference in bone formation within scaffolds, callus formation was significantly higher in HA-empty scaffolds (100.9 ± 14.1 mm(3) ) when compared with HA-low (57.8 ± 7.3 mm(3) ; p ≤ 0.003) and HA-high (69.2 ± 10.4 mm(3) ; p ≤ 0.02) after 8 weeks. These data highlight the need for a better understanding of the parameters critical to the success of cell-seeded HA scaffolds for bone regeneration.

  3. A Stem Cell-Seeded Nanofibrous Scaffold for Auditory Nerve Replacement

    Science.gov (United States)

    2014-10-01

    Scientific , Holliston, MA) syringe pump set at dispensing rate of 0.05 ml/hr. The syringe pump was placed on linear stage programmed to move to a...and new proposals on cell seeding nanofiber scaffolds are being developed. There is no scientific overlap with the current award. C...unaligned (C and E) and aligned (D and F) Matrigel ® coated nanofibers for 19 days and visualised using epifluorescence imaging. Neurons grown on aligned

  4. Effect of 211At treating pollen and stigma on generative cells and seed setting of rice

    Institute of Scientific and Technical Information of China (English)

    JinJian-Nan; ChenFang; 等

    1998-01-01

    Low specific radioactivity (7.4kBq/ml) 211At treating pollen and stigma can obviously affect morphological structures and physiological functions of pollen,stigma and ovule or embryo sac cells,and cause injury.Results showed that because of the radiation effects the seed setting rate of rice was decreased,and the development of some embryos were affected and others became abnormal.

  5. Engineered Polymeric Hydrogels for 3D Tissue Models

    Directory of Open Access Journals (Sweden)

    Sujin Park

    2016-01-01

    Full Text Available Polymeric biomaterials are widely used in a wide range of biomedical applications due to their unique properties, such as biocompatibility, multi-tunability and easy fabrication. Specifically, polymeric hydrogel materials are extensively utilized as therapeutic implants and therapeutic vehicles for tissue regeneration and drug delivery systems. Recently, hydrogels have been developed as artificial cellular microenvironments because of the structural and physiological similarity to native extracellular matrices. With recent advances in hydrogel materials, many researchers are creating three-dimensional tissue models using engineered hydrogels and various cell sources, which is a promising platform for tissue regeneration, drug discovery, alternatives to animal models and the study of basic cell biology. In this review, we discuss how polymeric hydrogels are used to create engineered tissue constructs. Specifically, we focus on emerging technologies to generate advanced tissue models that precisely recapitulate complex native tissues in vivo.

  6. Correlation between porous texture and cell seeding efficiency of gas foaming and microfluidic foaming scaffolds.

    Science.gov (United States)

    Costantini, Marco; Colosi, Cristina; Mozetic, Pamela; Jaroszewicz, Jakub; Tosato, Alessia; Rainer, Alberto; Trombetta, Marcella; Święszkowski, Wojciech; Dentini, Mariella; Barbetta, Andrea

    2016-05-01

    In the design of scaffolds for tissue engineering applications, morphological parameters such as pore size, shape, and interconnectivity, as well as transport properties, should always be tailored in view of their clinical application. In this work, we demonstrate that a regular and ordered porous texture is fundamental to achieve an even cell distribution within the scaffold under perfusion seeding. To prove our hypothesis, two sets of alginate scaffolds were fabricated using two different technological approaches of the same method: gas-in-liquid foam templating. In the first one, foam was obtained by insufflating argon in a solution of alginate and a surfactant under stirring. In the second one, foam was generated inside a flow-focusing microfluidic device under highly controlled and reproducible conditions. As a result, in the former case the derived scaffold (GF) was characterized by polydispersed pores and interconnects, while in the latter (μFL), the porous structure was highly regular both with respect to the spatial arrangement of pores and interconnects and their monodispersity. Cell seeding within perfusion bioreactors of the two scaffolds revealed that cell population inside μFL scaffolds was quantitatively higher than in GF. Furthermore, seeding efficiency data for μFL samples were characterized by a lower standard deviation, indicating higher reproducibility among replicates. Finally, these results were validated by simulation of local flow velocity (CFD) inside the scaffolds proving that μFL was around one order of magnitude more permeable than GF.

  7. Antioxidant, anti-alpha-glucosidase and pancreatic beta-cell protective effects of methanolic extract of Ensete superbum Cheesm seeds

    Directory of Open Access Journals (Sweden)

    Solomon Habtemariam

    2017-02-01

    Conclusions: The reputed antidiabetic therapeutic uses of the seeds extract of E. superbum may be justified on the basis of inhibition of carbohydrate enzymes, antioxidant effects and pancreatic β-cell protection.

  8. Copper conducting electrode with nickel as a seed layer for selective emitter crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Atteq ur; Shin, Eun Gu; Lee, Soo Hong [Sejong University, Seoul (Korea, Republic of)

    2014-09-15

    In this research, we investigated selective emitter formation with a single-step photolithography process having a metallization scheme composed of nickel/copper metal stacks. The nickel seed layers were deposited by applying the electroless deposition process while copper was formed by light induced electro-plating arrangements as the main conducting electrode. The electroless deposition of nickel, along with a sintering process, was employed to create a diffusion barrier between copper and silicon. The nickel metal stack below the copper-conducting electrode also helped in lowering the sheet resistance and improving the contact adhesion. The nickel used as a seed layer was successfully demonstrated in the fabrication of a homogeneous 60 Ω/ emitter and selective emitter cells. Lower series resistances of 0.165 Ω and 0.253 Ω were achieved for the selective emitter and the homogeneous emitter cells, respectively. The best cell efficiency of 18.37% for the selective emitter solar cell was achieved, with average cell efficiencies of 18.17% and 17.3% for the selective emitter and the homogeneous emitter cells, respectively. An approximate efficiency increase of about 0.8% was recorded for the selective emitter solar cells.

  9. Canine articular cartilage regeneration using mesenchymal stem cells seeded on platelet rich fibrin

    Science.gov (United States)

    Shams Asenjan, K.; Dehdilani, N.; Parsa, H.

    2017-01-01

    Objectives Mesenchymal stem cells have the ability to differentiate into various cell types, and thus have emerged as promising alternatives to chondrocytes in cell-based cartilage repair methods. The aim of this experimental study was to investigate the effect of bone marrow derived mesenchymal stem cells combined with platelet rich fibrin on osteochondral defect repair and articular cartilage regeneration in a canine model. Methods Osteochondral defects were created on the medial femoral condyles of 12 adult male mixed breed dogs. They were either treated with stem cells seeded on platelet rich fibrin or left empty. Macroscopic and histological evaluation of the repair tissue was conducted after four, 16 and 24 weeks using the International Cartilage Repair Society macroscopic and the O’Driscoll histological grading systems. Results were reported as mean and standard deviation (sd) and compared at different time points between the two groups using the Mann-Whitney U test, with a value regeneration. It is postulated that platelet rich fibrin creates a suitable environment for proliferation and differentiation of stem cells by releasing endogenous growth factors resulting in creation of a hyaline-like reparative tissue. Cite this article: D. Kazemi, K. Shams Asenjan, N. Dehdilani, H. Parsa. Canine articular cartilage regeneration using mesenchymal stem cells seeded on platelet rich fibrin: Macroscopic and histological assessments. Bone Joint Res 2017;6:98–107. DOI: 10.1302/2046-3758.62.BJR-2016-0188.R1. PMID:28235767

  10. Hydrogels Constructed from Engineered Proteins.

    Science.gov (United States)

    Li, Hongbin; Kong, Na; Laver, Bryce; Liu, Junqiu

    2016-02-24

    Due to their various potential biomedical applications, hydrogels based on engineered proteins have attracted considerable interest. Benefitting from significant progress in recombinant DNA technology and protein engineering/design techniques, the field of protein hydrogels has made amazing progress. The latest progress of hydrogels constructed from engineered recombinant proteins are presented, mainly focused on biorecognition-driven physical hydrogels as well as chemically crosslinked hydrogels. The various bio-recognition based physical crosslinking strategies are discussed, as well as chemical crosslinking chemistries used to engineer protein hydrogels, and protein hydrogels' various biomedical applications. The future perspectives of this fast evolving field of biomaterials are also discussed.

  11. Development of bioartificial myocardium by electrostimulation of 3D collagen scaffolds seeded with stem cells

    Directory of Open Access Journals (Sweden)

    Alain Carpentier

    2012-06-01

    Full Text Available Electrostimulation (ES can be defined as a safe physical method to induce stem cell differentiation. The aim of this study is to evaluate the effectiveness of ES on bone marrow mesenchymal stem cells (BMSCs seeded in collagen scaffolds in terms of proliferation and differentiation into cardiomyocytes. BMSCs were isolated from Wistar rats and seeded into 3D collagen type 1 templates measuring 25 x 25 x 6 mm. Bipolar in vitro ES was performed during 21 days. Electrical impedance and cell proliferation were measured. Expression of cardiac markers was assessed by immunocytochemistry. Viscoelasticity of collagen matrix was evaluated. Electrical impedance assessments showed a low resistance of 234±41 Ohms which indicates good electrical conductivity of collagen matrix. Cell proliferation at 570 nm as significantly increased in ES groups after seven day (ES 0.129±0.03 vs non-stimulated control matrix 0.06±0.01, P=0.002 and after 21 days, (ES 0.22±0.04 vs control 0.13±0.01, P=0.01. Immunocytochemistry of BMSCs after 21 days ES showed positive staining of cardiac markers, troponin I, connexin 43, sarcomeric alpha-actinin, slow myosin, fast myosin and desmin. Staining for BMSCs marker CD29 after 21 days was negative. Electrostimulation of cell-seeded collagen matrix changed stem cell morphology and bio- chemical characteristics, increasing the expression of cardiac markers. Thus, MSC-derived differentiated cells by electrostimulation grafted in biological scaffolds might result in a convenient tissue engineering source for myocardial diseases.

  12. Development of bioartificial myocardium by electrostimulation of 3D collagen scaffolds seeded with stem cells.

    Science.gov (United States)

    Haneef, Kanwal; Lila, Nermine; Benadda, Samira; Legrand, Fabien; Carpentier, Alain; Chachques, Juan C

    2012-06-01

    Electrostimulation (ES) can be defined as a safe physical method to induce stem cell differentiation. The aim of this study is to evaluate the effectiveness of ES on bone marrow mesenchymal stem cells (BMSCs) seeded in collagen scaffolds in terms of proliferation and differentiation into cardiomyocytes. BMSCs were isolated from Wistar rats and seeded into 3D collagen type 1 templates measuring 25 × 25 × 6 mm. Bipolar in vitro ES was performed during 21 days. Electrical impedance and cell proliferation were measured. Expression of cardiac markers was assessed by immunocytochemistry. Viscoelasticity of collagen matrix was evaluated. Electrical impedance assessments showed a low resistance of 234±41 Ohms which indicates good electrical conductivity of collagen matrix. Cell proliferation at 570 nm as significantly increased in ES groups after seven day (ES 0.129±0.03 vs non-stimulated control matrix 0.06±0.01, P=0.002) and after 21 days, (ES 0.22±0.04 vs control 0.13±0.01, P=0.01). Immunocytoche mistry of BMSCs after 21 days ES showed positive staining of cardiac markers, troponin I, connexin 43, sarcomeric alpha-actinin, slow myosin, fast myosin and desmin. Staining for BMSCs marker CD29 after 21 days was negative. Electrostimulation of cell-seeded collagen matrix changed stem cell morphology and biochemical characteristics, increasing the expression of cardiac markers. Thus, MSC-derived differentiated cells by electrostimulation grafted in biological scaffolds might result in a convenient tissue engineering source for myocardial diseases.

  13. Evaluation of photocrosslinked Lutrol hydrogel for tissue printing applications.

    Science.gov (United States)

    Fedorovich, Natalja E; Swennen, Ives; Girones, Jordi; Moroni, Lorenzo; van Blitterswijk, Clemens A; Schacht, Etienne; Alblas, Jacqueline; Dhert, Wouter J A

    2009-07-13

    Application of hydrogels in tissue engineering and innovative strategies such as organ printing, which is based on layered 3D deposition of cell-laden hydrogels, requires design of novel hydrogel matrices. Hydrogel demands for 3D printing include: 1) preservation of the printed shape after the deposition; 2) maintaining cell viability and cell function and 3) easy handling of the printed construct. In this study we analyze the applicability of a novel, photosensitive hydrogel (Lutrol) for printing of 3D structured bone grafts. We benefit from the fast temperature-responsive gelation ability of thermosensitive Lutrol-F127, ensuring organized 3D extrusion, and the additional stability provided by covalent photocrosslinking allows handling of the printed scaffolds. We studied the cytotoxicity of the hydrogel and osteogenic differentiation of embedded osteogenic progenitor cells. After photopolymerization of the modified Lutrol hydrogel, cells remain viable for up to three weeks and retain the ability to differentiate. Encapsulation of cells does not compromise the mechanical properties of the formed gels and multilayered porous Lutrol structures were successfully printed.

  14. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds

    Science.gov (United States)

    Hockaday, L A; Kang, K H; Colangelo, N W; Cheung, P Y C; Duan, B; Malone, E; Wu, J; Girardi, L N; Bonassar, L J; Lipson, H; Chu, C C; Butcher, J T

    2013-01-01

    The aortic valve exhibits complex three-dimensional (3D) anatomy and heterogeneity essential for long-term efficient biomechanical function. These are, however, challenging to mimic in de novo engineered living tissue valve strategies. We present a novel simultaneous 3D-printing/photocrosslinking technique for rapidly engineering complex, heterogeneous aortic valve scaffolds. Native anatomic and axisymmetric aortic valve geometries (root wall and tri-leaflets) with 12 to 22 mm inner diameters (ID) were 3D printed with poly-ethylene glycol-diacrylate (PEG-DA) hydrogels (700 or 8000 MW) supplemented with alginate. 3D printing geometric accuracy was quantified and compared using Micro-CT. Porcine aortic valve interstitial cells (PAVIC) seeded scaffolds were cultured for up to 21 days. Results showed that blended PEG-DA scaffolds could achieve over 10-fold range in elastic modulus (5.3±0.9 to 74.6±1.5 kPa). 3D printing times for valve conduits with mechanically contrasting hydrogels were optimized to 14 to 45 minutes, increasing linearly with conduit diameter. Larger printed valves had greater shape fidelity (93.3±2.6, 85.1±2.0, and 73.3±5.2% for 22, 17, and 12 mm ID porcine valves; 89.1±4.0, 84.1±5.6, and 66.6±5.2% for simplified valves). PAVIC seeded scaffolds maintained near 100% viability over 21 days. These results demonstrate that 3D hydrogel printing with controlled photocrosslinking can rapidly fabricate anatomical heterogeneous valve conduits that support cell engraftment. PMID:22914604

  15. Pretreatment of Mesenchymal Stem Cells and Stromal-derived Factor-1α Delivery from Chitosan-based Injectable Hydrogels for Better Cell Guidance and Retention

    Directory of Open Access Journals (Sweden)

    Hojjat Naderi-Meshkin

    2014-05-01

    Full Text Available Clinical applications of mesenchymal stem cells (MSCs rely on their capacity to home and engraft in the appropriate target tissues for a long time. Homing and engraftment capacity of these stem cells depend on the expression of Chemokines and their receptors. Ex vivo expanded MSCs exhibit homing potential when grafted to injury tissue but their homing efficiency has been observed very poor because of modifications in homing receptor expression and/or functions during culture and/or preparation steps. Hence, this study was designed to investigate the expression of surface CXCR4 by flow cytometric analysis (FACS and in vitro modified Boyden chamber assay in adipose-derive MSCs (ASCs stimulated with a hypoxia mimicking agents such as desferrioxamine mesilate (DFX, cobalt chloride (CoCl2, lithium chloride (LiCl, valproic acid (VPA and hypoxia. Intracellular CXCR4 were also evaluated by conventional and real-time PCR. Then we evaluated the homing ability of DFX-pretreated human DiI-labeled ASCs in vivo, 2 weeks after intravenous (IV, local infusion towards subcutaneously implanted chitosan-glycerophophate-hydroxyethyl cellulose (CH-GP-HEC injectable hydrogels releasing SDF1 in dorsum of Wistar Rats. Presence of human ASCs in the CH-GP-HEC injectable, spleen, and lung were analyzed histologically by fluorescent microscope, and also quantified by PCR for human specific CXCR4 gene, 2 weeks after transplantation in recipients' Rats. Results showed that short-term (24 hours pretreatment to ASCs with the hypoxia mimicking agents up-regulate the CXCR4, increase in vitro migration capacity toward 100ng/ml SDF-1 (P

  16. The effect of injectable gelatin-hydroxyphenylpropionic acid hydrogel matrices on the proliferation, migration, differentiation and oxidative stress resistance of adult neural stem cells.

    Science.gov (United States)

    Lim, Teck Chuan; Toh, Wei Seong; Wang, Li-Shan; Kurisawa, Motoichi; Spector, Myron

    2012-04-01

    Transplanted or endogenous neural stem cells often lack appropriate matrix in cavitary lesions in the central nervous system. In this study, gelatin-hydroxyphenylpropionic acid (Gtn-HPA), which could be enzymatically crosslinked with independent tuning of crosslinking degree and gelation rate, was explored as an injectable hydrogel for adult neural stem cells (aNSCs). The storage modulus of Gtn-HPA could be tuned (449-1717 Pa) to approximate adult brain tissue. Gtn-HPA was cytocompatible with aNSCs (yielding high viability >93%) and promoted aNSC adhesion. Gtn-HPA demonstrated a crosslinking-based approach for preconditioning aNSCs and increased the resistance of aNSCs to oxidative stress, improving their viability from 8-15% to 84% when challenged with 500 μM H(2)O(2). In addition, Gtn-HPA was able to modulate proliferation and migration of aNSCs in relation to the crosslinking degree. Finally, Gtn-HPA exhibited bias for neuronal cells. In mixed differentiation conditions, Gtn-HPA increased the proportion of aNSCs expressing neuronal marker β-tubulin III to a greater extent than that for astrocytic marker glial fibrillary acidic protein, indicating an enhancement in differentiation towards neuronal lineage. Between neuronal and astrocytic differentiation conditions, Gtn-HPA also selected for higher survival in the former. Overall, Gtn-HPA hydrogels are promising injectable matrices for supporting and influencing aNSCs in ways that may be beneficial for brain tissue regeneration after injuries.

  17. Urethral Reconstruction Using Mesothelial Cell-Seeded Autogenous Granulation Tissue Tube: An Experimental Study in Male Rabbits

    Science.gov (United States)

    Jiang, Shiwei; Xu, Zhonghua; Zhao, Yuanyuan; Yan, Lei; Zhou, Zunlin

    2017-01-01

    Objective. This study was to evaluate the utility of the compound graft for tubularized urethroplasty by seeding mesothelial cells onto autogenous granulation tissue. Methods. Silastic tubes were implanted subcutaneously in 18 male rabbits, of which nine underwent omentum biopsies simultaneously for in vitro expansion of mesothelial cells. The granulation tissue covering the tubes was harvested 2 weeks after operation. Mesothelial cells were seeded onto and cocultured with the tissue for 7 days. A pendulous urethral segment of 1.5 cm was totally excised. Urethroplasty was performed with mesothelial cell-seeded tissue tubes in an end-to-end fashion in nine rabbits and with unseeded grafts in others as controls. Serial urethrograms were performed at 1, 2, and 6 months postoperatively. Meanwhile, the neourethra was harvested and analyzed grossly and histologically. Results. Urethrograms showed cell-seeded grafts maintained wide at each time point, while strictures formation was found in unseeded grafts. Histologically, layers of urothelium surrounded by increasingly organized smooth muscles were observed in seeded grafts. In contrast, myofibroblasts accumulation and extensive scarring occurred in unseeded grafts. Conclusions. Mesothelial cell-seeded granulation tissue tube can be successfully used for tubularized urethroplasty in male rabbits.

  18. Sustained release of hepatocyte growth factor by cationic self-assembling peptide/heparin hybrid hydrogel improves β-cell survival and function through modulating inflammatory response

    Science.gov (United States)

    Liu, Shuyun; Zhang, Lanlan; Cheng, Jingqiu; Lu, Yanrong; Liu, Jingping

    2016-01-01

    Inflammatory response is a major cause of grafts dysfunction in islet transplantation. Hepatocyte growth factor (HGF) had shown anti-inflammatory activity in multiple diseases. In this study, we aim to deliver HGF by self-assembling peptide/heparin (SAP/Hep) hybrid gel to protect β-cell from inflammatory injury. The morphological and slow release properties of SAPs were analyzed. Rat INS-1 β-cell line was treated with tumor necrosis factor α in vitro and transplanted into rat kidney capsule in vivo, and the viability, apoptosis, function, and inflammation of β-cells were evaluated. Cationic KLD1R and KLD2R self-assembled to nanofiber hydrogel, which showed higher binding affinity for Hep and HGF because of electrostatic interaction. Slow release of HGF from cationic SAP/Hep gel is a two-step mechanism involving binding affinity with Hep and molecular diffusion. In vitro and in vivo results showed that HGF-loaded KLD2R/Hep gel promoted β-cell survival and insulin secretion, and inhibited cell apoptosis, cytokine release, T-cell infiltration, and activation of NFκB/p38 MAPK pathways in β-cells. This study suggested that SAP/Hep gel is a promising carrier for local delivery of bioactive proteins in islet transplantation. PMID:27729786

  19. Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering.

    Science.gov (United States)

    Zhao, Xin; Li, Peng; Guo, Baolin; Ma, Peter X

    2015-10-01

    Biomaterials with injectability, conductivity and antibacterial effect simultaneously have been rarely reported. Herein, we developed a new series of in situ forming antibacterial conductive degradable hydrogels using quaternized chitosan (QCS) grafted polyaniline with oxidized dextran as crosslinker. The chemical structures, morphologies, electrochemical property, conductivity, swelling ratio, rheological property, in vitro biodegradation and gelation time of hydrogels were characterized. Injectability was verified by in vivo subcutaneous injection on a Sprague Dawley rat. The antibacterial activity of the hydrogels was firstly evaluated employing antibacterial assay using Escherichia coli and Staphylococcus aureus in vitro. The hydrogels containing polyaniline showed enhanced antibacterial activity compared to QCS hydrogel, especially for hydrogels with 3 wt% polyaniline showing 95 kill% and 90kill% for E. coli and S. aureus, respectively. Compared with QCS hydrogel, the hydrogels with 3 wt% polyaniline still showed enhanced antibacterial activity for E. coli in vivo. The adipose-derived mesenchymal stem cells (ADMSCs) were used to evaluate the cytotoxicity of the hydrogels and hydrogels with polyaniline showed better cytocompatibility than QCS hydrogel. The electroactive hydrogels could significantly enhance the proliferation of C2C12 myoblasts compared to QCS hydrogel. This work opens the way to fabricate in situ forming antibacterial and electroactive degradable hydrogels as a new class of bioactive scaffolds for tissue regeneration applications.

  20. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications.

    Science.gov (United States)

    Kai, Dan; Prabhakaran, Molamma P; Stahl, Benjamin; Eblenkamp, Markus; Wintermantel, Erich; Ramakrishna, Seeram

    2012-03-01

    Hydrogel-based biomaterial systems have great potential for tissue reconstruction by serving as temporary scaffolds and cell delivery vehicles for tissue engineering (TE). Hydrogels have poor mechanical properties and their rapid degradation limits the development and application of hydrogels in TE. In this study, nanofiber reinforced composite hydrogels were fabricated by incorporating electrospun poly(ε-caprolactone) (PCL)/gelatin 'blend' or 'coaxial' nanofibers into gelatin hydrogels. The morphological, mechanical, swelling and biodegradation properties of the nanocomposite hydrogels were evaluated and the results indicated that the moduli and compressive strengths of the nanofiber reinforced hydrogels were remarkably higher than those of pure gelatin hydrogels. By increasing the amount of incorporated nanofibers into the hydrogel, the Young's modulus of the composite hydrogels increased from 3.29 ± 1.02 kPa to 20.30 ± 1.79 kPa, while the strain at break decreased from 66.0 ± 1.1% to 52.0 ± 3.0%. Compared to composite hydrogels with coaxial nanofibers, those with blend nanofibers showed higher compressive strength and strain at break, but with lower modulus and energy dissipation properties. Biocompatibility evaluations of the nanofiber reinforced hydrogels were carried out using bone marrow mesenchymal stem cells (BM-MSCs) by cell proliferation assay and immunostaining analysis. The nanocomposite hydrogel with 25 mg ml(-1) PCL/gelatin 'blend' nanofibers (PGB25) was found to enhance cell proliferation, indicating that the 'nanocomposite hydrogels' might provide the necessary mechanical support and could be promising cell delivery systems for tissue regeneration.

  1. Preparation and characterization of amidated pectin based hydrogels for drug delivery system.

    Science.gov (United States)

    Mishra, R K; Datt, M; Pal, K; Banthia, A K

    2008-06-01

    In the current studies attempts were made to prepare hydrogels by chemical modification of pectin with ethanolamine (EA) in different proportions. Chemically modified pectin products were crosslinked with glutaraldehyde reagent for preparing hydrogels. The hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR), organic elemental analysis, X-ray diffraction studies (XRD), swelling studies, biocompatibility and hemocompatibility studies. Mechanical properties of the prepared hydrogels were evaluated by tensile test. The hydrogels were loaded with salicylic acid (used as a model drug) and drug release studies were done in a modified Franz's diffusion cell. FTIR spectroscopy indicated the presence of primary and secondary amide absorption bands. XRD studies indicated increase in crystallinity in the hydrogels as compared to unmodified pectin. The degree of amidation (DA) and molar and mass reaction yields (YM and YN) was calculated based on the results of organic elemental analysis. The hydrogels showed good water holding properties and were found to be compatible with B-16 melanoma cells & human blood.

  2. Microfluidic monitoring of programmed cell death in living plant seed tissue

    DEFF Research Database (Denmark)

    Mark, Christina; Heiskanen, Arto; Zor, Kinga;

    such as concentration of selected compounds, external pH, oxygen consumption, redox state and cell viability. The aleurone layer of the barley seed is a 2-3 single cell type thick tissue that can be dissected from the embryo and starchy endosperm. During incubation in vitro this mechanically very robust maintains......, 126, p. 156; Finnie, Christine, et al., (2011), Proteomics, 11, p. 1595). The potential of microfluidics real-time monitoring is relatively unexplored within plant biology, and the barley aleurone layer system will thus enable new ground to be broken in the field of plant science and microfluidics....

  3. On the development of multifunctional luminescent supramolecular hydrogel of gold and egg white

    Science.gov (United States)

    Patra, Sudeshna; Ravulapalli, Sathyavathi; Hahm, Myung Gwan; Tadi, Kiran Kumar; Narayanan, Tharangattu N.

