WorldWideScience

Sample records for cell proliferation appears

  1. High mobility group box associated with cell proliferation appears to play an important role in hepatocellular carcinogenesis in rats and humans

    International Nuclear Information System (INIS)

    To identify genes important in hepatocellular carcinogenesis, especially processes involved in malignant transformation, we focused on differences in gene expression between adenomas and carcinomas by DNA microarray. Eighty-one genes for which expression was specific in carcinomas were analyzed using Ingenuity Pathway Analysis software and Gene Ontology, and found to be associated with TP53 and regulators of cell proliferation. In the genes associated with TP53, we selected high mobility group box (HMGB) for detailed analysis. Immunohistochemistry revealed expression of HMGBs in carcinomas to be significantly higher than in other lesions among both human and rat liver, and a positive correlation between HMGBs and TP53 was detected in rat carcinomas. Knock-down of HMGB 2 expression in a rat hepatocellular carcinoma cell line by RNAi resulted in inhibition of cell growth, although no effects on invasion were evident in vitro. These results suggest that acquisition of malignant potential in the liver requires specific signaling pathways related to high cell proliferation associated with TP53. In particular, HMGBs appear to have an important role for progression and cell proliferation associated with loss of TP53 function in rat and in human hepatocarcinogenesis

  2. Distinct effects of pramipexole on the proliferation of adult mouse sub-ventricular zone-derived cells and the appearance of a neuronal phenotype.

    Science.gov (United States)

    Merlo, Sara; Canonico, Pier Luigi; Sortino, Maria Angela

    2011-05-01

    Pramipexole (PPX) is a dopamine agonist with an 8-fold higher affinity for D3 than D2 receptor, whose efficacy in the treatment of Parkinson's disease is based on dopamine agonistic activity. PPX has also been recently shown to be endowed with neuroprotective activity and neurogenic potential. The aim of this study was a more detailed characterization of PPX-induced neurogenesis. Both D2 and D3 receptors are expressed in floating and differentiated neurospheres obtained from the sub-ventricular zone (SVZ) of adult mice. Treatment of secondary neurospheres with 10 μM PPX causes a marked induction of cell proliferation, assessed by enhanced cell number and S phase population at cell cycle analysis. Stimulation of proliferation by PPX is still detectable in plated neurospheres before the onset of migration and differentiation, as by enhanced BrdU incorporation. This effect is sensitive to the selective D3 dopamine receptor antagonist U99194A, as well as to sulpiride. A 24 h treatment with PPX does not modify the morphology of neurosphere-derived cells, but causes an increase of glial fibrillary acidic protein (GFAP)-positive cells, an effect sensitive to both D2 and D3 antagonism. Differentiation toward the neuronal lineage is increased by PPX as shown by enhancement of the cell population positive to the early neuronal marker doublecortin (DCX) at 24 h and the mature neuronal marker microtubule associated protein (MAP2) at 72 h. This effect is not modified by treatment with U99194A and is mimicked by BDNF. Accordingly, PPX increases BDNF release with a mechanism involving D2 but not D3 receptors. PMID:21272591

  3. Cell Proliferation in Neuroblastoma

    Directory of Open Access Journals (Sweden)

    Laura L. Stafman

    2016-01-01

    Full Text Available Neuroblastoma, the most common extracranial solid tumor of childhood, continues to carry a dismal prognosis for children diagnosed with advanced stage or relapsed disease. This review focuses upon factors responsible for cell proliferation in neuroblastoma including transcription factors, kinases, and regulators of the cell cycle. Novel therapeutic strategies directed toward these targets in neuroblastoma are discussed.

  4. Negative regulators of cell proliferation

    Science.gov (United States)

    Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Cell proliferation is governed by the influence of both mitogens and inhibitors. Although cell contact has long been thought to play a fundamental role in cell cycling regulation, and negative regulators have long been suspected to exist, their isolation and purification has been complicated by a variety of technical difficulties. Nevertheless, over recent years an ever-expanding list of putative negative regulators have emerged. In many cases, their biological inhibitory activities are consistent with density-dependent growth inhibition. Most likely their interactions with mitogenic agents, at an intracellular level, are responsible for either mitotic arrest or continued cell cycling. A review of naturally occurring cell growth inhibitors is presented with an emphasis on those factors shown to be residents of the cell surface membrane. Particular attention is focused on a cell surface sialoglycopeptide, isolated from intact bovine cerebral cortex cells, which has been shown to inhibit the proliferation of an unusually wide range of target cells. The glycopeptide arrest cells obtained from diverse species, both fibroblasts and epithelial cells, and a broad variety of transformed cells. Signal transduction events and a limited spectrum of cells that are refractory to the sialoglycopeptide have provided insight into the molecular events mediated by this cell surface inhibitor.

  5. Nanoparticles for cells proliferation enhancement

    International Nuclear Information System (INIS)

    The potential of semiconductor nanoparticles as stimulator for avian mesenchyme stem cells proliferation enhancement is demonstrated. The effect is related to nanoparticles polarization due to external ultrasound field resulting in local electrical stimulation. Our preliminary results demonstrates that the number of cells have been increased by 23 % ±2%) in cell cultures under the action of external ultrasound stimulation. Morphological analysis and viability shows no differences between the control group and the group studied. These results suggest the possibility for tissue regeneration enhancement by remote stimulation of implanted semiconductor nanoparticles. (authors)

  6. Eccentric exercise facilitates mesenchymal stem cell appearance in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    M Carmen Valero

    Full Text Available Eccentric, or lengthening, contractions result in injury and subsequently stimulate the activation and proliferation of satellite stem cells which are important for skeletal muscle regeneration. The discovery of alternative myogenic progenitors in skeletal muscle raises the question as to whether stem cells other than satellite cells accumulate in muscle in response to exercise and contribute to post-exercise repair and/or growth. In this study, stem cell antigen-1 (Sca-1 positive, non-hematopoetic (CD45⁻ cells were evaluated in wild type (WT and α7 integrin transgenic (α7Tg mouse muscle, which is resistant to injury yet liable to strain, 24 hr following a single bout of eccentric exercise. Sca-1⁺CD45⁻ stem cells were increased 2-fold in WT muscle post-exercise. The α7 integrin regulated the presence of Sca-1⁺ cells, with expansion occurring in α7Tg muscle and minimal cells present in muscle lacking the α7 integrin. Sca-1⁺CD45⁻ cells isolated from α7Tg muscle following exercise were characterized as mesenchymal-like stem cells (mMSCs, predominantly pericytes. In vitro multiaxial strain upregulated mMSC stem cells markers in the presence of laminin, but not gelatin, identifying a potential mechanistic basis for the accumulation of these cells in muscle following exercise. Transplantation of DiI-labeled mMSCs into WT muscle increased Pax7⁺ cells and facilitated formation of eMHC⁺DiI⁻ fibers. This study provides the first demonstration that mMSCs rapidly appear in skeletal muscle in an α7 integrin dependent manner post-exercise, revealing an early event that may be necessary for effective repair and/or growth following exercise. The results from this study also support a role for the α7 integrin and/or mMSCs in molecular- and cellular-based therapeutic strategies that can effectively combat disuse muscle atrophy.

  7. Eccentric exercise facilitates mesenchymal stem cell appearance in skeletal muscle.

    Science.gov (United States)

    Valero, M Carmen; Huntsman, Heather D; Liu, Jianming; Zou, Kai; Boppart, Marni D

    2012-01-01

    Eccentric, or lengthening, contractions result in injury and subsequently stimulate the activation and proliferation of satellite stem cells which are important for skeletal muscle regeneration. The discovery of alternative myogenic progenitors in skeletal muscle raises the question as to whether stem cells other than satellite cells accumulate in muscle in response to exercise and contribute to post-exercise repair and/or growth. In this study, stem cell antigen-1 (Sca-1) positive, non-hematopoetic (CD45⁻) cells were evaluated in wild type (WT) and α7 integrin transgenic (α7Tg) mouse muscle, which is resistant to injury yet liable to strain, 24 hr following a single bout of eccentric exercise. Sca-1⁺CD45⁻ stem cells were increased 2-fold in WT muscle post-exercise. The α7 integrin regulated the presence of Sca-1⁺ cells, with expansion occurring in α7Tg muscle and minimal cells present in muscle lacking the α7 integrin. Sca-1⁺CD45⁻ cells isolated from α7Tg muscle following exercise were characterized as mesenchymal-like stem cells (mMSCs), predominantly pericytes. In vitro multiaxial strain upregulated mMSC stem cells markers in the presence of laminin, but not gelatin, identifying a potential mechanistic basis for the accumulation of these cells in muscle following exercise. Transplantation of DiI-labeled mMSCs into WT muscle increased Pax7⁺ cells and facilitated formation of eMHC⁺DiI⁻ fibers. This study provides the first demonstration that mMSCs rapidly appear in skeletal muscle in an α7 integrin dependent manner post-exercise, revealing an early event that may be necessary for effective repair and/or growth following exercise. The results from this study also support a role for the α7 integrin and/or mMSCs in molecular- and cellular-based therapeutic strategies that can effectively combat disuse muscle atrophy. PMID:22253772

  8. Molecular structure and biological function of proliferating cell nuclear antigen

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Proliferating cell nuclear antigen (PCNA) is the core component of replication complex in eukaryote.As a processive factor of DNA polymerase delta, PCNA coordinates the replication process by interacting with various replication proteins. PCNA appears to play an essential role in many cell events, such as DNA damage repair, cell cycle regulation, and apoptosis, through the coordination or organization of different partners. PCNA is an essential factor in cell proliferation, and has clinical significance in tumor research. In this article we review the functional structure of PCNA, which acts as a function switch in different cell events.

  9. Control of cell proliferation by Myc

    DEFF Research Database (Denmark)

    Bouchard, C; Staller, P; Eilers, M

    1998-01-01

    Myc proteins are key regulators of mammalian cell proliferation. They are transcription factors that activate genes as part of a heterodimeric complex with the protein Max. This review summarizes recent progress in understanding how Myc stimulates cell proliferation and how this might contribute to...

  10. Eccentric Exercise Facilitates Mesenchymal Stem Cell Appearance in Skeletal Muscle

    OpenAIRE

    M Carmen Valero; Huntsman, Heather D.; Jianming Liu; Kai Zou; Boppart, Marni D.

    2012-01-01

    Eccentric, or lengthening, contractions result in injury and subsequently stimulate the activation and proliferation of satellite stem cells which are important for skeletal muscle regeneration. The discovery of alternative myogenic progenitors in skeletal muscle raises the question as to whether stem cells other than satellite cells accumulate in muscle in response to exercise and contribute to post-exercise repair and/or growth. In this study, stem cell antigen-1 (Sca-1) positive, non-hemat...

  11. Erythropoietin -induced proliferation of gastric mucosal cells

    OpenAIRE

    Itoh, Kazuro; Sawasaki, Yoshio; Takeuchi, Kyoko; Kato, Shingo; Imai, Nobuhiro; Kato, Yoichiro; Shibata, Noriyuki; KOBAYASHI, MAKIO; Moriguchi, Yoshiyuki; Higuchi, Masato; Ishihata, Fumio; Sudoh, Yushi; Miura, Soichiro

    2006-01-01

    AIM: To analyze the localization of erythropoietin receptor on gastric specimens and characterize the effects of erythropoietin on the normal gastric epithelial proliferation using a porcine gastric epithelial cell culture model.

  12. Cell proliferation and differentiation in chemical leukemogenesis

    Science.gov (United States)

    Irons, R. D.; Stillman, W. S.; Clarkson, T. W. (Principal Investigator)

    1993-01-01

    In tissues such as bone marrow with normally high rates of cell division, proliferation is tightly coordinated with cell differentiation. Survival, proliferation and differentiation of early hematopoietic progenitor cells depend on the growth factors, interleukin 3 (IL-3) and/or granulocyte-macrophage colony stimulating factor (GM-CSF) and their synergism with other cytokines. We provide evidence that a characteristic shared by a diverse group of compounds with demonstrated leukemogenic potential is the ability to act synergistically with GM-CSF. This results in an increase in recruitment of a resting population of hematopoietic progenitor cells normally unresponsive to the cytokine and a twofold increase in the size of the proliferating cell population normally regarded to be at risk of transformation in leukemogenesis. These findings support the possibility that transient alterations in hematopoietic progenitor cell differentiation may be an important factor in the early stages of development of leukemia secondary to chemical or drug exposure.

  13. Invasion and Proliferation in Malignant Cells

    OpenAIRE

    Svensson Månsson, Sofie

    2006-01-01

    Two key events in the oncogenic process of tumor cells are to acquire uncontrolled proliferation and invasive properties. This allows the tumor to grow and invade beyond the tissue from which the tumor cells originate. We here specifically studied p16 and ERK1/2 with special focus on and the relation to proliferation and invasion in non-melanoma skin cancer and in breast cancer. In a model system of basal cell carcinoma, we observed that tumor cells changed phenotype from a highly prol...

  14. Oat cell carcinoma of the esophagus: Unusual radiological appearances

    International Nuclear Information System (INIS)

    Primary oat cell carcinoma of the esophagus is a very rare tumour. The radiographic appearance of the three cases described in this paper are unusual because they resemble benign lesions such as leiomyoma, fibrous polyp and candidiasis. It would be interesting to investigate whether such an unusual appearance is common for this neoplasm. (orig.)

  15. Oat cell carcinoma of the esophagus: Unusual radiological appearances

    Energy Technology Data Exchange (ETDEWEB)

    Bedi, D.G.; Shaw, M.T.

    1986-08-01

    Primary oat cell carcinoma of the esophagus is a very rare tumour. The radiographic appearance of the three cases described in this paper are unusual because they resemble benign lesions such as leiomyoma, fibrous polyp and candidiasis. It would be interesting to investigate whether such an unusual appearance is common for this neoplasm.

  16. Multilocular Cystic Renal Cell Carcinoma: An Unusual Gross Appearance

    OpenAIRE

    Nikumbh, Dhiraj B.; Sunil V. Jagtap; Gaurav Jain; Roopali K Mali

    2011-01-01

    Multilocular Cystic Renal Cell Carcinoma (MCRCC) represents a rare variant of clear cell (conventional) renal cell carcinomas. Attributable to its distinct characteristics in prognosis and its natural history, MCRCC was recognised as a separate subtype of renal cell carcinoma in the 2004 WHO classification of adult renal tumors. We report this case of MCRCC from antemortem surgical specimen, due to its unusual gross appearance and a rare clinical entity.

  17. Multilocular Cystic Renal Cell Carcinoma: An Unusual Gross Appearance

    Directory of Open Access Journals (Sweden)

    Dhiraj B Nikumbh

    2011-04-01

    Full Text Available Multilocular Cystic Renal Cell Carcinoma (MCRCC represents a rare variant of clear cell (conventional renal cell carcinomas. Attributable to its distinct characteristics in prognosis and its natural history, MCRCC was recognised as a separate subtype of renal cell carcinoma in the 2004 WHO classification of adult renal tumors. We report this case of MCRCC from antemortem surgical specimen, due to its unusual gross appearance and a rare clinical entity.

  18. Skin cell proliferation stimulated by microneedles.

    Science.gov (United States)

    Liebl, Horst; Kloth, Luther C

    2012-03-01

    A classical wound may be defined as a disruption of tissue integrity. Wounds, caused by trauma from accidents or surgery, that close via secondary intention rely on the biological phases of healing, i.e., hemostasis, inflammation, proliferation, and remodeling (HIPR). Depending on the wound type and severity, the inflammation phase begins immediately after injury and may last for an average of 7-14 days. Concurrent with the inflammation phase or slightly delayed, cell proliferation is stimulated followed by the activation of the remodeling (maturation) phase. The latter phase can last as long as 1 year or more, and the final healed state is represented by a scar tissue, a cross-linked collagen formation that usually aligns collagen fibers in a single direction. One may assume that skin microneedling that involves the use of dozens or as many as 200 needles that limit penetration to 1.5 mm over 1 cm(2) of skin would cause trauma and bleeding followed by the classical HIPR. However, this is not the case or at least the HIPR phases are significantly curtailed and healing never ends in a scar formation. Conversely dermabrasion used in aesthetic medicine for improving skin quality is based on "ablation" (destruction or wounding of superficial skin layers), which requires several weeks for healing that involves formation of new skin layers. Such procedures provoke an acute inflammatory response. We believe that a less intense inflammatory response occurs following microneedle perforation of the skin. However, the mechanism of action of microneedling appears to be different. Here we review the potential mechanisms by which microneedling of the skin facilitates skin repair without scarring after the treatment of superficial burns, acne, hyperpigmentation, and the non-advancing periwound skin surrounding the chronic ulcerations of the integument. PMID:24527373

  19. Skin Cell Proliferation Stimulated by Microneedles

    OpenAIRE

    Liebl, Horst; Luther C. Kloth

    2012-01-01

    A classical wound may be defined as a disruption of tissue integrity. Wounds, caused by trauma from accidents or surgery, that close via secondary intention rely on the biological phases of healing, i.e., hemostasis, inflammation, proliferation, and remodeling (HIPR). Depending on the wound type and severity, the inflammation phase begins immediately after injury and may last for an average of 7–14 days. Concurrent with the inflammation phase or slightly delayed, cell proliferation is stimula...

  20. Hepatocellular Carcinoma with Foamy Histiocyte-Like Appearance: A Deceptively Clear Cell Carcinoma Appearing Variant

    Directory of Open Access Journals (Sweden)

    Takuji Noro

    2010-08-01

    Full Text Available Hepatocellular carcinoma (HCC shows many pathological features, and it varies architecturally and cytologically. There have been many reports and discussions of the morphological features of HCC. A 63-year-old man was found to have a solitary tumor in liver segment 7 that was diagnosed as HCC. A partial resection of liver segment 7 was performed. Microscopically, the tumor lesion showed a moderately differentiated HCC. There was also a lesion with foamy histiocyte-like cells corresponding to the white lesion in the face of the cut tumor. Immunohistochemical staining showed that they were negative for CD68, S-100, vimentin, and HMB-45. The cytoplasm itself was negative on periodic acid Schiff (PAS and Sudan staining. Without immunohistological analysis, it is difficult to distinguish this HCC variant from clear cell carcinoma or metastases of renal cell carcinoma. It is important to recognize this type as a specific cytological variant of HCC that requires confirmation by immunohistochemistry. This report describes the case of a patient with a morphologically distinctive pattern of HCC with prominent cell cytoplasm that had a foamy histiocyte-like appearance. To the best of our knowledge, this is the first report of this HCC variant.

  1. Lensless imaging system to quantify cell proliferation

    Science.gov (United States)

    Vinjimore Kesavan, S.; Allier, C. P.; Navarro, F.; Mittler, F.; Chalmond, B.; Dinten, J.-M.

    2013-02-01

    Owing to its simplicity, lensless imaging system is adept at continuous monitoring of adherent cells inside the incubator. The setup consists of a CMOS sensor with pixel pitch of 2.2 μm and field of view of 24 mm2, LED with a dominating wavelength of 525 nm, along with a pinhole of 150 μm as the source of illumination. The in-line hologram obtained from cells depends on the degree of cell-substrate adhesion. Drastic difference is observed between the holographic patterns of floating and adherent cells. In addition, the well-established fact of reduction of cell-substrate contact during cell division is observed with our system based on corresponding spontaneous transition in the holographic pattern. Here, we demonstrate that by recognizing this specific holographic pattern, number of cells undergoing mitosis in a cell culture with a population of approximately 5000 cells, can be estimated in real-time. The method is assessed on comparison with Edu-based proliferation assay. The approach is straightforward and it eliminates the use of markers to estimate the proliferation rate of a given cell culture. Unlike most proliferation assays, the cells are not harvested enabling continuous monitoring of cell culture.

  2. Proliferation of luteal steroidogenic cells in cattle.

    Directory of Open Access Journals (Sweden)

    Shin Yoshioka

    Full Text Available The rapid growth of the corpus luteum (CL after ovulation is believed to be mainly due to an increase in the size of luteal cells (hypertrophy rather than an increase in their number. However, the relationship between luteal growth and the proliferation of luteal steroidogenic cells (LSCs is not fully understood. One goal of the present study was to determine whether LSCs proliferate during CL growth. A second goal was to determine whether luteinizing hormone (LH, which is known have roles in the proliferation and differentiation of follicular cells, also affects the proliferation of LSCs. Ki-67 (a cell proliferation marker was expressed during the early, developing and mid luteal stages and some Ki-67-positive cells co-expressed HSD3B (a steroidogenic marker. DNA content in LSCs isolated from the developing CL increased much more rapidly (indicating rapid growth than did DNA content in LSCs isolated from the mid CL. The cell cycle-progressive genes CCND2 (cyclin D2 and CCNE1 (cyclin E1 mRNA were expressed more strongly in the small luteal cells than in the large luteal cells. LH decreased the rate of increase of DNA in LSCs isolated from the mid luteal stage but not in LSCs from the developing stage. LH suppressed CCND2 expression in LSCs from the mid luteal stage but not from the developing luteal stage. Furthermore, LH receptor (LHCGR mRNA expression was higher at the mid luteal stage than at the developing luteal stage. The overall results suggest that the growth of the bovine CL is due to not only hypertrophy of LSCs but also an increase in their number, and that the proliferative ability of luteal steroidogenic cells decreases between the developing and mid luteal stages.

  3. Mitochondrial Regulation of Cell Cycle and Proliferation

    OpenAIRE

    Antico Arciuch, Valeria Gabriela; Elguero, María Eugenia; Poderoso, Juan José; Carreras, María Cecilia

    2012-01-01

    Eukaryotic mitochondria resulted from symbiotic incorporation of α-proteobacteria into ancient archaea species. During evolution, mitochondria lost most of the prokaryotic bacterial genes and only conserved a small fraction including those encoding 13 proteins of the respiratory chain. In this process, many functions were transferred to the host cells, but mitochondria gained a central role in the regulation of cell proliferation and apoptosis, and in the modulation of metabolism; accordingly...

  4. Predators inhibit brain cell proliferation in natural populations of electric fish, Brachyhypopomus occidentalis.

    Science.gov (United States)

    Dunlap, Kent D; Tran, Alex; Ragazzi, Michael A; Krahe, Rüdiger; Salazar, Vielka L

    2016-02-10

    Compared with laboratory environments, complex natural environments promote brain cell proliferation and neurogenesis. Predators are one important feature of many natural environments, but, in the laboratory, predatory stimuli tend to inhibit brain cell proliferation. Often, laboratory predatory stimuli also elevate plasma glucocorticoids, which can then reduce brain cell proliferation. However, it is unknown how natural predators affect cell proliferation or whether glucocorticoids mediate the neurogenic response to natural predators. We examined brain cell proliferation in six populations of the electric fish, Brachyhypopomus occidentalis, exposed to three forms of predator stimuli: (i) natural variation in the density of predatory catfish; (ii) tail injury, presumably from predation attempts; and (iii) the acute stress of capture. Populations with higher predation pressure had lower density of proliferating (PCNA+) cells, and fish with injured tails had lower proliferating cell density than those with intact tails. However, plasma cortisol did not vary at the population level according to predation pressure or at the individual level according to tail injury. Capture stress significantly increased cortisol, but only marginally decreased cell proliferation. Thus, it appears that the presence of natural predators inhibits brain cell proliferation, but not via mechanisms that depend on changes in basal cortisol levels. This study is the first demonstration of predator-induced alteration of brain cell proliferation in a free-living vertebrate. PMID:26842566

  5. Proliferation of osteoblast cells on nanotubes

    Institute of Scientific and Technical Information of China (English)

    F.WATARI; T.AKASAKA; Xiaoming LI; M.UO; A.YOKOYAMA

    2009-01-01

    Carbon nanotubes (CNT) have a unique structme and feature. In the present study, cell proliferation was performed on the scaffolds of single-walled CNTs (SWCNT), multiwalled CNTs (MWCNT), and on gra-phita, one of the representative isomorphs of pure carbon,for the sake of comparison. Scanning electron microscopy observation of the growth of osteoblast-like cells (Saps2) cultttred on CNTs showed the morphology fully developed for the whole direction, which is different from that extended to one direction on the usual scaffold. Numerous filopodia were grown from cell edge, extended far long and combined with the CNT meshwork. CNTs showed the affinity for collagen and proteins. Proliferated cell numbers are largest on SWCNTs, followed by MWCNTs, and are very low on graphite. This is in good agreement with the sequence in the results of the adsorbed amount of proteins and expression of alkaline phosphatase activity for these scaffolds. The adsorption of protains would be one of the most influential factors to make a contrast difference in cell attachment and proliferation between graphite and CNTs,both of which are isomorphs of carbon and composed of similar graphene sheet crystal structure. In addition, the nanosize meshwork structure with large porosity is another properly responsible for the excellent cell adhesion and growth on CNTs. CNTs could be the favorable materials for biomedical applications.CNTs with different structures and compositions have been synthesized and discovered [3]. Nanomaterials [2-9] and nanocomposites [10-15] may have various effects onliving organisms. In this study, a fundamental study for biomedical application, cell proliferation was performed on various nanotubes (biT), including (1) single-walled CNTs (SWCNT), (2) multiwalled CNTs (MWCNT), and on graphite, an isomorph of CNT, as a comparison.Figure 1 shows the schematic figures of two different crystal structures of carbon: graphite and CNT. Graphite has the layer-by-layer laminated

  6. Cell proliferation inhibition in reduced gravity

    Science.gov (United States)

    Moos, P. J.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Extended durations of spaceflight have been shown to be deleterious on an organismic level; however, mechanisms underlying cellular sensitivity to the gravitational environment remain to be elucidated. The majority of the gravitational studies to date indicates that cell regulatory pathways may be influenced by their gravitational environment. Still, few cell biology experiments have been performed in space flight and even fewer experiments have been repeated on subsequent flights. With flight opportunities on STS-50, 54, and 57, Sf9 cells were flown in the BioServe Fluids Processing Apparatus and cell proliferation was measured with and without exposure to a cell regulatory sialoglycopeptide (CeReS) inhibitor. Results from these flights indicate that the Sf9 cells grew comparable to ground controls, that the CeReS inhibitor bound to its specific receptor, and that its signal transduction cascade was not gravity sensitive.

  7. Cell adhesion and proliferation on modified polyethylene

    Czech Academy of Sciences Publication Activity Database

    Kasálková, N.; Kolářová, K.; Bačáková, Lucie; Pařízek, Martin; Macková, Anna; Švorčík, V.

    ZURICH: TRANS TECH PUBLICATIONS LTD, 2008 - (Sandera, P.), s. 269-272. (MATERIALS SCIENCE FORUM. 567-568). ISSN 0255-5476. [5th International Conference on Materials Structure & Micromechanics of Fracture. Brno (CZ), 27.06.2007-29.06.2007] Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z50110509 Keywords : polyethylene * plasma modification * cell adhesion and proliferation Subject RIV: BO - Biophysics

  8. Collagen coated tantalum substrate for cell proliferation.

    Science.gov (United States)

    Li, Yinli; Zhang, Shuai; Guo, Lijun; Dong, Mingdong; Liu, Bo; Mamdouh, Wael

    2012-06-15

    The extracellular matrix (ECM) plays a key role in cell culture in various physiological and pathological processes in the field of tissue engineering. Recently, the type I collagen ECM has been widely utilized in vitro model systems for the attachment of many different cell lines since it has multi-functions in human tissues. For example it accounts for 6% of the weight of strong, tendinous muscles. In this paper, we reported a new material by coating tantalum (Ta), one highly biocompatible metal, with type I collagen fibrils. The morphology of the new material was studied by high resolution atomic force microscope. It was shown that the adhesion force between type I collagen fibrils network and Ta was strong enough to overcome surface defects. A possible way to explain the phenomenon is that the longitudinal periodicity of collagen fibrils matches the grain size of the Ta domains, which results in increase of the physical adsorption contact area, thereby inducing the dramatic adhesion enhancement between collagen fibrils and Ta. The obtained material was then employed as a template for cell proliferation. Although the surface of this template is more hydrophobic by comparison with the bare Ta surface, the cells on this material were successfully incubated, indicating that the collagen coated Ta might be used as the buffer layer for proliferating cells in hydrophobic biomaterials. PMID:22494669

  9. Observations on proliferating sheath cells in the regenerating nerves of lizard

    OpenAIRE

    Alibardi, Lorenzo

    1996-01-01

    The proliferation of sheath cells (Schwann and endoneurium) of growing nerves has been studied by autoradiography after 3~-thymidinead ministration to lizards (Anolis carolinensis and Lampropholis delicata) with regenerating tails. Schwann cells of regenerating nerves derive from the multiplication of resident cells within the growing nerves, but labelled Schwann cells derived from the regenerative blastema also appear to ensheath the new axons. Endoneurium cel...

  10. Liver epithelial cells inhibit proliferation and invasiveness of hepatoma cells.

    Science.gov (United States)

    Jeng, Kuo-Shyang; Jeng, Chi-Juei; Jeng, Wen-Juei; Sheen, I-Shyan; Li, Shih-Yun; Hung, Zih-Hang; Hsiau, Hsin-I; Yu, Ming-Che; Chang, Chiung-Fang

    2016-03-01

    Hepatocellular carcinoma (HCC) is a worldwide malignancy with poor prognosis. Liver progenitors or stem cells could be a potential therapy for HCC treatment since they migrate toward tumors. Rat liver epithelial (RLE) cells have both progenitor and stem cell-like properties. Therefore, our study elucidated the therapeutic effect of RLE cells in rat hepatoma cells. RLE cells were isolated from 10-day old rats and characterized for stem cell marker expression. RLE cells and rat hepatoma cells (H4-IIE-C3 cells) were co-cultured and divided into four groups with different ratios of RLE and hepatoma cells. Group A had only rat hepatoma cells as a control group. The ratios of rat hepatoma and RLE cells in group B, C and D were 5:1, 1:1 and 1:5, respectively. Effective inhibition of cell proliferation and migration was found in group D when compared to group A. There was a significant decrease in Bcl2 expression and increase in late apoptosis of rat hepatoma cells when adding more RLE cells. RLE cells reduced cell proliferation and migration of rat hepatoma cells. These results suggested that RLE cells could be used as a potential cell therapy. PMID:26647726

  11. Inhibitory Effect of Cantharidin on Proliferation of A549 Cells

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-hua; YIN Yuan-qin; SUI Cheng-guang; MENG Fan-dong; MA Ping; JIANG You-hong

    2007-01-01

    Objective: To study the inhibition of Cantharidin against the proliferation of human lung cancer A549 cells and its mechanism. Methods: MTT assay was employed to determine the inhibition of Cantharidin against proliferation of A549 cells and flow Cytometry was applied to analyze A549 cell cycle and the effect of Cantharidin on cell cycle. Results: Cantharidin showed inhibition against the proliferation of A549 cells, and the inhibition was mediated by blocking A549 cell cycle at G2/M phase significantly. Conclusion: Cantharidin exhibits inhibition against the proliferation of human lung cancer A549 cells.

  12. Quantitative analysis of in vivo cell proliferation.

    Science.gov (United States)

    Cameron, Heather A

    2006-11-01

    Injection and immunohistochemical detection of 5-bromo-2'-deoxyuridine (BrdU) has become the standard method for studying the birth and survival of neurons, glia, and other cell types in the nervous system. BrdU, a thymidine analog, becomes stably incorporated into DNA during the S-phase of mitosis. Because DNA containing BrdU can be specifically recognized by antibodies, this method allows dividing cells to be marked at any given time and then identified at time points from a few minutes to several years later. BrdU immunohistochemistry is suitable for cell counting to examine the regulation of cell proliferation and cell fate. It can be combined with labeling by other antibodies, allowing confocal analysis of cell phenotype or expression of other proteins. The potential for nonspecific labeling and toxicity are discussed. Although BrdU immunohistochemistry has almost completely replaced tritiated thymidine autoradiography for labeling dividing cells, this method and situations in which it is still useful are also described. PMID:18428635

  13. Numb-deficient satellite cells have regeneration and proliferation defects.

    Science.gov (United States)

    George, Rajani M; Biressi, Stefano; Beres, Brian J; Rogers, Erik; Mulia, Amanda K; Allen, Ronald E; Rawls, Alan; Rando, Thomas A; Wilson-Rawls, Jeanne

    2013-11-12

    The adaptor protein Numb has been implicated in the switch between cell proliferation and differentiation made by satellite cells during muscle repair. Using two genetic approaches to ablate Numb, we determined that, in its absence, muscle regeneration in response to injury was impaired. Single myofiber cultures demonstrated a lack of satellite cell proliferation in the absence of Numb, and the proliferation defect was confirmed in satellite cell cultures. Quantitative RT-PCR from Numb-deficient satellite cells demonstrated highly up-regulated expression of p21 and Myostatin, both inhibitors of myoblast proliferation. Transfection with Myostatin-specific siRNA rescued the proliferation defect of Numb-deficient satellite cells. Furthermore, overexpression of Numb in satellite cells inhibited Myostatin expression. These data indicate a unique function for Numb during the initial activation and proliferation of satellite cells in response to muscle injury. PMID:24170859

  14. Cell proliferation alterations in Chlorella cells under stress conditions

    International Nuclear Information System (INIS)

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  15. Cell proliferation alterations in Chlorella cells under stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rioboo, Carmen [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); O' Connor, Jose Enrique [Laboratorio de Citomica, Unidad Mixta de Investigacion CIPF-UVEG, Centro de Investigacion Principe Felipe, Avda. Autopista del Saler, 16, 46013 Valencia (Spain); Prado, Raquel; Herrero, Concepcion [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); Cid, Angeles, E-mail: cid@udc.es [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain)

    2009-09-14

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  16. Proliferating cell nuclear antigen: a marker for hepatocellular proliferation in rodents.

    OpenAIRE

    Eldrige, S R; Butterworth, B E; Goldsworthy, T L

    1993-01-01

    Two different markers for quantitating cell proliferation were evaluated in livers of control and chemically treated mice and rats. Proliferating cell nuclear antigen (PCNA), an endogenous cell replication marker, and bromodeoxyuridine (BrdU), an exogenously administered DNA precursor label, were detected in formalin-fixed, paraffin-embedded tissues using immunohistochemical techniques. The percentage of cells in S phase (labeling indexes, LI) evaluated as PCNA- or BrdU-positive hepatocellula...

  17. Cell proliferation in the developing rat pineal gland.A bromodeoxyuridine immunohistochemical study

    OpenAIRE

    Calvo, J.L.; Boya, J; Carbonell, A L; García-Mauriño, J.E.

    2000-01-01

    The immunohistochemical detection of bromodeoxyuridine (BrdU) was used to study the cell proliferation in the developing rat pineal gland, from the appearance of pineal primordium in the embryonic day 15 (E15) until 30 days after birth. The results showed three different proliferative phases. From E15 to E21, the pineal gland shows a phase of rapid proliferation. The second phase corresponds to the first postnatal week, in which the number of labeled cells per ...

  18. Senegenin promotes in vitro proliferation of human neural progenitor cells

    Institute of Scientific and Technical Information of China (English)

    Fang Shi; Zhigang Liang; Zixuan Guo; Ran Li; Fen Yu; Zhanjun Zhang; Xuan Wang; Xiaomin Wang

    2011-01-01

    Senegenin, an effective component of Polygala tenuifolia root extract, promotes proliferation and differentiation of neural progenitor cells in the hippocampus.However, the effects of senegenin on mesencephalon-derived neural progenitor cells remain poorly understood.Cells from a ventral mesencephalon neural progenitor cell line (ReNcell VM) were utilized as models for pharmaceutical screening.The effects of various senegenin concentrations on cell proliferation were analyzed,demonstrating that high senegenin concentrations (5, 10, 50, and 100 pmo/L), particularly 50 pmol/L, significantly promoted proliferation of ReNcell VM cells.In the mitogen-activated protein kinase signal transduction pathway, senegenin significantly increased phosphorylation levels of extracellular signal-regulated kinases.Moreover, cell proliferation was suppressed by extracellular signal-regulated kinase inhibitors.Results suggested that senegenin contributed to in vitro proliferation of human neural progenitor cells by upregulating phosphorylation of extracellular signal-regulated kinase.

  19. Proliferating cell nuclear antigen in neutrophil fate.

    Science.gov (United States)

    Witko-Sarsat, Véronique; Ohayon, Delphine

    2016-09-01

    The life span of a neutrophil is a tightly regulated process as extended survival is beneficial for pathogen elimination and cell death necessary to prevent cytotoxic content release from activated neutrophils at the inflammatory site. Therefore, the control between survival and death must be a dynamic process. We have previously described that proliferating cell nuclear antigen (PCNA) which is known as a nuclear protein pivotal in DNA synthesis, is a key element in controlling neutrophil survival through its association with procaspases. Contrary to the dogma which asserted that PCNA has a strictly nuclear function, in mature neutrophils, PCNA is present exclusively within the cytosol due to its nuclear export at the end of the granulocytic differentiation. More recent studies are consistent with the notion that the cytosolic scaffold of PCNA is aimed at modulating neutrophil fate rather than simply preventing death. Ultimately, targeting neutrophil survival might have important applications not just in the field of immunology and inflammation, but also in hematology and transfusion. The neutrophil emerges as a unique and powerful cellular model to unravel the basic mechanisms governing the cell cycle-independent functions of PCNA and should be considered as a leader of the pack. PMID:27558345

  20. Transient processes in cell proliferation kinetics

    CERN Document Server

    Yakovlev, Andrej Yu

    1989-01-01

    A mathematician who has taken the romantic decision to devote himself to biology will doubtlessly look upon cell kinetics as the most simple and natural field of application for his knowledge and skills. Indeed, the thesaurus he is to master is not so complicated as, say, in molecular biology, the structural elements of the system, i. e. ceils, have been segregated by Nature itself, simple considerations of balance may be used for deducing basic equations, and numerous analogies in other areas of science also superficial add to one"s confidence. Generally speaking, this number of impression is correct, as evidenced by the very great theoretical studies on population kinetics, unmatched in other branches of mathematical biology. This, however, does not mean that mathematical theory of cell systems has traversed in its development a pathway free of difficulties or errors. The seeming ease of formalizing the phenomena of cell kinetics not infrequently led to the appearance of mathematical models lacking in adequ...

  1. Differential Glutamate Metabolism in Proliferating and Quiescent Mammary Epithelial Cells.

    Science.gov (United States)

    Coloff, Jonathan L; Murphy, J Patrick; Braun, Craig R; Harris, Isaac S; Shelton, Laura M; Kami, Kenjiro; Gygi, Steven P; Selfors, Laura M; Brugge, Joan S

    2016-05-10

    Mammary epithelial cells transition between periods of proliferation and quiescence during development, menstrual cycles, and pregnancy, and as a result of oncogenic transformation. Utilizing an organotypic 3D tissue culture model coupled with quantitative metabolomics and proteomics, we identified significant differences in glutamate utilization between proliferating and quiescent cells. Relative to quiescent cells, proliferating cells catabolized more glutamate via transaminases to couple non-essential amino acid (NEAA) synthesis to α-ketoglutarate generation and tricarboxylic acid (TCA) cycle anaplerosis. As cells transitioned to quiescence, glutamine consumption and transaminase expression were reduced, while glutamate dehydrogenase (GLUD) was induced, leading to decreased NEAA synthesis. Highly proliferative human tumors display high transaminase and low GLUD expression, suggesting that proliferating cancer cells couple glutamine consumption to NEAA synthesis to promote biosynthesis. These findings describe a competitive and partially redundant relationship between transaminases and GLUD, and they reveal how coupling of glutamate-derived carbon and nitrogen metabolism can be regulated to support cell proliferation. PMID:27133130

  2. Satellite cell proliferation in adult skeletal muscle

    Science.gov (United States)

    Booth, Frank W. (Inventor); Thomason, Donald B. (Inventor); Morrison, Paul R. (Inventor); Stancel, George M. (Inventor)

    1995-01-01

    Novel methods of retroviral-mediated gene transfer for the in vivo corporation and stable expression of eukaryotic or prokaryotic foreign genes in tissues of living animals is described. More specifically, methods of incorporating foreign genes into mitotically active cells are disclosed. The constitutive and stable expression of E. coli .beta.-galactosidase gene under the promoter control of the Moloney murine leukemia virus long terminal repeat is employed as a particularly preferred embodiment, by way of example, establishes the model upon which the incorporation of a foreign gene into a mitotically-active living eukaryotic tissue is based. Use of the described methods in therapeutic treatments for genetic diseases, such as those muscular degenerative diseases, is also presented. In muscle tissue, the described processes result in genetically-altered satellite cells which proliferate daughter myoblasts which preferentially fuse to form a single undamaged muscle fiber replacing damaged muscle tissue in a treated animal. The retroviral vector, by way of example, includes a dystrophin gene construct for use in treating muscular dystrophy. The present invention also comprises an experimental model utilizable in the study of the physiological regulation of skeletal muscle gene expression in intact animals.

  3. Fluorodeoxyglucose cell incorporation as an index of cell proliferation: evaluation of accuracy in cell culture

    International Nuclear Information System (INIS)

    We aimed to correlate the effects of the toxic agents bleomycin and unlabelled meta-iodobenzylguanidine (mIBG) on cellular metabolism and proliferation. We determined the in vitro metabolic and cytotoxic effects of bleomycin and mIBG by measuring the incorporation of fluorine-18 FDG (%UFDG) and hydrogen-3 thymidine (%UTHY) in cells of the human premonocytic line U937 in the presence of increasing concentrations of these agents. Proliferation rate of these cells was studied by means of limiting dilution analysis. %UTHY appeared more sensitive to bleomycin or mIBG-mediated cell injury than %UFDG. After 1 h of exposure to 0.5 μM bleomycin, %UTHY was significantly reduced to 62.0% ± 10.4% of control value whereas %UFDG remained unchanged (91.6% ± 5.3%). Similar results were obtained after 1 h of exposure to increasing concentrations of mIBG (1 μM to 1 mM). After 20 h of exposure to bleomycin, %UTHY and %UFDG were significantly reduced as a function of concentration. After 20 h of exposure to mIBG, a transient increase in %UFDG up to 149.3% ± 11.2% with 50 μM mIBG was further followed by a reduction to 20.1% ± 6.7% with 0.5 mM. The clonogenic efficiency was reduced as a function of bleomycin or mIBG concentration and nearly abolished with 0.1 μM bleomycin or 0.1 mM mIBG. In conclusion, %UTHY appears to be a more sensitive index of cytotoxicity in vitro and more accurately relates to cell proliferation than %UFDG. (orig./MG)

  4. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation.

    Directory of Open Access Journals (Sweden)

    José Manuel Tirado-Vélez

    Full Text Available Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40-70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.

  5. Pedigree analysis of proliferation kinetics in cultured mammalian cells

    International Nuclear Information System (INIS)

    Quantitative analysis of proliferation kinetics in cultured mammalian cells was given an outline by extremely low speed photography (pedigree method). Photographing method of this analysis, camera used in this analysis, cultivation method and apparatus for cultivation, and film analysis were explained. As to changes of generation time by this analysis, relationship of each stage of cell cycle to colony formation or to proliferation capacity were explained in non-irradiated cells and irradiated cells. On abnormal cell division in time of large dose irradiation, a condition from cell fusion to cell death via multipolar division was explained. Mechanisms of proliferation death and interphase death were explained by analysis of pedigree data on radiation injuries in time of division and by mentioning division probability. Some information about inhibition of cell proliferation by radiation and lethal effect of radiation was described. (Kanao, N.)

  6. Human regulatory T cells suppress proliferation of B lymphoma cells.

    Science.gov (United States)

    Grygorowicz, Monika Anna; Biernacka, Marzena; Bujko, Mateusz; Nowak, Eliza; Rymkiewicz, Grzegorz; Paszkiewicz-Kozik, Ewa; Borycka, Ilona Sara; Bystydzienski, Zbigniew; Walewski, Jan; Markowicz, Sergiusz

    2016-08-01

    Activated regulatory T cells (Tregs) suppress proliferation and differentiation of normal B cells. In our study, allogeneic polyclonal CD4 (+) CD25 (+) Tregs and CD4 (+) CD25 (+) CD127(lo)Tregs expanded in vitro in the presence of rapamycin and low dose IL-2 suppressed proliferation of 11 out of 12 established lymphoma B-cell lines. The effect of expanded CD4 (+) CD25 (+) Tregs on survival of freshly isolated lymphoma B cells maintained in culture with soluble multimeric CD40L and IL-4 was variable across lymphoma entities. The survival of freshly isolated follicular lymphoma cells usually decreased in cocultures with CD4 (+) CD25 (+) Tregs. Treg effect on chronic lymphocytic leukemia/small lymphocytic lymphoma cells ranged from suppression to help in individual patients. CD4 (+) CD25 (+) Tregs or CD4 (+) CD25 (+) CD127(lo)Tregs expanded ex vivo with rapamycin could be used to suppress regrowth of residual lymphoma after autologous hematopoietic cell transplantation (HCT), and to counteract both graft-versus-host disease and lymphoma re-growth after allogeneic HCT in select patients with lymphoma susceptible to the regulation by Tregs. PMID:26758248

  7. Rac1 drives intestinal stem cell proliferation and regeneration

    OpenAIRE

    Myant, K.B.; Scopelliti, A.; Haque, S; Vidal, M; Sansom, O J; Cordero, J.B.

    2013-01-01

    Adult stem cells are responsible for maintaining the balance between cell proliferation and differentiation within self-renewing tissues. The molecular and cellular mechanisms mediating such balance are poorly understood. The production of reactive oxygen species (ROS) has emerged as an important mediator of stem cell homeostasis in various systems. Our recent work demonstrates that Rac1-dependent ROS production mediates intestinal stem cell (ISC) proliferation in mouse models of colorectal c...

  8. In vitro proliferation of adult human beta-cells.

    Directory of Open Access Journals (Sweden)

    Sabine Rutti

    Full Text Available A decrease in functional beta-cell mass is a key feature of type 2 diabetes. Glucagon-like peptide 1 (GLP-1 analogues induce proliferation of rodent beta-cells. However, the proliferative capacity of human beta-cells and its modulation by GLP-1 analogues remain to be fully investigated. We therefore sought to quantify adult human beta-cell proliferation in vitro and whether this is affected by the GLP-1 analogue liraglutide.Human islets from 7 adult cadaveric organ donors were dispersed into single cells. Beta-cells were purified by FACS. Non-sorted cells and the beta-cell enriched ("beta-cells" population were plated on extracellular matrix from rat (804G and human bladder carcinoma cells (HTB9 or bovine corneal endothelial ECM (BCEC. Cells were maintained in culture+/-liraglutide for 4 days in the presence of BrdU.Rare human beta-cell proliferation could be observed either in the purified beta-cell population (0.051±0.020%; 22 beta-cells proliferating out of 84'283 beta-cells counted or in the non-sorted cell population (0.055±0.011%; 104 proliferating beta-cells out of 232'826 beta-cells counted, independently of the matrix or the culture conditions. Liraglutide increased human beta-cell proliferation on BCEC in the non-sorted cell population (0.082±0.034% proliferating beta-cells vs. 0.017±0.008% in control, p<0.05.These results indicate that adult human beta-cell proliferation can occur in vitro but remains an extremely rare event with these donors and particular culture conditions. Liraglutide increases beta-cell proliferation only in the non-sorted cell population and only on BCEC. However, it cannot be excluded that human beta-cells may proliferate to a greater extent in situ in response to natural stimuli.

  9. Human tumor cell proliferation evaluated using manganese-enhanced MRI.

    Directory of Open Access Journals (Sweden)

    Rod D Braun

    Full Text Available BACKGROUND: Tumor cell proliferation can depend on calcium entry across the cell membrane. As a first step toward the development of a non-invasive test of the extent of tumor cell proliferation in vivo, we tested the hypothesis that tumor cell uptake of a calcium surrogate, Mn(2+ [measured with manganese-enhanced MRI (MEMRI], is linked to proliferation rate in vitro. METHODOLOGY/PRINCIPAL FINDINGS: Proliferation rates were determined in vitro in three different human tumor cell lines: C918 and OCM-1 human uveal melanomas and PC-3 prostate carcinoma. Cells growing at different average proliferation rates were exposed to 1 mM MnCl(2 for one hour and then thoroughly washed. MEMRI R(1 values (longitudinal relaxation rates, which have a positive linear relationship with Mn(2+ concentration, were then determined from cell pellets. Cell cycle distributions were determined using propidium iodide staining and flow cytometry. All three lines showed Mn(2+-induced increases in R(1 compared to cells not exposed to Mn(2+. C918 and PC-3 cells each showed a significant, positive correlation between MEMRI R(1 values and proliferation rate (p≤0.005, while OCM-1 cells showed no significant correlation. Preliminary, general modeling of these positive relationships suggested that pellet R(1 for the PC-3 cells, but not for the C918 cells, could be adequately described by simply accounting for changes in the distribution of the cell cycle-dependent subpopulations in the pellet. CONCLUSIONS/SIGNIFICANCE: These data clearly demonstrate the tumor-cell dependent nature of the relationship between proliferation and calcium influx, and underscore the usefulness of MEMRI as a non-invasive method for investigating this link. MEMRI is applicable to study tumors in vivo, and the present results raise the possibility of evaluating proliferation parameters of some tumor types in vivo using MEMRI.

  10. Skeletal Muscle Satellite Cells Appear during Late Chicken Embryogenesis

    OpenAIRE

    Hartley, Rebecca S.; Bandman, Everett; Yablonka-Reuveni, Zipora

    1992-01-01

    The emergence of avian satellite cells during development has been studied using markers that distinguish adult from fetal cells. Previous studies by us have shown that myogenic cultures from fetal (Embryonic Day 10) and adult (12–16 weeks) chicken pectoralis muscle (PM) each regulate expression of the embryonic isoform of fast myosin heavy chain (MHC) differently. In fetal cultures, embryonic MHC is coexpressed with a ventricular MHC in both myocytes (differentiated myoblasts) and myotubes. ...

  11. Proliferation index of camel skin fibroblast cells as nuclear donor

    International Nuclear Information System (INIS)

    Jaiselmeri is an excellent breed of riding camel, found in Jaiselmer and other adjoining districts of Western Rajasthan in India. Jaiselmeri camel like other pack animals are declining in India over the years due to increased mechanization and control of desert agriculture to some extent. The deep freezing technology on camel semen is poorly developed in India. The somatic cell technology has been developed at this Institute as an alternative tool of long-term conservation on endangered livestock breeds. For this study, samples of (0.25 cm2) skin tissue were collected from ear biopsy from elite male germplasm from National Research Centre on Camel, Bikaner. Skin tissues were cultured at 37 deg. C in Medium (DMEM+ Ham's F-12 nutritive mixture) supplemented with 10% fetal bovine serum, L-Glutamine and antibiotics in an incubator under 98% humidified and 5% Co2 atmosphere. The cell explants were visible from 12-16 days of culture. The cells were allowed to confluent in the TC flasks for additional 3-5 days till nearly 80% surface area is covered by the cells. The primary cells were harvested by usual trypsin-EDTA protocol. The cells were counted using Neubar's haemocytometer and cells were passaged subsequently. Since no reference values were available for camel skin fibroblasts, the present experiments were conducted to study the cell proliferation index, population doubling time, standard growth curve and cell viability using standard growth and MTT assays. It is shown that growth curves showed true sigmoid shape but a marked variation between the cell lines was observed. Moreover, cells, which grew faster attained plateau on day 6 while in slow growing cultures, the curve showed elevation even on day 8. This is probably due to non-availability of growing space for cells having faster growth rate. It was concluded that all animals do not produce karyoplast donors at equal rate or efficiency. Therefore, the growing cultures need to be compared with standard growth

  12. Induction of endothelial cell proliferation by angiogenic factors released by activated monocytes

    International Nuclear Information System (INIS)

    Introduction: Cell-cell interaction is an essential component of atherosclerotic plaque development. Activated monocytes appear to play a central role in the development of atherosclerosis, not only through foam cell formation but also via the production of various growth factors that induce proliferation of different cell types that are involved in the plaque development. Using serum free co-culture method, we determined the effect of monocytes on endothelial cell proliferation. Methods: Endothelial cell proliferation is determined by the amount of [3H]thymidine incorporated in to the DNA. Basic fibroblast growth factor (b-FGF), vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8) levels in the conditioned medium were determined by ELISA. Results: Conditioned medium from unactivated monocytes partially inhibited endothelial cell proliferation, whereas conditioned medium from activated monocytes promoted endothelial cell proliferation. The mitogenic effect of conditioned medium derived from activated monocytes is due to the presence of b-FGF, VEGF and IL-8. Neutralizing antibodies against b-FGF, VEGF and IL-8 partially reversed the mitogenic effect of conditioned medium derived from activated monocytes. When b-FGF, VEGF and IL-8 were immunoprecipitated from conditioned medium derived from activated monocytes, it is less mitogenic to endothelial cells. Conclusion: Activated monocytes may play an important role in the development of atherosclerotic plaque by producing endothelial cell growth factors

  13. The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation

    OpenAIRE

    De Petrocellis, Luciano; Melck, Dominique; Palmisano, Antonella; Bisogno, Tiziana; Laezza, Chiara; Bifulco, Maurizio; Di Marzo, Vincenzo

    1998-01-01

    Anandamide was the first brain metabolite shown to act as a ligand of “central” CB1 cannabinoid receptors. Here we report that the endogenous cannabinoid potently and selectively inhibits the proliferation of human breast cancer cells in vitro. Anandamide dose-dependently inhibited the proliferation of MCF-7 and EFM-19 cells with IC50 values between 0.5 and 1.5 μM and 83–92% maximal inhibition at 5–10 μM. The proliferation of several other nonmammary tumoral cell lines was not affected by 10 ...

  14. Effect of Scopoletin on PC3 Cell Proliferation and Apoptosis

    Institute of Scientific and Technical Information of China (English)

    LiuXue-li; ZhangLiang; FuXin-lu; ChenKai; QianBo-chu

    2005-01-01

    To investigate the effect of scopoletin on cell proliferation and apoptosis of PC3 cells.Methods Cell growm curve,MMT assay,and acid phosphatase activity (ACP)were used to determine cell proliferation.Coomassie brillient blue assay was used to measure the content of protein in cells.Light microscope,transmission electronmicroscope,and fluorescence microscope were used to observe scopoletin-induced morphological changes. Apoptosis rate and cell cycle distribution were dctermined by flow cytometry.Results The IC50 of scopoletin for inhibiting PC3,PAA,and Hela cell proliferation was (157±25), (154±51),and (294±100)mg/L,respectively.Scopoletin induced a marked time and concentration-dependent inhibition of PC3 cell proliferation.Scopoletin reduced the protein content and decreased the ACP level in PC3 cells in a concentration dependent manlier.Cells treated by scopoletin showedtypical morphologic changes of apoptosis by light microscope,fluorescence microscope, and transmission electronmicroscope.Apoptosis rate was 0.3%,2.1%,9.3%and 35%for scopoletin 0,100,200,and 400 mg/L,respectively,and cells in G2 phase decreased markedly after being treated with scopoletin.Conclusion Scopoletin inhibited PC3 proliferation by inducing apoptosis of PC3 cells.

  15. Differential effects of a complex organochlorine mixture on the proliferation of breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Aube, Michel, E-mail: 4aubem@videotron.ca [Axe de recherche en sante des populations et environnementale, Centre de recherche du Centre hospitalier universitaire de Quebec and Universite Laval, 2875 Boulevard Laurier, Edifice Delta 2, bureau 600, Quebec, QC, Canada G1V 2M2 (Canada); Larochelle, Christian, E-mail: christian.larochelle@inspq.qc.ca [Axe de recherche en sante des populations et environnementale, Centre de recherche du Centre hospitalier universitaire de Quebec and Universite Laval, 2875 Boulevard Laurier, Edifice Delta 2, bureau 600, Quebec, QC, Canada G1V 2M2 (Canada); Ayotte, Pierre, E-mail: pierre.ayotte@inspq.qc.ca [Axe de recherche en sante des populations et environnementale, Centre de recherche du Centre hospitalier universitaire de Quebec and Universite Laval, 2875 Boulevard Laurier, Edifice Delta 2, bureau 600, Quebec, QC, Canada G1V 2M2 (Canada); Laboratoire de Toxicologie, Institut national de sante publique du Quebec, 945 avenue Wolfe, Quebec, QC, Canada G1V 5B3 (Canada)

    2011-04-15

    proliferative effect of the mixture on CAMA-1 cells in the presence of sex steroids appears mostly due to the antiandrogenic properties of p,p'-DDE, a major constituent of the mixture. Other mixtures of contaminants that include emerging compounds of interest such as brominated flame retardants and perfluoroalkyl compounds should be tested for their capacity to induce breast cancer cell proliferation. - Research highlights: {yields} We studied effects of a complex organochlorine mixture on breast cancer cell growth. {yields} Weak xenoestrogens in the mixture stimulated the proliferation of MCF-7 cells. {yields} Antiandrogens increased the proliferation CAMA-1 cells grown with sex steroids. {yields} High concentrations of the mixture decreased the proliferation of all cell lines.

  16. Differential effects of a complex organochlorine mixture on the proliferation of breast cancer cell lines

    International Nuclear Information System (INIS)

    the presence of sex steroids appears mostly due to the antiandrogenic properties of p,p'-DDE, a major constituent of the mixture. Other mixtures of contaminants that include emerging compounds of interest such as brominated flame retardants and perfluoroalkyl compounds should be tested for their capacity to induce breast cancer cell proliferation. - Research highlights: → We studied effects of a complex organochlorine mixture on breast cancer cell growth. → Weak xenoestrogens in the mixture stimulated the proliferation of MCF-7 cells. → Antiandrogens increased the proliferation CAMA-1 cells grown with sex steroids. → High concentrations of the mixture decreased the proliferation of all cell lines.

  17. Suppression of lymphocyte proliferation by marijuana components is related to cell number and cell source

    Energy Technology Data Exchange (ETDEWEB)

    Klein, T.; Pross, S.; Newton, C.; Friedman, H.

    1986-03-05

    Conflicting reports have appeared concerning the effect of marijuana components on immune responsiveness. The authors have observed that the effect of cannabinoids on lymphocyte proliferation varied with both the concentration of the drug and the mitogen used. They now report that at a constant concentration of drug, the cannabinoid effect varied from no effect to suppression depending upon the number of cells in culture and the organ source of the cells. Dispersed cell suspensions of mouse lymph node, spleen, and thymus were prepared and cultured at varying cell numbers with either delta-9-tetrahydrocannabinol or 11-hydroxy-delta-9-tetrahydrocannabinol and various mitogens. Lymphocyte proliferation was analyzed by /sup 3/H-thymidine incorporation. T-lymphocyte mitogen responses in cultures containing high cell numbers were unaffected by the cannabinoids but as cell numbers were reduced a suppression of the response was observed. Furthermore, thymus cells were considerably more susceptible to cannabinoid suppression than cells from either lymph node or spleen. These results suggest that certain lymphocyte subpopulations are more sensitive to cannabinoid suppression and that in addition to drug concentration other variables such as cell number and cell source must be considered when analyzing cannabinoid effects.

  18. Suppression of lymphocyte proliferation by marijuana components is related to cell number and cell source

    International Nuclear Information System (INIS)

    Conflicting reports have appeared concerning the effect of marijuana components on immune responsiveness. The authors have observed that the effect of cannabinoids on lymphocyte proliferation varied with both the concentration of the drug and the mitogen used. They now report that at a constant concentration of drug, the cannabinoid effect varied from no effect to suppression depending upon the number of cells in culture and the organ source of the cells. Dispersed cell suspensions of mouse lymph node, spleen, and thymus were prepared and cultured at varying cell numbers with either delta-9-tetrahydrocannabinol or 11-hydroxy-delta-9-tetrahydrocannabinol and various mitogens. Lymphocyte proliferation was analyzed by 3H-thymidine incorporation. T-lymphocyte mitogen responses in cultures containing high cell numbers were unaffected by the cannabinoids but as cell numbers were reduced a suppression of the response was observed. Furthermore, thymus cells were considerably more susceptible to cannabinoid suppression than cells from either lymph node or spleen. These results suggest that certain lymphocyte subpopulations are more sensitive to cannabinoid suppression and that in addition to drug concentration other variables such as cell number and cell source must be considered when analyzing cannabinoid effects

  19. Extracts of proliferating and non-proliferating human cells display different base excision pathways and repair fidelity

    DEFF Research Database (Denmark)

    Akbari, Mansour; Pena Diaz, Javier; Andersen, Sonja;

    2009-01-01

    cells both had capacity for single- and two-nucleotide insertion BER activity. However, patch size longer than two nucleotides was only detected in extracts from proliferating cells. Relative to extracts from proliferating cells, extracts from non-proliferating cells had approximately two-fold higher...... concentration of POLbeta, which contributed to most of two-nucleotide insertion BER. In contrast, two-nucleotide insertion in extracts from proliferating cells was not dependent on POLbeta. BER fidelity was two- to three-fold lower in extracts from the non-proliferating compared with extracts of proliferating...... cells. Furthermore, although one-nucleotide deletion was the predominant type of repair error in both extracts, the pattern of repair errors was somewhat different. These results establish two-nucleotide patch BER as a distinct POLbeta-dependent mechanism in non-proliferating cells and demonstrate that...

  20. Laminin 5 regulates polycystic kidney cell proliferation and cyst formation.

    Science.gov (United States)

    Joly, Dominique; Berissi, Sophie; Bertrand, Amélie; Strehl, Laetitia; Patey, Natacha; Knebelmann, Bertrand

    2006-09-29

    Renal cyst formation is the hallmark of autosomal dominant polycystic kidney disease (ADPKD). ADPKD cyst-lining cells have an increased proliferation rate and are surrounded by an abnormal extracellular matrix (ECM). We have previously shown that Laminin 5 (Ln-5, a alpha(3)beta(3)gamma(2) trimer) is aberrantly expressed in the pericystic ECM of ADPKD kidneys. We report that ADPKD cells in primary cultures produce and secrete Ln-5 that is incorporated to the pericystic ECM in an in vitro model of cystogenesis. In monolayers, purified Ln-5 induces ERK activation and proliferation of ADPKD cells, whereas upon epidermal growth factor stimulation blocking endogenously produced Ln-5 with anti-gamma(2) chain antibody reduces the sustained ERK activation and inhibits proliferation. In three-dimensional gel culture, addition of purified Ln-5 stimulates cell proliferation and cyst formation, whereas blocking endogenous Ln-5 strongly inhibits cyst formation. Ligation of alpha(6)beta(4) integrin, a major Ln-5 receptor aberrantly expressed by ADPKD cells, induces beta(4) integrin phosphorylation, ERK activation, cell proliferation, and cyst formation. These findings indicate that Ln-5 is an important regulator of ADPKD cell proliferation and cystogenesis and suggest that Ln-5 gamma(2) chain and Ln-5-alpha(6)beta(4) integrin interaction both contribute to these phenotypic changes. PMID:16870608

  1. Interferon-Gamma-Induced Nitric Oxide Inhibits the Proliferation of Murine Renal Cell Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    David J. Tate Jr., John R. Patterson, Cruz Velasco-Gonzalez, Emily N. Carroll, Janie Trinh, Daniel Edwards, Ashok Aiyar, Beatriz Finkel-Jimenez, Arnold H. Zea

    2012-01-01

    Full Text Available Renal cell carcinoma (RCC remains one of the most resistant tumors to systemic chemotherapy, radiotherapy, and immunotherapy. Despite great progress in understanding the basic biology of RCC, the rate of responses in animal models and clinical trials using interferons (IFNs has not improved significantly. It is likely that the lack of responses can be due to the tumor's ability to develop tumor escape strategies. Currently, the use of targeted therapies has improved the clinical outcomes of patients with RCC and is associated with an increase of Th1-cytokine responses (IFNγ, indicating the importance of IFNγ in inhibiting tumor proliferation. Thus, the present study was designed to investigate a new mechanism by which IFNγ mediates direct anti-proliferative effects against murine renal cell carcinoma cell lines. When cultured RCC cell lines were exposed to murine recombinant IFNγ, a dose dependent growth inhibition in CL-2 and CL-19 cells was observed; this effect was not observed in Renca cells. Growth inhibition in CL-2 and CL-19 cell lines was associated with the intracellular induction of nitric oxide synthase (iNOS protein, resulting in a sustained elevation of nitric oxide (NO and citrulline, and a decrease in arginase activity. The inhibition of cell proliferation appears to be due to an arrest in the cell cycle. The results indicate that in certain RCC cell lines, IFNγ modulates L-arginine metabolism by shifting from arginase to iNOS activity, thereby developing a potent inhibitory mechanism to encumber tumor cell proliferation and survival. Elucidating the cellular events triggered by IFNγ in murine RCC cell lines will permit anti-tumor effects to be exploited in the development of new combination therapies that interfere with L-arginine metabolism to effectively combat RCC in patients.

  2. Differential migration and proliferation of geometrical ensembles of cell clusters

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Girish; Chen, Bo; Co, Carlos C.; Ho, Chia-Chi, E-mail: hocc@email.uc.edu

    2011-06-10

    Differential cell migration and growth drives the organization of specific tissue forms and plays a critical role in embryonic development, tissue morphogenesis, and tumor invasion. Localized gradients of soluble factors and extracellular matrix have been shown to modulate cell migration and proliferation. Here we show that in addition to these factors, initial tissue geometry can feedback to generate differential proliferation, cell polarity, and migration patterns. We apply layer by layer polyelectrolyte assembly to confine multicellular organization and subsequently release cells to demonstrate the spatial patterns of cell migration and growth. The cell shapes, spreading areas, and cell-cell contacts are influenced strongly by the confining geometry. Cells within geometric ensembles are morphologically polarized. Symmetry breaking was observed for cells on the circular pattern and cells migrate toward the corners and in the direction parallel to the longest dimension of the geometric shapes. This migration pattern is disrupted when actomyosin based tension was inhibited. Cells near the edge or corner of geometric shapes proliferate while cells within do not. Regions of higher rate of cell migration corresponded to regions of concentrated growth. These findings demonstrate that multicellular organization can result in spatial patterns of migration and proliferation.

  3. Hypoxia promotes adipose-derived stem cell proliferation via VEGF

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2016-01-01

    Full Text Available Adipose-derived stem cells (ADSCs are a promising mesenchymal stem cell source with therapeutic applications. Recent studies have shown that ADSCs could be expanded in vitro without phenotype changes. This study aimed to evaluate the effect of hypoxia on ADSC proliferation in vitro and to determine the role of vascular endothelial growth factor (VEGF in ADSC proliferation. ADSCs were selectively cultured from the stromal vascular fraction obtained from adipose tissue in DMEM/F12 medium supplemented with 10% fetal bovine serum and 1% antibiotic-antimycotic. ADSCs were cultured under two conditions: hypoxia (5% O2 and normal oxygen (21% O2. The effects of the oxygen concentration on cell proliferation were examined by cell cycle and doubling time. The expression of VEGF was evaluated by the ELISA assay. The role of VEGF in ADSC proliferation was studied by neutralizing VEGF with anti-VEGF monoclonal antibodies. We found that the ADSC proliferation rate was significantly higher under hypoxia compared with normoxia. In hypoxia, ADSCs also triggered VEGF expression. However, neutralizing VEGF with anti-VEGF monoclonal antibodies significantly reduced the proliferation rate. These results suggest that hypoxia stimulated ADSC proliferation in association with VEGF production. [Biomed Res Ther 2016; 3(1.000: 476-482

  4. Scaffold architecture and fibrin gels promote meniscal cell proliferation

    International Nuclear Information System (INIS)

    Stability of the knee relies on the meniscus, a complex connective tissue with poor healing ability. Current meniscal tissue engineering is inadequate, as the signals for increasing meniscal cell proliferation have not been established. In this study, collagen scaffold structure, isotropic or aligned, and fibrin gel addition were tested. Metabolic activity was promoted by fibrin addition. Cellular proliferation, however, was significantly increased by both aligned architectures and fibrin addition. None of the constructs impaired collagen type I production or triggered adverse inflammatory responses. It was demonstrated that both fibrin gel addition and optimized scaffold architecture effectively promote meniscal cell proliferation

  5. Scaffold architecture and fibrin gels promote meniscal cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Pawelec, K. M., E-mail: pawelec.km@gmail.com, E-mail: jw626@cam.ac.uk; Best, S. M.; Cameron, R. E. [Cambridge Centre for Medical Materials, Materials Science and Metallurgy Department, University of Cambridge, Cambridge CB3 0FS (United Kingdom); Wardale, R. J., E-mail: pawelec.km@gmail.com, E-mail: jw626@cam.ac.uk [Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Cambridge CB2 2QQ (United Kingdom)

    2015-01-01

    Stability of the knee relies on the meniscus, a complex connective tissue with poor healing ability. Current meniscal tissue engineering is inadequate, as the signals for increasing meniscal cell proliferation have not been established. In this study, collagen scaffold structure, isotropic or aligned, and fibrin gel addition were tested. Metabolic activity was promoted by fibrin addition. Cellular proliferation, however, was significantly increased by both aligned architectures and fibrin addition. None of the constructs impaired collagen type I production or triggered adverse inflammatory responses. It was demonstrated that both fibrin gel addition and optimized scaffold architecture effectively promote meniscal cell proliferation.

  6. Inhibition of brain tumor cell proliferation by alternating electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [School of Biosystem and Biomedical Science, Korea University, Seoul 136-703 (Korea, Republic of); Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [Department of Bio-convergence Engineering, Korea University, Seoul 136-703 (Korea, Republic of); Koh, Eui Kwan [Seoul Center, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of)

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  7. Inhibition of brain tumor cell proliferation by alternating electric fields

    International Nuclear Information System (INIS)

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields

  8. Nicotine as a mitogenic stimulus for pancreatic acinar cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Parimal Chowdhury; Kodetthoor B Udupa

    2006-01-01

    Cell proliferation is an important process in life for growth of normal and cancer cells. The signal transduction pathways activated during this process are strictly regulated. This editorial focuses on the role of nicotine,a mitogen, in the induction of signaling pathways resulting in proliferation of pancreatic tumor cells and compares these events with those in normal acinar cells isolated from the rat pancreas. The data shows striking similarities between these two cellular systems.In addition, the editorial reviews very recent literature of the contribution of MAPK signaling in cell lines associated with human diseases. A prospective cellular model of nicotine induced activation of MAPK cascade is presented.

  9. H pylori stimulates proliferation of gastric cancer cells through activating mitogen-activated protein kinase cascade

    Institute of Scientific and Technical Information of China (English)

    Yong-Chang Chen; Ying Wang; Jing-Yan Li; Wen-Rong Xu; You-Li Zhang

    2006-01-01

    AIM: To explore the mechanism by which H pylori causes activation of gastric epithelial cells.METHODS: A VacA (+) and CagA (+) standard Hpyloriline NCTC 11637 and a human gastric adenocarcinoma derived gastric epithelial cell line BGC-823 were applied in the study. MTT assay and 3H-TdR incorporation test were used to detect the proliferation of BGC-823 cells and Western blotting was used to detect the activity and existence of related proteins.RESULTS: Incubation with Hpylori extract increased the proliferation of gastric epithelial cells, reflected by both live cell number and DNA synthesis rate. The activity of extracellular signal-regulated protein kinase (ERK) signal transduction cascade increased within 20 min after incubation with Hpylori extract and appeared to be a sustained event. MAPK/ERK kinase (MEK) inhibitor PD98059abolished the action of H pylori extract on both ERK activity and cell proliferation. Incubation with H pyloriextract increased c-Fos expression and SRE-dependentgene expression. H pylori extract caused phosphorylation of several proteins including a protein with molecular size of 97.4 kDa and tyrosine kinase inhibitor genistein inhibited the activation of ERK and the proliferation of cells caused by H pylori extract.CONCLUSION: Biologically active elements in H pylori extract cause proliferation of gastric epithelial cells through activating tyrosine kinase and ERK signal transduction cascade.

  10. Diabetes, cancer, and metformin: connections of metabolism and cell proliferation.

    Science.gov (United States)

    Gallagher, Emily Jane; LeRoith, Derek

    2011-12-01

    Diabetes is associated with an increased risk of developing and dying from cancer. This increased risk may be due to hyperglycemia, hyperinsulinemia, and insulin resistance or other factors. Metformin has recently gained much attention as it appears to reduce cancer incidence and improve prognosis of patients with diabetes. In vitro data and animal studies support these findings from human epidemiological studies. Metformin has multiple potential mechanisms by which it inhibits cancer development and growth. For example, metaformin inhibits hepatic gluconeogenesis, thus decreasing circulating glucose levels, and it increases insulin sensitivity, thus reducing circulating insulin levels. Intracellularly, metformin activates AMPK, which decreases protein synthesis and cell proliferation. Metaformin also reduces aromatase activity in the stromal cells of the mammary gland. Finally, metformin may diminish the recurrence and aggressiveness of tumors by reducing the stem cell population and inhibiting epithelial to mesenchymal transition. Here, we discuss the metabolic abnormalities that occur in tumor development and some of the mechanisms through which metformin may alter these pathways and reduce tumor growth. PMID:22211893

  11. EDA-Containing Fibronectin Increases Proliferation of Embryonic Stem Cells

    Science.gov (United States)

    Losino, Noelia; Waisman, Ariel; Solari, Claudia; Luzzani, Carlos; Espinosa, Darío Fernández; Sassone, Alina; Muro, Andrés F.; Miriuka, Santiago; Sevlever, Gustavo; Barañao, Lino; Guberman, Alejandra

    2013-01-01

    Embryonic stem cells (ESC) need a set of specific factors to be propagated. They can also grow in conditioned medium (CM) derived from a bovine granulosa cell line BGC (BGC-CM), a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA+). Here, we investigated if the FN EDA+ isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF) lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA-), and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC’s proliferation rate. Here we showed for the first time that this FN isoform enhances ESC’s proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy. PMID:24244705

  12. EDA-containing fibronectin increases proliferation of embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Noelia Losino

    Full Text Available Embryonic stem cells (ESC need a set of specific factors to be propagated. They can also grow in conditioned medium (CM derived from a bovine granulosa cell line BGC (BGC-CM, a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA(+. Here, we investigated if the FN EDA(+ isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA(-, and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC's proliferation rate. Here we showed for the first time that this FN isoform enhances ESC's proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy.

  13. EDA-containing fibronectin increases proliferation of embryonic stem cells.

    Science.gov (United States)

    Losino, Noelia; Waisman, Ariel; Solari, Claudia; Luzzani, Carlos; Espinosa, Darío Fernández; Sassone, Alina; Muro, Andrés F; Miriuka, Santiago; Sevlever, Gustavo; Barañao, Lino; Guberman, Alejandra

    2013-01-01

    Embryonic stem cells (ESC) need a set of specific factors to be propagated. They can also grow in conditioned medium (CM) derived from a bovine granulosa cell line BGC (BGC-CM), a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA(+)). Here, we investigated if the FN EDA(+) isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF) lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA(-)), and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC's proliferation rate. Here we showed for the first time that this FN isoform enhances ESC's proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy. PMID:24244705

  14. Mechanism of Suppression on Proliferation of QGY Cell by Oxaliplatin

    Institute of Scientific and Technical Information of China (English)

    HE Song; ZUO Guo-qing; ZHANG Yan; TANG Wei-xue; LIU Chang-an

    2007-01-01

    Objective: To observe the effects of oxaliplatin(L-OHP) on proliferation of human hepatoma cell line QGY in vitro and to investigate the mechanism. Methods: The inhibition of proliferation in QGY cell was assayed by MTT-test. Morphologic changes were observed under light microscope and electronic microscope. Distribution of cell cycle and apoptosis were analyzed using flow cytometry. The expressions of cell cycle proteins and apoptosis-associated proteins were detected with immuno-histochemical technique. Results: Oxaliplatin could inhibit the proliferation of QGY cells and the inhibition depended on the exposure time and dose. The cells showed morphologic changes of the early stage of apoptosis under the light microscope: the shrunk round cells, condensed cytoplasma and pycnosis of nucleus. Apoptotic cells and apoptotic body could be found under the transmission electronic microscope. The analysis of cell cycle indicated that oxaliplatin blocked cells at S and G2/M phases and the cells of G0/Gl phase reduced. When treated with oxaliplatin for 72h, the expressions of cyclin A and Bax were up-regulated, mutant type P53, Bcl-2 and Myc were down-regulated, and Fas was not changed. Conclusion: Oxaliplatin could inhibit the proliferation of the hepatoma cell lines. Cells were blocked at S and G2/M phases. The apoptosis was related to the up-regulation of Bax and down-regulation of mutant type P53, Bcl-2 and Myc. Oxaliplatin could not induce apoptosis through the Fas pathway.

  15. Surfactant protein A integrates activation signal strength to differentially modulate T cell proliferation.

    Science.gov (United States)

    Mukherjee, Sambuddho; Giamberardino, Charles; Thomas, Joseph; Evans, Kathy; Goto, Hisatsugu; Ledford, Julie G; Hsia, Bethany; Pastva, Amy M; Wright, Jo Rae

    2012-02-01

    Pulmonary surfactant lipoproteins lower the surface tension at the alveolar-airway interface of the lung and participate in host defense. Previous studies reported that surfactant protein A (SP-A) inhibits lymphocyte proliferation. We hypothesized that SP-A-mediated modulation of T cell activation depends upon the strength, duration, and type of lymphocyte activating signals. Modulation of T cell signal strength imparted by different activating agents ex vivo and in vivo in different mouse models and in vitro with human T cells shows a strong correlation between strength of signal (SoS) and functional effects of SP-A interactions. T cell proliferation is enhanced in the presence of SP-A at low SoS imparted by exogenous mitogens, specific Abs, APCs, or in homeostatic proliferation. Proliferation is inhibited at higher SoS imparted by different doses of the same T cell mitogens or indirect stimuli such as LPS. Importantly, reconstitution with exogenous SP-A into the lungs of SP-A(-/-) mice stimulated with a strong signal also resulted in suppression of T cell proliferation while elevating baseline proliferation in unstimulated T cells. These signal strength and SP-A-dependent effects are mediated by changes in intracellular Ca(2+) levels over time, involving extrinsic Ca(2+)-activated channels late during activation. These effects are intrinsic to the global T cell population and are manifested in vivo in naive as well as memory phenotype T cells. Thus, SP-A appears to integrate signal thresholds to control T cell proliferation. PMID:22219327

  16. Cell proliferation and apoptosis in rat mammary glands following combinational exposure to bisphenol A and genistein

    International Nuclear Information System (INIS)

    Humans are exposed to an array of both harmful and beneficial hormonally active compounds in the environment and through diet. Two such chemicals are Bisphenol A (BPA), a plasticizer, and genistein, a component of soy. Prepubertal exposure to BPA increased mammary carcinogenesis, while genistein suppressed cancer in a chemically-induced model of rodent mammary cancer. The purpose of this research was to determine the effects of combinational exposure to genistein and BPA on cell proliferation, apoptosis, and associated proteins as markers of cancer in mammary glands of rats exposed prepubertally to these environmental chemicals. Prepubertal rats (postpartum days (PND) 2–20) were exposed through lactation via nursing dams treated orally with sesame oil (SO), BPA, genistein, or a combination of BPA and genistein (BPA + Gen). Cell proliferation, apoptosis and protein expressions were investigated for mechanistic studies in mammary glands of rats exposed to these environmental chemicals. Prepubertal exposure to genistein increased cell proliferation in mammary glands of PND21 rats, while BPA increased cell proliferation in adult (PND50) rats. Prepubertal combinational exposure to BPA + Gen increased cell proliferation and reduced apoptosis in PND21 rats, but reduced cell proliferation and increased apoptosis in PND50 rats. The altered mechanisms behind these cellular responses appear to be centered on differential protein expression of caspases, PARP, Bad, p21, Akts, PTEN, ER-β and SRCs 1–3, in the rat mammary gland. Prepubertal BPA exposure resulted in increased cell proliferation in mammary glands of PND50 rats, a process associated with increased risk of cancer development in a chemically-induced mammary cancer. On the other hand, genistein stimulated cell proliferation at PND21, a process that correlates with mammary gland maturation and chemoprevention. In contrast to single chemical exposure, combinational exposure to BPA + Gen performed most similarly to

  17. Role of Calmodulin in Cell Proliferation

    Science.gov (United States)

    Chafouleas, J.

    1983-01-01

    Calmodulin levels were found to increase as cells enter plateau. The data suggest that the cells are exiting the cell cycle late in the G sub 1 phase, or that the calmodulin levels in plateau cells are uncoupled to progression into S phase in plateau cells. Upon release, calmodulin levels rapidly decrease. Following this decrease, there is a increase prior to S phase.

  18. Appearance and evolution of the specific chromosomal rearrangements associated with malignant transformation of mouse m5S cells

    International Nuclear Information System (INIS)

    Chromosomal alterations were studied during the acquisition of malignant phenotypes in two karyotypically distinct cells isolated from transformed foci induced by x-irradiation in mouse m5S cells. Because the transformants, despite foci origin, showed low ability to grow in agar, they were cultured in vitro with serial transfer schedules to allow further cell generations and assayed for anchorage independence (AI) at each passage level. The AI frequency increased with the cell doubling numbers. Chromosome analysis showed that a focus was one cell origin, but the transformants showed karyotypic instability during cell proliferation, giving rise to the rearrangements clustered in the distal region of the specific chromosomes. These rearrangements appeared to be directed toward the acquisition of malignant phenotypes. Analysis of the types and sites of rearrangements indicated that a mechanism exists that induces frequent rearrangements of the specific region of a chromosome during the process of transformation into the malignant state

  19. EFFECTS OF CURCUMIN ON PROLIFERATION AND APOPTOSIS IN ACUTE MYELOID LEUKEMIA CELLS HL-60

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To investigate the curcumin killing leukemia cells in vitro,. Methods: The myeloid leukemic cell line HL-60 was studied by using cell culture, flow cytometrydetermining DNA content and TUNEL method measuring apoptotic cell percentage. Results: The data showed that curcumin selectively inhibited proliferation of acute myeloid leukemia (AML) HL-60 cell lines in a dose- and time-dependent manner. The growth inhibition rate was gradually increased and reached the peak at concentration of 25 m mol/L curcumin at 24h. The sub-G1 peak appeared after 12h treatment and was increased to 34.4% at 24h. The TUNEL method further certified that apoptotic cells reached 41% at the same phase. Conclusion: curcumin possesses obvious potent of anti-leukemia cell proliferation, which is contributed to the induction of HL-60 cells apoptosis. The concentration and action time of curcumin in vitro provide some reference for clinical use.

  20. Granulosa cell proliferation differentiation and its role in follicular development

    Institute of Scientific and Technical Information of China (English)

    LU Cuiling; YANG Wei; HU Zhaoyuan; LIU Yixun

    2005-01-01

    Granuiosa cells (GCs) are the most important cells in the ovary that undergo serious changes morphologically and physiologically during the processes of follicular proliferation, differentiation, ovulation, lutenization and atresia. Oocyte (OC) directs GC proliferation and differentiation, while GCs influence OC maturation. Many ovarian factors are involved in the regulation of these processes via different molecular mechanisms and signal pathways. P38MAPK can selectively regulate steroidogenesis in GCs controlled by FSH; Transcript factors LRH-1 and DAX-1 play an important role in this process; FSH induces GC prolfferation and differentiation by stimulating PCNA and StAR expression and steroidogenesis. Activated ERK1/2 signal pathway may be involved in the FSH-regulated GC proliferation and differentiation. Therefore, GC is an ideal model for studying cell proliferation, differentiation and interaction,as well as signal transduction. This review briefly summarizes the latest data in the literature, including the results achieved in our laboratory.

  1. Monovalent ions control proliferation of Ehrlich Lettre ascites cells

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjaer; Preisler, Sarah; Pedersen, Stine Helene Falsig;

    2010-01-01

    little effect. Western blots showed reduced chloride intracellular channel CLIC1 and chloride channel ClC-2 expression in the plasma membrane in S compared with G(1). Our results suggest that Na+ regulates ELA cell proliferation by regulating intracellular pH while Cl(-) may regulate proliferation by......Channels and transporters of monovalent ions are increasingly suggested as putative anticarcinogenic targets. However, the mechanisms involved in modulation of proliferation by monovalent ions are poorly understood. Here, we investigated the role of K+, Na+, and Cl(-) ions for the proliferation of...... Ehrlich Lettre ascites (ELA) cells. We measured the intracellular concentration of each ion in G(0), G(1), and S phases of the cell cycle following synchronization by serum starvation and release. We show that intracellular concentrations and content of Na+ and Cl(-) were reduced in the G(0)-G(1) phase...

  2. Control mechanisms of cell proliferation in intestinal epithelium

    NARCIS (Netherlands)

    R.P.C. Rijke (Rudy)

    1977-01-01

    textabstractIn the adult organism some organs and tissues still contain proliferating and differentiating cells, whereas other organs only consist of non-dividing specialized cells. On the basis of their proliferative activity cell populations may be classified into three categories (135, 138,208).

  3. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang, E-mail: wenfang64@hotmail.com; Zhang, Yi, E-mail: syzi960@yahoo.com

    2013-11-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.

  4. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    International Nuclear Information System (INIS)

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients

  5. Proliferation of differentiated glial cells in the brain stem.

    Science.gov (United States)

    Barradas, P C; Cavalcante, L A

    1998-02-01

    Classical studies of macroglial proliferation in muride rodents have provided conflicting evidence concerning the proliferating capabilities of oligodendrocytes and microglia. Furthermore, little information has been obtained in other mammalian orders and very little is known about glial cell proliferation and differentiation in the subclass Metatheria although valuable knowledge may be obtained from the protracted period of central nervous system maturation in these forms. Thus, we have studied the proliferative capacity of phenotypically identified brain stem oligodendrocytes by tritiated thymidine radioautography and have compared it with known features of oligodendroglial differentiation as well as with proliferation of microglia in the opossum Didelphis marsupialis. We have detected a previously undescribed ephemeral, regionally heterogeneous proliferation of oligodendrocytes expressing the actin-binding, ensheathment-related protein 2'3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), that is not necessarily related to the known regional and temporal heterogeneity of expression of CNPase in cell bodies. On the other hand, proliferation of microglia tagged by the binding of Griffonia simplicifolia B4 isolectin, which recognizes an alpha-D-galactosyl-bearing glycoprotein of the plasma membrane of macrophages/microglia, is known to be long lasting, showing no regional heterogeneity and being found amongst both ameboid and differentiated ramified cells, although at different rates. The functional significance of the proliferative behavior of these differentiated cells is unknown but may provide a low-grade cell renewal in the normal brain and may be augmented under pathological conditions. PMID:9686148

  6. Proliferation of differentiated glial cells in the brain stem

    Directory of Open Access Journals (Sweden)

    Barradas P.C.

    1998-01-01

    Full Text Available Classical studies of macroglial proliferation in muride rodents have provided conflicting evidence concerning the proliferating capabilities of oligodendrocytes and microglia. Furthermore, little information has been obtained in other mammalian orders and very little is known about glial cell proliferation and differentiation in the subclass Metatheria although valuable knowledge may be obtained from the protracted period of central nervous system maturation in these forms. Thus, we have studied the proliferative capacity of phenotypically identified brain stem oligodendrocytes by tritiated thymidine radioautography and have compared it with known features of oligodendroglial differentiation as well as with proliferation of microglia in the opossum Didelphis marsupialis. We have detected a previously undescribed ephemeral, regionally heterogeneous proliferation of oligodendrocytes expressing the actin-binding, ensheathment-related protein 2'3'-cyclic nucleotide 3'-phosphodiesterase (CNPase, that is not necessarily related to the known regional and temporal heterogeneity of expression of CNPase in cell bodies. On the other hand, proliferation of microglia tagged by the binding of Griffonia simplicifolia B4 isolectin, which recognizes an alpha-D-galactosyl-bearing glycoprotein of the plasma membrane of macrophages/microglia, is known to be long lasting, showing no regional heterogeneity and being found amongst both ameboid and differentiated ramified cells, although at different rates. The functional significance of the proliferative behavior of these differentiated cells is unknown but may provide a low-grade cell renewal in the normal brain and may be augmented under pathological conditions.

  7. Astaxanthin Improves Stem Cell Potency via an Increase in the Proliferation of Neural Progenitor Cells

    OpenAIRE

    Yung-Hyun Choi; Byung-Woo Kim; Woobong Choi; Jong-Hwan Lee; Wun-Jae Kim; Soo-Wan Nam; Jeong-Hwan Kim

    2010-01-01

    The present study was designed to investigate the question of whether or not astaxanthin improves stem cell potency via an increase in proliferation of neural progenitor cells (NPCs). Treatment with astaxanthin significantly increased proliferation and colony formation of NPCs. For identification of possible activated signaling molecules involved in active cell proliferation occurring after astaxanthin treatment, total protein levels of several proliferation-related proteins, and expression l...

  8. Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem.

    Science.gov (United States)

    Street, Ian H; Aman, Sitwat; Zubo, Yan; Ramzan, Aleena; Wang, Xiaomin; Shakeel, Samina N; Kieber, Joseph J; Schaller, G Eric

    2015-09-01

    The root system of plants plays a critical role in plant growth and survival, with root growth being dependent on both cell proliferation and cell elongation. Multiple phytohormones interact to control root growth, including ethylene, which is primarily known for its role in controlling root cell elongation. We find that ethylene also negatively regulates cell proliferation at the root meristem of Arabidopsis (Arabidopsis thaliana). Genetic analysis indicates that the inhibition of cell proliferation involves two pathways operating downstream of the ethylene receptors. The major pathway is the canonical ethylene signal transduction pathway that incorporates CONSTITUTIVE TRIPLE RESPONSE1, ETHYLENE INSENSITIVE2, and the ETHYLENE INSENSITIVE3 family of transcription factors. The secondary pathway is a phosphorelay based on genetic analysis of receptor histidine kinase activity and mutants involving the type B response regulators. Analysis of ethylene-dependent gene expression and genetic analysis supports SHORT HYPOCOTYL2, a repressor of auxin signaling, as one mediator of the ethylene response and furthermore, indicates that SHORT HYPOCOTYL2 is a point of convergence for both ethylene and cytokinin in negatively regulating cell proliferation. Additional analysis indicates that ethylene signaling contributes but is not required for cytokinin to inhibit activity of the root meristem. These results identify key elements, along with points of cross talk with cytokinin and auxin, by which ethylene negatively regulates cell proliferation at the root apical meristem. PMID:26149574

  9. The use of the tyrosine phosphatase antagonist orthovanadate in the study of a cell proliferation inhibitor

    Science.gov (United States)

    Enebo, D. J.; Hanek, G.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Incubation of murine fibroblasts with orthovanadate, a global tyrosine phosphatase inhibitor, was shown to confer a "pseudo-transformed" phenotype with regard to cell morphology and growth characteristics. This alteration was manifested by both an increasing refractile appearance of the cells, consistent with many transformed cell lines, as well as an increase in maximum cell density was attained. Despite the abrogation of cellular tyrosine phosphatase activity, orthovanadate-treated cells remained sensitive to the biological activity of a naturally occurring sialoglycopeptide (SGP) cell surface proliferation inhibitor. The results indicated that tyrosine phosphatase activity, inhibited by orthovanadate, was not involved in the signal transduction pathway of the SGP.

  10. Cholesterol induces proliferation of chicken primordial germ cells.

    Science.gov (United States)

    Chen, Dongyang; Chen, Meijuan; Lu, Zhenping; Yang, Mengmeng; Xie, Long; Zhang, Wenxin; Xu, Huiyan; Lu, Kehuan; Lu, Yangqing

    2016-08-01

    Primordial germ cells (PGCs) are the precursors of sperm and eggs and may serve as suitable cells for use in research in developmental biology and transgenic animals. However, the long-term propagation of PGCs in vitro has so far been plagued by the loss of their germ cell characteristics. This is largely because of the scarcity of knowledge concerning cell division and proliferation in these cells and the poor optimization of the culture medium. The sonic hedgehog (SHH) signaling pathway is involved in proliferation of many types of cells, but little is known about its role in chicken PGCs. The results of the current study indicate that the proliferation of chicken PGCs increases significantly when cholesterol, a molecule that facilitates the trafficking of HH ligands, is supplemented in the culture medium. This effect was attenuated when an SHH antagonist, cyclopamine was added, suggesting the involvement of SHH signaling in this process. The characterization of PGCs treated with cholesterol has shown that these cells express germ-cell-related markers and retain their capability to colonize the embryonic gonad after re-introduction to vasculature of stage-15 HH embryos, indicating that proliferation of PGCs induced by cholesterol does not alter the germ cell characteristics of these cells. PMID:27269880

  11. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette;

    1999-01-01

    Formation of new beta cells can take place by two pathways: replication of already differentiated beta cells or neogenesis from putative islet stem cells. Under physiological conditions both processes are most pronounced during the fetal and neonatal development of the pancreas. In adulthood litt...

  12. Irradiation of human thymic stromal cells induces a diminution of T cell precursor proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Bertho, J.M.; Van der Meeren, A. [CEA Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Coulombel, L. [Institut Gustave Roussy, 94 - Villejuif (France)

    1997-03-01

    Very little is known concerning the effects of ionizing radiation on the supportive function of the thymic microenvironment in the regeneration of a fully competent T lymphocyte population after irradiation. The data available suggest that irradiation of the thymus may have short-term effects on the thymus and long-term effects on peripheral blood T lymphocytes. We have recently developed an in vitro model of thymic stromal cell cultures (TSCC). These TSCC contained 30-50% thymic epithelial cells (TEC), 50-70% fibro-blastoid cells (TF), and 1-5% macrophages and dendritic cells. This model was used to study effects of ionizing radiation on human thymic microenvironment. TSCC were irradiated at a dose of 10 Grays (gamma rays, {sup 60}Co source, dose rate 1 Gy/mn) or sham-irradiated. Sorted autologous T cell precursors were seeded onto TSCC 24 hours after irradiation. Proliferation of T cell precursors was assessed by numerating non-adherent cells in the supernatant of TSCC twice a week. Results show that irradiation of TSCC induced a diminution in the number of T cell precursor harvested from the cultures either in the presence or in the absence of interleukin-7 (IL-7) and stem cell factor (SCF). This diminished number of cells harvested appeared as early as day 4, and remained constant during 21-day culture period. The results showed that the number of stromal cells after irradiation remained constant until day 21. We have generated supernatants (SN) from irradiated TSCC in order to test the presence of negative regulators or the decrease of activating factors. Results showed that SN from irradiated TSCC were able to induce a decrease in the number of harvested T cells. Overall, the results provides the first direct demonstration that irradiation of thymic microenvironment induced modifications in its supportive function for T cell precursor proliferation. (N.C.)

  13. Irradiation of human thymic stromal cells induces a diminution of T cell precursor proliferation

    International Nuclear Information System (INIS)

    Very little is known concerning the effects of ionizing radiation on the supportive function of the thymic microenvironment in the regeneration of a fully competent T lymphocyte population after irradiation. The data available suggest that irradiation of the thymus may have short-term effects on the thymus and long-term effects on peripheral blood T lymphocytes. We have recently developed an in vitro model of thymic stromal cell cultures (TSCC). These TSCC contained 30-50% thymic epithelial cells (TEC), 50-70% fibro-blastoid cells (TF), and 1-5% macrophages and dendritic cells. This model was used to study effects of ionizing radiation on human thymic microenvironment. TSCC were irradiated at a dose of 10 Grays (gamma rays, 60Co source, dose rate 1 Gy/mn) or sham-irradiated. Sorted autologous T cell precursors were seeded onto TSCC 24 hours after irradiation. Proliferation of T cell precursors was assessed by numerating non-adherent cells in the supernatant of TSCC twice a week. Results show that irradiation of TSCC induced a diminution in the number of T cell precursor harvested from the cultures either in the presence or in the absence of interleukin-7 (IL-7) and stem cell factor (SCF). This diminished number of cells harvested appeared as early as day 4, and remained constant during 21-day culture period. The results showed that the number of stromal cells after irradiation remained constant until day 21. We have generated supernatants (SN) from irradiated TSCC in order to test the presence of negative regulators or the decrease of activating factors. Results showed that SN from irradiated TSCC were able to induce a decrease in the number of harvested T cells. Overall, the results provides the first direct demonstration that irradiation of thymic microenvironment induced modifications in its supportive function for T cell precursor proliferation. (N.C.)

  14. Relationship between Cell Proliferation and Apoptosis in Cervical Carcinoma

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To study the relationship between cell proliferation and apoptosis in cervical carcinoma and its clinical significance.Methods The cell proliferation and apoptosis of cervical epithelial cells in archival formalin-fixed,paraffin-embedded tissue sections of normal cervix ,cervical intraepithelial neoplasms(CN) and cervical squamous carcinoma were tested by using immunohistochemistry assay and DNA nick end-labeling technigue.The proliferation index(PI) and apoptosis index(AI) were calculated and their correlation with clinical and pathological data was analyzed. Results PI was gradually increased,but the AI and AI/PI ratio decreased from normal cervical epithelium,CIN to cervical carcinoma. There was no significant relationship among cell proliferation,apoptosis,clinical stages and pathological grades.High AI was always asso-ciated with a poor prognosis of the patients. Conclusion Cell proliferation and apoptosis allow to distinguish among normal epithelium,CIN and cervical carcinoma and are useful for the assessment of the malignant potential of tumor tissues.

  15. Neuronal inhibition of astroglial cell proliferation is membrane mediated

    OpenAIRE

    1987-01-01

    Previously we have used a microwell tissue culture assay to show that early postnatal mouse cerebellar astroglia have a flattened morphology and proliferate rapidly when they are cultured in the absence of neurons, but develop specific cell-cell contacts and undergo morphological differentiation when they are co-cultured with purified granule neurons (Hatten, M. E., 1985, J. Cell Biol., 100:384-396). In these studies of cell binding between neurons and astroglia, measurement with light and fl...

  16. Necdin Controls Proliferation of White Adipocyte Progenitor Cells

    OpenAIRE

    Fujiwara, Kazushiro; Hasegawa, Koichi; Ohkumo, Tsuyoshi; Miyoshi, Hiroyuki; Yoshikawa, Kazuaki; Tseng, Yu-Hua

    2012-01-01

    White adipose tissues are composed mainly of white fat cells (adipocytes), which play a key role in energy storage and metabolism. White adipocytes are terminally differentiated postmitotic cells and arise from their progenitor cells (preadipocytes) or mesenchymal stem cells residing in white adipose tissues. Thus, white adipocyte number is most likely controlled by the rate of preadipocyte proliferation, which may contribute to the etiology of obesity. However, little is known about the mole...

  17. Toward consistent cell segmentation: quality assessment of cell segments via appearance and geometry features

    Science.gov (United States)

    Brinker, Andrew; Fredrikson, Annika; Zhang, Xiaofan; Sourvenir, Richard; Zhang, Shaoting

    2015-03-01

    Computer-Aided Diagnosis (CAD) systems based on histopathological images rely on quality low-level image processing, including cell segmentation. Many methods for cell segmentation lack in generality and struggle with the wide variety of cell appearance and inter-cell structure present in histopathological images. We present a computationally efficient system to classify segmentation results as the first step toward automatic segment correction. This general method can applied to existing or future cell segmentation methods to provide corrections for low-quality results. Specifically, with a small collection of easy-to-compute features, we can identify incorrect segments with a high degree of accuracy, which then can be used to determine the needed corrections based on the type of segmentation failure present.

  18. Effects of spider Macrothele raven venom on cell proliferation and cytotoxicity in HeLa cells

    Institute of Scientific and Technical Information of China (English)

    Li GAO; Bao-en SHAN; Jing CHEN; Jiang-hui LIU; Da-xiang SONG; Bao-cheng ZHU

    2005-01-01

    Aim: To examine the effect of venom from the spider Macrothele raven on cell proliferation and cytotoxicity in human cervical carcinoma, HeLa cells. Methods:Morphological and biochemical signs of apoptosis appeared using acridine orange-ethidium bromide (AO/EB) staining. Marked morphological changes in HeLa cells after treatment with spider venom were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cell proliferation and cytotoxicity were determined by [methyl-3H] thymidine assay ([3H]TdR) and lactate dehydrogenase (LDH) release, respectively. DNA fragmentation and cell cycle distribution were monitored using flow cytometry. In addition, Western blot analysis was used to evaluate the level of caspase-3 expression. In vivo examination of the inhibition of the size of tumors in nude mice treated with spider venom was measured. Results: Marked morphological changes were observed using AO/EB staining, SEM and TEM assay. Spider venom at concentrations of 10-40 mg/L caused dose- and time-dependent inhibition of HeLa cell proliferation.The ratio of apoptosis and necrosis increased. The activity of caspase-3 was upregulated after spider venom treatment. In vivo study of tumor size revealed that tumors significantly decreased in size from controls to tumors treated for 3 weeks with spider venom (P<0.05). Conclusion: The inhibition of HeLa cells by the venom of the spider Macrothele raveni was carried out in three ways: induction of apoptosis, necrosis of toxicity damage and direct lysis. Spider venom is a novel anti-tumor material both in vitro and in vivo.

  19. Controling stem cell proliferation - CKIs at work

    NARCIS (Netherlands)

    Bruggeman, SWM; van Lohuizen, M

    2006-01-01

    The cyclin-dependent kinase inhibitors or CKIs are well recognized as intrinsic regulators of the cell cycle. Here, we discuss recent data implicating their activity in restraining adult stem cell self-renewal, and the role that proteins regulating CKI expression play in this process.

  20. Software for precise tracking of cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Kurokawa, Hiroshi [Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198 (Japan); School of Life Science, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Noda, Hisayori [Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198 (Japan); Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Sugiyama, Mayu [Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198 (Japan); School of Life Science, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Sakaue-Sawano, Asako [Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198 (Japan); Life Function and Dynamics, ERATO, JST, 2-1 Hirosawa, Wako-city, Saitama 351-0198 (Japan); Fukami, Kiyoko [School of Life Science, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Miyawaki, Atsushi, E-mail: matsushi@brain.riken.jp [Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198 (Japan); Life Function and Dynamics, ERATO, JST, 2-1 Hirosawa, Wako-city, Saitama 351-0198 (Japan)

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer We developed software for analyzing cultured cells that divide as well as migrate. Black-Right-Pointing-Pointer The active contour model (Snakes) was used as the core algorithm. Black-Right-Pointing-Pointer The time backward analysis was also used for efficient detection of cell division. Black-Right-Pointing-Pointer With user-interactive correction functions, the software enables precise tracking. Black-Right-Pointing-Pointer The software was successfully applied to cells with fluorescently-labeled nuclei. -- Abstract: We have developed a multi-target cell tracking program TADOR, which we applied to a series of fluorescence images. TADOR is based on an active contour model that is modified in order to be free of the problem of locally optimal solutions, and thus is resistant to signal fluctuation and morphological changes. Due to adoption of backward tracing and addition of user-interactive correction functions, TADOR is used in an off-line and semi-automated mode, but enables precise tracking of cell division. By applying TADOR to the analysis of cultured cells whose nuclei had been fluorescently labeled, we tracked cell division and cell-cycle progression on coverslips over an extended period of time.

  1. Cell proliferation in the presence of telomerase.

    Directory of Open Access Journals (Sweden)

    Krastan B Blagoev

    Full Text Available BACKGROUND: Telomerase, which is active early in development and later in stem and germline cells, is also active in the majority of human cancers. One of the known functions of telomerase is to extend the ends of linear chromosomes, countering their gradual shortening at each cell division due to the end replication problem and postreplication processing. Telomerase concentration levels vary between different cell types as well as between different tumors. In addition variable telomerase concentrations will exist in different cells in the same tumor when telomerase inhibitors are used, because of limitations of drug delivery in tissue. Telomerase extends short telomeres more frequently than long telomeres and the relation between the extension frequency and the telomere length is nonlinear. METHODOLOGY/PRINCIPAL FINDINGS: Here, the biological data of the nonlinear telomerase-telomere dynamics is incorporated in a mathematical theory to relate the proliferative potential of a cell to the telomerase concentration in that cell. The main result of the paper is that the proliferative capacity of a cell grows exponentially with the telomerase concentration. CONCLUSIONS/SIGNIFICANCE: The theory presented here suggests that long term telomerase inhibition in every cancer progenitor or cancer stem cell is needed for successful telomere targeted cancer treatment. This theory also can be used to plan and assess the results of clinical trials targeting telomerase.

  2. Software for precise tracking of cell proliferation

    International Nuclear Information System (INIS)

    Highlights: ► We developed software for analyzing cultured cells that divide as well as migrate. ► The active contour model (Snakes) was used as the core algorithm. ► The time backward analysis was also used for efficient detection of cell division. ► With user-interactive correction functions, the software enables precise tracking. ► The software was successfully applied to cells with fluorescently-labeled nuclei. -- Abstract: We have developed a multi-target cell tracking program TADOR, which we applied to a series of fluorescence images. TADOR is based on an active contour model that is modified in order to be free of the problem of locally optimal solutions, and thus is resistant to signal fluctuation and morphological changes. Due to adoption of backward tracing and addition of user-interactive correction functions, TADOR is used in an off-line and semi-automated mode, but enables precise tracking of cell division. By applying TADOR to the analysis of cultured cells whose nuclei had been fluorescently labeled, we tracked cell division and cell-cycle progression on coverslips over an extended period of time.

  3. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    OpenAIRE

    Stefania Bruno; Cristina Grange; Marta Tapparo; Chiara Pasquino; Renato Romagnoli; Ennia Dametto; Antonio Amoroso; Ciro Tetta; Giovanni Camussi

    2016-01-01

    Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell co...

  4. Octreotide inhibits proliferation and induces apoptosis of hepatocellular carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Hai-lin LIU; Li HUO; Lei WANG

    2004-01-01

    AIM: To study the effect of octreotide on cell proliferation and apoptosis in different hepatocellular carcinoma (HCC) cells and hepatocytes. METHODS: The proliferation of HCC cells (HepG2, SMMC-7721) and hepatocytes (L-02) was determined by MTT assay. Apoptosis was detected either by fluorescent staining, transmission electron microscopy or flow cytometry. The content of AFP in the supernatant of cultured HCC cells was determined by electrochemiluminescence immunoassay. The expression of SSTR subtypes was identified by RT-PCR.RESULTS: The proliferation of HCC cells and L-02 cells was inhibited significantly by octreotide (0.25, 0.5, 1.0,2.0 and 4.0 mg/L). However, the apoptosis of HCC cells markedly increased in a concentration-dependent manner.Both the apoptosis index and the percentage of apoptotic cells in L-02 cells were significantly lower than those of HepG2 and SMMC-7721 cells. The content of AFP in the supematant of cultured HepG2 cells treated with octreotide was also statistically reduced. Furthermore, SSTR2 and SSTR4 were positive in both the hepatocellular carcinoma cells and in the L-02 cells. SSTR3 was only expressed in the two heptatocellular carcinoma cells, and SSTR5 was found in the SMMC-7721 cells. No SSTR1 was detected either in HCC cells or L-02 cells. CONCLUSIONS:Apoptosis induction is a major mechanism of octreotide inhibition on hepatocellular cells. SSTR3 is expressed in the HCC cells, but not in the L-02 cells, which suggests a molecular basis for the HCC-selective effects of octreotide.

  5. Impact of 5-azacytidine on rat decidual cell proliferation.

    Science.gov (United States)

    Fabijanovic, Dora; Serman, Alan; Jezic, Marin; Katusic, Ana; Sincic, Nino; Curkovic-Perica, Mirna; Bulic-Jakus, Floriana; Vlahovic, Maja; Juric-Lekic, Gordana; Serman, Ljiljana

    2014-08-01

    The DNA demethylating agent 5-azacytidine (5-azaC) has a teratogenic influence during rat development influencing both the embryo and the placenta. Our aim was to investigate its impact on early decidual cell proliferation before the formation of placenta. Thus, female Fischer rats received 5-azaC (5 mg/kg, i.p.) on the 2nd, 5th or 8th day of gestation and the decidual tissues were harvested on gestation day 9. They were then analysed immunohistochemically for expression of cell proliferation marker proliferating cell nuclear antigen (PCNA) in decidual cells and for global DNA methylation using the coupled restriction enzyme digestion, random amplification and pyrosequencing assays. We found that 5-azaC administered on the 5th and 8th (but not on 2nd) day of gestation led to increased PCNA expression in decidual cells compared with untreated controls. No significant changes in DNA methylation were detected, with either method, in any of the treated rat groups compared with untreated controls. Thus, we conclude that 5-azaC can stimulate decidual cell proliferation without simultaneously changing global DNA methylation level in treated cells. PMID:24945576

  6. Impact of 5-azacytidine on rat decidual cell proliferation

    Science.gov (United States)

    Fabijanovic, Dora; Serman, Alan; Jezic, Marin; Katusic, Ana; Sincic, Nino; Curkovic-Perica, Mirna; Bulic-Jakus, Floriana; Vlahovic, Maja; Juric-Lekic, Gordana; Serman, Ljiljana

    2014-01-01

    The DNA demethylating agent 5-azacytidine (5-azaC) has a teratogenic influence during rat development influencing both the embryo and the placenta. Our aim was to investigate its impact on early decidual cell proliferation before the formation of placenta. Thus, female Fischer rats received 5-azaC (5 mg/kg, i.p.) on the 2nd, 5th or 8th day of gestation and the decidual tissues were harvested on gestation day 9. They were then analysed immunohistochemically for expression of cell proliferation marker proliferating cell nuclear antigen (PCNA) in decidual cells and for global DNA methylation using the coupled restriction enzyme digestion, random amplification and pyrosequencing assays. We found that 5-azaC administered on the 5th and 8th (but not on 2nd) day of gestation led to increased PCNA expression in decidual cells compared with untreated controls. No significant changes in DNA methylation were detected, with either method, in any of the treated rat groups compared with untreated controls. Thus, we conclude that 5-azaC can stimulate decidual cell proliferation without simultaneously changing global DNA methylation level in treated cells. PMID:24945576

  7. Piperine Congeners as Inhibitors of Vascular Smooth Muscle Cell Proliferation.

    Science.gov (United States)

    Mair, Christina E; Liu, Rongxia; Atanasov, Atanas G; Wimmer, Laurin; Nemetz-Fiedler, Daniel; Sider, Nadine; Heiss, Elke H; Mihovilovic, Marko D; Dirsch, Verena M; Rollinger, Judith M

    2015-08-01

    Successful vascular healing after percutaneous coronary interventions is related to the inhibition of abnormal vascular smooth muscle cell proliferation and efficient re-endothelialization. In the search for vascular smooth muscle cell anti-proliferative agents from natural sources we identified piperine (1), the main pungent constituent of the fruits from Piper nigrum (black pepper). Piperine inhibited vascular smooth muscle cell proliferation with an IC50 of 21.6 µM, as quantified by a resazurin conversion assay. Investigations of ten piperamides isolated from black pepper fruits and 15 synthesized piperine derivatives resulted in the identification of three potent vascular smooth muscle cell proliferation inhibitors: the natural alkaloid pipertipine (4), and the two synthetic derivatives (2E,4E)-N,N-dibutyl-5-(3,5-dimethoxyphenyl)penta-2,4-dienamide (14) and (E)-N,N-dibutyl-3-(naphtho[2,3-d][1,3]dioxol-5-yl)acrylamide (20). They showed IC50 values of 3.38, 6.00, and 7.85 µM, respectively. Furthermore, the synthetic compound (2E,4E)-5-(4-fluorophenyl)-1-(piperidin-1-yl)penta-2,4-dien-1-one (12) was found to be cell type selective, by inhibiting vascular smooth muscle cell proliferation with an IC50 of 11.8 µM without influencing the growth of human endothelial cells. PMID:26132851

  8. ENHANCEMENT OF NIH3T3 CELL PROLIFERATION BY EXPRESSING MACROPHAGE COLONY STIMULATING FACTOR IN NUCLEI

    Institute of Scientific and Technical Information of China (English)

    曹震宇; 吴克复; 李戈; 林永敏; 张斌; 郑国光

    2003-01-01

    Objective: To explore the effects of nuclear M-CSF on the process of tumorigenesis. Methods: Functional part of M-CSF cDNA was inserted into an eukaryotic expression plasmid pCMV/myc/nuc, which can add three NLS to the C-terminal of the expressed protein and direct the protein into the cell nuclei. The constructed plasmid was transferred into NIH3T3 cells and the cell clones were selected by G-418 selection. Cell clones stable expressing target protein were identified by RT-PCR, ABC immunohistochemistry assay and Western blot. Cell growth kinetics analyses through growth curves, cell doubling time, MTT test and anti-sense oligodeoxynucleotide (ASODN) inhibiting cell growth test were performed to identify cells proliferation potential. Results: The transfected cells showed elevated proliferation potential over the control cells. Conclusion: Abnormal appearance of M-CSF in nucleus could enhance cell proliferation, which suggests that cytokine isoforms within cell nucleus might play transcription factor-like role.

  9. Reciprocal control of cell proliferation and migration

    Directory of Open Access Journals (Sweden)

    De Donatis Alina

    2010-09-01

    Full Text Available Abstract In adult tissue the quiescent state of a single cell is maintained by the steady state conditions of its own microenvironment for what concern both cell-cell as well as cell-ECM interaction and soluble factors concentration. Physiological or pathological conditions can alter this quiescent state through an imbalance of both soluble and insoluble factors that can trigger a cellular phenotypic response. The kind of cellular response depends by many factors but one of the most important is the concentration of soluble cytokines sensed by the target cell. In addition, due to the intrinsic plasticity of many cellular types, every single cell is able, in response to the same stimulus, to rapidly switch phenotype supporting minimal changes of microenviromental cytokines concentration. Wound healing is a typical condition in which epithelial, endothelial as well as mesenchymal cells are firstly subjected to activation of their motility in order to repopulate the damaged region and then they show a strong proliferative response in order to successfully complete the wound repair process. This schema constitute the leitmotif of many other physiological or pathological conditions such as development vasculogenesis/angiogenesis as well as cancer outgrowth and metastasis. Our review focuses on the molecular mechanisms that control the starting and, eventually, the switching of cellular phenotypic outcome in response to changes in the symmetry of the extracellular environment.

  10. Human retinal pigment epithelial cells inhibit proliferation and IL2R expression of activated T cells

    DEFF Research Database (Denmark)

    Kaestel, Charlotte G; Jørgensen, Annette; Nielsen, Mette;

    2002-01-01

    The purpose of this study was to characterize the effects of human retinal pigment epithelial (RPE) cells on activated T cells. Activated T cells were cocultured with adult and foetal human RPE cells whereafter apoptosis and proliferation were determined by flow cytometry and (3)H...... addition to use of TCR negative T cell lines. The expression of IL2R-alpha -beta and -gamma chains of activated T cells was analysed by flow cytometry after incubation of T cells alone or with RPE cells. Human RPE cells were found to inhibit the proliferation of activated T cells by a cell contact......-dependent mechanism. The RPE cells inhibitory abilities were not affected by blocking of any of the tested surface molecules. The inhibition of the T cells' proliferation correlates with a decreased expression of IL2R-beta and -gamma chains. The T cells regain their ability to proliferate and increase their IL2R...

  11. Automated measurement of cell motility and proliferation

    Directory of Open Access Journals (Sweden)

    Goff Julie

    2005-04-01

    Full Text Available Abstract Background Time-lapse microscopic imaging provides a powerful approach for following changes in cell phenotype over time. Visible responses of whole cells can yield insight into functional changes that underlie physiological processes in health and disease. For example, features of cell motility accompany molecular changes that are central to the immune response, to carcinogenesis and metastasis, to wound healing and tissue regeneration, and to the myriad developmental processes that generate an organism. Previously reported image processing methods for motility analysis required custom viewing devices and manual interactions that may introduce bias, that slow throughput, and that constrain the scope of experiments in terms of the number of treatment variables, time period of observation, replication and statistical options. Here we describe a fully automated system in which images are acquired 24/7 from 384 well plates and are automatically processed to yield high-content motility and morphological data. Results We have applied this technology to study the effects of different extracellular matrix compounds on human osteoblast-like cell lines to explore functional changes that may underlie processes involved in bone formation and maintenance. We show dose-response and kinetic data for induction of increased motility by laminin and collagen type I without significant effects on growth rate. Differential motility response was evident within 4 hours of plating cells; long-term responses differed depending upon cell type and surface coating. Average velocities were increased approximately 0.1 um/min by ten-fold increases in laminin coating concentration in some cases. Comparison with manual tracking demonstrated the accuracy of the automated method and highlighted the comparative imprecision of human tracking for analysis of cell motility data. Quality statistics are reported that associate with stage noise, interference by non-cell

  12. Phenobarbital-induced hepatocellular proliferation: anti-bromodeoxyuridine and anti-proliferating cell nuclear antigen immunocytochemistry.

    Science.gov (United States)

    Jones, H B; Clarke, N A; Barrass, N C

    1993-01-01

    We report modifications to immunocytochemical detection procedures for proliferating cell nuclear antigen (PCNA) which permit its identification in liver samples previously fixed for BrdU immunocytochemistry. Both methods have been used for the assessment of phenobarbital-induced cell proliferation in rat liver. The difficulties associated with the hitherto unsuccessful application of PCNA immunocytochemical methods to tissues fixed in formalin for BrdU visualization were overcome by epitope unmasking with acid hydrolysis, extension of primary antiserum (PC10) incubation, and employment of streptavidin-ABC-HRP. BrdU delivery via osmotic minipumps for 48 hr before euthanasia, followed by fixation in cold formalin for 14 days, yielded reliable and reproducible hepatocellular labeling and a peak of cell proliferation in all lobes on Day 3 (i.e., labeling during Days 1-3) of dosing with 80 mg/kg/day phenobarbital. Labeling indices (LI) of both control and phenobarbital-treated liver were lower in the left and right median lobes as compared with the lateral lobes. In sections of the left lateral lobe from the same liver, PCNA immunocytochemistry revealed a peak of proliferative activity (about one third of the maximum LI generated by BrdU incorporation) on Day 1. These findings, together with the advantages and disadvantages of both techniques, are discussed in the context of their applications to different investigative requirements. PMID:8093255

  13. Amniotic Fluid Cells Proliferation in Normal and Down Syndrome Subjects

    Directory of Open Access Journals (Sweden)

    Honcea Adina

    2016-02-01

    Full Text Available Down Syndrome/Trisomy 21 is the most common chromosomal anomaly, and it represents the most common congenital cause of infants’ intellectual disability. Subjects with this syndrome are affected by degenerative processes caused by accelerated aging or unknown ethyologies. In recent years, accumulating evidence revealed increased potential of amniotic fluid-derived stem cells to be used in regenerative therapy. Our aim was to assess differences in immunophenotype, cell morphology and proliferation of amniotic fluid cells from normal and Down Syndrome pregnancies using a quantitative cytometry approach. Results revealed the emergence of a population of small sized cells in Down Syndrome derived amniotic fluid cells that are readily visible upon microscopic inspection. Hence, the fluorescence–based quantitative image cytometry determinations showed a tendency of decrease in both cell and nuclei size in trisomy, with no significant modification in nuclei circularity, as measured following actin cytoskeleton and nuclei labeling. The propensity of Ki67 positive cells was found to be increased in Down Syndrome derived cells (48.92% as compared to normal specimens (28.68%. However, cells in S and G2/M cell cycle phases decreased from 32.91% to 4.49% in diseased cells. Further studies are devoted to understanding the molecular basis of the observed differences in the proliferation ability of Down Syndrome amniotic cells, in order to evaluate the potential therapeutic effect of amniotic fluid stem cells for tissue regeneration in subjects with trisomy and to find correlations between amniotic cells phenotype and patient prognosis.

  14. Simvastatin modulates mesenchymal stromal cell proliferation and gene expression.

    Science.gov (United States)

    Zanette, Dalila Lucíola; Lorenzi, Julio Cesar Cetrulo; Panepucci, Rodrigo Alexandre; Palma, Patricia Vianna Bonini; Dos Santos, Daiane Fernanda; Prata, Karen Lima; Silva, Wilson Araújo

    2015-01-01

    Statins are widely used hypocholesterolemic drugs that block the mevalonate pathway, responsible for the biosysnthesis of cholesterol. However, statins also have pleiotropic effects that interfere with several signaling pathways. Mesenchymal stromal cells (MSC) are a heterogeneous mixture of cells that can be isolated from a variety of tissues and are identified by the expression of a panel of surface markers and by their ability to differentiate in vitro into osteocytes, adipocytes and chondrocytes. MSC were isolated from amniotic membranes and bone marrows and characterized based on ISCT (International Society for Cell Therapy) minimal criteria. Simvastatin-treated cells and controls were directly assayed by CFSE (Carboxyfluorescein diacetate succinimidyl ester) staining to assess their cell proliferation and their RNA was used for microarray analyses and quantitative PCR (qPCR). These MSC were also evaluated for their ability to inhibit PBMC (peripheral blood mononuclear cells) proliferation. We show here that simvastatin negatively modulates MSC proliferation in a dose-dependent way and regulates the expression of proliferation-related genes. Importantly, we observed that simvastatin increased the percentage of a subset of smaller MSC, which also were actively proliferating. The association of MSC decreased size with increased pluripotency and the accumulating evidence that statins may prevent cellular senescence led us to hypothesize that simvastatin induces a smaller subpopulation that may have increased ability to maintain the entire pool of MSC and also to protect them from cellular senescence induced by long-term cultures/passages in vitro. These results may be important to better understand the pleiotropic effects of statins and its effects on the biology of cells with regenerative potential. PMID:25874574

  15. Simvastatin modulates mesenchymal stromal cell proliferation and gene expression.

    Directory of Open Access Journals (Sweden)

    Dalila Lucíola Zanette

    Full Text Available Statins are widely used hypocholesterolemic drugs that block the mevalonate pathway, responsible for the biosysnthesis of cholesterol. However, statins also have pleiotropic effects that interfere with several signaling pathways. Mesenchymal stromal cells (MSC are a heterogeneous mixture of cells that can be isolated from a variety of tissues and are identified by the expression of a panel of surface markers and by their ability to differentiate in vitro into osteocytes, adipocytes and chondrocytes. MSC were isolated from amniotic membranes and bone marrows and characterized based on ISCT (International Society for Cell Therapy minimal criteria. Simvastatin-treated cells and controls were directly assayed by CFSE (Carboxyfluorescein diacetate succinimidyl ester staining to assess their cell proliferation and their RNA was used for microarray analyses and quantitative PCR (qPCR. These MSC were also evaluated for their ability to inhibit PBMC (peripheral blood mononuclear cells proliferation. We show here that simvastatin negatively modulates MSC proliferation in a dose-dependent way and regulates the expression of proliferation-related genes. Importantly, we observed that simvastatin increased the percentage of a subset of smaller MSC, which also were actively proliferating. The association of MSC decreased size with increased pluripotency and the accumulating evidence that statins may prevent cellular senescence led us to hypothesize that simvastatin induces a smaller subpopulation that may have increased ability to maintain the entire pool of MSC and also to protect them from cellular senescence induced by long-term cultures/passages in vitro. These results may be important to better understand the pleiotropic effects of statins and its effects on the biology of cells with regenerative potential.

  16. Essential components for ex vivo proliferation of mesenchymal stromal cells.

    Science.gov (United States)

    Fekete, Natalie; Rojewski, Markus Thomas; Lotfi, Ramin; Schrezenmeier, Hubert

    2014-02-01

    Mesenchymal stromal cells (MSCs) are highly interesting candidates for clinical applications in regenerative medicine. Due to their low occurrence in human tissues, extensive in vitro expansion is necessary to obtain sufficient cell numbers applicable as a clinical dose in the context of cellular therapy. Current cell culture media formulations for the isolation and expansion of MSCs include fetal calf serum (FCS), human AB serum (ABS), or human platelet lysate (PL) as a supplement. However, these established supplements are inherently ill-defined formulations that contain a variety of bioactive molecules in varying batch-to-batch compositions and the risk of transmitting pathogens that escape routine screening procedures. In this study, we have comparatively characterized the capacity of commonly used basal media, such as the Minimum Essential Medium alpha (αMEM), Dulbecco's modified Eagle's medium (DMEM), Iscove's Modified Dulbecco's Medium (IMDM), and RPMI 1640 as well as human- and animal-derived supplements, that is, PL, ABS, and FCS to stimulate cell proliferation. MSC proliferation was observed to be optimal in the PL-supplemented αMEM. Using a combinatorial approach, we then assessed a library of soluble factors, including mitogens (TGF-β1, Activin A, bFGF, EGF, IGF-I, PDGF-BB, and VEGF), chemokines (CCL21, CCL25, CXCL12, and RANTES), proteins (human serum albumin), lipids (e.g., oleic acid, linoleic acid, and arachidonic acid), and hormones (dexamethasone, insulin, and TSH), to create a defined medium as well as coating of cell culture surfaces to promote robust MSC proliferation in vitro. A combination of recombinant human factors partially met the nutritional requirements of bone marrow-derived MSCs, and was able to promote cell proliferation comparable to about 5% PL if supplemented with auxiliary 0.6%-1.2% PL. Maximal MSC proliferation was achieved by combining 5% PL with a cocktail of recombinant factors and did not depend on coating of cell

  17. Capsaicin modulates proliferation, migration, and activation of hepatic stellate cells.

    Science.gov (United States)

    Bitencourt, Shanna; Mesquita, Fernanda; Basso, Bruno; Schmid, Júlia; Ferreira, Gabriela; Rizzo, Lucas; Bauer, Moises; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis; Mannaerts, Inge; van Grunsven, Leo Adrianus; Oliveira, Jarbas

    2014-03-01

    Capsaicin, the active component of chili pepper, has been reported to have antiproliferative and anti-inflammatory effects on a variety of cell lines. In the current study, we aimed to investigate the effects of capsaicin during HSC activation and maintenance. Activated and freshly isolated HSCs were treated with capsaicin. Proliferation was measured by incorporation of EdU. Cell cycle arrest and apoptosis were investigated using flow cytometry. The migratory response to chemotactic stimuli was evaluated by a modified Boyden chamber assay. Activation markers and inflammatory cytokines were determined by qPCR, immunocytochemistry, and flow cytometry. Our results show that capsaicin reduces HSC proliferation, migration, and expression of profibrogenic markers of activated and primary mouse HSCs. In conclusion, the present study shows that capsaicin modulates proliferation, migration, and activation of HSC in vitro. PMID:23955514

  18. Proliferation and Differentiation of Duct Epithelial Cells after Partial Pancreatectomy in Rats

    Institute of Scientific and Technical Information of China (English)

    LIU Tao; WANG Chunyou; WAN Chidan; XIONG Jiongxin; ZHOU Feng

    2006-01-01

    The proliferation and differentiation of pancreatic duct epithelial cells in remnant pancreas during regeneration after partial pancreatectomy in rats were studied, and the source of pancreatic stem cells was characterized. Partial (90 %) pancreatectomy was performed on 4- to 5-week-old Sprague-Dawley rats, and different duct epithelial cells and acinar cells were detected by immunohistrochemical stain method and scored using 5-bromo-2'-deoxyuridine (BrdU) labeling index (LI) at various time points after partial pancreatectomy. It was found that at 24 h after partial pancreatectomy proliferation started in the main, large and small duct cells, and persisted in small duct cells to day 5.There was significant difference between the experimental group and the control group (P<0.001).Acinar cells positive for BrdU were greatly increased and reached the peak LI on day 5. The destroyed lobular architecture almost totally recovered on day 7, and the newly islet cells appeared around the pancreatic ducts. These results suggest that regeneration after partial pancreatectomy is involved in proliferation and differentiation of pancreatic stem cells, and pancreatic stem cells may locate in the pancreatic ductules.

  19. Atypical role of sprouty in p21 dependent inhibition of cell proliferation in colorectal cancer.

    Science.gov (United States)

    Zhang, Qiong; Shim, Katherine; Wright, Kevin; Jurkevich, Alexander; Khare, Sharad

    2016-09-01

    Sprouty (SPRY) appears to act as a tumor suppressor in cancer, whereas we reported that SPRY2 functions as a putative oncogene in colorectal cancer (CRC) [Oncogene, 2010, 29: 5241-5253]. In general, various studies established inhibition of cell proliferation by SPRY in cancer. The mechanisms by which SPRY regulates cell proliferation in CRC are investigated. We demonstrate, for the first time, suppression of SPRY2 augmented EGF-dependent oncogenic signaling, however, surprisingly decreased cell proliferation in colon cancer cells. Our data suggest that cell cycle inhibitor p21(WAF1/CIP1) transcriptional activity being regulated by SPRY2. Indeed, suppression of SPRY2 significantly increased p21(WAF1/CIP1) mRNA and protein expression as well as p21(WAF1/CIP1) promoter activity. Conversely, overexpressing SPRY2 triggered a decrease in p21(WAF1/CIP1) promoter activity. Concurrent down-regulation of both SPRY1 and SPRY2 also increased p21(WAF1/CIP1) expression in colon cancer cells. Increased nuclear localization of p21(WAF1/CIP1) in SPRY2 downregulated colon cancer cells may explain the inhibition of cell proliferation in colon cancer cells. Underscoring the biological relevance of these findings in SPRY1 and SPRY2 mutant mouse, recombination of floxed SPRY1 and SPRY2 alleles in mouse embryonic fibroblasts (MEFs) resulted in increased expression and nuclear localization of p21(WAF1/CIP1) and decreased cell proliferation. In CRC, the relationship of SPRY with p21 may provide unique strategies for cancer prevention and treatment. © 2015 The Authors. Molecular Carcinogenesis published by Wiley Periodicals, Inc. PMID:26293890

  20. Ectopic expression of Flt3 kinase inhibits proliferation and promotes cell death in different human cancer cell lines.

    Science.gov (United States)

    Oveland, Eystein; Wergeland, Line; Hovland, Randi; Lorens, James B; Gjertsen, Bjørn Tore; Fladmark, Kari E

    2012-08-01

    Stable ectopic expression of Flt3 receptor tyrosine kinase is usually performed in interleukin 3 (IL-3)-dependent murine cell lines like Ba/F3, resulting in loss of IL-3 dependence. Such high-level Flt3 expression has to date not been reported in human acute myeloid leukemia (AML) cell lines, despite the fact that oncogenic Flt3 aberrancies are frequent in AML patients. We show here that ectopic Flt3 expression in different human cancer cell lines might reduce proliferation and induce apoptotic cell death, involving Bax/Bcl2 modulation. Selective depletion of Flt3-expressing cells occurred in human AML cell lines transduced with retroviral Flt3 constructs, shown here using the HL-60 leukemic cell line. Flt3 expression was investigated in two cellular model systems, the SAOS-2 osteosarcoma cell line and the human embryonic kidney HEK293 cell line, and proliferation was reduced in both systems. HEK293 cells underwent apoptosis upon ectopic Flt3 expression and cell death could be rescued by overexpression of Bcl-2. Furthermore, we observed that the Flt3-induced inhibition of proliferation in HL-60 cells appeared to be Bax-dependent. Our results thus suggest that excessive Flt3 expression has growth-suppressive properties in several human cancer cell lines. PMID:22422053

  1. MAPK signal pathways in the regulation of cell proliferation in mammalian cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    MAPK families play an important role in complex cellular programs like proliferation, differentiation,development, transformation, and apoptosis. At least three MAPK families have been characterized: extracellular signal-regulated kinase (ERK), Jun kinase (JNK/SAPK) and p38 MAPK. The above effects are fulfilled by regulation of cell cycle engine and other cell proliferation related proteins. In this paper we discussed their functions and cooperation with other signal pathways in regulation of cell proliferation.

  2. Experimental Study on the Inhibitory Effects of Verapamil on the Proliferation of Meningiomas Cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian; ZHANG Hongtao; WANG Heping

    2007-01-01

    In order to investigate the effects of verapamil on the proliferation of meningiomas cells in vitro and in vivo, the cultured meningiomas cells were cultured with verapamil at different concentrations for 24 h and the inhibitory effects of verapamii on cell proliferation were observed by MTT method. The meningiomas model was established by implanting the newly removed tumor fragments into the nude mice subcutaneously. The nude mice with tumors were divided into two groups: verapamil-treated group and control group. Tumor volumes were measured and after 12 weeks the tumors were taken out and examined histologically. The expression of proliferating cell nuclear antigen (PCNA) in the tumors was detected by using immunohistochemistry. It was found that verapamil could inhibit the growth of cultured meningiomas cells in a concentration-dependant manner. The inhibitory effect could be observed in the concentration of 1 μmol/L verapamil and the most obvious effects appeared in the concentration of 100 μmol/L. Tumor volume in the verapamiltreated group was obviously smaller than that in the control group (211.40±5.50 vs 163.94±3.62, P<0.01) and theexpression of PCNA was also lower (1.52±0.24 vs 2.86±0.53, P<0.05). Tumor inhibition rate was about 22.45%. It was suggested that verapamil could inhibit the proliferation and growth of meningiomas cells in vitro and in vivo.

  3. FBI-1 and choriocarcinoma cell proliferation

    OpenAIRE

    Cheung, Man-keung; 張文強

    2013-01-01

    Gestational trophoblastic disease (GTD) includes a spectrum of diseases that involve abnormal growth of trophoblastic cells inside the uterus. It can range from benign hydatidiform moles (HM) to frankly malignant choriocarcinoma, placental site trophoblastic tumor (PSTT) or epithelioid trophoblastic tumour (ETT).GTD are considered curable if the patient is correctly diagnosed and receive appropriate treatment during the early stage of the disease. About 15% -30% of hydatidiform moles will...

  4. Appearance of Tumor Cells in Cyst Fluid of Malignant Ovarian Tumor

    OpenAIRE

    Numa, Fumitaka; Suminami, Yoshinori; Ogata, Hidenobu; Nawata, Shugo; Umayahara, Kenji; Nakamura, Yasuhiko; Sugino, Norihiro; Hiraoka, Fumiko; Ise, Etsuko; TAKAHASHI, MUTSUO; Hirabayashi, Kei; Hiratsuka, Keisuke; Kato, Hiroshi

    2000-01-01

    The significance of spillage of tumor cells into the abdominal cavity by fine needle aspiration or rupture of adnexel masses in case of malignancy is the focus. However, the appearance rate of malignant cells in cyst fluid by fine needle aspiration has been quite variable. We therefore evaluated the appearance rate of malignant cells in the cyst fluid from malignant ovarian tumors. Our study population included 29 women with malignant ovarian tumor who attended two hospitals between November...

  5. Cell Adhesion and Proliferation on Modified Polyethylene

    Czech Academy of Sciences Publication Activity Database

    Kasálková, N.; Kolářová, K.; Bačáková, Lucie; Pařízek, Martin; Macková, Anna; Švorčík, V.

    567-568, - (2007), s. 269-272. ISSN 0255-5476 R&D Projects: GA ČR GA204/06/0225; GA AV ČR(CZ) KAN400480701; GA AV ČR(CZ) IAA5011301; GA MŠk(CZ) LC06041 Grant ostatní: ICT(CZ) 126080017 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z10480505 Keywords : plasma discharge * aminoacid grafting * vascular smooth muscle cells Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.399, year: 2005

  6. Patients' perceptions of their cosmetic appearance more than ten years after radiotherapy for basal cell carcinoma

    International Nuclear Information System (INIS)

    Of 47 elderly patients treated by simple radiotherapeutic techniques for basal cell carcinomas, 12 are alive and free of disease more than 10 years after treatment. They were asked to rate their perception of the current cosmetic appearance of their lesions on a scale consisting of: excellent, very good, good, mediocre, and poor. Six of the 12 rated their cosmetic appearance as excellent, three considered it very good, and three called it good. Despite undeniable objective deterioration of the cosmetic appearance of irradiated basal cell carcinomas, patients appear to be pleased with the results. (author)

  7. Cytokine signaling for proliferation, survival, and death in hematopoietic cells.

    Science.gov (United States)

    Miyajima, A; Ito, Y; Kinoshita, T

    1999-04-01

    The survival, proliferation, and differentiation of hematopoietic cells are regulated by cytokines. In the absence of cytokines, hematopoietic cells not only stop proliferation, but undergo apoptosis. This strict dependency of hematopoietic cells on cytokines is an important mechanism that maintains the homeostasis of blood cells. Cytokines induce various intracellular signaling pathways by activating the receptor-associated Janus kinases (Jaks), and distinct signals are responsible for cell cycle progression and cell survival. Induction of signals for cell cycle progression without suppressing apoptosis results in apoptotic cell death, indicating the essential role of anti-apoptotic signaling for cell growth. In hematopoietic cells, Ras, a cellular protooncogen product, and phosphatidylinositol 3 kinase are involved in the suppression of apoptosis. Cytokine depletion not only turns off anti-apoptotic signaling, but also actively induces cell death by activating caspases, a distinct family of cysteine proteases. Alterations in the mechanisms of cytokine signaling for cell cycle progression and anti-apoptotic function are implicated in hematological disorders. PMID:10222650

  8. Selective stimulation of prostatic carcinoma cell proliferation by transferrin.

    OpenAIRE

    M.C. Rossi; Zetter, B R

    1992-01-01

    Aggressive prostatic carcinomas most frequently metastasize to the skeletal system. We have previously shown that cultured human prostatic carcinoma cells are highly responsive to growth factors found in human bone marrow. To identify the factor(s) responsible for the increased prostatic carcinoma cell proliferation, we fractionated crude bone marrow preparations by using hydroxylapatite HPLC. The major activity peak contained two high molecular weight bands (M(r) = 80,000 and 69,000) that cr...

  9. Modulation of insulin degrading enzyme activity and liver cell proliferation

    OpenAIRE

    Pivovarova, Olga; von Loeffelholz, Christian; Ilkavets, Iryna; Sticht, Carsten; Zhuk, Sergei; Murahovschi, Veronica; Lukowski, Sonja; Döcke, Stephanie; Kriebel, Jennifer; de las Heras Gala, Tonia; Malashicheva, Anna; Kostareva, Anna; Lock, Johan F; Stockmann, Martin; Grallert, Harald

    2015-01-01

    Diabetes mellitus type 2 (T2DM), insulin therapy, and hyperinsulinemia are independent risk factors of liver cancer. Recently, the use of a novel inhibitor of insulin degrading enzyme (IDE) was proposed as a new therapeutic strategy in T2DM. However, IDE inhibition might stimulate liver cell proliferation via increased intracellular insulin concentration. The aim of this study was to characterize effects of inhibition of IDE activity in HepG2 hepatoma cells and to analyze liver specific expre...

  10. HERG K+ channels expression in gastric cancers and analysis of its regulation in tumor cell proliferation and apoptosis

    Institute of Scientific and Technical Information of China (English)

    Qing Lü; Huiyu Li; Xiaoming Lu; Guobin Wang

    2009-01-01

    Objective: To investigate the expression of herg 1 gene in tumor tissues from gastric carcinomas and gastric carcinoma cell lines, and study the relationship between HERG K+ channel expressions and tumor cell proliferation and apoptosis. Methods: RT-PCR and PCR assays were used to detect the expression of herg 1 gene in 64 gastric carcinomas and the gastric cancer cell line SGC-7901. Blocking the HERG K+ channels was used to evaluate their effects on tumor cell proliferation and apoptosis. Results:The statistically significant expression of herg 1 gene was detected in all the gastric cancers and SGC-7901 cells, but not in normal tissues. The HERG K+ channel blocker, E-4031, increased the cell population in G0/G1 (P<0.05) and the number of apoptotic tumor cells(P<0.05). Conclusion: HERG K+ channels were expressed in all gastric carcinomas tested and these channels appear to modulate tumor cell proliferation and apoptosis.

  11. Noninvasive Assessment of Tumor Cell Proliferation in Animal Models

    Directory of Open Access Journals (Sweden)

    Matthias Edinger

    1999-10-01

    Full Text Available Revealing the mechanisms of neoplastic disease and enhancing our ability to intervene in these processes requires an increased understanding of cellular and molecular changes as they occur in intact living animal models. We have begun to address these needs by developing a method of labeling tumor cells through constitutive expression of an optical reporter gene, noninvasively monitoring cellular proliferation in vivo using a sensitive photon detection system. A stable line of HeLa cells that expressed a modified firefly luciferase gene was generated, proliferation of these cells in irradiated severe combined immunodeficiency (SCID mice was monitored. Tumor cells were introduced into animals via subcutaneous, intraperitoneal and intravenous inoculation and whole body images, that revealed tumor location and growth kinetics, were obtained. The number of photons that were emitted from the labeled tumor cells and transmitted through murine tissues was sufficient to detect 1×103 cells in the peritoneal cavity, 1×104 cells at subcutaneous sites and 1×106 circulating cells immediately following injection. The kinetics of cell proliferation, as measured by photon emission, was exponential in the peritoneal cavity and at subcutaneous sites. Intravenous inoculation resulted in detectable colonies of tumor cells in animals receiving more than 1×103 cells. Our demonstrated ability to detect small numbers of tumor cells in living animals noninvasively suggests that therapies designed to treat minimal disease states, as occur early in the disease course and after elimination of the tumor mass, may be monitored using this approach. Moreover, it may be possible to monitor micrometastases and evaluate the molecular steps in the metastatic process. Spatiotemporal analyses of neoplasia will improve the predictability of animal models of human disease as study groups can be followed over time, this method will accelerate development of novel therapeutic

  12. Adipogenesis licensing and execution are disparately linked to cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Wei Guo; Kun-Ming Zhang; Kang Tu; Yi-Xue Li; Li Zhu; Hua-Sheng Xiao; Ying Yang; Jia-Rui Wu

    2009-01-01

    Coordination of cell differentiation and proliferation is a key issue in the development process of multi-cellular organisms and stem cells. Here we provide evidence that the establishment of adipocyte differentiation of 3T3-LI cells requires two processes: the licensing of an adipogenesis gene-expression program within a particular growth-arrest stage, i.e., the contact-inhibition stage, and then the execution of this program in a cell-cycle-independent manner,by which the licensed progenitors are differentiated into adipocytes in the presence of inducing factors. Our results showed that differentiation licensing of 3T3-L1 cells during the contact-inhibition stage involved epigenetic modifications such as DNA methylation and histone modifications, whereas disturbing these epigenetic modifications by DNA methylation inhibitors or RNAi during the contact-inhibition stage significantly reduced adipogenesis efficiency.More importantly, when these licensed 3T3-LI cells were re-cultured under non-differentiating conditions or treated only with insulin, this adipogenesis commitment could be maintained from one cell generation to the next, whereby the licensed program could be activated in a cell-cycle-independent manner once these cells were subjected to adipogenesis-inducing conditions. This result suggests that differentiation licensing and differentiation execution can be uncoupled and disparately linked to cell proliferation. Our findings deliver a new concept that cell-fate decision can be subdivided into at least two stages, licensing and execution, which might have different regulatory relationships with cell proliferation, in addition, this new concept may provide a clue for developing new strategies against obesity.

  13. EFFECTS OF TOTAL SAPONINS OF PANAX NOTOGINSENG AND LIGUSTRAZINE ON THE PROLIFERATION OF CEREBRAL MICROVASCULAR ENDOTHELIAL CELLS OF RATS

    Institute of Scientific and Technical Information of China (English)

    李敏杰; 刘勇; 丁海燕

    2002-01-01

    Objective To investigate the effects of Total Saponins of Panax notoginseng(PNS) and Liguastrazine(LIT) on the proliferation of cultured cerebral microvascular endothelial cells. Methods The inverted microscope was used to observe endothelial cells and immunochemical methods was also used to detect FVIII-related antigens so as to observe endothelial cells. PNS or LIT in concentrations 0.5 g*L-1, 1.0 g*L-1 and 2.0 g*L-1 were used on the cultured cerebral endothelial cells of rats for 24 hours. MTT method was adopted to determine the outcome of endothelial proliferation. Results 1. Immunochemical methods was used to detect FVIII-related antigens. The brownish yellow showed positive, and the observation of the cultured endothelial cells under inverted microscope showed that the cells appeared to be in the morphological form of cobble-stones. 2. PNS in lower concentration (0.5 g*L-1) could facilitate the proliferation of the cells, while 1 g*L-1 and 2 g*L-1 of PNS could inhibit the proliferation of the cells. 0.5 g*L-1 of LIT could facilitate the proliferation of cellswhile LIT of 1 g*L-1 and 2 g*L-1 had no significant effect. Conclusion The two kind of TCM ingredients extracted in lower concentration could facilitate the proliferation of the cells. And, at the same concentration, the inhibition of PNS on the cells is stronger than that of LIT.

  14. Matrix stiffness regulates endothelial cell proliferation through septin 9.

    Directory of Open Access Journals (Sweden)

    Yi-Ting Yeh

    Full Text Available Endothelial proliferation, which is an important process in vascular homeostasis, can be regulated by the extracellular microenvironment. In this study we demonstrated that proliferation of endothelial cells (ECs was enhanced on hydrogels with high stiffness (HSG, 21.5 kPa in comparison to those with low stiffness (LSG, 1.72 kPa. ECs on HSG showed markedly prominent stress fibers and a higher RhoA activity than ECs on LSG. Blockade of RhoA attenuated stress fiber formation and proliferation of ECs on HSG, but had little effect on ECs on LSG; enhancement of RhoA had opposite effects. The phosphorylations of Src and Vav2, which are positive RhoA upstream effectors, were higher in ECs on HSG. The inhibition of Src/Vav2 attenuated the HSG-mediated RhoA activation and EC proliferation but exhibited nominal effects on ECs on LSG. Septin 9 (SEPT9, the negative upstream effector for RhoA, was significantly higher in ECs on LSG. The inhibition of SEPT9 increased RhoA activation, Src/Vav2 phosphorylations, and EC proliferation on LSG, but showed minor effects on ECs on HSG. We further demonstrated that the inactivation of integrin α(vβ(3 caused an increase of SEPT9 expression in ECs on HSG to attenuate Src/Vav2 phosphorylations and inhibit RhoA-dependent EC proliferation. These results demonstrate that the SEPT9/Src/Vav2/RhoA pathway constitutes an important molecular mechanism for the mechanical regulation of EC proliferation.

  15. The Retinoblastoma pathway regulates stem cell proliferation in freshwater planarians.

    Science.gov (United States)

    Zhu, Shu Jun; Pearson, Bret J

    2013-01-15

    Freshwater planarians are flatworms of the Lophotrochozoan superphylum and are well known for their regenerative abilities, which rely on a large population of pluripotent adult stem cells. However, the mechanisms by which planarians maintain a precise population of adult stem cells while balancing proliferation and cell death, remain to be elucidated. Here we have identified, characterized, and functionally tested the core Retinoblastoma (Rb) pathway components in planarian adult stem cell biology. The Rb pathway is an ancient and conserved mechanism of proliferation control from plants to animals and is composed of three core components: an Rb protein, and a transcription factor heterodimer of E2F and DP proteins. Although the planarian genome contains all components of the Rb pathway, we found that they have undergone gene loss from the ancestral state, similar to other species in their phylum. The single Rb homolog (Smed-Rb) was highly expressed in planarian stem cells and was required for stem cell maintenance, similar to the Rb-homologs p107 and p130 in vertebrates. We show that planarians and their phylum have undergone the most severe reduction in E2F genes observed thus far, and the single remaining E2F was predicted to be a repressive-type E2F (Smed-E2F4-1). Knockdown of either Smed-E2F4-1 or its dimerization partner Dp (Smed-Dp) by RNAi resulted in temporary hyper-proliferation. Finally, we showed that known Rb-interacting genes in other systems, histone deacetylase 1 and cyclinD (Smed-HDAC1; Smed-cycD), were similar to Rb in expression and phenotypes when knocked down by RNAi, suggesting that these established interactions with Rb may also be conserved in planarians. Together, these results showed that planarians use the conserved components of the Rb tumor suppressor pathway to control proliferation and cell survival. PMID:23123964

  16. Roles of Nrf2 in cell proliferation and differentiation.

    Science.gov (United States)

    Murakami, Shohei; Motohashi, Hozumi

    2015-11-01

    The Keap1-Nrf2 system plays pivotal roles in defense mechanisms by regulating cellular redox homeostasis. Nrf2 is an inducible transcription factor that activates a battery of genes encoding antioxidant proteins and phase II enzymes in response to oxidative stress and electrophilic xenobiotics. The activity of Nrf2 is regulated by Keap1, which promotes the ubiquitination and subsequent degradation of Nrf2 under normal conditions and releases the inhibited Nrf2 activity upon exposure to the stresses. Though an impressive contribution of the Keap1-Nrf2 system to the protection from exogenous and endogenous electrophilic insults has been well established, a line of evidence has suggested that the Keap1-Nrf2 system has various novel functions, particularly in cell proliferation and differentiation. Because the proliferation and differentiation of diverse cell types are often influenced and modulated by the cellular redox balance, Nrf2 has been considered to control these cellular processes by regulating the cellular levels of reactive oxygen species (ROS). In addition, analyses of the genome-wide distribution of Nrf2 have identified new sets of Nrf2 target genes whose products are involved in cell proliferation and differentiation but not necessarily in the regulation of oxidative stress. Considering the most characteristic features of Nrf2 as an inducible transcription factor, a newly emerged concept proposes that the Keap1-Nrf2 system translates environmental stresses into regulatory network signals in cell fate determination. In this review, we introduce the contribution of Nrf2 to lineage-specific differentiation, maintenance and differentiation of stem cells, and proliferation of normal and cancer cells, and we discuss how the response to fluctuating environments modulates cell behavior through the Keap1-Nrf2 system. PMID:26119783

  17. Tapetal cell fate, lineage and proliferation in the Arabidopsis anther.

    Science.gov (United States)

    Feng, Xiaoqi; Dickinson, Hugh G

    2010-07-01

    The four microsporangia of the flowering plant anther develop from archesporial cells in the L2 of the primordium. Within each microsporangium, developing microsporocytes are surrounded by concentric monolayers of tapetal, middle layer and endothecial cells. How this intricate array of tissues, each containing relatively few cells, is established in an organ possessing no formal meristems is poorly understood. We describe here the pivotal role of the LRR receptor kinase EXCESS MICROSPOROCYTES 1 (EMS1) in forming the monolayer of tapetal nurse cells in Arabidopsis. Unusually for plants, tapetal cells are specified very early in development, and are subsequently stimulated to proliferate by a receptor-like kinase (RLK) complex that includes EMS1. Mutations in members of this EMS1 signalling complex and its putative ligand result in male-sterile plants in which tapetal initials fail to proliferate. Surprisingly, these cells continue to develop, isolated at the locular periphery. Mutant and wild-type microsporangia expand at similar rates and the 'tapetal' space at the periphery of mutant locules becomes occupied by microsporocytes. However, induction of late expression of EMS1 in the few tapetal initials in ems1 plants results in their proliferation to generate a functional tapetum, and this proliferation suppresses microsporocyte number. Our experiments also show that integrity of the tapetal monolayer is crucial for the maintenance of the polarity of divisions within it. This unexpected autonomy of the tapetal 'lineage' is discussed in the context of tissue development in complex plant organs, where constancy in size, shape and cell number is crucial. PMID:20570940

  18. Hepatic Bel-7402 Cell Proliferation on Different Phospholipid Surfaces

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Phospholipids are believed to be important biomaterials.However, limited information is available on their cytocompatibilities.The objective of this study is to evaluate the effects of different phospholipids on the proliferation of hepatic Bel-7402 cells by comparing the adhesion, viability and proliferation of Bel-7402 cells cultured on different phospholipid surfaces.The cell adhesion, determined by counting the number of adhered cells to the surface, indicated that the cell adhesion was enhanced on charged phospolipid membranes.The cell viability evaluated by MTT[3 (4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium-bromide] showed that cells cultured on charged phospholipids have greater viability than those cultured on the control, while cells cultured on neutral phospholipids showed lower viability.The cell cycle analysis using flow cytometry demonstrated that S phase entry increased on charged phospholipids, while S phase entry decreased on neutral phospholipids.The results suggested that charged phospholipids, especially positively charged phospholipids, show better cytocompatibilities than neutral phospholipids to hepatic Bel-7402 cell.

  19. Appearance of differentiated cells derived from polar body nuclei in the silkworm, Bombyx mori

    Directory of Open Access Journals (Sweden)

    Hiroki eSakai

    2013-09-01

    Full Text Available AbstractIn Bombyx mori, polar body nuclei are observed until 9h after egg lying, however, the fate of polar body nuclei remains unclear. To examine the fate of polar body nuclei, we employed a mutation of serosal cell pigmentation, pink-eyed white egg (pe. The heterozygous pe/+pe females produced black serosal cells in white eggs, while pe/pe females did not produce black serosal cells in white eggs. These results suggest that the appearance of black serosal cells in white eggs depends on the genotype (pe/ +pe of the mother. Because the polar body nuclei had +pe genes in the white eggs laid by a pe/ +pe female, polar body nuclei participate in development and differentiate into functional cell (serosal cells. Analyses of serosal cells pigmentation indicated that approximately 30% of the eggs contained polar-body-nucleus-derived cells. These results demonstrate that polar-body-nucleus-derived cells appeared at a high frequency under natural conditions. Approximately 80% of polar-body-nucleus-derived cells appeared near the anterior pole and the dorsal side, which is opposite to where embryogenesis occurs. The number of cells derived from the polar body nuclei was very low. Approximately 26 % of these eggs contained only one black serosal cell. PCR-based analysis revealed that the polar-body-nucleus-derived cells disappeared in late embryonic stages (stage 25. Overall, polar-body-nuclei-derived cells were unlikely to contribute to embryos.

  20. Cell cycle restriction by histone H2AX limits proliferation of adult neural stem cells

    OpenAIRE

    Fernando, R. N.; Eleuteri, B.; Abdelhady, S.; Nussenzweig, A; Andang, M; Ernfors, P.

    2011-01-01

    Adult neural stem cell proliferation is dynamic and has the potential for massive self-renewal yet undergoes limited cell division in vivo. Here, we report an epigenetic mechanism regulating proliferation and self-renewal. The recruitment of the PI3K-related kinase signaling pathway and histone H2AX phosphorylation following GABAA receptor activation limits subventricular zone proliferation. As a result, NSC self-renewal and niche size is dynamic and can be directly modulated in both directio...

  1. Aging and Immortality in a Cell Proliferation Model

    CERN Document Server

    Antal, T; Trugman, S A; Redner, S

    2007-01-01

    We investigate a model of cell division in which the length of telomeres within the cell regulate their proliferative potential. At each cell division the ends of linear chromosomes change and a cell becomes senescent when one or more of its telomeres become shorter than a critical length. In addition to this systematic shortening, exchange of telomere DNA between the two daughter cells can occur at each cell division. We map this telomere dynamics onto a biased branching diffusion process with an absorbing boundary condition whenever any telomere reaches the critical length. As the relative effects of telomere shortening and cell division are varied, there is a phase transition between finite lifetime and infinite proliferation of the cell population. Using simple first-passage ideas, we quantify the nature of this transition.

  2. RNA interference targeting raptor inhibits proliferation of gastric cancer cells

    International Nuclear Information System (INIS)

    Mammalian target of rapamycin complex 1 (mTORC1) is dysregulated in gastric cancer. The biologic function of mTORC1 in gastric carcinogenesis is unclear. Here, we demonstrate that disruption of mTORC1 function by RNA interference-mediated downregulation of raptor substantially inhibited gastric cancer cell proliferation through induction of G0/G1-phase cell cycle arrest. The anti-proliferative effect was accompanied by concomitant downregulation of activator protein-1 and upregulation of Smad2/3 transcriptional activities. In addition, the expression of cyclin D3 and p21Waf1, which stabilizes cyclin D/cdk4 complex for G1-S transition, was reduced by raptor knockdown. In conclusion, disruption of mTORC1 inhibits gastric cancer cell proliferation through multiple pathways. This discovery may have an implication in the application of mTORC1-directed therapy for the treatment of gastric cancer.

  3. Ethanol inhibits human bone cell proliferation and function in vitro

    International Nuclear Information System (INIS)

    The direct effects of ethanol on human bone cell proliferation and function were studied in vitro. Normal human osteoblasts from trabecular bone chips were prepared by collagenase digestion. Exposure of these osteoblasts to ethanol in concentrations of 0.05% to 1% for 22 hours induced a dose-dependent reduction in bone cell DNA synthesis as assessed by incorporation of 3H-thymidine. After 72 hours of ethanol exposure in concentrations of 0.01% to 1%, protein synthesis as measured by 3H-proline incorporation into trichbroacetic acid (TCA)-precipitable material was reduced in a dose-dependent manner. Human bone cell protein concentrations and alkaline phosphatase total activity were significantly reduced after exposure to 1% ethanol for 72 hours, but not with lower concentrations of ethanol. This reduction in osteoblast proliferation and activity may partially explain the development of osteopenia in humans consuming excessive amounts of ethanol

  4. The effects of anti-TNF treatment on cell proliferation

    DEFF Research Database (Denmark)

    Yli-Karjanmaa, Minna Liisa Kyllikki; Clausen, Bettina Hjelm; Novrup, Hans Gram;

    a mouse model of focal cerebral ischemia. Methods: Initially, we investigated the effect of XPro1595 and etanercept on learning and memory and cell proliferation in C57BL/6 mice. Healthy male mice were treated with etanercept, XPro1595 or saline for two weeks. The proliferation marker BrdU was...... administered after the first injection. Effect of anti-TNF therapy on learning and memory was tested using the Barnes maze. In addition, the total number of BrdU+ cells was estimated in the dentate gyrus of the hippocampus. In ongoing parallel studies, C57BL/6 mice subjected to focal cerebral ischemia were....... After two weeks of anti-TNF therapy there was a significant decrease in the number of BrdU+ cells in the hippocampal dentate gyrus in the XPro1595-treated group. Ongoing analysis will reveal whether Xpro1595 also decreased infarct volume after experimental stroke....

  5. Role of interleukin in human natural killer cell proliferation

    International Nuclear Information System (INIS)

    Human NK cells, defined by the antibody B73.1, can be induced to proliferate in vitro in the presence of an IL-2 containing conditioned medium (CM) and an irradiated lymphoblastoid line, Daudi. Proliferating NK cells maintain phenotypic and functional characteristics of resting NK cells while newly expressing surface activation antigens (HLA-DR, transferrin receptor, and IL-2 receptor recognized by anti-TAC antibody). A goat anti-IL-2 antiserum and the anti-TAC monoclonal antibody completely block 3H-TdR incorporation in NK cells stimulated with CM alone or with irradiated Daudi cells. Inhibition is also observed when the antibodies are added up to day 4 of culture, indicating that IL-2 is required for both initiation and maintenance of proliferation. Human recombinant IL-2, either alone or with irradiated lymphoblastoid cells, replaces the CM in initiating 3H-TdR incorporation. In limiting dilution analysis the frequency of B73.1 (+) cells responding to rIL-2 is approximately 1/2000 and it is increased ten to thirty fold with the addition of irradiated Daudi cells to the cultures. Cultures stimulated with rIL-2 in the presence of colchicine, show a significant proportion of B73.1 + cells entering cycle each day during the first 3 days. These data show that a significant proportion of resting NK cells are capable of responding to IL-2 and that this response can occur over a period of several days after initiation of cultures

  6. Suppression of Ov-grn-1 encoding granulin of Opisthorchis viverrini inhibits proliferation of biliary epithelial cells

    OpenAIRE

    Papatpremsiri, Atiroch; Smout, Michael J.; Loukas, Alex; Brindley, Paul J.; Sripa, Banchob; Laha, Thewarach

    2014-01-01

    Multistep processes likely underlie cholangiocarcinogenesis induced by chronic infection with the fish-borne liver fluke, Opisthorchis viverrini. One process appears to be cellular proliferation of the host bile duct epithelia driven by excretory-secretory (ES) products of this pathogen. Specifically, the secreted growth factor Ov-GRN-1, a liver fluke granulin, is a prominent component of ES and a known driver of hyper-proliferation of cultured human and mouse cells in vitro. We show potent h...

  7. Selective cytotoxicity of benzyl isothiocyanate in the proliferating fibroblastoid cells.

    Science.gov (United States)

    Miyoshi, Noriyuki; Uchida, Koji; Osawa, Toshihiko; Nakamura, Yoshimasa

    2007-02-01

    In the present study, experiments using presynchronization culture cells demonstrated that benzyl ITC (BITC), previously isolated from a tropical papaya fruit extract, induced the cytotoxic effect preferentially in the proliferating human colon CCD-18Co cells to the quiescent ones. Quiescent CCD-18Co cells were virtually unaffected by BITC and marginal cytotoxicity was observed at 15 microM. We observed that BITC dramatically induced the p53 phosphorylation and stabilization only in the quiescent (G(0)/G(1) phase-arrested) cells, but not significantly in the proliferating human colon CCD-18Co cells when compared with quiescent ones. We also observed ataxia telangiectasia-mutated (ATM) phosphorylation in the quiescent cells. The BITC-induced p53 phosphorylation was counteracted by caffeine treatment, implying the involvement of an ATM/ataxia telangiectasia and Rad3-related kinase signaling pathway. Moreover, downregulation of p53 by a siRNA resulted in the enhancement of susceptibility to undergo apoptosis by BITC. We also showed here that depletion of p53 abrogated G(0)/G(1) arrest accompanied by the declined expression of p21(waf1/cip1) and p27(kip1) in CCD-18Co cells. In conclusion, we identified p53 as a potential negative regulator of the apoptosis induction by BITC in the normal colon CCD-18Co cells through the inhibition of cell-cycle progression at the G(0)/G(1) phase. PMID:17096346

  8. Methylthioadenosine (MTA) inhibits melanoma cell proliferation and in vivo tumor growth

    International Nuclear Information System (INIS)

    Melanoma is the most deadly form of skin cancer without effective treatment. Methylthioadenosine (MTA) is a naturally occurring nucleoside with differential effects on normal and transformed cells. MTA has been widely demonstrated to promote anti-proliferative and pro-apoptotic responses in different cell types. In this study we have assessed the therapeutic potential of MTA in melanoma treatment. To investigate the therapeutic potential of MTA we performed in vitro proliferation and viability assays using six different mouse and human melanoma cell lines wild type for RAS and BRAF or harboring different mutations in RAS pathway. We also have tested its therapeutic capabilities in vivo in a xenograft mouse melanoma model and using variety of molecular techniques and tissue culture we investigated its anti-proliferative and pro-apoptotic properties. In vitro experiments showed that MTA treatment inhibited melanoma cell proliferation and viability in a dose dependent manner, where BRAF mutant melanoma cell lines appear to be more sensitive. Importantly, MTA was effective inhibiting in vivo tumor growth. The molecular analysis of tumor samples and in vitro experiments indicated that MTA induces cytostatic rather than pro-apoptotic effects inhibiting the phosphorylation of Akt and S6 ribosomal protein and inducing the down-regulation of cyclin D1. MTA inhibits melanoma cell proliferation and in vivo tumor growth particularly in BRAF mutant melanoma cells. These data reveal a naturally occurring drug potentially useful for melanoma treatment

  9. Pancreatic stellate cells promote proliferation and invasiveness of human pancreatic cancer cells via galectin-3

    Institute of Scientific and Technical Information of China (English)

    Hai-Biao Jiang; Ming Xu; Xing-Peng Wang

    2008-01-01

    AIM: To investigate the role of pancreatic stellate cells (PSCs) and galectin-3 (GAL-3) in the proliferation and infiltration of pancreatic cancer cell line SW1990.METHODS: Human pancreatic cancer cell line SW1990 and PSCs were cultured in vitro. Supernatant fluid of cultured PSCs and SW1990 cells was collected. Expression of GAL-3 in SW1990 cells and PSCs was detected by ELISA, RT-PCR and Western blotting. Proliferation of cultured PSCs and SW1990 cells was measured by 3-(4, 5-methylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and flow cytometry. Infiltration of SW1990 cells was detected by a cell infiltration kit.RESULTS: SW1990 cells expressed GAL-3 and this was up-regulated by the supernatant fluid of cultured PSCs. PSCs did not express GAL-3. SW1990 cells stimulated proliferation of PSCs via GAL-3. GAL-3 antibody inhibited SW1990 cell proliferation, while the supernatant fluid of PSCs stimulated proliferation of SW1990 cells through interaction with GAL-3 protein. The supernatant fluid of PSCs enhanced the invasiveness of SW1990 cells through interaction with GAL-3.CONCLUSION: GAL-3 and PSCs were involved in the proliferation and infiltration process of pancreatic cancer cells.

  10. Voltage-Gated Ion Channels in Cancer Cell Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Vidhya R.; Perez-Neut, Mathew [Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago 2160 S. 1st Ave, Maywood, IL 60153 (United States); Kaja, Simon [Department of Ophthalmology and Vision Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO 64108 (United States); Gentile, Saverio, E-mail: sagentile@luc.edu [Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago 2160 S. 1st Ave, Maywood, IL 60153 (United States)

    2015-05-22

    Changes of the electrical charges across the surface cell membrane are absolutely necessary to maintain cellular homeostasis in physiological as well as in pathological conditions. The opening of ion channels alter the charge distribution across the surface membrane as they allow the diffusion of ions such as K{sup +}, Ca{sup ++}, Cl{sup −}, Na{sup +}. Traditionally, voltage-gated ion channels (VGIC) are known to play fundamental roles in controlling rapid bioelectrical signaling including action potential and/or contraction. However, several investigations have revealed that these classes of proteins can also contribute significantly to cell mitotic biochemical signaling, cell cycle progression, as well as cell volume regulation. All these functions are critically important for cancer cell proliferation. Interestingly, a variety of distinct VGICs are expressed in different cancer cell types, including metastasis but not in the tissues from which these tumors were generated. Given the increasing evidence suggesting that VGIC play a major role in cancer cell biology, in this review we discuss the role of distinct VGIC in cancer cell proliferation and possible therapeutic potential of VIGC pharmacological manipulation.

  11. Nifedipine promotes the proliferation and migration of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Dong-Qing Guo

    Full Text Available Nifedipine is widely used as a calcium channel blocker (CCB to treat angina and hypertension,but it is controversial with respect the risk of stimulation of cancers. In this study, we demonstrated that nifedipine promoted the proliferation and migration of breast cancer cells both invivo and invitro. However, verapamil, another calcium channel blocker, didn't exert the similar effects. Nifedipine and high concentration KCl failed to alter the [Ca2+]i in MDA-MB-231 cells, suggesting that such nifedipine effect was not related with calcium channel. Moreover, nifedipine decreased miRNA-524-5p, resulting in the up-regulation of brain protein I3 (BRI3. Erk pathway was consequently activated and led to the proliferation and migration of breast cancer cells. Silencing BRI3 reversed the promoting effect of nifedipine on the breast cancer. In a summary, nifedipine stimulated the proliferation and migration of breast cancer cells via the axis of miRNA-524-5p-BRI3-Erk pathway independently of its calcium channel-blocking activity. Our findings highlight that nifedipine but not verapamil is conducive for breast cancer growth and metastasis, urging that the caution should be taken in clinic to prescribe nifedipine to women who suffering both hypertension and breast cancer, and hypertension with a tendency in breast cancers.

  12. Effects of Ginkgo biloba extract on cell proliferation and cytotoxicity in human hepatocellular carcinoma cells

    OpenAIRE

    Chao, Jane CJ; Chu, Chia Chou

    2004-01-01

    AIM: To study the effect of Ginkgo biloba extract (EGb 761) containing 22%-27% flavonoids (ginkgo-flavone glycosides) and 5%-7% terpenoids (ginkgolides and bilobalides) on cell proliferation and cytotoxicity in human hepatocellular carcinoma (HCC) cells.

  13. Effects of Estradiol and Tamoxifen on Proliferation of Human Breast Cancer Cells and Human Endometrial Cells

    Institute of Scientific and Technical Information of China (English)

    张波; 陈道达; 王国斌; 吴毅华

    2003-01-01

    The effects of estradiol and tamoxifen on the proliferation of estrogen receptor positivecells and the relationship between the tamoxifen tolerance and cell origin were investigated. The tis-sues of human endometrium and breast cancer were randomly selected following dissection for pri-mary cell culture. After the breast cancer cells and endometrial cells were treated with 1 × 10-8 mol/L estradiol and/or 1 × 10-6 tamoxifen, a H-labelled thymine nucleotide was used to trace the kineticsof cell proliferation. There was no significant difference in the inhibition on the human endometrialcells between tamoxifen-treated group (6.3%) and control group (6.4%), but tamoxifen could sig-nificantly inhibit the proliferation of the human breast cancer cells (45.84 % ) as compared with con-trol group (52.72%). Moreover, tamoxifen could significantly stimulate the proliferation of tamox-ifen resistant breast cancer cells (9.64%) as compared with control group (6.32 %). Estradiolcould significantly stimulate the proliferation of all the three kinds of cells as compared with controlgroup. The combined use of estradiol and tamoxifen could inhibit the proliferation of the endometri-al cells and breast cancer cells as compared with estradiol used alone, but on the tamoxifen resistantbreast cancer cells, they could more significantly stimulate the proliferation than E2. It was conclu-ded that E2 could stimulate the proliferation of these three kinds of cells. However, the inhibitiveeffects of tamoxifen on the proliferation of these cells were dependent on the estradiol.

  14. Acetylcholine release by human colon cancer cells mediates autocrine stimulation of cell proliferation

    OpenAIRE

    Cheng, Kunrong; Samimi, Roxana; Xie, Guofeng; Shant, Jasleen; Drachenberg, Cinthia; Wade, Mark; Davis, Richard J.; Nomikos, George; Raufman, Jean-Pierre

    2008-01-01

    Most colon cancers overexpress M3 muscarinic receptors (M3R), and post-M3R signaling stimulates human colon cancer cell proliferation. Acetylcholine (ACh), a muscarinic receptor ligand traditionally regarded as a neurotransmitter, may be produced by nonneuronal cells. We hypothesized that ACh release by human colon cancer cells results in autocrine stimulation of proliferation. H508 human colon cancer cells, which have robust M3R expression, were used to examine effects of muscarinic receptor...

  15. Clonal proliferation and karyotypic features of cells in bone marrow after irradiation

    International Nuclear Information System (INIS)

    Single stem cells in which chromosome abnormalities are induced by radiation may multiply to form the chromosomally abnormal clones of cells that may replace most of the cells in regenerating hematopoietic tissues after irradiation. It is only a limited number of karyotypes out of a variety of the cells with radiation-induced chromosome abnormalities that can persist as proliferative clones. Such clones in the bone marrows of irradiated rats were found to have aneusomic chromosome constitutions with trisomy or monosomy. This finding is contradictory to the general beliefs that the chromosomally abnormal clones surviving after irradiation would have the chromosome constitutions comparable to a normal diploid set making such clone cells selectively neutral, and that autosomally monosomic cells would not be able to compete against the cells in normal somatic tissues. The proliferation of aneusomic cells in hematopoietic tissues is a phenomenon observable in various blood disorders such as leukemia. The fact that almost all of the aneuploid clones observed possessed various chromosomal rearrangements in addition to their numerical changes appears to indicate that the chromosomal imbalance in original clones may predispose their chromosomes to non-disjunction. The process of the leukemic development of cells may require two steps: the leukemic transformation of cells and the proliferation of such transformed cells up to the manifestation of the disease. (Yamashita, S.)

  16. Simulated Hypergravity Alters Vascular Smooth Muscle Cell Proliferation and Motility

    Science.gov (United States)

    Hunt, Shameka; Bettis, Barika; Harris-Hooker, Sandra; Sanford, Gary L.

    1997-01-01

    The cellular effects of gravity are poorly understood due to its constancy and nonavailability of altered gravitational models. Such an understanding is crucial for prolonged space flights. In these studies, we assessed the influence of centrifugation at 6G (HGrav) on vascular smooth muscle (SMC) mobility and proliferation. Cells were: (a) plated at low density and subjected to HGrav for 24-72 hr for proliferation studies, or (b) grown to confluency, subjected to HGrav, mechanically denuded and monitored for cell movement into the denuded area. Controls were maintained under normogravity. SMC showed a 50% inhibition of growth under HGrav and 10% serum; HGrav and low serum resulted in greater growth inhibition. The rate of movement of SMC into the denuded area was 2-3-fold higher under HGrav in low serum compared to controls, but similar in 10% serum. These studies show that HGrav has significant effects on SMC growth and mobility, which are dependent on serum levels.

  17. Effective component from verbena officinalis L. inhibits proliferation and induces apoptosis of human choriocarcinoma JAR cells

    Institute of Scientific and Technical Information of China (English)

    Xu Shan; Chen Qi; Xu Chang-fen

    2005-01-01

    Objective: To examine the action of the effective component, 4'-methylether -scutellarein, from Verbena officinalis L. (VOL) on the proliferation and apoptosis of human choriocarcinoma JAR cells.Methods: Cell proliferation was measured by MTT [3-(4, 5-dimethylthiazol-2-yl) -2, 5-diphenyl tetrasodium bromide, MTT] assay and the incorporation of tritiated thymidine (3H-TdR). Apoptosis of cell was evaluated by flow cytometry (FCM) and the characteristic apoptotic DNA ladder by agarose gel electrophoresis, and the morphological changes of apoptotic JAR cells were observed under fluorescence microscopy and electron microscopy (EM). Expressions of apoptosis proteins, poly (ADP-ribose) polymerase (PARP) and caspase-3, -8, and -9 were determined with Western blot.Results: The effective component from VOL inhibited the proliferation of JAR cells in a dose- and time-dependent manner. The treated cell cycle was arrested in S phase and an apoptotic peak was found in S phase using FCM analysis. A typical DNA ladder appeared in the treatment group when analyzed by agarose gel electrophoresis. Using fluorescence microscopy, the percentage of apoptotic cell was 0.9%, 6%, and 14% after treatments of 10, 20, and 40 mg·L-1 of the effective component, respectively, for 48 h. Typical apoptotic changes, such as condensed chromatin and presence of apoptotic bodies, were observed under EM. Treatment with effective component for 48 h and 72 h also induced protein expression of PARP and caspase-3, -8, and -9 as seen by Western blot.Conclusions: The effective component from VOL inhibits cell proliferation and induces apoptosis in human choriocarcinoma JAR cells.

  18. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Stefania Bruno

    2016-01-01

    Full Text Available Human liver stem cells (HLSCs are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs, and dendritic cells (DCs in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2 and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs, HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  19. Nerve Growth Factor Modulate Proliferation of Cultured Rabbit Corneal Endothelial Cells and Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In order to investigate the effect of nerve growth factor (NGF) on the proliferation of rabbit corneal endothelial cells and epithelial cells, the in vitro cultured rabbit corneal endothelial cells and epithelial cells were treated with different concentrations of NGF.MTT assay was used to examine the clonal growth and proliferation of the cells by determining the absorbency values at 570nm. The results showed that NGF with three concentrations ranging from 5 U/mL to 500 U/mL enhanced the proliferation of rabbit corneal endothelial cells in a concentration-dependent manner.50 U/mL and 500 U/mL NGF got more increase of proliferation than that of 5 U/mL NGF did.Meanwhile, 50 U/mL and 500 U/mL NGF could promote the proliferation of the rabbit corneal epithelial cells significantly in a concentration-dependent manner. However, 5 U/mL NGF did not enhance the proliferation of epithelial cells. It was suggested that exogenous NGF can stimulate the proliferation of both rabbit corneal endothelial and epithelial cells, but the extent of modulation is different.

  20. Albumin Suppresses Human Hepatocellular Carcinoma Proliferation and the Cell Cycle

    Directory of Open Access Journals (Sweden)

    Shunsuke Nojiri

    2014-03-01

    Full Text Available Many investigations have revealed that a low recurrence rate of hepatocellular carcinoma (HCC is associated with high serum albumin levels in patients; therefore, high levels of serum albumin are a major indicator of a favorable prognosis. However, the mechanism inhibiting the proliferation of HCC has not yet been elucidated, so we investigated the effect of serum albumin on HCC cell proliferation. Hep3B was cultured in MEM with no serum or containing 5 g/dL human albumin. As control samples, Prionex was added to generate the same osmotic pressure as albumin. After 24-h incubation, the expressions of α-fetoprotein (AFP, p53, p21, and p57 were evaluated with real-time PCR using total RNA extracted from the liver. Protein expressions and the phosphorylation of Rb (retinoblastoma were determined by Western blot analysis using total protein extracted from the liver. For flow cytometric analysis of the cell cycle, FACS analysis was performed. The percentages of cell cycle distribution were evaluated by PI staining, and all samples were analyzed employing FACScalibur (BD with appropriate software (ModFit LT; BD. The cell proliferation assay was performed by counting cells with using a Scepter handy automated cell counter (Millipore. The mRNA levels of AFP relative to Alb(−: Alb(−, Alb(+, and Prionex, were 1, 0.7 ± 0.2 (p < 0.001 for Alb(−, and 1 ± 0.3, respectively. The mRNA levels of p21 were 1, 1.58 ± 0.4 (p = 0.007 for Alb(− and p = 0.004 for Prionex, and 0.8 ± 0.2, respectively. The mRNA levels of p57 were 1, 4.4 ± 1.4 (p = 0.002 for Alb(− and Prionex, and 1.0 ± 0.1, respectively. The protein expression levels of Rb were similar in all culture media. The phosphorylation of P807/811 and P780 of Rb protein was reduced in Alb(+. More cells in the G0/G1 phase and fewer cells in S and G2/M phases were obtained in Alb(+ than in Alb(− (G0/G1: 60.9%, 67.7%, 61.5%; G2/M: 16.5%, 13.1%, 15.6%; S: 22.6%, 19.2%, 23.0%, Alb(−, Alb

  1. Factors influencing ER subtype-mediated cell proliferation and apoptosis

    OpenAIRE

    Evers, N.M.

    2014-01-01

      The aim of the current thesis is to elucidate the role of estrogen receptor (ER)αand ERβin cell proliferation and apoptosis induced by estrogenic compounds. Special attention is paid to the importance of the receptor preference of the estrogenic compounds, the cellular ERα/ERβratio, the role of coregulators, and ER-mediated induction of protein expression. In chapter 1 estrogenic compounds and their interaction with estrogen receptors are described and the two dif...

  2. Metric dynamics for membrane transformation through regulated cell proliferation

    OpenAIRE

    Ito, Hiroshi C.

    2016-01-01

    This study develops an equation for describing three-dimensional membrane transformation through proliferation of its component cells regulated by morphogen density distributions on the membrane. The equation is developed in a two-dimensional coordinate system mapped on the membrane, referred to as the membrane coordinates. When the membrane expands, the membrane coordinates expand in the same manner so that the membrane is invariant in the coordinates. In the membrane coordinate system, the ...

  3. Cell adhesion and proliferation on polyethylene grafted with Au nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Kasálková-Slepičková, N.; Slepička, P.; Kolská, Z.; Sajdl, P.; Bačáková, Lucie; Rimpelová, S.; Švorčík, V.

    2012-01-01

    Roč. 272, FEB 1 (2012), s. 391-395. ISSN 0168-583X. [International Conference on Ion Beam Modification of Materials /17./. Montreal, 22.08.2010-27.08.2010] R&D Projects: GA ČR(CZ) GAP108/10/1106; GA AV ČR(CZ) KAN400480701 Institutional research plan: CEZ:AV0Z50110509 Keywords : polyenthyne * gold nanoparticles * grafting * cell proliferation Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.266, year: 2012

  4. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    International Nuclear Information System (INIS)

    Highlights: ► Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). ► Presence of SCs dramatically increased proliferation and migration of UCMSCs. ► Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of “nurse” cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  5. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fenxi, E-mail: fxzhang0824@gmail.com [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Hong, Yan; Liang, Wenmei [Department of Histology and Embryology, Guiyang Medical University, Guizhou 550004, People' s Republic of China (China); Ren, Tongming [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Jing, Suhua [ICU Center, The Third Hospital of Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Lin, Juntang [Stem Cell Center, Xinxiang Medical University, Henan 453003, People' s Republic of China (China)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  6. Cell proliferation potency is independent of FGF4 signaling in trophoblast stem cells derived from androgenetic embryos

    OpenAIRE

    Ogawa, Hidehiko; TAKYU, Ryuichi; MORIMOTO, Hiromu; TOEI, Shuntaro; SAKON, Hiroshi; GOTO, Shiori; MORIYA, SHOTA; Kono, Tomohiro

    2015-01-01

    We previously established trophoblast stem cells from mouse androgenetic embryos (AGTS cells). In this study, to further characterize AGTS cells, we compared cell proliferation activity between trophoblast stem (TS) cells and AGTS cells under fibroblast growth factor 4 (FGF4) signaling. TS cells continued to proliferate and maintained mitotic cell division in the presence of FGF4. After FGF4 deprivation, the cell proliferation stopped, the rate of M-phase cells decreased, and trophoblast gian...

  7. Langerhans cells in Langerhans cell granulomatosis are not actively proliferating cells.

    OpenAIRE

    Brabencova, E.; Tazi, A.; Lorenzato, M; Bonay, M; Kambouchner, M.; Emile, J. F.; Hance, A J; Soler, P

    1998-01-01

    Pulmonary Langerhans cell granulomatosis (LCG), also called histiocytosis X, is a disorder of unknown etiology characterized by the presence of destructive granulomas containing numerous Langerhans cells (LCs). The process may be localized or multifocal, and it remains unclear whether the same pathogenic mechanism is involved in all forms of the disease. It is often assumed that the massive accumulation of LCs at the sites of the lesions results from the abnormal proliferation of these cells,...

  8. Wnt inhibitory factor-1 regulates glioblastoma cell cycle and proliferation.

    Science.gov (United States)

    Wu, Jun; Fang, Jiasheng; Yang, Zhuanyi; Chen, Fenghua; Liu, Jingfang; Wang, Yanjin

    2012-10-01

    Wnt proteins are powerful regulators of cell proliferation and differentiation, and activation of the Wnt signalling pathway is involved in the pathogenesis of several types of human tumours. Wnt inhibitory factor-1 (WIF-1) acts as a Wnt antagonist and tumour suppressor. Previous studies have shown that reducing expression of the WIF-1 gene aberrantly activates Wnt signalling and induces the development of certain types of cancers. In the present study, we examined the expression of WIF-1 in human primary glioblastoma multiforme (GBM) tumours. Studies using semiquantitative reverse transcription-polymerase chain reaction and immunohistochemical analysis revealed that WIF-1 expression is lower in human GBM than in normal brain tissue. To clarify the role of WIF-1, we transfected U251 human glioblastoma-derived cells, which do not express WIF-1, with the pcDNA3.1-WIF1 vector to restore WIF-1 expression. The results of cell proliferation, colony formation and apoptosis assays, as well as flow cytometry, indicate that exogenous WIF-1 has no effect on U251 cell apoptosis, but does arrest cells at the G(0)/G(1) phase and inhibit cell growth. Collectively, our data suggest that WIF-1 is a potent inhibitor of GBM growth. PMID:22901505

  9. SerpinB1 Promotes Pancreatic β Cell Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Quaamari, Abdelfattah; Dirice, Ercument; Gedeon, Nicholas; Hu, Jiang; Zhou, Jian-Ying; Shirakawa, Jun; Hou, Lifei; Goodman, Jessica; Karampelias, Christos; Qiang, Guifeng; Boucher, Jeremie; Martinez, Rachael; Gritsenko, Marina A.; De Jesus, Dario F.; Kahraman, Sevim; Bhatt, Shweta; Smith, Richard D.; Beer, Hans-Dietmar; Jungtrakoon, Prapaporn; Gong, Yanping; Goldfine, Allison B.; Liew, Chong Wee; Doria, Alessandro; Andersson, Olov; Qian, Weijun; Remold-O' Donnell, Eileen; Kulkami, Rohit N.

    2016-01-12

    Compensatory β-cell growth in response to insulin resistance is a common feature in diabetes. We recently reported that liver-derived factors participate in this compensatory response in the liver insulin receptor knockout (LIRKO) mouse, a model of significant islet hyperplasia. Here we show that serpinB1 is a liver-derived secretory protein that controls β-cell proliferation. SerpinB1 is abundant in the hepatocyte secretome and sera derived from LIRKO mice. SerpinB1 and small molecule compounds that partially mimic serpinB1 activity enhanced proliferation of zebrafish, mouse and human β-cells. We report that serpinB1-induced β-cell replication requires protease inhibition activity and mice lacking serpinB1 exhibit attenuated β-cell replication in response to insulin resistance. Finally, SerpinB1-treatment of islets modulated signaling proteins in growth and survival pathways such as MAPK, PKA and GSK3. Together, these data implicate SerpinB1 as a protein that can potentially be harnessed to enhance functional β-cell mass in patients with diabetes.

  10. Cell proliferation in vitro modulates fibroblast collagenase activity

    International Nuclear Information System (INIS)

    Collagenase enzyme activity is regulated by numerous control mechanisms which prevent excessive release and activation of this protease. A primary mechanism for regulating enzyme extracellular activity may be linked to cell division, therefore they have examined the release of collagenase by fibroblasts in vitro in response to cellular proliferation. Studies were performed using fibroblasts derived from adult rat dermis maintained in DMEM containing 10% newborn calf serum, 25 mM tricine buffer, and antibiotics. Cells between subculture 10 and 19 were used with enzyme activity determined with a 14C-labelled soluble Type I collagen substrate with and without trypsin activation. Fibroblasts, trypsinized and plated at low density secreted 8.5 fold more enzyme than those cells at confluence (975 vs. 115 dpm/μg DNA). This diminution occurred gradually as the cells went from logrithmic growth towards confluence. Confluent fibroblast monolayers were scraped in a grid arrangement, stimulating the remaining cells to divide, without exposure to trypsin. Within 24-48 hr postscraping enzyme levels had increased 260-400%, accompanied by enhanced incorporation of 3H-thymidine and 3H-uridine into cell macromolecules. The burst of enzyme release began to subside 12 hr later. These results support a close relationship between fibroblast proliferation and collagenase secretion

  11. Dietary restriction, cell proliferation and carcinogenesis: a preliminary study

    International Nuclear Information System (INIS)

    Four groups of female Swiss Webster mice were given either laboratory chow or a purified (semi-synthetic) diet (AIN-76A) either ad libitum or at 75% of the ad libitum rate for about 30 days. Three tissues, the crypt cells of the jejunum, the dermis and the basal epithelial cells of the esophagus were investigated using [3H]thymidine labelling and by counting mitoses; four other tissues, the alveolar cells of the mammary gland, the crypt cells of the duodenum and colo-rectum, and the transitional cells of the urinary bladder were examined using [3H]thymidine labelling only. In each case dietary restriction led to a reduction of cellular proliferation assessed by these indices. The potential of the approach for the study of the effects of dietary modification on the introduction of cancer is discussed. (author). 22 refs

  12. The proliferation and differentiation of stem cell journals.

    Science.gov (United States)

    Sanberg, Paul R; Borlongan, Cesar V

    2010-12-01

    As scientists position themselves in translating the therapeutic potential of stem cells from laboratory to clinical applications, publishing companies have taken this rapidly evolving field as a unique opportunity to launch new journals for dissemination of stem cell research. Over the last decade, the significant increase in the number of stem cell-based journals has created a conundrum. At stake is the pressure for these new journals to build their reputation by maintaining publication standards, while at the same time attracting a cadre of stem cell researchers to consider their journals as the publication of choice. We discuss here a prophetic path of survival for these journals which likely will closely mimic the core scientific and translational value of stem cells, namely their capacity to proliferate and differentiate into something meaningful! PMID:20694581

  13. Biodiesel from soybean promotes cell proliferation in vitro.

    Science.gov (United States)

    Gioda, Adriana; Rodríguez-Cotto, Rosa I; Amaral, Beatriz Silva; Encarnación-Medina, Jarline; Ortiz-Martínez, Mario G; Jiménez-Vélez, Braulio D

    2016-08-01

    Toxicological responses of exhaust emissions of biodiesel are different due to variation in methods of generation and the tested biological models. A chemical profile was generated using ICP-MS and GC-MS for the biodiesel samples obtained in Brazil. A cytotoxicity assay and cytokine secretion experiments were evaluated in human bronchial epithelial cells (BEAS-2B). Cells were exposed to polar (acetone) and nonpolar (hexane) extracts from particles obtained from fuel exhaust: fossil diesel (B5), pure soybean biodiesel (B100), soybean biodiesel with additive (B100A) and ethanol additive (EtOH). Biodiesel and its additives exhibited higher organic and inorganic constituents on particles when compared to B5. The biodiesel extracts did not exert any toxic effect at concentrations 10, 25, 50, 75, and 100μgmL(-1). In fact quite the opposite, a cell proliferation effect induced by the B100 and B100A extracts is reported. A small increase in concentrations of inflammatory mediators (Interleukin-6, IL-6; and Interleukin-8, IL-8) in the medium of biodiesel-treated cells was observed, however, no statistical difference was found. An interesting finding indicates that the presence of metals in the nonpolar (hexane) fraction of biodiesel fuel (B100) represses cytokine release in lung cells. This was revealed by the use of the metal chelator. Results suggest that metals associated with biodiesel's organic constituents might play a significant role in molecular mechanisms associated to cellular proliferation and immune responses. PMID:27179667

  14. Myelin-phagocytosing macrophages modulate autoreactive T cell proliferation

    Directory of Open Access Journals (Sweden)

    Hellings Niels

    2011-07-01

    Full Text Available Abstract Introduction Multiple sclerosis (MS is a chronic, inflammatory, demyelinating disease of the central nervous system (CNS in which macrophages play a central role. Initially, macrophages where thought to be merely detrimental in MS, however, recent evidence suggests that their functional phenotype is altered following myelin phagocytosis. Macrophages that have phagocytosed myelin may be less inflammatory and may exert beneficial effects. The presence of myelin-containing macrophages in CNS-draining lymph nodes and perivascular spaces of MS patients suggests that these cells are ideally positioned to exert an immune regulatory role. Therefore we evaluated in this study the effect of myelin-phagocytosing macrophages on lymphocyte reactivity. Methods Thioglycolate-elicited rat peritoneal macrophages were loaded with myelin and cocultured with myelin-basic protein (MBP or ovalbumin (OVA reactive lymphocytes. Lymphocyte proliferation was determined by CFSE-labeling. The role of nitric oxide in regulating lymphocyte proliferation was assessed by addition of an inhibitor of inducible nitric oxide synthase to the coculture. In vivo immune regulation was investigated by treating MBP- and OVA-immunized animals subcutaneously with myelin. Cognate antigen specific lymphocyte proliferation and nitric oxide production were determined 9d post-immunization. Results In this study we demonstrate that myelin-phagocytosing macrophages inhibit TCR-triggered lymphocyte proliferation in an antigen-independent manner. The observed immune suppression is mediated by an increase in NO production by myelin-phagocytosing macrophages upon contact with lymphocytes. Additionally, myelin delivery to primarily CD169+ macrophages in popliteal lymph nodes of OVA-immunized animals results in a reduced cognate antigen specific proliferation. In contrast to OVA-immunized animals, lymphocytes from MBP-immunized animals displayed an increased proliferation after stimulation

  15. Autoradiographic studies on the cell proliferation of the human chronic gastritis

    International Nuclear Information System (INIS)

    Cell proliferation of human gastric mucosa was studied in the cases of chronic gastritis using the in vitro incubation method of 3H-thymidine autoradiography. The study was carried out using the material consisted of 92 biopsy specimens and 83 stomachs diagnosed as carcinoma, peptic ulcer, duodenal ulcer and chronic gastritis. The labelling index was expressed in a percentage of labelled cells in ratio to the total number of epithelial cells. In the normal gastric mucosae, 3H-TdR labeled cells were in the neck region of the gastric gland, but did not appear in the surface epithelium. Higher incorporation of 3H-TdR was observed in the lower part of the neck region of the glands. The average indices, both labeling and mitotic, were generally higher in the antrum than in the pylorus in the cases of chronic gastritis and also higher than normal mucosae. Superficial gastritis showed many labeled cells which were located in the neck region and foveolae. Simple gastitis showed scattered labeled cells in various parts of mucosae. In atrophic and atrophic hyperplastic gastritis, labeled cells were found in the neck and fobeolae of the gastric glands. Metaplastic gastritis showed labeled cells especially in the neck regions. The average labeling index is higher in simple chronic gastritis than in other superficial gastritis, atrophic, atrophic hyperplastic and metaplastic gastritis. Information concerned with cell renewal and proliferation is important for further understanding of the development of disease. (J.P.N.)

  16. Mesenchymal stromal cells from female donors enhance breast cancer cell proliferation in vitro.

    Science.gov (United States)

    Pasanen, Ilkka; Pietilä, Mika; Lehtonen, Siri; Lehtilahti, Elisa; Hakkarainen, Tanja; Blanco Sequeiros, Roberto; Lehenkari, Petri; Kuvaja, Paula

    2015-01-01

    The interplay between tumor stroma and breast cancer cells (BCCs) is thought to play a significant role in breast cancer. The current knowledge of human mesenchymal stromal cell (MSC) and BCC interaction is contradictory, and the donor sex issue is not addressed at all. We hypothesized that donor sex could have an effect on proliferation of MSCs or BCCs in co-culture in vitro. Three estrogen receptor-negative BCC lines, 19 primary human MSCs and breast tissue-derived fibroblasts from 4 donors were used. MSCs from female donors enhanced BCC proliferation (p = 0.005). The change in BCC proliferation was only partly due to soluble factors excreted by MSCs. The highly aggressive BCC line MDA-MB- 231 induced the proliferation of MSCs (p < 0.001) and fibroblasts (p = 0.037) in co-culture experiments. The magnitude in proliferation change was cell line dependent and partly sex dependent. PMID:25502907

  17. Patterns of cell proliferation and cell death in the developing retina and optic tectum of the brown trout.

    NARCIS (Netherlands)

    Candal, E.; Anadon, R.; Grip, W.J. de; Rodriguez-Moldes, I.

    2005-01-01

    We have analyzed the patterns of cell proliferation and cell death in the retina and optic tectum of the brown trout (Salmo trutta fario) throughout embryonic and postembryonic stages. Cell proliferation was detected by immunohistochemistry with an antibody against the proliferating cell nuclear ant

  18. Exosomes Secreted by Toxoplasma gondii-Infected L6 Cells: Their Effects on Host Cell Proliferation and Cell Cycle Changes

    Science.gov (United States)

    Kim, Min Jae; Jung, Bong-Kwang; Cho, Jaeeun; Song, Hyemi; Pyo, Kyung-Ho; Lee, Ji Min; Kim, Min-Kyung; Chai, Jong-Yil

    2016-01-01

    Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns were identified by cell counting with trypan blue under confocal microscopy, and cell cycle changes were investigated by flow cytometry. L6 cells infected with T. gondii showed decreased proliferation compared to uninfected L6 cells and revealed a tendency to stay at S or G2/M cell phase. The treatment of exosomes isolated from T. gondii-infected cells showed attenuation of cell proliferation and slight enhancement of S phase in L6 cells. The cell cycle alteration was not as obvious as reduction of the cell proliferation by the exosome treatment. These changes were transient and disappeared at 48 hr after the exosome treatment. Microarray analysis and web-based tools indicated that various exosomal miRNAs were crucial for the regulation of target genes related to cell proliferation. Collectively, our study demonstrated that the exosomes originating from T. gondii could change the host cell proliferation and alter the host cell cycle. PMID:27180572

  19. Autocrine MCP-1/CCR2 signaling stimulates proliferation and migration of renal carcinoma cells

    Science.gov (United States)

    Küper, Christoph; Beck, Franz-Xaver; Neuhofer, Wolfgang

    2016-01-01

    The chemokine monocyte chemoattractant protein-1 [MCP-1; also known as chemokine (C-C motif) ligand 2] is an important mediator of monocyte recruitment during inflammatory processes. Pathologically high expression levels of MCP-1 by tumor cells have been observed in a variety of cancer types. In the majority of cases, high MCP-1 expression is associated with a poor prognosis, as infiltration of the tumor with inflammatory monocytes promotes tumor progression and metastasis. MCP-1 is also expressed in renal cell carcinoma (RCC). In the present study, the function and the regulation of MCP-1 was investigated in two RCC cell lines, CaKi-1 and 786-O. In both cell lines, expression of MCP-1 was significantly enhanced compared with non-cancerous control cells. As expected, secretion of MCP-1 into the medium facilitated the recruitment of peripheral blood monocytes via the chemokine (C-C motif) receptor type 2 (CCR2). As expression of CCR2 was also detected in 786-O and CaKi-1 cells, the effect of autocrine MCP-1/CCR2 signaling was evaluated in these cells. In proliferation assays, administration of an MCP-1 neutralizing antibody or of a CCR2 antagonist to CaKi-1 and 786-O cells significantly decreased cell growth; supplementation of the growth medium with recombinant human MCP-1 had no additional effect on proliferation. The migration ability of RCC cells was impaired by MCP-1 neutralization or pharmacological CCR2 inhibition, while it was stimulated by the addition of recombinant human MCP-1, compared with untreated control cells. Finally, substantial differences in the regulation of MCP-1 expression were observed between RCC cell lines. In CaKi-1 cells, expression of MCP-1 appears to be largely mediated by the transcription factor nuclear factor of activated T cells 5, while in 786-O cells, deletion of the tumor suppressor gene Von-Hippel-Lindau appeared to be responsible for MCP-1 upregulation, as suggested by previous studies. Taken together, the results of the

  20. Role of the retinoblastoma protein in cell cycle arrest mediated by a novel cell surface proliferation inhibitor

    Science.gov (United States)

    Enebo, D. J.; Fattaey, H. K.; Moos, P. J.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A novel cell regulatory sialoglycopeptide (CeReS-18), purified from the cell surface of bovine cerebral cortex cells has been shown to be a potent and reversible inhibitor of proliferation of a wide array of fibroblasts as well as epithelial-like cells and nontransformed and transformed cells. To investigate the possible mechanisms by which CeReS-18 exerts its inhibitory action, the effect of the inhibitor on the posttranslational regulation of the retinoblastoma susceptibility gene product (RB), a tumor suppressor gene, has been examined. It is shown that CeReS-18 mediated cell cycle arrest of both human diploid fibroblasts (HSBP) and mouse fibroblasts (Swiss 3T3) results in the maintenance of the RB protein in the hypophosphorylated state, consistent with a late G1 arrest site. Although their normal nontransformed counterparts are sensitive to cell cycle arrest mediated by CeReS-18, cell lines lacking a functional RB protein, through either genetic mutation or DNA tumor virus oncoprotein interaction, are less sensitive. The refractory nature of these cells is shown to be independent of specific surface receptors for the inhibitor, and another tumor suppressor gene (p53) does not appear to be involved in the CeReS-18 inhibition of cell proliferation. The requirement for a functional RB protein product, in order for CeReS-18 to mediate cell cycle arrest, is discussed in light of regulatory events associated with density-dependent growth inhibition.

  1. Fibronectin adsorption, cell adhesion, and proliferation on nanostructured tantalum surfaces.

    Science.gov (United States)

    Dolatshahi-Pirouz, A; Jensen, T; Kraft, David Christian; Foss, Morten; Kingshott, Peter; Hansen, John Lundsgaard; Larsen, Arne Nylandsted; Chevallier, Jacques; Besenbacher, Flemming

    2010-05-25

    The interaction between dental pulp derived mesenchymal stem cells (DP-MSCs) and three different tantalum nanotopographies with and without a fibronectin coating is examined: sputter-coated tantalum surfaces with low surface roughness tantalum surfaces were examined, as well as cellular attachment, proliferation, and vinculin focal adhesion spot assembly on the respective surfaces. The results showed the highest fibronectin mass uptake on the hut structures, with a slightly higher availability of cell-binding domains and the most pronounced formation of vinculin focal adhesion spots as compared to the other surfaces. The proliferation of DP-MSCs was found to be significantly higher on dome and hut surfaces coated with fibronectin compared to the uncoated flat tantalum surfaces. Consequently, the results presented in this study indicate that fibronectin-coated nanotopographies with a vertical dimension of less than 5 nm influence cell adhesion. This rather interesting behavior is argued to originate from the more available fibronectin cell-binding domains observed on the hut structures. PMID:20443575

  2. Lysyl oxidase propeptide inhibits smooth muscle cell signaling and proliferation

    International Nuclear Information System (INIS)

    Lysyl oxidase is required for the normal biosynthesis and maturation of collagen and elastin. It is expressed by vascular smooth muscle cells, and its increased expression has been previously found in atherosclerosis and in models of balloon angioplasty. The lysyl oxidase propeptide (LOX-PP) has more recently been found to have biological activity as a tumor suppressor, and it inhibits Erk1/2 Map kinase activation. We reasoned that LOX-PP may have functions in normal non-transformed cells. We, therefore, investigated its effects on smooth muscle cells, focusing on important biological processes mediated by Erk1/2-dependent signaling pathways including proliferation and matrix metalloproteinase-9 (MMP-9) expression. In addition, we investigated whether evidence for accumulation of LOX-PP could be found in vivo in a femoral artery injury model. Recombinant LOX-PP was expressed and purified, and was found to inhibit primary rat aorta smooth muscle cell proliferation and DNA synthesis by more than 50%. TNF-α-stimulated MMP-9 expression and Erk1/2 activation were both significantly inhibited by LOX-PP. Immunohistochemistry studies carried out with affinity purified anti-LOX-PP antibody showed that LOX-PP epitopes were expressed at elevated levels in vascular lesions of injured arteries. These novel data suggest that LOX-PP may provide a feedback control mechanism that serves to inhibit properties associated with the development of vascular pathology

  3. Nanoscale crystallinity modulates cell proliferation on plasma sprayed surfaces

    International Nuclear Information System (INIS)

    Calcium phosphate coatings have been applied to the surface of metallic prostheses to mediate hard and soft tissue attachment for more than 40 years. Most coatings are formed of high purity hydroxyapatite, and coating methods are often designed to produce highly crystalline surfaces. It is likely however, that coatings of lower crystallinity can facilitate more rapid tissue attachment since the surface will exhibit a higher specific surface area and will be considerably more reactive than a comparable highly crystalline surface. Here we test this hypothesis by growing a population of MC3T3 osteoblast-like cells on the surface of two types of hip prosthesis with similar composition, but with differing crystallinity. The surfaces with lower crystallinity facilitated more rapid cell attachment and increased proliferation rate, despite having a less heterogeneous surface topography. This work highlights that the influence of the crystallinity of HA at the nano-scale is dominant over macro-scale topography for cell adhesion and growth. Furthermore, crystallinity could be easily adjusted by without compromising coating purity. These findings could facilitate designing novel coated calcium phosphate surfaces that more rapidly bond tissue following implantation. - Highlights: • Crystallinity of HA at the nano-scale was dominant over macro-scale topography. • Lower crystallinity caused rapid cell attachment and proliferation rate. • Crystallinity could be easily adjusted by without compromising coating purity

  4. Nanoscale crystallinity modulates cell proliferation on plasma sprayed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Alan M. [School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH (United Kingdom); Paxton, Jennifer Z.; Hung, Yi-Pei; Hadley, Martin J.; Bowen, James; Williams, Richard L. [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom); Grover, Liam M., E-mail: l.m.grover@bham.ac.uk [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom)

    2015-03-01

    Calcium phosphate coatings have been applied to the surface of metallic prostheses to mediate hard and soft tissue attachment for more than 40 years. Most coatings are formed of high purity hydroxyapatite, and coating methods are often designed to produce highly crystalline surfaces. It is likely however, that coatings of lower crystallinity can facilitate more rapid tissue attachment since the surface will exhibit a higher specific surface area and will be considerably more reactive than a comparable highly crystalline surface. Here we test this hypothesis by growing a population of MC3T3 osteoblast-like cells on the surface of two types of hip prosthesis with similar composition, but with differing crystallinity. The surfaces with lower crystallinity facilitated more rapid cell attachment and increased proliferation rate, despite having a less heterogeneous surface topography. This work highlights that the influence of the crystallinity of HA at the nano-scale is dominant over macro-scale topography for cell adhesion and growth. Furthermore, crystallinity could be easily adjusted by without compromising coating purity. These findings could facilitate designing novel coated calcium phosphate surfaces that more rapidly bond tissue following implantation. - Highlights: • Crystallinity of HA at the nano-scale was dominant over macro-scale topography. • Lower crystallinity caused rapid cell attachment and proliferation rate. • Crystallinity could be easily adjusted by without compromising coating purity.

  5. IMTA-cultivated Osmundea pinnatifida inhibited cell proliferation in MCF-7 cell line

    Directory of Open Access Journals (Sweden)

    Paulo Jorge Silva

    2014-06-01

    The antitumor potential of methanolic and dichloromethane extracts, obtained from wild and IMTA-cultivated seaweed, were evaluated on the MCF-7 cells (human breast adenocarcinoma cell line. The cell viability and the cell proliferation assays were performed according to MTT method. The viability of MCF-7 cells was not significantly reduced by the tested extracts (1 mg/ml; 24 h, remaining below 20%. However, MCF-7 cell proliferation was reduced 61% and 75% by the dichloromethane extracts (1 mg/ml; 24 h obtained from wild and IMTA-cultivated algae, respectively. The data suggests that O. pinnatifida is a promising source of new bioactive molecules with high antiproliferative properties.

  6. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  7. Evodiamine inhibits the proliferation of leukemia cell line K562 by regulating peroxisome proliferators-activated receptor gamma (PPARγ) pathway.

    Science.gov (United States)

    Sun, Chengming; Zhang, Guili; Luan, Shuping; Luan, Caifu; Shao, Huiyuan; Dong, Fei; Liu, Xuena

    2016-08-01

    Evodiamine, a quinolone alkaloid, is one of the major bioactive compounds of Evodia rutaecarpa Bentham (Rutaceae). It exhibits excellent biological activities, especially the anticancer activity. This study aims to investigate the effect of evodiamine on the proliferation of leukemia cell line K562 and to explore the underlying mechanism. The effect of evodiamine on K562 cells proliferation was analyzed by trypan blue dye exclusion assay and MTT assay. The expression levels of peroxisome proliferators-activated receptor gamma (PPARγ), cyclin D1, and p21 were detected by western blot assay. The results demonstrated that evodiamine inhibited the proliferation and decreased the viability of K562 cells in a dose- and time-dependent manner. 2-Chloro-5-nitro-N-phenylbenzamide (GW9662) and/or PPARγ-siRNA pretreatment alleviated the cell growth suppression triggered by evodiamine. Meanwhile, evodiamine intervention elevated the expression of PPARγ in K562 cells, while pretreatment with GW9662 attenuated the enhanced upregulation of PPARγ expression induced by evodiamine. In addition, GW9662 and PPARγ-siRNA pretreatment also significantly attenuated the downregulation of the cell cycle control protein cyclin D1 and the upregulation of cyclin-dependent kinase inhibitor p21 induced by evodiamine. In conclusion, PPARγ signaling pathway may involve in the proliferation inhibition of evodiamine on K562 cells via inhibiting cylcin D1 and stimulating of p21. PMID:26671528

  8. Proliferating cells in psoriatic dermis are comprised primarily of T cells, endothelial cells, and factor XIIIa+ perivascular dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Morganroth, G.S.; Chan, L.S.; Weinstein, G.D.; Voorhees, J.J.; Cooper, K.D. (Univ. of Michigan Medical School, Ann Arbor (USA))

    1991-03-01

    Determination of the cell types proliferating in the dermis of patients with psoriasis should identify those cells experiencing activation or responding to growth factors in the psoriatic dermal milieu. Toward that end, sections of formalin-fixed biopsies obtained from 3H-deoxyuridine (3H-dU)-injected skin of eight psoriatic patients were immunostained, followed by autoradiography. Proliferating dermal cells exhibit silver grains from tritium emissions. The identity of the proliferating cells could then be determined by simultaneous visualization with antibodies specific for various cell types. UCHL1+ (CD45RO+) T cells (recall antigen-reactive helper T-cell subset) constituted 36.6 +/- 3.1% (mean +/- SEM, n = 6) of the proliferating dermal cells in involved skin, whereas Leu 18+ (CD45RA+) T cells (recall antigen naive T-cell subsets) comprised only 8.7 +/- 1.5% (n = 6). The Factor XIIIa+ dermal perivascular dendritic cell subset (24.9 +/- 1.5% of proliferating dermal cells, n = 6) and Factor VIII+ endothelial cells represented the two other major proliferating populations in lesional psoriatic dermis. Differentiated tissue macrophages, identified by phase microscopy as melanophages or by immunostaining with antibodies to Leu M1 (CD15) or myeloid histiocyte antigen, comprised less than 5% of the proliferating population in either skin type. In addition to calculating the relative proportions of these cells to each other as percent, we also determined the density of cells, in cells/mm2 of tissue. The density of proliferating cells within these populations was increased in involved versus uninvolved skin: UCHL1+, 9.0 +/- 1.7 cells/mm2 versus 1.8 +/- 0.6 cells/mm2, p less than 0.01; Factor XIIIa+, 6.0 +/- 0.7 cells/mm2 versus 1.5 +/- 0.5 cells/mm2, p less than 0.01; Factor VIII+, 5.5 +/- 1.4 cells/mm2 versus 0.0 cells/mm2, p less than 0.05.

  9. REDD1 Is Essential for Optimal T Cell Proliferation and Survival.

    Directory of Open Access Journals (Sweden)

    Emma L Reuschel

    Full Text Available REDD1 is a highly conserved stress response protein that is upregulated following many types of cellular stress, including hypoxia, DNA damage, energy stress, ER stress, and nutrient deprivation. Recently, REDD1 was shown to be involved in dexamethasone induced autophagy in murine thymocytes. However, we know little of REDD1's function in mature T cells. Here we show for the first time that REDD1 is upregulated following T cell stimulation with PHA or CD3/CD28 beads. REDD1 knockout T cells exhibit a defect in proliferation and cell survival, although markers of activation appear normal. These findings demonstrate a previously unappreciated role for REDD1 in T cell function.

  10. Identification of a sub-population of B cells that proliferates after infection with epstein-barr virus

    Directory of Open Access Journals (Sweden)

    Ye Jianjiang

    2011-02-01

    Full Text Available Abstract Background Epstein-Barr virus (EBV-driven B cell proliferation is critical to its subsequent persistence in the host and is a key event in the development of EBV-associated B cell diseases. Thus, inquiry into early cellular events that precede EBV-driven proliferation of B cells is essential for understanding the processes that can lead to EBV-associated B cell diseases. Methods Infection with high titers of EBV of mixed, primary B cells in different stages of differentiation occurs during primary EBV infection and in the setting of T cell-immunocompromise that predisposes to development of EBV-lymphoproliferative diseases. Using an ex vivo system that recapitulates these conditions of infection, we correlated expression of selected B cell-surface markers and intracellular cytokines with expression of EBV latency genes and cell proliferation. Results We identified CD23, CD58, and IL6, as molecules expressed at early times after EBV-infection. EBV differentially infected B cells into two distinct sub-populations of latently infected CD23+ cells: one fraction, marked as CD23hiCD58+IL6- by day 3, subsequently proliferated; another fraction, marked as CD23loCD58+, expressed IL6, a B cell growth factor, but failed to proliferate. High levels of LMP1, a critical viral oncoprotein, were expressed in individual CD23hiCD58+ and CD23loCD58+ cells, demonstrating that reduced levels of LMP1 did not explain the lack of proliferation of CD23loCD58+ cells. Differentiation stage of B cells did not appear to govern this dichotomy in outcome either. Memory or naïve B cells did not exclusively give rise to either CD23hi or IL6-expressing cells; rather memory B cells gave rise to both sub-populations of cells. Conclusions B cells are differentially susceptible to EBV-mediated proliferation despite expression of viral gene products known to be critical for continuous B cell growth. Cellular events, in addition to viral gene expression, likely play a

  11. RNA interference targeting raptor inhibits proliferation of gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, William Ka Kei; Lee, Chung Wa [Institute of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Cho, Chi Hin [Institute of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Chan, Francis Ka Leung [Institute of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Yu, Jun, E-mail: junyu@cuhk.edu.hk [Institute of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Sung, Joseph Jao Yiu, E-mail: joesung@cuhk.edu.hk [Institute of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China)

    2011-06-10

    Mammalian target of rapamycin complex 1 (mTORC1) is dysregulated in gastric cancer. The biologic function of mTORC1 in gastric carcinogenesis is unclear. Here, we demonstrate that disruption of mTORC1 function by RNA interference-mediated downregulation of raptor substantially inhibited gastric cancer cell proliferation through induction of G{sub 0}/G{sub 1}-phase cell cycle arrest. The anti-proliferative effect was accompanied by concomitant downregulation of activator protein-1 and upregulation of Smad2/3 transcriptional activities. In addition, the expression of cyclin D{sub 3} and p21{sup Waf1}, which stabilizes cyclin D/cdk4 complex for G{sub 1}-S transition, was reduced by raptor knockdown. In conclusion, disruption of mTORC1 inhibits gastric cancer cell proliferation through multiple pathways. This discovery may have an implication in the application of mTORC1-directed therapy for the treatment of gastric cancer.

  12. Mucosal cell proliferation in duodenal ulcer and duodenitis.

    OpenAIRE

    Bransom, C J; Boxer, M E; Palmer, K R; Clark, J. C.; Underwood, J C; Duthie, H. L.

    1981-01-01

    Mucosal cell proliferation in the first part of the duodenum was studied in 24 patients using a tissue culture technique in which endoscopic biopsies were subjected to autoradiography after exposure to tritiated thymidine. Eight patients had a normal duodenum, eight had duodenal ulcer, and eight had symptomatic chronic non-specific duodenitis. The mean crypt labelling index (LI) in normal duodenum was 8.8 0.4% (SEM). Increased labelling indices of 15.6 +/- 1.7% were found near the edge of du...

  13. Oesophageal epithelial cell proliferation and food consumption patterns following irradiation

    International Nuclear Information System (INIS)

    The murine data presented illustrate the influence of food consumption on the proliferative rate of the oesophageal epithelium during recovery from radiation damage. Refeeding at a time before the initiation of the normal hyperplastic response results in a decreased time interval between treatment and increased rates of cell proliferation, while reduced food consumption during the normal period of hyperproliferation results in reduced proliferative activity. The finding that recovery kinetics may be altered by changing food consumption patterns should be an important consideration in the analysis of antineoplastic agent-induced proliferative perturbations, as many treatments themselves produce reduced levels of food consumption. (UK)

  14. ZnO nanowire arrays as substrates for cell proliferation and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ciofani, Gianni, E-mail: g.ciofani@sssup.it [Italian Institute of Technology, Center of MicroBioRobotics c/o Scuola Superiore Sant' Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa) (Italy); Genchi, Giada Graziana [BioRobotics Institute, Scuola Superiore Sant' Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa) (Italy); Mattoli, Virgilio [Italian Institute of Technology, Center of MicroBioRobotics c/o Scuola Superiore Sant' Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa (Italy)

    2012-02-01

    In the latest years, the use of zinc oxide (ZnO) nanostructures has been proposed in different biomedical applications, however, to date, only a few contrasting results concerning their biocompatibility can be found in the literature. In particular, the application of the extraordinary piezoelectric properties of ZnO nanostructures has poorly been explored for the culture of electrically excitable cells, and, for this reason, systematic investigations of their interactions with these living systems appear to be necessary. In this paper, we report about adhesion, proliferation and differentiation of two mammalian cell lines (PC12, as model of neuronal cells, and H9c2, as model of muscle cells) over ZnO nanowire arrays. We demonstrate suitability of these arrays in sustaining cellular functions, and their potential in applications that range from tissue engineering to minimally invasive sensing and/or stimulation. - Highlights: Black-Right-Pointing-Pointer ZnO nanowire arrays were exploited as mammalian cell substrates. Black-Right-Pointing-Pointer Two cell lines were investigated: PC12 (neuronal-like) and H9c2 (muscle-like). Black-Right-Pointing-Pointer An intimate connection between cells and nanostructured substrates was highlighted. Black-Right-Pointing-Pointer Adhesion, proliferation and differentiation was well sustained by ZnO nanowire arrays.

  15. ZnO nanowire arrays as substrates for cell proliferation and differentiation

    International Nuclear Information System (INIS)

    In the latest years, the use of zinc oxide (ZnO) nanostructures has been proposed in different biomedical applications, however, to date, only a few contrasting results concerning their biocompatibility can be found in the literature. In particular, the application of the extraordinary piezoelectric properties of ZnO nanostructures has poorly been explored for the culture of electrically excitable cells, and, for this reason, systematic investigations of their interactions with these living systems appear to be necessary. In this paper, we report about adhesion, proliferation and differentiation of two mammalian cell lines (PC12, as model of neuronal cells, and H9c2, as model of muscle cells) over ZnO nanowire arrays. We demonstrate suitability of these arrays in sustaining cellular functions, and their potential in applications that range from tissue engineering to minimally invasive sensing and/or stimulation. - Highlights: ► ZnO nanowire arrays were exploited as mammalian cell substrates. ► Two cell lines were investigated: PC12 (neuronal-like) and H9c2 (muscle-like). ► An intimate connection between cells and nanostructured substrates was highlighted. ► Adhesion, proliferation and differentiation was well sustained by ZnO nanowire arrays.

  16. Human T cell leukemia virus type 1 infection drives spontaneous proliferation of natural killer cells

    OpenAIRE

    Norris, Philip J; Hirschkorn, Dale F.; DeVita, Deborah A.; Lee, Tzong-Hae; Murphy, Eedward L

    2010-01-01

    Most human T cell leukemia virus type 1 (HTLV-1) infected subjects remain asymptomatic throughout their lives, with a few individuals developing HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) or adult T cell leukemia. Lymphocytes from about half of HTLV-1 infected subjects spontaneously proliferate in vitro, and how this phenomenon relates to symptomatic disease outcome and viral burden is poorly understood. Spontaneous proliferation was measured in lymphocyte subsets, an...

  17. PPARδ regulates satellite cell proliferation and skeletal muscle regeneration

    Directory of Open Access Journals (Sweden)

    Angione Alison R

    2011-11-01

    Full Text Available Abstract Peroxisome proliferator-activated receptors (PPARs are a class of nuclear receptors that play important roles in development and energy metabolism. Whereas PPARδ has been shown to regulate mitochondrial biosynthesis and slow-muscle fiber types, its function in skeletal muscle progenitors (satellite cells is unknown. Since constitutive mutation of Pparδ leads to embryonic lethality, we sought to address this question by conditional knockout (cKO of Pparδ using Myf5-Cre/Pparδflox/flox alleles to ablate PPARδ in myogenic progenitor cells. Although Pparδ-cKO mice were born normally and initially displayed no difference in body weight, muscle size or muscle composition, they later developed metabolic syndrome, which manifested as increased body weight and reduced response to glucose challenge at age nine months. Pparδ-cKO mice had 40% fewer satellite cells than their wild-type littermates, and these satellite cells exhibited reduced growth kinetics and proliferation in vitro. Furthermore, regeneration of Pparδ-cKO muscles was impaired after cardiotoxin-induced injury. Gene expression analysis showed reduced expression of the Forkhead box class O transcription factor 1 (FoxO1 gene in Pparδ-cKO muscles under both quiescent and regenerating conditions, suggesting that PPARδ acts through FoxO1 in regulating muscle progenitor cells. These results support a function of PPARδ in regulating skeletal muscle metabolism and insulin sensitivity, and they establish a novel role of PPARδ in muscle progenitor cells and postnatal muscle regeneration.

  18. EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation

    International Nuclear Information System (INIS)

    Highlights: • New anti-human EPOR antibody confirms full-length EPOR expression in breast cancer cells. • Proliferation of breast cancer cells is not affected by rhEPO treatment in vitro. • EPOR knockdown impairs proliferation of ERa positive breast cancer cells. • EPOR knockdown reduces AKT phosphorylation and ERa activity. - Abstract: The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα+) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells

  19. EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Reinbothe, Susann; Larsson, Anna-Maria; Vaapil, Marica; Wigerup, Caroline [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Sun, Jianmin [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); Jögi, Annika [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Neumann, Drorit [Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Rönnstrand, Lars [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); Påhlman, Sven, E-mail: sven.pahlman@med.lu.se [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel)

    2014-02-28

    Highlights: • New anti-human EPOR antibody confirms full-length EPOR expression in breast cancer cells. • Proliferation of breast cancer cells is not affected by rhEPO treatment in vitro. • EPOR knockdown impairs proliferation of ERa positive breast cancer cells. • EPOR knockdown reduces AKT phosphorylation and ERa activity. - Abstract: The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα{sup +}) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells.

  20. Ultrasound fails to induce proliferation of human brain and mouse endothelial cell lines

    Science.gov (United States)

    Rodemer, Claus; Jenne, Jürgen; Fatar, Marc; Hennerici, Michael G.; Meairs, Stephen

    2012-11-01

    Both in vitro and in vivo studies suggest that ultrasound (US) is capable of inducing angiogenesis. There is no information, however, on whether ultrasound can induce proliferation of brain endothelial cells. We therefore explored the angiogenic potential of ultrasound on a novel immortalised human brain endothelial cell line (hCMEC/D3) and on mouse brain microvascular endothelial cells (bEND3). Ultrasound failed to enhance cell proliferation in both cell lines at all acoustic pressures studied. Endothelial cell damage occurred at 0.24 MPa with significantly slower proliferation. Cells growing in Opticell{trade mark, serif} dishes did not show damage or reduced proliferation at these pressures.

  1. GPC3 reduces cell proliferation in renal carcinoma cell lines

    OpenAIRE

    Valsechi, Marina Curado; Oliveira, Ana Beatriz Bortolozo; Conceição, André Luis Giacometti; Stuqui, Bruna; Candido, Natalia Maria; Provazzi, Paola Jocelan Scarin; de Araújo, Luiza Ferreira; Silva, Wilson Araújo; Calmon, Marilia Freitas; Rahal, Paula

    2014-01-01

    Background Glypican 3 (GPC3) is a member of the family of glypican heparan sulfate proteoglycans (HSPGs). The GPC3 gene may play a role in controlling cell migration, negatively regulating cell growth and inducing apoptosis. GPC3 is downregulated in several cancers, which can result in uncontrolled cell growth and can also contribute to the malignant phenotype of some tumors. The purpose of this study was to analyze the mechanism of action of the GPC3 gene in clear cell renal cell carcinoma. ...

  2. Effects of Ginkgo biloba extract on cell proliferation and cytotoxicity in human hepatocellular carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Jane CJ Chao; Chia Chou Chu

    2004-01-01

    AIM: To study the effect of Ginkgo biloba extract (EGb 761)containing 22-27% fiavonoids (ginkgo-flavone glycosides)and 5-7% terpenoids (ginkgolides and bilobalides) on cell proliferation and cytotoxicity in human hepatocellular carcinoma (HCC) cells.METHODS: Human HCC cell lines (HepG2 and Hep3B) were incubated with various concentrations (0-1 000 mg/L) of EGb 761 solution. After 24 h incubation, cell proliferation and cytotoxicity were determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and lactate dehydrogenase (LDH)release, respectively. After 48 h incubation, the expression of proliferating cell nuclear antigen (PCNA) and p53 protein was measured by Western blotting.RESULTS: The results showed that EGb 761 (50-1 000 mg/L)significantly suppressed cell proliferation and increased LDH release (P<0.05) in HepG2 and Hep3B cells compared with the control group. The cell proliferation of HepG2 and Hep3B cells treated with EGb 761 (1 000 mg/L) was 45% and 39% of the control group (P<0.05), respectively. LDH release of HepG2 cells without and with EGb 761 (1 000 mg/L) treatment was 6.7% and 37.7%, respectively, and that of Hep3B cells without and with EGb 761 (1 000 mg/L) treatment was 7.2% and 40.3%, respectively. The expression of PCNA and p53 protein in HepG2 cells treated with EGb 761 (1 000 mg/L)was 85% and 174% of the control group, respectively.CONCLUSION: Ginkgobilobaextract significantly can suppress proliferation and increase cytotoxicity in HepG2 and Hep3B cells. Additionally, Ginkgo biloba extract can decrease PCNA and increase p53 expression in HepG2 cells.

  3. Study on the correlation between CT appearance and nuclear DNA content in renal clear cell carcinomas

    International Nuclear Information System (INIS)

    Objective: To study the correlation of CT appearance with nuclear DNA content in renal clear cell carcinomas. Methods: Fifty-eight cases of renal clear cell carcinomas proved by surgery and pathology were examined with abdominal CT scan before operation. DNA content was determined by imaging analyzer, and DNA contents were calculated. Study on the correlation between CT appearance and nuclear DNA content was performed. Results; (1) DNA contents of tumors with diameters >5.0 cm were significantly higher than those of tumors with diameters ≤5.0 cm (t=5.860, P0.05). Conclusion: Renal clear cell carcinomas with diameters >5.0 cm, intratumoral necrosis, liquefaction, cystic degeneration, lymph nodes metastases, invasion of renal vein or inferior vena cava, invasion of adjacent organs or distant metastases had higher DNA content. Those tumors had higher malignant biological behavior

  4. Characterization of the loss of SUMO pathway function on cancer cells and tumor proliferation.

    Directory of Open Access Journals (Sweden)

    Xingyue He

    Full Text Available SUMOylation is a post-translational ubiquitin-like protein modification pathway that regulates important cellular processes including chromosome structure, kinetochore function, chromosome segregation, nuclear and sub-nuclear organization, transcription and DNA damage repair. There is increasing evidence that the SUMO pathway is dysregulated in cancer, raising the possibility that modulation of this pathway may have therapeutic potential. To investigate the importance of the SUMO pathway in the context of cancer cell proliferation and tumor growth, we applied lentivirus-based short hairpin RNAs (shRNA to knockdown SUMO pathway genes in human cancer cells. shRNAs for SAE2 and UBC9 reduced SUMO conjugation activity and inhibited proliferation of human cancer cells. To expand upon these observations, we generated doxycycline inducible conditional shRNA cell lines for SAE2 to achieve acute and reversible SAE2 knockdown. Conditional SAE2 knockdown in U2OS and HCT116 cells slowed cell growth in vitro, and SAE2 knockdown induced multiple terminal outcomes including apoptosis, endoreduplication and senescence. Multinucleated cells became senescent and stained positive for the senescence marker, SA-β Gal, and displayed elevated levels of p53 and p21. In an attempt to explain these phenotypes, we confirmed that loss of SUMO pathway activity leads to a loss of SUMOylated Topoisomerase IIα and the appearance of chromatin bridges which can impair proper cytokinesis and lead to multinucleation. Furthermore, knockdown of SAE2 induces disruption of PML nuclear bodies which may further promote apoptosis or senescence. In an in vivo HCT116 xenograft tumor model, conditional SAE2 knockdown strongly impaired tumor growth. These data demonstrate that the SUMO pathway is required for cancer cell proliferation in vitro and tumor growth in vivo, implicating the SUMO pathway as a potential cancer therapeutic target.

  5. Injury-stimulated Hedgehog signaling promotes regenerative proliferation of Drosophila intestinal stem cells

    OpenAIRE

    Tian, Aiguo; Shi, Qing; Jiang, Alice; Li, Shuangxi; Wang, Bing; JIANG, JIN

    2015-01-01

    Many adult tissues are maintained by resident stem cells that elevate their proliferation in response to injury. The regulatory mechanisms underlying regenerative proliferation are still poorly understood. Here we show that injury induces Hedgehog (Hh) signaling in enteroblasts (EBs) to promote intestinal stem cell (ISC) proliferation in Drosophila melanogaster adult midgut. Elevated Hh signaling by patched (ptc) mutations drove ISC proliferation noncell autonomously. Inhibition of Hh signali...

  6. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Ji, S.Q.; Cao, J. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Zhang, Q.Y.; Li, Y.Y. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China); Yan, Y.Q. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Yu, F.X. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China)

    2013-09-27

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.

  7. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    International Nuclear Information System (INIS)

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis

  8. Cell adhesion and proliferation on polyethylene grafted with Au nanoparticles

    Science.gov (United States)

    Kasálková, N. Slepičková; Slepička, P.; Kolská, Z.; Sajdl, P.; Bačáková, L.; Rimpelová, S.; Švorčík, V.

    2012-02-01

    Plasma treatment and subsequent Au nano-particles grafting of polyethylene (PE) lead to changes in surface morphology, roughness and wettability, significantly increasing the attractiveness of the material for cells. The PE samples were exposed to argon plasma. Plasma modified PE was chemically grafted by immersion to biphenyldithiol and consequently into solution of Au nano-particles. Changes in chemical structure of the modified PE were studied using X-ray Photoelectron Spectroscopy (XPS) and electrokinetic analysis ( ζ-potential). The surface wettability of the modified PE samples was examined by measurement of the contact angle by standard goniometry. The surface morphology of the plasma modified PE and that grafted with Au nano-particles was studied by Atomic Force Microscopy (AFM). The modified PE samples were seeded with rat vascular smooth muscle cells (VSMCs) and their adhesion and proliferation were studied. Chemically bounded biphenyldithiol increases the number of the incorporated gold nano-particles and changes sample surface properties. The presence of the biphenyldithiol and the gold nano-particles on the PE surface influences dramatically adhesion and proliferation of VSMCs.

  9. Low power laser irradiation stimulates cell proliferation via proliferating cell nuclear antigen and Ki-67 expression during tissue repair

    Science.gov (United States)

    Prabhu, Vijendra; Rao, Bola Sadashiva Satish; Mahato, Krishna Kishore

    2015-03-01

    Low power laser irradiation (LPLI) is becoming an increasingly popular and fast growing therapeutic modality in dermatology to treat various ailments without any reported side effects. In the present study an attempt was made to investigate the proliferative potential of red laser light during tissue repair in Swiss albino mice. To this end, full thickness excisional wounds of diameter 15 mm created on mice were exposed to single dose of Helium-Neon laser (632.8 nm; 7 mW; 4.02 mWcm-2; Linear polarization) at 2 Jcm-2 and 10 Jcm-2 along with un-illuminated controls. The granulation tissues from all the respective experimental groups were harvested on day 10 post-wounding following euthanization. Subsequently, tissue regeneration potential of these laser doses under study were evaluated by monitoring proliferating cell nuclear antigen and Ki-67 following the laser treatment and comparing it with the un-illuminated controls. The percentages of Ki-67 or PCNA positive cells were determined by counting positive nuclei (Ki-67/PCNA) and total nuclei in five random fields per tissue sections. Animal wounds treated with single exposure of the 2 Jcm-2 indicated significant elevation in PCNA (Ptested experimental groups as evidenced by the microscopy results in the study. In summary, the findings of the present study have clearly demonstrated the regulation of cell proliferation by LPLI via PCNA and Ki-67 expression during tissue regeneration.

  10. Low power laser irradiation stimulates cell proliferation via proliferating cell nuclear antigen and Ki-67 expression during tissue repair

    Science.gov (United States)

    Prabhu, Vijendra; Rao, Bola Sadashiva Satish; Mahato, Krishna Kishore

    2015-03-01

    Low power laser irradiation (LPLI) is becoming an increasingly popular and fast growing therapeutic modality in dermatology to treat various ailments without any reported side effects. In the present study an attempt was made to investigate the proliferative potential of red laser light during tissue repair in Swiss albino mice. To this end, full thickness excisional wounds of diameter 15 mm created on mice were exposed to single dose of Helium-Neon laser (632.8 nm; 7 mW; 4.02 mWcm-2; Linear polarization) at 2 Jcm-2 and 10 Jcm-2 along with un-illuminated controls. The granulation tissues from all the respective experimental groups were harvested on day 10 post-wounding following euthanization. Subsequently, tissue regeneration potential of these laser doses under study were evaluated by monitoring proliferating cell nuclear antigen and Ki-67 following the laser treatment and comparing it with the un-illuminated controls. The percentages of Ki-67 or PCNA positive cells were determined by counting positive nuclei (Ki-67/PCNA) and total nuclei in five random fields per tissue sections. Animal wounds treated with single exposure of the 2 Jcm-2 indicated significant elevation in PCNA (PJcm-2) expression as compared to other tested experimental groups as evidenced by the microscopy results in the study. In summary, the findings of the present study have clearly demonstrated the regulation of cell proliferation by LPLI via PCNA and Ki-67 expression during tissue regeneration.

  11. Vimentin expression influences flow dependent VASP phosphorylation and regulates cell migration and proliferation

    International Nuclear Information System (INIS)

    The cytoskeleton plays a central role for the integration of biochemical and biomechanical signals across the cell required for complex cellular functions. Recent studies indicate that the intermediate filament vimentin is necessary for endothelial cell morphogenesis e.g. in the context of leukocyte transmigration. Here, we present evidence, that the scaffold provided by vimentin is essential for VASP localization and PKG mediated VASP phosphorylation and thus controls endothelial cell migration and proliferation. Vimentin suppression using siRNA technique significantly decreased migration velocity by 50% (videomicroscopy), diminished transmigration activity by 42.5% (Boyden chamber) and reduced proliferation by 43% (BrdU-incorporation). In confocal microscopy Vimentin colocalized with VASP and PKG in endothelial cells. Vimentin suppression was accompanied with a translocation of VASP from focal contacts to the perinuclear region. VASP/Vimentin and PKG/Vimentin colocalization appeared to be essential for proper PKG mediated VASP phosphorylation because we detected a diminished expression of PKG and pSer239-VASP in vimentin-suppressed cells, Furthermore, the induction of VASP phosphorylation in perfused arteries was markedly decreased in vimentin knockout mice compared to wildtypes. A link is proposed between vimentin, VASP phosphorylation and actin dynamics that delivers an explanation for the important role of vimentin in controlling endothelial cell morphogenesis.

  12. Role of interleukin-18 on modulation of cell proliferation

    Directory of Open Access Journals (Sweden)

    Athip Nilkaeo

    2005-01-01

    Full Text Available Interleukin-18 (IL-18, a modulator of the immune system, has been shown to be involved in several immune imbalance disorder episodes, including infections, autoimmunity and cancers. Its anti-cancer activity is mediated by the activation of NK and T cells and by the induction of IFN-γ production; however, its contribution to cancer pathogenesis has not been defined. In this study, with in vitro experimentation, we found that this cytokine can act as a growth factor for breast cancer (MCF-7 and colon cancer (Caco-2 cell lines as the cell number in treatment groups were significantly increased (p<0.05 compared to that ofcontrol groups. Interestingly, it exerts anti-proliferative properties on oral carcinoma (KB and embryonic lung fibroblast (HEL cell lines as a lower cell number was observed in treatment groups compared to the controls (p<0.05. Findings from this study demonstrated the direct interaction between this cytokine and cell proliferation and may implicate the future use of this cytokine as an immunotherapy for cancers.

  13. Effects of spaceflight on the proliferation of jejunal mucosal cells

    Science.gov (United States)

    Phillips, Robert W.; Moeller, C. L.; Sawyer, Heywood R.; Smirnov, K. L.

    1991-01-01

    The purpose of this project was to test the hypothesis that the generalized, whole body decrease in synthetic activity due to microgravity conditions encountered during spaceflight would be demonstrable in cells and tissues characterized by a rapid rate of turnover. Jejunal mucosal cells were chosen as a model since these cells are among the most rapidly proliferating in the body. Accordingly, the percentage of mitotic cells present in the crypts of Lieberkuhn in each of 5 rats flown on the COSMOS 2044 mission were compared to the percentage of mitotic cells present in the crypts in rats included in each of 3 ground control groups (i.e., vivarium, synchronous and caudal-elevated). No significant difference (p greater than .05) was detected in mitotic indices between the flight and vivarium group. Although the ability of jejunal mucosal cells to divide by mitosis was not impaired in flight group, there was, however, a reduction in the length of villi and depth of crypts. The concommitant reduction in villus length and crypth depth in the flight group probably reflects changes in connective tissue components within the core of villi.

  14. Cell proliferation along vascular islands during microvascular network growth

    Directory of Open Access Journals (Sweden)

    Kelly-Goss Molly R

    2012-06-01

    Full Text Available Abstract Background Observations in our laboratory provide evidence of vascular islands, defined as disconnected endothelial cell segments, in the adult microcirculation. The objective of this study was to determine if vascular islands are involved in angiogenesis during microvascular network growth. Results Mesenteric tissues, which allow visualization of entire microvascular networks at a single cell level, were harvested from unstimulated adult male Wistar rats and Wistar rats 3 and 10 days post angiogenesis stimulation by mast cell degranulation with compound 48/80. Tissues were immunolabeled for PECAM and BRDU. Identification of vessel lumens via injection of FITC-dextran confirmed that endothelial cell segments were disconnected from nearby patent networks. Stimulated networks displayed increases in vascular area, length density, and capillary sprouting. On day 3, the percentage of islands with at least one BRDU-positive cell increased compared to the unstimulated level and was equal to the percentage of capillary sprouts with at least one BRDU-positive cell. At day 10, the number of vascular islands per vascular area dramatically decreased compared to unstimulated and day 3 levels. Conclusions These results show that vascular islands have the ability to proliferate and suggest that they are able to incorporate into the microcirculation during the initial stages of microvascular network growth.

  15. EZH2 depletion blocks the proliferation of colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Bettina Fussbroich

    Full Text Available The Enhancer of Zeste 2 (EZH2 protein has been reported to stimulate cell growth in some cancers and is therefore considered to represent an interesting new target for therapeutic intervention. Here, we investigated a possible role of EZH2 for the growth control of colon cancer cells. RNA interference (RNAi-mediated intracellular EZH2 depletion led to cell cycle arrest of colon carcinoma cells at the G1/S transition. This was associated with a reduction of cell numbers upon transient transfection of synthetic EZH2-targeting siRNAs and with inhibition of their colony formation capacity upon stable expression of vector-borne siRNAs. We furthermore tested whether EZH2 may repress the growth-inhibitory p27 gene, as reported for pancreatic cancer. However, expression analyses of colon cancer cell lines and colon cancer biopsies did not reveal a consistent correlation between EZH2 and p27 levels. Moreover, EZH2 depletion did not re-induce p27 expression in colon cancer cells, indicating that p27 repression by EZH2 may be cell- or tissue-specific. Whole genome transcriptome analyses identified cellular genes affected by EZH2 depletion in colon cancer cell lines. They included several cancer-associated genes linked to cellular proliferation or invasion, such as Dag1, MageD1, SDC1, Timp2, and Tob1. In conclusion, our results demonstrate that EZH2 depletion blocks the growth of colon cancer cells. These findings might provide benefits for the treatment of colon cancer.

  16. EFFECTS OF PDGF-BB ON INTRACELLULAR CALCIUM CONCENTRATION AND PROLIFERATION IN CULTURED GLOMERULAR MESANGIAL CELLS

    Institute of Scientific and Technical Information of China (English)

    WEN Li-ping; ZHANG Chong; BIAN Fan; ZOU Jun; JIANG Geng-ru; ZHU Han-wei

    2006-01-01

    Objective To investigate the relationship between the alteration of intracellular calcium concentration and proliferation in cultured glomerular mesangial cells. Methods Rat mesangial cells were cultured.Intracellular calcium concentrations were measured by confocal Laser Scanning Microscopy and Fura-3 fluorescence dyeing techniques. Cell growth was measured by MTT assay. Results PDGF-BB increased intracellular calcium concentrations in a dose-dependent manner, and at the same time promote the proliferation of mesangial cells. After preincubation with calcium channel blocker nifedipine or angiotensin converting enzyme inhibitor captopril, both the increase of intracellular calcium concentrations and cell proliferations induced by PDGF-BB were inhibited. Tripterigium Wilfordii Glycosides (TMG) significantly inhibited the mesangial cell proliferations, but it had no significant effect on intracellular calcium concentrations. Conclusion There was a positive relationship between the elevation of intracellular calcium concentration and cell proliferation in glomerular mesangial cells, but the increase of in- tracellular calcium concentrations wasn't the only way for proliferation.

  17. Cell surface appearance of unexpected host MHC determinants on thymocytes from radiation bone marrow chimeras

    International Nuclear Information System (INIS)

    The phenotypic appearance of cell surface antigens on murine thymocytes from long-term radiation bone marrow chimeras was analyzed using indirect immunofluorescence and flow microfluorometry. Cells maturing in the thymi of these mice were typed for MHC (Kk, I-Ak, H-2b, Kb, and Ib) and non-MHC (Lty 1, Ly 9, and TL) determinants. All cells were of donor origin as determined by non-MHC (Ly) phenotype in P1 leads to P2, P1 x P2 leads to P1, and P1 leads to P2 radiation chimeras. In contrast, the MHC phenotypes of these thymocytes were markedly affected by the host environment. Specifically, H-2 and I-A determinants of both parental phenotypes were detected on thymocytes from P1 leads to P1 x P2 chimeras; I-A determinants of host phenotype were present, whereas I-A determinants of donor phenotype were reduced on thymocytes from P1 x P2 leads to P1 chimeras; and thymocytes from P1 leads to P2 chimeras possessed H-2 and I-A determinants of host phenotype but showed reduction of donor I-A phenotype determinants. The appearance of host cell surface H-2 and I-A determinants on thymocytes from chimeras closely parallels the functional recognition of MHC determinants by T cells from chimeric mice and thus may be significantly related to the development of the self-recognition repertoire by maturing T cells

  18. NSA2, a novel nucleolus protein regulates cell proliferation and cell cycle

    International Nuclear Information System (INIS)

    NSA2 (Nop seven-associated 2) was previously identified in a high throughput screen of novel human genes associated with cell proliferation, and the NSA2 protein is evolutionarily conserved across different species. In this study, we revealed that NSA2 is broadly expressed in human tissues and cultured cell lines, and located in the nucleolus of the cell. Both of the putative nuclear localization signals (NLSs) of NSA2, also overlapped with nucleolar localization signals (NoLSs), are capable of directing nucleolar accumulation. Moreover, over-expression of the NSA2 protein promoted cell growth in different cell lines and regulated the G1/S transition in the cell cycle. SiRNA silencing of the NSA2 transcript attenuated the cell growth and dramatically blocked the cell cycle in G1/S transition. Our results demonstrated that NSA2 is a nucleolar protein involved in cell proliferation and cell cycle regulation.

  19. Argentatin B Inhibits Proliferation of Prostate and Colon Cancer Cells by Inducing Cell Senescence

    Directory of Open Access Journals (Sweden)

    Ela Alcántara-Flores

    2015-11-01

    Full Text Available Argentatin B has been shown to inhibit the growth of colon HCT-15, and prostate PC-3 cancer cells. However, the mechanism by which argentatin B inhibits cell proliferation is still unknown. We aimed to investigate the mechanism by which argentatin B inhibits cell proliferation. The cell cycle was studied by flow cytometry. Apoptosis was evaluated by Annexin-V-Fluos, and Hoechst 33342 dye staining. Cell senescence was evaluated by proliferation tests, and staining for SA-β-galactosidase. Senescence-related proteins (PCNA, p21, and p27 were analyzed by Western blotting. Potential toxicity of argentatin B was evaluated in CD-1 mice. Its effect on tumor growth was tested in a HCT-15 and PC-3 xenograft model. Argentatin B induced an increment of cells in sub G1, but did not produce apoptosis. Proliferation of both cell lines was inhibited by argentatin B. Forty-three percent HCT-15, and 66% PC-3 cells showed positive SA-β-galactosidase staining. The expression of PCNA was decreased, p21 expression was increased in both cell lines, but p27 expression increased only in PC-3 cells after treatment. Administration of argentatin B to healthy mice did not produce treatment-associated pathologies. However, it restricted the growth of HCT-15 and PC-3 tumors. These results indicate that treatment with argentatin B induces cell senescence.

  20. Piperlongumine Suppresses Proliferation of Human Oral Squamous Cell Carcinoma through Cell Cycle Arrest, Apoptosis and Senescence

    OpenAIRE

    San-Yuan Chen; Geng-Hung Liu; Wen-Ying Chao; Chung-Sheng Shi; Ching-Yen Lin; Yun-Ping Lim; Chieh-Hsiang Lu; Peng-Yeh Lai; Hau-Ren Chen; Ying-Ray Lee

    2016-01-01

    Oral squamous cell carcinoma (OSCC), an aggressive cancer originating in the oral cavity, is one of the leading causes of cancer deaths in males worldwide. This study investigated the antitumor activity and mechanisms of piperlongumine (PL), a natural compound isolated from Piper longum L., in human OSCC cells. The effects of PL on cell proliferation, the cell cycle, apoptosis, senescence and reactive oxygen species (ROS) levels in human OSCC cells were investigated. PL effectively inhibited ...

  1. TORC1 is required to balance cell proliferation and cell death in planarians

    OpenAIRE

    Tu, Kimberly C; Pearson, Bret J.; Alvarado, Alejandro Sánchez

    2012-01-01

    Multicellular organisms are equipped with cellular mechanisms that enable them to replace differentiated cells lost to normal physiological turnover, injury, and for some such as planarians, even amputation. This process of tissue homeostasis is generally mediated by adult stem cells (ASCs), tissue-specific stem cells responsible for maintaining anatomical form and function. To do so, ASCs must modulate the balance between cell proliferation, i.e. in response to nutrients, and that of cell de...

  2. RMP Plays Distinct Roles in the Proliferation of Hepatocellular Carcinoma Cells and Normal Hepatic Cells

    OpenAIRE

    Yang, Sijun; Wang, Hongmin; Guo, Yunlan; Chen, Shaomu; Zhang, Mei-Yin; Shen, Jian; Yu, Huijun; Miao, Jingcheng; Wang, Hui-Yun; Wei, Wenxiang

    2013-01-01

    RMP has been shown to function in the transcription regulation through association with RNA polymerase (RNAP) II subunit RPB5. It also has been shown to be required for the proliferation of hepatocellular carcinoma (HCC) cells with an antiapoptotic property. In this article, we further demonstrate that RMP displays distinct features in HCC cells compared with normal hepatic cells. RMP expression is remarkably increased in various cancer cell lines including HCC cells when compared with normal...

  3. Lens Epithelial Cell Proliferation and Cell Density in Human Age-related Cataract

    Institute of Scientific and Technical Information of China (English)

    Xialin Liu; Yizhi Liu; Jianliang Zheng; Qiang Huang; Huling Zheng

    2000-01-01

    Purpose: To discuss the potential effect of the lens epithelial cell proliferation in age-related cataract.Methods: In vitro cell proliferation was assayed by MTT method to evaluate the lens epithelial cell density, index, and proliferation capacity in normal lens and all kinds of age-related cataract. Capsulotomy specimens from all kinds of patients who underwent cataract phacoemulsification extraction surgery were compared with the lens epithelial specimens from non-cataract lenses of Eye Bank eyes.Results: Lens epithelial cell density of central anterior capsule (LECD) in female normal lens was higher than that in male, LECD in nuclear cataract( > NⅢ ) was higher than that in normal lens, but in the mature cortical cataract, LF CD was lower. Mitotic index of three kinds of age-related cataracts in vivo had no statistical difference, neither did cell proliferation capacity of cultivated cells in vitro.Conclusion: The individual difference of lens epithelial cell density and proliferation capacity in vivo may be an important underlying cause for senile cataract in the cellular level, especially for nuclear cataract.

  4. Inhibitory effects of rapamycin on proliferation of chronic myelogenous leukemia cells and its mechanism

    Institute of Scientific and Technical Information of China (English)

    李杰

    2012-01-01

    Objective To explore the inhibitory effects of rapamycin on proliferation of chronic myelogenous leukemia (CML) cells and its possible mechanism. Methods The effects of rapamycin at various concentrations on cell proliferation of CML cell line K562 cells were analyzed by MTT. The expressions

  5. Esophageal Granular Cell (Abrikossow) Tumor: Macroscopic Appearance and Endoscopic Management (Video)

    OpenAIRE

    Volker Meves; Jürgen Pohl

    2014-01-01

    Granular cell tumors are rare but benign submucosal tumors of the esophagus. Usually tumors are rather small and do not cause symptoms. We demonstrate a case with typical macroscopic appearance at endoscopy and endosonography. Important differential diagnoses are leiomyoma, and gastrointestinal stroma tumors. Although the patient had no symptoms, he insisted on a complete removal of this tumor. After careful inspection of the submucosal tumor with high-definition white light endoscopy and end...

  6. SUZ12 Depletion Suppresses the Proliferation of Gastric Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yingjun Cui

    2013-05-01

    Full Text Available Background/Aims: SUZ12 and EZH2 are two main components of polycomb repressive complex 2 (PRC2 that is known to be of great importance in tumorigenesis. EZH2 has been reported to play a vital role in pathogenesis of human cancer. However, whether SUZ12 has equivalent roles in tumorigenesis has not been demonstrated. Here, we investigated a possible role of SUZ12 for the proliferation of gastric cancer cells. Methods: Western-blot analysis was used to detected the levels of SUZ12, H3K27me3, EZH2 and p27 in ten gastric cell lines. SUZ12 was depleted by RNA interference. Cell cycle was detected by flow cytometry. Luciferase assays was to analyze whether miR-200b directly regulate SUZ12. Results: We found that SUZ12 depletion mediated by RNA interference (RNAi led to a reduction of gastric cell numbers and arrested the cell cycle at G1/S point. As an important G1/S phase inhibitory gene, p27 is re-induced to some extent by SUZ12 knockdown. Furthermore, we demonstrated that SUZ12 was directly downregulated by miR-200b. Conclusion: We provide evidence suggesting that SUZ12 may be a potential therapeutic target for gastric cancer.

  7. Nuclear location of tumor suppressor protein maspin inhibits proliferation of breast cancer cells without affecting proliferation of normal epithelial cells

    International Nuclear Information System (INIS)

    Maspin, which is classified as a tumor suppressor protein, is downregulated in many types of cancer. Several studies have suggested potential anti-proliferative activity of maspin as well as sensitizing activity of maspin for therapeutic cytotoxic agents in breast cancer tissue culture and animal models. All of the experimental data gathered so far have been based on studies with maspin localized cytoplasmically, while maspin in breast cancer tumor cells may be located in the cytoplasm, nucleus or both. In this study, the effect of maspin cytoplasmic and nuclear location and expression level on breast cancer proliferation and patient survival was studied. Tissue sections from 166 patients with invasive ductal breast cancer were stained by immunohistochemistry for maspin and Ki-67 protein. The localization and expression level of maspin were correlated with estimated patient overall survival and percent of Ki-67-positive cells. In further studies, we created constructs for transient transfection of maspin into breast cancer cells with targeted cytoplasmic and nuclear location. We analyzed the effect of maspin location in normal epithelial cell line MCF10A and three breast cancer cell lines - MCF-7, MDA-MB-231 and SKBR-3 - by immunofluorescence and proliferation assay. We observed a strong positive correlation between moderate and high nuclear maspin level and survival of patients. Moreover, a statistically significant negative relationship was observed between nuclear maspin and Ki-67 expression in patients with invasive ductal breast cancer. Spearman’s correlation analysis showed a negative correlation between level of maspin localized in nucleus and percentage of Ki-67 positive cells. No such differences were observed in cells with cytoplasmic maspin. We found a strong correlation between nuclear maspin and loss of Ki-67 protein in breast cancer cell lines, while there was no effect in normal epithelial cells from breast. The anti-proliferative effect of nuclear

  8. Leading research on cell proliferation regulation technology; Saibo zoshoku seigyo gijutsu no sendo kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For developing intelligent material, animal test alternative model, bio-cell analysis equipment, self-controlling bio-reactor and medical material, development of functional cells was studied by cell proliferation regulation technology. In fiscal 1996, the expression analysis and separation technology of specific gene for cell proliferation, and the intracellular regulation technology were surveyed from the viewpoint of intracellular regulation. The cell proliferation regulation technology by specific regulating material of cells, extracellular matrix, coculture system and embryonic cell was surveyed from the viewpoint of extracellular regulation. In addition, based on these survey results, new cell culture/analysis technology, new bio-material, artificial organ system, energy saving bio-reactor, environment purification microorganism, and animal test alternative model were surveyed as applications to industrial basic technologies from a long-term viewpoint. The approach to cell proliferation regulation requires preparation of a concrete proliferation regulation technology system of cells, and concrete application targets. 268 refs., 43 figs., 4 tabs.

  9. Fermented red ginseng extract inhibits cancer cell proliferation and viability.

    Science.gov (United States)

    Oh, Jisun; Jeon, Seong Bin; Lee, Yuri; Lee, Hyeji; Kim, Ju; Kwon, Bo Ra; Yu, Kang-Yeol; Cha, Jeong-Dan; Hwang, Seung-Mi; Choi, Kyung-Min; Jeong, Yong-Seob

    2015-04-01

    Red ginseng (Panax ginseng C.A. Meyer) is the most widely recognized medicinal herb due to its remedial effects in various disorders, such as cancers, diabetes, and heart problems. In this study, we investigated the anticancer effect of fermented red ginseng extract (f-RGE; provided by Jeonju Biomaterials Institute, Jeonju, South Korea) in a parallel comparison with the effect of nonfermented red ginseng extract (nf-RGE; control) on several cancer cell lines--MCF-7 breast cancer cells, HepG2 hepatocellular carcinoma cells, and reprogrammed MCF-7 cells (mimicking cancer stem cells). Cells were cultured at various concentrations of RGE (from 0.5 up to 5 mg/mL) and their viabilities and proliferative properties were examined. Our data demonstrate the following: (1) nf-RGE inhibited cell viability at ≥1 mg/mL for MCF-7 cells and ≥2 mg/mL for HepG2 cells, (2) in the presence of a carcinogenic agent, 12-O-tetradecanoylphorbol-13-acetate (TPA), nf-RGE treatment in combination with paclitaxel synergistically decreased MCF-7 as well as HepG2 cell viability, (3) f-RGE (which contained a greater level of Rg3 content) more effectively decreased the viability of MCF-7 and HepG2 cells compared to nf-RGE, and (4) f-RGE appeared more potent for inhibiting cancerous differentiation of reprogrammed MCF-7 cells in a synergistic fashion with paclitaxel, especially in the presence of TPA, compared to nf-RGE. These findings suggest that f-RGE treatment may be more effective for decreasing cancer cell survival by inducing apoptotic cell death and also presumably for preventing cancer stem cell differentiation compared to nf-RGE. PMID:25658580

  10. Development of the cerebellar body in sharks: spatiotemporal relations of Pax6 expression, cell proliferation and differentiation.

    Science.gov (United States)

    Rodríguez-Moldes, Isabel; Ferreiro-Galve, Susana; Carrera, Iván; Sueiro, Catalina; Candal, Eva; Mazan, Sylvie; Anadón, Ramón

    2008-02-20

    We have studied the patterns of cell proliferation, regional organization and differentiation in the cerebellar body of embryos and juveniles of two shark species by immunohistochemistry with antibodies against proliferating cell nuclear antigen (PCNA), Pax6, reelin (RELN), GABA, glutamic acid decarboxylase (GAD) and calretinin (CR). The organization of Pax6-expressing cells was also studied by in situ hybridization. Our results reveal that a transient secondary matrix zone, the external germinal layer, is formed in sharks at early stages of cerebellar development and is the source of the earliest Pax6-expressing (granule) cells. Later in development, new granule Pax6-expressing cells arise from medial proliferation zones and accumulate medially in the granular eminences. The GABAergic components appear very early, and show clear regional differences. The medial proliferation zones remain active even in adults. Taken together, the proliferation and differentiation markers used in the present study highlight striking similarities during development between the cerebellar body of elasmobranchs and the cerebella of tetrapods. These results show the importance of elasmobranch models to reconstruct the evolutionary developmental history of the vertebrate cerebellum. PMID:18249069

  11. Mechanism of Thymosin Beta 10 Inhibiting the Apoptosis 
and Prompting Proliferation in A549 Cells

    Directory of Open Access Journals (Sweden)

    Zixuan LI

    2014-11-01

    Full Text Available Background and objective Thymosin beta 10 (Tβ10 is one of β-thymosin family members, has a highly conserved polar 5 kDa peptides. This peptide is now regarded to be a small actin-binding protein and thereby induce depolymerization of the intracellular F-actin networks. Alteration of Tβ10 expression may alter the balance of cell growth, cell death, cell attachment and cell migration. Tβ10 also affects cell metastasis as well as proliferation, apoptosis and vascularization of cancer cells. But function of Tβ10 appear to be rather different between cancer cells, and the molecular mechanisms of β-thymosins to regulate cell apoptosis and proliferation in NSCLC (non-small cell lung cancer cell lines are unclear. In this study, we used lung adenocarcinoma cell line A549, added Tβ10 or down-regulated the expression of Tβ10. We observed the change of apoptosis, proliferation and cell cyclin ability in A549 and the mechanisms underline them were also identified. Methods After A549 was treated with 100 ng/mL recombinant human Tβ10 or siTβ10, apoptosis rate of A549 and cell cycle distribution were detected by flow cytometry (FCM. CCK-8 assay was employed to determine the proliferation of A549. The mRNA level of P53, Caspase-3, Cyclin A and Cyclin E were determined by real-time PCR. The protein level of P53, Caspase-3, Cyclin A and Cyclin E were detected by Western blot. Results Add Tβ10 can inhibit the apoptosis and prompt the proliferation of A549. It can also increase the cell rates of S-phrase and G2/M-phrase, decrease the expression of P53 and Caspase-3, but increase the expression of Cyclin A and Cyclin E. Interferance of Tβ10 can prompt the apoptosis and inhibit the proliferation of A549. It can also increase the cell rates of G0/G1-phrase, increase the expression of P53 and Caspase-3, but decrease the expression of Cyclin A and Cyclin E. Conclusion In lung cancer cell line, Tβ10 can inhibit the apoptosis by increase P53, drive cells into

  12. GRP78 is required for cell proliferation and protection from apoptosis in chicken embryo fibroblast cells.

    Science.gov (United States)

    Jeon, M; Choi, H; Lee, S I; Kim, J S; Park, M; Kim, K; Lee, S; Byun, S J

    2016-05-01

    Chicken serum has been suggested as a supplement to promote chicken cell proliferation and development. However, the molecular mechanisms by which chicken serum stimulates chicken cell proliferation remain unknown. Here, we evaluated the effects of chicken serum supplementation on chicken embryo fibroblast (CEF) and DF-1 cell proliferation. We also sought to elucidate the molecular pathways involved in mediating the effects of chicken serum on fibroblasts and DF-1 cells by overexpression of chicken 78 kDa glucose-regulated protein (chGRP78), which is important for cell growth and the prevention of apoptosis. Our data demonstrated that the addition of 5% chicken serum significantly enhanced fibroblast proliferation. Moreover, knockdown of chGRP78 using siRNA decreased fibroblast proliferation and increased apoptosis. Based on these results, we suggest that the chGRP78-mediated signaling pathway plays a critical role in chicken serum-stimulated fibroblast survival and anti-apoptosis. Therefore, our findings have important implications for the maintenance of chicken fibroblast cells through the inhibition of apoptosis and may lead to the development of new treatments for avian disease. PMID:26944959

  13. Comparative study of MRI appearances in clear cell renal cell carcinoma, papillary renal cell carcinoma and chromophobe renal cell carcinoma

    International Nuclear Information System (INIS)

    Objective: To investigate the differential diagnostic features of subtypes of renal cell carcinoma (RCC) using dynamic contrast-enhanced MRI(DCE-MRI). Methods: The MRI appearances of 77 RCCs, including 55 clear cell RCCs (CCRCC), 14 papillary RCCs (PRCC) and 8 chromophobe RCCs (CRCC), were retrospectively analyzed and compared with findings of pathology. DCE-MRI was conducted in each case after intravenous administration of contrast agent. Region of interest measurements (cortical, nephrographic and delayed Phases) of signals within tumor and uninvolved renal cortex were used to calculate percentage signal intensity change and tumor-to-cortex enhancement index, and the data was analyzed by AVONA and t test. Results: On unenhanced and enhanced MRI, most CRCCs showed homogeneous signal (7/8). CCRCC and PRCC often show inhomogeneous signal with necrosis (36/55, 7/14). Hemorrhage and cystic degeneration were often found in PRCC (9/14). On the cortical, nephrographic and delayed phase images, CCRCCs showed greater signal intensity change [(296.15± 60.27)%, (236.33±58.31)% and (216.83±46.72)%, respectively than PRCCs (79.70±18.84)%, (122.81±27.35)% and (117.55±20.63)%, respectively], and CRCCs showed intermediate change [(119.56±40.76)%, (163.06±33.91)% and (179.72±32.89)%, respectively]. A phenomenon of quick staining and quick fainting was observed in CCRCCs. Both of CRCCs and PRCCs showed delayed enhancement. The tumor-to-cortex enhancement index at the cortical, nephrographic and delayed phases was highest for CCRCCs (1.26±0.34, 0.92±0.23 and 0.76±0.14, respectively), lowest for PRCCs (0.33±0.12, 0.41±0.23 and 0.35±0.11, respectively), and intermediate for CRCCs (0.54±0.10, 0.62±0.15 and 0.69±0.12, respectively, P<0.01). The degree of enhancement was significantly different among the 3 subtypes at the every contrast enhanced phase (F= 940.931, 124.515 and 38.194, P<0.01), so was the tumor-to-cortex enhancement index (F=798.625, 78.308 and 73.699, P

  14. Hepatocellular proliferation in response to agonists of peroxisome proliferator-activated receptor alpha: a role for kupffer cells?

    Directory of Open Access Journals (Sweden)

    Alsarra Ibrahim A

    2006-11-01

    Full Text Available Abstract Background It has been proposed that PPARα agonists stimulate Kupffer cells in rodents which in turn, release mitogenic factors leading to hepatic hyperplasia, and eventually cancer. However, Kupffer cells do not express PPARα receptors, and PPARα agonists stimulate hepatocellular proliferation in both TNFα- and TNFα receptor-null mice, casting doubt on the involvement of Kupffer cells in the mitogenic response to PPARα agonists. This study was therefore designed to investigate whether the PPARα agonist PFOA and the Kupffer cell inhibitor methylpalmitate produce opposing effects on hepatocellular proliferation and Kupffer cell activity in vivo, in a manner that would implicate these cells in the mitogenic effects of PPARα agonists. Methods Male Sprague-Dawley rats were treated intravenously via the tail vein with methylpalmitate 24 hrs prior to perfluorooctanoic acid (PFOA, and were sacrificed 24 hrs later, one hr after an intraperitoneal injection of bromodeoxyuridine (BrdU. Sera were analyzed for TNFα and IL-1β. Liver sections were stained immunohistochemically and quantified for BrdU incorporated into DNA. Results Data show that PFOA remarkably stimulated hepatocellular proliferation in the absence of significant changes in the serum levels of either TNFα or IL-1β. In addition, methylpalmitate did not alter the levels of these mitogens in PFOA-treated animals, despite the fact that it significantly blocked the hepatocellular proliferative effect of PFOA. Correlation between hepatocellular proliferation and serum levels of TNFα or IL-1β was extremely poor. Conclusion It is unlikely that mechanisms involving Kupffer cells play an eminent role in the hepatic hyperplasia, and consequently hepatocarcinogenicity attributed to PPARα agonists. This conclusion is based on the above mentioned published data and the current findings showing animals treated with PFOA alone or in combination with methylpalmitate to have similar

  15. Construction of a computable cell proliferation network focused on non-diseased lung cells

    Directory of Open Access Journals (Sweden)

    Veljkovic Emilija

    2011-07-01

    Full Text Available Abstract Background Critical to advancing the systems-level evaluation of complex biological processes is the development of comprehensive networks and computational methods to apply to the analysis of systems biology data (transcriptomics, proteomics/phosphoproteomics, metabolomics, etc.. Ideally, these networks will be specifically designed to capture the normal, non-diseased biology of the tissue or cell types under investigation, and can be used with experimentally generated systems biology data to assess the biological impact of perturbations like xenobiotics and other cellular stresses. Lung cell proliferation is a key biological process to capture in such a network model, given the pivotal role that proliferation plays in lung diseases including cancer, chronic obstructive pulmonary disease (COPD, and fibrosis. Unfortunately, no such network has been available prior to this work. Results To further a systems-level assessment of the biological impact of perturbations on non-diseased mammalian lung cells, we constructed a lung-focused network for cell proliferation. The network encompasses diverse biological areas that lead to the regulation of normal lung cell proliferation (Cell Cycle, Growth Factors, Cell Interaction, Intra- and Extracellular Signaling, and Epigenetics, and contains a total of 848 nodes (biological entities and 1597 edges (relationships between biological entities. The network was verified using four published gene expression profiling data sets associated with measured cell proliferation endpoints in lung and lung-related cell types. Predicted changes in the activity of core machinery involved in cell cycle regulation (RB1, CDKN1A, and MYC/MYCN are statistically supported across multiple data sets, underscoring the general applicability of this approach for a network-wide biological impact assessment using systems biology data. Conclusions To the best of our knowledge, this lung-focused Cell Proliferation Network

  16. Targeting Homeostatic T Cell Proliferation to Control Beta-Cell Autoimmunity.

    Science.gov (United States)

    Vignali, Debora; Monti, Paolo

    2016-05-01

    Immunomodulation of the autoreactive T cell response is considered a major strategy to control beta-cell autoimmunity, both in the natural history of type 1 diabetes and in islet transplantation, which can be affected by autoimmunity recurrence. So far, these strategies have had modest results, prompting efforts to define novel cellular and molecular targets to control autoreactive T cell expansion and activation. Novel findings highlighted the important role of the homeostatic cytokine interleukin-7 in inducing proliferation and differentiation of autoreactive T cell clones that causes beta-cell autoimmunity. In this review, we discuss recent evidences and novel findings on the role of IL-7 mediated homeostatic T cell proliferation in the process of beta-cell destruction and evidences of how targeting IL-7 and its receptor could be an innovative and effective strategy to control beta-cell autoimmunity. PMID:26983628

  17. Proliferation of subependymal cells in the adult primate CNS

    International Nuclear Information System (INIS)

    New formation of stem cells in the subependymal brain layer of a normal adult primate has been documented by light and electron microscopy and trough 3H-thymidine (3H-TdR) uptake studies. Serial sections (1.5 μm) prepared for autoradiography were examined under the light microscope and then reembedded for electron microscopy. In individual sections subependymal cells did not appear labeled; however, serial sections revealed that many cells were slightly labeled indicating a low level of 3H-TdR incorporating during DNA synthesis. Dividing subependymal cells were also observed by light and electron microscopy. The poor incorporation of intraperitoneally injected 3H-TdR is due to the blood-brain barrier toward 3H-TdR. Rat experiments with the thymidine analogue, 123I-iododeoxyuridine (IUDR-125I) showed that after intraventricular injection of IUDR-125I about ninety times more radioactivity is incorporated into dividing stem cells of the brain than after an intraperitoneal injection of IUDR-125I. Differential corporation of 3H-TdR seems to depend on the type of stem cells, i.e., whether a stem cell may be precursor for glial or neuronal brain cells. Changes in membrane permeability, intracellular DNA activity as well as difference in locally available 'cold' thymidine may be a reason for differential uptake of radioactive thymidine. Differential uptake of 3H-TdR needs consideration when autoradiography is applied on brain cells. (author)

  18. Low power ultrasound inhibits cell proliferation and invasion of human cancer cells in vitro

    Directory of Open Access Journals (Sweden)

    Etienne Mfoumou

    2012-01-01

    Full Text Available Background: Applications of ultrasound in medicine for therapeutic purposes have been accepted, and they have several beneficial uses for many years. However, the outcome of low power ultrasound waves on cell proliferation, especially cell cycle progression and invasion as well as their associated genes on human breast and cervical cancer cells has not been investigated yet. Therefore, we examined the effect of low power ultrasound on BT20, BT20-E6/E7 and HeLa cell lines. Materials and Methods: BT20, BT20-E6/E7 and HeLa cell lines were used in this study. On the other hand, cell proliferation, cell cycle, and invasion assays were applied to study the effect of low ultrasound irradiation on these cell lines. Meanwhile, western blot was performed to study the expression patterns of some selected genes associated with this effect. Results: We found that low power ultrasound inhibits cell proliferation and provokes G0-G1 cell cycle arrest and reduction of S as well as an increase in the G2-M phase of HeLa cells in comparison with the untreated cells. This is accompanied by a down-regulation of Cdk-6 (cyclin dependent kinase which is a major control switch for the cell cycle. Moreover, low power ultrasound inhibits cell invasion and consequently down-regulates the expression of Id-1, caveolin, and EGF-R which are widely considered as main regulators of cell invasion and metastasis of human cancer. Conclusion: These results suggest that application of low power ultrasound on human breast and cervical cancer could be an effective method to reduce cell proliferation and invasion of these cancers.

  19. An ethanolic extract of Angelica gigas improves atherosclerosis by inhibiting vascular smooth muscle cell proliferation

    OpenAIRE

    Jang, Ja Young; Kim, Jihyun; Cai, Jingmei; Kim, Youngeun; Shin, Kyungha; Kim, Tae-Su; Lee, Sung-Pyo; Park, Sung Kyeong; Choi, Ehn-Kyoung; Kim, Yun-Bae

    2014-01-01

    The effects of an ethanolic extract of Angelica gigas (EAG) on the vascular smooth muscle cell (VSMC) proliferation and high-cholesterol diet-induced hypercholesterolemia and atherosclerosis were investigated. Rat aortic VSMCs were stimulated with platelet-derived growth factor-BB (25 ng/mL) for the induction of DNA synthesis and cell proliferation. EAG (1-10 µg/mL) significantly inhibited both the thymidine incorporation and cell proliferation in a concentration-dependent manner. Hypercholes...

  20. Non-circadian rhythm in proliferation of haematopoietic stem cells

    International Nuclear Information System (INIS)

    The proportion of haematopoietic stem cells (CFU-s) engaged in DNA synthesis was determined by means of the [3H]-thymidine ([3H]TdR) suicide technique during recovery of bone marrow from the damage caused by a sublethal total body irradiation. In contrast with previous reports the [3H]TdR suicide rate was not permanently increased. It was observed that CFU-s passed through S phase in synchronous waves, following a dose of irradiation of 1.5 Gy. After a dose of 2.6 Gy, there was only one initial wave of increased CFU-s sensitivity to the action of [3H]TdR. Following the depression occurring 26 hr after the irradiation with 2.6 Gy, the proportion of CFU-s killed by the [3H]TdR was permanently increased until 5-6 days after irradiation. Thereafter large differences in the [3H]TdR suicide data were observed among individual mice. Evidence was obtained that individual mice, which had been irradiated by a dose of 2.6 Gy 8-9 days before, had identical values of the CFU-s [3H]TdR suicide rate in the bone marrow from different bones of the lower extremities. The recurrence of the synchronous waves in CFU-s passage through the cell cycle was recorded when the CFU-s population regenerated to only about 10% of its normal value. It is concluded that the synchronous waves in which CFU-s proliferation occurred reflected the action of the control mechanism on CFU-s proliferation. (author)

  1. Impact of Mesenchymal Stem Cell secreted PAI-1 on colon cancer cell migration and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Niamh M. [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland); Joyce, Myles R. [Department of Colorectal Surgery, University College Hospital, Galway (Ireland); Murphy, J. Mary; Barry, Frank P.; O’Brien, Timothy [Regenerative Medicine Institute, National University of Ireland, Galway (Ireland); Kerin, Michael J. [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland); Dwyer, Roisin M., E-mail: roisin.dwyer@nuigalway.ie [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland)

    2013-06-14

    Highlights: •MSCs were directly co-cultured with colorectal cancer (CRC) cells on 3D scaffolds. •MSCs influence CRC protein/gene expression, proliferation and migration. •We report a significant functional role of MSC-secreted PAI-1 in colon cancer. -- Abstract: Mesenchymal Stem Cells are known to engraft and integrate into the architecture of colorectal tumours, with little known regarding their fate following engraftment. This study aimed to investigate mediators of Mesenchymal Stem Cell (MSC) and colon cancer cell (CCC) interactions. Mesenchymal Stem Cells and colon cancer cells (HT29 and HCT-116) were cultured individually or in co-culture on 3-dimensional scaffolds. Conditioned media containing all secreted factors was harvested at day 1, 3 and 7. Chemokine secretion and expression were analyzed by Chemi-array, ELISA (Macrophage migration inhibitory factor (MIF), plasminogen activator inhibitor type 1 (PAI-1)) and RQ-PCR. Colon cancer cell migration and proliferation in response to recombinant PAI-1, MSCs and MSCs + antibody to PAI-1 was analyzed using Transwell inserts and an MTS proliferation assay respectively. Chemi-array revealed secretion of a wide range of factors by each cell population, including PAI-1and MIF. ELISA analysis revealed Mesenchymal Stem Cells to secrete the highest levels of PAI-1 (MSC mean 10.6 ng/mL, CCC mean 1.01 ng/mL), while colon cancer cells were the principal source of MIF. MSC-secreted PAI-1 stimulated significant migration of both CCC lines, with an antibody to the chemokine shown to block this effect (67–88% blocking,). A cell-line dependant effect on CCC proliferation was shown for Mesenchymal Stem Cell-secreted PAI-1 with HCT-116 cells showing decreased proliferation at all concentrations, and HT29 cells showing increased proliferation in the presence of higher PAI-1 levels. This is the first study to identify PAI-1 as an important mediator of Mesenchymal Stem Cell/colon cancer cell interactions and highlights the

  2. Impact of Mesenchymal Stem Cell secreted PAI-1 on colon cancer cell migration and proliferation

    International Nuclear Information System (INIS)

    Highlights: •MSCs were directly co-cultured with colorectal cancer (CRC) cells on 3D scaffolds. •MSCs influence CRC protein/gene expression, proliferation and migration. •We report a significant functional role of MSC-secreted PAI-1 in colon cancer. -- Abstract: Mesenchymal Stem Cells are known to engraft and integrate into the architecture of colorectal tumours, with little known regarding their fate following engraftment. This study aimed to investigate mediators of Mesenchymal Stem Cell (MSC) and colon cancer cell (CCC) interactions. Mesenchymal Stem Cells and colon cancer cells (HT29 and HCT-116) were cultured individually or in co-culture on 3-dimensional scaffolds. Conditioned media containing all secreted factors was harvested at day 1, 3 and 7. Chemokine secretion and expression were analyzed by Chemi-array, ELISA (Macrophage migration inhibitory factor (MIF), plasminogen activator inhibitor type 1 (PAI-1)) and RQ-PCR. Colon cancer cell migration and proliferation in response to recombinant PAI-1, MSCs and MSCs + antibody to PAI-1 was analyzed using Transwell inserts and an MTS proliferation assay respectively. Chemi-array revealed secretion of a wide range of factors by each cell population, including PAI-1and MIF. ELISA analysis revealed Mesenchymal Stem Cells to secrete the highest levels of PAI-1 (MSC mean 10.6 ng/mL, CCC mean 1.01 ng/mL), while colon cancer cells were the principal source of MIF. MSC-secreted PAI-1 stimulated significant migration of both CCC lines, with an antibody to the chemokine shown to block this effect (67–88% blocking,). A cell-line dependant effect on CCC proliferation was shown for Mesenchymal Stem Cell-secreted PAI-1 with HCT-116 cells showing decreased proliferation at all concentrations, and HT29 cells showing increased proliferation in the presence of higher PAI-1 levels. This is the first study to identify PAI-1 as an important mediator of Mesenchymal Stem Cell/colon cancer cell interactions and highlights the

  3. The rapamycin analog CCI-779 is a potent inhibitor of pancreatic cancer cell proliferation

    International Nuclear Information System (INIS)

    We present immunohistochemical evidence that the mTOR/p70s6k pathway is activated in pancreatic tumors and show that the mTOR inhibitor and rapamycin analog CCI-779 potently suppresses the proliferation of pancreatic cancer cells. Consistent with a recent study, CCI-779 increased c-Jun phosphorylation (Ser63) in a dose- and time-dependent manner, and induced apoptosis in p53-defective BxPC-3 cells. In contrast to the study, however, we observed that CCI-779 concomitantly increased c-Jun protein levels and that its ability to induce apoptosis might not require the activated c-Jun. Furthermore, CCI-779 neither induced c-Jun phosphorylation in other p53-defective pancreatic cancer cells (MiaPaCa-2) nor inhibited their proliferation. c-Jun, in fact, appeared to be partly responsible for the resistance of MiaPaCa-2 cells to CCI-779. Together, these results indicate a complex role for c-Jun in cellular responses to CCI-779 and provide an important basis for investigating CCI-779 further as a potential therapeutic agent for pancreatic tumors

  4. NeuroD induces the expression of visinin and calretinin by proliferating cells derived from toxin-damaged chicken retina.

    Science.gov (United States)

    Fischer, Andy J; Wang, Shu-Zhen; Reh, Thomas A

    2004-03-01

    Müller glia have been shown to be a potential source of neural regeneration in the avian retina. In response to acute damage Müller glia de-differentiate, proliferate, express transcription factors found in embryonic retinal progenitors, and some of the progeny differentiate into neurons and glia (Fischer and Reh [2001a] Nat. Neurosci. 4:247-252). However, most of the cells produced by proliferating Müller cells appear to remain undifferentiated. The purpose of this study was to test whether the neurogenic gene NeuroD can promote the differentiation of proliferating cells derived from the postnatal chick retina. We used recombinant avian retroviruses to transfect green fluorescent protein (GFP) or NeuroD. The majority of cells transfected with GFP remained undifferentiated, with a few cells differentiating into calretinin-immunoreactive neurons. Many cells transfected with the NeuroD-virus expressed calretinin, neurofilament, or visinin, while most cells remained undifferentiated. The number of calretinin-expressing cells that were generated was increased approximately 20-fold with forced expression of NeuroD. In addition, we found that cells transfected with NeuroD never expressed glutamine synthetase, a marker of mature Müller glia, suggesting that NeuroD suppresses glial differentiation. We conclude that NeuroD stimulates cells from the toxin-damaged chicken retina to acquire some neuronal phenotypes. We propose that most of these cells were derived from Müller glia. PMID:14991711

  5. Effects and mechanism of Megsin gene transfection on mesangial cell proliferation and type Ⅳ collagen excretion

    Institute of Scientific and Technical Information of China (English)

    夏运风

    2006-01-01

    Objective To investigate the effects and mechanism of Megsin gene transfection on mesangial cell proliferation and typeⅣcollagen excretion. Methods Rat Megsin cDNA eukaryotic expressing vector was constructed and transfected to cultured rat mesangial cells. Cell proliferation was measured by determining [3H] -thymidine (3H-TdR) incorporation. The mRNA expression of

  6. Modulatory effects of quercetin on proliferation and differentiation of the human colorectal cell line Caco-2

    NARCIS (Netherlands)

    Dihal, A.A.; Woutersen, R.A.; Ommen, B.v.; Rietjens, I.M.C.M.; Stierum, R.H.

    2006-01-01

    The effect of the dietary flavonoid quercetin was investigated on proliferation and differentiation of the human colon cancer cell line Caco-2. Confluent Caco-2 monolayers exposed to quercetin showed a biphasic effect on cell proliferation and a decrease in cell differentiation (0.001

  7. Effect of organophosphorus insecticides and their metabolites on astroglial cell proliferation

    International Nuclear Information System (INIS)

    Though little attention has been given to the possibility that glial cells may represent a target for the developmental neurotoxicity of organophosphorus (OP) insecticides, recent evidence, obtained in particular with chlorpyrifos (CP), suggests that developmental exposure to this compound may indeed target astrocytes. To substantiate and expand these observations, we carried out a series of in vitro studies utilizing fetal rat astrocytes and a human astrocytoma cell line, 1321N1 cells, to investigate the effect of the OPs CP, diazinon (DZ) and parathion (P), their oxygen analogs chlorpyrifos oxon (CPO), diazoxon (DZO) and paraoxon (PO), and their metabolites 3,5,6-trichloro-2-pyridinol (TCP), 2-isopropyl-6-methyl-4-pyrimidol (IMP) and para-nitrophenol (PNP), on cell proliferation. In fetal rat astrocytes and astrocytoma cells maintained in serum, CP, DZ, P, CPO, DZO, and PO induced a concentration-dependent inhibition in [3H]thymidine incorporation with a very similar potency (IC50 between 45 and 57 μM). Among the other metabolites, PNP was the most potent (IC50 = 70-80 μM), while TCP and IMP were much less effective (IC50 > 100 μM). Cytotoxicity appears to account only for a small part of the effect on DNA synthesis. OP insecticides and their oxons were three- to six-fold more potent in inhibiting [3H]thymidine incorporation when cells were synchronized in the G0/G1 phase of the cell cycle and re-stimulated by carbachol or epidermal growth factor. These results suggest that OP insecticides and their oxons affect astroglial cell proliferation and that the transition from the G0/G1 to the S/G2 phase of the cell cycle may be particularly sensitive to the action of these compounds

  8. Proliferation of cultured mouse choroid plexus epithelial cells.

    Directory of Open Access Journals (Sweden)

    Basam Z Barkho

    Full Text Available The choroid plexus (ChP epithelium is a multifunctional tissue found in the ventricles of the brain. The major function of the ChP epithelium is to produce cerebrospinal fluid (CSF that bathes and nourishes the central nervous system (CNS. In addition to the CSF, ChP epithelial cells (CPECs produce and secrete numerous neurotrophic factors that support brain homeostasis, such as adult hippocampal neurogenesis. Accordingly, damage and dysfunction to CPECs are thought to accelerate and intensify multiple disease phenotypes, and CPEC regeneration would represent a potential therapeutic approach for these diseases. However, previous reports suggest that CPECs rarely divide, although this has not been extensively studied in response to extrinsic factors. Utilizing a cell-cycle reporter mouse line and live cell imaging, we identified scratch injury and the growth factors insulin-like growth factor 1 (IGF-1 and epidermal growth factor (EGF as extrinsic cues that promote increased CPEC expansion in vitro. Furthermore, we found that IGF-1 and EGF treatment enhances scratch injury-induced proliferation. Finally, we established whole tissue explant cultures and observed that IGF-1 and EGF promote CPEC division within the intact ChP epithelium. We conclude that although CPECs normally have a slow turnover rate, they expand in response to external stimuli such as injury and/or growth factors, which provides a potential avenue for enhancing ChP function after brain injury or neurodegeneration.

  9. Bone marrow mesenchymal stem cells stimulate proliferation and neuronal differentiation of retinal progenitor cells.

    Directory of Open Access Journals (Sweden)

    Jing Xia

    Full Text Available During retina development, retinal progenitor cell (RPC proliferation and differentiation are regulated by complex inter- and intracellular interactions. Bone marrow mesenchymal stem cells (BMSCs are reported to express a variety of cytokines and neurotrophic factors, which have powerful trophic and protective functions for neural tissue-derived cells. Here, we show that the expanded RPC cultures treated with BMSC-derived conditioned medium (CM which was substantially enriched for bFGF and CNTF, expressed clearly increased levels of nuclear receptor TLX, an essential regulator of neural stem cell (NSC self-renewal, as well as betacellulin (BTC, an EGF-like protein described as supporting NSC expansion. The BMSC CM- or bFGF-treated RPCs also displayed an obviously enhanced proliferation capability, while BMSC CM-derived bFGF knocked down by anti-bFGF, the effect of BMSC CM on enhancing RPC proliferation was partly reversed. Under differentiation conditions, treatment with BMSC CM or CNTF markedly favoured RPC differentiation towards retinal neurons, including Brn3a-positive retinal ganglion cells (RGCs and rhodopsin-positive photoreceptors, and clearly diminished retinal glial cell differentiation. These findings demonstrate that BMSCs supported RPC proliferation and neuronal differentiation which may be partly mediated by BMSC CM-derived bFGF and CNTF, reveal potential limitations of RPC culture systems, and suggest a means for optimizing RPC cell fate determination in vitro.

  10. The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation

    KAUST Repository

    Naganuma, Tamaki

    2014-05-01

    Understanding and controlling cell proliferation on biomaterial surfaces is critical for scaffold/artificial-niche design in tissue engineering. The mechanism by which underlying integrin ligates with functionalized biomaterials to induce cell proliferation is still not completely understood. In this study, poly-l-lactide (PL) scaffold surfaces were functionalized using layers of cerium oxide nanoparticles (CNPs), which have recently attracted attention for use in therapeutic application due to their catalytic ability of Ce4+ and Ce3+ sites. To isolate the influence of Ce valance states of CNPs on cell proliferation, human mesenchymal stem cells (hMSCs) and osteoblast-like cells (MG63) were cultured on the PL/CNP surfaces with dominant Ce4+ and Ce3+ regions. Despite cell type (hMSCs and MG63 cells), different surface features of Ce4+ and Ce3+ regions clearly promoted and inhibited cell spreading, migration and adhesion behavior, resulting in rapid and slow cell proliferation, respectively. Cell proliferation results of various modified CNPs with different surface charge and hydrophobicity/hydrophilicity, indicate that Ce valence states closely correlated with the specific cell morphologies and cell-material interactions that trigger cell proliferation. This finding suggests that the cell-material interactions, which influence cell proliferation, may be controlled by introduction of metal elements with different valence states onto the biomaterial surface. © 2014 Elsevier Ltd.

  11. Cell proliferation and hair cell addition in the ear of the goldfish, Carassius auratus

    Science.gov (United States)

    Lanford, P. J.; Presson, J. C.; Popper, A. N.

    1996-01-01

    Cell proliferation and hair cell addition have not been studied in the ears of otophysan fish, a group of species who have specialized hearing capabilities. In this study we used the mitotic S-phase marker bromodeoxyuridine (BrdU) to identify proliferating cells in the ear of one otophysan species, Carassius auratus (the goldfish). Animals were sacrificed at 3 h or 5 days postinjection with BrdU and processed for immunocytochemistry. The results of the study show that cell proliferation occurs in all of the otic endorgans and results in the addition of new hair cells. BrdU-labeled cells were distributed throughout all epithelia, including the primary auditory endorgan (saccule), where hair cell phenotypes vary considerably along the rostrocaudal axis. This study lays the groundwork for our transmission electron microscopy study of proliferative cells in the goldfish ear (Presson et al., Hearing Research 100 (1996) 10-20) as well as future studies of hair cell development in this species. The ability to predict, based on epithelial location, the future phenotype of developing hair cells in the saccule of the goldfish make that endorgan a particularly powerful model system for the investigation of early hair cell differentiation.

  12. Roles of estrogen receptor α and β in modulating urothelial cell proliferation

    OpenAIRE

    Teng, Jian; Wang, Zun-Yi; Jarrard, David F; Bjorling, Dale E.

    2008-01-01

    We reported previously that both subtypes of estrogen receptors, ERα and ERβ, are expressed by human urothelial cells and mediate estrogen-induced cell proliferation in these cells. The aim of this study was to determine the extent to which each ER subtype contributes to urothelial cell proliferation and their possible involvement in the regulation of the cell cycle. We compared the expression of ERα and ERβ mRNAs and protein quantitatively in primarily cultured human bladder urothelial cells...

  13. Expression Profile of microRNAs Regulating Proliferation and Differentiation in Mouse Adult Cardiac Stem Cells

    OpenAIRE

    Brás-Rosário, Luis; Matsuda, Alex; Pinheiro, Ana Isabel; Gardner, Rui; Lopes, Telma; Amaral, Andreia; Gama-Carvalho, Margarida

    2013-01-01

    The identification of cardiac cells with stem cell properties changed the paradigm of the heart as a post mitotic organ. These cells proliferate and differentiate into cardiomyocytes, endothelial and vascular smooth muscle cells, providing for cardiac cell homeostasis and regeneration. microRNAs are master switches controlling proliferation and differentiation, in particular regulating stem cell biology and cardiac development. Modulation of microRNAs -regulated gene expression networks holds...

  14. Inhibition of cell proliferation by a selective inhibitor of the Ca2+-activated Cl− channel, Ano1

    International Nuclear Information System (INIS)

    Highlights: ► T16Ainh-A01 blocked Ano1 currents in HEK cells expressing Ano1. ► T16Ainh-A01 reduced proliferation in ICC primary cultures and CFPAC-1 cell line. ► T16Ainh-A01 reduced proliferation of ICC in intact smooth muscle strips. -- Abstract: Background: Ion channels play important roles in regulation of cellular proliferation. Ano1 (TMEM16A) is a Ca2+-activated Cl− channel expressed in several tumors and cell types. In the muscle layers of the gastrointestinal tract Ano1 is selectively expressed in interstitial cells of Cajal (ICC) and appears to be required for normal gastrointestinal slow wave electrical activity. However, Ano1 is expressed in all classes of ICC, including those that do not generate slow waves suggesting that Ano1 may have other functions. Indeed, a role for Ano1 in regulating proliferation of tumors and ICC has been recently suggested. Recently, a high-throughput screen identified a small molecule, T16Ainh-A01 as a specific inhibitor of Ano1. Aim: To investigate the effect of the T16Ainh-A01 inhibitor on proliferation in ICC and in the Ano1-expressing human pancreatic cancer cell line CFPAC-1. Methods: Inhibition of Ano1 was demonstrated by whole cell voltage clamp recordings of currents in cells transfected with full-length human Ano1. The effect of T16Ainh-A01 on ICC proliferation was examined in situ in organotypic cultures of intact mouse small intestinal smooth muscle strips and in primary cell cultures prepared from these tissues. ICC were identified by Kit immunoreactivity. Proliferating ICC and CFPAC-1 cells were identified by immunoreactivity for the nuclear antigen Ki67 or EdU incorporation, respectively. Results: T16Ainh-A01 inhibited Ca2+-activated Cl− currents by 60% at 10 μM in a voltage-independent fashion. Proliferation of ICC was significantly reduced in primary cultures from BALB/c mice following treatment with T16Ainh-A01. Proliferation of the CFPAC-1 human cell-line was also reduced by T16Ainh-A01. In

  15. Transient inhibition of cell proliferation does not compromise self-renewal of mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruoxing [Department of Biological Sciences, The University of Southern Mississippi, 118 College Drive 5018, Hattiesburg, MS 39406 (United States); Guo, Yan-Lin, E-mail: yanlin.guo@usm.edu [Department of Biological Sciences, The University of Southern Mississippi, 118 College Drive 5018, Hattiesburg, MS 39406 (United States)

    2012-10-01

    Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. -- Highlights: Black-Right-Pointing-Pointer Inhibition of Cdks slows down mESCs proliferation. Black-Right-Pointing-Pointer mESCs display remarkable recovery capacity from short-term cell cycle interruption. Black-Right-Pointing-Pointer Short-term cell cycle interruption does not compromise mESC self-renewal. Black

  16. Transient inhibition of cell proliferation does not compromise self-renewal of mouse embryonic stem cells

    International Nuclear Information System (INIS)

    Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. -- Highlights: ► Inhibition of Cdks slows down mESCs proliferation. ► mESCs display remarkable recovery capacity from short-term cell cycle interruption. ► Short-term cell cycle interruption does not compromise mESC self-renewal. ► Oct4 and Nanog are up-regulated via de novo synthesis by cell cycle interruption.

  17. Proliferating cell nuclear antigen (PCNA) activity in hepatocellular carcinoma, benign peri-neoplastic and normal liver.

    Science.gov (United States)

    Mun, Kein-Seong; Cheah, Phaik-Leng; Baharudin, Nurul Bahiyah; Looi, Lai-Meng

    2006-12-01

    Hepatocellular carcinoma (HCC) is among the ten most common cancers in Malaysian males. As cellular proliferation is an important feature of malignant transformation, we studied the proliferation pattern of normal and benign perineoplastic liver versus hepatocellular carcinoma in an attempt to further understand the tumour transformation process. 39 HCC (21 with accompanying and 18 without cirrhosis) histologically diagnosed at the Department of Pathology, University of Malaya Medical Centre between January 1992 and December 2003 were immunohistochemically studied using a monoclonal antibody to PCNA (Clone PC10: Dako). 20 livers from cases who had succumbed to traumatic injuries served as normal liver controls (NL). PCNA labeling index (PCNA-LI) was determined by counting the number of immunopositive cells in 1000 contiguous HCC, benign cirrhotic perineoplastic liver (BLC), benign perineoplastic non-cirrhotic (BLNC) and NL cells and conversion to a percentage. The PCNA-LI was also expressed as Ojanguren et al's grades. PCNA was expressed in 10% NL, 38.9% BLNC, 76.2% BLC and 71.8% HCC with BLNC, BLC and HCC showing significantly increased (p cells being immunopositive) immunoreactivity on Ojanguren et al's grading system and only HCC demonstrated immunoreactivity which ranged up to grade 3 (75% of cells). From this study, there appears to be a generally increasing trend of proliferative activity from NL to BLNC to BLC and HCC. Nonetheless, BLNC and BLC, like NL, retained low PCNA-LI and only HCC had a significantly increased PCNA-LI compared with the benign categories. This is probably related to the malignant nature of HCC and may reflect the uncontrolled proliferation of the neoplastic hepatocytes. PMID:18376794

  18. Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development

    Directory of Open Access Journals (Sweden)

    Bello Bruno C

    2008-02-01

    Full Text Available Abstract Background In the mammalian brain, neural stem cells divide asymmetrically and often amplify the number of progeny they generate via symmetrically dividing intermediate progenitors. Here we investigate whether specific neural stem cell-like neuroblasts in the brain of Drosophila might also amplify neuronal proliferation by generating symmetrically dividing intermediate progenitors. Results Cell lineage-tracing and genetic marker analysis show that remarkably large neuroblast lineages exist in the dorsomedial larval brain of Drosophila. These lineages are generated by brain neuroblasts that divide asymmetrically to self renew but, unlike other brain neuroblasts, do not segregate the differentiating cell fate determinant Prospero to their smaller daughter cells. These daughter cells continue to express neuroblast-specific molecular markers and divide repeatedly to produce neural progeny, demonstrating that they are proliferating intermediate progenitors. The proliferative divisions of these intermediate progenitors have novel cellular and molecular features; they are morphologically symmetrical, but molecularly asymmetrical in that key differentiating cell fate determinants are segregated into only one of the two daughter cells. Conclusion Our findings provide cellular and molecular evidence for a new mode of neurogenesis in the larval brain of Drosophila that involves the amplification of neuroblast proliferation through intermediate progenitors. This type of neurogenesis bears remarkable similarities to neurogenesis in the mammalian brain, where neural stem cells as primary progenitors amplify the number of progeny they generate through generation of secondary progenitors. This suggests that key aspects of neural stem cell biology might be conserved in brain development of insects and mammals.

  19. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Kiyoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Ii, Masaaki, E-mail: masaii@art.osaka-med.ac.jp [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Asahi, Michio [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Azuma, Haruhito [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan)

    2014-04-18

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa.

  20. TRPM7-like current in human head and neck carcinoma cells: role in cell proliferation

    OpenAIRE

    Jiang, Jie; Li, Ming-Hua; Inoue, Koichi; Chu, Xiang-Ping; Seeds, Joshua; Zhi-Gang, Xiong

    2007-01-01

    Ion channels are involved in normal physiological processes, and in the pathology of various diseases. In this study, we investigated the presence and potential function of TRPM7 channels in the growth and proliferation of FaDu and SCC25 cells, two common human head and neck squamous carcinoma cell lines, using a combination of patch-clamp recording, Western blotting, immunocytochemistry, small interference RNA (siRNA), fluorescent Ca2+ imaging, and cell counting techniques. Although voltage-...

  1. Isolation, proliferation, and induction of Bama mini-pig spermatogonial stem cells in vitro.

    Science.gov (United States)

    Zhao, H M; Yang, H; Luo, F H; Li, M X; Zhang, S; Yang, X G; Lu, Y Q; Lu, S S; Wu, Y J; Lu, K H

    2016-01-01

    Spermatogonial stem cells (SSCs), the unique seed cells of testes, can undergo meiosis and form spermatozoa, thus transmitting genetic information to offspring. Research concerning these cells explores the mechanism underlying spermatogenesis, making possible the induction of their differentiation into spermatozoa in vitro. SSCs have therefore attracted much interest among scientists. Although the proliferation of such cells in vitro has been demonstrated, we are unaware of any long-term laboratory culture of porcine SSCs. The objective of this study was to isolate, characterize, culture, and induce the differentiation of Bama mini-pig SSCs. SSCs were isolated using differential plating and cultured for over 100 days on an STO feeder cell layer without serum. Cell clusters appeared after three passages and continuously formed during subsequent cultivation. Staining showed that these clusters were positive for UCHL1 and CDH1, could be bound by Dolichos biflorus agglutinin, and that some cells expressed OCT4. Ultrastructure observations revealed SSCs in testis tissue to be round in shape, while those cultured in vitro were flat and bound together. Our attempts at inducing differentiation showed that SSCs cultured in vitro could undergo meiosis. In this study, we describe an effective culture system for Bama mini-pig SSCs capable of producing enough cells to establish a platform for further SSC research, such as genetic manipulation or exploration of the mechanism underlying spermatogenesis. PMID:27525927

  2. Appearance of an inhibitory cell nuclear antigen in rat and human serum during variable degrees of hepatic regenerative activity

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    AIM To determine whether proliferating cell nuclear antigen (PCNA) is present in the peripheral circulation and whether PCNA levels correlate with enhanced regenerative activity.METHODS In animal studies, adult male Sprague-Dawley rats (n=3-4/ group) were sacrificed at 0, 12, 24, 36, 48, 72 and 96 hours following 70% partial hepatectomy. At each interval, sera were analyzed by Western blot for PCNA by two monoclonal antibodies (PC-10 and 19F-4). In human studies, sera from 4 patients with liver cirrhosis and 4 healthy controls were tested in a similar manner.RESULTS The PC-10 monoclonal antibody identified a protein with a molecular mass of 120 KD which remained stable in rat sera for 24 hours following partial hepatectomy, then increased 1.5-fold at 48 hours prior to returning to baseline at 96 hours after partial hepatectomy. However, it was not detected in the sera of patients with or without liver disease. In the 19F-4 monoclonal antibody, a protein with a molecular mass of approximately 46 KD was found. which was present in rat sera prior to partial hepatectomy and for 12 hours after surgery. Thereafter, levels fell by approximately 50% at 24 hours, 65% at 36 hours and 75% at 48 hours where they remained until 96 hours after partial hepatectomy. The decrease in levels correlated with the extent of partial hepatectomy. In human sera, the appearance of this inhibitory cell nuclear antigen (ICNA) was higher in the sera of patients with cirrhosis than in healthy controls.CONCLUSION The PC-10 monoclonal antibody can detect a protein in the circulation when active hepatic regenerative activity is taking place. The 19F-4 monoclonal antibody, however, identifies a protein in both rat and human sera that inversely correlates with hepatic regenerative activity. This protein which is tentatively referred to as inhibitory cell nuclear antigen (ICNA) may be used in documenting the extent of suppression of hepatic regeneration.

  3. Shikonin Suppresses Skin Carcinogenesis via Inhibiting Cell Proliferation.

    Science.gov (United States)

    Li, Wenjuan; Zhang, Chunjing; Ren, Amy; Li, Teena; Jin, Rong; Li, Guohong; Gu, Xin; Shi, Runhua; Zhao, Yunfeng

    2015-01-01

    The M2 isoform of pyruvate kinase M2 (PKM2) has been shown to be up-regulated in human skin cancers. To test whether PKM2 may be a target for chemoprevention, shikonin, a natural product from the root of Lithospermum erythrorhizon and a specific inhibitor of PKM2, was used in a chemically-induced mouse skin carcinogenesis study. The results revealed that shikonin treatment suppressed skin tumor formation. Morphological examinations and immunohistochemical staining of the skin epidermal tissues suggested that shikonin inhibited cell proliferation without inducing apoptosis. Although shikonin alone suppressed PKM2 activity, it did not suppress tumor promoter-induced PKM2 activation in the skin epidermal tissues at the end of the skin carcinogenesis study. To reveal the potential chemopreventive mechanism of shikonin, an antibody microarray analysis was performed, and the results showed that the transcription factor ATF2 and its downstream target Cdk4 were up-regulated by chemical carcinogen treatment; whereas these up-regulations were suppressed by shikonin. In a promotable skin cell model, the nuclear levels of ATF2 were increased during tumor promotion, whereas this increase was inhibited by shikonin. Furthermore, knockdown of ATF2 decreased the expression levels of Cdk4 and Fra-1 (a key subunit of the activator protein 1. In summary, these results suggest that shikonin, rather than inhibiting PKM2 in vivo, suppresses the ATF2 pathway in skin carcinogenesis. PMID:25961580

  4. Neuron-NG2 Cell Synapses: Novel Functions for Regulating NG2 Cell Proliferation and Differentiation

    Directory of Open Access Journals (Sweden)

    Qian-Kun Yang

    2013-01-01

    Full Text Available NG2 cells are a population of CNS cells that are distinct from neurons, mature oligodendrocytes, astrocytes, and microglia. These cells can be identified by their NG2 proteoglycan expression. NG2 cells have a highly branched morphology, with abundant processes radiating from the cell body, and express a complex set of voltage-gated channels, AMPA/kainate, and GABA receptors. Neurons notably form classical and nonclassical synapses with NG2 cells, which have varied characteristics and functions. Neuron-NG2 cell synapses could fine-tune NG2 cell activities, including the NG2 cell cycle, differentiation, migration, and myelination, and may be a novel potential therapeutic target for NG2 cell-related diseases, such as hypoxia-ischemia injury and periventricular leukomalacia. Furthermore, neuron-NG2 cell synapses may be correlated with the plasticity of CNS in adulthood with the synaptic contacts passing onto their progenies during proliferation, and synaptic contacts decrease rapidly upon NG2 cell differentiation. In this review, we highlight the characteristics of classical and nonclassical neuron-NG2 cell synapses, the potential functions, and the fate of synaptic contacts during proliferation and differentiation, with the emphasis on the regulation of the NG2 cell cycle by neuron-NG2 cell synapses and their potential underlying mechanisms.

  5. Antiproliferative effects of phenylaminonaphthoquinones are increased by ascorbate and associated with the appearance of a senescent phenotype in human bladder cancer cells

    International Nuclear Information System (INIS)

    Highlights: •Phenylaminonaphthoquinones are redox cyclers able to form ROS. •Phenylaminonaphthoquinones plus ascorbate inhibit T24 cell growth. •Phenylaminonaphthoquinones plus ascorbate lead to necrotic-like cell death. •Phenylaminonaphthoquinones plus ascorbate impair cell cycle and affect MAPKs. •Phenylaminonaphthoquinones plus ascorbate induce a senescent cancer cell phenotype. -- Abstract: Quinone-containing molecules have been developed against cancer mainly for their redox cycling ability leading to reactive oxygen species (ROS) formation. We have previously shown that donor-acceptor phenylaminonaphthoquinones are biologically active against a panel of cancer cells. In this report, we explored the mechanisms involved in cancer cell growth inhibition caused by two phenylaminonaphthoquinones, namely Q7 and Q9, with or without ascorbate (ASC). The results show that Q7 and Q9 are both redox cyclers able to form ROS, which strongly inhibit the proliferation of T24 cells. Q9 was a better redox cycler than Q7 because of marked stabilization of the semiquinone radical species arising from its reduction by ascorbate. Indeed, ASC dramatically enhances the inhibitory effect of Q9 on cell proliferation. Q9 plus ASC impairs the cell cycle, causing a decrease in the number of cells in the G2/M phase without involving other cell cycle regulating key proteins. Moreover, Q9 plus ASC influences the MAPK signaling pathways, provoking the appearance of a senescent cancer cell phenotype and ultimately leading to necrotic-like cell death. Because cellular senescence limits the replicative capacity of cells, our results suggest that induction of senescence may be exploited as a basis for new approaches to cancer therapy

  6. Antiproliferative effects of phenylaminonaphthoquinones are increased by ascorbate and associated with the appearance of a senescent phenotype in human bladder cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Felipe, K.B. [Laboratorio de Bioquímica Experimental, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis (Brazil); Benites, J. [Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avenida Arturo Prat 2120, Casilla 121, Iquique (Chile); Glorieux, C.; Sid, B.; Valenzuela, M. [Université Catholique de Louvain, Louvain Drug Research Institute, Toxicology and Cancer Biology Research Group (GTOX), Brussels (Belgium); Kviecinski, M.R.; Pedrosa, R.C. [Laboratorio de Bioquímica Experimental, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis (Brazil); Valderrama, J.A. [Departamento Química Orgánica, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Casilla 306, Santiago (Chile); Levêque, Ph.; Gallez, B. [Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group (REMA), Brussels (Belgium); Verrax, J. [Université Catholique de Louvain, Louvain Drug Research Institute, Toxicology and Cancer Biology Research Group (GTOX), Brussels (Belgium); Buc Calderon, P., E-mail: pedro.buccalderon@uclouvain.be [Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avenida Arturo Prat 2120, Casilla 121, Iquique (Chile); Université Catholique de Louvain, Louvain Drug Research Institute, Toxicology and Cancer Biology Research Group (GTOX), Brussels (Belgium)

    2013-04-19

    Highlights: •Phenylaminonaphthoquinones are redox cyclers able to form ROS. •Phenylaminonaphthoquinones plus ascorbate inhibit T24 cell growth. •Phenylaminonaphthoquinones plus ascorbate lead to necrotic-like cell death. •Phenylaminonaphthoquinones plus ascorbate impair cell cycle and affect MAPKs. •Phenylaminonaphthoquinones plus ascorbate induce a senescent cancer cell phenotype. -- Abstract: Quinone-containing molecules have been developed against cancer mainly for their redox cycling ability leading to reactive oxygen species (ROS) formation. We have previously shown that donor-acceptor phenylaminonaphthoquinones are biologically active against a panel of cancer cells. In this report, we explored the mechanisms involved in cancer cell growth inhibition caused by two phenylaminonaphthoquinones, namely Q7 and Q9, with or without ascorbate (ASC). The results show that Q7 and Q9 are both redox cyclers able to form ROS, which strongly inhibit the proliferation of T24 cells. Q9 was a better redox cycler than Q7 because of marked stabilization of the semiquinone radical species arising from its reduction by ascorbate. Indeed, ASC dramatically enhances the inhibitory effect of Q9 on cell proliferation. Q9 plus ASC impairs the cell cycle, causing a decrease in the number of cells in the G2/M phase without involving other cell cycle regulating key proteins. Moreover, Q9 plus ASC influences the MAPK signaling pathways, provoking the appearance of a senescent cancer cell phenotype and ultimately leading to necrotic-like cell death. Because cellular senescence limits the replicative capacity of cells, our results suggest that induction of senescence may be exploited as a basis for new approaches to cancer therapy.

  7. Investigational Study of Mesenchymal Stem Cells on Lung Cancer Cell Proliferation and Invasion

    Directory of Open Access Journals (Sweden)

    Mei LI

    2015-11-01

    Full Text Available Background and objective Mesenchymal stem cells (MSC are adult stem cells derived from mesoderm. Evidence has shown that MSC could migrate towards tumor tissue and differentiate into tumor associated fibroblast in tumor microenvironment, which influences tumor growth and metastasis. However, the reports of MSC in non-small cell lung cancer (NSCLC are few and controversial. The aim of this study is to explore the chemotaxis of MSC towards NSCLC and to test the effects of MSC on the proliferation and invasion ability of NSCLC. Methods Transwell assay was used to test MSC and NSCLC migration and invasion, and Thymidine incorporation assay was adopted to measure NSCLC cells proliferation. The expression of interleukin-6 (IL-6, insulinlike growth factor (IGF-1, vascular endothelial growth factor (VEGF and dickkopf-related protein 1 (DKK1 of MSCs were determined by real time PCR. A549 lung cancer xenograft animal tumor model was set up to evaluate the MSC effect in vivo. Results Lung cancer cells could attract MSC tropism. MSC conditioned medium favored lung cancer cell proliferation and lung cancer cells stimulated the expression of IL-6, IGF-1, VEGF and DKK1 on MSCs. In vivo animal study showed that the tumor with MSC injection grew much faster compared to control group. Conclusion MSCs could migrate towards NSCLC cells and favor tumor growth. In turn, NSCLC cells could stimulate the overexpression of cytokines on MSCs which are essential for the tumor growth.

  8. Cocaine- and amphetamine-regulated transcript (CART) protects beta cells against glucotoxicity and increases cell proliferation.

    Science.gov (United States)

    Sathanoori, Ramasri; Olde, Björn; Erlinge, David; Göransson, Olga; Wierup, Nils

    2013-02-01

    Cocaine- and amphetamine-regulated transcript (CART) is an islet peptide that promotes glucose-stimulated insulin secretion in beta cells via cAMP/PKA-dependent pathways. In addition, CART is a regulator of neuronal survival. In this study, we examined the effect of exogenous CART 55-102 on beta cell viability and dissected its signaling mechanisms. Evaluation of DNA fragmentation and chromatin condensation revealed that CART 55-102 reduced glucotoxicity-induced apoptosis in both INS-1 (832/13) cells and isolated rat islets. Glucotoxicity in INS-1 (832/13) cells also caused a 50% reduction of endogenous CART protein. We show that CART increased proliferation in INS-1 (832/13) cells, an effect that was blocked by PKA, PKB, and MEK1 inhibitors. In addition, CART induced phosphorylation of CREB, IRS, PKB, FoxO1, p44/42 MAPK, and p90RSK in INS-1 (832/13) cells and isolated rat islets, all key mediators of cell survival and proliferation. Thus, we demonstrate that CART 55-102 protects beta cells against glucotoxicity and promotes proliferation. Taken together our data point to the potential use of CART in therapeutic interventions targeted at enhancing functional beta cell mass and long-term insulin secretion in T2D. PMID:23250745

  9. Establishment and characterization of a human cell strain, KT, with high sensitivity to UV-killing and to cell proliferation inhibition by interferon

    International Nuclear Information System (INIS)

    We have established a human cell line, designated KT, with high susceptibility to both cell proliferation inhibition by interferon and UV-killing, from a metastatic breast carcinoma. A tumor marker, a pregnancy-specific glycoprotein (Schwangerschaftsprotein 1; SP1), and carcinoma characteristics compatible with ductal carcinoma of the breast were seen in KT cells by electron microscopic observation. KT cells were slightly more resistant to X-ray-induced toxicity than fibroblastic cells, termed KS, from the scalp of the patient. But, KT cells had lower cloning efficiency after UV irradiation than did KS cells: D0 values of 1.5 J/m2 and 7.2 J/m2, respectively. KT cells also appeared more susceptible to human interferon (HuIFN) preparations (α, β, γ and natural or recombinant) than did KS cells, as measured by cell colony formation ability, proliferation rates, and [3H]deoxythymidine incorporation levels into acid-insoluble cell materials. The sensitivity of KT cells to UV and HuIFN was greater than that of human RSa cells, a cell line with high sensitivity to both agents. KT cells had more capacity for UV-induced DNA-repair replication synthesis than did RSa cells, the capacity being much the same as that of KS cells. There was no significant difference in levels of antiviral activity induced by HuIFN and binding capacity for 125I-labeled IFN-αA between KT and KS cells. KT cells appeared refractory to cell proliferation inhibition by tumor necrosis factor (TNF) preparations. (author)

  10. Central canal ependymal cells proliferate extensively in response to traumatic spinal cord injury but not demyelinating lesions.

    Directory of Open Access Journals (Sweden)

    Steve Lacroix

    Full Text Available The adult mammalian spinal cord has limited regenerative capacity in settings such as spinal cord injury (SCI and multiple sclerosis (MS. Recent studies have revealed that ependymal cells lining the central canal possess latent neural stem cell potential, undergoing proliferation and multi-lineage differentiation following experimental SCI. To determine whether reactive ependymal cells are a realistic endogenous cell population to target in order to promote spinal cord repair, we assessed the spatiotemporal dynamics of ependymal cell proliferation for up to 35 days in three models of spinal pathologies: contusion SCI using the Infinite Horizon impactor, focal demyelination by intraspinal injection of lysophosphatidylcholine (LPC, and autoimmune-mediated multi-focal demyelination using the active experimental autoimmune encephalomyelitis (EAE model of MS. Contusion SCI at the T9-10 thoracic level stimulated a robust, long-lasting and long-distance wave of ependymal proliferation that peaked at 3 days in the lesion segment, 14 days in the rostral segment, and was still detectable at the cervical level, where it peaked at 21 days. This proliferative wave was suppressed distal to the contusion. Unlike SCI, neither chemical- nor autoimmune-mediated demyelination triggered ependymal cell proliferation at any time point, despite the occurrence of demyelination (LPC and EAE, remyelination (LPC and significant locomotor defects (EAE. Thus, traumatic SCI induces widespread and enduring activation of reactive ependymal cells, identifying them as a robust cell population to target for therapeutic manipulation after contusion; conversely, neither demyelination, remyelination nor autoimmunity appears sufficient to trigger proliferation of quiescent ependymal cells in models of MS-like demyelinating diseases.

  11. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada); Cheng, Jung-Chien [Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada); Huang, He-Feng, E-mail: huanghefg@hotmail.com [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Leung, Peter C.K., E-mail: peter.leung@ubc.ca [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada)

    2013-11-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells.

  12. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    International Nuclear Information System (INIS)

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells

  13. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells

    OpenAIRE

    VanDussen, Kelli L; Carulli, Alexis J.; Keeley, Theresa M.; Patel, Sanjeevkumar R.; Puthoff, Brent J.; Magness, Scott T.; Tran, Ivy T.; Maillard, Ivan; Siebel, Christian; Kolterud, Åsa; Grosse, Ann S.; Gumucio, Deborah L; Ernst, Stephen A.; Tsai, Yu-Hwai; Dempsey, Peter J.

    2012-01-01

    Notch signaling is known to regulate the proliferation and differentiation of intestinal stem and progenitor cells; however, direct cellular targets and specific functions of Notch signals had not been identified. We show here in mice that Notch directly targets the crypt base columnar (CBC) cell to maintain stem cell activity. Notch inhibition induced rapid CBC cell loss, with reduced proliferation, apoptotic cell death and reduced efficiency of organoid initiation. Furthermore, expression o...

  14. Adhesion and Proliferation of Human Periodontal Ligament Cells on Poly(2-methoxyethyl acrylate)

    OpenAIRE

    Erika Kitakami; Makiko Aoki; Chikako Sato; Hiroshi Ishihata; Masaru Tanaka

    2014-01-01

    Human periodontal ligament (PDL) cells obtained from extracted teeth are a potential cell source for tissue engineering. We previously reported that poly(2-methoxyethyl acrylate) (PMEA) is highly biocompatible with human blood cells. In this study, we investigated the adhesion, morphology, and proliferation of PDL cells on PMEA and other types of polymers to design an appropriate scaffold for tissue engineering. PDL cells adhered and proliferated on all investigated polymer surfaces except fo...

  15. Effects of Ginsenoside Rb1 on proliferation of Schwann cells in culture

    Institute of Scientific and Technical Information of China (English)

    胡晞棠; 陈晓翔; 熊良俭

    2002-01-01

    Objective: To investigate the effects of Ginsenoside Rb1 on the proliferation of Schwann cells in culture.Methods: Applying MTT assay and Thymidine incorporation assay, the effects of Ginsenoside Rb1 on the proliferation of Schwann cells isolated from the sciatic nerve of adult rat were studied.Results: Ginsenoside Rb1 (10 μg/ml) significantly induced Schwann cell proliferation, the effect was similar to NGF (50 μg/ml). At high concentrations of Ginsenoside Rb1 (1 mg/ml), the proliferation of Schwann cells was significantly inhibited. Conclusions: Ginsenoside Rb1 at the optimal concentrations is found to be effective in inducing the proliferation of Schwann cells, but at higher concentrations the drug is cytotoxic for Schwann cells.

  16. Effects of emodin on the proliferation of the glomerular mesangial cell and correlative cytokines in rats

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective:To investigate the effects of emodin(EMD) on cell proliferation and correlative cytokines secretion of glomerular mesangial in rats. Methods:The effects of EMD on cell proliferation and IL-6 , TGF-β1 secretion of glomerular mesangial in rats were observed. Cell proliferation was measured by MTT method. IL-6 and TGF-β1 secretion was detected with ELISA. Results:EMD was able to inhibit the cell proliferation and down-regulate the IL-6 and TGF-β1 secretion of glomerular mesangial, as compared to the model group in rats (P<0.05). Conclusion:EMD could significantly inhibit the cell proliferation, and reduce the creation of extracellular matrix(ECM), this indicated that it could play an important role in alleviation and prevention of glomerular sclerosis. The mechanism may be that EMD can reduce the IL-6 and TGF-β1 secretion of glomerular mesangial cell in rats.

  17. RMP Plays Distinct Roles in the Proliferation of Hepatocellular Carcinoma Cells and Normal Hepatic Cells

    Science.gov (United States)

    Yang, Sijun; Wang, Hongmin; Guo, Yunlan; Chen, Shaomu; Zhang, Mei-Yin; Shen, Jian; Yu, Huijun; Miao, Jingcheng; Wang, Hui-Yun; Wei, Wenxiang

    2013-01-01

    RMP has been shown to function in the transcription regulation through association with RNA polymerase (RNAP) II subunit RPB5. It also has been shown to be required for the proliferation of hepatocellular carcinoma (HCC) cells with an antiapoptotic property. In this article, we further demonstrate that RMP displays distinct features in HCC cells compared with normal hepatic cells. RMP expression is remarkably increased in various cancer cell lines including HCC cells when compared with normal cells. Depletion of RMP could inhibit the proliferation of HCC cells, but not the normal hepatic cells. RMP significantly prevented apoptosis of HCC cells in SMMC-7721 and HepG2, but had little effect on apoptosis in the normal hepatic cells. The mechanisms of RMP's distinct features rely on different responsive expressions of apoptosis factors induced by RMP in HCC and hepatic cells. Either overexpression or depletion of RMP significantly affected the expression of apoptosis factors in HCC cells. However, normal hepatic cells showed a tendency to resist RMP for the regulation of apoptosis. In the clinical samples, the increased expression of RMP in HCCs was also observed when compared with the matched non-tumor tissues from 30 HCC patients. The different expression levels of and distinct responses to RMP between HCC and hepatic cells suggest that RMP might serve as not only a biomarker for the diagnosis of HCC, but also a potential target for the HCC therapy. PMID:23847445

  18. A naringenin–tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hatkevich, Talia; Ramos, Joseph; Santos-Sanchez, Idalys; Patel, Yashomati M., E-mail: ympatel@uncg.edu

    2014-10-01

    Since over 60% of breast cancers are estrogen receptor positive (ER+), many therapies have targeted the ER. The ER is activated by both estrogen binding and phosphorylation. While anti-estrogen therapies, such as tamoxifen (Tam) have been successful they do not target the growth factor promoting phosphorylation of the ER. Other proliferation pathways such as the phosphatidylinositol-3 kinase, (PI3K) and the mitogen-activated protein kinase (MAPK) pathways are activated in breast cancer cells and are associated with poor prognosis. Thus targeting multiple cellular proliferation and survival pathways at the onset of treatment is critical for the development of more effective therapies. The grapefruit flavanone naringenin (Nar) is an inhibitor of both the PI3K and MAPK pathways. Previous studies examining either Nar or Tam used charcoal-stripped serum which removed estrogen as well as other factors. We wanted to use serum containing medium in order to retain all the potential inducers of cell proliferation so as not to exclude any targets of Nar. Here we show that a Nar–Tam combination is more effective than either Tam alone or Nar alone in MCF-7 breast cancer cells. We demonstrate that a Nar–Tam combination impaired cellular proliferation and viability to a greater extent than either component alone in MCF-7 cells. Furthermore, the use of a Nar–Tam combination requires lower concentrations of both compounds to achieve the same effects on proliferation and viability. Nar may function by inhibiting both PI3K and MAPK pathways as well as localizing ERα to the cytoplasm in MCF-7 cells. Our results demonstrate that a Nar–Tam combination induces apoptosis and impairs proliferation signaling to a greater extent than either compound alone. These studies provide critical information for understanding the molecular mechanisms involved in cell proliferation and apoptosis in breast cancer cells. - Highlights: • Nar–Tam impairs cell viability more effectively than

  19. Cell proliferation is a key determinant of the outcome of FOXO3a activation

    International Nuclear Information System (INIS)

    The FOXO family of forkhead transcription factors have a pivotal role in determining cell fate in response to oxidative stress. FOXO activity can either promote cell survival or induce cell death. Increased FOXO-mediated cell death has been implicated in the pathogenesis of degenerative diseases affecting musculoskeletal tissues. The aim of this study was to determine the conditions under which one member of the FOXO family, FOXO3a, promotes cell survival as opposed to cell death. Treatment of primary human tenocytes with 1 pM hydrogen peroxide for 18 h resulted in increased protein levels of FOXO3a. In peroxide-treated cells cultured in low serum media, FOXO3a inhibited cell proliferation and protected against apoptosis. However in peroxide treated cells cultured in high serum media, cell proliferation was unchanged but level of apoptosis significantly increased. Similarly, in tenocytes transduced to over-express FOXO3a, cell proliferation was inhibited and level of apoptosis unchanged in cells cultured in low serum. However there was a robust increase in cell death in FOXO3a-expressing cells cultured in high serum. Inhibition of cell proliferation in either peroxide-treated or FOXO3a-expressing cells cultured in high serum protected against apoptosis induction. Conversely, addition of a Chk2 inhibitor to peroxide-treated or FOXO3a-expressing cells overrode the inhibitory effect of FOXO3a on cell proliferation and led to increased apoptosis in cells cultured in low serum. This study demonstrates that proliferating cells may be particularly susceptible to the apoptosis-inducing actions of FOXO3a. Inhibition of cell proliferation by FOXO3a may be a critical event in allowing the pro-survival rather than the pro-apoptotic activity of FOXO3a to prevail. - Highlights: • FOXO3a activity can result in either promotion of cell survival or apoptosis. • The outcome of FOXO3a activation differs in proliferating compared to non-proliferating cells. • Proliferating

  20. NGF induces adult stem Leydig cells to proliferate and differentiate during Leydig cell regeneration

    International Nuclear Information System (INIS)

    Highlights: •Nerve growth factor has shown significant changes on mRNA levels during Adult Leydig cells regeneration. •We established the organ culture model of rat seminiferous tubules with ethane dimethyl sulphonate (EDS) treatment. •Nerve growth factor has shown proliferation and differentiation-promoting effects on Adult stem Leydig cells. •Nerve growth factor induces progenitor Leydig cells to proliferate and differentiate and immature Leydig cells to proliferate. -- Abstract: Nerve growth factor (NGF) has been reported to be involved in male reproductive physiology. However, few reports have described the activity of NGF during Leydig cell development. The objective of the present study was to examine the role of NGF during stem-Leydig-cell (SLC) regeneration. We investigated the effects of NGF on Leydig-cell (LC) regeneration by measuring mRNA levels in the adult rat testis after ethane dimethanesulfonate (EDS) treatment. Furthermore, we used the established organ culture model of rat seminiferous tubules to examine the regulation of NGF during SLC proliferation and differentiation using EdU staining, real-time PCR and western blotting. Progenitor Leydig cells (PLCs) and immature Leydig cells (ILCs) were also used to investigate the effects of NGF on LCs at different developmental stages. NGF mRNA levels changed significantly during Leydig-cell regeneration in vivo. In vitro, NGF significantly promoted the proliferation of stem Leydig cells and also induced steroidogenic enzyme gene expression and 3β-HSD protein expression. The data from PLCs and ILCs showed that NGF could increase Cyclin D1 and Hsd 17b3 mRNA levels in PLCs and Cyclin D1 mRNA levels in ILCs. These results indicate that NGF may play an important role during LC regeneration by regulating the proliferation and differentiation of LCs at different developmental stages, from SLCs to PLCs and from PLCs to ILCs. The discovery of this effect of NGF on Leydig cells will provide useful

  1. NGF induces adult stem Leydig cells to proliferate and differentiate during Leydig cell regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei [Department of Cell Biology, College of Life Science and Technology, Jinan University, 510632 Guangzhou (China); Wang, Huaxi [Southern Medical University, 510515 Guangzhou (China); Yang, Yan [College of Pharmacy, Jinan University, 510632 Guangzhou (China); Liu, Hui [Department of Cell Biology, College of Life Science and Technology, Jinan University, 510632 Guangzhou (China); Zhang, Qihao; Xiang, Qi [Department of Cell Biology, College of Life Science and Technology, Jinan University, 510632 Guangzhou (China); National Engineering Research Center of Genetic Medicine, 510632 Guangzhou (China); Ge, Renshan [Population Council, Rockefeller University, 10065 New York (United States); Su, Zhijian, E-mail: tjnuszj@jnu.edu.cn [Department of Cell Biology, College of Life Science and Technology, Jinan University, 510632 Guangzhou (China); Huang, Yadong, E-mail: tydhuang@jnu.edu.cn [Department of Cell Biology, College of Life Science and Technology, Jinan University, 510632 Guangzhou (China); National Engineering Research Center of Genetic Medicine, 510632 Guangzhou (China)

    2013-06-28

    Highlights: •Nerve growth factor has shown significant changes on mRNA levels during Adult Leydig cells regeneration. •We established the organ culture model of rat seminiferous tubules with ethane dimethyl sulphonate (EDS) treatment. •Nerve growth factor has shown proliferation and differentiation-promoting effects on Adult stem Leydig cells. •Nerve growth factor induces progenitor Leydig cells to proliferate and differentiate and immature Leydig cells to proliferate. -- Abstract: Nerve growth factor (NGF) has been reported to be involved in male reproductive physiology. However, few reports have described the activity of NGF during Leydig cell development. The objective of the present study was to examine the role of NGF during stem-Leydig-cell (SLC) regeneration. We investigated the effects of NGF on Leydig-cell (LC) regeneration by measuring mRNA levels in the adult rat testis after ethane dimethanesulfonate (EDS) treatment. Furthermore, we used the established organ culture model of rat seminiferous tubules to examine the regulation of NGF during SLC proliferation and differentiation using EdU staining, real-time PCR and western blotting. Progenitor Leydig cells (PLCs) and immature Leydig cells (ILCs) were also used to investigate the effects of NGF on LCs at different developmental stages. NGF mRNA levels changed significantly during Leydig-cell regeneration in vivo. In vitro, NGF significantly promoted the proliferation of stem Leydig cells and also induced steroidogenic enzyme gene expression and 3β-HSD protein expression. The data from PLCs and ILCs showed that NGF could increase Cyclin D1 and Hsd 17b3 mRNA levels in PLCs and Cyclin D1 mRNA levels in ILCs. These results indicate that NGF may play an important role during LC regeneration by regulating the proliferation and differentiation of LCs at different developmental stages, from SLCs to PLCs and from PLCs to ILCs. The discovery of this effect of NGF on Leydig cells will provide useful

  2. Spirulina promotes stem cell genesis and protects against LPS induced declines in neural stem cell proliferation.

    Directory of Open Access Journals (Sweden)

    Adam D Bachstetter

    Full Text Available Adult stem cells are present in many tissues including, skin, muscle, adipose, bone marrow, and in the brain. Neuroinflammation has been shown to be a potent negative regulator of stem cell and progenitor cell proliferation in the neurogenic regions of the brain. Recently we demonstrated that decreasing a key neuroinflammatory cytokine IL-1beta in the hippocampus of aged rats reversed the age-related cognitive decline and increased neurogenesis in the age rats. We also have found that nutraceuticals have the potential to reduce neuroinflammation, and decrease oxidative stress. The objectives of this study were to determine if spirulina could protect the proliferative potential of hippocampal neural progenitor cells from an acute systemic inflammatory insult of lipopolysaccharide (LPS. To this end, young rats were fed for 30 days a control diet or a diet supplemented with 0.1% spirulina. On day 28 the rats were given a single i.p. injection of LPS (1 mg/kg. The following day the rats were injected with BrdU (50 mg/kg b.i.d. i.p. and were sacrificed 24 hours after the first injection of BrdU. Quantification of the BrdU positive cells in the subgranular zone of the dentate gyrus demonstrated a decrease in proliferation of the stem/progenitor cells in the hippocampus as a result of the LPS insult. Furthermore, the diet supplemented with spirulina was able to negate the LPS induced decrease in stem/progenitor cell proliferation. In a second set of studies we examined the effects of spirulina either alone or in combination with a proprietary formulation (NT-020 of blueberry, green tea, vitamin D3 and carnosine on the function of bone marrow and CD34+ cells in vitro. Spirulina had small effects on its own and more than additive effects in combination with NT-020 to promote mitochondrial respiration and/or proliferation of these cells in culture. When examined on neural stem cells in culture spirulina increased proliferation at baseline and protected

  3. Acetylcholinesterase is associated with a decrease in cell proliferation of hepatocellular carcinoma cells.

    Science.gov (United States)

    Pérez-Aguilar, Benjamín; Vidal, Cecilio J; Palomec, Guillermina; García-Dolores, Fernando; Gutiérrez-Ruiz, María Concepción; Bucio, Leticia; Gómez-Olivares, José Luis; Gómez-Quiroz, Luis Enrique

    2015-07-01

    Acetylcholinesterase (AChE), the enzyme that rapidly splits acetylcholine into acetate and choline, presents non-cholinergic functions through which may participate in the control of cell proliferation and apoptosis. These two features are relevant in cancer, particularly in hepatocellular carcinoma (HCC), a very aggressive liver tumor with high incidence and poor prognosis in advanced stages. Here we explored the relation between acetylcholinesterase and HCC growth by testing the influence of AChE on proliferation of Huh-7 and HepG2 cell lines, addressed in monolayer cultures, spheroid formation and human liver tumor samples. Results showed a clear relation in AChE expression and cell cycle progression, an effect which depended on cell confluence. Inhibition of AChE activity led to an increase in cell proliferation, which was associated with downregulation of p27 and cyclins. The fact that Huh-7 and HepG2 cell lines provided similar results lent weight to the relationship of AChE expression with cell cycle progression in hepatoma cell lines at least. Human liver tumor samples exhibited a decrease in AChE activity as compared with normal tissue. The evidence presented herein provides additional support for the proposed tumor suppressor role of AChE, which makes it a potential therapeutic target in therapies against hepatocellular carcinoma. PMID:25869328

  4. Musashi1 modulates cell proliferation genes in the medulloblastoma cell line Daoy

    International Nuclear Information System (INIS)

    Musashi1 (Msi1) is an RNA binding protein with a central role during nervous system development and stem cell maintenance. High levels of Msi1 have been reported in several malignancies including brain tumors thereby associating Msi1 and cancer. We used the human medulloblastoma cell line Daoy as model system in this study to knock down the expression of Msi1 and determine the effects upon soft agar growth and neurophere formation. Quantitative RT-PCR was conducted to evaluate the expression of cell proliferation, differentiation and survival genes in Msi1 depleted Daoy cells. We observed that MSI1 expression was elevated in Daoy cells cultured as neurospheres compared to those grown as monolayer. These data indicated that Msi1 might be involved in regulating proliferation in cancer cells. Here we show that shRNA mediated Msi1 depletion in Daoy cells notably impaired their ability to form colonies in soft agar and to grow as neurospheres in culture. Moreover, differential expression of a group of Notch, Hedgehog and Wnt pathway related genes including MYCN, FOS, NOTCH2, SMO, CDKN1A, CCND2, CCND1, and DKK1, was also found in the Msi1 knockdown, demonstrating that Msi1 modulated the expression of a subset of cell proliferation, differentiation and survival genes in Daoy. Our data suggested that Msi1 may promote cancer cell proliferation and survival as its loss seems to have a detrimental effect in the maintenance of medulloblastoma cancer cells. In this regard, Msi1 might be a positive regulator of tumor progression and a potential target for therapy

  5. Musashi1 modulates cell proliferation genes in the medulloblastoma cell line Daoy

    Directory of Open Access Journals (Sweden)

    Hung Jaclyn Y

    2008-09-01

    Full Text Available Abstract Background Musashi1 (Msi1 is an RNA binding protein with a central role during nervous system development and stem cell maintenance. High levels of Msi1 have been reported in several malignancies including brain tumors thereby associating Msi1 and cancer. Methods We used the human medulloblastoma cell line Daoy as model system in this study to knock down the expression of Msi1 and determine the effects upon soft agar growth and neurophere formation. Quantitative RT-PCR was conducted to evaluate the expression of cell proliferation, differentiation and survival genes in Msi1 depleted Daoy cells. Results We observed that MSI1 expression was elevated in Daoy cells cultured as neurospheres compared to those grown as monolayer. These data indicated that Msi1 might be involved in regulating proliferation in cancer cells. Here we show that shRNA mediated Msi1 depletion in Daoy cells notably impaired their ability to form colonies in soft agar and to grow as neurospheres in culture. Moreover, differential expression of a group of Notch, Hedgehog and Wnt pathway related genes including MYCN, FOS, NOTCH2, SMO, CDKN1A, CCND2, CCND1, and DKK1, was also found in the Msi1 knockdown, demonstrating that Msi1 modulated the expression of a subset of cell proliferation, differentiation and survival genes in Daoy. Conclusion Our data suggested that Msi1 may promote cancer cell proliferation and survival as its loss seems to have a detrimental effect in the maintenance of medulloblastoma cancer cells. In this regard, Msi1 might be a positive regulator of tumor progression and a potential target for therapy.

  6. Tumour cell proliferation after failed ruthenium plaque radiotherapy for posterior uveal melanoma

    International Nuclear Information System (INIS)

    Enucleation following ruthenium plaque radiotherapy for posterior uveal melanoma indicates failure of treatment. This study focused on the histopathological findings and remaining tumour cell growth fraction in 42 of 46 patients with failed ruthenium plaque treatment (of 266 patients treated) for melanoma of the choroid or ciliary body. The cause for enucleation was clinically detected tumour regrowth in 27 (64%) patients, treatment-related ocular side effects in 12 (29%) cases and the patient's personal preference in three (7%) cases. The median time elapsing from plaque radiotherapy to enucleation was not significantly different for patients with recurrent tumour growth (23 months) compared to those enucleated without clinical signs of regrowth (19 months). While all tumours showed some regressive features by histopathological examination, only five melanomas were completely necrotic and viable-appearing tumours cells were present in all of the remaining 37 (88%) irradiated tumours. Microwave processed PC-10 immunostaining increased the sensitivity to detect cycling cells compared to the sole use of mitotic cell counts. By the former technique, proliferating tumour cells were detected in 17 or 23 (74%) studied melanomas of eyes enucleated for tumour regrowth following brachytherapy. Also, the number of cycling melanoma cells was similar to that of non-irradiated controls managed solely by enucleation. In contrast, the proliferative compartment of irradiated, but non-recurrent, posterior uveal melanomas were significantly reduced compared to those of matched controls. Still, cycling tumour cells were present in four of 13 (31%) irradiated melanomas, clinically assumed to be successfully treated. (au) 43 refs

  7. EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Er-Wen [Guangzhou Institute of Forensic Science, Guangzhou (China); Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Xue, Sheng-Jiang [Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Li, Xiao-Yan [Department of Pharmacy, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Xu, Suo-Wen [Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou (China); Cheng, Jian-Ding; Zheng, Jin-Xiang [Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Shi, He; Lv, Guo-Li; Li, Zhi-Gang; Li, Yue; Liu, Chang-Hui; Chen, Xiao-Hui; Liu, Hong [Guangzhou Institute of Forensic Science, Guangzhou (China); Li, Jie, E-mail: mdlijie@sina.com [Department of Anaesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China); Liu, Chao, E-mail: liuchaogaj@21cn.com [Guangzhou Institute of Forensic Science, Guangzhou (China)

    2014-05-02

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma.

  8. EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion

    International Nuclear Information System (INIS)

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma

  9. ETOH inhibits embryonic neural stem/precursor cell proliferation via PLD signaling

    International Nuclear Information System (INIS)

    While a mother's excessive alcohol consumption during pregnancy is known to have adverse effects on fetal neural development, little is known about the underlying mechanism of these effects. In order to investigate these mechanisms, we investigated the toxic effect of ethanol (ETOH) on neural stem/precursor cell (NSC) proliferation. In cultures of NSCs, phospholipase D (PLD) is activated following stimulation with epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2). Exposure of NSCs to ETOH suppresses cell proliferation, while it has no effect on cell death. Phosphatidic acid (PA), which is a signaling messenger produced by PLD, reverses ETOH inhibition of NSC proliferation. Blocking the PLD signal by 1-butanol suppresses the proliferation. ETOH-induced suppression of NSC proliferation and the protective effect of PA for ETOH-induced suppression are mediated through extracellular signal-regulated kinase signaling. These results indicate that exposure to ETOH impairs NSC proliferation by altering the PLD signaling pathway

  10. Aquaporin 2-increased renal cell proliferation is associated with cell volume regulation.

    Science.gov (United States)

    Di Giusto, Gisela; Flamenco, Pilar; Rivarola, Valeria; Fernández, Juan; Melamud, Luciana; Ford, Paula; Capurro, Claudia

    2012-12-01

    We have previously demonstrated that in renal cortical collecting duct cells (RCCD(1)) the expression of the water channel Aquaporin 2 (AQP2) raises the rate of cell proliferation. In this study, we investigated the mechanisms involved in this process, focusing on the putative link between AQP2 expression, cell volume changes, and regulatory volume decrease activity (RVD). Two renal cell lines were used: WT-RCCD(1) (not expressing aquaporins) and AQP2-RCCD(1) (transfected with AQP2). Our results showed that when most RCCD(1) cells are in the G(1)-phase (unsynchronized), the blockage of barium-sensitive K(+) channels implicated in rapid RVD inhibits cell proliferation only in AQP2-RCCD(1) cells. Though cells in the S-phase (synchronized) had a remarkable increase in size, this enhancement was higher and was accompanied by a significant down-regulation in the rapid RVD response only in AQP2-RCCD(1) cells. This decrease in the RVD activity did not correlate with changes in AQP2 function or expression, demonstrating that AQP2-besides increasing water permeability-would play some other role. These observations together with evidence implying a cell-sizing mechanism that shortens the cell cycle of large cells, let us to propose that during nutrient uptake, in early G(1), volume tends to increase but it may be efficiently regulated by an AQP2-dependent mechanism, inducing the rapid activation of RVD channels. This mechanism would be down-regulated when volume needs to be increased in order to proceed into the S-phase. Therefore, during cell cycle, a coordinated modulation of the RVD activity may contribute to accelerate proliferation of cells expressing AQP2. PMID:22786728

  11. Piperlongumine Suppresses Proliferation of Human Oral Squamous Cell Carcinoma through Cell Cycle Arrest, Apoptosis and Senescence.

    Science.gov (United States)

    Chen, San-Yuan; Liu, Geng-Hung; Chao, Wen-Ying; Shi, Chung-Sheng; Lin, Ching-Yen; Lim, Yun-Ping; Lu, Chieh-Hsiang; Lai, Peng-Yeh; Chen, Hau-Ren; Lee, Ying-Ray

    2016-01-01

    Oral squamous cell carcinoma (OSCC), an aggressive cancer originating in the oral cavity, is one of the leading causes of cancer deaths in males worldwide. This study investigated the antitumor activity and mechanisms of piperlongumine (PL), a natural compound isolated from Piper longum L., in human OSCC cells. The effects of PL on cell proliferation, the cell cycle, apoptosis, senescence and reactive oxygen species (ROS) levels in human OSCC cells were investigated. PL effectively inhibited cell growth, caused cell cycle arrest and induced apoptosis and senescence in OSCC cells. Moreover, PL-mediated anti-human OSCC behavior was inhibited by an ROS scavenger N-acetyl-l-cysteine (NAC) treatment, suggesting that regulation of ROS was involved in the mechanism of the anticancer activity of PL. These findings suggest that PL suppresses tumor growth by regulating the cell cycle and inducing apoptosis and senescence and is a potential chemotherapy agent for human OSCC cells. PMID:27120594

  12. Piperlongumine Suppresses Proliferation of Human Oral Squamous Cell Carcinoma through Cell Cycle Arrest, Apoptosis and Senescence

    Directory of Open Access Journals (Sweden)

    San-Yuan Chen

    2016-04-01

    Full Text Available Oral squamous cell carcinoma (OSCC, an aggressive cancer originating in the oral cavity, is one of the leading causes of cancer deaths in males worldwide. This study investigated the antitumor activity and mechanisms of piperlongumine (PL, a natural compound isolated from Piper longum L., in human OSCC cells. The effects of PL on cell proliferation, the cell cycle, apoptosis, senescence and reactive oxygen species (ROS levels in human OSCC cells were investigated. PL effectively inhibited cell growth, caused cell cycle arrest and induced apoptosis and senescence in OSCC cells. Moreover, PL-mediated anti-human OSCC behavior was inhibited by an ROS scavenger N-acetyl-l-cysteine (NAC treatment, suggesting that regulation of ROS was involved in the mechanism of the anticancer activity of PL. These findings suggest that PL suppresses tumor growth by regulating the cell cycle and inducing apoptosis and senescence and is a potential chemotherapy agent for human OSCC cells.

  13. Donor lung derived myeloid and plasmacytoid dendritic cells differentially regulate T cell proliferation and cytokine production

    Directory of Open Access Journals (Sweden)

    Benson Heather L

    2012-03-01

    Full Text Available Abstract Background Direct allorecognition, i.e., donor lung-derived dendritic cells (DCs stimulating recipient-derived T lymphocytes, is believed to be the key mechanism of lung allograft rejection. Myeloid (cDCs and plasmacytoid (pDCs are believed to have differential effects on T cell activation. However, the roles of each DC type on T cell activation and rejection pathology post lung transplantation are unknown. Methods Using transgenic mice and antibody depletion techniques, either or both cell types were depleted in lungs of donor BALB/c mice (H-2d prior to transplanting into C57BL/6 mice (H-2b, followed by an assessment of rejection pathology, and pDC or cDC-induced proliferation and cytokine production in C57BL/6-derived mediastinal lymph node T cells (CD3+. Results Depleting either DC type had modest effect on rejection pathology and T cell proliferation. In contrast, T cells from mice that received grafts depleted of both DCs did not proliferate and this was associated with significantly reduced acute rejection scores compared to all other groups. cDCs were potent inducers of IFNγ, whereas both cDCs and pDCs induced IL-10. Both cell types had variable effects on IL-17A production. Conclusion Collectively, the data show that direct allorecognition by donor lung pDCs and cDCs have differential effects on T cell proliferation and cytokine production. Depletion of both donor lung cDC and pDC could prevent the severity of acute rejection episodes.

  14. Ganglioside GM1 influences the proliferation rate of mouse induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Young-Kug Choo

    2012-12-01

    Full Text Available Gangliosides play important roles in the control of severalbiological processes, including proliferation and transmembranesignaling. In this study, we demonstrate the effect ofganglioside GM1 on the proliferation of mouse inducedpluripotent stem cells (miPSCs. The proliferation rate ofmiPSCs was lower than in mouse embryonic stem cells(mESCs. Fluorescence activated cell sorting analysis showedthat the percentage of cells in the G2/M phase in miPSCs waslower than that in mESCs. GM1 was expressed in mESCs, butnot miPSCs. To confirm the role of GM1 in miPSC proliferation,miPSCs were treated with GM1. GM1-treated miPSCsexhibited increased cell proliferation and a larger number ofcells in the G2/M phase. Furthermore, phosphorylation ofmitogen-activated protein kinases was increased in GM1-treated miPSCs.

  15. MicroRNA-196b promotes cell proliferation and suppress cell differentiation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Donglin, E-mail: caodlgz@sina.com; Hu, Liangshan; Lei, Da; Fang, Xiaolin; Zhang, Zhihong; Wang, Ting; Lin, Maorui; Huang, Jiwei; Yang, Huawen; Zhou, Xuan; Zhong, Limei

    2015-01-30

    Highlights: • miRNA-196b increases proliferation and blocks differentiation of progenitor cell. • miRNA-196b inhibits apoptosis and increases viability of cells lines. • Forced expression of miR-196b blocks the differentiation of THP1 induced by PMA. - Abstract: MicroRNA-196b (miR-196b) is frequently amplified and aberrantly overexpressed in acute leukemias. To investigate the role of miR-196b in acute leukemias, it has been observed that forced expression of this miRNA increases proliferation and inhibits apoptosis in human cell lines. More importantly, we show that this miRNA can significantly increase the colony-forming capacity of mouse normal bone marrow progenitor cells alone, as well as partially blocking the cells from differentiation. Taken together, our studies suggest that miRNA-196b may play an essential role in the development of MLL-associated leukemias through inhibiting cell differentiation and apoptosis, while promoting cell proliferation.

  16. MicroRNA-196b promotes cell proliferation and suppress cell differentiation in vitro

    International Nuclear Information System (INIS)

    Highlights: • miRNA-196b increases proliferation and blocks differentiation of progenitor cell. • miRNA-196b inhibits apoptosis and increases viability of cells lines. • Forced expression of miR-196b blocks the differentiation of THP1 induced by PMA. - Abstract: MicroRNA-196b (miR-196b) is frequently amplified and aberrantly overexpressed in acute leukemias. To investigate the role of miR-196b in acute leukemias, it has been observed that forced expression of this miRNA increases proliferation and inhibits apoptosis in human cell lines. More importantly, we show that this miRNA can significantly increase the colony-forming capacity of mouse normal bone marrow progenitor cells alone, as well as partially blocking the cells from differentiation. Taken together, our studies suggest that miRNA-196b may play an essential role in the development of MLL-associated leukemias through inhibiting cell differentiation and apoptosis, while promoting cell proliferation

  17. Cell proliferation during fractionated radiation in two experimental tumors

    International Nuclear Information System (INIS)

    Tumor cell proliferation kinetics after irradiation have been studied using the method of bromodeoxyuridine incorporation and flow cytometry. Labelling indices were obtained after single and multiple fractions of radiation in a mouse fibrosarcoma (FSa-II) and human squamous carcinoma (FADU) growing in nude mice. For 8 mm tumors mean L.I was 17.5 +- 2.6% and 21.5 + 3.2%, respectively. Both tumors showed a similar response to single dose of irradiation (10 and 20 Gy) with initial depression of labelling index and then a rapid increase after 3 days in the FSa-II tumors (mean L.I 24%) and 5 days in the FADU tumors (mean L.I 27%). During fractionated treatment, labelling index was dependent on dose per fraction (2.5-18 Gy) time interval between fractions and time of analysis. Tumors were biopsied during course of fractionated treatment to see if labelling index would act as a predictor of response. No significant difference could be determined between individual tumors that had received the same dose per fraction. However a labelling index the same or higher than control values were associated with lack of tumor control. Controlled tumors showed a significant depression of labelling index (rho<0.05)

  18. Simulation of proliferation and differentiation of cells in a stem-cell niche

    Science.gov (United States)

    Zhdanov, Vladimir P.

    2008-10-01

    Stem-cell niches represent microscopic compartments formed of environmental cells that nurture stem cells and enable them to maintain tissue homeostasis. The spatio-temporal kinetics of proliferation and differentiation of cells in such niches depend on the specifics of the niche structure and on adhesion and communication between cells and may also be influenced by spatial constraints on cell division. We propose a generic lattice model, taking all these factors into account, and systematically illustrate their role. The model is motivated by the experimental data available for the niches located in the subventricular zone of adult mammalian brain. The general conclusions drawn from our Monte Carlo simulations are applicable to other niches as well. One of our main findings is that the kinetics under consideration are highly stochastic due to a relatively small number of cells proliferating and differentiating in a niche and the autocatalytic character of the symmetric cell division. In particular, the kinetics exhibit huge stochastic bursts especially if the adhesion between cells is taken into account. In addition, the results obtained show that despite the small number of cells present in stem-cell niches, their arrangement can be predetermined to appreciable extent provided that the adhesion of different cells is different so that they tend to segregate.

  19. Stimulation of TM3 Leydig cell proliferation via GABAA receptors: A new role for testicular GABA

    Science.gov (United States)

    Geigerseder, Christof; Doepner, Richard FG; Thalhammer, Andrea; Krieger, Annette; Mayerhofer, Artur

    2004-01-01

    The neurotransmitter gamma-aminobutyric acid (GABA) and subtypes of GABA receptors were recently identified in adult testes. Since adult Leydig cells possess both the GABA biosynthetic enzyme glutamate decarboxylase (GAD), as well as GABAA and GABAB receptors, it is possible that GABA may act as auto-/paracrine molecule to regulate Leydig cell function. The present study was aimed to examine effects of GABA, which may include trophic action. This assumption is based on reports pinpointing GABA as regulator of proliferation and differentiation of developing neurons via GABAA receptors. Assuming such a role for the developing testis, we studied whether GABA synthesis and GABA receptors are already present in the postnatal testis, where fetal Leydig cells and, to a much greater extend, cells of the adult Leydig cell lineage proliferate. Immunohistochemistry, RT-PCR, Western blotting and a radioactive enzymatic GAD assay evidenced that fetal Leydig cells of five-six days old rats possess active GAD protein, and that both fetal Leydig cells and cells of the adult Leydig cell lineage possess GABAA receptor subunits. TM3 cells, a proliferating mouse Leydig cell line, which we showed to possess GABAA receptor subunits by RT-PCR, served to study effects of GABA on proliferation. Using a colorimetric proliferation assay and Western Blotting for proliferating cell nuclear antigen (PCNA) we demonstrated that GABA or the GABAA agonist isoguvacine significantly increased TM3 cell number and PCNA content in TM3 cells. These effects were blocked by the GABAA antagonist bicuculline, implying a role for GABAA receptors. In conclusion, GABA increases proliferation of TM3 Leydig cells via GABAA receptor activation and proliferating Leydig cells in the postnatal rodent testis bear a GABAergic system. Thus testicular GABA may play an as yet unrecognized role in the development of Leydig cells during the differentiation of the testicular interstitial compartment. PMID:15040802

  20. Stimulation of TM3 Leydig cell proliferation via GABAA receptors: A new role for testicular GABA

    Directory of Open Access Journals (Sweden)

    Krieger Annette

    2004-03-01

    Full Text Available Abstract The neurotransmitter gamma-aminobutyric acid (GABA and subtypes of GABA receptors were recently identified in adult testes. Since adult Leydig cells possess both the GABA biosynthetic enzyme glutamate decarboxylase (GAD, as well as GABAA and GABAB receptors, it is possible that GABA may act as auto-/paracrine molecule to regulate Leydig cell function. The present study was aimed to examine effects of GABA, which may include trophic action. This assumption is based on reports pinpointing GABA as regulator of proliferation and differentiation of developing neurons via GABAA receptors. Assuming such a role for the developing testis, we studied whether GABA synthesis and GABA receptors are already present in the postnatal testis, where fetal Leydig cells and, to a much greater extend, cells of the adult Leydig cell lineage proliferate. Immunohistochemistry, RT-PCR, Western blotting and a radioactive enzymatic GAD assay evidenced that fetal Leydig cells of five-six days old rats possess active GAD protein, and that both fetal Leydig cells and cells of the adult Leydig cell lineage possess GABAA receptor subunits. TM3 cells, a proliferating mouse Leydig cell line, which we showed to possess GABAA receptor subunits by RT-PCR, served to study effects of GABA on proliferation. Using a colorimetric proliferation assay and Western Blotting for proliferating cell nuclear antigen (PCNA we demonstrated that GABA or the GABAA agonist isoguvacine significantly increased TM3 cell number and PCNA content in TM3 cells. These effects were blocked by the GABAA antagonist bicuculline, implying a role for GABAA receptors. In conclusion, GABA increases proliferation of TM3 Leydig cells via GABAA receptor activation and proliferating Leydig cells in the postnatal rodent testis bear a GABAergic system. Thus testicular GABA may play an as yet unrecognized role in the development of Leydig cells during the differentiation of the testicular interstitial compartment.

  1. Memory-Like CD8+ T Cells Generated during Homeostatic Proliferation Defer to Antigen-Experienced Memory Cells1

    OpenAIRE

    Cheung, Kitty P.; Yang, Edward; Goldrath, Ananda W

    2009-01-01

    Naive T cells proliferate in response to lymphopenia and acquire the phenotypic and functional qualities of memory T cells, providing enhanced protection against infection. How well memory-like T cells generated during lymphopenia-induced homeostatic proliferation (HP)-memory differentiate into secondary memory cells and compete with Ag-experienced true-memory cells is unknown. We found that CD8+ HP-memory T cells generated robust responses upon infection and produced a secondary memory popul...

  2. Ro60 overexpression contributes to proliferation and sensitivity of tumor cells to γ-irradiation

    International Nuclear Information System (INIS)

    Objective: To investigate the expression and subcellular localization of RNA-binding protein Ro60 in neoplasms before and after γ-ray irradiation, and the function of Ro60 in tumor cell proliferation and radio-sensitivity. Methods: The eukaryotic expression plasmid of mGFP-Ro60 was constructed and transfected into HCT116 and MCF7 tumor cells. The cellular localization of Ro60 was examined before and after irradiation. Cell proliferation and radio-sensitivity were detected by CCK8 and trypan blue assay. Results: The result of immunoblotting showed that tumor cells expressed Ro60 protein. The irradiation increased Ro60 expression and induced significant nuclear aggregation of Ro60. The cell proliferation before and after irradiation was drastically reduced while cell death increased in Ro60 over expressed tumor cells. Conclusion: γ-ray irradiation alters Ro60 expression and localization, and Ro60 plays an important role in tumor cell proliferation and radio-sensitivity. (authors)

  3. Overexpression of acetylcholinesterase inhibited cell proliferation and promoted apoptosis in NRK cells

    Institute of Scientific and Technical Information of China (English)

    Qi-huang JIN; Heng-yi HE; Yu-fang SHI; He LU; Xue-jun ZHANG

    2004-01-01

    AIM: To study the potential function of acetylcholinesterase (AChE) in apoptosis through overexpression of AChE in Normal Rat Kidney (NRK) cells. METHODS: AChE activity was detected by the method of Karnovsky and Roots. Activated caspase-3 was analyzed by Western blotting and immunofiurescence with antibody special to activated caspase-3 fragment. The expression plasmids were constructed in pcDNA3.1 containing AChE gene or a fragment of AChE antisense that were got from RT-PCR. Stable expression cell lines were selected by G418 in cells transfected by lipofection. AChE expression was analyzed by RT-PCR and Western blotting. The proliferation rates of transfected cells were examined by the growth curve and cloning efficiency. MTT assay was used to analyze the cell viability. RESULTS: The proliferation rate of the cells transfected with AChE was retarded and the cloning efficiency was lower (28.2 %±3.1% and 48.7 %±2.1%) than cells transfected with vector (56.1%±0.3 %) or AChE-antisense (77.7 %±2.2 %). After 2 d the various clone types were deprived of serum, the residue cell viability were 10.4 %±4.6 % and 12.6 %±6.7 % in the cells transfected with AChE, and 27.4 %±3.5 % in cells with vector, and 50.3 %±7.8 % in cells with AChE-antisense. CONCLUSION: During apoptosis, increase of AChE protein is to inhibit cell proliferation, and then to promote apoptosis in NRK cells.

  4. Relationship of chromosomal damage induced by caffeine to growth temperature and ATP level in proliferating cells.

    Science.gov (United States)

    Hernández, P; Mingo, R; González-Fernández, A; López-Sáez, J F

    1986-10-01

    Caffeine is known to induce chromosomal aberrations in proliferating cells when they are incubated during G2 and mitotic prophase. In the present paper, this caffeine effect has been analyzed in Allium cepa root meristems growing at different culture temperatures under steady-state kinetics. Caffeine (1-10 mM) induces chromosomal aberrations in a dose-dependent manner, and the treatment efficiency correlates linearly with the square of caffeine concentration. The efficiency of caffeine incubations, within the range 5-25 degrees C during equivalent cycle time periods has also been studied. It has been found that the lower the culture temperature, the higher the level of chromosomal aberrations. Moreover, at different temperatures, the level of chromosomal aberrations is a simple function of caffeine concentration and the ATP level. Therefore, the efficiency of caffeine treatment appears to be determined by some interaction between caffeine concentration and cellular ATP level. Our present results demonstrate that the influence of growth temperature on the chromosome-breaking effect of caffeine can be, at least partially, explained by the ATP levels during the incubation periods. In short, under different kinetics of plant cell proliferation, the ATP level, and/or something correlating with it, could explain the efficiency of caffeine in inducing chromosomal aberrations: the lower the ATP level, the higher the caffeine efficiency. PMID:3773927

  5. Curcumin regulates hepatoma cell proliferation and apoptosis through the Notch signaling pathway

    OpenAIRE

    Liu, Zheng-cai; Yang, Zhao-Xu; Zhou, Jing-Shi; Zhang, Hong-Tao; Huang, Qi-Ke; Dang, Li-Li; Liu, Guang-Xin; Tao, Kai-shan

    2014-01-01

    Curcumin has become a compound of interest for its antioxidant and anti-neoplastic properties. This study sought to determine the effect of curcumin administration on cell proliferation and apoptosis in hepatoma cells. SMMC-7721 hepatoma cells were treated with 10, 30, or 90 μM curcumin solution, with DMEM alone (negative control), or with 20 mg/L fluorouracil (positive control). MTT colorimetry detected significant differences in the rates of cell proliferation inhibition following curcumin ...

  6. An extra high dose of erythropoietin fails to support the proliferation of erythropoietin dependent cell lines

    OpenAIRE

    ABE, Satoshi; Sasaki, Ryuzo; Masuda, Seiji

    2011-01-01

    Erythropoietin is responsible for the red blood cell formation by stimulating the proliferation and the differentiation of erythroid precursor cells. Erythropoietin triggers the conformational change in its receptor thereby induces the phosphorylation of JAK2. In this study, we show that an extra high dose of erythropoietin, however, fails to activate the erythropoietin receptor, to stimulate the phosphorylation of JAK2 and to support the cell proliferation of Ep-FDC-P2 cell. Moreover, high d...

  7. Differential Effects of Tacrolimus versus Sirolimus on the Proliferation, Activation and Differentiation of Human B Cells

    OpenAIRE

    Traitanon, Opas; Mathew, James M.; La Monica, Giovanna; Xu, Luting; Mas, Valeria; Gallon, Lorenzo

    2015-01-01

    The direct effect of immunosuppressive drugs calcineurin inhibitor (Tacrolimus, TAC) and mTOR inhibitor (Sirolimus, SRL) on B cell activation, differentiation and proliferation is not well documented. Purified human B cells from healthy volunteers were stimulated through the B Cell Receptor with Anti-IgM + anti-CD40 + IL21 in the absence / presence of TAC or SRL. A variety of parameters of B cell activity including activation, differentiation, cytokine productions and proliferation were monit...

  8. Cell proliferation in the murine epidermis and subcutaneous vascular endothelium after hyperthermia

    International Nuclear Information System (INIS)

    The proliferation characteristics of the vascular endothelial cells in the subepidermal stoma were investigated after heat treatment using [3H] thymidine labelling and labelling of epidermal basal cells studied and compared with endothelium cells. The stimulated proliferation of subcutaneous endothelial cells after heating for 30 and 60 min at 440C correlated well with the finding that these heat treatments, given after or shortly before X-irradiation, led to a greatly reduced (X-ray induced) tumour bed effect. (author)

  9. Hispidulin inhibits proliferation and enhances chemosensitivity of gallbladder cancer cells by targeting HIF-1α

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hui; Xie, Jing [Medical College, Qingdao University, Qingdao, Shandong 266071 (China); Peng, Jianjun, E-mail: jianjunpeng@126.com [College of Life Sciences, Chongqing Normal University, Chongqing 401331 (China); Han, Yantao, E-mail: hanyt19@126.com [Medical College, Qingdao University, Qingdao, Shandong 266071 (China); Jiang, Qixiao; Han, Mei; Wang, Chunbo [Medical College, Qingdao University, Qingdao, Shandong 266071 (China)

    2015-03-15

    Gallbladder cancer (GBC) is an aggressive malignancy of the bile duct, which is associated with a low (5-year) survival and poor prognosis. The transcription factor HIF-1α is implicated in the angiogenesis, cell survival, epithelial mesenchymal transition (EMT) and invasiveness of GBC. In this study, we have investigated the role of HIF-1α in the pathobilogy of GBC and effect of hispidulin on the molecular events controlled by this transcription factor. We observed that hispidulin caused induction of apoptosis, blockade of growth and cell cycle progression in GBC cells. Our results have demonstrated for the first time that hispidulin-exerted anti-tumor effect involved the suppression of HIF-1α signaling. Hispidulin was found to repress the expression of HIF-1α protein dose-dependently without affecting the HIF-1α mRNA expression. In addition, the inhibition of HIF-1α protein synthesis was revealed to be mediated through the activation of AMPK signaling. Hispidulin also sensitized the tumor cells to Gemcitabine and 5-Fluoroucil by down-regulating HIF-1α/P-gp signaling. Given the low cost and exceedingly safe profile, hispidulin appears to be a promising and novel chemosensitizer for GBC treatment. - Highlights: • Hispidulin inhibits proliferation of gallbladder cancer cells by targeting HIF-1α. • Hispidulin regulates HIF-1α via activating AMPK signaling. • Hispidulin sensitized the GBC cells to chemotherapeutics by down-regulating P-gp.

  10. Hispidulin inhibits proliferation and enhances chemosensitivity of gallbladder cancer cells by targeting HIF-1α

    International Nuclear Information System (INIS)

    Gallbladder cancer (GBC) is an aggressive malignancy of the bile duct, which is associated with a low (5-year) survival and poor prognosis. The transcription factor HIF-1α is implicated in the angiogenesis, cell survival, epithelial mesenchymal transition (EMT) and invasiveness of GBC. In this study, we have investigated the role of HIF-1α in the pathobilogy of GBC and effect of hispidulin on the molecular events controlled by this transcription factor. We observed that hispidulin caused induction of apoptosis, blockade of growth and cell cycle progression in GBC cells. Our results have demonstrated for the first time that hispidulin-exerted anti-tumor effect involved the suppression of HIF-1α signaling. Hispidulin was found to repress the expression of HIF-1α protein dose-dependently without affecting the HIF-1α mRNA expression. In addition, the inhibition of HIF-1α protein synthesis was revealed to be mediated through the activation of AMPK signaling. Hispidulin also sensitized the tumor cells to Gemcitabine and 5-Fluoroucil by down-regulating HIF-1α/P-gp signaling. Given the low cost and exceedingly safe profile, hispidulin appears to be a promising and novel chemosensitizer for GBC treatment. - Highlights: • Hispidulin inhibits proliferation of gallbladder cancer cells by targeting HIF-1α. • Hispidulin regulates HIF-1α via activating AMPK signaling. • Hispidulin sensitized the GBC cells to chemotherapeutics by down-regulating P-gp

  11. Neisseria lactamica selectively induces mitogenic proliferation of the naive B cell pool via cell surface Ig.

    Science.gov (United States)

    Vaughan, Andrew T; Brackenbury, Louise S; Massari, Paola; Davenport, Victoria; Gorringe, Andrew; Heyderman, Robert S; Williams, Neil A

    2010-09-15

    Neisseria lactamica is a commensal bacteria that colonizes the human upper respiratory tract mucosa during early childhood. In contrast to the closely related opportunistic pathogen Neisseria meningitidis, there is an absence of adaptive cell-mediated immunity to N. lactamica during the peak age of carriage. Instead, outer membrane vesicles derived from N. lactamica mediate a B cell-dependent proliferative response in mucosal mononuclear cells that is associated with the production of polyclonal IgM. We demonstrate in this study that this is a mitogenic human B cell response that occurs independently of T cell help and any other accessory cell population. The ability to drive B cell proliferation is a highly conserved property and is present in N. lactamica strains derived from diverse clonal complexes. CFSE staining of purified human tonsillar B cells demonstrated that naive IgD(+) and CD27(-) B cells are selectively induced to proliferate by outer membrane vesicles, including the innate CD5(+) subset. Neither purified lipooligosaccharide nor PorB from N. lactamica is likely to be responsible for this activity. Prior treatment of B cells with pronase to remove cell-surface Ig or treatment with BCR-specific Abs abrogated the proliferative response to N. lactamica outer membrane vesicles, suggesting that this mitogenic response is dependent upon the BCR. PMID:20709949

  12. Effects of olfactory ensheathing cells on the proliferation and differentiation of neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Xuewei Xie; Zhouping Tang; Feng Xu; Na Liu; Zaiwang Li; Suiqiang Zhu; Wei Wang

    2009-01-01

    BACKGROUND: Olfactory ensheathing cells can promote oriented differentiation and proliferation of neural stem cells by cell-secreted neural factors.OBJECTIVE: To observe the effect of olfactory ensheathing cells on the differentiation and proliferation of neural stem cells.DESIGN, TIME AND SETrlNG: Cytology was performed at the Department of Neurology, Tongji Medical College, Huazhong University of Science and Technology, China, from September 2007 to October 2008.MATERIALS: Mouse anti-nestin polyclonal antibody (Chemicon, USA), mouse anti-glial fibrillary acidic protein (GFAP) IgG1, mouse anti-2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) IgG1, mouse anti-Tubulin Class-Ill IgG1 (Neo Markers, USA), Avidin-labeled Cy3 (KPL, USA), and goat anti-mouse IgG1: fluorescein isothiocyanate (FITC) (Serotec, UK) were used in this study.METHODS: Tissues were isolated from the embryonic olfactory bulb and subependymal region of Wistar rats. Serum-free DMEM/F12 culture media was used for co-culture experiments. Neural stem cells were incubated in serum-free or 5% fetal bovine serum-containing DMEM/F12 as controls.MAIN OUTCOME MEASURES: After 7 days of co-culture, neural stem cells and olfactory ensheathing cells underwent immunofluorescent staining for nestin, tubulin, glial fibrillary acidic protein, and CNPase.RESULTS: Olfactory ensheathing cells promoted proliferation and differentiation of neural stem cells into neuron-like cells, astrocytes and oligodendrocytes. The proportion of neuron-like cells was 78.2%, but the proportion of neurons in 5% fetal bovine serum DMEM/F12 was 48.3%. In the serum-free DMEM/F12, neural stem cells contracted, unevenly adhered to the glassware wall, or underwent apoptosis at 7 days.CONCLUSION: Olfactory ensheathing cells promote differentiation of neural stem cells mainly into neuron-like cells, and accelerate proliferation of neural stem cells. The outcome is better compared with serum-free medium or medium containing 5% fetal bovine

  13. Effects of Monoclonal Antibody Cetuximab on Proliferation of Non-small Cell Lung Cancer Cell lines

    Directory of Open Access Journals (Sweden)

    Zhen CHEN

    2010-08-01

    Full Text Available Background and objective The epidermal growth factor receptor (EGFR monoclonal antibody cetuximab has been used widely in non-small cell lung cancer patients. The aim of this study is to explore the effect of lung cancer cells (A549, H460, H1299, SPC-A-1 which were treated by cetuximab in vitro. Methods We studied the effects of increasing concentrations of cetuximab (1 nmol/L-625 nmol/L in four human lung cancer cell lines (A549, SPC-A-1, H460, H1229. CCK8 measured the inhibition of cell proliferation in each group. A549, SPC-A-1 were marked by PI and the statuses of apoptosis were observed. Western blot were used to detect the proliferation-related signaling protein and apoptosis-related protein in A549. Results The treatment with cetuximab resulted in the effect on cell proliferation and apoptosis in a time- and dosedependent manner. The expression of activated key enzymes (p-AKT, p-EGFR, p-MAPK in EGFR signaling transduction pathway were down-regulated more obviously. Conclusion Cetuximab is an effective targeted drug in the treatment of lung cancer cell lines, tissues, most likely to contribute to the inhibition of key enzymes in EGFR signaling transduction pathway.

  14. Upregulation of KPNβ1 in gastric cancer cell promotes tumor cell proliferation and predicts poor prognosis.

    Science.gov (United States)

    Zhu, Jia; Wang, Yingying; Huang, Hua; Yang, Qichang; Cai, Jing; Wang, Qiuhong; Gu, Xiaoling; Xu, Pan; Zhang, Shusen; Li, Manhua; Ding, Haifang; Yang, Lei

    2016-01-01

    KPNβ1, also known as importin β, P97, is reported as one of soluble transport factors that mediates transportion of proteins and RNAs between the nucleus and cytoplasm in cellular process. Recent studies show that KPNβ1 is a tumor gene which is highly expressed in several malignant tumors such as ovarian cancer, cervical tumor, neck cancer, and lung cancer via promoting cell proliferation or inhibiting cell apoptotic pathways. However, the the role of KPNβ1 in gastric cancer remains unclear. In this study, Western blot and immunohistochemistrical analyses showed that KPNβ1 was significantly upregulated in clinical gastric cancer specimens compared with adjacent noncancerous tissues. KPNβ1 was positively correlated with tumor grade, Ki-67, and predicted poor prognosis of gastric cancer. More importantly, through starvation-refeeding model, CCK8 assay, flow cytometry, colony formation assays, the vitro studies demonstrated that KPNβ1 promoted proliferation of gastric cancer cells, while KPNβ1 knockdown led to decreased cell proliferation and arrested cell cycle at G1 phase. Furthermore, our results also indicated that KPNβ1 expression could result in docetaxel resistance. And, KPNβ1 could interact with Stat1, contributed to its nucleus import in gastric cancer cells. These findings provided a novel promising therapeutic targets for clinical treatment against human gastric cancer. PMID:26242264

  15. Molecular analysis of the effect of short-chain fatty acids on intestinal cell proliferation.

    Science.gov (United States)

    Blottière, Hervé M; Buecher, Bruno; Galmiche, Jean-Paul; Cherbut, Christine

    2003-02-01

    Short-chain fatty acids (SCFA), particularly butyrate, were shown to regulate cell proliferation in vitro and in vivo. Indeed, butyrate is the major fuel for colonic epithelial cells, and it can influence cell proliferation through the release of growth factors or gastrointestinal peptides such as gastrin, or through modulation of mucosal blood flow. Lastly, SCFA can act directly on genes regulating cell proliferation, and butyrate is the main SCFA to display such an effect. Butyrate inhibits histone deacetylase, which will allow histone hyperacetylation. Such hyperacetylation leads to transcription of several genes, including p21/Cip1. Moreover, it will allow cyclin D3 hyper-expression by inhibiting its degradation. The induction of the cyclin-dependent kinase inhibitory protein p21/Cip1 accounts for cell arrest in the G1 phase of the cell cycle. However, in the absence of p21 other mechanisms are initiated, leading to inhibition of cell proliferation. PMID:12740064

  16. HCA520, A NOVEL TUMOR ASSOCIATED ANTIGEN, INVOLVED IN CELL PROLIFERATION AND APOPTOSIS

    Institute of Scientific and Technical Information of China (English)

    杨美香; 曲迅; 刘福利; 郑广娟

    2003-01-01

    Objective: Tumor associated antigen encoding gene HCA520 (AF146019) was identified by screening a human hepatocellular carcinoma expressing cDNA library using SEREX technique. In this experiment we studied the effect of HCA520 on cell proliferation and apoptosis. Methods: Gene HCA520 was gained by PCR and transfected into 293 cells. The stable expression cells were obtained by G418 selection. The cell proliferation was measured by [3H]-TdR uptake and apoptosis assay was measured by FACS. Results: Eukaryotic expression plasmid pcDNA3-HCA520 was constructed and its stable transfectants were obtained. Overexpression of HCA520 inhibited the cell proliferation and enhanced cell apoptosis after serum deprivation. Conclusion: HCA520 is a novel tumor associated antigen that can affect cell proliferation and apoptosis.

  17. Effect of advanced glycation end-products on cell proliferation and cell death.

    Science.gov (United States)

    Peterszegi, G; Molinari, J; Ravelojaona, V; Robert, L

    2006-09-01

    The effect of advanced glycation end products (AGE-s) was studied on the proliferation and cell death of human skin fibroblasts in culture. Several AGE-products were prepared from proteins, a peptide and amino acids, using Glucose or Fructose, with or without Fe2+. The AGE preparations increased cell death at the 7th day, after only 72 hours of incubation. Some of these glycation products modified also proliferation. This effect of AGE-s was even maintained without these products in fresh medium for a second period of incubation up to 10 days from the start of the experiment. In order to explore the role of AGE-receptors, especially of AGE-receptor and of growth factor receptors (fibroblast and epidermal growth factors receptors), antibodies to these receptors were added to cell cultures and their effect on both cell death and proliferation were determined as for the AGE-s. These anti-receptor antibodies imitated to some extent the results obtained with AGE-s, producing increase of cell death and proliferation, followed above a certain concentration of antibodies by a decrease and a new increase or plateau. This might correspond to the internalization of the receptors followed by a re-expression on the cell membrane. The role of receptor-mediated Reactive Oxygen Species-production was also explored using scavengers: N-acetyl-cysteine (NAC), L-Carnosine, superoxide dismutase (SOD) and Catalase. Several of these scavengers decreased cell death, suggesting that Reactive Oxygen Species-production is partially involved in the observed phenomena. PMID:16919894

  18. Effect and Mechanism of Epidermal Growth Factor on Proliferation of GL15 Gliomas Cell Line

    Institute of Scientific and Technical Information of China (English)

    WANG Heping; GUO Dongsheng; YE Fei; XI Guifa; WANG Baofeng; CHEN Jian; LEI Ting

    2006-01-01

    The effects of epidermal growth factor (EGF) on proliferation of G 15 glioma cells and the possible mechanisms were investigated. GFAP and EGFR expression was detected by immunohistochemical method. After the cells were treated with EGF at different concentrations, cell count method was used to determine the proliferation of glioma cells, cell cycle and apoptosis were analyzed by flow cytometry (FCM), and laser scan confocal microscope (LSCM) was used to measure the cytoplasmic free calcium. The results showed that GFAP was diffusedly expressed in GL15 cells and EGFR was over-expressed. EGF at doses of ≤ 1 ng/mL could significantly stimulate cell proliferation, cells in phase G0/G1 decreased, and those in phase S increased. EGF at doses of 10 and 100ng/ml could inhibit the cell proliferation significantly, and the apoptosis ratio in high dose of EGF group was higher than in control group. EGF could significantly induce a quick rise of intracellular free calcium, but the peak value of intracellular free calcium activated by high dose of EGF was higher than by low dose of EGF. It was suggested that EGF had a dual effect on gliomas: low dose of EGF could stimulate the cell proliferation of gliomas, but high dose of EGF could induce the cell apoptosis and inhibit the proliferation of gliomas, which might be contributed to the difference of intracellular free calcium.

  19. Study on Effect of Aloe Glue on Cytogenetics, Cellular Immunity and Cell Proliferation of Human Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jiahua; WEN Shaluo; XIA Yun; ZHANG Lijun

    2002-01-01

    Objective To provide the scientific evidence for the exploiture of aloe resource. Methods Cytological combined determination was used to study the effect of aloe glue(0.01 ~ 0.3ml) on cytogenetics, cellular immunity and cell proliferation of human cells. Results SCE and MNR in varying dose groups had no significant differences as compared with control group( P > 0.05). LTR was significantly higher than that of control group(P < 0.005). MI was significantly higher than that of control group ( P < 0.05). M3 and PRI in highest dose group had significant differences as compared with control group (P < 0.05). Conclusion Aloe gel had no significant effect on cytogenetics. But it had activating effects on immunity and proliferation of cells.

  20. The Effect of Erigeron Breviscapus on Proliferation of Pulmonary Artery Smooth Muscle Cells in Hypoxic Porcines

    Institute of Scientific and Technical Information of China (English)

    DING; Yipeng; XU; Yongjian; ZHANG; Zhenxiang

    2001-01-01

    In order to study the effect of Erigeron Breviscapus (EB) on proliferation of pulmonary artery smooth muscle cells (PASMC) in hypoxic porcines, immunohistochemical and MTT methods were employed to measure the proliferation of PASMC. It was found that the proliferation of PASMC in porcines was obvious, and the expression of proliferating cell nuclear antigen (PCNA)was significantly high within 48 h after exposure to hypoxia. The EB could inhibit the proliferation and the expression of PCNA in PASMC under hypoxia, but it had no effect on the proliferation and expression of PCNA in PASMC under normal condition. The EB could inhibit the proliferation and the expression of PCNA in PASMC induced by phorbol 12-myristate 13-acetate (PMA), an agonist of PKC in normal and hypoxic conditions. It was concluded that the hypoxia could enhance the proliferation and expression of PCNA in PASMC. The EB can inhibit the proliferation and expression of PCNA in PASMC under hypoxia through PKC-signal way. The EB may be used in treating the pulmonary hypertension by inhibiting the proliferation of PASMC and the pulmonary vascular remodeling.

  1. Chronic Hypoxia Promotes Pulmonary Artery Endothelial Cell Proliferation through H2O2-Induced 5-Lipoxygenase

    OpenAIRE

    Porter, Kristi M.; Bum-Yong Kang; Adesina, Sherry E.; Murphy, Tamara C.; C Michael Hart; Sutliff, Roy L.

    2014-01-01

    Pulmonary Hypertension (PH) is a progressive disorder characterized by endothelial dysfunction and proliferation. Hypoxia induces PH by increasing vascular remodeling. A potential mediator in hypoxia-induced PH development is arachidonate 5-Lipoxygenase (ALOX5). While ALOX5 metabolites have been shown to promote pulmonary vasoconstriction and endothelial cell proliferation, the contribution of ALOX5 to hypoxia-induced proliferation remains unknown. We hypothesize that hypoxia exposure stimula...

  2. CT and MRI appearances and radiologic staging of pediatric renal cell carcinoma

    International Nuclear Information System (INIS)

    Renal cell carcinoma (RCC) is an uncommon but noteworthy primary pediatric renal malignancy. There is a paucity of published data regarding the CT/MRI appearances and accuracy of pretreatment radiologic staging of this form of cancer in children. To review the various CT/MRI appearances of pediatric RCC and assess the accuracy of pretreatment radiologic staging using these imaging modalities. Institutional Departments of Pathology and Radiology records were searched from 1995 through 2010 for children (younger than 18 years of age) with RCC. Available pretreatment contrast-enhanced abdominopelvic CT and MRI examinations were reviewed by two radiologists. Pertinent imaging findings were documented by consensus, and correlation was made between radiologic and surgicopathological TNM staging. Pretreatment imaging studies from 10 RCCs in nine children (four girls and five boys; mean age 12.9 years) were reviewed. The mean size of the primary tumor was 6.2 cm (range, 1.5-12.6 cm). Ninety percent of RCCs demonstrated heterogeneous postcontrast enhancement. Fifty percent of masses had associated hemorrhage, while 40% contained internal calcification. Regarding TNM staging, N staging was correct for 10 of 10 tumors, while M staging was correct for 10 of 10 tumors. Imaging correctly staged only 4 of 10 tumors with respect to T stage. Radiologic and surgicopathological overall staging were concordant for 8 of 10 tumors. Pediatric RCCs typically present as large, heterogeneous masses, and they commonly hemorrhage and contain internal calcification. Radiologic and surgicopathological overall TNM staging are frequently concordant, although radiologic T staging is often incorrect. (orig.)

  3. CT and MRI appearances and radiologic staging of pediatric renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Downey, Ryan T. [University of Michigan Health System, Department of Radiology, Ann Arbor, MI (United States); Dillman, Jonathan R.; Ladino-Torres, Maria F.; Strouse, Peter J. [University of Michigan Health System, Section of Pediatric Radiology, C.S. Mott Children' s Hospital, Department of Radiology, Ann Arbor, MI (United States); McHugh, Jonathan B. [University of Michigan Health System, Department of Pathology, Ann Arbor, MI (United States); Ehrlich, Peter F. [University of Michigan Health System, Department of Surgery, Section of Pediatric Surgery, Ann Arbor, MI (United States)

    2012-04-15

    Renal cell carcinoma (RCC) is an uncommon but noteworthy primary pediatric renal malignancy. There is a paucity of published data regarding the CT/MRI appearances and accuracy of pretreatment radiologic staging of this form of cancer in children. To review the various CT/MRI appearances of pediatric RCC and assess the accuracy of pretreatment radiologic staging using these imaging modalities. Institutional Departments of Pathology and Radiology records were searched from 1995 through 2010 for children (younger than 18 years of age) with RCC. Available pretreatment contrast-enhanced abdominopelvic CT and MRI examinations were reviewed by two radiologists. Pertinent imaging findings were documented by consensus, and correlation was made between radiologic and surgicopathological TNM staging. Pretreatment imaging studies from 10 RCCs in nine children (four girls and five boys; mean age 12.9 years) were reviewed. The mean size of the primary tumor was 6.2 cm (range, 1.5-12.6 cm). Ninety percent of RCCs demonstrated heterogeneous postcontrast enhancement. Fifty percent of masses had associated hemorrhage, while 40% contained internal calcification. Regarding TNM staging, N staging was correct for 10 of 10 tumors, while M staging was correct for 10 of 10 tumors. Imaging correctly staged only 4 of 10 tumors with respect to T stage. Radiologic and surgicopathological overall staging were concordant for 8 of 10 tumors. Pediatric RCCs typically present as large, heterogeneous masses, and they commonly hemorrhage and contain internal calcification. Radiologic and surgicopathological overall TNM staging are frequently concordant, although radiologic T staging is often incorrect. (orig.)

  4. Cell proliferation and cell death are disturbed during prenatal and postnatal brain development after uranium exposure.

    Science.gov (United States)

    Legrand, M; Elie, C; Stefani, J; N Florès; Culeux, C; Delissen, O; Ibanez, C; Lestaevel, P; Eriksson, P; Dinocourt, C

    2016-01-01

    The developing brain is more susceptible to neurotoxic compounds than adult brain. It is also well known that disturbances during brain development cause neurological disorders in adulthood. The brain is known to be a target organ of uranium (U) exposure and previous studies have noted that internal U contamination of adult rats induces behavioral disorders as well as affects neurochemistry and neurophysiological properties. In this study, we investigated whether depleted uranium (DU) exposure affects neurogenesis during prenatal and postnatal brain development. We examined the structural morphology of the brain, cell death and finally cell proliferation in animals exposed to DU during gestation and lactation compared to control animals. Our results showed that DU decreases cell death in the cortical neuroepithelium of gestational day (GD) 13 embryos exposed at 40mg/L and 120mg/L and of GD18 fetuses exposed at 120mg/L without modification of the number of apoptotic cells. Cell proliferation analysis showed an increase of BrdU labeling in the dentate neuroepithelium of fetuses from GD18 at 120mg/L. Postnatally, cell death is increased in the dentate gyrus of postnatal day (PND) 0 and PND5 exposed pups at 120mg/L and is associated with an increase of apoptotic cell number only at PND5. Finally, a decrease in dividing cells is observed in the dentate gyrus of PND21 rats developmentally exposed to 120mg/L DU, but not at PND0 and PND5. These results show that DU exposure during brain development causes opposite effects on cell proliferation and cell death processes between prenatal and postnatal development mainly at the highest dose. Although these modifications do not have a major impact in brain morphology, they could affect the next steps of neurogenesis and thus might disrupt the fine organization of the neuronal network. PMID:26506049

  5. Homotypic RANK signaling differentially regulates proliferation, motility and cell survival in osteosarcoma and mammary epithelial cells.

    Science.gov (United States)

    Beristain, Alexander G; Narala, Swami R; Di Grappa, Marco A; Khokha, Rama

    2012-02-15

    RANKL (receptor activator of NF-κB ligand) is a crucial cytokine for regulating diverse biological systems such as innate immunity, bone homeostasis and mammary gland differentiation, operating through activation of its cognate receptor RANK. In these normal physiological processes, RANKL signals through paracrine and/or heterotypic mechanisms where its expression and function is tightly controlled. Numerous pathologies involve RANKL deregulation, such as bone loss, inflammatory diseases and cancer, and aberrant RANK expression has been reported in bone cancer. Here, we investigated the significance of RANK in tumor cells with a particular emphasis on homotypic signaling. We selected RANK-positive mouse osteosarcoma and RANK-negative preosteoblastic MC3T3-E1 cells and subjected them to loss- and gain-of-RANK function analyses. By examining a spectrum of tumorigenic properties, we demonstrate that RANK homotypic signaling has a negligible effect on cell proliferation, but promotes cell motility and anchorage-independent growth of osteosarcoma cells and preosteoblasts. By contrast, establishment of RANK signaling in non-tumorigenic mammary epithelial NMuMG cells promotes their proliferation and anchorage-independent growth, but not motility. Furthermore, RANK activation initiates multiple signaling pathways beyond its canonical target, NF-κB. Among these, biochemical inhibition reveals that Erk1/2 is dominant and crucial for the promotion of anchorage-independent survival and invasion of osteoblastic cells, as well as the proliferation of mammary epithelial cells. Thus, RANK signaling functionally contributes to key tumorigenic properties through a cell-autonomous homotypic mechanism. These data also identify the likely inherent differences between epithelial and mesenchymal cell responsiveness to RANK activation. PMID:22421365

  6. Testicular Sertoli cells influence the proliferation and immunogenicity of co-cultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ping, E-mail: fanpinggoodluck@163.com [Department of Rheumatism and Immunity, The First Affiliated Hospital Xi' an Jiaotong University School of Medicine, Xi' an, Shaanxi 710061 (China); He, Lan; Pu, Dan; Lv, Xiaohong; Zhou, Wenxu; Sun, Yining; Hu, Nan [Department of Rheumatism and Immunity, The First Affiliated Hospital Xi' an Jiaotong University School of Medicine, Xi' an, Shaanxi 710061 (China)

    2011-01-21

    Research highlights: {yields} The proliferation of dramatic increased by co-cultured with Sertoli cells. {yields} VEGF receptor-2 expression of ECs was up-regulated by co-cultured with Sertoli cells. {yields} The MHC expression of ECs induced by INF-{gamma} and IL-6, IL-8 and sICAM induced by TNF-{alpha} decreased respectively after co-cultured with Sertoli cells. {yields} ECs co-cultured with Sertoli cells also didn't increase the stimulation index of spleen lymphocytes. -- Abstract: The major problem of the application of endothelial cells (ECs) in transplantation is the lack of proliferation and their immunogenicity. In this study, we co-cultured ECs with Sertoli cells to monitor whether Sertoli cells can influence the proliferation and immunogenicity of co-cultured ECs. Sertoli cells were isolated from adult testicular tissue. ECs were divided into the control group and the experimental group, which included three sub-groups co-cultured with 1 x 10{sup 3}, 1 x 10{sup 4} or 1 x 10{sup 5} cell/ml of Sertoli cells. The growth and proliferation of ECs were observed microscopically, and the expression of vascular endothelial growth factor (VEGF) receptor-2 (KDR) was examined by Western blotting. In another experiment, ECs were divided into the control group, the single culture group and the co-culture group with the optimal concentration of Sertoli cells. After INF-{gamma} and TNF-{alpha} were added to the culture medium, MHC II antigen expression was detected by immunofluorescence staining and western blotting; interleukin (IL)-6, IL-8 and soluble intercellular adhesion molecule (sICAM) were measured in the culture medium by ELISA. We demonstrated that 1 x 10{sup 4} cell/ml Sertoli cells promoted the proliferation of co-cultured ECs more dramatically than that in other groups (P < 0.05). Western blotting showed that 1 x 10{sup 4} cell/ml of the Sertoli cells was most effective in the up-regulation of KDR expression in the co-cultured ECs (P < 0.05). Sertoli

  7. Testicular Sertoli cells influence the proliferation and immunogenicity of co-cultured endothelial cells

    International Nuclear Information System (INIS)

    Research highlights: → The proliferation of dramatic increased by co-cultured with Sertoli cells. → VEGF receptor-2 expression of ECs was up-regulated by co-cultured with Sertoli cells. → The MHC expression of ECs induced by INF-γ and IL-6, IL-8 and sICAM induced by TNF-α decreased respectively after co-cultured with Sertoli cells. → ECs co-cultured with Sertoli cells also didn't increase the stimulation index of spleen lymphocytes. -- Abstract: The major problem of the application of endothelial cells (ECs) in transplantation is the lack of proliferation and their immunogenicity. In this study, we co-cultured ECs with Sertoli cells to monitor whether Sertoli cells can influence the proliferation and immunogenicity of co-cultured ECs. Sertoli cells were isolated from adult testicular tissue. ECs were divided into the control group and the experimental group, which included three sub-groups co-cultured with 1 x 103, 1 x 104 or 1 x 105 cell/ml of Sertoli cells. The growth and proliferation of ECs were observed microscopically, and the expression of vascular endothelial growth factor (VEGF) receptor-2 (KDR) was examined by Western blotting. In another experiment, ECs were divided into the control group, the single culture group and the co-culture group with the optimal concentration of Sertoli cells. After INF-γ and TNF-α were added to the culture medium, MHC II antigen expression was detected by immunofluorescence staining and western blotting; interleukin (IL)-6, IL-8 and soluble intercellular adhesion molecule (sICAM) were measured in the culture medium by ELISA. We demonstrated that 1 x 104 cell/ml Sertoli cells promoted the proliferation of co-cultured ECs more dramatically than that in other groups (P 4 cell/ml of the Sertoli cells was most effective in the up-regulation of KDR expression in the co-cultured ECs (P < 0.05). Sertoli cells can effectively suppress INF-γ-induced MHC II antigen expression in co-cultured ECs compared with single culture

  8. Newly identified interfibrillar collagen crosslinking suppresses cell proliferation and remodelling.

    Science.gov (United States)

    Marelli, Benedetto; Le Nihouannen, Damien; Hacking, S Adam; Tran, Simon; Li, Jingjing; Murshed, Monzur; Doillon, Charles J; Ghezzi, Chiara E; Zhang, Yu Ling; Nazhat, Showan N; Barralet, Jake E

    2015-06-01

    Copper is becoming recognised as a key cation in a variety of biological processes. Copper chelation has been studied as a potential anti-angiogenic strategy for arresting tumour growth. Conversely the delivery of copper ions and complexes in vivo can elicit a pro-angiogenic effect. Previously we unexpectedly found that copper-stimulated intraperitoneal angiogenesis was accompanied by collagen deposition. Here, in hard tissue, not only was healing accelerated by copper, but again enhanced deposition of collagen was detected at 2 weeks. Experiments with reconstituted collagen showed that addition of copper ions post-fibrillogenesis rendered plastically-compressed gels resistant to collagenases, enhanced their mechanical properties and increased the denaturation temperature of the protein. Unexpectedly, this apparently interfibrillar crosslinking was not affected by addition of glucose or ascorbic acid, which are required for crosslinking by advanced glycation end products (AGEs). Fibroblasts cultured on copper-crosslinked gels did not proliferate, whereas those cultured with an equivalent quantity of copper on either tissue culture plastic or collagen showed no effect compared with controls. Although non-proliferative, fibroblasts grown on copper-cross-linked collagen could migrate, remained metabolically active for at least 14 days and displayed a 6-fold increase in Mmps 1 and 3 mRNA expression compared with copper-free controls. The ability of copper ions to crosslink collagen fibrils during densification and independently of AGEs or Fenton type reactions is previously unreported. The effect on MMP susceptibility of collagen and the dramatic change in cell behaviour on this crosslinked ECM may contribute to shedding some light on unexplained phenomena as the apparent benefit of copper complexation in fibrotic disorders or the enhanced collagen deposition in response to localised copper delivery. PMID:25907046

  9. Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line.

    Science.gov (United States)

    Zhang, Hongxia; Cui, Ruina; Guo, Xuejiang; Hu, Jiayue; Dai, Jiayin

    2016-08-01

    Perfluorooctanoate (PFOA) is a well-known persistent organic pollutant widely found in the environment, wildlife and humans. Medical surveillance and experimental studies have investigated the potential effects of PFOA on human livers, but the hepatotoxicity of PFOA on humans and its underlying mechanism remain to be clarified. We exposed a human liver cell line (HL-7702) to 50μM PFOA for 48h and 96h, and identified 111 significantly differentially expressed proteins by iTRAQ analysis. A total of 46 proteins were related to cell proliferation and apoptosis. Through further analysis of the cell cycle, apoptosis and their related proteins, we found that low doses of PFOA (50-100μM) promoted cell proliferation and numbers by promoting cells from the G1 to S phases, whereas high doses of PFOA (200-400μM) led to reduced HL-7702 cell numbers compared with that of the control mainly due to cell cycle arrest in the G0/G1 phase. To our knowledge, this is the first report on the promotion of cell cycle progression in human cells following PFOA exposure. PMID:27045622

  10. Effects of cadmium on cell proliferation, apoptosis, and proto-oncogene expression in zebrafish liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying Ying; Zhu, Jin Yong; Chan, King Ming, E-mail: kingchan@cuhk.edu.hk

    2014-12-15

    Highlights: • Cd stimulated ZFL cell proliferation with decreasing apoptotic cell numbers. • Cd down regulated p53 and RAD51. • Cd up regulated immediate early cancer genes of GADD45 and growth factors. • Cd promoted tumorigenic effects in ZFL cells. - Abstract: Cadmium (Cd) is one of the major transitional metal that has toxic effects in aquatic organisms and their associated ecosystem; however, its hepatic toxicity and carcinogenicity are not very well characterized. We used a zebrafish liver (ZFL) cell line as a model to investigate the mechanism of Cd-induced toxicity on hepatocytes. Our results showed that Cd can be effectively accumulated in ZFL cells in our exposure experiments. Cell cytotoxicity assays and flow cytometer measurements revealed that Cd{sup 2+} stimulated ZFL cell proliferation with decreasing apoptotic cell numbers indicating potentially tumorigenic effects of Cd in ZFL cells. Gene expression profiles also indicated that Cd downregulated oncogenes p53 and rad51 and upregulated immediate response oncogenes, growth arrest and DNA damage-inducible (gadd45) genes, and growth factors. We also found dramatic changes in the gene expression of c-jun and igf1rb at different exposure time points, supporting the notion that potentially tumorigenic of Cd-is involved in the activation of immediate early genes or genes related to apoptosis in cancer promotion.

  11. Effects of cadmium on cell proliferation, apoptosis, and proto-oncogene expression in zebrafish liver cells

    International Nuclear Information System (INIS)

    Highlights: • Cd stimulated ZFL cell proliferation with decreasing apoptotic cell numbers. • Cd down regulated p53 and RAD51. • Cd up regulated immediate early cancer genes of GADD45 and growth factors. • Cd promoted tumorigenic effects in ZFL cells. - Abstract: Cadmium (Cd) is one of the major transitional metal that has toxic effects in aquatic organisms and their associated ecosystem; however, its hepatic toxicity and carcinogenicity are not very well characterized. We used a zebrafish liver (ZFL) cell line as a model to investigate the mechanism of Cd-induced toxicity on hepatocytes. Our results showed that Cd can be effectively accumulated in ZFL cells in our exposure experiments. Cell cytotoxicity assays and flow cytometer measurements revealed that Cd2+ stimulated ZFL cell proliferation with decreasing apoptotic cell numbers indicating potentially tumorigenic effects of Cd in ZFL cells. Gene expression profiles also indicated that Cd downregulated oncogenes p53 and rad51 and upregulated immediate response oncogenes, growth arrest and DNA damage-inducible (gadd45) genes, and growth factors. We also found dramatic changes in the gene expression of c-jun and igf1rb at different exposure time points, supporting the notion that potentially tumorigenic of Cd-is involved in the activation of immediate early genes or genes related to apoptosis in cancer promotion

  12. Effect of DC-CIK cell on the proliferation, apoptosis and differentiation of leukemia cells

    Institute of Scientific and Technical Information of China (English)

    Hui-Qing Qu; Xiao-Sheng Zhou; Xiao-Long Zhou; Jian Wang

    2014-01-01

    Objective:To observe the effect of co-culture cytokine-induced killer cells(CIK) and homologous dendritic cells(DC) on the proliferative activity and phenotype change of theDC-CIK cell and the cell killing activity of leukemiaHL-60.Methods:50 mL cord blood sample was obtained from infants delivered by full term healthy woman and the cord blood mononuclear cells were isolated by density gradient centrifugation.Non-adherent cells were collectedfor the induction culture ofCIK, adherent cells were differentiated into matureDC; cultured matureDC was mixed with andCIK in the proportion of1:5 for12 d.Killing activity ofDC-CIK co-cultured cell on leukemiaHL-60 was detected byMTT assay.Results:Compared withCIKs, the co-culturedDC-CIKs presented a markedly higher proliferation and killing activity.Conclusions:Co-culture ofDC-CIK cells led to a significant increase of the proliferation and cytotoxicity of CIK.

  13. Proliferation and telomere length in acutely mobilized blood mononuclear cells in HIV infected patients

    DEFF Research Database (Denmark)

    Søndergaard, S R; Essen, M V; Schjerling, P;

    2002-01-01

    infusion for 1 h. Blood was sampled before, during and 1 h after adrenalin infusion. Proliferation and mean telomere restriction fragment length (telomeres) of blood mononuclear cells (BMNC) and purified CD8+ and CD4+ cells were investigated at all time points. In patients, the proliferation to pokeweed...... mitogens (PWM) was lower and decreased more during adrenalin infusion. After adrenalin infusion the proliferation to PWM was restored only in the controls. In all subjects telomeres in CD4+ cells declined during adrenalin infusion. Additionally, the patients had shortened telomeres in their CD8+ cells, and...... particularly HAART treated patients had shortened telomeres in all cell-subtypes. The finding that patients mobilized cells with an impaired proliferation to PWM during and after adrenalin infusion has possible clinical relevance for HIV infected patients during pathological stressful conditions, such as...

  14. Effects of Src on Proliferation and Invasion of Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Rui ZHENG

    2011-04-01

    Full Text Available Background and objective It has been proven that Src played pivotal roles in carcinogenesis, cancer progression and metastasis. The aim of this study is to explore the roles of Src phosphorylation on lung cancer cells. Methods Western blot and immunoprecipitation was used to detect the expression and phosphorylation of Src in lung cancer cells. MTT and Boyden chamber assay was used to examine the effects of inhibition of Src phosphorylation on proliferation and invasion of lung cancer cells in vitro, respectively. Results pp60src was expressed in all lung cancer cell lines in this study. All 5 non-small cell lung cancer (NSCLC cell lines had increased autophosphorylated tyrosine-418, while nearly no phosphorylated Src in small cell lung cancer SBC5 cell line was detected. The effect of inhibition of Src tyrosine kinase on cell proliferation varied among the lung cancer cell lines. Submicromolar Src tyrosine kinase inhibitor (≤1 μM remarkably suppressed the proliferation of PC-9 and A549 cells in a dose dependent manner (P < 0.05, while the same concentration of Src tyrosine kinase inhibitor had no significant effect on proliferation of H226, PC14PE6 and RERFLCOK cells. Invasiveness of lung cancer cells was significantly suppressed by Src tyrosine kinase in a dose-dependent manner (P < 0.05. Conclusion Phosphorylation of Src, but not over-expression, plays a pivotal role in proliferation and invasion of NSCLC cell lines in vitro.

  15. Δ9-Tetrahydrocannabinol enhances MCF-7 cell proliferation via cannabinoid receptor-independent signaling

    International Nuclear Information System (INIS)

    We recently reported that Δ9-tetrahydrocannabinol (Δ9-THC) has the ability to stimulate the proliferation of human breast carcinoma MCF-7 cells. However, the mechanism of action remains to be clarified. The present study focused on the relationship between receptor expression and the effects of Δ9-THC on cell proliferation. RT-PCR analysis demonstrated that there was no detectable expression of CB receptors in MCF-7 cells. In accordance with this, no effects of cannabinoid 1/2 (CB1/2) receptor antagonists and pertussis toxin on cell proliferation were observed. Although MCF-7 cell proliferation is suggested to be suppressed by Δ9-THC in the presence of CB receptors, it was revealed that Δ9-THC could exert upregulation of living cells in the absence of the receptors. Interestingly, Δ9-THC upregulated human epithelial growth factor receptor type 2 (HER2) expression, which is known to be a predictive factor of human breast cancer and is able to stimulate cancer cells as well as MCF-7 cells. Actinomycin D-treatment interfered with the upregulation of HER2 and cell proliferation by cannabinoid. Taken together, these studies suggest that, in the absence of CB receptors, Δ9-THC can stimulate the proliferation of MCF-7 cells by modulating, at least in part, HER2 transcription

  16. Phenolic Compounds in Extra Virgin Olive Oil Stimulate Human Osteoblastic Cell Proliferation.

    Science.gov (United States)

    García-Martínez, Olga; De Luna-Bertos, Elvira; Ramos-Torrecillas, Javier; Ruiz, Concepción; Milia, Egle; Lorenzo, María Luisa; Jimenez, Brigida; Sánchez-Ortiz, Araceli; Rivas, Ana

    2016-01-01

    In this study, we aimed to clarify the effects of phenolic compounds and extracts from different extra virgin olive oil (EVOO) varieties obtained from fruits of different ripening stages on osteoblast cells (MG-63) proliferation. Cell proliferation was increased by hydroxytyrosol, luteolin, apigenin, p-coumaric, caffeic, and ferulic acids by approximately 11-16%, as compared with controls that were treated with one vehicle alone, while (+)-pinoresinol, oleuropein, sinapic, vanillic acid and derivative (vanillin) did not affect cell proliferation. All phenolic extracts stimulated MG-63 cell growth, and they induced higher cell proliferation rates than individual compounds. The most effective EVOO phenolic extracts were those obtained from the Picual variety, as they significantly increased cell proliferation by 18-22%. Conversely, Arbequina phenolic extracts increased cell proliferation by 9-13%. A decline in osteoblast proliferation was observed in oils obtained from olive fruits collected at the end of the harvest period, as their total phenolic content decreases at this late stage. Further research on the signaling pathways of olive oil phenolic compounds involved in the processes and their metabolism should be carried out to develop new interventions and adjuvant therapies using EVOO for bone health (i.e.osteoporosis) in adulthood and the elderly. PMID:26930190

  17. Topography induces differential sensitivity on cancer cell proliferation via Rho-ROCK-Myosin contractility

    Science.gov (United States)

    Chaudhuri, Parthiv Kant; Pan, Catherine Qiurong; Low, Boon Chuan; Lim, Chwee Teck

    2016-01-01

    Although the role of stiffness on proliferative response of cancer cells has been well studied, little is known about the effect of topographic cues in guiding cancer cell proliferation. Here, we examined the effect of topographic cues on cancer cell proliferation using micron scale topographic features and observed that anisotropic features like microgratings at specific dimension could reduce proliferation of non-cancer breast epithelial cells (MCF-10A) but not that for malignant breast cancer cells (MDA-MB-231 and MCF-7). However, isotropic features such as micropillars did not affect proliferation of MCF-10A, indicating that the anisotropic environmental cues are essential for this process. Interestingly, acto-myosin contraction inhibitory drugs, Y-27632 and blebbistatin prevented micrograting-mediated inhibition on proliferation. Here, we propose the concept of Mechanically-Induced Dormancy (MID) where topographic cues could activate Rho-ROCK-Myosin signaling to suppress non-cancerous cells proliferation whereas malignant cells are resistant to this inhibitory barrier and therefore continue uncontrolled proliferation. PMID:26795068

  18. 3'UTR Shortening Potentiates MicroRNA-Based Repression of Pro-differentiation Genes in Proliferating Human Cells.

    Directory of Open Access Journals (Sweden)

    Yonit Hoffman

    2016-02-01

    Full Text Available Most mammalian genes often feature alternative polyadenylation (APA sites and hence diverse 3'UTR lengths. Proliferating cells were reported to favor APA sites that result in shorter 3'UTRs. One consequence of such shortening is escape of mRNAs from targeting by microRNAs (miRNAs whose binding sites are eliminated. Such a mechanism might provide proliferation-related genes with an expression gain during normal or cancerous proliferation. Notably, miRNA sites tend to be more active when located near both ends of the 3'UTR compared to those located more centrally. Accordingly, miRNA sites located near the center of the full 3'UTR might become more active upon 3'UTR shortening. To address this conjecture we performed 3' sequencing to determine the 3' ends of all human UTRs in several cell lines. Remarkably, we found that conserved miRNA binding sites are preferentially enriched immediately upstream to APA sites, and this enrichment is more prominent in pro-differentiation/anti-proliferative genes. Binding sites of the miR17-92 cluster, upregulated in rapidly proliferating cells, are particularly enriched just upstream to APA sites, presumably conferring stronger inhibitory activity upon shortening. Thus 3'UTR shortening appears not only to enable escape from inhibition of growth promoting genes but also to potentiate repression of anti-proliferative genes.

  19. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Brandon M.; Leix, Kyle Alexander [Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859 (United States); Ji, Yajing [Department of Biomedical Science and Medicine, Michigan State University, East Lansing, MI 48824 (United States); Glaves, Richard Samuel Elliot [Department of Biology, Central Michigan University, Mount Pleasant, MI 48859 (United States); Ash, David E. [Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859 (United States); Mohanty, Dillip K., E-mail: Mohan1dk@cmich.edu [Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859 (United States)

    2014-07-18

    Highlights: • Multipotent vascular stem cells (MVSCs) proliferate and differentiate. • Nitric oxide inhibits proliferation of MVSCs. • Nitric oxide inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs). • Smooth muscle cells (SMCs) neither de-differentiate nor proliferate. - Abstract: Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to such injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well.

  20. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death

    International Nuclear Information System (INIS)

    Highlights: • Multipotent vascular stem cells (MVSCs) proliferate and differentiate. • Nitric oxide inhibits proliferation of MVSCs. • Nitric oxide inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs). • Smooth muscle cells (SMCs) neither de-differentiate nor proliferate. - Abstract: Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to such injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well

  1. Effects of Voltage-Gated K+ Channel on Cell Proliferation in Multiple Myeloma

    OpenAIRE

    Wei Wang,; Yuying Fan; Shuye Wang; Lianjie Wang; Wanting He; Qiu Zhang; Xiaoxia Li

    2014-01-01

    Objective. To study the effects and underlying mechanisms of voltage-gated K+ channels on the proliferation of multiple myeloma cells. Methods. RPMI-8226 MM cell line was used for the experiments. Voltage-gated K+ currents and the resting potential were recorded by whole-cell patch-clamp technique. RT-PCR detected Kv channel mRNA expression. Cell viability was analyzed with MTT assay. Cell counting system was employed to monitor cell proliferation. DNA contents and cell volume were analyzed b...

  2. Dynamics of cell proliferation in the adult dentate gyrus of two inbred strains of mice

    Science.gov (United States)

    Hayes, N. L.; Nowakowski, R. S.

    2002-01-01

    The output potential of proliferating populations in either the developing or the adult nervous system is critically dependent on the length of the cell cycle (T(c)) and the size of the proliferating population. We developed a new approach for analyzing the cell cycle, the 'Saturate and Survive Method' (SSM), that also reveals the dynamic behaviors in the proliferative population and estimates of the size of the proliferating population. We used this method to analyze the proliferating population of the adult dentate gyrus in 60 day old mice of two inbred strains, C57BL/6J and BALB/cByJ. The results show that the number of cells labeled by exposure to BUdR changes dramatically with time as a function of the number of proliferating cells in the population, the length of the S-phase, cell division, the length of the cell cycle, dilution of the S-phase label, and cell death. The major difference between C57BL/6J and BALB/cByJ mice is the size of the proliferating population, which differs by a factor of two; the lengths of the cell cycle and the S-phase and the probability that a newly produced cell will die within the first 10 days do not differ in these two strains. This indicates that genetic regulation of the size of the proliferating population is independent of the genetic regulation of cell death among those newly produced cells. The dynamic changes in the number of labeled cells as revealed by the SSM protocol also indicate that neither single nor repeated daily injections of BUdR accurately measure 'proliferation.'.

  3. Human Nanog pseudogene8 promotes the proliferation of gastrointestinal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, Keita, E-mail: uchino13@intmed1.med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Hirano, Gen [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Hirahashi, Minako [Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Isobe, Taichi; Shirakawa, Tsuyoshi; Kusaba, Hitoshi; Baba, Eishi [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Tsuneyoshi, Masazumi [Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Akashi, Koichi [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2012-09-10

    There is emerging evidence that human solid tumor cells originate from cancer stem cells (CSCs). In cancer cell lines, tumor-initiating CSCs are mainly found in the side population (SP) that has the capacity to extrude dyes such as Hoechst 33342. We found that Nanog is expressed specifically in SP cells of human gastrointestinal (GI) cancer cells. Nucleotide sequencing revealed that NanogP8 but not Nanog was expressed in GI cancer cells. Transfection of NanogP8 into GI cancer cell lines promoted cell proliferation, while its inhibition by anti-Nanog siRNA suppressed the proliferation. Immunohistochemical staining of primary GI cancer tissues revealed NanogP8 protein to be strongly expressed in 3 out of 60 cases. In these cases, NanogP8 was found especially in an infiltrative part of the tumor, in proliferating cells with Ki67 expression. These data suggest that NanogP8 is involved in GI cancer development in a fraction of patients, in whom it presumably acts by supporting CSC proliferation. -- Highlights: Black-Right-Pointing-Pointer Nanog maintains pluripotency by regulating embryonic stem cells differentiation. Black-Right-Pointing-Pointer Nanog is expressed in cancer stem cells of human gastrointestinal cancer cells. Black-Right-Pointing-Pointer Nucleotide sequencing revealed that Nanog pseudogene8 but not Nanog was expressed. Black-Right-Pointing-Pointer Nanog pseudogene8 promotes cancer stem cells proliferation. Black-Right-Pointing-Pointer Nanog pseudogene8 is involved in gastrointestinal cancer development.

  4. Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells

    International Nuclear Information System (INIS)

    Highlights: • Tigecycline inhibited cell growth and proliferation in human gastric cancer cells. • Tigecycline induced autophagy not apoptosis in human gastric cancer cells. • AMPK/mTOR/p70S6K pathway was activated after tigecycline treatment. • Tigecycline inhibited tumor growth in xenograft model of human gastric cancer cells. - Abstract: Tigecycline acts as a glycylcycline class bacteriostatic agent, and actively resists a series of bacteria, specifically drug fast bacteria. However, accumulating evidence showed that tetracycline and their derivatives such as doxycycline and minocycline have anti-cancer properties, which are out of their broader antimicrobial activity. We found that tigecycline dramatically inhibited gastric cancer cell proliferation and provided an evidence that tigecycline induced autophagy but not apoptosis in human gastric cancer cells. Further experiments demonstrated that AMPK pathway was activated accompanied with the suppression of its downstream targets including mTOR and p70S6K, and ultimately induced cell autophagy and inhibited cell growth. So our data suggested that tigecycline might act as a candidate agent for pre-clinical evaluation in treatment of patients suffering from gastric cancer

  5. Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chunling; Yang, Liqun; Jiang, Xiaolan [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China); Xu, Chuan [Division of Scientific Research and Training, General Hospital of PLA Chengdu Military Area Command, Chengdu, Sichuan 610083 (China); Wang, Mei; Wang, Qinrui [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China); Zhou, Zhansong, E-mail: zhouzhans@sina.com [Institute of Urinary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Xiang, Zhonghuai [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China); Cui, Hongjuan, E-mail: hcui@swu.edu.cn [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China)

    2014-03-28

    Highlights: • Tigecycline inhibited cell growth and proliferation in human gastric cancer cells. • Tigecycline induced autophagy not apoptosis in human gastric cancer cells. • AMPK/mTOR/p70S6K pathway was activated after tigecycline treatment. • Tigecycline inhibited tumor growth in xenograft model of human gastric cancer cells. - Abstract: Tigecycline acts as a glycylcycline class bacteriostatic agent, and actively resists a series of bacteria, specifically drug fast bacteria. However, accumulating evidence showed that tetracycline and their derivatives such as doxycycline and minocycline have anti-cancer properties, which are out of their broader antimicrobial activity. We found that tigecycline dramatically inhibited gastric cancer cell proliferation and provided an evidence that tigecycline induced autophagy but not apoptosis in human gastric cancer cells. Further experiments demonstrated that AMPK pathway was activated accompanied with the suppression of its downstream targets including mTOR and p70S6K, and ultimately induced cell autophagy and inhibited cell growth. So our data suggested that tigecycline might act as a candidate agent for pre-clinical evaluation in treatment of patients suffering from gastric cancer.

  6. Social isolation increases cell proliferation in male and cell survival in female California mice (Peromyscus californicus).

    Science.gov (United States)

    Ruscio, Michael G; Bradley King, S; Haun, Harold L

    2015-11-01

    Social environment has direct effects on an animal's behavior, physiology and neurobiology. In particular, adult neurogenesis is notably affected by a variety of social manipulations, including social isolation. We hypothesized that social isolation should have particularly acute effects on neurogenesis in a highly social (monogamous and bi-parental) species such as Peromyscus californicus, the California mouse. Adult male and female P. californicus mice were housed in isolation or in same-sex pairs for 4 or 24 days. At the end of each period, either cell proliferation or cell survival was quantified with BrdU label and neuronal markers (either TuJ1 or NeuN). After 4 days, isolated males had greater cellular proliferation in the dentate gyrus of the hippocampus (DG) than pair housed males. After 24 days, isolate females demonstrated greater cell survival in the DG than paired females. Males demonstrated a similar, but non-significant pattern. No differences in cellular proliferation or cell survival were found in the subventricular zone (SVZ), or medial amygdala (MeA). These results add to the evidence which demonstrates that neurogenic responses to environmental conditions are not identical across species. These data may be critical in understanding the functional significance of neurogenesis as it relates to the interactions between social systems, social environment and the display of social behaviors. PMID:26342752

  7. Exosomes Secreted by Toxoplasma gondii-Infected L6 Cells: Their Effects on Host Cell Proliferation and Cell Cycle Changes

    OpenAIRE

    Kim, Min Jae; Jung, Bong-Kwang; Cho, Jaeeun; Song, Hyemi; Pyo, Kyung-Ho; Lee, Ji Min; Kim, Min-Kyung; Chai, Jong-Yil

    2016-01-01

    Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns w...

  8. Xanthogranulomatous pyelonephritis with fatty proliferation in the renal space appearance with computed tomography and MRI. Pyelonephrite xanthogranulomateuse avec proliferation graisseuse de la loge renale. Aspects en tomodensitometrie et en IRM

    Energy Technology Data Exchange (ETDEWEB)

    Laugareil, P.; Blery, M.; Chagnon, S. (Hopital Lariboisiere, 75 - Paris (France)); Despoisse (Hopital Charles-Richet, 95 - Villiers-le-Bel (France))

    1989-01-01

    One case of xanthogranulomatous pyelonephritis associated with very extensive fatty proliferation in the renal space is reported. This mass surrounded a small, pyelonephritis kidney with a considerable xanthomatous component containing a coral calculus. It was associated with a streaming abscess in the lumbar fossa. The computed tomography (CT) and magnetic resonance imaging (MRI) features are described in this article.

  9. Elevated expression of KIF18A enhances cell proliferation and predicts poor survival in human clear cell renal carcinoma

    Science.gov (United States)

    CHEN, QI; CAO, BIN; NAN, NING; WANG, YU; ZHAI, XU; LI, YOUFANG; CHONG, TIE

    2016-01-01

    The function of kinesin family member 18A (KIF18A) in human renal cell carcinoma (RCC) is unclear. The purpose of the current study was to determine the expression and prognostic significance of KIF18A in RCC. Specimens from 273 RCC patients undergoing nephrectomies were studied. Expression of KIF18A mRNA was examined by reverse transcription-polymerase chain reaction (RT-PCR) or quantitative PCR, and the expression of KIF18A protein was examined by immunohistochemistry and western blotting. The expression of KIF18A in clear-cell RCC cell lines was decreased using small interfering RNA targeting KIF18A, and increased by transfection with KIF18A cDNA. The proliferative ability of RCC cells in vitro and in vivo was detected by WST-1 assay and an animal xenograft model with BALB/c nude mice, respectively. The association between KIF18A expression and overall survival was calculated using Kaplan-Meier analysis. The results showed that KIF18A expression was significantly increased in RCC tissues compared with normal kidney tissues. The level of KIF18A expression was significantly associated with tumor stage, histological grade, metastasis and tumor size. Moreover, KIF18A increased the proliferation of RCC cells in vitro and in vivo. KIF18A expression was upregulated in RCC and enhanced the proliferation of RCC cells. Therefore, it appears that KIF18A plays a key role in the carcinogenesis and progression of RCC, and is a novel candidate prognostic marker for RCC patients. Furthermore, silencing KIF18A expression may serve as a new therapeutic strategy against RCC.

  10. Role of Mechanical Cues in Cell Differentiation and Proliferation: A 3D Numerical Model

    Science.gov (United States)

    Mousavi, Seyed Jamaleddin; Hamdy Doweidar, Mohamed

    2015-01-01

    Cell differentiation, proliferation and migration are essential processes in tissue regeneration. Experimental evidence confirms that cell differentiation or proliferation can be regulated according to the extracellular matrix stiffness. For instance, mesenchymal stem cells (MSCs) can differentiate to neuroblast, chondrocyte or osteoblast within matrices mimicking the stiffness of their native substrate. However, the precise mechanisms by which the substrate stiffness governs cell differentiation or proliferation are not well known. Therefore, a mechano-sensing computational model is here developed to elucidate how substrate stiffness regulates cell differentiation and/or proliferation during cell migration. In agreement with experimental observations, it is assumed that internal deformation of the cell (a mechanical signal) together with the cell maturation state directly coordinates cell differentiation and/or proliferation. Our findings indicate that MSC differentiation to neurogenic, chondrogenic or osteogenic lineage specifications occurs within soft (0.1-1 kPa), intermediate (20-25 kPa) or hard (30-45 kPa) substrates, respectively. These results are consistent with well-known experimental observations. Remarkably, when a MSC differentiate to a compatible phenotype, the average net traction force depends on the substrate stiffness in such a way that it might increase in intermediate and hard substrates but it would reduce in a soft matrix. However, in all cases the average net traction force considerably increases at the instant of cell proliferation because of cell-cell interaction. Moreover cell differentiation and proliferation accelerate with increasing substrate stiffness due to the decrease in the cell maturation time. Thus, the model provides insights to explain the hypothesis that substrate stiffness plays a key role in regulating cell fate during mechanotaxis. PMID:25933372

  11. Role of Mechanical Cues in Cell Differentiation and Proliferation: A 3D Numerical Model.

    Directory of Open Access Journals (Sweden)

    Seyed Jamaleddin Mousavi

    Full Text Available Cell differentiation, proliferation and migration are essential processes in tissue regeneration. Experimental evidence confirms that cell differentiation or proliferation can be regulated according to the extracellular matrix stiffness. For instance, mesenchymal stem cells (MSCs can differentiate to neuroblast, chondrocyte or osteoblast within matrices mimicking the stiffness of their native substrate. However, the precise mechanisms by which the substrate stiffness governs cell differentiation or proliferation are not well known. Therefore, a mechano-sensing computational model is here developed to elucidate how substrate stiffness regulates cell differentiation and/or proliferation during cell migration. In agreement with experimental observations, it is assumed that internal deformation of the cell (a mechanical signal together with the cell maturation state directly coordinates cell differentiation and/or proliferation. Our findings indicate that MSC differentiation to neurogenic, chondrogenic or osteogenic lineage specifications occurs within soft (0.1-1 kPa, intermediate (20-25 kPa or hard (30-45 kPa substrates, respectively. These results are consistent with well-known experimental observations. Remarkably, when a MSC differentiate to a compatible phenotype, the average net traction force depends on the substrate stiffness in such a way that it might increase in intermediate and hard substrates but it would reduce in a soft matrix. However, in all cases the average net traction force considerably increases at the instant of cell proliferation because of cell-cell interaction. Moreover cell differentiation and proliferation accelerate with increasing substrate stiffness due to the decrease in the cell maturation time. Thus, the model provides insights to explain the hypothesis that substrate stiffness plays a key role in regulating cell fate during mechanotaxis.

  12. Suppression of Ov-grn-1 encoding granulin of Opisthorchis viverrini inhibits proliferation of biliary epithelial cells.

    Science.gov (United States)

    Papatpremsiri, Atiroch; Smout, Michael J; Loukas, Alex; Brindley, Paul J; Sripa, Banchob; Laha, Thewarach

    2015-01-01

    Multistep processes likely underlie cholangiocarcinogenesis induced by chronic infection with the fish-borne liver fluke, Opisthorchis viverrini. One process appears to be cellular proliferation of the host bile duct epithelia driven by excretory-secretory (ES) products of this pathogen. Specifically, the secreted growth factor Ov-GRN-1, a liver fluke granulin, is a prominent component of ES and a known driver of hyper-proliferation of cultured human and mouse cells in vitro. We show potent hyper-proliferation of human cholangiocytes induced by low nanomolar levels of recombinant Ov-GRN-1 and similar growth produced by low microgram concentrations of ES products and soluble lysates of the adult worm. To further explore the influence of Ov-GRN-1 on the flukes and the host cells, expression of Ov-grn-1 was repressed using RNA interference. Expression of Ov-grn-1 was suppressed by 95% by day 3 and by ~100% by day 7. Co-culture of Ov-grn-1 suppressed flukes with human cholangiocyte (H-69) or human cholangiocarcinoma (KKU-M214) cell lines retarded cell hyper-proliferation by 25% and 92%, respectively. Intriguingly, flukes in which expression of Ov-grn-1 was repressed were less viable in culture, suggesting that Ov-GRN-1 is an essential growth factor for survival of the adult stage of O. viverrini, at least in vitro. To summarize, specific knock down of Ov-grn-1 reduced in vitro survival and capacity of ES products to drive host cell proliferation. These findings may help to contribute to a deeper understanding of liver fluke induced cholangiocarcinogenesis. PMID:25450776

  13. IARS2 silencing induces non-small cell lung cancer cells proliferation inhibition, cell cycle arrest and promotes cell apoptosis.

    Science.gov (United States)

    Yin, J; Liu, W; Li, R; Liu, J; Zhang, Y; Tang, W; Wang, K

    2016-01-01

    The purpose of this study was to investigate the potential role of Ileucyl-tRNA synthetase (IARS2) silencing in non-small cell lung cancer (NSCLC). The silencing of IARS2 in H1299 cells and A549 cells were performed by lentivirus encoding shRNAs. The efficiency of IARS2 silencing was detected by quantitative real time PCR and western blot. The effects of IARS2 silencing on cell growth, cell apoptosis, cell cycle and cell colony formation ability were assessed by cells counting, MTT assay, flow cytometer analysis and soft agar colony formation assay, respectively. Compared with negative control group, IARS2 was significantly knockdown by transfection with lentivirus encoding shRNA of IARS2. The IARS2 silencing significantly inhibited the cells proliferation and cells colony formation ability, induced cell cycle arrest at G1/S phase and promoted cell apoptosis. IARS2 silencing induced NSCLC cells growth inhibition, cell cycle arrest and promoted cell apoptosis. These results suggest that IARS2 may be a novel target for the treatment of NSCLC. PMID:26639235

  14. Coating nanofiber scaffolds with beta cell membrane to promote cell proliferation and function

    Science.gov (United States)

    Chen, Wansong; Zhang, Qiangzhe; Luk, Brian T.; Fang, Ronnie H.; Liu, Younian; Gao, Weiwei; Zhang, Liangfang

    2016-05-01

    The cell membrane cloaking technique has emerged as an intriguing strategy in nanomaterial functionalization. Coating synthetic nanostructures with natural cell membranes bestows the nanostructures with unique cell surface antigens and functions. Previous studies have focused primarily on development of cell membrane-coated spherical nanoparticles and the uses thereof. Herein, we attempt to extend the cell membrane cloaking technique to nanofibers, a class of functional nanomaterials that are drastically different from nanoparticles in terms of dimensional and mechanophysical characteristics. Using pancreatic beta cells as a model cell line, we demonstrate successful preparation of cell membrane-coated nanofibers and validate that the modified nanofibers possess an antigenic exterior closely resembling that of the source beta cells. When such nanofiber scaffolds are used to culture beta cells, both cell proliferation rate and function are significantly enhanced. Specifically, glucose-dependent insulin secretion from the cells is increased by near five-fold compared with the same beta cells cultured in regular, unmodified nanofiber scaffolds. Overall, coating cell membranes onto nanofibers could add another dimension of flexibility and controllability in harnessing cell membrane functions and offer new opportunities for innovative applications.

  15. Role of acetylcholine receptors in proliferation and differentiation of P19 embryonal carcinoma cells

    International Nuclear Information System (INIS)

    Coordinated proliferation and differentiation of progenitor cells is the base for production of appropriate numbers of neurons and glia during neuronal development in order to establish normal brain functions. We have used murine embryonal carcinoma P19 cells as an in vitro model for early differentiation to study participation of nicotinic (nAChR) and muscarinic acetylcholine (mAChR) receptors in the proliferation of neural progenitor cells and their differentiation to neurons. We have previously shown that functional nicotinic acetylcholine receptors (nAChRs) already expressed in embryonic cells mediate elevations in cytosolic free calcium concentration ([Ca2+]i) via calcium influx through nAChR channels whereas intracellular stores contribute to nAChR- and mAChR-mediated calcium fluxes in differentiated cells [Resende et al., Cell Calcium 43 (2008) 107-121]. In the present study, we have demonstrated that nicotine provoked inhibition of proliferation in embryonic cells as determined by BrdU labeling. However, in neural progenitor cells nicotine stimulated proliferation which was reversed in the presence of inhibitors of calcium mobilization from intracellular stores, indicating that liberation of intracellular calcium contributed to this proliferation induction. Muscarine induced proliferation stimulation in progenitor cells by activation of Gαq/11-coupled M1, M3 and M5 receptors and intracellular calcium stores, whereas Gαi/o-protein coupled M2 receptor activity mediated neuronal differentiation

  16. Uterine epithelial cell proliferation and endometrial hyperplasia: evidence from a mouse model.

    Science.gov (United States)

    Gao, Yang; Li, Shu; Li, Qinglei

    2014-08-01

    In the uterus, epithelial cell proliferation changes during the estrous cycle and pregnancy. Uncontrolled epithelial cell proliferation results in implantation failure and/or cancer development. Transforming growth factor-β (TGF-β) signaling is a fundamental regulator of diverse biological processes and is indispensable for multiple reproductive functions. However, the in vivo role of TGF-β signaling in uterine epithelial cells remains poorly defined. We have shown that in the uterus, conditional deletion of the Type 1 receptor for TGF-β (Tgfbr1) using anti-Müllerian hormone receptor type 2 (Amhr2) Cre leads to myometrial defects. Here, we describe enhanced epithelial cell proliferation by immunostaining of Ki67 in the uteri of these mice. The aberration culminated in endometrial hyperplasia in aged females. To exclude the potential influence of ovarian steroid hormones, the proliferative status of uterine epithelial cells was assessed following ovariectomy. Increased uterine epithelial cell proliferation was also revealed in ovariectomized Tgfbr1 Amhr2-Cre conditional knockout mice. We further demonstrated that transcript levels for fibroblast growth factor 10 (Fgf10) were markedly up-regulated in Tgfbr1 Amhr2-Cre conditional knockout uteri. Consistently, treatment of primary uterine stromal cells with TGF-β1 significantly reduced Fgf10 mRNA expression. Thus, our findings suggest a potential involvement of TGFBR1-mediated signaling in the regulation of uterine epithelial cell proliferation, and provide genetic evidence supporting the role of uterine epithelial cell proliferation in the pathogenesis of endometrial hyperplasia. PMID:24770950

  17. Non-cytotoxic copper overload boosts mitochondrial energy metabolism to modulate cell proliferation and differentiation in the human erythroleukemic cell line K562.

    Science.gov (United States)

    Ruiz, Lina M; Jensen, Erik L; Rossel, Yancing; Puas, German I; Gonzalez-Ibanez, Alvaro M; Bustos, Rodrigo I; Ferrick, David A; Elorza, Alvaro A

    2016-07-01

    Copper is integral to the mitochondrial respiratory complex IV and contributes to proliferation and differentiation, metabolic reprogramming and mitochondrial function. The K562 cell line was exposed to a non-cytotoxic copper overload to evaluate mitochondrial dynamics, function and cell fate. This induced higher rates of mitochondrial turnover given by an increase in mitochondrial fusion and fission events and in the autophagic flux. The appearance of smaller and condensed mitochondria was also observed. Bioenergetics activity included more respiratory complexes, higher oxygen consumption rate, superoxide production and ATP synthesis, with no decrease in membrane potential. Increased cell proliferation and inhibited differentiation also occurred. Non-cytotoxic copper levels can modify mitochondrial metabolism and cell fate, which could be used in cancer biology and regenerative medicine. PMID:27094959

  18. Chronic hypoxia promotes pulmonary artery endothelial cell proliferation through H2O2-induced 5-lipoxygenase.

    Directory of Open Access Journals (Sweden)

    Kristi M Porter

    Full Text Available Pulmonary Hypertension (PH is a progressive disorder characterized by endothelial dysfunction and proliferation. Hypoxia induces PH by increasing vascular remodeling. A potential mediator in hypoxia-induced PH development is arachidonate 5-Lipoxygenase (ALOX5. While ALOX5 metabolites have been shown to promote pulmonary vasoconstriction and endothelial cell proliferation, the contribution of ALOX5 to hypoxia-induced proliferation remains unknown. We hypothesize that hypoxia exposure stimulates HPAEC proliferation by increasing ALOX5 expression and activity. To test this, human pulmonary artery endothelial cells (HPAEC were cultured under normoxic (21% O2 or hypoxic (1% O2 conditions for 24-, 48-, or 72 hours. In a subset of cells, the ALOX5 inhibitor, zileuton, or the 5-lipoxygenase activating protein inhibitor, MK-886, was administered during hypoxia exposure. ALOX5 expression was measured by qRT-PCR and western blot and HPAEC proliferation was assessed. Our results demonstrate that 24 and 48 hours of hypoxia exposure have no effect on HPAEC proliferation or ALOX5 expression. Seventy two hours of hypoxia significantly increases HPAEC ALOX5 expression, hydrogen peroxide (H2O2 release, and HPAEC proliferation. We also demonstrate that targeted ALOX5 gene silencing or inhibition of the ALOX5 pathway by pharmacological blockade attenuates hypoxia-induced HPAEC proliferation. Furthermore, our findings indicate that hypoxia-induced increases in cell proliferation and ALOX5 expression are dependent on H2O2 production, as administration of the antioxidant PEG-catalase blocks these effects and addition of H2O2 to HPAEC promotes proliferation. Overall, these studies indicate that hypoxia exposure induces HPAEC proliferation by activating the ALOX5 pathway via the generation of H2O2.

  19. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  20. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    International Nuclear Information System (INIS)

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs

  1. Cell proliferation and migration are modulated by Cdk-1-phosphorylated endothelial-monocyte activating polypeptide II.

    Directory of Open Access Journals (Sweden)

    Margaret A Schwarz

    Full Text Available BACKGROUND: Endothelial-Monocyte Activating Polypeptide (EMAP II is a secreted protein with well-established anti-angiogenic activities. Intracellular EMAP II expression is increased during fetal development at epithelial/mesenchymal boundaries and in pathophysiologic fibroproliferative cells of bronchopulmonary dysplasia, emphysema, and scar fibroblast tissue following myocardial ischemia. Precise function and regulation of intracellular EMAP II, however, has not been explored to date. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that high intracellular EMAP II suppresses cellular proliferation by slowing progression through the G2M cell cycle transition in epithelium and fibroblast. Furthermore, EMAP II binds to and is phosphorylated by Cdk1, and exhibits nuclear/cytoplasmic partitioning, with only nuclear EMAP II being phosphorylated. We observed that extracellular secreted EMAP II induces endothelial cell apoptosis, where as excess intracellular EMAP II facilitates epithelial and fibroblast cells migration. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that EMAP II has specific intracellular effects, and that this intracellular function appears to antagonize its extracellular anti-angiogenic effects during fetal development and pulmonary disease progression.

  2. Noncoding RNA small nucleolar RNA host gene 1 promote cell proliferation in nonsmall cell lung cancer

    Directory of Open Access Journals (Sweden)

    J You

    2014-01-01

    Full Text Available Background: Nonsmall cell lung cancer (NSCLC is the major cause of cancer death worldwide. Increasing evidence shows that noncoding RNAs (ncRNAs are widely involved in the development and progression of NSCLC. ncRNA small nucleolar RNA host gene 1 (SNHG1 has not been studied in cancer, especially its role in lung cancer remains unknown. Our studies were designed to investigate the expression and biological significance of SNHG1 in lung cancer. SNHG1 may be a novel ncRNA in early diagnosis in lung cancer. Methods: Noncoding RNA SNHG1 expression in 7 lung cancer cell lines was measured by quantitative real-time polymerase chain reaction. RNA interference approaches were used to find the biological functions of SNHG1. The effect of SNHG1 on proliferation was evaluated by cell count and crystal violet stains. Results: Noncoding RNA SNHG1 expression was significantly upregulated in lung cancer cells when compared with normal bronchial epithelial cells. In addition, in vitro assays our results indicated that knockdown of SNHG1 inhibited cell proliferation. Conclusions: Our data indicated that ncRNA SNHG1 is significantly upregulated in NSCLC cell lines and may represent a new biomarker and a potential therapeutic target for NSCLC intervention.

  3. Inhibition of lung cancer cell proliferation mediated by human mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Lin Li; Hui Tian; Zhitao Chen; Weiming Yue; Shuhai Li; Wenjun Li

    2011-01-01

    Human mesenchymal stem cells(hMSCs)are mostly studied for their potential clinical use.Recently,much attention in the field of cancer research has been paid to hMSCs.In this study,we investigated the influence of hMSCs on the proliferation of lung cancer cell lines SK- MES-1 and A549 in vitro and in vivo by using a co-culture system and the hMSCs-conditioned medium.Our results demonstrated that hMSCs could inhibit the proliferation of SK-MES-1 and A549 cells,and induce the apoptosis of tumor cells in vitro via some soluble factors.Animal study showed that these soluble factors from hMSCs could sup- press tumorigenesis and tumor angiogenesis by treating preliminarily tumor cells with the hMSCs-conditioned medium.The downregulated expression of vascular endo- thelial growth factor in tumor cells might be the mechan- ism of interference in tumor angiogenesis,which was verified by western blot analysis and immunohistochemis- try assay.Taken together,our results suggested that the hMSCs could inhibit tumor cell growth by secreting some soluble factors.

  4. Folate receptor α regulates cell proliferation in mouse gonadotroph αT3-1 cells

    International Nuclear Information System (INIS)

    We have previously found that the mRNA and protein levels of the folate receptor alpha (FRα) are uniquely over-expressed in clinically human nonfunctional (NF) pituitary adenomas, but the mechanistic role of FRα has not fully been determined. We investigated the effect of FRα over-expression in the mouse gonadotroph αT3-1 cell line as a model for NF pituitary adenomas. We found that the expression and function of FRα were strongly up-regulated, by Western blotting and folic acid binding assay. Furthermore, we found a higher cell growth rate, an enhanced percentage of cells in S-phase by BrdU assay, and a higher PCNA staining. These observations indicate that over-expression of FRα promotes cell proliferation. These effects were abrogated in the same αT3-1 cells when transfected with a mutant FRα cDNA that confers a dominant-negative phenotype by inhibiting folic acid binding. Finally, by real-time quantitative PCR, we found that mRNA expression of NOTCH3 was up-regulated in FRα over-expressing cells. In summary, our data suggests that FRα regulates pituitary tumor cell proliferation and mechanistically may involve the NOTCH pathway. Potentially, this finding could be exploited to develop new, innovative molecular targeted treatment for human NF pituitary adenomas.

  5. Proliferation conditions for human satellite cells. The fractional content of satellite cells

    DEFF Research Database (Denmark)

    Gaster, M; Beck-Nielsen, H; Schrøder, H D

    2001-01-01

    Primary satellite cell cultures have become an important tool as a model system for skeletal muscles. A common problem in human satellite cell culturing is fibroblast overgrowth. We combined N-CAM (Leu19) immunocytochemical staining of satellite cells (Sc) with stereological methods to estimate the...... fraction of Sc in culture. Evaluation of different culture conditions allowed us to find proliferation conditions preferentially for Sc: a) Sc should be cultured on surfaces coated with ECM-gel. b) Primary cell culture should be inoculated in DMEM supplemented with 10% fetal calf serum to increase cell...... adherence. c) Change of media to DMEM supplemented with 2% Ultroser-G and 2% FCS after 24 h.d) Before subcultivation, cells should be preplated for 30 min. The fractional content of Sc in passage four when applying this method of cultivation was 0.82 +/- 0.07 (mean +/- SE, N = 10). Our method enabled us to...

  6. Involvement of proliferating cell nuclear antigen (cyclin) in DNA replication in living cells.

    OpenAIRE

    Zuber, M; Tan, E M; Ryoji, M

    1989-01-01

    Proliferating cell nuclear antigen (PCNA) (also called cyclin) is known to stimulate the activity of DNA polymerase delta but not the other DNA polymerases in vitro. We injected a human autoimmune antibody against PCNA into unfertilized eggs of Xenopus laevis and examined the effects of this antibody on the replication of injected plasmid DNA as well as egg chromosomes. The anti-PCNA antibody inhibited plasmid replication by up to 67%, demonstrating that PCNA is involved in plasmid replicatio...

  7. Apoptosis and proliferation of oligodendrocyte progenitor cells in the irradiated rodent spinal cord

    International Nuclear Information System (INIS)

    Purpose: Oligodendrocytes undergo early apoptosis after irradiation. The aim of this study was to determine the relationship between oligodendroglial apoptosis and proliferation of oligodendrocyte progenitor cells (OPC) in the irradiated central nervous system. Methods and Materials: Adult rats and p53 transgenic mice were given single doses of 2 Gy, 8 Gy, or 22 Gy to the cervical spinal cord. Apoptosis was assessed using TUNEL (Tdt-mediated dUTP terminal nick-end labeling) staining or by examining nuclear morphology. Oligodendrocyte progenitor cells were identified with an NG2 antibody or by in situ hybridization for platelet-derived growth factor receptor α. Proliferation of OPC was assessed by in vivo bromodeoxyuridine (BrdU) labeling and subsequent immunohistochemistry. Because radiation-induced apoptosis of oligodendroglial cells is p53 dependent, p53 transgenic mice were used to study the relationship between apoptosis and cell proliferation. Results: Oligodendrocyte progenitor cells underwent apoptosis within 24 h of irradiation in the rat. That did not result in a change in OPC density at 24 h. Oligodendrocyte progenitor cell density was significantly reduced by 2-4 weeks, but showed recovery by 6 weeks after irradiation. An increase in BrdU-labeled cells was observed at 2 weeks after 8 Gy or 22 Gy, and proliferating cells in the rat spinal cord were immunoreactive for NG2. The mouse spinal cord showed a similar early cell proliferation after irradiation. No difference was observed in the proliferation response in the spinal cord of p53 -/- mice compared with wild type animals. Conclusions: Oligodendroglial cells undergo early apoptosis and OPC undergo early proliferation after ionizing radiation. However, apoptosis is not likely to be the trigger for early proliferation of OPC in the irradiated central nervous system

  8. MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines

    DEFF Research Database (Denmark)

    Viticchiè, Giuditta; Lena, Anna Maria; Latina, Alessia;

    2011-01-01

    cell lines compared to normal epithelial prostatic cells. Overexpression of miR-203 in brain or bone metastatic prostate cell lines (DU145 and PC3) is sufficient to induce a mesenchymal to epithelial transition with inhibition of cell proliferation, migration and invasiveness. We have identified CKAP2...

  9. The mitochondrial phospholipid cardiolipin is involved in the regulation of T-cell proliferation.

    Science.gov (United States)

    Mürke, Eik; Stoll, Steffan; Lendeckel, Uwe; Reinhold, Dirk; Schild, Lorenz

    2016-08-01

    Challenge of the immune system with antigens induces a cascade of processes including activation of naïve T cells, induction of proliferation, differentiation into effector cells and finally contraction via apoptosis. To meet the dynamic requirements of an adequate immune response, T cells must metabolically adapt to actual situations by switching between catabolic and anabolic metabolism. In this context mitochondria are hubs of metabolic regulation. The phospholipid cardiolipin (CL) is crucial for the structural and functional integrity and, thus, the metabolism of mitochondria. The aim of this study was to verify a possible interrelationship between T cell proliferation and CL composition. For this purpose, we adjusted the proliferation of peripheral human T cells from volunteers by stimulation with different concentrations of the mitogen phytohaemagglutinin (PHA), inhibition with Cyclosporin A (CsA) and exposure of cells to different free fatty acids and subsequently analysed the composition of CL by LC/MS/MS spectroscopy. All of the treatments had significant effects on CL composition. Correlation analysis of the proliferation rate and CL composition revealed that only the amount of incorporated palmitoleic acid and the content of tetralinoleoyl-CL are significantly associated with the proliferation rate. This observation is strongly suggestive of a regulatory function of these particular CL components/species in the process of T cell proliferation. As CL is crucially involved in mitochondrial function one can speculate that changes in CL composition contribute to vital mitochondria-dependent adaptations of energy metabolism in T cells during immune response. PMID:27163692

  10. Six family genes control the proliferation and differentiation of muscle satellite cells

    Energy Technology Data Exchange (ETDEWEB)

    Yajima, Hiroshi [Division of Biology, Center for Molecular Medicine, Jichi Medical University, Tochigi (Japan); Motohashi, Norio; Ono, Yusuke [Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo (Japan); Sato, Shigeru; Ikeda, Keiko [Division of Biology, Center for Molecular Medicine, Jichi Medical University, Tochigi (Japan); Masuda, Satoru; Yada, Erica; Kanesaki, Hironori; Miyagoe-Suzuki, Yuko; Takeda, Shin' ichi [Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo (Japan); Kawakami, Kiyoshi, E-mail: kkawakam@jichi.ac.jp [Division of Biology, Center for Molecular Medicine, Jichi Medical University, Tochigi (Japan)

    2010-10-15

    Muscle satellite cells are essential for muscle growth and regeneration and their morphology, behavior and gene expression have been extensively studied. However, the mechanisms involved in their proliferation and differentiation remain elusive. Six1 and Six4 proteins were expressed in the nuclei of myofibers of adult mice and the numbers of myoblasts positive for Six1 and Six4 increased during regeneration of skeletal muscles. Six1 and Six4 were expressed in quiescent, activated and differentiated muscle satellite cells isolated from adult skeletal muscle. Overexpression of Six4 and Six5 repressed the proliferation and differentiation of satellite cells. Conversely, knockdown of Six5 resulted in augmented proliferation, and that of Six4 inhibited differentiation. Muscle satellite cells isolated from Six4{sup +/-}Six5{sup -/-} mice proliferated to higher cell density though their differentiation was not altered. Meanwhile, overproduction of Six1 repressed proliferation and promoted differentiation of satellite cells. In addition, Six4 and Six5 repressed, while Six1 activated myogenin expression, suggesting that the differential regulation of myogenin expression is responsible for the differential effects of Six genes. The results indicated the involvement of Six genes in the behavior of satellite cells and identified Six genes as potential target for manipulation of proliferation and differentiation of muscle satellite cells for therapeutic applications.

  11. Locomotion and proliferation of glioblastoma cells in vitro statistical evaluation of videomicroscopic observations

    CERN Document Server

    Hegedus, B; Fazekas, I; Babel, T; Madarasz, E; Vicsek, T

    1999-01-01

    Long-term videomicroscopy and computer-aided statistical analysis were used to determine some characteristic parameters of in vitro cell motility and proliferation in three established cell lines derived from human glioblastoma tumors. Migration and proliferation activities were compared among the three cell lines since these are two features of tumor cells that strongly influence the progression of cancer. The results on these dynamical parameters of cell locomotion were compared to pathological data obtained by traditional methods. The data indicate that the analysis of cell motility provides more specific information and is potentially useful in diagnosis.

  12. An integrated gene regulatory network controls stem cell proliferation in teeth.

    Directory of Open Access Journals (Sweden)

    Xiu-Ping Wang

    2007-06-01

    Full Text Available Epithelial stem cells reside in specific niches that regulate their self-renewal and differentiation, and are responsible for the continuous regeneration of tissues such as hair, skin, and gut. Although the regenerative potential of mammalian teeth is limited, mouse incisors grow continuously throughout life and contain stem cells at their proximal ends in the cervical loops. In the labial cervical loop, the epithelial stem cells proliferate and migrate along the labial surface, differentiating into enamel-forming ameloblasts. In contrast, the lingual cervical loop contains fewer proliferating stem cells, and the lingual incisor surface lacks ameloblasts and enamel. Here we have used a combination of mouse mutant analyses, organ culture experiments, and expression studies to identify the key signaling molecules that regulate stem cell proliferation in the rodent incisor stem cell niche, and to elucidate their role in the generation of the intrinsic asymmetry of the incisors. We show that epithelial stem cell proliferation in the cervical loops is controlled by an integrated gene regulatory network consisting of Activin, bone morphogenetic protein (BMP, fibroblast growth factor (FGF, and Follistatin within the incisor stem cell niche. Mesenchymal FGF3 stimulates epithelial stem cell proliferation, and BMP4 represses Fgf3 expression. In turn, Activin, which is strongly expressed in labial mesenchyme, inhibits the repressive effect of BMP4 and restricts Fgf3 expression to labial dental mesenchyme, resulting in increased stem cell proliferation and a large, labial stem cell niche. Follistatin limits the number of lingual stem cells, further contributing to the characteristic asymmetry of mouse incisors, and on the basis of our findings, we suggest a model in which Follistatin antagonizes the activity of Activin. These results show how the spatially restricted and balanced effects of specific components of a signaling network can regulate stem cell

  13. Adhesion and Proliferation of Human Periodontal Ligament Cells on Poly(2-methoxyethyl acrylate

    Directory of Open Access Journals (Sweden)

    Erika Kitakami

    2014-01-01

    Full Text Available Human periodontal ligament (PDL cells obtained from extracted teeth are a potential cell source for tissue engineering. We previously reported that poly(2-methoxyethyl acrylate (PMEA is highly biocompatible with human blood cells. In this study, we investigated the adhesion, morphology, and proliferation of PDL cells on PMEA and other types of polymers to design an appropriate scaffold for tissue engineering. PDL cells adhered and proliferated on all investigated polymer surfaces except for poly(2-hydroxyethyl methacrylate and poly[(2-methacryloyloxyethyl phosphorylcholine-co-(n-butyl methacrylate]. The initial adhesion of the PDL cells on PMEA was comparable with that on polyethylene terephthalate (PET. In addition, the PDL cells on PMEA spread well and exhibited proliferation behavior similar to that observed on PET. In contrast, platelets hardly adhered to PMEA. PMEA is therefore expected to be an excellent scaffold for tissue engineering and for culturing tissue-derived cells in a blood-rich environment.

  14. Adhesion and proliferation of human periodontal ligament cells on poly(2-methoxyethyl acrylate).

    Science.gov (United States)

    Kitakami, Erika; Aoki, Makiko; Sato, Chikako; Ishihata, Hiroshi; Tanaka, Masaru

    2014-01-01

    Human periodontal ligament (PDL) cells obtained from extracted teeth are a potential cell source for tissue engineering. We previously reported that poly(2-methoxyethyl acrylate) (PMEA) is highly biocompatible with human blood cells. In this study, we investigated the adhesion, morphology, and proliferation of PDL cells on PMEA and other types of polymers to design an appropriate scaffold for tissue engineering. PDL cells adhered and proliferated on all investigated polymer surfaces except for poly(2-hydroxyethyl methacrylate) and poly[(2-methacryloyloxyethyl phosphorylcholine)-co-(n-butyl methacrylate)]. The initial adhesion of the PDL cells on PMEA was comparable with that on polyethylene terephthalate (PET). In addition, the PDL cells on PMEA spread well and exhibited proliferation behavior similar to that observed on PET. In contrast, platelets hardly adhered to PMEA. PMEA is therefore expected to be an excellent scaffold for tissue engineering and for culturing tissue-derived cells in a blood-rich environment. PMID:25165689

  15. EFFECTS OF CURCUMIN ON PROLIFERATION AND APOPTOSIS OF HUMAN CERVICAL CARCINOMA HeLa CELLS IN VITRO

    Institute of Scientific and Technical Information of China (English)

    赵敬; 赵涌

    2004-01-01

    Objective: To investigate the regulatory effect of curcumin on proliferation and apoptosis in human cervical carcinoma cell line HeLa in vitro. Methods: Human cervical carcinoma cell line Hela was cultured in vitro. HeLa cells were treated with 10(50 (mol/L curcumin for 24(72 h and the growth inhibition rates of HeLa cells were measured by MTT method. Cell apoptosis was inspected by electron microscopy. In addition, the expression of bcl-2, bcl-xl and caspase-3 protein in HeLa cell were observed by SP immunohistochemistry. Results: Curcumin inhibited the proliferation of HeLa cells on a dose-depending manner. Peak of subG1 appeared on DNA histogram in FCM. A portion of the cells presented the characteristic morphological changes of apoptosis under the electron microscope. The bcl-2, bcl-xl expression was decreased while Caspase-3 expression was increased. Conclusion: Curcumin could significantly inhibit the growth of HeLa cells; inducing apoptosis through up-regulating Caspase-3 and down-regulating expression of bcl-2 and bcl-xl was probably one of its molecular mechanisms.

  16. Feasibility of obtaining breast epithelial cells from healthy women for studies of cellular proliferation.

    Science.gov (United States)

    Miller, N A; Thomas, M; Martin, L J; Hedley, D W; Michal, S; Boyd, N F

    1997-05-01

    Increased dietary fat intake and rate of breast epithelial cell proliferation have each been associated with the development of breast cancer. The goal of this study was to measure the effect of a low fat, high carbohydrate diet on the rate of breast epithelial cell proliferation in women at high risk for breast cancer. Women were recruited from the intervention and control groups of a randomized low fat dietary intervention trial, breast epithelial cells were obtained by fine needle aspiration, and cell proliferation was assessed in these samples using immunofluorescent detection of Ki-67 and PCNA. The effects of needle size and study group on cell yield and cytologic features of the cells were also examined. Fifty three women (20 in the intervention group and 33 in the control group) underwent the biopsy procedure. Slides from 38 subjects were stained for Ki-67 and from 14 subjects for PCNA. No cell proliferation (fluorescence) was detected for either Ki-67 or PCNA in any of the slides. Epithelial cell yield and number of stromal fragments were greater with a larger needle size. Numbers of stromal fragments and bipolar naked nuclei were greater in the low fat as compared to the control group but no differences in epithelial cell yield were observed between the two groups. This study confirms that fine needle aspiration biopsy is a feasible method of obtaining epithelial cells from women without discrete breast masses, but suggests that cell proliferation cannot be assessed using Ki-67 and PCNA in such samples. PMID:9150899

  17. Roles of paroxetine and corticosterone on adult mammalian ciliary body cell proliferation

    Institute of Scientific and Technical Information of China (English)

    WANG Hua; LAU Benson WM; YAU Suk-yu; LI Suk-yee; LEUNG Nelson; WANG Ning-li; TANG Siu-wa; LEE Tatia MC; SO Kwok-fai

    2010-01-01

    Background The neurogenesis in retina of adult mammals is generally abolished, and this renders the retina lack of regenerative capacity.Despite this, there is a small population of nestin-positive cells in the ciliary epithelium which retains neurogenic potential.The present study aimed at investigating the effect of two drugs, corticosterone and paroxetine, on the cell proliferation of the ciliary body.Methods Adult Sprague-Dawley rats were given vehicle, corticosterone, paroxetine, or both corticosterone and paroxetine treatment for 14 days.Cell proliferation in the ciliary body was quantified using 5-bromo-2-deoxyuridine (BrdU) immunohistochemistry.Co-labelling of BrdU and stem cell marker was used to phenotype the BrdU immunoreactive cells.Results Corticosterone treatment suppressed while paroxetine treatment increased the cell proliferation of the ciliary body.Co-labelling with cell markers revealed that the BrdU positive cells also showed nestin expression but not glial fibrillary acidic protein (GFAP).Conclusions The results illustrate that proliferation of retinal progenitor cells situated in ciliary body are subjected to regulation by selective serotonin reuptake inhibitors (SSRI) and corticosteroid, which is similar to our previous findings in neurogenic regions in central nervous system (CNS).Paroxetine treatment could reverse the suppressive effect of corticosterone on ciliary body cell proliferation.This provides information for future investigation of retinal stem cell biology and potential treatment of retinal degenerative diseases.

  18. Imbalance between apoptosis and cell proliferation during early stages of mammary gland carcinogenesis in ACI rats

    International Nuclear Information System (INIS)

    Estrogen and ionizing radiation are well-documented human breast carcinogens, yet the exact mechanisms of their deleterious effects on mammary gland remain to be discerned. Here we analyze the balance between cellular proliferation and apoptosis in the mammary glands of rats exposed to estrogen and X-ray radiation and the combined action of these carcinogenic agents. For the first time, we show that combined exposure to estrogen and radiation has a synergistic effect on cell proliferation in the mammary glands of ACI rats, as evidenced by a substantially greater magnitude of cell proliferation, especially after 12 and 18 weeks of treatment, when compared to mammary glands of rats exposed to estrogen or radiation alone. We also demonstrate that an imbalance between cell proliferation and apoptosis, rather than enhanced cell proliferation or apoptosis suppression alone, may be a driving force for carcinogenesis. Our studies further suggest that compromised functional activity of p53 may be one of the mechanisms responsible for the proliferation/apoptosis imbalance. In sum, the results of our study indicate that evaluation of the extent of cell proliferation and apoptosis before the onset of preneoplastic lesions may be a potential biomarker of breast cancer risk after exposure to breast carcinogens.

  19. Effects of fibulin-5 on attachment, adhesion, and proliferation of primary human endothelial cells

    International Nuclear Information System (INIS)

    Background: Fibulin-5 is a novel extracellular protein that is thought to act as a bridging peptide between elastin fibers and cell surface integrins in blood vessel wall. Fibulin-5 binding to endothelial cell (EC) surface integrins may effect cell proliferation and cell attachment to extracellular matrix (ECM) or to artificial surfaces. In this paper, we describe the effects of fibulin-5 on attachment, adhesion, and proliferation of primary human EC. After demonstrating that fibulin-5 over-expression inhibited EC proliferation, we tested the hypothesis that co-expression of fibulin-5 and VEGF165 will lead to unique EC phenotype that will exhibit increased adherence properties and retain its proliferation capacity. Methods and results: Fibulin-5 and VEGF165 gene transfer to primary human saphenous vein endothelial cells was accomplished using retroviral vectors encoding the two genes. Transgene expression was verified using immunohistochemistry, Western blotting, and ELISA. Fibulin 5 over-expression tended to improve immediate EC attachment (30 min after seeding) and improved significantly adhesion (>40%) under shear stress tested 24 h after EC seeding. The effects of fibulin-5 and VEGF165 on EC proliferation in the presence or absence of basic FGF were also tested. EC expressing fibulin-5 had reduced proliferation while VEGF165 co-expression ameliorated this effect. Conclusion: Fibulin-5 improved EC attachment to artificial surfaces. Dual transfer of fibulin-5 and VEGF165 resulted in EC phenotype with increased adhesion and improved proliferation. This unique EC phenotype can be useful for tissue engineering on endovascular prostheses

  20. Imbalance between apoptosis and cell proliferation during early stages of mammary gland carcinogenesis in ACI rats

    Energy Technology Data Exchange (ETDEWEB)

    Kutanzi, Kristy R.; Koturbash, Igor [Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K3M4 (Canada); Bronson, Roderick T. [Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115 (United States); Pogribny, Igor P., E-mail: igor.pogribny@fda.hhs.gov [Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 (United States); Kovalchuk, Olga, E-mail: olga.kovalchuk@uleth.ca [Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K3M4 (Canada)

    2010-12-10

    Estrogen and ionizing radiation are well-documented human breast carcinogens, yet the exact mechanisms of their deleterious effects on mammary gland remain to be discerned. Here we analyze the balance between cellular proliferation and apoptosis in the mammary glands of rats exposed to estrogen and X-ray radiation and the combined action of these carcinogenic agents. For the first time, we show that combined exposure to estrogen and radiation has a synergistic effect on cell proliferation in the mammary glands of ACI rats, as evidenced by a substantially greater magnitude of cell proliferation, especially after 12 and 18 weeks of treatment, when compared to mammary glands of rats exposed to estrogen or radiation alone. We also demonstrate that an imbalance between cell proliferation and apoptosis, rather than enhanced cell proliferation or apoptosis suppression alone, may be a driving force for carcinogenesis. Our studies further suggest that compromised functional activity of p53 may be one of the mechanisms responsible for the proliferation/apoptosis imbalance. In sum, the results of our study indicate that evaluation of the extent of cell proliferation and apoptosis before the onset of preneoplastic lesions may be a potential biomarker of breast cancer risk after exposure to breast carcinogens.

  1. TRICHOSTATIN A INHIBITS PROLIFERATION, INDUCES APOPTOSIS AND CELL CYCLE ARREST IN HELA CELLS

    Institute of Scientific and Technical Information of China (English)

    XU Zhou-min; WANG Yi-qun; MEI Qi; CHEN Jian; DU Jia; WEI Yan; XU Ying-chun

    2006-01-01

    Objective: The histone deacetylase inhibitors (HDACIS) have been shown to inhibit cancer cell proliferation, stimulate apoptosis, an induce cell cycle arrest. Our purpose was to investigate the antiproliferative effects of a HDACI, trichostatin A (TSA), against human cervical cancer cells (HeLa). Methods: HeLa cells were treated in vitro with various concentrations of TSA. The inhibitory effect of TSA on the growth of HeLa cells was measured by MTT assay. To detect the characteristic of apoptosis chromatin condensation, HeLa cells were stained with Hoechst 33258 in the presence of TSA. Induction of cell cycle arrest was studied by flow cytometry. Changes in gene expression of p53, p21Waf1 and p27Kip1 were studied by semiquantitative RT-PCR. Results: TSA inhibited cell growth in a time- and dose-dependent manner. Hoechst 33258 staining assay showed that TSA induced apoptosis. Cell cycle analysis indicated that treatment with TSA decreased the proportion of cells in S phase and increased the proportion of cells in G0/G1 and/or G2/M phases of the cell cycle. This was concomitant with overexpression of genes related to malignant phenotype, including an increase in p53, p21Waf1 and p27Kip1. Conclusion: These results suggest that TSA is effective in inhibiting growth of HeLa cells in vitro. The findings raise the possibility that TSA may prove particularly effective in treatment of cervical cancers.

  2. Intrathymic lymphopoiesis: stromal cell-associated proliferation of T cells is independent of lymphocyte genotype.

    Science.gov (United States)

    Kyewski, B A; Travis, M; Kaplan, H S

    1984-09-01

    We analyzed the genetic restriction of direct cell-cell interactions between thymocytes and a) cortical epithelial cells, b) macrophages, and c) medullary dendritic cells in the mouse thymus. Thymectomized (C3H X C57BL/Ka)F1 hybrid mice were doubly grafted with P1 and P2 neonatal thymus grafts, were lethally irradiated, and were reconstituted with a mixture of P1 and P2 bone marrow cells which differed in the Thy-1 locus. The contributions of both parental inocula to the composition of the free and stromal cell-associated T cell compartments were analyzed separately in thymic grafts of each parental strain. The lymphoid composition in both compartments essentially reflected the peripheral T cell-chimerism in the host. The development of lymphostromal complexes was not restricted by the genotype of the partner cells. Statistical analysis of the distributions of P1 and P2 T cells among free thymocytes and within individual lymphostromal complexes, however, suggests that the T cells of an individual complex are the progeny of oligoclonal proliferation. Thus, both epithelial cells and bone marrow-derived stromal cells seem to be involved in different stages of intrathymic lymphopoiesis. PMID:6611364

  3. Onychin inhibits proliferation of vascular smooth muscle cells by regulating cell cycle

    Institute of Scientific and Technical Information of China (English)

    Ming YANG; Hong-lin HUANG; Bing-yang ZHU; Qin-hui TUO; Duan-fang LIAO

    2005-01-01

    Aim: To investigate the effects of onychin on the proliferation of cultured rat artery vascular smooth muscle cells (VSMCs) in the presence of 10% new-borncalf serum (NCS). Methods: Rat VSMCs were incubated with onychin 1-50 μmol/L or genistein 10 μmol/L in the presence of 10% NCS for 24 h. The proliferation of VSMCs was measured by cell counting and MTS/PMS colorimetric assays. Cell cycle progression was evaluated by flow cytometry. Retinoblastoma (Rb) phosphorylation, and expression of cyclin D1 and cyclin E were measured by Western blot assays. The tyrosine phosphorylation of ERK1/2 was examined by immunoprecipitation techniques using anti-phospho-tyrosine antibodies. Results: The proliferation of VSMCs was accelerated significantly in the presence of 10% NCS. Onychin reduced the metabolic rate of MTS and the cell number of VSMCs in the presence of 10% NCS in a dose-dependent manner. Flow cytometry analy sis revealed that the G1-phase fraction ratio in the onychin group was higher than that in the 10% NCS group (85.2% vs 70.0%, P<0.01), while the S-phase fraction ratio in the onychin group was lower than that in 10% NCS group (4.3% vs 16.4%, P<0.01). Western blot analysis showed that onychin inhibited Rb phos phorylation and reduced the expression of cyclin D1 and cyclin E. The effects of onychin on proliferation, the cell cycle and the expression of cyclins in VSMCs were similar to those of genistein, an inhibitor of tyrosine kinase. Furthermore immunoprecipitation studies showed that both onychin and genistein markedly inhibited the tyrosine phosphorylation of ERK1/2 induced by 10% NCS.Conclusion: Onychin inhibits the proliferation of VSMCs through G1 phase cell cycle arrest by decreasing the tyrosine phosphorylation of ERK1/2, and the expression of cyclin D1 and cyclin E, and sequentially inhibiting Rb phosphorylation.

  4. Orai1 and STIM1 are critical for cell migration and proliferation of clear cell renal cell carcinoma

    International Nuclear Information System (INIS)

    Highlights: • Orai1 channel is highly expressed in clear cell renal cell carcinoma (ccRCC) tissues. • Orai1 and STIM1 constitute a native store-operated Ca2+ entry in ccRCC cells. • Orai1 and STIM1 promote cell migration and proliferation of ccRCC cells. - Abstract: The intracellular Ca2+ regulation has been implicated in tumorigenesis and tumor progression. Notably, store-operated Ca2+ entry (SOCE) is a major Ca2+ entry mechanism in non-excitable cells, being involved in cell proliferation and migration in several types of cancer. However, the expression and biological role of SOCE have not been investigated in clear cell renal cell carcinoma (ccRCC). Here, we demonstrate that Orai1 and STIM1, not Orai3, are crucial components of SOCE in the progression of ccRCC. The expression levels of Orai1 in tumor tissues were significantly higher than those in the adjacent normal parenchymal tissues. In addition, native SOCE was blunted by inhibiting SOCE or by silencing Orai1 and STIM1. Pharmacological blockade or knockdown of Orai1 or STIM1 also significantly inhibited RCC cell migration and proliferative capability. Taken together, Orai1 is highly expressed in ccRCC tissues illuminating that Orai1-mediated SOCE may play an important role in ccRCC development. Indeed, Orai1 and STIM1 constitute a native SOCE pathway in ccRCC by promoting cell proliferation and migration

  5. Receptor FGFRL1 does not promote cell proliferation but induces cell adhesion.

    Science.gov (United States)

    Yang, Xiaochen; Steinberg, Florian; Zhuang, Lei; Bessey, Ralph; Trueb, Beat

    2016-07-01

    Fibroblast growth factor receptor (FGFR)-like protein 1 (FGFRL1) is the most recently discovered member of the FGFR family. Owing to the fact that it interacts with FGF ligands, but lacks the intracellular tyrosine kinase domain, several researchers have speculated that it may function as a decoy receptor and exert a negative effect on cell proliferation. In this study, we performed overexpression experiments with TetOn‑inducible cell clones and downregulation experiments with siRNA oligonucleotides, and found that FGFRL1 had absolutely no effect on cell growth and proliferation. Likewise, we did not observe any influence of FGFRL1 on ERK1/2 activation and on the phosphorylation of 250 other signaling proteins analyzed by the Kinexus antibody microarray. On the other hand, with bacterial petri dishes, we observed a clear effect of FGFRL1 on cell adhesion during the initial hours after cell seeding. Our results suggest that FGFRL1 is a cell adhesion protein similar to the nectins rather than a signaling receptor similar to FGFR1-FGFR4. PMID:27220341

  6. Overexpression of heme oxygenase-1 protects smooth muscle cells against oxidative injury and inhibits cell proliferation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To investigate whether the expression of exogenous heme oxygenase-1 (HO-l) gene within vascular smooth muscle cells (VSMC) could protect the cells from free radical attack and inhibit cell proliferation,we established an in vitro transfection of human HO-1 gene into rat VSMC mediated by a retroviral vector.The results showed that the profound expression of HO-1 protein as well as HO activity was 1.8- and 2.0-fold increased respectively in the transfected cells compared to the non-transfected ones. The treatment of VSMC with different concentrations of H2O2 led to the remarkable cell damage as indicated by survival rate and LDH leakage. However, the resistance of the HO-1 transfected VSMC against H2O2 was significantly raised. This protective effect was dramatically diminished when the transfected VSMC were pretreated with ZnPP-IX, a specific inhibitor of HO, for 24 h. In addition, we found that the growth potential of the transfected cells was significantly inhibited directly by increased activity of HO-l, and this effect might be related to decreased phosphorylation of MAPK. These results suggest that the overexpression of introduced hHO-1 is potentially able to reduce the risk factors of atherosclerosis, partially due to its cellular protection against oxidative injury and to its inhibitory effect on cellular proliferation.

  7. Osthole inhibits proliferation of human breast cancer cells by inducing cell cycle arrest and apoptosis

    Institute of Scientific and Technical Information of China (English)

    Lintao Wang; Yanyan Peng; Kaikai Shi; Haixiao Wang; Jianlei Lu; Yanli Li; Changyan Ma

    2015-01-01

    Recent studies have revealed that osthole,an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson,a traditional Chinese medicine,possesses anticancer activity.However,its effect on breast cancer cells so far has not been elucidated clearly.In the present study,we evaluated the effects of osthole on the proliferation,cell cycle and apoptosis of human breast cancer cells MDA-MB 435.We demonstrated that osthole is effective in inhibiting the proliferation of MDA-MB 435 cells,The mitochondrion-mediated apoptotic pathway was involved in apoptosis induced by osthole,as indicated by activation of caspase-9 and caspase-3 followed by PARP degradation.The mechanism underlying its effect on the induction of G1 phase arrest was due to the up-regulation of p53 and p21 and down-regulation of Cdk2 and cyclin D1 expression.Were observed taken together,these findings suggest that the anticancer efficacy of osthole is mediated via induction of cell cycle arrest and apoptosis in human breast cancer cells and osthole may be a potential chemotherapeutic agent against human breast cancer.

  8. Polyphosphate induces matrix metalloproteinase-3-mediated proliferation of odontoblast-like cells derived from induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Hase, Naoko; Yamaguchi, Hideyuki; Hiyama, Taiki; Kawai, Rie [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650 (Japan); Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650 (Japan)

    2015-05-01

    Inorganic polyphosphate [Poly(P)] may represent a physiological source of phosphate and has the ability to induce bone differentiation in osteoblasts. We previously reported that cytokine-induced matrix metalloproteinase (MMP)-3 accelerates the proliferation of purified odontoblast-like cells. In this study, MMP-3 small interfering RNA (siRNA) was transfected into odontoblast-like cells derived from induced pluripotent stem cells to investigate whether MMP-3 activity is induced by Poly(P) and/or is associated with cell proliferation and differentiation into odontoblast-like cells. Treatment with Poly(P) led to an increase in both cell proliferation and additional odontoblastic differentiation. Poly(P)-treated cells showed a small but significant increase in dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1) mRNA expression, which are markers of mature odontoblasts. The cells also acquired additional odontoblast-specific properties including adoption of an odontoblastic phenotype typified by high alkaline phosphatase (ALP) activity and a calcification capacity. In addition, Poly(P) induced expression of MMP-3 mRNA and protein, and increased MMP-3 activity. MMP-3 siRNA-mediated disruption of the expression of these effectors potently suppressed the expression of odontoblastic biomarkers ALP, DSPP, and DMP-1, and blocked calcification. Interestingly, upon siRNA-mediated silencing of MMP-3, we noted a potent and significant decrease in cell proliferation. Using specific siRNAs, we revealed that a unique signaling cascade, Poly(P)→MMP-3→DSPP and/or DMP-1, was intimately involved in the proliferation of odontoblast-like cells. - Highlights: • Polyphosphate increases proliferation of iPS cell-derived odontoblast-like cells. • Polyphosphate-induced MMP-3 results in an increase of cell proliferation. • Induced cell proliferation involves MMP-3, DSPP, and/or DMP-1 sequentially. • Induced MMP-3 also results in an increase of odontoblastic

  9. Polyphosphate induces matrix metalloproteinase-3-mediated proliferation of odontoblast-like cells derived from induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Inorganic polyphosphate [Poly(P)] may represent a physiological source of phosphate and has the ability to induce bone differentiation in osteoblasts. We previously reported that cytokine-induced matrix metalloproteinase (MMP)-3 accelerates the proliferation of purified odontoblast-like cells. In this study, MMP-3 small interfering RNA (siRNA) was transfected into odontoblast-like cells derived from induced pluripotent stem cells to investigate whether MMP-3 activity is induced by Poly(P) and/or is associated with cell proliferation and differentiation into odontoblast-like cells. Treatment with Poly(P) led to an increase in both cell proliferation and additional odontoblastic differentiation. Poly(P)-treated cells showed a small but significant increase in dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1) mRNA expression, which are markers of mature odontoblasts. The cells also acquired additional odontoblast-specific properties including adoption of an odontoblastic phenotype typified by high alkaline phosphatase (ALP) activity and a calcification capacity. In addition, Poly(P) induced expression of MMP-3 mRNA and protein, and increased MMP-3 activity. MMP-3 siRNA-mediated disruption of the expression of these effectors potently suppressed the expression of odontoblastic biomarkers ALP, DSPP, and DMP-1, and blocked calcification. Interestingly, upon siRNA-mediated silencing of MMP-3, we noted a potent and significant decrease in cell proliferation. Using specific siRNAs, we revealed that a unique signaling cascade, Poly(P)→MMP-3→DSPP and/or DMP-1, was intimately involved in the proliferation of odontoblast-like cells. - Highlights: • Polyphosphate increases proliferation of iPS cell-derived odontoblast-like cells. • Polyphosphate-induced MMP-3 results in an increase of cell proliferation. • Induced cell proliferation involves MMP-3, DSPP, and/or DMP-1 sequentially. • Induced MMP-3 also results in an increase of odontoblastic

  10. A new quantitative test method for cell proliferation based on detection of the Ki-67 protein

    NARCIS (Netherlands)

    Klein, CL; Wagner, M; Kirkpatrick, CJ; Van Kooten, TG

    1999-01-01

    A quantitative method to assess cell proliferation is one essential prerequisite for testing biomaterial cytocompatibility in vitro. Currently used methods, e.g. bromodeoxyuridine incorporation, show serious disadvantages concerning either sensitivity, specificity or handling. A new enzyme linked im

  11. Assessment of Newcastle Disease specific T cell proliferation in different inbred MHC chicken lines

    DEFF Research Database (Denmark)

    Norup, Liselotte Rothmann; Dalgaard, Tina Sørensen; Pedersen, Asger Roer;

    2011-01-01

    In this study we have described the establishment of an antigen-specific T cell proliferation assay based on recall stimulation with Newcastle disease (ND) antigen; further, we have described the results obtained after recall stimulation of animals containing different Major Histocompatibility...... Complex (MHC) haplotypes, vaccinated against ND. First optimization of the assay was performed to lower unspecific proliferation and to enhance antigen-specific T cell proliferation. These two issues were achieved using ethylene diamine tetra acetic-acid as stabilizing agent in blood samples and...... autologous immune serum in culture medium. The optimized assay was used to screen chickens with different MHC haplotypes for their ability to perform T cell proliferation. Results showed that the antigen-specific response of CD4+ and CD8+ T cells from B12 chickens was generally low, whereas B13, B130 and B...

  12. Globular adiponectin, acting via adiponectin receptor-1, inhibits leptin-stimulated oesophageal adenocarcinoma cell proliferation

    OpenAIRE

    Ogunwobi, Olorunseun O.; Beales, Ian L.P.

    2008-01-01

    Globular adiponectin, acting via adiponectin receptor-1, inhibits leptin-stimulated oesophageal adenocarcinoma cell proliferation UNITED KINGDOM (Ogunwobi, Olorunseun O.) UNITED KINGDOM Received: 2007-09-18 Revised: 2008-01-14 Accepted: 2008-01-23

  13. SIRT2 activates G6PD to enhance NADPH production and promote leukaemia cell proliferation.

    Science.gov (United States)

    Xu, Shuang-Nian; Wang, Tian-Shi; Li, Xi; Wang, Yi-Ping

    2016-01-01

    Like most other types of cancer cells, leukaemia cells undergo metabolic reprogramming to support rapid proliferation through enhancing biosynthetic processes. Pentose phosphate pathway (PPP) plays a pivotal role in meeting the anabolic demands for cancer cells. However, the molecular mechanism by which PPP contributes to leukaemia remains elusive. Here, we report that leukaemia cell proliferation is dependent on the oxidative branch of PPP, in particular the first and rate-limiting enzyme glucose-6-phosphate dehydrogenase (G6PD). Knockdown of G6PD reduces NADPH level in acute myeloid leukaemia (AML) cell lines. Exogenous lipid supplements partially restore the proliferation of G6PD-depleted cells. Deacetylase SIRT2 promotes NADPH production through deacetylating G6PD at lysine 403 (K403). Activation of G6PD by SIRT2 supports the proliferation and clonogenic activity of leukaemia cells. Chemical inhibitors against SIRT2 suppress G6PD activity, leading to reduced cell proliferation of leukaemia cells, but not normal hematopoietic stem and progenitor cells. Importantly, SIRT2 is overexpressed in clinical AML samples, while K403 acetylation is downregulated and G6PD catalytic activity is increased comparing to that of normal control. Together, our study reveals that acetylation regulation of G6PD is involved in the metabolic reprogramming of AML, and SIRT2 serves as a promising target for further therapeutic investigations. PMID:27586085

  14. Programmed cell death-10 enhances proliferation and protects malignant T cells from apoptosis

    DEFF Research Database (Denmark)

    Lauenborg, Britt; Kopp, Katharina; Krejsgaard, Thorbjørn;

    2010-01-01

    , whereas an activator of Jak3 and NF-¿B, interleukin-2 (IL-2), enhances PDCD10 expression. Functional data show that PDCD10 depletion by small interfering RNA induces apoptosis and decreases proliferation of the sensitive cells. To our knowledge, these data provide the first functional link between PDCD10......The programmed cell death-10 (PDCD10; also known as cerebral cavernous malformation-3 or CCM3) gene encodes an evolutionarily conserved protein associated with cell apoptosis. Mutations in PDCD10 result in cerebral cavernous malformations, an important cause of cerebral hemorrhage. PDCD10 is...... associated with serine/threonine kinases and phosphatases and modulates the extracellular signal-regulated kinase pathway suggesting a role in the regulation of cellular growth. Here we provide evidence of a constitutive expression of PDCD10 in malignant T cells and cell lines from peripheral blood of...

  15. Homeobox A7 increases cell proliferation by up-regulation of epidermal growth factor receptor expression in human granulosa cells

    Directory of Open Access Journals (Sweden)

    Yanase Toshihiko

    2010-06-01

    Full Text Available Abstract Background Homeobox (HOX genes encode transcription factors, which regulate cell proliferation, differentiation, adhesion, and migration. The deregulation of HOX genes is frequently associated with human reproductive system disorders. However, knowledge regarding the role of HOX genes in human granulosa cells is limited. Methods To determine the role of HOXA7 in the regulation and associated mechanisms of cell proliferation in human granulosa cells, HOXA7 and epidermal growth factor receptor (EGFR expressions were examined in primary granulosa cells (hGCs, an immortalized human granulosa cell line, SVOG, and a granulosa tumor cell line, KGN, by real-time PCR and Western blotting. To manipulate the expression of HOXA7, the HOXA7 specific siRNA was used to knockdown HOXA7 in KGN. Conversely, HOXA7 was overexpressed in SVOG by transfection with the pcDNA3.1-HOAX7 vector. Cell proliferation was measured by the MTT assay. Results Our results show that HOXA7 and EGFR were overexpressed in KGN cells compared to hGCs and SVOG cells. Knockdown of HOXA7 in KGN cells significantly decreased cell proliferation and EGFR expression. Overexpression of HOXA7 in SVOG cells significantly promoted cell growth and EGFR expression. Moreover, the EGF-induced KGN proliferation was abrogated, and the activation of downstream signaling was diminished when HOXA7 was knocked down. Overexpression of HOXA7 in SVOG cells had an opposite effect. Conclusions Our present study reveals a novel mechanistic role for HOXA7 in modulating granulosa cell proliferation via the regulation of EGFR. This finding contributes to the knowledge of the pro-proliferation effect of HOXA7 in granulosa cell growth and differentiation.

  16. Endothelial cells promote the proliferation of lymphocytes partly through the Wnt pathway via LEF-1

    International Nuclear Information System (INIS)

    The function of T cells and B cells is to recognize specific 'non-self' antigens, during a process known as antigen presentation. Once they have identified an invader, the cells generate specific responses that are tailored to maximally eliminate specific pathogens or pathogen-infected cells. Endothelial cells (ECs) can trigger the activation of T cells through their class I and class II MHC molecules. In this study, we examined the effect of ECs on the proliferation of lymphocytes. We report that the proliferation of T and B cells can be improved by interaction with ECs. LEF-1 is one of the main molecular mediators in this process, and the inhibition of LEF-1 induces apoptosis. These results suggest that LEF-1 modulates positively the proliferation of lymphocytes induced by their interaction with ECs.

  17. YPEL4 modulates HAC15 adrenal cell proliferation and is associated with tumor diameter.

    Science.gov (United States)

    Oki, Kenji; Plonczynski, Maria W; Gomez-Sanchez, Elise P; Gomez-Sanchez, Celso E

    2016-10-15

    Yippee-like (YPEL) proteins are thought to be related to cell proliferation because of their structure and location in the cell. The aim of this study was to clarify the effects of YPEL4 on aldosterone production and cell proliferation in the human adrenocortical cell line (HAC15) and aldosterone producing adenoma (APA). Basal aldosterone levels in HAC15 cells over-expressing YPEL4 was higher than those of control HAC15 cells. The positive effects of YPEL4 on cell proliferation were detected by XTT assay and crystal violet staining. YPEL4 levels in 39 human APA were 2.4-fold higher compared to those in 12 non-functional adrenocortical adenomas, and there was a positive relationship between YPEL4 levels and APA diameter (r = 0.316, P APA in humans. PMID:27333825

  18. Cell motility, morphology, viability and proliferation in response to nanotopography on silicon black

    DEFF Research Database (Denmark)

    Lopacinska, Joanna M.; Gradinaru, Cristian; Wierzbicki, Rafal;

    2012-01-01

    standard measurements of cell viability, proliferation, and morphology on various surfaces. We also analyzed the motility of cells on the same surfaces, as recorded in time lapse movies of sparsely populated cell cultures. We find that motility and morphology vary strongly with nano-patterns, while...... viability and proliferation show little dependence on substrate type. We conclude that motility analysis can show a wide range of cell responses e. g. over a factor of two in cell speed to different nano-topographies, where standard assays, such as viability or proliferation, in the tested cases show much......Knowledge of cells' interactions with nanostructured materials is fundamental for bio-nanotechnology. We present results for how individual mouse fibroblasts from cell line NIH3T3 respond to highly spiked surfaces of silicon black that were fabricated by maskless reactive ion etching (RIE). We did...

  19. Downregulation of alpha-fetoprotein siRNA inhibits proliferation of SMMC-7721 cells

    Institute of Scientific and Technical Information of China (English)

    Yun-Shan Wang; Xiao-Li Ma; Tong-Gang Qi; Xiang-Dong Liu; Yue-Sheng Meng; Guang-Ju Guan

    2005-01-01

    AIM: To study the function of α-fetoprotein (AFP) in SMMC-7721 hepatoma cells.METHODS: A hairpin siRNA expressing plasmid pSilencer3.0-H1-afp was constructed and transfected into SMMC-7721 cells with Lipofectamine 2000. The expression of AFP was monitored by real-time RT-PCR and immunoassays, its effect on SMMC-7721 cell proliferation and cell death was detected by MTT and fluorescenceactivated cell sorter (FACS).RESULTS: The AFP-siRNA expressing plasmid downregulated the expression of AFP obviously (about 34%), and inhibited SMMC-7721 cell proliferation, but did not induce apoptosis.CONCLUSION: Downregulation of AFP siRNA inhibits proliferation of SMMC-7721 cells, but cannot cause apoptosis.

  20. T-helper cell-mediated proliferation and cytokine responses against recombinant Merkel cell polyomavirus-like particles.

    Science.gov (United States)

    Kumar, Arun; Chen, Tingting; Pakkanen, Sari; Kantele, Anu; Söderlund-Venermo, Maria; Hedman, Klaus; Franssila, Rauli

    2011-01-01

    The newly discovered Merkel Cell Polyomavirus (MCPyV) resides in approximately 80% of Merkel cell carcinomas (MCC). Causal role of MCPyV for this rare and aggressive skin cancer is suggested by monoclonal integration and truncation of large T (LT) viral antigen in MCC cells. The mutated MCPyV has recently been found in highly purified leukemic cells from patients with chronic lymphocytic leukemia (CLL), suggesting a pathogenic role also in CLL. About 50-80% of adults display MCPyV-specific antibodies. The humoral immunity does not protect against the development of MCC, as neutralizing MCPyV antibodies occur in higher levels among MCC patients than healthy controls. Impaired T-cell immunity has been linked with aggressive MCC behavior. Therefore, cellular immunity appears to be important in MCPyV infection surveillance. In order to elucidate the role of MCPyV-specific Th-cell immunity, peripheral blood mononuclear cells (PBMC) of healthy adults were stimulated with MCPyV VP1 virus-like particles (VLPs), using human bocavirus (HBoV) VLPs and Candida albicans antigen as positive controls. Proliferation, IFN-γ, IL-13 and IL-10 responses were examined in 15 MCPyV-seropositive and 15 seronegative volunteers. With the MCPyV antigen, significantly stronger Th-cell responses were found in MCPyV-seropositive than MCPyV-seronegative subjects, whereas with the control antigens, the responses were statistically similar. The most readily detectable cytokine was IFN-γ. The MCPyV antigen tended to induce stronger IFN-γ responses than HBoV VLP antigen. Taken together, MCPyV-specific Th-cells elicit vigorous IFN-γ responses. IFN-γ being a cytokine with major antiviral and tumor suppressing functions, Th-cells are suggested to be important mediators of MCPyV-specific immune surveillance. PMID:21991346

  1. T-helper cell-mediated proliferation and cytokine responses against recombinant Merkel cell polyomavirus-like particles.

    Directory of Open Access Journals (Sweden)

    Arun Kumar

    Full Text Available The newly discovered Merkel Cell Polyomavirus (MCPyV resides in approximately 80% of Merkel cell carcinomas (MCC. Causal role of MCPyV for this rare and aggressive skin cancer is suggested by monoclonal integration and truncation of large T (LT viral antigen in MCC cells. The mutated MCPyV has recently been found in highly purified leukemic cells from patients with chronic lymphocytic leukemia (CLL, suggesting a pathogenic role also in CLL. About 50-80% of adults display MCPyV-specific antibodies. The humoral immunity does not protect against the development of MCC, as neutralizing MCPyV antibodies occur in higher levels among MCC patients than healthy controls. Impaired T-cell immunity has been linked with aggressive MCC behavior. Therefore, cellular immunity appears to be important in MCPyV infection surveillance. In order to elucidate the role of MCPyV-specific Th-cell immunity, peripheral blood mononuclear cells (PBMC of healthy adults were stimulated with MCPyV VP1 virus-like particles (VLPs, using human bocavirus (HBoV VLPs and Candida albicans antigen as positive controls. Proliferation, IFN-γ, IL-13 and IL-10 responses were examined in 15 MCPyV-seropositive and 15 seronegative volunteers. With the MCPyV antigen, significantly stronger Th-cell responses were found in MCPyV-seropositive than MCPyV-seronegative subjects, whereas with the control antigens, the responses were statistically similar. The most readily detectable cytokine was IFN-γ. The MCPyV antigen tended to induce stronger IFN-γ responses than HBoV VLP antigen. Taken together, MCPyV-specific Th-cells elicit vigorous IFN-γ responses. IFN-γ being a cytokine with major antiviral and tumor suppressing functions, Th-cells are suggested to be important mediators of MCPyV-specific immune surveillance.

  2. Pax8 has a critical role in epithelial cell survival and proliferation

    OpenAIRE

    Di Palma, T; Filippone, M G; Pierantoni, G. M.; Fusco, A; S. Soddu; Zannini, M

    2013-01-01

    The transcription factor Pax8, a member of the Paired-box gene family, is a critical regulator required for proper development and differentiation of thyroid follicular cells. Despite being Pax8 well characterized with respect to its role in regulating genes responsible for thyroid differentiation, its involvement in cell survival and proliferation has been hypothesized but remains unclear. Here, we show that Pax8 overexpression significantly increases proliferation and colony-forming efficie...

  3. Critical Role of Heparin Binding Domains of Ameloblastin for Dental Epithelium Cell Adhesion and Ameloblastoma Proliferation*

    OpenAIRE

    Sonoda, Akira; Iwamoto, Tsutomu; Nakamura, Takashi; Fukumoto, Emiko; Yoshizaki, Keigo; Yamada, Aya; Arakaki, Makiko; Harada, Hidemitsu; Nonaka, Kazuaki; Nakamura, Seiji; Yamada, Yoshihiko; Fukumoto, Satoshi

    2009-01-01

    AMBN (ameloblastin) is an enamel matrix protein that regulates cell adhesion, proliferation, and differentiation of ameloblasts. In AMBN-deficient mice, ameloblasts are detached from the enamel matrix, continue to proliferate, and form a multiple cell layer; often, odontogenic tumors develop in the maxilla with age. However, the mechanism of AMBN functions in these biological processes remains unclear. By using recombinant AMBN proteins, we found that AMBN had heparin binding domains at the C...

  4. Effects of fasting and refeeding on intestinal cell proliferation and apoptosis in hammerhead shark (Sphyrna lewini)

    OpenAIRE

    Hideya Takahashi; Susumu Hyodo; Tsukasa Abe; Chiyo Takagi; Grau, Gordon E.; Tatsuya Sakamoto

    2014-01-01

    Objective: To examine the effects of fasting and refeeding on intestinal cell proliferation and apoptosis in an opportunistic predator, hammerhead shark (Sphyrna lewini) of elasmobranch fishes which are among the earliest known extant groups of vertebrates to have the valvular intestine typical for the primitive species. Methods: Animals were euthanized after 5-10 d of fasting or feeding, or after 10-day fasting and 5-day refeeding. Intestinal apoptosis and cell proliferation w...

  5. GABA's Control of Stem and Cancer Cell Proliferation in Adult Neural and Peripheral Niches

    OpenAIRE

    Young, Stephanie Z.; Bordey, Angélique

    2009-01-01

    Aside from traditional neurotransmission and regulation of secretion, γ-amino butyric acid (GABA) through GABAA receptors negatively regulates proliferation of pluripotent and neural stem cells in embryonic and adult tissue. There has also been evidence that GABAergic signaling and its control over proliferation is not only limited to the nervous system, but is widespread through peripheral organs containing adult stem cells. GABA has emerged as a tumor signaling molecule in the periphery tha...

  6. Aberrant Neural Stem Cell Proliferation and Increased Adult Neurogenesis in Mice Lacking Chromatin Protein HMGB2

    OpenAIRE

    Abraham, Ariel B; Robert Bronstein; Avanish S Reddy; Mirjana Maletic-Savatic; Adan Aguirre; Tsirka, Stella E.

    2013-01-01

    Neural stem and progenitor cells (NSCs/NPCs) are distinct groups of cells found in the mammalian central nervous system (CNS). Previously we determined that members of the High Mobility Group (HMG) B family of chromatin structural proteins modulate NSC proliferation and self-renewal. Among them HMGB2 was found to be dynamically expressed in proliferating and differentiating NSCs, suggesting that it may regulate NSC maintenance. We report now that Hmgb2(-/-) mice exhibit SVZ hyperproliferation...

  7. Cell proliferation in rat nasal respiratory epithelium following three months exposure to formaldehyde gas

    International Nuclear Information System (INIS)

    Formaldehyde (HCHO), a ubiquitous chemical and rat nasal carcinogen, enhances cell proliferation in rat, monkey, and xenotransplanted human respiratory epithelium following short-term exposure. The present studies were designed to evaluate cell proliferation in relation to tumor induction in rat nasal respiratory epithelium following subchronic HCHO exposure. Male F-344 rats were whole-body exposed to either 0, 0.7, 2, 6, 10, or 15 ppm HCHO, for wither 4 d (6hr/d), 6 wks (5d/wk) or 3 months. Animals were labeled with tritiated thymidine prior to euthanasia. Nasal sections were processed for autoradiography and cell proliferation data was expressed as unit length labeling indices (ULLI). HCHO-induced lesions and increases in cell proliferation occurred in specific regions of the nose, primarily the wall of the lateral meatus and nasal septum of the anterior nasal cavity. Following 4 d exposure, significant elevations in cell proliferation were observed only in the 6, 10 and 15 ppm groups (16-, 18-, and 20-fold increase over control, respectively). Increases in ULLI were also present in the 6, 10 and 15 ppm groups after 6 wks of exposure (12-, 35-, and 40-fold increase over control). However, after 3 months exposure, elevations in ULLI were present only in the 10 and 15 ppm groups (9- and 14-fold increase over controls). These results demonstrate that (1) low levels of HCHO (0.7 and 2 ppm) do not increase cell proliferation in rat nasal respiratory epithelium; (2) 6 ppm HCHO induces transient increases in cell proliferation; and (3) clearly carcinogenic concentrations of HCHO (10 and 15 ppm) cause sustained elevations in cell proliferation which may play an important role in HCHO-induced carcinogenesis

  8. Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells

    OpenAIRE

    Frigault, Matthew J.; Lee, Jihyun; Basil, Maria Ciocca; Carpenito, Carmine; Motohashi, Shinichiro; Scholler, John; Kawalekar, Omkar U.; Guedan, Sonia; McGettigan, Shannon E; Posey, Avery D; Ang, Sonny; Cooper, Laurence J. N.; Platt, Jesse M.; Johnson, F. Brad; Paulos, Chrystal M.

    2015-01-01

    This study compared second generation chimeric antigen receptors encoding signaling domains composed of CD28, ICOS and 4-1BB. Here we report that certain CARs endow T cells with the ability to undergo long-term autonomous proliferation. Transduction of primary human T-cell with lentiviral vectors encoding some of the CARs resulted in sustained proliferation for up to three months following a single stimulation through the TCR. Sustained numeric expansion was independent of cognate antigen and...

  9. Influence of acid and bile acid on ERK activity, PPARY expression and cell proliferation in normal human esophageal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Zhi-Ru Jiang; Jun Gong; Zhen-Ni Zhang; Zhe Qiao

    2006-01-01

    AIM: To observe the effects of acid and bile acid exposure on cell proliferation and the expression of extracellular signal-regulated protein kinase (ERK) and peroxisome proliferator-activated receptor Y (PPARy) in normal human esophageal epithelial cells in vitro.METHODS: In vitro cultured normal human esophageal epithelial cells were exposed to acidic media (pH 4.0-6.5), media containing different bile acid (250 μmol/L), media containing acid and bile acid, respectively.Cell proliferation was assessed using MTT and flow cytometry. The expressions of phosphorylated ERK1/2 and PPARy protein were determined by the immunoblotting technique.RESULTS: Acid-exposed (3 min) esophageal cells exhibited a significant increase in proliferation ratio,S phase of the cell cycle (P<0.05) and the level of phosphorylated ERK1/2 protein. When the acid-exposure period exceeded 6 min, we observed a decrease in proliferation ratio and S phase of the cell cycle, with an increased apoptosis ratio (P<0.05). Bile acid exposure (3-12 min) also produced an increase in proliferation ratio, S phase of the cell cycle (P<0.05)and phosphorylated ERK1/2 expression. On the contrary,deoxycholic acid (DCA) exposure (>20 min) decreased proliferation ratio. Compared with bile acid exposure (pH 7.4), bile acid exposure (pH 6.5, 4) significantly decreased proliferation ratio (P<0.05). There was no expression of PPARY in normal human esophageal epithelial cells.CONCLUSION: The rapid stimuli of acid or bile acid increase proliferation in normal human esophageal epithelial cells by activating the ERK pathway.

  10. SHIP-deficient dendritic cells, unlike wild type dendritic cells, suppress T cell proliferation via a nitric oxide-independent mechanism.

    Directory of Open Access Journals (Sweden)

    Frann Antignano

    Full Text Available BACKGROUND: Dendritic cells (DCs not only play a crucial role in activating immune cells but also suppressing them. We recently investigated SHIP's role in murine DCs in terms of immune cell activation and found that TLR agonist-stimulated SHIP-/- GM-CSF-derived DCs (GM-DCs were far less capable than wild type (WT, SHIP+/+ GM-DCs at activating T cell proliferation. This was most likely because SHIP-/- GM-DCs could not up-regulate MHCII and/or co-stimulatory receptors following TLR stimulation. However, the role of SHIP in DC-induced T cell suppression was not investigated. METHODOLOGY/PRINCIPAL FINDINGS: In this study we examined SHIP's role in DC-induced T cell suppression by co-culturing WT and SHIP-/- murine DCs, derived under different conditions or isolated from spleens, with αCD3+ αCD28 activated WT T cells and determined the relative suppressive abilities of the different DC subsets. We found that, in contrast to SHIP+/+ and -/- splenic or Flt3L-derived DCs, which do not suppress T cell proliferation in vitro, both SHIP+/+ and -/- GM-DCs were capable of potently suppressing T cell proliferation. However, WT GM-DC suppression appeared to be mediated, at least in part, by nitric oxide (NO production while SHIP-/- GM-DCs expressed high levels of arginase 1 and did not produce NO. Following exhaustive studies to ascertain the mechanism of SHIP-/- DC-mediated suppression, we could conclude that cell-cell contact was required and the mechanism may be related to their relative immaturity, compared to SHIP+/+ GM-DCs. CONCLUSIONS: These findings suggest that although both SHIP+/+ and -/- GM-DCs suppress T cell proliferation, the mechanism(s employed are different. WT GM-DCs suppress, at least in part, via IFNγ-induced NO production while SHIP-/- GM-DCs do not produce NO and suppression can only be alleviated when contact is prevented.

  11. IL-13-induced proliferation of airway epithelial cells: mediation by intracellular growth factor mobilization and ADAM17

    Directory of Open Access Journals (Sweden)

    Sandifer Tracy

    2007-07-01

    Full Text Available Abstract Background The pleiotrophic cytokine interleukin (IL-13 features prominently in allergic and inflammatory diseases. In allergic asthma, IL-13 is well established as an inducer of airway inflammation and tissue remodeling. We demonstrated previously that IL-13 induces release of transforming growth factor-α (TGFα from human bronchial epithelial cells, with proliferation of these cells mediated by the autocrine/paracrine action of this growth factor. TGFα exists as an integral membrane protein and requires proteolytic processing to its mature form, with a disintegrin and metalloproteinase (ADAM17 responsible for this processing in a variety of tissues. Methods In this study, normal human bronchial epithelial (NHBE cells grown in air/liquid interface (ALI culture were used to examine the mechanisms whereby IL-13 induces release of TGFα and cellular proliferation. Inhibitors and antisense RNA were used to examine the role of ADAM17 in these processes, while IL-13-induced changes in the intracellular expression of TGFα and ADAM17 were visualized by confocal microscopy. Results IL-13 was found to induce proliferation of NHBE cells, and release of TGFα, in an ADAM17-dependent manner; however, this IL-13-induced proliferation did not appear to result solely from ADAM17 activation. Rather, IL-13 induced a change in the location of TGFα expression from intracellular to apical regions of the NHBE cells. The apical region was also found to be a site of significant ADAM17 expression, even prior to IL-13 stimulation. Conclusion Results from this study indicate that ADAM17 mediates IL-13-induced proliferation and TGFα shedding in NHBE cells. Furthermore, they provide the first example wherein a cytokine (IL-13 induces a change in the intracellular expression pattern of a growth factor, apparently inducing redistribution of intracellular stores of TGFα to the apical region of NHBE cells where expression of ADAM17 is prominent. Thus, IL-13

  12. Apatite formation on bioactive calcium-silicate cements for dentistry affects surface topography and human marrow stromal cells proliferation.

    Science.gov (United States)

    Gandolfi, Maria Giovanna; Ciapetti, Gabriela; Taddei, Paola; Perut, Francesca; Tinti, Anna; Cardoso, Marcio Vivan; Van Meerbeek, Bart; Prati, Carlo

    2010-10-01

    The effect of ageing in phosphate-containing solution of bioactive calcium-silicate cements on the chemistry, morphology and topography of the surface, as well as on in vitro human marrow stromal cells viability and proliferation was investigated. A calcium-silicate cement (wTC) mainly based on dicalcium-silicate and tricalcium-silicate was prepared. Alpha-TCP was added to wTC to obtain wTC-TCP. Bismuth oxide was inserted in wTC to prepare a radiopaque cement (wTC-Bi). A commercial calcium-silicate cement (ProRoot MTA) was tested as control. Cement disks were aged in DPBS for 5 h ('fresh samples'), 14 and 28 days, and analyzed by ESEM/EDX, SEM/EDX, ATR-FTIR, micro-Raman techniques and scanning white-light interferometry. Proliferation, LDH release, ALP activity and collagen production of human marrow stromal cells (MSC) seeded for 1-28 days on the cements were evaluated. Fresh samples exposed a surface mainly composed of calcium-silicate hydrates CSH (from the hydration of belite and alite), calcium hydroxide, calcium carbonate, and ettringite. Apatite nano-spherulites rapidly precipitated on cement surfaces within 5 h. On wTC-TCP the Ca-P deposits appeared thicker than on the other cements. Aged cements showed an irregular porous calcium-phosphate (Ca-P) coating, formed by aggregated apatite spherulites with interspersed calcite crystals. All the experimental cements exerted no acute toxicity in the cell assay system and allowed cell growth. Using biochemical results, the scores were: fresh cements>aged cements for cell proliferation and ALP activity (except for wTC-Bi), whereas fresh cementscell proliferation than aged cements, probably favoured by the presence of Si-OH gel and the early formation of apatite nano-spherulites; (2) the alpha-TCP doped cement aged for 28 days displayed the highest bioactivity and cell proliferation; (3) the deleterious effect of bismuth on cell

  13. Identification of glucocorticoid-induced leucine zipper as a key regulator of tumor cell proliferation in epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Fernandez Hervé

    2009-10-01

    Full Text Available Abstract Background Little is known about the molecules that contribute to tumor progression of epithelial ovarian cancer (EOC, currently a leading cause of mortality from gynecological malignancies. Glucocorticoid-Induced Leucine Zipper (GILZ, an intracellular protein widely expressed in immune tissues, has been reported in epithelial tissues and controls some of key signaling pathways involved in tumorigenesis. However, there has been no report on GILZ in EOC up to now. The objectives of the current study were to examine the expression of GILZ in EOC and its effect on tumor cell proliferation. Results GILZ expression was measured by immunohistochemical staining in tissue sections from 3 normal ovaries, 7 benign EOC and 50 invasive EOC. GILZ was not detected on the surface epithelium of normal ovaries and benign tumors. In contrast, it was expressed in the cytoplasm of tumor cells in 80% EOC specimens. GILZ immunostaining scores correlated positively to the proliferation marker Ki-67 (Spearman test in univariate analysis, P P Conclusion The present study is the first to identify GILZ as a molecule produced by ovarian cancer cells that promotes cell cycle progression and proliferation. Our findings clearly indicate that GILZ activates AKT, a crucial signaling molecule in tumorigenesis. GILZ thus appears as a potential key molecule in EOC.

  14. Inhibitory action of docetaxel on the proliferation of HeLa and SiHa cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Objective To study the inhibitory action of docetaxel(DOC)on the proliferation of HeLa and SiHa cells.Methods Cell morphological changes were observed with inverted phase contrast microscope.MTT was adopted to test and calculate the cell inhibition ratio.Flow cytometry was used to detect cell cycle.Results DOC had an obvious concentration-dependent inhibitory effect on the proliferation of both HeLa and SiHa cells.The inhibition ratio of DOC on SiHa was significantly higher than that on HeLa(P<0.05).DOC blo...

  15. Effects of herbal compound 861 on human hepatic stellate cell proliferation and activation

    Institute of Scientific and Technical Information of China (English)

    Lin Wang; Jian Wang; Bao-En Wang; Pei-Gen Xiao; Yan-Jiang Qiao; Xue-Hai Tan

    2004-01-01

    AIM: To investigate the effects of herbal compound 861(Cpd 861) on cell proliferation in human hepatic stellate cells (LX-2) and human hepatocellular liver carcinoma cells(HepG2), and expression of α-smooth muscle actin (α-SMA)in LX-2 cells.METHODS: LX-2 and HepG2 cells were incubated withvarious concentrations of Cpd 861 (0.1-0.003 mg/mL)for 1,2, 3, 5 and 7 d. Cell proliferation was analyzed by 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Effects of Cpd861on the expression of α-SMA mRNA in LX-2 cells were measured by real-time quantitative PCR method using SYBR Green I technology.RESULTS: Cpd 861, at 0.1 mg/mL, significantly inhibited LX-2 cell proliferation (15% decrease relative to control,P<0.05) after 3 d of incubation. The inhibitory effects seemed to increase with the treatment time (25% decrease after 5 d of incubation and 35% decrease after 7 d of incubation,P<0.01). However, Cpd 861 did not affect HepG2 cell proliferation at the same concentration used for LX-2 cells.The expression levels of α-SMA mRNA decreased significantly when LX-2 cells were exposed to Cpd 861 for 48 h (59%decrease relative to control, P<0.05) or 72 h (60% decrease relative to control, P<0.01).CONCLUSION: Cpd 861 can significantly inhibit LX-2 cell proliferation in a dose-dependant manner, and reduce the expression levels of α-SMA mRNA in LX-2 cells. Since hepatic cell proliferation and high level of α-SMA are associated with liver fibrosis, the results suggest that Cpd 861 may be useful in the treatment of this disease.

  16. Coupling of Hedgehog and Hippo pathways promotes stem cell maintenance by stimulating proliferation

    OpenAIRE

    Huang, Jianhua; Kalderon, Daniel

    2014-01-01

    It is essential to define the mechanisms by which external signals regulate adult stem cell numbers, stem cell maintenance, and stem cell proliferation to guide regenerative stem cell therapies and to understand better how cancers originate in stem cells. In this paper, we show that Hedgehog (Hh) signaling in Drosophila melanogaster ovarian follicle stem cells (FSCs) induces the activity of Yorkie (Yki), the transcriptional coactivator of the Hippo pathway, by inducing yki transcription. More...

  17. A Milk Protein, Casein, as a Proliferation Promoting Factor in Prostate Cancer Cells

    OpenAIRE

    Park, Sung-Woo; Kim, Joo-Young; Kim, You-sun; Lee, Sang Jin; Lee, Sang Don; CHUNG, MOON KEE

    2014-01-01

    Purpose Despite most epidemiologic studies reporting that an increase in milk intake affects the growth of prostate cancer, the results of experimental studies are not consistent. In this study, we investigated the proliferation of prostate cancer cells treated with casein, the main protein in milk. Materials and Methods Prostate cancer cells (LNCaP and PC3), lung cancer cells (A459), stomach cancer cells (SNU484), breast cancer cells (MCF7), immortalized human embryonic kidney cells (HEK293)...

  18. Gremlin is overexpressed in lung adenocarcinoma and increases cell growth and proliferation in normal lung cells.

    Directory of Open Access Journals (Sweden)

    Michael S Mulvihill

    Full Text Available BACKGROUND: Gremlin, a member of the Dan family of BMP antagonists, is a glycosylated extracellular protein. Previously Gremlin has been shown to play a role in dorsal-ventral patterning, in tissue remodeling, and recently in angiogenesis. Evidence has previously been presented showing both over- and under-expression of Gremlin in different tumor tissues. Here, we sought to quantify expression of Gremlin in cancers of the lung and performed in vitro experiments to check whether Gremlin promotes cell growth and proliferation. METHODOLOGY/PRINCIPAL FINDINGS: Expression of Gremlin in 161 matched tumor and normal lung cancer specimens is quantified by quantitative real-time PCR and protein level is measured by immunohistochemistry. GREM1 was transfected into lung fibroblast and epithelial cell lines to assess the impact of overexpression of Gremlin in vitro. RESULTS: Lung adenocarcinoma but not squamous cell carcinoma shows a significant increase in Gremlin expression by mRNA and protein level. Lung fibroblast and epithelial cell lines transfected with GREM1 show significantly increased cell proliferation. CONCLUSIONS/SIGNIFICANCE: Our data suggest that Gremlin acts in an oncogenic manner in lung adenocarcinoma and could hold promise as a new diagnostic marker or potential therapeutic target in lung AD or general thoracic malignancies.

  19. Hedyotis diffusa Willd extract inhibits HT-29 cell proliferation via cell cycle arrest.

    Science.gov (United States)

    Lin, Minghe; Lin, Jiumao; Wei, Lihui; Xu, Wei; Hong, Zhenfeng; Cai, Qiaoyan; Peng, Jun; Zhu, Dezeng

    2012-08-01

    Hedyotis diffusa Willd (HDW) has long been used as an important component in several Chinese medicine formulae to clinically treat various types of cancer, including colorectal cancer (CRC). Previously, we reported that HDW inhibits CRC growth via the induction of cancer cell apoptosis and the inhibition of tumor angiogenesis. In the present study, to further elucidate the mechanism of HDW-mediated antitumor activity, we investigated the effect of HDW ethanol extract (EEHDW) on the proliferation of HT-29 human colon carcinoma cells. We found that EEHDW reduced HT-29 cell viability and survival in a dose- and time-dependent manner. We also observed that EEHDW treatment blocked the cell cycle, preventing G1 to S progression, and reduced mRNA expression of pro-proliferative PCNA, Cyclin D1 and CDK4, but increased that of anti-proliferative p21. Our findings suggest that Hedyotis diffusa Willd may be an effective treatment for CRC via the suppression of cancer cell proliferation. PMID:23139718

  20. Sprouty2 controls proliferation of palate mesenchymal cells via fibroblast growth factor signaling

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Kaori [Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Taketomi, Takaharu, E-mail: taketomi@dent.kyushu-u.ac.jp [Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Yoshizaki, Keigo [Section of Orthodontics, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Arai, Shinsaku [Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Sanui, Terukazu [Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Yoshiga, Daigo [Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Yoshimura, Akihiko [Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Japan Science and Technology Agency (JST), CREST, Chiyoda-ku, Tokyo 102-0075 (Japan); Nakamura, Seiji [Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2011-01-28

    Research highlights: {yields} Sprouty2-deficient mice exhibit cleft palate as a result of failure of palatal shelf elevation. {yields} We examined palate cell proliferation in Sprouty2-deficient mice. {yields} Palate mesenchymal cell proliferation was increased in Sprouty2 KO mice. {yields} Sprouty2 plays roles in murine palatogenesis by regulating cell proliferation. -- Abstract: Cleft palate is one of the most common craniofacial deformities. The fibroblast growth factor (FGF) plays a central role in reciprocal interactions between adjacent tissues during palatal development, and the FGF signaling pathway has been shown to be inhibited by members of the Sprouty protein family. In this study, we report the incidence of cleft palate, possibly caused by failure of palatal shelf elevation, in Sprouty2-deficient (KO) mice. Sprouty2-deficient palates fused completely in palatal organ culture. However, palate mesenchymal cell proliferation estimated by Ki-67 staining was increased in Sprouty2 KO mice compared with WT mice. Sprouty2-null palates expressed higher levels of FGF target genes, such as Msx1, Etv5, and Ptx1 than WT controls. Furthermore, proliferation and the extracellular signal-regulated kinase (Erk) activation in response to FGF was enhanced in palate mesenchymal cells transfected with Sprouty2 small interfering RNA. These results suggest that Sprouty2 regulates palate mesenchymal cell proliferation via FGF signaling and is involved in palatal shelf elevation.

  1. Effect of low-level laser therapy on mesenchymal stem cell proliferation: a systematic review.

    Science.gov (United States)

    Ginani, Fernanda; Soares, Diego Moura; Barreto, Mardem Portela E Vasconcelos; Barboza, Carlos Augusto Galvão

    2015-11-01

    Low-level laser therapy (LLLT) has been used in several in vitro experiments in order to stimulate cell proliferation. Cells such as fibroblasts, keratinocytes, lymphocytes, and osteoblasts have shown increased proliferation when submitted to laser irradiation, although little is known about the effects of LLLT on stem cells. This study aims to assess, through a systematic literature review, the effects of LLLT on the in vitro proliferation of mesenchymal stem cells. Using six different terms, we conducted an electronic search in PubMed/Medline database for articles published in the last twelve years. From 463 references obtained, only 19 papers met the search criteria and were included in this review. The analysis of the papers showed a concentration of experiments using LLLT on stem cells derived from bone marrow, dental pulp, periodontal ligament, and adipose tissue. Several protocols were used to irradiate the cells, with variations on wavelength, power density, radiation time, and state of light polarization. Most studies demonstrated an increase in the proliferation rate of the irradiated cells. It can be concluded that the laser therapy positively influences the in vitro proliferation of stem cells studied, being necessary to carry out further experiments on other cell types and to uniform the methodological designs. PMID:25764448

  2. Extracellular ATP inhibits Schwann cell dedifferentiation and proliferation in an ex vivo model of Wallerian degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youn Ho; Lee, Seo Jin [Department of Anatomy, College of Medicine, Kyung Hee University, Heogi-Dong 1, Dongdaemun-Gu, Seoul 130-701 (Korea, Republic of); Jung, Junyang, E-mail: jjung@khu.ac.kr [Department of Anatomy, College of Medicine, Kyung Hee University, Heogi-Dong 1, Dongdaemun-Gu, Seoul 130-701 (Korea, Republic of)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer ATP-treated sciatic explants shows the decreased expression of p75NGFR. Black-Right-Pointing-Pointer Extracellular ATP inhibits the expression of phospho-ERK1/2. Black-Right-Pointing-Pointer Lysosomal exocytosis is involved in Schwann cell dedifferentiation. Black-Right-Pointing-Pointer Extracellular ATP blocks Schwann cell proliferation in sciatic explants. -- Abstract: After nerve injury, Schwann cells proliferate and revert to a phenotype that supports nerve regeneration. This phenotype-changing process can be viewed as Schwann cell dedifferentiation. Here, we investigated the role of extracellular ATP in Schwann cell dedifferentiation and proliferation during Wallerian degeneration. Using several markers of Schwann cell dedifferentiation and proliferation in sciatic explants, we found that extracellular ATP inhibits Schwann cell dedifferentiation and proliferation during Wallerian degeneration. Furthermore, the blockage of lysosomal exocytosis in ATP-treated sciatic explants is sufficient to induce Schwann cell dedifferentiation. Together, these findings suggest that ATP-induced lysosomal exocytosis may be involved in Schwann cell dedifferentiation.

  3. Relationship between β-catenin expression and epithelial cell proliferation in gastric mucosa with intestinal metaplasia

    Institute of Scientific and Technical Information of China (English)

    Adriana Romiti; Pietro Mingazzini; Angelo Zullo; Francesco Borrini; Ida Sarcina; Cesare Hassan; Simon Winn; Silverio Tomao; Aldo Vecchione; Sergio Morini

    2005-01-01

    AIM: To investigate β-catenin expression in patients with intestinal metaplasia, and to look for a possible relationship between β-catenin expression and either epithelial proliferation values or Helicobacter pylori ( H pylori) infection.METHODS: Twenty patients with complete type intestinal metaplasia were studied. β-Catenin expression and epithelial cell proliferation in antral mucosa were assessed using an immunohistochemical analysis. Hpylori infectionwas detected by histology and a rapid urease test.RESULTS: Reduced β-catenin expression on the surface of metaplastic cells was detected in 13 (65%) out of 20 patients. Moreover, in eight (40%) patients intranuclear expression of β-catenin was found. When patients were analyzed according to Hpylori infection, the prevalence of both β-catenin reduction at the cell surface and its intranuclear localization did not significantly differ between infected and uninfected patients. Cell proliferation was higher in patients with intranudear β-catenin expression as compared to the remaining patients, although the difference failed to reach the statistical significance (36±8.9 vs 27.2±11.4, P = 0.06). On the contrary, a similar cell proliferation value was observed between patients with reduced expression of β-catenin on cell surface and those with a normal expression (28.1±11.8 vs26.1±8.8, P= 0.7).Hpyloriinfection significantly increased cell proliferation (33.3±10.2% vs 24.6±7.4%, respectively, P= 0.04).CONCLUSION: Both cell surface reduction and intranuclear accumulation of β-catenin were detected in intestinal metaplasia. The intranuclear localization of β-catenin increases cell proliferation. H pylori infection does not seem to play a direct role in β-catenin alterations, whilst it significantly increases cell proliferation.

  4. Ethylene diamine tetraacetic acid-induced colonic crypt cell proliferation in rats

    Institute of Scientific and Technical Information of China (English)

    Qing-Yong Ma; Kate E Williamson; Brian J Rowlands

    2004-01-01

    AIM: To investigate the effect of ethylene diamine tetraacetic acid (EDTA) on proliferation of rat colonic cells.METHODS: EDTA was administered into Wistar rats,carcinogenesis induced by 1,2-dimethylhydrazine (DMH) in rats was studied with immunohistochemistry.RESULTS: Marked regional differences in cell proliferation were found in all groups. In EDTA-treated animals, total labelling indexes in both proximal (10.00±0.44 VS7.20±-0.45)and distal (11.05±0.45 vs8.65±0.34) colon and proliferative zone size (21.67±1.13 vs 16.75±1.45, 27.73±1.46 vs 21.74±1.07) were significantly higher than that in normal controls (P<0.05) and lower than that in DMH group (10.00±0.44 vs 11.54±0.45, 11.05±0.45 vs 13.13±0.46,21.67±1.13 vs 35.52±1.58, 27.73±1.46 vs 39.61±1.32,P<0.05). Cumulative frequency distributions showed a shift of the EDTA distal curve to the right (P<0.05) while the EDTA proximal curve did not change compared to normal controls. Despite the changes of proliferative parameters,tumours did not develop in EDTA treated animals.CONCLUSION: Hyperproliferation appears to be more easily induced by EDTA in distal colon than in proximal colon.Hyperproliferation may need to exceed a threshold to develop colonic tumours. EDTA may work as a co-factor in colonic tumorigenesis.

  5. The novel steroidal alkaloids dendrogenin A and B promote proliferation of adult neural stem cells

    International Nuclear Information System (INIS)

    Highlights: • Dendrogenin A and B are new aminoalkyl oxysterols. • Dendrogenins stimulated neural stem cells proliferation. • Dendrogenins induce neuronal outgrowth from neurospheres. • Dendrogenins provide new therapeutic options for neurodegenerative disorders. - Abstract: Dendrogenin A (DDA) and dendrogenin B (DDB) are new aminoalkyl oxysterols which display re-differentiation of tumor cells of neuronal origin at nanomolar concentrations. We analyzed the influence of dendrogenins on adult mice neural stem cell proliferation, sphere formation and differentiation. DDA and DDB were found to have potent proliferative effects in neural stem cells. Additionally, they induce neuronal outgrowth from neurospheres during in vitro cultivation. Taken together, our results demonstrate a novel role for dendrogenins A and B in neural stem cell proliferation and differentiation which further increases their likely importance to compensate for neuronal cell loss in the brain

  6. The novel steroidal alkaloids dendrogenin A and B promote proliferation of adult neural stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, Shaden A.M., E-mail: shaden.khalifa@ki.se [Department of Neuroscience, Karolinska Institute, Stockholm (Sweden); Medina, Philippe de [Affichem, Toulouse (France); INSERM UMR 1037, Team “Sterol Metabolism and Therapeutic Innovations in Oncology”, Cancer Research Center of Toulouse, F-31052 Toulouse (France); Erlandsson, Anna [Department of Public Health and Caring Sciences, Uppsala University, Uppsala (Sweden); El-Seedi, Hesham R. [Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala (Sweden); Silvente-Poirot, Sandrine [INSERM UMR 1037, Team “Sterol Metabolism and Therapeutic Innovations in Oncology”, Cancer Research Center of Toulouse, F-31052 Toulouse (France); University of Toulouse III, Toulouse (France); Institut Claudius Regaud, Toulouse (France); Poirot, Marc, E-mail: marc.poirot@inserm.fr [INSERM UMR 1037, Team “Sterol Metabolism and Therapeutic Innovations in Oncology”, Cancer Research Center of Toulouse, F-31052 Toulouse (France); University of Toulouse III, Toulouse (France); Institut Claudius Regaud, Toulouse (France)

    2014-04-11

    Highlights: • Dendrogenin A and B are new aminoalkyl oxysterols. • Dendrogenins stimulated neural stem cells proliferation. • Dendrogenins induce neuronal outgrowth from neurospheres. • Dendrogenins provide new therapeutic options for neurodegenerative disorders. - Abstract: Dendrogenin A (DDA) and dendrogenin B (DDB) are new aminoalkyl oxysterols which display re-differentiation of tumor cells of neuronal origin at nanomolar concentrations. We analyzed the influence of dendrogenins on adult mice neural stem cell proliferation, sphere formation and differentiation. DDA and DDB were found to have potent proliferative effects in neural stem cells. Additionally, they induce neuronal outgrowth from neurospheres during in vitro cultivation. Taken together, our results demonstrate a novel role for dendrogenins A and B in neural stem cell proliferation and differentiation which further increases their likely importance to compensate for neuronal cell loss in the brain.

  7. Modulatory effects of quercetin on proliferation and differentiation of the human colorectal cell line Caco-2.

    Science.gov (United States)

    Dihal, Ashwin A; Woutersen, Ruud A; van Ommen, Ben; Rietjens, Ivonne M C M; Stierum, Rob H

    2006-07-18

    The effect of the dietary flavonoid quercetin was investigated on proliferation and differentiation of the human colon cancer cell line Caco-2. Confluent Caco-2 monolayers exposed to quercetin showed a biphasic effect on cell proliferation and a decrease in cell differentiation (0.001cells formed 5 phase II metabolites, of which the amount of 4'-O-methyl-quercetin-3'-O-glucuronide correlated with the differentiation grade (r=0.99, P<0.003). The increment of cell proliferation at low quercetin concentrations and the decrease in cell differentiation are effects opposite to what would be expected for a functional food ingredient with anti-carcinogenic potential. PMID:16129554

  8. Inhibition of T cell proliferation by selective block of Ca(2+)-activated K(+) channels

    DEFF Research Database (Denmark)

    Jensen, B S; Odum, Niels; Jorgensen, N K;

    1999-01-01

    established. The recent cloning of the Ca(2+)-activated, intermediate-conductance K(+) channel (IK channel) has enabled a detailed investigation of the role of this highly Ca(2+)-sensitive K(+) channel in the calcium signaling and subsequent regulation of T cell proliferation. The role IK channels play in T...... cell activation and proliferation has been investigated by using various blockers of IK channels. The Ca(2+)-activated K(+) current in human T cells is shown by the whole-cell voltage-clamp technique to be highly sensitive to clotrimazole, charybdotoxin, and nitrendipine, but not to ketoconazole...... inhibited after block of IK channels by clotrimazole. Clotrimazole and cyclosporin A act synergistically to inhibit T cell proliferation, which confirms that block of IK channels affects the process downstream from T cell receptor activation. We suggest that IK channels constitute another target for immune...

  9. A quantitative inverse relationship between connexin32 expression and cell proliferation in a rat hepatoma cell line

    International Nuclear Information System (INIS)

    Gap junctions comprised of connexin proteins are involved in direct intercellular communication and the regulation of cell behaviour and homeostasis. Reduced connexin expression and loss of gap junction function is a characteristic of many cancer cells and of the effect of many non-genotoxic carcinogens that induce cell proliferation. Moreover, when certain cancer cell lines are transfected with specific connexin genes, cells can regain control over proliferation. We have employed RNA interference and dexamethasone to modulate connexin32 expression in MH1C1 cells to a range of concentrations. This allowed the determination of the quantitative relationship between connexin32 protein expression and cell proliferation. The magnitude of cell proliferation, measured by bromodeoxyuridine incorporation, was inversely proportional to the level of connexin32 expression. Q-PCR indicated a lack of change of expression of a range of cell cycle-related genes at 24 h. The inverse relationship between Cx32 expression and proliferation was continuous, and a threshold level of reduction of connexin32 was not observable for an influence on proliferation

  10. Interleukin 1 alpha stimulates hemopoiesis but not tumor cell proliferation and protects mice from lethal total body irradiation

    International Nuclear Information System (INIS)

    Interleukin 1 alpha (IL-1) is a polypeptide/glycoprotein growth factor with multiple functions including the modulation of hematopoietic cell proliferation and differentiation. In vivo studies were performed with C57BL/6J mice injected with 0, 0.2, or 2.0 micrograms of IL-1 24 hr before or after lethal total body irradiation (TBI) (9.5 Gy). More mice in the groups administered IL-1 before TBI survived (90% of the 2.0 micrograms group) than those treated 2 or 24 hr after TBI, which was still slightly superior to the uninjected group, which all died within 15 days (p = .0001). Proliferation of bone marrow granulocyte/macrophage colonies following split dose TBI was also greatest for mouse groups treated with IL-1 prior to TBI. These experiments support data from other investigators that IL-1 stimulation of BM is related to IL-1 timing with respect to TBI. Stimulation of hemopoiesis was also assessed in terms of changes in peripheral blood and BM cell numbers and cell cycle kinetics using an electronic particle counter and flow cytometric techniques. Mice injected with 2 micrograms of IL-1 showed an initial decline (at 3-6 hr) and then a selective proliferation (24-48 hr) of early and more committed progenitor cells to 125% and 200% of control values, respectively. Peripheral blood counts rose accordingly. Cells in S and G2/M phases increased over 10 hr and then declined in number. It thus appeared that some synchronization of cell cycling occurred, which might place cells in a more radioresistant phase of the cell cycle. The glutathione (GSH) content and synthesis in BM cells were measured by isocratic paired-ion high performance liquid chromatography and 35S-labelled cysteine incorporation into the GSH tripeptide. An increase in cellular GSH content and synthesis was demonstrated following IL-1 which lasted 24 hr

  11. Exercise-induced promotion of hippocampal cell proliferation requires beta-endorphin.

    Science.gov (United States)

    Koehl, M; Meerlo, P; Gonzales, D; Rontal, A; Turek, F W; Abrous, D N

    2008-07-01

    Adult hippocampal neurogenesis is influenced by a variety of stimuli, including exercise, but the mechanisms by which running affects neurogenesis are not yet fully understood. Because beta-endorphin, which is released in response to exercise, increases cell proliferation in vitro, we hypothesized that it could exert a similar effect in vivo and mediate the stimulatory effects of running on neurogenesis. We thus analyzed the effects of voluntary wheel-running on adult neurogenesis (proliferation, differentiation, survival/death) in wild-type and beta-endorphin-deficient mice. In wild-type mice, exercise promoted cell proliferation evaluated by sacrificing animals 24 h after the last 5-bromo-2'-deoxyuridine (BrdU) pulse and by using endogenous cell cycle markers (Ki67 and pH(3)). This was accompanied by an increased survival of 4-wk-old BrdU-labeled cells, leading to a net increase of neurogenesis. Beta-endorphin deficiency had no effect in sedentary mice, but it completely blocked the running-induced increase in cell proliferation; this blockade was accompanied by an increased survival of 4-wk-old cells and a decreased cell death. Altogether, adult neurogenesis was increased in response to exercise in knockout mice. We conclude that beta-endorphin released during running is a key factor for exercise-induced cell proliferation and that a homeostatic balance may regulate the final number of new neurons. PMID:18263701

  12. Propofol induces proliferation and invasion of gallbladder cancer cells through activation of Nrf2

    Directory of Open Access Journals (Sweden)

    Zhang Lingmin

    2012-08-01

    Full Text Available Abstract Background Propofol is one of the most commonly used intravenous anaesthetic agents during cancer resection surgery, but the effect of propofol on gallbladder cancer is not clear. NF-E2-related factor 2 (Nrf2 is abundantly expressed in cancer cells and relates to proliferation, invasion, and chemoresistance. The aims of the current study were to evaluate effects of propofol on the behavior of human GC cells and role of Nrf2 in these effects. Method The effects of propofol on cell proliferation, apoptosis, and invasion were detected by MTT assays, flow cytometry, and transwell assay. Also, activation of Nrf2 was determined by western blot, RT-PCR, and immunofluorescence assays. Nrf2 was knocked-down in GBC-SD cells by shRNA before evaluating the role of Nrf2 in the influence of propofol on biological behaviors. Results Propofol promoted the proliferation of GBC-SD cells in a dose- and time- dependent manner. After exposure to propofol for 48 h, GBC-SD cells showed decreased apoptosis and increased invasion. Also, propofol over-expressed Nrf2 at both the protein and mRNA levels and induced translocation of Nrf2 into the nucleus. Finally, loss of Nrf2 by shRNA reversed the effect of propofol on cell proliferation, apoptosis, and invasion. Conclusion Propofol induces proliferation and promotes invasion of GC cells through activation of Nrf2.

  13. Regulation of IL-2 induced proliferation and cytotoxicity in human natural killer cells by monoclonal antibodies

    International Nuclear Information System (INIS)

    Natural killer (NK) activity is mediated by a subpopulation of cells termed large granular lymphocytes (LGL), which exhibit cytotoxic activity against a variety of tumor targets. LGL express OKT8, OKT9, OKT10, OKT11, 3G8 (FcγR), OKM1, NKH1. The addition of recombinant IL-2 (rIL-2), increases cytotoxicity, induces IFN-γ production and leads to LGL proliferation. Since monoclonal antibodies (MoAb) represent highly specific probes to analyze possible surface molecules, they have studied the role of various MoAbs in the regulation of cytotoxicity, proliferation, and secretory function of purified LGL. LGL were isolated from nonadherent human peripheral blood leukocytes on discontinuous Percoll density gradients, followed by 290C E-rosette depletion of contaminating T cells. These preparations were ≥ 85% LGL and contained ≥ 5% OKT3+ cells. Using a limiting dilution assay, purified LGL were incubated with rIL-2 and the MoAbs (10 μg/ml) for 7 days. These cells were tested for cytotoxicity against K562 in a 51Cr- release assay, and for proliferation as determined by 3H-thymidine incorporation. Results indicate that the OKT9 antibody inhibited both the cytotoxicity and proliferation. MoAb against LGl markers (OKT11, OKT8, OKM1, 3G8, and NKH1) had no effect on cytotoxicity or proliferation. Unlike the T cell receptor complex (with OKT3), the surface molecules examined do not regulate LGL lysis or proliferation

  14. Knockdown of COUP-TFII inhibits cell proliferation and induces apoptosis through upregulating BRCA1 in renal cell carcinoma cells.

    Science.gov (United States)

    Zheng, Jia; Qin, Weijun; Jiao, Dian; Ren, Jing; Wei, Ming; Shi, Shengjia; Xi, Wenjin; Wang, He; Yang, An-Gang; Huan, Yi; Wen, Weihong

    2016-10-01

    COUP-TFII belongs to the nuclear receptor family, which is highly expressed in many kinds of tumors. Previous studies have shown that COUP-TFII can promote tumor progression through regulating tumor angiogenesis and cell proliferation and migration of certain cancer cells. However, the function of COUP-TFII in renal cell carcinoma (RCC) is not clear. Here, we showed that clinical RCC tumor tissues showed much higher COUP-TFII expression level than adjacent normal tissues. When COUP-TFII was knocked down in RCC 769-P and 786-O cells by siRNA or shRNA-expressing lentivirus, the cell proliferation was markedly inhibited, and apoptosis increased. Moreover, the tumor growth of COUP-TFII knockdown 769-P and 786-O xenografts in nude mice was also obviously inhibited. Using qRT-PCR and Western blot, we showed that the expression of the tumor suppressor gene BRCA1 was upregulated in COUP-TFII knockdown cells. Simultaneously knockdown of BRCA1 and COUP-TFII partially rescued the inhibited cell proliferation and increased apoptosis in COUP-TFII single knockdown cells. These results indicate that COUP-TFII may play an oncogenic role in RCC, and COUP-TFII may promote tumor progression through inhibiting BRCA1. PMID:27193872

  15. NF-KB downregulation may be involved the depression of tumor cell proliferation mediated by human mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Ling QIAO; Tie-jun ZHAO; Feng-ze WANG; Chang-liang SHAN; Li-hong YE; Xiao-dong ZHANG

    2008-01-01

    Aim:It has been reported that stem cells are able to home to tumorigenesis and inhibit the proliferation of tumor cells.The purpose of our study was to demon-strate the molecular mechanism of the inhibitory proliferation of hepatoma cells and breast cancer cells mediated by human mesenchymal stem cells (hMSCs).Methods:The proliferation of H7402 human hepatoma cells and MCF-7 human breast cancer cells was measured by the 5-bromodeoxyuridine (BrdU) incorpora-tion assay and flow cytometry assay after the treatment with conditioned media from hMSCs culture,such as Z3 cells or BMMS-03 cells.The role of NF-kB or the phosphorylation of inhibitor kBoα (p-IkBα) in the depression of hepatoma or breast cancer cells treated with conditioned media from Z3 cells or BMMS-03 cells was examined by reporter gene assay,quantitative real-time PCR,and Western blot analysis,respectively.Results:The proliferation of H7402 cells and MCF-7 cells was decreased significantly by the BrdU incorporation assay and flow cytometry assay after treatment.The transcriptional activity and mRNA level of NF-kB were downregulated in the treated cells by reporter gene assay and quantitative real-time PCR in a dose-dependent manner.At the protein level,NF-kB and p-IkBα decreased in the treated cells by Western blot analysis.Conclusion:Conditioned media from hMSCs are able to inhibit the proliferation of tumor cells.NF-kB downregulation is one of reasons for the depression of tumor cell proliferation mediated by hMSCs.

  16. Retinoic acid and cAMP inhibit rat hepatocellular carcinoma cell proliferation and enhance cell differentiation

    International Nuclear Information System (INIS)

    Hepatocellular carcinoma (HCC) is the third highest cause of cancer death worldwide. In general, the disease is diagnosed at an advanced stage when potentially curative therapies are no longer feasible. For this reason, it is very important to develop new therapeutic approaches. Retinoic acid (RA) is a natural derivative of vitamin A that regulates important biological processes including cell proliferation and differentiation. In vitro studies have shown that RA is effective in inhibiting growth of HCC cells; however, responsiveness to treatment varies among different HCC cell lines. The objective of the present study was to determine if the combined use of RA (0.1 µM) and cAMP (1 mM), an important second messenger, improves the responsiveness of HCC cells to RA treatment. We evaluated the proliferative behavior of an HCC cell line (HTC) and the expression profile of genes related to cancer signaling pathway (ERK and GSK-3β) and liver differentiation [E-cadherin, connexin 26 (Cx26), and connexin 32 (Cx32)]. RA and cAMP were effective in inhibiting the proliferation of HTC cells independently of combined use. However, when a mixture of RA and cAMP was used, the signals concerning the degree of cell differentiation were increased. As demonstrated by Western blot, the treatment increased E-cadherin, Cx26, Cx32 and Ser9-GSK-3β (inactive form) expression while the expression of Cx43, Tyr216-GSK-3β (active form) and phosphorylated ERK decreased. Furthermore, telomerase activity was inhibited along treatment. Taken together, the results showed that the combined use of RA and cAMP is more effective in inducing differentiation of HTC cells

  17. Retinoic acid and cAMP inhibit rat hepatocellular carcinoma cell proliferation and enhance cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ionta, M. [Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas MG (Brazil); Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil); Rosa, M.C.; Almeida, R.B.; Freitas, V.M.; Rezende-Teixeira, P.; Machado-Santelli, G.M. [Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil)

    2012-05-25

    Hepatocellular carcinoma (HCC) is the third highest cause of cancer death worldwide. In general, the disease is diagnosed at an advanced stage when potentially curative therapies are no longer feasible. For this reason, it is very important to develop new therapeutic approaches. Retinoic acid (RA) is a natural derivative of vitamin A that regulates important biological processes including cell proliferation and differentiation. In vitro studies have shown that RA is effective in inhibiting growth of HCC cells; however, responsiveness to treatment varies among different HCC cell lines. The objective of the present study was to determine if the combined use of RA (0.1 µM) and cAMP (1 mM), an important second messenger, improves the responsiveness of HCC cells to RA treatment. We evaluated the proliferative behavior of an HCC cell line (HTC) and the expression profile of genes related to cancer signaling pathway (ERK and GSK-3β) and liver differentiation [E-cadherin, connexin 26 (Cx26), and connexin 32 (Cx32)]. RA and cAMP were effective in inhibiting the proliferation of HTC cells independently of combined use. However, when a mixture of RA and cAMP was used, the signals concerning the degree of cell differentiation were increased. As demonstrated by Western blot, the treatment increased E-cadherin, Cx26, Cx32 and Ser9-GSK-3β (inactive form) expression while the expression of Cx43, Tyr216-GSK-3β (active form) and phosphorylated ERK decreased. Furthermore, telomerase activity was inhibited along treatment. Taken together, the results showed that the combined use of RA and cAMP is more effective in inducing differentiation of HTC cells.

  18. p66Shc longevity protein regulates the proliferation of human ovarian cancer cells.

    Science.gov (United States)

    Muniyan, Sakthivel; Chou, Yu-Wei; Tsai, Te-Jung; Thomes, Paul; Veeramani, Suresh; Benigno, Benedict B; Walker, L DeEtte; McDonald, John F; Khan, Shafiq A; Lin, Fen-Fen; Lele, Subodh M; Lin, Ming-Fong

    2015-08-01

    p66Shc functions as a longevity protein in murine and exhibits oxidase activity in regulating diverse biological activities. In this study, we investigated the role of p66Shc protein in regulating ovarian cancer (OCa) cell proliferation. Among three cell lines examined, the slowest growing OVCAR-3 cells have the lowest level of p66Shc protein. Transient transfection with p66Shc cDNA expression vector in OVCAR-3 cells increases cell proliferation. Conversely, knock-down of p66Shc by shRNA in rapidly growing SKOV-3 cells results in decreased cell growth. In estrogen (E2)-treated CaOV-3 cells, elevated p66Shc protein level correlates with ROS level, ErbB-2 and ERK/MAPK activation, and cell proliferation. Further, the E2-stimulated proliferation of CaOV-3 cells was blocked by antioxidants and ErbB-2 inhibitor. Additionally, in E2-stimulated cells, the tartrate-sensitive, but not the tartrate-resistant, phosphatase activity decreases; concurrently, the tyrosine phosphorylation of ErbB-2 increases. Conversely, inhibition of phosphatase activity by L(+)-tartrate treatment increases p66Shc protein level, ErbB-2 tyrosine phosphorylation, ERK/MAPK activation, and cell growth. Further, inhibition of the ERK/MAPK pathway by PD98059 blocks E2-induced ERK/MAPK activation and cell proliferation in CaOV-3 cells. Moreover, immunohistochemical analyses showed that the p66Shc protein level was significantly higher in cancerous cells than in noncancerous cells in archival OCa tissues (n = 76; P = 0.00037). These data collectively indicate that p66Shc protein plays a critical role in up-regulating OCa progression. PMID:24395385

  19. ALDH expression characterizes G1-phase proliferating beta cells during pregnancy.

    Directory of Open Access Journals (Sweden)

    Lijuan Zhang

    Full Text Available High levels of aldehyde dehydrogenase (ALDH activity have been detected in various progenitor and stem cells. Thus, Aldefluor fluorescence, which represents precisely the ALDH activity, has been widely used for the identification, evaluation, and isolation of stem and progenitor cells. Recently, ALDH activity was detected in embryonic and adult mouse pancreas, specifically in adult centroacinar and terminal duct cells supposed to harbor endocrine and exocrine progenitor cells in the adult pancreas. Nevertheless, ALDH activity and aldeflour fluorescence have not been examined in beta cells. Here, we report a dynamic increase in the number of aldeflour+ beta cells during pregnancy. Interestingly, nearly all these aldeflour+ beta cells are positive for Ki-67, suggesting that they are in an active cell cycle (G1, S and M phases. To determine precisely at which phase beta cells activate ALDH activity and thus become aldeflour+, we co-stained insulin with additional proliferation markers, phosphohistone3 (PHH3, a marker for M-phase proliferating cells and Bromodeoxyuridine (BrdU, a marker for S-phase proliferating cells. Our data show little aldeflour+ beta cells that were positive for either PHH3, or BrdU, suggesting that beta cells activate ALDH and become Aldefluor+ when they enter G1-phase of active cell cycle, but may downregulate ALDH when they leave G1-phase and enter S phase. Our data thus reveal a potential change in ALDH activity of proliferating beta cells during pregnancy, which provides a novel method for isolation and analysis of proliferating beta cells. Moreover, our data also suggest that caution needs to be taken on interpretation of Aldefluor lineage-tracing data in pancreas.

  20. ALDH Expression Characterizes G1-Phase Proliferating Beta Cells during Pregnancy

    Science.gov (United States)

    Zhang, Lijuan; Wang, Lin; Liu, Xiaoliang; Zheng, Dongming; Liu, Sishi; Liu, Caixia

    2014-01-01

    High levels of aldehyde dehydrogenase (ALDH) activity have been detected in various progenitor and stem cells. Thus, Aldefluor fluorescence, which represents precisely the ALDH activity, has been widely used for the identification, evaluation, and isolation of stem and progenitor cells. Recently, ALDH activity was detected in embryonic and adult mouse pancreas, specifically in adult centroacinar and terminal duct cells supposed to harbor endocrine and exocrine progenitor cells in the adult pancreas. Nevertheless, ALDH activity and aldeflour fluorescence have not been examined in beta cells. Here, we report a dynamic increase in the number of aldeflour+ beta cells during pregnancy. Interestingly, nearly all these aldeflour+ beta cells are positive for Ki-67, suggesting that they are in an active cell cycle (G1, S and M phases). To determine precisely at which phase beta cells activate ALDH activity and thus become aldeflour+, we co-stained insulin with additional proliferation markers, phosphohistone3 (PHH3, a marker for M-phase proliferating cells) and Bromodeoxyuridine (BrdU, a marker for S-phase proliferating cells). Our data show little aldeflour+ beta cells that were positive for either PHH3, or BrdU, suggesting that beta cells activate ALDH and become Aldefluor+ when they enter G1-phase of active cell cycle, but may downregulate ALDH when they leave G1-phase and enter S phase. Our data thus reveal a potential change in ALDH activity of proliferating beta cells during pregnancy, which provides a novel method for isolation and analysis of proliferating beta cells. Moreover, our data also suggest that caution needs to be taken on interpretation of Aldefluor lineage-tracing data in pancreas. PMID:24787690

  1. Non-cell-autonomous stimulation of stem cell proliferation following ablation of Tcf3

    International Nuclear Information System (INIS)

    A combination of cell intrinsic factors and extracellular signals determine whether mouse embryonic stem cells (ESC) divide, self-renew, and differentiate. Here, we report a new interaction between cell intrinsic aspects of the canonical Wnt/Tcf/β-catenin signaling pathway and extracellular Lif/Jak/Stat3 stimulation that combines to promote self-renewal and proliferation of ESC. Mutant ESC lacking the Tcf3 transcriptional repressor continue to self-renew in the absence of exogenous Lif and through pharmacological inhibition of Lif/Jak/Stat3 signaling; however, proliferation rates of TCF3-/- ESC were significantly decreased by inhibiting Jak/Stat3 activity. Cell mixing experiments showed that stimulation of Stat3 phosphorylation in TCF3-/- ESC was mediated through secretion of paracrine acting factors, but did not involve elevated Lif or LifR transcription. The new interaction between Wnt and Lif/Jak/Stat3 signaling pathways has potential for new insights into the growth of tumors caused by aberrant activity of Wnt/Tcf/β-catenin signaling.

  2. Serum Amyloid A Induces Inflammation, Proliferation and Cell Death in Activated Hepatic Stellate Cells.

    Science.gov (United States)

    Siegmund, Sören V; Schlosser, Monika; Schildberg, Frank A; Seki, Ekihiro; De Minicis, Samuele; Uchinami, Hiroshi; Kuntzen, Christian; Knolle, Percy A; Strassburg, Christian P; Schwabe, Robert F

    2016-01-01

    Serum amyloid A (SAA) is an evolutionary highly conserved acute phase protein that is predominantly secreted by hepatocytes. However, its role in liver injury and fibrogenesis has not been elucidated so far. In this study, we determined the effects of SAA on hepatic stellate cells (HSCs), the main fibrogenic cell type of the liver. Serum amyloid A potently activated IκB kinase, c-Jun N-terminal kinase (JNK), Erk and Akt and enhanced NF-κB-dependent luciferase activity in primary human and rat HSCs. Serum amyloid A induced the transcription of MCP-1, RANTES and MMP9 in an NF-κB- and JNK-dependent manner. Blockade of NF-κB revealed cytotoxic effects of SAA in primary HSCs with signs of apoptosis such as caspase 3 and PARP cleavage and Annexin V staining. Serum amyloid A induced HSC proliferation, which depended on JNK, Erk and Akt activity. In primary hepatocytes, SAA also activated MAP kinases, but did not induce relevant cell death after NF-κB inhibition. In two models of hepatic fibrogenesis, CCl4 treatment and bile duct ligation, hepatic mRNA levels of SAA1 and SAA3 were strongly increased. In conclusion, SAA may modulate fibrogenic responses in the liver in a positive and negative fashion by inducing inflammation, proliferation and cell death in HSCs. PMID:26937641

  3. Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells

    Directory of Open Access Journals (Sweden)

    Yamauchi Mika

    2007-11-01

    Full Text Available Abstract Background Adiponectin is a key mediator of the metabolic syndrome that is caused by visceral fat accumulation. Adiponectin and its receptors are known to be expressed in osteoblasts, but their actions with regard to bone metabolism are still unclear. In this study, we investigated the effects of adiponectin on the proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells. Results Adiponectin receptor type 1 (AdipoR1 mRNA was detected in the cells by RT-PCR. The adenosine monophosphate-activated protein kinase (AMP kinase was phosphorylated by both adiponectin and a pharmacological AMP kinase activator, 5-amino-imidazole-4-carboxamide-riboside (AICAR, in the cells. AdipoR1 small interfering RNA (siRNA transfection potently knocked down the receptor mRNA, and the effect of this knockdown persisted for as long as 10 days after the transfection. The transfected cells showed decreased expressions of type I collagen and osteocalcin mRNA, as determined by real-time PCR, and reduced ALP activity and mineralization, as determined by von Kossa and Alizarin red stainings. In contrast, AMP kinase activation by AICAR (0.01–0.5 mM in wild-type MC3T3-E1 cells augmented their proliferation, differentiation, and mineralization. BrdU assay showed that the addition of adiponectin (0.01–1.0 μg/ml also promoted their proliferation. Osterix, but not Runx-2, appeared to be involved in these processes because AdipoR1 siRNA transfection and AICAR treatments suppressed and enhanced osterix mRNA expression, respectively. Conclusion Taken together, this study suggests that adiponectin stimulates the proliferation, differentiation, and mineralization of osteoblasts via the AdipoR1 and AMP kinase signaling pathways in autocrine and/or paracrine fashions.

  4. ABCC4 is required for cell proliferation and tumorigenesis in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Zhao X

    2014-02-01

    Full Text Available Xiaoting Zhao, Yinan Guo, Wentao Yue, Lina Zhang, Meng Gu, Yue Wang Department of Cellular and Molecular Biology, Beijing TB and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China Background: Multidrug resistance protein 4 (MRP4, also known as ATP-cassette binding protein 4 (ABCC4, is a member of the MRP/ABCC subfamily of ATP-binding cassette transporters, which are capable of pumping a wide variety of drugs out of the cell. However, little is known about the function of ABCC4 in the proliferation of lung cancer cells. Methods: ABCC4 mRNA and protein levels in lung cancer cell lines were measured by real-time polymerase chain reaction and Western blot, respectively. A lentivirus-mediated RNA interference technique was used to inhibit ABCC4 mRNA expression in A549 and 801D cells. The function of ABCC4 in cell growth was investigated by MTS and colony formation assays. The role of ABCC4 in cell cycle progression was evaluated by flow cytometry and Western blot analysis. ABCC4 mRNA levels in 30 pairs of tumors and corresponding matched adjacent normal tissues from non-small cell lung cancer patients were detected by real-time polymerase chain reaction. Results: ABCC4 was highly expressed in lung cancer cell lines. ABCC4 expression was markedly downregulated in A549 and 801D cells using the RNA interference technique. Suppression of ABCC4 expression inhibited cell growth. The percentage of cells in G1 phase was increased when ABCC4 expression was suppressed. Phosphorylation of retinoblastoma protein was weakened, originating in the downregulation of ABCC4. ABCC4 mRNA was highly expressed in lung cancer tissue and lung cancer cell lines. Conclusion: ABCC4 may play an important role in the control of A549 and 801D cell growth. ABCC4 is a potential target for lung cancer therapy. Keywords: ABCC4, cell proliferation, lung cancer, cell cycle

  5. Garcinol inhibits tumour cell proliferation, angiogenesis, cell cycle progression and induces apoptosis via NF-κB inhibition in oral cancer.

    Science.gov (United States)

    Aggarwal, Sadhna; Das, Satya N

    2016-06-01

    Garcinol, a polyisoprenylated benzophenone is extracted from the rind of the fruit of Garcinia indica, a plant found extensively in tropical regions. Its ability to inhibit tumour growth has been demonstrated in certain cancers. In this study, we evaluated the potential anti-tumour effects of garcinol on oral squamous cell carcinoma (OSCC) cells. Three OSCC cell lines (SCC-4, SCC-9 and SCC-25) were treated with garcinol for 48 h and its effect on growth and proliferation, clonogenic survival, cell cycle and apoptosis was studied by MTT, clonogenic assay, propidium iodide (PI) staining and annexin-V binding assay, respectively. The alteration in expression of NF-κB and COX-2 was studied by western blot analysis and that of VEGF by ELISA. Garcinol treatment significantly (p < 0.001) inhibited the growth and proliferation and colony formation of OSCC cells with a concomitant induction of apoptosis and cell cycle arrest. It did not show toxic effect on normal cells. It significantly (p < 0.05) reduced the expression of NK-κB and COX-2 expression in treated cells as compared to untreated controls besides inhibiting VEGF expression. It appears that garcinol exerts anti-proliferative, pro-apoptotic, cell-cycle regulatory and anti-angiogenic effects on oral cancer cells through inhibition of NF-κB and COX-2. Thus, garcinol may be developed as a potential chemopreventive and/or chemotherapeutic agent for treatment of oral squamous cell carcinoma. PMID:26662963

  6. A Mathematical Model Quantifies Proliferation and Motility Effects of TGF-β on Cancer Cells

    Directory of Open Access Journals (Sweden)

    Shizhen Emily Wang

    2009-01-01

    Full Text Available Transforming growth factor (TGF-β is known to have properties of both a tumour suppressor and a tumour promoter. While it inhibits cell proliferation, it also increases cell motility and decreases cell–cell adhesion. Coupling mathematical modelling and experiments, we investigate the growth and motility of oncogene-expressing human mammary epithelial cells under exposure to TGF-β. We use a version of the well-known Fisher–Kolmogorov equation, and prescribe a procedure for its parametrisation. We quantify the simultaneous effects of TGF-β to increase the tendency of individual cells and cell clusters to move randomly and to decrease overall population growth. We demonstrate that in experiments with TGF-β treated cells in vitro, TGF-β increases cell motility by a factor of 2 and decreases cell proliferation by a factor of 1/2 in comparison with untreated cells.

  7. Cell migration or cytokinesis and proliferation? – Revisiting the “go or grow” hypothesis in cancer cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Garay, Tamás; Juhász, Éva; Molnár, Eszter [2nd Department of Pathology, Semmelweis University, Budapest (Hungary); Eisenbauer, Maria [Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna (Austria); Czirók, András [Department of Biological Physics, Eötvös University, Budapest (Hungary); Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS (United States); Dekan, Barbara; László, Viktória; Hoda, Mir Alireza [Department of Thoracic Surgery, Medical University of Vienna, Vienna (Austria); Döme, Balázs [Department of Thoracic Surgery, Medical University of Vienna, Vienna (Austria); National Korányi Institute of TB and Pulmonology, Budapest (Hungary); Tímár, József [2nd Department of Pathology, Semmelweis University, Budapest (Hungary); MTA-SE Tumor Progression Research Group, Hungarian Academy of Sciences, Budapest (Hungary); Klepetko, Walter [Department of Thoracic Surgery, Medical University of Vienna, Vienna (Austria); Berger, Walter [Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna (Austria); Hegedűs, Balázs, E-mail: balazs.hegedus@meduniwien.ac.at [Department of Thoracic Surgery, Medical University of Vienna, Vienna (Austria); MTA-SE Tumor Progression Research Group, Hungarian Academy of Sciences, Budapest (Hungary)

    2013-12-10

    The mortality of patients with solid tumors is mostly due to metastasis that relies on the interplay between migration and proliferation. The “go or grow” hypothesis postulates that migration and proliferation spatiotemporally excludes each other. We evaluated this hypothesis on 35 cell lines (12 mesothelioma, 13 melanoma and 10 lung cancer) on both the individual cell and population levels. Following three-day-long videomicroscopy, migration, proliferation and cytokinesis-length were quantified. We found a signi