WorldWideScience

Sample records for cell power conditioning

  1. Synthesis on power electronics for large fuel cells: From power conditioning to potentiodynamic analysis technique

    International Nuclear Information System (INIS)

    De Bernardinis, Alexandre

    2014-01-01

    Highlights: • Active load for fuel cell managing electrical drive constraints: frequency and current ripple can be adjusted independently. • Multi-port resonant soft-switched topology for power management of a thirty kilowatt segmented PEM fuel cell. • Splitting current control strategy for power segmented PEM fuel cell in case of a segment is under fault. • Reversible Buck topology for large fuel cell with control of the fuel cell potential linked to current density nonlinearity. - Abstract: The work addressed in this paper deals with a synthesis on power electronic converters used for fuel cells. The knowledge gap concerns conceptually different electronic converter architectures for PEM (Proton Exchange Membrane) fuel cells able to perform three types of functionalities: The first one is the capacity of emulating an active load representative of electrical drive constraints. In that case, frequency and fuel cell current ripple can be set independently to investigate the dynamic behavior of the fuel cell. The second one is power conditioning applied to large high power and segmented fuel cell systems (“Large” represents several tens of cells and multi-kilowatt stacks), which is a non trivial consideration regarding the topological choices to be made for improving efficiency, compactness and ensure operation under faulty condition. A multi-port resonant isolated boost topology is analyzed enabling soft switching over a large operating range for a thirty kilowatt segmented fuel cell. A splitting current control strategy in case of a segment is under fault is proposed. Each considered converter topologies meet specific constraints regarding fuel cell stack design and power level. The third functionality is the ability for the power electronics to perform analysis and diagnosis techniques, like the cyclic voltammetry on large PEM fuel cell assemblies. The latter technique is an uncommon process for large fuel cell stacks since it is rather performed on

  2. Fuel-cell based power generating system having power conditioning apparatus

    Science.gov (United States)

    Mazumder, Sudip K.; Pradhan, Sanjaya K.

    2010-10-05

    A power conditioner includes power converters for supplying power to a load, a set of selection switches corresponding to the power converters for selectively connecting the fuel-cell stack to the power converters, and another set of selection switches corresponding to the power converters for selectively connecting the battery to the power converters. The power conveners output combined power that substantially optimally meets a present demand of the load.

  3. Power Conditioning of Fuel Cell Systems in Portable Applications

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Benitez, E.; Brey, J. J.; Rodriguez-Bordallo, C.; Carrasco, J. M.; Galvan, E.

    2005-07-01

    The achieving of high performance and long useful life are the two fundamental objectives of portable application designers. Cost and size conditions make these objectives more complex and always lead to a compromise solution having to be reached. The most significant parameters as regards portables devices are cost, efficiency (useful life), output crimps and noise, and quiescent current. Most portable products have two fundamental operating modes: active and standby. During the active period, current consumption is generally high and this means that excellent conversion is essential in order to maximize the useful life of the device that supplies current and voltage. However, most portable devices spend most of their time on standby and draw little energy from the source. It is equally important for the source to be very efficient under these conditions. This means that the quiescent current from the source (the current that supplies in low or nil load conditions) must be much lower than the load current in order to maintain high efficiency. Topologies Different power conditioning topologies to be used in portable applications are indicated with their corresponding advantages and inconveniences being specified. Low dropout voltage regulator (LDO) This type of conditioning is one of minimum cost, noise and quiescent current. This makes this device a favorite for many applications. Its external components are minimal: usually a bypass capacity. Its efficiency, although poor when Vin is much greater than Vout, increases greatly when their values are somewhat similar. In this event, the benefits of using LDOs are almost impossible to beat. In fact, these circuits are much used to reach output voltages of up to 3 volts. (Author)

  4. Power conditioning system topology for grid integration of wind and fuell cell energy

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2006-12-01

    Full Text Available This paper shows the topology of the hybrid grid-connected power system and the performances of the front-end three-phase power inverter. The renewable sources of the hybrid power system consist of a solid oxide fuel cell and a wind-turbine. This type of combination is the most efficient one. The proposed topology benefits of the one common DC-AC inverter which injects the generated power into the grid. The architecture diminishes the cost of the power conditioning system. Moreover, due to the power balance control of the entire power conditioning system the bulk dc link electrolytic capacitor is replaced with a small plastic film one. The final power conditioning system has the following advantages: independent control of the reactive power, minimize harmonic current distortion offering a nearly unity power factor operation (0,998 operation capability, dc link voltage regulation (up to 5% ripple in the dc-link voltage in any operated conditions, fast disturbance compensation capability, high reliability, and low cost. The experimental test has been performed and the performances of the grid power inverter are shown.

  5. Power, heat and chilliness with natural gas - fuel cells and air conditioning

    International Nuclear Information System (INIS)

    Krein, Stephan; Ruehling, Karin

    1999-01-01

    A new and innovative concept of the supply with power, heat and chilliness will realise in the new Malteser-hospital in Kamenz. The core of this demonstration-plant are a fuel cell, an adsorption cooling machine as well as multi-solar collectors. The fuel cell has two goals. Primary it produces power for the own demand. The selected dimension guarantees, that the power will consume nearly continuously. Secondly the produced heat of the fuel cell (and the solar-heat too) will use for heating and preparation of warm water. In the summer, the heat will use for the adsorption cooling machine, which produces chilliness for air-conditioning. The advantage in the face of common concepts of combining power and heat is the high-efficiently use of the fuel-energy for electric power generation on the one hand. Fuel cells work with high efficiency also at partial load. On the other hand, with the adsorption cooling machine the produced heat of fuel cell and multi-solar collectors can be used also in the summer. First experiences with this concept show, that an optimised co-operation of the components with an adaptive, self-learning control system based on the weather forecast as well as various storages for heat and chilliness can be achieve. A continuously operation, high fuel utilisation and reduced environmental pollution can be demonstrated. (author)

  6. Increased power generation from primary sludge by a submersible microbial fuel cell and optimum operational conditions

    DEFF Research Database (Denmark)

    Vologni, Valentina; Kakarla, Ramesh; Angelidaki, Irini

    2013-01-01

    Microbial fuel cells (MFCs) have received attention as a promising renewable energy technology for waste treatment and energy recovery. We tested a submersible MFC with an innovative design capable of generating a stable voltage of 0.250 ± 0.008 V (with a fixed 470 Ω resistor) directly from prima...... prolonged the current generation and increased the power density by 7 and 1.5 times, respectively, in comparison with raw primary sludge. These findings suggest that energy recovery from primary sludge can be maximized using an advanced MFC system with optimum conditions....

  7. An Investigation to Resolve the Interaction Between Fuel Cell, Power Conditioning System and Application Loads

    Energy Technology Data Exchange (ETDEWEB)

    Sudip K. Mazumder

    2005-12-31

    Development of high-performance and durable solidoxide fuel cells (SOFCs) and a SOFC power-generating system requires knowledge of the feedback effects from the power-conditioning electronics and from application-electrical-power circuits that may pass through or excite the power-electronics subsystem (PES). Therefore, it is important to develop analytical models and methodologies, which can be used to investigate and mitigate the effects of the electrical feedbacks from the PES and the application loads (ALs) on the reliability and performance of SOFC systems for stationary and non-stationary applications. However, any such attempt to resolve the electrical impacts of the PES on the SOFC would be incomplete unless one utilizes a comprehensive analysis, which takes into account the interactions of SOFC, PES, balance-of-plant system (BOPS), and ALs as a whole. SOFCs respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry, which is not true for the thermal and mechanical time constants of the BOPS, where load-following time constants are, typically, several orders of magnitude higher. This dichotomy can affect the lifetime and durability of the SOFCSs and limit the applicability of SOFC systems for load-varying stationary and transportation applications. Furthermore, without validated analytical models and investigative design and optimization methodologies, realizations of cost-effective, reliable, and optimal PESs (and power-management controls), in particular, and SOFC systems, in general, are difficult. On the whole, the research effort can lead to (a) cost-constrained optimal PES design for high-performance SOFCS and high energy efficiency and power density, (b) effective SOFC power-system design, analyses, and optimization, and (c) controllers and modulation schemes for mitigation of electrical impacts and wider-stability margin and enhanced system efficiency.

  8. AN INVESTIGATION TO RESOLVE THE INTERACTION BETWEEN FUEL CELL, POWER CONDITIONING SYSTEM AND APPLICATION LOADS

    Energy Technology Data Exchange (ETDEWEB)

    Sudip K. Mazumder; Chuck McKintyre; Dan Herbison; Doug Nelson; Comas Haynes; Michael von Spakovsky; Joseph Hartvigsen; S. Elangovan

    2003-11-03

    Solid-Oxide Fuel Cell (SOFC) stacks respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry. However, this is not true for the thermal, mechanical, and chemical balance-of-plant subsystem (BOPS), where load-following time constants are, typically, several orders of magnitude higher. This dichotomy diminishes the reliability and performance of the electrode with increasing demand of load. Because these unwanted phenomena are not well understood, the manufacturers of SOFC use conservative schemes (such as, delayed load-following to compensate for slow BOPS response or expensive inductor filtering) to control stack responses to load variations. This limits the applicability of SOFC systems for load-varying stationary and transportation applications from a cost standpoint. Thus, a need exists for the synthesis of component- and system-level models of SOFC power-conditioning systems and the development of methodologies for investigating the system-interaction issues (which reduce the lifetime and efficiency of a SOFC) and optimizing the responses of each subsystem, leading to optimal designs of power-conditioning electronics and optimal control strategies, which mitigate the electrical-feedback effects. Equally important are ''multiresolution'' finite-element modeling and simulation studies, which can predict the impact of changes in system-level variables (e.g., current ripple and load-transients) on the local current densities, voltages, and temperature (these parameters are very difficult or cumbersome, if not impossible to obtain) within a SOFC cell. Towards that end, for phase I of this project, sponsored by the U.S. DOE (NETL), we investigate the interactions among fuel cell, power-conditioning system, and application loads and their effects on SOFC reliability (durability) and performance. A number of methodologies have been used in Phase I to develop the steady-state and transient

  9. Power conditioning unit for photovoltaic power systems

    Science.gov (United States)

    Beghin, G.; Nguyen Phuoc, V. T.

    Operational features and components of a power conditioning unit for interconnecting solar cell module powers with a utility grid are outlined. The two-stage unit first modifies the voltage to desired levels on an internal dc link, then inverts the current in 2 power transformers connected to a vector summation control to neutralize harmonic distortion up to the 11th harmonic. The system operates in parallel with the grid with extra inductors to absorb line-to-line voltage and phase differences, and permits peak power use from the PV array. Reactive power is gained internally, and a power system controller monitors voltages, frequencies, and currents. A booster preregulator adjusts the input voltage from the array to provide voltage regulation for the inverter, and can commutate 450 amps. A total harmonic distortion of less than 5 percent is claimed, with a rating of 5 kVA, 50/60 Hz, 3-phase, and 4-wire.

  10. Series active power filter in power conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Turunen, J.

    2009-07-01

    Power quality has become an important issue nowadays for several reasons, e.g. modern society's growing dependence on electricity and the fact that poor power quality may generate significant economic losses in few moments. Probable power quality problems are, e.g. harmonics, flicker, voltage dips and supply interruptions. The power quality may be improved by using filters and compensators.The purpose of this thesis is to research the operation of the series active power filter (SAPF) in power conditioning. Therefore, this thesis presents a comparison of three series hybrid active power filters (SHAPFs) in current harmonics filtering. In addition to this, it is shown how the voltage dip compensation performance of the SAPF is improved in a unified power quality conditioner (UPQC) application.The three SHAPFs included in the comparison are series connected topology (SCT), filter connected topology (FCT) and electrically tuned LC shunt circuit (ETLC). The operating principle of these filters is to direct the harmonic currents produced by the load to flow in the LC shunt circuits instead of the supply. In the case of the SCT this phenomenon is boosted by applying so-called active resistance in the supply branch using the SAPF. In the case of the FCT a similar action is achieved by applying the compensation voltage in series with the LC shunt circuits using the SAPF. In the case of the ETLC the performance of the LC shunt circuit is enhanced by applying so-called active inductances in series with the LC shunt circuit using the SAPF. The SHAPFs are compared by searching for their best current filtering performance using various main circuit and control system configurations and loads. The operation of the SHAPFs is first analysed mathematically. After this, the current filtering performance of the SHAPFs is inspected using simulations and experimental tests. The experimental tests are carried out using SHAPF prototypes. As a result, it is shown that the current

  11. A pacemaker powered by an implantable biofuel cell operating under conditions mimicking the human blood circulatory system--battery not included.

    Science.gov (United States)

    Southcott, Mark; MacVittie, Kevin; Halámek, Jan; Halámková, Lenka; Jemison, William D; Lobel, Robert; Katz, Evgeny

    2013-05-07

    Biocatalytic electrodes made of buckypaper were modified with PQQ-dependent glucose dehydrogenase on the anode and with laccase on the cathode and were assembled in a flow biofuel cell filled with serum solution mimicking the human blood circulatory system. The biofuel cell generated an open circuitry voltage, Voc, of ca. 470 mV and a short circuitry current, Isc, of ca. 5 mA (a current density of 0.83 mA cm(-2)). The power generated by the implantable biofuel cell was used to activate a pacemaker connected to the cell via a charge pump and a DC-DC converter interface circuit to adjust the voltage produced by the biofuel cell to the value required by the pacemaker. The voltage-current dependencies were analyzed for the biofuel cell connected to an Ohmic load and to the electronic loads composed of the interface circuit, or the power converter, and the pacemaker to study their operation. The correct pacemaker operation was confirmed using a medical device - an implantable loop recorder. Sustainable operation of the pacemaker was achieved with the system closely mimicking human physiological conditions using a single biofuel cell. This first demonstration of the pacemaker activated by the physiologically produced electrical energy shows promise for future electronic implantable medical devices powered by electricity harvested from the human body.

  12. Power assisted fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, L P; Atwater, T B; Plichta, E J; Cygan, P J [US Army CECOM, Fort Monmouth, NJ (United States). Research Development and Engineering Center

    1998-02-01

    A hybrid fuel cell demonstrated pulse power capability at pulse power load simulations synonymous with electronics and communications equipment. The hybrid consisted of a 25.0 W Proton Exchange Membrane Fuel Cell (PEMFC) stack in parallel with a two-cell lead-acid battery. Performance of the hybrid PEMFC was superior to either the battery or fuel cell stack alone at the 18.0 W load. The hybrid delivered a flat discharge voltage profile of about 4.0 V over a 5 h radio continuous transmit mode of 18.0 W. (orig.)

  13. Power conditioning devices in nuclear power plants

    International Nuclear Information System (INIS)

    Shida, Toichi.

    1979-01-01

    Purpose: To automatically prevent the liquid level from lowering in a reactor even if a feedwater adjusting valve is locked in a bwr type nuclear power plant. Constitution: Where a feedwater adjusting valve should be locked, and if the mismatching degree between the main steam flow rate and the feedwater flow rate exceeds a predetermined value and the mismatched state continues for a certain period, the value set to a main control for setting the recycling flow rate is changed corresponding to the mismatching degree to compensate the same thereby preventing the liquid level from lowering in the reactor. (Ikeda, J.)

  14. Novel Power Conditioning Circuits for Piezoelectric Micro Power Generators

    National Research Council Canada - National Science Library

    von Jouranne, Annette

    2003-01-01

    .... The objective of this research is to design a power conditioning circuit "PCC" for use in conjunction with low voltage microelectromechanical systems "MEMS"-based Palouse Piezoelectric Power "P3...

  15. High average power solid state laser power conditioning system

    International Nuclear Information System (INIS)

    Steinkraus, R.F.

    1987-01-01

    The power conditioning system for the High Average Power Laser program at Lawrence Livermore National Laboratory (LLNL) is described. The system has been operational for two years. It is high voltage, high power, fault protected, and solid state. The power conditioning system drives flashlamps that pump solid state lasers. Flashlamps are driven by silicon control rectifier (SCR) switched, resonant charged, (LC) discharge pulse forming networks (PFNs). The system uses fiber optics for control and diagnostics. Energy and thermal diagnostics are monitored by computers

  16. Hydrogen fuel cell power system

    International Nuclear Information System (INIS)

    Lam, A.W.

    2004-01-01

    'Full text:' Batteries are typically a necessary and prime component of any DC power system, providing a source of on-demand stored energy with proven reliability. The integration of batteries and basic fuel cells for mobile and stationary utility applications poses a new challenge. For high value applications, the specification and operating requirements for this hybrid module differ from conventional requirements as the module must withstand extreme weather conditions and provide extreme reliability. As an electric utility company, BCHydro has embarked in the development and application of a Hydrogen Fuel Cell Power Supply (HFCPS) for field trial. A Proton Exchange Membrane (PEM)- type fuel cell including power electronic modules are mounted in a standard 19-inch rack that provides 48V, 24V, 12V DC and 120V AC outputs. The hydrogen supply consists of hydrogen bottles and regulating devices to provide a continuous fuel source to the power modules. Many tests and evaluations have been done to ensure the HFCPS package is robust and suitable for electric utility grade operation. A field trial demonstrating this standalone system addressed reliability, durability, and installation concerns as well as developed the overall system operating procedures. (author)

  17. High Power laser power conditioning system new discharge circuit research

    CERN Document Server

    Li Yi; Peng Han Sheng; Zhou Pei Zhang; Zheng Wan Guo; Guo Lang Fu; Chen Li Hua; Chen De Hui; Lai Gui You; Luan Yong Ping

    2002-01-01

    The new discharge circuit of power conditioning system for high power laser is studied. The theoretical model of the main discharge circuit is established. The pre-ionization circuit is studied in experiment. In addition, the explosion energy of the new large xenon lamp is successfully measured. The conclusion has been applied to 4 x 2 amplifier system

  18. Power conditioning system for a nuclear reactor

    International Nuclear Information System (INIS)

    Higashigawa, Yuichi; Joge, Toshio.

    1981-01-01

    Purpose: To provide a power conditioning system for a BWR type reactor which has a function to be automatically operated within a range that the relationship between the heat power of the reactor and the electric power of an electric generator does not lose the safety of fuel by eliminating the unnecessary fluctuation of the power of the reactor. Constitution: A load request error signal fed from a conventional turbine control system to recirculation flow regulator is eliminated, and a reactor power conditioning system is newly provided, to which an electric generator power signal, a reactor average power area monitor signal and a load request signal are inputted. Thus, the load request signal is compared directly with the electric power of the electric generator, the recirculation flow rate is controlled by the compared result, and whether the correlation between the heat power of the reqctor and the electric power of the generator satisfies the correlation determined to prove the safety of fuel or not is checked. If this correlation is satisfied, the recirculation flow rate is merely automatically controlled. (Yoshino, Y.)

  19. Nuclear power in Poland. Prospect and conditions

    International Nuclear Information System (INIS)

    Chwaszczewski, S.

    1995-01-01

    Poland started the works on construction of first nuclear power plant in 1992. The social protest as well as deep political and economical changes in Poland induced the decision of the Polish government to abandon the construction of the nuclear power plant in Zarnowiec. After the period of political and economical transformation, in 1992 Polish economy starts to grow up, also growth of the electric power consumption. Are there prospect for utilization in Poland the nuclear power plant? This work is devoted to analyse such question. The present structure of power and fuel materials in Poland were analysed and the possible direction of changes was shown for the period up to 2020 year. It was stated, that the economical development in Poland should be bound with the growth of the consumption of most effective fuel and energy. These fuel or energy should be imported to Poland. Therefore, the nuclear power should be treated as one of possible ways of the balance of electric power in Poland. Particularly, that it will be expected the special ecological conditions in the energy production in Europe. In the present work, was shown, that the nuclear power was discriminated in the analysis of the development of power and fuel system in Poland. The incorrect values of economical parameters concerning of the nuclear power plant was used in the analysing numerical programs. The investment costs, design time and fuel price for nuclear energy was analysed, and shown, that in the proper conditions, the cost of the electric energy produced in the nuclear power plant is compared with the costs of electric energy produced in the conventional power stations. In this work, the proposals of the basic nuclear and radiological safety standards for the nuclear power plant in Poland are shown. (author). 20 refs, 10 figs, 3 tabs

  20. Biofuel Cells – Alternative Power Sources

    International Nuclear Information System (INIS)

    Babanova, Sofia; Yolina Hubenova; Mario Mitov

    2009-01-01

    Energy generation from renewable sources and effective waste treatment are two key challenges for the sustainable development. Microbiological (or Bio-) Fuel Cells provide an elegant solution by linking both tasks. Biofuel cells, which can directly generate electricity from biodegradable substances, have rapidly gained increasing research attention. Widely available fuel sources and moderate operational conditions make them promising in renewable energy generation, wastewater treatment, power sources for remote devices, etc. This paper reviews the use of microorganisms as biocatalysts in microbiological fuel cells. The principle of biofuel cells and their construction elements are discussed. Keywords: alternative power sources, biofuel cells, biocatalysts

  1. Switching conditions in the electric power system

    International Nuclear Information System (INIS)

    Tsukushi, M.; Hirasawa, K.; Kurosawa, Y.

    1991-01-01

    This paper reports that a circuit breaker must be capable of making, carrying, and interrupting the current under both normal and abnormal conditions, especially in the case of a short-circuit fault. Before installing a circuit breaker, it is necessary to estimate the maximum short-circuit current that can occur in the electric power system and then select a circuit breaker that can interrupt and make the estimated current. Many types of short-circuit faults occur in electric power systems

  2. Power conditioning for the National Ignition Facility

    International Nuclear Information System (INIS)

    Larson, D.W.; Anderson, R.; Boyes, J.

    1994-01-01

    A cost-effective, 320-MJ power-conditioning system has been completed for the proposed National Ignition Facility (NIF). The design features include metallized dielectric capacitors, a simple topology, and large (1.6-MJ) module size. Experimental results address the technical risks associated with the design

  3. Power conditioning system for energy sources

    Science.gov (United States)

    Mazumder, Sudip K [Chicago, IL; Burra, Rajni K [Chicago, IL; Acharya, Kaustuva [Chicago, IL

    2008-05-13

    Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.

  4. Characterization of power IGBTs under pulsed power conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Gregory E [Los Alamos National Laboratory; Vangordon, James [UNIV OF MISSOURI; Kovaleski, Scott [UNIV OF MISSOURI

    2009-01-01

    The power insulated gate bipolar transistor (IGBT) is used in many types of applications. Although the use of the power IGBT has been well characterized for many continuous operation power electronics applications, little published information is available regarding the performance of a given IGBT under pulsed power conditions. Additionally, component libraries in circuit simulation software packages have a finite number of IGBTs. This paper presents a process for characterizing the performance of a given power IGBT under pulsed power conditions. Specifically, signals up to 3.5 kV and 1 kA with 1-10 {micro}s pulse widths have been applied to a Powerex QIS4506001 IGBT. This process utilizes least squares curve fitting techniques with collected data to determine values for a set of modeling parameters. These parameters were used in the Oziemkiewicz implementation of the Hefner model for the IGBT that is utilized in some circuit simulation software packages. After the nominal parameter values are determined, they can be inserted into the Oziemkiewicz implementation to simulate a given IGBT.

  5. Solar cell power source system

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoichi; Toma, Kunio; Fukuwa, Shinji

    1988-05-14

    This invention aims to supply a power source system with stable power output by reducing the power loss due to switching in the voltage stabilization even when the power source is a solar cell with frequent voltage variation. For this purpose, in a solar cell power source system consisting of a solar cell, a storage battery, a switching regulator placed between the storage cell and the load, and a load, arrangement was made that, by judging the input voltage from the storage battery, switch-acting the transistor of the switching regulator, if the input voltage is higher than the specified voltage; is the input voltage is lower than the specified voltage, the transistor is put in a full-on state. By this, the supply voltage can be stabilized even when the voltage fluctuates, and system gets more efficient as the switching loss decreases in the voltage stabilizing means. (1 fig)

  6. Conditional prediction intervals of wind power generation

    DEFF Research Database (Denmark)

    Pinson, Pierre; Kariniotakis, Georges

    2010-01-01

    A generic method for the providing of prediction intervals of wind power generation is described. Prediction intervals complement the more common wind power point forecasts, by giving a range of potential outcomes for a given probability, their so-called nominal coverage rate. Ideally they inform...... on the characteristics of prediction errors for providing conditional interval forecasts. By simultaneously generating prediction intervals with various nominal coverage rates, one obtains full predictive distributions of wind generation. Adapted resampling is applied here to the case of an onshore Danish wind farm...... to the case of a large number of wind farms in Europe and Australia among others is finally discussed....

  7. Power conditioning for space nuclear reactor systems

    Science.gov (United States)

    Berman, Baruch

    1987-01-01

    This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.

  8. Energy management in fuel cell power trains

    International Nuclear Information System (INIS)

    Corbo, P.; Corcione, F.E.; Migliardini, F.; Veneri, O.

    2006-01-01

    In this paper, experimental results obtained on a small size fuel cell power train (1.8 kW) based on a 500 W proton exchange membrane (PEM) stack are reported and discussed with specific regard to energy management issues to be faced for attainment of the maximum propulsion system efficiency. The fuel cell system (FCS) was realized and characterized via investigating the effects of the main operative variables on efficiency. This resulted in an efficiency higher than 30% in a wide power range with a maximum of 38% at medium load. The efficiency of the overall fuel cell power train measured during both steady state and dynamic conditions (European R40 driving cycle) was about 30%. A discussion about the control strategy to direct the power flows is reported with reference to two different test procedures used in dynamic experiments, i.e., load levelled and load following

  9. Fuel Cell Powered Lift Truck

    Energy Technology Data Exchange (ETDEWEB)

    Moulden, Steve [Sysco Food Service, Houston, TX (United States)

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  10. Aircraft Fuel Cell Power Systems

    Science.gov (United States)

    Needham, Robert

    2004-01-01

    In recent years, fuel cells have been explored for use in aircraft. While the weight and size of fuel cells allows only the smallest of aircraft to use fuel cells for their primary engines, fuel cells have showed promise for use as auxiliary power units (APUs), which power aircraft accessories and serve as an electrical backup in case of an engine failure. Fuel cell MUS are both more efficient and emit fewer pollutants. However, sea-level fuel cells need modifications to be properly used in aircraft applications. At high altitudes, the ambient air has a much lower pressure than at sea level, which makes it much more difficult to get air into the fuel cell to react and produce electricity. Compressors can be used to pressurize the air, but this leads to added weight, volume, and power usage, all of which are undesirable things. Another problem is that fuel cells require hydrogen to create electricity, and ever since the Hindenburg burst into flames, aircraft carrying large quantities of hydrogen have not been in high demand. However, jet fuel is a hydrocarbon, so it is possible to reform it into hydrogen. Since jet fuel is already used to power conventional APUs, it is very convenient to use this to generate the hydrogen for fuel-cell-based APUs. Fuel cells also tend to get large and heavy when used for applications that require a large amount of power. Reducing the size and weight becomes especially beneficial when it comes to fuel cells for aircraft. My goal this summer is to work on several aspects of Aircraft Fuel Cell Power System project. My first goal is to perform checks on a newly built injector rig designed to test different catalysts to determine the best setup for reforming Jet-A fuel into hydrogen. These checks include testing various thermocouples, transmitters, and transducers, as well making sure that the rig was actually built to the design specifications. These checks will help to ensure that the rig will operate properly and give correct results

  11. Fuel Cell / electrolyser, Solar Photovoltaic Powered

    Directory of Open Access Journals (Sweden)

    Chioncel Cristian Paul

    2012-01-01

    Full Text Available The paper presents experimental obtained results in the operation ofelectrolyzer powered by solar photovoltaic modules, for the waterelectrolysis and with the obtained hydrogen and oxygen proceeds tothe operation in fuel cell mode, type PEM. The main operatingparameters and conditions to optimize the energy conversion on thesolar-hydrogen-electricity cycle are highlighted, so that those arecomparable or superior to conventional cycles.

  12. Xenon changes under power-burst conditions

    International Nuclear Information System (INIS)

    Diamond, D.J.

    1983-01-01

    Under ordinary operating conditions the xenon concentration in a reactor core can change significantly in times on the order of hours. Core transients of safety significance are much more rapid and hence calculations are done with xenon concentration held constant. However, in certain transients (such as reactivity initiated accidents) there is a very large power surge and the question arises as to whether under these circumstances the xenon concentration could change. This would be particularly important if the xenon were reduced thereby tending to make the accident autocatalytic. The objective of the present study is to quantify this effect to see if it could be important

  13. Air conditioning with small power gas appliances

    International Nuclear Information System (INIS)

    Canci, Franco

    1997-01-01

    This article describes research and test activities on small power air conditioning appliances for residential use carried out in the United States, Japan and Europe. The absorption technology aims at the following objectives: to develop appliances requiring reduced maintenance and having a size comparable with electric units of the same output; to reduce production costs and therefore the final prince by adopting special manufacturing technologies such as welded plate exchangers; to obtain appliances which operate both in summer and winter ( as heat pumps), allowing to minimize management and installation costs in southern European climates. The final aim is to offer the customer one appliance only for the following purposes: hot water production for sanitary use, water refrigeration for summer air conditioning, hot water production production for winter heating. This kind of appliance should have management and maintenance costs similar to current individual boilers

  14. Workshop on power conditioning for alternative energy technologies. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. R.

    1979-01-01

    As various alternative energy technologies such as photovoltaics, wind, fuel cells, and batteries are emerging as potential sources of energy for the future, the need arises for development of suitable power-conditioning systems to interface these sources to their respective loads. Since most of these sources produce dc electricity and most electrical loads require ac, an important component of the required power-conditioning units is a dc-to-ac inverter. The discussions deal with the development of power conditioners for each alternative energy technology. Discussion topics include assessments of current technology, identification of operational requirements with a comparison of requirements for each source technology, the identification of future technology trends, the determination of mass production and marketing requirements, and recommendations for program direction. Specifically, one working group dealt with source technology: photovoltaics, fuel cells and batteries, and wind followed by sessions discussing system size and application: large grid-connected systems, small grid-connected systems, and stand alone and dc applications. A combined group session provided an opportunity to discuss problems common to power conditioning development.

  15. Scheduling of Power System Cells Integrating Stochastic Power Generation

    International Nuclear Information System (INIS)

    Costa, L.M.

    2008-12-01

    Energy supply and climate change are nowadays two of the most outstanding problems which societies have to cope with under a context of increasing energy needs. Public awareness of these problems is driving political willingness to take actions for tackling them in a swift and efficient manner. Such actions mainly focus in increasing energy efficiency, in decreasing dependence on fossil fuels, and in reducing greenhouse gas emissions. In this context, power systems are undergoing important changes in the way they are planned and managed. On the one hand, vertically integrated structures are being replaced by market structures in which power systems are un-bundled. On the other, power systems that once relied on large power generation facilities are witnessing the end of these facilities' life-cycle and, consequently, their decommissioning. The role of distributed energy resources such as wind and solar power generators is becoming increasingly important in this context. However, the large-scale integration of such type of generation presents many challenges due, for instance, to the uncertainty associated to the variability of their production. Nevertheless, advanced forecasting tools may be combined with more controllable elements such as energy storage devices, gas turbines, and controllable loads to form systems that aim to reduce the impacts that may be caused by these uncertainties. This thesis addresses the management under market conditions of these types of systems that act like independent societies and which are herewith named power system cells. From the available literature, a unified view of power system scheduling problems is also proposed as a first step for managing sets of power system cells in a multi-cell management framework. Then, methodologies for performing the optimal day-ahead scheduling of single power system cells are proposed, discussed and evaluated under both a deterministic and a stochastic framework that directly integrates the

  16. Solar Array Power Conditioning for a Spinning Satellite

    Science.gov (United States)

    De Luca, Antonio; Chirulli, Giovanni

    2008-09-01

    The conditioning of the output power from a solar array can mainly be achieved by the adoption of DET or MPPT based architecture. There are several factors that can orientate the choice of the system designer towards one solution or the other; some of them maybe inherent to the mission derived requirements (Illumination levels, EMC cleanliness, etc.), others come directly from a careful assessment of performances and losses of both power conditioner and solar array.Definition of the criteria on which basis the final choice is justified is important as they have to guarantee a clear determination of the available versus the required power in all those mission conditions identifiable as design drivers for the overall satellite system both in terms of mass and costs.Such criteria cannot just be simple theoretical enunciations of principles; nor the meticulous definition of them on a case by case basis for different types of missions as neither option gives a guarantee of being conclusive.The aim of this paper is then to suggest assessment steps and guidelines that can be considered generically valid for any mission case, starting from the exposition of the trade off activity performed in order to choose the power conditioning solution for a spinning satellite having unregulated power bus architecture. Calculations and numerical simulations have been made in order to establish the needed solar array surface in case of adoption of a DET or MPPT solution, taking into account temperature and illumination levels on the solar cells, as well as power losses and inefficiencies from the solar generator to the main power bus, in different mission phases. Particular attention has been taken in order to correctly evaluate the thermal effects on the rest of the spacecraft as function of the adopted power system regulation.

  17. Wind power and the conditions at a liberalized power market

    International Nuclear Information System (INIS)

    Morthorst, P.E.

    2003-01-01

    Wind power is undergoing a rapid development nationally as well as globally and in a number of countries covers an increasing part of the power supply. At the same time an ongoing liberalization of power markets is taking place and to an increasing extent the owners of wind power plants will themselves have to be responsible for trading the power at the spot market and financially handling the balancing. In the western part of Denmark (Jutland/Funen area), wind-generated power from time to time covers almost 100% of total power consumption. Therefore some examples are chosen from this area to analyse in more detail how well large amounts of wind power in the short-term are handled at the power spot market. It turns out that there is a tendency that more wind power in the system in the short run leads to relatively lower spot prices, while less wind power implies relatively higher spot prices, although, with the exception of December 2002, in general no strong relationship is found. A stronger relationship is found at the regulating market, where there is a fairly clear tendency that the more wind power produced, the higher is the need for down-regulation, and, correspondingly, the less wind power produced, the higher is the need for up-regulation. In general for the Jutland/Funen area the average cost of down-regulation is calculated as 1 2 c euros/kWh regulated for 2002, while the cost of up-regulation amounts to 0 7 c euros/kWh regulated. (author)

  18. Instantaneous power theory and applications to power conditioning

    CERN Document Server

    Akagi, Hirofumi; Aredes, Mauricio

    2017-01-01

    This new edition, written by a team of experts in the field, is fully updated with information on the latest electric power technology. The instantaneous power theory, or “the p-q theory,” makes clear the physical meaning of what instantaneous real and imaginary power is in a three-phase circuit. Moreover, it provides insight into how energy flows from a source to a load, or circulates between phases, in a three-phase circuit. This theory can be used in the design and understanding of FACTS (Flexible AC Transmission System) compensators. The book introduces many concepts in the field of active filtering that are unique to this edition. It provides a study tool for final year undergraduate students, graduate students and engineers dealing ith harmonic pollution problems, reactive power compensation or power quality in general.

  19. Fuel Cell and Battery Powered Forklifts

    DEFF Research Database (Denmark)

    Zhang, Zhe; Mortensen, Henrik H.; Jensen, Jes Vestervang

    2013-01-01

    A hydrogen-powered materials handling vehicle with a fuel cell combines the advantages of diesel/LPG and battery powered vehicles. Hydrogen provides the same consistent power and fast refueling capability as diesel and LPG, whilst fuel cells provide energy efficient and zero emission Electric...... propulsion similar to batteries. In this paper, the performance of a forklift powered by PEM fuel cells and lead acid batteries as auxiliary energy source is introduced and investigated. In this electromechanical propulsion system with hybrid energy/power sources, fuel cells will deliver average power...

  20. General conditions for electric power supply

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    If it is uncertain whether future power bills will be paid fully, it is admissible to take an action claiming a declaration which states that the electricity rate payment boycotter has no right to non-payment nor a right to withhold payment towards the electricity supply utility, and that the electricity supply utility has the right to stop energy supply because of reduced electricity rate payments effected and/or announced, and to denounce the contract without observing any term of notice. If the electricity buyer reduces a power bill to be paid without any legal grounds, the electricity supply utility has the right to stop power supplies and to denounce the power supply contract without observing any term of notice. The freedom of thought and the freedom of opinion must not be expressed by reducing power bills to be paid. Basic rights discontinue to be effective as soon as a contract or law is broken. A weighing of protected interests is not effected if the exercise of a basic law is unlawful. (orig./HP) [de

  1. Power engineering under conditions of climatic changes

    International Nuclear Information System (INIS)

    Wajs, K.

    1993-01-01

    One of the climatic phenomena fairly well connected with power engineering in the so called greenhouse effect. It is caused by increase of emission to the atmosphere of the so called greenhouse gases, especially CO 2 . Mechanism of this phenomenon and the relevant observations are discussed. Basic models of the circulation of greenhouse gases are outlined and the relevant conclusions as to various probable results, especially for a large time scale, are given. Tasks in the area of power engineering activity in the present situation are described. (author). 19 refs

  2. Power plant cable condition monitoring and testing at Georgia Power

    International Nuclear Information System (INIS)

    Champion, T.C.

    1988-01-01

    Georgia Power's Research Center has been heavily involved in the evaluation of electrical insulating materials and cables since its inception more than 17 years ago. For the past ten years that expertise has been applied to cables used in generation plants. This paper discusses the results of two test programs. The first is a quality control inspection on 169 samples of new power generation cables. The second is a material degradation evaluation on four short cable samples removed from a coal fired plant during an equipment upgrade. The new material evaluation was performed to identify the cause of a high failure rate upon initial hi-pot testing of newly installed cables. The material degradation evaluation was performed to evaluate the need for replacement of existing cables during an equipment upgrade. Results of the evaluations have led to development of a detailed proposal for a program to evaluate cable degradation and remaining life for cables used in power generation facilities

  3. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  4. The Conditional Entropy Power Inequality for Bosonic Quantum Systems

    DEFF Research Database (Denmark)

    de Palma, Giacomo; Trevisan, Dario

    2018-01-01

    We prove the conditional Entropy Power Inequality for Gaussian quantum systems. This fundamental inequality determines the minimum quantum conditional von Neumann entropy of the output of the beam-splitter or of the squeezing among all the input states where the two inputs are conditionally...... independent given the memory and have given quantum conditional entropies. We also prove that, for any couple of values of the quantum conditional entropies of the two inputs, the minimum of the quantum conditional entropy of the output given by the conditional Entropy Power Inequality is asymptotically...... achieved by a suitable sequence of quantum Gaussian input states. Our proof of the conditional Entropy Power Inequality is based on a new Stam inequality for the quantum conditional Fisher information and on the determination of the universal asymptotic behaviour of the quantum conditional entropy under...

  5. Optimum heat power cycles for specified boundary conditions

    International Nuclear Information System (INIS)

    Ibrahim, O.M.; Klein, S.A.; Mitchell, J.W.

    1991-01-01

    In this paper optimization of the power output of Carnot and closed Brayton cycles is considered for both finite and infinite thermal capacitance rates of the external fluid streams. The method of Lagrange multipliers is used to solve for working fluid temperatures that yield maximum power. Analytical expressions for the maximum power and the cycle efficiency at maximum power are obtained. A comparison of the maximum power from the two cycles for the same boundary conditions, i.e., the same heat source/sink inlet temperatures, thermal capacitance rates, and heat exchanger conductances, shows that the Brayton cycle can produce more power than the Carnot cycle. This comparison illustrates that cycles exist that can produce more power than the Carnot cycle. The optimum heat power cycle, which will provide the upper limit of power obtained from any thermodynamic cycle for specified boundary conditions and heat exchanger conductances is considered. The optimum heat power cycle is identified by optimizing the sum of the power output from a sequence of Carnot cycles. The shape of the optimum heat power cycle, the power output, and corresponding efficiency are presented. The efficiency at maximum power of all cycles investigated in this study is found to be equal to (or well approximated by) η = 1 - sq. root T L.in /φT H.in where φ is a factor relating the entropy changes during heat rejection and heat addition

  6. High power density carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  7. The Conditional Entropy Power Inequality for Bosonic Quantum Systems

    Science.gov (United States)

    De Palma, Giacomo; Trevisan, Dario

    2018-06-01

    We prove the conditional Entropy Power Inequality for Gaussian quantum systems. This fundamental inequality determines the minimum quantum conditional von Neumann entropy of the output of the beam-splitter or of the squeezing among all the input states where the two inputs are conditionally independent given the memory and have given quantum conditional entropies. We also prove that, for any couple of values of the quantum conditional entropies of the two inputs, the minimum of the quantum conditional entropy of the output given by the conditional Entropy Power Inequality is asymptotically achieved by a suitable sequence of quantum Gaussian input states. Our proof of the conditional Entropy Power Inequality is based on a new Stam inequality for the quantum conditional Fisher information and on the determination of the universal asymptotic behaviour of the quantum conditional entropy under the heat semigroup evolution. The beam-splitter and the squeezing are the central elements of quantum optics, and can model the attenuation, the amplification and the noise of electromagnetic signals. This conditional Entropy Power Inequality will have a strong impact in quantum information and quantum cryptography. Among its many possible applications there is the proof of a new uncertainty relation for the conditional Wehrl entropy.

  8. On-chip enzymatic microbiofuel cell-powered integrated circuits.

    Science.gov (United States)

    Mark, Andrew G; Suraniti, Emmanuel; Roche, Jérôme; Richter, Harald; Kuhn, Alexander; Mano, Nicolas; Fischer, Peer

    2017-05-16

    A variety of diagnostic and therapeutic medical technologies rely on long term implantation of an electronic device to monitor or regulate a patient's condition. One proposed approach to powering these devices is to use a biofuel cell to convert the chemical energy from blood nutrients into electrical current to supply the electronics. We present here an enzymatic microbiofuel cell whose electrodes are directly integrated into a digital electronic circuit. Glucose oxidizing and oxygen reducing enzymes are immobilized on microelectrodes of an application specific integrated circuit (ASIC) using redox hydrogels to produce an enzymatic biofuel cell, capable of harvesting electrical power from just a single droplet of 5 mM glucose solution. Optimisation of the fuel cell voltage and power to match the requirements of the electronics allow self-powered operation of the on-board digital circuitry. This study represents a step towards implantable self-powered electronic devices that gather their energy from physiological fluids.

  9. Change of body composition in process of power conditional training

    Directory of Open Access Journals (Sweden)

    D.M. Anikieiev

    2015-12-01

    Full Text Available Purpose: to work out recommendations on choosing of exercises for power conditional trainees, considering decrease of fat mass percentage as the purpose. Methods: analysis of changes of body composition of trainees, practicing different kinds of conditional power training. Results: the data about influence of different physical loads on thickness of subcutaneous fat in different parts of body have been generalized. Recommendations on choosing of exercises for power conditional trainees for body composition improving have been presented. It was found that fat loss occurs quicker in upper part of body (subcutaneous and visceral. This is observed with increasing of motor functioning and reducing calories of eating. When training any separate muscular group changes of subcutaneous fat take place not compulsory in body parts, in which the trained group is located. Conclusions: it is purposeful to mainly use basic (multi-joint exercises in power conditional training.

  10. Microcomputer control of a residential photovoltaic power conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Bose, B.K.; Steigerwald, R.L.; Szczesny, P.M.

    1984-01-01

    Microcomputer-based control of a residential photovoltaic power conditioning system is described. The microcomputer is responsible for array current feedback control, maximum power tracking control, array safe zone steering control, phase-locked reference wave synthesis, sequencing control, and some diagnostics. The control functions are implemented using Intel 8751 single-chip microcomputer-based hardware and software. The controller has been tested in the laboratory with the prototype power conditioner and shows excellent performance.

  11. Microcomputer control of a residential photovoltaic power conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Bose, B.K.; Steigerwald, R.L.; Szczesny, P.M.

    1985-09-01

    Microcomputer-based control of a residential photovoltaic power conditioning system is described. The microcomputer is responsible for array current feedback control, maximum power tracking control, array safe zone steering control, phase-locked reference wave synthesis, sequencing control, and some diagnostics. The control functions are implemented using Intel 8751 single-chip microcomputer-based hardware and software. The controller has been tested in the laboratory with the prototype power conditioner and shows excellent performance.

  12. Adaptive Reactive Power Control of PV Power Plants for Improved Power Transfer Capability under Ultra-Weak Grid Conditions

    DEFF Research Database (Denmark)

    Yang, Dongsheng; Wang, Xiongfei; Liu, Fangcheng

    2018-01-01

    with the unity power factor. Then, considering the reactive power compensation from PV inverters, the minimum SCR in respect to Power Factor (PF) is derived, and the optimized coordination of the active and reactive power is exploited. It is revealed that the power transfer capability of PV power plant under...... of a 200 MW PV power plant demonstrate that the proposed method can ensure the rated power transfer of PV power plant with the SCR of 1.25, provided that the PV inverters are operated with the minimal PF=0.9.......This paper analyzes the power transfer limitation of the PV power plant under the ultra-weak grid condition, i.e., when the Short-Circuit Ratio (SCR) is close to 1. It explicitly identifies that a minimum SCR of 2 is required for the PV power plant to deliver the rated active power when operating...

  13. Airport electric vehicle powered by fuel cell

    Science.gov (United States)

    Fontela, Pablo; Soria, Antonio; Mielgo, Javier; Sierra, José Francisco; de Blas, Juan; Gauchia, Lucia; Martínez, Juan M.

    Nowadays, new technologies and breakthroughs in the field of energy efficiency, alternative fuels and added-value electronics are leading to bigger, more sustainable and green thinking applications. Within the Automotive Industry, there is a clear declaration of commitment with the environment and natural resources. The presence of passenger vehicles of hybrid architecture, public transport powered by cleaner fuels, non-aggressive utility vehicles and an encouraging social awareness, are bringing to light a new scenario where conventional and advanced solutions will be in force. This paper presents the evolution of an airport cargo vehicle from battery-based propulsion to a hybrid power unit based on fuel cell, cutting edge batteries and hydrogen as a fuel. Some years back, IBERIA (Major Airline operating in Spain) decided to initiate the replacement of its diesel fleet for battery ones, aiming at a reduction in terms of contamination and noise in the surrounding environment. Unfortunately, due to extreme operating conditions in airports (ambient temperature, intensive use, dirtiness, …), batteries suffered a very severe degradation, which took its toll in terms of autonomy. This reduction in terms of autonomy together with the long battery recharge time made the intensive use of this fleet impractical in everyday demanding conditions.

  14. Chinese National Condition Based Power Dispatching Optimization in Microgrids

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2018-01-01

    Full Text Available This paper proposed a study on the power dispatching optimization in the microgrid aiming at Chinese national condition based on PSO algorithm. The whole work is on the basis of the weighted factor variation of the objective function due to different weather conditions. Three cases including the good contamination-diffusing weather condition, the smog weather condition, and the normal condition are considered, respectively. In the case of smog weather, the new energy generation and the battery system will be all out to use as less power as possible from the primary grid so that the pollution produced by coal consumption in the thermal power plants can be upmost reduced. However, in the case of perfect contamination-diffusing weather, the battery is not used to reserve its lifetime, while a large amount of exchanged power from the primary grid is used to obtain a most economic-efficient effect. In normal condition, the power dispatching is performed in a most balanced way considering not only the cost but also the environmental management. The case study in Suzhou Industrial Part confirms the effectiveness of the proposed method in this paper.

  15. Effects of ambient conditions on fuel cell vehicle performance

    Science.gov (United States)

    Haraldsson, K.; Alvfors, P.

    Ambient conditions have considerable impact on the performance of fuel cell hybrid vehicles. Here, the vehicle fuel consumption, the air compressor power demand, the water management system and the heat loads of a fuel cell hybrid sport utility vehicle (SUV) were studied. The simulation results show that the vehicle fuel consumption increases with 10% when the altitude increases from 0 m up to 3000 m to 4.1 L gasoline equivalents/100 km over the New European Drive Cycle (NEDC). The increase is 19% on the more power demanding highway US06 cycle. The air compressor is the major contributor to this fuel consumption increase. Its load-following strategy makes its power demand increase with increasing altitude. Almost 40% of the net power output of the fuel cell system is consumed by the air compressor at the altitude of 3000 m with this load-following strategy and is thus more apparent in the high-power US06 cycle. Changes in ambient air temperature and relative humidity effect on the fuel cell system performance in terms of the water management rather in vehicle fuel consumption. Ambient air temperature and relative humidity have some impact on the vehicle performance mostly seen in the heat and water management of the fuel cell system. While the heat loads of the fuel cell system components vary significantly with increasing ambient temperature, the relative humidity did not have a great impact on the water balance. Overall, dimensioning the compressor and other system components to meet the fuel cell system requirements at the minimum and maximum expected ambient temperatures, in this case 5 and 40 °C, and high altitude, while simultaneously choosing a correct control strategy are important parameters for efficient vehicle power train management.

  16. Creation of Power Reserves Under the Market Economy Conditions

    Science.gov (United States)

    Mahnitko, A.; Gerhards, J.; Lomane, T.; Ribakov, S.

    2008-09-01

    The main task of the control over an electric power system (EPS) is to ensure reliable power supply at the least cost. In this case, requirements to the electric power quality, power supply reliability and cost limitations on the energy resources must be observed. The available power reserve in an EPS is the necessary condition to keep it in operation with maintenance of normal operating variables (frequency, node voltage, power flows via the transmission lines, etc.). The authors examine possibilities to create power reserves that could be offered for sale by the electric power producer. They consider a procedure of price formation for the power reserves and propose a relevant mathematical model for a united EPS, the initial data being the fuel-cost functions for individual systems, technological limitations on the active power generation and consumers' load. As the criterion of optimization the maximum profit for the producer is taken. The model is exemplified by a concentrated EPS. The computations have been performed using the MATLAB program.

  17. Effects of partial shading conditions on maximum power points and mismatch losses in silicon-based photovoltaic power generators

    Energy Technology Data Exchange (ETDEWEB)

    Maki, A.

    2013-11-01

    Photovoltaic (PV) power generators can be used for converting the energy of solar radiation directly into electrical energy without any moving parts. The operation of the generators is highly affected by operating conditions, most importantly irradiances and temperatures of PV cells. PV power generators are prone to electrical losses if the operating conditions are non-uniform such as in a case where part of the modules of a generator are shaded while the rest are receiving the global solar radiation. These conditions are called partial shading conditions and they have been recognized as a major cause of energy losses in PV power generators. In this thesis, the operation of silicon-based PV power generators under partial shading conditions is studied using Matlab Simulink simulation model. The operation of the model has been verified by measurements of electrical characteristics of a PV module under several different operating conditions and also under partial shading conditions. A systematic approach to study the effects of partial shading conditions has been developed and used. In addition to the systematic approach, a vast amount of data measured from the Tampere University of Technology (TUT) Solar Photovoltaic Power Station Research Plant are analyzed and used as input for the simulation model to study operation of PV power generators under actual operating conditions. Partial shading conditions have severe effects on the electrical characteristics of PV power generators and can cause multiple maximum power points (MPPs) to the power-voltage curve of the generators. In most cases, partial shading conditions lead to the occurrence of multiple MPPs, but also only one MPP can be present despite of partial shading. Reasons for this phenomenon are presented and analyzed in this thesis. Because of multiple MPPs, a considerable amount of available electrical energy may be lost when the generator is operating at a local MPP with low power instead of the global MPP. In

  18. Integrated Solid Oxide Fuel Cell Power System Characteristics Prediction

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2009-07-01

    Full Text Available The main objective of this paper is to deduce the specific characteristics of the CHP 100kWe Solid Oxide Fuel Cell (SOFC Power System from the steady state experimental data. From the experimental data, the authors have been developed and validated the steady state mathematical model. From the control room the steady state experimental data of the SOFC power conditioning are available and using the developed steady state mathematical model, the authors have been obtained the characteristic curves of the system performed by Siemens-Westinghouse Power Corporation. As a methodology the backward and forward power flow analysis has been employed. The backward power flow makes possible to obtain the SOFC power system operating point at different load levels, resulting as the load characteristic. By knowing the fuel cell output characteristic, the forward power flow analysis is used to predict the power system efficiency in different operating points, to choose the adequate control decision in order to obtain the high efficiency operation of the SOFC power system at different load levels. The CHP 100kWe power system is located at Gas Turbine Technologies Company (a Siemens Subsidiary, TurboCare brand in Turin, Italy. The work was carried out through the Energia da Ossidi Solidi (EOS Project. The SOFC stack delivers constant power permanently in order to supply the electric and thermal power both to the TurboCare Company and to the national grid.

  19. Vulnerability of the nuclear power plant in war conditions

    International Nuclear Information System (INIS)

    Stritar, A.; Mavko, B.

    1992-01-01

    In the summer 1991 the Nuclear Power Plant Krsko in Slovenia found itself in the area of military operations. This way probably the first commercial nuclear power plant, to which it was threatened with the air jet attack. A number of never before asked questions had to be answered by the operating staff and supporting organizations. In this paper some aspects of the nuclear power plant safety in war condition are described: the selection of the best plant operating state before the attack and the determination of plant system vulnerability. It was concluded, that the best operating mode, into which the plant should be brought before the attack, is the cold shutdown mode. The problem of Nuclear Power Plant safety in war conditions should be addressed in more detail in the future. (author) [sl

  20. Condition monitoring and maintenance of nuclear power plant concrete structures

    International Nuclear Information System (INIS)

    Orr, R.; Prasad, N.

    1988-01-01

    Nuclear power plant concrete structures are potentially subject to deterioration due to several environmental conditions, including weather exposure, ground water exposure, and sustained high temperature and radiation levels. The nuclear power plant are generally licensed for a term of 40 years. In order to maximize the return from the existing plants, feasibility studies are in progress for continued operation of many of these plants beyond the original licensed life span. This paper describes a study that was performed with an objective to define appropriate condition monitoring and maintenance procedures. A timely implementation of a condition monitoring and maintenance program would provide a valuable database and would provide justification for extension of the plant's design life. The study included concrete structures such as the containment buildings, interior structures, basemats, intake structures and cooling towers. Age-related deterioration at several operating power plants was surveyed and the potential degradation mechanisms have been identified

  1. Fuel Cells for Backup Power in Telecommunications Facilities (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2009-04-01

    Telecommunications providers rely on backup power to maintain a constant power supply, to prevent power outages, and to ensure the operability of cell towers, equipment, and networks. The backup power supply that best meets these objectives is fuel cell technology.

  2. General conditions for gas-fired power plants in Europe

    International Nuclear Information System (INIS)

    Hugi, Ch.; Fuessler, J.; Sommerhalder, M.

    2006-11-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) takes a look at the general conditions for the installation of gas-fired power plants in Europe. Combined cycle power stations are characterised and the associated power production costs are discussed. Also, the prices resulting from the internalisation of external costs are noted. The problems associated with carbon dioxide emissions are discussed and the trading of emission certificates is looked at. Also, nitrogen oxide emissions are examined and discussed. The use of waste heat from the combined cycle power stations is also examined. Further topics include subsidies and special credits for the gas industry in Europe and the granting of permission for the planning, construction, operation and dismantling of the power station facilities. The situation in various European countries is examined and the associated market distortion is commented on

  3. Power losses in electrical networks depending on weather conditions

    International Nuclear Information System (INIS)

    Zhelezko, Yu. S.; Kostyushko, V. A.; Krylov, S. V.; Nikiforov, E. P.; Savchenko, O. V.; Timashova, L. V.; Solomonik, E. A.

    2005-01-01

    Specific power losses to corona and to leakage currents over overhead insulators are presented for 110 - 750-kV transmission lines with different phase design and pole types for different weather conditions. Consumption of electric energy for ice melting on conductors of various cross sections is evaluated. Meteorological data of 1372 weather stations in Russia are processed for a period of 10 years. The territory of the country is divided into 7 regions with approximately homogeneous weather conditions. Specific power losses to corona and leakage currents over overhead insulators are presented for every region

  4. Application of condition based maintenance to nuclear power plants

    International Nuclear Information System (INIS)

    Sonoda, Yukio; Nakano, Tomohito; Shimizu, Shunichi; Iida, Jun; Atomura, Masakazu; Abe, Masahiro

    2002-01-01

    Device Karte management system which supports application of condition based maintenance to nuclear power plants has been developed. The purpose of this system is to support maintenance personnel in device inspection scheduling based on operating condition monitoring and maintenance histories. There are four functions: field database, degradation estimation, inspection time decision and maintenance planning. The authors have been applying this system to dozens of devices of Onagawa Nuclear Power Station Unit No. 1 for one year. This paper represents the system concept and its application experiences. (author)

  5. Wind power variations under humid and arid meteorological conditions

    International Nuclear Information System (INIS)

    Şen, Zekâi

    2013-01-01

    Highlights: • It indicates the role of weather parameters’ roles in the wind energy calculation. • Meteorological variables are more significant in arid regions for wind power. • It provides opportunity to take into consideration air density variability. • Wind power is presented in terms of the wind speed, temperature and pressure. - Abstract: The classical wind power per rotor area per time is given as the half product of the air density by third power of the wind velocity. This approach adopts the standard air density as constant (1.23 g/cm 3 ), which ignores the density dependence on air temperature and pressure. Weather conditions are not taken into consideration except the variations in wind velocity. In general, increase in pressure and decrease in temperature cause increase in the wind power generation. The rate of increase in the pressure has less effect on the wind power as compared with the temperature rate. This paper provides the wind power formulation based on three meteorological variables as the wind velocity, air temperature and air pressure. Furthermore, from the meteorology point of view any change in the wind power is expressed as a function of partial changes in these meteorological variables. Additionally, weather conditions in humid and arid regions differ from each other, and it is interesting to see possible differences between the two regions. The application of the methodology is presented for two meteorology stations in Istanbul, Turkey, as representative of the humid regions and Al-Madinah Al-Monawwarah, Kingdom of Saudi Arabia, for arid region, both on daily record bases for 2010. It is found that consideration of air temperature and pressure in the average wind power calculation gives about 1.3% decrease in Istanbul, whereas it is about 13.7% in Al-Madinah Al-Monawwarah. Hence, consideration of meteorological variables in wind power calculations becomes more significant in arid regions

  6. Energy control of supercapacitor/fuel cell hybrid power source

    International Nuclear Information System (INIS)

    Payman, Alireza; Pierfederici, Serge; Meibody-Tabar, Farid

    2008-01-01

    This paper deals with a flatness based control principle in a hybrid system utilizing a fuel cell as a main power source and a supercapacitor as an auxiliary power source. The control strategy is based on regulation of the dc bus capacitor energy and, consequently, voltage regulation. The proposed control algorithm does not use a commutation algorithm when the operating mode changes with the load power variation and, thus, avoids chattering effects. Using the flatness based control method, the fuel cell dynamic and its delivered power is perfectly controlled, and the fuel cell can operate in a safe condition. In the hybrid system, the supercapacitor functions during transient energy delivery or during energy recovery situations. To validate the proposed method, the control algorithms are executed in dSPACE hardware, while analogical current loops regulators are employed in the experimental environment. The experimental results prove the validity of the proposed approach

  7. Methods of conditioning direct methanol fuel cells

    Science.gov (United States)

    Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon

    2005-11-08

    Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.

  8. Accelerating Acceptance of Fuel Cell Backup Power Systems - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Petrecky, James; Ashley, Christopher

    2014-07-21

    Since 2001, Plug Power has installed more than 800 stationary fuel cell systems worldwide. Plug Power’s prime power systems have produced approximately 6.5 million kilowatt hours of electricity and have accumulated more than 2.5 million operating hours. Intermittent, or backup, power products have been deployed with telecommunications carriers and government and utility customers in North and South America, Europe, the United Kingdom, Japan and South Africa. Some of the largest material handling operations in North America are currently using the company’s motive power units in fuel cell-powered forklifts for their warehouses, distribution centers and manufacturing facilities. The low-temperature GenSys fuel cell system provides remote, off-grid and primary power where grid power is unreliable or nonexistent. Built reliable and designed rugged, low- temperature GenSys delivers continuous or backup power through even the most extreme conditions. Coupled with high-efficiency ratings, low-temperature GenSys reduces operating costs making it an economical solution for prime power requirements. Currently, field trials at telecommunication and industrial sites across the globe are proving the advantages of fuel cells—lower maintenance, fuel costs and emissions, as well as longer life—compared with traditional internal combustion engines.

  9. Exoelectrogenic bacteria that power microbial fuel cells

    KAUST Repository

    Logan, Bruce E.

    2009-01-01

    There has been an increase in recent years in the number of reports of microorganisms that can generate electrical current in microbial fuel cells. Although many new strains have been identified, few strains individually produce power densities as high as strains from mixed communities. Enriched anodic biofilms have generated power densities as high as 6.9 W per m2 (projected anode area), and therefore are approaching theoretical limits. To understand bacterial versatility in mechanisms used for current generation, this Progress article explores the underlying reasons for exocellular electron transfer, including cellular respiration and possible cell-cell communication.

  10. Exoelectrogenic bacteria that power microbial fuel cells

    KAUST Repository

    Logan, Bruce E.

    2009-03-30

    There has been an increase in recent years in the number of reports of microorganisms that can generate electrical current in microbial fuel cells. Although many new strains have been identified, few strains individually produce power densities as high as strains from mixed communities. Enriched anodic biofilms have generated power densities as high as 6.9 W per m2 (projected anode area), and therefore are approaching theoretical limits. To understand bacterial versatility in mechanisms used for current generation, this Progress article explores the underlying reasons for exocellular electron transfer, including cellular respiration and possible cell-cell communication.

  11. Wind, Wave, and Tidal Energy Without Power Conditioning

    Science.gov (United States)

    Jones, Jack A.

    2013-01-01

    Most present wind, wave, and tidal energy systems require expensive power conditioning systems that reduce overall efficiency. This new design eliminates power conditioning all, or nearly all, of the time. Wind, wave, and tidal energy systems can transmit their energy to pumps that send high-pressure fluid to a central power production area. The central power production area can consist of a series of hydraulic generators. The hydraulic generators can be variable displacement generators such that the RPM, and thus the voltage, remains constant, eliminating the need for further power conditioning. A series of wind blades is attached to a series of radial piston pumps, which pump fluid to a series of axial piston motors attached to generators. As the wind is reduced, the amount of energy is reduced, and the number of active hydraulic generators can be reduced to maintain a nearly constant RPM. If the axial piston motors have variable displacement, an exact RPM can be maintained for all, or nearly all, wind speeds. Analyses have been performed that show over 20% performance improvements with this technique over conventional wind turbines

  12. Integrating fuel cell power systems into building physical plants

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J. [KCI Technologies, Inc., Hunt Valley, MD (United States)

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  13. Fuel-Cell-Powered Vehicle with Hybrid Power Management

    Science.gov (United States)

    Eichenberg, Dennis J.

    2010-01-01

    Figure 1 depicts a hybrid electric utility vehicle that is powered by hydrogenburning proton-exchange-membrane (PEM) fuel cells operating in conjunction with a metal hydride hydrogen-storage unit. Unlike conventional hybrid electric vehicles, this vehicle utilizes ultracapacitors, rather than batteries, for storing electric energy. This vehicle is a product of continuing efforts to develop the technological discipline known as hybrid power management (HPM), which is oriented toward integration of diverse electric energy-generating, energy-storing, and energy- consuming devices in optimal configurations. Instances of HPM were reported in five prior NASA Tech Briefs articles, though not explicitly labeled as HPM in the first three articles: "Ultracapacitors Store Energy in a Hybrid Electric Vehicle" (LEW-16876), Vol. 24, No. 4 (April 2000), page 63; "Photovoltaic Power Station With Ultracapacitors for Storage" (LEW- 17177), Vol. 27, No. 8 (August 2003), page 38; "Flasher Powered by Photovoltaic Cells and Ultracapacitors" (LEW-17246), Vol. 27, No. 10 (October 2003), page 37; "Hybrid Power Management" (LEW-17520), Vol. 29, No. 12 (December 2005), page 35; and "Ultracapacitor-Powered Cordless Drill" (LEW-18116-1), Vol. 31, No. 8 (August 2007), page 34. To recapitulate from the cited prior articles: The use of ultracapacitors as energy- storage devices lies at the heart of HPM. An ultracapacitor is an electrochemical energy-storage device, but unlike in a conventional rechargeable electrochemical cell or battery, chemical reactions do not take place during operation. Instead, energy is stored electrostatically at an electrode/electrolyte interface. The capacitance per unit volume of an ultracapacitor is much greater than that of a conventional capacitor because its electrodes have much greater surface area per unit volume and the separation between the electrodes is much smaller.

  14. Power system security enhancement with unified power flow controller under multi-event contingency conditions

    Directory of Open Access Journals (Sweden)

    S. Ravindra

    2017-03-01

    Full Text Available Power system security analysis plays key role in enhancing the system security and to avoid the system collapse condition. In this paper, a novel severity function is formulated using transmission line loadings and bus voltage magnitude deviations. The proposed severity function and generation fuel cost objectives are analyzed under transmission line(s and/or generator(s contingency conditions. The system security under contingency conditions is analyzed using optimal power flow problem. An improved teaching learning based optimization (ITLBO algorithm has been presented. To enhance the system security under contingency conditions in the presence of unified power flow controller (UPFC, it is necessary to identify an optimal location to install this device. Voltage source based power injection model of UPFC, incorporation procedure and optimal location identification strategy based on line overload sensitivity indexes are proposed. The entire proposed methodology is tested on standard IEEE-30 bus test system with supporting numerical and graphical results.

  15. Development and experimental characterization of a fuel cell powered aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Thomas H.; Moffitt, Blake A.; Mavris, Dimitri N.; Parekh, David E. [Georgia Institute of Technology, Atlanta, GA 30332-0405 (United States)

    2007-09-27

    This paper describes the characteristics and performance of a fuel cell powered unmanned aircraft. The aircraft is novel as it is the largest compressed hydrogen fuel cell powered airplane built to date and is currently the only fuel cell aircraft whose design and test results are in the public domain. The aircraft features a 500 W polymer electrolyte membrane fuel cell with full balance of plant and compressed hydrogen storage incorporated into a custom airframe. Details regarding the design requirements, implementation and control of the aircraft are presented for each major aircraft system. The performances of the aircraft and powerplant are analyzed using data from flights and laboratory tests. The efficiency and component power consumption of the fuel cell propulsion system are measured at a variety of flight conditions. The performance of the aircraft powerplant is compared to other 0.5-1 kW-scale fuel cell powerplants in the literature and means of performance improvement for this aircraft are proposed. This work represents one of the first studies of fuel cell powered aircraft to result in a demonstration aircraft. As such, the results of this study are of practical interest to fuel cell powerplant and aircraft designers. (author)

  16. Market conditions for wind power and biofuel-based cogeneration

    International Nuclear Information System (INIS)

    1994-07-01

    The aim of this study is to analyze the prerequisites for biofuel-based cogeneration plants and for wind power, with special emphasis on following factors: 1/ The effect on the Swedish energy market of the opening of the power transmission networks for free competition within the electric power supply sector. 2/ A market model for the connection between the prices on fossil fuels, biomass fuels, electric power, and heating on the Swedish market. The analysis is made for three scenarios concerning carbon dioxide/energy taxation and the oil price development. The three scenarios are: A. Constant prices on heating oil and coal., B. An internationally uniform carbon dioxide tax, which successively is raised to SEK 0.40 per kilo carbon dioxide to the year 2010. In the year 2005 this will correspond to a doubling of the present prices on crude oil., C. An unilateral Swedish energy- and carbon dioxide tax of todays model (without exception for electric power generation), with constant import prices on heating oil and coal. The decisive factors for bio-cogeneration are construction- and operation costs, the costs of biofuels, and the sales price on electric power and heat. For wind power it is the construction- and operation costs that settle the conditions. 18 figs, 6 tabs

  17. Economic Conditions and Factors Affecting New Nuclear Power Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Thomas J [ORNL

    2014-10-01

    This report documents work performed in support of the US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (AdvSMR) program. The report presents information and results from economic analyses to describe current electricity market conditions and those key factors that may impact the deployment of AdvSMRs or any other new nuclear power plants. Thus, this report serves as a reference document for DOE as it moves forward with its plans to develop advanced reactors, including AdvSMRs. For the purpose of this analysis, information on electricity markets and nuclear power plant operating costs will be combined to examine the current state of the nuclear industry and the process required to successfully move forward with new nuclear power in general and AdvSMRs in particular. The current electricity market is generally unfavorable to new nuclear construction, especially in deregulated markets with heavy competition from natural gas and subsidized renewables. The successful and profitable operation of a nuclear power plant (or any power plant) requires the rate at which the electricity is sold to be sufficiently greater than the cost to operate. The wholesale rates in most US markets have settled into values that provide profits for most operating nuclear power plants but are too low to support the added cost of capital recovery for new nuclear construction. There is a strong geographic dependence on the wholesale rate, with some markets currently able to support new nuclear construction. However, there is also a strong geographic dependence on pronuclear public opinion; the areas where power prices are high tend to have unfavorable views on the construction of new nuclear power plants. The use of government-backed incentives, such as subsidies, can help provide a margin to help justify construction projects that otherwise may not seem viable. Similarly, low interest rates for the project will also add a positive margin to the economic

  18. Workshop on power plant cable condition monitoring: Proceedings

    International Nuclear Information System (INIS)

    Del Valle, L.

    1988-07-01

    A three-day workshop on cable condition monitoring was held in San Francisco on Fegruary 16--18, 1988. The workshop was cosponsored by the Nuclear Power, Electrical Systems, and Coal Combustion Systems Divisions of the Electric Power Research Institute. The primary objective of the workshop was to identify the state-of-the-art for cable condition monitoring. Twenty-five technical papers as well as EPRI research programs were presented at the technical sessions. Four working group sessions and one general session were held on each of two days. Each group session provided a forum for participants to exchange ideas and to discuss in more depth research for cable condition monitoring, existing and innovative testing technology, and utility and NRC needs for testing. Recommendations from the working groups were summarized and presented at the end of the workshop

  19. Portable power applications of fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Weston, M.; Matcham, J.

    2002-07-01

    This report describes the state-of-the-art of fuel cell technology for portable power applications. The study involved a comprehensive literature review. Proton exchange membrane fuel cells (PEMFCs) have attracted much more interest than either direct methanol fuel cells (DMFCs) or solid oxide fuel cells (SOFCs). However, issues relating to fuel choice and catalyst design remain with PEMFCs; DMFCs have excellent potential provided issues relating to the conducting membrane can be resolved but the current high temperature of operation and low power density currently makes SOFCs less applicable to portable applications. Available products are listed and the obstacles to market penetration are discussed. The main barriers are cost and the size/weight of fuel cells compared with batteries. Another key problem is the lack of a suitable fuel infrastructure.

  20. POWERED LED LIGHTING SUPPLIED FROM PV CELLS

    Directory of Open Access Journals (Sweden)

    Tirshu M.

    2011-12-01

    Full Text Available The paper deals with practical realization of efficient lighting system based on LED’s of 80W total power mounted on corridor ceiling total length of which is 120m and substitutes existing traditional lighting system consisting of 29 lighting blocks with 4 fluorescent lamps each of them and summary power 2088W. Realized lighting system is supplied from two photovoltaic panels of power 170W. Generated energy by PV cells is accumulated in two accumulators of 75Ah capacity and from battery by means of specialized convertor is applied to lighting system. Additionally, paper present data measured by digital weather station (solar radiation and UV index, which is mounted near of PV cells and comparative analyze of solar energy with real energy generated by PV cells is done. Measured parameters by digital weather station are stored by computer in on-line mode.

  1. Direct FuelCell/Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply

  2. Effect of reactor conditions on MSIV-ATWS power level

    International Nuclear Information System (INIS)

    Diamond, D.J.

    1987-01-01

    In a boiling water reactor (BWR) when there is closure of the main steam isolation valves (MSIVs), the energy generated in the core will be transferred to the pressure suppression pool (PSP) via steam that flows out of the relief valves. The pool has limited capacity as a heat sink and hence, if there is no reactor trip [an anticipated transient without scram (ATWS) event], there is the possibility that the pool temperature may rise beyond acceptable limits. The present study was undertaken to determine how the initial reactor conditions affect the power level during an MSIV-ATWS event. The time of interest is the 20- to 30-min period when it is assumed that the reactor is in a quasi equilibrium condition with the water level and pressure fixed, natural circulation conditions and no control rod movement or significant boron in the core. The initial conditions of interest are the time of the cycle and the operating state

  3. Operational limits and conditions for nuclear power plants

    International Nuclear Information System (INIS)

    1979-01-01

    This Safety Guide was prepared as part of the Agency's programme, referred to as the NUSS programme, for establishing Codes of Practice and Safety Guides relating to nuclear power plants. It covers the concept of operational limits and conditions, their content as applicable to various types of thermal reactors, and the responsibilities of the operating organization regarding their establishment, modification, compliance and documentation. The principles of the operational limits and conditions are established in section 3 of the Agency's Code of Practice on Safety in Nuclear Power Plant Operation, including Commissioning and Decommissioning (IAEA Safety Series No. 50-C-O), which this present Safety Guide supplements. In order to present all pertinent information in this Guide, the provisions of section 3 of the Code are repeated

  4. Some aspects of nuclear power plant safety under war conditions

    International Nuclear Information System (INIS)

    Stritar, A.; Mavko, B.; Susnik, J.; Sarler, B.

    1993-01-01

    In the summer of 1991, the Krsko nuclear power plant in Slovenia found itself in an area of military operations. This was probably the first commercial nuclear power plant to have been threatened by an attack by fighter jets. A number of never-before-asked questions had to be answered by the operating staff and supporting organizations. Some aspects of nuclear power plant safety under war conditions are described, such as the selection of the best plant operating state before the attack and the determination of plant system vulnerability and dose releases from the potentially damaged spent fuel in the spent-fuel pit. The best operating mode to which the plant should be brought before the attack is cold shutdown, and radiological consequences to the environment after the spent fuel is damaged and the water in the pit is lost are not very high. The problem of nuclear power plant safety under war conditions should be addressed in more detail in the future

  5. Stationary power fuel cell commercialization status worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.C. [Dept. of Energy, Morgantown, WV (United States)

    1996-12-31

    Fuel cell technologies for stationary power are set to play a role in power generation applications worldwide. The worldwide fuel cell vision is to provide powerplants for the emerging distributed generation and on-site markets. Progress towards commercialization has occurred in all fuel cell development areas. Around 100 ONSI phosphoric acid fuel cell (PAFC) units have been sold, with significant foreign sales in Europe and Japan. Fuji has apparently overcome its PAFC decay problems. Industry-driven molten carbonate fuel cell (MCFC) programs in Japan and the U.S. are conducting megawatt (MW)-class demonstrations, which are bringing the MCFC to the verge of commercialization. Westinghouse Electric, the acknowledged world leader in tubular solid oxide fuel cell (SOFC) technology, continues to set performance records and has completed construction of a 4-MW/year manufacturing facility in the U.S. Fuel cells have also taken a major step forward with the conceptual development of ultra-high efficiency fuel cell/gas turbine plants. Many SOFC developers in Japan, Europe, and North America continue to make significant advances.

  6. Power conditioning development for the National Ignition Facility

    International Nuclear Information System (INIS)

    Newton, M.A.; Larson, D.W.; Wilson, J.M.; Harjes, H.C.; Savage, M.E.; Anderson, R.L.

    1996-10-01

    The National Ignition Facility (NIF) is a high energy glass laser system and target chamber that will be used for research in inertial confinement fusion. The 192 beams of the NIF laser system are pumped by over 8600 Xenon flashlamps. The power conditioning system for NIF must deliver nearly 300 MJ of energy to the flashlamps in a cost effective and reliable manner. The present system design has over 200 capacitive energy storage modules that store approximately 1.7 MJ each and deliver that energy through a single switch assembly to 20 parallel sets of two series flashlamps. Although there are many possible system designs, few will meet the aggressive cost goals necessary to make the system affordable. Sandia National Laboratory (SNL) and Lawrence Livermore National Laboratory (LLNL) are developing the system and component technologies that will be required to build the power conditioning system for the National Ignition Facility. This paper will describe the ongoing development activities for the NIF power conditioning system

  7. Determination of modeling parameters for power IGBTs under pulsed power conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Gregory E [Los Alamos National Laboratory; Van Gordon, Jim A [U. OF MISSOURI; Kovaleski, Scott D [U. OF MISSOURI

    2010-01-01

    While the power insulated gate bipolar transistor (IGRT) is used in many applications, it is not well characterized under pulsed power conditions. This makes the IGBT difficult to model for solid state pulsed power applications. The Oziemkiewicz implementation of the Hefner model is utilized to simulate IGBTs in some circuit simulation software packages. However, the seventeen parameters necessary for the Oziemkiewicz implementation must be known for the conditions under which the device will be operating. Using both experimental and simulated data with a least squares curve fitting technique, the parameters necessary to model a given IGBT can be determined. This paper presents two sets of these seventeen parameters that correspond to two different models of power IGBTs. Specifically, these parameters correspond to voltages up to 3.5 kV, currents up to 750 A, and pulse widths up to 10 {micro}s. Additionally, comparisons of the experimental and simulated data will be presented.

  8. Fault tolerance of the NIF power conditioning system

    International Nuclear Information System (INIS)

    Larson, D.W.; Anderson, R.; Boyes, J.

    1995-01-01

    The tolerance of the circuit topology proposed for the National Ignition Facility (NIF) power conditioning system to specific fault conditions is investigated. A new pulsed power circuit is proposed for the NIF which is simpler and less expensive than previous ICF systems. The inherent fault modes of the new circuit are different from the conventional approach, and must be understood to ensure adequate NIF system reliability. A test-bed which simulates the NIF capacitor module design was constructed to study the circuit design. Measurements from test-bed experiments with induced faults are compared with results from a detailed circuit model. The model is validated by the measurements and used to predict the behavior of the actual NIF module during faults. The model can be used to optimize fault tolerance of the NIF module through an appropriate distribution of circuit inductance and resistance. The experimental and modeling results are presented, and fault performance is compared with the ratings of pulsed power components. Areas are identified which require additional investigation

  9. Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System

    OpenAIRE

    A. Hajizadeh; F. Hassanzadeh

    2013-01-01

    This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid ...

  10. Fuel cell power trains for road traffic

    Science.gov (United States)

    Höhlein, Bernd; Biedermann, Peter; Grube, Thomas; Menzer, Reinhard

    Legal regulations, especially the low emission vehicle (LEV) laws in California, are the driving forces for more intensive technological developments with respect to a global automobile market. In the future, high efficient vehicles at very low emission levels will include low temperature fuel cell systems (e.g., polymer electrolyte fuel cell (PEFC)) as units of hydrogen-, methanol- or gasoline-based electric power trains. In the case of methanol or gasoline/diesel, hydrogen has to be produced on-board using heated steam or partial oxidation reformers as well as catalytic burners and gas cleaning units. Methanol could also be used for direct electricity generation inside the fuel cell (direct methanol fuel cell (DMFC)). The development potentials and the results achieved so far for these concepts differ extremely. Based on the experience gained so far, the goals for the next few years include cost and weight reductions as well as optimizations in terms of the energy management of power trains with PEFC systems. At the same time, questions of fuel specification, fuel cycle management, materials balances and environmental assessment will have to be discussed more intensively. On the basis of process engineering analyses for net electricity generation in PEFC-powered power trains as well as on assumptions for both electric power trains and vehicle configurations, overall balances have been carried out. They will lead not only to specific energy demand data and specific emission levels (CO 2, CO, VOC, NO x) for the vehicle but will also present data of its full fuel cycle (FFC) in comparison to those of FFCs including internal combustion engines (ICE) after the year 2005. Depending on the development status (today or in 2010) and the FFC benchmark results, the advantages of balances results of FFC with PEFC vehicles are small in terms of specific energy demand and CO 2 emissions, but very high with respect to local emission levels.

  11. [CONDITIONS OF SYNOVIAL MESENCHYMAL STEM CELLS DIFFERENTIATING INTO FIBROCARTILAGE CELLS].

    Science.gov (United States)

    Fu, Peiliang; Cong, Ruijun; Chen, Song; Zhang, Lei; Ding, Zheru; Zhou, Qi; Li, Lintao; Xu, Zhenyu; Wu, Yuli; Wu, Haishan

    2015-01-01

    To explore the conditions of synovial derived mesenchymal stem cells (SMSCs) differentiating into the fibrocartilage cells by using the orthogonal experiment. The synovium was harvested from 5 adult New Zealand white rabbits, and SMSCs were separated by adherence method. The flow cytometry and multi-directional differentiation method were used to identify the SMSCs. The conditions were found from the preliminary experiment and literature review. The missing test was carried out to screen the conditions and then 12 conditions were used for the orthogonal experiment, including transforming growth factor β1 (TGF-β1), bone morphogenic protein 2 (BMP-2), dexamethasone (DEX), proline, ascorbic acid (ASA), pyruvic acid, insulin + transferrin + selenious acid pre-mixed solution (ITS), bovin serum albumin (BSA), basic fibroblast growth factor (bFGF), intermittent hydraulic pressure (IHP), bone morphogenic protein 7 (BMP-7), and insulin-like growth factor (IGF). The L60 (212) orthogonal experiment was designed using the SPSS 18.0 with 2 level conditions and the cells were induced to differentiate on the small intestinal submucosa (SIS)-3D scaffold. The CD151+/CD44+ cells were detected with the flow cytometry and then the differentiation rate was recorded. The immumohistochemical staining, cellular morphology, toluidine blue staining, and semi-quantitative RT-PCR examination for the gene expressions of sex determining region Y (SRY)-box 9 gene (Sox9), aggrecan gene (AGN), collagen type I gene (Col I), collagen type II gene (Col II), collagen type IX gene (Col IX) were used for result confirmation. The differentiation rate was calculated as the product of CD151/CD44+ cells and cells with Col I high expression. The grow curve was detected with the DNA abundance using the PicoGreen Assay. The visual observation and the variances analysis among the variable were used to evaluate the result of the orthogonal experiment, 1 level interaction was considered. The q-test and the

  12. High Efficiency Reversible Fuel Cell Power Converter

    DEFF Research Database (Denmark)

    Pittini, Riccardo

    as well as different dc-ac and dc-dc converter topologies are presented and analyzed. A new ac-dc topology for high efficiency data center applications is proposed and an efficiency characterization based on the fuel cell stack I-V characteristic curve is presented. The second part discusses the main...... converter components. Wide bandgap power semiconductors are introduced due to their superior performance in comparison to traditional silicon power devices. The analysis presents a study based on switching loss measurements performed on Si IGBTs, SiC JFETs, SiC MOSFETs and their respective gate drivers...

  13. Power conditioning for large dc motors for space flight applications

    Science.gov (United States)

    Veatch, Martin S.; Anderson, Paul M.; Eason, Douglas J.; Landis, David M.

    1988-01-01

    The design and performance of a prototype power-conditioning system for use with large brushless dc motors on NASA space missions are discussed in detail and illustrated with extensive diagrams, drawings, and graphs. The 5-kW 8-phase parallel module evaluated here would be suitable for use in the Space Shuttle Orbiter cargo bay. A current-balancing magnetic assembly with low distributed inductance permits high-speed current switching from a low-voltage bus as well as current balancing between parallel MOSFETs.

  14. Fuel cell power plants for automotive applications

    Science.gov (United States)

    McElroy, J. F.

    1983-02-01

    While the Solid Polymer Electrolyte (SPE) fuel cell has until recently not been considered competitive with such commercial and industrial energy systems as gas turbine generators and internal combustion engines, electrical current density improvements have markedly improved the capital cost/kW output rating performance of SPE systems. Recent studies of SPE fuel cell applicability to vehicular propulsion have indicated that with adequate development, a powerplant may be produced which will satisfy the performance, size and weight objectives required for viable electric vehicles, and that the cost for such a system would be competitive with alternative advanced power systems.

  15. Condition monitoring of rotormachinery in nuclear power plants

    International Nuclear Information System (INIS)

    Suedmersen, U.; Runkel, J.; Vortriede, A.; Reimche, W.; Stegemann, D.

    1996-01-01

    Due to safety and economical reasons diagnostic and monitoring systems are of growing interest in nuclear power plants and other complex industrial productions. Key components of NPP's are rotating machineries of the primary and secondary loops like PWR main coolant pumps, BWR recirculation pumps, turbines, fresh water pumps and feed water pumps. Diagnostic systems are requested which detect, diagnose and localize faulty operation conditions at an early stage in order to prevent severe failures and to enable predictive and condition oriented maintenance. The knowledge of characteristical machine signatures and their time dependent behaviour are the basis of efficient condition monitoring of rotating machines. The performance of reference measurements are of importance for fault detection during operation by trend settings. The comparison with thresholds given by norms and standards is only a small section of available possibilities. Therefore, for each machinery own thresholds should be determined using statistical time values, spectra comparison, cepstrum analysis and correlation analysis for source localization corresponding to certain machine operation conditions. (author). 14 refs, 15 figs

  16. Condition monitoring of rotormachinery in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Suedmersen, U; Runkel, J; Vortriede, A; Reimche, W; Stegemann, D [University of Hannover, Hannover (Germany). Inst. of Nuclear Engineering and Nondestructive Testing

    1997-12-31

    Due to safety and economical reasons diagnostic and monitoring systems are of growing interest in nuclear power plants and other complex industrial productions. Key components of NPP`s are rotating machineries of the primary and secondary loops like PWR main coolant pumps, BWR recirculation pumps, turbines, fresh water pumps and feed water pumps. Diagnostic systems are requested which detect, diagnose and localize faulty operation conditions at an early stage in order to prevent severe failures and to enable predictive and condition oriented maintenance. The knowledge of characteristical machine signatures and their time dependent behaviour are the basis of efficient condition monitoring of rotating machines. The performance of reference measurements are of importance for fault detection during operation by trend settings. The comparison with thresholds given by norms and standards is only a small section of available possibilities. Therefore, for each machinery own thresholds should be determined using statistical time values, spectra comparison, cepstrum analysis and correlation analysis for source localization corresponding to certain machine operation conditions. (author). 14 refs, 15 figs.

  17. Abnormal condition detector for a local power range monitor

    International Nuclear Information System (INIS)

    Akiyama, Takao.

    1976-01-01

    Object: to permit determination of abnormal condition by a number of local power range monitors (LPRM) to be quickly made through precise estimation of the ratio between the true rate of change in neutron flux and true change in the neutron flux by making use of the fact that the status of the neutron distribution does not widely change with a change in the core flow rate for a short period of time. Structure: While carrying out power control according to the core flow rate, detection values from LPRM which are disposed in a three-dimensional fashion within the reactor core are indicated on an indicator. The average value of rates of change in the indicated values for a group of LPRM under substantially the same fluid dynamic condition as that for each LPRM is determined while measuring time-wise change rate in the indicated value of each of the LPRM. The average value is successively divided by the rate of change in the indicated value for each LPRM and the amplifier gain thereof to obtain the reference value. When the difference between the average value and reference value obtained in this way exceeds a prescribed value, the corresponding LPRM is determined to be defective. (Moriyama, K.)

  18. Optimization of Combine Heat and Power Plants in the Russian Wholesale Power Market Conditions

    Directory of Open Access Journals (Sweden)

    I. A. Chuchueva

    2015-01-01

    Full Text Available The paper concerns the relevant problem to optimize the combine heat and power (CHP plants in the Russian wholesale power market conditions. Since 1975 the CHP plants specialists faced the problem of fuel rate or fuel cost reduction while ensuring the fixed level of heat and power production. The optimality criterion was the fuel rate or fuel cost which has to be minimized. Produced heat and power was paid by known tariff. Since the power market started in 2006 the power payment scheme has essentially changed: produced power is paid by market price. In such condition a new optimality criterion the paper offers is a profit which has to be maximized for the given time horizon. Depending on the optimization horizon the paper suggests four types of the problem urgency, namely: long-term, mid-term, short-term, and operative optimization. It clearly shows that the previous problem of fuel cost minimization is a special case of profit maximization problem. To bring the problem to the mixed-integer linear programming problem a new linear characteristic curves of steam and gas turbine are introduced. Error of linearization is 0.6%. The formal statement of the problem of short-term CHP plants optimization in the market conditions is offered. The problem was solved with IRM software (OpenLinkInternational for seven power plants of JSC “Quadra”: Dyagilevskaya CHP, Kurskaya CHP-1, Lipetskaya CHP-2, Orlovskaya CHP, Kurskaya CHP NWR, Tambovskaya CHP, and Smolenskaya CHP-2.The conducted computational experiment showed that a potential profit is between 1.7% and 4.7% of the fuel cost of different CHP plants and depends on the power plant operation conditions. The potential profit value is 2–3 times higher than analogous estimations, which were obtained solving fuel cost minimization problem. The perspectives of the work are formalization of mid-term and long-term CHP plants optimization problem and development of domestic software for the new problem

  19. WATER CONDITION IN CELLS OF CHLORELLA

    Directory of Open Access Journals (Sweden)

    I. V. Kuznetsova

    2015-01-01

    Full Text Available The water condition in cages of the paste of chlorella was investigated by the method of thermogravimetric analysis. With increasing heating rate endothermic effect corresponding to the dehydration process is shifted towards higher temperatures. Temperature intervals of chlorella dehydration are defined at rate of heating 2 К/min - 308-368 K, 5 К/min - 323-403 K, and 10 К/min - 348-403 K. Quantitative characteristics of kinetic unequal water in chlorella have been received for each step (∆, ∆Т, a mass fraction (w, energy of activation (Еа. This process is similar to the process of the dehydration in ion exchange membranes. The derived kinetic characteristics give the possibility to define an optimum temperature interval and rate of drying microalgae for the purpose of increase of periods of storage in the form of paste or a solid substance for the further use as the bioadditive. In addition the presence of three types of water chlorella in a cell set according to NMR with pulsed magnetic field gradient. Since free water is involved in biochemical, chemical and microbiological processes, it is desirable to remove during drying of the preparation. The resulting temperature range of 323-343 K (step 2 at a heating rate of 2 K / min corresponds to a temperature range of drying the chlorella in a production environment. It should be noted that the highest number of algae in a tightly-water (the last stage. Apparently, this is determined by a unique cell structure. Temperature ranges dehydration process are not clear and vary depending on the heating rate, which is fully in line with previous studies of thermal analysis for grains, vegetables and bakery products.

  20. Fuel Cell Backup Power System for Grid Service and Micro-Grid in Telecommunication Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiwen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eichman, Joshua D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurtz, Jennifer M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-22

    This paper presents the feasibility and economics of using fuel cell backup power systems in telecommunication cell towers to provide grid services (e.g., ancillary services, demand response). The fuel cells are able to provide power for the cell tower during emergency conditions. This study evaluates the strategic integration of clean, efficient, and reliable fuel cell systems with the grid for improved economic benefits. The backup systems have potential as enhanced capability through information exchanges with the power grid to add value as grid services that depend on location and time. The economic analysis has been focused on the potential revenue for distributed telecommunications fuel cell backup units to provide value-added power supply. This paper shows case studies on current fuel cell backup power locations and regional grid service programs. The grid service benefits and system configurations for different operation modes provide opportunities for expanding backup fuel cell applications responsive to grid needs.

  1. Evaluation Of Different Power Conditioning Options For Stirling Generators

    Science.gov (United States)

    Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Maset, E.; Montalban, G.; Ejea, J.; Ferreres, A.; Sanchis, E.

    2011-10-01

    Free-piston Stirling engines are an interesting alternative for electrical power systems, especially in deep space missions where photovoltaic systems are not feasible. This kind of power generators contains two main parts, the Stirling machine and the linear alternator that converts the mechanical energy from the piston movement to electrical energy. Since the generated power is in AC form, several aspects should be assessed to use such kind of generators in a spacecraft power system: AC/DC topologies, power factor correction, power regulation techniques, integration into the power system, etc. This paper details power generator operation and explores different power conversion approaches.

  2. Innovative waste treatment and conditioning technologies at nuclear power plants

    International Nuclear Information System (INIS)

    2006-05-01

    The objective of this publication is to provide Member States with information on the most innovative technologies and strategies used in waste treatment and conditioning. At present, some of those technologies and strategies might not be widely implemented at nuclear power plants (NPP), but they have an important potential for their use as part of the long range NPP, utility, or national strategy. Thus, the target audience is those decision makers at the national and organizational level responsible for selecting waste processing technologies and strategies over a period of three to ten years. Countries and individual nuclear plants have limited financial resources which can be applied toward radioactive waste processing (treatment and conditioning). They are challenged to determine which of the many available technologies and strategies are best suited to meet national or local needs. This publication reduces the selection of processes for wastes generated by nuclear power plants to those technologies and strategies which are considered innovative. The report further identifies the key benefits which may derive from the adoption of those technologies, the different waste streams to which each technology is relevant, and the limitations of the technologies. The technologies and strategies identified have been evaluated to differentiate between (1) predominant technologies (those that are widely practiced in multiple countries or a large number of nuclear plants), and (2) innovative technologies (those which are not so widely used but are considered to offer benefits which make them suitable for broader application across the industry). Those which fall into the second category are the primary focus of this report. Many IAEA publications address the technical aspects of treatment and conditioning for radioactive wastes, covering research, technological advances, and safety issues. These studies and reports primarily target the research and technical staff of a

  3. Advanced Solar Cells for Satellite Power Systems

    Science.gov (United States)

    Flood, Dennis J.; Weinberg, Irving

    1994-01-01

    The multiple natures of today's space missions with regard to operational lifetime, orbital environment, cost and size of spacecraft, to name just a few, present such a broad range of performance requirements to be met by the solar array that no single design can suffice to meet them all. The result is a demand for development of specialized solar cell types that help to optimize overall satellite performance within a specified cost range for any given space mission. Historically, space solar array performance has been optimized for a given mission by tailoring the features of silicon solar cells to account for the orbital environment and average operating conditions expected during the mission. It has become necessary to turn to entirely new photovoltaic materials and device designs to meet the requirements of future missions, both in the near and far term. This paper will outline some of the mission drivers and resulting performance requirements that must be met by advanced solar cells, and provide an overview of some of the advanced cell technologies under development to meet them. The discussion will include high efficiency, radiation hard single junction cells; monolithic and mechanically stacked multiple bandgap cells; and thin film cells.

  4. Degradation in perovskite solar cells stored under different environmental conditions

    Science.gov (United States)

    Chauhan, Abhishek K.; Kumar, Pankaj

    2017-08-01

    Investigations carried out on the degradation of perovskite solar cells (PSCs) stored in different open air environmental conditions are reported here. The solar cells were stored in the open in the dark inside the laboratory (relative humidity 47  ±  5%, temperature 23  ±  4 °C), under compact fluorescent lamp (CFL) illumination (irradiance 10 mW cm2, relative humidity 47  ±  5%, temperature 23  ±  4 °C) and under natural sunlight outside the laboratory. In the outdoor storage situation the surrounding conditions varied from time to time and the environmental conditions during the day (irradiance 100 mW/cm2, relative humidity ~18%, temperature ~45 °C at noon) were entirely different from those at night (irradiance 0 mW/cm2, relative humidity ~66%, temperature ~16 °C at midnight). The photovoltaic parameters were measured from time to time inside the laboratory as per the International Summit on Organic Photovoltaic Stability (ISOS) protocols. All the photovoltaic parameters, such as short circuit current density (J sc), open circuit voltage (V oc), fill factor (FF) and power conversion efficiency (PCE), of the solar cells stored outdoors decayed more rapidly than those stored under CFL or in the dark. The solar cells stored in the dark exhibited maximum stability. While the encapsulated solar cells stored outdoors were completely dead after about 560 h, the solar cells stored under CFL illumination retained  >60% of their initial efficiency even after 1100 h. However, the solar cells stored in the dark and tested up to ~1100 h did not show any degradation in PCE but on the contrary exhibited slight improvement, and this improvement was mainly because of improvement in their V oc. Rapid degradation in the open air outside the laboratory under direct sunlight compared with the dark and CFL storage has been attributed to high temperature during the day, high humidity at night, high solar illumination intensity and the

  5. Method for Prediction of the Power Output from Photovoltaic Power Plant under Actual Operating Conditions

    Science.gov (United States)

    Obukhov, S. G.; Plotnikov, I. A.; Surzhikova, O. A.; Savkin, K. D.

    2017-04-01

    Solar photovoltaic technology is one of the most rapidly growing renewable sources of electricity that has practical application in various fields of human activity due to its high availability, huge potential and environmental compatibility. The original simulation model of the photovoltaic power plant has been developed to simulate and investigate the plant operating modes under actual operating conditions. The proposed model considers the impact of the external climatic factors on the solar panel energy characteristics that improves accuracy in the power output prediction. The data obtained through the photovoltaic power plant operation simulation enable a well-reasoned choice of the required capacity for storage devices and determination of the rational algorithms to control the energy complex.

  6. Hydraulic Darrieus turbines efficiency for free fluid flow conditions versus power farms conditions

    Energy Technology Data Exchange (ETDEWEB)

    Antheaume, Sylvain [Electricite de France, Recherche et Developpement, Laboratoire National d' Hydraulique et Environnement, 6 Quai Watier, 78400 Chatou (France); Maitre, Thierry; Achard, Jean-Luc [Laboratoire des Ecoulements Geophysiques et Industriels, BP 53, 38041 Grenoble (France)

    2008-10-15

    The present study deals with the efficiency of cross flow water current turbine for free stream conditions versus power farm conditions. In the first part, a single turbine for free fluid flow conditions is considered. The simulations are carried out with a new in house code which couples a Navier-Stokes computation of the outer flow field with a description of the inner flow field around the turbine. The latter is based on experimental results of a Darrieus wind turbine in an unbounded domain. This code is applied for the description of a hydraulic turbine. In the second part, the interest of piling up several turbines on the same axis of rotation to make a tower is investigated. Not only is it profitable because only one alternator is needed but the simulations demonstrate the advantage of the tower configuration for the efficiency. The tower is then inserted into a cluster of several lined up towers which makes a barge. Simulations show that the average barge efficiency rises as the distance between towers is decreased and as the number of towers is increased within the row. Thereby, the efficiency of a single isolated turbine is greatly increased when set both into a tower and into a cluster of several towers corresponding to possible power farm arrangements. (author)

  7. Minimisation of Power loss from partially shaded solar cell arrays

    Energy Technology Data Exchange (ETDEWEB)

    Maine, Tony; Bell, John [Queensland University of Technology, Brisbane (Australia). Built Environment Engineering; Martin, Stewart [University of South Australia, Mawson Lakes Campus, SA (Australia). School of Electrical and Information Engineering

    2008-07-01

    In conventional wiring schemes the output from a partially shaded solar cell array drops rapidly to that of the fully shaded array even when only a small fraction is shaded. In this paper circuit simulation has been used to show that by dynamically reconfiguring the array, the power losses due to shading can be significantly reduced. Reconfiguration is achieved by using switching microcircuits with on-chip photo detectors to determine which parts of the array are in shade. The currents from the shaded and unshaded sections of the array are separated and then connected in parallel to a maximum power point tracker. It is shown that by using this reconfiguration that the power output from a partially shaded array can be increased by at least 100% compared with that from a conventional series connected array over a range of shading conditions. (orig.)

  8. Integrated online condition monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, Hashem M.

    2010-01-01

    Online condition monitoring or online monitoring (OLM) uses data acquired while a nuclear power is operating to continuously assess the health of the plant's sensors, processes, and equipment; to measure the dynamic performance of the plant's process instrumentation; to verify in-situ the calibration of the process instrumentation; to detect blockages, voids, and leaks in the pressure sensing lines; to identify core flow anomalies; to extend the life of neutron detectors and other sensors; and to measure the vibration of reactor internals. Both the steady-state or DC output of plant sensors and their AC signal or noise output can be used to assess sensor health, depending on whether the application is monitoring a rapidly changing (e.g., core barrel motion) or a slowly changing (e.g., sensor calibration) process. The author has designed, developed, installed, and tested OLM systems (comprised of software/hardware-based data acquisition and data processing modules) that integrate low-frequency (1 mHz to 1 Hz) techniques such as RTD cross-calibration, pressure transmitter calibration monitoring, and equipment condition monitoring and high-frequency (1 Hz to 1 kHz) techniques such as the noise analysis technique. The author has demonstrated the noise analysis technique's effectiveness for measuring the dynamic response-time of pressure transmitters and their sensing lines; for performing predictive maintenance on reactor internals; for detecting core flow anomalies; and for extending neutron detector life. Integrated online condition monitoring systems can combine AC and DC data acquisition and signal processing techniques, can use data from existing process sensors during all modes of plant operation, including startup, normal operation, and shutdown; can be retrofitted into existing PWRs, BWRs, and other reactor types and will be integrated into next-generation plants. (orig.)

  9. Integrated online condition monitoring system for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, Hashem M. [Analysis and Measurement Services Corporation, Knoxville, TN (United States). AMS Technology Center

    2010-09-15

    Online condition monitoring or online monitoring (OLM) uses data acquired while a nuclear power is operating to continuously assess the health of the plant's sensors, processes, and equipment; to measure the dynamic performance of the plant's process instrumentation; to verify in-situ the calibration of the process instrumentation; to detect blockages, voids, and leaks in the pressure sensing lines; to identify core flow anomalies; to extend the life of neutron detectors and other sensors; and to measure the vibration of reactor internals. Both the steady-state or DC output of plant sensors and their AC signal or noise output can be used to assess sensor health, depending on whether the application is monitoring a rapidly changing (e.g., core barrel motion) or a slowly changing (e.g., sensor calibration) process. The author has designed, developed, installed, and tested OLM systems (comprised of software/hardware-based data acquisition and data processing modules) that integrate low-frequency (1 mHz to 1 Hz) techniques such as RTD cross-calibration, pressure transmitter calibration monitoring, and equipment condition monitoring and high-frequency (1 Hz to 1 kHz) techniques such as the noise analysis technique. The author has demonstrated the noise analysis technique's effectiveness for measuring the dynamic response-time of pressure transmitters and their sensing lines; for performing predictive maintenance on reactor internals; for detecting core flow anomalies; and for extending neutron detector life. Integrated online condition monitoring systems can combine AC and DC data acquisition and signal processing techniques, can use data from existing process sensors during all modes of plant operation, including startup, normal operation, and shutdown; can be retrofitted into existing PWRs, BWRs, and other reactor types and will be integrated into next-generation plants. (orig.)

  10. Flasher Powered by Photovoltaic Cells and Ultracapacitors

    Science.gov (United States)

    Eichenberg, Dennis J.; Soltis, Richard F.

    2003-01-01

    A unique safety flasher powered by photovoltaic cells and ultracapacitors has been developed. Safety flashers are used wherever there are needs to mark actually or potentially hazardous locations. Examples of such locations include construction sites, highway work sites, and locations of hazardous operations. Heretofore, safety flashers have been powered by batteries, the use of which entails several disadvantages: Batteries must be kept adequately charged, and must not be allowed to become completely discharged. Batteries have rather short cycle lives, and their internal constituents that react chemically to generate electricity deteriorate (and hence power-generating capacities decrease) over time. The performances of batteries are very poor at low temperatures, which often occur in the circumstances in which safety flashers are most needed. The disposal of batteries poses a threat to the environment. The development of the present photovoltaic/ultracapacitor- powered safety flasher, in which the ultracapacitors are used to store energy, overcomes the aforementioned disadvantages of using batteries to store energy. The ultracapacitors in this flasher are electrochemical units that have extremely high volumetric capacitances because they contain large-surface-area electrodes separated by very small gaps. Ultracapacitors have extremely long cycle lives, as compared to batteries; consequently, it will never be necessary to replace the ultracapacitors in the safety flasher. The reliability of the flasher is correspondingly increased, and the life-of-system cost and the adverse environmental effects of the flasher are correspondingly reduced. Moreover, ultracapacitors have excellent low-temperature characteristics, are maintenance-free, and provide consistent performance over time.

  11. Modelling and simulation of a PEM fuel cell power system with a fuzzy logic controller

    International Nuclear Information System (INIS)

    Al-Dabbagh, A.W.; Lu, L.; Mazza, A.

    2009-01-01

    Fuel cell power systems are emerging as promising means of electrical power generation on account of the associated clean electricity generation process, as well as their suitability for use in a wide range of applications. During the design stage, the development of a computer model for simulating the behaviour of a system under development can facilitate the experimentation and testing of that system's performance. Since the electrical power output of a fuel cell stack is seldom at a suitable fixed voltage, conditioning circuits and their associated controllers must be incorporated in the design of the fuel cell power system. This paper presents a MATLAB/Simulink model that simulates the behaviour of a Proton Exchange Membrane (PEM) fuel cell, conditioning circuits and their controllers. The computer modelling of the PEMFC was based on adopted mathematical models that describe the fuel cell's operational voltage, while accounting for the irreversibilities associated with the fuel cell stack. The conditioning circuits that are included in the Simulink model are a DC-DC converter and DC-AC inverter circuits. These circuits are the commonly utilized power electronics circuits for regulating and conditioning the output voltage from a fuel cell stack. The modelling of the circuits is based on relationships that govern the output voltage behaviour with respect to their input voltages, switching duty cycle and efficiency. In addition, this paper describes a Fuzzy Logic Controller (FLC) design that is aimed at regulating the conditioning circuits to provide and maintain suitable electrical power for a wide range of applications. (author)

  12. Power plants operating in normal conditions, space management, and environment

    International Nuclear Information System (INIS)

    Bertron, L.

    1986-01-01

    This paper presents the local populations considerations related to the establishment of a nuclear power plant comprising 4 units of 900 MW: reception of a population in the existing environment, acceptance of the power plant by the local population, effluent releases and environmental impacts, and the power plant future [fr

  13. Characterization of high performance silicon-based VMJ PV cells for laser power transmission applications

    Science.gov (United States)

    Perales, Mico; Yang, Mei-huan; Wu, Cheng-liang; Hsu, Chin-wei; Chao, Wei-sheng; Chen, Kun-hsien; Zahuranec, Terry

    2016-03-01

    Continuing improvements in the cost and power of laser diodes have been critical in launching the emerging fields of power over fiber (PoF), and laser power beaming. Laser power is transmitted either over fiber (for PoF), or through free space (power beaming), and is converted to electricity by photovoltaic cells designed to efficiently convert the laser light. MH GoPower's vertical multi-junction (VMJ) PV cell, designed for high intensity photovoltaic applications, is fueling the emergence of this market, by enabling unparalleled photovoltaic receiver flexibility in voltage, cell size, and power output. Our research examined the use of the VMJ PV cell for laser power transmission applications. We fully characterized the performance of the VMJ PV cell under various laser conditions, including multiple near IR wavelengths and light intensities up to tens of watts per cm2. Results indicated VMJ PV cell efficiency over 40% for 9xx nm wavelengths, at laser power densities near 30 W/cm2. We also investigated the impact of the physical dimensions (length, width, and height) of the VMJ PV cell on its performance, showing similarly high performance across a wide range of cell dimensions. We then evaluated the VMJ PV cell performance within the power over fiber application, examining the cell's effectiveness in receiver packages that deliver target voltage, intensity, and power levels. By designing and characterizing multiple receivers, we illustrated techniques for packaging the VMJ PV cell for achieving high performance (> 30%), high power (> 185 W), and target voltages for power over fiber applications.

  14. Performance Analysis of Air Breathing Proton Exchange Membrane Fuel Cell Stack (PEMFCS) At Different Operating Condition

    Science.gov (United States)

    Sunil, V.; Venkata siva, G.; Yoganjaneyulu, G.; Ravikumar, V. V.

    2017-08-01

    The answer for an emission free power source in future is in the form of fuel cells which combine hydrogen and oxygen producing electricity and a harmless by product-water. A proton exchange membrane (PEM) fuel cell is ideal for automotive applications. A single cell cannot supply the essential power for any application. Hence PEM fuel cell stacks are used. The effect of different operating parameters namely: type of convection, type of draught, hydrogen flow rate, hydrogen inlet pressure, ambient temperature and humidity, hydrogen humidity, cell orientation on the performance of air breathing PEM fuel cell stack was analyzed using a computerized fuel cell test station. Then, the fuel cell stack was subjected to different load conditions. It was found that the stack performs very poorly at full capacity (runs only for 30 min. but runs for 3 hours at 50% capacity). Hence, a detailed study was undertaken to maximize the duration of the stack’s performance at peak load.

  15. Hybrid centralized-distributed power conditioning system for thermoelectric generator with high energy efficiency

    DEFF Research Database (Denmark)

    Wu, Hongfei; Sun, Kai; Chen, Min

    2013-01-01

    the proposed system, which benefits for implementing high MPPT efficiency and high conversion efficiency simultaneously. A hybrid MPPT control strategy is proposed for this HCD power conditioning system. The characteristics, circuit implementation and operation principles of the proposed system are presented......-distributed (HCD) power conditioning system for TEG and its control strategy are proposed in this paper. The HCD power conditioning system is composed by a centralized power conversion stage and multiple distributed power conversion stages. Most of the power is processed by the centralized power conversion stage...

  16. MC2: A Power Conditionning and Distribution Unit for Stratospherics Balloons

    Directory of Open Access Journals (Sweden)

    François Bonnet

    2017-01-01

    Full Text Available For long duration scientific missions with stratospheric balloons (objective of 3 month duration, renewable energy is used. Solar panels with mono crystalline silicon solar cells are mounted on both scientific and avionic gondola. A power conditioning board with Maximum Power Point Tracking (MPPT is designed and currently tested. This board is called MC2: Communicant Conditioning Module. It allows controlling a Li Ion battery charge through PWM regulators. Moreover, outlets ON/OFF commutations associated to overcurrent’s protections are implemented in this board. The battery active thermal control is made by MC2 autonomously. The main design drivers are mass, costs and efficiency. A CAN Bus between MC2 and On Board Computer allows to have a commandability and observability of MC2 through OBC. The overall avionic gondola is designed to be Single Points Failure free by using two segregated chains in order to be compatible with safety rules. The nominal chain is the main chain and use MC2 with renewable energy. The secondary chain uses a primary electrochemical cell which feeds loads in case of undervoltage of the main chain. This overall architecture allows both chains to be designed without SPF free constrains. This paper describes the overall requirements and the design of MC2. The main innovation described in this paper is the way to implement MPPT: the MPPT algorithm is performed at the output of the power converter. This MPPT extracts maximum power of both solar panel characteristics and power converter. The main advantage is that this MPPT uses only one existing sensor (output current of boost converter instead of using current and voltage sensor of each solar panel.

  17. Cell proliferation alterations in Chlorella cells under stress conditions

    International Nuclear Information System (INIS)

    Rioboo, Carmen; O'Connor, Jose Enrique; Prado, Raquel; Herrero, Concepcion; Cid, Angeles

    2009-01-01

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  18. Cell proliferation alterations in Chlorella cells under stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rioboo, Carmen [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); O' Connor, Jose Enrique [Laboratorio de Citomica, Unidad Mixta de Investigacion CIPF-UVEG, Centro de Investigacion Principe Felipe, Avda. Autopista del Saler, 16, 46013 Valencia (Spain); Prado, Raquel; Herrero, Concepcion [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); Cid, Angeles, E-mail: cid@udc.es [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain)

    2009-09-14

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  19. Prospect of stem cell conditioned medium in regenerative medicine.

    Science.gov (United States)

    Pawitan, Jeanne Adiwinata

    2014-01-01

    Stem cell-derived conditioned medium has a promising prospect to be produced as pharmaceuticals for regenerative medicine. To investigate various methods to obtain stem cell-derived conditioned medium (CM) to get an insight into their prospect of application in various diseases. Systematic review using keywords "stem cell" and "conditioned medium" or "secretome" and "therapy." Data concerning treated conditions/diseases, type of cell that was cultured, medium and supplements to culture the cells, culture condition, CM processing, growth factors and other secretions that were analyzed, method of application, and outcome were noted, grouped, tabulated, and analyzed. Most of CM using studies showed good results. However, the various CM, even when they were derived from the same kind of cells, were produced by different condition, that is, from different passage, culture medium, and culture condition. The growth factor yields of the various types of cells were available in some studies, and the cell number that was needed to produce CM for one application could be computed. Various stem cell-derived conditioned media were tested on various diseases and mostly showed good results. However, standardized methods of production and validations of their use need to be conducted.

  20. stem cell research: applications in haematological conditions

    African Journals Online (AJOL)

    Dr. E. P. Gharoro

    chemotherapy and radiation. This has allowed HSCT to be conducted in older patients without the need for hospitalization. STEM CELL COLLECTION. Types of Donors. There are two major types of bone marrow transplantation namely;. Autologous and Allogenic transplantations. Autologous: Bone marrow transplantation.

  1. Analysis of Highly Wind Power Integrated Power System model performance during Critical Weather conditions

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2014-01-01

    , is provided by the hour-ahead power balancing model, i.e. Simulation power Balancing model (SimBa. The regulating power plan is prepared from day-ahead power production plan and hour-ahead wind power forecast. The wind power (forecasts and available) are provided by the Correlated Wind power fluctuations (Cor......Wind) model, where the wind turbine storm controllers are also implemented....

  2. Demands and conditions of nuclear power development in Russia

    International Nuclear Information System (INIS)

    Sidorenko, V.A.

    1995-01-01

    A reliable power supply is necessary for Russia to find its way out of the present crisis and to develop its economy. Although there are considerable fossil fuel resources in Russia, they are not sufficient to meet future power demands. Forecasts by specialists indicate that about 30% of the necessary increase in annual electricity production should be covered until the year 2010 by new nuclear power plants (NPPs). Also, by that time, all outdated nuclear power units should be replaced by new plants of more than 8 GW capacity. The total NPP capacity in Russia should be increased until 2010 by 50-70%, thus providing the basis for further development of nuclear power, with the aim of reaching 25% of the total electricity generation before 2015. Safety assurance of operational NPPs is a major prerequisite for nuclear power development, and measures for improving safety are being implemented. New designs of power units are being developed, in accordance with modern requirements and safety standards, and the start of construction of these units is planned for the end of this decade. The economic parameters of NPPs situated in the European part of Russia are better than those of coal and gas fuelled power plants. The improved safety of NPPs, the implementation of measures for processing and storage of radioactive wastes, and economic arguments are gradually changing the negative attitude of the population to nuclear power. Extended international co-operation is a further important factor, giving additional assurances of successful and safe nuclear power development in Russia. (author). 1 tab

  3. Fuel Cells: Power System Option for Space Research

    Science.gov (United States)

    Shaneeth, M.; Mohanty, Surajeet

    2012-07-01

    Fuel Cells are direct energy conversion devices and, thereby, they deliver electrical energy at very high efficiency levels. Hydrogen and Oxygen gases are electrochemically processed, producing clean electric power with water as the only by product. A typical, Fuel Cell based power system involve a Electrochemical power converter, gas storage and management systems, thermal management systems and relevant control units. While there exists different types of Fuel cells, Proton Exchange Membrane (PEM) Fuel Cells are considered as the most suitable one for portable applications. Generally, Fuel Cells are considered as the primary power system option in space missions requiring high power ( > 5kW) and long durations and also where water is a consumable, such as manned missions. This is primarily due to the advantage that fuel cell based power systems offer, in terms of specific energy. Fuel cells have the potential to attain specific energy > 500Wh/kg, specific power >500W/kg, energy density > 400Whr/L and also power density > 200 W/L. This apart, a fuel cell system operate totally independent of sun light, whereas as battery based system is fully dependent on the same. This uniqueness provides added flexibility and capabilities to the missions and modularity for power system. High power requiring missions involving reusable launch vehicles, manned missions etc are expected to be richly benefited from this. Another potential application of Fuel Cell would be interplanetary exploration. Unpredictable and dusty atmospheres of heavenly bodies limits sun light significantly and there fuel cells of different types, eg, Bio-Fuel Cells, PEMFC, DMFCs would be able to work effectively. Manned or unmanned lunar out post would require continuous power even during extra long lunar nights and high power levels are expected. Regenerative Fuel Cells, a combination of Fuel Cells and Electrolysers, are identified as strong candidate. While application of Fuel Cells in high power

  4. The effect of cutting conditions on power inputs when machining

    Science.gov (United States)

    Petrushin, S. I.; Gruby, S. V.; Nosirsoda, Sh C.

    2016-08-01

    Any technological process involving modification of material properties or product form necessitates consumption of a certain power amount. When developing new technologies one should take into account the benefits of their implementation vs. arising power inputs. It is revealed that procedures of edge cutting machining are the most energy-efficient amongst the present day forming procedures such as physical and technical methods including electrochemical, electroerosion, ultrasound, and laser processing, rapid prototyping technologies etc, such as physical and technical methods including electrochemical, electroerosion, ultrasound, and laser processing, rapid prototyping technologies etc. An expanded formula for calculation of power inputs is deduced, which takes into consideration the mode of cutting together with the tip radius, the form of the replaceable multifaceted insert and its wear. Having taken as an example cutting of graphite iron by the assembled cutting tools with replaceable multifaceted inserts the authors point at better power efficiency of high feeding cutting in comparison with high-speed cutting.

  5. Offshore Wind Power Production in Critical Weather Conditions

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Litong-Palima, Marisciel; Sørensen, Poul Ejnar

    2012-01-01

    control the power balance during offshore storm passages. The demonstration will be done on Horns Rev 2 wind farm. In the same project, the impact of a storm front passage over the system security, for the whole Danish system, and with the expected offshore wind power in 2020 will be investigated....... This paper will present the results of up-scaling the impact that a storm front passage will have on the Danish power system in 2020, given that the existing wind turbine storm controller is not replaced. The simulations are done with CorWind and the analysis is focusing on establishing a reference case...... and quantifying the balancing reserve requirements needed in order to keep the security of the power system....

  6. Multiple scaling power in liquid gallium under pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Renfeng; Wang, Luhong; Li, Liangliang; Yu, Tony; Zhao, Haiyan; Chapman, Karena W.; Rivers, Mark L.; Chupas, Peter J.; Mao, Ho-kwang; Liu, Haozhe

    2017-06-01

    Generally, a single scaling exponent, Df, can characterize the fractal structures of metallic glasses according to the scaling power law. However, when the scaling power law is applied to liquid gallium upon compression, the results show multiple scaling exponents and the values are beyond 3 within the first four coordination spheres in real space, indicating that the power law fails to describe the fractal feature in liquid gallium. The increase in the first coordination number with pressure leads to the fact that first coordination spheres at different pressures are not similar to each other in a geometrical sense. This multiple scaling power behavior is confined within a correlation length of ξ ≈ 14–15 Å at applied pressure according to decay of G(r) in liquid gallium. Beyond this length the liquid gallium system could roughly be viewed as homogeneous, as indicated by the scaling exponent, Ds, which is close to 3 beyond the first four coordination spheres.

  7. Continuing studies of plasma erosion switches for power conditioning on multiterawatt pulsed power accelerators

    International Nuclear Information System (INIS)

    Stringfield, R.; Gilman, C.; James, G.; Peters, T.; Sincerny, P.; Wong, S.

    1983-01-01

    Recent PITHON experiments with plasma erosion switches (PES) have extended the range of operation of the switches by about 50 percent, in terms of closed time and charge passing through the switch. The quantity of charge passed through the switch has been increased to as much as 35 mC. Currents as large as 1 MA and voltages as great as 1.8 MV have been switched off to be diverted to a downstream load. The impedance of the erosion switch can be described as having three stages: 1) essentially zero impedance, 2) a transitional opening phase, and 3) an impedance which is very large (greater than 5 Ω) in comparison with the subohm downstream load. Current diagnostics, consisting of Rogowski coils and segmented shunts, have been successfully developed to monitor the current which propagates to the load region. These monitors have measured rise times as short as 38 ns and slew rates as great as 10 14 A/s at the load. With wire array loads, the pulse conditioning of the switch has been observed to reduce the magnitude of the current losses in the feed which are present when no switch is used. Correlations have been made between the switch closed time, voltage, current, and power with the feed inductance and the generator power injected into the magnetic insulated transmission line (MITL)

  8. Possible alternatives for diesel powered mobile equipment for the conditions of deep mines

    Energy Technology Data Exchange (ETDEWEB)

    Paraszczak, J.; Kotersi, O [Laval Univ., Quebec City, PQ (Canada). Dept. of Mining, Metallurgical and Materials Engineering

    2008-07-01

    The challenges associated with mining at considerable depths were discussed. Mines such as Kidd Creek, LaRonde and Creighton are deeper than 2500 m. High rock temperature is among the challenges that operators face in such conditions. Conventional diesel powered load-hauling equipment constitute an additional source of heat and noxious gases. As such, more intense ventilation is needed in order to keep ambient temperature and air quality at a level that is acceptable for human workers. This paper examined possible alternatives for diesel powered equipment, including those that are commercially available as well as those that are underdevelopment or in the prototype stage. The equipment was reviewed with reference to the required infrastructure, stage of technology development and progress. The flexibility, practicality and economic viability of the equipment was also investigated. The potential for its use in deep Canadian mines was discussed along with the most promising drive alternatives for vehicles designed for deep mine operations. Electric drives have proven to be effective in many mining applications since they have significant advantages over diesel drives. The characteristics of cable powered equipment, trolley-wire powered equipment, and battery powered equipment were described. The key advantages and disadvantages of hybrid diesel electric equipment were also reviewed along with the viability of power plants based on the use of hydrogen. The principle types of hydrogen power plants include hydrogen combustion engines; HY-Drive systems and fuel cells. It was concluded that although there is no viable alternative for diesel engines at present, Canadian mining companies operating at great depths have made significant progress in these fields and remain among the leaders in mining innovation. 17 refs.

  9. Fuel cells show promise as vehicle power source

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Fuel-cell-powered vehicles appear to offer great promise for energy-saving, high-efficiency transportation. Fuel cells are both highly efficient (50% thermal efficiency has been demonstrated by some) and non-polluting (water being the main by-product). Dramatic improvements in performance have occurred recently due to aerospace and utility RandD efforts. The primary vehicle considered at workshops of laboratory and industrial investigators was a fuel cell/battery hybrid, in which fuel cells are paralleled by batteries. Fuel cells are used for cruising power and battery recharge, while batteries supply transient power for acceleration and starting

  10. Progress and prospects for phosphoric acid fuel cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bonville, L.J.; Scheffler, G.W.; Smith, M.J. [International Fuel Cells Corp., South Windsor, CT (United States)

    1996-12-31

    International Fuel Cells (IFC) has developed the fuel cell power plant as a new, on-site power generation source. IFC`s commercial fuel cell product is the 200-kW PC25{trademark} power plant. To date over 100 PC25 units have been manufactured. Fleet operating time is in excess of one million hours. Individual units of the initial power plant model, the PC25 A, have operated for more than 30,000 hours. The first model {open_quotes}C{close_quotes} power plant has over 10,000 hours of operation. The manufacturing, application and operation of this power plant fleet has established a firm base for design and technology development in terms of a clear understanding of the requirements for power plant reliability and durability. This fleet provides the benchmark against which power plant improvements must be measured.

  11. [Hygienic characteristics of work conditions at large Hydroelectric Power Plants with mechanization and automatization].

    Science.gov (United States)

    Iakimova, L D

    1997-01-01

    The article touches upon hygienic problems associated with mechanization and automation of major hydroelectric power stations. The authors present criteria to evaluate work conditions of the main occupations participating in the technologic process of hydroelectric power stations.

  12. Thermal Analysis of a Power Conditioning Unit for a Howitzer

    Science.gov (United States)

    2009-08-01

    contact resistance Interface ( mA2 -K / W) AL-PCB 0.000389 AL-AL (thermal grease) 0.000083 AL-power chips 0.003891 AL-power chips (thermal grease...1120 W/ mA2 . Figure 3 shows the view of the box that the source of the solar radiation sees. The inside of the box is cluttered with cables, wiring, and...temperature (130°F) and a conservative convective heat transfer coefficient (5 W/ mA2 ) to all of the outer surfaces. These outer surfaces would

  13. Power Absorption by Closely Spaced Point Absorbers in Constrained Conditions

    DEFF Research Database (Denmark)

    De Backer, G.; Vantorre, M.; Beels, C.

    2010-01-01

    The performance of an array of closely spaced point absorbers is numerically assessed in a frequency domain model Each point absorber is restricted to the heave mode and is assumed to have its own linear power take-off (PTO) system Unidirectional irregular incident waves are considered......, representing the wave climate at Westhinder on the Belgian Continental Shelf The impact of slamming, stroke and force restrictions on the power absorption is evaluated and optimal PTO parameters are determined For multiple bodies optimal control parameters (CP) are not only dependent on the incoming waves...

  14. Basic model and governing equation of solar cells used in power and control applications

    NARCIS (Netherlands)

    Izadian, A.; Pourtaherian, A.; Motahari, S.

    2012-01-01

    This paper provides an overview of modeling of a group of commercially available solar cells to ease the study of solar powered electric systems. The models solar cells can be accurately used to predict the behavior of the system operation under different conditions.

  15. Natural convection accidental conditions in nuclear power plants

    International Nuclear Information System (INIS)

    Delmastro, D.F.; Clausse, A.

    1990-01-01

    Under certain conditions, wether accidental or in nuclear reactor design, a nuclear reactor core may be found to be refrigerated by a fluid in natural circulation. Before the possible density waves phenomenon occurrence, it is essential to have a good knowledge of the flow evolution and thermohydraulic variables under these conditions. (Author) [es

  16. Space structures, power, and power conditioning; Proceedings of the Meeting, Los Angeles, CA, Jan. 11-13, 1988

    International Nuclear Information System (INIS)

    Askew, R.F.

    1988-01-01

    Various papers on space structures, power, and power conditioning are presented. Among the topics discussed are: heterogeneous gas core reaction for space nuclear power, pulsed gas core reactor for burst power, fundamental considerations of gas core reactor systems, oscillating thermionic conversion for high-density space power, thermoelectromagnetic pumps for space nuclear power systems, lightweight electrochemical converter for space power applications, ballistic acceleration by superheated hydrogen, laser-induced current switching in gaseous discharge, electron-beam-controlled semiconductor switches, laser-controlled semiconductor closing and opening switch. Also addressed are: semiconductor-metal eutectic composites for high-power switching, optical probes for the characterization of surface breakdown, 40 kV/20 kA pseudospark switch for laser applications, insulation direction for high-power space systems, state space simulation of spacecraft power systems, structural vibration of space power station systems, minimum-time control of large space structures, novel fusion reaction for space power and propulsion, repetition rate system evaluations, cryogenic silicon photoconductive switches for high-power lasers, multilevel diamondlike carbon capacitor structure, surface breakdown of prestressed insulators, C-Mo and C-Zr alloys for space power systems, magnetic insulation for the space environment

  17. Modified impedance source inverter for power conditioning system

    Indian Academy of Sciences (India)

    DC link voltage boost, reduced total harmonic distortion of output current and voltage, better voltage gain and wide range of output voltage controlcan be achieved easily with improved power quality. Experimental set-up of the modified impedance source inverter with Field Programmable Gate Array (FPGA) controller has ...

  18. Culture conditions for bovine embryonic stem cell-like cells isolated from blastocysts after external fertilization

    OpenAIRE

    Jin, Muzi; Wu, Asga; Dorzhin, Sergei; Yue, Qunhua; Ma, Yuzhen; Liu, Dongjun

    2012-01-01

    Although isolation and characterization of embryonic stem cells have been successful in cattle, maintenance of bovine embryonic stem cells in culture remains difficult. In this study, we compared different methods of cell passaging, feeder cell layers and medium conditions for bovine embryonic stem cell-like cells. We found that a murine embryonic fibroblast feeder layer is more suitable for embryonic stem cell-like cells than bovine embryonic fibroblasts. When murine embryonic fibroblasts we...

  19. The new operating conditions of French nuclear power plants

    International Nuclear Information System (INIS)

    Leclercq, J.

    1986-01-01

    Six themes are examined: France's unique position in view of the size of its nuclear operating plant, the role of nuclear power in matching electricity supply to demand, the excellent flexibility provided by PWR facilities in operation, the approaches used in the field of automatic operational control systems, the systematic use of data processing for maintenance and generation and the gains in productivity that can be gained as a result of improving fuel use [fr

  20. Energy storage and power conditioning system for the Shiva laser

    International Nuclear Information System (INIS)

    Allen, G.R.; Gagnon, W.L.; Rupert, P.R.; Trenholme, J.B.

    1975-01-01

    An optimal energy delivery system for the world's largest glass laser system has been designed based on computer modeling and operation of laser hardware. Components of the system have been tested on operating lasers at LLL. The Shiva system is now under construction and will be completed in 1977. The energy supply described here will provide cost-effective, reliable power and facilitate the gathering of data in pursuit of controlled thermonuclear reactions

  1. Some tests of flat plate photovoltaic module cell temperatures in simulated field conditions

    Science.gov (United States)

    Griffith, J. S.; Rathod, M. S.; Paslaski, J.

    1981-01-01

    The nominal operating cell temperature (NOCT) of solar photovoltaic (PV) modules is an important characteristic. Typically, the power output of a PV module decreases 0.5% per deg C rise in cell temperature. Several tests were run with artificial sun and wind to study the parametric dependencies of cell temperature on wind speed and direction and ambient temperature. It was found that the cell temperature is extremely sensitive to wind speed, moderately so to wind direction and rather insensitive to ambient temperature. Several suggestions are made to obtain data more typical of field conditions.

  2. Modeling a Distributed Power Flow Controller with a PEM Fuel Cell for Power Quality Improvement

    Directory of Open Access Journals (Sweden)

    J. Chakravorty

    2018-02-01

    Full Text Available Electrical power demand is increasing at a relatively fast rate over the last years. Because of this increasing demand the power system is becoming very complex. Both electric utilities and end users of electric power are becoming increasingly concerned about power quality. This paper presents a new concept of distributed power flow controller (DPFC, which has been implemented with a proton exchange membrane (PEM fuel cell. In this paper, a PEM fuel cell has been simulated in Simulink/MATLAB and then has been used in the proposed DPFC model. The new proposed DPFC model has been tested on a IEEE 30 bus system.

  3. Microbial Fuel Cells for Powering Navy Devices

    Science.gov (United States)

    2014-01-20

    specific MFC being analyzed. Figure 3 depicts simulated voltage vs. current plots (black curves) and corresponding power vs. current...Powering Navy Devices 7     Fig. 3 – Simulated voltage vs current and power vs current polarization plots for a two- chamber MFC in which membrane...the anode is generated by fermentation of glucose by other microorganisms in the sediment represented by clostridium in Fig. 4. The products of the

  4. Modeling of a VMJ PV array under Gaussian high intensity laser power beam condition

    Science.gov (United States)

    Eom, Jeongsook; Kim, Gunzung; Park, Yongwan

    2018-02-01

    The high intensity laser power beaming (HILPB) system is one of the most promising systems in the long-rang wireless power transfer field. The vertical multi-junction photovoltaic (VMJ PV) array converts the HILPB into electricity to power the load or charges a battery. The output power of a VMJ PV array depends mainly on irradiance values of each VMJ PV cells. For simulating an entire VMJ PV array, the irradiance profile of the Gaussian HILPB and the irradiance level of the VMJ PV cell are mathematically modeled first. The VMJ PV array is modeled as a network with dimension m*n, where m represents the number of VMJ PV cells in a column, and n represents the number of VMJ PV cells in a row. In order to validate the results obtained in modeling and simulation, a laboratory setup was developed using 55 VMJ PV array. By using the output power model of VMJ PV array, we can establish an optimal power transmission path by the receiver based on the received signal strength. When the laser beam from multiple transmitters aimed at a VMJ PV array at the same time, the received power is the sum of all energy at a VMJ PV array. The transmitter sends its power characteristics as optically coded laser pulses and powers as HILPB. Using the attenuated power model and output power model of VMJ PV array, the receiver can estimate the maximum receivable powers from the transmitters and select optimal transmitters.

  5. Cell-cycle distributions and radiation responses of Chinese hamster cells cultured continuously under hypoxic conditions

    International Nuclear Information System (INIS)

    Tokita, N.; Carpenter, S.G.; Raju, M.R.

    1984-01-01

    Cell-cycle distributions were measured by flow cytometry for Chinese hamster (CHO) cells cultured continuously under hypoxic conditions. DNA histograms showed an accumulation of cells in the early S phase followed by a traverse delay through the S phase, and a G 2 block. During hypoxic culturing, cell viability decreased rapidly to less than 0.1% at 120 h. Radiation responses for cells cultured under these conditions showed an extreme radioresistance at 72 h. Results suggest that hypoxia induces a condition similar to cell synchrony which itself changes the radioresistance of hypoxic cells. (author)

  6. Fuel cells make gains in power generation market

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The ultra-low emission, highly efficient natural gas-fueled fuel cell system is beginning to penetrate the electric power generation market in the US and abroad as the fuel cell industry lowers product costs. And, even as the current market continues to grow, fuel cell companies are developing new technology with even higher levels of energy efficiency. The paper discusses fuel cell efficiency, business opportunities, work to reduce costs, and evolving fuel cell technology

  7. Adaptive reactive power control of PV power plants for improved power transfer capability under ultra-weak grid conditions

    DEFF Research Database (Denmark)

    Yang, Dongsheng; Wang, Xiongfei; Liu, Fangcheng

    2017-01-01

    The Photovoltaic (PV) power plants are usually deployed in remote areas with the high solar irradiance, and their power transfer capabilities can be greatly limited by the large impedance of long-distance transmission lines. This paper investigates first the power transfer limit of the PV power p...

  8. Power systems control complex optimization in the new market conditions

    International Nuclear Information System (INIS)

    Krumm, L.; Kurrel, U.; Tauts, A.; Terno, O.; Zeidmanis, I.; Krisans, Z.

    2000-01-01

    A generalization and development of the theory and methods for complex optimisation of the performance and development control of an interconnected system (IPS) under new market conditions (mainly multicriterial and game approaches) is given considering the specifics of IPS at the international level in post-socialist countries and in particular in the Baltic states. Thereby the kernel of the mathematical apparatus of this theory the Generalized Reduced Gradient Method (GRGM) is further generalised and developed with the application of multicriterial and game methods to meet various market conditions. (author)

  9. Maximum Power Point tracking algorithm based on I-V characteristic of PV array under uniform and non-uniform conditions

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Iman-Eini, H.; Asaei, B.

    2012-01-01

    This paper presents a new algorithm based on characteristic equation of solar cells to determine the Maximum Power Point (MPP) of PV modules under partially shaded conditions (PSC). To achieve this goal, an analytic condition is introduced to determine uniform or non-uniform atmospheric condition...

  10. Low Energy Reaction cell for advanced space power applications

    International Nuclear Information System (INIS)

    Miley, George H.; Rice, Eric

    2001-01-01

    Power units using Low Energy Reactions (LENRs) are under study as a radical new approach to power units that could potentially replace nuclear and chemical power sources for a number of space applications. These cells employ thin metallic films (order of 500 deg., using variously Ni, Pd and Ti) as cathodes with various electrolytes such as 0.5-1 molar lithium sulfate in light water. Power densities exceeding 10 W/cm3 in the thin-films have been achieved. An ultimate goal is to incorporate this thin-film technology into a 'tightly packed' cell design where the film material occupies ∼20% of the total cell volume. If this is achieved, overall power densities of ∼20 W/cm3 appear feasible, opening the way to a number of potential applications ranging from distributed power units in spacecraft to advanced propulsion

  11. 77 FR 24228 - Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants

    Science.gov (United States)

    2012-04-23

    ... Used in Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... guide, (RG) 1.218, ``Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants... of electric cables for nuclear power plants. RG 1.218 is not intended to be prescriptive, instead it...

  12. Simulations of the design basis accident at conditions of power increase and the o transient of MSIV at overpressure conditions of the Laguna Verde Power Station

    International Nuclear Information System (INIS)

    Araiza M, E.; Nunez C, A.

    2001-01-01

    This document presents the analysis of the simulation of the loss of coolant accident at uprate power conditions, that is 2027 MWt (105% of the current rated power of 1931MWt). This power was reached allowing an increase in the turbine steam flow rate without changing the steam dome pressure value at its rated conditions (1020 psiaJ. There are also presented the results of the simulation of the main steam isolation va/ve transient at overpressure conditions 1065 psia and 1067 MWt), for Laguna Verde Nuclear Power Station. Both simulations were performed with the best estimate computer code TRA C BF1. The results obtained in the loss of coolant accident show that the emergency core coolant systems can recover the water level in the core before fuel temperature increases excessively, and that the peak pressure reached in the drywell is always below its design pressure. Therefore it is concluded that the integrity of the containment is not challenged during a loss of coolant accident at uprate power conditions.The analysis of the main steam isolation valve transients at overpressure conditions, and the analysis of the particular cases of the failure of one to six safety relief valves to open, show that the vessel peak pressures are below the design pressure and have no significant effect on vessel integrity. (Author)

  13. Condition monitoring of electrical equipment in nuclear power plants

    International Nuclear Information System (INIS)

    Sugarman, A.

    1986-01-01

    Condition monitoring (CM) is a subset of maintenance testing. It is a quantitative, predictive technique for assessing the effects of all types of aging (environmental, cyclic, operational, etc) on the ''health'' of the equipment. A difference between CM and maintenance testing is that the latter is neither quantitative (i.e., measures the relative condition of the component or material as opposed to merely verifying that its condition is acceptable) nor predictive (i.e., makes judgments, on the ability of the component to perform at a future time). A common example of the principle of CM can be illustrated with the automobile which has a lifetime that is small enough to observe all the periods (break in, random failure, wear out) that occur throughout aging. There are several weak link components in the car (e.g., water hoses, contacts in the distributor, generator, spark plug cables, solenoid, etc) which if they fail will cause failure of the automobile to either start or run. From the day the car is put on the road and is subjected to heat and vibration, significant aging of these components occurs. Degradation in the water hoses, for example is manifested by the elastomeric casing becoming brittle and cracking

  14. Modeling, analysis and control of fuel cell hybrid power systems

    Science.gov (United States)

    Suh, Kyung Won

    Transient performance is a key characteristic of fuel cells, that is sometimes more critical than efficiency, due to the importance of accepting unpredictable electric loads. To fulfill the transient requirement in vehicle propulsion and portable fuel cell applications, a fuel cell stack is typically coupled with a battery through a DC/DC converter to form a hybrid power system. Although many power management strategies already exist, they all rely on low level controllers that realize the power split. In this dissertation we design controllers that realize various power split strategies by directly manipulating physical actuators (low level commands). We maintain the causality of the electric dynamics (voltage and current) and investigate how the electric architecture affects the hybridization level and the power management. We first establish the performance limitations associated with a stand-alone and power-autonomous fuel cell system that is not supplemented by an additional energy storage and powers all its auxiliary components by itself. Specifically, we examine the transient performance in fuel cell power delivery as it is limited by the air supplied by a compressor driven by the fuel cell itself. The performance limitations arise from the intrinsic coupling in the fluid and electrical domain between the compressor and the fuel cell stack. Feedforward and feedback control strategies are used to demonstrate these limitations analytically and with simulations. Experimental tests on a small commercial fuel cell auxiliary power unit (APU) confirm the dynamics and the identified limitations. The dynamics associated with the integration of a fuel cell system and a DC/DC converter is then investigated. Decentralized and fully centralized (using linear quadratic techniques) controllers are designed to regulate the power system voltage and to prevent fuel cell oxygen starvation. Regulating these two performance variables is a difficult task and requires a compromise

  15. Photovoltaic power generation system with photovoltaic cells as bypass diodes

    Science.gov (United States)

    Lentine, Anthony L.; Nielson, Gregory N.; Tauke-Pedretti, Anna; Cruz-Campa, Jose Luis; Okandan, Murat

    2017-11-28

    A photovoltaic power generation system that includes a solar panel is described herein. The solar panel includes a photovoltaic sub-module, which includes a group of microsystem enabled photovoltaic cells. The group includes a first string of photovoltaic cells, a second string of photovoltaic cells, and a differing photovoltaic cell. Photovoltaic cells in the first string are electrically connected in series, and photovoltaic cells in the second string are electrically connected in series. Further, the first string of photovoltaic cells, the second string of photovoltaic cells, and the differing photovoltaic cell are electrically connected in parallel. Moreover, the differing photovoltaic cell is used as a bypass diode for the first string of photovoltaic cells and the second string of photovoltaic cells.

  16. Photovoltaic cells for laser power beaming

    Science.gov (United States)

    Landis, Geoffrey A.; Jain, Raj K.

    1992-01-01

    To better understand cell response to pulsed illumination at high intensity, the PC-1DC finite-element computer model was used to analyze the response of solar cells to pulsed laser illumination. Over 50% efficiency was calculated for both InP and GaAs cells under steady-state illumination near the optimum wavelength. The time-dependent response of a high-efficiency GaAs concentrator cell to a laser pulse was modelled, and the effect of laser intensity, wavelength, and bias point was studied. Designing a cell to accommodate pulsed input can be done either by accepting the pulsed output and designing a cell to minimize adverse effects due to series resistance and inductance, or to design a cell with a long enough minority carrier lifetime, so that the output of the cell will not follow the pulse shape. Two such design possibilities are a monolithic, low-inductance voltage-adding GaAs cell, or a high-efficiency, light-trapping silicon cell. The advantages of each design will be discussed.

  17. Power and contexts – some societal conditions for participatory projects

    DEFF Research Database (Denmark)

    Bloch-Poulsen, Jørgen; Kristiansen, Marianne

    2014-01-01

    Based on action research co-operation with a team of teachers at a Social and Healthcare College in Denmark 2012-2013, the article raises the question: What are the conditions for organisational action research projects in a neoliberal context? The article has three purposes. Firstly, we want...... to show that mapping and delimitating relevant contexts are critical in an organisational AR project, because it is always arbitrary what you delimit as your field of inquiry, initially. The consequences of ignoring this in the project described were fatal. Secondly, the article draws attention to clashes...... with immediate and additional stakeholders questioning, among others, if the action research project is practicable at all....

  18. Method for controlling power flow between an electrochemical cell and a power grid

    International Nuclear Information System (INIS)

    Coleman, A. K.

    1981-01-01

    A method is disclosed for controlling a force-commutated inverter coupled between an electrochemical cell and a power grid for adjusting the magnitude and direction of the electrical energy flowing therebetween. Both the real power component and the reactive power component of ac electrical energy flow can be independently VARied through the switching waveform presented to the intermediately coupled inverter. A VAR error signal is derived from a comparison of a var command signal with a signal proportional to the actual reactive power circulating between the inverter and the power grid. This signal is presented to a voltage controller which essentially varies only the effective magnitude of the fundamental voltage waveform out of the inverter , thereby leaving the real power component substantially unaffected. In a similar manner, a power error signal is derived by a comparison of a power command signal with a signal proportional to the actual real power flowing between the electrochemical cell and the power grid. This signal is presented to a phase controller which varies only the phase of the fundamental component of the voltage waveform out of the inverter relative to that of the power grid and changes only the real power in proportion thereto, thus leaving the reactive power component substantially unaffected

  19. Optimization of Design Parameters and Operating Conditions of Electrochemical Capacitors for High Energy and Power Performance

    Science.gov (United States)

    Ike, Innocent S.; Sigalas, Iakovos; Iyuke, Sunny E.

    2017-03-01

    Theoretical expressions for performance parameters of different electrochemical capacitors (ECs) have been optimized by solving them using MATLAB scripts as well as via the MATLAB R2014a optimization toolbox. The performance of the different kinds of ECs under given conditions was compared using theoretical equations and simulations of various models based on the conditions of device components, using optimal values for the coefficient associated with the battery-kind material ( K BMopt) and the constant associated with the electrolyte material ( K Eopt), as well as our symmetric electric double-layer capacitor (EDLC) experimental data. Estimation of performance parameters was possible based on values for the mass ratio of electrodes, operating potential range ratio, and specific capacitance of electrolyte. The performance of asymmetric ECs with suitable electrode mass and operating potential range ratios using aqueous or organic electrolyte at appropriate operating potential range and specific capacitance was 2.2 and 5.56 times greater, respectively, than for the symmetric EDLC and asymmetric EC using the same aqueous electrolyte, respectively. This enhancement was accompanied by reduced cell mass and volume. Also, the storable and deliverable energies of the asymmetric EC with suitable electrode mass and operating potential range ratios using the proper organic electrolyte were 12.9 times greater than those of the symmetric EDLC using aqueous electrolyte, again with reduced cell mass and volume. The storable energy, energy density, and power density of the asymmetric EDLC with suitable electrode mass and operating potential range ratios using the proper organic electrolyte were 5.56 times higher than for a similar symmetric EDLC using aqueous electrolyte, with cell mass and volume reduced by a factor of 1.77. Also, the asymmetric EDLC with the same type of electrode and suitable electrode mass ratio, working potential range ratio, and proper organic electrolyte

  20. Assessment of the environmental impact of available options in electric power development under Polish conditions

    International Nuclear Information System (INIS)

    Cofala, Janusz; ); Jankowski, Boleslaw

    1999-01-01

    The current European initiatives limiting environmental impacts of energy production and use are presented and the proposal emission levels together with benefits are given. The role of nuclear power in achieving environmental targets in the EU countries is stressed. Then a comparison of the following 3 major electricity production options: modern coal fired power plants, gas fired combined cycle power plants and nuclear power plants is done. In the comparison Polish conditions are taken into account

  1. Effectiveness of dye sensitised solar cell under low light condition using wide band dye

    Energy Technology Data Exchange (ETDEWEB)

    Sahmer, Ahmad Zahrin, E-mail: ahmadzsahmer@gmail.com; Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my; Zaine, Siti Nur Azella, E-mail: ct.azella@gmail.com [Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    Dye sensistised solar cell (DSC) based on nanocrystalline TiO{sub 2} has the potential to be used in indoor consumer power application. In realizing this, the DSC must be optimized to generate power under low lighting condition and under wider visible light range. The use of wide band dye N749 which has a wider spectrum sensitivity increases the photon conversion to electron between the visible light spectrums of 390nm to 700nm. This paper reports the study on the effectiveness of the dye solar cell with N749 dye under low light condition in generating usable power which can be used for indoor consumer application. The DSC was fabricated using fluorine doped tin oxide (FTO) glass with screen printing method and the deposited TiO{sub 2} film was sintered at 500°C. The TiO{sub 2} coated FTO glass was then soaked in the N749 dye, assembled into test cell, and tested under the standard test condition at irradiance of 1000 W/m{sup 2} with AM1.5 solar soaker. The use of the 43T mesh for the dual pass screen printing TiO{sub 2} paste gives a uniform TiO{sub 2} film layer of 16 µm. The low light condition was simulated using 1/3 filtered irradiance with the solar soaker. The fabricated DSC test cell with the N749 dye was found to have a higher efficiency of 6.491% under low light condition compared to the N719 dye. Under the standard test condition at 1 sun the N749 test cell efficiency is 4.55%. The increases in efficiency is attributed to the wider spectral capture of photon of the DSC with N749 dye. Furthermore, the use of N749 dye is more effective under low light condition as the V{sub OC} decrement is less significant compared to the latter.

  2. Dynamic simulation of a direct carbonate fuel cell power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ernest, J.B. [Fluor Daniel, Inc., Irvine, CA (United States); Ghezel-Ayagh, H.; Kush, A.K. [Fuel Cell Engineering, Danbury, CT (United States)

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  3. Cell death in Tetrahymena thermophila: new observations on culture conditions.

    Science.gov (United States)

    Christensen, S T; Sørensen, H; Beyer, N H; Kristiansen, K; Rasmussen, L; Rasmussen, M I

    2001-01-01

    We previously suggested that the cell fate of the protozoan ciliate, Tetrahymena thermophila, effectively relates to a quorum-sensing mechanism where cell-released factors support cell survival and proliferation. The cells have to be present above a critical initial density in a chemically defined nutrient medium in order to release a sufficient level of these factors to allow a new colony to flourish. At a relatively high rate of metabolism and/or macromolecular synthesis and below this critical density, cells began to die abruptly within 30 min of inoculation, and this death took the form of an explosive disintegration lasting less than 50 milliseconds. The cells died at any location in the culture, and the frequency of cell death was always lower in well-filled vials than those with medium/air interface. Cell death was inhibited by the addition of Actinomycin D or through modifications of the culture conditions either by reducing the oxygen tension or by decreasing the temperature of the growth medium. In addition, plastic caps in well-filled vials release substances, which promote cell survival. The fate of low-density cultures is related to certain 'physical' conditions, in addition to the availability of oxygen within closed culture systems. Copyright 2001 Academic Press.

  4. Polymer electrolyte fuel cell mini power unit for portable application

    Energy Technology Data Exchange (ETDEWEB)

    Urbani, F.; Squadrito, G.; Barbera, O.; Giacoppo, G.; Passalacqua, E. [CNR-ITAE, via Salita S. Lucia sopra Contesse n. 5, 98126 S. Lucia, Messina (Italy); Zerbinati, O. [Universita del Piemonte Orientale, Dip. di Scienze dell' Ambiente e della Vita, via Bellini 25/g, 15100 Alessandria (Italy)

    2007-06-20

    This paper describes the design, realisation and test of a power unit based on a polymer electrolyte fuel cell, operating at room temperature, for portable application. The device is composed of an home made air breathing fuel cell stack, a metal hydride tank for H{sub 2} supply, a dc-dc converter for power output control and a fan for stack cooling. The stack is composed by 10 cells with an active surface of 25 cm{sup 2} and produces a rated power of 15 W at 6 V and 2 A. The stack successfully runs with end-off fed hydrogen without appreciable performance degradation during the time. The final assembled system is able to generate 12 W at 9.5 V, and power a portable DVD player for 3 h in continuous. The power unit has collected about 100 h of operation without maintenance. (author)

  5. Fuzzy Logic Based Controller for a Grid-Connected Solid Oxide Fuel Cell Power Plant.

    Science.gov (United States)

    Chatterjee, Kalyan; Shankar, Ravi; Kumar, Amit

    2014-10-01

    This paper describes a mathematical model of a solid oxide fuel cell (SOFC) power plant integrated in a multimachine power system. The utilization factor of a fuel stack maintains steady state by tuning the fuel valve in the fuel processor at a rate proportional to a current drawn from the fuel stack. A suitable fuzzy logic control is used for the overall system, its objective being controlling the current drawn by the power conditioning unit and meet a desirable output power demand. The proposed control scheme is verified through computer simulations.

  6. Solar energy powered microbial fuel cell with a reversible bioelectrode

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Hamelers, H.V.M.; Buisman, C.J.N.

    2010-01-01

    The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel

  7. High volumetric power density, non-enzymatic, glucose fuel cells.

    Science.gov (United States)

    Oncescu, Vlad; Erickson, David

    2013-01-01

    The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an "oxygen depletion design" whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm⁻²) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm⁻³). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells.

  8. Advanced Space Power Systems (ASPS): Regenerative Fuel Cells (RFC)

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the regenerative fuel cell project element is to develop power and energy storage technologies that enable new capabilities for future human space...

  9. An Efficient Topology for Wireless Power Transfer over a Wide Range of Loading Conditions

    Directory of Open Access Journals (Sweden)

    Tianqing Li

    2018-01-01

    Full Text Available Although an inductive power transfer (IPT system can transfer power efficiently in full-load conditions, its efficiency obviously decreases in light-load conditions. To solve this problem, based on a two-coil IPT system with a series-series compensation topology, a single-ended primary-inductor converter is introduced at the secondary side. By adjusting the set effective value of the current in the primary coil, the converter input voltage changes to maintain the equivalent input resistance of the converter in an optimal condition. The system can then transfer the power efficiently with the wide load conditions. Moreover, the system operates at a constant resonance frequency with a high power factor. Both the simulation and experimentation of a prototype with a 10 W IPT system demonstrate the effectiveness of the proposed topology for wireless power transfer.

  10. Reliability considerations of a fuel cell backup power system for telecom applications

    Science.gov (United States)

    Serincan, Mustafa Fazil

    2016-03-01

    A commercial fuel cell backup power unit is tested in real life operating conditions at a base station of a Turkish telecom operator. The fuel cell system responds to 256 of 260 electric power outages successfully, providing the required power to the base station. Reliability of the fuel cell backup power unit is found to be 98.5% at the system level. On the other hand, a qualitative reliability analysis at the component level is carried out. Implications of the power management algorithm on reliability is discussed. Moreover, integration of the backup power unit to the base station ecosystem is reviewed in the context of reliability. Impact of inverter design on the stability of the output power is outlined. Significant current harmonics are encountered when a generic inverter is used. However, ripples are attenuated significantly when a custom design inverter is used. Further, fault conditions are considered for real world case studies such as running out of hydrogen, a malfunction in the system, or an unprecedented operating scheme. Some design guidelines are suggested for hybridization of the backup power unit for an uninterrupted operation.

  11. Prospects for advanced coal-fuelled fuel cell power plants

    International Nuclear Information System (INIS)

    Jansen, D.; Laag, P.C. van der; Oudhuis, A.B.J.; Ribberink, J.S.

    1994-01-01

    As part of ECN's in-house R and D programmes on clean energy conversion systems with high efficiencies and low emissions, system assessment studies have been carried out on coal gasification power plants integrated with high-temperature fuel cells (IGFC). The studies also included the potential to reduce CO 2 emissions, and to find possible ways for CO 2 extraction and sequestration. The development of this new type of clean coal technology for large-scale power generation is still far off. A significant market share is not envisaged before the year 2015. To assess the future market potential of coal-fuelled fuel cell power plants, the promise of this fuel cell technology was assessed against the performance and the development of current state-of-the-art large-scale power generation systems, namely the pulverized coal-fired power plants and the integrated coal gasification combined cycle (IGCC) power plants. With the anticipated progress in gas turbine and gas clean-up technology, coal-fuelled fuel cell power plants will have to face severe competition from advanced IGCC power plants, despite their higher efficiency. (orig.)

  12. An analysis of radioisotope power systems using improved ATEC cells

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Tournier, J.M.

    1998-01-01

    Recently, a ground demo of eight AMTEC (PX-3G) cells has been tested successfully in vacuum at the Air Force Research laboratory (AFRL). Results showed that the electric power output and voltage of the best performing PX-3G cell are short of meeting the requirements of the Pluto/Express (PX) mission. Using the basic configuration of the PX-3G cell, several design changes are explored, to improve the cell performance. Also, several integration options of the improved PX-3G cells with General-Purpose Heat Source (GPHS) modules are investigated for an electric power level of 130 W e and a 15-year mission. The options explored include varying the number of GPHS modules and AMTEC cells, and using fresh or aged fuel. The effects of changing the generators' output voltage (24 V or 28 V) on the evaporator and BASE metal-ceramic brazes temperatures and temperature margin in the cell are also examined

  13. A Maximum Power Point Tracking Control Method of a Photovoltaic Power Generator with Consideration of Dynamic Characteristics of Solar Cells

    Science.gov (United States)

    Watanabe, Takashi; Yoshida, Toshiya; Ohniwa, Katsumi

    This paper discusses a new control strategy for photovoltaic power generation systems with consideration of dynamic characteristics of the photovoltaic cells. The controller estimates internal currents of an equivalent circuit for the cells. This estimated, or the virtual current and the actual voltage of the cells are fed to a conventional Maximum-Power-Point-Tracking (MPPT) controller. Consequently, this MPPT controller still tracks the optimum point even though it is so designed that the seeking speed of the operating point is extremely high. This system may suit for applications, which are installed in rapidly changeable insolation and temperature-conditions e.g. automobiles, trains, and airplanes. The proposed method is verified by experiment with a combination of this estimating function and the modified Boehringer's MPPT algorithm.

  14. High power density yeast catalyzed microbial fuel cells

    Science.gov (United States)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  15. Real Time In-circuit Condition Monitoring of MOSFET in Power Converters

    Directory of Open Access Journals (Sweden)

    Shakeb A. Khan

    2015-03-01

    Full Text Available Abstract:This paper presents simple and low-cost, real time in-circuit condition monitoring of MOSFET in power electronic converters. Design metrics requirements like low cost, small size, high power factor, low percentage of total harmonic distortion etc. requires the power electronic systems to operate at high frequencies and at high power density. Failures of power converters are attributed largely by aging of power MOSFETs at high switching frequencies. Therefore, real time in-circuit prognostic of MOSFET needs to be done before their selection for power system design. Accelerated aging tests are performed in different circuits to determine the wear out failure of critical components based on their parametric degradation. In this paper, the simple and low-cost test beds are designed for real time in-circuit prognostics of power MOSFETs. The proposed condition monitoring scheme helps in estimating the condition of MOSFETs at their maximum rated operating condition and will aid the system designers to test their reliability and benchmark them before selecting in power converters.

  16. Fuel cells - an option for decentralized power supply?

    International Nuclear Information System (INIS)

    Ketterer, H.

    1995-01-01

    Development efforts worldwide are made on industrial-scale power stations with high-temperature fuel cells fuelled with coal gas and with off-gases of up to 1000 C, which will improve the high efficiency of the plant even further. As reported at a conference of the VDI-Gesellschaft Energietechnik, it with still take several decades until these base load power station will be in operation. On the other hand, heating power stations with low-temperature fuel cells in the range up to 200 kW have been tested successfully worldwide. (orig.) [de

  17. Photovoltaic Test and Demonstration Project. [for solar cell power systems

    Science.gov (United States)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.

  18. Major design issues of molten carbonate fuel cell power generation unit

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T.P.

    1996-04-01

    In addition to the stack, a fuel cell power generation unit requires fuel desulfurization and reforming, fuel and oxidant preheating, process heat removal, waste heat recovery, steam generation, oxidant supply, power conditioning, water supply and treatment, purge gas supply, instrument air supply, and system control. These support facilities add considerable cost and system complexity. Bechtel, as a system integrator of M-C Power`s molten carbonate fuel cell development team, has spent substantial effort to simplify and minimize these supporting facilities to meet cost and reliability goals for commercialization. Similiar to other fuels cells, MCFC faces design challenge of how to comply with codes and standards, achieve high efficiency and part load performance, and meanwhile minimize utility requirements, weight, plot area, and cost. However, MCFC has several unique design issues due to its high operating temperature, use of molten electrolyte, and the requirement of CO2 recycle.

  19. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    OpenAIRE

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    Proton Exchange Membrane fuel cell (PEMFC) technology for use in fuel cell vehicles and other applications has been intensively developed in recent decades. Besides the fuel cell stack, air and fuel control and thermal and water management are major challenges in the development of the fuel cell for vehicle applications. The air supply system can have a major impact on overall system efficiency. In this paper a fuel cell system model for optimizing system operating conditions was developed wh...

  20. Dynamic avalanche behavior of power MOSFETs and IGBTs under unclamped inductive switching conditions

    International Nuclear Information System (INIS)

    Lu Jiang; Tian Xiaoli; Lu Shuojin; Zhou Hongyu; Zhu Yangjun; Han Zhengsheng

    2013-01-01

    The ability of high-voltage power MOSFETs and IGBTs to withstand avalanche events under unclamped inductive switching (UIS) conditions is measured. This measurement is to investigate and compare the dynamic avalanche failure behavior of the power MOSFETs and the IGBT, which occur at different current conditions. The UIS measurement results at different current conditions show that the main failure reason of the power MOSFETs is related to the parasitic bipolar transistor, which leads to the deterioration of the avalanche reliability of power MOSFETs. However, the results of the IGBT show two different failure behaviors. At high current mode, the failure behavior is similar to the power MOSFETs situation. But at low current mode, the main failure mechanism is related to the parasitic thyristor activity during the occurrence of the avalanche process and which is in good agreement with the experiment result. (semiconductor devices)

  1. Identification of voltage stability condition of a power system using measurements of bus variables

    Directory of Open Access Journals (Sweden)

    Durlav Hazarika

    2014-12-01

    Full Text Available Several online methods were proposed for investigating the voltage stability condition of an interconnected power system using the measurements of voltage and current phasors at a bus. For this purpose, phasor measurement units (PMUs are used. A PMU is a device which measures the electrical waves on an electrical network, using a common time source (reference bus for synchronisation. This study proposes a method for online monitoring of voltage stability condition of a power system using measurements of bus variables namely – (i real power, (ii reactive power and (iii bus voltage magnitude at a bus. The measurements of real power, reactive power and bus voltage magnitude could be extracted/captured from a smart energy meter. The financial involvement for implementation of the proposed method would significantly lower compared with the PMU-based method.

  2. A power conditioning system for thermoelectric generator based on interleaved Boost converter with MPPT control

    DEFF Research Database (Denmark)

    Ni, L.-X; Sun, K.; Zhang, L.

    2011-01-01

    The thermoelectric generation (TEG) system has its special charactristics of high stablility, low voltage and high current output, which is different from PV modules. The power conditioning system and control schemes used in PV applications cannot be directly applied to TEG applications. A power...... conditioning system for TEG based on interleaved Boost converter with maximum power point tracking (MPPT) control is investigated in this paper. Since an internal resistance exists inside TEG modules, an improved perturbation and observation (P&O) MPPT control scheme with power limit is proposed to extract...... maximum power from TEG by matching the load with internal resistance. Since the battery is usually employed as the load for TEG systems, the interleaved Boost converter operates in two different modes for battery charging: before the battery is fully charged, the system outputs the maximum power (MPPT...

  3. A Hybrid Maximum Power Point Search Method Using Temperature Measurements in Partial Shading Conditions

    Directory of Open Access Journals (Sweden)

    Mroczka Janusz

    2014-12-01

    Full Text Available Photovoltaic panels have a non-linear current-voltage characteristics to produce the maximum power at only one point called the maximum power point. In the case of the uniform illumination a single solar panel shows only one maximum power, which is also the global maximum power point. In the case an irregularly illuminated photovoltaic panel many local maxima on the power-voltage curve can be observed and only one of them is the global maximum. The proposed algorithm detects whether a solar panel is in the uniform insolation conditions. Then an appropriate strategy of tracking the maximum power point is taken using a decision algorithm. The proposed method is simulated in the environment created by the authors, which allows to stimulate photovoltaic panels in real conditions of lighting, temperature and shading.

  4. Smart Energy Management of Multiple Full Cell Powered Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad S. Alam

    2007-04-23

    In this research project the University of South Alabama research team has been investigating smart energy management and control of multiple fuel cell power sources when subjected to varying demands of electrical and thermal loads together with demands of hydrogen production. This research has focused on finding the optimal schedule of the multiple fuel cell power plants in terms of electric, thermal and hydrogen energy. The optimal schedule is expected to yield the lowest operating cost. Our team is also investigating the possibility of generating hydrogen using photoelectrochemical (PEC) solar cells through finding materials for efficient light harvesting photoanodes. The goal is to develop an efficient and cost effective PEC solar cell system for direct electrolysis of water. In addition, models for hydrogen production, purification, and storage will be developed. The results obtained and the data collected will be then used to develop a smart energy management algorithm whose function is to maximize energy conservation within a managed set of appliances, thereby lowering O/M costs of the Fuel Cell power plant (FCPP), and allowing more hydrogen generation opportunities. The Smart Energy Management and Control (SEMaC) software, developed earlier, controls electrical loads in an individual home to achieve load management objectives such that the total power consumption of a typical residential home remains below the available power generated from a fuel cell. In this project, the research team will leverage the SEMaC algorithm developed earlier to create a neighborhood level control system.

  5. Electrochemical power sources batteries, fuel cells, and supercapacitors

    CERN Document Server

    Bagotsky, Vladimir S; Volfkovich, Yurij M

    2015-01-01

    Electrochemical Power Sources (EPS) provides in a concise way theoperational features, major types, and applications of batteries,fuel cells, and supercapacitors Details the design, operational features, andapplications of batteries, fuel cells, and supercapacitors Covers improvements of existing EPSs and thedevelopment of new kinds of EPS as the results of intense R&Dwork Provides outlook for future trends in fuel cells andbatteries Covers the most typical battery types, fuel cells andsupercapacitors; such as zinc-carbon batteries, alkaline manganesedioxide batteries, mercury-zinc cells, lead

  6. Solid oxide fuel cell performance under severe operating conditions

    DEFF Research Database (Denmark)

    Koch, Søren; Hendriksen, P.V.; Mogensen, Mogens Bjerg

    2006-01-01

    The performance and degradation of Solid Oxide Fuel Cells (SOFC) were studied under severe operating conditions. The cells studied were manufactured in a small series by ECN, in the framework of the EU funded CORE-SOFC project. The cells were of the anode-supported type with a double layer LSM...... cathode. They were operated at 750 °C or 850 °C in hydrogen with 5% or 50% water at current densities ranging from 0.25 A cm–2 to 1 A cm–2 for periods of 300 hours or more. The area specific cell resistance, corrected for fuel utilisation, ranged between 0.20 Ω cm2 and 0.34 Ω cm2 at 850 °C and 520 m......V, and between 0.51 Ω cm2 and 0.92 Ω cm2 at 750 °C and 520 mV. The degradation of cell performance was found to be low (ranging from 0 to 8%/1,000 hours) at regular operating conditions. Voltage degradation rates of 20 to 40%/1,000 hours were observed under severe operating conditions, depending on the test...

  7. Optimization and development of solar power system under diffused sunlight condition in rural areas with supercapacitor integration

    Science.gov (United States)

    Castelino, Roystan V.; Jana, Suman; Kumhar, Rajesh; Singh, Niraj K.

    2018-04-01

    The simulation and hardware based experiment in this presented paper shows a possibility of increasing the reliability of solar power under diffused condition by using super capacitor module. This experimental setup can be used in those areas where the sun light is intermittent and under the diffused radiation condition. Due to diffused radiation, solar PV cells operate very poorly, but by using this setup the power efficiency can be increased greatly. Sometimes dependent numerical models are used to measure the voltage and current response of the hardware setup in MATLAB Simulink based environment. To convert the scattered solar radiation to electricity using the conventional solar PV module, batteries have to be linked with the rapid charging or discharging device like super capacitor module. The conventional method consists of a charging circuit, which dumps the power if the voltage is below certain voltage level, but this circuit utilizes the entire power even if the voltage is low under diffused sun light conditions. There is no power dumped in this circuit. The efficiency and viability of this labscale experimental setup can be examined with further experiment and industrial model.

  8. Study of seismic design bases and site conditions for nuclear power plants

    International Nuclear Information System (INIS)

    1980-04-01

    This report presents the results of an investigation of four topics pertinent to the seismic design of nuclear power plants: Design accelerations by regions of the continental United States; review and compilation of design-basis seismic levels and soil conditions for existing nuclear power plants; regional distribution of shear wave velocity of foundation materials at nuclear power plant sites; and technical review of surface-founded seismic analysis versus embedded approaches

  9. Study of seismic design bases and site conditions for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    This report presents the results of an investigation of four topics pertinent to the seismic design of nuclear power plants: Design accelerations by regions of the continental United States; review and compilation of design-basis seismic levels and soil conditions for existing nuclear power plants; regional distribution of shear wave velocity of foundation materials at nuclear power plant sites; and technical review of surface-founded seismic analysis versus embedded approaches.

  10. Thermal design of a modern, air-conditioned, single-floor, solar-powered desert house

    KAUST Repository

    Serag-Eldin, M. A.

    2011-01-01

    The paper presents a thermal analysis of a single-floor, solar-powered desert house. The house is air-conditioned and provides all modern comforts and facilities. Electrical power, which drives the entire energy system, is generated by roof

  11. Experimental Study on Effect of Operating Conditions on Thermoelectric Power Generation

    DEFF Research Database (Denmark)

    Mahmoudi Nezhad, Sajjad; Rezaniakolaei, Alireza; Rosendahl, Lasse Aistrup

    2017-01-01

    Effect of boundary conditions of thermal reservoirs on power generation of thermoelectric modules (TEMs) is examined experimentally. To realize the characteristics of the power generation by the TEMs, the system performance is studied over various volumetric flow rates and flow temperatures...

  12. Emf, maximum power and efficiency of fuel cells

    International Nuclear Information System (INIS)

    Gaggioli, R.A.; Dunbar, W.R.

    1990-01-01

    This paper discusses the ideal voltage of steady-flow fuel cells usually expressed by Emf = -ΔG/nF where ΔG is the Gibbs free energy of reaction for the oxidation of the fuel at the supposed temperature of operation of the cell. Furthermore, the ideal power of the cell is expressed as the product of the fuel flow rate with this emf, and the efficiency of a real fuel cell, sometimes called the Gibbs efficiency, is defined as the ratio of the actual power output to this ideal power. Such viewpoints are flawed in several respects. While it is true that if a cell operates isothermally the maximum conceivable work output is equal to the difference between the Gibbs free energy of the incoming reactants and that of the leaving products, nevertheless, even if the cell operates isothermally, the use of the conventional ΔG of reaction assumes that the products of reaction leave separately from one another (and from any unused fuel), and when ΔS of reaction is positive it assumes that a free heat source exists at the operating temperature, whereas if ΔS is negative it neglects the potential power which theoretically could be obtained form the heat released during oxidation. Moreover, the usual cell does not operate isothermally but (virtually) adiabatically

  13. Design and Tuning of a Modified Power-Based PLL for Single-Phase Grid-Connected Power Conditioning Systems

    DEFF Research Database (Denmark)

    Golestan, Saeed; Monfared, Mohammad; D. Freijedo, Francisco

    2012-01-01

    One of the most important aspects for the proper operation of the single-phase grid-tied power-conditioning systems is the synchronization with the utility grid. Among various synchronization techniques, phase locked loop (PLL) based algorithms have found a lot of interest for the advantages...

  14. High performance monolithic power management system with dynamic maximum power point tracking for microbial fuel cells.

    Science.gov (United States)

    Erbay, Celal; Carreon-Bautista, Salvador; Sanchez-Sinencio, Edgar; Han, Arum

    2014-12-02

    Microbial fuel cell (MFC) that can directly generate electricity from organic waste or biomass is a promising renewable and clean technology. However, low power and low voltage output of MFCs typically do not allow directly operating most electrical applications, whether it is supplementing electricity to wastewater treatment plants or for powering autonomous wireless sensor networks. Power management systems (PMSs) can overcome this limitation by boosting the MFC output voltage and managing the power for maximum efficiency. We present a monolithic low-power-consuming PMS integrated circuit (IC) chip capable of dynamic maximum power point tracking (MPPT) to maximize the extracted power from MFCs, regardless of the power and voltage fluctuations from MFCs over time. The proposed PMS continuously detects the maximum power point (MPP) of the MFC and matches the load impedance of the PMS for maximum efficiency. The system also operates autonomously by directly drawing power from the MFC itself without any external power. The overall system efficiency, defined as the ratio between input energy from the MFC and output energy stored into the supercapacitor of the PMS, was 30%. As a demonstration, the PMS connected to a 240 mL two-chamber MFC (generating 0.4 V and 512 μW at MPP) successfully powered a wireless temperature sensor that requires a voltage of 2.5 V and consumes power of 85 mW each time it transmit the sensor data, and successfully transmitted a sensor reading every 7.5 min. The PMS also efficiently managed the power output of a lower-power producing MFC, demonstrating that the PMS works efficiently at various MFC power output level.

  15. Fuel cell system economics: comparing the costs of generating power with stationary and motor vehicle PEM fuel cell systems

    International Nuclear Information System (INIS)

    Lipman, Timothy E.; Edwards, Jennifer L.; Kammen, Daniel M.

    2004-01-01

    This investigation examines the economics of producing electricity from proton-exchange membrane (PEM) fuel cell systems under various conditions, including the possibility of using fuel cell vehicles (FCVs) to produce power when they are parked at office buildings and residences. The analysis shows that the economics of both stationary fuel cell and FCV-based power vary significantly with variations in key input variables such as the price of natural gas, electricity prices, fuel cell and reformer system costs, and fuel cell system durability levels. The 'central case' results show that stationary PEM fuel cell systems can supply electricity for offices and homes in California at a net savings when fuel cell system costs reach about $6000 for a 5 kW home system ($1200/kW) and $175,000 for a 250 kW commercial system ($700/kW) and assuming somewhat favorable natural gas costs of $6/GJ at residences and $4/GJ at commercial buildings. Grid-connected FCVs in commercial settings can also potentially supply electricity at competitive rates, in some cases producing significant annual benefits. Particularly attractive is the combination of net metering along with time-of-use electricity rates that allow power to be supplied to the utility grid at the avoided cost of central power plant generation. FCV-based power at individual residences does not appear to be as attractive, at least where FCV power can only be used directly or banked with the utility for net metering and not sold in greater quantity, due to the low load levels at these locations that provide a poor match to automotive fuel cell operation, higher natural gas prices than are available at commercial settings, and other factors

  16. Oxygen sensitization of mammalian cells under different irradiation conditions

    International Nuclear Information System (INIS)

    Ling, C.C.; Michaels, H.B.; Gerweck, L.E.; Epp, E.R.; Peterson, E.C.

    1981-01-01

    The oxygen dependence of the radiosensitivity of cultured CHO cells was examined in detail with particular attention paid to avoiding possible artifacts due to radiolytic oxygen depletion. Two methods of gas equilibration and irradiation were used. In the first approach, cells were irradiated with 50-kVp X rays in a thin-layer geometry which offered maximum interchange between the cells and the surrounding gas. The second technique employed 280-kVp X irradiation of cells under full-medium conditions with mechanical agitation to minimize the effect of radiochemical oxygen consumption by promoting rapid oxygen replenishment. With these techniques oxygen radiosensitization was clearly resolved at an oxygen concentration of 0.03% in the gas phase. The oxygen K curves measured by these two methods were similar in shape over a wide range of oxygen concentration

  17. Real Mission Profile Based Lifetime Estimation of Fuel-cell Power Converter

    DEFF Research Database (Denmark)

    Zhou, Dao; Wang, Huai; Blaabjerg, Frede

    2016-01-01

    . This paper describes a lifetime prediction method for the power semiconductors used in the power conditioning of a fuel cell based backup system, considering both the long-term standby mode and active operation mode. The annual ambient temperature profile is taken into account to estimate its impact...... on the degradation of MOSFETs during the standby mode. At the presence of power outages, the backup system is activated into the operation mode and the MOSFETs withstand additional thermal stresses due to power losses. A study case of a 1 kW backup system is presented with two annual mission profiles in Denmark...... and India, respectively. The ambient temperature, occurrence frequency of power outages, active operation time and power levels are considered for the lifetime prediction of the applied MOSFETs. Comparisons of the accumulated lifetime consumptions are performed between standby mode and operation mode...

  18. Bifacial PV cell with reflector for stand-alone mast for sensor powering purposes

    Science.gov (United States)

    Jakobsen, Michael L.; Thorsteinsson, Sune; Poulsen, Peter B.; Riedel, N.; Rødder, Peter M.; Rødder, Kristin

    2017-09-01

    Reflectors to bifacial PV-cells are simulated and prototyped in this work. The aim is to optimize the reflector to specific latitudes, and particularly northern latitudes. Specifically, by using minimum semiconductor area the reflector must be able to deliver the electrical power required at the condition of minimum solar travel above the horizon, worst weather condition etc. We will test a bifacial PV-module with a retroreflector, and compare the output with simulations combined with local solar data.

  19. Solar energy powered microbial fuel cell with a reversible bioelectrode.

    Science.gov (United States)

    Strik, David P B T B; Hamelers, Hubertus V M; Buisman, Cees J N

    2010-01-01

    The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel cells is the pH membrane gradient which reduces cell voltage and power output. This problem is caused by acid production at the anode, alkaline production at the cathode, and the nonspecific proton exchange through the membrane. Here we report a solution for a new kind of solar energy powered microbial fuel cell via development of a reversible bioelectrode responsible for both biocatalyzed anodic and cathodic electron transfer. Anodic produced protons were used for the cathodic reduction reaction which held the formation of a pH membrane gradient. The microbial fuel cell continuously generated electricity and repeatedly reversed polarity dependent on aeration or solar energy exposure. Identified organisms within biocatalyzing biofilm of the reversible bioelectrode were algae, (cyano)bacteria and protozoa. These results encourage application of solar energy powered microbial fuel cells.

  20. Effect of Low Pressure End Conditions on Steam Power Plant Performance

    Directory of Open Access Journals (Sweden)

    Ali Syed Haider

    2014-07-01

    Full Text Available Most of the electricity produced throughout the world today is from steam power plants and improving the performance of power plants is crucial to minimize the greenhouse gas emissions and fuel consumption. Energy efficiency of a thermal power plant strongly depends on its boiler-condenser operating conditions. The low pressure end conditions of a condenser have influence on the power output, steam consumption and efficiency of a plant. Hence, the objective this paper is to study the effect of the low pressure end conditions on a steam power plant performance. For the study each component was modelled thermodynamically. Simulation was done and the results showed that performance of the condenser is highly a function of its pressure which in turn depends on the flow rate and temperature of the cooling water. Furthermore, when the condenser pressure increases both net power output and plant efficiency decrease whereas the steam consumption increases. The results can be used to run a steam power cycle at optimum conditions.

  1. Batteryless, wireless sensor powered by a sediment microbial fuel cell.

    Science.gov (United States)

    Donovan, Conrad; Dewan, Alim; Heo, Deukhyoun; Beyenal, Haluk

    2008-11-15

    Sediment microbial fuel cells (SMFCs) are considered to be an alternative renewable power source for remote monitoring. There are two main challenges to using SMFCs as power sources: 1) a SMFC produces a low potential at which most sensor electronics do not operate, and 2) a SMFC cannot provide continuous power, so energy from the SMFC must be stored and then used to repower sensor electronics intermittently. In this study, we developed a SMFC and a power management system (PMS) to power a batteryless, wireless sensor. A SMFC operating with a microbial anode and cathode, located in the Palouse River, Pullman, Washington, U.S.A., was used to demonstrate the utility of the developed system. The designed PMS stored microbial energy and then started powering the wireless sensor when the SMFC potential reached 320 mV. It continued powering until the SMFC potential dropped below 52 mV. The system was repowered when the SMFC potential increased to 320 mV, and this repowering continued as long as microbial reactions continued. We demonstrated that a microbial fuel cell with a microbial anode and cathode can be used as an effective renewable power source for remote monitoring using custom-designed electronics.

  2. Electro-thermal Modeling of Modern Power Devices for Studying Abnormal Operating Conditions

    DEFF Research Database (Denmark)

    Wu, Rui

    in industrial power electronic systems in the range above 10 kW. The failure of IGBTs can be generally classified as catastrophic failures and wear out failures. A wear out failure is mainly induced by accumulated degradation with time, while a catastrophic failure is triggered by a single-event abnormal....... The objective of this project has been to model and predict the electro-thermal behavior of IGBT power modules under abnormal conditions, especially short circuits. A thorough investigation on catastrophic failure modes and mechanisms of modern power semiconductor devices, including IGBTs and power diodes, has...

  3. Optimizing cutting conditions on sustainable machining of aluminum alloy to minimize power consumption

    Science.gov (United States)

    Nur, Rusdi; Suyuti, Muhammad Arsyad; Susanto, Tri Agus

    2017-06-01

    Aluminum is widely utilized in the industrial sector. There are several advantages of aluminum, i.e. good flexibility and formability, high corrosion resistance and electrical conductivity, and high heat. Despite of these characteristics, however, pure aluminum is rarely used because of its lacks of strength. Thus, most of the aluminum used in the industrial sectors was in the form of alloy form. Sustainable machining can be considered to link with the transformation of input materials and energy/power demand into finished goods. Machining processes are responsible for environmental effects accepting to their power consumption. The cutting conditions have been optimized to minimize the cutting power, which is the power consumed for cutting. This paper presents an experimental study of sustainable machining of Al-11%Si base alloy that was operated without any cooling system to assess the capacity in reducing power consumption. The cutting force was measured and the cutting power was calculated. Both of cutting force and cutting power were analyzed and modeled by using the central composite design (CCD). The result of this study indicated that the cutting speed has an effect on machining performance and that optimum cutting conditions have to be determined, while sustainable machining can be followed in terms of minimizing power consumption and cutting force. The model developed from this study can be used for evaluation process and optimization to determine optimal cutting conditions for the performance of the whole process.

  4. PARTICLE SWARM OPTIMIZATION BASED OF THE MAXIMUM PHOTOVOLTAIC POWER TRACTIOQG UNDER DIFFERENT CONDITIONS

    Directory of Open Access Journals (Sweden)

    Y. Labbi

    2015-08-01

    Full Text Available Photovoltaic electricity is seen as an important source of renewable energy. The photovoltaic array is an unstable source of power since the peak power point depends on the temperature and the irradiation level. A maximum peak power point tracking is then necessary for maximum efficiency.In this work, a Particle Swarm Optimization (PSO is proposed for maximum power point tracker for photovoltaic panel, are used to generate the optimal MPP, such that solar panel maximum power is generated under different operating conditions. A photovoltaic system including a solar panel and PSO MPP tracker is modelled and simulated, it has been has been carried out which has shown the effectiveness of PSO to draw much energy and fast response against change in working conditions.

  5. Offshore Variability in Critical Weather Conditions in Large-Scale Wind Based Danish Power System

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Litong-Palima, Marisciel; Sørensen, Poul Ejnar

    2013-01-01

    of the variability for the 2020 Danish power system, one can see that in the worst case, up to 1500 MW of power can be lost in 30 minutes. We present results showing how this issue is partially solved by the new High Wind Storm Controller presented by Siemens in the TWENTIES project.......Offshore wind power has a significant development potential, especially in North Europe. The geographical concentration of offshore wind power leads to increased variability and in the case of critical weather conditions it may lead to sudden and considerable loss of production. In this context......, the chances of losing several GW of wind power due to critical weather conditions in a very short time period could potentially jeopardize the whole system’s reliability and stability. Forecasting such events is not trivial and the results so far are not encouraging. When assessing the impact...

  6. Onboard power line conditioning system for an electric or hybrid vehicle

    Science.gov (United States)

    Kajouke, Lateef A.; Perisic, Milun

    2016-06-14

    A power line quality conditioning system for a vehicle includes an onboard rechargeable direct current (DC) energy storage system and an onboard electrical system coupled to the energy storage system. The energy storage system provides DC energy to drive an electric traction motor of the vehicle. The electrical system operates in a charging mode such that alternating current (AC) energy from a power grid external to the vehicle is converted to DC energy to charge the DC energy storage system. The electrical system also operates in a vehicle-to-grid power conditioning mode such that DC energy from the DC energy storage system is converted to AC energy to condition an AC voltage of the power grid.

  7. On real-time assessment of post-emergency condition existence in complex electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Vladimir I. [Irkutsk State Technical University 83, Lermontov Street, Irkutsk 664074 (Russian Federation)

    2008-12-15

    This paper presents two effective numerical criteria of estimating post-emergency operating conditions' non-existence in complicated electric power systems. These criteria are based on mathematic and programming tools of the regularized quadratic descent method and the regularized two-parameter minimization method. The proposed criteria can be effectively applied in calculations of real-time electric operating conditions. (author)

  8. A portable power system using PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Long, E. [Ball Aerospace and Technologies Corp., Boulder, CO (United States)

    1997-12-31

    Ball has developed a proof-of-concept, small, lightweight, portable power system. The power system uses a proton exchange membrane (PEM) fuel cell stack, stored hydrogen, and atmospheric oxygen as the oxidant to generate electrical power. Electronics monitor the system performance to control cooling air and oxidant flow, and automatically do corrective measures to maintain performance. With the controller monitoring the system health, the system can operate in an ambient environment from 0 C to +50 C. The paper describes system testing, including load testing, thermal and humidity testing, vibration and shock testing, field testing, destructive testing of high-pressure gas tanks, and test results on the fuel cell power system, metal hydride hydrogen storage, high-pressure hydrogen gas storage, and chemical hydride hydrogen storage.

  9. Nuclear power in Poland. Prospect and conditions; Energetyka jadrowa w Polsce. Perspektywy i uwarunkowania

    Energy Technology Data Exchange (ETDEWEB)

    Chwaszczewski, S. [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1995-12-31

    Poland started the works on construction of first nuclear power plant in 1992. The social protest as well as deep political and economical changes in Poland induced the decision of the Polish government to abandon the construction of the nuclear power plant in Zarnowiec. After the period of political and economical transformation, in 1992 Polish economy starts to grow up, also growth of the electric power consumption. Are there prospect for utilization in Poland the nuclear power plant? This work is devoted to analyse such question. The present structure of power and fuel materials in Poland were analysed and the possible direction of changes was shown for the period up to 2020 year. It was stated, that the economical development in Poland should be bound with the growth of the consumption of most effective fuel and energy. These fuel or energy should be imported to Poland. Therefore, the nuclear power should be treated as one of possible ways of the balance of electric power in Poland. Particularly, that it will be expected the special ecological conditions in the energy production in Europe. In the present work, was shown, that the nuclear power was discriminated in the analysis of the development of power and fuel system in Poland. The incorrect values of economical parameters concerning of the nuclear power plant was used in the analysing numerical programs. The investment costs, design time and fuel price for nuclear energy was analysed, and shown, that in the proper conditions, the cost of the electric energy produced in the nuclear power plant is compared with the costs of electric energy produced in the conventional power stations. In this work, the proposals of the basic nuclear and radiological safety standards for the nuclear power plant in Poland are shown. (author). 20 refs, 10 figs, 3 tabs.

  10. Polypyrrole RVC biofuel cells for powering medical implants.

    Science.gov (United States)

    Roxby, Daniel N; Ting, S R Simon; Nguyen, Hung T

    2017-07-01

    Batteries for implanted medical devices such as pacemakers typically require surgical replacement every 5 to 10 years causing stress to the patient and their families. A Biofuel cell uses two electrodes with enzymes embedded to convert sugar into electricity. To evaluate the power producing capabilities of biofuel cells to replace battery technology, polypyrrole electrodes were fabricated by compression with Glucose oxidase and Laccase. Vitreous carbon was added to increase the conductivity, whilst glutaraldehyde acted as a crosslinking molecule. A maximum open circuit potential of 558.7 mV, short circuit current of 1.09 mA and maximum power of 0.127 mW was obtained from the fuel cells. This was able to turn on a medical thermometer through a TI BQ25504 energy harvesting circuit, hence showing the powering potential for biomedical devices.

  11. Calculation of core axial power shapes using alternating conditional expectation algorithm

    International Nuclear Information System (INIS)

    Lee, Eun Ki; Kim, Yong Hee; Cha, Kune Ho; Park, Moon Kyu

    1998-01-01

    We have introduced the alternating conditional expectation (ACE) algorithm in the method of reconstructing 20 node axial power shapes from five level detector powers. The ACE algorithm was used to find the optimal relationships between each plane power and normalized five detector powers. The obtained all optimal transformations had simple forms to be represented with polynomials. The reference axial power shapes and simulated detector powers were drawn out of the 3-dimensional results of Reactor Operation and Control Simulation (ROCS) code for various core states. By the ACE algorithm, we obtained the optimal relationship between dependent variable plane power, y, and independent variable detector powers, {Di, i=1,...,5 without any preprocessing, where a total of ≅3490 data sets per each cycle of YongGwang Nuclear (YGN) Power Plant units 3 and 4 are used. To test the validity and accuracy of the new method, about 21,200 cases of reconstructed axial power shapes are compared to original ROCS axial power shapes, and they are also contrasted with those obtained by Fourier fitting method (FFM). The average error of root mean square (rms), axial peak (DFZ), and axial shape index (DASI) of our new method for total 21204 data cases are 0.81%, 0.51% and 0.00204, while FFM 2.29%, 2.37% and 0.00264, respectively. The evaluation results for the data sets not used in the ACE transformations also show that the accuracy of new method is much better than that of FFM

  12. Local power production at the end consumer - legal, political and economical external conditions

    International Nuclear Information System (INIS)

    Grinden, Bjoern; Hunnes, Arngrim; Naesje, Paal; Wangensteen, Ivar; Morch, Andrei Z.

    2002-12-01

    The report deals with the external conditions for local power production, suggested as a production close to or at the end consumer. The political, legal and economical frame conditions for such production including rating are discussed. The report shall together with a technical report regarding appropriate technologies for such production (A5712), serve as a basis for case studies and monitors later in the project. Through the case studies it will be uncovered how the external conditions are functioning which will make foundations for recommendations concerning possible alterations in the conditions in order to make the local power production more profitable. In the discussion on the political and legal external conditions the system of today is studied. From the political area the general development is described and a short analysis is made of what to expect from case handling procedures, and some challenges are pointed out At present there is a simplified handling of cases of minor and smaller power plants. In order to obtain a more realistic construction of such plants the requirements of license handling may need sharpening. The tariffing of energy deliverance is studied. The regulations for tariffing and income regulation in the distribution network is mainly designed with the consumer and the central power production in mind. A study is made of how the regulations work, to what extent precessions and additional rules are needed and to what extent alterations in the regulations are needed in order to incorporate the local power production in a rational way. While a local power producer at best, will want a price for power which is sold at the power market of the size of 20 oere/kWh, the power will increase in value further down in the voltage level. At the 230 V level the power price will be of the size of 60 oere/kWh all expenses included and the network rent (during normal precipitation conditions). Therefore the production for own consumption will be met

  13. Two-loop controller for maximizing performance of a grid-connected photovoltaic - fuel cell hybrid power plant

    Science.gov (United States)

    Ro, Kyoungsoo

    The study started with the requirement that a photovoltaic (PV) power source should be integrated with other supplementary power sources whether it operates in a stand-alone or grid-connected mode. First, fuel cells for a backup of varying PV power were compared in detail with batteries and were found to have more operational benefits. Next, maximizing performance of a grid-connected PV-fuel cell hybrid system by use of a two-loop controller was discussed. One loop is a neural network controller for maximum power point tracking, which extracts maximum available solar power from PV arrays under varying conditions of insolation, temperature, and system load. A real/reactive power controller (RRPC) is the other loop. The RRPC meets the system's requirement for real and reactive powers by controlling incoming fuel to fuel cell stacks as well as switching control signals to a power conditioning subsystem. The RRPC is able to achieve more versatile control of real/reactive powers than the conventional power sources since the hybrid power plant does not contain any rotating mass. Results of time-domain simulations prove not only effectiveness of the proposed computer models of the two-loop controller, but also their applicability for use in transient stability analysis of the hybrid power plant. Finally, environmental evaluation of the proposed hybrid plant was made in terms of plant's land requirement and lifetime COsb2 emissions, and then compared with that of the conventional fossil-fuel power generating forms.

  14. Thermionic Power Cell To Harness Heat Energies for Geothermal Applications

    Science.gov (United States)

    Manohara, Harish; Mojarradi, Mohammad; Greer, Harold F.

    2011-01-01

    A unit thermionic power cell (TPC) concept has been developed that converts natural heat found in high-temperature environments (460 to 700 C) into electrical power for in situ instruments and electronics. Thermionic emission of electrons occurs when an emitter filament is heated to gwhite hot h temperatures (>1,000 C) allowing electrons to overcome the potential barrier and emit into the vacuum. These electrons are then collected by an anode, and transported to the external circuit for energy storage.

  15. Effect of marine condition on feature of natural circulation after accident in floating nuclear power plant

    International Nuclear Information System (INIS)

    Yang Fan; Zhang Dan; Tan Changlu; Ran Xu; Yu Hongxing

    2015-01-01

    The incline and swing effect on natural circulation of floating nuclear power plant under site black out (SBO) accident is studied using self-developing marine condition system code RELAP5/MC. It shows that, for floating nuclear power plant under marine condition, the pressurizer fluctuating flow rate, the parallel heat sink (steam generator) have significant influences on the direct passive reactor heat removal (PRHR) system, which is different from other secondary PRHR under marine condition. The flow exchange between the loop and the pressurizer have major effect on cooling capacity for the left side loop. (authors)

  16. An overview of power electronics applications in fuel cell systems: DC and AC converters.

    Science.gov (United States)

    Ali, M S; Kamarudin, S K; Masdar, M S; Mohamed, A

    2014-01-01

    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter.

  17. Micro hydrogen for portable power : generating opportunities for hydrogen and fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    A new fuel cell technology for portable applications was reviewed. Success for the fuel cell industry will be achieved primarily by supplanting lithium-ion batteries, and fuel cells for portable applications have clear advantages to batteries in addition to their known environmental benefits. Micro hydrogen {sup TM} is the integrated combination of hydrogen fuel cell, hydrogen storage and delivery, fluidic interconnects and power conditioning electronics required for creating high energy density portable power sources. The small size, low heat production, environmental sustainability and refueling flexibility of the systems provides enormous economic opportunities for the use of micro hydrogen in cell phone technology, personal digital assistants and other electronic gadgets. Details of a trial to test and evaluate micro hydrogen fuel cell powered bike lights were presented. Further programs are planned for external demonstrations of high-beam search and rescue lighting, flashlights for security personnel and portable hydrogen power sources that will be used by multiple organizations throughout British Columbia. It was concluded that fuel cell technology must match the lithium-ion battery's performance by providing fast recharge, high energy density, and adaptability. Issues concerning refueling and portable and disposable cartridges for micro hydrogen systems were also discussed. 8 figs.

  18. Voltage conditions at motor starting in household power supply of nuclear power plants

    International Nuclear Information System (INIS)

    Heretik, P.

    2014-01-01

    The main purpose of this contribution is to develop a procedure for design verification of electrical devices. The design takes into account operating conditions where voltage drop on bus bars of respective electrical devices is of particular importance. Calculations for design verification are focused on the voltage drop condition for household operation. For simulation of the household operation simplified model which consists of main grid, auxiliary transformer, and motors is considered. For calculation data of these components provided by real manufacturers as an input for program ETAP and MATLAB. Results in ETAP and MATLAB simulations are compared with theoretical calculations without comparison with real experiment. Based on these verified simulations, design of electrical devices in NPPs can be performed. (authors)

  19. A Sufficient Condition on Convex Relaxation of AC Optimal Power Flow in Distribution Networks

    DEFF Research Database (Denmark)

    Huang, Shaojun; Wu, Qiuwei; Wang, Jianhui

    2016-01-01

    This paper proposes a sufficient condition for the convex relaxation of AC Optimal Power Flow (OPF) in radial distribution networks as a second order cone program (SOCP) to be exact. The condition requires that the allowed reverse power flow is only reactive or active, or none. Under the proposed...... solution of the SOCP can be converted to an optimal solution of the original AC OPF. The efficacy of the convex relaxation to solve the AC OPF is demonstrated by case studies of an optimal multi-period planning problem of electric vehicles (EVs) in distribution networks....... sufficient condition, the feasible sub-injection region (power injections of nodes excluding the root node) of the AC OPF is convex. The exactness of the convex relaxation under the proposed condition is proved through constructing a group of monotonic series with limits, which ensures that the optimal...

  20. Warm weather conditions moderated the increase of power consumption in Finland in 2000

    International Nuclear Information System (INIS)

    Kangas, H.

    2001-01-01

    Year 2000 was exceptionally warm in Finland. The amount of rainfalls in Northern Finland was larger than in 1999. This is shown clearly in the production of hydroelectric power. The wind conditions were also better, so the wind power generation doubled in 2000. The increase in power consumption in 2000 was only 1.7%. The power consumption rate was slightly over 79 TWh. The power consumption of household and agricultural sectors decreased by nearly 2% and in the public sector by 0.2%. The industrial power consumption increased by nearly 3%. Year 2000 was excellent for the industrial sector. The industrial production increased by 11%. The increment of power demand in heavy metal industry, chemical industry and forest industry was 5-7%. Power demand of process industry in 2000 exceeded 43.4 TWh, of which the share of building industry was more than 200 GWh. Process industry use about 55% of the total power consumption in Finland in 2000. The power demand of forest industry was 26.3 TWh, which is about 2% higher than in 1999. The corresponding figures for metal industry were 7.1 TWh and growth rate 3%. Chemical industry used in 2000 about 5.9 TWh of electric power. The growth rate was more that 4% higher in 2000 than in 1999. Power consumption of other industrial sectors in 2000 increased about 3% being now about 3.9 TWh. Hydroelectric power generation in 2000 was nearly 14.4 TWh, which is nearly 14.4 % higher than in 1999. The share of hydroelectric power generation of the total power consumption in Finland in 2000 was 18%. The wind power generation in 2000 was nearly 80 GWh, which are about 60% higher than in 1999. The number of wind power plants is 63, and the capacity of them 38 MW. The production of nuclear power in 2000 decreased by about 2% because of the longer and more thorough maintenance stoppages in the Loviisa 1 reactor. The utilisation rates of Finnish nuclear power plants in 2000 were high, Loviisa 1 by nearly 85%, Loviisa 2 by 91%, Olkiluoto 1 by 96

  1. Considerations for Applying Design Extension Conditions to Domestic Nuclear Power Plants

    International Nuclear Information System (INIS)

    Ryu, Yongho

    2013-01-01

    The concept is designed to include more serious accidents than the existing design basis accidents considering additional failures. Design extension conditions can be derived based on engineering judgments, deterministic analysis or probabilistic analysis of the nuclear power plants. They are used to secure practical response capabilities to prevent or mitigate accidents. They may also require the deployment of additional safety equipment for existing nuclear power plants currently in operation. Though the general requirements of design extension conditions are described under the IAEA standards, no specific guidelines have been presented as required for their actual application to the nuclear power plant design. Furthermore, there is great variation between countries in implementing the requirements of design extension conditions. Therefore, for the actual application, considerable effort should be made among relevant organizations to establish detailed requirements of the design extension conditions. Such activities could constitute a part of the efforts of the nuclear community to meet the general public's expectations concerning the safety of nuclear power plants. The introduction of design extension conditions is expected to be a means of systematically enhancing the safety of nuclear power plants. Yet, there exists great differences in terms of the scope of analysis and the acceptance criteria, as no uniform practices have yet been established in applying the specific requirements for design extension conditions. A careful review is required in terms of the technical basis for setting the requirements, including those pertaining to the scope of analysis and the acceptance criteria. The introduction of these new requirements to Korean nuclear power plants may cause unexpected problems. Therefore, it is desirable for the regulatory agency to systematically assess the impact of design extension conditions and to discuss the arising issues with the stake holder

  2. Conditional and specific cell ablation in the marine annelid Platynereis dumerilii.

    Directory of Open Access Journals (Sweden)

    Vinoth Babu Veedin-Rajan

    Full Text Available The marine annelid Platynereis dumerilii has become a model system for evo-devo, neurobiology and marine biology. The functional assessment of its cell types, however, has so far been very limited. Here we report on the establishment of a generally applicable, cell type specific ablation technique to overcome this restriction. Using a transgenic strain expressing the bacterial enzyme nitroreductase (ntr under the control of the worm's r-opsin1 locus, we show that the demarcated photoreceptor cells can be specifically ablated by the addition of the prodrug metronidazole (mtz. TUNEL staining indicates that ntr expressing cells undergo apoptotic cell death. As we used a transgenic strain co-expressing ntr with enhanced green fluorescent protein (egfp coding sequence, we were able to validate the ablation of photoreceptors not only in fixed tissue, using r-opsin1 riboprobes, but also by monitoring eGFP+ cells in live animals. The specificity of the ablation was demonstrated by the normal presence of the eye pigment cells, as well as of neuronal markers expressed in other cells of the brain, such as phc2, tyrosine hydroxylase and brn1/2/4. Additional analyses of the position of DAPI stained nuclei, the brain's overall neuronal scaffold, as well as the positions and projections of serotonergic neurons further confirmed that mtz treatment did not induce general abnormalities in the worm's brain. As the prodrug is administered by adding it to the water, targeted ablation of specific cell types can be achieved throughout the life of the animal. We show that ablation conditions need to be adjusted to the size of the worms, likely due to differences in the penetration of the prodrug, and establish ablation conditions for worms containing 10 to 55 segments. Our results establish mtz/ntr mediated conditional cell ablation as a powerful functional tool in Platynereis.

  3. Limit power of nuclear fuel cells with biconcave cross sections

    International Nuclear Information System (INIS)

    Alves, Thiago Antonini; Pelegrini, Marcelo Ferreira; Woiski, Emanuel Rocha; Maia, Cassio Roberto Macedo

    2004-01-01

    Diffusive media with distributed sources, such as the case of nuclear fuel cells, represent a major role in engineering. Due to the nuclear fission of the chemical element, fuel cells are capable of releasing an enormous amount of thermal energy in spite of their reduced dimensions, in such a way that the maximum power of the reactor is closely related to the fusion temperature of the fuel, and consequently to the maximum temperature in the cell. The cell maximum temperature is, therefore, a chief parameter in nuclear reactor design. Limiting power, of course, depends not only of the fuel thermo physical properties, but also of the cell shape and dimensions. The present work purports the study of the effects of some parameters of cell geometry on the limiting power, especially for cell with biconcave cross sections. Given the large temperature gradients in the cell, the thermal conductivity must be assumed as a generic function of temperature. Therefore, the problem has been modeled as a nonlinear 2 D Poisson-like PDE, with a nontrivial geometry of the boundary. For the analytical solution, Kirchhoff transform has been employed to turn the equation into a linear Poisson equation, a conformal transform brought it to a rectangular domain and Generalized Integral Transform method applied in order to solve the resulting equation. For the numerical solution of the linearized equation, a program has been developed in Python, reusing classes of Ellipt2d, an open-source elliptic solver. The domain has been divided into linear triangular finite elements, and the system of equations resulting of Galerkin method application has been solved, for each parameter set. The trend in critical power has been discussed, as well as the numerical results compared to the analytical solutions and to the literature. (author)

  4. Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture.

    Science.gov (United States)

    Jin, Liting; Qu, Ying; Gomez, Liliana J; Chung, Stacey; Han, Bingchen; Gao, Bowen; Yue, Yong; Gong, Yiping; Liu, Xuefeng; Amersi, Farin; Dang, Catherine; Giuliano, Armando E; Cui, Xiaojiang

    2018-02-20

    Conditional reprogramming methods allow for the inexhaustible in vitro proliferation of primary epithelial cells from human tissue specimens. This methodology has the potential to enhance the utility of primary cell culture as a model for mammary gland research. However, few studies have systematically characterized this method in generating in vitro normal human mammary epithelial cell models. We show that cells derived from fresh normal breast tissues can be propagated and exhibit heterogeneous morphologic features. The cultures are composed of CK18, desmoglein 3, and CK19-positive luminal cells and vimentin, p63, and CK14-positive myoepithelial cells, suggesting the maintenance of in vivo heterogeneity. In addition, the cultures contain subpopulations with different CD49f and EpCAM expression profiles. When grown in 3D conditions, cells self-organize into distinct structures that express either luminal or basal cell markers. Among these structures, CK8-positive cells enclosing a lumen are capable of differentiation into milk-producing cells in the presence of lactogenic stimulus. Furthermore, our short-term cultures retain the expression of ERα, as well as its ability to respond to estrogen stimulation. We have investigated conditionally reprogrammed normal epithelial cells in terms of cell type heterogeneity, cellular marker expression, and structural arrangement in two-dimensional (2D) and three-dimensional (3D) systems. The conditional reprogramming methodology allows generation of a heterogeneous culture from normal human mammary tissue in vitro . We believe that this cell culture model will provide a valuable tool to study mammary cell function and malignant transformation.

  5. Development of molten carbonate fuel cells for power generation

    Science.gov (United States)

    1980-04-01

    The broad and comprehensive program included elements of system definition, cell and system modeling, cell component development, cell testing in pure and contaminated environments, and the first stages of technology scale up. Single cells, with active areas of 45 sq cm and 582 sq cm, were operated at 650 C and improved to state of the art levels through the development of cell design concepts and improved electrolyte and electrode components. Performance was shown to degrade by the presence of fuel contaminants, such as sulfur and chlorine, and due to changes in electrode structure. Using conventional hot press fabrication techniques, electrolyte structures up to 20" x 20" were fabricated. Promising approaches were developed for nonhot pressed electrolyte structure fabrication and a promising electrolyte matrix material was identified. This program formed the basis for a long range effort to realize the benefits of molten carbonate fuel cell power plants.

  6. Use of fuel cells to meet military requirements for mobile power

    International Nuclear Information System (INIS)

    Andrukaitis, E.

    2004-01-01

    'Full text:' The use of fuel cell technology in military applications will depend on safe, high energy density systems being developed. An important part of using this technology is also the development of alternative hydrogen producing fuels with high energy densities and are easy to transport. Fuel cells are now a very large R and D effort for several military applications around the world. The major reason is because of the high power demands needed requires electrical energy sources that far exceed the capabilities of batteries currently being fielded for portable applications. Fuel cells are regarded as highly efficient, tactical energy converters that can be adapted for wide range of power requirements. They are potentially the lowest weight power source when coupled with batteries or capacitors to form hybrid systems. Generally electrical power is needed to support a number of applications from ultra-high power for electrical pulses (radios, sensors) to reliable, conditioned power for command and control systems. In the future, sustained power for electric drive systems, will also be required. Some of the promising applications in the military and the R and D challenges that remain to reach performance and reliability targets suitable for military requirements will be discussed. (author)

  7. Conditional IL-2 gene deletion: consequences for T cell proliferation

    Directory of Open Access Journals (Sweden)

    Kendall A Smith

    2012-05-01

    Full Text Available To explore the role of interleukin-2 (IL-2 in T cell proliferation, and to circumvent the IL-2 deficiency autoimmune syndrome of conventional il2 gene deletion, mice were created to allow conditional il2 gene deletion when treated with the estrogen analogue, tamoxifen (TAM as adults. Splenocytes from four different mouse strains, C57Bl/6 wild type (WT, conventional IL-2 (-/-, TAM-treated Cre recombinase negative (Cre-/IL2fl/fl, and Cre+/IL-2fl/fl (Cre+, were activated with anti-CD3 and anti-CD28, and monitored for CD4+ and CD8+ T cell lymphocyte blastogenesis, aerobic glycolysis, BrdU incorporation into newly synthesized DNA, and CFSE dye dilution to monitor cell division. IL-2 production was monitored by quantitative ELISA and multiple additional cytokines were monitored by protein-bead arrays. Splenocytes from conventional IL-2 (-/- and TAM-treated Cre+ mice resulted in undetectable IL-2 production, so that both strains were IL-2 deficient. As monitored by flow cytometry, activated CD4+ and CD8+ T cells from WT, Cre+ and Cre- mice all underwent blastogenesis, whereas far fewer cells from conventional IL-2 (-/- mice did so. By comparison, only cells from IL-2 sufficient WT and Cre- switched to aerobic glycolysis as evidenced by a drop in media pH. Blastogenesis was mirrored by BrdU incorporation and CFSE dye dilution by CD4+ and CD8+ T cells from WT, Cre+ and Cre- mice, which were all equivalent, while proliferation of cells from conventional IL-2 (-/- mice was compromised. Splenocytes from IL-2 deficient conventional IL-2 (-/- mice produced low or undetectable other γc-chain cytokines (IL-4, IL-7, IL-9, IL-13, IL-15, and IL-21, whereas production of these γc-chain cytokines from IL-2-deficient conditional IL-2 (-/- Cre+ mice were comparable with WT and Cre- mice. These results indicate that CD4+ and CD8+ T cell blastogenesis cannot be attributable to IL-2 alone, but a switch to aerobic glycolysis is attributable to IL-2, and proliferation

  8. ANALYSIS OF OPTIMUM OPERATING MODES OF POWER TRANSFORMERS UNDER OPERATING CONDITIONS

    Directory of Open Access Journals (Sweden)

    I. V. Khomenko

    2016-12-01

    Full Text Available Purpose. The study of parallel operation optimal modes of transformer equipment for a variety of operating conditions: same or different types of transformers, with or without reactive power flows. Methodology. Losses of energy in transformers make 30 % of all losses. Therefore the choice of the economically justified parallel operation of transformers is effective action to reduce losses. Typically, in the calculations of reactive power flows in the transformers are not taken into account. It is interesting to analyze the optimal operating conditions of transformers with and without reactive power flows. Results. Calculations for transformers in distribution networks showed that the inclusion of reactive power flows in transformers significant impact on the calculated optimum regimes of transformers.

  9. Method of bringing nuclear power plant to fractional electrical load conditions

    International Nuclear Information System (INIS)

    Iljunin, V.G.; Kuznetsoy, I.A.; Murogov, V.M.; Shmelev, A.N.

    1978-01-01

    A method is described of bringing a nuclear power plant to fractional electric load conditions, which power plant comprises at least two nuclear reactors, at least one nuclear reactor being a breeder and both reactors transferring heat to the turbine working substance, consisting in that the consumption of the turbine working substance is reduced in accordance with a predetermined fractional load. At the same time, the amount of heat being transferred from the nuclear reactors to the turbine working substance is reduced, for which purpose the reactors are included in autonomous cooling circuits to successively transfer heat to the turbine working substance. The breeding reactor is included in the cooling circuit with a lower coolant temperature, the temperature of the coolant at the inlet and outlet of the breeder being reduced to a level ensuring the operation of the nuclear power plant in predetermined fractional load conditions, due to which the power of the breeder is increased, and afterheat is removed

  10. Characterization of goat inner cell mass derived cells in double kinase inhibition condition

    International Nuclear Information System (INIS)

    Wei, Qiang; Xi, Qihui; Liu, Xiaokun; Meng, Kai; Zhao, Xiaoe; Ma, Baohua

    2017-01-01

    The identification of small molecular inhibitors, which were reported to promote the derivation of mouse and human embryonic stem cells (ESCs), provides a potential strategy for the derivation of domesticated ungulate ESCs. In present study, goat inner cell mass (ICM) derived cells in the double inhibition (2i) condition, in which, mitogen-activated protein kinase kinase (MAP2K) and glycogen synthase kinase 3 (GSK3) were inhibited by PD0325901 and BIO respectively, were characterized. The results showed that goat ICM derived cells in 2i medium adding leukaemia inhibitor factor (LIF) possessed a mouse ES-like morphology. But these cells had much compromised proliferation capacity, resulting in difficulty in expansion. In 2i alone medium, goat ICM derived cells possessed primate ES-like morphology. These cells expressed pluripotent markers and could differentiate into derivatives of three germ layers in vitro. However, these cells could not be proliferated in long-term (persisted for 15 passages) because of spontaneously neural differentiation. Additionally, goat ICM derived cells could be inducing differentiated into neural lineage in vitro. Although goat ESCs could not be established in PD0325901 and BIO alone medium, this derivation condition provides a useful research system to find signaling molecular those regulate early embryonic development and pluripotency in goat. - Highlights: • Goat inner cell mass derived cells possessed finite pluripotency in 2i condition. • These cells could not be proliferated in long-term in 2i condition. • These cells could spontaneously and inductively differentiate into neural lineage.

  11. A New Green Power Inverter for Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Gert Karmisholt; Klumpner, Christian; Kjær, Søren Bækhøj

    2002-01-01

    This paper presents a new grid connected inverter for fuel cells. It consists of a two stage power conversion topology. Since the fuel cell operates with a low voltage in a wide voltage range (25 V-45 V) this volt- age must be transformed to around 350-400 V in order to invert this dc power into ac...... power to the grid. The proposed converter consists of an isolated dc-dc converter cascaded with a single phase H-bridge inverter. The dc-dc converter is a current-fed push-pull converter. A new dedicated voltage mode startup procedure has been developed in order to limit the inrush current during...... startup. The inverter is controlled as a power factor controller with resistor emulation.Experimental results of converter efficiency, grid performance and fuel cell response are shown for a 1 kW prototype. The proposed converter exhibits a high efficiency in a wide power range (higher than 92...

  12. Thermodynamic analysis of a fuel cell power system for transportation applications

    International Nuclear Information System (INIS)

    Hussain, M.M.; Baschuk, J.J.; Li, X.; Dincer, I.

    2004-01-01

    This study deals with the thermodynamic modeling of a polymer electrolyte membrane (PEM) fuel cell power system for transportation applications. The PEM fuel cell performance model developed previously by two of the authors is incorporated into the present model. The analysis includes the operation of all the components in the system, which consists of two major modules: PEM fuel cell stack module and system module and a cooling pump. System module includes air compressor, heat exchanger, humidifier and a cooling loop. A parametric study is performed to examine the effect of varying operating conditions (e.g., temperature pressure and air stoichiometry) on the energy and exergy efficiencies of the system. Further, thermodynamic irreversibilities in each component of the system are determined. It is found that, with the increase of external load (current density), the difference between the gross stack power and net system power increases. The largest irreversibility rate occurs in the fuel cell stack. Thus, minimization of irreversibility rate in the fuel cell stack is essential to enhance the performance of the system, which in turn reduces the cost and helps in commercialization of fuel cell power system in transportation applications. (author)

  13. rf conditioning and breakdown analysis of a traveling wave linac with collinear load cells

    Science.gov (United States)

    Chen, Qushan; Hu, Tongning; Qin, Bin; Xiong, Yongqian; Fan, Kuanjun; Pei, Yuanji

    2018-04-01

    Huazhong University of Science and Technology (HUST) has built a compact linac-based terahertz free electron laser (THz-FEL) prototype. In order to achieve compact structure, the linac uses collinear load cells instead of conventional output coupler to absorb remanent power at the end of linac. The new designed structure is confronted with rf breakdown problem after a long time conditioning process, so we tried to figure out the breakdown site in the linac. Without transmitted signal, we propose two methods to analyze the breakdown site mainly based on the forward and the reflected power signals. One method focuses on the time relationship of the two signals while the other focuses on the amplitude. Both the two methods indicate the breakdown events happened at the end of the linac and more likely in the first or the second load cell.

  14. rf conditioning and breakdown analysis of a traveling wave linac with collinear load cells

    Directory of Open Access Journals (Sweden)

    Qushan Chen

    2018-04-01

    Full Text Available Huazhong University of Science and Technology (HUST has built a compact linac-based terahertz free electron laser (THz-FEL prototype. In order to achieve compact structure, the linac uses collinear load cells instead of conventional output coupler to absorb remanent power at the end of linac. The new designed structure is confronted with rf breakdown problem after a long time conditioning process, so we tried to figure out the breakdown site in the linac. Without transmitted signal, we propose two methods to analyze the breakdown site mainly based on the forward and the reflected power signals. One method focuses on the time relationship of the two signals while the other focuses on the amplitude. Both the two methods indicate the breakdown events happened at the end of the linac and more likely in the first or the second load cell.

  15. Basic Concept and Theoretical Study of Condition-based Maintenance for Power Transmission System

    Institute of Scientific and Technical Information of China (English)

    LIMing; HAN Xueshan; YANG Ming; GUO Zhihong

    2011-01-01

    The appropriate maintenance time for the single equipment can be found easily and efficiently under the background of condition-based maintenance. However, from the perspective of the whole power system, discrepancy between equipment individual and the whole power system would appear. Once this discrepancy can not be coordinated, it will certainly cause contradiction and conflict between individual equipment and the whole system, and lose the integral efficiency. To solve this contradiction and conflicts is of significant meaning.

  16. Indicators for monitoring of safety operation and condition of nuclear power stations

    International Nuclear Information System (INIS)

    Manova, D.

    2001-01-01

    A common goal of all employees in the nuclear power field is safety operation of nuclear power stations. The evaluation and control of NPP safety operation are a part of the elements of safety management. The present report is related only to a part of the total assessment and control of the plant safety operation, namely - the indicator system for monitoring of Kozloduy NPP operation and condition. (author)

  17. POWER STRATEGY OF THE AGRICULTURE DEVELOPMENT IN THE CONDITIONS OF CRISIS

    Directory of Open Access Journals (Sweden)

    Burdo O.G.

    2009-04-01

    Full Text Available Questions of the development of energetics in the world are examined. Specifics of the energy supply in agriculture are discussed and the basics of energy policy and strategy in crisis conditions are formulated. The methodology of power monitoring and basics of economy of power management are shown. Priorities at forma-tion of stages of projects implementation are proved. Ways of energy efficiency programs creation using partial projects self–financing mechanisms are shown.

  18. Microprocessor supervised stability control system for the united power system of Middle Volga in fault conditions

    Energy Technology Data Exchange (ETDEWEB)

    Berdnikov, V I; Birgel, E R; Kovalev, V D; Kuznestov, A N

    1994-12-31

    The development of the 500 kV UPS of Middle Volga, the complication of its configuration and operating conditions particularly in connection with concentration of the generating power at Balakovo NPS have aggravated the problem of stability of the Middle Volga UPS when high power is transmitted along the 500 kV transient system. In this case the necessity for improving control actions` dosage accuracy has also appeared. This work discusses solution to the above mentioned issue. (author) 3 figs.

  19. A Grid Voltage Measurement Method for Wind Power Systems during Grid Fault Conditions

    OpenAIRE

    Yoo, Cheol-Hee; Chung, Il-Yop; Yoo, Hyun-Jae; Hong, Sung-Soo

    2014-01-01

    Grid codes in many countries require low-voltage ride-through (LVRT) capability to maintain power system stability and reliability during grid fault conditions. To meet the LVRT requirement, wind power systems must stay connected to the grid and also supply reactive currents to the grid to support the recovery from fault voltages. This paper presents a new fault detection method and inverter control scheme to improve the LVRT capability for full-scale permanent magnet synchronous generator (P...

  20. Atmospheric propagation of high power laser radiation at different weather conditions

    OpenAIRE

    Pargmann, Carsten; Hall, Thomas; Duschek, Frank; Handke, Jürgen

    2016-01-01

    Applications based on the propagation of high power laser radiation through the atmosphere are limited in range and effect, due to weather dependent beam wandering, beam deterioration, and scattering processes. Security and defense related application examples are countermeasures against hostile projectiles and the powering of satellites and aircrafts. For an examination of the correlations between weather condition and laser beam characteristics DLR operates at Lampoldshausen a 130 m long fr...

  1. A selection of problems related to safe working conditions in nuclear power plants

    International Nuclear Information System (INIS)

    Brunner, K.H.

    1984-01-01

    Two representative examples were chosen to demonstrate that the problems related to safe working conditions can be solved with work being prepared extensively and in detail taking into consideration radiation protection and conventional job safety measures and with qualified staff. Most of the job safety problems in nuclear power plants are pretty much the same as in conventional plants. Despite successful implementation of employment and radiation protection in nuclear power plants, improvements in detail are possible and make sense. (orig.) [de

  2. Conditional quantum entropy power inequality for d-level quantum systems

    Science.gov (United States)

    Jeong, Kabgyun; Lee, Soojoon; Jeong, Hyunseok

    2018-04-01

    We propose an extension of the quantum entropy power inequality for finite dimensional quantum systems, and prove a conditional quantum entropy power inequality by using the majorization relation as well as the concavity of entropic functions also given by Audenaert et al (2016 J. Math. Phys. 57 052202). Here, we make particular use of the fact that a specific local measurement after a partial swap operation (or partial swap quantum channel) acting only on finite dimensional bipartite subsystems does not affect the majorization relation for the conditional output states when a separable ancillary subsystem is involved. We expect our conditional quantum entropy power inequality to be useful, and applicable in bounding and analyzing several capacity problems for quantum channels.

  3. Performance Comparison of Widely-Used Maximum Power Point Tracker Algorithms under Real Environmental Conditions

    Directory of Open Access Journals (Sweden)

    DURUSU, A.

    2014-08-01

    Full Text Available Maximum power point trackers (MPPTs play an essential role in extracting power from photovoltaic (PV panels as they make the solar panels to operate at the maximum power point (MPP whatever the changes of environmental conditions are. For this reason, they take an important place in the increase of PV system efficiency. MPPTs are driven by MPPT algorithms and a number of MPPT algorithms are proposed in the literature. The comparison of the MPPT algorithms in literature are made by a sun simulator based test system under laboratory conditions for short durations. However, in this study, the performances of four most commonly used MPPT algorithms are compared under real environmental conditions for longer periods. A dual identical experimental setup is designed to make a comparison between two the considered MPPT algorithms as synchronized. As a result of this study, the ranking among these algorithms are presented and the results show that Incremental Conductance (IC algorithm gives the best performance.

  4. A Terrestrial Microbial Fuel Cell for Powering a Single-Hop Wireless Sensor Network.

    Science.gov (United States)

    Zhang, Daxing; Zhu, Yingmin; Pedrycz, Witold; Guo, Yongxian

    2016-05-18

    Microbial fuel cells (MFCs) are envisioned as one of the most promising alternative renewable energy sources because they can generate electric current continuously while treating waste. Terrestrial Microbial Fuel Cells (TMFCs) can be inoculated and work on the use of soil, which further extends the application areas of MFCs. Energy supply, as a primary influential factor determining the lifetime of Wireless Sensor Network (WSN) nodes, remains an open challenge in sensor networks. In theory, sensor nodes powered by MFCs have an eternal life. However, low power density and high internal resistance of MFCs are two pronounced problems in their operation. A single-hop WSN powered by a TMFC experimental setup was designed and experimented with. Power generation performance of the proposed TMFC, the relationships between the performance of the power generation and the environment temperature, the water content of the soil by weight were measured by experiments. Results show that the TMFC can achieve good power generation performance under special environmental conditions. Furthermore, the experiments with sensor data acquisition and wireless transmission of the TMFC powering WSN were carried out. We demonstrate that the obtained experimental results validate the feasibility of TMFCs powering WSNs.

  5. A Terrestrial Microbial Fuel Cell for Powering a Single-Hop Wireless Sensor Network

    Science.gov (United States)

    Zhang, Daxing; Zhu, Yingmin; Pedrycz, Witold; Guo, Yongxian

    2016-01-01

    Microbial fuel cells (MFCs) are envisioned as one of the most promising alternative renewable energy sources because they can generate electric current continuously while treating waste. Terrestrial Microbial Fuel Cells (TMFCs) can be inoculated and work on the use of soil, which further extends the application areas of MFCs. Energy supply, as a primary influential factor determining the lifetime of Wireless Sensor Network (WSN) nodes, remains an open challenge in sensor networks. In theory, sensor nodes powered by MFCs have an eternal life. However, low power density and high internal resistance of MFCs are two pronounced problems in their operation. A single-hop WSN powered by a TMFC experimental setup was designed and experimented with. Power generation performance of the proposed TMFC, the relationships between the performance of the power generation and the environment temperature, the water content of the soil by weight were measured by experiments. Results show that the TMFC can achieve good power generation performance under special environmental conditions. Furthermore, the experiments with sensor data acquisition and wireless transmission of the TMFC powering WSN were carried out. We demonstrate that the obtained experimental results validate the feasibility of TMFCs powering WSNs. PMID:27213346

  6. The AC Impedance Characteristic of High Power Li4Ti5O12-based Battery Cells

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Stroe, Daniel Loan; Swierczynski, Maciej Jozef

    2015-01-01

    This paper studies the impedance characteristics of a fresh 13 Ah high-power lithium titanate oxide (LTO) battery cell and analyses its dependence on the temperature and state-of-charge. The impedance of the battery cell was measured by means of the electrochemical impedance spectroscopy (EIS......) technique for the entire state-of-charge (SOC) interval and considering five temperatures between 5oC and 45oC. By analyzing the measured impedance spectra of the LTO-based battery cell, it was found out that the cell’s impedance is extremely dependent on the operating conditions. By further processing...

  7. WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Allan Jones

    2003-09-01

    This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

  8. Assessment of Power Potential of Tidal Currents and Impacts of Power Extraction on Flow Conditions in Indonesia

    Science.gov (United States)

    Orhan, Kadir; Mayerle, Roberto

    2017-04-01

    Climate change is an urgent and potentially irreversible threat to human societies and the planet and thus requires an effective and appropriate response, with a view to accelerating the reduction of global greenhouse gas emissions. At this point, a worldwide shift to renewable energy is crucial. In this study, a methodology comprising of the estimates of power yield, evaluation of the effects of power extraction on flow conditions, and near-field investigations to deliver wake characteristics, recovery and interactions is described and applied to several straits in Indonesia. Site selection is done with high-resolution, three-dimensional flow models providing sufficient spatiotemporal coverage. Much attention has been given to the meteorological forcing, and conditions at the open sea boundaries to adequately capture the density gradients and flow fields. Model verifications using tidal records show excellent agreement. Sites with adequate depth for the energy conversion using horizontal axis tidal turbines, average kinetic power density greater than 0.5 kW/m2, and surface area larger than 0.5km2 are defined as energy hotspots. Spatial variation of the average extractable electric power is determined, and annual tidal energy resource is estimated for the straits in question. The results showed that the potential for tidal power generation in Indonesia is likely to exceed previous predictions reaching around 4,800MW. Models with higher resolutions have been developed to assess the impacts of devices on flow conditions and to resolve near-field turbine wakes in greater detail. The energy is assumed to be removed uniformly by sub-grid scale arrays of turbines. An additional drag force resulting in dissipation of the pre-existing kinetic power from 10% to 60% within a flow cross-section is introduced to capture the impacts. k-ɛ model, which is a second order turbulence closure model is selected to involve the effects of the turbulent kinetic energy and turbulent

  9. Validation of the thermal balance of Laguna Verde turbine under conditions of extended power increase

    International Nuclear Information System (INIS)

    Castaneda G, M. A.; Cruz B, H. J.; Mercado V, J. J.; Cardenas J, J. B.; Garcia de la C, F. M.

    2012-10-01

    The present work is a continuation of the task: Modeling of the vapor cycle of Laguna Verde with the PEPSE code to conditions of thermal power licensed at present (2027 MWt) in which the modeling of the vapor cycle of the nuclear power plant of Laguna Verde was realized with PEPSE code (Performance Evaluation of Power System Efficiencies). Once reached the conditions of nominal operation of extended power increase, operating both units to 2371 MWt; after the tests phase of starting-up and operation is necessary to carry out a verification of the proposed design of the vapor cycle for the new operation conditions. All this, having in consideration that the vapor cycle designer only knows the detail of the prospective performance of the main turbine, for all the other components (for example pumps, heat inter changers, valves, reactor, humidity separators and re-heaters, condensers, etc.) makes generic suppositions based on engineering judgment. This way carries out the calculations of thermal balance to determine the guaranteed gross power. The purpose of the present work is to comment the detail of the validation carried out of the specific thermal balance (thermal kit) of the nuclear power plant, making use of the design characteristics of the different components that conform the vapor cycle. (Author)

  10. Conditions and requirements for a potential application of solar power satellites /SPS/ for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Westphal, W. (Berlin, Technische Universitaet, Berlin, West Germany); Ruth, J. (ESA, European Space Research and Technology Centre, Noordwijk, Netherlands)

    1980-12-01

    The potential problems of a future introduction of Solar Power Satellites (SPS) as baseload power plants for Western European countries are considered, emphasizing the differences of SPS utilization in Europe compared with that in the USA as a result of geographical, orbital organizational, and industrial conditions. If estimated SPS safety zone areas are required, then the SPS system incorporating the 2.45 GHz microwave power transmission appears crucial for utilization in Western Europe in order to eliminate the large rectenna area requirements of an SPS 5 GW power system. A frequency variation of up to 5 or 10 GHz, and the application of either laser power transmission or solid state devices which could alleviate rectenna siting problems and restrictions on the use of the geosynchronous orbit are discussed.

  11. Use Conditions and Efficiency Measurements of DC Power Optimizers for Photovoltaic Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Deline, C.; MacAlpine, S.

    2013-10-01

    No consensus standard exists for estimating annual conversion efficiency of DC-DC converters or power optimizers in photovoltaic (PV) applications. The performance benefits of PV power electronics including per-panel DC-DC converters depend in large part on the operating conditions of the PV system, along with the performance characteristics of the power optimizer itself. This work presents acase study of three system configurations that take advantage of the capabilities of DC power optimizers. Measured conversion efficiencies of DC-DC converters are applied to these scenarios to determine the annual weighted operating efficiency. A simplified general method of reporting weighted efficiency is given, based on the California Energy Commission's CEC efficiency rating and severalinput / output voltage ratios. Efficiency measurements of commercial power optimizer products are presented using the new performance metric, along with a description of the limitations of the approach.

  12. Online condition monitoring to enable extended operation of nuclear power plants

    International Nuclear Information System (INIS)

    Meyer, Ryan Michael; Bond, Leonard John; Ramuhalli, Pradeep

    2012-01-01

    Safe, secure, and economic operation of nuclear power plants will remain of strategic significance. New and improved monitoring will likely have increased significance in the post-Fukushima world. Prior to Fukushima, many activities were already underway globally to facilitate operation of nuclear power plants beyond their initial licensing periods. Decisions to shut down a nuclear power plant are mostly driven by economic considerations. Online condition monitoring is a means to improve both the safety and economics of extending the operating lifetimes of nuclear power plants, enabling adoption of proactive aging management. With regard to active components (e.g., pumps, valves, motors, etc.), significant experience in other industries has been leveraged to build the science base to support adoption of online condition-based maintenance and proactive aging management in the nuclear industry. Many of the research needs are associated with enabling proactive management of aging in passive components (e.g., pipes, vessels, cables, containment structures, etc.). This paper provides an overview of online condition monitoring for the nuclear power industry with an emphasis on passive components. Following the overview, several technology/knowledge gaps are identified, which require addressing to facilitate widespread online condition monitoring of passive components. (author)

  13. Tracking the global maximum power point of PV arrays under partial shading conditions

    Science.gov (United States)

    Fennich, Meryem

    This thesis presents the theoretical and simulation studies of the global maximum power point tracking (MPPT) for photovoltaic systems under partial shading. The main goal is to track the maximum power point of the photovoltaic module so that the maximum possible power can be extracted from the photovoltaic panels. When several panels are connected in series with some of them shaded partially either due to clouds or shadows from neighboring buildings, several local maxima appear in the power vs. voltage curve. A power increment based MPPT algorithm is effective in identifying the global maximum from the several local maxima. Several existing MPPT algorithms are explored and the state-of-the-art power increment method is simulated and tested for various partial shading conditions. The current-voltage and power-voltage characteristics of the PV model are studied under different partial shading conditions, along with five different cases demonstrating how the MPPT algorithm performs when shading switches from one state to another. Each case is supplemented with simulation results. The method of tracking the Global MPP is based on controlling the DC-DC converter connected to the output of the PV array. A complete system simulation including the PV array, the direct current to direct current (DC-DC) converter and the MPPT is presented and tested using MATLAB software. The simulation results show that the MPPT algorithm works very well with the buck converter, while the boost converter needs further changes and implementation.

  14. Social barriers in wind power implementation in The Netherlands: Perceptions of wind power entrepreneurs and local civil servants of institutional and social conditions in realizing wind power projects

    International Nuclear Information System (INIS)

    Agterbosch, Susanne; Glasbergen, Pieter; Vermeulen, Walter J.V.

    2007-01-01

    The primary social factors for the implementation of wind energy projects in a liberalized market are entrepreneurs willing to invest. Understanding conditions that trigger entrepreneurs to invest in these projects, and understanding conditions that determine the chance of success for entrepreneurs to implement and exploit their projects, is vital for setting up effective policies to stimulate wind electricity generation. This paper analyses the way in which wind power entrepreneurs and local civil servants experience social and institutional conditions in the operational process of realizing wind power projects, and their perceptions of policy implications. A groups support system in an electronic board room was used to analyze the perceptions. From the analysis it was concluded that wind power entrepreneurs and civil servants share the opinion that the institutionally embedded power position of local politicians, and the sensitiveness of the local political debate for the popular opinion are most critical for project realization. With regard to the proposed solutions, both groups differ in their approach. Entrepreneurs stress procedural solutions, such as limiting the possibilities to appeal, reducing the complexity of the formal authorization trajectory and using a top down planning approach. Civil servants stress more strategic solutions, such as providing more public information on the necessity of wind power for local politicians and citizens, and community involvement in planning processes. Finally, the analysis explains that steering strategies that have been developed at the national level to solve the planning problems at the operational level do not address the right problems. (author)

  15. Microbial Reverse Electrodialysis Cells for Synergistically Enhanced Power Production

    KAUST Repository

    Kim, Younggy

    2011-07-01

    A new type of bioelectrochemical system for producing electrical power, called a microbial reverse-electrodialysis cell (MRC), was developed to increase voltages and power densities compared to those generated individually by microbial fuel cells (MFCs) or reverse electrodialysis (RED) systems. In RED systems, electrode overpotentials create significant energy losses due to thermodynamically unfavorable electrode reactions, and therefore a large number of stacked cells must be used to have significant energy recovery. This results in high capital costs for the large number of membranes, and increases energy losses from pumping water through a large number of cells. In an MRC, high overpotentials are avoided through oxidation of organic matter by exoelectrogenic bacteria on the anode and oxygen reduction on the cathode. An MRC containing only five pairs of RED cells, fed solutions typical of seawater (600 mM NaCl) and river water (12 mM NaCl) at 0.85 mL/min, produced up to 3.6 W/m2 (cathode surface area) and 1.2-1.3 V with acetate as a substrate. Pumping accounted for <2% of the produced power. A higher flow rate (1.55 mL/min) increased power densities up to 4.3 W/m2. COD removal was 98% with a Coulombic efficiency of 64%. Power production by the individual components was substantially lower with 0.7 W/m2 without salinity driven energy, and <0.015 W/m2 with reduced exoelectrogenic activity due to substrate depletion. These results show that the combination of an MFC and a RED stack synergistically increases performance relative to the individual systems, producing a new type of system that can be used to more efficiently capture salinity driven energy from seawater and river water. © 2011 American Chemical Society.

  16. The condition monitoring system of turbine system components for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, Shigetoshi

    2013-01-01

    The thermal and nuclear power plants have been imposed a stable supply of electricity. To certainly achieve this, we built the plant condition monitoring system based on the heat and mass balance calculation. If there are some performance changes on the turbine system components of their power plants, the heat and mass balance of the turbine system will change. This system has ability to detect the abnormal signs of their components by finding the changes of the heat and mass balance. Moreover we note that this system is built for steam turbine cycle operating with saturated steam conditions. (author)

  17. A digital computer simulation and study of a direct-energy-transfer power-conditioning system

    Science.gov (United States)

    Burns, W. W., III; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.; Paulkovich, J.

    1975-01-01

    An investigation of the behavior of the power-conditioning system as a whole is a necessity to ensure the integrity of the aggregate system in the case of space applications. An approach for conducting such an investigation is considered. A description is given of the application of a general digital analog simulator program to the study of an aggregate power-conditioning system which is being developed for use on the International Ultraviolet Explorer spacecraft. The function of the direct energy transfer system studied involves a coupling of a solar array through a main distribution bus to the spacecraft electrical loads.

  18. Behavior of a nine-rod PWR bundle under power-cooling-mismatch conditions

    International Nuclear Information System (INIS)

    Gunnerson, F.S.; Sparks, D.T.

    1979-01-01

    An experiment to characterize the behavior of a nine-rod pressurized water reactor (PWR) fuel bundle operating during power-cooling-mismatch (PCM) conditions has been conducted in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory (INEL). The experiment, designated Test PCM-5, is part of a series of PCM experiments designed to evaluate light water reactor (LWR) fuel rod response under postulated accident conditions. Test PCM-5 was the first nine-rod bundle experiment in the PCM test series. The primary objectives and the results of the experiment are described

  19. Reconstruction of core axial power shapes using the alternating conditional expectation algorithm

    International Nuclear Information System (INIS)

    Lee, Eun Ki; Kim, Yong Hee; Cha, Kune Ho; Park, Moon Ghu

    1999-01-01

    We have introduced the alternating conditional expectation (ACE) algorithm in reconstructing 20-node axial core power shapes from five-level in-core detector powers. The core design code, Reactor Operation and Control Simulation (ROCS), calculates 3-dimensional power distributions for various core states, and the reference core-averaged axial power shapes and corresponding simulated detector powers are utilized to synthesize the axial power shape. By using the ACE algorithm, the optimal relationship between a dependent variable, the plane power, and independent variables, five detector powers, is determined without any preprocessing. A total of ∼3490 data sets per each cycle of YongGwang Nuclear (YGN) power plant units 3 and 4 is used for the regression. Continuous analytic function corresponding to each optimal transformation is calculated by simple regression model. The reconstructed axial power shapes of ∼21,200 cases are compared to the original ROCS axial power shapes. Also, to test the validity and accuracy of the new method, its performance is compared with that of the Fourier fitting method (FFM), a typical method of the deterministic approach. For a total of 21,204 data cases, the averages of root mean square (rms) error, axial peak error (ΔF z ), and axial shape index error (ΔASI) of new method are calculated as 0.81%, 0.51% and 0.00204, while those of FFM are 2.29%, 2.37% and 0.00264, respectively. We also evaluated the wide range of axial power profiles from the xenon-oscillation. The results show that the newly developed method is far superior to FFM; average rms and axial peak error are just ∼35 and ∼20% of those of FFM, respectively

  20. Design of Multijunction Photovoltaic Cells Optimized for Varied Atmospheric Conditions

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2014-01-01

    Full Text Available Band gap engineering provides an opportunity to not only provide higher overall conversion efficiencies of the reference AM1.5 spectra but also customize PV device design for specific geographic locations and microenvironments based on atmospheric conditions characteristic to that particular location. Indium gallium nitride and other PV materials offer the opportunity for limited bandgap engineering to match spectra. The effects of atmospheric conditions such as aerosols, cloud cover, water vapor, and air mass have been shown to cause variations in spectral radiance that alters PV system performance due to both overrating and underrating. Designing PV devices optimized for spectral radiance of a particular region can result in improved PV system performance. This paper presents a new method for designing geographically optimized PV cells with using a numerical model for bandgap optimization. The geographic microclimate spectrally resolved solar flux for twelve representative atmospheric conditions for the incident radiation angle (zenith angle of 48.1° and fixed array angle of 40° is used to iteratively optimize the band gap for tandem, triple, and quad-layer of InGaN-based multijunction cells. The results of this method are illustrated for the case study of solar farms in the New York region and discussed.

  1. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  2. Integrating single-cell transcriptomic data across different conditions, technologies, and species.

    Science.gov (United States)

    Butler, Andrew; Hoffman, Paul; Smibert, Peter; Papalexi, Efthymia; Satija, Rahul

    2018-06-01

    Computational single-cell RNA-seq (scRNA-seq) methods have been successfully applied to experiments representing a single condition, technology, or species to discover and define cellular phenotypes. However, identifying subpopulations of cells that are present across multiple data sets remains challenging. Here, we introduce an analytical strategy for integrating scRNA-seq data sets based on common sources of variation, enabling the identification of shared populations across data sets and downstream comparative analysis. We apply this approach, implemented in our R toolkit Seurat (http://satijalab.org/seurat/), to align scRNA-seq data sets of peripheral blood mononuclear cells under resting and stimulated conditions, hematopoietic progenitors sequenced using two profiling technologies, and pancreatic cell 'atlases' generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across data sets, while boosting statistical power through integrated analysis. Our approach facilitates general comparisons of scRNA-seq data sets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.

  3. Power optimization in body sensor networks: the case of an autonomous wireless EMG sensor powered by PV-cells.

    Science.gov (United States)

    Penders, J; Pop, V; Caballero, L; van de Molengraft, J; van Schaijk, R; Vullers, R; Van Hoof, C

    2010-01-01

    Recent advances in ultra-low-power circuits and energy harvesters are making self-powered body sensor nodes a reality. Power optimization at the system and application level is crucial in achieving ultra-low-power consumption for the entire system. This paper reviews system-level power optimization techniques, and illustrates their impact on the case of autonomous wireless EMG monitoring. The resulting prototype, an Autonomous wireless EMG sensor power by PV-cells, is presented.

  4. An updated assessment of the prospects for fuel cells in stationary power and CHP. An information paper

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, T.K. [Future Energy Solutions, Harwell (United Kingdom)

    2005-07-01

    This report presents updated conclusions of the Department of Trade and Industry's research and development programme to assess the commercial prospects for advanced fuel cells in stationary power and combined heat and power (CHP) systems. The programme has focussed on low temperature solid polymer fuel cells (SPFCs) for transport and combined heat and power (CHP)/distributed power and high temperature solid oxide fuel cells (SOFCs) for CHP/distributed power. As well as assessing the prospects for SPFCs and SOFCs in stationary power and CHP applications, the report examines those for molten carbonate fuel cells (MCFCs) and phosphoric acid fuel cells (PAFCs). The report provides an assessment of the status of technology development for these different types of fuel cells in terms of applications to stationary power and CHP, and offers estimates of market potential for SOFCs in CHP markets, SPFCs in CHP markets and SOFCs in distributed power generation markets. Both large SPFC and SOFC CHP systems require further development to deliver the necessary cost reductions in materials and manufacturing processes before pre-commercial sales can begin. The routes taken by different manufacturers and their choice of preferred technology are explained. A discussion of the prospects and barriers for fuel cell cars concludes that while cost reduction is a major barrier to the successful commercialisation of fuel cells, there are insufficient data available from operating fuel cells systems (other than PAFC) in stationary power and CHP applications to assess the economic attractiveness of fuel cells compared with existing systems. More field trials are required to confirm energy and environmental performance in such applications and to evaluate operational and economic performance under commercial operating conditions. Such field trials could also provide a focus for the required developments in fuel cells for stationary power/CHP systems.

  5. Environmental and ventilation benefits for underground mining operations using fuel cell powered production equipment

    International Nuclear Information System (INIS)

    Kocsis, C.; Hardcastle, S.

    2007-01-01

    The benefits of replacing diesel engines with fuel cells in mine production equipment were discussed. The paper was part of a multi-year feasibility study conducted to evaluate the use of hydrogen fuel cell-powered equipment to replace diesel engine powered equipment in underground mining operations. The feasibility study demonstrated that fuel cells are capable of eliminating the unwanted by-products of combustion engines. However, the use of fuel cells also reduced the amount of ventilation that mines needed to supply, thereby further reducing energy consumption. This study examined the benefits of replacing diesel engines with fuel cells, and discussed the mitigating qualifiers that may limit ventilation energy savings. Solutions to retaining and maintaining additional ventilation in the event of hydrogen leaks from fuel cell stacks were also investigated. The analyses were conducted on 6 operating mines. Current operating costs were compared with future operating conditions using fuel cell powered production vehicles. Operating costs of the primary ventilation system were established with a mine ventilation simulator. The analysis considered exhaust shaft velocities, heating system air velocities, and levels of silica exposure. Canadian mine design criteria were reviewed. It was concluded that appropriate safeguards are needed along hydrogen distribution lines to lower the impacts of hydrogen leaks. Large financial commitments may also be required to ensure a spark-free environment. 20 refs., 6 tabs., 3 figs

  6. Open-Phase Condition Detecting System for Transformers in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Ha, Che-Wung; Lee, Do-Hwan

    2015-01-01

    Recently, several events involving the loss of one of the three phases of the offsite power circuit occurred in the US nuclear power plants (NPPs).. In some cases, the open-phase condition existed undetected for an extended period and in other case, was not properly responded to. Accordingly, the Nuclear Regulatory Commission (NRC) requested all license holders to take corrective actions to address the open-phase condition. It was also requested that all holders or applicant for a standard design certification (DC) include a description of a protection system to detect and separate the open circuit into design control document (DCD). Currently, NPPs including Duke Energy, Exelon, and institutes including Electric Power Research Institute (EPRI) are working together to resolve issues associated with detecting an open-phase condition. This paper, using Electromagnetic Transients Program (EMTP), presents a system to detect and address the loss of one of three phases of the offsite power circuit connected to main, auxiliary and standby transformers, which is hard to be detected in the current protection system. This paper, using EMTP, presents a system to detect and address the loss of one of three phases of the offsite power circuit running to MT, UAT or SAT which is hard to be detected in the current protection system. The system presented in this paper will be useful not only for the KHNP to meet the NRC requirement, but also for nuclear power plants at home and abroad to take corrective actions to provide protection from a single phase open circuit condition for offsite power sources

  7. Open-Phase Condition Detecting System for Transformers in Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Che-Wung; Lee, Do-Hwan [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Recently, several events involving the loss of one of the three phases of the offsite power circuit occurred in the US nuclear power plants (NPPs).. In some cases, the open-phase condition existed undetected for an extended period and in other case, was not properly responded to. Accordingly, the Nuclear Regulatory Commission (NRC) requested all license holders to take corrective actions to address the open-phase condition. It was also requested that all holders or applicant for a standard design certification (DC) include a description of a protection system to detect and separate the open circuit into design control document (DCD). Currently, NPPs including Duke Energy, Exelon, and institutes including Electric Power Research Institute (EPRI) are working together to resolve issues associated with detecting an open-phase condition. This paper, using Electromagnetic Transients Program (EMTP), presents a system to detect and address the loss of one of three phases of the offsite power circuit connected to main, auxiliary and standby transformers, which is hard to be detected in the current protection system. This paper, using EMTP, presents a system to detect and address the loss of one of three phases of the offsite power circuit running to MT, UAT or SAT which is hard to be detected in the current protection system. The system presented in this paper will be useful not only for the KHNP to meet the NRC requirement, but also for nuclear power plants at home and abroad to take corrective actions to provide protection from a single phase open circuit condition for offsite power sources.

  8. Generation of net electric power with a tokamak reactor under foreseeable physical and engineering conditions

    International Nuclear Information System (INIS)

    Hiwatari, R.; Asaoka, Y.; Okano, K.; Yoshida, T.; Tomabechi, K.

    2004-01-01

    This study reveals for the first time the plasma performance required for a tokamak reactor to generate net electric power under foreseeable engineering conditions. It was found that the reference plasma performance of the ITER inductive operation mode with β N = 1.8, HH = 1.0, andf nGW 0.85 had sufficient potential to achieve the electric break-even condition (net electric power P e net = 0MW) under the following engineering conditions: machine major radius 6.5m ≤ R p ≤ 8.5m, the maximum magnetic field on TF coils B tmax = 16 T, thermal efficiency η e 30%, and NBI system efficiency η NBI = 50%. The key parameters used in demonstrating net electric power generation in tokamak reactors are β N and fη GW . ≥ 3.0 is required for P e net ∼ 600MW with fusion power P f ∼ 3000MW. On the other hand, fη GW ≥ 1.0 is inevitable to demonstrate net electric power generation, if high temperatures, such as average temperatures of T ave > 16 keV, cannot be selected for the reactor design. To apply these results to the design of a tokamak reactor for demonstrating net electric power generation, the plasma performance diagrams on the Q vs P f (energy multiplication factor vs fusion power) space for several major radii (i.e. 6.5, 7.5, and 8.5 m) were depicted. From these figures, we see that a design with a major radius R p ∼ 7.5m seems preferable for demonstrating net electric power generation when one aims at early realization of fusion energy. (author)

  9. Use of neural networks to identify transient operating conditions in nuclear power plants

    International Nuclear Information System (INIS)

    Uhrig, R.E.; Guo, Z.

    1989-01-01

    A technique using neural networks as a means of diagnosing specific abnormal conditions or problems in nuclear power plants is investigated and found to be feasible. The technique is based on the fact that each physical state of the plant can be represented by a unique pattern of instrument readings, which can be related to the condition of the plant. Neural networks are used to relate this pattern to the fault or problem. 3 refs., 2 figs., 4 tabs

  10. AMBIENT CONDITIONS EFFECTS ON PERFORMANCE OF GAS TURBINE COGENERATION POWER PLANTS

    OpenAIRE

    Necmi Ozdemir*

    2016-01-01

    In this study, the performances of a simple and an air preheated cogeneration cycles in ambient conditions are compared with each other. A computer program written by the author in FORTRAN codes is used for the calculation of the enthalpy and entropy values of the streams, Exergy analysis is done and compared for the simple and the air preheated cogeneration cycles for different ambient conditions. The two cogeneration cycles are evaluated in terms of heat powers and electric, electrical to h...

  11. DC Link Current Estimation in Wind-Double Feed Induction Generator Power Conditioning System

    Directory of Open Access Journals (Sweden)

    MARIAN GAICEANU

    2010-12-01

    Full Text Available In this paper the implementation of the DC link current estimator in power conditioning system of the variable speed wind turbine is shown. The wind turbine is connected to double feed induction generator (DFIG. The variable electrical energy parameters delivered by DFIG are fitted with the electrical grid parameters through back-to-back power converter. The bidirectional AC-AC power converter covers a wide speed range from subsynchronous to supersynchronous speeds. The modern control of back-to-back power converter involves power balance concept, therefore its load power should be known in any instant. By using the power balance control, the DC link voltage variation at the load changes can be reduced. In this paper the load power is estimated from the dc link, indirectly, through a second order DC link current estimator. The load current estimator is based on the DC link voltage and on the dc link input current of the rotor side converter. This method presents certain advantages instead of using measured method, which requires a low pass filter: no time delay, the feedforward current component has no ripple, no additional hardware, and more fast control response. Through the numerical simulation the performances of the proposed DC link output current estimator scheme are demonstrated.

  12. In-Containment Signal Conditioning and Transmission via Power Lines within High Dose Rate Areas of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Steffen; Weigel, Robert; Koelpin, Alexander [Institute for Electronics Engineering, University of Erlangen-Nuremberg, Cauerstr. 9, 91058 Erlangen (Germany); Dennerlein, Juergen; Janke, Iryna; Weber, Johannes [AREVA GmbH, Paul-Gossen-Str. 100, 91052 Erlangen (Germany)

    2015-07-01

    Signal conditioning and transmission for sensor systems and networks within the containment of nuclear power plants (NPPs) still poses a challenge to engineers, particularly in the case of equipment upgrades for existing plants, temporary measurements, decommissioning of plants, but also for new builds. This paper presents an innovative method for efficient and cost-effective instrumentation within high dose rate areas inside the containment. A transmitter-receiver topology is proposed that allows simultaneous, unidirectional point-to-point transmission of multiple sensor signals by superimposing them on existing AC or DC power supply cables using power line communication (PLC) technology. Thereby the need for costly installation of additional cables and containment penetrations is eliminated. Based on commercial off-the-shelf (COTS) electronic parts, a radiation hard transmitter is designed to operate in harsh environment within the containment during full plant operation. Hardware modularity of the transmitter allows application specific tradeoffs between redundancy and channel bandwidth. At receiver side in non-radiated areas, signals are extracted from the power line, demodulated, and provided either in analog or digital output format. Laboratory qualification tests and field test results within a boiling water reactor (BWR) are validating the proof of concept of the proposed system. (authors)

  13. Direct fuel cell - A high proficiency power generator for biofuels

    International Nuclear Information System (INIS)

    Patel, P.S.; Steinfeld, G.; Baker, B.S.

    1994-01-01

    Conversion of renewable bio-based resources into energy offers significant benefits for our environment and domestic economic activity. It also improves national security by displacing fossil fuels. However, in the current economic environment, it is difficult for biofuel systems to compete with other fossil fuels. The biomass-fired power plants are typically smaller than 50 MW, lower in electrical efficiencies (<25%) and experience greater costs for handling and transporting the biomass. When combined with fuel cells such as the Direct Fuel Cell (DFC), biofuels can produce power more efficiently with negligible environmental impact. Agricultural and other waste biomass can be converted to ethanol or methane-rich biofuels for power generation use in the DFC. These DFC power plants are modular and factory assembled. Due to their electrochemical (non-combustion) conversion process, these plants are environmentally friendly, highly efficient and potentially cost effective, even in sizes as small as a few meagawatts. They can be sited closer to the source of the biomass to minimize handling and transportation costs. The high-grade waste heat available from DFC power plants makes them attractive in cogeneration applications for farming and rural communities. The DFC potentially opens up new markets for biofuels derived from wood, grains and other biomass waste products

  14. Microbial fuel cells as power supply of a low-power temperature sensor

    Science.gov (United States)

    Khaled, Firas; Ondel, Olivier; Allard, Bruno

    2016-02-01

    Microbial fuel cells (MFCs) show great promise as a concomitant process for water treatment and as renewable energy sources for environmental sensors. The small energy produced by MFCs and the low output voltage limit the applications of MFCs. Specific converter topologies are required to step-up the output voltage of a MFC. A Power Management Unit (PMU) is proposed for operation at low input voltage and at very low power in a completely autonomous way to capture energy from MFCs with the highest possible efficiency. The application of sensors for monitoring systems in remote locations is an important approach. MFCs could be an alternative energy source in this case. Powering a sensor with MFCs may prove the fact that wastewater may be partly turned into renewable energy for realistic applications. The Power Management Unit is demonstrated for 3.6 V output voltage at 1 mW continuous power, based on a low-cost 0.7-L MFC. A temperature sensor may operate continuously on 2-MFCs in continuous flow mode. A flyback converter under discontinuous conduction mode is also tested to power the sensor. One continuously fed MFC was able to efficiently and continuously power the sensor.

  15. Analysis and characterization of security regions in power systems. Part I. Load flow feasibility conditions in power networks

    Energy Technology Data Exchange (ETDEWEB)

    Jarjis, J; Galiana, F D

    1980-03-01

    A set theoretic analysis of loadflow feasibility of a general power network with arbitrary PQ, PV and slack buses is presented. Load-flow feasibility is that property of a power network defining the theoretical limitations on the bus injections under which a steady state equilibrium exists. The set theoretic analysis is based on the study of the conical loadflow feasibility region. This region is characterised by a set of supporting hyperplanes each of which defines an explicit necessary condition for loadflow feasibility on the bus injections. A quantitative measure of loadflow feasibility for an arbitrary given operating injection vector is defined through a computable scalar stability margin. This stability margin permits the loadflow feasibility of different injections and network structures to be quantitatively compared and analysed.

  16. Inverters for interfacing of solar cells with the power grid

    Science.gov (United States)

    Karamanzanis, G. N.; Jackson, R. D.

    In this work, based on a research course in the Engineering Dep. Cambridge University, some non-classical inverter circuits are studied. They can be used for interfacing solar cells with the power grid at low voltage (230V) and at low power level. They are based on d.c. choppers which have a fast switching transistor. Their theoretical efficiency is 100 percent and they provide a satisfactory output current waveform in phase to the a.c. line voltage. The problems of control are also studied using a suitable mathematical model.

  17. High-power ultrashort fiber laser for solar cells micromachining

    Science.gov (United States)

    Lecourt, J.-B.; Duterte, C.; Liegeois, F.; Lekime, D.; Hernandez, Y.; Giannone, D.

    2012-02-01

    We report on a high-power ultra-short fiber laser for thin film solar cells micromachining. The laser is based on Chirped Pulse Amplification (CPA) scheme. The pulses are stretched to hundreds of picoseconds prior to amplification and can be compressed down to picosecond at high energy. The repetition rate is adjustable from 100 kHz to 1 MHz and the optical average output power is close to 13 W (before compression). The whole setup is fully fibred, except the compressor achieved with bulk gratings, resulting on a compact and reliable solution for cold ablation.

  18. Off-gas and air cleaning systems for accident conditions in nuclear power plants

    International Nuclear Information System (INIS)

    1993-01-01

    This report surveys the design principles and strategies for mitigating the consequences of abnormal events in nuclear power plants by the use of air cleaning systems. Equipment intended for use in design basis accident and severe accident conditions is reviewed, with reference to designs used in IAEA Member States. 93 refs, 48 figs, 23 tabs

  19. VGB conference 'Chemistry in the power plant 1984' - VGB feedwater conditioning conference

    International Nuclear Information System (INIS)

    1984-01-01

    The conference bears various aspects of feedwater conditioning for power plant cooling systems and steam generators as well as on the analytical assessment of water quality and its translation into operational method approaches. 5 out of the total 14 papers were entered separately in the database. (RB) [de

  20. Development of residential solar air conditioning system for electricity power peak cut 3

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Gwon Jong [Korea Inst. of Energy and Resources, Daeduk (Korea, Republic of)

    1995-12-31

    In this research, the converter rectifier unit of the inverter air conditioner is substituted into the bidirectional PWM converter. The DC/DC power converter is established on the DC link between the photovoltaic array and the inverter air conditioner, and the photovoltaic air conditioning system which can be parallel driven which utility is developed. (author). 35 ref., 112 figs.

  1. Current Control Method for Distributed Generation Power Generation Plants under Grid Fault Conditions

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Luna, Alvaro; Hermoso, Juan Ramon

    2011-01-01

    The operation of distributed power generation systems under grid fault conditions is a key issue for the massive integration of renewable energy systems. Several studies have been conducted to improve the response of such distributed generation systems under voltage dips. In spite of being less s...

  2. Building and application of the plant condition monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, S.

    2013-01-01

    To achieve the stable operation of nuclear power plants, we developed the plant condition monitoring system based on the heat and mass balance calculation. This system has adopted the heat balance model based on the actual plant data to find the symptoms of the disorder of the equipment by heat balance changes in the turbine system. (author)

  3. Development and application of the plant condition monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Ono, S.

    2014-01-01

    To achieve the stable operation of nuclear power plants, we developed the plant condition monitoring system based on the heat and mass balance calculation. In this system, it is a significant feature to adopt the sophisticated heat balance model based on the actual plant data to find the symptoms of anomalies in the turbine system from heat balance changes. (author)

  4. Special conditions for the application of coating materials in nuclear power plants

    International Nuclear Information System (INIS)

    Boetius, I.

    1980-01-01

    Proceeding from the special conditions for the application of coating materials in nuclear power plants the following factors influencing the decontamination of surface coatings are discussed from the point of view of radiation protection: abrasion resistance, waterproofness, mechanical and adhesion strength, and permeability. For practical use it is recommended to test the surface tightness of coatings with radiation-exposed specimens

  5. Control of power converters in distributed generation applications under grid fault conditions

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Luna, Alvaro; Munoz-Aguilar, Raul

    2011-01-01

    The operation of distributed power generation systems under grid fault conditions is a key issue for the massive integration of renewable energy systems. Several studies have been conducted to improve the response of such distributed generation systems under voltage dips. In spite of being less s...

  6. Temperature conditions of foundation plates under nuclear power plant reactor compartments

    International Nuclear Information System (INIS)

    Ehsaulov, S.L.

    1990-01-01

    Method for calculation of temperature conditions for foundation plates under reactor compartments located in the main building, used in construction of the second stage of the Kostroma nuclear power plant, is considered. The obtained calculation data can be used for determining the most suitable period of concrete placement, composition, initial temperature, manufacturing technology and ways of delivery of concrete mixture

  7. Summary of Investigations of the Use of Modified Turbine Inlet Conditions in a Binary Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mines, Gregory Lee

    2000-09-01

    Investigators at the Idaho National Engineering and Environmental Laboratory (INEEL) are developing technologies that will enhance the feasibility of generating electrical power from a hydrothermal resource. One of the concepts investigated is the use of modified inlet conditions in geothermal binary power plant turbines to increase the power generation. An inlet condition of interest allows the expanding vapor to enter the two-phase region, a mode of operation typically avoided because of concern that condensate would form and damage the turbine, degrading performance. INEEL investigators postulated that initially a supersaturated vapor would be supported, and that no turbine damage would occur. This paper summarizes the investigation of these expansions that began with testing of their condensation behavior, and culminated with the incorporation of these expansions into the operation of several commercial binary plant turbines.

  8. Condition monitoring of steam turbo generators of captive power plant at HWP (Manuguru) through vibration analysis

    International Nuclear Information System (INIS)

    Krishnareddy, G.; Chandramouli, M.; Gupta, R.V.

    2002-01-01

    Turbo Generator is a critical equipment in steam based power plant circuit. Any failure causes loss of production and hence as applicable to Heavy Water Plant, Manuguru, it results in loss of heavy water production as the captive power plant at Manuguru is solely designed to supply steam and power to Main Plant, which is meant for production of heavy water. Thereby condition monitoring is very much essential and required as part of predictive maintenance program for the turbo generators which are in continuous operation. This paper focuses on identification of the turbo generator system through vibration spectrum, characterising and differentiating the fault mechanisms, trending the faults through changes in vibration spectrums and orbit plots and subsequently planning for corrective actions/measures after evaluating the changes in machine conditions

  9. AN UPDATE ON THE STATUS OF THE NIF POWER CONDITIONING SYSTEM

    International Nuclear Information System (INIS)

    Arnold, P A; Hulsey, S; Ullery, G T; Petersen, D E; Pendleton, D L; Ollis, C W; Newton, M A; Harwell, T; Cordoza, D; Hadovski, L

    2007-01-01

    The National Ignition Facility (NIF) Power Conditioning System provides the pulsed excitation required to drive flashlamps in the laser's optical amplifiers. Modular in design, each of the 192 Main Energy Storage Modules (MESMs) stores up to 2.2 MJ of electrical energy in its capacitor bank before delivering the energy to 20 pairs of flashlamps in a 400 (micro)s pulse (10% power points). The peak current of each MESM discharge is 0.5 MA. Production, installation, commissioning and operation of the NIF Power Conditioning continue to progress rapidly, with the goals of completing accelerated production and commissioning by early 2008, while maintaining an aggressive operation schedule. To date, more than 97% of the required modules have been assembled, shipped and installed in the facility, representing more that 380 MJ of stored energy available for driving NIF flashlamps. The MESMs have displayed outstanding reliability during daily, multiple-shift operations

  10. General 3D Lumped Thermal Model with Various Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2016-01-01

    Accurate thermal dynamics modeling of high power Insulated Gate Bipolar Transistor (IGBT) modules is important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated...... thermal behaviors in the IGBTs. In this paper, a new three-dimensional (3D) lumped thermal model is proposed, which can easily be characterized from Finite Element Methods (FEM) based simulation and acquire the thermal distribution in critical points. Meanwhile the boundary conditions including...... the cooling system and power losses are modeled in the 3D thermal model, which can be adapted to different real field applications of power electronic converters. The accuracy of the proposed thermal model is verified by experimental results....

  11. A Grid Voltage Measurement Method for Wind Power Systems during Grid Fault Conditions

    Directory of Open Access Journals (Sweden)

    Cheol-Hee Yoo

    2014-11-01

    Full Text Available Grid codes in many countries require low-voltage ride-through (LVRT capability to maintain power system stability and reliability during grid fault conditions. To meet the LVRT requirement, wind power systems must stay connected to the grid and also supply reactive currents to the grid to support the recovery from fault voltages. This paper presents a new fault detection method and inverter control scheme to improve the LVRT capability for full-scale permanent magnet synchronous generator (PMSG wind power systems. Fast fault detection can help the wind power systems maintain the DC-link voltage in a safe region. The proposed fault detection method is based on on-line adaptive parameter estimation. The performance of the proposed method is verified in comparison to the conventional voltage measurement method defined in the IEC 61400-21 standard.

  12. Limiting conditions for nuclear power plant competitiveness vs. fossil and wind plants

    International Nuclear Information System (INIS)

    Feretic, Danilo; Cavlina, Nikola

    2010-01-01

    The aim of this paper is to compare potential energy options for future electricity generation. The paper considers comparison of discounted total cost of electricity generated by nuclear power plant and by combined natural gas and wind plants, having in total equal electricity generation. Large uncertainty in the future fuel costs makes planning of optimal power generating mix very difficult to justify. Probabilistic method is used in the analysis which allows inclusion of uncertainties in future electricity generating cost prediction. Additionally, an informative functional relation between nuclear plant investment cost, natural gas price and wind plant efficiency, that determines competitive power generation between considered options, is also shown. Limiting conditions for nuclear power plant competitiveness vs. fossil and wind plants are presented. (authors)

  13. Decision Optimization for Power Grid Operating Conditions with High- and Low-Voltage Parallel Loops

    Directory of Open Access Journals (Sweden)

    Dong Yang

    2017-05-01

    Full Text Available With the development of higher-voltage power grids, the high- and low-voltage parallel loops are emerging, which lead to energy losses and even threaten the security and stability of power systems. The multi-infeed high-voltage direct current (HVDC configurations widely appearing in AC/DC interconnected power systems make this situation even worse. Aimed at energy saving and system security, a decision optimization method for power grid operating conditions with high- and low-voltage parallel loops is proposed in this paper. Firstly, considering hub substation distribution and power grid structure, parallel loop opening schemes are generated with GN (Girvan-Newman algorithms. Then, candidate opening schemes are preliminarily selected from all these generated schemes based on a filtering index. Finally, with the influence on power system security, stability and operation economy in consideration, an evaluation model for candidate opening schemes is founded based on analytic hierarchy process (AHP. And a fuzzy evaluation algorithm is used to find the optimal scheme. Simulation results of a New England 39-bus system and an actual power system validate the effectiveness and superiority of this proposed method.

  14. Thermoeconomic analysis of a fuel cell hybrid power system from the fuel cell experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Tomas [Endesa Generacion, Ribera del Loira, 60, 28042 Madrid (Spain)]. E-mail: talvarez@endesa.es; Valero, Antonio [Fundacion CIRCE, Centro Politecnico Superior, Maria de Luna, 3, 50018 Zaragoza (Spain); Montes, Jose M. [ETSIMM-Universidad Politecnica de.Madrid, Rios Rosas, 21, 28003 Madrid (Spain)

    2006-08-15

    An innovative configuration of fuel cell technology is proposed based on a hybrid fuel cell system that integrates a turbogenerator to overcome the intrinsic limitations of fuel cells in conventional operation. An analysis is done of the application of molten carbonate fuel cell technology at the Guadalix Fuel Cell Test Facility, for the assessment of the performance of the fuel cell prototype to be integrated in the Hybrid Fuel Cell System. This is completed with a thermoeconomic analysis of the 100 kW cogeneration fuel cell power plant which was subsequently built. The operational results and design limitations are evaluated, together with the operational limits and thermodynamic inefficiencies (exergy destruction and losses) of the 100 kW fuel cell. This leads to the design of a hybrid system in order to demonstrate the possibilities and benefits of the new hybrid configuration. The results are quantified through a thermoeconomic analysis in order to get the most cost-effective plant configuration. One promising configuration is the MCFC topper where the fuel cell in the power plant behaves as a combustor for the turbogenerator. The latter behaves as the balance of plant for the fuel cell. The combined efficiency increased to 57% and NOx emissions are essentially eliminated. The synergy of the fuel cell/turbine hybrids lies mainly in the use of the rejected thermal energy and residual fuel from the fuel cell to drive the turbogenerator in a 500 kW hybrid system.

  15. High power nickel - cadmium cells with fiber electrodes (FNC)

    International Nuclear Information System (INIS)

    Haschka, F.; Schlieck, D.

    1986-01-01

    Nickel cadmium batteries differ greatly in their mechanical design and construction of the electrodes. Using available electrode constructions, batteries are designed which meet the requirements of specific applications and offer optimum performance. Pocket- and tubular cells are basically developed with the technology of the year 1895. Since then some improvements with todays technology have been made. The sintered cells use the technology of the 1930's and they are still limited to high power application. With this knowledge and the technology of today the fiber-structured nickel electrode (FNC) was developed at DAUG laboratory, a subsidiary company of Mercedes-Benz and Volkswagen. After ten years of experience in light weight prototype batteries for electric vehicles (1-2), the system was brought into production by a new company, DAUG-HOPPECKE. Characteristics of fiber electrodes: thickness and size can be easily changed; pure active materials are used; high conductor density; high elasticity of the structure; high porosity. Since 1983 NiCd-batteries with fiber-structured nickel electrodes (FNC) have been in production. Starting with the highly demanded cell-types for low, medium and high performance called L, M and H according to IEC 623 for low, medium and high performance applications, the program was recently completed with the X-type cell for very high power, as an alternative to sintered cells

  16. Efficiency simulations of thin film chalcogenide photovoltaic cells for different indoor lighting conditions

    International Nuclear Information System (INIS)

    Minnaert, B.; