WorldWideScience

Sample records for cell radiation resistance

  1. High Radiation Resistance IMM Solar Cell

    Science.gov (United States)

    Pan, Noren

    2015-01-01

    Due to high launch costs, weight reduction is a key driver for the development of new solar cell technologies suitable for space applications. This project is developing a unique triple-junction inverted metamorphic multijunction (IMM) technology that enables the manufacture of very lightweight, low-cost InGaAsP-based multijunction solar cells. This IMM technology consists of indium (In) and phosphorous (P) solar cell active materials, which are designed to improve the radiation-resistant properties of the triple-junction solar cell while maintaining high efficiency. The intrinsic radiation hardness of InP materials makes them of great interest for building solar cells suitable for deployment in harsh radiation environments, such as medium Earth orbit and missions to the outer planets. NASA Glenn's recently developed epitaxial lift-off (ELO) process also will be applied to this new structure, which will enable the fabrication of the IMM structure without the substrate.

  2. Tumourigenicity and radiation resistance of mesenchymal stem cells

    DEFF Research Database (Denmark)

    D'Andrea, Filippo Peder; Horsman, Michael Robert; Kassem, Moustapha;

    2012-01-01

    Background. Cancer stem cells are believed to be more radiation resistant than differentiated tumour cells of the same origin. It is not known, however, whether normal nontransformed adult stem cells share the same radioresistance as their cancerous counterpart. Material and methods. Nontumourige......Background. Cancer stem cells are believed to be more radiation resistant than differentiated tumour cells of the same origin. It is not known, however, whether normal nontransformed adult stem cells share the same radioresistance as their cancerous counterpart. Material and methods....... Nontumourigenic (TERT4) and tumourigenic (TRET20) cell lines, from an immortalised mesenchymal stem cell line, were grown in culture prior to irradiation and gene expression analysis. Radiation resistance was measured using a clonogenic assay. Differences in gene expression between the two cell lines, both under...... nontreated and irradiated conditions, were assessed with microarrays (Affymetrix Human Exon 1.0 ST array). The cellular functions affected by the altered gene expressions were assessed through gene pathway mapping (Ingenuity Pathway Analysis). Results. Based on the clonogenic assay the nontumourigenic cell...

  3. Invasive oral cancer stem cells display resistance to ionising radiation.

    Science.gov (United States)

    Gemenetzidis, Emilios; Gammon, Luke; Biddle, Adrian; Emich, Helena; Mackenzie, Ian C

    2015-12-22

    There is a significant amount of evidence to suggest that human tumors are driven and maintained by a sub-population of cells, known as cancer stem cells (CSC). In the case of head and neck cancer, such cells have been characterised by high expression levels of CD44 cell surface glycoprotein, while we have previously shown the presence of two diverse oral CSC populations in vitro, with different capacities for cell migration and proliferation. Here, we examined the response of oral CSC populations to ionising radiation (IR), a front-line measure for the treatment of head and neck tumors. We show that oral CSC initially display resistance to IR-induced growth arrest as well as relative apoptotic resistance. We propose that this is a result of preferential activation of the DNA damagerepair pathway in oral CSC with increased activation of ATM and BRCA1, elevated levels of DNA repair proteins RAD52, XLF, and a significantly faster rate of DNA double-strand-breaks clearance 24 hours following IR. By visually identifying CSC sub-populations undergoing EMT, we show that EMT-CSC represent the majority of invasive cells, and are more radio-resistant than any other population in re-constructed 3D tissues. We provide evidence that IR is not sufficient to eliminate CSC in vitro, and that sensitization of CD44hi/ESAlow cells to IR, followed by secondary EMT blockade, could be critical in order to reduce primary tumor recurrence, but more importantly to be able to eradicate cells capable of invasion and distant metastasis.

  4. Radiation- and chemoinduced multidrug resistance in colon carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Bartkowiak, Detlef; Stempfhuber, Michael; Wiegel, Thomas; Bottke, Dirk [Dept. of Radiotherapy and Radiooncology, Univ. of Ulm (Germany)

    2009-12-15

    Background and purpose: radiation can induce multidrug resistance (MDR) and thus interfere with simultaneous or subsequent chemotherapy. In SW620 colon carcinoma cells, the interrelation of various biological endpoints of MDR was analyzed and the potential of fractionated irradiation and chemoselection to evoke MDR was compared. Material and methods: to induce/select an MDR phenotype, SW620 were exposed to either 27 Gy in 1.8-Gy daily fractions or to 50% inhibiting concentrations of doxorubicin or cisplatin, given over 6-15 weeks. Expression of genes involved in MDR, including glutathione metabolism, was determined by semiquantitative RT-PCR (reverse transcription-polymerase chain reaction). Efflux was analyzed by flow cytometry after staining with rhodamine-123 or 5-chloromethyl fluorescein diacetate. Apoptosis was monitored after pulse exposure to doxorubicin or cisplatin. Colony-forming assays were performed under continuous drug exposure. Results: a pronounced gene induction was found in MRP2 after cisplatin selection and up to 3 weeks after radiation. LRP was activated only shortly after radiation. Radiation enhanced rhodamine-123 efflux to a similar extent as short-term chemoselection but not as much as long-term drug exposure. Drug-induced apoptosis was slightly delayed in preirradiated cells. Clonogenic growth in the progeny of irradiated cells was less sensitive to cisplatin but not to doxorubicin. Conclusion: fractionated radiation can induce an MDR phenotype in SW620. However, long-term drug exposure establishes a more efficient selection. Various endpoints are not fully concordant regarding the extent of MDR. Posttranscriptional modifications, pleiotropic regulation, and alternative pathways may cause these discrepancies. (orig.)

  5. Materials That Enhance Efficiency and Radiation Resistance of Solar Cells

    Science.gov (United States)

    Sun, Xiadong; Wang, Haorong

    2012-01-01

    A thin layer (approximately 10 microns) of a novel "transparent" fluorescent material is applied to existing solar cells or modules to effectively block and convert UV light, or other lower solar response waveband of solar radiation, to visible or IR light that can be more efficiently used by solar cells for additional photocurrent. Meanwhile, the layer of fluorescent coating material remains fully "transparent" to the visible and IR waveband of solar radiation, resulting in a net gain of solar cell efficiency. This innovation alters the effective solar spectral power distribution to which an existing cell gets exposed, and matches the maximum photovoltaic (PV) response of existing cells. By shifting a low PV response waveband (e.g., UV) of solar radiation to a high PV response waveband (e.g. Vis-Near IR) with novel fluorescent materials that are transparent to other solar-cell sensitive wavebands, electrical output from solar cells will be enhanced. This approach enhances the efficiency of solar cells by converting UV and high-energy particles in space that would otherwise be wasted to visible/IR light. This innovation is a generic technique that can be readily implemented to significantly increase efficiencies of both space and terrestrial solar cells, without incurring much cost, thus bringing a broad base of economical, social, and environmental benefits. The key to this approach is that the "fluorescent" material must be very efficient, and cannot block or attenuate the "desirable" and unconverted" waveband of solar radiation (e.g. Vis-NIR) from reaching the cells. Some nano-phosphors and novel organometallic complex materials have been identified that enhance the energy efficiency on some state-of-the-art commercial silicon and thin-film-based solar cells by over 6%.

  6. Neoplastic human embryonic stem cells as a model of radiation resistance of human cancer stem cells.

    Science.gov (United States)

    Dingwall, Steve; Lee, Jung Bok; Guezguez, Borhane; Fiebig, Aline; McNicol, Jamie; Boreham, Douglas; Collins, Tony J; Bhatia, Mick

    2015-09-01

    Studies have implicated that a small sub-population of cells within a tumour, termed cancer stem cells (CSCs), have an enhanced capacity for tumour formation in multiple cancers and may be responsible for recurrence of the disease after treatment, including radiation. Although comparisons have been made between CSCs and bulk-tumour, the more important comparison with respect to therapy is between tumour-sustaining CSC versus normal stem cells that maintain the healthy tissue. However, the absence of normal known counterparts for many CSCs has made it difficult to compare the radiation responses of CSCs with the normal stem cells required for post-radiotherapy tissue regeneration and the maintenance of tissue homeostasis. Here we demonstrate that transformed human embryonic stem cells (t-hESCs), showing features of neoplastic progression produce tumours resistant to radiation relative to their normal counterpart upon injection into immune compromised mice. We reveal that t-hESCs have a reduced capacity for radiation induced cell death via apoptosis and exhibit altered cell cycle arrest relative to hESCs in vitro. t-hESCs have an increased expression of BclXL in comparison to their normal counterparts and re-sensitization of t-hESCs to radiation upon addition of BH3-only mimetic ABT737, suggesting that overexpression of BclXL underpins t-hESC radiation insensitivity. Using this novel discovery platform to investigate radiation resistance in human CSCs, our study indicates that chemotherapy targeting Bcl2-family members may prove to be an adjuvant to radiotherapy capable of targeting CSCs.

  7. Silicon space solar cells: progression and radiation-resistance analysis

    Science.gov (United States)

    Rehman, Atteq ur; Lee, Sang Hee; Lee, Soo Hong

    2016-02-01

    In this paper, an overview of the solar cell technology based on silicon for applications in space is presented. First, the space environment and its effects on the basis of satellite orbits, such as geostationary earth orbit (GEO) and low earth orbit (LEO), are described. The space solar cell technology based on silicon-based materials, including thin-film silicon solar cells, for use in space was appraised. The evolution of the design for silicon solar cell for use in space, such as a backsurface field (BSF), selective doping, and both-side passivation, etc., is illustrated. This paper also describes the nature of radiation-induced defects and the models proposed for understanding the output power degradation in silicon space solar cells. The phenomenon of an anomalous increase in the short-circuit current ( I sc) in the fluence irradiation range from 2 × 1016 cm-2 to 5 × 1016 cm-2 is also described explicitly from the view point of the various presented models.

  8. Cancer stem cell overexpression of nicotinamide N-methyltransferase enhances cellular radiation resistance

    DEFF Research Database (Denmark)

    D’Andrea, Filippo P.; Safwat, Akmal; Kassem, Moustapha;

    2011-01-01

    found the genes involved in cancer, proliferation, DNA repair and cell death. ConclusionsThe higher radiation resistance in clone CE8 is likely due to NNMT overexpression. The higher levels of NNMT could affect the cellular damage resistance through depletion of the accessible amounts of nicotinamide...... that could explain cancer stem cell radiation resistance. MethodsTumorigenic mesenchymal cancer stem cell clones BB3 and CE8 were irradiated at varying doses and assayed for clonogenic surviving fraction. Altered gene expression before and after 2Gy was assessed by Affymetric exon chip analysis and further...... validated with q-RT-PCR using TaqMan probes. ResultsThe CE8 clone was more radiation resistant than the BB3 clone. From a pool of 15 validated genes with altered expression in the CE8 clone, we found the enzyme nicotinamide N-methyltransferase (NNMT) more than 5-fold upregulated. In-depth pathway analysis...

  9. Resistance of colorectal cancer cells to radiation and 5-FU is associated with MELK expression

    International Nuclear Information System (INIS)

    Highlights: → MELK expression significantly increased when the cells are exposed to radiation or 5-FU. → Suppression of MELK caused cell cycle changes and decrease in proliferation. → Radiation or 5-FU treatment after MELK suppression by siRNA induced growth inhibition. -- Abstract: It was reported that the local recurrence would be caused by cancer stem cells acquiring chemo- and radio-resistance. Recently, one of the potential therapeutic targets for colorectal and other cancers has been identified, which is maternal embryonic leucine zipper kinase (MELK). MELK is known as an embryonic and neural stem cell marker, and associated with the cell survival, cell proliferation, and apoptosis. In this study, SNU-503, which is a rectal cancer cell line, was treated with radiation or 5-fluorouracil (5-FU), and elevation of the MELK expression level was observed. Furthermore, the cell line was pre-treated with small interfering RNA (siRNA) against MELK mRNA before treatment of radiation or 5-FU and its effects on cell cycle and proliferation were observed. We demonstrated that knockdown of MELK reduced the proliferation of cells with radiation or 5-FU treatment. In addition, MELK suppression caused changes in cell cycle. In conclusion, MELK could be associated with increased resistance of colorectal cancer cells against radiation and 5-FU.

  10. Resistance of colorectal cancer cells to radiation and 5-FU is associated with MELK expression

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seungho [Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Ku, Ja-Lok, E-mail: kujalok@snu.ac.kr [Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of)

    2011-08-26

    Highlights: {yields} MELK expression significantly increased when the cells are exposed to radiation or 5-FU. {yields} Suppression of MELK caused cell cycle changes and decrease in proliferation. {yields} Radiation or 5-FU treatment after MELK suppression by siRNA induced growth inhibition. -- Abstract: It was reported that the local recurrence would be caused by cancer stem cells acquiring chemo- and radio-resistance. Recently, one of the potential therapeutic targets for colorectal and other cancers has been identified, which is maternal embryonic leucine zipper kinase (MELK). MELK is known as an embryonic and neural stem cell marker, and associated with the cell survival, cell proliferation, and apoptosis. In this study, SNU-503, which is a rectal cancer cell line, was treated with radiation or 5-fluorouracil (5-FU), and elevation of the MELK expression level was observed. Furthermore, the cell line was pre-treated with small interfering RNA (siRNA) against MELK mRNA before treatment of radiation or 5-FU and its effects on cell cycle and proliferation were observed. We demonstrated that knockdown of MELK reduced the proliferation of cells with radiation or 5-FU treatment. In addition, MELK suppression caused changes in cell cycle. In conclusion, MELK could be associated with increased resistance of colorectal cancer cells against radiation and 5-FU.

  11. Breast cancers radiation-resistance: key role of the cancer stem cells marker CD24

    International Nuclear Information System (INIS)

    This work focuses on the characterization of radiation-resistant breast cancer cells, responsible for relapse after radiotherapy. The 'Cancer Stem Cells' (CSC) theory describes a radiation-resistant cellular sub-population, with enhanced capacity to induce tumors and proliferate. In this work, we show that only the CSC marker CD24-/low defines a radiation resistant cell population, able to transmit the 'memory' of irradiation, expressed as long term genomic instability in the progeny of irradiated cells. We show that CD24 is not only a marker, but is an actor of radiation-response. So, CD24 expression controls cell proliferation in vitro and in vivo, and ROS level before and after irradiation. As a result, CD24-/low cells display enhanced radiation-resistance and genomic stability. For the first time, our results attribute a role to CD24-/low CSCs in the transmission of genomic instability. Moreover, by providing informations on tumor intrinsic radiation-sensitivity, CD24- marker could help to design new radiotherapy protocols. (author)

  12. Acquired Tumor Cell Radiation Resistance at the Treatment Site Is Mediated Through Radiation-Orchestrated Intercellular Communication

    Energy Technology Data Exchange (ETDEWEB)

    Aravindan, Natarajan, E-mail: naravind@ouhsc.edu [Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Aravindan, Sheeja; Pandian, Vijayabaskar; Khan, Faizan H.; Ramraj, Satish Kumar; Natt, Praveen [Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Natarajan, Mohan [Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas (United States)

    2014-03-01

    Purpose: Radiation resistance induced in cancer cells that survive after radiation therapy (RT) could be associated with increased radiation protection, limiting the therapeutic benefit of radiation. Herein we investigated the sequential mechanistic molecular orchestration involved in radiation-induced radiation protection in tumor cells. Results: Radiation, both in the low-dose irradiation (LDIR) range (10, 50, or 100 cGy) or at a higher, challenge dose IR (CDIR), 4 Gy, induced dose-dependent and sustained NFκB-DNA binding activity. However, a robust and consistent increase was seen in CDIR-induced NFκB activity, decreased DNA fragmentation, apoptosis, and cytotoxicity and attenuation of CDIR-inhibited clonal expansion when the cells were primed with LDIR prior to challenge dose. Furthermore, NFκB manipulation studies with small interfering RNA (siRNA) silencing or p50/p65 overexpression unveiled the influence of LDIR-activated NFκB in regulating CDIR-induced DNA fragmentation and apoptosis. LDIR significantly increased the transactivation/translation of the radiation-responsive factors tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), cMYC, and SOD2. Coculture experiments exhibit LDIR-influenced radiation protection and increases in cellular expression, secretion, and activation of radiation-responsive molecules in bystander cells. Individual gene-silencing approach with siRNAs coupled with coculture studies showed the influence of LDIR-modulated TNF-α, IL-1α, cMYC, and SOD2 in induced radiation protection in bystander cells. NFκB inhibition/overexpression studies coupled with coculture experiments demonstrated that TNF-α, IL-1α, cMYC, and SOD2 are selectively regulated by LDIR-induced NFκB. Conclusions: Together, these data strongly suggest that scattered LDIR-induced NFκB-dependent TNF-α, IL-1α, cMYC, and SOD2 mediate radiation protection to the subsequent challenge dose in tumor cells.

  13. Acquired Tumor Cell Radiation Resistance at the Treatment Site Is Mediated Through Radiation-Orchestrated Intercellular Communication

    International Nuclear Information System (INIS)

    Purpose: Radiation resistance induced in cancer cells that survive after radiation therapy (RT) could be associated with increased radiation protection, limiting the therapeutic benefit of radiation. Herein we investigated the sequential mechanistic molecular orchestration involved in radiation-induced radiation protection in tumor cells. Results: Radiation, both in the low-dose irradiation (LDIR) range (10, 50, or 100 cGy) or at a higher, challenge dose IR (CDIR), 4 Gy, induced dose-dependent and sustained NFκB-DNA binding activity. However, a robust and consistent increase was seen in CDIR-induced NFκB activity, decreased DNA fragmentation, apoptosis, and cytotoxicity and attenuation of CDIR-inhibited clonal expansion when the cells were primed with LDIR prior to challenge dose. Furthermore, NFκB manipulation studies with small interfering RNA (siRNA) silencing or p50/p65 overexpression unveiled the influence of LDIR-activated NFκB in regulating CDIR-induced DNA fragmentation and apoptosis. LDIR significantly increased the transactivation/translation of the radiation-responsive factors tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), cMYC, and SOD2. Coculture experiments exhibit LDIR-influenced radiation protection and increases in cellular expression, secretion, and activation of radiation-responsive molecules in bystander cells. Individual gene-silencing approach with siRNAs coupled with coculture studies showed the influence of LDIR-modulated TNF-α, IL-1α, cMYC, and SOD2 in induced radiation protection in bystander cells. NFκB inhibition/overexpression studies coupled with coculture experiments demonstrated that TNF-α, IL-1α, cMYC, and SOD2 are selectively regulated by LDIR-induced NFκB. Conclusions: Together, these data strongly suggest that scattered LDIR-induced NFκB-dependent TNF-α, IL-1α, cMYC, and SOD2 mediate radiation protection to the subsequent challenge dose in tumor cells

  14. Endogenous superoxide dismutase and catalase activities and radiation resistance in mouse cell lines

    International Nuclear Information System (INIS)

    The relationship between the endogenous cytoplasmic levels of the enzymes superoxide dismutase and catalase and the inhibition of cell proliferation by γ-radiation has been studied in 11 mouse cell lines. The resistance of these mouse cell lines to radiation was found to vary by over 25-fold. No correlation was found between the cytoplasmic level of CuZn-superoxide dismutase or catalase and the resistance to radiation as measured by extrapolation number (EN), quasi-threshold dose (Dsub(q)), or Dsub(o). None of the cell lines had detectable cytoplasmic Mn-superoxide dismutase. The apparent Ksub(i) of potassium cyanide for mouse CuZn-superoxide dismutase was determined (Ksub(i) = 6.5 μmol dm-3). (author)

  15. Mechanisms of linear energy transfer-dependent radiation resistance in myeloid leukemia cells

    Science.gov (United States)

    Haro, Kurtis John

    Ionizing radiations (IRs) of high linear energy transfer (LET), such as alpha particles, produce fundamentally different forms of DNA damage in cells than conventional low LET radiation, such as gamma rays. Alpha particle therapies have recently emerged as important potential treatments of cancer, particularly for relatively easily-accessible malignancies of the hematopoietic system. Therefore, we created stable radioresistant myeloid leukemia HL60 cell clones derived after irradiation from either gamma rays (RG) or alpha particles (RA) in order to understand whether resistance to high LET (IR) was possible and the potential differences in radioresistance that could arise from radiations of different LET. Repeated irradiations yielded radioresistant HL60 clones and, regardless of derivation, displayed similar levels of resistance to IR of either type of radiation. The resistant phenotype in each type of radioresistant clone was driven by similar, multifactorial changes that included significant reductions in apoptosis, a decreased late G2/M checkpoint accumulation that was indicative of increased genomic instability, as well as more robust repair of specific types of DNA lesions that included DNA double-strand breaks (DSBs). The relative changes in resistance to alpha particles, however, were substantially lower than the increase in resistance to gamma rays. The data suggest that these processes were interdependent, as inhibition of homology directed repair in the resistant clones sensitized them to gamma IR to a larger extent than naive HL60 cells. Finally, we identified the downregulation of iron regulatory protein 1 (IRP1) in gamma-resistant cells but not in alpha-resistant cells. Short-hairpin RNA-mediated reductions in expression of IRP1 in radiation-naive HL60 cells led to significant radioresistance to gamma rays, but not alpha particles. The IRP1-mediated radioresistance was associated with changes in iron-mediated oxidative stress that led to significant

  16. Dexamethasone-induced enhancement of resistance to ionizing radiation and chemotherapeutic agents in human tumor cells

    International Nuclear Information System (INIS)

    Background: Dexamethasone-induced changes in radioresistance have previously been observed by several authors. Here, we examined effects of dexamethasone on resistance to ionizing radiation in 10 additional human cell lines and strains, and on resistance to carboplatin and paclitaxel in 13 fresh tumor samples. Material and Methods: Eight human carcinoma cell lines, a glioblastoma cell line and a strain of normal human diploid fibroblasts were arbitrarily chosen for these in-vitro studies. Effects on radiosensitivity were assessed using a conventional colony formation assay. Effects on resistance to the drugs were investigated prospectively (ATP cell viability assay) using 13 fresh tumor samples from consecutive patients operated for ovarian cancer within the context of a Swiss nation-wide randomized prospective clinical trial (SAKK 45/94). Results: Dexamethasone promoted proliferation of 1 of the cell lines without affecting radiosensitivity, while it completely inhibited proliferation of another cell line (effects on radiosensitivity could thus not be examined). Furthermore, dexamethasone induced enhanced radioresistance in 1 of the 8 carcinoma cell lines examined. In the glioblastoma cell line, there was no effect on growth or radioresistance, nor in the fibroblasts. Treatment with dexamethasone enhanced resistance of the malignant cells to carboplatin in 4 of the 13 fresh tumor samples examined, while no enhancement in resistance to paclitaxel was observed. Conclusions: In agreement with previous reports, we found that dexamethasone may induce radioresistance in human carcinoma cells. Including the published data from the literature, dexamethasone induced enhancement in radioresistance in 4 of 12 carcinoma cell lines (33%), but not in 3 glioblastoma cell lines, nor in 3 fibroblast strains. Dexamethasone also induced enhanced resistance to carboplatin with a similar probability in fresh samples of ovarian cancer evaluated prospectively (in 4 of 13 samples; 31

  17. RAD18 mediates resistance to ionizing radiation in human glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Chen; Wang, Hongwei; Cheng, Hongbin; Li, Jianhua; Wang, Zhi, E-mail: drzwang@gmail.com; Yue, Wu, E-mail: drwuyue@gmail.com

    2014-02-28

    Highlights: • RAD18 is an important mediator of the IR-induced resistance in glioma cell lines. • RAD18 overexpression confers resistance to IR-mediated apoptosis. • The elevated expression of RAD18 is associated with recurrent GBM who underwent IR therapy. - Abstract: Radioresistance remains a major challenge in the treatment of glioblastoma multiforme (GBM). RAD18 a central regulator of translesion DNA synthesis (TLS), has been shown to play an important role in regulating genomic stability and DNA damage response. In the present study, we investigate the relationship between RAD18 and resistance to ionizing radiation (IR) and examined the expression levels of RAD18 in primary and recurrent GBM specimens. Our results showed that RAD18 is an important mediator of the IR-induced resistance in GBM. The expression level of RAD18 in glioma cells correlates with their resistance to IR. Ectopic expression of RAD18 in RAD18-low A172 glioma cells confers significant resistance to IR treatment. Conversely, depletion of endogenous RAD18 in RAD18-high glioma cells sensitized these cells to IR treatment. Moreover, RAD18 overexpression confers resistance to IR-mediated apoptosis in RAD18-low A172 glioma cells, whereas cells deficient in RAD18 exhibit increased apoptosis induced by IR. Furthermore, knockdown of RAD18 in RAD18-high glioma cells disrupts HR-mediated repair, resulting in increased accumulation of DSB. In addition, clinical data indicated that RAD18 was significantly higher in recurrent GBM samples that were exposed to IR compared with the corresponding primary GBM samples. Collectively, our findings reveal that RAD18 may serve as a key mediator of the IR response and may function as a potential target for circumventing IR resistance in human GBM.

  18. Isolation and Characterization of Radiation-resistant Lung Cancer D6-R Cell Line

    Institute of Scientific and Technical Information of China (English)

    QI-CHUN WEI; LI SHEN; SHU ZHENG; YONG-LIANG ZHU

    2008-01-01

    To isolate an isogenic radioresistant cancer cell line after fractioned X-ray radiation and characterize the resistant cells. Methods D6 cells were exposed to repeated X-ray irradiation, and after a total dose of 5200 cGy in 8 fractions, a radioresistant monoclone D6-R was obtained. The radiosensitivity and drug sensitivity of the novel radioresistant D6-R cells, together with their parent D6 cells, were measured using clonogenic assay and MTT assay respectively. Cell cycle distribution was analyzed by flow cytometry. Fluorescence microscopy and flow cytometry were applied for apoptosis detection. Comet assay was used for the detection of DNA damage and repair. Results D6-R cells showed higher and broader initial shoulder (D=2.08 Gy, D=1.64 Gy, N=2.20) than the parent D6 ceils (D=1.84 Gy, D=0.34 Gy, N=1.20). They were 1.65-fold more radioresistant than D6 cells in terms of SF(63% vs 38%) and were more resistant to ADM (3.15-fold) and 5-FU (3.86-fold) as compared with the latter. It was found that D6-R cells had higher fractions of cells in S phase (53.4% vs 37.8%) and lower fractions of ceils in G(44.1% vs 57.2%) and G-M phase (2.5% vs 5%). There was no difference in radiation-induced apoptosis between D6-R and D6 cells. D6-R cells showed less initial DNA damage and increased capacity in DNA repair after irradiation, as compared with the parent cells. Conclusions D6-R cells have been isolated by exposing the parental D6 cells to repeated irradiation. The difference in cell cycle pattern together with the induction and repair of DNA damage might, at least partially, explain the mechanism of the radioresistance.

  19. Biological improvement of radiation resistance

    Energy Technology Data Exchange (ETDEWEB)

    Chun, K. J.; Lee, Y. K.; Kim, J. S.; Kim, J. K.; Lee, S. J

    2000-08-01

    To investigate the mechanisms of gene action related to the radiation resistance in microorganisms could be essentially helpful for the development of radiation protectants and hormeric effects of low dose radiation. This book described isolation of radiation-resistant microorganisms, induction of radiation-resistant and functionally improved mutants by gamma-ray radiation, cloning and analysis of the radiation resistance related genes and analysis of the expressed proteins of the radiation resistant related genes.

  20. Biological improvement of radiation resistance

    International Nuclear Information System (INIS)

    To investigate the mechanisms of gene action related to the radiation resistance in microorganisms could be essentially helpful for the development of radiation protectants and hormeric effects of low dose radiation. This book described isolation of radiation-resistant microorganisms, induction of radiation-resistant and functionally improved mutants by gamma-ray radiation, cloning and analysis of the radiation resistance related genes and analysis of the expressed proteins of the radiation resistant related genes

  1. Cytoplasmic superoxide dismutase and catalase activity and resistance to radiation lethality in murine tumor cells

    International Nuclear Information System (INIS)

    Reduced species of molecular oxygen are produced by the interaction of ionizing radiation with aqueous solutions containing molecular oxygen. The enzymes catalase and superoxide dismutase (SOD) are thought to function in vivo as scavengers of metabolically produced peroxide and superoxide respectively. SOD has been shown to protect against the lethal effects of ionizing radiation in vitro and in vivo. The authors have investigated the relationship between the cytosolic SOD catalase content and the sensitivity to radiation lethality of a number of murine cell lines (402AX, EL-4, MB-2T3, MB-4, MEL, P-815, SAI, SP-2, and SV-3T3). K/sub i/(CN-) for murine Cu-Zn-SOD was determined to be 6.8 x 10-6 M. No cytosolic Mn-SOD activity was found in any of the cell lines studied. No correlation was found between the cytosolic Cu-Zn-SOD or cytosolic catalase activity and the resistance to radiation lethality or the murine cell lines studied

  2. Inhibition of TGF-β signaling in normal lung epithelial cells confers resistance to ionizing radiation

    Science.gov (United States)

    Reeves, Anna; Zagurovskaya, Marianna; Gupta, Seema; Shareef, Mohammed M.; Mohiuddin, Mohammed; Ahmed, Mansoor M.

    2007-01-01

    Purpose To address the functional role of radiation-induced TGF-β signaling in normal epithelial background, we selected spontaneously immortalized lung epithelial cell line derived from the normal lung tissue of dominant-negative mutant of TGF-β RII (ΔRII) transgenic mouse that expressed conditionally ΔRII under the control of metallothionein promoter (MT-1) and assessed it's impact on radio-sensitivity. Method and Materials Spontaneously immortalized lung epithelial cell culture (SILECC) was established and all analyses were performed within 50 passages. Colony-forming and TUNEL assays were used to assess the clonogenic inhibition and apoptosis respectively. Western blot analysis was performed to assess the kinetics of p21, bax and RII proteins. TGF-β responsive promoter activity was measured using dual-luciferase reporter assay. Results Exposure to ZnSO4 inhibited TGF-β signaling induced either by recombinant TGF-β1 or ionizing radiation. SILECC treated either with ZnSO4 or neutralizing antibody against TGF-β showed a significant increase in radio-resistance when compared to untreated cells. Furthermore, the expression of the ΔRII inhibited the radiation-induced up-regulation of the TGF-β effector gene p21waf1/cip1.. Conclusions Our findings imply that inhibition of radiation-induced TGF-β signaling via abrogation of RII function enhances radio-resistance of the normal lung epithelial cells, and this can be directly attributed to the loss of TGF-β signaling function. PMID:17448872

  3. Characterization and radiation response of a heat-resistant variant of V79 cells

    International Nuclear Information System (INIS)

    A thermoresistant variant of the established cell line V79-S171-W1 was isolated after treatment with nitrosoguanidine and repeated heat treatments at 42.6 to 43 degrees C, and showed an enhanced ability to survive at 42.6, 43.5, and 44.5 degrees C. The rates of inactivation of the normal and heat-resistant lines differed by approximately a factor of 2 over this temperature range. This level of thermoresistance was stable for the first 80 doublings, but was lost by 120 doublings. This may have been due to a reversion to the normal V79 line since there was no continuous selection pressure and the thermoresistant variant, which was designated at HR7, had a longer average doubling time. Transient thermotolerance was induced in both the V79 and HR7 cells by a 10-min exposure to 44.5 degrees C. After 3 hr incubation at 37 degrees C, both cell lines had an identical sensitivity to further exposure to 44.5 degrees C. Thus the long-term thermoresistance of the HR7 cells may be due to a permanent induction of a low level of thermotolerance. The (ionizing) radiation survival curves and the ability to repair sublethal radiation damage were identical for the thermoresistant variant and the parent cell line

  4. Characterization and radiation response of a heat-resistant variant of V79 cells

    International Nuclear Information System (INIS)

    A thermoresistant variant of the established cell line V79-S171-W1 was isolated after treatment with nitrosoguanidine and repeated heat treatments at 42.6 to 430C, and showed an enhanced ability to survive at 42.6, 43.5, and44.50C. The rates of inactivation of the normal and heat-resistant lines differed by approximately a factor of 2 over this temperature range. This level of thermoresistance was stable for the first 80 doublings, but was lost by 120 doublings. This may have been due to a reversion to the normal V79 line since there was no continuous selection pressure and the thermoresistant variant, which was designated at HR7, had a longer average doubling time. Transient thermotolerance was induced in both the V79 and HR7 cells by a 10-min expsure to 44.50C. After 3 hr incubation at 370C, both cell lines had an identical sensitivity to further exposure to 44.50C. Thus the long-term thermoresistance of the HR7 cells may be due to a permanent induction of a low level of thermotolerance. The (ionizing) radiation survival curves and the ability to repair sublethal radiation damage were identical for the thermoresistance variant and the parent cell line

  5. Nicotinamide and other benzamide analogs as agents for overcoming hypoxic cell radiation resistance in tumours

    International Nuclear Information System (INIS)

    Oxygen deficient hypoxic cells, which are resistant to sparsely ionising radiation, have now been identified in most animal and some human solid tumours and will influence the response of those tumours to radiation treatment. This hypoxia can be either chronic, arising from an oxygen diffusion limitation, or acute, resulting from transient stoppages in microregional blood flow. Extensive experimental studies, especially in the last decade, have shown that nicotinamide and structurally related analogs can effectively sensitize murine tumours to both single and fractionated radiation treatments and that they do so in preference to the effects seen in mouse normal tissues. The earliest studies suggested that this enhancement of radiation damage was the result of an inhibition of the repair mechanisms. However, recent studies in mouse tumours have shown that these drugs prevent transient cessations in blood flow, thus inhibiting the development of acute hypoxia. This novel discovery led to the suggestion that the potential role of these agents as radiosensitizers would be when combined with treatments that overcame chronic hypoxia. The combined nicotinamide with hyperthermia proved that the enhancement of radiation damage by both agents together was greater than that seen with each agent alone. Similar results were later seen for nicotinamide combined with a perfluorochemical emulsion, carbogen breathing, and pentoxifylline, and in all these studies the effects in tumours were always greater than those seen in appropriate normal tissues. Of all the analogs, it is nicotinamide itself which has been the most extensively studied as a radiosensitizer in vivo and the one that shows the greatest effect in animal tumours. It is also an agent that has been well established clinically, with daily doses of up to 6 g, associated with a low incidence of side effects. This human dose is equivalent to 100-200 mg/kg in mice and such doses will maximally sensitize murine tumours to

  6. Improved radiation resistant properties of electron irradiated c-Si solar cells

    Science.gov (United States)

    Ali, Khuram; Khan, Sohail A.; MatJafri, M. Z.

    2016-08-01

    This work investigates the radiation tolerance of c-Si solar cells under electron energy of 9 MeV with fluence of 5.09×1016 cm-2. The solar cells were fabricated and characterized before and after electron irradiation through current-voltage (I-V), capacitance-voltage (C-V), and frequency dependent conductance (Gp) measurements. The results revealed that all the output parameters such as short circuit current (Isc), open circuit voltage (Voc), series resistance (Rs), and efficiency (η) were degraded after electron irradiation. Capacitance-Voltage measurements show that there is a slight decrease in the base carrier concentration (ND), while a small increase in depletion layer width (WD) was due to an increase in the base carrier concentration. Enhancements in the density of interface states (Nss), and trap time constant (τ) have been observed after electron irradiation. The results has revealed that back surface field (BSF) solar cell with front surface passivation (FSP) presented lowest efficiency degradation ratio of 11.3% as compared to 15.3% of the solar cell without FSP. The subsequent annealing of irradiated Si solar cell devices revealed that the Si solar cell with FSP demonstrated high efficiency recovery ratio of 94% as compared to non-FSP solar cell.

  7. ABCG2 regulates self-renewal and stem cell marker expression but not tumorigenicity or radiation resistance of glioma cells

    Science.gov (United States)

    Wee, Boyoung; Pietras, Alexander; Ozawa, Tatsuya; Bazzoli, Elena; Podlaha, Ondrej; Antczak, Christophe; Westermark, Bengt; Nelander, Sven; Uhrbom, Lene; Forsberg-Nilsson, Karin; Djaballah, Hakim; Michor, Franziska; Holland, Eric C.

    2016-01-01

    Glioma cells with stem cell traits are thought to be responsible for tumor maintenance and therapeutic failure. Such cells can be enriched based on their inherent drug efflux capability mediated by the ABC transporter ABCG2 using the side population assay, and their characteristics include increased self-renewal, high stem cell marker expression and high tumorigenic capacity in vivo. Here, we show that ABCG2 can actively drive expression of stem cell markers and self-renewal in glioma cells. Stem cell markers and self-renewal was enriched in cells with high ABCG2 activity, and could be specifically inhibited by pharmacological and genetic ABCG2 inhibition. Importantly, despite regulating these key characteristics of stem-like tumor cells, ABCG2 activity did not affect radiation resistance or tumorigenicity in vivo. ABCG2 effects were Notch-independent and mediated by diverse mechanisms including the transcription factor Mef. Our data demonstrate that characteristics of tumor stem cells are separable, and highlight ABCG2 as a potential driver of glioma stemness. PMID:27456282

  8. Radiation response of drug-resistant variants of a human breast cancer cell line: The effect of glutathione depletion

    International Nuclear Information System (INIS)

    Two drug-resistant variants of the human breast cancer cell line MCF-7 have been shown previously to exhibit radiation resistance associated with an increase in the size of the shoulder on the radiation survival curve. In the present study, glutathione (GSH) depletion was achieved by exposure of cells to buthionine sulfoximine (BSO) with, in some cases, additional treatment with dimethyl fumarate. Levels of GSH in the adriamycin-resistant subline MCF-7 ADRR are initially lower than in the other two sublines and are depleted to a greater extent by exposure to BSO. Wild-type MCF-7 cells are not sensitized by GSH depletion when irradiated under aerated conditions but are sensitized under hypoxic conditions to an extent which is related to the level of GSH depletion. In contrast both the drug-resistant sublines (MCF-7 ADRR and the melphalan-resistant line MCF-7 MLNR) are radiosensitized by GSH depletion under both aerated and hypoxic conditions. It is hypothesized that in the case of the MCF-7 ADRR cell line, which expresses high levels of the GSH-associated redox enzyme systems, GSH-S-transferase and GSH-peroxidase (GSH-Px), radiosensitization results when GSH-Px is inhibited in GSH-depleted cells. The reasons for radiosensitization of aerated MCF-7 MLNR cells cannot be explained on this basis, however, and other factors are being examined

  9. Radiation resistance of thin-film solar cells for space photovoltaic power

    Science.gov (United States)

    Woodyard, James R.; Landis, Geoffrey A.

    1991-01-01

    Copper indium diselenide, cadmium telluride, and amorphous silicon alloy solar cells have achieved noteworthy performance and are currently being studied for space power applications. Cadmium sulfide cells had been the subject of much effort but are no longer considered for space applications. A review is presented of what is known about the radiation degradation of thin film solar cells in space. Experimental cadmium telluride and amorphous silicon alloy cells are reviewed. Damage mechanisms and radiation induced defect generation and passivation in the amorphous silicon alloy cell are discussed in detail due to the greater amount of experimental data available.

  10. Autophagy inhibition plays the synergetic killing roles with radiation in the multi-drug resistant SKVCR ovarian cancer cells

    International Nuclear Information System (INIS)

    Autophagy has attracted attentions as a novel mechanism for tumor development. In this study Human ovarian carcinoma cell line SKOV3 and multidrug-resistant phenotype SKVCR cells were used and the roles of autophagy in radiation-induced cell death were analyzed. Cell viability was examined by colony formation and cell counting kit-8 (CCK-8) assay, 3MA and ZVAD were used to block autophagy and apoptosis, respectively. Quantitative real-time PCR was used to detect mRNA level and Western blot was used to detect protein expression, monodansylcadaverine (MDC) staining and flow cytometery were used for autophagy, apoptosis and cell cycle dynamics, respectively. (1) The radiosensitivity exhibited differently in SKOV3 and SKVCR cells (SKOV3: D0=3.37, SKVCR: D0= 4.18); compared with SKOV3 the constitutive expression of MAPLC3 in SKVCR was higher, but no change of Caspase-3 and cleaved Caspase-3. (2) The ionizing radiation (IR)- induced apoptosis and autophagy were significant in both cells (P<0.05); inhibition of apoptosis with ZVAD showed no impact on survival of SKOV3 and SKVCR cells after radiation, while inhibition of autophagy significantly decreased viability in SKVCR cells, for SKVO3 cells only low level of radiation (2 Gy and 4 Gy) could decrease the viability(P<0.05). (3) ZVAD inhibited apoptosis and autophagy in both cells, 3MA inhibit apoptosis in SKOV3, and promote apoptosis in SKVCR, together with inhibition of autophagy. (4) G2/M arrest was induced by radiation in both cells; the accumulation of G2/M was more significant in SKOV3, 3MA attenuated the radiation-induced S phase delay in SKVCR. IR-induced autophagy provides a self-protective mechanism against radiotherapy in SKVCR cells, the use of autophagy inhibitor, 3MA, increases the killing effects of radiation by inhibiting autophagy and radiation- induced S phase delay, also by the increase of apoptosis, which suggests a better therapeutic strategy in drug- resistant SKVCR ovarian cancer cells

  11. Resistance to infection with Eimeria vermiformis in mouse radiation chimeras is determined by donor bone-marrow cells

    International Nuclear Information System (INIS)

    The course of infection with Eimeria vermiformis was determined in BALB/b, BALB/c, and C57BL/10ScSn (B10) mice and in radiation chimeras prepared from the H-2-compatible BALB/b and B10 mice. The BALB strains, irrespective of H-2 haplotype, were resistant, the B10 mice were susceptible, and in the chimeras infection was characterized by the genotype of the donated bone-marrow cells and not by the phenotype of the recipient. Thus, the genetic control of relative resistance or susceptibility to infection with this parasite is expressed through bone-marrow-derived cells

  12. Mitochondria-targeted superoxide dismutase (SOD2) regulates radiation resistance and radiation stress response in HeLa cells

    International Nuclear Information System (INIS)

    Reactive oxygen species (ROS) act as a mediator of ionizing radiation-induced cellular damage. Previous studies have indicated that MnSOD (SOD2) plays a critical role in protection against ionizing radiation in mammalian cells. In this study, we constructed two types of stable HeLa cell lines overexpressing SOD2, HeLa S3/SOD2 and T-REx HeLa/SOD2, to elucidate the mechanisms underlying the protection against radiation by SOD2. SOD2 overexpression in mitochondria enhanced the survival of HeLa S3 and T-REx HeLa cells following γ-irradiation. The levels of γH2AX significantly decreased in HeLa S3/SOD2 and T-REx HeLa/SOD2 cells compared with those in the control cells. MitoSoxTM Red assays showed that both lines of SOD2-expressing cells showed suppression of the superoxide generation in mitochondria. Furthermore, flow cytometry with a fluorescent probe (2',7'-dichlorofluorescein) revealed that the cellular levels of ROS increased in HeLa S3 cells during post-irradiation incubation, but the increase was markedly attenuated in HeLa S3/SOD2 cells. DNA microarray analysis revealed that, of 47,000 probe sets analyzed, 117 and 166 probes showed more than 2-fold changes after 5.5 Gy of γ-irradiation in control and HeLa S3/SOD2 cells, respectively. Pathway analysis revealed different expression profiles in irradiated control cells and irradiated SOD2-overexpressing cells. These results indicate that SOD2 protects HeLa cells against cellular effects of γ-rays through suppressing oxidative stress in irradiated cells caused by ROS generated in the mitochondria and through regulating the expression of genes which play a critical role in protection against ionizing radiation. (author)

  13. Role of tumour initiating cells in the radiation resistance of osteosarcoma

    International Nuclear Information System (INIS)

    In the present study we confirm that mouse osteosarcoma (MOS) cells lines possess a subset of cells with Tumour Initiating Cells (TICs) properties. We found that isolated TICs are not inherently radioresistant compared to non-TICs. On the other hand, we found that the fraction of TICs correlates well with the radiosensitivity of MOS cell lines measured using clonogenic cell survival assay. We conclude from our study that the TICs contribute to the tumour radiation response due to their interaction with their tumour surrounding environmental (niche).

  14. Role of tumour initiating cells in the radiation resistance of osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Klymenko, Olena

    2014-02-26

    In the present study we confirm that mouse osteosarcoma (MOS) cells lines possess a subset of cells with Tumour Initiating Cells (TICs) properties. We found that isolated TICs are not inherently radioresistant compared to non-TICs. On the other hand, we found that the fraction of TICs correlates well with the radiosensitivity of MOS cell lines measured using clonogenic cell survival assay. We conclude from our study that the TICs contribute to the tumour radiation response due to their interaction with their tumour surrounding environmental (niche).

  15. Ionizing Radiation Potentiates High Fat Diet-Induced Insulin Resistance and Reprograms Skeletal Muscle and Adipose Progenitor Cells

    DEFF Research Database (Denmark)

    Nylander, Vibe; Ingerslev, Lars R; Andersen, Emil;

    2016-01-01

    Exposure to ionizing radiation increases the risk of chronic metabolic disorders such as insulin resistance and type 2 diabetes later in life. We hypothesized that irradiation reprograms the epigenome of metabolic progenitor cells, which could account for impaired metabolism after cancer treatment....... C57Bl/6 mice were treated with a single dose of irradiation and subjected to high fat diet (HFD). RNA Sequencing and Reduced Representation Bisulfite Sequencing were used to create transcriptomic and epigenomic profiles of preadipocytes and skeletal muscle satellite cells collected from irradiated...

  16. CpG-ODN 7909 increases radiation sensitivity of radiation-resistant human lung adenocarcinoma cell line by overexpression of Toll-like receptor 9.

    Science.gov (United States)

    Yan, Li; Xu, Guoxiong; Qiao, Tiankui; Chen, Wei; Yuan, Sujuan; Li, Xuan

    2013-09-01

    Radioresistance is one of the main reasons for the failure of radiotherapy in lung cancer. The aim of this study was to establish a radiation-resistant lung cancer cell line, to evaluate whether CpG oligodeoxyribonucleotide (CpG-ODN) 7909 could increase its radiosensitivity and to explore the relevant mechanisms. The radioresistant cell line, referred to as R-A549, was generated by reduplicative fractionated irradiation from the human lung adenocarcinoma cell line A549. The radioresistance of R-A549 cells were confirmed by the Cell Counting Kit-8 (CCK-8), cell viability assay, and clonogenic assay. Cell growth kinetics, morphological feature, and radiosensitivity were compared between the original A549 cells and R-A549 cells treated with or without CpG-ODN 7909 or radiation. To further explore the potential mechanisms of radiosensitivity, the cell cycle distributions and the expression of Toll-like receptor 9 (TLR-9) were examined by Western blot and flow cytometry. The R-A549 cell line was generated and its radioresistance was further confirmed. CpG-ODN 7909 was found to increase much more radiosensitivity of R-A549 cells under combined treatments with CpG-ODN 7909 and radiation compared with its control group without any treatments. They presented their respective D0 1.33 ± 0.20 Gy versus 1.76 ± 0.25 Gy with N 3.44 ± 1.01 versus 4.96 ± 0.32. Further, there was a larger cell population of R-A549 cells under combined treatment in the G2/M phase compared with the control group after treatment with CpG-ODN7909 or radiation alone at 24 and 48 hour. The expression level of TLR-9 in R-A549 cells was found higher than in A549 cells. These results suggested that CpG-ODN 7909 increased the radiosensitivity of R-A549 cells, which might be mediated via the upregulated TLR-9 and prolonged cell cycle arrest in the G2/M phase compared with A549 cells. PMID:23705865

  17. Radiation-resistant asporogenic bacteria

    International Nuclear Information System (INIS)

    This paper reports the biological and ecological examinations on the radiation-resistant asporogenic bacteria (mainly concerning Micrococcus radiodurans). Radiation-resistant asporogenic bacteria were isolated from the irradiated areas of the natural world as well as from the general areas and from the Rn waters in the Misasa hot spring. The acquiring of the tolerance to radiation in bacteria was also examined. In addition, the future problems of microbiological treatment with irradiation were mentioned. (Tsukamoto, Y.)

  18. A study of radiation sensitivity and drug-resistance by DNA methylation in human tumor cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Il Lae; Kim, In Gyu; Kim, Kug Chan

    2009-12-15

    It has recently been known that functional loss of tumor suppressive genes may com from DNA methylation on the chromosome. This kind of tumorigenesis has became one of the major field related to the epigenetics, whose study would be an important fundamental approach in cancer therapy market. In this study, we firstly selected two radiation-resistant mutant H460 cells, which doesn't show any significant cytotoxic effect compared to their parental wild type H460. We found that the two mutants has decreased level of PTEN, whose expression has known to be related to the cell differentiation and growth. We also found that the level of PTEN was greatly different in two lung adenocarcinoma, H460 and A549, in which more radiation-resistant A549 cells showed the decreased PTEN expression. This difference in PTEN expression between two cells was resulted from their different methylation on 5 CpG islands. We expect to know more profoundly through investigating the PTEN-related downstream genes.

  19. A study of radiation sensitivity and drug-resistance by DNA methylation in human tumor cell lines

    International Nuclear Information System (INIS)

    It has recently been known that functional loss of tumor suppressive genes may com from DNA methylation on the chromosome. This kind of tumorigenesis has became one of the major field related to the epigenetics, whose study would be an important fundamental approach in cancer therapy market. In this study, we firstly selected two radiation-resistant mutant H460 cells, which doesn't show any significant cytotoxic effect compared to their parental wild type H460. We found that the two mutants has decreased level of PTEN, whose expression has known to be related to the cell differentiation and growth. We also found that the level of PTEN was greatly different in two lung adenocarcinoma, H460 and A549, in which more radiation-resistant A549 cells showed the decreased PTEN expression. This difference in PTEN expression between two cells was resulted from their different methylation on 5 CpG islands. We expect to know more profoundly through investigating the PTEN-related downstream genes

  20. SU-E-T-565: RAdiation Resistance of Cancer CElls Using GEANT4 DNA: RACE

    International Nuclear Information System (INIS)

    Purpose: The objective of the RACE project is to develop a comparison between Monte Carlo simulation using the Geant4-DNA toolkit and measurements of radiation damage on 3D melanoma and chondrosarcoma culture cells coupled with gadolinium nanoparticles. We currently expose the status of the developments regarding simulations. Methods: Monte Carlo studies are driven using the Geant4 toolkit and the Geant4-DNA extension. In order to model the geometry of a cell population, the opensource CPOP++ program is being developed for the geometrical representation of 3D cell populations including a specific cell mesh coupled with a multi-agent system. Each cell includes cytoplasm and nucleus. The correct modeling of the cell population has been validated with confocal microscopy images of spheroids. The Geant4 Livermore physics models are used to simulate the interactions of a 250 keV X-ray beam and the production of secondaries from gadolinium nanoparticles supposed to be fixed on the cell membranes. Geant4-DNA processes are used to simulate the interactions of charged particles with the cells. An atomistic description of the DNA molecule, from PDB (Protein Data Bank) files, is provided by the so-called PDB4DNA Geant4 user application we developed to score energy depositions in DNA base pairs and sugar-phosphate groups. Results: At the microscopic level, our simulations enable assessing microscopic energy distribution in each cell compartment of a realistic 3D cell population. Dose enhancement factors due to the presence of gadolinium nanoparticles can be estimated. At the nanometer scale, direct damages on nuclear DNA are also estimated. Conclusion: We successfully simulated the impact of direct radiations on a realistic 3D cell population model compatible with microdosimetry calculations using the Geant4-DNA toolkit. Upcoming validation and the future integration of the radiochemistry module of Geant4-DNA will propose to correlate clusters of ionizations with in vitro

  1. SU-E-T-565: RAdiation Resistance of Cancer CElls Using GEANT4 DNA: RACE

    Energy Technology Data Exchange (ETDEWEB)

    Perrot, Y; Payno, H; Delage, E; Maigne, L [Clermont Universite, CNRS/IN2P3, Laboratoire de Physique Corpusculaire de Clermont-Ferrand, Aubiere (France); Incerti, S [Universite Bordeaux 1, CNRS/IN2P3, Centres d' Etudes Nucleaires de Bordeaux-Gradignan, Gradignan (France); Debiton, E; Peyrode, C; Chezal, J; Miot-Noirault, E; Degoul, F [Clermont Universite, Universite d' Auvergne, Imagerie Moleculaire et Therapie Vectorisee, INSERM U990, Centre Jean Perrin, Clermont-Ferrand (France)

    2014-06-01

    Purpose: The objective of the RACE project is to develop a comparison between Monte Carlo simulation using the Geant4-DNA toolkit and measurements of radiation damage on 3D melanoma and chondrosarcoma culture cells coupled with gadolinium nanoparticles. We currently expose the status of the developments regarding simulations. Methods: Monte Carlo studies are driven using the Geant4 toolkit and the Geant4-DNA extension. In order to model the geometry of a cell population, the opensource CPOP++ program is being developed for the geometrical representation of 3D cell populations including a specific cell mesh coupled with a multi-agent system. Each cell includes cytoplasm and nucleus. The correct modeling of the cell population has been validated with confocal microscopy images of spheroids. The Geant4 Livermore physics models are used to simulate the interactions of a 250 keV X-ray beam and the production of secondaries from gadolinium nanoparticles supposed to be fixed on the cell membranes. Geant4-DNA processes are used to simulate the interactions of charged particles with the cells. An atomistic description of the DNA molecule, from PDB (Protein Data Bank) files, is provided by the so-called PDB4DNA Geant4 user application we developed to score energy depositions in DNA base pairs and sugar-phosphate groups. Results: At the microscopic level, our simulations enable assessing microscopic energy distribution in each cell compartment of a realistic 3D cell population. Dose enhancement factors due to the presence of gadolinium nanoparticles can be estimated. At the nanometer scale, direct damages on nuclear DNA are also estimated. Conclusion: We successfully simulated the impact of direct radiations on a realistic 3D cell population model compatible with microdosimetry calculations using the Geant4-DNA toolkit. Upcoming validation and the future integration of the radiochemistry module of Geant4-DNA will propose to correlate clusters of ionizations with in vitro

  2. Radiation-resistant beamline components at LAMPF

    International Nuclear Information System (INIS)

    A variety of highly radiation-resistant beamline components have been successfully developed at LAMPF primarily for use in the target cells and beam stop area of the intense proton beamline. Design features and operating experience are reviewed for magnets, instrumentation, targets, vacuum seals, vacuum windows, collimators, and beam stops

  3. Evaluation of cancer stem cell markers CD133, CD44, CD24: association with AKT isoforms and radiation resistance in colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Sara Häggblad Sahlberg

    Full Text Available The cell surface proteins CD133, CD24 and CD44 are putative markers for cancer stem cell populations in colon cancer, associated with aggressive cancer types and poor prognosis. It is important to understand how these markers may predict treatment outcomes, determined by factors such as radioresistance. The scope of this study was to assess the connection between EGFR, CD133, CD24, and CD44 (including isoforms expression levels and radiation sensitivity, and furthermore analyze the influence of AKT isoforms on the expression patterns of these markers, to better understand the underlying molecular mechanisms in the cell. Three colon cancer cell-lines were used, HT-29, DLD-1, and HCT116, together with DLD-1 isogenic AKT knock-out cell-lines. All three cell-lines (HT-29, HCT116 and DLD-1 expressed varying amounts of CD133, CD24 and CD44 and the top ten percent of CD133 and CD44 expressing cells (CD133high/CD44high were more resistant to gamma radiation than the ten percent with lowest expression (CD133low/CD44low. The AKT expression was lower in the fraction of cells with low CD133/CD44. Depletion of AKT1 or AKT2 using knock out cells showed for the first time that CD133 expression was associated with AKT1 but not AKT2, whereas the CD44 expression was influenced by the presence of either AKT1 or AKT2. There were several genes in the cell adhesion pathway which had significantly higher expression in the AKT2 KO cell-line compared to the AKT1 KO cell-line; however important genes in the epithelial to mesenchymal transition pathway (CDH1, VIM, TWIST1, SNAI1, SNAI2, ZEB1, ZEB2, FN1, FOXC2 and CDH2 did not differ. Our results demonstrate that CD133high/CD44high expressing colon cancer cells are associated with AKT and increased radiation resistance, and that different AKT isoforms have varying effects on the expression of cancer stem cell markers, which is an important consideration when targeting AKT in a clinical setting.

  4. Research of radiation-resistant microbial organisms

    International Nuclear Information System (INIS)

    Many extremophiles including radiation-resistant bacteria Deinococcus radiodurans have special characteristics such as novel enzymes and physiological active substances different from known biological materials and are being in the spotlight of biotechnology science. In this research, basic technologies for the production of new genetic resources and microbial strains by a series of studies in radiation-resistant microbial organisms were investigated and developed. Mechanisms required for radiation-resistant in Deinococcus radiodurans were partly defined by analyzing the function of dinB, pprI, recG, DRA0279, pprM, and two-component signal transduction systems. To apply genetic resource and functional materials from Deinococcus species, omics analysis in response to cadmium, construction of macroscopic biosensor, and characterization of carotenoids and chaperon protein were performed. Additionally, potential use of D. geothermalis in monosaccharide production from non-biodegradable plant materials was evaluated. Novel radiation resistant yeasts and bacteria were isolated and identified from environmental samples to obtain microbial and genomic resources. An optimal radiation mutant breeding method was set up for efficient and rapid isolation of target microbial mutants. Furthermore, an efficient ethanol producing mutant strain with high production yield and productivity was constructed using the breeding method in collaboration with Korea Research Institute of Bioscience and Biotechnology. Three Deinococcal bioindicators for radiation dosage confirmation after radiation sterilization process were developed. These results provide a comprehensive information for novel functional genetic elements, enzymes, and physiological active substances production or application. Eventually, industrial microbial cell factories based on radiation resistant microbial genomes can be developed and the technologies can be diffused to bioindustry continuously by this project

  5. Research of radiation-resistant microbial organisms

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongho; Lim, Sangyong; Joe, Minho; Park, Haejoon; Song, Hyunpa; Im, Seunghun; Kim, Haram; Kim, Whajung; Choi, Jinsu; Park, Jongchun

    2012-01-15

    Many extremophiles including radiation-resistant bacteria Deinococcus radiodurans have special characteristics such as novel enzymes and physiological active substances different from known biological materials and are being in the spotlight of biotechnology science. In this research, basic technologies for the production of new genetic resources and microbial strains by a series of studies in radiation-resistant microbial organisms were investigated and developed. Mechanisms required for radiation-resistant in Deinococcus radiodurans were partly defined by analyzing the function of dinB, pprI, recG, DRA{sub 0}279, pprM, and two-component signal transduction systems. To apply genetic resource and functional materials from Deinococcus species, omics analysis in response to cadmium, construction of macroscopic biosensor, and characterization of carotenoids and chaperon protein were performed. Additionally, potential use of D. geothermalis in monosaccharide production from non-biodegradable plant materials was evaluated. Novel radiation resistant yeasts and bacteria were isolated and identified from environmental samples to obtain microbial and genomic resources. An optimal radiation mutant breeding method was set up for efficient and rapid isolation of target microbial mutants. Furthermore, an efficient ethanol producing mutant strain with high production yield and productivity was constructed using the breeding method in collaboration with Korea Research Institute of Bioscience and Biotechnology. Three Deinococcal bioindicators for radiation dosage confirmation after radiation sterilization process were developed. These results provide a comprehensive information for novel functional genetic elements, enzymes, and physiological active substances production or application. Eventually, industrial microbial cell factories based on radiation resistant microbial genomes can be developed and the technologies can be diffused to bioindustry continuously by this project.

  6. Bacterial and archaeal resistance to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Confalonieri, F; Sommer, S, E-mail: fabrice.confalonieri@u-psud.fr, E-mail: suzanne.sommer@u-psud.fr [University Paris-Sud, CNRS UMR8621, Institut de Genetique et Microbiologie, Batiments 400-409, Universite Paris-Sud, 91405 Orsay (France)

    2011-01-01

    Organisms living in extreme environments must cope with large fluctuations of temperature, high levels of radiation and/or desiccation, conditions that can induce DNA damage ranging from base modifications to DNA double-strand breaks. The bacterium Deinococcus radiodurans is known for its resistance to extremely high doses of ionizing radiation and for its ability to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Recently, extreme ionizing radiation resistance was also generated by directed evolution of an apparently radiation-sensitive bacterial species, Escherichia coli. Radioresistant organisms are not only found among the Eubacteria but also among the Archaea that represent the third kingdom of life. They present a set of particular features that differentiate them from the Eubacteria and eukaryotes. Moreover, Archaea are often isolated from extreme environments where they live under severe conditions of temperature, pressure, pH, salts or toxic compounds that are lethal for the large majority of living organisms. Thus, Archaea offer the opportunity to understand how cells are able to cope with such harsh conditions. Among them, the halophilic archaeon Halobacterium sp and several Pyrococcus or Thermococcus species, such as Thermococcus gammatolerans, were also shown to display high level of radiation resistance. The dispersion, in the phylogenetic tree, of radioresistant prokaryotes suggests that they have independently acquired radioresistance. Different strategies were selected during evolution including several mechanisms of radiation byproduct detoxification and subtle cellular metabolism modifications to help cells recover from radiation-induced injuries, protection of proteins against oxidation, an efficient DNA repair tool box, an original pathway of DNA double-strand break repair, a condensed nucleoid that may prevent the dispersion of the DNA fragments and specific radiation-induced proteins involved in

  7. The influence of the stem cell marker ALDH and the EGFR-PI3 kinase act signaling pathway on the radiation resistance of human tumor cell lines

    International Nuclear Information System (INIS)

    Cancer is the second leading cause of death in industriated nations. Besides surgery and chemotherapy, radiotherapy (RT) is an important approach by which about 60% of patients are treated. The response of these patients to RT is very heterogenous. On the one hand, there are patients with tumors which are radiosensitive and can be cured, but on the other hand patients bear tumors which are quite resistant to radiotherapy. A Radioresistant phenotype of tumor cells causes treatment failure consequently leading to a limited response to radiotherapy. It is proposed, that radiotherapy outcome mainly depends on the potential of radiation on controlling growth, proliferation and survival of a specific population of tumor cells called cancer stem cells (CSCs) or tumor-initiating cells. Based on experimental studies so far reported it is assumed that the population of CSC varies in tumors from different entities and is relatively low compared to the tumor bulk cells in general. According to the CSC hypothesis, it might be concluded that the differential response of tumors to radiotherapy depends on CSC populations, since these supposedly slow replicating cells are able to initiate a tumor, to self renew indefinitely and to generate the differentiated progeny of a tumor. Besides the role of cancer stem cells in radiotherapy response, ionizing radiation (IR) activates the epidermal growth factor receptor (EGFR) and its downstream signaling pathways such as phosphoinositide 3-kinase (PI3K)/Akt, mitogen-activated protein kinase (MAPK) and Janus kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathways. Among these pathways, PI3K/Akt is one of the most important pathways involved in post-irradiation survival: Activation of Akt results in activation of DNA-dependent protein kinase, catalytic subunit (DNA-PKcs). DNA-PKcs is a core enzyme involved in repair of IR-induced DNA-double strand breaks (DNA-DSB) through non-homologous end joining (NHEJ). The aim of the

  8. Novel Materials that Enhance Efficiency and Radiation Resistance of Solar Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Solar cell is the key device in generating electrical power for spacecrafts. It is an on-going challenge in maximizing electrical power available to spacecraft...

  9. Novel Materials that Enhance Efficiency and Radiation Resistance of Solar Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecrafts rely on arrays of solar cells to generate electrical power. It is an on-going challenge to maximize electrical power available to spacecraft while...

  10. Development of TRAIL Resistance by Radiation-Induced Hypermethylation of DR4 CpG Island in Recurrent Laryngeal Squamous Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Cheol [Department of Otorhinolaryngology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan (Korea, Republic of); Department of Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan (Korea, Republic of); Lee, Won Hyeok [Department of Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan (Korea, Republic of); Min, Young Joo [Department of Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan (Korea, Republic of); Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan (Korea, Republic of); Cha, Hee Jeong [Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan (Korea, Republic of); Han, Myung Woul [Department of Otorhinolaryngology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan (Korea, Republic of); Chang, Hyo Won [Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Sun-A [Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Choi, Seung-Ho [Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Seong Who, E-mail: swhokim@gmail.com [Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Sang Yoon, E-mail: sykim3715@gmail.com [Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Biomedical Research Institute, Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2014-04-01

    Purpose: There are limited therapeutic options for patients with recurrent head and neck cancer after radiation therapy failure. To assess the use of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) as a salvage chemotherapeutic agent for recurrent cancer after radiation failure, we investigated the effect of clinically relevant cumulative irradiation on TRAIL-induced apoptosis. Methods and Materials: Using a previously established HN3 cell line from a laryngeal carcinoma patient, we generated a chronically irradiated HN3R isogenic cell line. Viability and apoptosis in HN3 and HN3R cells treated with TRAIL were analyzed with MTS and PI/annexin V-FITC assays. Western blotting and flow cytometry were used to determine the underlying mechanism of TRAIL resistance. DR4 expression was semiquantitatively scored in a tissue microarray with 107 laryngeal cancer specimens. Methylation-specific polymerase chain reaction and bisulfite sequencing for DR4 were performed for genomic DNA isolated from each cell line. Results: HN3R cells were more resistant than HN3 cells to TRAIL-induced apoptosis because of significantly reduced levels of the DR4 receptor. The DR4 staining score in 37 salvage surgical specimens after radiation failure was lower in 70 surgical specimens without radiation treatment (3.03 ± 2.75 vs 5.46 ± 3.30, respectively; P<.001). HN3R cells had a methylated DR4 CpG island that was partially demethylated by the DNA demethylating agent 5-aza-2′-deoxycytidine. Conclusion: Epigenetic silencing of the TRAIL receptor by hypermethylation of a DR4 CpG island might be an underlying mechanism for TRAIL resistance in recurrent laryngeal carcinoma treated with radiation.

  11. Development of TRAIL Resistance by Radiation-Induced Hypermethylation of DR4 CpG Island in Recurrent Laryngeal Squamous Cell Carcinoma

    International Nuclear Information System (INIS)

    Purpose: There are limited therapeutic options for patients with recurrent head and neck cancer after radiation therapy failure. To assess the use of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) as a salvage chemotherapeutic agent for recurrent cancer after radiation failure, we investigated the effect of clinically relevant cumulative irradiation on TRAIL-induced apoptosis. Methods and Materials: Using a previously established HN3 cell line from a laryngeal carcinoma patient, we generated a chronically irradiated HN3R isogenic cell line. Viability and apoptosis in HN3 and HN3R cells treated with TRAIL were analyzed with MTS and PI/annexin V-FITC assays. Western blotting and flow cytometry were used to determine the underlying mechanism of TRAIL resistance. DR4 expression was semiquantitatively scored in a tissue microarray with 107 laryngeal cancer specimens. Methylation-specific polymerase chain reaction and bisulfite sequencing for DR4 were performed for genomic DNA isolated from each cell line. Results: HN3R cells were more resistant than HN3 cells to TRAIL-induced apoptosis because of significantly reduced levels of the DR4 receptor. The DR4 staining score in 37 salvage surgical specimens after radiation failure was lower in 70 surgical specimens without radiation treatment (3.03 ± 2.75 vs 5.46 ± 3.30, respectively; P<.001). HN3R cells had a methylated DR4 CpG island that was partially demethylated by the DNA demethylating agent 5-aza-2′-deoxycytidine. Conclusion: Epigenetic silencing of the TRAIL receptor by hypermethylation of a DR4 CpG island might be an underlying mechanism for TRAIL resistance in recurrent laryngeal carcinoma treated with radiation

  12. Radiation resistance of nano carbon polymers

    International Nuclear Information System (INIS)

    Present article is devoted to radiation resistance of polymers containing nano carbon fillers. Therefore, the influence of ultraviolet and gamma-irradiation on structure and radiation resistance of nano carbon polymers was studied. The light resistance of polymers was studied under the light ageing conditions and the radiation resistance was studied under the static radiation ageing conditions. It is defined that injection of fillers in to the polymers and irradiation them by ultraviolet and gamma beams changes their mechanical and thermal properties and their light and radiation resistance as well.

  13. Studies on the relationship between the radiation resistance and glutathione content of human and rodent cells after treatment with dexamethasone in vitro

    International Nuclear Information System (INIS)

    a 20 pre-treatment of human cells from normal (foetal lung) or malignant origin (glioma, lines U118 MG and U251 MG and bladder carcinoma, line EJ) with dexamethasone failed to increase their radiation resistance in vitro despite a 2-fold increase in the GSH content of a glioma cell line, U251 MG, and a small but significant increase in the GSH content of EJ bladder carcinoma cells. In contrast, there was a correlation between an increase in radiation resistance and an elevated GSH content of rodent cells (Chinese hamster lung, line V-79-379A; ovary, line CHO; rat hepatoma line HTC, and mouse neuroblastoma, line NB413A) after a similar pre-treatment. The results suggest that enhancement of radiation resistance cannot be directly ascribed to an elevated GSH content in steroid-treated cells. On the bases of these data it is unlikely that the efficacy of radiotherapy will be diminished amongst patients receiving concomitant treatment with dexamethasone. However, in vivo testing is required to confirm these findings. (author)

  14. 1.00 MeV proton radiation resistance studies of single-junction and single gap dual-junction amorphous-silicon alloy solar cells

    Science.gov (United States)

    Abdulaziz, Salman; Payson, J. S.; Li, Yang; Woodyard, James R.

    1990-01-01

    A comparative study of the radiation resistance of a-Si:H and a-SiGe:H single-junction and a-Si:H dual-junction solar cells was conducted. The cells were irradiated with 1.00-MeV protons with fluences of 1.0 x 10 to the 14th, 5.0 x 10 to the 14th and 1.0 x 10 to the 15th/sq cm and characterized using I-V and quantum efficiency measurements. The radiation resistance of single-junction cells cannot be used to explain the behavior of dual-junction cells at a fluence of 1.0 x 10 to the 15th/sq cm. The a-Si H single-junction cells degraded the least of the three cells; a-SiGe:H single-junction cells showed the largest reduction in short-circuit current, while a-Si:H dual-junction cells exhibited the largest degradation in the open-circuit voltage. The quantum efficiency of the cells degraded more in the red part of the spectrum; the bottom junction degrades first in dual-junction cells.

  15. Sci—Fri AM: Mountain — 04: Label-free Raman spectroscopy of single tumour cells detects early radiation-induced glycogen synthesis associated with increased radiation resistance

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Q; Lum, JJ [BC Cancer Agency — Vancouver Island Centre (Canada); Isabelle, M; Harder, S; Jirasek, A [Physics and Astronomy, University of Victoria (Australia); Brolo, AG [Chemistry, University of Victoria (Australia)

    2014-08-15

    Purpose: To use label-free Raman spectroscopy (RS) for early treatment monitoring of tumour cell radioresistance. Methods: Three human tumour cell lines, two radioresistant (H460, SF{sub 2} = 0.57 and MCF7, SF{sub 2} = 0.70) and one radiosensitive (LNCaP, SF{sub 2} = 0.36), were irradiated with single fractions of 2, 4, 6, 8 or 10 Gy. In additional experiments, H460 and MCF7 cells were irradiated under co-treatment with the anti-diabetic drug metformin, a known radiosensitizing agent. Treated and control cultures were analyzed with RS daily for 3 days post-treatment. Single-cell Raman spectra were acquired from 20 live cells per sample, and experiments were repeated in triplicate. The combined data sets were analyzed with principal component analysis using standard algorithms. Cells from each culture were also subjected to standard assays for viability, proliferation, cell cycle, and radiation clonogenic survival. Results: The radioresistant cells (H460, MCF7) exhibited a RS molecular radiation response signature, detectable as early as 1 day post-treatment, of which radiation-induced glycogen synthesis is a significant contributor. The radiosensitive cells (LNCaP) exhibited negligible glycogen synthesis. Co-treatment with metformin in MCF7 cells blocked glycogen synthesis, reduced viability and proliferation, and increased radiosensitivity. Conversely, metformin co-treatment in H460 cells did not produce these same effects; importantly, both radiation-induced synthesis of glycogen and radiosensitivity were unaffected. Conclusions: Label-free RS can detect early glycogen synthesis post-irradiation, a previously undocumented metabolic mechanism associated with tumour cell radioresistance that can be targeted to increase radiosensitivity. RS monitoring of intratumoral glycogen may provide new opportunities for personalized combined modality radiotherapy treatments.

  16. Plant breeding by using radiation mutation - Selection of herbicide-resistant cell lines by using {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyo Yeon [Sunchun University, Sunchun (Korea); Seo, Yong Weon [Korea University, Seoul (Korea)

    2000-04-01

    In order to develop the herbicide resistant cell lines, micro calli derived from rice anther culture and mature seed of wheat cultivars were irradiated with gamma rays. 1) The callus was dedifferentiated by 7 or 21 day pretreatment at 7 deg. C in two rice cultivars, Ilpumbyeo ad Dongjinbyeo. 2) To check the optimum concentration of herbicide, three herbicides were tested with micro calli. 3) The optimum dose of gamma ray to seeds of wheat seemed to be from 100 to 150 Gy. 4) AFLP and RAPD technique were established to develope herbicide resistant molecular marker in rice. 34 refs., 10 figs., 5 tabs. (Author)

  17. Investigation of the Stability and 1.0 MeV Proton Radiation Resistance of Commercially Produced Hydrogenated Amorphous Silicon Alloy Solar Cells

    Science.gov (United States)

    Lord, Kenneth R., II; Walters, Michael R.; Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys is reported. A number of different device structures were irradiated with 1.0 MeV protons. The cells were insensitive to proton fluences below 1E12 sq cm. The parameters of the irradiated cells were restored with annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters for fluences below 1E14 sq cm fluences above 1E14 sq cm require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed In dark I-V measurements. The current mechanism were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  18. Radiation resistance due to high expression of miR-21 and G2/M checkpoint arrest in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Anastasov Nataša

    2012-12-01

    Full Text Available Abstract Background There is evidence that the extent of the G2/M arrest following irradiation is correlated with tumour cell survival and hence therapeutic success. We studied the regulation of cellular response to radiation treatment by miR-21-mediated modulation of cell cycle progression in breast cancer cells and analysed miR-21 expression in breast cancer tissue samples with long-term follow up. Methods The miR-21 expression levels were quantified (qRT-PCR in a panel of 86 cases of invasive breast carcinomas in relation to metastasis free survival. The cellular radiosensitivity of human breast cancer cells after irradiation was determined comparing two cell lines (T47D and MDA-MB-361 by cell proliferation and colony forming assays. The influence of miR-21 overexpression or downregulation on cell cycle progression and G2/M checkpoint arrest after irradiation was assessed by flow cytometric analysis. Results The expression of miR-21 was transiently increased 8 hours after irradiation in the radioresistant T47D cells and significantly changed with lower extent in radiosensitive MDA-MB-361 cells. Anti-miR-21 treated breast cancer cells failed to exhibit the DNA damage-G2 checkpoint increase after irradiation. Apoptotic activity was significantly enhanced from 7% to 27% in T47D cells and from 18% to 30% in MDA-MB-361 cells 24 hours after 5 Gy irradiation. Additionally, we characterized expression of miR-21 in invasive breast carcinomas. In comparison to non-cancerous adjacent breast tissue, tumours samples had increased miR-21 expression that inversely correlated with the distant metastases-free survival of patients (p = 0.029. Conclusions Our data indicate that miR-21 expression in breast cancer cells contributes to radiation resistance by compromising cell cycle progression. These data point to the potential of combining radiotherapy with an anti-miR-21 as a potent G2/M check point inhibitor in overcoming radiation resistance of tumours.

  19. Radiation resistance due to high expression of miR-21 and G2/M checkpoint arrest in breast cancer cells

    International Nuclear Information System (INIS)

    There is evidence that the extent of the G2/M arrest following irradiation is correlated with tumour cell survival and hence therapeutic success. We studied the regulation of cellular response to radiation treatment by miR-21-mediated modulation of cell cycle progression in breast cancer cells and analysed miR-21 expression in breast cancer tissue samples with long-term follow up. The miR-21 expression levels were quantified (qRT-PCR) in a panel of 86 cases of invasive breast carcinomas in relation to metastasis free survival. The cellular radiosensitivity of human breast cancer cells after irradiation was determined comparing two cell lines (T47D and MDA-MB-361) by cell proliferation and colony forming assays. The influence of miR-21 overexpression or downregulation on cell cycle progression and G2/M checkpoint arrest after irradiation was assessed by flow cytometric analysis. The expression of miR-21 was transiently increased 8 hours after irradiation in the radioresistant T47D cells and significantly changed with lower extent in radiosensitive MDA-MB-361 cells. Anti-miR-21 treated breast cancer cells failed to exhibit the DNA damage-G2 checkpoint increase after irradiation. Apoptotic activity was significantly enhanced from 7% to 27% in T47D cells and from 18% to 30% in MDA-MB-361 cells 24 hours after 5 Gy irradiation. Additionally, we characterized expression of miR-21 in invasive breast carcinomas. In comparison to non-cancerous adjacent breast tissue, tumours samples had increased miR-21 expression that inversely correlated with the distant metastases-free survival of patients (p = 0.029). Our data indicate that miR-21 expression in breast cancer cells contributes to radiation resistance by compromising cell cycle progression. These data point to the potential of combining radiotherapy with an anti-miR-21 as a potent G2/M check point inhibitor in overcoming radiation resistance of tumours

  20. Overexpression of miRNA-21 promotes radiation-resistance of non-small cell lung cancer

    International Nuclear Information System (INIS)

    MiRNA-21 was previously reported to be up-regulated in many kinds of cancer. In the present study, we want to investigate the potential role of miRNA-21 in non-small cell lung cancer. Expression of miRNA-21 was detected in 60 non-small cell lung cancer (NSCLC) samples and adjacent histologically normal tissue using RT-qPCR, Correlation between miRNA-21 expression and clinicopathological features of NSCLC was analyzed using statistical software. The effect of miRNA-21 expression on the growth and apoptosis of A549 cells induced by irradiation was examined. miRNA-21 expression increased in non-small cell lung cancer. Expression of miRNA-21 was positively associated with lymph node metastasis, clinical stage and poor prognosis. Multivariate Cox regression analysis showed that miRNA-21 was an independent prognostic factor for patients. Down-regulation of miRNA-21 inhibited proliferation and cell cycle progress of A549 cells and sensitized cells to radiation. Decreased miRNA-21 expression promoted the apoptosis of A549 cells induced by irradiation. miRNA-21 may be considered as a potential novel target for future development of specific therapeutic interventions in NSCLC

  1. miR-21 modulates resistance of HR-HPV positive cervical cancer cells to radiation through targeting LATS1

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shikai; Song, Lili, E-mail: commasll@163.com; Zhang, Liang; Zeng, Saitian; Gao, Fangyuan

    2015-04-17

    Although multiple miRNAs are found involved in radioresistance development in HR-HPV positive (+) cervical cancer, only limited studies explored the regulative mechanism of the miRNAs. miR-21 is one of the miRNAs significantly upregulated in HR-HPV (+) cervical cancer is also significantly associated with radioresistance. However, the detailed regulative network of miR-21 in radioresistance is still not clear. In this study, we confirmed that miR-21 overexpression was associated with higher level of radioresistance in HR-HPV (+) cervical cancer patients and thus decided to further explore its role. Findings of this study found miR-21 can negatively affect radiosensitivity of HR-HPV (+) cervical cancer cells and decrease radiation induced G2/M block and increase S phase accumulation. By using dual luciferase assay, we verified a binding site between miR-21 and 3′-UTR of large tumor suppressor kinase 1 (LATS1). Through direct binding, miR-21 can regulate LATS1 expression in cervical cancer cells. LATS1 overexpression can reverse miR-21 induced higher colony formation rate and also reduced miR-21 induced S phase accumulation and G2/M phase block reduction under radiation treatment. These results suggested that miR-21-LATS1 axis plays an important role in regulating radiosensitivity. - Highlights: • miR-21 is highly expressed in HR-HPV (+) radioresistant cervical cancer patients. • miR-21 can negatively affect radiosensitivity of HR-HPV (+) cervical cancer cells. • miR-21 can decrease radiation induced G2/M block and increase S phase accumulation. • miR-21 modulates radiosensitivity cervical cancer cell by directly targeting LATS1.

  2. Incorporating Cancer Stem Cells in Radiation Therapy Treatment Response Modeling and the Implication in Glioblastoma Multiforme Treatment Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Victoria Y.; Nguyen, Dan; Pajonk, Frank; Kupelian, Patrick; Kaprealian, Tania; Selch, Michael; Low, Daniel A.; Sheng, Ke, E-mail: ksheng@mednet.ucla.edu

    2015-03-15

    Purpose: To perform a preliminary exploration with a simplistic mathematical cancer stem cell (CSC) interaction model to determine whether the tumor-intrinsic heterogeneity and dynamic equilibrium between CSCs and differentiated cancer cells (DCCs) can better explain radiation therapy treatment response with a dual-compartment linear-quadratic (DLQ) model. Methods and Materials: The radiosensitivity parameters of CSCs and DCCs for cancer cell lines including glioblastoma multiforme (GBM), non–small cell lung cancer, melanoma, osteosarcoma, and prostate, cervical, and breast cancer were determined by performing robust least-square fitting using the DLQ model on published clonogenic survival data. Fitting performance was compared with the single-compartment LQ (SLQ) and universal survival curve models. The fitting results were then used in an ordinary differential equation describing the kinetics of DCCs and CSCs in response to 2- to 14.3-Gy fractionated treatments. The total dose to achieve tumor control and the fraction size that achieved the least normal biological equivalent dose were calculated. Results: Smaller cell survival fitting errors were observed using DLQ, with the exception of melanoma, which had a low α/β = 0.16 in SLQ. Ordinary differential equation simulation indicated lower normal tissue biological equivalent dose to achieve the same tumor control with a hypofractionated approach for 4 cell lines for the DLQ model, in contrast to SLQ, which favored 2 Gy per fraction for all cells except melanoma. The DLQ model indicated greater tumor radioresistance than SLQ, but the radioresistance was overcome by hypofractionation, other than the GBM cells, which responded poorly to all fractionations. Conclusion: The distinct radiosensitivity and dynamics between CSCs and DCCs in radiation therapy response could perhaps be one possible explanation for the heterogeneous intertumor response to hypofractionation and in some cases superior outcome from

  3. Increased genomic alteration complexity and telomere shortening in B-CLL cells resistant to radiation-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Salin, H.; Ricoul, M.; Morat, L.; Sabatier, L. [CEA, DSV, iRCM, LRO, F-92265 Fontenay Aux Roses (France); Salin, H. [Museum Natl Hist Nat, F-75231 Paris (France)

    2008-07-01

    B-cell chronic lymphocytic leukemia (B-CLL) results in an accumulation of mature CD5{sup +}/CD23{sup +} B cells due to an uncharacterised defect in apoptotic cell death. B-CLL is not characterized by a unique recurrent genomic alteration but rather by genomic instability giving rise frequently to several chromosomal aberrations. Besides we reported that similar to 15% of B-CLL patients present malignant B-cells resistant to irradiation-induced apoptosis, contrary to similar to 85% of patients and normal human lymphocytes. Telomere length shortening is observed in radioresistant B-CLL cells. Using fluorescence in situ hybridization (FISH) and multicolour FISH, we tested whether specific chromosomal aberrations might be associated with the radioresistance of a subset of B-CLL cells and whether they are correlated with telomere shortening. In a cohort of 30 B-CLL patients, all of the radioresistant B-CLL cell samples exhibited homozygous or heterozygous deletion of 13q14.3 in contrast to 52% of the radiosensitive samples. In addition to the 13q14.3 deletion, ten out of the 11 radioresistant B-cell samples had another clonal genomic alteration such as trisomy 12, deletion 17p13.1, mutation of the p53 gene or translocations in contrast to only three out of 19 radiosensitive samples. Telomere fusions and non-reciprocal translocations, hallmarks of telomere dysfunction, are not increased in radioresistant B-CLL cells. These findings suggest (i) that the 13q14.3 deletion accompanied by another chromosomal aberration is associated with radioresistance of B-CLL cells and (ii) that telomere shortening is not causative of increased clonal chromosomal aberrations in radioresistant B-CLL cells. (authors)

  4. Solar cell radiation handbook

    Science.gov (United States)

    Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

    1982-01-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  5. Cell death induced by ionizing radiations in human radio-resistant tumours: in-vitro and in-vivo study of mechanisms involved in its induction by different types of radiations and pharmacological modulation

    International Nuclear Information System (INIS)

    Whereas chemo-radiotherapy protocols revealed to be very efficient when taking tumours into care, the treatment of some tumours remains very limited due to their critical location or to the weak radio-sensitivity to conventional radiations. One way to work around this problem is to use high linear energy transfer radiations or hadron therapy, in combination with radio-sensitizers. This research thesis reports the assessment of radio-sensitizer effects of different molecules on human radio-resistant cell lines and more particularly the SK-Hep1 line from a hepatocellular carcinoma. In vitro studies have been performed and then in vivo studies by using fast neutron irradiation on a mice liver sample. Observations made by optic fibre confocal microscopy and transmission electronic microscopy confirmed in vitro observations: the prevailing cell death after such an irradiation is the autophagic cell death. It shows the importance of the autophagic phenomenon induced by radiations with high linear transfer energy. This could lead to new therapeutic protocols for radio-resistant cancers

  6. CERN selects Fujikura's radiation resistant fiber

    CERN Multimedia

    2007-01-01

    "Fujikura Europe Ltd. (search for Fujikura Europe) today announced that its radiation resistant singlemode optical fiber has been selected by CERN to provide communicaton links within the world's largest particle accelerator..."(2/3 page)

  7. A novel radiation-induced p53 mutation is not implicated in radiation resistance via a dominant-negative effect.

    Directory of Open Access Journals (Sweden)

    Yunguang Sun

    Full Text Available Understanding the mutations that confer radiation resistance is crucial to developing mechanisms to subvert this resistance. Here we describe the creation of a radiation resistant cell line and characterization of a novel p53 mutation. Treatment with 20 Gy radiation was used to induce mutations in the H460 lung cancer cell line; radiation resistance was confirmed by clonogenic assay. Limited sequencing was performed on the resistant cells created and compared to the parent cell line, leading to the identification of a novel mutation (del at the end of the DNA binding domain of p53. Levels of p53, phospho-p53, p21, total caspase 3 and cleaved caspase 3 in radiation resistant cells and the radiation susceptible (parent line were compared, all of which were found to be similar. These patterns held true after analysis of p53 overexpression in H460 cells; however, H1299 cells transfected with mutant p53 did not express p21, whereas those given WT p53 produced a significant amount, as expected. A luciferase assay demonstrated the inability of mutant p53 to bind its consensus elements. An MTS assay using H460 and H1299 cells transfected with WT or mutant p53 showed that the novel mutation did not improve cell survival. In summary, functional characterization of a radiation-induced p53 mutation in the H460 lung cancer cell line does not implicate it in the development of radiation resistance.

  8. Enhanced radiation resistant fiber optics

    Science.gov (United States)

    Lyons, Peter B.; Looney, Larry D.

    1993-01-01

    A process for producing an optical fiber having enhanced radiation resitance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation.

  9. Potential mechanisms involved in resistant phenotype of MCF-7 breast carcinoma cells to ionizing radiation induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yanling [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Zhang Hong [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China)], E-mail: zhangh@impcas.ac.cn; Li Ning [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Wang Xiaohu [Department of Radiotherapy, Gansu Tumor Hospital, Lanzhou 730050 (China); Hao Jifang [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Zhao Weiping [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China)

    2009-03-15

    In the present study, we investigated the mechanisms of apoptosis resistance and the roles of the phosphorylation of BRCA1, p21, the Bax/Bcl-2 protein ratio and cell cycle arrest in IR-induced apoptosis in MCF-7 cells. X-irradiation, in particular at low dose (1 Gy), but not carbon ion irradiation, had a significant antiproliferative effect on the growth of MCF-7 cells. 1 Gy X-irradiation resulted in G1 and G2 phase arrest, but 4 Gy induced a significant G1 block. In contrast, carbon ion irradiation resulted in a significant accumulation in the G2 phase. Concomitant with the phosphorylation of H2AX induced by DNA damage, carbon ion irradiation resulted in an approximately 1.9-2.8-fold increase in the phosphorylation of BRCA1 on serine residue 1524, significantly greater than that detected for X-irradiation. Carbon ion irradiation caused a dramatic increase in p21 expression and drastic decrease in Bax expression compared with X-irradiation. The data implicated that phosphorylation of BRCA1 on serine residue 1524 might, at least partially, induce p21 expression but repress Bax expression. Together, our results suggested that the phosphorylation of BRCA1 at Ser-1524 might contribute to the G2 phase arrest and might be an upstream signal involved in preventing apoptosis signal via upregulation of p21 and downregulation of the Bax/Bcl-2 ratio.

  10. Potential mechanisms involved in resistant phenotype of MCF-7 breast carcinoma cells to ionizing radiation induced apoptosis

    Science.gov (United States)

    Wang, Yan-ling; Zhang, Hong; Li, Ning; Wang, Xiao-hu; Hao, Ji-fang; Zhao, Wei-ping

    2009-03-01

    In the present study, we investigated the mechanisms of apoptosis resistance and the roles of the phosphorylation of BRCA1, p21, the Bax/Bcl-2 protein ratio and cell cycle arrest in IR-induced apoptosis in MCF-7 cells. X-irradiation, in particular at low dose (1 Gy), but not carbon ion irradiation, had a significant antiproliferative effect on the growth of MCF-7 cells. 1 Gy X-irradiation resulted in G1 and G2 phase arrest, but 4 Gy induced a significant G1 block. In contrast, carbon ion irradiation resulted in a significant accumulation in the G2 phase. Concomitant with the phosphorylation of H2AX induced by DNA damage, carbon ion irradiation resulted in an approximately 1.9-2.8-fold increase in the phosphorylation of BRCA1 on serine residue 1524, significantly greater than that detected for X-irradiation. Carbon ion irradiation caused a dramatic increase in p21 expression and drastic decrease in Bax expression compared with X-irradiation. The data implicated that phosphorylation of BRCA1 on serine residue 1524 might, at least partially, induce p21 expression but repress Bax expression. Together, our results suggested that the phosphorylation of BRCA1 at Ser-1524 might contribute to the G2 phase arrest and might be an upstream signal involved in preventing apoptosis signal via upregulation of p21 and downregulation of the Bax/Bcl-2 ratio.

  11. Genetic variation in resistance to ionizing radiation. [Annual report, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, F.J.

    1989-12-31

    The very reactive superoxide anion O{sub 2} is generated during cell respiration as well as during exposure to ionizing radiation. Organisms have evolved different mechanisms to protect against the deleterious effects of reduced oxygen species. The copper-zinc superoxide dismutase is a eukaryotic cytoplasmic enzyme that protects the cell by scavenging superoxide radicals and dismutating them to hydrogen peroxide and molecular oxygen: 20{sub 2}{sup {minus}} + 2H {yields} H{sub 2}O{sub 2} + O{sub 2}. SOD had been shown to protect against ionizing radiation damage to DNA, viruses, bacteria, mammalian cells, whole mice, and Drosophila. Evidence that genetic differences may affect sensitivity to ionizing radiation has been shown in Drosophila since differences have been shown to exist between strains and resistance to radiation can evolve under natural selection.

  12. Radiation Enhances Regulatory T Cell Representation

    Energy Technology Data Exchange (ETDEWEB)

    Kachikwu, Evelyn L.; Iwamoto, Keisuke S.; Liao, Yu-Pei; DeMarco, John J.; Agazaryan, Nzhde [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Economou, James S. [Department of Surgical Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); McBride, William H. [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Schaue, Doerthe, E-mail: dschaue@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States)

    2011-11-15

    Purpose: Immunotherapy could be a useful adjunct to standard cytotoxic therapies such as radiation in patients with micrometastatic disease, although successful integration of immunotherapy into treatment protocols will require further understanding of how standard therapies affect the generation of antitumor immune responses. This study was undertaken to evaluate the impact of radiation therapy (RT) on immunosuppressive T regulatory (Treg) cells. Methods and Materials: Treg cells were identified as a CD4{sup +}CD25{sup hi}Foxp3{sup +} lymphocyte subset, and their fate was followed in a murine TRAMP C1 model of prostate cancer in mice with and without RT. Results: CD4{sup +}CD25{sup hi}Foxp3{sup +} Treg cells increased in immune organs after local leg or whole-body radiation. A large part, but not all, of this increase after leg-only irradiation could be ascribed to radiation scatter and Treg cells being intrinsically more radiation resistant than other lymphocyte subpopulations, resulting in their selection. Their functional activity on a per-cell basis was not affected by radiation exposure. Similar findings were made with mice receiving local RT to murine prostate tumors growing in the leg. The importance of the Treg cell population in the response to RT was shown by systemic elimination of Treg cells, which greatly enhanced radiation-induced tumor regression. Conclusions: We conclude that Treg cells are more resistant to radiation than other lymphocytes, resulting in their preferential increase. Treg cells may form an important homeostatic mechanism for tissues injured by radiation, and in a tumor context, they may assist in immune evasion during therapy. Targeting this population may allow enhancement of radiotherapeutic benefit through immune modulation.

  13. Radiation Enhances Regulatory T Cell Representation

    International Nuclear Information System (INIS)

    Purpose: Immunotherapy could be a useful adjunct to standard cytotoxic therapies such as radiation in patients with micrometastatic disease, although successful integration of immunotherapy into treatment protocols will require further understanding of how standard therapies affect the generation of antitumor immune responses. This study was undertaken to evaluate the impact of radiation therapy (RT) on immunosuppressive T regulatory (Treg) cells. Methods and Materials: Treg cells were identified as a CD4+CD25hiFoxp3+ lymphocyte subset, and their fate was followed in a murine TRAMP C1 model of prostate cancer in mice with and without RT. Results: CD4+CD25hiFoxp3+ Treg cells increased in immune organs after local leg or whole-body radiation. A large part, but not all, of this increase after leg-only irradiation could be ascribed to radiation scatter and Treg cells being intrinsically more radiation resistant than other lymphocyte subpopulations, resulting in their selection. Their functional activity on a per-cell basis was not affected by radiation exposure. Similar findings were made with mice receiving local RT to murine prostate tumors growing in the leg. The importance of the Treg cell population in the response to RT was shown by systemic elimination of Treg cells, which greatly enhanced radiation-induced tumor regression. Conclusions: We conclude that Treg cells are more resistant to radiation than other lymphocytes, resulting in their preferential increase. Treg cells may form an important homeostatic mechanism for tissues injured by radiation, and in a tumor context, they may assist in immune evasion during therapy. Targeting this population may allow enhancement of radiotherapeutic benefit through immune modulation.

  14. CERN selects Fujikura's radiation resistant fibre

    CERN Multimedia

    2007-01-01

    "Fujikura today announced that its radiation resistant single mode optical fibre has been selected by CERN, the European Laboratory for Particle Physics, to provide communication links within the world's largest particle accelerator - the Large hadron Collider (LHC) - near Genevan, Switzerland. (1/2 page)

  15. CERN selects Fujikura's radiation resistant fiber

    CERN Multimedia

    2007-01-01

    "Fujikura recently announced that its radiation resistant single mode optical fiber has been selected by CERN, the European Laboratory for Particle Physics, to provide communication links within the world's largest particle accelerator - the Large Hadron Collider (LHC) - near Geneva, Switzerland." (1/2 page)

  16. Human Genetic Marker for Resistance to Radiation and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    DR. Howard B. Lieberman

    2001-05-11

    TO characterize the human HRDAD9 gene and evaluate its potential as a biomarker to predict susceptibility to the deleterious health effects potentially caused by exposure to radiations or chemicals present at DOE hazardous waste cleanup sites. HRAD9 is a human gene that is highly conserved throughout evolution. Related genes have been isolated from yeasts and mice, underscoring its biological significance. Most of our previous work involved characterization of the yeast gene cognate, wherein it was determined that the corresponding protein plays a significant role in promoting resistance of cells to radiations and chemicals, and in particular, controlling cell growth in response to DNA damage.

  17. Human Genetic Marker for Resistance to Radiation and Chemicals

    International Nuclear Information System (INIS)

    TO characterize the human HRDAD9 gene and evaluate its potential as a biomarker to predict susceptibility to the deleterious health effects potentially caused by exposure to radiations or chemicals present at DOE hazardous waste cleanup sites. HRAD9 is a human gene that is highly conserved throughout evolution. Related genes have been isolated from yeasts and mice, underscoring its biological significance. Most of our previous work involved characterization of the yeast gene cognate, wherein it was determined that the corresponding protein plays a significant role in promoting resistance of cells to radiations and chemicals, and in particular, controlling cell growth in response to DNA damage

  18. Sustainably Sourced, Thermally Resistant, Radiation Hard Biopolymer

    Science.gov (United States)

    Pugel, Diane

    2011-01-01

    This material represents a breakthrough in the production, manufacturing, and application of thermal protection system (TPS) materials and radiation shielding, as this represents the first effort to develop a non-metallic, non-ceramic, biomaterial-based, sustainable TPS with the capability to also act as radiation shielding. Until now, the standing philosophy for radiation shielding involved carrying the shielding at liftoff or utilizing onboard water sources. This shielding material could be grown onboard and applied as needed prior to different radiation landscapes (commonly seen during missions involving gravitational assists). The material is a bioplastic material. Bioplastics are any combination of a biopolymer and a plasticizer. In this case, the biopolymer is a starch-based material and a commonly accessible plasticizer. Starch molecules are composed of two major polymers: amylase and amylopectin. The biopolymer phenolic compounds are common to the ablative thermal protection system family of materials. With similar constituents come similar chemical ablation processes, with the potential to have comparable, if not better, ablation characteristics. It can also be used as a flame-resistant barrier for commercial applications in buildings, homes, cars, and heater firewall material. The biopolymer is observed to undergo chemical transformations (oxidative and structural degradation) at radiation doses that are 1,000 times the maximum dose of an unmanned mission (10-25 Mrad), indicating that it would be a viable candidate for robust radiation shielding. As a comparison, the total integrated radiation dose for a three-year manned mission to Mars is 0.1 krad, far below the radiation limit at which starch molecules degrade. For electron radiation, the biopolymer starches show minimal deterioration when exposed to energies greater than 180 keV. This flame-resistant, thermal-insulating material is non-hazardous and may be sustainably sourced. It poses no hazardous

  19. Therapeutic Implications for Overcoming Radiation Resistance in Cancer Therapy.

    Science.gov (United States)

    Kim, Byeong Mo; Hong, Yunkyung; Lee, Seunghoon; Liu, Pengda; Lim, Ji Hong; Lee, Yong Heon; Lee, Tae Ho; Chang, Kyu Tae; Hong, Yonggeun

    2015-11-10

    Ionizing radiation (IR), such as X-rays and gamma (γ)-rays, mediates various forms of cancer cell death such as apoptosis, necrosis, autophagy, mitotic catastrophe, and senescence. Among them, apoptosis and mitotic catastrophe are the main mechanisms of IR action. DNA damage and genomic instability contribute to IR-induced cancer cell death. Although IR therapy may be curative in a number of cancer types, the resistance of cancer cells to radiation remains a major therapeutic problem. In this review, we describe the morphological and molecular aspects of various IR-induced types of cell death. We also discuss cytogenetic variations representative of IR-induced DNA damage and genomic instability. Most importantly, we focus on several pathways and their associated marker proteins responsible for cancer resistance and its therapeutic implications in terms of cancer cell death of various types and characteristics. Finally, we propose radiation-sensitization strategies, such as the modification of fractionation, inflammation, and hypoxia and the combined treatment, that can counteract the resistance of tumors to IR.

  20. Therapeutic Implications for Overcoming Radiation Resistance in Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Byeong Mo Kim

    2015-11-01

    Full Text Available Ionizing radiation (IR, such as X-rays and gamma (γ-rays, mediates various forms of cancer cell death such as apoptosis, necrosis, autophagy, mitotic catastrophe, and senescence. Among them, apoptosis and mitotic catastrophe are the main mechanisms of IR action. DNA damage and genomic instability contribute to IR-induced cancer cell death. Although IR therapy may be curative in a number of cancer types, the resistance of cancer cells to radiation remains a major therapeutic problem. In this review, we describe the morphological and molecular aspects of various IR-induced types of cell death. We also discuss cytogenetic variations representative of IR-induced DNA damage and genomic instability. Most importantly, we focus on several pathways and their associated marker proteins responsible for cancer resistance and its therapeutic implications in terms of cancer cell death of various types and characteristics. Finally, we propose radiation-sensitization strategies, such as the modification of fractionation, inflammation, and hypoxia and the combined treatment, that can counteract the resistance of tumors to IR.

  1. Ionizing radiation induces stemness in cancer cells.

    Directory of Open Access Journals (Sweden)

    Laura Ghisolfi

    Full Text Available The cancer stem cell (CSC model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies. Here we report that ionizing radiation can induce stem cell-like properties in heterogeneous cancer cells. Exposure of non-stem cancer cells to ionizing radiation enhanced spherogenesis, and this was accompanied by upregulation of the pluripotency genes Sox2 and Oct3/4. Knockdown of Sox2 or Oct3/4 inhibited radiation-induced spherogenesis and increased cellular sensitivity to radiation. These data demonstrate that ionizing radiation can activate stemness pathways in heterogeneous cancer cells, resulting in the enrichment of a CSC subpopulation with higher resistance to radiotherapy.

  2. 诱导建立乳腺癌MCF-7放射耐受细胞亚株的实验研究%Inducing and Establishing Cell Sublines with Radiation Resistance in Human Breast Cancer MCF-7 Cells

    Institute of Scientific and Technical Information of China (English)

    向晶; 周明利; 谢荣俊; 张树友

    2012-01-01

    目的:探索诱导并建立人乳腺癌MCF-7放射耐受细胞亚株的体外实验方法.方法:体外培养MCF-7细胞株,应用梯度递增的X线对MCF-7进行诱导照射,照射剂量达到59Gy时,得到放射耐受细胞亚株(MCF-7R),扫描电镜和透射电镜观察亲本株MCF-7与放射耐受细胞亚株MCF-7R细胞超微结构,流式细胞仪检测其细胞周期分布,集落形成实验检测其放射敏感性,并计算存活分数,多靶单击模型拟合细胞存活曲线.结果:与MCF-7相比,MCF-7R外形及细胞器均出现明显改变;G2/M期比例明显降低;(13.32%vs.9.43%)放射敏感性参数SF2即照射2 Gy时的细胞存活分数升高34%(P<0.001),准域剂量Dq值由2.261 Gy升高至3.695 Gy(P<0.05),平均致死剂量Do值由1.215 Gy升高至1.834 Gy(P<0.05).结论:照射剂量梯度递增法是可行的建立人乳腺癌放射耐受细胞亚株的方法,得到的放射耐受亚株细胞形态及细胞生物学特性与亲本株细胞相比较有明显差异.%Objectives: To induce and establish breast cancer cell sublines with radiation resistance in MCF-7. Methods: Breast cancer cell MCF-7 cells were repeatedly given individual doses of X-rays with liner accelerator to induce radiation resistance with adequate dosage. The intracellular ultrastnicture of the strains was observed through scanning electron microscopy and transmission electron microscopy. The cell cycle distribution was examined by flow cytometry. Cell radiosensitivity as assayed by colony formation assay, and the survival fraction was calculated. The multi-target model that fit the cell survival curve was selected. Results: At the same irradiation condition and radiation dose, the radio-resistant sub-cell MCF-7R showed significant morphological changes, such as shape and organelles, compared with the parent strain MCF-7. Cell cycle analysis showed that MCF-7R had lower Percentage G2/ M and slower proliferation tendency. Cell clone analysis demonstrated that MCF-7R had

  3. Resistance to the ionizing radiation in cells of human melanoma. Role of the antioxidant enzymes and of the free radicals of the oxygen

    International Nuclear Information System (INIS)

    The malignant melanoma is a highly aggressive and potentially lethal type of skin cancer. Previously we have reported that the cellular human lines of melanoma WM35 and M15 are resistant to the ionizing radiation (IR). The histamine (HA) although it has a regulator effect of the cellular proliferation in these lines, it is not capable of to modify the response to the IR like it makes with other malignant cellular lines. To investigate the bases of the radioresistance of the melanoma lines we have studied in the WM35 the production of free radicals of oxygen (ROS), the activity of the antioxidant enzymes and their modifications by action of the IR and of the HA. In studies in vitro the cells were treated with HA 10 μM from 20 hs before being irradiated with a dose of 2 Gy (source 137Cs, dose rate 7.7 Gy/min). The ROS levels, superoxide anion (O2-) and hydrogen peroxide (H2O2) its were measured by flow cytometry using fluorescent coloring and the activity of dismutase superoxide (SOD), Catalase (CAT) and Glutathion Peroxidase (GPx) its were determined by spectrophotometric techniques and the protein levels by Western blot. The results indicate that in the cells WM35 the HA increases the production of H2O2 in 96% and it diminishes lightly (17%) the levels of O2- . On the contrary, the IR diminishes the levels of H2O-2 in 47% and it increases in 46% those of O2-. In the irradiated cells the HA power the decrease of H2O2 produced by the IR. The variation of the enzymes activity is coincident with these changes in the levels of ROS: the treatment with HA increases the activity of SOD and it diminishes that of CAT in cells without irradiating; on the other hand, in the irradiated cells the HA it diminishes the SOD significantly. On the base of these results we can conclude that the levels of H2O2 are directly related with the sensitivity of the cells WM35 to the IR. The HA is able to modulate the activity of the antioxidant enzymes and the levels of ROS. The IR activates

  4. Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, Kira S.; Omelchenko, Marina V.; Gaidamakova, Elena K.; Matrosova, Vera Y.; Vasilenko, Alexander; Zhai, Min; Lapidus, Alla; Copeland, Alex; Kim, Edwin; Land, Miriam; Mavrommatis, Konstantinos; Pitluck, Samuel; Richardson, Paul M.; Detter, Chris; Brettin, Thomas; Saunders, Elizabeth; Lai, Barry; Ravel, Bruce; Kemner, Kenneth M.; Wolf, Yuri I.; Sorokin, Alexander; Gerasimova, Anna V.; Gelfand, Mikhail S.; Fredrickson, James K.; Koonin, Eugene V.; Daly, Michael J.

    2007-07-24

    Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at itsoptimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to

  5. Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, Kira S. [National Center for Biotechnology Information; Omelchenko, Marina [National Center for Biotechnology Information; Gaidamakova, Elena [Uniformed Services University of the Health Sciences (USUHS); Matrosova, Vera [Uniformed Services University of the Health Sciences (USUHS); Vasilenko, Alexander [Uniformed Services University of the Health Sciences (USUHS); Zhai, Min [Uniformed Services University of the Health Sciences (USUHS); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Kim, Edwin [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Pitluck, Samual [U.S. Department of Energy, Joint Genome Institute; Richardson, P M [U.S. Department of Energy, Joint Genome Institute; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Brettin, Tom [Los Alamos National Laboratory (LANL); Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Lai, Barry [Argonne National Laboratory (ANL); Ravel, Bruce [Argonne National Laboratory (ANL); Kemner, Kenneth M [Argonne National Laboratory (ANL); Wolf, Yuri [National Center for Biotechnology Information; Sorokin, Alexei [Genetique Microbienne; Gerasimova, Anna [Research Institute of Genetics and Selection of Industrial Microorganisms, Mosco; Gelfand, Mikhail [Moscow State University; Fredrickson, James K [Pacific Northwest National Laboratory (PNNL); Koonin, Eugene [National Center for Biotechnology Information; Daly, Michael [Uniformed Services University of the Health Sciences (USUHS)

    2007-01-01

    Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to

  6. Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks.

    Directory of Open Access Journals (Sweden)

    Kira S Makarova

    Full Text Available Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR, ultraviolet light (UV and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and

  7. Genetic variation in resistance to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, F.J.

    1989-01-01

    The very reactive superoxide anion O[sub 2] is generated during cell respiration as well as during exposure to ionizing radiation. Organisms have evolved different mechanisms to protect against the deleterious effects of reduced oxygen species. The copper-zinc superoxide dismutase is a eukaryotic cytoplasmic enzyme that protects the cell by scavenging superoxide radicals and dismutating them to hydrogen peroxide and molecular oxygen: 20[sub 2][sup [minus

  8. Radiation-Resistant Vegetative Bacteria in a Proposed System of Radappertization of Meats

    International Nuclear Information System (INIS)

    After irradiation in the frozen state with 1 Mrad fresh minced pork or chicken contained approximately 10 - 100 colony-forming units of highly radiation resistant asporogenous bacteria per gram. Some of these had greater radiation resistance than Clostridium botulinum spores. Much of the radiation resistance was apparent as a shoulder in the death curve, which was markedly reduced by heating prior or subsequent to irradiation. Nature of the meat, such as variation in fat content (5-44%), had no significant effect on the radiation resistance of bacteria therein. Even though these bacteria were isolated from meat, it was not a favourable microenvironment for their growth. The water activity was too low. Heat sensitivity of isolates indicated the pre-irradiation enzyme inactivation treatment required for radappertization of meats would destroy or injure most vegetative cells. Thus, the combined process of heat, irradiation, and unfavourable microenvironment would ensure that these radiation resistant cells would not be a problem in radappertized meats. (author)

  9. Radiation resistant multicomponent inorganic materials for homogeneous EM-calorimeters

    International Nuclear Information System (INIS)

    With the development of a new generation of particle accelerators the interest for radiation resistant materials using for EM-calorimeters capable of withstanding a high radiation environment (107 rad/yr) has been increasing. The radiation resistance of fluoride solid solutions and heavy crystal oxides is investigated. A series of multicomponent crystals, solid solutions on the base of CeF2 and CdF2 with the radiation resistance above 109 rad is presented. 24 refs.; 4 figs

  10. Treatment Resistance Mechanisms of Malignant Glioma Tumor Stem Cells

    International Nuclear Information System (INIS)

    Malignant gliomas are highly lethal because of their resistance to conventional treatments. Recent evidence suggests that a minor subpopulation of cells with stem cell properties reside within these tumors. These tumor stem cells are more resistant to radiation and chemotherapies than their counterpart differentiated tumor cells and may underlie the persistence and recurrence of tumors following treatment. The various mechanisms by which tumor stem cells avoid or repair the damaging effects of cancer therapies are discussed

  11. Treatment Resistance Mechanisms of Malignant Glioma Tumor Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Schmalz, Philip G.R. [Surgical and Molecular Neuro-Oncology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 (United States); Howard Hughes Medical Institute, National Institutes of Health Research Scholars Program, Bethesda, MD 20892 (United States); Shen, Michael J.; Park, John K., E-mail: parkjk@ninds.nih.gov [Surgical and Molecular Neuro-Oncology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 (United States)

    2011-02-10

    Malignant gliomas are highly lethal because of their resistance to conventional treatments. Recent evidence suggests that a minor subpopulation of cells with stem cell properties reside within these tumors. These tumor stem cells are more resistant to radiation and chemotherapies than their counterpart differentiated tumor cells and may underlie the persistence and recurrence of tumors following treatment. The various mechanisms by which tumor stem cells avoid or repair the damaging effects of cancer therapies are discussed.

  12. Low-dose radiation enhances susceptibility to cisplatin in resistant ovarian cancer cells via downregulation of ERCC1 and Bcl-2

    Institute of Scientific and Technical Information of China (English)

    Xiaoran Liu; Donghai Liang; Tao Jiang; Qing Dong; Hongsheng Yu 

    2016-01-01

    Objective Ovarian cancer is one of the leading causes of mortality in patients with malignant gyneco-logical tumors. After surgical intervention for ovarian cancer, cisplatin (DDP)-based chemotherapy is the first-line treatment. However, a major chal enge to treating ovarian cancer is the development of chemore-sistance. Thus, the first aim of this study was to determine whether low-dose radiation could enhance the susceptibility of resistant ovarian cancer cel s to DDP. The second aim was to provide new strategies for treating DDP-resistant ovarian cancer by examining its mechanism. Methods A cel counting kit-8 (CCK8) assay was performed to measure cel proliferation. Flow cytometry was utilized to quantify the apoptosis of DDP-resistant ovarian cancer cel s (SKOV3/DDP) using Annexin V and propidium iodide staining. Real-time quantitative (qPCR) was used to analyze the messenger RNA (mRNA) expression levels of excision repair cross complementing-group 1 (ERCC1) and B-cel lymphoma 2 (Bcl-2) in SKOV3/DDP. Results The IC50 values of the control, conventional-dose, and low-dose groups were 9.367 ± 0.16, 9.289 ± 0.16, and 3.847 ± 0.15, respectively (P Conclusion Low-dose radiation enhanced the sensitivity of resistant ovarian cancer cel s to DDP, pos-sibly by decreasing the DNA repair capacity of tumor cel s and promoting apoptosis.

  13. A Novel Radiation-Resistant Strain of Filobasidium sp. Isolated from the West Sea of Korea

    International Nuclear Information System (INIS)

    A novel radiation-resistant Filobasidium sp. yeast strain was isolated from seawater. Along with this strain, a total of 656 yeast isolates were purified from seawater samples collected from three locations in the West Sea of Korea and assessed for their radiation tolerance. Among these isolates, five were found to survive a 5 kGy radiation dose. The most radiation resistant strain was classified as Filobasidium sp. based on 18S rDNA sequence analysis and hence was named Filobasidium RRY1 (Radiation-Resistant Yeast 1). RRY1 differed from F. elegans, which is closely related to RRY1, in terms of the optimal growth temperature and radiation resistance, and was resistant to high doses of γ-ionizing radiation (D10: 6-7 kGy). When exposed to a high dose of 3 kGy irradiation, the RRY1 cells remained intact and undistorted, with negligible cell death. When these irradiated cells were allowed to recover, the cells fully repaired their genomic DNA within 3 h of growth recovery. This is the first report in which a radiation-resistant response has been investigated at the physiological, morphological, and molecular levels in a strain of Filobasidium sp. (author)

  14. Measuring The Contact Resistances Of Photovoltaic Cells

    Science.gov (United States)

    Burger, D. R.

    1985-01-01

    Simple method devised to measure contact resistances of photovoltaic solar cells. Method uses readily available equipment and applicable at any time during life of cell. Enables evaluation of cell contact resistance, contact-end resistance, contact resistivity, sheet resistivity, and sheet resistivity under contact.

  15. ABC transporter activity linked to radiation resistance and molecular subtype in pediatric medulloblastoma

    OpenAIRE

    Ingram, Wendy J; Crowther, Lisa M.; Little, Erica B; Freeman, Ruth; Harliwong, Ivon; Veleva, Desi; Hassall, Timothy E; Remke, Marc; Taylor, Michael D.; Hallahan, Andrew R

    2013-01-01

    Background Resistance to radiation treatment remains a major clinical problem for patients with brain cancer. Medulloblastoma is the most common malignant brain tumor of childhood, and occurs in the cerebellum. Though radiation treatment has been critical in increasing survival rates in recent decades, the presence of resistant cells in a substantial number of medulloblastoma patients leads to relapse and death. Methods Using the established medulloblastoma cell lines UW228 and Daoy, we devel...

  16. Radiation Resistance Studies of Amorphous Silicon Alloy Photovoltaic Materials

    Science.gov (United States)

    Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys was investigated. A number of different device structures were irradiated with 1.0 MeV protons. The cells were insensitive to proton fluences below 1E12 sq cm. The parameters of the irradiated cells were restored with annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters for fluences below lE14 sq cm require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed in dark I-V measurements. The current mechanisms were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  17. Corrosion resistant PEM fuel cell

    Science.gov (United States)

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2002-01-01

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  18. Radiation resistance of microorganisms on unsterilized infusion sets

    DEFF Research Database (Denmark)

    Christensen, E. Ahrensburg; Kristensen, H.; Hoborn, J.;

    1991-01-01

    Three different methods were used for detecting and isolating microorganisms with high radiation resistance from the microbial contamination on infusion sets prior to sterilization. By all three methods, microorganisms with a radiation resistance high enough to be a critical factor in a steriliza......Three different methods were used for detecting and isolating microorganisms with high radiation resistance from the microbial contamination on infusion sets prior to sterilization. By all three methods, microorganisms with a radiation resistance high enough to be a critical factor...

  19. Radiation resistant modified polypropylene; Polipropylen modyfikowany odporny radiacyjnie

    Energy Technology Data Exchange (ETDEWEB)

    Bojarski, J.; Zimek, Z. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1997-10-01

    Radiation technology for production of radiation resistant polypropylene for medical use has been presented. The method consists in radiation induced copolymerization of polypropylene with ethylene and addition of small amount of copolymer of polyethylene and vinyl acetate. The material of proposed composition has a very good mechanical properties and elevated radiation resistivity decided on possibility of radiosterilization of products made of this material and designed for medical use. 3 figs, 3 tabs.

  20. p53 mutations increase resistance to ionizing radiation

    International Nuclear Information System (INIS)

    Mouse and human tumors of diverse origin frequently have somatically acquired mutations or rearrangements of the p53 gene, or they have lost one or both copies of the gene. Although wild-type p53 protein is believed to function as a tumor-suppressor gene, it is as yet unclear how p53 mutations lead to neoplastic development. Wild-type p53 has been postulated to play a role in DNA repair, suggesting that expression of mutant forms of p53 might alter cellular resistance to the DNA damage caused by γ radiation. Moreover, p53 is thought to function as a cell cycle checkpoint after irradiation, also suggesting that mutant p53 might change the cellular proliferative response to radiation. The authors have used transgenic mice expressing one of two mutant alleles of p53 to test this prediction. Their results show that expression of both mutant variants of the mouse p53 gene significantly increases the cellular resistance of a variety of hematopoietic cell lineages to γ radiation. These observations provide direct evidence that p53 mutations affect the cellular response to DNA damage, either by increasing DNA repair processes or, possibly, by increasing cellular tolerance to DNA damage. The association of p53 mutations with increased radioresistance suggests possible mechanisms through which alterations in the p53 gene might lead to oncogenic transformation. 53 refs., 5 figs

  1. Effects of T cell depletion in radiation bone marrow chimeras. II. Requirement for allogeneic T cells in the reconstituting bone marrow inoculum for subsequent resistance to breaking of tolerance

    International Nuclear Information System (INIS)

    The ability of normal recipient-type lymphocytes to break tolerance in long-term allogenic radiation chimeras has been investigated. Reconstitution of lethally irradiated mice with a mixture of syngeneic and allogeneic T cell-depleted (TCD) bone marrow (BM) has previously been shown to lead to mixed chimerism and permanent, specific tolerance to donor and host alloantigen (3-5). If allogeneic T cells are not depleted from the reconstituting inoculum, complete allogeneic chimerism results; however, no clinical evidence for GVHD is observed, presumably due to the protective effect provided by syngeneic TCD BM. This model has now been used to study the effects of allogenic T cells administered in reconstituting BM inocula on stability of long-term tolerance. We have attempted to break tolerance in long-term chimeras originally reconstituted with TCD or non-TCD BM by challenging them with inocula containing normal, nontolerant recipient strain lymphocytes. tolerance was broken with remarkable ease in recipients of mixed marrow inocula in which both original BM components were TCD. In contrast, tolerance in chimeras originally reconstituted with non-TCD allogeneic BM was not affected by such inocula. Susceptibility to loss of chimerism and tolerance was not related to initial levels of chimerism per se, but rather to T cell depletion of allogeneic BM, since chimeras reconstituted with TCD allogeneic BM alone (mean level of allogeneic chimerism 98%) were as susceptible as mixed chimeras to the tolerance-breaking effects of such inocula. The possible contribution of GVH reactivity to this resistance was investigated using an F1 into parent strain combination. In these animals, the use of non-TCD F1 BM inocula for reconstitution did not lead to resistance to the tolerance-breaking effects of recipient strain splenocytes

  2. A novel radiation-resistant strain of Filobasidium sp. isolated from the West Sea of Korea.

    Science.gov (United States)

    Singh, Harinder; Kim, Haram; Song, Hyunpa; Joe, Minho; Kim, Dongho; Bahn, Yong-Sun; Choi, Jong-Il; Lim, Sangyong

    2013-11-28

    A novel radiation-resistant Filobasidium sp. yeast strain was isolated from seawater. Along with this strain, a total of 656 yeast isolates were purified from seawater samples collected from three locations in the West Sea of Korea and assessed for their radiation tolerance. Among these isolates, five were found to survive a 5 kGy radiation dose. The most radiationresistant strain was classified as Filobasidium sp. based on 18S rDNA sequence analysis and hence was named Filobasidium RRY1 (Radiation-Resistant Yeast 1). RRY1 differed from F. elegans, which is closely related to RRY1, in terms of the optimal growth temperature and radiation resistance, and was resistant to high doses of γ-ionizing radiation (D10: 6-7 kGy). When exposed to a high dose of 3 kGy irradiation, the RRY1 cells remained intact and undistorted, with negligible cell death. When these irradiated cells were allowed to recover, the cells fully repaired their genomic DNA within 3 h of growth recovery. This is the first report in which a radiation-resistant response has been investigated at the physiological, morphological, and molecular levels in a strain of Filobasidium sp.

  3. Genetic resistance in experimental autoimmune encephalomyelitis. I. Analysis of the mechanism of LeR resistance using radiation chimeras

    International Nuclear Information System (INIS)

    Experimental autoimmune encephalomyelitis (EAE) is a cell-mediated autoimmune disease of the central nervous system that has been extensively studied in the rat. The Lewis rat is highly susceptible to the induction of EAE, while the Lewis resistant (LeR) rat is known to be resistant. In this paper, we demonstrate that the LeR rat, which was derived from the Lewis strain by inbreeding of fully resistant animals, is histocompatible with the Lewis strain. Radiation chimeras, a tool for distinguishing between immunologic and nonimmunologic resistance mechanisms, were utilized to analyze the cellular mechanisms involved in genetic resistance to EAE. By transplanting bone marrow cells from LeR rats into irradiated Lewis recipients, Lewis rats were rendered resistant to EAE induction. Likewise, transplanting Lewis bone marrow cells into irradiated LeR recipients rendered LeR rats susceptible. Mixed lymphoid cell chimeras using bone marrow, spleen, and thymus cells in Lewis recipient rats revealed individual lymphoid cell types and cell interactions that significantly affected the incidence and severity of EAE. Our results suggest that LeR resistance is mediated by hematopoietic/immune cells, and that cells located in the spleen appear to play a critical role in the resistance/susceptibility to EAE induction. Depletion of splenic adherent cells did not change the patterns of EAE resistance. In vivo cell mixing studies suggested the presence of a suppressor cell population in the LeR spleen preparations which exerted an inhibitory effect on Lewis autoimmune responses. Thus, the mechanism of LeR resistance appears to be different from that in other EAE-resistant animals

  4. Radiation resistant optical fiber for FBG based sensing

    OpenAIRE

    Pal, A.; Dhar, A.; Sen, R; Ams, M.; Sun, T.; Grattan, K.T.V.

    2013-01-01

    Radiation-resistant optical fibers have been fabricated through MCVD process. The low radiation-induced-absorption in the fiber and few picometer shifting of Bragg-wavelength of the FBG under γ-exposure indicate its potential application for sensing in radiation environment.

  5. Genetic variation in resistance to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, F.J.

    1992-01-01

    Results of an investigation of the gene coding for Cu, Zn superoxide dismutase (Sod) in Drosophila melanogaster seeking to understand the enzyme's role in cell protection against ionizing radiation are reported. Components of the investigation include molecular characterization of the gene; measuring the response of different genotypes to increasing levels of radiation; and investigation of the processes that maintain the Sod polymorphism in populations. While two alleles, S and F, are commonly found at the Sod locus in natural populations of D. melanogaster we have isolated from a natural population a null (CA1) mutant that yields only 3.5% of normal SOD activity. The S, F, and CA1 alleles provide a model system to investigate SOD-dependent radioresistance, because each allele yields different levels of SOD, so that S > F >> CAl. The radioprotective effects of SOD can be established by showing protective effects for the various genotypes that correspond to those inequalities. Because the allele variants studied are derived from natural populations, the proposed investigation avoids problems that arise when mutants obtained my mutagenesis are used. Moreover, each allele is studied in multiple genetic backgrounds, so that we correct for effects attributable to other loci by randomizing these effects.

  6. Cell Phone RF Radiation

    Science.gov (United States)

    Abdul-Razzaq, Wathiq

    2015-01-01

    In a recent article in "Physics Today," Meredith and Redish emphasized the need to make introductory physics courses beneficial for life sciences majors. In this study, a lab activity is proposed to measure the intensity of electromagnetic waves emitted by cell phones and connect these measurements to various standards, biological…

  7. Multidrug resistance in tumour cells: characterisation of the multidrug resistant cell line K562-Lucena 1

    Directory of Open Access Journals (Sweden)

    VIVIAN M. RUMJANEK

    2001-03-01

    Full Text Available Multidrug resistance to chemotherapy is a major obstacle in the treatment of cancer patients. The best characterised mechanism responsible for multidrug resistance involves the expression of the MDR-1 gene product, P-glycoprotein. However, the resistance process is multifactorial. Studies of multidrug resistance mechanisms have relied on the analysis of cancer cell lines that have been selected and present cross-reactivity to a broad range of anticancer agents. This work characterises a multidrug resistant cell line, originally selected for resistance to the Vinca alkaloid vincristine and derived from the human erythroleukaemia cell K562. This cell line, named Lucena 1, overexpresses P-glycoprotein and have its resistance reversed by the chemosensitisers verapamil, trifluoperazine and cyclosporins A, D and G. Furthermore, we demonstrated that methylene blue was capable of partially reversing the resistance in this cell line. On the contrary, the use of 5-fluorouracil increased the resistance of Lucena 1. In addition to chemotherapics, Lucena 1 cells were resistant to ultraviolet A radiation and hydrogen peroxide and failed to mobilise intracellular calcium when thapsigargin was used. Changes in the cytoskeleton of this cell line were also observed.A resistência a múltiplos fármacos é o principal obstáculo no tratamento de pacientes com câncer. O mecanismo responsável pela resistência múltipla mais bem caracterizado envolve a expressão do produto do gene MDR-1, a glicoproteína P. Entretanto, o processo de resistência tem fatores múltiplos. Estudos de mecanismos de resistência m��ltipla a fármacos têm dependido da análise de linhagens celulares tumorais que foram selecionadas e apresentam reatividade cruzada a uma ampla faixa de agentes anti-tumorais. Este trabalho caracteriza uma linhagem celular com múltipla resistência a fármacos, selecionada originalmente pela resistência ao alcalóide de Vinca vincristina e derivado

  8. Tumour microenvironment and radiation response in sarcomas originating from tumourigenic human mesenchymal stem cells

    DEFF Research Database (Denmark)

    D'Andrea, Filippo Peder; Safwat, Akmal Ahmed; Burns, Jorge S.;

    2012-01-01

    Background: Resistance to radiation therapy remains a serious impediment to cancer therapy. We previously reported heterogeneity for clonogenic survival when testing in vitro radiation resistance among single cell derived clones from a human mesenchymal cancer stem cell model (hMSC). Here we aimed...

  9. Resistance to BN myelogenous leukemia in rat radiation chimeras

    International Nuclear Information System (INIS)

    Lewis → LBNFl rat radiation chimeras showed marked resistance to transplanted BN myelogenous leukemia when compared to naive LBNFl, LBNFl → LBNFl, or BN → LBNFl. This occurred in the absence of overt graft versus host disease or of anti-BN response in mixed lymphocyte culture. Bone marrow specific antigens may serve as the target of the resistance mechanism. (author)

  10. Space radiation effects on plant and mammalian cells

    Science.gov (United States)

    Arena, C.; De Micco, V.; Macaeva, E.; Quintens, R.

    2014-11-01

    The study of the effects of ionizing radiation on organisms is related to different research aims. The current review emphasizes the studies on the effects of different doses of sparsely and densely ionizing radiation on living organisms, with the final purpose of highlighting specific and common effects of space radiation in mammals and plants. This topic is extremely relevant in the context of radiation protection from space environment. The response of different organisms to ionizing radiation depends on the radiation quality/dose and/or the intrinsic characteristics of the living system. Macromolecules, in particular DNA, are the critical targets of radiation, even if there is a strong difference between damages encountered by plant and mammalian cells. The differences in structure and metabolism between the two cell types are responsible for the higher resistance of the plant cell compared with its animal counterpart. In this review, we report some recent findings from studies performed in Space or on Earth, simulating space-like levels of radiation with ground-based facilities, to understand the effect of ionizing radiation on mammalian and plant cells. In particular, our attention is focused on genetic alterations and repair mechanisms in mammalian cells and on structures and mechanisms conferring radioresistance to plant cells.

  11. Radiation Effects of Commercial Resistive Random Access Memories

    Science.gov (United States)

    Chen, Dakai; LaBel, Kenneth; Berg, Melanie; Wilcox, Edward; Kim, Hak; Phan, Anthony; Figueiredo, Marco; Buchner, Stephen; Khachatrian, Ani; Roche, Nicolas

    2014-01-01

    We present results for the single-event effect response of commercial production-level resistive random access memories. We found that the resistive memory arrays are immune to heavy ion-induced upsets. However, the devices were susceptible to single-event functional interrupts, due to upsets from the control circuits. The intrinsic radiation tolerant nature of resistive memory makes the technology an attractive consideration for future space applications.

  12. Thermal radiosensitization in radiation-sensitive mutant mouse leukemic cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Toshikazu (Hiroshima Univ. (Japan). School of Dentistry)

    1994-06-01

    This study investigated thermal, radiation, and combined thermal radiation sensitization of mouse leukemic cells, L5178Y, and radiation-sensitive mutant cells, LX830. Radiation sensitivity (D[sub 0]) values were 0.41 Gy for LX830 and 1.39 Gy for L5178Y, with the ratio of D[sub 0] values in LX830 to in L5178Y being 3.4. Thus, LX830 was more radiosensitive than L5178Y. LX830 showed no shouldered survival curves. Although sublethal damage (SLD) repair was seen to the almost same degree in both LX830 and L5178Y, potential lethal damage (PLD) repair was scarcely observed in LX830. Both cell lines were similar in thermal sensitivity (T[sub 0]). Eosine staining suggested that cell killing due to hyperthermia had occurred in the interphase in both LX830 and L5178Y. L5178Y showed thermal sensitivity low in the G1 phase and high in the S phase; on the contrary, LX830 showed it high in the G1 phase and low in the S phase. Thermal radiosensitization was similar in both cell lines, although there was a great difference in radiation sensitivity between the cell lines. The difference in radiation sensitivity (D[sub 0]) between L5178Y and LX830 became small when radiation was given at the time of the maximum thermal resistance. This seemed to contribute to a decrease in radiation sensitivity in LX830. It can be concluded that thermal radiosensitization depends on thermal sensitivity and that radiation sensitivity decreases in radiation-sensitive cells when exposed to irradiation at the time of thermal resistance. (N.K.).

  13. A Novel Radiation-Resistant Yeast, Filobasidium elegans RRY1

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Harinder; Kim, Ha Ram; Song, Hyun Pa; Lim, Sang Yong; Kim, Dong Ho [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2012-05-15

    The tolerance to ionizing radiation stress is present among different classes and species of organisms. As listed by Rainey et al., ionizing radiation resistant organisms were isolated from a variety of different sources like processed/canned food items, paper industry, soil and water samples. Apart from extensively reported bacteria and Archea group, many fungal species like Aspergillus, Curvularia, Alternaria, Cryptococcus, and Ustilago maydis have been found to be resistant to ionizing radiation. However, different environmental sources are constantly been explored for novel radioresistant organisms, which can help in understanding the molecular mechanism behind these extreme stress responses. On the basis of this, present study was initiated to find novel radiation resistant yeast from sea water source

  14. Radiation Resistant Magnets for the RIA Fragment Separator

    CERN Document Server

    Zeller, Al; Gupta, Ramesh C; Ronningen, Reginald; Sherrill, Bradley

    2005-01-01

    The high radiation fields around the production target and the beam dump in the fragment separator at the Rare Isotope Accelerator requires that radiation resistant magnets be used. Because large apertures and high gradients are required for the quadrupoles and similar demanding requirements for the dipole and sextupoles, resistive coils are difficult to justify. The radiation heating of any materials at liquid helium temperatures also requires that superconducting versions of the magnets have low cold-masses. The final optical design has taken the practical magnets limits into account and sizes and fields adjusted to what is believed to be achievable with technology that is possible with sufficient R&D. Designs with higher obtainable current densities and having good radiation tolerances that use superconducting coils are presented, as well as the radiation transport calculations that drive the material parameters.

  15. Radiation-resistant vegetative bacteria in a proposed system of radappertization of meats

    International Nuclear Information System (INIS)

    After irradiation in the frozen state with 1 Mrad fresh minced pork or chicken contained approximately 10-100 colony-forming units of highly radiation resistant asporogenous bacteria per gram. Some of these had greater radiation resistance than Clostridium botulinum spores. Much of the radiation resistance was apparent as a shoulder in the death curve, which was markedly reduced by heating prior or subsequent to irradiation. Nature of the meat, such as variation in fat content (5-44%), had no significant effect on the radiation resistance of bacteria therein. Even though these bacteria were isolated from meat, it was not a favourable microenvironment for their growth. The water activity was too low. Heat sensitivity of isolates indicated the pre-irradiation enzyme inactivation treatment required for radappertization of meats would destroy or injure most vegetative cells. Thus, the combined process of heat, irradiation, and unfavourable microenvironment would ensure that these radiation resistant cells would not be a problem in radappertized meats. (author)

  16. Radiation curable resistant coatings and their preparation

    International Nuclear Information System (INIS)

    A prepolymer containing unsaturated hydrocarbon groups is prepared and mixed on a roller mill with one or more acrylic ester monomers and various additives to make a coating formulation of a desired viscosity. In general, low viscosity formulations are used for overprint varnishes, on paper or foil, or with pigments, for certain types of printing inks. Higher viscosity formulations are used to apply thick films on panels, tiles, or other bodies. Thin films are cured to hardness by brief exposure to ultraviolet light. Thicker films require more energetic radiation such as plasma arc and electron beam radiation. The prepolymers particularly useful for making such radiation curable coatings are the reaction products of polyether polyols and bis- or polyisocyanates and hydroxy alkenes or acrylic (or methacrylic) hydroxy esters, and, likewise, reactive polyamides modified with dicarboxy alkenes, their anhydrides or esters. A small amount of wax incorporated in the coating formulations results in coatings with release characteristics similar to those of PTFE coatings. 10 claims

  17. Stem cells in radiation and oral cancer research

    International Nuclear Information System (INIS)

    Cancer stem cells (CSCs) are defined as a small sub population of cancer cells that constitute a pool of self sustaining cells with the exclusive ability to cause the heterogeneous lineages of cancer cells that comprise the tumour. There are three main characteristics of CSCs. Initially the cell must show potent tumour initiation in that it can regenerate the tumour which it was derived from a limited number of cells. In addition, the cells should demonstrate self renewal in vivo, which is practically observed via regrowth of phenotypically indistinguishable and heterogeneous tumours following serial transplantation of re-isolated CSCs in secondary and tertiary recipients. Finally, the cells must show a differentiation capacity, allowing them to give rise to a heterogeneous progeny, which represents a phenocopy of the original tumour. This article highlights the radiation therapy resulting in radiation resistance in cancer stem cells. (author)

  18. Metal-nanotube composites as radiation resistant materials

    Science.gov (United States)

    González, Rafael I.; Valencia, Felipe; Mella, José; van Duin, Adri C. T.; So, Kang Pyo; Li, Ju; Kiwi, Miguel; Bringa, Eduardo M.

    2016-07-01

    The improvement of radiation resistance in nanocomposite materials is investigated by means of classical reactive molecular dynamics simulations. In particular, we study the influence of carbon nanotubes (CNTs) in an Ni matrix on the trapping and possible outgassing of He. When CNTs are defect-free, He atoms diffuse alongside CNT walls and, although there is He accumulation at the metal-CNT interface, no He trespassing of the CNT wall is observed, which is consistent with the lack of permeability of a perfect graphene sheet. However, when vacancies are introduced to mimic radiation-induced defects, He atoms penetrate CNTs, which play the role of nano-chimneys, allowing He atoms to escape the damaged zone and reduce bubble formation in the matrix. Consequently, composites made of CNTs inside metals are likely to display improved radiation resistance, particularly when radiation damage is related to swelling and He-induced embrittlement.

  19. SU-C-303-01: Activation-Induced Cytidine Deaminase Confers Cancer Resistance to Radiation Therapy

    International Nuclear Information System (INIS)

    Purpose: To study the role of activation-induced cytidine deaminase (AID) in malignant cell resistance to radiation therapy. Methods: We first developed several small devices that could be used to adopt radiation beams from clinical high dose rate brachy therapy (HDR) or linac-based megavoltage machines to perform pre-clinical cell and mouse experiments. Then we used these devices to deliver radiation to AID-positive and AID-silenced cancer cells or tumors formed by these cells in mice. Cells and mice bearing tumors received the same dose under the same experimental conditions. For cells, we observed the apoptosis and the cell survival rate over time. For mice bearing tumors, we measured and recorded the tumor sizes every other day for 4 weeks. Results: For cell experiments, we found that the AID-positive cells underwent much less apoptosis compared with AID-silenced cells upon radiation. And for mouse experiments, we found that AID-positive tumors grew significantly faster than the AID-silenced tumors despite of receiving the same doses of radiation. Conclusion: Our study suggests that AID may confer cancer resistance to radiation therapy, and AID may be a significant biomarker predicting cancer resistance to radiation therapy for certain cancer types

  20. SU-C-303-01: Activation-Induced Cytidine Deaminase Confers Cancer Resistance to Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yi, S [Sun Yat-Sen University, Guangzhou, Guangdong (China); La Count, S [Wittenberg University, Springfield, OH (United States); Liu, J; Bai, X; Lu, L [The Ohio State University, Columbus, OH (United States)

    2015-06-15

    Purpose: To study the role of activation-induced cytidine deaminase (AID) in malignant cell resistance to radiation therapy. Methods: We first developed several small devices that could be used to adopt radiation beams from clinical high dose rate brachy therapy (HDR) or linac-based megavoltage machines to perform pre-clinical cell and mouse experiments. Then we used these devices to deliver radiation to AID-positive and AID-silenced cancer cells or tumors formed by these cells in mice. Cells and mice bearing tumors received the same dose under the same experimental conditions. For cells, we observed the apoptosis and the cell survival rate over time. For mice bearing tumors, we measured and recorded the tumor sizes every other day for 4 weeks. Results: For cell experiments, we found that the AID-positive cells underwent much less apoptosis compared with AID-silenced cells upon radiation. And for mouse experiments, we found that AID-positive tumors grew significantly faster than the AID-silenced tumors despite of receiving the same doses of radiation. Conclusion: Our study suggests that AID may confer cancer resistance to radiation therapy, and AID may be a significant biomarker predicting cancer resistance to radiation therapy for certain cancer types.

  1. Ways of providing radiation resistance of magnetic field semiconductor sensors

    CERN Document Server

    Bolshakova, I A; Holyaka, R; Matkovskii, A; Moroz, A

    2001-01-01

    Hall magnetic field sensors resistant to hard ionizing irradiation are being developed for operation under the radiation conditions of space and in charged particle accelerators. Radiation resistance of the sensors is first determined by the properties of semiconductor materials of sensitive elements; we have used microcrystals and thin layers of III-V semiconductors. Applying complex doping by rare-earth elements and isovalent impurities in certain proportions, we have obtained magnetic field sensors resistant to irradiation by fast neutrons and gamma-quanta. Tests of their radiation resistance were carried out at IBR-2 at the Joint Institute for Nuclear Research (Dubna). When exposed to neutrons with E=0.1-13 MeV and intensity of 10 sup 1 sup 0 n cm sup - sup 2 s sup - sup 1 , the main parameter of the sensors - their sensitivity to magnetic fields - changes by no more than 0.1% up to fluences of 10 sup 1 sup 4 n cm sup - sup 2. Further improvement of radiation resistance of sensor materials is expected by ...

  2. Role of Mn2+ and Compatible Solutes in the Radiation Resistance of Thermophilic Bacteria and Archaea

    Directory of Open Access Journals (Sweden)

    Kimberly M. Webb

    2012-01-01

    Full Text Available Radiation-resistant bacteria have garnered a great deal of attention from scientists seeking to expose the mechanisms underlying their incredible survival abilities. Recent analyses showed that the resistance to ionizing radiation (IR in the archaeon Halobacterium salinarum is dependent upon Mn-antioxidant complexes responsible for the scavenging of reactive oxygen species (ROS generated by radiation. Here we examined the role of the compatible solutes trehalose, mannosylglycerate, and di-myo-inositol phosphate in the radiation resistance of aerobic and anaerobic thermophiles. We found that the IR resistance of the thermophilic bacteria Rubrobacter xylanophilus and Rubrobacter radiotolerans was highly correlated to the accumulation of high intracellular concentration of trehalose in association with Mn, supporting the model of Mn2+-dependent ROS scavenging in the aerobes. In contrast, the hyperthermophilic archaea Thermococcus gammatolerans and Pyrococcus furiosus did not contain significant amounts of intracellular Mn, and we found no significant antioxidant activity from mannosylglycerate and di-myo-inositol phosphate in vitro. We therefore propose that the low levels of IR-generated ROS under anaerobic conditions combined with highly constitutively expressed detoxification systems in these anaerobes are key to their radiation resistance and circumvent the need for the accumulation of Mn-antioxidant complexes in the cell.

  3. Radiation resistance studies of amorphous silicon films

    Science.gov (United States)

    Woodyard, James R.; Payson, J. Scott

    1989-01-01

    Hydrogenated amorphous silicon thin films were irradiated with 2.00 MeV helium ions using fluences ranging from 1E11 to 1E15 cm(-2). The films were characterized using photothermal deflection spectroscopy and photoconductivity measurements. The investigations show that the radiation introduces sub-band-gap states 1.35 eV below the conduction band and the states increase supralinearly with fluence. Photoconductivity measurements suggest the density of states above the Fermi energy is not changing drastically with fluence.

  4. Radiation-resistant acquired immunity of vaccinated mice to Schistosoma mansoni

    Energy Technology Data Exchange (ETDEWEB)

    Aitken, R.; Coulson, P.S.; Dixon, B.; Wilson, R.A.

    1987-11-01

    Vaccination of mice with attenuated cercariae of Schistosoma mansoni induces specific acquired resistance to challenge infection. This resistance is immunologically-mediated, possibly via a delayed-type hypersensitivity. Studies of parasite migration have shown that the protective mechanism operates most effectively in the lungs of vaccinated mice. We have probed the mechanism by exposing mice to 500 rads of gamma radiation before challenge infection. Our results show that the effector mechanism operative against challenge larvae is resistant to radiation. In contrast, classical immune responses are markedly suppressed by the same treatment. While leukocyte populations in the blood fall dramatically after irradiation, numbers of cells recoverable by bronchoalveolar lavage are unaffected. We suggest that vaccination with attenuated cercariae establishes populations of sensitized cells in the lungs which trigger the mechanism of resistance when challenge schistosomula migrate through pulmonary capillary beds. Although the cells may be partially disabled by irradiation, they remain responsive to worm antigens and thereby capable of initiating the elimination mechanism. This hypothesis would explain the radiation resistance of vaccine-induced immunity to S. mansoni.

  5. Radiation Resistance Test of Wireless Sensor Node and the Radiation Shielding Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liqan; Sur, Bhaskar [Atomic Energy of Canada Limited, Ontario (Canada); Wang, Quan [University of Western Ontario, Ontario (Canada); Deng, Changjian [The University of Electronic Science and Technology, Chengdu (China); Chen, Dongyi; Jiang, Jin [Applied Physics Branch, Ontario (Korea, Republic of)

    2014-08-15

    A wireless sensor network (WSN) is being developed for nuclear power plants. Amongst others, ionizing radiation resistance is one essential requirement for WSN to be successful. This paper documents the work done in Chalk River Laboratories of Atomic Energy of Canada Limited (AECL) to test the resistance to neutron and gamma radiation of some WSN nodes. The recorded dose limit that the nodes can withstand before being damaged by the radiation is compared with the radiation environment inside a typical CANDU (CANada Deuterium Uranium) power plant reactor building. Shielding effects of polyethylene, cadmium and lead to neutron and gamma radiations are also analyzed using MCNP simulation. The shielding calculation can be a reference for the node case design when high dose rate or accidental condition (like Fukushima) is to be considered.

  6. Development of application technology of radiation-resistant microorganism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Ho; Lim, Sang Yong; Joe, Min Ho; Jung, Jin Woo; Jung, Sun Wook; Song, Du Sup; Choi, Young Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-02-15

    The scope of the project is divided into of three parts; (i) to define the survival strategy of radiation-resistant microbes, especially Deinococcus (ii) acquisition of gene resources encoding the novel protein and related with the production of functional materials (iii) development of control technology against radiation-resistant microbes. To this aim, first, the whole transcriptional response of the D. radiodurans strain haboring pprI mutation, which plays an important role in radiation resistance, was analyzed by cDNA microarray. The anti-oxidant activity of the major carotenoid of D. radiodurans, deinoxanthin, was analyzed and the strain was constructed, in which the gene necessary for bio- synthesis of deinoxanthin is deleted. The response to cadmium of D. radiodurans was also investigated through cDNA microarray analysis. Radiogenic therapy, one of the cancer treatments, is designed to use radiation-inducible gene for the treatment. To develop the gene-transfer vehicle for radiogenic therapy, we have investigated the virulence mechanism of Salmonella, which is tumor-targeting bacteria and studied the synergistic effect of some anti-cancer agents on radiation treatment for cancer. Finally, we confirmed that irradiation could decompose a fungus toxin, patulin, into various harmless by-products.

  7. Epicatechin stimulates mitochondrial activity and selectively sensitizes cancer cells to radiation.

    Directory of Open Access Journals (Sweden)

    Hosam A Elbaz

    Full Text Available Radiotherapy is the treatment of choice for solid tumors including pancreatic cancer, but the effectiveness of treatment is limited by radiation resistance. Resistance to chemotherapy or radiotherapy is associated with reduced mitochondrial respiration and drugs that stimulate mitochondrial respiration may decrease radiation resistance. The objectives of this study were to evaluate the potential of (--epicatechin to stimulate mitochondrial respiration in cancer cells and to selectively sensitize cancer cells to radiation. We investigated the natural compound (--epicatechin for effects on mitochondrial respiration and radiation resistance of pancreatic and glioblastoma cancer cells using a Clark type oxygen electrode, clonogenic survival assays, and Western blot analyses. (--Epicatechin stimulated mitochondrial respiration and oxygen consumption in Panc-1 cells. Human normal fibroblasts were not affected. (--Epicatechin sensitized Panc-1, U87, and MIA PaCa-2 cells with an average radiation enhancement factor (REF of 1.7, 1.5, and 1.2, respectively. (--Epicatechin did not sensitize normal fibroblast cells to ionizing radiation with a REF of 0.9, suggesting cancer cell selectivity. (--Epicatechin enhanced Chk2 phosphorylation and p21 induction when combined with radiation in cancer, but not normal, cells. Taken together, (--epicatechin radiosensitized cancer cells, but not normal cells, and may be a promising candidate for pancreatic cancer treatment when combined with radiation.

  8. [Role of constitutive and inducible repair in radiation resistance of Escherichia coli].

    Science.gov (United States)

    Gulevich, E P; Kuznetsova, V N; Verbenko, V N

    2011-07-01

    Radiation resistance of Escherichia coil cells depends on how efficiently DNA is recovered after damage, which is determined by the function of constitutive and inducible repair branches. The effects of additional mutations of the key genes of constitutive and inducible repair (recA, lexA, recB, polA, lig, gyr, recE, recO, recR, recJ, recQ, uvrD, helD, recN, and ruv) on radiation resistance were studied in E. coli K-12 strain AB 1157 and highly radiation-resistant isogenic strain Gam(r)444. An optimal balance ensuring a high gamma resistance of the Gam(r)444 radiation-resistant E. coli mutant was due to expression of the key SOS repair genes (recA, lexA, recN, and ruv) and activation of the presynaptic functions of the RecF homologous recombination pathway as a result of a possible mutation of the uvrD gene, which codes for repair helicase II. PMID:21938951

  9. Radiation Changes the Metabolic Profiling of Melanoma Cell Line B16

    Science.gov (United States)

    Yu, Yating; Liang, Wei; Zheng, Qinghui; Huang, Xianing; Huang, Yong; Lu, Xiaoling; Zhao, Yongxiang

    2016-01-01

    Radiation therapy can be an effective way to kill cancer cells using ionizing radiation, but some tumors are resistant to radiation therapy and the underlying mechanism still remains elusive. It is therefore necessary to establish an appropriate working model to study and monitor radiation-mediated cancer therapy. In response to cellular stress, the metabolome is the integrated profiling of changes in all metabolites in cells, which can be used to investigate radiation tolerance mechanisms and identify targets for cancer radiation sensibilization. In this study, using 1H nuclear magnetic resonance for untargeted metabolic profiling in radiation-tolerant mouse melanoma cell line B16, we comprehensively investigated changes in metabolites and metabolic network in B16 cells in response to radiation. Principal component analysis and partial least squares discriminant analysis indicated the difference in cellular metabolites between the untreated cells and X-ray radiated cells. In radiated cells, the content of alanine, glutamate, glycine and choline was increased, while the content of leucine, lactate, creatine and creatine phosphate was decreased. Enrichment analysis of metabolic pathway showed that the changes in metabolites were related to multiple metabolic pathways including the metabolism of glycine, arginine, taurine, glycolysis, and gluconeogenesis. Taken together, with cellular metabolome study followed by bioinformatic analysis to profile specific metabolic pathways in response to radiation, we deepened our understanding of radiation-resistant mechanisms and radiation sensibilization in cancer, which may further provide a theoretical and practical basis for personalized cancer therapy. PMID:27631970

  10. Mutant radiation-resistance alleles from the Escherichia coli Gamr444 mutant: Cloning and preliminary characterization

    International Nuclear Information System (INIS)

    Mutant alleles Gamr, which are able to increase the resistance to radiation of Escherichia coli wild-type cells, were cloned from the hyperradioresistant mutant Gamr444 on plasmid mini-Mu-vector MudII4042. The influence of recombinant plasmids on the sensitivity of wild-type and mutant (recA and htpR) cells to γ-irradiation was studied. It was shown that the enhanced resistance of the Gamr444 strain to radiation was caused by mutations of two different classes, dominant and recessive. The cloned recessive mutation gamr12 increases resistance to radiation only after homogenotization, that is, radiation-induced transfer from the plasmid to the chromosome, and it imposes constitutive expression of the heat-shock promoter htpG. Dominant mutant gamr alleles are active in the trans-position. A mutation-insertion into a chromosomal gene impaired by one of the dominant mutations, gamr18, was constructed. The insertion causes drastic cell radiosensitization on the recBC sbcB background and probably disturbs the RecF pathway of recombination and repair. Dominant plasmids of the second type lead to the RecA-independent inhibition of DNA postirradiation degradation. The radioprotective action of recessive and dominant gamr mutations is additive

  11. Development of resistant materials to beam impact and radiation damage

    Science.gov (United States)

    Kawai, Masayoshi; Kokawa, Hiroyuki; Okamura, Hiroshi; Kawasaki, Akira; Yamamura, Tsutomu; Hara, Nobuyoshi; Akao, Noboru; Futakawa, Masatoshi; Kikuchi, Kenji

    2006-09-01

    Materials that have strong resistance to both beam impact (or shock-wave) and radiation damage are required for the beam target of an intense accelerator and space applications. Recently, Futakawa et al. found in their experiments that Kolsterising specimens have a stronger resistance to pitting than SS316 CW. A similar effect can be expected for other hardening treatments, and new material development is hopeful. Accordingly, we have started the development of high-performance materials by organizing the project team from KEK, JAEA and universities. In this paper, the scope of the project is introduced. Recent topics involve the development of intergranular crack (IGC)-resistant austenitic stainless-steel, AlN-TiN ceramics and cladding techniques of thin tantalum or CrN film on a tungsten target by means of a molten-salt method and ion-beam-enhanced deposition. New observations on corrosion resistance are presented.

  12. The sensitivity of human mesenchymal stem cells to ionizing radiation

    International Nuclear Information System (INIS)

    Purpose: Recent studies have shown that mesenchymal stem cells (MSCs) obtained from bone marrow transplantation patients originate from the host. This clinical observation suggests that MSCs in their niches could be resistant to irradiation. However, the biologic responses of bone marrow MSCs to irradiation have rarely been described in the literature. Methods and Materials: In this study, human bone marrow-derived, clonally expanded MSCs were used to investigate their sensitivity to irradiation in vitro, and the cellular mechanisms that may facilitate resistance to irradiation. The human lung cancer cell line A549 and the breast cancer cell line HCC1937 were used as controls for radiosensitivity; the former line has been shown to be radioresistant and the latter radiosensitive. We then examined their in vitro biologic changes and sensitivities to radiation therapy. Results: Our results suggest that MSCs are characterized as resistant to irradiation. Several cellular mechanisms were demonstrated that may facilitate resistance to irradiation: ATM protein phosphorylation, activation of cell-cycle checkpoints, double-strand break repair by homologous recombination and nonhomologous end joining (NHEJ), and the antioxidant capacity for scavenging reactive oxygen species. Conclusions: As demonstrated, MSCs possess a better antioxidant reactive oxygen species-scavenging capacity and active double-strand break repair to facilitate their radioresistance. These findings provide a better understanding of radiation-induced biologic responses in MSCs and may lead to the development of better strategies for stem cell treatment and cancer therapy

  13. Haemopoietic cell renewal in radiation fields.

    Science.gov (United States)

    Fliedner, T M; Nothdurft, W; Tibken, B; Hofer, E; Weiss, M; Kindler, H

    1994-10-01

    Space flight activities are inevitably associated with a chronic exposure of astronauts to a complex mixture of ionising radiation. Although no acute radiation consequences are to be expected as a rule, the possibility of Solar Particle Events (SPE) associated with relatively high doses of radiation (1 or more Gray) cannot be excluded. It is the responsibility of physicians in charge of the health of astronauts to evaluate before, during and after space flight activities the functional status of haemopoietic cell renewal. Chronic low level exposure of dogs indicate that daily gamma-exposure doses below about 2 cGy are tolerated for several years as far as blood cell concentrations are concerned. However, the stem cell pool may be severely affected. The maintenance of sufficient blood cell counts is possible only through increased cell production to compensate for the radiation inflicted excess cell loss. This behaviour of haemopoietic cell renewal during chronic low level exposure can be simulated by bioengineering models of granulocytopoiesis. It is possible to define a "turbulence region" for cell loss rates, below which an prolonged adaptation to increased radiation fields can be expected to be tolerated. On the basis of these experimental results, it is recommended to develop new biological indicators to monitor haemopoietic cell renewal at the level of the stem cell pool using blood stem cells in addition to the determination of cytokine concentrations in the serum (and other novel approaches). To prepare for unexpected haemopoietic effects during prolonged space missions, research should be increased to modify the radiation sensitivity of haemopoietic stem cells (for instance by the application of certain regulatory molecules). In addition, a "blood stem cell bank" might be established for the autologous storage of stem cells and for use in space activities keeping them in a radiation protected container. PMID:11539991

  14. Cell shunt resistance and photovoltaic module performance

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, T.J.; Basso, T.S.; Rummel, S.R. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    Shunt resistance of cells in photovoltaic modules can affect module power output and could indicate flawed manufacturing processes and reliability problems. The authors describe a two-terminal diagnostic method to directly measure the shunt resistance of individual cells in a series-connected module non-intrusively, without deencapsulation. Peak power efficiency vs. light intensity was measured on a 12-cell, series-connected, single crystalline module having relatively high cell shunt resistances. The module was remeasured with 0.5-, 1-, and 2-ohm resistors attached across each cell to simulate shunt resistances of several emerging technologies. Peak power efficiencies decreased dramatically at lower light levels. Using the PSpice circuit simulator, the authors verified that cell shunt and series resistances can indeed be responsible for the observed peak power efficiency vs. intensity behavior. The authors discuss the effect of basic cell diode parameters, i.e., shunt resistance, series resistance, and recombination losses, on PV module performance as a function of light intensity.

  15. Draft Genome Sequence of Kocuria rhizophila RF, a Radiation-Resistant Soil Isolate.

    Science.gov (United States)

    Mehrabadi, Jalil Fallah; Mirzaie, Amir; Ahangar, Nahid; Rahimi, Arian; Rokni-Zadeh, Hassan

    2016-01-01

    Kocuria rhizophila RF, a soil isolate from Iran, is a radiation-resistant bacterium. Only a limited amount of genomic information for radiation-resistant bacteria is currently available. Here, we report the draft genome sequence of this bacterium, providing knowledge to aid in the discovery of the genomic basis of its resistance to radiation. PMID:26966202

  16. Negative differential resistance devices for generation of terahertz radiation

    OpenAIRE

    Eisele, H.

    2015-01-01

    This paper discusses the principles of operation, state of the art, and future potential of active two-terminal devices for generation of low-noise, continuous-wave terahertz radiation. These devices use transit-time, transferred-electron, and quantum-mechanical effects (or a combination of them) to create a negative differential resistance (NDR) at the frequency of interest. Many different types of NDR devices have been proposed since the earliest days of semiconductor devices and studied in...

  17. The resistive bolometer for radiated power measurement on EAST

    International Nuclear Information System (INIS)

    The resistive bolometer system has been successfully employed on experimental advanced superconducting tokamak for the first time to measure the radiated power of plasma. The bolometer detectors are based on 4 μm thick Pt absorbers deposited on 1.5 μm thick SiN membranes. The system consists of 3 cameras with a total of 48 channels. The detector and the system setup are described in detail. The detector calibration and typical measurement results are presented as well.

  18. Designing Radiation Resistance in Materials for Fusion Energy

    Science.gov (United States)

    Zinkle, S. J.; Snead, L. L.

    2014-07-01

    Proposed fusion and advanced (Generation IV) fission energy systems require high-performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (nonstructural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials in which vacancies are immobile at the design operating temperatures, or engineer materials with high sink densities for point defect recombination. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced-activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion-strengthened options) and silicon carbide ceramic composites emerge as robust structural materials options. Materials modeling (including computational thermodynamics) and advanced manufacturing methods are poised to exert a major impact in the next ten years.

  19. Radiation resistance radiation-defensive the ferrous aggregates in the gamma fields

    International Nuclear Information System (INIS)

    Radiation resistance of ferrous aggregates on the basis of natural of magnetite concentrates KMA in powerful torrents gamma-radiances (to 25 MGy is in-process probed. Rates of propagation of cross-section ultrasonic pressure waves, Young modulus and alteration, a mechanical strength of designed aggregates are learnt. Advantage developed RPK in comparison with traditional reactor beton is established.

  20. Distributed series resistance effects in solar cells

    DEFF Research Database (Denmark)

    Nielsen, Lars Drud

    1982-01-01

    A mathematical treatment is presented of the effects of one-dimensional distributed series resistance in solar cells. A general perturbation theory is developed, including consistently the induced spatial variation of diode current density and leading to a first-order equivalent lumped resistance...... to cause an effective doubling of the "diode quality factor."...

  1. Restoration of Chinese hamster cell radiation resistance by the human repair gene ERCC-5 and progress in molecular cloning of this gene

    International Nuclear Information System (INIS)

    The uv-sensitive Chinese hamster cell uv-135 is being used to identify and isolate the human gene, ERCC-5, which corrects nucleotide excision repair in this incision-defective mutant. A cosmid library, constructed from a 30 transformant of uv-135, has been screened for transfected gpt and human Alu family sequences. An ordered physical map of overlapping positives cosmids has been determined. Molecular evidence suggests a region of this map of <40 Kbp contains the ERCC-5 gene. 10 refs., 2 figs

  2. The myth of cell phone radiation

    OpenAIRE

    Natarajan, Vasant

    2012-01-01

    We discuss the purported link between cell-phone radiation and cancer. We show that it is inconsistent with the photoelectric effect, and that epidemiological studies of any link have no scientific basis.

  3. Some resistance mechanisms to ultraviolet radiation; Algunos mecanismos de resistencia a radiacion ultravioleta

    Energy Technology Data Exchange (ETDEWEB)

    Alcantara D, D. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2002-12-15

    The cyclical exposure of bacterial cells to the ultraviolet light (UV) it has as consequence an increment in the resistance to the lethal effects of this type of radiation, increment that happens as a result of a selection process of favorable genetic mutations induced by the same UV light. With object to study the reproducibility of the genetic changes and the associate mechanisms to the resistance to UV in the bacteria Escherichia coli, was irradiated cyclically with UV light five different derived cultures of a single clone, being obtained five stumps with different resistance grades. The genetic mapping Hfr revealed that so much the mutation events like of selection that took place during the adaptation to the UV irradiation, happened of random manner, that is to say, each one of the resistant stumps it is the result of the unspecified selection of mutations arisen at random in different genes related with the repair and duplication of the DNA. (Author)

  4. The influence of the stem cell marker ALDH and the EGFR-PI3 kinase act signaling pathway on the radiation resistance of human tumor cell lines; Der Einfluss des Stammzellmarkers ALDH und des EGFR-PI3 Kinase-Akt Signalwegs auf die Strahlenresistenz humaner Tumorzelllinien

    Energy Technology Data Exchange (ETDEWEB)

    Mihatsch, Julia

    2014-07-14

    Cancer is the second leading cause of death in industriated nations. Besides surgery and chemotherapy, radiotherapy (RT) is an important approach by which about 60% of patients are treated. The response of these patients to RT is very heterogenous. On the one hand, there are patients with tumors which are radiosensitive and can be cured, but on the other hand patients bear tumors which are quite resistant to radiotherapy. A Radioresistant phenotype of tumor cells causes treatment failure consequently leading to a limited response to radiotherapy. It is proposed, that radiotherapy outcome mainly depends on the potential of radiation on controlling growth, proliferation and survival of a specific population of tumor cells called cancer stem cells (CSCs) or tumor-initiating cells. Based on experimental studies so far reported it is assumed that the population of CSC varies in tumors from different entities and is relatively low compared to the tumor bulk cells in general. According to the CSC hypothesis, it might be concluded that the differential response of tumors to radiotherapy depends on CSC populations, since these supposedly slow replicating cells are able to initiate a tumor, to self renew indefinitely and to generate the differentiated progeny of a tumor. Besides the role of cancer stem cells in radiotherapy response, ionizing radiation (IR) activates the epidermal growth factor receptor (EGFR) and its downstream signaling pathways such as phosphoinositide 3-kinase (PI3K)/Akt, mitogen-activated protein kinase (MAPK) and Janus kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathways. Among these pathways, PI3K/Akt is one of the most important pathways involved in post-irradiation survival: Activation of Akt results in activation of DNA-dependent protein kinase, catalytic subunit (DNA-PKcs). DNA-PKcs is a core enzyme involved in repair of IR-induced DNA-double strand breaks (DNA-DSB) through non-homologous end joining (NHEJ). The aim of the

  5. Live-cell luciferase assay of drug resistant cells

    OpenAIRE

    sprotocols

    2015-01-01

    To date, multiplexing cell-based assay is essential for high-throughput screening of molecular targets. Measuring multiple parameters of a single sample increases consistency and decrease time and cost of assay. Functional assay of living cell is useful as a first step of multiplexing assay, because live-cell assay allows following second assay using cell lysate or stained cell. However, live-cell assay of drug resistant cells that are highly activated of drug efflux mechanisms is sometimes u...

  6. Molecular mechanisms of bortezomib resistant adenocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Erika Suzuki

    Full Text Available Bortezomib (Velcade™ is a reversible proteasome inhibitor that is approved for the treatment of multiple myeloma (MM. Despite its demonstrated clinical success, some patients are deprived of treatment due to primary refractoriness or development of resistance during therapy. To investigate the role of the duration of proteasome inhibition in the anti-tumor response of bortezomib, we established clonal isolates of HT-29 adenocarcinoma cells adapted to continuous exposure of bortezomib. These cells were ~30-fold resistant to bortezomib. Two novel and distinct mutations in the β5 subunit, Cys63Phe, located distal to the binding site in a helix critical for drug binding, and Arg24Cys, found in the propeptide region were found in all resistant clones. The latter mutation is a natural variant found to be elevated in frequency in patients with MM. Proteasome activity and levels of both the constitutive and immunoproteasome were increased in resistant cells, which correlated to an increase in subunit gene expression. These changes correlated with a more rapid recovery of proteasome activity following brief exposure to bortezomib. Increased recovery rate was not due to increased proteasome turnover as similar findings were seen in cells co-treated with cycloheximide. When we exposed resistant cells to the irreversible proteasome inhibitor carfilzomib we noted a slower rate of recovery of proteasome activity as compared to bortezomib in both parental and resistant cells. Importantly, carfilzomib maintained its cytotoxic potential in the bortezomib resistant cell lines. Therefore, resistance to bortezomib, can be overcome with irreversible inhibitors, suggesting prolonged proteasome inhibition induces a more potent anti-tumor response.

  7. Analysis of QTL for resistance to radiation in rice

    International Nuclear Information System (INIS)

    The recombinant inbred line (RIL) population derived from rice variates Zhenshan 97B/Miyang 46 and their genetic linkage maps were used to map QTLs controlling resistant to radiation. The trait was measured by the relative germination rate (RGR) and the relative surviving plant rate (RSPR) after the seeds of each line treated with γ-rays irradiation at two 350 and 550 Gy. The results indicated that the lines treated with γ-irradiation showed different performance in resistance to radiation. Under the treatment of 350 Gy, two QTLs with additive effects were detected, of which qRR (g) 81 was only significant for relative germination rate, and it had the positive additive effects from the male parent, explaining 6.53% of the total phenotypic variations. The qRR(s)2-2 was another significant one for relative surviving plant rate, whose positive effects came from the female parent,explaining 12.81% of the total phenotypic variations. Similarly, 4 QTLs were detected under irradiation dose of 550 Gy, and qRR(g)1-2 and qRR(g)8-2 were detected for relative germination rate, with positive effects coming from female and male parent,respectively,explaining 14.38% of the total variations. qRR(s)5-2 and qRR(s)10 were detected for relative surviving plant rate, with positive effects coming from the male parent, explaining 19.65% of total variations. Under different irradiation dose, 9 pairs of double QTL epistasis effects could be identified in this population. The results suggested that the expression of QTL with resistance to radiation might have relation with the irradiation dose. (authors)

  8. Development of the radiation-resistant strain of Moraxella osloensis and effect of penicillin G on its growth

    Science.gov (United States)

    Lim, Sangyong; Yun, Hyejeong; Joe, Minho; Kim, Dongho

    2009-07-01

    A series of repeated exposures to γ-radiation with intervening outgrowth of survivors was used to develop radioresistant cultures of Moraxella osloensis that have been recognized as potential pathogenic microorganism. The D10 value of the radiation-resistant strain, 5.903±0.006 kGy, was increased by four-fold compared to the parent wild-type strain, 1.637±0.004 kGy. Since most strains of M. osloensis are sensitive to penicillin, we have surveyed the sensitivity of radiation-resistant strain to this antibiotic. When the optical density was monitored after the addition of penicillin G, the radioresistant strain appeared to be more resistant to only a low concentration of penicillin G (0.5 U/ml) than the parent strain. Interestingly, however, there was no apparent difference in the number of viable cells between both strains. Scanning electron microscope data showed that the resistance cells were generally larger than the parent cells, suggesting that this increase in size may cause a higher optical density of radioresistant cells. In conclusion, radiation mutation does not affect the penicillin resistance of M. osloensis.

  9. Development of the radiation-resistant strain of Moraxella osloensis and effect of penicillin G on its growth

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sangyong; Yun, Hyejeong; Joe, Minho [Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Kim, Dongho [Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: fungikim@kaeri.re.kr

    2009-07-15

    A series of repeated exposures to {gamma}-radiation with intervening outgrowth of survivors was used to develop radioresistant cultures of Moraxella osloensis that have been recognized as potential pathogenic microorganism. The D{sub 10} value of the radiation-resistant strain, 5.903{+-}0.006 kGy, was increased by four-fold compared to the parent wild-type strain, 1.637{+-}0.004 kGy. Since most strains of M. osloensis are sensitive to penicillin, we have surveyed the sensitivity of radiation-resistant strain to this antibiotic. When the optical density was monitored after the addition of penicillin G, the radioresistant strain appeared to be more resistant to only a low concentration of penicillin G (0.5 U/ml) than the parent strain. Interestingly, however, there was no apparent difference in the number of viable cells between both strains. Scanning electron microscope data showed that the resistance cells were generally larger than the parent cells, suggesting that this increase in size may cause a higher optical density of radioresistant cells. In conclusion, radiation mutation does not affect the penicillin resistance of M. osloensis.

  10. The essential role of the Deinococcus radiodurans ssb gene in cell survival and radiation tolerance.

    Directory of Open Access Journals (Sweden)

    J Scott Lockhart

    Full Text Available Recent evidence has implicated single-stranded DNA-binding protein (SSB expression level as an important factor in microbial radiation resistance. The genome of the extremely radiation resistant bacterium Deinococcus radiodurans contains genes for two SSB homologs: the homodimeric, canonical Ssb, encoded by the gene ssb, and a novel pentameric protein encoded by the gene ddrB. ddrB is highly induced upon exposure to radiation, and deletions result in decreased radiation-resistance, suggesting an integral role of the protein in the extreme resistance exhibited by this organism. Although expression of ssb is also induced after irradiation, Ssb is thought to be involved primarily in replication. In this study, we demonstrate that Ssb in D. radiodurans is essential for cell survival. The lethality of an ssb deletion cannot be complemented by providing ddrB in trans. In addition, the radiation-sensitive phenotype conferred by a ddrB deletion is not alleviated by providing ssb in trans. By altering expression of the ssb gene, we also show that lower levels of transcription are required for optimal growth than are necessary for high radiation resistance. When expression is reduced to that of E. coli, ionizing radiation resistance is similarly reduced. UV resistance is also decreased under low ssb transcript levels where growth is unimpaired. These results indicate that the expression of ssb is a key component of both normal cellular metabolism as well as pathways responsible for the high radiation tolerance of D. radiodurans.

  11. Radiation-resistant extremophiles and their potential in biotechnology and therapeutics.

    Science.gov (United States)

    Gabani, Prashant; Singh, Om V

    2013-02-01

    Extremophiles are organisms able to thrive in extreme environmental conditions. Microorganisms with the ability to survive high doses of radiation are known as radioresistant or radiation-resistant extremophiles. Excessive or intense exposure to radiation (i.e., gamma rays, X-rays, and particularly UV radiation) can induce a variety of mutagenic and cytotoxic DNA lesions, which can lead to different forms of cancer. However, some populations of microorganisms thrive under different types of radiation due to defensive mechanisms provided by primary and secondary metabolic products, i.e., extremolytes and extremozymes. Extremolytes (including scytonemin, mycosporine-like amino acids, shinorine, porphyra-334, palythine, biopterin, and phlorotannin, among others) are able to absorb a wide spectrum of radiation while protecting the organism's DNA from being damaged. The possible commercial applications of extremolytes include anticancer drugs, antioxidants, cell-cycle-blocking agents, and sunscreens, among others. This article aims to review the strategies by which microorganisms thrive in extreme radiation environments and discuss their potential uses in biotechnology and the therapeutic industry. The major challenges that lie ahead are also discussed.

  12. The resistive bolometer for radiated power measurement on EAST.

    Science.gov (United States)

    Duan, Y M; Hu, L Q; Mao, S T; Chen, K Y; Lin, S Y

    2012-09-01

    The resistive bolometer system has been successfully employed on experimental advanced superconducting tokamak for the first time to measure the radiated power of plasma. The bolometer detectors are based on 4 μm thick Pt absorbers deposited on 1.5 μm thick SiN membranes. The system consists of 3 cameras with a total of 48 channels. The detector and the system setup are described in detail. The detector calibration and typical measurement results are presented as well. PMID:23025621

  13. Evaluation of the radiation resistance of electrical insulation materials

    Science.gov (United States)

    Perrin, Sh.; Schönbacher, H.; Tavlet, M.; Widler, R.

    2002-12-01

    The qualification of insulating materials for electrical cables is often accomplished according to the IEC 60544 standard of the International Electrotechnical Commission. The mechanical properties of the polymeric insulators are tested prior and after irradiation at relatively high dose rates. To assess the ageing of selected materials under realistic service conditions, usually at lower dose rate, an IEC Working Group has proposed extrapolation methods (IEC 61244-2), one of which is applied here for a cable sheathing material from Huber+Suhner. The method is found to be suitable to compare radiation resistance data of different materials irradiated under different conditions.

  14. Albendazole sensitizes cancer cells to ionizing radiation

    International Nuclear Information System (INIS)

    Brain metastases afflict approximately half of patients with metastatic melanoma (MM) and small cell lung cancer (SCLC) and represent the direct cause of death in 60 to 70% of those affected. Standard of care remains ineffective in both types of cancer with the challenge of overcoming the blood brain barrier (BBB) exacerbating the clinical problem. Our purpose is to determine and characterize the potential of albendazole (ABZ) as a cytotoxic and radiosensitizing agent against MM and SCLC cells. Here, ABZ's mechanism of action as a DNA damaging and microtubule disrupting agent is assessed through analysis of histone H2AX phosphorylation and cell cyle progression. The cytotoxicity of ABZ alone and in combination with radiation therapy is determined though clonogenic cell survival assays in a panel of MM and SCLC cell lines. We further establish ABZ's ability to act synergistically as a radio-sensitizer through combination index calculations and apoptotic measurements of poly (ADP-ribose) polymerase (PARP) cleavage. ABZ induces DNA damage as measured by increased H2AX phosphorylation. ABZ inhibits the growth of MM and SCLC at clinically achievable plasma concentrations. At these concentrations, ABZ arrests MM and SCLC cells in the G2/M phase of the cell cycle after 12 hours of treatment. Exploiting the notion that cells in the G2/M phase are the most sensitive to radiation therapy, we show that treatment of MM and SCLC cells treated with ABZ renders them more sensitive to radiation in a synergistic fashion. Additionally, MM and SCLC cells co-treated with ABZ and radiation exhibit increased apoptosis at 72 hours. Our study suggests that the orally available antihelminthic ABZ acts as a potent radiosensitizer in MM and SCLC cell lines. Further evaluation of ABZ in combination with radiation as a potential treatment for MM and SCLC brain metastases is warranted

  15. Resistance to RadLV-induced leukemia: non-participation of splenic natural killer cells

    Energy Technology Data Exchange (ETDEWEB)

    St.-Pierre, Y.; Hugo, P.; Lemieux, S.; Lussier, G.; Potworowski, E.F.

    1988-08-01

    The phenotypic expression of genetically determined resistance to radiation leukemia virus (RadLV)-induced leukemia in mice has been shown to reside in the bone marrow. Because the bone marrow contains precursors of natural killer (NK) cells, known to play a role in retrovirally induced infections, and because these cells have been suggested as participating in resistance to radiation-induced leukemia, it was pertinent to establish whether their levels differed in strains of mice susceptible and resistant to leukemia. We therefore tested splenic NK cell levels in C57BL/Ka (susceptible) and B10.A(5R) (resistant) mice before viral inoculation, immediately after viral inoculation, and throughout the preleukemic period and showed that they were not different. This indicates that splenic NK cell levels have no bearing on the resistance to RadLV-induced leukemia and that other immune or non-immune mechanisms must be sought.

  16. The radiation effects on the living cell

    International Nuclear Information System (INIS)

    This publication is a presentation of particular points discussed during the colloquium of the 15-18 june 1999, for which scientific researches are performed at the CEA/CNRS. They deal with the radiobiology, for the radiation effects on living matter; with the DNA, for the knowledge and repair mechanisms on cells submitted to ionizing radiations; with the exposition to UV in correlation with neoplasms; with the P53 gene which is a tumour suppressor. (A.L.B.)

  17. Adult Mesenchymal Stem Cells and Radiation Injury.

    Science.gov (United States)

    Kiang, Juliann G

    2016-08-01

    Recent understanding of the cellular and molecular signaling activations in adult mesenchymal stem cells (MSCs) has provided new insights into their potential clinical applications, particularly for tissue repair and regeneration. This review focuses on these advances, specifically in the context of self-renewal for tissue repair and recovery after radiation injury. Thus far, MSCs have been characterized extensively and shown to be useful in mitigation and therapy for acute radiation syndrome and cognitive dysfunction. Use of MSCs for treating radiation injury alone or in combination with additional trauma is foreseeable. PMID:27356065

  18. Bone marrow phenotype determines genetic resistance to RadLV-induced leukemia in radiation chimeric mice

    Energy Technology Data Exchange (ETDEWEB)

    St. Pierre, Y.; Lussier, G.; Potworowski, E.F.

    1987-01-01

    The development of RadLV-induced T-cell leukemia is a multistep process which evolves along the bone marrow-thymus axis. This process has been shown to be under the control of resistance and susceptibility genes. The relative importance of bone marrow and thymic phenotypes in this genetic control have not been established. We have constructed radiation chimeras with bone marrow from susceptible C57BL/Ka and thymus from resistant B10.A(5R) mice (and vice versa). The rate of leukemia development in the various groups indicates that the phenotype of the bone marrow and not that of the thymus determines the expression of resistance or susceptibility.

  19. Radiation hardening of InP solar cells for space applications

    International Nuclear Information System (INIS)

    The aim of this work is to develop a radiation resistant thin InP-based solar cells for space applications on more mechanically resistant, lighter, and cheaper substrates. In this paper, we present the development of a p+/nn+ InP-based solar cell structures with very thin emitter and base layers. A thin emitter helps to increase the collection of carriers generated by high energy incident photons from the solar spectrum. The use of a thin n base structure should improve the radiation resistance of this already radiation resistant technology. A remarkable improvement of high energy photons response is shown for InP solar cells with emitters 400 A thick

  20. Radiation resistance of epoxy resins and their composistes

    International Nuclear Information System (INIS)

    In the electric equipment installed inside containment vessels in nuclear power plants, many epoxy resins have been employed as insulating materials. However, there are very few reports on the investigation of their properties in such environment, specifically under LOCA (Loss-of-Coolant Accident) conditions. This paper investigates on the electrical and mechanical properties of the epoxy resins supposed to be applicable to the actual equipment, by LOCA simulation. The epoxy resins used for the experiment were the following three types: (1) typical epoxy resin, bisphenol A group; (2) novolak group epoxy resins in consideration of improving humidity resistance; and (3) triazine group epoxy resins for the purpose of giving radiation, humidity and heat resistances. The last one includes the composites with Nomex and with laminated mica. After LOCA simulation which is composed of up to 2 MGy irradiation of 60Co γ-ray at the dose rate of 104 Gy/h and the exposure to high temperature saturated steam, the electrical properties of dielectric tangent, insulation breakdown voltage (BDV) and conductivity and the mechanical properties of bending strength and viscoelasticity were measured. In the paper, the experimental results are described in detail. Of these, the triazine group epoxy/Nomex composite did not show swelling, but demonstrated stable radiation resistance. It is excellent in the electrical and mechanical properties, and also shows good dimension-stability. In LOCA simulation, its bending strength was reduced than that for only γ-irradiation of 2 MGy, but still had the residual strength of about 80 %. (Wakatsuki, Y.)

  1. Radiation resistance of paralytic shellfish poison (PSP) toxins

    International Nuclear Information System (INIS)

    Radiation resistance of paralytic shellfish poison (PSP) toxins, obtained from Pyrodinium bahamense var. compressum in shellstocks of green mussels, was determined by subjecting the semi-purified toxin extract as well as the shellstocks of green mussels to high doses of ionizing radiation of 5, 10, 15 and 20 kGy. The concentration of the PSP toxins was determined by the Standard Mouse Bioassay (SMB) method. The radiation assistance of the toxins was determined by plotting the PSP toxin concentration versus applied dose in a semilog paper. The D10 value or decimal reduction dose was obtained from the straight line which is the dose required to reduce the toxicity level by 90%. The effects of irradiation on the quality of green mussels in terms of its physico-chemical, microbiological and sensory attributes were also conducted. The effect of irradiation on the fatty acid components of green mussels was determined by gas chromatography. Radiation resistance of the PSP toxins was determined to be lower in samples with initially high toxicity level as compared with samples with initially low toxicity level. The D10 values of samples with initially high PSP level were 28.5 kGy in shellstocks of green musssels and 17.5 kGy in the semi-purified toxin extract. When the PSP level was low initially, the D10 values were as high as 57.5 and 43.5 kGy in shellstocks of green mussels for the two trials, and 43.0 kGy in semi-purified toxin extract. The microbial load of the irradiated mussels was remarkably reduced. No differnce in color and odor characteristics were observed in the mussel samples subjected to varying doses of ionizing radiation. There was darkening in the color of mussel meat and its juice. The concentration of the fatty acid components in the fresh green mussels were considerably higher as compared with those present in the irradiated mussels, though some volatile fatty acids were detected as a result of irradiation. (Author)

  2. Atypical radiation response of SCID cells

    Science.gov (United States)

    Chawapun, Nisa

    Murine SCID (severe combined immune deficiency) cells are well known for their defect in DNA double-strand break repair and in variable(diversity)joining [V(D)J] recombination due to a mutation in a catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). As a consequence, scid cells are hypersensitive to ionizing radiation. The present study showed that asynchronous populations of scid cells were about two-fold more sensitive than Balb/c with respect to cell killing and the defect in scid cells was corrected by complementation with human chromosome 8. Analysis of the survival of synchronized populations as a function of the cell cycle revealed that while scid cells were hypersensitive in all cell cycle phases compared to wild-type cells, this hypersensitivity is even more pronounced in G1 phase. The hypersensitivity reduced as the cells progressed into S phase suggested that homologous recombination repair plays a role. The results imply that there are at least two pathways for the repair of DSB DNA, consistent with a model previously proposed by others. The scid cells were also more sensitive to UVC light (254 nm) killing as compared to wild type cells by clonogenic survival. Using a host cell reactivation (HCR) assay to study the nucleotide excision repair (NER) which is the major repair pathway for UV-photoproducts, the results showed that NER in scid cells was not as efficient as CB- 17. This suggests that DNA-PK is involved in NER as well as non-homologous end-joining (NHEJ) DSB repair which is responsible for ionizing radiation sensitivity in scid cells. Repair in scid cells was not totally absent as shown by low dose rate sparing of cell killing after exposure to 137Cs γ-rays at dose rate of 0.6 cGy/h, 1.36 cGy/h, 6 cGy/h as compared to high dose rate at 171 cGy/min, although this phenomenon could be explained partly by proliferation. However, for radiation induced transformation, no significant dose rate effect was seen. A plot of transformation

  3. Transfer of innate resistance and susceptibility to Leishmania donovani infection in mouse radiation bone marrow chimaeras

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, P.R.; Blackwell, J.M.; Bradley, D.J. (London School of Hygiene and Tropical Medicine (UK))

    1984-07-01

    Reciprocal radiation bone marrow chimaeras were made between H-2-compatible strains of mice innately resistant or susceptible to visceral leishmaniasis. In initial experiments, susceptibility but not resistance to Leishmania donovani could be transferred with donor bone marrow into irradiated recipients. In subsequent experiments it was possible to transfer both resistance and susceptibility. This was achieved either by selecting more radiosensitive mouse strains as susceptible recipients, or alternatively by increasing the irradiation dose for the susceptible recipients used in the initial experiments. Using the higher irradiation dose, successful transfer of resistance and susceptibility between congenic mice carrying the Lshsup(r) and Lshsup(s) alleles on the more radioresistant B10 genetic background provided firm evidence that the results obtained in this study were specifically related to expression of the Lsh gene. It is concluded that Lsh gene-controlled resistance and susceptibility to L. donovani is determined by bone marrow-derived cells. The cell type(s) involved is likely to be of the macrophage lineage.

  4. Protein disulphide isomerase as a target for nanoparticle-mediated sensitisation of cancer cells to radiation

    OpenAIRE

    Taggart, L E; McMahon, S. J.; Butterworth, K T; Currell, F. J.; Schettino, G; Prise, K. M.

    2016-01-01

    Radiation resistance and toxicity in normal tissues are limiting factors in the efficacy of radiotherapy. Gold nanoparticles (GNPs) have been shown to be effective at enhancing radiation-induced cell death, and were initially proposed to physically enhance the radiation dose deposited. However, biological responses of GNP radiosensitization based on physical assumptions alone are not predictive of radiosensitisation and therefore there is a fundamental research need to determine biological me...

  5. Induction of radiation resistance and radio-protective mechanism. On the reactive oxygen and free radical

    International Nuclear Information System (INIS)

    Radical scavenging system for reactive oxygen species (ROS) leading to radio-protection is reviewed on findings in animals, tissues and cells. Protection against oxygen toxicity in evolution can be seen in anaerobes' superoxide dismutase (SOD) over 3500 million years ago. ROS is generated endogenously and also by radiation. However, the intracellular sites of the generated ROS are different depending on its cause. The protection is done through enzymes like SOD, peroxidase, catalase, glutathione-related enzymes and through substances like GSH, α-tocopherol, ascorbic acid etc. Induction of ROS scavenging substances related with radio-resistance includes the responses to the low dose radiation (5-50 cGy) in those enzymes described above; to middle to high dose radiation (1-30 Gy) in a similar and in other unknown mechanisms; to exposure of ROS like H2O2 at low concentration; and to antioxidant treatment. The cross-resistance between radiation and drugs suggests necessity of this induction. (N.I.)

  6. Radiation Resistant Hybrid Lotus Effect Photoelectrocatalytic Self-Cleaning Anti-Contamination Coatings Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop radiation resistant hybrid Lotus Effect photoelectrocatalytic self-cleaning anti-contamination coatings for application to Lunar...

  7. Radiation-induced DNA double-strand break frequencies in human squamous cell carcinoma cell lines of different radiation sensitivities

    International Nuclear Information System (INIS)

    DNA neutral (pH 9-6) filter elution was used to measure radiation-induced DNA double-strand break (dsb) frequencies in eight human squamous cell carcinoma cell lines with radiosensitivities (D0) ranging from 1.07 to 2.66 Gy and D-bar values ranging from 1.46 to 4.08 Gy. Elution profiles of unirradiated samples from more radiosensitive cell lines were all steeper in slope than profiles from resistant cells. The shapes of the dsb induction curves were curvilinear and there was some variability from cell line to cell line in the dose-response for the induction of DNA dsb after exposures to 5-100 Gy 60Co γ-rays. There was no relation between shapes of survival curves and shapes of the dose-responses for the induction of DNA dsb. At low doses (5-25 Gy), three out of four of the more sensitive cell lines (D-bar3.0 Gy). Although the low-dose (5-25 Gy) elution results were variable, they suggest that DNA neutral elution will detect differences between sensitive and resistant tumour cells in initial DNA dsb frequencies. (author)

  8. Radiation response characteristics of human cell in vitro

    International Nuclear Information System (INIS)

    Improvements in tissue culture techniques and growth media have made it possible to culture a range of cells of human origin, both normal and malignant. The most recent addition to the list are endothelial cells. Interesting results have been obtained, some of which may have implications in Radiation Therapy. (i) Repair of Potentially Lethal Damage (PLDR) has been observed in all cell lines investigated; cells of normal origin repair PLD at least as well as malignant cells, which makes clinical trials of PLDR inhibitors of doubtful usefulness. (ii) PLD in fibroblasts of human origin appears to have a component that is repaired rapidly, in a matter of minutes, as well as a slower component that takes hours to repair. (iii) Sublethal damage repair, manifest by a dose-rate effect, has also been observed in all human cell lines tested. Cells of normal tissue origin, including fibroblasts and endothelial cells, exhibit a dose-rate effect that is intermediate between that for cells from traditionally resistant tumors (melanoma and osteosarcoma) and cells from more sensitive tumors (neuroblastoma and breast). (iv) Fibroblasts from patients with Ataxia Telangectasia (AT) are much more sensitive to x-rays, with a D/sub o/ about half that for normal human fibroblasts. Nevertheless repair of both PLD and SLD can be demonstrated in these cells

  9. Investigation of possibility of creation of radiation resistance sensors for physical information based on fiber materials

    Science.gov (United States)

    Baskov, P. B.; Chebyshov, S. B.; Kadilin, V. V.; Sakharov, V. V.; Mosyagina, I. V.

    2016-02-01

    The results of physical and material science and technological development of new materials of radiation photonics - nano- and microstructure of radiation-sensitive and radiation- resistant optical glass and fibers based on quartz are presented in the report. The possibility of their application in neutron diagnostics devices of nuclear power objects are considered. Component and construction options for the radiation-sensitive fiber and glass materials (with isotopes 10B, 6Li, Gd, ions of Nd3+, Ce3+ etc.), in which radiation resistance is achieved through the organization of areas of "drain" and annihilation of radiation-induced defects are considered.

  10. Development of new radiation resistant, fire-retardant cables. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Ko; Morita, Yosuke; Udagawa, Takashi (Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment); Fujimura, Shun-ichi; Oda, Eisuke

    1982-12-01

    For the cables for nuclear facilities, radiation resistance and fire-retardation are severely required. The authors took note of the fact that even in the existing cables for nuclear power plants, their mechanical properties are greatly degraded by the exposure to large dose (for example, 200 Mrad in PWR testing conditions), and attempted the improvement. They employed a new additive, bromated acenaphthylene condensate (con-BACN), which effectively gives radiation resistance and also is a good flame retarder, to be compounded to an insulation material, and examined the characteristics. In this paper, the features of con-BACN and the investigation of fire-retardant EPDM composition are described. As an initial composition, a small amount of zinc white, sulphur, stearic acid, noclac 224 (Ouchi-Shinko Chemicals, Co.), and antimony trioxide, 100 parts of tale and 45 parts of con-BACN were added to 100 parts of EPDM (propylene content 34 %, Japan Synthetic Rubber Co.). As the antiaging agent, it was decided to use phenol series No. 3 as a result of test. The fire-retardant EP rubber-composed cable was produced for trial, its insulation being fabricated, using a Furukawa's pressurized salt bath continuous vulcanizer. The tests of ..gamma..-irradiation, simulated LOCA and combustion were carried out, and the test results are reported. It was indicated that the cable resisted against high dose several times as much as 200 Mrad, and was suitable for the applications, in which the mechanical properties such as bending are required to be maintained after radiation exposure. It was also found that con-BACN was safe, and its properties of decomposition, concentration and acute toxicity were all very low.

  11. Differences in radiation-induced micronuclei yields of human cells: influence of ras gene expression and protein localization

    International Nuclear Information System (INIS)

    Expression of ras on cogene has been correlated with increased intrinsic resistance to ionizing radiation. In this study the authors show that increased EJras expression in human cells is associated with a decrease in the frequency of radiation-induced micronuclei. The experimental system consisted of human osteosarcoma-derived cell lines which quantitatively vary in their EJras expression. There was a dose-dependent relationship between radiation dose and micronuclei formation in all cell lines tested. (author)

  12. Prototype of a radiation hard resistive bolometer for ITER

    International Nuclear Information System (INIS)

    The prototype of a radiation hard resistive bolometer has been produced. This prototype bolometer was installed in ASDEX Upgrade to test its viability and long term stability in a tokamak environment. The prototype bolometer with platinum meanders and absorber on an amorphous silicon nitride substrate and the original standard Kapton bolometer used on ASDEX Upgrade and JET with gold meanders and absorber were calibrated as a function of temperature. The temperature coefficients of the gold and platinum meander resistances are found to have the same value to within 5%. Heat diffusion simulations of the bolometer foils, using the dimensions, specific heat, density and thermal conductivity of the components, were carried out to calculate the cooling time constant and heat capacity of the foils. These calculated values are in agreement with those measured to within 15%. In accordance with these simulations, the prototype bolometer is a factor of 2 more sensitive than the original bolometer and the cooling time constant of the prototype was about a factor of 2 smaller than the original bolometer. The design considerations involved in producing this bolometer foil are discussed and recommendations for future development work are outlined

  13. Radiation response of human hematopoietic cells

    International Nuclear Information System (INIS)

    The radiosensitivity and capacity to accumulate and repair sub-lethal damage has been studied in hematopoietic cell lines of human origin and in stem cells derived from blood and bone narrow of normal human donors. The results were analysed in terms of the linear quadratic and multitarget models. For the cell lines intrinsic radiosensitivity varied widely with D/sub o/'s ranging from 0.53 to 1.39 Gy. Five of the cell lines showed same capacity to accumulate sub-lethal damage and in three of these survival was enhanced by dose fractionation or reduction of dose rate. Among the cell lines of leukemic origin, several did not conform in one or more respects with the highly radiosensitive and repair deficient model associated with hematopoietic cells. There was no apparent correlation between radiation response and the phenotype (myeloid, lymphoid or undifferentiated) of the cell lines studied. Variability of radiation response and in some cases an unpredicted degree of radioresistance and capacity to repair sub-lethal damage has now been demonstrated for both cultured and primary explants of human leukemic cells. These observations have implications for the design of Total Body Irradiation protocols for use prior to bone narrow transplant

  14. Resistant bacteria in stem cell transplant recipients

    Directory of Open Access Journals (Sweden)

    Nucci Marcio

    2002-01-01

    Full Text Available Bacterial infections account for most infections in hematopoietic stem cell transplant recipients. While early mortality reduced dramatically with the introduction of the concept of empirical antibiotic therapy in neutropenic patients, no effect of prophylaxis on the mortality was observed in many studies. On the other hand, antibiotic prophylaxis has resulted in the emergence of resistance among bacteria. In addition, the choice of the antibiotic regimen for empirical therapy and the practices of antibiotic therapy during neutropenia may result in a significant shift in the pattern of bacterial infections. The use of quinolones and vancomycin as prophylaxis, and of carbapenems and vancomycin in the empirical antibiotic therapy, are associated with the appearance of resistant Gram-positive and Gram-negative bacteria. Therefore, hematologists must be aware of the impact of these practices on the emergence of infections due to multi-resistant pathogens, since these infections may be associated with increased mortality.

  15. Overcoming Multidrug Resistance in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Karobi Moitra

    2015-01-01

    Full Text Available The principle mechanism of protection of stem cells is through the expression of ATP-binding cassette (ABC transporters. These transporters serve as the guardians of the stem cell population in the body. Unfortunately these very same ABC efflux pumps afford protection to cancer stem cells in tumors, shielding them from the adverse effects of chemotherapy. A number of strategies to circumvent the function of these transporters in cancer stem cells are currently under investigation. These strategies include the development of competitive and allosteric modulators, nanoparticle mediated delivery of inhibitors, targeted transcriptional regulation of ABC transporters, miRNA mediated inhibition, and targeting of signaling pathways that modulate ABC transporters. The role of ABC transporters in cancer stem cells will be explored in this paper and strategies aimed at overcoming drug resistance caused by these particular transporters will also be discussed.

  16. Increase of radiation resistance of a soil microflora exposed to long-term gamma irradiation

    International Nuclear Information System (INIS)

    Soil microflora were exposed to long-term (18 months) gamma irradiation in an open-air facility at three different doses, 15, 150, and 1500 krads/18 months. The radiation resistance increased at all doses when compared with the radiation resistance of the microflora from soil shielded from the irradiation with a lead wall

  17. Radiation therapy for intracranial germ cell tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Shingo; Hayakawa, Kazushige; Tsuchiya, Miwako; Arai, Masahiko; Kazumoto, Tomoko; Niibe, Hideo; Tamura, Masaru

    1988-04-01

    The results of radiation therapy in 31 patients with intracranial germ cell tumors have been analyzed. The five-year survival rates were 70.1 % for germinomas and 38.1 % for teratomas. Three patients with germinoma have since died of spinal seeding. The prophylactic irradiation of the spinal canal has been found effective in protecting spinal seeding, since no relapse of germinoma has been observed in cases that received entire neuraxis iradiation, whereas teratomas and marker (AFP, HCG) positive tumors did not respond favorably to radiation therapy, and the cause of death in these patients has been local failure. Long-term survivors over 3 years after radiation therapy have been determined as having a good quality of life.

  18. Thermal Enhancement with Optically Activated Gold Nanoshells Sensitizes Breast Cancer Stem Cells to Radiation Therapy

    OpenAIRE

    Atkinson, Rachel L; ZHANG, MEI; Diagaradjane, Parmeswaran; Peddibhotla, Sirisha; Contreras, Alejandro; Hilsenbeck, Susan G; Woodward, Wendy A.; Krishnan, Sunil; Chang, Jenny C.; Rosen, Jeffrey M

    2010-01-01

    Breast cancer metastasis and disease recurrence are hypothesized to result from residual cancer stem cells, also referred to as tumor-initiating cells, which evade initial treatment. Using both syngeneic mouse and human xenograft models of triple-negative breast cancer, we have demonstrated that a subpopulation enriched in cancer stem cells was more resistant to treatment with 6 gray of ionizing radiation than the bulk of the tumor cells, and accordingly their relative proportion increased 48...

  19. Radiation-resistant bacteria and their application to metal and radionuclides bioremediation

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-Long

    2004-01-01

    Microorganisms have a number of applications in the nuclear industry, which would benefit from the use of radiation-resistant microorganisms. Environmentally isolated bacteria have shown to be resistant to gamma irradiation up to a dose of 30,000 Gy. It has also been reported that the presence of ionizing radiation may induce radio-resistance in bacteria. Recent demonstrations of the removal and immobilization of inorganic contaminants by microbial transformations, sorption and mineralization show the potential of both natural and engineered microorganisms as bioremedial tools. This review is to provide an overview of the application of radiation-resistant bacteria to decontamination of metal and radionuclide.

  20. Radiation-resistant bacteria and their application to metal and radionuclides bioremediation

    International Nuclear Information System (INIS)

    Microorganisms have a number of applications in the nuclear industry, which would benefit from the use of radiation-resistant microorganisms. Environmentally isolated bacteria have shown to be resistant to gamma irradiation up to a dose of 30,000 Gy. It has also been reported that the presence of ionizing radiation may induce radio-resistance in bacteria. Recent demonstrations of the removal and immobilization of inorganic contaminants by microbial transformations, sorption and mineralization show the potential of both natural and engineered microorganisms as bioremedial tools. This review is to provide an overview of the application of radiation-resistant bacteria to decontamination of metal and radionuclide. (authors)

  1. GaAs quantum dot solar cell under concentrated radiation

    International Nuclear Information System (INIS)

    Effects of concentrated solar radiation on photovoltaic performance are investigated in well-developed GaAs quantum dot (QD) solar cells with 1-Sun efficiencies of 18%–19%. In these devices, the conversion processes are enhanced by nanoscale potential barriers and/or AlGaAs atomically thin barriers around QDs, which prevent photoelectron capture to QDs. Under concentrated radiation, the short circuit current increases proportionally to the concentration and the open circuit voltage shows the logarithmic increase. In the range up to hundred Suns, the contributions of QDs to the photocurrent are proportional to the light concentration. The ideality factors of 1.1–1.3 found from the VOC-Sun characteristics demonstrate effective suppression of recombination processes in barrier-separated QDs. The conversion efficiency shows the wide maximum in the range of 40–90 Suns and reaches 21.6%. Detailed analysis of I-V-Sun characteristics shows that at low intensities, the series resistance decreases inversely proportional to the concentration and, at ∼40 Suns, reaches the plateau determined mainly by the front contact resistance. Improvement of contact resistance would increase efficiency to above 24% at thousand Suns

  2. Radiation-resistance of polyurethane pipes for cooling liquid in BES III

    International Nuclear Information System (INIS)

    Gamma ray radiation and neutron radiation are predominant in the working conditions of BES III, and the radiation-resistance aging of polyurethane pipes is very important in this condition, as the pipes of cooling liquid for beam pipe and SCQ (superconducting quadrupole) vacuum pipe in BESIII. Polyester polyurethane pipes and polyether polyurethane pipes were irradiated by gamma ray and neutron. The radiation doses were as much as ten years' doses in BES. Pressure test, FTIR and thermal analysis were used to study the radiation-resistance of these two kinds of polyurethane pipes. The results show that the radiation-resistance and thermal stability of polyester polyurethane pipes are prior to those of polyether polyurethane pipes, and the pressure resistance of polyester polyurethane pipes is almost maintained after the irradiation by gamma ray and neutron, but the polyether polyurethane pipes can be aged and ruptured after the irradiation by neutron. (authors)

  3. Acid ceramidase in prostate cancer radiation therapy resistance and relapse

    Science.gov (United States)

    Cheng, Joseph C.

    Prostate tumor cell escape from ionizing radiation (IR)-induced killing can lead to disease progression and relapse. Sphingolipids such as ceramide and sphingosine 1-phosphate influence signal transduction pathways that regulate stress response in cancer cells. In particular, metabolism of apoptotic ceramide constitutes an important survival adaptation. Assessments of enzyme activity, mRNA, and protein demonstrated preferential upregulation of the ceramide deacylating enzyme acid ceramidase (AC) in irradiated cancer cells. Promoter-reporter and ChIP-qPCR assays revealed AC transcription by activator protein 1 (AP-1) is sensitive to pharmacological inhibition of de novo ceramide biosynthesis, identifying a protective feedback mechanism that mitigates the effects of IR-induced ceramide. Deregulation of c-Jun, in particular, induced marked radiosensitization in vitro and in vivo, which was rescued by ectopic AC over-expression. AC over-expression in prostate cancer clonogens surviving 80 Gray fractionated irradiation was associated with increased radioresistance and proliferation, suggesting a role in radiotherapy failure and relapse. Indeed, immunohistochemical analysis of human prostate cancer tissues revealed higher levels of AC after radiotherapy failure than therapy-naive adenocarcinoma, PIN, or benign tissues. By genetically downregulating AC with small interfering RNA (siRNA), we observed radiosensitization of cells using clonogenic and cytotoxicity assays. Finally, treatment with lysosomotropic small molecule inhibitors of AC, LCL385 or LCL521, induced prostate cancer xenograft radiosensitization and long-term suppression, suggesting AC is a tractable target for adjuvant radiotherapy.

  4. Gamma radiation resistant Fabry-Perot fiber optic sensors

    Science.gov (United States)

    Liu, Hanying; Miller, Don W.; Talnagi, Joseph

    2002-08-01

    The Nuclear Regulatory Commission (NRC) in 1998 completed a study of emerging technologies that could be applicable to measurement systems in nuclear power plants [H. M. Hashemian [et al.], "Advanced Instrumentation and Maintenance Technologies for Nuclear Power Plants," NUREG/CR-5501 (1998)]. This study concluded that advanced fiber optic sensing technology is an emerging technology that should be investigated. It also indicated that there had been very little research related to performance evaluation of fiber optic sensors in nuclear plant harsh environments, although substantial research has been performed on nuclear radiation effects on optical fibers in the last two decades. A type of Fabry-Perot fiber optic temperature sensor, which is manufactured by Fiso Technologies in Canada, is qualified to be a candidate for potential applications in nuclear radiation environment due to its unique signal processing technique and its resistance to power loss. The gamma irradiation effects on this type of sensors are investigated in this article. Two sensors were irradiated in a gamma irradiation field and one of them was irradiated up to a total gamma dose of 133 Mrad. The sensor on-line performance was monitored during each gamma irradiation test. Furthermore, the sensor static and dynamic performance before and after each irradiation test were evaluated according to the Standard ISA-dS67.06.01 ("Performance Monitoring for Nuclear Safety-Related Instrument Channels in Nuclear Power Plants", Standard ISA-dS67.06.01, Draft 7, Instrument Society of America, 1999). Although several abnormal phenomena were observed, analysis shows that gamma irradiation is not accredited to the abnormal behavior, which implies that this type of sensor is suitable to a gamma irradiation environment with a high gamma dose.

  5. Negative differential resistance devices for generation of terahertz radiation

    Science.gov (United States)

    Eisele, H.

    2015-08-01

    This paper discusses the principles of operation, state of the art, and future potential of active two-terminal devices for generation of low-noise, continuous-wave terahertz radiation. These devices use transit-time, transferred-electron, and quantum-mechanical effects (or a combination of them) to create a negative differential resistance (NDR) at the frequency of interest. Many different types of NDR devices have been proposed since the earliest days of semiconductor devices and studied in detailed simulations for their power generation potential, but have yet to be demonstrated experimentally. The paper focuses on NDR devices that not only yielded significant output powers at millimeter waves frequencies and higher, but also have the strong potential of generating radiation at terahertz frequencies. Examples of such NDR devices are resonant tunneling diodes (RTDs), superlattice electronic devices (SLEDs), and InP Gunn devices. Examples of their state-of-the-art results are output powers of 0.2 mW at 443 GHz and 5 μW at 1.53 THz from InGaAs/AlAs double barrier RTDs on InP substrate; 5.0 mW at 123.3 GHz, 1.1 mW at 155.1 GHz, and 0.52 mW at 252.8 GHz from GaAs/AlAs superlattice electronic devices on GaAs substrate; and 330 μW at 412 GHz, 86 μW at 479 GHz, and 18 μW at 502 GHz from InP Gunn devices.

  6. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jinhong; Lee, Seung Sik; Bai, Hyounwoo; An, Byung Chull; Lee, Eun Mi; Lee, Jae Taek; Kim, Mi Ja

    2010-12-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes Development of a technique for radiation tissue and cell culture, Database construction for radiation response in plants and radiation effects, Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Isolation and identification of radiation induced basI gene; Determination of stresses sensitivities by transformating basI gene into arabidopsis; Isolation and identification of radiation induced chaperon proteins (PaAhpC and yPrxII) from Pseudomonas and yeast, and structural and functional analysis of the proteins; Determination of oxidative and heat resistance by transformating PaAhpC; Isolation and identification of maysin and its derivatives from centipedgrass; Investigation of enhancement technique for improving maysin and its derivatives production using radiation; Investigation of removing undesirable color in maysin and its derivatives using radiation; Determination of the effect of radiation on physiological functions of centipedgrass extracts; Identification of H{sub 2}O{sub 2} removing enzyme in radiation irradiated plant (Spinach); Determination of the effects of centipedgrass extracts on anti-obesity and anti-cancer activities.

  7. Cancer stem cells, cancer cell plasticity and radiation therapy.

    Science.gov (United States)

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms.

  8. Molecular exploration of the highly radiation resistant cyanobacterium Arthrospira sp. PCC 8005

    Science.gov (United States)

    Badri, Hanène; Leys, Natalie; Wattiez, Ruddy

    Arthrospira (Spirulina) is a photosynthetic cyanobacterium able to use sunlight to release oxygen from water and remove carbon dioxide and nitrate from water. In addition, it is suited for human consumption (edible). For these traits, the cyanobacterium Arthrospira sp. PCC 8005 was selected by the European Space Agency (ESA) as part of the life support system MELiSSA for recycling oxygen, water, and food during future long-haul space missions. However, during such extended missions, Arthrospira sp. PCC 8005 will be exposed to continuous artificial illumination and harmful cosmic radiation. The aim of this study was to investigate how Arthrospira will react and behave when exposed to such stress environment. The cyanobacterium Arthrospira sp. PCC 8005 was exposed to high gamma rays doses in order to unravel in details the response of this bacterium following such stress. Test results showed that after acute exposure to high doses of 60Co gamma radiation upto 3200 Gy, Arthrospira filaments were still able to restart photosynthesis and proliferate normally. Doses above 3200 Gy, did have a detrimental effect on the cells, and delayed post-irradiation proliferation. The photosystem activity, measured as the PSII quantum yield immediately after irradiation, decreased significantly at radiation doses above 3200 Gy. Likewise through pigment content analysis a significant decrease in phycocyanin was observed following exposure to 3200 Gy. The high tolerance of this bacterium to 60Co gamma rays (i.e. ca. 1000x more resistant than human cells for example) raised our interest to investigate in details the cellular and molecular mechanisms behind this amazing resistance. Optimised DNA, RNA and protein extraction methods and a new microarray chip specific for Arthrospira sp. PCC 8005 were developed to identify the global cellular and molecular response following exposure to 3200 Gy and 5000 Gy A total of 15,29 % and 30,18 % genes were found differentially expressed in RNA

  9. Chemical modification of neoplastic cell transformation by heavy ion radiation

    International Nuclear Information System (INIS)

    Quantitative data on chemical modification of neoplastic cell transformation by heavy-ion radiation was obtained using in-vitro cell transformation technique. The specific aims were 1) to test the potential effects of various chemicals on the expression of cell transformation, and 2) to systematically collect information on the mechanisms of expression and progression of cell transformation by ionizing radiation. Recent experimental studies with DMSO, 5-azacytidine, and dexamethasone suggest that DMSO can effectively suppress the neoplastic cell transformation by high-LET radiation and that some nonmutagenic changes in DNA may be important in modifying the expression, and progression of radiation-induced cell transformation

  10. Radiation hardening and irradiation testing of in-cell electronics for MA23/APM

    International Nuclear Information System (INIS)

    We relate briefly the radiation hardening method used to guarantee a gamma resistance of 10 Mrad for the whole electronic equipment associated with the slave arm of MA23 M servomanipulator which will be set up in cell 404 in Marcoule (APM). We describe the radiation testing of electronic devices and of the various subsystems designed by the D. LETI groups involved in the MA23/APM project

  11. Forced extinction of CD24 stem-like breast cancer marker alone promotes radiation resistance through the control of oxidative stress.

    Science.gov (United States)

    Bensimon, Julie; Biard, Denis; Paget, Vincent; Goislard, Maud; Morel-Altmeyer, Sandrine; Konge, Julie; Chevillard, Sylvie; Lebeau, Jérôme

    2016-03-01

    Along with CD44, CD24 is a key marker of breast cancer stem cells (CSCs), frequently defined by CD24(-)/CD44(+) labeling. Among all phenotypes classically attributed to breast CD24(-)/CD44(+) cancer cells, radiation resistance has been extensively described and seen as being implicated in radiotherapy failure. Our previous data indicated that CD24(-) cells constitute a radiation-resistant subpopulation transitory selected by high doses of ionizing radiation. However, little is known about the biological role of CD24 in breast cancers, and no function has been assigned to CD24 in radiation response. Here, CD24 expression was induced in CD24(-) cells or knocked-down in CD24(+) cells. We show that forced extinction of CD24 expression is associated with decreased proliferation rate, lower levels of reactive oxygen species (ROS) and decreased genomic instability. On the opposite when CD24 is artificially expressed in CD24(-) cells, proliferation rates in vitro and in vivo, ROS levels and genomic instability are enhanced. Moreover, we observe that loss of CD24 expression leads to radiation resistance, by preventing radiation-induced cell death and promoting generation of progeny in relation to lower G2/M blockade and a smaller proportion of polyploid cells. Finally, control of ROS levels appears to be the key event in the CD24-mediated radiation response. For the first time, CD24 is proposed as a direct actor in radiation response of breast cancer cells, independently of CD44 expression. These findings could have interesting applications in evaluating the intrinsic radiation response of primary tumors.

  12. Transient elevation of glycolysis confers radio-resistance by facilitating DNA repair in cells

    International Nuclear Information System (INIS)

    Cancer cells exhibit increased glycolysis for ATP production (the Warburg effect) and macromolecular biosynthesis; it is also linked with therapeutic resistance that is generally associated with compromised respiratory metabolism. Molecular mechanisms underlying radio-resistance linked to elevated glycolysis remain incompletely understood. We stimulated glycolysis using mitochondrial respiratory modifiers (MRMs viz. di-nitro phenol, DNP; Photosan-3, PS3; Methylene blue, MB) in established human cell lines (HEK293, BMG-1 and OCT-1). Glucose utilization and lactate production, levels of glucose transporters and glycolytic enzymes were investigated as indices of glycolysis. Clonogenic survival, DNA repair and cytogenetic damage were studied as parameters of radiation response. MRMs induced the glycolysis by enhancing the levels of two important regulators of glucose metabolism GLUT-1 and HK-II and resulted in 2 fold increase in glucose consumption and lactate production. This increase in glycolysis resulted in resistance against radiation-induced cell death (clonogenic survival) in different cell lines at an absorbed dose of 5 Gy. Inhibition of glucose uptake and glycolysis (using fasentin, 2-deoxy-D-glucose and 3-bromopyruvate) in DNP treated cells failed to increase the clonogenic survival of irradiated cells, suggesting that radio-resistance linked to inhibition of mitochondrial respiration is glycolysis dependent. Elevated glycolysis also facilitated rejoining of radiation-induced DNA strand breaks by activating both non-homologous end joining (NHEJ) and homologous recombination (HR) pathways of DNA double strand break repair leading to a reduction in radiation-induced cytogenetic damage (micronuclei formation) in these cells. These findings suggest that enhanced glycolysis generally observed in cancer cells may be responsible for the radio-resistance, partly by enhancing the repair of DNA damage

  13. The role of autophagy in sensitizing malignant glioma cells to radiation therapy

    Institute of Scientific and Technical Information of China (English)

    Wenzhuo Zhuang; Zhenghong Qin; Zhongqin Liang

    2009-01-01

    Malignant gliomas representthe majority of primary brain tumors.The current standard treatments for malignant gliomas include surgical resection,radiation therapy,and chemotherapy.Radiotherapy,a standard adjuvant therapy,confers some survival advantages,but resistance of the glioma cells to the efficacy of radiation limits the success of the treatment.The mechanisms underlying glioma cell radioresistance have remained elusive.Autophagy is a protein degradation system characterized by a prominent formation of double-membrane vesicles in the cytoplasm.Recent studies suggest that autophagy may be important in the regulation of cancer development and progression and in determining the response of tumor cells to anticancer therapy.Also,autophagy is a novel response of glioma cells to ionizing radiation.Autophagic cell death is considered programmed cell death type Ⅱ,whereas apoptosis is programmed cell death type Ⅰ.These two types of cell death are predominantly distinctive,but many studies demonstrate a cross-talk between them.Whether autophagy in cancer cells causes death or protects cells is controversial.The regulatory pathways of autophagy share several molecules.P13K/Akt/Mtor,DNA-PK,tumor suppressor genes, mitochondrial damage,and lysosome may play important roles in radiation-induced autophagy in glioma cells.Recently,a highly tumorigenic glioma tumor subpopulation,termed cancer stem cell or tumor-initiating cell,has been shown to promote therapeutic resistance.This review summarizes the main mediators associated with radiation-induced autophagy in malignant glioma cells and discusses the implications of the cancer stem cell hypothesis for the development of future therapies for brain tumors.

  14. Cell/Tissue Culture Radiation Exposure Facility Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a Cell/Tissue Culture Radiation Exposure Facility (CTC-REF) to enable radiobiologists to investigate the real-time radiation effects on...

  15. Carcinoembryonic Antigen Expression and Resistance to Radiation and 5-Fluorouracil-Induced Apoptosis and Autophagy.

    Science.gov (United States)

    Eftekhar, Ebrahim; Jaberie, Hajar; Naghibalhossaini, Fakhraddin

    2016-01-01

    Understanding the mechanism of tumor resistance is critical for cancer therapy. In this study, we investigated the effect of carcinoembryonic antigen (CEA) overexpression on UV-and 5-fluorouracil (5-FU)-induced apoptosis and autophagy in colorectal cancer cells. We used histone deacetylase (HDAC) inhibitor, NaB and DNA demethylating agent, 5-azacytidine (5-AZA) to induce CEA expression in HT29/219 and SW742 colorectal cancer cell lines. MTT assay was used to measure IC50 value of the cells exposed to graded concentrations of 5- FU with either 0.1 mM NaB or 1 μM 5-AZA for 72 h . Using CHO- and SW742-CEA transfectants, we also investigated the effect of CEA expression on UV- and 5-FU-induced apoptosis and autophagy. Treatment of HT29/219 cell line with NaB and 5-AZA increased CEA expression by 29% and 31%, respectively. Compared with control cells, the IC50 value for 5-FU of NaB and 5-AZA-treated cells increased by 40% and 57%, respectively. Treatment of SW742 cells with NaB or 5-AZA increased neither CEA expression nor the IC50 value for 5-FU. In comparison to parental cells, CEA expression also significantly protected transfected cells against UV-induced apoptosis. Decreased proportions of autophagy and apoptosis were also observed in 5-FU treated SW742- and CHO-CEA transfectants. We conclude that CEA expression can effectively protect colorectal cancer cells against radiation and drug-induced apoptosis and autophagy. PMID:27478804

  16. The effect of radiation intensity on diode characteristics of silicon solar cells

    International Nuclear Information System (INIS)

    In order to explore electro-physical properties of silicon solar cells, diode characteristics and ohmic properties of Al - Ni / (n+) - Si contact has been studied. Diode characteristics have been studied on a wide temperature range and on various radiation intensity, so this gives us the ability to observe the effect of the radiation and the temperature on electro-physical properties of under study solar cells. Volt-Ampere characteristics of the ohmic contacts of the silicon solar cells have been presented. As well as contact resistance and mechanism of current transmission has been identified.

  17. RADIATION RESISTANT LED POWER SUPPLY RELEASED UNDER CERN OPEN HARDWARE LICENSE

    CERN Multimedia

    2016-01-01

    As part of the design of a new emergency lighting system for the CERN accelerator complex a new design for a radiation resistant power supply has been produced. The design is available from the Open Hardware Repository.

  18. Effect of various polymeric binders on the radiation resistance of glass fiber HEPA filter media

    International Nuclear Information System (INIS)

    Glass fiber HEPA filter media bonded with various polymeric materials were exposed to several levels of radiation dosage from an electron beam source. The effects on water repellency, tensile strength, DOP filtration efficiency and organic content were noted. All media suffered degradation at the highest levels of radiation dosage (7 x 108 rads). However, at intermediate levels, radiation resistance was affected by the type of binder. Greatest resistance to radiation was exhibited by media bonded with a phenylated polysiloxane resin. Cross-linking polymers such as polystyrene and SBR displayed improvement in some properties, such as in water repellency and tensile strength, at low levels of radiation exposure (less than 2 x 108 rads), however degraded at higher levels of exposure. Filtration properties such as DOP efficiency and resistance to air flow did not appear to be greatly affected by radiolysis. (U.S.)

  19. Complete genome sequence of Rufibacter tibetensis strain 1351, a radiation-resistant bacterium from Tibet plateau.

    Science.gov (United States)

    Zhang, Yi; Yu, Can; Zhou, Mengzhou; Tang, Jingfeng; Li, Xin; Wang, Zhi; Li, Zhijun; Yao, Juan; Li, Pei; Zheng, Guobin; Chen, Xiong; Dai, Jun

    2015-12-20

    Rufibacter tibetensis strain 1351, isolated from the soil of the Tibet plateau of China, belongs to the family of Cytophagaceae. It is a red-pigmented, gram-negative, strictly aerobic and rod-shaped bacterium and shows resistance to UV radiation. Here, we report its complete genome sequence, which can help us find the key genes of the carotenoid biosynthesis and resistance to UV radiation.

  20. Drosophila Wnt and STAT Define Apoptosis-Resistant Epithelial Cells for Tissue Regeneration after Irradiation

    Science.gov (United States)

    Su, Tin Tin

    2016-01-01

    Drosophila melanogaster larvae irradiated with doses of ionizing radiation (IR) that kill about half of the cells in larval imaginal discs still develop into viable adults. How surviving cells compensate for IR-induced cell death to produce organs of normal size and appearance remains an active area of investigation. We have identified a subpopulation of cells within the continuous epithelium of Drosophila larval wing discs that shows intrinsic resistance to IR- and drug-induced apoptosis. These cells reside in domains of high Wingless (Wg, Drosophila Wnt-1) and STAT92E (sole Drosophila signal transducer and activator of transcription [STAT] homolog) activity and would normally form the hinge in the adult fly. Resistance to IR-induced apoptosis requires STAT and Wg and is mediated by transcriptional repression of the pro-apoptotic gene reaper. Lineage tracing experiments show that, following irradiation, apoptosis-resistant cells lose their identity and translocate to areas of the wing disc that suffered abundant cell death. Our findings provide a new paradigm for regeneration in which it is unnecessary to invoke special damage-resistant cell types such as stem cells. Instead, differences in gene expression within a population of genetically identical epithelial cells can create a subpopulation with greater resistance, which, following damage, survive, alter their fate, and help regenerate the tissue. PMID:27584613

  1. Radiolabeled blood cells: radiation dosimetry and significance

    International Nuclear Information System (INIS)

    Over the past few years blood cells labeled with In-111 have become increasingly useful in clinical diagnosis and biomedical research. Indium-111 by the virtue of its physical characteristics and ability to bind to cell cytoplasmic components, provides an excellent cell tracer and thereby, allows investigators to monitor in vivo cell distribution by external imaging and help determine a course of regimen in treating life threatening diseases. Due to natural phenomena such as margination, blood pool, and reticuloendothelial cell activity, in the normal state, depending upon the cell type and the quality of cell preparations, 30%-50% of the administered radioactivity is immediately distributed in the liver, spleen and bone marrow. Over a period of time the radioactivity in these organs slightly increases and decays with a physical half-life of In-111. The resulting radiation dose to these organs ranges between 1-25 rads/mCi In-111 administered. The authors have developed a new In-111 labeling technique which preserves platelet ultrastructure and shown that human lymphocytes labeled with In-111 in mixed leukocytes preparations a) are only 0.003% of the total -body lymphocytes population and b) are killed. The consequence if any may be considered insignificant, particularly because 5.6% metaphases from normal men and 6.5% metaphases from normal women in the US have at least one chromosome aberration. Calculations have shown that the risk of fatal hematological malignancy, over a 30 year period, in recipients of 100 million lymphocytes labeled with 100 μCi In-111 is 1/million patients studied. This risk is less than 0.025% of the 1981 spontaneous cancer patient rate in the country. 32 references, 10 tables

  2. Enhanced stress resistance of Deinococcus radiodurans cells in the dried state

    Science.gov (United States)

    Bauermeister, Anja; Moeller, Ralf; Reitz, Guenther; Billi, Daniela; Rettberg, Petra

    Liquid water is often regarded as a pre-requisite for life as we know it. However, some organisms can survive prolonged periods in a desiccated state and seem to resist other environmental stres-sors even better when water is absent. We tested this observation in Deinococcus radiodurans, a non-sporeforming soil bacterium well-known for its outstanding resistance to DNA damaging stressors, including high doses of UV and ionizing radiation, oxidants, and desiccation. Due to its polyextremophilic characteristics it has been regarded as a model organism in astrobiological research. To determine if the cellular changes imposed by the removal of water have an effect on the stress resistance of D. radiodurans, we compared the survival capacity of dried cells with that of hydrated cells after exposure to mono-and polychromatic UV radiation, -radiation, and heat shock (85C). In all cases, resistance was enhanced in dried cells. It is suggested that these effects are mainly due to a reduced oxidative stress in dried cells, as the metabolism is shut down and radical diffusion is very limited. Hence, desiccating conditions as encountered in space vacuum or on arid planets such as Mars may be beneficial instead of detrimental to the survival of some polyextremophilic microbes. Ongoing experiments aim to evaluate damage at a subcellular level in dried and hydrated cells after exposure to irradiation or heat shock.

  3. Radiation responses of stem cells: targeted and non-targeted effects

    International Nuclear Information System (INIS)

    Stem cells are fundamental to the development of any tissue or organism via their ability to self-renew, which is aided by their unlimited proliferative capacity and their ability to produce fully differentiated offspring, often from multiple lineages. Stems cells are long lived and have the potential to accumulate mutations, including in response to radiation exposure. It is thought that stem cells have the potential to be induced into a cancer stem cell phenotype and that these may play an important role in resistance to radiotherapy. For radiation-induced carcinogenesis, the role of targeted and non-targeted effects is unclear with tissue or origin being important. Studies of genomic instability and bystander responses have shown consistent effects in haematopoietic models. Several models of radiation have predicted that stem cells play an important role in tumour initiation and that bystander responses could play a role in proliferation and self-renewal. (authors)

  4. Radiation-hard, high efficiency InP solar cell and panel development

    International Nuclear Information System (INIS)

    Indium phosphide solar cells with efficiencies over 19% (Air mass zero, 25 degrees C) and area of 4 cm2 have been made and incorporated into prototype panels. The panels will be tested in space to confirm the high radiation resistance expected from InP solar cells, which makes the material attractive for space use, particularly in high-radiation orbits. Laboratory testing indicated an end-of-life efficiency of 15.5% after 1015 1 MeV electrons, and 12% after 1016. These cells are made by metalorganic chemical vapor deposition, and have a shallow homojunction structure. The manufacturing process is amendable to scale-up to larger volumes; more than 200 cells were produced in the laboratory operation. Cell performance, radiation degradation, annealing behavior, and results of deep level transient spectroscopy studies are presented in this paper

  5. Role of lymphocyte-specific protein tyrosine kinase (LCK) in the expansion of glioma-initiating cells by fractionated radiation

    International Nuclear Information System (INIS)

    Research highlights: → Activation of Lymphocyte-specific protein tyrosine kinase (LCK) is involved in the fractionated radiation-induced expansion of glioma stem-like cells. → Inhibition of LCK prevents acquisition of fractionated radiation-induced resistance to chemotherapeutic treatment. → LCK activity is critical for the maintenance of self-renewal in glioma stem-like cells. -- Abstract: Brain cancers frequently recur or progress as focal masses after treatment with ionizing radiation. Radiation used to target gliomas may expand the cancer stem cell population and enhance the aggressiveness of tumors; however, the mechanisms underlying the expansion of cancer stem cell population after radiation have remained unclear. In this study, we show that LCK (lymphocyte-specific protein tyrosine kinase) is involved in the fractionated radiation-induced expansion of the glioma-initiating cell population and acquisition of resistance to anticancer treatments. Fractionated radiation caused a selective increase in the activity of LCK, a Src family non-receptor tyrosine kinase. The activities of other Src family kinases Src, Fyn, and Lyn were not significantly increased. Moreover, knockdown of LCK expression with a specific small interfering RNA (siRNA) effectively blocked fractionated radiation-induced expansion of the CD133+ cell population. siRNA targeting of LCK also suppressed fractionated radiation-induced expression of the glioma stem cell marker proteins CD133, Nestin, and Musashi. Expression of the known self-renewal-related proteins Notch2 and Sox2 in glioma cells treated with fractionated radiation was also downregulated by LCK inhibition. Moreover, siRNA-mediated knockdown of LCK effectively restored the sensitivity of glioma cells to cisplatin and etoposide. These results indicate that the non-receptor tyrosine kinase LCK is critically involved in fractionated radiation-induced expansion of the glioma-initiating cell population and decreased cellular

  6. Palliative Radiation Therapy for Symptomatic Control of Inoperable Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Anatoly Nikolaev

    2016-01-01

    Full Text Available Renal cell carcinoma (RCC is traditionally considered to be resistant to conventional low dose radiation therapy (RT. The emergence of image-guided stereotactic body radiation therapy (SBRT made it possible to deliver much higher doses of radiation. Recent clinical trials of SBRT for RCC showed improvement in local control rates and acceptable toxicity. Here we report a case of inoperable symptomatic RCC that was managed with SBRT. Strikingly, the presenting symptoms of gross hematuria and severe anemia were completely resolved following a course of SBRT. Thus, our case report highlights the potential benefit of this technique for patients with inoperable RCC.

  7. Quiescent cells: A natural way to resist chemotherapy

    Science.gov (United States)

    Menchón, S. A.; Condat, C. A.

    2011-10-01

    Most chemotherapeutic treatments use drugs that target proliferating cancer cells. Therefore, they do not affect quiescent cells which are naturally resistant. Surviving cancer cells can reactivate their cell cycles in the intervals between doses, becoming proliferative again and thus restarting tumor growth. In this work, we present a mathematical model to study the impact of quiescent cells on chemotherapy effectiveness. Our simulations show that, although tumor growth is delayed after the beginning of each dose, the resistance of quiescent cells is enough to reactivate it due to accelerated repopulation, eventually causing therapy failure even in the absence of acquired resistance.

  8. Estimation of thermal shock resistance of fine porous alumina by infrared radiation heating method

    OpenAIRE

    Iwamoto, Yuji; Honda, Sawao; Ogihara, Yuki; Kishi, Tsunego; イワモト, ユウジ; ホンダ, サワオ; 岩本, 雄二; 本多, 沢雄

    2009-01-01

    The thermal shock resistance of α-alumina porous capillary, the support material for hydrogen-permselective microporous ceramic membrane was studied. To study the effect of porosity on the thermal shock resistance systematically, porous alumina with different porosities was fabricated, and the thermal shock resistance of the fabricated samples as well as the porous capillary was estimated by the infrared radiation heating method. The mechanical and thermal properties concerned to the thermal ...

  9. Metallic Photonic Bandgap Resonant Antennas with High Directivity and High Radiation Resistance

    Institute of Scientific and Technical Information of China (English)

    林青春; 符建; 何赛灵; 章坚武

    2002-01-01

    A metallic photonic bandgap (MPBG) resonant antenna is introduced, which has novel characteristics (such as high directivity and high radiation resistance for a certain range of frequencies) as compared to conventional MPBG antennas. The linear MPBG resonant antenna is formed by infinitely long metallic rods in vacuum. The numerical results for the radiation pattern and the radiation resistance are presented. By adjusting the struct ure of the MPBG resonant antenna and its working frequency, an optimal structure is achieved. The physical reasons for the novel characteristics of the MPBG resonant antenna are also explained.

  10. Inhibition of autophagy overcomes glucocorticoid resistance in lymphoid malignant cells.

    Science.gov (United States)

    Jiang, Lei; Xu, Lingzhi; Xie, Jiajun; Li, Sisi; Guan, Yanchun; Zhang, Yan; Hou, Zhijie; Guo, Tao; Shu, Xin; Wang, Chang; Fan, Wenjun; Si, Yang; Yang, Ya; Kang, Zhijie; Fang, Meiyun; Liu, Quentin

    2015-01-01

    Glucocorticoid (GC) resistance remains a major obstacle to successful treatment of lymphoid malignancies. Till now, the precise mechanism of GC resistance remains unclear. In the present study, dexamethasone (Dex) inhibited cell proliferation, arrested cell cycle in G0/G1-phase, and induced apoptosis in Dex-sensitive acute lymphoblastic leukemia cells. However, Dex failed to cause cell death in Dex-resistant lymphoid malignant cells. Intriguingly, we found that autophagy was induced by Dex in resistant cells, as indicated by autophagosomes formation, LC3-I to LC3-II conversion, p62 degradation, and formation of acidic autophagic vacuoles. Moreover, the results showed that Dex reduced the activity of mTOR pathway, as determined by decreased phosphorylation levels of mTOR, Akt, P70S6K and 4E-BP1 in resistant cells. Inhibition of autophagy by either chloroquine (CQ) or 3-methyladenine (3-MA) overcame Dex-resistance in lymphoid malignant cells by increasing apoptotic cell death in vitro. Consistently, inhibition of autophagy by stably knockdown of Beclin1 sensitized Dex-resistant lymphoid malignant cells to induction of apoptosis in vivo. Thus, inhibition of autophagy has the potential to improve lymphoid malignancy treatment by overcoming GC resistance.

  11. Role of Insulin-Like Growth Factor-1 Signaling Pathway in Cisplatin-Resistant Lung Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yunguang [Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN (United States); Zheng Siyuan [Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN (United States); Torossian, Artour; Speirs, Christina K.; Schleicher, Stephen; Giacalone, Nicholas J. [Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN (United States); Carbone, David P. [Department of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN (United States); Zhao Zhongming, E-mail: zhongming.zhao@vanderbilt.edu [Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN (United States); Lu Bo, E-mail: bo.lu@vanderbilt.edu [Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN (United States)

    2012-03-01

    Purpose: The development of drug-resistant phenotypes has been a major obstacle to cisplatin use in non-small-cell lung cancer. We aimed to identify some of the molecular mechanisms that underlie cisplatin resistance using microarray expression analysis. Methods and Materials: H460 cells were treated with cisplatin. The differences between cisplatin-resistant lung cancer cells and parental H460 cells were studied using Western blot, MTS, and clonogenic assays, in vivo tumor implantation, and microarray analysis. The cisplatin-R cells were treated with human recombinant insulin-like growth factor (IGF) binding protein-3 and siRNA targeting IGF-1 receptor. Results: Cisplatin-R cells illustrated greater expression of the markers CD133 and aldehyde dehydrogenase, more rapid in vivo tumor growth, more resistance to cisplatin- and etoposide-induced apoptosis, and greater survival after treatment with cisplatin or radiation than the parental H460 cells. Also, cisplatin-R demonstrated decreased expression of insulin-like growth factor binding protein-3 and increased activation of IGF-1 receptor signaling compared with parental H460 cells in the presence of IGF-1. Human recombinant IGF binding protein-3 reversed cisplatin resistance in cisplatin-R cells and targeting of IGF-1 receptor using siRNA resulted in sensitization of cisplatin-R-cells to cisplatin and radiation. Conclusions: The IGF-1 signaling pathway contributes to cisplatin-R to cisplatin and radiation. Thus, this pathway represents a potential target for improved lung cancer response to treatment.

  12. Hepatitis C virus cell-cell transmission and resistance to direct-acting antiviral agents.

    Directory of Open Access Journals (Sweden)

    Fei Xiao

    2014-05-01

    Full Text Available Hepatitis C virus (HCV is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies. In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs in state-of-the-art model systems for cell-cell transmission and spread. Using HCV genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host-targeting entry inhibitors (HTEIs was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission plays an important role in dissemination and maintenance of resistant variants in cell culture models. Blocking virus cell-cell transmission prevents emergence of drug resistance in persistent viral infection including resistance to HCV DAAs.

  13. Present status and prospects of R&D of radiation-resistant semiconductor devices at JAEA

    Science.gov (United States)

    Itoh, H.

    2013-05-01

    Research and development of radiation resistant semiconductor devices have been performed at Japan Atomic Energy Agency (JAEA) for their application to electronic system used in harsh environments like space, accelerator and nuclear facilities. Such devices are also indispensable for robots and equipment necessary for decommissioning of the damaged reactors at Fukushima Daiichi Nuclear Power Plants. For this purpose, we have fabricated transistors based on a wide band-gap semiconductor SiC and examined their radiation degradation. As a result, SiC-based transistors exhibited no significant degradation up to 1MGy, indicating their excellent radiation resistance. Recent our R&Ds of radiation resistant devices based on SiC are summarized and reviewed.

  14. Acquired-resistance of bevacizumab treatment for radiation brain necrosis: a case report

    Science.gov (United States)

    Sun, Dayong; Bian, Jianliang; Chang, Joe Y.; Yuan, Zhiyong; Wang, Ping

    2016-01-01

    The case study reported on acquired bevacizumab resistance in one patient receiving re-treatment with bevacizumab following radiation brain necrosis progression after bevacizumab was discontinued. This case offers novel and additional insight for bevacizumab treatment. Low-dose bevacizumab is effective for radiation brain necrosis, and radiation brain necrosis may progress after bevacizumab discontinuation, whereas too many cycles of bevacizumab treatment may induce drug-resistance and re-treatment failure following the progression. Therefore, more rational administration for radiation brain necrosis with bevacizumab may include three aspects: short-course treatment, timely discontinuation upon obtaining satisfactory effects (to prevent long-term medication associated resistance) and re-treatment after brain necrosis progression. PMID:26933810

  15. Effect of ionizing radiation on transcription of colorectal cancer MDR1 gene of HCT-8 cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-Feng Li; Lin Ma; Jing Lu; Li-Xia Kong; Xiao-Hua Long; Su-Huan Liao; Bao-Rong Chi

    2013-01-01

    Objective: To discuss effect of ionizing radiation on transcription of colorectal cancer multidrug resistance (MDR) 1 gene of HCT-8 cells. Methods: Total RNA was extracted by guanidine thiocyanate one-step method. Northern blot was applied to detect transcription level of MDR1 gene. The expression of P-gp protein was detected by flow cytometry. Results: The expression of MDR1 of normal colorectal cancer HCT-8 cells was low. It was increased by 8.35 times under stimulus with 2 Gy. When treated with low doses in advance, high expressed MDR was decreased significantly under 0.05, 0.1 Gy, which was 69.00%, 62.89% in 2 Gy group and 5.77 times, 5.25 times in sham irradiation group. No obvious difference was detected between (0.2+2) Gy group and 2 Gy group. Compared with sham irradiation group, the percentage of P-gp positive cells after radiation of a high 2 Gy dose was increased significantly (P<0.01). When treated with high radiation dose following low radiation dose (0.05 Gy, 0.1 Gy) in advance, the percentage of P-gp positive cells were also increased significantly. The percentage of P-gp positive cells were increased obviously in 0.2 Gy and 2 Gy groups. Compared with simple high radiation 2 Gy group, the percentage of P-gp positive cells was decreased significantly (P<0.05). Conclusions:Low radiation dose can reverse multidrug resistance of colorectal cancer cells caused by high radiation dose.

  16. Effects of radiation on T regulatory cells in normal states and cancer: mechanisms and clinical implications.

    Science.gov (United States)

    Liu, Shu; Sun, Xiangdong; Luo, Jinhua; Zhu, Hongcheng; Yang, Xi; Guo, Qing; Song, Yaqi; Sun, Xinchen

    2015-01-01

    Radiation remains an important component of cancer treatment. In addition to inducing tumor cell death through direct cytotoxic effects, radiation can also promote the regression of tumor via augment of immune response. Regulatory T cells (Tregs) are a unique subpopulation of CD4 positive cells, which are characterized by expression of the forkhead box P3 (Foxp3) transcription factor and high levels of CD25. Mounting evidence has shown that Tregs are implicated in the development and progression of various types of cancer, which makes Tregs an important target in cancer therapeutics. Generally, lymphocytes are regarded as radiosensitive. However, Tregs have been demonstrated to be relatively resistant to radiotherapy, which is partly mediated by downregulation of pro-apoptotic proteins and upregulation of anti-apoptotic proteins. Moreover, radiotherapy can increase the production of Tregs and the recruitment of Tregs to local tumor microenvironment. Tregs can attenuate radiation-induced tumor death, which cause the resistance of tumor to radiotherapy. Recent experimental studies and clinical trails have demonstrated that the combination of radiation with medications that target Tregs is promising in the treatment of several types of neoplasms. In this review, we discussed the effect of radiation on Tregs in physiological states and cancer. Further, we presented an overview of therapies that target Tregs to enhance the efficacy of radiation in cancer therapeutics. PMID:26807310

  17. Resistance to DNA denaturation in irradiated Chinese hamster V79 fibroblasts is linked to cell shape

    International Nuclear Information System (INIS)

    Exponentially growing Chinese hamster V79-171b lung fibroblasts seeded at high density on plastic (approximately 7 x 10(3) cells/cm2) flatten, elongate, and produce significant amounts of extracellular fibronectin. When lysed in weak alkali/high salt, the rate of DNA denaturation following exposure to ionizing radiation is exponential. Conversely, cells plated at low density (approximately 7 x 10(2) cells/cm2) on plastic are more rounded 24 h later, produce little extracellular fibronectin, and display unusual DNA denaturation kinetics after X-irradiation. DNA in these cells resists denaturation, as though constraints to DNA unwinding have developed. Cell doubling time and distribution of cells in the growth cycle are identical for both high and low density cultures as is cell survival in response to radiation damage. The connection between DNA conformation and cell shape was examined further in low density cultures grown in conditioned medium. Under these conditions, cells at low density were able to elongate, and DNA denaturation of low density cultures was identical to that of high density cultures. Conversely, cytochalasin D, which interferes with actin polymerization causing cells to round up and release fibronectin, allowed development of constraints in high density cultures. These results suggest that DNA conformation is sensitive to changes in cell shape which result when cells are grown in different environments. However, these changes in DNA conformation detected by the DNA unwinding assay do not appear to play a direct role in radiation-induced cell killing

  18. Mechanisms of radiation-induced neoplastic cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, T.C.H.; Tobias, C.A.

    1984-04-01

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table.

  19. Radiation Therapy for Cutaneous T-Cell Lymphomas.

    Science.gov (United States)

    Tandberg, Daniel J; Craciunescu, Oana; Kelsey, Chris R

    2015-10-01

    Radiation therapy is an extraordinarily effective skin-directed therapy for cutaneous T-cell lymphomas. Lymphocytes are extremely sensitive to radiation and a complete response is generally achieved even with low doses. Radiation therapy has several important roles in the management of mycosis fungoides. For the rare patient with unilesional disease, radiation therapy alone is potentially curative. For patients with more advanced cutaneous disease, radiation therapy to local lesions or to the entire skin can effectively palliate symptomatic disease and provide local disease control. Compared with other skin-directed therapies, radiation therapy is particularly advantageous because it can effectively penetrate and treat thicker plaques and tumors. PMID:26433843

  20. ESTABLISHMENT OF K562/ADM/VER CELL SUBLINE RESISTANT TO VERAPAMIL AND ITS RESISTANT MECHANISM

    Institute of Scientific and Technical Information of China (English)

    谢佐福; 周冬梅; 林贤东; 林声; 吴允昆

    2001-01-01

    Objective: To understand whether verapamil (VER) resistance development in the multidrug-resistant cell line and its mechanism. Methods: K562/ADM/VER cell subline resistant to verapamil was established through a gradual increase of VER concentration in the media. MTT method was used to assay resistance to VER, cross resistance to dipyriamole (DPM), cyclosporin A (CsA) in the cells, and HPLC and spectrofluorometer to detect intracellular accumulation of VER or ADM respectively, as well as S-P immunocytochemical technique for detection of genes expression. Results: It were observed that 7.9-fold increase in VER resistance, significantly reduced intracellular accumulation of VER or ADM and also develop across resistance to DPM and CsA in K562/ADM/VER cells, compared with its parent cell, K562/ADM. High-level of p-glycoprotein(pgp), middle-level of p53, p16, was present in two cell lines without expression of GSTPI, C-myc, C-myc, C-fos and C-erbB-2. Bc1-2 protein expression was found only in K562/ADM cells. Conclusion: K562/ADM cells were capable of being induced to develop resistance to VER.

  1. Out of band radiation effects on resist patterning

    Energy Technology Data Exchange (ETDEWEB)

    George, Simi A .; Naulleau, Patrick P.

    2011-03-11

    Our previous work estimated the expected out-of-band (OOB) flare contribution at the wafer level assuming that there is a given amount of OOB at the collector focus. We found that the OOB effects are wavelength, resist, and pattern dependent. In this paper, results from rigorous patterning evaluation of multiple OOB-exposed resists using the SEMATECH Berkeley 0.3-NA MET are presented. A controlled amount of OOB is applied to the resist films before patterning is completed with the MET. LER and process performance above the resolution limit and at the resolution limits are evaluated and presented. The results typically show a negative impact on LER and process performance after the OOB exposures except in the case of single resist formulation, where resolution and performance improvement was observed.

  2. A gamma-ray-resistant derivative of an ataxia telangiectasia cell line obtained following DNA-mediated gene transfer

    International Nuclear Information System (INIS)

    Genomic DNA from normal human or mouse cells was transfected together with the selectable market gpt into the simian virus 40-transformed ataxia telangiectasia fibroblast line, AT5BIVA. From a series of experiments involving over 400 000 clones selected for the gpt marker, one unambiguously radiation-resistant clone (clone 67) was recovered following selection with repeated cyles of gamma irradiation. The normal level of radiation resistance of clone 67 has been maintained for at least 11 months in the absence of further selection by radiation. The resistant clone contains one copy of the gpt gene. Its DNA synthesis following gamma-radiation is inhibited to an extent intermediate between that of ataxia telangiectasia and normal cells. Three out of four thioguanine-resistant derivatives of clone 67 have either lost or do not express the gpt sequence and show almost the same sensitivity to gamma irradiation as the original AT5BIVA line. This suggests that the radiation resistance of clone 67 may be linked to the gpt sequence and may have arisen as a consequence of the transfection, rather than as the result of an independent mutation to radiation resistance. (author)

  3. Radiation-Induced Glycogen Accumulation Detected by Single Cell Raman Spectroscopy Is Associated with Radioresistance that Can Be Reversed by Metformin.

    Directory of Open Access Journals (Sweden)

    Quinn Matthews

    Full Text Available Altered cellular metabolism is a hallmark of tumor cells and contributes to a host of properties associated with resistance to radiotherapy. Detection of radiation-induced biochemical changes can reveal unique metabolic pathways affecting radiosensitivity that may serve as attractive therapeutic targets. Using clinically relevant doses of radiation, we performed label-free single cell Raman spectroscopy on a series of human cancer cell lines and detected radiation-induced accumulation of intracellular glycogen. The increase in glycogen post-irradiation was highest in lung (H460 and breast (MCF7 tumor cells compared to prostate (LNCaP tumor cells. In response to radiation, the appearance of this glycogen signature correlated with radiation resistance. Moreover, the buildup of glycogen was linked to the phosphorylation of GSK-3β, a canonical modulator of cell survival following radiation exposure and a key regulator of glycogen metabolism. When MCF7 cells were irradiated in the presence of the anti-diabetic drug metformin, there was a significant decrease in the amount of radiation-induced glycogen. The suppression of glycogen by metformin following radiation was associated with increased radiosensitivity. In contrast to MCF7 cells, metformin had minimal effects on both the level of glycogen in H460 cells following radiation and radiosensitivity. Our data demonstrate a novel approach of spectral monitoring by Raman spectroscopy to assess changes in the levels of intracellular glycogen as a potential marker and resistance mechanism to radiation therapy.

  4. Radiation-Induced Glycogen Accumulation Detected by Single Cell Raman Spectroscopy Is Associated with Radioresistance that Can Be Reversed by Metformin.

    Science.gov (United States)

    Matthews, Quinn; Isabelle, Martin; Harder, Samantha J; Smazynski, Julian; Beckham, Wayne; Brolo, Alexandre G; Jirasek, Andrew; Lum, Julian J

    2015-01-01

    Altered cellular metabolism is a hallmark of tumor cells and contributes to a host of properties associated with resistance to radiotherapy. Detection of radiation-induced biochemical changes can reveal unique metabolic pathways affecting radiosensitivity that may serve as attractive therapeutic targets. Using clinically relevant doses of radiation, we performed label-free single cell Raman spectroscopy on a series of human cancer cell lines and detected radiation-induced accumulation of intracellular glycogen. The increase in glycogen post-irradiation was highest in lung (H460) and breast (MCF7) tumor cells compared to prostate (LNCaP) tumor cells. In response to radiation, the appearance of this glycogen signature correlated with radiation resistance. Moreover, the buildup of glycogen was linked to the phosphorylation of GSK-3β, a canonical modulator of cell survival following radiation exposure and a key regulator of glycogen metabolism. When MCF7 cells were irradiated in the presence of the anti-diabetic drug metformin, there was a significant decrease in the amount of radiation-induced glycogen. The suppression of glycogen by metformin following radiation was associated with increased radiosensitivity. In contrast to MCF7 cells, metformin had minimal effects on both the level of glycogen in H460 cells following radiation and radiosensitivity. Our data demonstrate a novel approach of spectral monitoring by Raman spectroscopy to assess changes in the levels of intracellular glycogen as a potential marker and resistance mechanism to radiation therapy. PMID:26280348

  5. Correlation of electromagnetic radiation emitted from coal or rock to supporting resistance

    Institute of Scientific and Technical Information of China (English)

    JIA Hui-lin; WANG En-yuan; SONG Xiao-yan; ZHANG Hong-jie; LI Zhong-hui

    2009-01-01

    More accurate forecasting of rock burst might be possible from observations of electromagnetic radiation emitted in the mine. We analyzed experimental observations and field data from the Muchengjian coal mine to study the relationship between electromagnetic radiation signal intensity and stress during the fracturing of coal, or rock, and samples under load. The results show that the signal intensity is positively correlated with stress. In addition, we investigated the change in the electromagnetic radiation intensity, the supporting resistance in a real coal mine environment, and the coal or rock stress in the mining area. The data analysis indicates that: 1) electromagnetic radiation intensity can accurately reflect the distribution of stress in the mining area; and, 2) there is a correlation between electromagnetic radiation intensity and supporting resistance. The research has some practical guiding significance for rock burst forecasting and for the prevention of accidents in coal mines.

  6. Sphingosine analog fingolimod (FTY720) increases radiation sensitivity of human breast cancer cells in vitro.

    Science.gov (United States)

    Marvaso, Giulia; Barone, Agnese; Amodio, Nicola; Raimondi, Lavinia; Agosti, Valter; Altomare, Emanuela; Scotti, Valerio; Lombardi, Angela; Bianco, Roberto; Bianco, Cataldo; Caraglia, Michele; Tassone, Pierfrancesco; Tagliaferri, Pierosandro

    2014-06-01

    Radiotherapy is one of the most effective therapeutic strategies for breast cancer patients, although its efficacy may be reduced by intrinsic radiation resistance of cancer cells. Recent investigations demonstrate a link between cancer cell radio-resistance and activation of sphingosine kinase (SphK1), which plays a key role in the balance of lipid signaling molecules. Sphingosine kinase (SphK1) activity can alter the sphingosine-1-phosphate (S1P)/ceramide ratio leading to an imbalance in the sphingolipid rheostat. Fingolimod (FTY720) is a novel sphingosine analog and a potent immunosuppressive drug that acts as a SphK1 antagonist, inhibits the growth, and induces apoptosis in different human cancer cell lines. We sought to investigate the in vitro radiosensitizing effects of FTY720 on the MDA-MB-361 breast cancer cell line and to assess the effects elicited by radiation and FTY720 combined treatments. We found that FTY720 significantly increased anti-proliferative and pro-apoptotic effects induced by a single dose of ionizing radiation while causing autophagosome accumulation. At the molecular level, FTY720 significantly potentiated radiation effects on perturbation of signaling pathways involved in regulation of cell cycle and apoptosis, such as PI3K/AKT and MAPK. In conclusion, our data highlight a potent radiosensitizing effect of FTY720 on breast cancer cells and provide the basis of novel therapeutic strategies for breast cancer treatment. PMID:24657936

  7. Carboplatin treatment of antiestrogen-resistant breast cancer cells

    DEFF Research Database (Denmark)

    Larsen, Mathilde S; Yde, Christina Westmose; Christensen, Ib J;

    2012-01-01

    Antiestrogen resistance is a major clinical problem in current breast cancer treatment. Therefore, biomarkers and new treatment options for antiestrogen-resistant breast cancer are needed. In this study, we investigated whether antiestrogen‑resistant breast cancer cell lines have increased...... sensitivity to carboplatin, as it was previously shown with cisplatin, and whether low Bcl-2 expression levels have a potential value as marker for increased carboplatin sensitivity. Breast cancer cells resistant to the pure antiestrogen fulvestrant, and two out of four cell lines resistant...... to the antiestrogen tamoxifen, were more sensitive to carboplatin treatment compared to the parental MCF-7 cell line. This indicates that carboplatin may be an advantageous treatment in antiestrogen‑resistant breast cancer; however, a marker for increased sensitivity would be needed. Low Bcl-2 expression...

  8. Radiation damage and repair in cells and cell components. Part 2. Physical radiations and biological significance. Final report

    International Nuclear Information System (INIS)

    The report comprises a teaching text, encompassing all physical radiations likely to be of biological interest, and the relevant biological effects and their significance. Topics include human radiobiology, delayed effects, radiation absorption in organisms, aqueous radiation chemistry, cell radiobiology, mutagenesis, and photobiology

  9. Stomatal resistance of rice leaves as influenced by radiation intensity and air humidity

    International Nuclear Information System (INIS)

    This paper describes results of field experiments of relationships between meteorological conditions and stomatal resistance of rice leaves. The magnitude of stomatal resistance of rice leaves was measured by a porometer at important three developmental stages of rice plants. Stomatal resistance (rs) changed very clearly throughout sunny days in relation to diurnal variation in solar radiation intensity (St) and leaf air vapor concentration deficit (HD). Stomatal resistance of the adaxial surface of rice leaves was found to be the same to that of the abaxial surface in the magnitude, indicating that the water vapor fluxes at the both surfaces of rice leaves are equal with each other. The dependence of non-dimensional stomatal resistance [rs/rm·k(HD)2] on solar radiation intensity (St) was well approximated by a hyperbolic function. The relationship between HD and [rs/rm(1+St, m/St)] was expressed by a quadratic function of HD

  10. Radiation-induced apoptosis in microvascular endothelial cells.

    OpenAIRE

    Langley, R. E.; Bump, E A; Quartuccio, S. G.; Medeiros, D.; Braunhut, S. J.

    1997-01-01

    The response of the microvasculature to ionizing radiation is thought to be an important factor in the overall response of both normal tissues and tumours. It has recently been reported that basic fibroblast growth factor (bFGF), a potent mitogen for endothelial cells, protects large vessel endothelial cells from radiation-induced apoptosis in vitro. Microvessel cells are phenotypically distinct from large vessel cells. We studied the apoptotic response of confluent monolayers of capillary en...

  11. Extraction and identification of exosomes from drug-resistant breast cancer cells and their potential role in cell-to-cell drug-resistance transfer

    Institute of Scientific and Technical Information of China (English)

    许金金

    2014-01-01

    Objective To explore whether docetaxel-resistant cells(MCF-7/Doc)and doxorubicin-resistant cells(MCF-7/ADM)can secrete Exosomes and their potential role in cell-cell drug-resistance transfer.Methods Exosomes were extracted from the cell culture supernatants of MCF-7/Doc and MCF-7/ADM cells by fractionation ultracentrifugation,and were identified by transmission

  12. Space solar cells - High efficiency and radiation damage

    Science.gov (United States)

    Brandhorst, H. W., Jr.; Bernatowicz, D. T.

    1980-01-01

    The proceedings of the Third Solar Cell High Efficiency and Radiation Damage Meeting are outlined. The topics covered included high efficiency silicon solar cells, silicon solar cell radiation damage, GaAs solar cell performance, and 30 percent conversion devices. The study of radiation damage from a fundamental defect-centered basis is discussed and evaluated as a focus of future work. 18% AM0 efficiency and 0.7 V open-circuit voltages are designated as achievable goals for silicon solar cells, and the potential for 30% AM0 efficiencies from monolithic tandem cell designs without sunlight concentration is noted. In addition to its potential for 20% AM0 efficiencies, the GaAs cell offers the possibility of a radiation-insensitive power supply when operated at temperatures near 200 C.

  13. Occurrence of BOOP outside radiation field after radiation therapy for small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hamanishi, Tohru; Oida, Kazukiyo [Tenri Hospital, Nara (Japan); Morimatu, Takafumi (and others)

    2001-09-01

    We report a case of bronchiolitis obliterans organizing pneumonia (BOOP) that occurred outside the radiation field after radiation therapy for small cell lung cancer. A 74-year-old woman received chemotherapy and a total of 60 Gy of radiation therapy to the right hilum and mediastinum for small cell carcinoma of the suprahilar area of the right lung. Radiation pneumonitis developed within the radiation port 3 months after the completion of radiation therapy. She complained of cough and was admitted 7 months after completion of the radiation therapy. Chest radiography and computed tomography demonstrated peripheral alveolar opacities outside the radiation field on the side contralateral to that receiving the radiation therapy. Bronchoalveolar lavage showed that the total cell count was increased, with a markedly increased percentage of lymphocytes. Transbronchial lung biopsy revealed a histologic pattern consistent with BOOP. Treatment with corticosteroids resulted in rapid improvement of the symptoms and complete resolution of the radiographic abnormalities of the left lung. Although some cases of BOOP following radiation therapy for breast cancer have been reported, none of BOOP after radiation therapy for lung cancer have appeared in the literature. (author)

  14. Basal DNA repair machinery is subject to positive selection in ionizing-radiation-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Barkallah Insaf

    2008-06-01

    Full Text Available Abstract Background Ionizing-radiation-resistant bacteria (IRRB show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian selection is expected to play an important role in this trait, but no data are currently available regarding the role of positive adaptive selection in resistance to ionizing-radiation and tolerance of desiccation. We analyzed the four known genome sequences of IRRB (Deinococcus geothermalis, Deinococcus radiodurans, Kineococcus radiotolerans, and Rubrobacter xylanophilus to determine the role of positive Darwinian selection in the evolution of resistance to ionizing radiation and tolerance of desiccation. Results We used the programs MultiParanoid and DnaSP to deduce the sets of orthologs that potentially evolved due to positive Darwinian selection in IRRB. We find that positive selection targets 689 ortholog sets of IRRB. Among these, 58 ortholog sets are absent in ionizing-radiation-sensitive bacteria (IRSB: Escherichia coli and Thermus thermophilus. The most striking finding is that all basal DNA repair genes in IRRB, unlike many of their orthologs in IRSB, are subject to positive selection. Conclusion Our results provide the first in silico prediction of positively selected genes with potential roles in the molecular basis of resistance to γ-radiation and tolerance of desiccation in IRRB. Identification of these genes provides a basis for future experimental work aimed at understanding the metabolic networks in which they participate.

  15. beta1-integrin-mediated signaling essentially contributes to cell survival after radiation-induced genotoxic injury

    DEFF Research Database (Denmark)

    Cordes, N; Seidler, J; Durzok, R;

    2006-01-01

    Integrin-mediated adhesion to extracellular matrix proteins confers resistance to radiation- or drug-induced genotoxic injury. To analyse the underlying mechanisms specific for beta1-integrins, wild-type beta1A-integrin-expressing GD25beta1A cells were compared to GD25beta1B cells, which express...

  16. Effects of radiation and chemical substances on cells and organism

    International Nuclear Information System (INIS)

    The book treats the radiation chemistry part of biophysics and applied biophysics in the sphere of ionizing radiation. Discussed are the concepts of radiation units and radioactivity units and the relative biological efficiency. The effects of ionizing and UV radiations are analyzed at the level of macromolecular changes. Chapters dealing with genetic radiation effects discuss the effects at the cellular level with respect to cell proliferation. All these problems are used to illustrate the effect on the organism as a whole. The chapters on applied biophysics deal with the indications of radiation and chemical damage, sensitivity of cells and the organism, and the study and influencing of growth at the cellular level. The concluding chapter is devoted to the environmental impact of radiation. (J.P.)

  17. Lumped series resistance of solar cells as a result of distributed sheet resistance

    Science.gov (United States)

    Sokolić, Saša; Križaj, Dejan; Amon, Slavko

    1993-04-01

    An analysis of solar cell distributed sheet resistance is performed by solving the nonlinear Poisson equation for the surface potential. Two different approaches to lumped series resistance are discussed: equivalent series resistance RSeq obtained from the cell's equivalent circuit that satisfies the actual current of the cell (all other parameters in the equivalent circuit except the series resistance are kept constant) and Joule series resistance RSJ obtained from the Joule losses in the emitter of the cell. It is observed that the I( U) characteristic obtained from the equivalent circuit that includes RSJ generally disagrees with the actual I( U) characteristic of the solar cell. An additional series resistance RSadd should be introduced in series with RSJ. Series resistances RSJ, Sadd and RSeq are analyzed numerically in one and two dimensions for different conditions of terminal voltage, illumination and weighted sheet resistance Rshb2, where b is related to the geometry of the analyzed cell. Following the derivations and the results of the numerical analysis it can be concluded that wherever RSJ varies as a function of terminal voltage, RSadd should be taken into consideration.

  18. Stem cell-based therapies for acute radiation syndrome

    International Nuclear Information System (INIS)

    Exposure to high doses of ionizing radiation in the event of accidental or intentional incident such as nuclear/radiological terrorism can lead to debilitating injuries to multiple organs resulting in death within days depending on the amount of radiation dose and the quality of radiation. Unfortunately, there is not a single FDA-licensed drug approved against acute radiation injury. The RadStem Center for Medical Countermeasures against Radiation (RadStem CMGR) program at Einstein is developing stem cell-based therapies to treat acute radiation syndrome (ARS). We have demonstrated that intravenous transplantation of bone marrow-derived and adipose-derived stromal cells, consisting of a mixture of mesenchymal, endothelial and myeloid progenitors can mitigate mice exposed to whole body irradiation of 12 Gy or whole abdominal irradiation of up to 20 Gy. We identified a variety of growth and differentiation factors that individually is unable to improve survival of animals exposed to lethal irradiation, but when administered sequentially mitigates radiation injury and improves survival. We termed this phenomenon as synthetic survival and describe a new paradigm whereby the 'synthetic survival' of irradiated tissues can be promoted by systemic administration of growth factors to amplify residual stem cell clonogens post-radiation exposure, followed by a differentiation factor that favors tissue stem cell differentiation. Synthetic survival can be applied to mitigate lethal radiation injury in multiple organs following radiation-induced hematopoeitic, gastrointestinal and pulmonary syndromes. (author)

  19. Altruistic cell suicide in relation to radiation hormesis

    International Nuclear Information System (INIS)

    The high radiosensitivity to killing of undifferentiated primordial cells (Bergonie and Tribondeau 1906) can be described as a manifestation of the suicide of injured cells for the benefit of an organism as a whole if their suicide stimulates proliferation of healthy cells to replace them, resulting in complete elimination of injury. This process is called cell-replacement repair, to distinguish it from DNA repair which is rarely complete. 'Cell suicide', 'programmed death' and 'apoptosis' are terms used for the same type of active cell death. Cell suicide is not always altruistic. Altruistic suicide in Drosophila, mice, humans, plants, and E. coli is reviewed in this paper to illustrate its widely different facets. The hypothesis that in animals, radiation hormesis results from altruistic cell suicide is proposed. This hypothesis can explain the hormetic effect of low doses of radiation on the immune system in mice. In contrast, in plants, radiation hormesis seems to be mainly due to non-altruistic cell death. (author)

  20. Multilevel Cell Storage and Resistance Variability in Resistive Random Access Memory

    Science.gov (United States)

    Pantelis, D. I.; Karakizis, P. N.; Dragatogiannis, D. A.; Charitidis, C. A.

    2016-06-01

    Multilevel per cell (MLC) storage in resistive random access memory (ReRAM) is attractive in achieving high-density and low-cost memory and will be required in future. In this chapter, MLC storage and resistance variability and reliability of multilevel in ReRAM are discussed. Different MLC operation schemes with their physical mechanisms and a comprehensive analysis of resistance variability have been provided. Various factors that can induce variability and their effect on the resistance margin between the multiple resistance levels are assessed. The reliability characteristics and the impact on MLC storage have also been assessed.

  1. Collateral methotrexate resistance in cisplatin-selected murine leukemia cells

    Directory of Open Access Journals (Sweden)

    Bhushan A.

    1999-01-01

    Full Text Available Resistance to anticancer drugs is a major cause of failure of many therapeutic protocols. A variety of mechanisms have been proposed to explain this phenomenon. The exact mechanism depends upon the drug of interest as well as the tumor type treated. While studying a cell line selected for its resistance to cisplatin we noted that the cells expressed a >25,000-fold collateral resistance to methotrexate. Given the magnitude of this resistance we elected to investigate this intriguing collateral resistance. From a series of investigations we have identified an alteration in a membrane protein of the resistant cell as compared to the sensitive cells that could be the primary mechanism of resistance. Our studies reviewed here indicate decreased tyrosine phosphorylation of a protein (molecular mass = 66 in the resistant cells, which results in little or no transfer of methotrexate from the medium into the cell. Since this is a relatively novel function for tyrosine phosphorylation, this information may provide insight into possible pharmacological approaches to modify therapeutic regimens by analyzing the status of this protein in tumor samples for a better survival of the cancer patients.

  2. Multidrug resistance of tumor cells: some new trends in research

    OpenAIRE

    Stavrovskaya, A. A.; G. P. Guens

    2014-01-01

    Multidrug resistance (MDR) of tumor cells is the resistance to a broad spectrum of structurally unrelated cytotoxic drugs with different mechanisms of action. One of the main causes of MDR phenotype is the activity of ATP-binding cassette transporters (ABC transporters). ABC transporters efflux toxic compounds from the cells. All living cells contain ABC transporters. This review is dedicated to the studies of three-dimensional structure of ABC transporters, to the data concerning MDR evoluti...

  3. Effects of low dose gamma radiation on the early growth of red pepper and the resistance to subsquent high dose of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S.; Baek, M. H.; Kim, D. H.; Lee, Y. K. [KAERI, Taejon (Korea, Republic of); Lee, Y. B. [Chungnam National Univ., Taejon (Korea, Republic of)

    2001-05-01

    Red pepper (capsicum annuum L. cv. Jokwang and cv. Johong) seeds were irradiated with the dose of 0{approx}50 Gy to investigated the effect of the low dose gamma radiation on the early growth and resistance to subsequent high dose of radiation. The effect of the low dose gamma radiation on the early growth and resistance to subsequenct high dose of radiation were enhanced in Johong cultivar but not in Jokwang cultivar. Germination rate and early growth of Johong cultivar were noticeably increased at 4 Gy-, 8 Gy- and 20 Gy irradiation group. Resistance to subsequent high dose of radiation of Johong cultivar were increased at almost all of the low dose irradiation group. Especially it was highest at 4 Gy irradiation group. The carotenoid contents and enzyme activity on the resistance to subsequent high dose of radiation of Johong cultivar were increased at the 4 Gy and 8 Gy irradiation group.

  4. Mesenchymal stem cell therapy for acute radiation syndrome.

    Science.gov (United States)

    Fukumoto, Risaku

    2016-01-01

    Acute radiation syndrome affects military personnel and civilians following the uncontrolled dispersal of radiation, such as that caused by detonation of nuclear devices and inappropriate medical treatments. Therefore, there is a growing need for medical interventions that facilitate the improved recovery of victims and patients. One promising approach may be cell therapy, which, when appropriately implemented, may facilitate recovery from whole body injuries. This editorial highlights the current knowledge regarding the use of mesenchymal stem cells for the treatment of acute radiation syndrome, the benefits and limitations of which are under investigation. Establishing successful therapies for acute radiation syndrome may require using such a therapeutic approach in addition to conventional approaches. PMID:27182446

  5. Mechanism for radiation damage resistance in yttrium oxide dispersion strengthened steels

    Science.gov (United States)

    Brodrick, J.; Hepburn, D. J.; Ackland, G. J.

    2014-02-01

    ODS steels based on yttrium oxide have been suggested as potential fusion reactor wall materials due to their observed radiation resistance properties. Presumably this radiation resistance can be related to the interaction of the particle with vacancies, self-interstitial atoms (SIAs) and other radiation damage debris. Density functional theory has been used to investigate this at the atomic scale. Four distinct interfaces, some based on HRTEM observations, between iron and yttrium oxide were investigated. It is been shown that the Y2O3-Fe interface acts as a strong trap with long-range attraction for both interstitial and vacancy defects, allowing recombination without altering the interface structure. The catalytic elimination of defects without change to the microstructure explains the improved behaviour of ODS steels with respect to radiation creep and swelling.

  6. Radiation resistance of the natural microbial population in buffer materials

    International Nuclear Information System (INIS)

    The radiation sensitivity of naturally occurring microorganisms in buffer materials was investigated as well as the sensitivity of Bacillus subtillis spores and Acinetobacter radioresistens in a buffer matrix. The D10 values obtained in these radiation experiments varied from 0.34 to 1.68 kGy and it was calculated that the surface of a nuclear fuel waste container would be sterilized in 9 to 33 d after emplacement, depending on the type of container, and the initial bioburden. This suggests that formation of biofilms and microbially influenced corrosion would not be of concern of some time after emplacement. The results also indicated that sterilization throughout a 25 cm thick buffer layer is unlikely and that repopulation of the container surface after some time is a possibility, depending on the mobility of microbes in compacted buffer material

  7. Rapamycin-mediated mTOR inhibition attenuates survivin and sensitizes glioblastoma cells to radiation therapy

    Institute of Scientific and Technical Information of China (English)

    Arunkumar Anandharaj; Senthilkumar Cinghu; Woo-Yoon Park

    2011-01-01

    Survivin, an antiapoptotic protein, is elevated in most malignancies and attributes to radiation resistance in tumors including glioblastoma multiforme. The downregulation of survivin could sensitize glioblastoma ceils to radiation therapy. In this study, we investigated the effect of rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), in attenuating survivin and enhancing the therapeutic efficacy for glioblastoma cells, and elucidated the underlying mechanisms. Here we tested various concentrations of rapamycin (1-8 nM) in combination with radiation dose 4 Gy. Rapamycin effectively modulated the protein kinase B (Akt)/mTOR pathway by inhibiting the phosphorylation of Akt and mTOR proteins, and this inhibition was further enhanced by radiation. The expression level of survivin was decreased in rapamycin pre-treatment glioblastoma ceils followed by radiation; meanwhile, the phosphorylation of H2A histone family member X (H2AX) at serine-139 (γ-H2AX) was increased, p21 protein was also induce on radiation with rapamycin pre-treatment, which enhanced G1 arrest and the accumulation of cells at G0/subG1 phase. Furthermore, the clonogenic cell survival assay revealed a significant dose-dependent decrease in the surviving fraction for all three cell lines pre-treated with rapamycin. Our studies demonstrated that targeting survivin may be an effective approach for radiosensitization of malignant glioblastoma.

  8. Effect of Ni content on thermal and radiation resistance of VVER RPV steel

    International Nuclear Information System (INIS)

    In this paper thermal stability and radiation resistance of VVER-type RPV steels for pressure vessels of advanced reactors with different nickel content were studied. A complex of microstructural studies and mechanical tests of the steels in different states (after long thermal exposures, provoking embrittling heat treatment and accelerated neutron irradiation) was carried out. It is shown that nickel content (other things being equal) determines the extent of materials degradation under influence of operational factors: steels with a lower nickel concentration demonstrate a higher thermal stability and radiation resistance

  9. Effect of Ni content on thermal and radiation resistance of VVER RPV steel

    Science.gov (United States)

    Shtrombakh, Ya. I.; Gurovich, B. A.; Kuleshova, E. A.; Frolov, A. S.; Fedotova, S. V.; Zhurko, D. A.; Krikun, E. V.

    2015-06-01

    In this paper thermal stability and radiation resistance of VVER-type RPV steels for pressure vessels of advanced reactors with different nickel content were studied. A complex of microstructural studies and mechanical tests of the steels in different states (after long thermal exposures, provoking embrittling heat treatment and accelerated neutron irradiation) was carried out. It is shown that nickel content (other things being equal) determines the extent of materials degradation under influence of operational factors: steels with a lower nickel concentration demonstrate a higher thermal stability and radiation resistance.

  10. Fabrication and characterization of radiation-resistant LDPE/MWCNT nanocomposites

    International Nuclear Information System (INIS)

    Highlight: • Well-mixed LDPE/MWCNT nanocomposites were prepared through a melt blending. • The LDPE/MWCNT nanocomposites showed a higher radiation-resistance than the pure LDPE. • This improvement could be due to the presence of radical scavenging MWNCT. • The lifetime of the LDPE/MWCNT was much longer than that of the pure LDPE. -- Abstract: In this study, multi-walled carbon nanotube (MWCNT)-reinforced low density polyethylene (LDPE) nanocomposites were fabricated to improve the radiation resistance of LDPE. LDPE nanocomposites with various compositions prepared through a melt blending were irradiated by γ-rays at doses ranging from 50 to 500 kGy. The resulting nanocomposites were investigated in terms of their morphology, tensile property, activation energy, oxidation stability, thermal stability, and lifetime. Based on the results of the field emission scanning electron microscope (FE-SEM) analysis, MWCNTs were found to be well-dispersed in the LDPE matrix even at 3 wt.%, and no radiation-induced morphological changes were observed. The analytic results of the tensile property, oxidative stability, and activation energy revealed that the LDPE/MWCNT nanocomposites exhibited a higher radiation resistance in comparison to the pure LDPE, which was dependent on the MWCNT content. Moreover, based on the lifetime prediction, the lifetime of the LDPE/MWCNT was much longer than that of the pure LDPE. This improved radiation resistance can be ascribed to the incorporation of the radical scavenging MWCNT nanofillers into the LDPE matrix

  11. Fabrication and characterization of radiation-resistant LDPE/MWCNT nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chan-Hee; Lee, Dong-Hoon; Hwang, In-Tae; Im, Don-Sun; Shin, Junhwa; Kang, Phil-Hyun [Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Choi, Jae-Hak, E-mail: jaehakchoi@cnu.ac.kr [Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Department of Polymer Science and Engineering, Chungnam National University, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2013-07-15

    Highlight: • Well-mixed LDPE/MWCNT nanocomposites were prepared through a melt blending. • The LDPE/MWCNT nanocomposites showed a higher radiation-resistance than the pure LDPE. • This improvement could be due to the presence of radical scavenging MWNCT. • The lifetime of the LDPE/MWCNT was much longer than that of the pure LDPE. -- Abstract: In this study, multi-walled carbon nanotube (MWCNT)-reinforced low density polyethylene (LDPE) nanocomposites were fabricated to improve the radiation resistance of LDPE. LDPE nanocomposites with various compositions prepared through a melt blending were irradiated by γ-rays at doses ranging from 50 to 500 kGy. The resulting nanocomposites were investigated in terms of their morphology, tensile property, activation energy, oxidation stability, thermal stability, and lifetime. Based on the results of the field emission scanning electron microscope (FE-SEM) analysis, MWCNTs were found to be well-dispersed in the LDPE matrix even at 3 wt.%, and no radiation-induced morphological changes were observed. The analytic results of the tensile property, oxidative stability, and activation energy revealed that the LDPE/MWCNT nanocomposites exhibited a higher radiation resistance in comparison to the pure LDPE, which was dependent on the MWCNT content. Moreover, based on the lifetime prediction, the lifetime of the LDPE/MWCNT was much longer than that of the pure LDPE. This improved radiation resistance can be ascribed to the incorporation of the radical scavenging MWCNT nanofillers into the LDPE matrix.

  12. Troglitazone reverses the multiple drug resistance phenotype in cancer cells

    Directory of Open Access Journals (Sweden)

    Gerald F Davies

    2009-03-01

    Full Text Available Gerald F Davies1, Bernhard HJ Juurlink2, Troy AA Harkness11Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Canada; 2College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi ArabiaAbstract: A major problem in treating cancer is the development of drug resistance. We previously demonstrated doxorubicin (DOX resistance in K562 human leukemia cells that was associated with upregulation of glyoxalase 1 (GLO-1 and histone H3 expression. The thiazolidinedione troglitazone (TRG downregulated GLO-1 expression and further upregulated histone H3 expression and post-translational modifications in these cells, leading to a regained sensitivity to DOX. Given the pleiotropic effects of epigenetic changes in cancer development, we hypothesized that TRG may downregulate the multiple drug resistance (MDR phenotype in a variety of cancer cells. To test this, MCF7 human breast cancer cells and K562 cells were cultured in the presence of low-dose DOX to establish DOX-resistant cell lines (K562/DOX and MCF7/DOX. The MDR phenotype was confirmed by Western blot analysis of the 170 kDa P-glycoprotein (Pgp drug efflux pump multiple drug resistance protein 1 (MDR-1, and the breast cancer resistance protein (BCRP. TRG markedly decreased expression of both MDR-1 and BCRP in these cells, resulting in sensitivity to DOX. Silencing of MDR-1 expression also sensitized MCF7/DOX cells to DOX. Use of the specific and irreversible peroxisome proliferator-activated receptor gamma (PPARγ inhibitor GW9662 in the nanomolar range not only demonstrated that the action of TRG on MCF/DOX was PPARγ-independent, but indicated that PPARγ may play a role in the MDR phenotype, which is antagonized by TRG. We conclude that TRG is potentially a useful adjunct therapy in chemoresistant cancers. Keywords: chemotherapy, doxorubicin, breast cancer resistance protein-1, multiple drug resistance, multiple drug resistance protein 1

  13. Assessment of Gamma Radiation Resistance of Spores Isolated from the Spacecraft Assembly Facility During MSL Assembly

    Science.gov (United States)

    Chopra, Arsh; Ramirez, Gustavo A.; Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.

    2011-01-01

    Spore forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate extreme environmental conditions such as radiation, desiccation, and high temperatures. Since the Viking era (early 1970's), spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. There is a growing concern that desiccation and extreme radiation resistant spore forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequently proliferate on another solar body. Such forward contamination would certainly jeopardize future life detection or sample return technologies. It is important to recognize that different classes of organisms are critical while calculating the probability of contamination, and methods must be devised to estimate their abundances. Microorganisms can be categorized based on radiation sensitivity as Type A, B, C, and D. Type C represents spores resistant to radiation (10% or greater survival above 0.8 Mrad gamma radiation). To address these questions we have purified 96 spore formers, isolated during planetary protection efforts of Mars Science Laboratory assembly for gamma radiation resistance. The spores purified and stored will be used to generate data that can be used further to model and predict the probability of forward contamination.

  14. Epidermal stem cells response to radiative genotoxic stress

    International Nuclear Information System (INIS)

    Human skin is the first organ exposed to various environmental stresses, which requires the development by skin stem cells of specific mechanisms to protect themselves and to ensure tissue homeostasis. As stem cells are responsible for the maintenance of epidermis during individual lifetime, the preservation of genomic integrity in these cells is essential. My PhD aimed at exploring the mechanisms set up by epidermal stem cells in order to protect themselves from two genotoxic stresses, ionizing radiation (Gamma Rays) and ultraviolet radiation (UVB). To begin my PhD, I have taken part of the demonstration of protective mechanisms used by keratinocyte stem cells after ionizing radiation. It has been shown that these cells are able to rapidly repair most types of radiation-induced DNA damage. Furthermore, we demonstrated that this repair is activated by the fibroblast growth factor 2 (FGF2). In order to know if this protective mechanism is also operating in cutaneous carcinoma stem cells, we investigated the response to gamma Rays of carcinoma stem cells isolated from a human carcinoma cell line. As in normal keratinocyte stem cells, we demonstrated that cancer stem cells could rapidly repair radio-induced DNA damage. Furthermore, fibroblast growth factor 2 also mediates this repair, notably thanks to its nuclear isoforms. The second project of my PhD was to study human epidermal stem cells and progenitors responses to UVB radiation. Once cytometry and irradiation conditions were set up, the toxicity of UVB radiation has been evaluate in the primary cell model. We then characterized UVB photons effects on cell viability, proliferation and repair of DNA damage. This study allowed us to bring out that responses of stem cells and their progeny to UVB are different, notably at the level of part of their repair activity of DNA damage. Moreover, progenitors and stem cells transcriptomic responses after UVB irradiation have been study in order to analyze the global

  15. DNA repair and radiation sensitivity in mammalian cells

    International Nuclear Information System (INIS)

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population

  16. Overcome Cancer Cell Drug Resistance Using Natural Products

    Directory of Open Access Journals (Sweden)

    Pu Wang

    2015-01-01

    Full Text Available Chemotherapy is one of the major treatment methods for cancer. However, failure in chemotherapy is not uncommon, mainly due to dose-limiting toxicity associated with drug resistance. Management of drug resistance is important towards successful chemotherapy. There are many reports in the Chinese literature that natural products can overcome cancer cell drug resistance, which deserve sharing with scientific and industrial communities. We summarized the reports into four categories: (1 in vitro studies using cell line models; (2 serum pharmacology; (3 in vivo studies using animal models; and (4 clinical studies. Fourteen single compounds were reported to have antidrug resistance activity for the first time. In vitro, compounds were able to overcome drug resistance at nontoxic or subtoxic concentrations, in a dose-dependent manner, by inhibiting drug transporters, cell detoxification capacity, or cell apoptosis sensitivity. Studies in vivo showed that single compounds, herbal extract, and formulas had potent antidrug resistance activities. Importantly, many single compounds, herbal extracts, and formulas have been used clinically to treat various diseases including cancer. The review provides comprehensive data on use of natural compounds to overcome cancer cell drug resistance in China, which may facilitate the therapeutic development of natural products for clinical management of cancer drug resistance.

  17. A cell-based high-throughput screening assay for radiation susceptibility using automated cell counting

    International Nuclear Information System (INIS)

    Radiotherapy is one of the mainstays in the treatment for cancer, but its success can be limited due to inherent or acquired resistance. Mechanisms underlying radioresistance in various cancers are poorly understood and available radiosensitizers have shown only modest clinical benefit. There is thus a need to identify new targets and drugs for more effective sensitization of cancer cells to irradiation. Compound and RNA interference high-throughput screening technologies allow comprehensive enterprises to identify new agents and targets for radiosensitization. However, the gold standard assay to investigate radiosensitivity of cancer cells in vitro, the colony formation assay (CFA), is unsuitable for high-throughput screening. We developed a new high-throughput screening method for determining radiation susceptibility. Fast and uniform irradiation of batches up to 30 microplates was achieved using a Perspex container and a clinically employed linear accelerator. The readout was done by automated counting of fluorescently stained nuclei using the Acumen eX3 laser scanning cytometer. Assay performance was compared to that of the CFA and the CellTiter-Blue homogeneous uniform-well cell viability assay. The assay was validated in a whole-genome siRNA library screening setting using PC-3 prostate cancer cells. On 4 different cancer cell lines, the automated cell counting assay produced radiation dose response curves that followed a linear-quadratic equation and that exhibited a better correlation to the results of the CFA than did the cell viability assay. Moreover, the cell counting assay could be used to detect radiosensitization by silencing DNA-PKcs or by adding caffeine. In a high-throughput screening setting, using 4 Gy irradiated and control PC-3 cells, the effects of DNA-PKcs siRNA and non-targeting control siRNA could be clearly discriminated. We developed a simple assay for radiation susceptibility that can be used for high-throughput screening. This will aid

  18. Breast cancer cells with acquired antiestrogen resistance are sensitized to cisplatin-induced cell death

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Gyrd-Hansen, Mads; Lykkesfeldt, Anne E;

    2007-01-01

    with parental MCF-7 cells. Our data show that Bcl-2 can protect antiestrogen-resistant breast cancer cells from cisplatin-induced cell death, indicating that the reduced expression of Bcl-2 in the antiestrogen-resistant cells plays a role in sensitizing the cells to cisplatin treatment.......Antiestrogens are currently used for treating breast cancer patients who have estrogen receptor-positive tumors. However, patients with advanced disease will eventually develop resistance to the drugs. Therefore, compounds effective on antiestrogen-resistant tumors will be of great importance...... for future breast cancer treatment. In this study, we have investigated the effect of the chemotherapeutic compound cisplatin using a panel of antiestrogen-resistant breast cancer cell lines established from the human breast cancer cell line MCF-7. We show that the antiestrogen-resistant cells...

  19. Effect of troglitazone on radiation sensitivity in cervix cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    An, Zheng Zhe; Liu, Xian Guang; Song, Hye Jin; Choi, Chi Hwan; Kim, Won Dong; Park, Woo Yoon [Chungbuk National University College of Medicine, Cheongju (Korea, Republic of); Yu, Jae Ran [Konkuk University College of Medicine, Chungju (Korea, Republic of)

    2012-06-15

    Troglitazone (TRO) is a peroxisome proliferator-activated receptor {gamma} (PPAR{gamma} ) agonist. TRO has antiproliferative activity on many kinds of cancer cells via G1 arrest. TRO also increases Cu{sup 2+}/Zn{sup 2+} -superoxide dismutase (CuZnSOD) and catalase. Cell cycle, and SOD and catalase may affect on radiation sensitivity. We investigated the effect of TRO on radiation sensitivity in cancer cells in vitro. Three human cervix cancer cell lines (HeLa, Me180, and SiHa) were used. The protein expressions of SOD and catalase, and catalase activities were measured at 2-10 {mu}M of TRO for 24 hours. Cell cycle was evaluated with flow cytometry. Reactive oxygen species (ROS) was measured using 2',7'-dichlorofluorescin diacetate. Cell survival by radiation was measured with clonogenic assay. By 5 {mu}M TRO for 24 hours, the mRNA, protein expression and activity of catalase were increased in all three cell lines. G0- G1 phase cells were increased in HeLa and Me180 by 5 {mu}M TRO for 24 hours, but those were not increased in SiHa. By pretreatment with 5 {mu}M TRO radiation sensitivity was increased in HeLa and Me180, but it was decreased in SiHa. In Me180, with 2 {mu}M TRO which increased catalase but not increased G0-G1 cells, radiosensitization was not observed. ROS produced by radiation was decreased with TRO. TRO increases radiation sensitivity through G0-G1 arrest or decreases radiation sensitivity through catalasemediated ROS scavenging according to TRO dose or cell types. The change of radiation sensitivity by combined with TRO is not dependent on the PPAR {gamma} expression level.

  20. Development of ultrasonic transducer with high resistance to temperature and radiation

    International Nuclear Information System (INIS)

    Ordinary ultrasonic transducers cannot be used to inspect equipment at a high radiation facility such as vitrification facility or fusion reactor. IHI has developed an ultrasonic transducer with high resistance to temperature and radiation and confirmed the radiation tolerance up to 10 MGy. IHI has applied the ultrasonic transducer to lid welding inspection of vitrification packages, and obtained good results such as clear detection of an artificial 0.5 mm diameter hole penetrating the stainless steel lid welding. This technology could be applied to ISI (In-Service Inspection) of nuclear plants, ensuring safe operation of nuclear plants. (author)

  1. Losartan sensitizes selectively prostate cancer cell to ionizing radiation.

    Science.gov (United States)

    Yazdannejat, H; Hosseinimehr, S J; Ghasemi, A; Pourfallah, T A; Rafiei, A

    2016-01-11

    Losartan is an angiotensin II receptor (AT-II-R) blocker that is widely used by human for blood pressure regulation. Also, it has antitumor property. In this study, we investigated the radiosensitizing effect of losartan on cellular toxicity induced by ionizing radiation on prostate cancer and non-malignant fibroblast cells. Human prostate cancer (DU-145) and human non-malignant fibroblast cells (HFFF2) were treated with losartan at different concentrations (0.5, 1, 10, 50 and 100 µM) and then these cells were exposed to ionizing radiation. The cell proliferation was determined using MTT assay. Our results showed that losartan exhibited antitumor effect on prostate cancer cells; it was reduced cell survival to 66% at concentration 1 µM. Losartan showed an additive killing effect in combination with ionizing radiation on prostate cancer cell. The cell proliferation was reduced to 54% in the prostate cancer cells treated with losartan at concentration 1 µM in combination with ionizing radiation. Losartan did not exhibit any toxicity on HFFF2 cell. This result shows a promising effect of losartan on enhancement of therapeutic effect of ionizing radiation in patients during therapy.

  2. Subcurative radiation significantly increases cell proliferation, invasion, and migration of primary glioblastoma multiforme in vivo

    Institute of Scientific and Technical Information of China (English)

    Adarsh Shankar; Robert A. Knight; Stephen Brown; Ali S. Arbab; Sanath Kumar; Asm Iskander; Nadimpalli RS Varma; Branislava Janic; Ana deCarvalho; Tom Mikkelsen; Joseph A. Frank; Meser M. Ali

    2014-01-01

    Tumor cellproliferation, infiltration, migration, and neovascularization are known causes of treatment resistance in glioblastoma multiforme (GBM). The purpose of this study was to determine the effect of radiation on the growth characteristics of primary human GBM developed in a nude rat. Primary GBM cells grown from explanted GBM tissues were implanted orthotopically in nude rats. Tumor growth was confirmed by magnetic resonance imaging on day 77 (baseline) after implantation. The rats underwent irradiation to a dose of 50 Gy delivered subcuratively on day 84 postimplantation (n= 8), or underwent no radiation (n= 8). Brain tissues were obtained on day 112 (nonirradiated) or day 133 (irradiated). Immunohistochemistry was performed to determine tumor cell proliferation (Ki-67) and to assess the expression of infiltration marker (matrix metalloproteinase-2, MMP-2) and cell migration marker (CD44). Tumor neovascularization was assessed by microvessel density using von-Willebrand factor (vWF) staining. Magnetic resonance imaging showed well-developed, infiltrative tumors in 11 weeks postimplantation. The proportion of Ki-67-positive cells in tumors undergoing radiation was (71 ± 15)%compared with (25 ± 12)%in the nonirradiated group (P=0.02). The number of MMP-2-positive areas and proportion of CD44-positive cells were also high in tumors receiving radiation, indicating great invasion and infiltration. Microvessel density analysis did not show a significant difference between nonirradiated and irradiated tumors. Taken together, we found that subcurative radiation significantly increased proliferation, invasion, and migration of primary GBM. Our study provides insights into possible mechanisms of treatment resistance fol owing radiation therapy for GBM.

  3. Characterisation and Manipulation of Docetaxel Resistant Prostate Cancer Cell Lines

    LENUS (Irish Health Repository)

    O'Neill, Amanda J

    2011-10-07

    Abstract Background There is no effective treatment strategy for advanced castration-resistant prostate cancer. Although Docetaxel (Taxotere®) represents the most active chemotherapeutic agent it only gives a modest survival advantage with most patients eventually progressing because of inherent or acquired drug resistance. The aims of this study were to further investigate the mechanisms of resistance to Docetaxel. Three Docetaxel resistant sub-lines were generated and confirmed to be resistant to the apoptotic and anti-proliferative effects of increasing concentrations of Docetaxel. Results The resistant DU-145 R and 22RV1 R had expression of P-glycoprotein and its inhibition with Elacridar partially and totally reversed the resistant phenotype in the two cell lines respectively, which was not seen in the PC-3 resistant sublines. Resistance was also not mediated in the PC-3 cells by cellular senescence or autophagy but multiple changes in pro- and anti-apoptotic genes and proteins were demonstrated. Even though there were lower basal levels of NF-κB activity in the PC-3 D12 cells compared to the Parental PC-3, docetaxel induced higher NF-κB activity and IκB phosphorylation at 3 and 6 hours with only minor changes in the DU-145 cells. Inhibition of NF-κB with the BAY 11-7082 inhibitor reversed the resistance to Docetaxel. Conclusion This study confirms that multiple mechanisms contribute to Docetaxel resistance and the central transcription factor NF-κB plays an immensely important role in determining docetaxel-resistance which may represent an appropriate therapeutic target.

  4. DNA Methylation and Apoptosis Resistance in Cancer Cells

    OpenAIRE

    Pierre-François Cartron; François Marie Vallette; Eric Hervouet; Mathilde Cheray

    2013-01-01

    Apoptosis is a cell death programme primordial to cellular homeostasis efficiency. This normal cell suicide program is the result of the activation of a cascade of events in response to death stimuli. Apoptosis occurs in normal cells to maintain a balance between cell proliferation and cell death. A deregulation of this balance due to modifications in the apoptosic pathway leads to different human diseases including cancers. Apoptosis resistance is one of the most important hallmarks of cance...

  5. Depression of p53-independent Akt survival signals after high-LET radiation in mutated p53 cells

    Science.gov (United States)

    Ohnishi, Takeo; Takahashi, Akihisa; Nakagawa, Yosuke

    Although mutations and deletions in the p53 tumor suppressor gene lead to resistance to low linear energy transfer (LET) radiation, high-LET radiation efficiently induces cell lethality and apoptosis regardless of the p53 gene status. Recently, it has been suggested that the induction of p53-independent apoptosis takes place through the activation of Caspase-9 which results in the cleavage of Caspase-3 and poly (ADP-ribose) polymerase (PARP). This study was designed to examine if high-LET radiation depresses the activities of serine/threonine protein kinase B (PKB, also known as Akt) and Akt-related proteins. Human gingival cancer cells (Ca9-22 cells) harboring a mutated p53 (mp53) gene were irradiated with 2 Gy of X-rays or Fe-ion beams. The cellular contents of Akt-related proteins participating in cell survival signals were analyzed with Western blotting analysis 1 h, 2 h, 3 h and 6 h after irradiation. Cell cycle distributions after irradiation were assayed with flow cytometric analysis.Akt-related protein levels were decreased when cells were irradiated with high-LET radiation. High-LET radiation increased G _{2}/M phase arrests and suppressed the progression of the cell cycle much more efficiently when compared to low-LET radiation. These results suggest that high-LET radiation enhances apoptosis through the activation of Caspase-3 and Caspase-9, and depresses cell growth by suppressing Akt-related signals, even in the mp53 cells.

  6. Hydrodynamic resistance of confined cells in rectangular microchannels

    Science.gov (United States)

    Khan, Zeina S.; Vanapalli, Siva A.

    2011-03-01

    Several microfluidic approaches have been developed to screen suspended cells mechanically in microchannels by exploiting characteristics that are linked to their individual mechanical properties. Typically changes in cell shape due to shear-induced deformation and transit times are reported; while these measurements are qualitative compared to more precise techniques such as atomic force microscopy and micropipette aspiration their advantage lies in throughput, with the ability to screen hundreds to thousands of cells in a minute. We study the potential of a microfluidic cell squeezer to characterize the hydrodynamic resistance of LNCaP prostate cancer cells by measuring dynamical pressure-drop variations along a micrometer-sized channel. The hydrodynamic resistance of the cell introduces an excess pressure drop in the narrow channel which depends on the mechanical stiffness of the cell. We additionally visualize the cell size and assess the influence of cell size on the hydrodynamic resistance of each cell, demonstrating the capability of the microfluidic cell squeezer to yield the hydrodynamic resistance as a mechanical fingerprint of cells.

  7. Down-regulation of ATM Protein Sensitizes Human Prostate Cancer Cells to Radiation-induced Apoptosis*

    OpenAIRE

    Truman, Jean-Philip; Gueven, Nuri; Lavin, Martin; Leibel, Steven; Kolesnick, Richard; Fuks, Zvi; Haimovitz-Friedman, Adriana

    2005-01-01

    Treatment with the protein kinase C activator 12-O tetradecanoylphorbol 12-acetate (TPA) enables radiation-resistant LNCaP human prostate cancer cells to undergo radiation-induced apoptosis, mediated via activation of the enzyme ceramide synthase (CS) and de novo synthesis of the sphingolipid ceramide (Garzotto, M., Haimovitz-Friedman, A., Liao, W. C., White-Jones, M., Huryk, R., Heston, D. W. W., Cardon-Cardo, C., Kolesnick, R., and Fuks, Z. (1999) Cancer Res. 59, 5194-5201). Here, we show t...

  8. Development of disease preventive method using radiated pathogenic microorganisms, cell lines and animals

    International Nuclear Information System (INIS)

    The effects of radiation were investigated on pathogenic plasmid aiming at a development of a method to induce mutagenesis in plasmid DNA by radiation. To construct an experimental system which allows to detect a plasmid-segregated cell, kanamycin-resistant casette was inserted into pX02, a capsule plasmid in Bacillus anthracis to produce acpA:: Kmr by homologous recombination. This plasmid is thought available for analyzing the rate of plasmid segregation caused by radiation. Next, developments of detection and determination methods for various cytokines were attempted by RT-PCR method with an aim to investigate the expression changes of cytokine mRNA in calf immunocytes by radiation. In calf peripheral monocytes and alveolar macrophages, expressions of cytokine mRNAs such as IL-4, IFNα and GM-CSF mRNA as well as IL-1α, IL-1β, IL-2 and IL-6 were detected by RT-PCR method. (M.N.)

  9. Strain-dependent susceptibility to radiation-induced mammary cancer is a result of differences in epithelial cell sensitivity to transformation.

    Science.gov (United States)

    Ullrich, R L; Bowles, N D; Satterfield, L C; Davis, C M

    1996-09-01

    Variations in sensitivity to radiation-induced mammary cancer among different strains of mice are well known. However, the reasons for these variations have not been determined. In the present study, the cell dissociation assay was used to determine the radiation-induced transformation frequencies in sensitive BALB/c mice and resistant C57BL mice as well as the resistant hybrid B6CF1 independent of host environment. The influence of host environment on the progression of transformed cells to the neoplastic phenotype was also examined. Results demonstrated that the variations in sensitivity among these sensitive and resistant mice are a result of inherent differences in the sensitivity of the mammary epithelial cells to radiation-induced transformation. Under the conditions used, host environment played no role in the initiation of transformed cells by radiation or in the progression of these cells to the neoplastic phenotype.

  10. Strain-dependent susceptibiltiy to radiation-induced mammary cancer is a result of differences in epithelial cell sensitivity to transformation

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, R.L.; Davis, C.M. [Univ. of Texas Medical Branch, Galveston, TX (United States); Bowles, N.D.; Satterfield, L.C. [Oak Ridge National Lab., Oak Ridge, TN (United States)

    1996-09-01

    Variations in sensitivity to radiation-induced mammary cancer among different strains of mice are well known. However, the reasons for these variations have not been determined. In the present study, the cell dissociation assay was used to determine the radiation-induced transformation frequencies in sensitive BALB/c mice and resistant C57BL mice as well as the resistant hybrid B6Cf{sub 1} independent of host environment. The influence of host environment on the progression of transformed cells to the neoplastic phenotype was also examined. Results demonstrated that the variations in sensitivity among these sensitive and resistant mice are a result of inherent differences in the sensitivity of the mammary epithelial cells to radiation-induced transformation. Under the conditions used, host environment played no role in the initiation of transformed cells by radiation or in the progression of these cells to the neoplastic phenotype. 19 refs., 1 tab.

  11. Hepatitis C virus cell-cell transmission and resistance to direct-acting antiviral agents

    DEFF Research Database (Denmark)

    Xiao, Fei; Fofana, Isabel; Heydmann, Laura;

    2014-01-01

    -targeting entry inhibitors (HTEIs) was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission......Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies. In...... contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV...

  12. Radiation damage in negative-differential resistance devices

    International Nuclear Information System (INIS)

    Tunnel diodes made with silicon and gallium arsenide have been tested in both neutron- and gamma-radiation environments. Experimental data show that failure usually occurs in the range 1014-1018 n cm-2 or 50-270 Mrad range. The primary failure mechanism for neutron irradiated samples is an increase in the valley current (from 0.10 mA to 0.58 mA and from 1.5 μA to 30 μA for silicon and GaAs diodes, respectively). In the case of gamma-irradiated silicon samples, the valley current reaches a value of 0.48 mA, at 260.8 Mrad, although their initial values are 0.1 mA. As a result, the peak-to-valley current ratios of the irradiated devices were shown to decrease severely. Both the valley and forward peak voltage values were shown to decrease with radiation. Values of 0.18 and 0.25 V for silicon samples were measured after exposure to 5 x 1016 n cm-2 although their initial values were 0.42 and 0.80 V, respectively. As a result, the devices' output power were shown to be affected seriously. Finally, silicon devices irradiated for 48 h in the ET-RR-1 research reactor, Egypt, for up to 1.872 x 1018 n cm-2 or to gamma doses up to 2.6 x 108 rad, were greatly influenced and they lost their main feature as PN-junctions. (Author)

  13. RADIATION-RESISTANT FIBER OPTIC STRAIN SENSORS FOR SNS TARGET INSTRUMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Blokland, Willem [ORNL; Bryan, Jeff [ORNL; Riemer, Bernie [ORNL; Sangrey, Robert L [ORNL; Wendel, Mark W [ORNL; Liu, Yun [ORNL

    2016-01-01

    Measurement of stresses and strains in the mercury tar-get vessel of the Spallation Neutron Source (SNS) is important to understand the structural dynamics of the target. This work reports the development of radiation-resistant fiber optic strain sensors for the SNS target in-strumentation.

  14. Identifying the Proteins that Mediate the Ionizing Radiation Resistance of Deinococcus Radiodurans R1

    Energy Technology Data Exchange (ETDEWEB)

    Battista, John R

    2010-02-22

    The primary objectives of this proposal was to define the subset of proteins required for the ionizing radiation (IR) resistance of Deinococcus radiodurans R1, characterize the activities of those proteins, and apply what was learned to problems of interest to the Department of Energy.

  15. Radiation resistance and thermal creep of ODS ferritic steels

    International Nuclear Information System (INIS)

    Oxide dispersion strengthened (ODS) ferritic steels containing 0.38-0.39 wt% Y2O3 have been produced by mechanical alloying. After thermo-mechanical treatment, the structure of ODS steels includes polygonized extended grains and a great number (to ∼1016-1017 cm-3) of ultrafine complex yttrium oxides ∼2-3 nm in diameter. Irradiation by fast neutrons to 4.5x1026 n/m2 (340 K) and 1.5x1022 n/m2 (77 K) leads to strengthening and plasticity decreasing in ODS alloys. The advantages of ODS ferritic steels in creep resistance and strength against ferritic-martensitic steel 12Cr-2Mo-Nb-B-V and austenitic steel 16Cr-15Ni-3Mo-Ti-V display obviously when creep rate is approximately 10-2 h-1 and fracture time is longer than 1000 h

  16. Cell biological mechanisms of multidrug resistance in tumors.

    OpenAIRE

    Simon, S. M.; Schindler, M

    1994-01-01

    Multidrug resistance (MDR) is a generic term for the variety of strategies tumor cells use to evade the cytotoxic effects of anticancer drugs. MDR is characterized by a decreased sensitivity of tumor cells not only to the drug employed for chemotherapy but also to a broad spectrum of drugs with neither obvious structural homology nor common targets. This pleiotropic resistance is one of the major obstacles to the successful treatment of tumors. MDR may result from structural or functional cha...

  17. Is resistance futile? Changing external resistance does not improve microbial fuel cell performance.

    Science.gov (United States)

    Lyon, Delina Y; Buret, Francois; Vogel, Timothy M; Monier, Jean-Michel

    2010-04-01

    Microbial fuel cells (MFCs) show promise as an alternative to conventional batteries for point source electricity generation. A better understanding of the relationship between the microbiological and electrical aspects of fuels cells is needed prior to successful MFC application. Here, we observed the effects of external resistance on power production and the anodic biofilm community structure. Large differences in the external resistance affected both power production and microbial community structure. After the establishment of the anodic microbial community, change in external resistance (from low to high and vice versa) changed the anodic microbial community structure, but the resulting community did not resemble the communities established at that same external resistance. Different microbial community structures, established under different external resistances, resulted in similar power production, demonstrating the flexibility of the MFC system. PMID:19783225

  18. Ras Labs.-CASIS-ISS NL experiment for synthetic muscle: resistance to ionizing radiation

    Science.gov (United States)

    Rasmussen, Lenore; Sandberg, Eric; Albers, Leila N.; Rodriguez, Simone; Gentile, Charles A.; Meixler, Lewis D.; Ascione, George; Hitchner, Robert; Taylor, James; Hoffman, Dan; Cylinder, David; Moy, Leon; Mark, Patrick S.; Prillaman, Daniel L.; Nordarse, Robert; Menegus, Michael J.; Ratto, Jo Ann; Thellen, Christopher; Froio, Danielle; Furlong, Cosme; Razavi, Payam; Valenza, Logan; Hablani, Surbhi; Fuerst, Tyler; Gallucci, Sergio; Blocher, Whitney; Liffland, Stephanie

    2016-04-01

    In anticipation of deep space travel, new materials are being explored to assist and relieve humans in dangerous environments, such as high radiation, extreme temperature, and extreme pressure. Ras Labs Synthetic Muscle - electroactive polymers (EAPs) that contract and expand at low voltages - which mimic the unique gentle-yet-strong nature of human tissue, is a potential asset to manned space travel through protective gear and human assist robotics and for unmanned space exploration through deep space. Generation 3 Synthetic Muscle was proven to be resistant to extreme temperatures, and there were indications that these materials may also be radiation resistant. The purpose of the Ras Labs-CASIS-ISS Experiment is to test the radiation resistivity of the third and fourth generation of these EAPs, as well as to make them even more radiation resistant or radiation hardened. On Earth, exposure of the Generation 3 and Generation 4 EAPs to a Cs-137 radiation source for 47.8 hours with a total dose of 305.931 kRad of gamma radiation was performed at the US Department of Energy's Princeton Plasma Physics Laboratory (PPPL) at Princeton University, followed by pH, peroxide, Shore Hardness Durometry, and electroactivity testing to determine the inherent radiation resistivity of these contractile EAPs and to determine whether the EAPs could be made even more radiation resistant through the application of appropriate additives and coatings. The on Earth preliminary tests determined that selected Ras Labs EAPs were not only inherently radiation resistant, but with the appropriate coatings and additives, could be made even more radiation resistant. Gforce testing to over 10 G's was performed at US Army's ARDEC Labs, with excellent results, in preparation for space flight to the International Space Station National Laboratory (ISS-NL). Selected samples of Generation 3 and Generation 4 Synthetic Muscle™, with various additives and coatings, were launched to the ISS-NL on April

  19. Radiation resistance of some microorganisms isolated from irradiated herbs

    International Nuclear Information System (INIS)

    Three types of Egyptian medicinal herbs, sweet marjoram, spearmint and thyme were used in this study. The tested herbs were exposed to gamma radiation doses ranging from 1.0 to 10,0 kGy. The sublethal doses of radioresistant molds ranged from 1.0 to 2.0 kGy and the sublethal doses of radioresistant bacteria ranged from 7.0 to 8.0 kGy. The radioresistant molds isolated from sweet marjoram and spearmint herbs were identified as Aspergillus, whereas that isolated from thyme was identified as Aspergillus ochraceus. The radioresistant bacteria isolated from sweet marjoram, spearmint and thyme were identified as Bacillus megaterium, B.pantothenticus and B. brevis, respectively. All the radioresistant molds exhibited an exponential response. The D15value of Asp. ochraceus was 0.33 kGy, while that of Asp. niger were 0.45 and 0.5 kGy, respectively. All the bacterial species exhibited non-exponential response. The D10 -values for B.megaterium, B. pantothenticus and B. brevis were found to be 2.58, 3.0 and 1.63 kGy, respectively

  20. The role of protective systems in cell homeostasis upon gamma radiation

    International Nuclear Information System (INIS)

    There are a number of parameters that are used for the estimation of cell defence against radiation and chemicals: induced initial DNA damage, residual damage after a period of repair, rate and fidelity of repair, endpoint (chromosomal changes and cell survival). Antioxidant enzymes are main pathway of cell defence: superoxide dismutase (SOD), catalase, glutatione peroxidase, glutatione-S-transferase et al. Key enzyme is SOD which naturalizes reactive oxygen species (ROS). ROS are main damaging component of the radiation and some chemical action. Glutatione-S-transferase (GST) conjugates ROS to glutatione prior to their excretion from the body. The GST M1 null (one from family of GST) genotype is found in about 50% Europeans, Japanese, but only one-quarter of Afro-Americans. Lack of this enzyme may result in deficient detoxification leading to increase sensitivity to mutagens and in risk of cancer. Another system of cell defence involves enzymes taking part in DNA repair: base excision repair, nucleotide excision repair, mismatch repair et al. A radio adaptive response (RAR) also can serve as cell defence system. RAR forms a cell resistance to gamma-radiation after cell pretreatment with low doses of radiation and some incubation (3-4 hours). Purpose of our investigation: 1) to estimate the role of SOD in human cells isolated from healthy donors, children with some repair-deficient diseases (Bloom syndrome, Marfan syndrome) and children from area with an increased level of radiation; 2) to compare SOD activity in human cells and human cells during RAR; 3) to study a possible link between cell survival and initial damage of DNA after treatment with TRIEN - inhibitor of SOD - and with garlic extract - natural anti mutagen. We found the increased level of damage of DNA in trien-pretreated cells (healthy and repair-deficient cells). However this level was similar in lymphocytes of children from areas with an increased level of radiation without and with trien

  1. NFkB signaling is important for growth of antiestrogen resistant breast cancer cells

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Emdal, Kristina Bennet; Guerra, Barbara;

    2012-01-01

    resistant cell growth and a potential target for re-sensitizing resistant cells to endocrine therapy. We used an MCF-7-derived cell model for antiestrogen resistant breast cancer to investigate dependence on NF¿B signaling for antiestrogen resistant cell growth. We found that targeting NF¿B preferentially...... inhibited resistant cell growth. Antiestrogen resistant cells expressed increased p50 and RelB, and displayed increased phosphorylation of p65 at Ser529 and Ser536. Moreover, transcriptional activity of NF¿B after stimulation with tumor necrosis factor a was enhanced in antiestrogen resistant cell lines...... resistant cells increased sensitivity to tamoxifen treatment. Our data provide evidence that NF¿B signaling is enhanced in antiestrogen resistant breast cancer cells and plays an important role for antiestrogen resistant cell growth and for sensitivity to tamoxifen treatment in resistant cells. Our results...

  2. High temperature creep strength of Advanced Radiation Resistant Oxide Dispersion Strengthened Steels

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Austenitic stainless steel may be one of the candidates because of good strength and corrosion resistance at the high temperatures, however irradiation swelling well occurred to 120dpa at high temperatures and this leads the decrease of the mechanical properties and dimensional stability. Compared to this, ferritic/martensitic steel is a good solution because of excellent thermal conductivity and good swelling resistance. Unfortunately, the available temperature range of ferritic/martensitic steel is limited up to 650 .deg. C. ODS steel is the most promising structural material because of excellent creep and irradiation resistance by uniformly distributed nano-oxide particles with a high density which is extremely stable at the high temperature in ferritic/martensitic matrix. In this study, high temperature strength of advanced radiation resistance ODS steel was investigated for the core structural material of next generation nuclear systems. ODS martensitic steel was designed to have high homogeneity, productivity and reproducibility. Mechanical alloying, hot isostactic pressing and hot rolling processes were employed to fabricate the ODS steels, and creep rupture test as well as tensile test were examined to investigate the behavior at high temperatures. ODS steels were fabricated by a mechanical alloying and hot consolidation processes. Mechanical properties at high temperatures were investigated. The creep resistance of advanced radiation resistant ODS steels was more superior than those of ferritic/ martensitic steel, austenitic stainless steel and even a conventional ODS steel.

  3. High temperature creep strength of Advanced Radiation Resistant Oxide Dispersion Strengthened Steels

    International Nuclear Information System (INIS)

    Austenitic stainless steel may be one of the candidates because of good strength and corrosion resistance at the high temperatures, however irradiation swelling well occurred to 120dpa at high temperatures and this leads the decrease of the mechanical properties and dimensional stability. Compared to this, ferritic/martensitic steel is a good solution because of excellent thermal conductivity and good swelling resistance. Unfortunately, the available temperature range of ferritic/martensitic steel is limited up to 650 .deg. C. ODS steel is the most promising structural material because of excellent creep and irradiation resistance by uniformly distributed nano-oxide particles with a high density which is extremely stable at the high temperature in ferritic/martensitic matrix. In this study, high temperature strength of advanced radiation resistance ODS steel was investigated for the core structural material of next generation nuclear systems. ODS martensitic steel was designed to have high homogeneity, productivity and reproducibility. Mechanical alloying, hot isostactic pressing and hot rolling processes were employed to fabricate the ODS steels, and creep rupture test as well as tensile test were examined to investigate the behavior at high temperatures. ODS steels were fabricated by a mechanical alloying and hot consolidation processes. Mechanical properties at high temperatures were investigated. The creep resistance of advanced radiation resistant ODS steels was more superior than those of ferritic/ martensitic steel, austenitic stainless steel and even a conventional ODS steel

  4. Classical Radiation Reaction in Particle-In-Cell Simulations

    CERN Document Server

    Vranic, Marija; Fonseca, Ricardo A; Silva, Luis O

    2015-01-01

    Under the presence of ultra high intensity lasers or other intense electromagnetic fields the motion of particles in the ultrarelativistic regime can be severely affected by radiation reaction. The standard particle-in-cell (PIC) algorithms do not include radiation reaction effects. Even though this is a well known mechanism, there is not yet a definite algorithm nor a standard technique to include radiation reaction in PIC codes. We have compared several models for the calculation of the radiation reaction force, with the goal of implementing an algorithm for classical radiation reaction in the Osiris framework, a state-of-the-art PIC code. The results of the different models are compared with standard analytical results, and the relevance/advantages of each model are discussed. Numerical issues relevant to PIC codes such as resolution requirements, application of radiation reaction to macro particles and computational cost are also addressed. The Landau and Lifshitz reduced model is chosen for implementatio...

  5. The concept of radiation-enhanced stem cell differentiation

    Directory of Open Access Journals (Sweden)

    Mieloch Adam A.

    2015-09-01

    Full Text Available Background. Efficient stem cell differentiation is considered to be the holy grail of regenerative medicine. Pursuing the most productive method of directed differentiation has been the subject of numerous studies, resulting in the development of many effective protocols. However, the necessity for further improvement in differentiation efficiency remains. This review contains a description of molecular processes underlying the response of stem cells to ionizing radiation, indicating its potential application in differentiation procedures. In the first part, the radiation-induced damage response in various types of stem cells is described. Second, the role of the p53 protein in embryonic and adult stem cells is highlighted. Last, the hypothesis on the mitochondrial involvement in stem cell development including its response to ionizing radiation is presented.

  6. Model of cell response to {\\alpha}-particle radiation

    CERN Document Server

    Liu, Longjian

    2012-01-01

    Starting from a general equation for organism (or cell system) growth and attributing additional cell death rate (besides the natural rate) to therapy, we derive an equation for cell response to {\\alpha} radiation. Different from previous models that are based on statistical theory, the present model connects the consequence of radiation with the growth process of a biosystem and each variable or parameter has meaning regarding the cell evolving process. We apply this equation to model the dose response for {\\alpha}-particle radiation. It interprets the results of both high and low linear energy transfer (LET) radiations. When LET is high, the additional death rate is a constant, which implies that the localized cells are damaged immediately and the additional death rate is proportional to the number of cells present. While at low LET, the additional death rate includes a constant term and a linear term of radiation dose, implying that the damage to some cell nuclei has a time accumulating effect. This model ...

  7. Radiation related basic cancer research : research for radiation induced tumor cell killing

    International Nuclear Information System (INIS)

    The radioresistant clones was established from human U251 glioblastoma cell line through intermittently exposed to 3 Gy gamma-radiation for six months. Treatment of SNU-16 cells with various doses of radiation, TNF alpha and PMA resulted in a decrease in cell viability. The results prove that cell death of SNU16 is a apoptosis mediated by caspase-3. We have examined the expression of bcl-2 and c-myc in cervical cancer specimens and cervical intraepithelial neoplasia (CIN) to determine the role of coexpression of bcl-3 and c-myc during progression into cervical cancer. The frequent alterations in FHIT expression in many cervical carcinomas and their cell lines suggest that FHIT gene alterations are pla a role in cervical tumorigenesis. According to these correlation between the viability and apoptosis of RD cells, the proper range of the dosage for the investigation of differentiation potency in RD cells was assessed as 1 to 3Gy

  8. Radiation related basic cancer research : research for radiation induced tumor cell killing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hoon; Hong, Seok Il; Cho, Kyung Ja; Kim, Byung Gi; Lee, Kee Ho; Nam, Myung Jin

    1999-04-01

    The radioresistant clones was established from human U251 glioblastoma cell line through intermittently exposed to 3 Gy gamma-radiation for six months. Treatment of SNU-16 cells with various doses of radiation, TNF alpha and PMA resulted in a decrease in cell viability. The results prove that cell death of SNU16 is a apoptosis mediated by caspase-3. We have examined the expression of bcl-2 and c-myc in cervical cancer specimens and cervical intraepithelial neoplasia (CIN) to determine the role of coexpression of bcl-3 and c-myc during progression into cervical cancer. The frequent alterations in FHIT expression in many cervical carcinomas and their cell lines suggest that FHIT gene alterations are pla a role in cervical tumorigenesis. According to these correlation between the viability and apoptosis of RD cells, the proper range of the dosage for the investigation of differentiation potency in RD cells was assessed as 1 to 3Gy.

  9. Effect of curcumin on multidrug resistance in resistant human gastric carcinoma cell line SGC7901/VCR

    Institute of Scientific and Technical Information of China (English)

    Xiao-qing TANG; Hu BI; Jian-qiang FENG; Jian-guo CAO

    2005-01-01

    Aim: To investigate the reversal effects of curcumin on multidrug resistance (MDR)in a resistant human gastric carcinoma cell line. Methods: The cytotoxic effect of vincristine (VCR) was evaluated by MTT assay. The cell apoptosis induced by VCR was determined by propidium iodide (PI)-stained flow cytometry (FCM) and a morphological assay using acridine orange (AO)/ethidium bromide (EB) dual staining. P-glycoprotein (P-gp) function was demonstrated by the accumulation and efflux of rhodamine123 (Rh123) using FCM. The expression of P-gp and the activation of caspase-3 were measured by FCM using fluorescein isothiocyanate (FITC)-conjugated anti-P-gp and anti-cleaved caspase-3 antibodies, respectively.Results: Curcumin, at concentrations of 5 μmol/L, 10 μmol/L, or 20 μmol/L, had no cytotoxic effect on a parent human gastric carcinoma cell line (SGC7901) or its VCR-resistant variant cell line (SGC7901/VCR). The VCR-IC50 value of the SGC7901/VCR cells was 45 times more than that of the SGC7901cells and the SGC7901/VCR cells showed apoptotic resistance to VCR. SGC7901/VCR cells treated with 5μmol/L, 10 μmol/L, or 20 μmol/L curcumin decreased the IC50 value of VCR and promoted VCR-mediated apoptosis in a dose-dependent manner. Curcumin (10μmol/L) increased Rh 123 accumulation and inhibited the efflux of Rh 123 in S GC7901/VCR cells, but did not change the accumulation and efflux of Rh123 in SGC7901cells. P-gp was overexpressed in SGC7901/VCR cells, whereas it was downregulated after a 24-h treatment with curcumin (10 μmol/L). Resistant cells treated with 1μmol/L VCR alone showed 77% lower levels of caspase-3 activation relative to SGC7901 cells, but the activation of caspase-3 in the resistant cell line increased by 44% when cells were treated with VCR in combination with curcumin.Conclusion: Curcumin can reverse the MDR of the human gastric carcinoma SGC7901/VCR cell line. This might be associated with decreased P-gp function and expression, and the promotion of

  10. REDD1 protects osteoblast cells from gamma radiation-induced premature senescence.

    Directory of Open Access Journals (Sweden)

    Xiang Hong Li

    Full Text Available Radiotherapy is commonly used for cancer treatment. However, it often results in side effects due to radiation damage in normal tissue, such as bone marrow (BM failure. Adult hematopoietic stem and progenitor cells (HSPC reside in BM next to the endosteal bone surface, which is lined primarily by hematopoietic niche osteoblastic cells. Osteoblasts are relatively more radiation-resistant than HSPCs, but the mechanisms are not well understood. In the present study, we demonstrated that the stress response gene REDD1 (regulated in development and DNA damage responses 1 was highly expressed in human osteoblast cell line (hFOB cells after γ irradiation. Knockdown of REDD1 with siRNA resulted in a decrease in hFOB cell numbers, whereas transfection of PCMV6-AC-GFP-REDD1 plasmid DNA into hFOB cells inhibited mammalian target of rapamycin (mTOR and p21 expression and protected these cells from radiation-induced premature senescence (PS. The PS in irradiated hFOB cells were characterized by significant inhibition of clonogenicity, activation of senescence biomarker SA-β-gal, and the senescence-associated cytokine secretory phenotype (SASP after 4 or 8 Gy irradiation. Immunoprecipitation assays demonstrated that the stress response proteins p53 and nuclear factor κ B (NFkB interacted with REDD1 in hFOB cells. Knockdown of NFkB or p53 gene dramatically suppressed REDD1 protein expression in these cells, indicating that REDD1 was regulated by both factors. Our data demonstrated that REDD1 is a protective factor in radiation-induced osteoblast cell premature senescence.

  11. Radiation protective effect of hypoxia-inducible factor-1α (HIF-1α) on human oral squamous cell carcinoma cell lines

    International Nuclear Information System (INIS)

    We examined the effects of 5-Gy radiation on the expression of hypoxia-inducible factor-1α (HIF-1α) and the radiosensitivity of five human oral squamous cell carcinoma (OSCC) cell lines (SAS, Ca9-22, TT, BSC-OF and IS-FOM). In all of the cell lines, HIF-1α was expressed in mRNA, and radiation had no influence on gene transcription. The number of apoptotic cells increased 72 h after irradiation in cell lines SAS, Ca9-22 and TT cells, indicating low transcriptional levels of HIF-1α, and the levels of non-cleaved caspase-3, an executioner of apoptosis, and non-cleaved poly (adenosine diphosphate-ribose) polymerase (PARP), a marker of DNA damage early in apoptosis, decreased simultaneously. Conversely, radiation failed to induce apoptosis or to decrease expression of non-cleaved caspase-3 and PARP in cell-lines BSC-OF and IS-FOM cells that expressed high levels of HIF-1α. BSC-OF and IS-FOM cells exhibited high migratory capacity. When CoCl2 was present in the medium, HIF-1α expression increased along with the survival of Ca9-22 cells after radiation exposure. These results suggest that OSCC cells expressing high levels of HIF-1α are resistant to radiation. HIF-1α can be used to control the short term radiosensitivity of cells. (authors)

  12. Nimotuzumab enhances radiation sensitivity of NSCLC H292 cells in vitro by blocking epidermal growth factor receptor nuclear translocation and inhibiting radiation-induced DNA damage repair

    Directory of Open Access Journals (Sweden)

    Teng K

    2015-04-01

    Full Text Available Kai Teng,1,2,* Yong Zhang,1,* Xiaoyan Hu,1 Yihui Ding,1 Rui Gong,1 Li Liu1,* 1Department of Thoracic Oncology, Cancer Center of Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China; 2Department of Radiation Oncology, Hainan Cancer Hospital, Haikou, Hainan, People’s Republic of China *These authors contributed equally to this work Background: The epidermal growth factor receptor (EGFR signaling pathway plays a significant role in radiation resistance. There is evidence that EGFR nuclear translocation is associated with DNA double-strand breaks (DSB repair. Nimotuzumab has shown the effect of radiosensitization in various cancer cells, but little is known about the relationship between nimotuzumab and EGFR nuclear translocation in non-small cell lung cancer (NSCLC cell lines. In this study, we selected two NSCLC cell lines, namely, H292 (with high EGFR expression and H1975 (with low EGFR expression and explored the mechanisms underlying radiation sensitivity.Methods: MTT assay, clonogenic survival assay, and flow cytometry were performed separately to test cell viability, radiation sensitivity, cell cycle distribution, and apoptosis. Protein γ-H2AX, DNA-PK/p-DNA-PK, and EGFR/p-EGFR expression were further compared both in the cytoplasm and the nucleus with the western blot.Results: Nimotuzumab reduced the viability of H292 cells and sensitized H292 cells to ionizing radiation. The radiation sensitivity enhancement ratio (SER was 1.304 and 1.092 for H292 and H1975 cells, respectively. H292 cells after nimotuzumab administration were arrested at the G0/G1 phase in response to radiation. Apoptosis was without statistical significance in both cell lines. γ-H2AX formation in the combination group (nimotuzumab and radiation increased both in the cytoplasm and the nucleus along with the decreased expression of nuclear EGFR/p-EGFR and p-DNA-PK in H292 cells (P<0.05 that

  13. Studies on radiation resistance of fiber reinforced plastic composites featured by easiness of manufacturing, 3

    International Nuclear Information System (INIS)

    Mechanical properties of glass fiber-reinforced plastics (GFRP) irradiated at room temperature with electron beams were studied in order to characterize the radiation resistance. Mechanical properties were tested by flexural strength and interlaminar shear strength (ILSS) at room and low temperature, and flexural fatigue strength at room temperature. The GFRP used in the present study were manufactured trial with three kinds of epoxy matrices having excellent radiation resistance at room temperature and easiness of manufacturing. These composites prepared in selected curing condition were equipped with high flexural strength at low temperature, about two times at room temperature. GFRP composed of 4,4'-tetraglycidyl diamino diphenyl methane cured with 4,4'-diamino diphenyl methane showed the highest radiation resistance: the strength after irradiation up to 90 MGy were kept the initial value, that is, flexural strength of 1000 MPa at 77 K and ILSS of 70 MPa at 123 K. It was also confirmed that the flexural strength measured at 4.2 K were well agreed with the values tested at 77 K. On the effects of fiber-matrix bonding materials by using different kinds and/or amount of silane coupling agents, the pronounced difference were found in the degradation behavior but did not affect to the flexural strength of the GFRP. Flexural fatigue behavior showed rather well radiation degradation comparing with three point bending strength at room temperature. (author)

  14. Fabrication and characterization of radiation-resistant LDPE/MWCNT nanocomposites

    Science.gov (United States)

    Jung, Chan-Hee; Lee, Dong-Hoon; Hwang, In-Tae; Im, Don-Sun; Shin, Junhwa; Kang, Phil-Hyun; Choi, Jae-Hak

    2013-07-01

    In this study, multi-walled carbon nanotube (MWCNT)-reinforced low density polyethylene (LDPE) nanocomposites were fabricated to improve the radiation resistance of LDPE. LDPE nanocomposites with various compositions prepared through a melt blending were irradiated by γ-rays at doses ranging from 50 to 500 kGy. The resulting nanocomposites were investigated in terms of their morphology, tensile property, activation energy, oxidation stability, thermal stability, and lifetime. Based on the results of the field emission scanning electron microscope (FE-SEM) analysis, MWCNTs were found to be well-dispersed in the LDPE matrix even at 3 wt.%, and no radiation-induced morphological changes were observed. The analytic results of the tensile property, oxidative stability, and activation energy revealed that the LDPE/MWCNT nanocomposites exhibited a higher radiation resistance in comparison to the pure LDPE, which was dependent on the MWCNT content. Moreover, based on the lifetime prediction, the lifetime of the LDPE/MWCNT was much longer than that of the pure LDPE. This improved radiation resistance can be ascribed to the incorporation of the radical scavenging MWCNT nanofillers into the LDPE matrix.

  15. The drug-resistance to gefitinib in PTEN low expression cancer cells is reversed by irradiation in vitro

    Directory of Open Access Journals (Sweden)

    Zhao Lu-Jun

    2009-09-01

    Full Text Available Abstract Background Despite of the recent success of EGFR inhibitory agents, the primary drug-resistant becomes a major challenge for EGFR inhibitor therapies. PTEN gene is an important positive regulatory factor for response to EGFR inhibitor therapy. Low-expression of PTEN is clearly one of the important reasons why tumor cells resisted to tyrosine kinase inhibitors. Methods To investigate the drug-resistance reversal to gefitinb and the mechanism in PTEN low expression cells which radiated with X-rays in vitro, We demonstrated that H-157 lung cancer cells (low-expression of PTEN but phospho-EGFR overexpressed tumor cells exposed to X-rays. The PTEN expressions and radiosensitizing effects of tyrosine kinase inhibitor before and after irradiation were observed. The cell-survival rates were evaluated by colony-forming assays. The cell apoptosis was investigated using FCM. The expressions of phospho-EGFR and PTEN were determined by Western blot analysis. Results The results showed that the PTEN expressions were significantly enhanced by X-rays. Moreover, the cell growth curve and survival curve were down-regulated in the gefitinib-treated groups after irradiation. Meanwhile, the radiation-induced apoptosis of tumor cells was increased by inhibition of the EGFR through up-regulation of PTEN. Conclusion These results suggested that PTEN gene is an important regulator on TKI inhibition, and the resistance to tyrosine kinase inhibitors might be reversed by irradiation in PTEN low expression cancer cells.

  16. Roles of ionizing radiation in cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, C.A.; Albright, N.W.; Yang, T.C.

    1983-07-01

    Earlier the authors described a repair misrepair model (RMR-I) which is applicable for radiations of low LET, e.g., x rays and gamma rays. RMR-II was described later. Here is introduced a mathematical modification of the RMR model, RMR-III, which is intended to describe lethal effects caused by heavily ionizing tracks. 31 references, 4 figures.

  17. Roles of ionizing radiation in cell transformation

    International Nuclear Information System (INIS)

    Earlier the authors described a repair misrepair model (RMR-I) which is applicable for radiations of low LET, e.g., x rays and gamma rays. RMR-II was described later. Here is introduced a mathematical modification of the RMR model, RMR-III, which is intended to describe lethal effects caused by heavily ionizing tracks. 31 references, 4 figures

  18. Cell fate determination in cisplatin resistance and chemosensitization

    Science.gov (United States)

    Luong, Khanh V.; Wang, Ling; Roberts, Brett J.; Wahl, James K.; Peng, Aimin

    2016-01-01

    Understanding the determination of cell fate choices after cancer treatment will shed new light on cancer resistance. In this study, we quantitatively analyzed the individual cell fate choice in resistant UM-SCC-38 head and neck cancer cells exposed to cisplatin. Our study revealed a highly heterogeneous pattern of cell fate choices in UM-SCC-38 cells, in comparison to that of the control, non-tumorigenic keratinocyte HaCaT cells. In both UM-SCC-38 and HaCaT cell lines, the majority of cell death occurred during the immediate interphase without mitotic entry, whereas significant portions of UM-SCC-38 cells survived the treatment via either checkpoint arrest or checkpoint slippage. Interestingly, checkpoint slippage occurred predominantly in cells treated in late S and G2 phases, and cells in M-phase were hypersensitive to cisplatin. Moreover, although the cisplatin-resistant progression of mitosis exhibited no delay in general, prolonged mitosis was correlated with the induction of cell death in mitosis. The finding thus suggested a combinatorial treatment using cisplatin and an agent that blocks mitotic exit. Consistently, we showed a strong synergy between cisplatin and the proteasome inhibitor Mg132. Finally, targeting the DNA damage checkpoint using inhibitors of ATR, but not ATM, effectively sensitized UM-SCC-38 to cisplatin treatment. Surprisingly, checkpoint targeting eliminated both checkpoint arrest and checkpoint slippage, and augmented the induction of cell death in interphase without mitotic entry. Taken together, our study, by profiling cell fate determination after cisplatin treatment, reveals new insights into chemoresistance and suggests combinatorial strategies that potentially overcome cancer resistance. PMID:26993599

  19. Protein disulphide isomerase as a target for nanoparticle-mediated sensitisation of cancer cells to radiation

    Science.gov (United States)

    Taggart, L. E.; McMahon, S. J.; Butterworth, K. T.; Currell, F. J.; Schettino, G.; Prise, K. M.

    2016-05-01

    Radiation resistance and toxicity in normal tissues are limiting factors in the efficacy of radiotherapy. Gold nanoparticles (GNPs) have been shown to be effective at enhancing radiation-induced cell death, and were initially proposed to physically enhance the radiation dose deposited. However, biological responses of GNP radiosensitization based on physical assumptions alone are not predictive of radiosensitisation and therefore there is a fundamental research need to determine biological mechanisms of response to GNPs alone and in combination with ionising radiation. This study aimed to identify novel mechanisms of cancer cell radiosensitisation through the use of GNPs, focusing on their ability to induce cellular oxidative stress and disrupt mitochondrial function. Using N-acetyl-cysteine, we found mitochondrial oxidation to be a key event prior to radiation for the radiosensitisation of cancer cells and suggests the overall cellular effects of GNP radiosensitisation are a result of their interaction with protein disulphide isomerase (PDI). This investigation identifies PDI and mitochondrial oxidation as novel targets for radiosensitisation.

  20. Effects of ionizing radiation on differentiation of murine bone marrow cells into mast cells

    International Nuclear Information System (INIS)

    Mast cells, immune effector cells produced from bone marrow cells, play a major role in immunoglobulin E–mediated allergic responses. Ionizing radiation affects the functions of mast cells, which are involved in radiation-induced tissue damage. However, whether ionizing radiation affects the differential induction of mast cells is unknown. Here we investigated whether bone marrow cells of X-irradiated mice differentiated into mast cells. To induce mast cells, bone marrow cells from X-irradiated and unirradiated mice were cultured in the presence of cytokines required for mast cell induction. Although irradiation at 0.5 Gy and 2 Gy decreased the number of bone marrow cells 1 day post-irradiation, the cultured bone marrow cells of X-irradiated and unirradiated mice both expressed mast cell–related cell-surface antigens. However, the percentage of mast cells in the irradiated group was lower than in the unirradiated group. Similar decreases in the percentage of mast cells induced in the presence of X-irradiation were observed 10 days post irradiation, although the number of bone marrow cells in irradiated mice had recovered by this time. Analysis of mast cell function showed that degranulation of mast cells after immunoglobulin E–mediated allergen recognition was significantly higher in the X-irradiated group compared with in the unirradiated group. In conclusion, bone marrow cells of X-irradiated mice differentiated into mast cells, but ionizing radiation affected the differentiation efficiency and function of mast cells. (author)

  1. Cone Penetrometer Load Cell Temperature and Radiation Testing Results

    Energy Technology Data Exchange (ETDEWEB)

    Follett, Jordan R.

    2013-08-28

    This report summarizes testing activities performed at the Pacific Northwest National Laboratory to verify the cone penetrometer load cell can withstand the tank conditions present in 241-AN-101 and 241-AN-106. The tests demonstrated the load cell device will operate under the elevated temperature and radiation levels expected to be encountered during tank farm deployment of the device.

  2. Low-Temperature Ionizing Radiation Resistance of Deinococcus radiodurans and Antarctic Dry Valley Bacteria

    Science.gov (United States)

    Dartnell, Lewis R.; Hunter, Stephanie J.; Lovell, Keith V.; Coates, Andrew J.; Ward, John M.

    2010-09-01

    The high flux of cosmic rays onto the unshielded surface of Mars poses a significant hazard to the survival of martian microbial life. Here, we determined the survival responses of several bacterial strains to ionizing radiation exposure while frozen at a low temperature characteristic of the martian near-subsurface. Novel psychrotolerant bacterial strains were isolated from the Antarctic Dry Valleys, an environmental analogue of the martian surface, and identified by 16S rRNA gene phylogeny as representatives of Brevundimonas, Rhodococcus, and Pseudomonas genera. These isolates, in addition to the known radioresistant extremophile Deinococcus radiodurans, were exposed to gamma rays while frozen on dry ice (-79°C). We found D. radiodurans to exhibit far greater radiation resistance when irradiated at -79°C than was observed in similar studies performed at higher temperatures. This greater radiation resistance has important implications for the estimation of potential survival times of microorganisms near the martian surface. Furthermore, the most radiation resistant of these Dry Valley isolates, Brevundimonas sp. MV.7, was found to show 99% 16S rRNA gene similarity to contaminant bacteria discovered in clean rooms at both Kennedy and Johnson Space Centers and so is of prime concern to efforts in the planetary protection of Mars from our lander probes. Results from this experimental irradiation, combined with previous radiation modeling, indicate that Brevundimonas sp. MV.7 emplaced only 30 cm deep in martian dust could survive the cosmic radiation for up to 100,000 years before suffering 106 population reduction.

  3. Resistance to the ionizing radiation in cells of human melanoma. Role of the antioxidant enzymes and of the free radicals of the oxygen; Resistencia a la radiacion ionizante en celulas de melanoma humano. Papel de las enzimas antioxidantes y de los radicales libres del oxigeno

    Energy Technology Data Exchange (ETDEWEB)

    Medina, V.; Cricco, G.; Massari, N.; Nunez, M.; Martin, G.; Mohanad, N.; Gutierrez, A.; Bergoc, R.; Rivera, E. [Laboratorio de Radioisotopos, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Junin 956, Buenos Aires (Argentina); Crescenti, E.; Croci, M. [Instituto de Inmunooncologia, Cordoba 3200, Buenos Aires (Argentina)]. e-mail: vmedina@ffyb.uba.ar

    2006-07-01

    The malignant melanoma is a highly aggressive and potentially lethal type of skin cancer. Previously we have reported that the cellular human lines of melanoma WM35 and M15 are resistant to the ionizing radiation (IR). The histamine (HA) although it has a regulator effect of the cellular proliferation in these lines, it is not capable of to modify the response to the IR like it makes with other malignant cellular lines. To investigate the bases of the radioresistance of the melanoma lines we have studied in the WM35 the production of free radicals of oxygen (ROS), the activity of the antioxidant enzymes and their modifications by action of the IR and of the HA. In studies in vitro the cells were treated with HA 10 {mu}M from 20 hs before being irradiated with a dose of 2 Gy (source {sup 137}Cs, dose rate 7.7 Gy/min). The ROS levels, superoxide anion (O{sub 2}{sup -}) and hydrogen peroxide (H{sub 2}O{sub 2}) its were measured by flow cytometry using fluorescent coloring and the activity of dismutase superoxide (SOD), Catalase (CAT) and Glutathion Peroxidase (GPx) its were determined by spectrophotometric techniques and the protein levels by Western blot. The results indicate that in the cells WM35 the HA increases the production of H{sub 2}O{sub 2} in 96% and it diminishes lightly (17%) the levels of O{sub 2}{sup -} . On the contrary, the IR diminishes the levels of H{sub 2}O-2 in 47% and it increases in 46% those of O{sub 2}{sup -}. In the irradiated cells the HA power the decrease of H{sub 2}O{sub 2} produced by the IR. The variation of the enzymes activity is coincident with these changes in the levels of ROS: the treatment with HA increases the activity of SOD and it diminishes that of CAT in cells without irradiating; on the other hand, in the irradiated cells the HA it diminishes the SOD significantly. On the base of these results we can conclude that the levels of H{sub 2}O{sub 2} are directly related with the sensitivity of the cells WM35 to the IR. The HA

  4. Increasing the radiation resistance of single-crystal silicon epitaxial layers

    Directory of Open Access Journals (Sweden)

    Kurmashev Sh. D.

    2014-12-01

    Full Text Available The authors investigate the possibility of increasing the radiation resistance of silicon epitaxial layers by creating radiation defects sinks in the form of dislocation networks of the density of 109—1012 m–2. Such networks are created before the epitaxial layer is applied on the front surface of the silicon substrate by its preliminary oxidation and subsequent etching of the oxide layer. The substrates were silicon wafers KEF-4.5 and KDB-10 with a diameter of about 40 mm, grown by the Czochralski method. Irradiation of the samples was carried out using electron linear accelerator "Electronics" (ЭЛУ-4. Energy of the particles was 2,3—3,0 MeV, radiation dose 1015—1020 m–2, electron beam current 2 mA/m2. It is shown that in structures containing dislocation networks, irradiation results in reduction of the reverse currents by 5—8 times and of the density of defects by 5—10 times, while the mobility of the charge carriers is increased by 1,2 times. Wafer yield for operation under radiation exposure, when the semiconductor structures are formed in the optimal mode, is increased by 7—10% compared to the structures without dislocation networks. The results obtained can be used in manufacturing technology for radiation-resistant integrated circuits (bipolar, CMOS, BiCMOS, etc..

  5. DNA repair and resistance to UV-B radiation in western spotted frogs

    Science.gov (United States)

    Blaustein, A.R.; Hays, J.B.; Hoffman, P.D.; Chivers, D.P.; Kiesecker, J.M.; Leonard, W.P.; Marco, A.; Olson, D.H.; Reaser, J.K.; Anthony, R.G.

    1999-01-01

    We assessed DNA repair and resistance to solar radiation in eggs of members of the western spotted frog complex (Rana pretiosa and R. luteiventris), species whose populations are suffering severe range reductions and declines. Specifically, we measured the activity of photoreactivating enzyme (photolyase) in oocytes of spotted frogs. In some species, photoreactivation is the most important mechanism for repair of UV-damaged DNA. Using field experiments, we also compared the hatching success of spotted frog embryos at natural oviposition sites at three elevations, where some embryos were subjected to ambient levels of UV-B radiation and others were shielded from UV-B radiation. Compared with other amphibians, photolyase activities in spotted frogs were relatively high. At all sites, hatching success was unaffected by UV-B. Our data support the interpretation that amphibian embryos with relatively high levels of photolyase are more resistant to UV-B radiation than those with lower levels of photolyase. At the embryonic stage, UV-B radiation does not presently seem to be contributing to the population declines of spotted frogs.

  6. Cellular heredity in haploid cultures of somatic cells. Comprehensive report, April 1975--June 1977. [UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Freed, J.J.

    1977-07-01

    This report reviews genetic studies carried out since 1975 on a haploid cultured cell line from frog embryos (ICR 2A). Although a single chromosome set would be expected to facilitate recovery of recessive mutants, experiments suggested that cell culture variants might arise through processes more complex than the selection of simple mutational changes. Therefore, the objectives of the work reported here have been to throw light on just how cell culture variants arise in this system. First, we have continued to characterize the ICR 2A line, with emphasis on stability of karyotype and DNA content. Second, we have studied in detail the origin of two classes of drug-resistant variants. Bromodeoxyuridine resistance of the thymidine deficiency type has been shown to arise through sequential loss of two forms of thymidine-phosphorylating enzyme; loss of the second form of enzyme is complex, suggesting that changes more complex than simple recessive mutations may be involved. Another form of resistance, in which tolerance of high levels of bromodeoxyuridine is found in cells that continue to express thymidine kinase, remains under study. Variants resistant to microtubule inhibitors were isolated. It was found that these haploid strains have properties distinguishing them from analogous resistant strains isolated from diploid mammalian cell cultures in other laboratories. In order to understand better how mutagens are involved in the origin of cell culture variants, we have examined the effect of different forms of DNA repair on the frequency of drug-resistant colonies induced by ultraviolet radiation. Preliminary experiments suggest that the frequency of such colonies is greater when repair takes place through (presumably error-prone) dark repair than when (error-free) photoreversal is allowed to occur. Such experiments can determine whether new phenotypes arise from alterations in DNA, and thus whether, in a broad sense, they are likely to be mutational in nature.

  7. An exonuclease I-sensitive DNA repair pathway in Deinococcus radiodurans: a major determinant of radiation resistance.

    Science.gov (United States)

    Misra, Hari S; Khairnar, Nivedita P; Kota, Swathi; Shrivastava, Smriti; Joshi, Vasudha P; Apte, Shree K

    2006-02-01

    Deinococcus radiodurans R1 recovering from acute dose of gamma radiation shows a biphasic mechanism of DNA double-strand break repair. The possible involvement of microsequence homology-dependent, or non-homologous end joining type mechanisms during initial period followed by RecA-dependent homologous recombination pathways has been suggested for the reconstruction of complete genomes in this microbe. We have exploited the known roles of exonuclease I in DNA recombination to elucidate the nature of recombination involved in DNA double-strand break repair during post-irradiation recovery of D. radiodurans. Transgenic Deinococcus cells expressing exonuclease I functions of Escherichia coli showed significant reduction in gamma radiation radioresistance, while the resistance to far-UV and hydrogen peroxide remained unaffected. The overexpression of E. coli exonuclease I in Deinococcus inhibited DNA double-strand break repair. Such cells exhibited normal post-irradiation expression kinetics of RecA, PprA and single-stranded DNA-binding proteins but lacked the divalent cation manganese [(Mn(II)]-dependent protection from gamma radiation. The results strongly suggest that 3' (rho) 5' single-stranded DNA ends constitute an important component in recombination pathway involved in DNA double-strand break repair and that absence of sbcB from deinococcal genome may significantly aid its extreme radioresistance phenotype. PMID:16430702

  8. Sensitization of radiation-induced cell death by genistein

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Rim; Kim, In Gyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-03-15

    A number of epidemiological studies as well as biological experiments, showed that genistein, one of the isoflavone, prevents prostate cancer occurrence. In this study, we showed that genistein inhibited the cell proliferation of human promyeoltic leukemia HL-60 cells and induced G2/M phase arrest. In addition, combination of genistein treatment and {gamma}-irradiation displayed synergistic effect in apoptotic cell death of HL-60 cells. This means that the repair of genistein-induced DNA damage was hindered by {gamma}-irradiation and thus cell death was increased. In conclusion, genistein is one of the important chemicals that sensitize radiation-induced cell death.

  9. Mammalian cells exposed to ionizing radiation: structural and biochemical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Sabanero, M.; Flores V, L. L. [Universidad de Guanajuato, Departamento de Biologia, DCNE, Noria Alta s/n, 36250 Guanajuato, Gto. (Mexico); Azorin V, J. C.; Vallejo, M. A.; Cordova F, T.; Sosa A, M. [Universidad de Guanajuato, Departamento de Ingenieria Fisica, DCI, Loma del Bosque 103, Col. Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Castruita D, J. P. [Universidad de Guadalajara, Departamento de Ecologia, CUCBA, Las Agujas, 45100 Zapopan, Jalisco (Mexico); Barbosa S, G., E-mail: myrna.sabanero@gmail.com [Universidad de Guanajuato, Departamento de Ciencias Medicas, DCS, 20 de Enero No. 929, Col. Obregon, 37000 Leon, Guanajuato (Mexico)

    2015-10-15

    Acute or chronic exposure to ionizing radiation is a factor that may be hazardous to health. It has been reported that exposure to low doses of radiation (less than 50 mSv / year) and subsequently exposure to high doses have greater effects in people. However, it is unknown molecular and biochemical level alteration. This study, analyzes the susceptibility of a biological system (HeLa Atcc CCL-2 human cervix cancer cell line) to ionizing radiation (6 and 60 mSv/ 90). Our evaluate multiple variables such as: total protein profile, mitochondrial metabolic activity (XTT assay), cell viability (Trypan blue exclusion assay), cytoskeleton (actin micro filaments), nuclei (D API), genomic DNA. The results indicate, that cells exposed to ionizing radiation structurally show alterations in nuclear phenotype and aneuploidy, further disruption in the tight junctions and consequently on the distribution of actin micro filaments. Similar alterations were observed in cells treated with a genotoxic agent (200μM H{sub 2}O{sub 2}/1 h). In conclusion, this multi-criteria assessment enables precise comparisons of the effects of radiation between any biological systems. However, it is necessary to determine stress markers for integration of the effects of ionizing radiation. (Author)

  10. Rituximab enhances radiation-triggered apoptosis in non-Hodgkin's lymphoma cells via caspase-dependent and - independent mechanisms

    International Nuclear Information System (INIS)

    Rituximab (RTX), a chimeric human anti-CD20 monoclonal antibody, is currently employed in the treatment of malignant non-Hodgkin's lymphoma (NHL) either alone or in combination with other cytotoxic approaches. The present study examines the effects of ionizing radiation in combination with RTX on proliferation and apoptosis development in B-lymphoma RL and Raji cells. RTX was used at a concentration of 10 μg/mL 24 hours prior to irradiation at a single dose of 9 Gy. CD20 expression, cell viability, apoptosis, mitochondrial membrane potential and apoptosis-related proteins were evaluated in the treated B cells. The constitutive level of CD20 expression in RL and Raji lymphoma cells did not play an essential role in RTX-induced cell growth delay. Both lymphoma cells showed similar inhibition of cell proliferation without apoptosis development in response to RTX treatment. Exposure to ionizing radiation induced cell growth delay and apoptosis in RL cells, whereas Raji cells showed moderate radio-resistance and activation of cell growth at 24 hours after irradiation, which was accompanied by increased radiation-triggered CD20 expression. The simultaneous exposure of lymphoma cells to ionizing radiation and RTX abrogated radioresistance of Raji cells and significantly enhanced cell growth delay and apoptosis in RL cells. X-linked inhibitor of apoptosis protein (XIAP) and the inducible form of heat shock protein 70 (Hsp70) were positively modulated by RTX in combination with ionizing radiation in order to induce apoptosis. Furthermore, it was demonstrated that mitochondrial membrane potential dissipation is not an essential component to induce apoptosis-inducing factor (AIF) maturation and apoptosis. Our results show that RTX-triggered enhancement of radiation-induced apoptosis and cell growth delay is achieved by modulation of proteins involved in programmed cell death. (author)

  11. Mitomycin resistance in mammalian cells expressing the bacterial mitomycin C resistance protein MCRA

    OpenAIRE

    Belcourt, Michael F.; Penketh, Philip G.; Hodnick, William F.; Johnson, David A.; David H Sherman; Rockwell, Sara; Sartorelli, Alan C.

    1999-01-01

    The mitomycin C-resistance gene, mcrA, of Streptomyces lavendulae produces MCRA, a protein that protects this microorganism from its own antibiotic, the antitumor drug mitomycin C. Expression of the bacterial mcrA gene in mammalian Chinese hamster ovary cells causes profound resistance to mitomycin C and to its structurally related analog porfiromycin under aerobic conditions but produces little change in drug sensitivity under hypoxia. The mitomycins are prodrugs that are enzymatically reduc...

  12. The regulatory effects of radiation and histone deacetylase inhibitor on liver cancer cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Ho; Choi, Hyung Seok; Jang, Dong Gun; Lee, Hong Je; Yang, Seoung Oh [Dept. Nuclear Medicine, Dongnam Institute of Radiological and Medicine Sciences Cancer Center, Busan (Korea, Republic of)

    2013-11-15

    Radiation has been an effective tool for treating cancer for a long time. Radiation therapy induces DNA damage within cancer cells and destroys their ability to reproduce. Radiation therapy is often combined with other treatments, like surgery and chemotherapy. Here, we describe the effects of radiation and histone deacetylase inhibitor, Trichostain A, on cell cycle regulation in hepatoma cells. Results demonstrate that the treatment of radiation TSA induces cell cycle arrest, thereby stimulating cell death in hepatoma cells. In addition, since different cells or tissues have different reactivity to radiation and TSA, these results might be an indicator for the combination therapy with radiation and drugs in diverse cancers.

  13. Enhanced radiation response in radioresistant MCF-7 cells by targeting peroxiredoxin II

    Directory of Open Access Journals (Sweden)

    Diaz AJG

    2013-10-01

    Full Text Available Anthony Joseph Gomez Diaz,1 Daniel Tamae,2 Yun Yen,3 JianJian Li,4 Tieli Wang1 1Department of Chemistry and Biochemistry, California State University at Dominguez Hills, Carson, CA, 2Center of Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, 3Department of Clinical and Molecular Pharmacology, Beckman Research Institute of City of Hope National Medical Center, Duarte, CA, 4Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA Abstract: In our previous study, we identified that a protein target, peroxiredoxin II (PrxII, is overexpressed in radioresistant MCF+FIR3 breast-cancer cells and found that its expression and function is associated with breast-cancer radiation sensitivity or resistance. Small interference RNA (siRNA targeting PrxII gene expression was able to sensitize MCF+FIR3 radioresistant breast-cancer cells to ionizing radiation. The major focus of this work was to investigate how the radiation response of MCF+FIR3 radioresistant cells was affected by the siRNA that inhibits PrxII gene expression. Our results, presented here, show that silencing PrxII gene expression increased cellular toxicity by altering cellular thiol status, inhibiting Ca2+ efflux from the cells, and perturbing the intracellular Ca2+ homeostasis. By combining radiotherapy and siRNA technology, we hope to develop new therapeutic strategies that may have potential to enhance the efficacy of chemotherapeutic agents due to this technology's property of targeting to specific cancer-related genes. Keywords: siRNA, PrxII, radiation resistance, Ca2+, MCF+FIR3

  14. Increasing the radiation resistance of single-crystal silicon epitaxial layers

    OpenAIRE

    Kurmashev Sh. D.; Kulinich O. A.; Brusenskaya G. I.; Verem’eva A. V.

    2014-01-01

    The authors investigate the possibility of increasing the radiation resistance of silicon epitaxial layers by creating radiation defects sinks in the form of dislocation networks of the density of 109—1012 m–2. Such networks are created before the epitaxial layer is applied on the front surface of the silicon substrate by its preliminary oxidation and subsequent etching of the oxide layer. The substrates were silicon wafers KEF-4.5 and KDB-10 with a diameter of about 40 mm, grown by the Czoch...

  15. Radiation resistance of epoxy systems: I. Effect of epoxy resin structure

    International Nuclear Information System (INIS)

    A series of epoxy resins have been formulated for use at cryogenic temperatures and more specifically for superconducting magnets. The radiation resistance of these materials will be critical for some applications and thus the purpose of this report is to describe the thermal, physical and mechanical properties of a series of epoxy formulations as a function of total radiation dose using a 60C source. The properties are measured both at cryogenic and ambient conditions. A diglycidyl ether of bisphenol A monomer is coreacted with a series of aliphatic diamines and contrasted with the same formulation using the diglycidyl ester of hexahydrophthalic anhydride

  16. Unusual resistance to ionizing radiation of the viruses of kuru, Creutzfeldt-Jakob disease, and scrapie.

    Science.gov (United States)

    Gibbs, C J; Gajdusek, D C; Latarjet, R

    1978-01-01

    The titers of several preparations of kuru. Creutzfeldt-Jacob disease, and scrapie viruses were reduced by only 1/10th or less by high doses of gamma radiation of 50 kGy and by only 1/10th-1/1000th or less for 200 kGy. This unusual radiation resistance of the two human viruses further links them with the scrapie virus and suggests that the genetic information of all three viruses is considerably smaller than that of any other known viruses of mammals. PMID:104301

  17. Taxotere resistance in SUIT Taxotere resistance in pancreatic carcinoma cell line SUIT 2 and its sublines

    Institute of Scientific and Technical Information of China (English)

    Bin Liu; Edgar Staren; Takeshi Iwamura; Hubert Appert; John Howard

    2001-01-01

    AIM: To investigate the specific mechanisms of intrinsic and acquired resistance to taxotere (TXT) in pancreatic adenocarcinoma (PAC). METHODS: MTT assay was used to detect the sensitivity of PAC cell line SUIT-2 and its sublines (S-007, S-013, S-020,S-028 and TXT selected SUIT-2 cell line, S2/TXT) to TXT.Mdr1 (P-gp), multidrug resistance associated protein (MRP), lung resistance protein (LRP) and β-tubulin isotype gene expressions were detected by RT-PCR. The functionality of P-gp and MRP was tested using their specific blocker verapamil ( Ver ) and indomethacin ( IMC ),respectively. The transporter activity of P-gp was also confirmed by Rhodamine 123 accumulation assay. RESULTS: S-020 and S2/TXT were found to be significantly resistant to TXT(19 and 9.5-fold to their parental cell line SUIT-2, respectively ). RT-PCR demonstrated strong expression of Mdr1 in these two cell lines, but weaker expression or no expression in other cells lines. MRP and LRP expressions were found in most of these cell lines. The TXT-resistance in S2-020 and S2/TXT could be reversed almost completely by Ver, but not by IMC. Flow cytometry showed that Ver increased the accumulation of Rhodamine-123 in these two cell lines. Compared with S-020 and SUIT-2,the levels of β-tubulin isotype II, III expreesions in S-2/TXTwere increased remarkably. CONCLUSION: The both intrinsic and acquired TXT-related drugresistance in these PAC cell lines is mainly mediated by P-gp, but had no relationship to MRP and LRP expressions.The increases of β-tubulin isotype II, III might be collateral changes that occur when the SUIT-2 cells are treated with TXT.

  18. Reduced membrane protein associated with resistance of human squamous carcinoma cells to methotrexate and cis-platinum.

    Science.gov (United States)

    Bernal, S D; Speak, J A; Boeheim, K; Dreyfuss, A I; Wright, J E; Teicher, B A; Rosowsky, A; Tsao, S W; Wong, Y C

    1990-06-01

    A membrane protein recognized by monoclonal antibody SQM1 was identified in human squamous carcinomas, including those originating in the head and neck (SqCHN), lung and cervix. Cell lines derived from SqCHN of previously untreated patients expressed high amounts of this protein. In contrast, many cell lines established from SqCHN of patients previously treated with chemotherapy and/or radiation showed diminished amounts of this SQM1 protein. The expression of SQM1 antigen was determined in several SqCHN cell lines made resistant by exposure to methotrexate (MTX) in vitro. The parent cell lines all exhibited strong binding to SQM1 antibody. The MTX-resistant sublines showed much lower membrane binding of SQM1. The lowest SQM1 reactivity was found in cell lines with high resistance to MTX and with diminished rate of MTX transport. Some highly MTX-resistant cell lines which had high levels of dihydrofolate reductase, but which retained a high rate of MTX transport, also retained high levels of SQM1 binding. Reduced SQM1 protein was also found in SqCHN cells which developed resistance to the alkylating drug cis-latinum (CDDP) and which showed reduced membrane transport of CDDP. Cell growth kinetics and non-specific antigenic shifts were not responsible for the differences in SQM1 binding between the parent cell lines and their drug-resistant sublines. The finding of a novel protein which is reduced in cells resistant to MTX and CDDP could contribute to our understanding of the basic mechanisms of drug resistance. By detecting SQM1 protein in clinical specimens, it may be possible to monitor the development of drug resistance in tumors. PMID:2195318

  19. In vitro induction of variability through radiation for late blight resistance and heat tolerance in potato

    International Nuclear Information System (INIS)

    In vitro cultured shoots of potato, cvs. 'Kufri Jyoti' and 'Kufri Chandramukhi', were irradiated with 20 and 40 Gy gamma rays. Microtubers, obtained from MIV3 shoots multiplied in vitro, were planted in pots. The resulting plants were screened for resistance to late blight, using detached leaf method. In 'Kufri Chandramukhi', 42% plants and in 'Kufri Jyoti' 36% plants, obtained from 40 Gy treatment, showed resistance to late blight. The frequency of resistant plants was lower from 20 Gy treatment. The progenies of putatively resistant plants were grown in field, and inoculated with sporangial inoculum of late blight fungus. The field grown progeny segregated for disease resistance, and approximately 56% plants showed resistance. During the next propagation, the frequency of resistant plants increased to 72%. For developing heat tolerance, microtubers obtained from 20 and 40 Gy treatments and in vitro multiplied M1V3 shoots were cultured at high temperature of 28C. In both varieties, the number of the microtubers per plant was highly reduced and the resulting microtubers had distorted shape but showed better germination (62%), even in early sowing at relatively higher temperature. Of the two radiation doses, the higher dose of 40 Gy gave better results in both the varieties. Heat tolerance was also assessed from chlorophyll persistence. The progenies from putative heat-tolerant plants were tested in field by planting at higher temperature in two subsequent generations. The heat tolerant plants segregated in each generation, but the frequency of heat-tolerant plants increased. (author)

  20. New Modeling Approaches to Investigate Cell Signaling in Radiation Response

    Science.gov (United States)

    Plante, Ianik; Cucinotta, Francis A.; Ponomarev, Artem L.

    2011-01-01

    Ionizing radiation damages individual cells and tissues leading to harmful biological effects. Among many radiation-induced lesions, DNA double-strand breaks (DSB) are considered the key precursors of most early and late effects [1] leading to direct mutation or aberrant signal transduction processes. In response to damage, a flow of information is communicated to cells not directly hit by the radiation through signal transduction pathways [2]. Non-targeted effects (NTE), which includes bystander effects and genomic instability in the progeny of irradiated cells and tissues, may be particularly important for space radiation risk assessment [1], because astronauts are exposed to a low fluence of heavy ions and only a small fraction of cells are traversed by an ion. NTE may also have important consequences clinical radiotherapy [3]. In the recent years, new simulation tools and modeling approaches have become available to study the tissue response to radiation. The simulation of signal transduction pathways require many elements such as detailed track structure calculations, a tissue or cell culture model, knowledge of biochemical pathways and Brownian Dynamics (BD) propagators of the signaling molecules in their micro-environment. Recently, the Monte-Carlo simulation code of radiation track structure RITRACKS was used for micro and nano-dosimetry calculations [4]. RITRACKS will be used to calculate the fraction of cells traversed by an ion and delta-rays and the energy deposited in cells in a tissue model. RITRACKS also simulates the formation of chemical species by the radiolysis of water [5], notably the .OH radical. This molecule is implicated in DNA damage and in the activation of the transforming growth factor beta (TGF), a signaling molecule involved in NTE. BD algorithms for a particle near a membrane comprising receptors were also developed and will be used to simulate trajectories of signaling molecules in the micro-environment and characterize autocrine

  1. Development of bunchy top virus resistant banana cv lakatan in vitro culture and radiation technology

    International Nuclear Information System (INIS)

    Bunchy to virus (BTV) is the most destructive virus disease of banana in the Philippines. Incorporation of resistance to this virus disease by conventional hybridization is not possible due to male and female sterility of most commercial banana cultivars. In vitro culture coupled with radiation technology can be used to develop BTV resistance in banana cv. Lakatan. The sensitivity of banana shot tip explants to gamma irradiation was determined by subjecting the shoot tips to varying doses (5, 10, 20, 25, 30, 40, 60, 80 and 100 Gy) of irradiation. The LD sub 50 for banana shoot tips determined by 50% reduction in growth and shoot proliferation, was observed to around 20-25 Gy. Bulk irradiation of shoot tip explants was conducted using 20-25 Gy. Irradiated cultures were multiplied for 3-5 cycles and plants regenerated were potted out and screened for BTV resistance. A total of 3,447 irradiated plants regenerated from the radiosensitivity experiment (1,847 plants) and bulk irradiation of 20/25 Gy (1,600 plants) were screened for BTV resistance in the greenhouse using artificial BTV inoculation using the aphid vector Pentalonia nigronervosa. One hundred eighteen plants or 3.4% (118/3,447) of the artificially irradiated plants showed seedling resistance after 4-7 months of evaluation. These plants were planted in the field and were subjected to natural BTV infection. To date, 85 (out of the 118) putative seedling resistant plants continuously expressed BTV resistance in the field after more than 10 months of evaluation. The absence of BTV infection in 39 putative resistant plants was confirmed by ELISA test. Suckers from selected putative resistance plants will be collected, propagated and evaluated for the second cycle stability of BTV resistance and detailed characterization of important horticultural traits

  2. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chiaro, Christopher, E-mail: cchiaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Lazarova, Darina L., E-mail: dlazarova@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Bordonaro, Michael, E-mail: mbordonaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer We investigate mechanisms responsible for butyrate resistance in colon cancer cells. Black-Right-Pointing-Pointer Tcf3 modulates butyrate's effects on Wnt activity and cell growth in resistant cells. Black-Right-Pointing-Pointer Tcf3 modulation of butyrate's effects differ by cell context. Black-Right-Pointing-Pointer Cell cycle factors are overexpressed in the resistant cells. Black-Right-Pointing-Pointer Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G{sub 1} to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that

  3. S-phase cells are more sensitive to high-linear energy transfer radiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.; Naidu, M.; Liu, S.; Zhang, P.; Zhang, S.; Wang, H.; Wang, Y.

    2009-07-15

    S-phase cells are more resistant to low-linear energy transfer (LET) ionizing radiation (IR) than nonsynchronized and G{sub 1}-phase cells, because both nonhomologous end-joining (NHEJ) and homologous recombination repair can repair DNA double-strand breaks (DSBs) in the S phase. Although it was reported 3 decades ago that S-phase cells did not show more resistance to high-LET IR than cells in other phases, the mechanism remains unclear. We therefore attempted to study the phenotypes and elucidate the mechanism involved. Wild-type and NHEJ-deficient cell lines were synchronized using the double-thymidine approach. A clonogenic assay was used to detect the sensitivity of nonsynchronized, synchronized S-phase, and G{sub 2}-phase cells to high- and low-LET IR. The amounts of Ku bound to DSBs in the high- and low-LET-irradiated cells were also examined. S-phase wild-type cells (but not NHEJ-deficient cells) were more sensitive to high-LET IR than nonsynchronized and G{sub 2}-phase cells. In addition, S-phase wild-type cells showed less efficient Ku protein binding to DSBs than nonsynchronized and G{sub 2}-phase cells in response to high-LET IR, although all cells at all phases showed similarly efficient levels of Ku protein binding to DSBs in response to low-LET IR. S-phase cells are more sensitive to high-LET IR than nonsynchronized and G{sub 2}-phase cells, because of the following mechanism: it is more difficult for Ku protein to bind to high-LET IR-induced DNA DSBs in S-phase cells than in cells at other phases, which results in less efficient NHEJ.

  4. Radiation Response of Cultured Human Cells Is Unaffected by Johrei

    Directory of Open Access Journals (Sweden)

    Zach Hall

    2007-01-01

    Full Text Available Johrei has been credited with healing thousands from radiation wounds after the Hiroshima and Nagasaki bombs in 1945. This alternative medical therapy is becoming increasingly popular in the United States, as are other Energy Medicine modalities that purport to influence a universal healing energy. Human brain cells were cultured and exposed to increasing doses of ionizing radiation. Experienced Johrei practitioners directed healing intentionality toward the cells for 30 min from a distance of 20 cm and the fate of the cells was observed by computerized time-lapse microscopy. Cell death and cell divisions were tallied every 30 min before, during and after Johrei treatment for a total of 22.5 h. An equal number of control experiments were conducted in which cells were irradiated but did not receive Johrei treatment. Samples were assigned to treatment conditions randomly and data analysis was conducted in a blinded fashion. Radiation exposure decreased the rate of cell division (cell cycle arrest in a dose-dependent manner. Division rates were estimated for each 30 min and averaged over 8 independent experiments (4 control and 4 with Johrei treatment for each of 4 doses of X-rays (0, 2, 4 and 8 Gy. Because few cell deaths were observed, pooled data from the entire observation period were used to estimate death rates. Analysis of variance did not reveal any significant differences on division rate or death rate between treatment groups. Only radiation dose was statistically significant. We found no indication that the radiation response of cultured cells is affected by Johrei treatment.

  5. Radiation response of cultured human cells is unaffected by Johrei.

    Science.gov (United States)

    Hall, Zach; Luu, Tri; Moore, Dan; Yount, Garret

    2007-06-01

    Johrei has been credited with healing thousands from radiation wounds after the Hiroshima and Nagasaki bombs in 1945. This alternative medical therapy is becoming increasingly popular in the United States, as are other Energy Medicine modalities that purport to influence a universal healing energy. Human brain cells were cultured and exposed to increasing doses of ionizing radiation. Experienced Johrei practitioners directed healing intentionality toward the cells for 30 min from a distance of 20 cm and the fate of the cells was observed by computerized time-lapse microscopy. Cell death and cell divisions were tallied every 30 min before, during and after Johrei treatment for a total of 22.5 h. An equal number of control experiments were conducted in which cells were irradiated but did not receive Johrei treatment. Samples were assigned to treatment conditions randomly and data analysis was conducted in a blinded fashion. Radiation exposure decreased the rate of cell division (cell cycle arrest) in a dose-dependent manner. Division rates were estimated for each 30 min and averaged over 8 independent experiments (4 control and 4 with Johrei treatment) for each of 4 doses of X-rays (0, 2, 4 and 8 Gy). Because few cell deaths were observed, pooled data from the entire observation period were used to estimate death rates. Analysis of variance did not reveal any significant differences on division rate or death rate between treatment groups. Only radiation dose was statistically significant. We found no indication that the radiation response of cultured cells is affected by Johrei treatment. PMID:17549235

  6. Recent Advances in Electrical Resistance Preheating of Aluminum Reduction Cells

    Science.gov (United States)

    Ali, Mohamed Mahmoud; Kvande, Halvor

    2016-06-01

    ABSTRACT There are two mainpreheating methods that are used nowadays for aluminum reduction cells. One is based on electrical resistance preheating with a thin bed of small coke and/or graphite particles between the anodes and the cathode carbon blocks. The other is flame preheating, where two or more gas or oil burners are used. Electrical resistance preheating is the oldest method, but is still frequently used by different aluminum producers. Many improvements have been made to this method by different companies over the last decade. In this paper, important points pertaining to the preparation and preheating of these cells, as well as measurements made during the preheating process and evaluation of the performance of the preheating, are illustrated. The preheating times of these cells were found to be between 36 h and 96 h for cell currents between 176 kA and 406 kA, while the resistance bed thickness was between 13 mm and 60 mm. The average cathode surface temperature at the end of the preheating was usually between 800°C and 950°C. The effect of the preheating methods on cell life is unclear and no quantifiable conclusions can be drawn. Some works carried out in the mathematical modeling area are also discussed. It is concluded that there is a need for more studies with real situations for preheated cells on the basis of actual measurements. The expected development in electrical resistance preheating of aluminum reduction cells is also summarized.

  7. Coniferyl Aldehyde Ameliorates Radiation Intestine Injury via Endothelial Cell Survival

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ye Ji; Jung, Myung Gu; Lee, Yoonjin; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yunsil [Ewha Woman' s Univ., Seoul (Korea, Republic of); Ko, Younggyu [Korea Univ., Seoul (Korea, Republic of)

    2014-05-15

    Cancer treatments related gastrointestinal toxicity has also been recognized as a significant economic burden. Especially, extensive apoptosis of microvascular endothelial cell of the lamina propria is the primary lesion initiating intestinal radiation damage after abdominal radiation therapy. Coniferyl aldehyde (CA) is phenolic compounds isolated from cork stoppers, and one of the major pyrolysis products of lignin. Shi H. was support for the empirical use of CA as a medicinal food for cardiovascular diseases. CA has positive effect in broad way but there is no consequence in radiation induced intestine damage. Here, we investigate effect of CA on small intestine after abdominal IR to mice in this study. In this study, CA increased the survival rate in C3H mice against 13.5 Gy abdominal IR. We found CA protects small intestine via preventing endothelial cell apoptosis and enhancing their angiogenic activity. CA also showed protective effect on crypt cell survival. Endothelial cell survival may affect crypt cell protection against IR. From this data, we concluded that CA is effective for protection against abdominal radiation injury. CA could ameliorate side-effect of radiation therapy.

  8. Prokaryotic arsenate reductase enhances arsenate resistance in Mammalian cells.

    Science.gov (United States)

    Wu, Dan; Tao, Xuanyu; Wu, Gaofeng; Li, Xiangkai; Liu, Pu

    2014-01-01

    Arsenic is a well-known heavy metal toxicant in the environment. Bioremediation of heavy metals has been proposed as a low-cost and eco-friendly method. This article described some of recent patents on transgenic plants with enhanced heavy metal resistance. Further, to test whether genetic modification of mammalian cells could render higher arsenic resistance, a prokaryotic arsenic reductase gene arsC was transfected into human liver cancer cell HepG2. In the stably transfected cells, the expression level of arsC gene was determined by quantitative real-time PCR. Results showed that arsC was expressed in HepG2 cells and the expression was upregulated by 3 folds upon arsenate induction. To further test whether arsC has function in HepG2 cells, the viability of HepG2-pCI-ArsC cells exposed to arsenite or arsenate was compared to that of HepG2-pCI cells without arsC gene. The results indicated that arsC increased the viability of HepG2 cells by 25% in arsenate, but not in arsenite. And the test of reducing ability of stably transfected cells revealed that the concentration of accumulated trivalent arsenic increased by 25% in HepG2-pCI-ArsC cells. To determine the intracellular localization of ArsC, a fusion vector with fluorescent marker pEGFP-N1-ArsC was constructed and transfected into.HepG2. Laser confocal microscopy showed that EGFP-ArsC fusion protein was distributed throughout the cells. Taken together, these results demonstrated that prokaryotic arsenic resistant gene arsC integrated successfully into HepG2 genome and enhanced arsenate resistance of HepG2, which brought new insights of arsenic detoxification in mammalian cells.

  9. Radiation-induced spindle cell sarcoma: A rare case report

    Directory of Open Access Journals (Sweden)

    Khan Mubeen

    2009-01-01

    Full Text Available Ionizing radiation has been known to induce malignant transformation in human beings. Radiation-induced sarcomas are a late sequel of radiation therapy. Most sarcomas have been reported to occur after exposure to a radiation dose of 55 Gray (Gy and above, with a dose ranging from 16 to 112 Gys. Spindle cell sarcomas, arising after radiotherapy given to treat the carcinoma of head and neck region is a very uncommon sequel. This is a rare case report of spindle cell sarcoma of left maxilla, in a 24-year-old male, occurring as a late complication of radiotherapy with Cobalt-60 given for the treatment of retinoblastoma of the left eye 21 years back.

  10. Investigation of radiation-induced transcriptome profile of radioresistant non-small cell lung cancer A549 cells using RNA-seq.

    Directory of Open Access Journals (Sweden)

    Hee Jung Yang

    Full Text Available Radioresistance is a main impediment to effective radiotherapy for non-small cell lung cancer (NSCLC. Despite several experimental and clinical studies of resistance to radiation, the precise mechanism of radioresistance in NSCLC cells and tissues still remains unclear. This result could be explained by limitation of previous researches such as a partial understanding of the cellular radioresistance mechanism at a single molecule level. In this study, we aimed to investigate extensive radiation responses in radioresistant NSCLC cells and to identify radioresistance-associating factors. For the first time, using RNA-seq, a massive sequencing-based approach, we examined whole-transcriptome alteration in radioresistant NSCLC A549 cells under irradiation, and verified significant radiation-altered genes and their chromosome distribution patterns. Also, bioinformatic approaches (GO analysis and IPA were performed to characterize the radiation responses in radioresistant A549 cells. We found that epithelial-mesenchymal transition (EMT, migration and inflammatory processes could be meaningfully related to regulation of radiation responses in radioresistant A549 cells. Based on the results of bioinformatic analysis for the radiation-induced transcriptome alteration, we selected seven significant radiation-altered genes (SESN2, FN1, TRAF4, CDKN1A, COX-2, DDB2 and FDXR and then compared radiation effects in two types of NSCLC cells with different radiosensitivity (radioresistant A549 cells and radiosensitive NCI-H460 cells. Interestingly, under irradiation, COX-2 showed the most significant difference in mRNA and protein expression between A549 and NCI-H460 cells. IR-induced increase of COX-2 expression was appeared only in radioresistant A549 cells. Collectively, we suggest that COX-2 (also known as prostaglandin-endoperoxide synthase 2 (PTGS2 could have possibility as a putative biomarker for radioresistance in NSCLC cells.

  11. Breast cancer resistance protein is localized at the plasma membrane in mitoxantrone- and topotecan-resistant cell lines

    NARCIS (Netherlands)

    Scheffer, GL; Maliepaard, M; Pijnenborg, ACLM; van Gastelen, MA; Schroeijers, AB; Allen, JD; Ross, DD; van der Valk, P; Dalton, WS; Schellens, JHM; Scheper, RJ; de Jong, MC

    2000-01-01

    Tumor cells may display a multidrug resistant phenotype by overexpression of ATP-binding cassette transporters such as multidrug resistance (,MDR1) P-glycoprotein, multidrug resistance protein 1 (MRP1), and breast cancer resistance protein (BCRP). The presence of BCRP has thus far been reported sole

  12. High linear-energy-transfer radiation can overcome radioresistance of glioma stem-like cells to low linear-energy-transfer radiation

    International Nuclear Information System (INIS)

    Ionizing radiation is applied as the standard treatment for glioblastoma multiforme (GBM). However, radiotherapy remains merely palliative, not curative, because of the existence of glioma stem cells (GSCs), which are regarded as highly radioresistant to low linear-energy-transfer (LET) photons. Here we analyzed whether or not high-LET particles can overcome the radioresistance of GSCs. Glioma stem-like cells (GSLCs) were induced from the GBM cell line A172 in stem cell culture medium. The phenotypes of GSLCs and wild-type cells were confirmed using stem cell markers. These cells were irradiated with 60Co gamma rays or reactor neutron beams. Under neutron-beam irradiation, high-LET proton particles can be produced through elastic scattering or nitrogen capture reaction. Radiosensitivity was assessed by a colony-forming assay, and the DNA double-strand breaks (DSBs) were assessed by a histone gamma-H2AX focus detection assay. In stem cell culture medium, GSLCs could form neurosphere-like cells and express neural stem cell markers (Sox2 and Musashi) abundantly in comparison with their parental cells. GSLCs were significantly more radioresistant to gamma rays than their parental cells, but neutron beams overcame this resistance. There were significantly fewer gamma-H2AX foci in the A172 GSLCs 24 h after irradiation with gamma rays than in their parental cultured cells, while there was no apparent difference following neutron-beam irradiation. High-LET radiation can overcome the radioresistance of GSLCs by producing unrepairable DNA DSBs. High-LET radiation therapy might have the potential to overcome GBM's resistance to X-rays in a clinical setting. (author)

  13. Molecular fingerprinting of radiation resistant tumors: Can we apprehend and rehabilitate the suspects?

    International Nuclear Information System (INIS)

    Radiation therapy continues to be one of the more popular treatment options for localized prostate cancer. One major obstacle to radiation therapy is that there is a limit to the amount of radiation that can be safely delivered to the target organ. Emerging evidence suggests that therapeutic agents targeting specific molecules might be combined with radiation therapy for more effective treatment of tumors. Recent studies suggest that modulation of these molecules by a variety of mechanisms (e.g., gene therapy, antisense oligonucleotides, small interfering RNA) may enhance the efficacy of radiation therapy by modifying the activity of key cell proliferation and survival pathways such as those controlled by Bcl-2, p53, Akt/PTEN and cyclooxygenase-2. In this article, we summarize the findings of recent investigations of radiosensitizing agents in the treatment of prostate cancer

  14. Targeting the Mechanisms of Resistance to Chemotherapy and Radiotherapy with the Cancer Stem Cell Hypothesis

    Directory of Open Access Journals (Sweden)

    Ryan Morrison

    2011-01-01

    Full Text Available Despite advances in treatment, cancer remains the 2nd most common cause of death in the United States. Poor cure rates may result from the ability of cancer to recur and spread after initial therapies have seemingly eliminated detectable signs of disease. A growing body of evidence supports a role for cancer stem cells (CSCs in tumor regrowth and spread after initial treatment. Thus, targeting CSCs in combination with traditional induction therapies may improve treatment outcomes and survival rates. Unfortunately, CSCs tend to be resistant to chemo- and radiation therapy, and a better understanding of the mechanisms underlying CSC resistance to treatment is necessary. This paper provides an update on evidence that supports a fundamental role for CSCs in cancer progression, summarizes potential mechanisms of CSC resistance to treatment, and discusses classes of drugs currently in preclinical or clinical testing that show promise at targeting CSCs.

  15. Drug Resistance and Cancer Stem Cells

    OpenAIRE

    Fonseca, João Pedro Couto

    2012-01-01

    O cancro do pulmão é a principal causa de morte por cancro a nível mundial. Apesar do crescente conhecimento sobre os mecanismos subjacentes ao processo tumorigénico não se tem observado alteração significativa na sobrevivência dos pacientes. É, por isso, urgente encontrar novas estratégias terapêuticas que visem superar a resistência, tanto intrínseca como extrínseca, observada com a quimioterapia corrente. Os tumores são caracterizados pela sua heterogeneidade celular, devido à coexistên...

  16. Functional genomics of UV radiation responses in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Koch-Paiz, Christine A.; Amundson, Sally A.; Bittner, Michael L.; Meltzer, Paul S.; Fornace, Albert J

    2004-05-18

    The gene expression responses of MCF-7, a p53 wild-type (wt) human cell line, were monitored by cDNA microarray hybridization after exposure to different wavelengths of UV irradiation. Equitoxic doses of UVA, UVB, and UVC radiation were used to reduce survival to 37%. The effects of suramin, a signal pathway inhibitor, on the gene expression responses to the three UV wavelengths were also compared in this model system. UVB radiation triggered the broadest gene expression responses, and 172 genes were found to be consistently responsive in at least two-thirds of independent UVB experiments. These UVB radiation-responsive genes encode proteins with diverse cellular roles including cell cycle control, DNA repair, signaling, transcription, protein synthesis, protein degradation, and RNA metabolism. The set of UVB-responsive genes included most of the genes responding to an equitoxic dose of UVC radiation, plus additional genes that were not strongly triggered by UVC radiation. There was also some overlap with genes responding to an equitoxic dose of UVA radiation, although responses to this lower energy UV radiation were overall weaker. Signaling through growth factor receptors and other cytokine receptors was shown to have a major role in mediating UV radiation stress responses, as suramin, which inhibits such receptors, attenuated responses to UV radiation in nearly all the cases. Inhibition by suramin was greater for UVC than for UVB irradiation. This probably reflects the more prominent role in UVB damage response of signaling by reactive oxygen species, which would not be affected by suramin. Our results with suramin demonstrate the power of cDNA microarray hybridization to illuminate the global effects of a pharmacologic inhibitor on cell signaling.

  17. Lack of p53 function promotes radiation-induced mitotic catastrophe in mouse embryonic fibroblast cells

    Directory of Open Access Journals (Sweden)

    Phillips Stacia L

    2006-04-01

    Full Text Available Abstract Background We have demonstrated that in some human cancer cells both chronic mild heat and ionizing radiation exposures induce a transient block in S and G2 phases of the cell cycle. During this delay, cyclin B1 protein accumulates to supranormal levels, cyclin B1-dependent kinase is activated, and abrogation of the G2/M checkpoint control occurs resulting in mitotic catastrophe (MC. Results Using syngenic mouse embryonic fibroblasts (MEF with wild-type or mutant p53, we now show that, while both cell lines exhibit delays in S/G2 phase post-irradiation, the mutant p53 cells show elevated levels of cyclin B1 followed by MC, while the wild-type p53 cells present both a lower accumulation of cyclin B1 and a lower frequency of MC. Conclusion These results are in line with studies reporting the role of p53 as a post-transcriptional regulator of cyclin B1 protein and confirm that dysregulation of cyclin B1 promote radiation-induced MC. These findings might be exploited to design strategies to augment the yield of MC in tumor cells that are resistant to radiation-induced apoptosis.

  18. Determinates of tumor response to radiation: Tumor cells, tumor stroma and permanent local control

    International Nuclear Information System (INIS)

    Background and purpose: The causes of tumor response variation to radiation remain obscure, thus hampering the development of predictive assays and strategies to decrease resistance. The present study evaluates the impact of host tumor stromal elements and the in vivo environment on tumor cell kill, and relationship between tumor cell radiosensitivity and the tumor control dose. Material and methods: Five endpoints were evaluated and compared in a radiosensitive DNA double-strand break repair-defective (DNA-PKcs−/−) tumor line, and its DNA-PKcs repair competent transfected counterpart. In vitro colony formation assays were performed on in vitro cultured cells, on cells obtained directly from tumors, and on cells irradiated in situ. Permanent local control was assessed by the TCD50 assay. Vascular effects were evaluated by functional vascular density assays. Results: The fraction of repair competent and repair deficient tumor cells surviving radiation did not substantially differ whether irradiated in vitro, i.e., in the absence of host stromal elements and factors, from the fraction of cells killed following in vivo irradiation. Additionally, the altered tumor cell sensitivity resulted in a proportional change in the dose required to achieve permanent local control. The estimated number of tumor cells per tumor, their cloning efficiency and radiosensitivity, all assessed by in vitro assays, were used to predict successfully, the measured tumor control doses. Conclusion: The number of clonogens per tumor and their radiosensitivity govern the permanent local control dose

  19. Radiation-induced motility alterations in medulloblastoma cells

    OpenAIRE

    Rieken, Stefan; Rieber, Juliane; Brons, Stephan; Habermehl, Daniel; Rief, Harald; Orschiedt, Lena; Lindel, Katja; Klaus J. Weber; Debus, Jürgen; Combs, Stephanie E

    2015-01-01

    Photon irradiation has been repeatedly suspected of increasing tumor cell motility and promoting locoregional recurrence of disease. This study was set up to analyse possible mechanisms underlying the potentially radiation-altered motility in medulloblastoma cells. Medulloblastoma cell lines D425 and Med8A were analyzed in migration and adhesion experiments with and without photon and carbon ion irradiation. Expression of integrins was determined by quantitative FACS analysis. Matrix metallop...

  20. Large-Scale Procurement of Radiation Resistant Single-Mode Optical Fibers for CERN

    CERN Document Server

    Guillermain, Elisa; Kuhnhenn, Jochen; Ricci, Daniel; Weinand, Udo

    2015-01-01

    2400 km of special radiation resistant optical fibres were procured by CERN (European Organization for Nuclear Research), for the installation of more than 55 km of optical fibre cables in the accelerator complex underground during the Long Shutdown 1 (LS1). In the frame of this large-scale industrial production, a thorough quality assurance plan (QAP) was put in place and followed at each step of the process. In-depth qualification of optical fibres preceded the 17-month procurement process. All supplied batches were tested for their resistance to radiation, leading to more than 65 quality control irradiation tests. During the cable assembly process and the installations works, a full traceability down to the optical fibre level was ensured. The actions put in place in the frame of the QAP led to successful installation works and to full respect of the LS1 planning.

  1. Distribution of radiation resistant microorganism and bio-burden on infusion set

    International Nuclear Information System (INIS)

    Radiation screened 98 isolates from 3032 cfu on 56 infusion sets were studied for radiation resistance. The D10 values of these screened isolates were 0.8 to 4.0 kGy and mostly ranged within 1.2 to 1.6 kGy. The microorganisms with D10 ≤ 1.6 kGy were about 99.0% of the total bio-burden. All of the screened isolates were gram-positive bacteria, and 84 isolates were classified as Bacillus sp. and 14 isolates were characterized as Micrococcus sp.. One isolate with D10 of 4.0 kGy (from D-6 = 24 kGy) was found outside of the infusion sets, accounting for 0.033% of the total bio-burden. The most resistant bacteria were orange colony and were classified as a Micrococcus sp. with broad shoulder

  2. Effect of ionizing radiation on human skeletal muscle precursor cells

    OpenAIRE

    Marš, Tomaž; Čemažar, Maja; Jurdana, Mihaela; Pegan, Katarina

    2015-01-01

    Background. Long term effects of different doses of ionizing radiation on human skeletal muscle myoblast proliferation, cytokine signalling and stress response capacity were studied in primary cell cultures.Materials and methods. Human skeletal muscle myoblasts obtained from muscle biopsies were cultured and irradiated with a Darpac 2000 X-ray unit at doses of 4, 6 and 8 Gy. Acute effects of radiation were studied by interleukin - 6 (IL-6) release and stress response detected by the heat shoc...

  3. Proton irradiation of stem cells: Radiation damage and chemical radioprotection

    Science.gov (United States)

    Riley, R. C.; Montour, J. L.; Gurney, C. W.

    1972-01-01

    Effects of high energy protons on erythropoietic stem cells and radioprotection by chemicals were investigated in NASA Space Radiation Effects Laboratory. The effects of a parallel beam of 600 MeV protons. The fluence, when converted to dose, were referenced to the synchrocyclotron beam monitors which were then used to administer radiation exposures. Mice were given graded doses to 300 rads to determine dose-response curve. Other mice received saline, AET, or 5-hydroxytryptamine 10 to 15 minutes before exposure.

  4. Preclinical screening for drugs effective against 5-fluorouracil-resistant cells with a murine L5178Y cell line in vitro

    International Nuclear Information System (INIS)

    A subline of L5178Y cells has been established in vitro that exhibits a fiftyfold order of resistance to 5-fluorouracil (FUra) as compared to that of the parent line. The cytotoxic effects of 24-hour exposures to 23 antitumor drugs and to radiation were compared in the two cell lines. Four patterns of response were identified: 1) Only two drugs, mitomycin C and adriamycin, proved significantly more cytotoxic to FUra-resistant cells. 2) Four other drugs--anguidine, 4'-(9-acridinylamino)-methanesulfon-m-anisidide, melphalan, and quelamycin--showed marginal superiority against resistant cells. 3) X-radiation and the majority of drugs tested--including 5-azacytidine, 1,3-bis(2-chloroethyl)-1-nitrosourea, cisplatin, bleomycin, dibromodulcitol, razoxane, hydroxyurea, methotrexate, teniposide, etoposide, and three experimental agents, metoprine, spirogermanium HCl, and ellipticinum--proved equally cytotoxic to both cell lines. 4) Cross-resistance with FUra was exhibited with vincristine, vindesine, pyrazofurin, and indicine-N-oxide. This experimental system provides a simple method of testing agents for activity against FUra-resistant cells before phase 1 clinical studies

  5. Metallised holographic diffraction gratings with the enhanced radiation resistance for laser pulse compression systems

    International Nuclear Information System (INIS)

    The methods for improving the radiation resistance and strength of metallised diffraction gratings for laser pulse compression systems are considered. It is shown that the modification of the method for applying gold on the holographic grating surface provides a substantial increase in the grating damage threshold. It is also shown that the use of additional dielectric coatings allows a further doubling of the damage threshold for nanosecond laser pulses. (laser applications and other topics in quantum electronics)

  6. Properties of resistant cells generated from lung cancer cell lines treated with EGFR inhibitors

    International Nuclear Information System (INIS)

    Epidermal growth factor receptor (EGFR) signaling plays an important role in non-small cell lung cancer (NSCLC) and therapeutics targeted against EGFR have been effective in treating a subset of patients bearing somatic EFGR mutations. However, the cancer eventually progresses during treatment with EGFR inhibitors, even in the patients who respond to these drugs initially. Recent studies have identified that the acquisition of resistance in approximately 50% of cases is due to generation of a secondary mutation (T790M) in the EGFR kinase domain. In about 20% of the cases, resistance is associated with the amplification of MET kinase. In the remaining 30-40% of the cases, the mechanism underpinning the therapeutic resistance is unknown. An erlotinib resistant subline (H1650-ER1) was generated upon continuous exposure of NSCLC cell line NCI-H1650 to erlotinib. Cancer stem cell like traits including expression of stem cell markers, enhanced ability to self-renew and differentiate, and increased tumorigenicity in vitro were assessed in erlotinib resistant H1650-ER1 cells. The erlotinib resistant subline contained a population of cells with properties similar to cancer stem cells. These cells were found to be less sensitive towards erlotinib treatment as measured by cell proliferation and generation of tumor spheres in the presence of erlotinib. Our findings suggest that in cases of NSCLC accompanied by mutant EGFR, treatment targeting inhibition of EGFR kinase activity in differentiated cancer cells may generate a population of cancer cells with stem cell properties

  7. A comparison of the biological effects of 125I seeds continuous low-dose-rate radiation and 60Co high-dose-rate gamma radiation on non-small cell lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Zhongmin Wang

    Full Text Available To compare the biological effects of 125I seeds continuous low-dose-rate (CLDR radiation and 60Co γ-ray high-dose-rate (HDR radiation on non-small cell lung cancer (NSCLC cells.A549, H1299 and BEAS-2B cells were exposed to 125I seeds CLDR radiation or 60Co γ-ray HDR radiation. The survival fraction was determined using a colony-forming assay. The cell cycle progression and apoptosis were detected by flow cytometry (FCM. The expression of the apoptosis-related proteins caspase-3, cleaved-caspase-3, PARP, cleaved-PARP, BAX and Bcl-2 were detected by western blot assay.After irradiation with 125I seeds CLDR radiation, there was a lower survival fraction, more pronounced cell cycle arrest (G1 arrest and G2/M arrest in A549 and H1299 cells, respectively and a higher apoptotic ratio for A549 and H1299 cells than after 60Co γ-ray HDR radiation. Moreover, western blot assays revealed that 125I seeds CLDR radiation remarkably up-regulated the expression of Bax, cleaved-caspase-3 and cleaved-PARP proteins and down-regulated the expression of Bcl-2 proteins in A549 and H1299 cells compared with 60Co γ-ray HDR radiation. However, there was little change in the apoptotic ratio and expression of apoptosis-related proteins in normal BEAS-2B cells receiving the same treatment.125I seeds CLDR radiation led to remarkable growth inhibition of A549 and H1299 cells compared with 60Co HDR γ-ray radiation; A549 cells were the most sensitive to radiation, followed by H1299 cells. In contrast, normal BEAS-2B cells were relatively radio-resistant. The imbalance of the Bcl-2/Bax ratio and the activation of caspase-3 and PARP proteins might play a key role in the anti-proliferative effects induced by 125I seeds CLDR radiation, although other possibilities have not been excluded and will be investigated in future studies.

  8. Radiation-Resistant Hybrid Lotus Effect for Achieving Photoelectrocatalytic Self-Cleaning Anticontamination Coatings

    Science.gov (United States)

    Taylor, Edward W.; Pirich, Ronald G.

    2011-01-01

    An experiment involving radiation-resistant hydrophobic coatings is planned for space exposure and experimental testing on the International Space Station (ISS) in 2011. The Lotus biocide coatings are designed for supporting space exploration missions. This innovation is an antibacterial, anti-contamination, and self-cleaning coating that uses nano-sized semiconductor semimetal oxides to neutralize biological pathogens and toxic chemicals, as well as to mitigate dust accumulation (see figure). The Lotus biocide coating is thin (approximately microns thick), lightweight, and the biocide properties will not degrade with time or exposure to biological or chemical agents. The biocide is stimulated chemically (stoichiometric reaction) through exposure to light (photocatalysis), or by an applied electric field (electrocatalysis). The hydrophobic coating samples underwent preliminary high-energy proton and alpha-ray (helium ion) irradiations at the Lawrence Berkeley National Laboratory 88" cyclotron and demonstrated excellent radiation resistance for a portion of the Galactic Cosmic Ray (GRC) and Solar Proton spectrum. The samples will undergo additional post-flight studies when returned to Earth to affirm further the radiation resistance properties of the space exposed coatings.

  9. Transcriptome-wide studies of prostate cancer cell lines in the context of medical radiation

    International Nuclear Information System (INIS)

    The use of radiotherapy in addition to chemotherapy and surgical removal is the most powerful instrument in the fight against malignant tumors in cancer medicine. After cardiovascular diseases, cancer is the second leading cause of death in the western world, in which prostate cancer is the most frequent male cancer. Despite continuous technological improvements in radiological instruments and prognosis, it may occur a recurrence up to many years after radiotherapy due to a high resistance capability of individual malignant cells of the locally occurring tumor. Although modern radiation biology has studied many aspects of the resistance mechanisms, questions are largely unanswered especially in regards to prognostic terms and time response of tumor cells to ionizing radiation. As cellular models four prostate cancer cell lines with different radiation sensitivities (PC3, DuCaP, DU-145, RWPE-1) were cultured and tested for their ability to survive after exposure to ionizing radiation by a trypane blue and MTT viability assay. The proliferative capacity of the four cell lines was determined using a colony formation assay. The PC3 cell line (radiation-resistant) and the DuCaP cell line (radiation-sensitive) showed the maximal differences in terms of radiation sensitivity. Based on these results the two cell lines were selected to allow identification of potential prognostic marker for predicting the effectiveness of radiation therapy via their transcriptome-wide gene expression. Furthermore, a time series experiment with the radiation-resistant PC3 cell line was performed. At 8 different time points, during the period from 00:00 - 42:53 (hh:mm) after exposure with 1 Gy, the mRNA was quantified by next generation sequencing to investigate the dynamic behavior of time-delayed gene expression and to discover resistance mechanisms. Of 10,966 expressed genes 730 were significant differentially expressed, determined by setting a fold change threshold in conjunction with a P

  10. Response of sensitive human ataxia and resistant T-1 cell lines to accelerated heavy ions

    International Nuclear Information System (INIS)

    The radiation dose responses of fibroblast from a patient with Ataxia telangiectasis (AT-2SF) and an established line of human T-1 cells were studied. Nearly monoenergetic accelerated neon and argon ions were used at the Berkeley Bevalac with various residual range values. The LET of the particles varied from 30 keV/μm to over 1000 keV/μm. All Ataxia survival curves were exponential functions of the dose. Their radiosensitivity reached peak values at 100 to 200 keV/μm. Human T-1 cells have effective sublethal damage repair as has been evidenced by split dose experiments, and they are much more resistant to low LET than to high LET radiation. The repair-misrepair model has been used to interpret these results. We have obtained mathematical expressions that describe the cross sections and inactivation coefficients for both human cell lines as a function of the LET and the type of particle used. The results suggest either that high-LET particles induce a greater number of radiolesions per track or that heavy-ions at high LET induce lesions that kill cells more effectively and that are different from those produced at low LET. We assume that the lesions induced in T-1 and Ataxia cells are qualitatively similar and that each cell line attempts to repair these lesions. The result in most irradiated Ataxia cells, however, is either lethal misrepair or incomplete repair leading to cell death. 63 references, 10 figures, 1 table

  11. Seven cases of radiation-induced cutaneous squamous cell carcinoma

    International Nuclear Information System (INIS)

    We report 7 cases of radiation-induced skin cancer. The diagnosis was based on the history of radiotherapy for benign skin diseases (5 cases) and of occupational exposures to medical doctors (2 cases). All cases were squamous cell carcinomas which arose from chronic radiodermatitis. The estimated latent period of these tumors ranged from 6 to 64 years, with an average of 29.9 years. After surgical treatments of the lesions, no local recurrences were observed in all cases. Benign skin diseases had sometimes been treated with low-energy radiation before the 1960s. Considering the estimated latent period, the peak time point of developing risk of radiation-induced skin cancer by such treatment has been already passed, however, the danger of it should not be ignored in future. In association with multiplicity of radiation usage, occupational exposure of radiation may develop the risk of occurrence of skin cancer in future. Therefore, we should recognize that radiation-induced skin cancer is not in the past. In the cases of chronic skin diseases showing warty keratotic growth, erosion and ulcer, we should include chronic radio-dermatitis in the differential diagnosis. It is necessary to recall all patients about the history of radiotherapy or radiation exposure. Rapid histopathological examination is mandatory because of the suspicion of radiation-induced skin cancer. (author)

  12. In vitro cell culture lethal dose submitted to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Carolina S.; Rogero, Sizue O.; Rogero, Jose Roberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: carolina_sm@hotmail.com; Ikeda, Tamiko I.; Cruz, Aurea S. [Instituto Adolfo Lutz, Sao Paulo, SP (Brazil)

    2009-07-01

    The present study was designed to evaluate the in vitro effect of gamma radiation in cell culture of mouse connective tissue exposed to different doses of gamma radiation and under several conditions. The cell viability was analyzed by neutral red uptake methodology. This assay was developed for establish a methodology to be used in the future in the study of resveratrol radioprotection. Resveratrol (3,4',5- trihydroxystilbene), a phenolic phytoalexin that occurs naturally in some spermatophytes, such as grapevines, in response to injury as fungal infections and exposure to ultraviolet light. In the wines this compound is found at high levels and is considered one of the highest antioxidant constituents. The intense antioxidant potential of resveratrol provides many pharmacological activities including cardioprotection, chemoprevention and anti-tumor effects. Our results demonstrated that {sup 60}Co gamma radiation lethal dose (LD50) on NCTC clone 929 cells was about 340Gy. (author)

  13. In vitro cell culture lethal dose submitted to gamma radiation

    International Nuclear Information System (INIS)

    The present study was designed to evaluate the in vitro effect of gamma radiation in cell culture of mouse connective tissue exposed to different doses of gamma radiation and under several conditions. The cell viability was analyzed by neutral red uptake methodology. This assay was developed for establish a methodology to be used in the future in the study of resveratrol radioprotection. Resveratrol (3,4',5- trihydroxystilbene), a phenolic phytoalexin that occurs naturally in some spermatophytes, such as grapevines, in response to injury as fungal infections and exposure to ultraviolet light. In the wines this compound is found at high levels and is considered one of the highest antioxidant constituents. The intense antioxidant potential of resveratrol provides many pharmacological activities including cardioprotection, chemoprevention and anti-tumor effects. Our results demonstrated that 60Co gamma radiation lethal dose (LD50) on NCTC clone 929 cells was about 340Gy. (author)

  14. Effect of radiofrequency radiation in cultured mammalian cells: A review.

    Science.gov (United States)

    Manna, Debashri; Ghosh, Rita

    2016-01-01

    The use of mobile phone related technologies will continue to increase in the foreseeable future worldwide. This has drawn attention to the probable interaction of radiofrequency electromagnetic radiation with different biological targets. Studies have been conducted on various organisms to evaluate the alleged ill-effect on health. We have therefore attempted to review those work limited to in vitro cultured cells where irradiation conditions were well controlled. Different investigators have studied varied endpoints like DNA damage, cell cycle arrest, reactive oxygen species (ROS) formation, cellular morphology and viability to weigh the genotoxic effect of such radiation by utilizing different frequencies and dose rates under various irradiation conditions that include continuous or pulsed exposures and also amplitude- or frequency-modulated waves. Cells adapt to change in their intra and extracellular environment from different chemical and physical stimuli through organized alterations in gene or protein expression that result in the induction of stress responses. Many studies have focused on such effects for risk estimations. Though the effects of microwave radiation on cells are often not pronounced, some investigators have therefore combined radiofrequency radiation with other physical or chemical agents to observe whether the effects of such agents were augmented or not. Such reports in cultured cellular systems have also included in this review. The findings from different workers have revealed that, effects were dependent on cell type and the endpoint selection. However, contradictory findings were also observed in same cell types with same assay, in such cases the specific absorption rate (SAR) values were significant.

  15. Effect of Deep Space Radiation on Human Hematopoietic Cells

    Science.gov (United States)

    Kalota, Anna; Bennett, Paula; Swider, Cezary R.; Sutherland, Betsy M.; Gewirtz, Alan M.

    Astronaut flight crews on long-term missions in deep space will be exposed to a unique radiation environment as a result of exposure to galactic cosmic rays (GCR) and solar particle events (SPE). This environment consists predominantly of high energy protons, helium and high charge, high energy (HZE) atomic nuclei from iron predominantly, but all other elements as well. The effect of such particles, alone, or in combination, on human hematopoietic stem and progenitor cells (HSPC) has not been well studied but is clearly of interest since blood forming cells are known to be sensitive to radiation, and irreversible damage to these cells could quickly compromise a mission due to loss of marrow function. To better understand the effects of GCR and SPE on human stem/progenitor cell function, we have exposed partially purified CD34+ normal human marrow cells to protons, radioactive Fe, and Ti, alone, and in combination at varying doses up to 70cGy, and down to 1, 2, and 4 particle hits per nucleus. We then examined the effects of these radiations on HSPC function, as assessed by the ability to form CFU-GEMM, and LTCIC colonies in semi-solid culture medium. At the highest doses (50 and 70cGy), all radiation types tested significantly diminished the ability of CD34+ cells to form such colonies. The number of CFU-GEMM in irradiated samples was 70-90

  16. The membrane targeted apoptosis modulators erucylphosphocholine and erucylphosphohomocholine increase the radiation response of human glioblastoma cell lines in vitro

    International Nuclear Information System (INIS)

    Alkylphosphocholines constitute a novel class of antineoplastic synthetic phospholipid derivatives that induce apoptosis of human tumor cell lines by targeting cellular membranes. We could recently show that the first intravenously applicable alkylphosphocholine erucylphosphocholine (ErPC) is a potent inducer of apoptosis in highly resistant human astrocytoma/glioblastoma cell lines in vitro. ErPC was shown to cross the blood brain barrier upon repeated intravenous injections in rats and thus constitutes a promising candidate for glioblastoma therapy. Aim of the present study was to analyze putative beneficial effects of ErPC and its clinically more advanced derivative erucylphosphohomocholine (erucyl-N, N, N-trimethylpropanolaminphosphate, ErPC3, Erufosine™ on radiation-induced apoptosis and eradication of clonogenic tumor cells in human astrocytoma/glioblastoma cell lines in vitro. While all cell lines showed high intrinsic resistance against radiation-induced apoptosis as determined by fluorescence microscopy, treatment with ErPC and ErPC3 strongly increased sensitivity of the cells to radiation-induced cell death (apoptosis and necrosis). T98G cells were most responsive to the combined treatment revealing highly synergistic effects while A172 showed mostly additive to synergistic effects, and U87MG cells sub-additive, additive or synergistic effects, depending on the respective radiation-dose, drug-concentration and treatment time. Combined treatment enhanced therapy-induced damage of the mitochondria and caspase-activation. Importantly, combined treatment also increased radiation-induced eradication of clonogenic T98G cells as determined by standard colony formation assays. Our observations make the combined treatment with ionizing radiation and the membrane targeted apoptosis modulators ErPC and ErPC3 a promising approach for the treatment of patients suffering from malignant glioma. The use of this innovative treatment concept in an in vivo xenograft

  17. Combination Effect of Nimotuzumab with Radiation in Colorectal Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hye Kyung; Kim, Mi Sook; Jeong, Jae Hoon [Korea Institute of Radiologicaland Medical Sciences, Seoul (Korea, Republic of)

    2010-11-15

    To investigate the radiosensitizing effect of the selective epidermal growth factor receptor (EGFR) inhibitor nimotuzumab in human colorectal cancer cell lines. Four human colorectal cancer cell lines, HCT-8, LoVo, WiDr, and HCT-116 were treated with nimotuzumab and/or radiation. The effects on cell proliferation, viability, and cell cycle progression were measured by MTT, clonogenic survival assay, flow cytometry, and Western blot. An immunoblot analysis revealed that EGFR phosphorylation was inhibited by nimotuzumab in colorectal cancer cell lines. Under these experimental conditions, pre-treatment with nimotuzumab increased radiosensitivity of colorectal cancer cell lines, except for cell line HCT-116. However, cell proliferation or cell cycle progression was not affected by the addition of nimotuzumab, irrespective of irradiation. Nimotuzumab enhanced the radiosensitivity of colorectal cancer cells in vitro by inhibiting EGFR-mediated cell survival signaling. This study provided a rationale for the clinical application of the selective EGFR inhibitor, nimotuzumab in combination with radiation in colorectal cancer cells.

  18. Exosomal Proteome Profiling: A Potential Multi-Marker Cellular Phenotyping Tool to Characterize Hypoxia-Induced Radiation Resistance in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Stefani N. Thomas

    2013-08-01

    Full Text Available Radiation and drug resistance are significant challenges in the treatment of locally advanced, recurrent and metastatic breast cancer that contribute to mortality. Clinically, radiotherapy requires oxygen to generate cytotoxic free radicals that cause DNA damage and allow that damage to become fixed in the genome rather than repaired. However, approximately 40% of all breast cancers have hypoxic tumor microenvironments that render cancer cells significantly more resistant to irradiation. Hypoxic stimuli trigger changes in the cell death/survival pathway that lead to increased cellular radiation resistance. As a result, the development of noninvasive strategies to assess tumor hypoxia in breast cancer has recently received considerable attention. Exosomes are secreted nanovesicles that have roles in paracrine signaling during breast tumor progression, including tumor-stromal interactions, activation of proliferative pathways and immunosuppression. The recent development of protocols to isolate and purify exosomes, as well as advances in mass spectrometry-based proteomics have facilitated the comprehensive analysis of exosome content and function. Using these tools, studies have demonstrated that the proteome profiles of tumor-derived exosomes are indicative of the oxygenation status of patient tumors. They have also demonstrated that exosome signaling pathways are potentially targetable drivers of hypoxia-dependent intercellular signaling during tumorigenesis. This article provides an overview of how proteomic tools can be effectively used to characterize exosomes and elucidate fundamental signaling pathways and survival mechanisms underlying hypoxia-mediated radiation resistance in breast cancer.

  19. Nanodrug Delivery in Reversing Multidrug Resistance in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sonali eKapse-Mistry

    2014-07-01

    Full Text Available Different mechanisms in cancer cells become resistant to one or more chemotherapeutics is known as multidrug resistance(MDR which hinders chemotherapy efficacy. Potential factors for MDR includes enhanced drug detoxification, decreased drug uptake, increased intracellular nucleophiles levels, enhanced repair of drug induced DNA damage, overexpression of drug transporter such as P-glycoprotein(P-gp, multidrug resistance-associated proteins(MRP1, MRP2 and breast cancer resistance protein(BCRP. Currently nanoassemblies such as polymeric/solid lipid/inorganic/metal nanoparticles, quantum dots, dendrimers, liposomes, micelles has emerged as an innovative, effective and promising platforms for treatment of drug resistant cancer cells. Nanocarriers have potential to improve drug therapeutic index, ability for multifunctionality, divert ABC-transporter mediated drug efflux mechanism and selective targeting to tumor cells, cancer stem cells, tumor initiating cells or cancer microenvironment. Selective nanocarrier targeting to tumor overcomes dose-limiting side effects, lack of selectivity, tissue toxicity, limited drug access to tumor tissues, high drug doses and emergence of multiple drug resistance with conventional or combination chemotherapy. Current review highlights various nanodrug delivery systems to overcome mechanism of MDR by neutralizing, evading or exploiting the drug efflux pumps and those independent of drug efflux pump mechanism by silencing Bcl-2 and HIF1 gene expressions by siRNA and miRNA, modulating ceramide levels and targeting NF-B. Theragnostics combining a cytotoxic agent, targeting moiety, chemosensitizing agent and diagnostic imaging aid are highlighted as effective and innovative systems for tumor localization and overcoming MDR. Physical approaches such as combination of drug with thermal/ultrasound/photodynamic therapies to overcome MDR are focused. The review focuses on newer drug delivery systems developed to overcome

  20. Modification of silicone sealant to improve gamma radiation resistance, by addition of protective agents

    Science.gov (United States)

    González-Pérez, Giovanni; Burillo, Guillermina

    2013-09-01

    Poly (dimethylsiloxane) (PDMS) sealant (SS) was modified with the addition of different protective compounds to conserve its physical-chemical properties during gamma irradiation. 2-Vinyl naphthalene (2-VN), bisphenol-A (BPA) and poly (vinyl carbazole) (PVK) were used to evaluate radiation protection through the crosslinking effect of radiation. The samples were irradiated with doses from 100 kGy to 500 kGy at room temperature in air, with a 60Co gamma source, and the changes in molecular weight, thermal behavior, elastic properties and infrared spectra (FTIR-ATR) absorbance analysis were determined. The molecular weight of unmodified silicone sealant increases with the absorbed dose because of crosslinking as predominant effect. However, the crosslinking effect was inhibited with the addition of protective agent due to the aromatic compounds present. Modified silicone sealant films present better radiation resistance than unmodified system.

  1. Energetics and the resistive tearing mode - Effects of Joule heating and radiation

    Science.gov (United States)

    Steinolfson, R. S.

    1983-01-01

    The contribution of energy flux to the dynamics of magnetic field reconnection is analytically studied in order to determine the influence of Joule heating and radiation on the linear development of the tearing instability in slab geometry. A temperature-dependent Coulomb-like resistivity is used to provide the coupling between the dynamics and the energy equation. Analytical expressions are derived for the growth rates utilizing constant-psi and long-wavelength approximations. The solutions indicate the occurrence of several modes in addition to the usual tearing mode, several of which have relatively slow, complex growth rates. At large values of the magnetic Reynolds number, there are at least two modes with purely exponential growth when the radiative loss decreases with increasing temperature. If the radiation is neglected, the Joule heating alone also results in two modes with real, positive growth at large S. Below a particular value of S, all the modes are generally stabilized.

  2. Resistance to ionizing radiations of materials installed at the CERN accelerators

    International Nuclear Information System (INIS)

    All materials installed in high energy accelerators along the lines of primary and secondary beams are exposed to ionizing radiation. This can in certain cases cause a degradation of the properties of these materials and consequently affect the good function of the installation. The author has taken at CERN large number of samples of materials in order to determine their radioresistance. Generally the organic materials and the electronic components are more sensitive to ionizing radiation. The author presents the results of these studies which concern the isolations of the cables (polyethylene, polyvinyl chloride, caoutchouc ethylene propylene, etc.), the isolations for the magnets on the base of epoxy resins, as well as other thermoresistant and thermoplastic products. The author equally presents a choice of materials and components which are used at CERN and which are resistant to radiations above an integral dose of 107-108 Gy. (orig.)

  3. Development of High-Fiber-Volume, Radiation-Resistant, High-Pressure Laminates for Cryogenic Applications

    International Nuclear Information System (INIS)

    Three new composite laminates have been developed for use as structural supports, thermal insulation in cryogenic and radiation environments. Boron-free, woven glass cloth has been preimpregnated with three types of resin systems. The organic resin systems are multifunctional and are much less sensitive to radiation than the epoxy systems used in G-10CR and G-11CR. The laminates are fabricated by curing the preimpregnated glass cloth under high pressure to produce higher glass content (70-74 vol. %). Higher glass content is beneficial because (1) it increases the laminate strength and stiffness; (2) it leads to more isotropic composite properties; and (3) it increases the overall radiation resistance because half and the amount of organic resin content is used. The cost of at least one of the laminates is comparable to that of G-10CR. Elastic, short-beam shear, thermal contraction, and flexural properties have been measured

  4. Study on the Hot Extrusion Process of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel Tubes

    International Nuclear Information System (INIS)

    Ferritic/martensitic steel has a better thermal conductivity and swelling resistance than austenitic stainless steel. Unfortunately, the available temperature range of ferritic/martensitic steel is limited at up to 650 .deg. C. Oxide dispersion strengthened (ODS) steels have been developed as the most prospective core structural materials for next generation nuclear systems because of their excellent high strength and irradiation resistance. The material performances of this new alloy are attributed to the existence of uniformly distributed nano-oxide particles with a high density, which is extremely stable at high temperature in a ferritic/martensitic matrix. This microstructure can be very attractive in achieving superior mechanical properties at high temperatures, and thus, these favorable microstructures should be obtained through the controls of the fabrication process parameters during the mechanical alloying and hot consolidation procedures. In this study, a hot extrusion process for advanced radiation resistant ODS steel tube was investigated. ODS martensitic steel was designed to have high homogeneity, productivity, and reproducibility. Mechanical alloying and hot consolidation processes were employed to fabricate the ODS steels. A microstructure observation and creep rupture test were examined to investigate the effects of the optimized fabrication conditions. Advanced radiation resistant ODS steel has been designed to have homogeneity, productivity, and reproducibility. For these characteristics, modified mechanical alloying and hot consolidation processes were developed. Microstructure observation revealed that the ODS steel has uniformly distributed fine-grain nano-oxide particles. The fabrication process for the tubing is also being propelled in earnest

  5. Deinococcus swuensis sp. nov., a gamma-radiation-resistant bacterium isolated from soil.

    Science.gov (United States)

    Lee, Jae-Jin; Lee, Hyun Ji; Jang, Gi Seon; Yu, Ja Myoung; Cha, Ji Yoon; Kim, Su Jeong; Lee, Eun Bit; Kim, Myung Kyum

    2013-06-01

    Strain DY59(T), a Gram-positive non-motile bacterium, was isolated from soil in South Korea, and was characterized to determine its taxonomic position. Phylogenetic analysis based on the 16S rRNA gene sequence of strain DY59(T) revealed that the strain DY59(T) belonged to the family Deinococcaceae in the class Deinococci. The highest degree of sequence similarities of strain DY59(T) were found with Deinococcus radiopugnans KACC 11999(T) (99.0%), Deinococcus marmoris KACC 12218(T) (97.9%), Deinococcus saxicola KACC 12240(T) (97.0%), Deinococcus aerolatus KACC 12745(T) (96.2%), and Deinococcus frigens KACC 12220(T) (96.1%). Chemotaxonomic data revealed that the predominant fatty acids were iso-C15:0 (19.0%), C16:1 ω7c (17.7%), C15:1 ω6c (12.6%), iso-C17:0 (10.3%), and iso-C17:1 ω9c (10.3%). A complex polar lipid profile consisted of a major unknown phosphoglycolipid. The predominant respiratory quinone is MK-8. The cell wall peptidoglycan contained D-alanine, L-glutamic acid, glycine, and L-ornithine (di-amino acid). The novel strain showed resistance to gamma radiation, with a D10 value (i.e. the dose required to reduce the bacterial population by 10-fold) in excess of 5 kGy. Based on the phylogenetic, chemotaxonomic, and phenotypic data, strain DY59(T) (=KCTC 33033(T) =JCM 18581(T)) should be classified as a type strain of a novel species, for which the name Deinococcus swuensis sp. nov. is proposed.

  6. A Preliminary Study on the Radiation dose Distribution in the Pyroprocess Hot Cell Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chankyu; Kim, Myung Soo; Kim, Giyoon; Lee, Eunjoong; Lee, Jeong Tae; Cho, Gyuseong [KAIST, Daejeon (Korea, Republic of); Ahn, Seongkyu; Park, Sehwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Pyroprocessing is the promising technology for treatment of spent fuels. Because it is based on the collective recovery of TRU, it has an advantage in proliferation resistance compared to conventional aqueous processes. Development of pyroprocessing has positive effects to the public through reduction of the high-level radioactive waste and the effective use of energy resources. In Korea, Korea Atomic Energy Research Institute (KAERI) has researched pyroprocessing since 1997. The engineering scale integrated inactive pyroprocess facility (PRIDE) was constructed and test operation has been performed. A study on the preliminary conceptual design and cost estimation for a larger-scale model facility is in progress. The safeguards are essential in the pyroprocessing facility for proliferation resistance. To establish the reliable safeguards, the preliminary studies on radiation resistance requirements, assessment of the safeguards system applicability, and shielding of the safeguards equipment are required. Therefore, first of all, the radiation flux and dose distribution in hot cell environment have to be studied. The previous studies focused on the neutron flux at the pyroprocessing however they are limited to the individual unit process. In this study, the flux and dose distribution of neutron and gamma-ray in the hot cell environment of the pilot pyroprocessing facility are investigated. Based on the simplified material flow of pyroprocess, the material distribution model is established. In this study, the radiation flux and dose distribution in the hot cell environment of the pilot-scale pyroprocessing facility model is investigated preliminarily by the MCNP6 simulation. Based on the established material flow model, the material composition at each stage is calculated and used for the simulation. The simple hot cell structure and process batch size were assumed based on the previous studies.

  7. Glioblastoma stem cells: radiobiological response to ionising radiations of different qualities

    International Nuclear Information System (INIS)

    Glioblastoma multiform (GBM) is the most common and malignant primary brain tumour, with very poor prognosis. The high recurrence rate and failure of conventional treatments are expected to be related to the presence of radio-resistant cancer stem cells (CSCs) inside the tumour mass. CSCs can both self-renew and differentiate into the heterogeneous lineages of cancer cells. Recent evidence showed a higher effectiveness of C-ions and protons in inactivating CSCs, suggesting a potential advantage of Hadrontherapy compared with conventional radiotherapy for GBM treatment. To investigate the mechanisms involved in the molecular and cellular responses of CSCs to ionising radiations, two GBM stem cell (GSC) lines, named lines 1 and 83, which were derived from patients with different clinical outcomes and having different metabolic profiles (as shown by NMR spectroscopy), were irradiated with 137Cs photons and with protons or C-ions of 62 MeV u-1 in the dose range of 5- 40 Gy. The biological effects investigated were: cell death, cell cycle progression, and DNA damage induction and repair. Preliminary results show a different response to ionising radiation between the two GSC lines for the different end points investigated. Further experiments are in progress to consolidate the data and to get more insights on the influence of radiation quality. (authors)

  8. Glioblastoma stem cells: radiobiological response to ionising radiations of different qualities.

    Science.gov (United States)

    Pecchia, I; Dini, V; Ricci-Vitiani, L; Biffoni, M; Balduzzi, M; Fratini, E; Belli, M; Campa, A; Esposito, G; Cirrone, G; Romano, F; Stancampiano, C; Pelacchi, F; Pallini, R; Tabocchini, M A

    2015-09-01

    Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumour, with very poor prognosis. The high recurrence rate and failure of conventional treatments are expected to be related to the presence of radio-resistant cancer stem cells (CSCs) inside the tumour mass. CSCs can both self-renew and differentiate into the heterogeneous lineages of cancer cells. Recent evidence showed a higher effectiveness of C-ions and protons in inactivating CSCs, suggesting a potential advantage of Hadrontherapy compared with conventional radiotherapy for GBM treatment. To investigate the mechanisms involved in the molecular and cellular responses of CSCs to ionising radiations, two GBM stem cell (GSC) lines, named lines 1 and 83, which were derived from patients with different clinical outcomes and having different metabolic profiles (as shown by NMR spectroscopy), were irradiated with (137)Cs photons and with protons or C-ions of 62 MeV u(-1) in the dose range of 5-40 Gy. The biological effects investigated were: cell death, cell cycle progression, and DNA damage induction and repair. Preliminary results show a different response to ionising radiation between the two GSC lines for the different end points investigated. Further experiments are in progress to consolidate the data and to get more insights on the influence of radiation quality. PMID:25969527

  9. Leukemia stem cells in drug resistance and metastasis

    Institute of Scientific and Technical Information of China (English)

    DENG Chao-hua; ZHANG Qiu-ping

    2010-01-01

    Objective To review the central role of leukemia stem cells (LSCs) in drug resistance and metastasis, aiming to provide key insights into leukemogenic pathology and developing novel therapeutic strategies against the relapse of leukemia.Data sources The data used in this review were obtained mainly from the studies reported in PubMed using the key terms "tumor-initiating cells", "leukemia stem cells", "drug resistance" and "metastasis".Study selection Relevant articles on studies of leukemia stem cells were selected.Results Increasing numbers of studies have suggested the importance of cancer stem cells (CSCs) in the initiation and maintenance of cancer, especially in leukemia. This review has summarized the origin, characteristics, isolation and identification of LSCs. It highlights the crucial role of LSCs in drug resistance and metastasis of leukemia by illustrating possible mechanisms and aims to provide novel therapeutic strategies for LSCs-targeted treatment.Conclusion LSCs play a crucial role in drug resistance and metastasis of leukemia and new promising LSCs-targeted therapies warrant investigation in both experimental models and clinical practice.

  10. Potential role of DNA-dependent protein kinase in cellular resistance to ionizing radiation

    Institute of Scientific and Technical Information of China (English)

    LI Ning; ZHANG Hong; WANG Yanling; WANG Xiaohu; HAO Jifang

    2009-01-01

    In this paper, we study the ability of DNA-PK-deficient (M059J) and -proficient (M059K) cells to undergo the rate of cellular proliferation, cell cycle distribution and apoptosis after 10 Gy X-ray irradiation, and the role of DNA-PK in radiosensitivity. The results showed that M059J cells exhibited hyper-radiosensitivity compared with M059K cells. A strong G2 phase arrest was observed in M059J cells post irradiation. Significant accumulation in the G2 phase in M059J cells was accompanied by apoptosis at 12 h. Altogether, the data suggested that DNA-PK may have two roles in mammalian cells after DNA damage, a role in DNA DSB repair and a second role in DNA-damaged cells to traverse a G2 checkpoint, by which DNA-PK may affect cellular sensitivity to ionizing radiation.

  11. Whole-Genome Shotgun Sequencing of Rhodococcus erythropolis Strain P27, a Highly Radiation-Resistant Actinomycete from Antarctica.

    Science.gov (United States)

    Gouvêa Taketani, Rodrigo; Domingues Zucchi, Tiago; Soares de Melo, Itamar; Mendes, Rodrigo

    2013-01-01

    Here, we report the draft genome sequence of radiation-resistant Rhodococcus erythropolis strain P27, isolated from leaves of Deschampsia antarctica Desv. (Poaceae) in the Admiralty Bay area, Antarctica.

  12. Hesperidin as a preventive resistance agent in MCF-7 breast cancer cells line resistance to doxorubicin

    Institute of Scientific and Technical Information of China (English)

    Rifki Febriansah; Dyaningtyas Dewi PP; Sarmoko; Nunuk Aries Nurulita; Edy Meiyanto; Agung Endro Nugroho

    2014-01-01

    Objective:To evaluate of hesperidin to overcome resistance of doxorubicin in MCF-7 resistant doxorubicin cells (MCF-7/Dox) in cytotoxicity apoptosis and P-glycoprotein (Pgp) expression in combination with doxorubicin. Methods:The cytotoxic properties, 50%inhibition concentration (IC50) and its combination with doxorubicin in MCF-7 cell lines resistant to doxorubicin (MCF-7/Dox) cells were determined using MTT assay. Apoptosis induction was examined by double staining assay using ethidium bromide-acridine orange. Immunocytochemistry assay was performed to determine the level and localization of Pgp. Results: Single treatment of hesperidin showed cytotoxic activity on MCF-7/Dox cells with IC50 value of 11 µmol/L. Thus, combination treatment from hesperidin and doxorubicin showed addictive and antagonist effect (CI>1.0). Hesperidin did not increase the apoptotic induction, but decreased the Pgp expressions level when combined with doxorubicin in low concentration. Conclusions: Hesperidin has cytotoxic effect on MCF-7/Dox cells with IC50 of 11 µmol/L. Hesperidin did not increased the apoptotic induction combined with doxorubicin. Co-chemotherapy application of doxorubicin and hesperidin on MCF-7/Dox cells showed synergism effect through inhibition of Pgp expression.

  13. Glioblastoma stem cells resistant to temozolomide-induced autophagy

    Institute of Scientific and Technical Information of China (English)

    FU Jun; LIU Zhi-gang; LIU Xiao-mei; CHEN Fu-rong; SHI Hong-liu; PANG Jesse Chung-sean; NG Ho-keung; CHEN Zhong-ping

    2009-01-01

    Background Recent studies have demonstrated the existence of a small fraction of cells with features of primitive neural progenitor cells and tumor-initiating function in brain tumors. These cells might represent primary therapeutic target for complete eradication of the tumors. This study aimed to determine the resistant phenotype of glioblastoma stem cells (GSCs) to temozolomide (TMZ) and to explore the possible molecular mechanisms underlying TMZ resistance.Methods Freshly resected glioblastoma specimen was collected and magnetic isolation of GSCs was carded out using the Miltenyi Biotec CD133 Celt isolation kit. The cytotoxic effect of TMZ on CD133+ and CD133- glioblastoma cells was determined by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Autophagy-related proteins (Beclin-1, LC3 and Atg5) and cleaved caspase-3 (p17) were analyzed by Westem blotting. Immunofluorescent staining was used to detect Atg5, glial fibrillary acidic protein (GFAP) and CD133 expression in glioblastoma cells. Statistical analysis was carried out using SPSS 10.0 software. For all tests, the level of statistical significance was set at P <0.05.Results CD133+ glioblastoma cells exhibited neurosphere-like growth in vitro and high expression of CD133 stem cell marker. The growth-inhibiting rate in CD133- glioblastoma cells treated with 5 or 50 pmol/L TMZ was significantly higher than that in CD133+ glioblastoma cells ((14.36±3.75)% vs (2.54±1.36)% or (25.95±5.25)% vs (2.72±1.84)%, respectively, P <0.05). Atg5, LC3-ll and Beclin-1 levels were significantly lower in CD133+ glioblastoma cells than those in autologous CD133- cells after TMZ treatment (P <0.05). Caspase-3 was mildly activated only in CD133- glioblastoma cells after exposure to TMZ (P <0.05). Immunofluorescent staining revealed elevated expression of Atg5 in GFAP* cells following TMZ treatment.Conclusions The GSCs display strong capability of tumor's resistance to TMZ. This resistance is

  14. Elimination of Listeria monocytogenes in sausage meat by combination treatment: Radiation and radiation-resistant bacteriocins

    Science.gov (United States)

    Turgis, Mélanie; Stotz, Viviane; Dupont, Claude; Salmieri, Stéphane; Khan, Ruhul A.; Lacroix, Monique

    2012-08-01

    Two new bacteria were isolated from human feces and were designated MT 104 and MT 162. They were able to produce bacteriocins that are active against five strains of Listeria monocytogenes. Bacteriocins produced by these isolated strains had 100% and 82.35% residual activity when they were treated by gamma radiation at doses of 4 and 40 kGy, respectively. A reduction of 1.0, 1.5 and 3 log CFU/g of L. monocytogenes was observed in sausage meat when treated with bacteriocins from MT 104, MT 162, and nisin, respectively. For synergic effect, the D10 value in presence of the bacteriocins produced by MT 104 showed a 1.08 fold increased relative sensitivity of L. monocytogenes as compared to control after 5 days. The highest synergic effect was observed in presence of nisin which led to 1.61 fold increased relative sensitivity. Combined treatments with nisin and γ-irradiation showed a synergic antimicrobial effect in meat after 24 h and 5 days of storage. A synergic effect was observed only after 5 days at 4 °C for the bacteriocin from MT 104, as compared to the bacteriocin produced by MT 162 that had only an additive antimicrobial effect in all conditions.

  15. Elimination of Listeria monocytogenes in sausage meat by combination treatment: Radiation and radiation-resistant bacteriocins

    International Nuclear Information System (INIS)

    Two new bacteria were isolated from human feces and were designated MT 104 and MT 162. They were able to produce bacteriocins that are active against five strains of Listeria monocytogenes. Bacteriocins produced by these isolated strains had 100% and 82.35% residual activity when they were treated by gamma radiation at doses of 4 and 40 kGy, respectively. A reduction of 1.0, 1.5 and 3 log CFU/g of L. monocytogenes was observed in sausage meat when treated with bacteriocins from MT 104, MT 162, and nisin, respectively. For synergic effect, the D10 value in presence of the bacteriocins produced by MT 104 showed a 1.08 fold increased relative sensitivity of L. monocytogenes as compared to control after 5 days. The highest synergic effect was observed in presence of nisin which led to 1.61 fold increased relative sensitivity. Combined treatments with nisin and γ-irradiation showed a synergic antimicrobial effect in meat after 24 h and 5 days of storage. A synergic effect was observed only after 5 days at 4 °C for the bacteriocin from MT 104, as compared to the bacteriocin produced by MT 162 that had only an additive antimicrobial effect in all conditions.

  16. Responses of human embryonic stem cells and their differentiated progeny to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Ying; Zhang, Ningzhe; Ellerby, Lisa M.; Davalos, Albert R.; Zeng, Xianmin; Campisi, Judith [Buck Institute for Research on Aging, Novato, CA 94945 (United States); Desprez, Pierre-Yves, E-mail: pydesprez@cpmcri.org [Buck Institute for Research on Aging, Novato, CA 94945 (United States); California Pacific Medical Center, Research Institute, San Francisco, CA 94107 (United States)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer hESCs and their progeny, NSCs and neurons, were exposed to ionizing radiation. Black-Right-Pointing-Pointer Upon irradiation, most hESCs died within 5-7 h. Black-Right-Pointing-Pointer Surviving NSCs underwent senescence and displayed features of astrocytes. Black-Right-Pointing-Pointer Surviving NSCs did not display the secretory phenotype expressed by pure astrocytes. Black-Right-Pointing-Pointer This study is to better understand the stress-responses of hESCs and their progeny. -- Abstract: Human embryonic stem cells (hESCs) hold promise for the treatment of many human pathologies. For example, hESCs and the neuronal stem cells (NSCs) and neurons derived from them have significant potential as transplantation therapies for a variety of neurodegenerative diseases. Two concerns about the use of hESCs and their differentiated derivatives are their ability to function and their ability to resist neoplastic transformation in response to stresses that inevitably arise during their preparation for transplantation. To begin to understand how these cells handle genotoxic stress, we examined the responses of hESCs and derived NSCs and neurons to ionizing radiation (IR). Undifferentiated hESCs were extremely sensitive to IR, with nearly all the cells undergoing cell death within 5-7 h. NSCs and neurons were substantially more resistant to IR, with neurons showing the most resistant. Of interest, NSCs that survived IR underwent cellular senescence and acquired astrocytic characteristics. Unlike IR-treated astrocytes, however, the NSC-derived astrocytic cells that survived IR did not display the typical pro-inflammatory, pro-carcinogenic senescence-associated secretory phenotype. These findings suggest distinct genotoxic stress-responses of hESCs and derived NSC and neuronal populations, and suggest that damaged NSCs, while failing to function, may not cause local inflammation.

  17. Crystalline silicon solar cells with high resistivity emitter

    Science.gov (United States)

    Panek, P.; Drabczyk, K.; Zięba, P.

    2009-06-01

    The paper presents a part of research targeted at the modification of crystalline silicon solar cell production using screen-printing technology. The proposed process is based on diffusion from POCl3 resulting in emitter with a sheet resistance on the level of 70 Ω/□ and then, shaped by high temperature passivation treatment. The study was focused on a shallow emitter of high resistivity and on its influence on output electrical parameters of a solar cell. Secondary ion mass spectrometry (SIMS) has been employed for appropriate distinguishing the total donor doped profile. The solar cell parameters were characterized by current-voltage characteristics and spectral response (SR) methods. Some aspects playing a role in suitable manufacturing process were discussed. The situation in a photovoltaic industry with emphasis on silicon supply and current prices of solar cells, modules and photovoltaic (PV) systems are described. The economic and quantitative estimation of the PV world market is shortly discussed.

  18. Development of simplified process for environmentally resistant cells. Final report

    Energy Technology Data Exchange (ETDEWEB)

    King, W.J.

    1980-12-01

    A program to develop a simple, foolproof, all-vacuum solar cell manufacturing process which can be completely automated and which results in medium efficiency cells which are inherently environmentally resistant is described. All components of the completed cells are integrated into a monolithic structure with no material interfaces. The exposed materials (Si, Al/sub 2/O/sub 3/, Al, Ni) are all resistant to atmospheric attack and the junction, per se, is passivated to prevent long term degradation. Such cells are intended to be incorporated into a simple module consisting basically of a press-formed metallic superstructure with a separated glass cover for missile, etc., protection. A 5 cm x 5 cm test cell configuration was designed in which the various efficiency loss factors were adjusted to yield a 10% AMI cell. Each of the cell elements was individually optimized for combination with the others. The basic cell consists of alloyed front (Al) and back (Ag plus Ni) contacts, a multi-purpose (AR, hermetic seal, implantation oxide) front surface coating of Al/sub 2/O/sub 3/, and an implanted front junction. Implantation damage annealing and contact alloying are carried out in a simple one step thermal treatment at 870/sup 0/C using a resistance heated furnace in vacuum. The use of non-analyzed and semi-analyzed beams for fabricating these cells was developed by KCI. A final lot of 50 cells made using the semi-analyzed beam method had an average efficiency of 10.4% at AMI (28 +- 1/sup 0/C). An economic analysis predicts a manufacturing cost of $.45/peak-watt for these cells using a one machine automatic method.

  19. Treatment of radiation syndrome with emphasis on stem cell implantation

    International Nuclear Information System (INIS)

    Within few years, the possibility that the human body contains cells that can repair and regenerate damaged and diseased tissue has gone from an unlikely proposition to a virtual certainty. Patients who have received doses of radiation in the potentially low to mid-lethal range (2-6 Gy) will have depression in bone-marrow function with cessation of blood-cell production leading to pancytopenia. Selection of cases for stem cell transplantation is based upon clinical signs and symptoms. Hematopoietic stem cell which produces blood cell progeny provides support for hematopoietic and other cells within the marrow, and has also been a focus for possible tissue repair. Another cell type termed mesenchymal or stromal also exists in the marrow. This cell provides support for hematopoietic and other cells within the marrow, and has also been a focus for possible tissue repair. Stem cells are obtained from bone marrow, peripheral blood, placental and umbilical cord blood, embryonic stem cells and embryonic germ cells. These cells have great potential for clinical research due to their potential to regenerate tissue. As well known, the cryo preservation process can store any cell type, particularly blood cells, for an indeterminate time. (author)

  20. Radiation Resistance of XLPE Nano-dielectrics for Advanced Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, Robert C [ORNL; Polyzos, Georgios [ORNL; Paranthaman, Mariappan Parans [ORNL; Aytug, Tolga [ORNL; Leonard, Keith J [ORNL; Sauers, Isidor [ORNL

    2014-01-01

    Recently there has been renewed interest in nuclear reactor safety, particularly as commercial reactors are approaching 40 years service and lifetime extensions are considered, as well as for new reactor building projects around the world. The materials that are currently used in cabling for instrumentation, reactor control, and communications include cross-linked polyethylene (XLPE), ethylene propylene rubber (EPR), polyvinyl chloride (PVC), neoprene, and chlorosulfonated polyethylene. While these materials show suitable radiation tolerance in laboratory tests, failures before their useful lifetime occur due to the combined environmental effects of radiation, temperature and moisture, or operation under abnormal conditions. In addition, the extended use of commercial reactors beyond their original service life places a greater demand on insulating materials to perform beyond their current ratings in these nuclear environments. Nanocomposite materials that are based on XLPE and other epoxy resins incorporating TiO2, MgO, SiO2, and Al2O3 nanoparticles are being fabricated using a novel in-situ method established at ORNL to demonstrate materials with increased resistance to radiation. As novel nanocomposite dielectric materials are developed, characterization of the non-irradiated and irradiated nanodielectrics will lead to a knowledge base that allow for dielectric materials to be engineered with specific nanoparticle additions for maximum benefit to wide-variety of radiation environments found in nuclear reactors. This paper presents the initial findings on the development of XLPE-based SiO2 nano-composite dielectrics in the context of electrical performance and radiation degradation.

  1. [Photosynthetic responses of wheat and pea seedlings to enhanced UV-C radiation and their resistances].

    Science.gov (United States)

    Li, Xue-Mei; Zhang, Li-Hong; He, Xing-Yuan; Hao, Lin

    2007-03-01

    With wheat and pea seedlings as test materials, this paper studied the effects of UV-C radiation on their leaf photosynthetic characteristics and antioxidant enzyme activities. The results showed that enhanced UV-C radiation could markedly decrease the photosynthetic rate (Pn) , stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (Tr) and carboxylation efficiency (CE) of pea leaves, but for wheat leaves, these parameters were increased first and decreased then. Under UV-C condition, the CO2 compensation point of leaf was increased for pea, but decreased first and increased then for wheat. With the increasing duration of UV-C radiation, the antioxidant enzyme activities of both test plants increased first and decreased then, except that the POD activity of pea and SOD activity of wheat decreased gradually. All of these suggested that wheat had a stronger resistance to short-time UV-C radiation than pea, but, with the prolonged duration of UV-C radiation, the photosynthesis and antioxidant enzyme activities of wheat and pea were all decreased.

  2. Binding and uptake of diphtheria toxin by toxin-resistant Chinese hamster ovary and mouse cells.

    OpenAIRE

    Didsbury, J R; Moehring, J M; Moehring, T. J.

    1983-01-01

    We investigated two phenotypically distinct types of diphtheria toxin-resistant mutants of Chinese hamster cells and compared their resistance with that of naturally resistant mouse cells. All are resistant due to a defect in the process of internalization and delivery of toxin to its target in the cytosol, elongation factor 2. By cell hybridization studies, analysis of cross-resistance, and determination of specific binding sites for 125I-labeled diphtheria toxin, we showed that these cell s...

  3. Slow-Cycling Therapy-Resistant Cancer Cells

    OpenAIRE

    Moore, Nathan; Houghton, JeanMarie; Lyle, Stephen

    2011-01-01

    Tumor recurrence after chemotherapy is a major cause of patient morbidity and mortality. Recurrences are thought to be secondary to small subsets of cancer cells that are better able to survive traditional forms of chemotherapy and thus drive tumor regrowth. The ability to isolate and better characterize these therapy-resistant cells is critical for the future development of targeted therapies aimed at achieving more robust and long-lasting responses. Using a novel application for the prolife...

  4. Interferons Increase Cell Resistance to Staphylococcal Alpha-Toxin▿

    OpenAIRE

    Yarovinsky, Timur O.; Monick, Martha M.; Husmann, Matthias; Hunninghake, Gary W.

    2007-01-01

    Many bacterial pathogens, including Staphylococcus aureus, use a variety of pore-forming toxins as important virulence factors. Staphylococcal alpha-toxin, a prototype β-barrel pore-forming toxin, triggers the release of proinflammatory mediators and induces primarily necrotic death in susceptible cells. However, whether host factors released in response to staphylococcal infections may increase cell resistance to alpha-toxin is not known. Here we show that prior exposure to interferons (IFNs...

  5. Advances in the theory and application of BSF cells. [including electrical resistivity and photovoltaic cells

    Science.gov (United States)

    Mandelkorn, J.; Lamneck, J. H.

    1975-01-01

    The characteristics and behavior of p(+), p solar cells were investigated. The p(+), p cells were made by the removal of the n(+) surface layers from n(+), p p(+), BSF cells followed by application of a suitable contact to the resultant p(+), p structures. The open circuit voltage of p(+), p cells was found to increase with increasing 'p' bulk resistivity. The measured open circuit velocity-temperature coefficients were positive and increased with increasing resistivity. An outline of prior limitations in solar cell design is presented, and the removal of these limitations through use of BSF effects is pointed out. The study of BSF effects made feasible production of very thin high efficiency silicon cells as well as high resistivity-high efficiency cells, two desirable types of silicon cells which were previously impossible to make.

  6. Radiative efficiency of lead iodide based perovskite solar cells

    OpenAIRE

    Kristofer Tvingstedt; Olga Malinkiewicz; Andreas Baumann; Carsten Deibel; Snaith, Henry J.; Vladimir Dyakonov; Bolink, Henk J.

    2015-01-01

    The maximum efficiency of any solar cell can be evaluated in terms of its corresponding ability to emit light. We herein determine the important figure of merit of radiative efficiency for Methylammonium Lead Iodide perovskite solar cells and, to put in context, relate it to an organic photovoltaic (OPV) model device. We evaluate the reciprocity relation between electroluminescence and photovoltaic quantum efficiency and conclude that the emission from the perovskite devices is dominated by a...

  7. Sunlight-exposed biofilm microbial communities are naturally resistant to chernobyl ionizing-radiation levels.

    Directory of Open Access Journals (Sweden)

    Marie Ragon

    Full Text Available BACKGROUND: The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta and ascomycete fungi (Ascomycota dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. CONCLUSIONS/SIGNIFICANCE: Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in

  8. Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line

    International Nuclear Information System (INIS)

    Cisplatin is widely used for chemotherapy of head and neck squamous cell carcinoma. However, details of the molecular mechanism responsible for cisplatin resistance are still unclear. The aim of this study was to identify the expression of genes related to cisplatin resistance in oral squamous cell carcinoma cells. A cisplatin-resistant cell line, Tca/cisplatin, was established from a cisplatin-sensitive cell line, Tca8113, which was derived from moderately-differentiated tongue squamous cell carcinoma. Global gene expression in this resistant cell line and its sensitive parent cell line was analyzed using Affymetrix HG-U95Av2 microarrays. Candidate genes involved in DNA repair, the MAP pathway and cell cycle regulation were chosen to validate the microarray analysis results. Cell cycle distribution and apoptosis following cisplatin exposure were also investigated. Cisplatin resistance in Tca/cisplatin cells was stable for two years in cisplatin-free culture medium. The IC50 for cisplatin in Tca/cisplatin was 6.5-fold higher than that in Tca8113. Microarray analysis identified 38 genes that were up-regulated and 25 that were down-regulated in this cell line. Some were novel candidates, while others are involved in well-characterized mechanisms that could be relevant to cisplatin resistance, such as RECQL for DNA repair and MAP2K6 in the MAP pathway; all the genes were further validated by Real-time PCR. The cell cycle-regulated genes CCND1 and CCND3 were involved in cisplatin resistance; 24-hour exposure to 10 μM cisplatin induced a marked S phase block in Tca/cisplatin cells but not in Tca8113 cells. The Tca8113 cell line and its stable drug-resistant variant Tca/cisplatin provided a useful model for identifying candidate genes responsible for the mechanism of cisplatin resistance in oral squamous cell carcinoma. Our data provide a useful basis for screening candidate targets for early diagnosis and further intervention in cisplatin resistance

  9. Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line

    Directory of Open Access Journals (Sweden)

    Zhang Ping

    2006-09-01

    Full Text Available Abstract Background Cisplatin is widely used for chemotherapy of head and neck squamous cell carcinoma. However, details of the molecular mechanism responsible for cisplatin resistance are still unclear. The aim of this study was to identify the expression of genes related to cisplatin resistance in oral squamous cell carcinoma cells. Methods A cisplatin-resistant cell line, Tca/cisplatin, was established from a cisplatin-sensitive cell line, Tca8113, which was derived from moderately-differentiated tongue squamous cell carcinoma. Global gene expression in this resistant cell line and its sensitive parent cell line was analyzed using Affymetrix HG-U95Av2 microarrays. Candidate genes involved in DNA repair, the MAP pathway and cell cycle regulation were chosen to validate the microarray analysis results. Cell cycle distribution and apoptosis following cisplatin exposure were also investigated. Results Cisplatin resistance in Tca/cisplatin cells was stable for two years in cisplatin-free culture medium. The IC50 for cisplatin in Tca/cisplatin was 6.5-fold higher than that in Tca8113. Microarray analysis identified 38 genes that were up-regulated and 25 that were down-regulated in this cell line. Some were novel candidates, while others are involved in well-characterized mechanisms that could be relevant to cisplatin resistance, such as RECQL for DNA repair and MAP2K6 in the MAP pathway; all the genes were further validated by Real-time PCR. The cell cycle-regulated genes CCND1 and CCND3 were involved in cisplatin resistance; 24-hour exposure to 10 μM cisplatin induced a marked S phase block in Tca/cisplatin cells but not in Tca8113 cells. Conclusion The Tca8113 cell line and its stable drug-resistant variant Tca/cisplatin provided a useful model for identifying candidate genes responsible for the mechanism of cisplatin resistance in oral squamous cell carcinoma. Our data provide a useful basis for screening candidate targets for early diagnosis

  10. Mechanism of multidrug resistance of human small cell lung cancer cell line H446/VP

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-ling; YAN Yun-li; ZHOU Na-jing; HAN Shuo; ZHAO Jun-xia; CAO Cui-li; Lü Yu-hong

    2010-01-01

    Background Small cell lung cancer (SCLC) is the most aggressive form of lung cancer. This study aimed to investigate the mechanism of human small cell lung cancer cell line resistance to etoposide (VP-16), H446/VP.Methods The cell viability was measured by M∏ assay. Immunocytochemistry, reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting methods were used to detect the multidrug resistance gene (MDR1), bcl-2, bax and the topoisomerase Ⅱ (Topo Ⅱ) expressions in H446 and H446/VP cells after treated with or without VP-16.Results The 50% inhibition concentration (IC50) of VP-16 on H446 cells was 49 mg/L, and 836 mg/L was for H446/VP cells. The expressions of MDR1 and bcl-2 were up-regulated, while the amounts of bax and Topo Ⅱ were reduced in H446/VP cells. After treated with 49 mg/L of VP-16, it showed that the drug could significantly inhibit bcl-2 and Topo Ⅱ expressions, and increase bax expression in H446 cells compared with that of H446/VP cells.Conclusions The H446/VP cell was stably resistant to VP-16. The decreased expression of Topo Ⅱ was correlated with the H446/VP multidrug resistance. The elevated expressions of MDR1, and the altered apoptotic pathways also played an important role in VP-16 induced multidrug resistance of SCLC.

  11. Radiation-induced motility alterations in medulloblastoma cells.

    Science.gov (United States)

    Rieken, Stefan; Rieber, Juliane; Brons, Stephan; Habermehl, Daniel; Rief, Harald; Orschiedt, Lena; Lindel, Katja; Weber, Klaus J; Debus, Jürgen; Combs, Stephanie E

    2015-05-01

    Photon irradiation has been repeatedly suspected of increasing tumor cell motility and promoting locoregional recurrence of disease. This study was set up to analyse possible mechanisms underlying the potentially radiation-altered motility in medulloblastoma cells. Medulloblastoma cell lines D425 and Med8A were analyzed in migration and adhesion experiments with and without photon and carbon ion irradiation. Expression of integrins was determined by quantitative FACS analysis. Matrix metalloproteinase concentrations within cell culture supernatants were investigated by enzyme-linked immunosorbent assay (ELISA). Statistical analysis was performed using Student's t-test. Both photon and carbon ion irradiation significantly reduced chemotactic medulloblastoma cell transmigration through 8-μm pore size membranes, while simultaneously increasing adherence to fibronectin- and collagen I- and IV-coated surfaces. Correspondingly, both photon and carbon ion irradiation downregulate soluble MMP9 concentrations, while upregulating cell surface expression of proadhesive extracellular matrix protein-binding integrin α5. The observed phenotype of radiation-altered motility is more pronounced following carbon ion than photon irradiation. Both photon and (even more so) carbon ion irradiation are effective in inhibiting medulloblastoma cell migration through downregulation of matrix metalloproteinase 9 and upregulation of proadhesive cell surface integrin α5, which lead to increased cell adherence to extracellular matrix proteins. PMID:25736470

  12. Development of formulations of polyethylene-based flame retardant, radiation resistant wires and radiation-compatible polypropylene

    International Nuclear Information System (INIS)

    Formulations of fire retardant and heat resistant insulations have been developed using low density polyethylene (LDPE) as the base polymer and a cobalt facility as the irradiation source. Addition of suitable antioxidants, processing stabilisers, flame-retardant materials, lubricants and agents for catalysing the crosslinking process has been made to impart the desired properties to the insulation. Optimum radiation dose and ideal conditions for irradiation of batches of wires have been explored. TGA and DTA studies have been carried out to assess thermal stability imparted by the addition of the antioxidants to the formulation. As part of endeavours to develop radiation compatible formulations of (i) polypropylene, the influence of the nucleating agent p(t-butyl) benzoic aluminium on various crystallisation parameters, e.g. Tp, Tonset Δ H (heat of crystallisation) and Tm has been investigated. Clarity is adversely influenced on addition of the nucleating agents. Gains in thermal stability were found as determined by TGA and DTA of the blends of the nucleating agent with (i) polypropylene. (author)

  13. Ionizing radiation-induced mutation of human cells with different DNA repair capacities

    Energy Technology Data Exchange (ETDEWEB)

    Amundson, S.A.; Chen, D.J.

    1994-12-31

    We have observed significant differences in the response to ionizing radiation of two closely related human cell lines, and now compare the effects on these lines of both low and intermediate LET radiation. Compared to TK6, WTK1 has an enhanced X-ray survival, and is also more resistant to cell killing by {alpha}-particles. The hprt locus is more mutable in WTK1 than in TK6 by both X-rays and {alpha}-particles. WTK1 is also more mutable by {alpha}-particles than by X-rays at the hprt locus. X-ray-induced mutation at the heterozygous tk locus in WTK1 is about 25 fold higher than in TK6, while {alpha}-particle-induced mutation is nearly 50 fold higher at this locus. Also, the slowly growing tk- mutants, which comprise the majority of spontaneous and X-ray-induced tk- mutants of TK6, were not induced significantly by {alpha}-particles. Previously, we showed that TK6 has a reduced capacity for recombination compared with WTK1, and therefore, these results indicate that recombinational repair may contribute to both cell survival and mutation-induction following exposure to ionizing radiation. Such a mechanism may aid cell survival, but could also result in increased deleterious effects such as the unmasking of recessive mutations in cancer suppresser genes.

  14. Radiation resistance of GFRP and CFRP using bisphenol A system epoxy as matrix

    International Nuclear Information System (INIS)

    The use of fiber-reinforced plastics as structural materials is increasing, but they are apt to be affected by the environment of their use unlike metals. When FRPs are used as the material requiring endurance, the resin composing the FRPs deteriorates due to radiation, and it causes the lowering of the characteristics of the FRPs. Accordingly, it is very important to evaluate the radiation resistance of FRPs and to understand the mechanism of deterioration. In this study, the deterioration due to electron beam irradiation and its mechanism of glass fiber reinforced plastics (GFRP) and carbon fiber reinforced plastics (CFRP) using bisphenol A system epoxy as the matrix were evaluated by bending strength test, rate of boiling water absorption test and scanning acoustic microscope observation, and the radiation resistance based on the difference of fiber materials was examined. The samples, the irradiation using a Dynamitron electron accelerator, the above mentioned testing methods and the results are reported. The nondestructive information on interface separation, microvoids and cracks in the matrix was given by acoustic microscope images. (K.I.)

  15. A Low-Power, Radiation-Resistant, Silicon-Drift-Detector Array for Extraterrestrial Element Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey B. D.; De Geronimo G.; Gaskin, J.A.; Elsner, R.F.; Chen, W.; Carini, G.A.; Keister, J.; Li, S.; Li, Z.; Siddons, D.P.; Smith, G.

    2012-02-08

    We are developing a modular Silicon Drift Detector (SDD) X-Ray Spectrometer (XRS) for measuring the abundances of light surface elements (C to Fe) fluoresced by ambient radiation on remote airless bodies. The value of fluorescence spectrometry for surface element mapping is demonstrated by its inclusion on three recent lunar missions and by exciting new data that have recently been announced from the Messenger Mission to Mercury. The SDD-XRS instrument that we have been developing offers excellent energy resolution and an order of magnitude lower power requirement than conventional CCDs, making much higher sensitivities possible with modest spacecraft resources. In addition, it is significantly more radiation resistant than x-ray CCDs and therefore will not be subject to the degradation that befell recent lunar instruments. In fact, the intrinsic radiation resistance of the SDD makes it applicable even to the harsh environment of the Jovian system where it can be used to map the light surface elements of Europa. In this paper, we first discuss our element-mapping science-measurement goals. We then derive the necessary instrument requirements to meet these goals and discuss our current instrument development status with respect to these requirements.

  16. Depression of p53-independent Akt survival signals in human oral cancer cells bearing mutated p53 gene after exposure to high-LET radiation

    International Nuclear Information System (INIS)

    Highlights: ► High-LET radiation induces efficiently apoptosis regardless of p53 gene status. ► We examined whether high-LET radiation depresses the Akt-survival signals. ► High-LET radiation depresses of survival signals even in the mp53 cancer cells. ► High-LET radiation activates Caspase-9 through depression of survival signals. ► High-LET radiation suppresses cell growth through depression of survival signals. -- Abstract: Although mutations and deletions in the p53 tumor suppressor gene lead to resistance to low linear energy transfer (LET) radiation, high-LET radiation efficiently induces cell lethality and apoptosis regardless of the p53 gene status in cancer cells. Recently, it has been suggested that the induction of p53-independent apoptosis takes place through the activation of Caspase-9 which results in the cleavage of Caspase-3 and poly (ADP-ribose) polymerase (PARP). This study was designed to examine if high-LET radiation depresses serine/threonine protein kinase B (PKB, also known as Akt) and Akt-related proteins. Human gingival cancer cells (Ca9–22 cells) harboring a mutated p53 (mp53) gene were irradiated with 2 Gy of X-rays or Fe-ion beams. The cellular contents of Akt-related proteins participating in cell survival signaling were analyzed with Western Blotting 1, 2, 3 and 6 h after irradiation. Cell cycle distributions after irradiation were assayed with flow cytometric analysis. Akt-related protein levels decreased when cells were irradiated with high-LET radiation. High-LET radiation increased G2/M phase arrests and suppressed the progression of the cell cycle much more efficiently when compared to low-LET radiation. These results suggest that high-LET radiation enhances apoptosis through the activation of Caspase-3 and Caspase-9, and suppresses cell growth by suppressing Akt-related signaling, even in mp53 bearing cancer cells.

  17. The inverse correlation between series resistance and parallel resistance of small molecule organic solar cells

    Institute of Scientific and Technical Information of China (English)

    Kewei Wang; Yufeng Zheng; Gu Xu; Xiuping Xu

    2015-01-01

    Understanding the inversely correlated series resistance (Rs) and parallel resistance (Rp) remains a challenge. Here we report that the variation of Rs and Rp is inversely related through the morphology of the donor and acceptor interface in CuPc organic solar cells, when comparing the bilayer structure and bulk heterojunction structure. It was also found that the charge carrier concentration near the donor–acceptor interface plays an important role in the relationships of Rs and Rp under fixed interfacial morphology, which was verified by the change of Voc. The inversely correlated Rs and Rp contributes to the improvement of the fill factor, and in turn the power conversion efficiency.

  18. Cancer Stem Cells, Cancer Cell Plasticity and Radiation Therapy

    OpenAIRE

    Vlashi, Erina; Pajonk, Frank

    2014-01-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be ...

  19. Tamoxifen-resistant breast cancer cells possess cancer stem-like cell properties

    Institute of Scientific and Technical Information of China (English)

    LIU Hui; ZHANG Heng-wei; SUN Xian-fu; GUO Xu-hui; HE Ya-ning; CUI Shu-de; FAN Qing-xia

    2013-01-01

    Background Cancer stem cells (CSCs) are the cause of cancer recurrence because they are resistant to conventional therapy and contribute to cancer growth and metastasis.Endocrinotherapy is the most common breast cancer therapy and acquired tamoxifen (TAM) resistance is the main reason for endocrinotherapy failure during such therapy.Although acquired resistance to endocrine treatment has been extensively studied,the underlying mechanisms are unclear.We hypothesized that breast CSCs played an important role in TAM-induced resistance during breast cancer therapy.Therefore,we investigated the biological characteristics of TAM-resistant (TAM-R) breast cancer cells.Methods Mammosphere formation and tumorigenicity of wild-type (WT) and TAM-R MCF7 cells were tested by a mammosphere assay and mouse tumor xenografts respectively.Stem-cell markers (SOX-2,OCT-4,and CD133) and epithelial-mesenchymal transition (EMT) markers were tested by quantitative real-time (qRT)-PCR.Morphological observation was performed to characterize EMT.Results After induction of TAM resistance,TAM-R MCF7 cells exhibited increased proliferation in the presence of TAM compared to that of WT MCF7 cells (P <0.05),indicating enhanced TAM resistance of TAM-R MCF7 cells compared to that of WT MCF7 cells.TAM-R MCF7 cells showed enhanced mammosphere formation and tumorigenicity in nude mice compared to that of WT MCF7 cells (P <0.01),demonstrating the elevated CSC properties of TAM-R MCF7 cells.Consistently,qRT-PCR revealed that TAM-R MCF7 cells expressed increased mRNA levels of stem cell markers including SOX-2,OCT-4,and CD133,compared to those of WT MCF7 cells (P <0.05).Morphologically,TAM-R MCF7 cells showed a fibroblastic phenotype,but WT MCF7 cells were epithelial-like.After induction of TAM resistance,qRT-PCR indicated that MCF7 cells expressed increased mRNA levels of Snail,vimentin,and N-cadherin and decreased levels of E-cadherin,which are considered as EMT characteristics (P <0

  20. Coniferyl aldehyde attenuates radiation enteropathy by inhibiting cell death and promoting endothelial cell function.

    Directory of Open Access Journals (Sweden)

    Ye-Ji Jeong

    Full Text Available Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA, an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function.

  1. Radiation rescue: mesenchymal stromal cells protect from lethal irradiation.

    Directory of Open Access Journals (Sweden)

    Claudia Lange

    Full Text Available BACKGROUND: Successful treatment of acute radiation syndromes relies on immediate supportive care. In patients with limited hematopoietic recovery potential, hematopoietic stem cell (HSC transplantation is the only curative treatment option. Because of time consuming donor search and uncertain outcome we propose MSC treatment as an alternative treatment for severely radiation-affected individuals. METHODS AND FINDINGS: Mouse mesenchymal stromal cells (mMSCs were expanded from bone marrow, retrovirally labeled with eGFP (bulk cultures and cloned. Bulk and five selected clonal mMSCs populations were characterized in vitro for their multilineage differentiation potential and phenotype showing no contamination with hematopoietic cells. Lethally irradiated recipients were i.v. transplanted with bulk or clonal mMSCs. We found a long-term survival of recipients with fast hematopoietic recovery after the transplantation of MSCs exclusively without support by HSCs. Quantitative PCR based chimerism analysis detected eGFP-positive donor cells in peripheral blood immediately after injection and in lungs within 24 hours. However, no donor cells in any investigated tissue remained long-term. Despite the rapidly disappearing donor cells, microarray and quantitative RT-PCR gene expression analysis in the bone marrow of MSC-transplanted animals displayed enhanced regenerative features characterized by (i decreased proinflammatory, ECM formation and adhesion properties and (ii boosted anti-inflammation, detoxification, cell cycle and anti-oxidative stress control as compared to HSC-transplanted animals. CONCLUSIONS: Our data revealed that systemically administered MSCs provoke a protective mechanism counteracting the inflammatory events and also supporting detoxification and stress management after radiation exposure. Further our results suggest that MSCs, their release of trophic factors and their HSC-niche modulating activity rescue endogenous hematopoiesis

  2. Stem cells and radiation: effects in targeted and non-targeted cells

    International Nuclear Information System (INIS)

    The renewing tissues of the body are hierarchically organized and maintained by a small population of self-maintaining stem cells that are important targets for malignant transformation and also for gene therapy and tissue engineering approaches in regenerative medicine. Deleterious effects of toxic insults such as ionizing radiation may be due to stem cell death, with consequent loss of mature functional cells, or to stem cell damage that leads to aberrant responses to regulatory mechanisms. However, because the homeostatic regulation of these tissues is complex (involving intercellular signalling and cellular interactions that control cell proliferation, differentiation and death) radiation effects on stromal cells that perturb the microenvironmental control may also result in deleterious effects on the stem cell compartment. The rapidly developing fields of research investigating radiation-induced genomic instability and bystander effects also indicate that radiation effects on stem cells can be indirect. Although the non-targeted mechanisms responsible for bystander effects and the induction and maintenance of the inducible instability phenotype are not understood, inter-cellular signalling and free radical-mediated processes may be common features. Inter-cellular signalling and production of free radicals are also features of inflammatory responses; a recently identified indirect consequence of radiation with the potential for both persisting and bystander-mediated damage as well as for conferring a predisposition to malignancy. The production of clastogenic factors and their capacity for indirect cell damage after irradiation, the involvement of stromal cells in malignancy and bystander-mediated genetic instability may all reflect aspects of non-specific inflammatory-type responses to radiation-induced stress and injury. Recent investigations demonstrating that radiation-induced signalling processes are influenced by tissue-specific and genetic factors add

  3. Cell Biological Mechanisms of Multidrug Resistance in Tumors

    Science.gov (United States)

    Simon, Sanford M.; Schindler, Melvin

    1994-04-01

    Multidrug resistance (MDR) is a generic term for the variety of strategies tumor cells use to evade the cytotoxic effects of anticancer drugs. MDR is characterized by a decreased sensitivity of tumor cells not only to the drug employed for chemotherapy but also to a broad spectrum of drugs with neither obvious structural homology nor common targets. This pleotropic resistance is one of the major obstacles to the successful treatment of tumors. MDR may result from structural or functional changes at the plasma membrane or within the cytoplasm, cellular compartments, or nucleus. Molecular mechanisms of MDR are discussed in terms of modifications in detoxification and DNA repair pathways, changes in cellular sites of drug sequestration, decreases in drug-target affinity, synthesis of specific drug inhibitors within cells, altered or inappropriate targeting of proteins, and accelerated removal or secretion of drugs.

  4. Effects of X-radiation on lung cancer cells: the interplay between oxidative stress and P53 levels.

    Science.gov (United States)

    Mendes, Fernando; Sales, Tiago; Domingues, Cátia; Schugk, Susann; Abrantes, Ana Margarida; Gonçalves, Ana Cristina; Teixo, Ricardo; Silva, Rita; Casalta-Lopes, João; Rocha, Clara; Laranjo, Mafalda; Simões, Paulo César; Ribeiro, Ana Bela Sarmento; Botelho, Maria Filomena; Rosa, Manuel Santos

    2015-12-01

    Lung cancer (LC) ranks as the most prevalent and deadliest cause of cancer death worldwide. Treatment options include surgery, chemotherapy and/or radiotherapy, depending on LC staging, without specific highlight. The aim was to evaluate the effects of X-radiation in three LC cell lines. H69, A549 and H1299 cell lines were cultured and irradiated with 0.5-60 Gy of X-radiation. Cell survival was evaluated by clonogenic assay. Cell death and the role of reactive oxygen species, mitochondrial membrane potential, BAX, BCL-2 and cell cycle were analyzed by flow cytometry. Total and phosphorylated P53 were assessed by western blotting. Ionizing radiation decreases cell proliferation and viability in a dose-, time- and cell line-dependent manner, inducing cell death preferentially by apoptosis with cell cycle arrest. These results may be related to differences in P53 expression and oxidative stress response. The results obtained indicate that sensibility and/or resistance to radiation may be dependent on molecular LC characteristics which could influence response to radiotherapy and treatment success. PMID:26582337

  5. Thalidomide effect in endothelial cell of acute radiation proctitis

    Institute of Scientific and Technical Information of China (English)

    Ki-Tae Kim; Hiun-Suk Chae; Jin-Soo Kim; Hyung-Keun Kim; Young-Seok Cho; Whang Choi; Kyu-Yong Choi; Sang-Young Rho; Suk-Jin Kang

    2008-01-01

    AIM: To determine whether thalidomide prevents microvascular injury in acute radiation proctitis in white rats. METHODS: Fourteen female Wistar rats were used:six in the radiation group,six in the thalidomide group,and two in normal controls.The radiation and thalidomide groups were irradiated at the pelvic area using a single 30 Gy exposure.The thalidomide (150 mg/kg) was injected into the peritoneum for 7 d from the day of irradiation.All animals were sacrificed and the rectums were removed on day 8 after irradiation.The microvessels of resected specimens were immunohistochemically stained with thrombomodulin (TM),yon Willebrand Factor (vWF),and vascular endothelial growth factor (VEGF).RESULTS: The microscopic scores did not differ significantly between the radiation and thalidomide groups,but both were higher than in the control group.Expression of TM was significantly lower in the endothelial cells (EC) of the radiation group than in the control and thalidomide groups (P < 0.001).The number of capillaries expressing vWF in the EC was higher in the radiation group (15.3 ± 6.8) than in the control group (3.7 ± 1.7),and the number of capillaries expressing vWF was attenuated by thalidomide (10.8 ± 3.5,P < 0.001).The intensity of VEGF expression in capillaries was greater in the radiation group than in the control group and was also attenuated by thalidomide (P = 0.003).CONCLUSION: The mechanisms of acute radiationinduced proctitis in the rats are related to endothelial cell injury of microvessel,which may be attenuated with thalidomide.

  6. Classical radiation reaction in particle-in-cell simulations

    Science.gov (United States)

    Vranic, M.; Martins, J. L.; Fonseca, R. A.; Silva, L. O.

    2016-07-01

    Under the presence of ultra high intensity lasers or other intense electromagnetic fields the motion of particles in the ultrarelativistic regime can be severely affected by radiation reaction. The standard particle-in-cell (PIC) algorithms do not include radiation reaction effects. Even though this is a well known mechanism, there is not yet a definite algorithm nor a standard technique to include radiation reaction in PIC codes. We have compared several models for the calculation of the radiation reaction force, with the goal of implementing an algorithm for classical radiation reaction in the Osiris framework, a state-of-the-art PIC code. The results of the different models are compared with standard analytical results, and the relevance/advantages of each model are discussed. Numerical issues relevant to PIC codes such as resolution requirements, application of radiation reaction to macro particles and computational cost are also addressed. For parameters of interest where the classical description of the electron motion is applicable, all the models considered are shown to give comparable results. The Landau and Lifshitz reduced model is chosen for implementation as one of the candidates with the minimal overhead and no additional memory requirements.

  7. Enhancement of radiation response in human hepatocarcinoma cells by Metformin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Ho; Kim, Won Woo; Kim, Joon; Jung, Won Gyun [Division of heavy ion clinical research, Korea University, Seoul (Korea, Republic of); Jeong, Jae Hoon; Jeong, Youn Kyoung; Kim, Mi Sook [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2012-11-15

    Metformin (1, 1-dimethylbiguanide hydrochloride), the most widely used drug to treat type 2 diabetic patients under benefit good tolerability profile and low cost, has sparked keen interest as potential anticancer agent. Preclinical studies showed that the primary mechanism of action of metformin is through its ability to activate AMP-activated protein kinase (AMPK). Metformin inhibits complex 1 in the mitochondrial electron transport chain, leading to an increase in the AMP-to-ATP ratio, then, phospholylated AMPK increase energy generation or suppress energy consumption and then, inhibits cell growth. However, important caveat in direct action theory of metformin is that millimorlar range, effective dose for inhibition tumor cell growth in vitro, cannot be achieved in patients. This is probably because metformin enter cells through the organic cation transporters OCT1 and OCT2, which is lowly expressed in human cells except liver and adipose cells. dependent pathway rather than through direct effects of the tumor cells. We analyzed combination effect of metformin and radiation focusing to HCC cell lines, which theoretically express high organic cation transporters, producing high centration of metformin in tumor cells. The purpose of this study is to investigate whether metformin had anti-tumor effects when combined with radiation as radiosensitizer in HCC. The results showed that metformin increased radiosensitizing efficacy in HCC cells , as well as in Huh7 xenograft mouse models. Interestingly, metformin effectively sensitizes IR-induced apoptosis in HCC through upregulation of cleaved PARP and caspase3 and increase synergically on DNA damage response with combined treatment.HCC, suggesting potential usefulness of combined therapy of metformin together with radiation for HCC cancer therapy.

  8. Ionizing Radiation-Induced Responses in Human Cells with Differing TP53 Status

    Directory of Open Access Journals (Sweden)

    Razmik Mirzayans

    2013-11-01

    Full Text Available Ionizing radiation triggers diverse responses in human cells encompassing apoptosis, necrosis, stress-induced premature senescence (SIPS, autophagy, and endopolyploidy (e.g., multinucleation. Most of these responses result in loss of colony-forming ability in the clonogenic survival assay. However, not all modes of so-called clonogenic cell “death” are necessarily advantageous for therapeutic outcome in cancer radiotherapy. For example, the crosstalk between SIPS and autophagy is considered to influence the capacity of the tumor cells to maintain a prolonged state of growth inhibition that unfortunately can be succeeded by tumor regrowth and disease recurrence. Likewise, endopolyploid giant cells are able to segregate into near diploid descendants that continue mitotic activities. Herein we review the current knowledge on the roles that the p53 and p21WAF1 tumor suppressors play in determining the fate of human fibroblasts (normal and Li-Fraumeni syndrome and solid tumor-derived cells after exposure to ionizing radiation. In addition, we discuss the important role of WIP1, a p53-regulated oncogene, in the temporal regulation of the DNA damage response and its contribution to p53 dynamics post-irradiation. This article highlights the complexity of the DNA damage response and provides an impetus for rethinking the nature of cancer cell resistance to therapeutic agents.

  9. Characterization of UV radiation sensitive frog cell lines

    International Nuclear Information System (INIS)

    Twenty-one subclones of nine frog cell isolates were tested for sensitivity to a panel of DNA damaging agents. Two clones were identified which had a greater than wild type level of sensitivity to UV radiation but had a wild type level of sensitivity to the other agents. These clones were the haploid RRP602-7 and the diploid RRP802-1. RRP802-1 was found to be unstable with respect to UV sensitivity. The line was cloned in order to isolate stable sensitive and wild type derivatives. RRP802-1-16, a UV sensitive clone and RRP802-1-13, a clone with a wild type level of sensitivity to UV radiation, were isolated. The UV radiation sensitivity of RRP602-7, RRP802-1 and RRP802-1-16 did not correlate with cell size, cell shape, cell cycle distribution or ploidy. The cell cycle distribution after UV irradiation, the rate of DNA synthesis after UV-irradiation, the DNA polymerase α activity and the sister chromatid exchange frequency were all measured in RRP602-7, RRP802-1 and RRP802-1-16 in order to examine the DNA repair capacity. The presence of DNA repair pathways was examined directly in RRP602-7, RRP802-1 and RRP802-1-16. All were found to be proficient in photo-reactivation repair and postreplication repair of UV elicited DNA damage

  10. CARBOPLATIN-INDUCED AND CISPLATIN-INDUCED POTENTIATION OF MODERATE-DOSE RADIATION CYTOTOXICITY IN HUMAN LUNG-CANCER CELL-LINES

    NARCIS (Netherlands)

    GROEN, HJM; SLEIJFER, S; MEIJER, C; KAMPINGA, HH; KONINGS, AWT; DEVRIES, EGE; MULDER, NH

    1995-01-01

    The interaction between moderate-dose radiation and cisplatin or carboplatin was studied in a cisplatin-sensitive (GLC(4)) and -resistant (GLC(4)-CDDP) human small-cell lung cancer cell line. Cellular toxicity was analysed under oxic conditions with the microculture tetrazolium assay. For the platin

  11. Photoluminescence in large fluence radiation irradiated space silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hisamatsu, Tadashi; Kawasaki, Osamu; Matsuda, Sumio [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan). Tsukuba Space Center; Tsukamoto, Kazuyoshi

    1997-03-01

    Photoluminescence spectroscopy measurements were carried out for silicon 50{mu}m BSFR space solar cells irradiated with 1MeV electrons with a fluence exceeding 1 x 10{sup 16} e/cm{sup 2} and 10MeV protons with a fluence exceeding 1 x 10{sup 13} p/cm{sup 2}. The results were compared with the previous result performed in a relative low fluence region, and the radiation-induced defects which cause anomalous degradation of the cell performance in such large fluence regions were discussed. As far as we know, this is the first report which presents the PL measurement results at 4.2K of the large fluence radiation irradiated silicon solar cells. (author)

  12. Mathematical Modeling of Contact Resistance in Silicon Photovoltaic Cells

    KAUST Repository

    Black, J. P.

    2013-10-22

    In screen-printed silicon-crystalline solar cells, the contact resistance of a thin interfacial glass layer between the silicon and the silver electrode plays a limiting role for electron transport. We analyze a simple model for electron transport across this layer, based on the driftdiffusion equations. We utilize the size of the current/Debye length to conduct asymptotic techniques to simplify the model; we solve the model numerically to find that the effective contact resistance may be a monotonic increasing, monotonic decreasing, or nonmonotonic function of the electron flux, depending on the values of the physical parameters. © 2013 Society for Industrial and Applied Mathematics.

  13. Determination of the Antibiotic Resistance Profile of Student Cell Phones

    Directory of Open Access Journals (Sweden)

    Lisa Ann Blankinship

    2012-08-01

    Full Text Available Sampling of common use items (e.g., student cell phones for bacterial presence, identification, and antibiotic resistance profiling helps students to recognize the need for routine cleaning of personal items and encourages thoughtful use of currently available medications. This multilab period project can be used to teach or reinforce several methods from general microbiology including aseptic technique, isolation streak, serial dilution, spread plating, Kirby Bauer testing, unknown identification, and media production. The data generated can be saved and added to each semester, thus providing a data set that reflects a local trend of antibiotic resistance.      

  14. Radiation damage and annealing of amorphous silicon solar cells

    Science.gov (United States)

    Byvik, C. E.; Slemp, W. S.; Smith, B. T.; Buoncristiani, A. M.

    1984-01-01

    Amorphous silicon solar cells were irradiated with 1 MeV electrons at the Space Environmental Effects Laboratory of the NASA Langley Research Center. The cells accumulated a total fluence of 10 to the 14th, 10 to the 15th, and 10 to the 16th electrons per square centimeter and exhibited increasing degradation with each irradiation. This degradation was tracked by evaluating the I-V curves for AM0 illumination and the relative spectral response. The observed radiation damage was reversed following an anneal of the cells under vacuum at 200 C for 2 hours.

  15. Study of surface properties of ATLAS12 strip sensors and their radiation resistance

    Science.gov (United States)

    Mikestikova, M.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Hommels, L. B. A.; Ullan, M.; Bloch, I.; Gregor, I. M.; Tackmann, K.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Mori, R.; Parzefall, U.; Clark, A.; Ferrere, D.; Sevilla, S. Gonzalez; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O'Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    A radiation hard n+-in-p micro-strip sensor for the use in the Upgrade of the strip tracker of the ATLAS experiment at the High Luminosity Large Hadron Collider (HL-LHC) has been developed by the "ATLAS ITk Strip Sensor collaboration" and produced by Hamamatsu Photonics. Surface properties of different types of end-cap and barrel miniature sensors of the latest sensor design ATLAS12 have been studied before and after irradiation. The tested barrel sensors vary in "punch-through protection" (PTP) structure, and the end-cap sensors, whose stereo-strips differ in fan geometry, in strip pitch and in edge strip ganging options. Sensors have been irradiated with proton fluences of up to 1×1016 neq/cm2, by reactor neutron fluence of 1×1015 neq/cm2 and by gamma rays from 60Co up to dose of 1 MGy. The main goal of the present study is to characterize the leakage current for micro-discharge breakdown voltage estimation, the inter-strip resistance and capacitance, the bias resistance and the effectiveness of PTP structures as a function of bias voltage and fluence. It has been verified that the ATLAS12 sensors have high breakdown voltage well above the operational voltage which implies that different geometries of sensors do not influence their stability. The inter-strip isolation is a strong function of irradiation fluence, however the sensor performance is acceptable in the expected range for HL-LHC. New gated PTP structure exhibits low PTP onset voltage and sharp cut-off of effective resistance even at the highest tested radiation fluence. The inter-strip capacitance complies with the technical specification required before irradiation and no radiation-induced degradation was observed. A summary of ATLAS12 sensors tests is presented including a comparison of results from different irradiation sites. The measured characteristics are compared with the previous prototype of the sensor design, ATLAS07.

  16. Heat enhancement of radiation resistivity of evaporated CsI, KI and KBr photocathodes

    CERN Document Server

    Tremsin, A S

    2000-01-01

    The photoemissive stability of as-deposited and heat-treated CsI, KI and KBr evaporated thin films under UV radiation is examined in this paper. After the deposition, some photocathodes were annealed for several hours at 90 deg. C in vacuum and their performance was then compared to the performance of non-heated samples. We observed that the post-evaporation thermal treatment not only increases the photoyield of CsI and KI photocathodes in the spectral range of 115-190 nm, but also reduces CsI, KI and KBr photocurrent degradation that occurs after UV irradiation. KBr evaporated layers appeared to be more radiation-resistant than CsI and KI layers. Post-deposition heat treatment did not result in any significant variation of KBr UV sensitivity.

  17. Experimental Insight into the Radiation Resistance of Zirconia-Based Americium Ceramics

    International Nuclear Information System (INIS)

    Our works shows that the americium pyrochlore 241Am2Zr2O7 undergoes a phase transition to a defect-fluorite structure along with an unusual volume contraction when subjected to internal radiation from α-emitting actinides. Disorder relaxation proceeds through the simultaneous formation of cation anti sites and oxygen Frenkel pairs. X-ray absorption spectroscopy at the Am-LII and the Zr-K edges reveals that Am-O polyhedra show an increasing disorder with increasing exposure. In contrast, the Zr-O polyhedral units remain highly ordered, while rotating along edges and corners, thereby reducing the structural strain imposed by the growing disorder around americium. We believe it is this particular property of the compound that provides the remarkable resistance to radiation (≥9.4 * 1018) α-decay events g-1 or 0.80 dpa). (authors)

  18. Conceptual design of a versatile radiation tolerant integrated signal conditioning circuit for resistive sensors

    Energy Technology Data Exchange (ETDEWEB)

    Leroux, P. [Katholieke Hogeschool Kempen, Kleinhoefstraat 4, B-2440 Geel (Belgium); Katholieke Universiteit Leuven, Dept. ESAT-MICAS, Kasteelpark Arenberg 10, B-3001 Heverlee (Belgium); SCK-CEN, Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Sterckx, J. [Katholieke Hogeschool Kempen, Kleinhoefstraat 4, B-2440 Geel (Belgium); Van Uffelen, M.; Damiani, C. [Fusion 4 Energy, Ed. B3, c/Josep, no 2, Torres Diagonal Litoral, 08019 Barcelona (Spain)

    2011-07-01

    This paper presents the design of a radiation tolerant configurable discrete time CMOS signal conditioning circuit for use with resistive sensors like strain gauge pressure sensors. The circuit is intended to be used for remote handling in harsh environments in the International Thermonuclear Experimental fusion Reactor (ITER). The design features a 5 V differential preamplifier using a Correlated Double Sampling (CDS) architecture at a sample rate of 20 kHz and a 24 V discrete time post amplifier. The gain is digitally controllable between 27 and 400 in the preamplifier and between 1 and 8 in the post amplifier. The nominal input referred noise voltage is only 8.5 {mu}V while consuming only 1 mW. The circuit has a simulated radiation tolerance of more than 1 MGy. (authors)

  19. Enhanced resistance of the Pamirs high-mountain strain of Cryptococcus albidus to UV radiation of an ecological range

    Energy Technology Data Exchange (ETDEWEB)

    Strakhovskaya, M.G.; Lavrukhina, O.G.; Fraikin, G.Y. [Moscow State Univ. (Russian Federation)

    1995-07-01

    The results of a comparative analysis of the resistance of Pamirs high-mountain and lowland strains of the yeast Cryptococcus albidus to UV radiation of an ecological range are presented. A high-mountain strain, adapted to elevated UV radiation in its habitat, was found to be more resistant to UV light of a total ecorange (290-400 nm), including medium-wave (290-320 nm) and long-wave (320-400 nm) UV ranges. The enhanced UV light resistance of the high-mountain strain can be explained by efficient functioning of the excision DNA repair system. 7 refs., 3 tabs.

  20. Method for contact resistivity measurements on photovoltaic cells and cell adapted for such measurement

    Science.gov (United States)

    Burger, Dale R. (Inventor)

    1986-01-01

    A method is disclosed for scribing at least three grid contacts of a photovoltaic cell to electrically isolate them from the grid contact pattern used to collect solar current generated by the cell, and using the scribed segments for determining parameters of the cell by a combination of contact end resistance (CER) measurements using a minimum of three equally or unequally spaced lines, and transmission line modal (TLM) measurements using a minimum of four unequally spaced lines. TLM measurements may be used to determine sheet resistance under the contact, R.sub.sk, while CER measurements are used to determine contact resistivity, .rho..sub.c, from a nomograph of contact resistivity as a function of contact end resistance and sheet resistivity under the contact. In some cases, such as the case of silicon photovoltaic cells, sheet resistivity under the contact may be assumed to be equal to the known sheet resistance, R.sub.s, of the semiconductor material, thereby obviating the need for TLM measurements to determine R.sub.sk.

  1. A comparative study of the radiation resistance of four optically transparent polyimides

    International Nuclear Information System (INIS)

    A comparative study of the high energy radiation resistance to formation of radicals in two pairs of polymers is reported. In one pair of polymers the phenyl groups containing the imide rings are separated by an ether linkage and in the other pair they are separated by an hexafluoroisopropylidine group. Two of the polymers contained aromatic amine units linked through an ether linkage and the other two polymers contained a trifluoromethyl biphenyl diamine. The polymers were shown to retain a high level of transparency in the visible region following radiolysis to doses as high as 8 Gy. ESR studies of the resistance to radical formation on radiolysis at 77 K revealed that the polymers containing ether linkages were more stable than their fluorinated analogues, but all were less stable than Kapton[reg

  2. Mesenchymal Stem Cells Retain Their Defining Stem Cell Characteristics After Exposure to Ionizing Radiation

    International Nuclear Information System (INIS)

    Purpose: Mesenchymal stem cells (MSCs) have the ability to migrate to lesion sites and undergo differentiation into functional tissues. Although this function may be important for tissue regeneration after radiation therapy, the influence of ionizing radiation (IR) on cellular survival and the functional aspects of differentiation and stem cell characteristics of MSCs have remained largely unknown. Methods and Materials: Radiation sensitivity of human primary MSCs from healthy volunteers and primary human fibroblast cells was examined, and cellular morphology, cell cycle effects, apoptosis, and differentiation potential after exposure to IR were assessed. Stem cell gene expression patterns after exposure to IR were studied using gene arrays. Results: MSCs were not more radiosensitive than human primary fibroblasts, whereas there were considerable differences regarding radiation sensitivity within individual MSCs. Cellular morphology, cytoskeletal architecture, and cell motility were not markedly altered by IR. Even after high radiation doses up to 10 Gy, MSCs maintained their differentiation potential. Compared to primary fibroblast cells, MSCs did not show an increase in irradiation-induced apoptosis. Gene expression analyses revealed an upregulation of various genes involved in DNA damage response and DNA repair, but expression of established MSC surface markers appeared only marginally influenced by IR. Conclusions: These data suggest that human MSCs are not more radiosensitive than differentiated primary fibroblasts. In addition, upon photon irradiation, MSCs were able to retain their defining stem cell characteristics both on a functional level and regarding stem cell marker expression

  3. Mesenchymal Stem Cells Retain Their Defining Stem Cell Characteristics After Exposure to Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nicolay, Nils H., E-mail: n.nicolay@dkfz.de [Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg (Germany); Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg (Germany); Sommer, Eva; Lopez, Ramon; Wirkner, Ute [Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg (Germany); Trinh, Thuy [Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg (Germany); Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg (Germany); Sisombath, Sonevisay [Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg (Germany); Debus, Jürgen [Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg (Germany); Ho, Anthony D.; Saffrich, Rainer [Department of Hematology and Oncology, Heidelberg University Hospital, Heidelberg (Germany); Huber, Peter E. [Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg (Germany); Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg (Germany)

    2013-12-01

    Purpose: Mesenchymal stem cells (MSCs) have the ability to migrate to lesion sites and undergo differentiation into functional tissues. Although this function may be important for tissue regeneration after radiation therapy, the influence of ionizing radiation (IR) on cellular survival and the functional aspects of differentiation and stem cell characteristics of MSCs have remained largely unknown. Methods and Materials: Radiation sensitivity of human primary MSCs from healthy volunteers and primary human fibroblast cells was examined, and cellular morphology, cell cycle effects, apoptosis, and differentiation potential after exposure to IR were assessed. Stem cell gene expression patterns after exposure to IR were studied using gene arrays. Results: MSCs were not more radiosensitive than human primary fibroblasts, whereas there were considerable differences regarding radiation sensitivity within individual MSCs. Cellular morphology, cytoskeletal architecture, and cell motility were not markedly altered by IR. Even after high radiation doses up to 10 Gy, MSCs maintained their differentiation potential. Compared to primary fibroblast cells, MSCs did not show an increase in irradiation-induced apoptosis. Gene expression analyses revealed an upregulation of various genes involved in DNA damage response and DNA repair, but expression of established MSC surface markers appeared only marginally influenced by IR. Conclusions: These data suggest that human MSCs are not more radiosensitive than differentiated primary fibroblasts. In addition, upon photon irradiation, MSCs were able to retain their defining stem cell characteristics both on a functional level and regarding stem cell marker expression.

  4. CMOS pixel sensors on high resistive substrate for high-rate, high-radiation environments

    Science.gov (United States)

    Hirono, Toko; Barbero, Marlon; Breugnon, Patrick; Godiot, Stephanie; Gonella, Laura; Hemperek, Tomasz; Hügging, Fabian; Krüger, Hans; Liu, Jian; Pangaud, Patrick; Peric, Ivan; Pohl, David-Leon; Rozanov, Alexandre; Rymaszewski, Piotr; Wang, Anqing; Wermes, Norbert

    2016-09-01

    A depleted CMOS active pixel sensor (DMAPS) has been developed on a substrate with high resistivity in a high voltage process. High radiation tolerance and high time resolution can be expected because of the charge collection by drift. A prototype of DMAPS was fabricated in a 150 nm process by LFoundry. Two variants of the pixel layout were tested, and the measured depletion depths of the variants are 166 μm and 80 μm. We report the results obtained with the prototype fabricated in this technology.

  5. High Radiation Resistance Inverted Metamorphic Solar Cell Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation in this SBIR Phase II project is the development of a unique triple junction inverted metamorphic technology (IMM), which will enable the...

  6. High Radiation Resistance Inverted Metamorphic Solar Cell Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation in the proposed SBIR Phase I project is the development of a unique triple unction inverted metamorphic technology (IMM), which will enable the...

  7. Radiation Survival in Synchronous and Asynchronous Chinese Hamster Cells In Vitro

    International Nuclear Information System (INIS)

    Synchronized mammalian cells enable radiation responses to be examined as a function of the position of the cell within its generation cycle. However, synchrony techniques are limited by the random distribution of generation rates in cell populations and, because of the techniques employed, stages such as G2 and mitosis are difficult to examine. Superposing on the mitotic selection technique high-specific- activity tritiated thymidine to inactivate resistant S cells enables the average sensitivity of G2 and mitotic cells to be established. The changes in sensitivity during the cell cycle for Chinese hamster cells are considerable, at least as great as the effect of the presence or absence of oxygen. G2 and mitosis are the most sensitive cells, followed by G1, early S and finally late S cells as the most resistant. With this data the response of an asynchronous population can be estimated and compared with experimental data. Calculation and experiment agree well. The selection + tritiated thymidine technique is still limited in resolution to a one-hour period. Experiments varying the interval between irradiation and selection indicate that there is, very probably, a brief phase more sensitive than the average in the selected mitotic population which should be examined further. Experiments with Janus (fission) neutrons indicate that the changes in response during the cell cycle are smaller than for X-rays and the shapes of the survival curves are different. The RBE of these neutrons is shown to vary with both dose level and position in the cell cycle. (author)

  8. The role of constitutive and inducible processes in the response of human squamous cell carcinoma cell lines to ionizing radiation

    International Nuclear Information System (INIS)

    The inherent radiation sensitivity of the cells within a tumor is thought to contribute to the success or failure of radiation therapy. In vitro studies have shown that differences in the radiation sensitivity of squamous cell carcinoma cell lines reflect alterations in DNA repair. These alterations result from constitutive changes in chromosome organization, not radiation-inducible processes. While inducible responses may play some role in the radiation response of tumor cells, there is no evidence for their involvement in inherent differences in tumor cell radiosensitivity or in the success or failure of radiotherapy of squamous cell carcinomas. 21 refs., 1 fig., 1 tab

  9. Multiple mechanisms underlying acquired resistance to taxanes in selected docetaxel-resistant MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Chemoresistance is a major factor involved in a poor response and reduced overall survival in patients with advanced breast cancer. Although extensive studies have been carried out to understand the mechanisms of chemoresistance, many questions remain unanswered. In this research, we used two isogenic MCF-7 breast cancer cell lines selected for resistance to doxorubicin (MCF-7DOX) or docetaxel (MCF-7TXT) and the wild type parental cell line (MCF-7CC) to study mechanisms underlying acquired resistance to taxanes in MCF-7TXT cells. Cytotoxicity assay, immunoblotting, indirect immunofluorescence and live imaging were used to study the drug resistance, the expression levels of drug transporters and various tubulin isoforms, apoptosis, microtubule formation, and microtubule dynamics. MCF-7TXT cells were cross resistant to paclitaxel, but not to doxorubicin. MCF-7DOX cells were not cross-resistant to taxanes. We also showed that multiple mechanisms are involved in the resistance to taxanes in MCF-7TXT cells. Firstly, MCF-7TXT cells express higher level of ABCB1. Secondly, the microtubule dynamics of MCF-7TXT cells are weak and insensitive to the docetaxel treatment, which may partially explain why docetaxel is less effective in inducing M-phase arrest and apoptosis in MCF-7TXT cells in comparison with MCF-7CC cells. Moreover, MCF-7TXT cells express relatively higher levels of β2- and β4-tubulin and relatively lower levels of β3-tubulin than both MCF-7CC and MCF-7DOX cells. The subcellular localization of various β-tubulin isoforms in MCF-7TXT cells is also different from that in MCF-7CC and MCF-7DOX cells. Multiple mechanisms are involved in the resistance to taxanes in MCF-7TXT cells. The high expression level of ABCB1, the specific composition and localization of β-tubulin isoforms, the weak microtubule dynamics and its insensitivity to docetaxel may all contribute to the acquired resistance of MCF-7TXT cells to taxanes

  10. Radiation-responsive transcriptome analysis in human lymphoid cells

    International Nuclear Information System (INIS)

    Ionising radiation (IR) causes DNA (deoxyribonucleic acid) injury and activates intracellular signal pathways including the regulation of DNA repair and cell cycle. However, the further knowledge of molecular events involved in radiation exposure is essential to more comprehensively understand the effects of irradiation. Therefore, the gene expressions of mRNA (messenger ribonucleic acid) by X-ray irradiation in human B lymphoblasts cell line (IM-9) using a microarray were investigated. The mRNA expressions of 65 genes were shown to be up-regulated at >2.0-fold in irradiated cells (4 Gy) when compared with non-irradiated cells (0 Gy) by microarray analysis. Among 65 genes, a large number of genes were up-regulated with an X-ray dose-dependent change. These results indicate that the up-regulation of their mRNAs is the effects of irradiation and may be due to biological dosimetric markers for the evaluation of radiation exposure in the future. (authors)

  11. MiR-224 expression increases radiation sensitivity of glioblastoma cells

    International Nuclear Information System (INIS)

    Highlights: • MiR-224 expression in established glioblastoma cell lines and sporadic tumor tissues is low. • Exogenous miR-224 expression was found to increase radiation sensitivity of glioblastoma cells. • MiR-224 expression brought about 55–60% reduction in API5 expression levels. • Transfection with API5 siRNA increased radiation sensitivity of glioblastoma cells. • Low miR-224 and high API5 expression correlated with worse survival of GBM patients. - Abstract: Glioblastoma (GBM) is the most common and highly aggressive primary malignant brain tumor. The intrinsic resistance of this brain tumor limits the efficacy of administered treatment like radiation therapy. In the present study, effect of miR-224 expression on growth characteristics of established GBM cell lines was analyzed. MiR-224 expression in the cell lines as well as in primary GBM tumor tissues was found to be low. Exogenous transient expression of miR-224 using either synthetic mimics or stable inducible expression using doxycycline inducible lentiviral vector carrying miR-224 gene, was found to bring about 30–55% reduction in clonogenic potential of U87 MG cells. MiR-224 expression reduced clonogenic potential of U87 MG cells by 85–90% on irradiation at a dose of 6 Gy, a dose that brought about 50% reduction in clonogenic potential in the absence of miR-224 expression. MiR-224 expression in glioblastoma cells resulted in 55–65% reduction in the expression levels of API5 gene, a known target of miR-224. Further, siRNA mediated down-regulation of API5 was also found to have radiation sensitizing effect on glioblastoma cell lines. Analysis of the Cancer Genome Atlas data showed lower miR-224 expression levels in male GBM patients to correlate with poorer survival. Higher expression levels of miR-224 target API5 also showed significant correlation with poorer survival of GBM patients. Up-regulation of miR-224 or down-regulation of its target API5 in combination with radiation therapy

  12. MiR-224 expression increases radiation sensitivity of glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Upraity, Shailendra; Kazi, Sadaf; Padul, Vijay; Shirsat, Neelam Vishwanath, E-mail: nshirsat@actrec.gov.in

    2014-05-30

    Highlights: • MiR-224 expression in established glioblastoma cell lines and sporadic tumor tissues is low. • Exogenous miR-224 expression was found to increase radiation sensitivity of glioblastoma cells. • MiR-224 expression brought about 55–60% reduction in API5 expression levels. • Transfection with API5 siRNA increased radiation sensitivity of glioblastoma cells. • Low miR-224 and high API5 expression correlated with worse survival of GBM patients. - Abstract: Glioblastoma (GBM) is the most common and highly aggressive primary malignant brain tumor. The intrinsic resistance of this brain tumor limits the efficacy of administered treatment like radiation therapy. In the present study, effect of miR-224 expression on growth characteristics of established GBM cell lines was analyzed. MiR-224 expression in the cell lines as well as in primary GBM tumor tissues was found to be low. Exogenous transient expression of miR-224 using either synthetic mimics or stable inducible expression using doxycycline inducible lentiviral vector carrying miR-224 gene, was found to bring about 30–55% reduction in clonogenic potential of U87 MG cells. MiR-224 expression reduced clonogenic potential of U87 MG cells by 85–90% on irradiation at a dose of 6 Gy, a dose that brought about 50% reduction in clonogenic potential in the absence of miR-224 expression. MiR-224 expression in glioblastoma cells resulted in 55–65% reduction in the expression levels of API5 gene, a known target of miR-224. Further, siRNA mediated down-regulation of API5 was also found to have radiation sensitizing effect on glioblastoma cell lines. Analysis of the Cancer Genome Atlas data showed lower miR-224 expression levels in male GBM patients to correlate with poorer survival. Higher expression levels of miR-224 target API5 also showed significant correlation with poorer survival of GBM patients. Up-regulation of miR-224 or down-regulation of its target API5 in combination with radiation therapy

  13. Studies on the Mechanism of Radiation Resistance in Micrococcus Radiodurans and its Sensitization

    International Nuclear Information System (INIS)

    Efficient and accurate repair of radiation-induced lesions in M. radiodurans was investigated as to the cause of its extreme radioresistance. The cells were made permeable to deoxyribonucleoside triphosphate by treatment with non-ionic detergent, Triton X-100. After irradiation with 2 krad gamma rays more than 80% of the single-strand scissions were rejoined in the permeable cells within 10 min at 37°C. This fast repair process requires the presence of deoxyribonucleoside triphosphates and NAD. However, rejoining of DNA strand scission was incomplete after prolonged incubation in the permeable cells. This suggests that alternate repair reaction(s) is necessary for complete recovery. The other type of radiation lesion was found by postirradiation incubation at non-permissive temperature, which markedly sensitizes this bacterium to radiation. Postincubation at this temperature also sensitizes the cells to chemicals that damage DNA. The extreme radioresistance of this bacterium was also lost by mutation and an isolated radiosensitive mutant showed almost the same radiosensitivity as E. coli K12 or B/r. These results are discussed in connection with the extreme radioresistance of M. radiodurans. (author)

  14. Radiation-Grafted Polymer Electrolyte Membranes for Water Electrolysis Cells: Evaluation of Key Membrane Properties.

    Science.gov (United States)

    Albert, Albert; Barnett, Alejandro O; Thomassen, Magnus S; Schmidt, Thomas J; Gubler, Lorenz

    2015-10-14

    Radiation-grafted membranes can be considered an alternative to perfluorosulfonic acid (PFSA) membranes, such as Nafion, in a solid polymer electrolyte electrolyzer. Styrene, acrylonitrile, and 1,3-diisopropenylbenzene monomers are cografted into preirradiated 50 μm ethylene tetrafluoroethylene (ETFE) base film, followed by sulfonation to introduce proton exchange sites to the obtained grafted films. The incorporation of grafts throughout the thickness is demonstrated by scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analysis of the membrane cross-sections. The membranes are analyzed in terms of grafting kinetics, ion-exchange capacity (IEC), and water uptake. The key properties of radiation-grafted membranes and Nafion, such as gas crossover, area resistance, and mechanical properties, are evaluated and compared. The plot of hydrogen crossover versus area resistance of the membranes results in a property map that indicates the target areas for membrane development for electrolyzer applications. Tensile tests are performed to assess the mechanical properties of the membranes. Finally, these three properties are combined to establish a figure of merit, which indicates that radiation-grafted membranes obtained in the present study are promising candidates with properties superior to those of Nafion membranes. A water electrolysis cell test is performed as proof of principle, including a comparison to a commercial membrane electrode assembly (MEA). PMID:26393461

  15. Developing Planetary Protection Technology: Microbial Diversity and Radiation Resistance of Microorganisms in a Spacecraft Assembly Facility.

    Science.gov (United States)

    Chen, F.; La Duc, M. T.; Baker, A.; Koukol, R.; Barengoltz, J.; Kern, R.; Venkateswaran, K.

    2001-12-01

    Europa has attracted much attention as evidence suggests the presence of a liquid ocean beneath this Jupiter moon's frozen crust. Such an environment might be conducive to the origins of life. Since robotic exploration of Europa is being planned, it becomes crucial to prepare for bio-burden reduction of hardware assembled for Europa missions to avoid contamination of Europa's pristine environment. In this study, we examined the microbial diversity of samples collected from two flight-ready circuit boards and their assembly facility. Also, because Jupiter's strong radiation environment may be able to reduce the viable microbial contamination on flight components, we have also studied the effects of radiation on microbial communities found to be associated with the space-flight hardware and/or present in the assembly facility. Surface samples thought to be representative of considerable human contact were collected from two circuit boards and various locations within the assembly facility using polyester swabs (swab samples). Likewise, sterile wipes were used to sample a shelf above the workstation where the circuit boards were assembled and the floor of the facility (wipe samples). The swab and wipe samples were pooled separately and divided into two halves, one of which was irradiated with 1Mrad gamma radiation for 5.5 hours, the other was not irradiated. About 1.2x104 and 6x104 CFUs/m2 cultivable microbes were detected in the swab and wipe samples, respectively. Radiation proved effective in inhibiting the growth of most microbes. Further characterization of the bacterial colonies observed in the irradiated swab and wipe samples is necessary to determine the degree of the radiation resistance. The16S rDNA sequence analysis of the cultivable microbes indicated that the assembly facility consists mostly of the members of actinobacteria, corynebacteria and pseudomonads. However, the swab samples that include the circuit boards were predominantly populated with

  16. High precision measurement of electrical resistance across endothelial cell monolayers.

    Science.gov (United States)

    Tschugguel, W; Zhegu, Z; Gajdzik, L; Maier, M; Binder, B R; Graf, J

    1995-05-01

    Effects of vasoactive agonists on endothelial permeability was assessed by measurement of transendothelial electrical resistance (TEER) of human umbilical vein endothelial cells (HUVECs) grown on porous polycarbonate supports. Because of the low values of TEER obtained in this preparation (< 5 omega cm2) a design of an Ussing type recording chamber was chosen that provided for a homogeneous electric field across the monolayer and for proper correction of series resistances. Precision current pulses and appropriate rates of sampling and averaging of the voltage signal allowed for measurement of < 0.1 omega resistance changes of the endothelium on top of a 21 omega series resistance of the support and bathing fluid layers. Histamine (10 microM) and thrombin (10 U/ml) induced an abrupt and substantial decrease of TEER, bradykinin (1 microM) was less effective, PAF (380 nM) and LTC4 (1 microM) had no effect. TEER was also reduced by the calcium ionophore A-23187 (10 microM). The technique allows for measurements of TEER in low resistance monolayer cultures with high precision and time resolution. The results obtained extend previous observations in providing quantitative data on the increase of permeability of HUVECs in response to vasoactive agonists.

  17. Overcoming of multidrug resistance by introducing the apoptosis gene, bcl-Xs, into MRP-overexpressing drug resistant cells.

    Science.gov (United States)

    Ohi, Y; Kim, R; Toge, T

    2000-05-01

    Multidrug resistance associated protein (MRP) is one of drug transport membranes that confer multidrug resistance in cancer cells. Multidrug resistance has been known to be associated with resistance to apoptosis. In this study, using MRP overexpressing multidrug resistant nasopharyngeal cancer cells, we examined the expression of apoptosis related genes including p53, p21WAF1, bax and bcl-Xs between drug sensitive KB and its resistant KB/7D cells. We also examined whether the introduction of apoptosis related gene could increase the sensitivity to anticancer drugs in association with apoptotic cell death. The relative resistances to anticancer drugs in KB/7D cells evaluated by IC50 values were 3.6, 61.3, 10.4 and 10.5 to adriamycin (ADM), etoposide (VP-16), vincristine (VCR) and vindesine (VDS), respectively. The resistance to anticancer drugs in KB/7D cells was associated with the attenuation of internucleosomal DNA ladder formation in apoptosis. Of important, the mRNA expression of bcl-Xs gene in KB/7D cells was decreased in one-fourth as compared to that of KB cells among the apoptosis genes. The mRNA expression of bcl-Xs gene in a bcl-Xs transfected clone (KB/7Dbcl-Xs) was increased about 2-fold compared to that of KB/7Dneo cells, while the mRNA expression of MRP gene was not significantly different in KB/7bcl-Xs and KB/7Dneo cells. The sensitivities to anticancer drugs including ADM, VCR and VDS except VP-16 were increased in KB/7Dbcl-Xs cells, in turn, the relative resistance in KB/7Dbcl-Xs cells was decreased to 1.4, 4.0, and 3.0 in ADM, VCR and VDS, respectively, as compared to those of KB/7Dneo cells. Of interest, the studies on the accumulation of [3H]VCR showed that the decrease of [3H]VCR accumulation in KB/7Dbcl-Xs was not significantly different from that of KB/7Dneo cells. Collectively, these results indicated that the mechanism(s) of drug resistance in KB/7D cells could be explained at least by two factors: a) reduced drug accumulation mediated by

  18. Stem cell, cytokine and plastic surgical management for radiation injuries

    International Nuclear Information System (INIS)

    Increasing concern on systemic and local radiation injuries caused by nuclear power plant accident, therapeutic irradiation or nuclear terrorism should be treated and prevented properly for life-saving and improved wound management. We therefore reviewed our therapeutic regimens and for local radiation injuries and propose surgical methods reflecting the importance of the systemic and general conditions. For local radiation injuries, after careful and complete debridement, sequential surgeries with local flap, arterialized or perforator flap and to free flap are used when the patients' general conditions allow. Occasionally, undetermined wound margins in acute emergency radiation injuries and the regenerative surgical modalities should be attempted with temporal artificial dermis impregnated and sprayed with angiogenic factor such as basic fibroblast growth factor (bFGF) and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Human mesenchymal stem cells (hMSCs) and adipose-derived stem cells (ADSCs), together with angiogenic and mitogenic factor of basic fibroblast growth factor (bFGF) and an artificial dermis were applied over the excised irradiated skin defect are tested for differentiation and local stimulation effects in the radiation-exposed wounds. The perforator flap and artificial dermal template with growth factor were successful for reconstruction in patients who are suffering from complex underlying disease. Patients were uneventfully treated with minimal morbidities. The hMSCs are strongly proliferative even after 20 Gy irradiation in vitro. Immediate artificial dermis application impregnated with hMSCs and bFGF over the 20 Gy irradiated skin and soft tissues demonstrated the significantly improved fat angio genesis, architected dermal reconstitution and less inflammatory epidermal recovery. Even though emergent cases are more often experienced, detailed understanding of underlying diseases and rational

  19. Estimated Radiation on Mars, Hits per Cell Nucleus

    Science.gov (United States)

    2002-01-01

    This global map of Mars shows estimates for amounts of high-energy-particle cosmic radiation reaching the surface, a serious health concern for any future human exploration of the planet.The estimates are based on cosmic-radiation measurements made on the way to Mars by the Mars radiation environment experiment, an instrument on NASA's 2001 Mars Odyssey spacecraft, plus information about Mars' surface elevations from the laser altimeter instrument on NASA's Mars Global Surveyor. The areas of Mars expected to have least radiation are where elevation is lowest, because those areas have more atmosphere above them to block out some of the radiation. Earth's thick atmosphere shields us from most cosmic radiation, but Mars has a much thinner atmosphere than Earth does.Colors in the map refer to the estimated average number of times per year each cell nucleus in a human there would be hit by a high-energy cosmic ray particle. The range is generally from two hits (color-coded green), a moderate risk level, to eight hits (coded red), a high risk level.NASA's Jet Propulsion Laboratory, Pasadena, Calif. manages the 2001 Mars Odyssey and Mars Global Surveyor missions for NASA's Office of Space Science, Washington D.C. The Mars radiation environment experiment was developed by NASA's Johnson Space Center. Lockheed Martin Astronautics, Denver, is the prime contractor for Odyssey, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Investigating mechanical behavior and radiation resistant of fuel rods clad in nuclear power plant

    International Nuclear Information System (INIS)

    The important factors for selection of material for use in nuclear reactors is similar to those for other engineering applications. There are however other parameters which are of importance when materials are going to be used in high radiation environments. These parameters are compatibility in intense nuclear radiation field, high resistance against corrosion and other characteristics such as thermal conductivity, machinability and suitable welding properties. This factors discussed in chapter one. In additions to the materials used as fuel, moderator, controls, etc., which have clear and stringent nuclear requirements, other materials may be necessary in a reactor to provide structural strength and other desired properties. For a materials used in a reactor core, the single most important property is its capacity for neutron absorption. Other properties, such as temperature and radiation stability, mechanical strength, corrosion resistance, etc., also receive much attention in selecting material for a specific application. Obviously, far more can be said about each of the potential metals than is possible in chapter two. We shall limit our attention to those metals of current nuclear interest, i.e., aluminium, beryllium magnesium, zirconium, austenitic stainless steels, nickel base alloys, and in factory metals (Nb and Mo). Interactions between matter and different radiations like Neutrons, protons, Gamma , Beta and Alpha rays in nuclear reactors induced important changes in properties of materials.There are five mechanism responsible for radiation induced changes in solids: ionization, vacancy formation, interstitial formation, creation of impurities caused by nuclear reactions and displacements spikes under the local thermal environment. Due to presence of many electrons in metals ionization does not play a major role in metals only the other four mechanisms are relevant to metals and their alloys. Generally speaking formation of many vacancies and

  1. Ionizing Radiation Exposure and Basal Cell Carcinoma Pathogenesis.

    Science.gov (United States)

    Li, Changzhao; Athar, Mohammad

    2016-03-01

    This commentary summarizes studies showing risk of basal cell carcinoma (BCC) development in relationship to environmental, occupational and therapeutic exposure to ionizing radiation (IR). BCC, the most common type of human cancer, is driven by the aberrant activation of hedgehog (Hh) signaling. Ptch, a tumor suppressor gene of Hh signaling pathway, and Smoothened play a key role in the development of radiation-induced BCCs in animal models. Epidemiological studies provide evidence that humans exposed to radiation as observed among the long-term, large scale cohorts of atomic bomb survivors, bone marrow transplant recipients, patients with tinea capitis and radiologic workers enhances risk of BCCs. Overall, this risk is higher in Caucasians than other races. People who were exposed early in life develop more BCCs. The enhanced IR correlation with BCC and not other common cutaneous malignancies is intriguing. The mechanism underlying these observations remains undefined. Understanding interactions between radiation-induced signaling pathways and those which drive BCC development may be important in unraveling the mechanism associated with this enhanced risk. Recent studies showed that Vismodegib, a Smoothened inhibitor, is effective in treating radiation-induced BCCs in humans, suggesting that common strategies are required for the intervention of BCCs development irrespective of their etiology. PMID:26930381

  2. Effect of solar radiation on multidrug resistant E. coli strains and antibiotic mixture photodegradation in wastewater polluted stream

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, L., E-mail: l.rizzo@unisa.it [Department of Civil Engineering, University of Salerno, via Ponte don Melillo, 1-84084 Fisciano (Italy); Fiorentino, A. [Department of Civil Engineering, University of Salerno, via Ponte don Melillo, 1-84084 Fisciano (Italy); Anselmo, A. [Pluriacque, via Alento, 84060 Prignano Cilento (Italy)

    2012-06-15

    The effect of solar radiation on the inactivation of multidrug resistant Escherichia coli (MDR) strains selected from an urban wastewater treatment plant (UWWTP) effluent and the change of their resistance to a mixture of three antibiotics (evaluated in terms of minimum inhibit concentration (MIC)) in wastewater polluted stream were investigated. The solar photodegradation of the mixture of the three target antibiotics (amoxicillin (AMX), ciprofloxacin (CPX), and sulfamethoxazole (SMZ)) was also evaluated. Additionally, since UWWTP effluents are possible sources of antibiotics and antibiotic resistant bacteria, the disinfection by conventional chlorination process of the UWWTP effluent inoculated with MDR strains was investigated too. Solar radiation poorly affected the inactivation of the two selected antibiotic resistant E. coli strains (40 and 60% after 180 min irradiation). Moreover, solar radiation did not affect strain resistance to AMX (MIC > 256 {mu}g/mL) and SMZ (MIC > 1024 {mu}g/mL), but affected resistance of the lower resistance strain to CPX (MIC decreased by 33% but only after 180 min of irradiation). Chlorination of wastewater sample strongly decreased the number of the two selected antibiotic resistant E. coli strains (99.667 and 99.999%), after 60 min of contact time at 2.0 mg/L initial chlorine concentration, but the resistance of survived colonies to antibiotics was unchanged. Finally, the solar photodegradation rate of the antibiotic mixture (1 mg/L initial concentration respectively) resulted in the following order (half-life time): CPX (t{sub 1/2} = 24 min) < AMX (t{sub 1/2} = 99 min) < SMZ (t{sub 1/2} = 577 min). Accordingly, the risk of the development of resistance to SMZ in surface water is significantly higher compared to CPX and AMX. - Highlights: Black-Right-Pointing-Pointer Solar radiation did not affect E. coli strain resistance to AMX and SMZ. Black-Right-Pointing-Pointer Solar radiation affected the resistance of one E. coli strain

  3. Microbeam PIXE analysis of platinum resistant and sensitive ovarian cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeynes, J.C.G., E-mail: J.C.Jeynes@surrey.ac.u [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Bailey, M.J. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Coley, H. [Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); Kirkby, K.J.; Jeynes, C. [Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2010-06-15

    Microbeam PIXE was used to analyse platinum in single ovarian cancer cells. Carboplatin sensitive and resistant cells were grown as a monolayer on polypropylene and treated with either carboplatin or cisplatin. Pt from the carboplatin could not be detected. The Pt from cisplatin in the cells could be detected, and significantly more Zn was found in the resistant cells compared to the sensitive cells. The sensitive cells probably accumulated more cisplatin than the resistant ones.

  4. Sildenafil Reduces Insulin-Resistance in Human Endothelial Cells

    OpenAIRE

    Caterina Mammi; Donatella Pastore; Lombardo, Marco F; Francesca Ferrelli; Massimiliano Caprio; Claudia Consoli; Manfredi Tesauro; Lucia Gatta; Massimo Fini; Massimo Federici; Paolo Sbraccia; Giulia Donadel; Alfonso Bellia; Giuseppe M Rosano; Andrea Fabbri

    2011-01-01

    BACKGROUND: The efficacy of Phosphodiesterase 5 (PDE5) inhibitors to re-establish endothelial function is reduced in diabetic patients. Recent evidences suggest that therapy with PDE5 inhibitors, i.e. sildenafil, may increase the expression of nitric oxide synthase (NOS) proteins in the heart and cardiomyocytes. In this study we analyzed the effect of sildenafil on endothelial cells in insulin resistance conditions in vitro. METHODOLOGY/PRINCIPAL FINDINGS: Human umbilical vein endothelial cel...

  5. Mechanical Properties of Metal Nitrides for Radiation Resistant Coating Applications: A DFT Study

    Science.gov (United States)

    Mota, Oscar U. Ojeda; Araujo, Roy A.; Wang, Haiyan; Çağın, Tahir

    Metal nitrides compounds like aluminum nitride (AlN), titanium nitride (TiN), tantalum nitride (TaN), hafnium nitride (HfN) and zirconium nitride (ZrN) are of great interesting because of their chemical and physical properties such as: high melting point, resistivity, thermal conductivity and extremely high hardness. They are the materials of choice for various applications like protective coating for tools, diffusion barriers or metal gate contact in microelectronics, and lately their potential applications as radiation-resistive shields. In order to assess their use for radiation tolerance we have studied the structural, mechanical and electronic properties. We have evaluated the anisotropic elastic constants and their pressure dependence for three different crystalline phases: B1-NaCl, B2-CsCl, and B3-ZnS crystal structures. In addition to these cubic polymorphs, we also have studied potential hexagonal structures of some of the same metal nitrides. All computations are carried out using first principles Density Functional Theory (DFT) approach.

  6. Effects of gamma irradiation on the radiation-resistant bacteria and polyphenol oxidase activity in fresh kale juice

    Science.gov (United States)

    Kim, Dongho; Song, Hyunpa; Lim, Sangyong; Yun, Hyejeong; Chung, Jinwoo

    2007-07-01

    Gamma radiation was performed to prolong the shelf life of natural kale juice. The total aerobic bacteria in fresh kale juice, prepared by a general kitchen process, was detected in the range of 10 6 cfu/ml, and about 10 2 cfu/ml of the bacteria survived in the juice in spite of gamma irradiation treatment with a dose of 5 kGy. Two typical radiation-resistant bacteria, Bacillus megaterium and Exiguobacterium acetylicum were isolated and identified from the 5 kGy-irradiated kale juices. The D10 values of the vegetative cell and endospore of the B. megaterium in peptone water were 0.63±0.05 and 1.52±0.05 kGy, respectively. The D10 value of the E. acetylicum was calculated as 0.65±0.06 kGy. In the inoculation test, the growth of the surviving B. megaterium and E. acetylicum in the 3-5 kGy-irradiated kale juice retarded and/or decreased significantly during a 3 d post-irradiation storage period. However, there were no significant differences in the residual polyphenol oxidase activity and browning index between the nonirradiated control and the gamma irradiated kale juice during a post-irradiation period.

  7. Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant Deinococcus radiodurans, their characterization, and determination of bioactivity

    Directory of Open Access Journals (Sweden)

    Kulkarni RR

    2015-01-01

    Full Text Available Rasika R Kulkarni, Nayana S Shaiwale, Dileep N Deobagkar, Deepti D Deobagkar Molecular Biology Research Laboratory, Center of Advanced Studies, Department of Zoology, University of Pune, Pune, India Abstract: There has been rapid progress in exploring microorganisms for green synthesis of nanoparticles since microbes show extraordinary diversity in terms of species richness and niche localization. Microorganisms are easy to culture using relatively inexpensive and simple nutrients under varied conditions of temperature, pressure, pH, etc. In this work, Deinococcus radiodurans that possesses the ability to withstand extremely high radiation and desiccation stress has been employed for the synthesis of silver nanoparticles (AgNPs. D. radiodurans was able to accumulate AgNPs in medium under various conditions, and process optimization was carried out with respect to time, temperature, pH, and concentration of silver salt. AgNPs were characterized using UV/vis spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. The microbially synthesized AgNPs exhibited good antimicrobial activity against both Gram-negative and Gram-positive organisms and anti-biofouling activity. Their ability to inhibit growth and proliferation of cancer cell line was also examined, and it could be seen that AgNPs synthesized using D. radiodurans exhibited excellent anticancer activity. Keywords: Deinococcus radiodurans, silver nanoparticles, anticancer, radiation resistance, antibacterial, anti-biofouling 

  8. Effects of gamma irradiation on the radiation-resistant bacteria and polyphenol oxidase activity in fresh kale juice

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongho [Team of Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Sinjeongdong 1266, Chonbuk, Jeongeup 580-185 (Korea, Republic of)]. E-mail: fungikim@kaeri.re.kr; Song, Hyunpa [Team of Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Sinjeongdong 1266, Chonbuk, Jeongeup 580-185 (Korea, Republic of); Lim, Sangyong [Team of Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Sinjeongdong 1266, Chonbuk, Jeongeup 580-185 (Korea, Republic of); Yun, Hyejeong [Team of Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Sinjeongdong 1266, Chonbuk, Jeongeup 580-185 (Korea, Republic of); Chung, Jinwoo [Team of Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Sinjeongdong 1266, Chonbuk, Jeongeup 580-185 (Korea, Republic of)

    2007-07-15

    Gamma radiation was performed to prolong the shelf life of natural kale juice. The total aerobic bacteria in fresh kale juice, prepared by a general kitchen process, was detected in the range of 10{sup 6} cfu/ml, and about 10{sup 2} cfu/ml of the bacteria survived in the juice in spite of gamma irradiation treatment with a dose of 5 kGy. Two typical radiation-resistant bacteria, Bacillus megaterium and Exiguobacterium acetylicum were isolated and identified from the 5 kGy-irradiated kale juices. The D {sub 10} values of the vegetative cell and endospore of the B. megaterium in peptone water were 0.63{+-}0.05 and 1.52{+-}0.05 kGy, respectively. The D {sub 10} value of the E. acetylicum was calculated as 0.65{+-}0.06 kGy. In the inoculation test, the growth of the surviving B. megaterium and E. acetylicum in the 3-5 kGy-irradiated kale juice retarded and/or decreased significantly during a 3 d post-irradiation storage period. However, there were no significant differences in the residual polyphenol oxidase activity and browning index between the nonirradiated control and the gamma irradiated kale juice during a post-irradiation period.

  9. Enhancement of viability of radiosensitive (PBMC) and resistant (MDA-MB-231) clones in low-dose-rate cobalt-60 radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Falcao, Patricia Lima, E-mail: patricialfalcao@gmail.com [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil); Motta, Barbara Miranda; Lima, Fernanda Castro de; Lima, Celso Vieira; Campos, Tarcisio Passos Ribeiro [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2015-05-15

    Objective: in the present study, the authors investigated the in vitro behavior of radio-resistant breast adenocarcinoma (MDA-MB-231) cells line and radiosensitive peripheral blood mononuclear cells (PBMC), as a function of different radiation doses, dose rates and postirradiation time kinetics, with a view to the interest of clinical radiotherapy. Materials and methods: the cells were irradiated with Co-60, at 2 and 10 Gy and two different exposure rates, 339.56 cGy.min{sup -1} and the other corresponding to one fourth of the standard dose rates, present over a 10-year period of cobalt therapy. Post-irradiation sampling was performed at pre-established kinetics of 24, 48 and 72 hours. The optical density response in viability assay was evaluated and a morphological analysis was performed. Results: radiosensitive PBMC showed decrease in viability at 2 Gy, and a more significant decrease at 10 Gy for both dose rates. MDAMB-231 cells presented viability decrease only at higher dose and dose rate. The results showed MDA-MB-231 clone expansion at low dose rate after 48-72 hours post-radiation. Conclusion: low dose rate shows a possible potential clinical impact involving decrease in management of radio-resistant and radiosensitive tumor cell lines in cobalt therapy for breast cancer. (author)

  10. Enhancement of viability of radiosensitive (PBMC and resistant (MDA-MB-231 clones in low-dose-rate cobalt-60 radiation therapy

    Directory of Open Access Journals (Sweden)

    Patrícia Lima Falcão

    2015-06-01

    Full Text Available Abstract Objective: In the present study, the authors investigated the in vitro behavior of radio-resistant breast adenocarcinoma (MDA-MB-231 cells line and radiosensitive peripheral blood mononuclear cells (PBMC, as a function of different radiation doses, dose rates and postirradiation time kinetics, with a view to the interest of clinical radiotherapy. Materials and Methods: The cells were irradiated with Co-60, at 2 and 10 Gy and two different exposure rates, 339.56 cGy.min–1 and the other corresponding to one fourth of the standard dose rates, present over a 10-year period of cobalt therapy. Post-irradiation sampling was performed at pre-established kinetics of 24, 48 and 72 hours. The optical density response in viability assay was evaluated and a morphological analysis was performed. Results: Radiosensitive PBMC showed decrease in viability at 2 Gy, and a more significant decrease at 10 Gy for both dose rates. MDAMB- 231 cells presented viability decrease only at higher dose and dose rate. The results showed MDA-MB-231 clone expansion at low dose rate after 48–72 hours post-radiation. Conclusion: Low dose rate shows a possible potential clinical impact involving decrease in management of radio-resistant and radiosensitive tumor cell lines in cobalt therapy for breast cancer.

  11. Characterization of a mantle cell lymphoma cell line resistant to the Chk1 inhibitor PF-00477736.

    Science.gov (United States)

    Restelli, Valentina; Chilà, Rosaria; Lupi, Monica; Rinaldi, Andrea; Kwee, Ivo; Bertoni, Francesco; Damia, Giovanna; Carrassa, Laura

    2015-11-10

    Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma characterized by the chromosomal translocation t(11;14) that leads to constitutive expression of cyclin D1, a master regulator of the G1-S phase. Chk1 inhibitors have been recently shown to be strongly effective as single agents in MCL. To investigate molecular mechanisms at the basis of Chk1 inhibitor activity, a MCL cell line resistant to the Chk1 inhibitor PF-00477736 (JEKO-1 R) was obtained and characterized. The JEKO-1 R cell line was cross resistant to another Chk1 inhibitor (AZD-7762) and to the Wee1 inhibitor MK-1775. It displayed a shorter doubling time than parental cell line, likely due to a faster S phase. Cyclin D1 expression levels were decreased in resistant cell line and its re-overexpression partially re-established PF-00477736 sensitivity. Gene expression profiling showed an enrichment in gene sets involved in pro-survival pathways in JEKO-1 R. Dasatinib treatment partly restored PF-00477736 sensitivity in resistant cells suggesting that the pharmacological interference of pro-survival pathways can overcome the resistance to Chk1 inhibitors. These data further corroborate the involvement of the t(11;14) in cellular sensitivity to Chk1 inhibitors, fostering the clinical testing of Chk1 inhibitors as single agents in MCL. PMID:26439697

  12. Tinnitus and cell phones: the role of electromagnetic radiofrequency radiation

    OpenAIRE

    Luisa Nascimento Medeiros; Tanit Ganz Sanchez

    2016-01-01

    ABSTRACT INTRODUCTION: Tinnitus is a multifactorial condition and its prevalence has increased on the past decades. The worldwide progressive increase of the use of cell phones has exposed the peripheral auditory pathways to a higher dose of electromagnetic radiofrequency radiation (EMRFR). Some tinnitus patients report that the abusive use of mobiles, especially when repeated in the same ear, might worsen ipsilateral tinnitus. OBJECTIVE: The aim of this study was to evaluate the availabl...

  13. Investigation of bias radiation effect on PV cell measurement

    Science.gov (United States)

    Huang, Xuebo; Quan, Chenggen; Chan, Joanne; Ng, Patrick

    2013-06-01

    Photovoltaic (PV) cells are photo-electrical devices that convert light energy directly into electricity through the photovoltaic effect. PV cell assemblies are used to make solar modules employed in a variety of ways ranging from space applications to domestic energy consumption. Characterisation and performance testing of PV cells are critical to the development of PV technologies and growth of the solar industry. As new solar products are being developed, its energy conversion efficiency and other critical parameters must be accurately measured and tested against globally recognised metrological standards. The differential spectral responsivity (DSR) measurement is one of the primary methods for calibrating reference PV cells. This is done by calculating its spectral responsivities through measuring the AC short-circuit current produced by a PV cell under a modulated monochromatic radiation and different levels of steady-state broadband bias light radiation. It is observed that different types of bias light source will produce different signal-to-noise levels and significantly influence measurement accuracy. This paper aims to investigate the noise sources caused by different types of bias light sources (e.g. xenon arc and tungsten-halogen lamps) and the relevant measurement uncertainties so as to propose a guideline for selection of bias light source which can improve the signal-to-noise level and measurement uncertainty. The DSRs of the PV cells are measured using a commercial DSR measurement system under different levels of bias radiation from 0 to 1 kWm-2. The data analysis and uncertainty evaluation are presented in this paper using experimental data and mathematical tools.

  14. Regulatory mechanism of radiation-induced cancer cell death by the change of cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Soo Jin; Jeong, Min Ho; Jang, Ji Yeon [College of Medicine, Donga Univ., Pusan (Korea, Republic of)

    2003-09-01

    In our previous study, we have shown the main cell death pattern induced by irradiation or protein tyrosine kinase (PTK) inhibitors in K562 human myelogenous leukemic cell line. Death of the cells treated with irradiation alone was characterized by mitotic catastrophe and typical radiation-induced apoptosis was accelerated by herbimycin A (HMA). Both types of cell death were inhibited by genistein. In this study, we investigated the effects of HMA and genistein on cell cycle regulation and its correlation with the alterations of radiation-induced cell death. K562 cells in exponential growth phase were used for this study. The cells were irradiated with 10 Gy using 6 MeV Linac (200-300 cGy/min). Immediately after irradiation, cells were treated with 250 nM of HMA or 25{mu}M of genistein. The distributions of cell cycle, the expressions of cell cycle-related protein, the activities of cyclin-dependent kinase, and the yield of senescence and differentiation were analyzed. X-irradiated cells were arrested in the G2 phase of the cell cycle but unlike the p53-positive cells, they were not able to sustain the cell cycle arrest. An accumulation of cells in G2 phase of first cell-cycle post-treatment and an increase of cyclin B1 were correlated with spontaneous, premature, chromosome condensation and mitotic catastrophe. HMA induced rapid G2 checkpoint abrogation and concomitant p53-independent G1 accumulation HMA-induced cell cycle modifications correlated with the increase of cdc2 kinase activity, the decrease of the expressions of cyclins E and A and of CDK2 kinase activity, and the enhancement of radiation-induced apoptosis. Genistein maintained cells that were arrested in the G2-phase, decreased the expressions of cyclin B1 and cdc25C and cdc2 kinase activity, increased the expression of p16, and sustained senescence and megakaryocytic differentiation. The effects of HMA and genistein on the radiation-induced cell death of K562 cells were closely related to the cell

  15. Resistance of oxidative stress in biofilm and planktonic cells

    Directory of Open Access Journals (Sweden)

    Witold Jakubowski

    2015-04-01

    Full Text Available This work studied the susceptibility of biofilm produced by E. coli to oxidative stress, and compared the components of free radicals defences: level of glutathione, catalase and dismutase activities in planktonic and biofilm located cells. Results showed the diversity of responses to oxidative stress in bacterial cells in log or stationary phases in both planktonic and biofilm forms. The bacteria were exposed to free-radical donors (H2O2, tBOOH, menadione, SIN-1 or peroxynitrite in a wide range of final concentrations, from 0.5 to 10mM. Different level of toxicity of individual donors, independence of cell type (planktonic forms or biofilm and phases of growth were observed. The highest oxidative stress resistance was observed for the cells in logarithmic phase of growth treated with H2O2, both in planktonic and biofilm forms, whereas for the cells in stationary phase, the highest resistance was observed for menadione. These results showed higher efficiency of agents based on superoxide anion donors in combating bacteria colonizing abiotic surfaces stainless steel (AISI 316L.

  16. Interactions of BMS-181174 and radiation: studies with EMT6 cells in vitro and in solid tumors.

    Science.gov (United States)

    Rockwell, S; Kelley, M

    1996-04-01

    N-7[2-(4-nitrophenyldithio)-ethyl] mitomycin C, (BMS-181174; previously designated as BMY25067) is a mitomycin C analog now in initial clinical trials. The experiments described in this report were performed to assess whether BMS-181174, like mitomycin C and porfiromycin, was selectively toxic to the hypoxic cells in solid tumors and might therefore prove valuable in combination with radiotherapy. In contrast to mitomycin C and porfiromycin, BMS-181174 was more toxic to aerobic EMT6 cells in vitro than to cells made acutely hypoxic. In vitro, BMS-181174 and radiation produced cytotoxicity compatible with either additive or slightly supra-additive cytotoxicity. In vivo, BMS-181174 was effective in killing cells in solid EMT6 tumors. The effects of regimens combining BMS-181174 and radiation in vivo were complex. Combinations of low doses of BMS-181174 plus a large dose of radiation were very effective in killing cells in solid tumors. However, the survival curve plateaued at high doses of BMS-181174, providing evidence for a subpopulation of tumor cells which were resistant to both BMS-181174 and radiation; this was hypothesized to be a hypoxic cell population. PMID:8735495

  17. CD19-CAR engineered NK-92 cells are sufficient to overcome NK cell resistance in B-cell malignancies.

    Science.gov (United States)

    Romanski, Annette; Uherek, Christoph; Bug, Gesine; Seifried, Erhard; Klingemann, Hans; Wels, Winfried S; Ottmann, Oliver G; Tonn, Torsten

    2016-07-01

    Many B-cell acute and chronic leukaemias tend to be resistant to killing by natural killer (NK) cells. The introduction of chimeric antigen receptors (CAR) into T cells or NK cells could potentially overcome this resistance. Here, we extend our previous observations on the resistance of malignant lymphoblasts to NK-92 cells, a continuously growing NK cell line, showing that anti-CD19-CAR (αCD19-CAR) engineered NK-92 cells can regain significant cytotoxicity against CD19 positive leukaemic cell lines and primary leukaemia cells that are resistant to cytolytic activity of parental NK-92 cells. The 'first generation' CAR was generated from a scFv (CD19) antibody fragment, coupled to a flexible hinge region, the CD3ζ chain and a Myc-tag and cloned into a retrovirus backbone. No difference in cytotoxic activity of NK-92 and transduced αCD19-CAR NK-92 cells towards CD19 negative targets was found. However, αCD19-CAR NK-92 cells specifically and efficiently lysed CD19 expressing B-precursor leukaemia cell lines as well as lymphoblasts from leukaemia patients. Since NK-92 cells can be easily expanded to clinical grade numbers under current Good Manufactoring Practice (cGMP) conditions and its safety has been documented in several phase I clinical studies, treatment with CAR modified NK-92 should be considered a treatment option for patients with lymphoid malignancies.

  18. UVB radiation induced effects on cells studied by FTIR spectroscopy

    CERN Document Server

    Di Giambattista, Lucia; Gaudenzi, S; Pozzi, D; Grandi, M; Morrone, S; Silvestri, I; Castellano, A Congiu; 10.1007/s00249-009-0446-9

    2010-01-01

    We have made a preliminary analysis of the results about the eVects on tumoral cell line (lymphoid T cell line Jurkat) induced by UVB radiation (dose of 310 mJ/cm^2) with and without a vegetable mixture. In the present study, we have used two techniques: Fourier transform infrared spectroscopy (FTIR) and flow cytometry. FTIR spectroscopy has the potential to provide the identiWcation of the vibrational modes of some of the major compounds (lipid, proteins and nucleic acids) without being invasive in the biomaterials. The second technique has allowed us to perform measurements of cytotoxicity and to assess the percentage of apoptosis. We already studied the induction of apoptotic process in the same cell line by UVB radiation; in particular, we looked for correspondences and correlations between FTIR spetroscopy and flow cytometry data finding three highly probable spectroscopic markers of apoptosis (Pozzi et al. in Radiat Res 168:698-705, 2007). In the present work, the results have shown significant changes ...

  19. Effect of ionizing radiation on the host resistance against Listeria Monocytogenes infection and the Cytokine production in mice

    International Nuclear Information System (INIS)

    To evaluate the qualitative immunologic changes by ionizing radiation, we studied the altered capacities of the macrophages and lymphocytes to produce cytokines in conjunction with resistance to Listeria monocytogenes (LM) infection in mice. BALB/c mice and Listeria monocytogenes were used. The mice were infected intraperitoneally with 105LM at 1 day after irradiation (300cGy) and sacrificed at 1, 3, 5 days after infection, and then the numbers of viable LM per spleen in the irradiated and control group were counted. Tumor necrosis factor-alpha (TNF-α), interferon-gamma(IFN-γ), interleukin-2(IL-2), and nitric oxide(NO) were assessed after irradiation. Under gamma-ray irradiation with a dose range of 100-850cGy, the number of total splenocytes decreased markedly in a dose-dependent manner, while peritoneal macrophages did so slightly. Cultured peritoneal macrophages produced more TNF-α in the presence of lipopolysaccharide(LPS) during the 24 hours after in vitro irradiation, but their capacity of TNF-α production showed a decreased tendency at 5 days after in vivo total body irradiation. With 100cGy and 300cGy irradiation, cultured peritoneal macrophages produced more NO in the presence of LPS during the 24 hours after in vitro irradiation than without irradiation. Activated splenocytes from irradiated mice (300cGy) exhibited a decreased capacity to produce IL-2 and IFN-γ with Concavalin-A stimulation at 3 days after irradiation. When BALB/c mice were irradiated to the total body with a dose of 300cGy, they showed enhanced resistance during early innate phase, but a significant inhibition of resistance to LM was found in the late innate and acquired T-cell dependent phases. These results suggest that increased early innate and decreased late innate and acquired immunity to LM infection by ionizing radiation (300cGy) may be related to the biphasic altered capacity of the macrophages to produce TNF-α and the decreased capacities of the lymphocytes to produce IL

  20. Radiation synthesis and the post-processing of a new salt resistance SAR

    International Nuclear Information System (INIS)

    Background: Super absorbent resin (SAR) is widely used to absorb ion solution, while its absorbency needs further improvement. Purpose: The aim is to synthesise a new salt resistance SAR by radiation crosslinking, and its performance and the post-processing are researched. Methods: A copolymer gel composed of polyvinyl alcohol, polyacrylate sodium and ethylene diamine tetraacetic acid was prepared by the electron beam radiation crosslinking. The copolymer gels were dipped into the washing liquid comprised of different proportions of methanol and deionized water for swelling and immersion. Then these gels were frozen at -80℃. After freeze-drying, crushing and screening, the new superabsorbent SAR was prepared. The factors may have influence on the ionic solutions absorption of the SAR which were investigated and optimized with orthogonal tests. The factors included the weight ratios of Poly vinyl alcohol (PVA) to Poly acrylate sodium (PAAS) to Ethylene diamine tetraacetic acid (EDTA) and the washing liquid. The performance of the SAR at home and abroad was tested. Results: The Suda3 SAR prepared under our optimized synthesis condition has excellent absorption rate and centrifugal liquid retaining capacity. The absorbency of the Suda3 SAR is (821.05±1.61) g·g-1 in deionized water and (72.57±3.01) g·g-1 in 0.9wt% NaCl solution respectively. These parameters are significantly better than that of the SAR of domestic and foreign famous companies (P<0.01). Conclusion: In this study, the new salt resistance SAR was prepared by radiation crosslinking and the post-processing. The SAR has excellent absorbency properties and could be used in the field of medicine and hygiene material. (authors)

  1. Molecular Imaging Biomarkers of Resistance to Radiation Therapy for Spontaneous Nasal Tumors in Canines

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, Tyler J. [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States); Bowen, Stephen R. [Departments of Radiation Oncology and Radiology, University of Washington, Seattle, Washington (United States); Deveau, Michael A. [Department of Small Animal Clinical Sciences, Texas A& M University, College Station, Texas (United States); Kubicek, Lyndsay [Angell Animal Medical Center, Boston, Massachusetts (United States); White, Pamela [Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin (United States); Bentzen, Søren M. [Division of Biostatistics and Bioinformatics, University of Maryland Greenebaum Cancer Center, and Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland (United States); Chappell, Richard J. [Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States); Forrest, Lisa J. [Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin (United States); Jeraj, Robert, E-mail: rjeraj@wisc.edu [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States); Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin (United States)

    2015-03-15

    Purpose: Imaging biomarkers of resistance to radiation therapy can inform and guide treatment management. Most studies have so far focused on assessing a single imaging biomarker. The goal of this study was to explore a number of different molecular imaging biomarkers as surrogates of resistance to radiation therapy. Methods and Materials: Twenty-two canine patients with spontaneous sinonasal tumors were treated with accelerated hypofractionated radiation therapy, receiving either 10 fractions of 4.2 Gy each or 10 fractions of 5.0 Gy each to the gross tumor volume. Patients underwent fluorodeoxyglucose (FDG)-, fluorothymidine (FLT)-, and Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM)-labeled positron emission tomography/computed tomography (PET/CT) imaging before therapy and FLT and Cu-ATSM PET/CT imaging during therapy. In addition to conventional maximum and mean standardized uptake values (SUV{sub max}; SUV{sub mean}) measurements, imaging metrics providing response and spatiotemporal information were extracted for each patient. Progression-free survival was assessed according to response evaluation criteria in solid tumor. The prognostic value of each imaging biomarker was evaluated using univariable Cox proportional hazards regression. Multivariable analysis was also performed but was restricted to 2 predictor variables due to the limited number of patients. The best bivariable model was selected according to pseudo-R{sup 2}. Results: The following variables were significantly associated with poor clinical outcome following radiation therapy according to univariable analysis: tumor volume (P=.011), midtreatment FLT SUV{sub mean} (P=.018), and midtreatment FLT SUV{sub max} (P=.006). Large decreases in FLT SUV{sub mean} from pretreatment to midtreatment were associated with worse clinical outcome (P=.013). In the bivariable model, the best 2-variable combination for predicting poor outcome was high midtreatment FLT SUV{sub max} (P=.022) in

  2. Molecular Imaging Biomarkers of Resistance to Radiation Therapy for Spontaneous Nasal Tumors in Canines

    International Nuclear Information System (INIS)

    Purpose: Imaging biomarkers of resistance to radiation therapy can inform and guide treatment management. Most studies have so far focused on assessing a single imaging biomarker. The goal of this study was to explore a number of different molecular imaging biomarkers as surrogates of resistance to radiation therapy. Methods and Materials: Twenty-two canine patients with spontaneous sinonasal tumors were treated with accelerated hypofractionated radiation therapy, receiving either 10 fractions of 4.2 Gy each or 10 fractions of 5.0 Gy each to the gross tumor volume. Patients underwent fluorodeoxyglucose (FDG)-, fluorothymidine (FLT)-, and Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM)-labeled positron emission tomography/computed tomography (PET/CT) imaging before therapy and FLT and Cu-ATSM PET/CT imaging during therapy. In addition to conventional maximum and mean standardized uptake values (SUVmax; SUVmean) measurements, imaging metrics providing response and spatiotemporal information were extracted for each patient. Progression-free survival was assessed according to response evaluation criteria in solid tumor. The prognostic value of each imaging biomarker was evaluated using univariable Cox proportional hazards regression. Multivariable analysis was also performed but was restricted to 2 predictor variables due to the limited number of patients. The best bivariable model was selected according to pseudo-R2. Results: The following variables were significantly associated with poor clinical outcome following radiation therapy according to univariable analysis: tumor volume (P=.011), midtreatment FLT SUVmean (P=.018), and midtreatment FLT SUVmax (P=.006). Large decreases in FLT SUVmean from pretreatment to midtreatment were associated with worse clinical outcome (P=.013). In the bivariable model, the best 2-variable combination for predicting poor outcome was high midtreatment FLT SUVmax (P=.022) in combination with large FLT response from

  3. Effect of dislocation density on improved radiation hardening resistance of nano-structured tungsten–rhenium

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, David E.J., E-mail: david.armstrong@materials.ox.ac.uk; Britton, T.B.

    2014-08-12

    Rolled tungsten 5 wt% rhenium sheet has been annealed to produce two microstructures. As received with a high dislocation density, measured using HR-EBSD, and pancake shaped grains with a thickness of ≈200 nm and annealed with equiaxed grains with average grain size of ≈90 µm and low dislocation density. Both materials were ion implanted with 2 MeV W+ ions to damage levels of 0.07, 0.4, 1.2 and 13 displacements per atom (dpa). Nanoindentation was used to measure change in hardness after implantations. While irradiation induced hardening is seen to saturate in the as received material at an increase of 0.4 GPa at 0.4 dpa, the relative hardness change is over four time higher in the annealed material (1.3 GPa) and saturation does not occur by 13 dpa. These differences in radiation response are due to the increased sinks for damage in the as received microstructure in the form of dislocation networks. This is advantageous for use of such nanostructured tungsten sheet in composite materials for structural applications as they will have improved radiation resistance as compared to bulk tungsten products. As well as showing the danger of using idealized microstructures for radiation damage studies.

  4. Effect of dislocation density on improved radiation hardening resistance of nano-structured tungsten–rhenium

    International Nuclear Information System (INIS)

    Rolled tungsten 5 wt% rhenium sheet has been annealed to produce two microstructures. As received with a high dislocation density, measured using HR-EBSD, and pancake shaped grains with a thickness of ≈200 nm and annealed with equiaxed grains with average grain size of ≈90 µm and low dislocation density. Both materials were ion implanted with 2 MeV W+ ions to damage levels of 0.07, 0.4, 1.2 and 13 displacements per atom (dpa). Nanoindentation was used to measure change in hardness after implantations. While irradiation induced hardening is seen to saturate in the as received material at an increase of 0.4 GPa at 0.4 dpa, the relative hardness change is over four time higher in the annealed material (1.3 GPa) and saturation does not occur by 13 dpa. These differences in radiation response are due to the increased sinks for damage in the as received microstructure in the form of dislocation networks. This is advantageous for use of such nanostructured tungsten sheet in composite materials for structural applications as they will have improved radiation resistance as compared to bulk tungsten products. As well as showing the danger of using idealized microstructures for radiation damage studies

  5. Hypothetical proteins present during recovery phase of radiation resistant bacterium Deinococcus radiodurans are under purifying selection.

    Science.gov (United States)

    Das, Anubrata D; Misra, Hari S

    2013-08-01

    Deinococcus radiodurans has an unusual capacity to recover from intense doses of ionizing radiation. The DNA repair proteins of this organism play an important role in repairing the heavily damaged DNA by employing a novel mechanism of DNA double-strand break repair. An earlier report stated that genes of many of these repair proteins are under positive selection implying that these genes have a tendency to mutate, which in turn provides selective advantage to this bacterium. Several "hypothetical proteins" are also present during the recovery phase and some of them have also been shown for their roles in radiation resistance. Therefore, we tested the selection pressure on the genes encoding these poorly characterized proteins. Our results show that a number of "hypothetical proteins" present during the repair phase have structural adaptations compared to their orthologs and the genes encoding them as well as those for the DNA repair proteins present during this phase are under purifying selection. Evidence of purifying selection in these hypothetical proteins suggests that certain novel characteristics among these proteins are conserved and seem to be under functional constraints to perform important functions during recovery process after gamma radiation damage.

  6. Radiation-induced chromosomal instability in human mammary epithelial cells

    Science.gov (United States)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    1996-01-01

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  7. Mechanism of heavy ion radiation-induced cancer cell death

    International Nuclear Information System (INIS)

    We previously reported that the carbon beam triggers apoptosis in radio-resistant cancer cell lines via extracellular signal-regulated kinase (ERK)- and mitochondrial Bcl-2 family protein-dependant mechanism. Here, we further examined the further apoptosis-inducing mechanism of carbon beam in two glioma cell lines (T98G, U251). ERK1/2 knockdown experiments revealed that ERK regulates this apoptosis-inducing machinery upstream of mitochondria. Furthermore, we also found that both T98G cell and U251 cell stably expressing dominant-negative ERK2 suppress cell death induced by carbon beam irradiation. We also found proapoptotic PUMA and antiapoptotic Bcl-2 dynamically chang their expression levels corresponding to ERK activation after CB irradiation in U251 cell, and knockdown of PUMA decreased CB-induced U251 cell death. These data suggest that kinase action of ERK is essential for CB-induced glioma cell death, and proapoptotic PUMA and antiapoptotic Bcl-2 might be downstream targets of ERK in CB-induced glioma cell death mechanism. (author)

  8. Mitomycin resistance in mammalian cells expressing the bacterial mitomycin C resistance protein MCRA.

    Science.gov (United States)

    Belcourt, M F; Penketh, P G; Hodnick, W F; Johnson, D A; Sherman, D H; Rockwell, S; Sartorelli, A C

    1999-08-31

    The mitomycin C-resistance gene, mcrA, of Streptomyces lavendulae produces MCRA, a protein that protects this microorganism from its own antibiotic, the antitumor drug mitomycin C. Expression of the bacterial mcrA gene in mammalian Chinese hamster ovary cells causes profound resistance to mitomycin C and to its structurally related analog porfiromycin under aerobic conditions but produces little change in drug sensitivity under hypoxia. The mitomycins are prodrugs that are enzymatically reduced and activated intracellularly, producing cytotoxic semiquinone anion radical and hydroquinone reduction intermediates. In vitro, MCRA protects DNA from cross-linking by the hydroquinone reduction intermediate of these mitomycins by oxidizing the hydroquinone back to the parent molecule; thus, MCRA acts as a hydroquinone oxidase. These findings suggest potential therapeutic applications for MCRA in the treatment of cancer with the mitomycins and imply that intrinsic or selected mitomycin C resistance in mammalian cells may not be due solely to decreased bioactivation, as has been hypothesized previously, but instead could involve an MCRA-like mechanism. PMID:10468636

  9. The Effect of 5-FU and Radiation on A549 Cells In Vitro

    International Nuclear Information System (INIS)

    Effects of ionizing radiation alone and combined with chemotherapy on tumor growth and it clonal specificity Monitored by changes in distribution of chromosome number were studies in A549 cell line originated from human adenocarcinoma of the lung. Radiation (300 rad, 600 rad and 900 rad) were delivered with or without 5-FU. Forty eight hours later, 57.5% of growth inhibition of cell was Seen in cells treated with 5-FU concentration of 0.47g/ml for 24 hr exposure. Cell survival carves after radiation with and without 5-FU were made. Chromosomal analysis of cells in metaphase in control, and in cells treated with 300 rad of radiation, or 0.47g/ml of 5-FU treatment, and combined treatment of cloth were 77ne to examine the changes in ploidy and number of chromosome. Radiation combined with 5-FU enhanced growth inhibition of A549 cells. However, no evidence of synergetic effects in growth inhibition was observed in the cells treated with the combination therapy. Pattern of chromosomal distribution of survived cells were shifted from hyperploidy to hypoploidy by single dose of radiation(300 rad). As radiation dose increased a large number of hypoploidy cells were observed. Following treatment of cells with 5-FU, chomosomal distribution of survived cells were also shifted to hypodiploidy, which were seen in cells treated with radiation. The cell treated with 5-FU and followed by radiation within 24 hrs had cell with increased number of hypodiploidy cells. Almost same type of chromosomal changes were reproduced in cells treated with combined treatment with radiation and 5-FU. Minor differences were that cells with fewer number of chromosome were more frequent in cells treated with combined therapy. Further increase in cells of hypoploidy(93%) having 1-10 chromosome were induced by additional radiation. Therefore, the enhanced therapeutic effect of 5-FU combined with radiation of A549 cells appeared to be additive rather than synergistic

  10. Detailed Functional and Proteomic Characterization of Fludarabine Resistance in Mantle Cell Lymphoma Cells.

    Directory of Open Access Journals (Sweden)

    Lucie Lorkova

    Full Text Available Mantle cell lymphoma (MCL is a chronically relapsing aggressive type of B-cell non-Hodgkin lymphoma considered incurable by currently used treatment approaches. Fludarabine is a purine analog clinically still widely used in the therapy of relapsed MCL. Molecular mechanisms of fludarabine resistance have not, however, been studied in the setting of MCL so far. We therefore derived fludarabine-resistant MCL cells (Mino/FR and performed their detailed functional and proteomic characterization compared to the original fludarabine sensitive cells (Mino. We demonstrated that Mino/FR were highly cross-resistant to other antinucleosides (cytarabine, cladribine, gemcitabine and to an inhibitor of Bruton tyrosine kinase (BTK ibrutinib. Sensitivity to other types of anti-lymphoma agents was altered only mildly (methotrexate, doxorubicin, bortezomib or remained unaffacted (cisplatin, bendamustine. The detailed proteomic analysis of Mino/FR compared to Mino cells unveiled over 300 differentially expressed proteins. Mino/FR were characterized by the marked downregulation of deoxycytidine kinase (dCK and BTK (thus explaining the observed crossresistance to antinucleosides and ibrutinib, but also by the upregulation of several enzymes of de novo nucleotide synthesis, as well as the up-regulation of the numerous proteins of DNA repair and replication. The significant upregulation of the key antiapoptotic protein Bcl-2 in Mino/FR cells was associated with the markedly increased sensitivity of the fludarabine-resistant MCL cells to Bcl-2-specific inhibitor ABT199 compared to fludarabine-sensitive cells. Our data thus demonstrate that a detailed molecular analysis of drug-resistant tumor cells can indeed open a way to personalized therapy of resistant malignancies.

  11. Melatonin overcomes resistance to clofarabine in two leukemic cell lines by increased expression of deoxycytidine kinase.

    Science.gov (United States)

    Yamanishi, Miho; Narazaki, Hidehiko; Asano, Takeshi

    2015-03-01

    Drug resistance remains a serious problem in leukemia therapy. Among newly developed nucleoside antimetabolites, clofarabine has broad cytotoxic activity showing therapeutic promise and is currently approved for relapsed acute lymphoblastic leukemia. To investigate the mechanisms responsible for clofarabine resistance, we established two clofarabine-resistant lymphoblastic leukemia cell lines from parental lines. To elucidate the mechanisms against clofarabine resistance in two newly established clofarabine-resistant cell lines, we measured the expression of export pumps multidrug resistance protein 1, multidrug resistance-associated protein 1, and ATP-binding cassette subfamily G member 2. There were no differences in the expression between clofarabine-sensitive and -resistant cell lines. Next, we determined expression of deoxycytidine kinase (dCK), which phosphorylates clofarabine to exert cytotoxicity, in clofarabine-sensitive and -resistant cells. Clofarabine-resistant cells showed significantly decreased expression of dCK RNA when compared with sensitive cells. To elucidate the mechanisms of decreased dCK expression in clofarabine-resistant cells, we analyzed the methylation status of CpG islands of the dCK promoter and found no differences in methylation status between clofarabine-sensitive and -resistant cells. Next, we measured the acetylation status of histone and found that total histone acetylation, and histone H3 and H4 acetylation on chromatin immunoprecipitation assay were significantly decreased in resistant cells. Melatonin is an indolamine that functions in the regulation of chronobiological rhythms to exert cytotoxic effects. We examined the effects of melatonin in clofarabine-resistant cells and found that melatonin treatment led to significantly increased cytotoxicity with clofarabine in resistant cells via increased acetylation. Melatonin may be a useful candidate for overcoming clofarabine resistance in two newly established clofarabine

  12. Gene Mutation as Biomarker of Radiation Induced Cell Injury and Genomic Instability

    Directory of Open Access Journals (Sweden)

    M Syaifudin

    2006-07-01

    Full Text Available Gene expression profiling and its mutation has become one of the most widely used approaches to identify genes and their functions in the context of identify and categorize genes to be used as radiation effect markers including cell and tissue sensitivities. Ionizing radiation produces genetic damage and changes in gene expression that may lead to cancer due to specific protein that controlling cell proliferation altered the function, its expression or both. P53 protein encoded by p53 gene plays an important role in protecting cell by inducing growth arrest and or cell suicide (apoptosis after deoxyribonucleic acid (DNA damage induced by mutagen such as ionizing radiation. The mutant and thereby dysfunctional of this gene was found in more than 50% of various human cancers, but it is as yet unclear how p53 mutations lead to neoplastic development. Wild-type p53 has been postulated to play a role in DNA repair, suggesting that expression of mutant forms of p53 might alter cellular resistance to the DNA damage caused by radiation. Moreover, p53 is thought to function as a cell cycle checkpoint after irradiation, also suggesting that mutant p53 might change the cellular proliferative response to radiation. p53 mutations affect the cellular response to DNA damage, either by increasing DNA repair processes or, possibly, by increasing cellular tolerance to DNA damage. The association of p53 mutations with increased radioresistance suggests that alterations in the p53 gene might lead to oncogenic transformation. Current attractive model of carcinogenesis also showed that p53 gene is the major target of radiation. The majority of p53 mutations found so far is single base pairchanges (point mutations, which result in amino acid substitutionsor truncated forms of the P53 protein, and are widely distributedthroughout the evolutionarily conserved regions of the gene. Examination of p53 mutations in human cancer also shows an association between particular

  13. Auro