    2016-10-01

    Highly stable, luminescent, and printable/paintable supramolecular egg white hydrogel-based surface enhanced Raman scattering (SERS) matrix is created by an in situ synthesis of gold clusters inside a luminescent egg white hydrogel (Au-Gel). The synthesis of stable luminescent egg-white-based hydrogel, where the hydrogel can act as a three dimensional (3D) matrix, using a simple cross-linking chemistry, has promising application in the biomedical field including in 3D cell culturing. Furthermore, this functional hydrogel is demonstrated for micromolar-level detection of Rhodamine 6G using the SERS technique, where Au-Gel is painted over a flexible cellulose pad.

  4. 3D Printing of Human Tissue Mimics via Layer-by-Layer Assembly of Polymer/Hydrogel Biopapers

    Science.gov (United States)

    Ringeisen, Bradley

    2015-03-01

    The foundations of tissue engineering were built on two fundamental areas of research: cells and scaffolds. Multipotent cells and their derivatives are traditionally randomly seeded into sophisticated polymer or hydrogel scaffolds, ultimately with the goal of forming a tissue-like material through cell differentiation and cell-material interactions. One problem with this approach is that no matter how complex or biomimetic the scaffold is, the cells are still homogeneously distributed throughout this three dimensional (3D) material. Natural tissue is inherently heterogeneous on both a microscopic and macroscopic level. It also contains different types of cells in close proximity, extracellular matrix, voids, and a complex vascularized network. Recently developed 3D cell and organ printers may be able to enhance traditional tissue engineering experiments by building scaffolds layer-by-layer that are crafted to mimic the microscopic and macroscopic structure of natural tissue or organs. Over the past decade, my laboratory has developed a capillary-free, live cell printer termed biological laser printing, or BioLP. We find that printed cells do not express heat shock protein and retain >99% viability. Printed cells also incur no DNA strand fracture and preserve their ability to differentiate. Recent work has used a layer-by-layer approach, stacking sheets of hybrid polymer/hydrogel biopapers in conjunction with live cell printing to create 3D tissue structures. Our specific work is now focused on the blood-brain-barrier and air-lung interface and will be described during the presentation.

  5. Deleterious effects on MDAMB-231 breast adenocarcinoma cell lineage submitted to Ho-166 radioactive seeds at very low activity

    Energy Technology Data Exchange (ETDEWEB)

    Falcao, Patricia L.; Campos, Tarcisio P.R., E-mail: campos@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Sarmento, Eduardo V. [Centro de Desenvolvimento de Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Cuperschmid, Ethel M. [Universidade Federal de Minas Gerais (CEMEMOR/UFMG), Belo Horizonte, BR (Brazil). Fac. de Medicina. Centro de Memoria da Medicina

    2011-07-01

    Herein, the deleterious effect of ionizing radiation provided by Ho-166 radioactive seeds at low activity were addressed, based on experimental in vitro assays at the MDA MB231 cell lineage, a breast adenocarcinoma, compared to PBMC - peripheral blood cells. The methodology involves of the MDBMB-231 and PBMC expansion in culture in suitable environment in 30mm well plates and T-25 flasks. Seeds were synthesized with Ho-165 incorporated and characterized previously. Activation was processed at IPR1 reactor at the peripheral table, at 8h exposition. Three groups of seeds were tested: 0,34 mCi, 0,12 mCi activity, and control group. Such seeds were placed on culture and held to a period of 05 half-lives of the radionuclide. The biological responses at these exposure were documented by inverse microscopic photographic in time. Also, MTT essay were performed. A fast response in producing deleterious effects at cancer cell was observed even if for the low activity seeds. Also, a biological response dependent to a radial distance of the seed was observed. At conclusion, viability clonogenic control of MDAMB231 is identified at the exposition to Ho-166 ceramic seeds, even if at low activity of 0,1 to 0,3mCi. (author)

  6. Diverse patterns of cell wall mannan/galactomannan occurrence in seeds of the Leguminosae.

    Science.gov (United States)

    Bento, João Francisco; Mazzaro, Irineu; de Almeida Silva, Lia Magalhães; de Azevedo Moreira, Renato; Ferreira, Marília Locatelli Correa; Reicher, Fany; Petkowicz, Carmen Lúcia de Oliveira

    2013-01-30

    Endosperms from seeds of different subfamilies of Leguminosae were submitted to sequential aqueous and alkaline aqueous extractions. The extractions from species belonging to the Mimosoideae and Faboideae subfamilies yielded galactomannans with constant Man:Gal ratios, whereas the extractions from Caesalpinioideae seeds gave rise to galactomannans with increasing values of the Man:Gal ratio. The presence of a family of galactomannans within the same species may be a trait found only in Caesalpinioideae subfamily. The final insoluble residues that were obtained after the removal of galactomannans from the Caesalpinioideae and Faboideae subfamilies are composed of pure mannans and do not contain cellulose, while those from the Mimosoideae subfamily are composed of cellulose. A mannan was isolated from the unripe endosperm of Caesalpinia pulcherrima, suggesting no developmental relationship between galactomannan and mannan. These results are consistent with the presence of a distinctive cell wall pattern in the endosperms of Leguminosae species.

  7. Direct influence of culture dimensionality on human mesenchymal stem cell differentiation at various matrix stiffnesses using a fibrous self-assembling peptide hydrogel.

    Science.gov (United States)

    Hogrebe, Nathaniel J; Gooch, Keith J

    2016-09-01

    Much is unknown about the effects of culture dimensionality on cell behavior due to the lack of biomimetic substrates that are suitable for directly comparing cells grown on two-dimensional (2D) and encapsulated within three-dimensional (3D) matrices of the same stiffness and biochemistry. To overcome this limitation, we used a self-assembling peptide hydrogel system that has tunable stiffness and cell-binding site density as well as a fibrous microarchitecture resembling the structure of collagen. We investigated the effect of culture dimensionality on human mesenchymal stem cell differentiation at different values of matrix stiffness (G' = 0.25, 1.25, 5, and 10 kPa) and a constant RGD (Arg-Gly-Asp) binding site concentration. In the presence of the same soluble induction factors, culture on top of stiff gels facilitated the most efficient osteogenesis, while encapsulation within the same stiff gels resulted in a switch to predominantly terminal chondrogenesis. Adipogenesis dominated at soft conditions, and 3D culture induced better adipogenic differentiation than 2D culture at a given stiffness. Interestingly, initial matrix-induced cell morphology was predictive of these end phenotypes. Furthermore, optimal culture conditions corresponded to each cell type's natural niche within the body, highlighting the importance of incorporating native matrix dimensionality and stiffness into tissue engineering strategies. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2356-2368, 2016.

  8. Effect of stem cells seeded onto biomaterial on the progression of experimental chronic kidney disease.

    Science.gov (United States)

    Caldas, Heloisa C; Fernandes, Ida M M; Kawasaki-Oyama, Rosa S; Baptista, Maria Alice S F; Plepis, Ana Maria G; Martins, Virginia A; Coimbra, Terezila M; Goloni-Bertollo, Eny M; Braile, Domingo M; Abbud-Filho, Mario

    2011-06-01

    Different routes for the administration of bone marrow-derived cells (BMDC) have been proposed to treat the progression of chronic renal failure (CRF). We investigated whether (1) the use of bovine pericardium (BP) as a scaffold for cell therapy would retard the progression of CRF and (2) the efficacy of cell therapy differently impacts distinct degrees of CRF. We used 2/3 and 5/6 models of renal mass reduction to simulate different stages of chronicity. Treatments consisted of BP seeded with either mesenchymal or mononuclear cells implanted in the parenchyma of remnant kidney. Renal function and proteinuria were measured at days 45 and 90 after cell implantation. BMDC treatment reduced glomerulosclerosis, interstitial fibrosis and lymphocytic infiltration. Immunohistochemistry showed decreased macrophage accumulation, proliferative activity and the expression of fibronectin and α-smooth muscle-actin. Our results demonstrate: (1) biomaterial combined with BMDC did retard the progression of experimental CRF; (2) cellular therapy stabilized serum creatinine (sCr), improved creatinine clearance and 1/sCr slope when administered during the less severe stages of CRF; (3) treatment with combined therapy decreased glomerulosclerosis, fibrosis and the expression of fibrogenic molecules; and (4) biomaterials seeded with BMDC can be an alternative route of cellular therapy.

  9. Extracellular matrix hydrogels from decellularized tissues: Structure and function.

    Science.gov (United States)

    Saldin, Lindsey T; Cramer, Madeline C; Velankar, Sachin S; White, Lisa J; Badylak, Stephen F

    2017-02-01

    Extracellular matrix (ECM) bioscaffolds prepared from decellularized tissues have been used to facilitate constructive and functional tissue remodeling in a variety of clinical applications. The discovery that these ECM materials could be solubilized and subsequently manipulated to form hydrogels expanded their potential in vitro and in vivo utility; i.e. as culture substrates comparable to collagen or Matrigel, and as injectable materials that fill irregularly-shaped defects. The mechanisms by which ECM hydrogels direct cell behavior and influence remodeling outcomes are only partially understood, but likely include structural and biological signals retained from the native source tissue. The present review describes the utility, formation, and physical and biological characterization of ECM hydrogels. Two examples of clinical application are presented to demonstrate in vivo utility of ECM hydrogels in different organ systems. Finally, new research directions and clinical translation of ECM hydrogels are discussed.

  10. Advances in the Fabrication of Antimicrobial Hydrogels for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Carmen M. González-Henríquez

    2017-02-01

    Full Text Available This review describes, in an organized manner, the recent developments in the elaboration of hydrogels that possess antimicrobial activity. The fabrication of antibacterial hydrogels for biomedical applications that permits cell adhesion and proliferation still remains as an interesting challenge, in particular for tissue engineering applications. In this context, a large number of studies has been carried out in the design of hydrogels that serve as support for antimicrobial agents (nanoparticles, antibiotics, etc.. Another interesting approach is to use polymers with inherent antimicrobial activity provided by functional groups contained in their structures, such as quaternary ammonium salt or hydrogels fabricated from antimicrobial peptides (AMPs or natural polymers, such as chitosan. A summary of the different alternatives employed for this purpose is described in this review, considering their advantages and disadvantages. Finally, more recent methodologies that lead to more sophisticated hydrogels that are able to react to external stimuli are equally depicted in this review.

  11. Thermoresponsive hydrogels in biomedical applications: A seven-year update.

    Science.gov (United States)

    Klouda, Leda

    2015-11-01

    Thermally responsive hydrogels modulate their gelation behavior upon temperature change. Aqueous solutions solidify into hydrogels when a critical temperature is reached. In biomedical applications, the change from ambient temperature to physiological temperature can be employed. Their potential as in situ forming biomaterials has rendered these hydrogels very attractive. Advances in drug delivery, tissue engineering and cell sheet engineering have been made in recent years with the use of thermoresponsive hydrogels. The scope of this article is to review the literature on thermosensitive hydrogels published over the past seven years. The article concentrates on natural polymers as well as synthetic polymers, including systems based on N-isopropylacrylamide (NIPAAm), poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO), poly(ethylene glycol) (PEG)-biodegradable polyester copolymers, poly(organophosphazenes) and 2-(dimethylamino) ethyl methacrylate (DMAEMA).

  12. Hydrogel design of experiments methodology to optimize hydrogel for iPSC-NPC culture.

    Science.gov (United States)

    Lam, Jonathan; Carmichael, S Thomas; Lowry, William E; Segura, Tatiana

    2015-03-11

    Bioactive signals can be incorporated in hydrogels to direct encapsulated cell behavior. Design of experiments methodology methodically varies the signals systematically to determine the individual and combinatorial effects of each factor on cell activity. Using this approach enables the optimization of three ligands concentrations (RGD, YIGSR, IKVAV) for the survival and differentiation of neural progenitor cells.

  13. Biological behavior of fibroblast on contractile collagen hydrogel crosslinked by γ-irradiation.

    Science.gov (United States)

    Zhang, Xiangmei; Zhang, Yaqing; Chen, Wenqiang; Xu, Ling; Wei, Shicheng; Zheng, Yufeng; Zhai, Maolin

    2014-08-01

    Collagen hydrogels exhibited a contractile trend in simulated body fluid. In this study, the internal pore architecture and mechanical properties of collagen hydrogel prepared by radiation crosslinking was evaluated during contraction, and the effect of contractile collagen hydrogels on the biological behavior of fibroblasts were investigated in vitro, such as viability, proliferation, morphology, apoptosis, cycle, and stress fiber. The results showed that accompany with contraction of collagen hydrogel, the pore diameter of the hydrogels decreased and compressive modulus increased. However, fibroblasts can grow on contractile collagen hydrogels. Indeed, collagen hydrogel contracted from circumference to the interior, which retard the spreading of fibroblasts on the dynamic substrate and interrupted the initial attachment of the cell. However, contraction of collagen hydrogel had not only significant influence on the L929 cell proliferation, but also accelerated the apoptosis. Cell cycle analysis showed that contractile collagen hydrogel may promote cell cycle from G0/G1 phase to S phase, and DNA synthesis and cell proliferation were enhanced, but which may be different in contraction process. Therefore, as a scaffold for tissue engineering, the strategy for inhibition of the contraction of collagen hydrogel should be taken into account.

  14. Controlling Cell Functions and Fate with Surfaces and Hydrogels: The Role of Material Features in Cell Adhesion and Signal Transduction

    Directory of Open Access Journals (Sweden)

    Maurizio Ventre

    2016-03-01

    Full Text Available In their natural environment, cells are constantly exposed to a cohort of biochemical and biophysical signals that govern their functions and fate. Therefore, materials for biomedical applications, either in vivo or in vitro, should provide a replica of the complex patterns of biological signals. Thus, the development of a novel class of biomaterials requires, on the one side, the understanding of the dynamic interactions occurring at the interface of cells and materials; on the other, it requires the development of technologies able to integrate multiple signals precisely organized in time and space. A large body of studies aimed at investigating the mechanisms underpinning cell-material interactions is mostly based on 2D systems. While these have been instrumental in shaping our understanding of the recognition of and reaction to material stimuli, they lack the ability to capture central features of the natural cellular environment, such as dimensionality, remodelling and degradability. In this work, we review the fundamental traits of material signal sensing and cell response. We then present relevant technologies and materials that enable fabricating systems able to control various aspects of cell behavior, and we highlight potential differences that arise from 2D and 3D settings.

  15. 5-FU-hydrogel inhibits colorectal peritoneal carcinomatosis and tumor growth in mice

    Directory of Open Access Journals (Sweden)

    Shi Huashan

    2010-08-01

    Full Text Available Abstract Background Colorectal peritoneal carcinomatosis (CRPC is a common form of systemic metastasis of intra-abdominal cancers. Intraperitoneal chemotherapy is a preferable option for colorectal cancer. Here we reported that a new system, 5-FU-loaded hydrogel system, can improve the therapeutic effects of intraperitoneal chemotherapy. Methods A biodegradable PEG-PCL-PEG (PECE triblock copolymer was successfully synthesized. The biodegradable and temperature sensitive hydrogel was developed to load 5-FU. Methylene blue-loaded hydrogel were also developed for visible observation of the drug release. The effects and toxicity of the 5-FU-hydrogel system were evaluated in a murine CRPC model. Results The hydrogel system is an injectable flowing solution at ambient temperature and forms a non-flowing gel depot at physiological temperature. 5-FU-hydrogel was subsequently injected into abdominal cavity in mice with CT26 cancer cells peritoneal dissemination. The results showed that the hydrogel delivery system prolonged the release of methylene blue; the 5-FU-hydrogel significantly inhibited the peritoneal dissemination and growth of CT26 cells. Furthermore, intraperitoneal administration of the 5-FU-hydrogel was well tolerated and showed less hematologic toxicity. Conclusions Our data indicate that the 5-FU-hydrogel system can be considered as a new strategy for peritoneal carcinomatosis, and the hydrogel may provide a potential delivery system to load different chemotherapeutic drugs for peritoneal carcinomatosis of cancers.

  16. Exploring the Anticancer Activity of Grape Seed Extract on Skin Cancer Cell Lines A431

    Directory of Open Access Journals (Sweden)

    V. Mohansrinivasan

    2015-08-01

    Full Text Available In this study, grape seeds were extracted using ethyl acetate and petroleum ether by solvent-solvent extraction method. The phytochemical tests were performed to identify different phytochemical compounds present in the grape seed extract (GSE. Antibacterial activity of the GSE was determined using agar diffusion method against Gram- positive and Gram-negative bacteria. Gas chromatography-mass spectrometry (GC-MS and Fourier transform infrared spectroscopy (FTIR analysis was done to identify the presence of bioactive compounds and their functional groups. The GC-MS results revealed a total of four compounds, known to have potent activity against cancer cells, viz, squalene, the most potent compound found in ethyl acetate extract and diethyl phthalate, ethyl-9- cis -11- trans octadecadienoate and (R-(--14,-methyl-8-Hexadecyn-1-ol in petroleum ether extract. Cytotoxic activity of the GSE was observed against skin cancer cell lines A4321 using 3-(4, 5-dimethylthiazol-2-yl-2-5-diphenyl tetrazolium bromide MTT assay. The IC50 value of the GSE against A431 skin cancer cell line was 480 µg/mL. This is first such report against A4321 cell lines. The study gives the overall perception about importance of GSE in medicine and nutraceuticals purposes.

  17. Neferine, an alkaloid from lotus seed embryo, inhibits human lung cancer cell growth by MAPK activation and cell cycle arrest.

    Science.gov (United States)

    Poornima, Paramasivan; Weng, Ching Feng; Padma, Viswanadha Vijaya

    2014-01-01

    Neferine is the major bisbenzylisoquinoline alkaloid isolated from the seed embryo of a traditional medicinal plant Nelumbo nucifera (Lotus). Epidemiological studies have revealed the therapeutic potential of lotus seed embryo. Although several mechanisms have been proposed, a clear anticancer action mechanism of neferine on lung cancer cells is still not known. Lung cancer is the most common cause of cancer death in the world, and the patients with advanced stage of nonsmall lung cancer require adjunct chemotherapy after surgical resection for the eradication of cancer cells. In this study, the effects of neferine were evaluated and characterized in A549 cells. Neferine induced apoptosis in a dose-dependent manner with the hypergeneration of reactive oxygen species, activation of MAPKs, lipid peroxidation, depletion of cellular antioxidant pool, loss of mitochondrial membrane potential, and intracellular calcium accumulation. Furthermore, neferine treatment leads to the inhibition of nuclear factor kappaB and Bcl2, upregulation of Bax and Bad, release of cytochrome C, activation of caspase cascade, and DNA fragmentation. In addition, neferine could induce p53 and its effector protein p21 and downregulation of cell cycle regulatory protein cyclin D1 thereby inducing G1 cell cycle arrest. These results suggest a novel function of neferine as an apoptosis inducer in lung cancer cells.

  18. Affinity-based release of polymer-binding peptides from hydrogels with the target segments of peptides.

    Science.gov (United States)

    Serizawa, Takeshi; Fukuta, Hiroki; Date, Takaaki; Sawada, Toshiki

    2016-02-01

    Peptides with affinities for the target segments of polymer hydrogels were identified by biological screening using phage-displayed peptide libraries, and these peptides exhibited an affinity-based release capability from hydrogels. The results from cell culture assays demonstrated the sustained anticancer effects of the drug-conjugated peptides that were released from the hydrogels.

  19. Characterization of electroless nickel as a seed layer for silicon solar cell metallization

    Indian Academy of Sciences (India)

    Mehul C Raval; Chetan S Solanki

    2015-02-01

    Electroless nickel plating is a suitable method for seed layer deposition in Ni–Cu-based solar cell metallization. Nickel silicide formation and hence contact resistivity of the interface is largely influenced by the plating process and annealing conditions. In the present work, a thin seed layer is deposited from neutral pH and alkaline electroless nickel baths which are annealed in the range of 400–420°C for silicide morphology and contact resistivity studies. A minimum contact resistivity of 7 m cm2 is obtained for seed layer deposited from alkaline bath. Silicide formation for Pd-activated samples leads to uniform surface morphology as compared with unactivated samples due to non-homogeneous migration of nickel atoms at the interface. Formation of nickel phosphides during annealing and the presence of SiO2 at Ni–Si interface creates isolated Ni2Si–Si interface with limited supply of silicon. Such an interface leads to the formation of high resistivity metal-rich Ni3Si silicide phase which limits the reduction in contact resistivity.

  20. The effect of time-dependent deformation of viscoelastic hydrogels on myogenic induction and Rac1 activity in mesenchymal stem cells.

    Science.gov (United States)

    Cameron, Andrew R; Frith, Jessica E; Gomez, Guillermo A; Yap, Alpha S; Cooper-White, Justin J

    2014-02-01

    Cell behaviours within tissues are influenced by a broad array of physical and biochemical microenvironmental factors. Whilst 'stiffness' is a recognised physical property of substrates and tissue microenvironments that influences many cellular behaviours, tissues and their extracellular matrices are not purely rigid but 'viscoelastic' materials, composed of both rigid-like (elastic) and dissipative (viscous) elements. This viscoelasticity results in materials displaying increased deformation with time under the imposition of a defined force or stress, a phenomenon referred to as time-dependent deformation or 'creep'. Previously, we compared the behaviour of human mesenchymal stem cells (hMSCs) on hydrogels tailored to have a constant stiffness, but to display varying levels of creep in response to an applied force. Using polyacrylamide as a model material, we showed that on high-creep hydrogels (HCHs), hMSCs displayed increased proliferation, spread area and differentiation towards multiple lineages, compared to their purely stiff analogue, with a particular propensity for differentiation towards a smooth muscle cell (SMC) lineage. In this present study, we investigate the mechanisms behind this phenomenon and show that hMSCs adhered to HCHs have increased expression of SMC induction factors, including soluble factors, ECM proteins and the cell-cell adhesion molecule, N-Cadherin. Further, we identify a key role for Rac1 signalling in mediating this increased N-Cadherin expression. Using a real-time Rac1-FRET biosensor, we confirm increased Rac1 activation on HCHs, an observation that is further supported functionally by observed increases in motility and lamellipodial protrusion rates of hMSCs. Increased Rac1 activity in hMSCs on HCHs provides underlying mechanisms for enhanced commitment towards a SMC lineage and the compensatory increase in spread area (isotonic tension) after a creep-induced loss of cytoskeletal tension on viscoelastic substrates, in contrast

  1. Engineering zonal cartilaginous tissue by modulating oxygen levels and mechanical cues through the depth of infrapatellar fat pad stem cell laden hydrogels.

    Science.gov (United States)

    Luo, Lu; O'Reilly, Adam R; Thorpe, Stephen D; Buckley, Conor T; Kelly, Daniel J

    2016-05-03

    Engineering tissues with a structure and spatial composition mimicking those of native articular cartilage (AC) remains a challenge. This study examined if infrapatellar fat pad-derived stem cells (FPSCs) can be used to engineer cartilage grafts with a bulk composition and a spatial distribution of matrix similar to the native tissue. In an attempt to mimic the oxygen gradients and mechanical environment within AC, FPSC-laden hydrogels (either 2 mm or 4 mm in height) were confined to half of their thickness and/or subjected to dynamic compression (DC). Confining FPSC-laden hydrogels was predicted to accentuate the gradient in oxygen tension through the depth of the constructs (higher in the top and lower in the bottom), leading to enhanced glycosaminoglycan (GAG) and collagen synthesis in 2 mm high tissues. When subjected to DC alone, both GAG and collagen accumulation increased within 2 mm high unconfined constructs. Furthermore, the dynamic modulus of constructs increased from 0.96 MPa to 1.45 MPa following the application of DC. There was no synergistic benefit of coupling confinement and DC on overall levels of matrix accumulation; however in all constructs, irrespective of their height, the combination of these boundary conditions led to the development of engineered tissues that spatially best resembled native AC. The superficial region of these constructs mimicked that of native tissue, staining weakly for GAG, strongly for type II collagen, and in 4 mm high tissues more intensely for proteoglycan 4 (lubricin). This study demonstrated that FPSCs respond to joint-like environmental conditions by producing cartilage tissues mimicking native AC. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Double network hydrogel with high mechanical strength:Performance, progress and future perspective

    Institute of Scientific and Technical Information of China (English)

    CHEN YongMei; DONG Kun; LIU ZhenQi; XU Feng

    2012-01-01

    With high water content (~90 wt%) and significantly improved mechanical strength (~MPa),double network (DN) hydrogels have emerged as promising biomaterials with widespread applications in biomedicine.In recent years,DN hydrogels with extremely high mechanical strength have achieved great advance,and scientists have designed a series of natural and biomimetic DN hydrogels with novel functions including low friction,low wear,mechanical anisotropy and cell compatibility.These advances have also led to new design of biocompatible DN hydrogels for regeneration of tissues such as cartilage.In this paper,we reviewed the strategies of designing high-strength DN hydrogel and analyzed the factors that affect DN hydrogel properties.We also discussed the challenges and future development of the DN hydrogel in view of its potential as biomaterials for their biomedical applications.

  3. Development of Thermosensitive Hydrogels of Chitosan, Sodium and Magnesium Glycerophosphate for Bone Regeneration Applications

    Directory of Open Access Journals (Sweden)

    Jana Lisková

    2015-04-01

    Full Text Available Thermosensitive injectable hydrogels based on chitosan neutralized with sodium beta-glycerophosphate (Na-β-GP have been studied as biomaterials for drug delivery and tissue regeneration. Magnesium (Mg has been reported to stimulate adhesion and proliferation of bone forming cells. With the aim of improving the suitability of the aforementioned chitosan hydrogels as materials for bone regeneration, Mg was incorporated by partial substitution of Na-β-GP with magnesium glycerophosphate (Mg-GP. Chitosan/Na-β-GP and chitosan/Na-β-GP/Mg-GP hydrogels were also loaded with the enzyme alkaline phosphatase (ALP which induces hydrogel mineralization. Hydrogels were characterized physicochemically with respect to mineralizability and gelation kinetics, and biologically with respect to cytocompatibility and cell adhesion. Substitution of Na-β-GP with Mg-GP did not negatively influence mineralizability. Cell biological testing showed that both chitosan/Na-β-GP and chitosan/Na-β-GP/Mg-GP hydrogels were cytocompatible towards MG63 osteoblast-like cells. Hence, chitosan/Na-β-GP/Mg-GP hydrogels can be used as an alternative to chitosan/Na-β-GP hydrogels for bone regeneration applications. However the incorporation of Mg in the hydrogels during hydrogel formation did not bring any appreciable physicochemical or biological benefit.

  4. Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography.

    Science.gov (United States)

    Dhariwala, Busaina; Hunt, Elaine; Boland, Thomas

    2004-01-01

    One of the most important aspects of tissue engineering is the design of the scaffold providing the mechanical strength and access to nutrients for the new tissue. For customized tissue engineering, it is essential to be able to fabricate three-dimensional scaffolds of various geometric shapes, in order to repair defects caused by accidents, surgery, or birth. Rapid prototyping or solid free-form fabrication (SFF) techniques hold great promise for designing three-dimensional customized scaffolds, yet traditional cell-seeding techniques may not provide enough cell mass for larger constructs. This article presents a novel attempt to fabricate three-dimensional scaffolds, using hydrogels combined with cell encapsulation to fabricate high-density tissue constructs. A commercially available stereolithography technique was applied to fabricate scaffolds using poly(ethylene oxide) and poly(ethylene glycol)dimethacrylate photopolymerizable hydrogels. Mechanical characterization shows the constructs to be comparable with soft tissues in terms of elasticity. High cell viability was achieved and high-density constructs fabricated.

  5. Clastogenicity of Piper cubeba (Piperaceae seed extract in an in vivo mammalian cell system

    Directory of Open Access Journals (Sweden)

    Adriana Pereira Freire Junqueira

    2007-01-01

    Full Text Available The plant Piper cubeba is widely distributed in tropical and subtropical regions and is used medically for various purposes but has not yet been evaluated for genotoxicity. We used male and female Swiss mice and Wistar rats and the comet assay and micronucleus test to investigate the mutagenic potential of a crude extract of P. cubeba seeds. The rodents were administered 0.5 g kg-1, 1.0 g kg-1 and 1.5 g kg-1 of the extract by gavage. For the Swiss mice, peripheral blood was collected 24 h after treatment for the comet assay, and at 48 and 72 h for the micronucleus test. For the Wistar rats, peripheral blood and hepatic cells were collected for the comet assay and bone marrow cells were collected for the micronucleus test 24 h after treatment. At 1.5 g kg-1, the highest dose tested, the extract induced a statistically significant increase in both the mean number of micronucleated polychromatic erythrocytes and the level of DNA damage in the rodent cell types analyzed. Under our experimental conditions, the P. cubeba seed extract was genotoxic in vivo when administered orally to mice and rats.

  6. Quantitative evaluation of regularized phase retrieval algorithms on bone scaffolds seeded with bone cells

    Science.gov (United States)

    Weber, L.; Langer, M.; Tavella, S.; Ruggiu, A.; Peyrin, F.

    2016-05-01

    In the field of regenerative medicine, there has been a growing interest in studying the combination of bone scaffolds and cells that can maximize newly formed bone. In-line phase-contrast x-ray tomography was used to image porous bone scaffolds (Skelite©), seeded with bone forming cells. This technique allows the quantification of both mineralized and soft tissue, unlike with classical x-ray micro-computed tomography. Phase contrast images were acquired at four distances. The reconstruction is typically performed in two successive steps: phase retrieval and tomographic reconstruction. In this work, different regularization methods were applied to the phase retrieval process. The application of a priori terms for heterogeneous objects enables quantitative 3D imaging of not only bone morphology, mineralization, and soft tissue formation, but also cells trapped in the pre-bone matrix. A statistical study was performed to derive statistically significant information on the different culture conditions.

  7. Dye-sensitized solar cells with natural dyes extracted from achiote seeds

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Ortiz, N.M.; Vazquez-Maldonado, I.A.; Azamar-Barrios, J.A.; Oskam, G. [Departamento de Fisica Aplicada, CINVESTAV-IPN, Merida, Yuc. 97310 (Mexico); Perez-Espadas, A.R.; Mena-Rejon, G.J. [Laboratorio de Quimica Organica de Investigacion, Facultad de Quimica, Universidad Autonoma de Yucatan, Merida, Yuc. 97150 (Mexico)

    2010-01-15

    We have explored the application of natural dyes extracted from the seeds of the achiote shrub (Bixa orellana L.) in dye-sensitized solar cells (DSCs). The main pigments are bixin and norbixin, which were obtained by separation and purification from the dark-red extract (annatto). The dyes were characterized using {sup 1}H-NMR, FTIR spectroscopy, and UV-Vis spectrophotometry. Solar cells were prepared using TiO{sub 2} and ZnO nanostructured, mesoporous films and the annatto, bixin, and norbixin as sensitizers. The best results were obtained with bixin-sensitized TiO{sub 2} solar cells with efficiencies of up to 0.53%, illustrating the importance of purification of dyes from natural extracts. (author)

  8. Stimuli responsive deswelling of radiation synthesized collagen hydrogel in simulated physiological environment.

    Science.gov (United States)

    Zhang, Xiangmei; Xu, Ling; Wei, Shicheng; Zhai, Maolin; Li, Jiuqiang

    2013-08-01

    Collagen hydrogels were prepared via radiation crosslinking. The simulated physiological environmental effects related to their biomedical applications on the volume phase transition of collagen hydrogel were studied, that is stimuli response to ions, temperature, and pH. The deswelling behavior of collagen hydrogel depends on the salt concentration, temperature, pH, and the hydrogel preparation procedure. Meanwhile, hydrogel structure related to the volume phase transition was investigated by FTIR, fluorescence spectrum, and HR-MAS NMR. Deswelling in salt solution caused little change on collagen conformation, and a denser network led to more significant tyrosine-derived fluorescence quenching. Hydrogen bonding between hydrated water and collagen polypeptide chain was dissociated and the activity of hydrophobic side chain increased, inducing a higher extent of contraction with the increasing of salt concentration. Moreover, salt solution treatments weakened the electrostatic interactions, side chains interactions, and hydrogen bonding of collagen hydrogel, which reduced the thermal stability of collagen hydrogel. Comparing with cell-free collagen hydrogel contraction, fibroblasts did not aggravate contraction of collagen hydrogel significantly. This study elucidated the deswelling mechanism of radiation crosslinked collagen hydrogel in simulated physiological environment and provides strategies for controlling the stimuli response of collagen hydrogel in biomedical application.

  9. Enrichment of thermosensitive chitosan hydrogels with glycerol and alkaline phosphatase for bone tissue engineering applications.

    Science.gov (United States)

    Douglas, Timothy E L; Krok-Borkowicz, Małgorzata; Macuda, Aleksandra; Pietryga, Krzysztof; Pamuła, Elżbieta

    2016-01-01

    Thermosensitive injectable chitosan hydrogels can be formed by neutralization of acidic chitosan solutions with sodium betaglycerophosphate (Na-β-GP) coupled with increasing temperature to body temperature. Such hydrogels have been considered for applications in bone regeneration. In this study, chitosan hydrogels were enriched with glycerol and the enzyme alkaline phosphatase (ALP) with a view to improving their suitability as materials for bone tissue engineering. Mineral formation was confirmed by infrared spectroscopy (FTIR) and increases in the mass fraction of the hydrogel not consisting of water. Incorporation of ALP in hydrogels followed by incubation in a solution containing calcium ions and glycerophosphate, a substrate for ALP, led to formation of calcium phosphate within the hydrogel. MG-63 osteoblast-like cells were cultivated in eluates from hydrogels containing ALP and without ALP at different dilutions and directly on the hydrogel samples. Hydrogels containing ALP exhibited superior cytocompatibility to ALP-free hydrogels. These results pave the way for the use of glycerol- and ALP-enriched hydrogels in bone regeneration.

  10. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications.

    Science.gov (United States)

    Li, Juan; Mo, Liuting; Lu, Chun-Hua; Fu, Ting; Yang, Huang-Hao; Tan, Weihong

    2016-03-07

    Hydrogels are crosslinked hydrophilic polymers that can absorb a large amount of water. By their hydrophilic, biocompatible and highly tunable nature, hydrogels can be tailored for applications in bioanalysis and biomedicine. Of particular interest are DNA-based hydrogels owing to the unique features of nucleic acids. Since the discovery of the DNA double helical structure, interest in DNA has expanded beyond its genetic role to applications in nanotechnology and materials science. In particular, DNA-based hydrogels present such remarkable features as stability, flexibility, precise programmability, stimuli-responsive DNA conformations, facile synthesis and modification. Moreover, functional nucleic acids (FNAs) have allowed the construction of hydrogels based on aptamers, DNAzymes, i-motif nanostructures, siRNAs and CpG oligodeoxynucleotides to provide additional molecular recognition, catalytic activities and therapeutic potential, making them key players in biological analysis and biomedical applications. To date, a variety of applications have been demonstrated with FNA-based hydrogels, including biosensing, environmental analysis, controlled drug release, cell adhesion and targeted cancer therapy. In this review, we focus on advances in the development of FNA-based hydrogels, which have fully incorporated both the unique features of FNAs and DNA-based hydrogels. We first introduce different strategies for constructing DNA-based hydrogels. Subsequently, various types of FNAs and the most recent developments of FNA-based hydrogels for bioanalytical and biomedical applications are described with some selected examples. Finally, the review provides an insight into the remaining challenges and future perspectives of FNA-based hydrogels.

  11. Winner of the Young Investigator Award of the Society for Biomaterials at the 10th World Biomaterials Congress, May 17-22, 2016, Montreal QC, Canada: Microribbon-based hydrogels accelerate stem cell-based bone regeneration in a mouse critical-size cranial defect model.

    Science.gov (United States)

    Han, Li-Hsin; Conrad, Bogdan; Chung, Michael T; Deveza, Lorenzo; Jiang, Xinyi; Wang, Andrew; Butte, Manish J; Longaker, Michael T; Wan, Derrick; Yang, Fan

    2016-06-01

    Stem cell-based therapies hold great promise for enhancing tissue regeneration. However, the majority of cells die shortly after transplantation, which greatly diminishes the efficacy of stem cell-based therapies. Poor cell engraftment and survival remain a major bottleneck to fully exploiting the power of stem cells for regenerative medicine. Biomaterials such as hydrogels can serve as artificial matrices to protect cells during delivery and guide desirable cell fates. However, conventional hydrogels often lack macroporosity, which restricts cell proliferation and delays matrix deposition. Here we report the use of injectable, macroporous microribbon (μRB) hydrogels as stem cell carriers for bone repair, which supports direct cell encapsulation into a macroporous scaffold with rapid spreading. When transplanted in a critical-sized, mouse cranial defect model, μRB-based hydrogels significantly enhanced the survival of transplanted adipose-derived stromal cells (ADSCs) (81%) and enabled up to three-fold cell proliferation after 7 days. In contrast, conventional hydrogels only led to 27% cell survival, which continued to decrease over time. MicroCT imaging showed μRBs enhanced and accelerated mineralized bone repair compared to hydrogels (61% vs. 34% by week 6), and stem cells were required for bone repair to occur. These results suggest that paracrine signaling of transplanted stem cells are responsible for the observed bone repair, and enhancing cell survival and proliferation using μRBs further promoted the paracrine-signaling effects of ADSCs for stimulating endogenous bone repair. We envision μRB-based scaffolds can be broadly useful as a novel scaffold for enhancing stem cell survival and regeneration of other tissue types. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1321-1331, 2016.

  12. A surface-modified biodegradable urethral scaffold seeded with urethral epithelial cells

    Institute of Scientific and Technical Information of China (English)

    FU Wei-jun; ZHANG Xu; WANG Zhong-xin; LI Gang; ZHANG Bing-hong; ZHANG Lei; HU Kun; HONG Bao-fa; WANG Xiao-xiong; CUI Fu-zhai

    2011-01-01

    Background Efficient cell adhesion and proliferation is a central issue in cell-based tissue engineering, which offers great promise for repair of urethral defects or strictures. This study evaluated the adhesion and growth of rabbit uroepithelium on a surface-modified three-dimensional poly-L-lactic acid (PLLA) scaffold.Methods Urethral mucosa were harvested from male New Zealand rabbits and the urothelium were dissociated and then cultured. Immunocytochemistry on cultured uroepithelium for pancytokeratin and uroplakin Ⅱ and TE-7 confirmed pure populations. After in vitro proliferation, cells were seeded onto a surface-modified urethral scaffold with non-knitted filaments. The morphology and viability of the cells were examined by immunohistochemical and fluorescence staining.Inverted and scanning microscopes were used to document cell growth and adhesion.Results Three to five days after primary culture, the uroepithelial cells gradually became confluent, assuming a cobblestone pattern. The filaments of the urethral scaffold had excellent biocompatibility and allowed growth of the uroepithelium, without affecting viability. The uroepithelial cells adhered to and grew well on the scaffold. After 3-7 days,the cells grew vigorously and meshes of the scaffold were full of uroepitheliums.Conclusions The surface-modified urethral scaffold with non-knitted filaments allows the growth of uroepithelium and can serve as a carrier for the tissue engineering of urethra.

  13. Amidated pectin based hydrogels: synthesis, characterization and cytocompatibility study.

    Science.gov (United States)

    Mishra, R K; Singhal, J P; Datt, M; Banthia, A K

    2007-01-01

    The design and development of pectin-based hydrogels were attempted through the chemical modification of pectin with diethanolamine (DA). Diethanolamine modified pectin (DAMP) was synthesized by the chemical modification of pectin with varying concentrations of DA (1:1,1:2,1:3 and 1:4) at 5 oC in methanol. The modified product was used for the preparation of the hydrogel with glutaraldehyde (GA) reagent. The prepared hydrogels were characterized by Fourier transform infrared (FTIR) spectroscopy; organic elemental analysis, and X-ray diffraction (XRD), and swelling, hemocompatibility and cytocompatibility studies of the prepared hydrogels were also done. FTIR spectroscopy indicated the presence of primary and secondary amide absorption bands. The XRD pattern of the DAMP hydrogel clearly indicated that there was a considerable increase in crystallinity as compared to parent pectin. The degree of amidation (DA) and molar and mass reaction yields (Ym and Yn) was calculated based on the results of organic elemental analysis. Drug release studies from the hydrogel membranes were also evaluated in a Franz's diffusion cell. The hydrogels demonstrated good water holding properties and were found to be compatible with B-16 melanoma cells and human blood.

  14. Structure-function relationships in the stem cell's mechanical world A: seeding protocols as a means to control shape and fate of live stem cells.

    Science.gov (United States)

    Zimmermann, Joshua A; Knothe Tate, Melissa L

    2011-12-01

    Shape and fate are intrinsic manifestations of form and function at the cell scale. Here we hypothesize that seeding density and protocol affect the form and function of live embryonic murine mesenchymal stem cells (MSCs) and their nuclei. First, the imperative for study of live cells was demonstrated in studies showing changes in cell nucleus shape that were attributable to fixation per se. Hence, we compared live cell and nuclear volume and shape between groups of a model MSC line (C3H10T1/2) seeded at, or proliferated from 5,000 cells/cm2 to one of three target densities to achieve targeted development contexts. Cell volume was shown to be dependent on initial seeding density whereas nucleus shape was shown to depend on developmental context but not seeding density. Both smaller cell volumes and flatter nuclei were found to correlate with increased expression of markers for mesenchymal condensation as well as chondrogenic and osteogenic differentiation but a decreased expression of pre-condensation and adipogenic markers. Considering the data presented here, both seeding density and protocol significantly alter the morphology of mesenchymal stem cells even at very early stages of cell culture. Thus, these design parameters may play a critical role in the success of tissue engineering strategies seeking to recreate condensation events. However, a better understanding of how these changes in cell volume and nucleus shape relate to the differentiation of MSCs is important for prescribing precise seeding conditions necessary for the development of the desired tissue type. In a companion study (Part B, following), we address the effect of concomitant volume and shape changing stresses on spatiotemporal distribution of the cytoskeletal proteins actin and tubulin. Taken together, these studies bring us one step closer to our ultimate goal of elucidating the dynamics of nucleus and cell shape change as tissue templates grow (cell proliferation) and specialize (cell

  15. Alginate/polyoxyethylene and alginate/gelatin hydrogels: preparation, characterization, and application in tissue engineering.

    Science.gov (United States)

    Aroguz, Ayse Z; Baysal, Kemal; Adiguzel, Zelal; Baysal, Bahattin M

    2014-05-01

    Hydrogels are attractive biomaterials for three-dimensional cell culture and tissue engineering applications. The preparation of hydrogels using alginate and gelatin provides cross-linked hydrophilic polymers that can swell but do not dissolve in water. In this work, we first reinforced pure alginate by using polyoxyethylene as a supporting material. In an alginate/PEO sample that contains 20 % polyoxyethylene, we obtained a stable hydrogel for cell culture experiments. We also prepared a stable alginate/gelatin hydrogel by cross-linking a periodate-oxidized alginate with another functional component such as gelatin. The hydrogels were found to have a high fluid uptake. In this work, preparation, characterization, swelling, and surface properties of these scaffold materials were described. Lyophilized scaffolds obtained from hydrogels were used for cell viability experiments, and the results were presented in detail.

  16. Injectable silk-polyethylene glycol hydrogels.

    Science.gov (United States)

    Wang, Xiaoqin; Partlow, Benjamin; Liu, Jian; Zheng, Zhaozhu; Su, Bo; Wang, Yansong; Kaplan, David L

    2015-01-01

    Silk hydrogels for tissue repair are usually pre-formed via chemical or physical treatments from silk solutions. For many medical applications, it is desirable to utilize injectable silk hydrogels at high concentrations (>8%) to avoid surgical implantation and to achieve slow in vivo degradation of the gel. In the present study, injectable silk solutions that formed hydrogels in situ were generated by mixing silk with low-molecular-weight polyethylene glycol (PEG), especially PEG300 and 400 (molecular weight 300 and 400g mol(-1)). Gelation time was dependent on the concentration and molecular weight of PEG. When the concentration of PEG in the gel reached 40-45%, gelation time was less than 30min, as revealed by measurements of optical density and rheological studies, with kinetics of PEG400 faster than PEG300. Gelation was accompanied by structural changes in silk, leading to the conversion from random coil in solution to crystalline β-sheets in the gels, based on circular dichroism, attenuated total reflection Fourier transform infrared spectroscopy and X-ray diffraction. The modulus (127.5kPa) and yield strength (11.5kPa) determined were comparable to those of sonication-induced hydrogels at the same concentrations of silk. The time-dependent injectability of 15% PEG-silk hydrogel through 27G needles showed a gradual increase of compression forces from ∼10 to 50N within 60min. The growth of human mesenchymal stem cells on the PEG-silk hydrogels was hindered, likely due to the presence of PEG, which grew after a 5 day delay, presumably while the PEG solubilized away from the gel. When 5% PEG-silk hydrogel was subcutaneously injected in rats, significant degradation and tissue in-growth took place after 20 days, as revealed by ultrasound imaging and histological analysis. No significant inflammation around the gel was observed. The features of injectability, slow degradation and low initial cell attachment suggests that these PEG-silk hydrogels are of interest

  17. Bone marrow derived cell-seeded extracellular matrix: A novel biomaterial in the field of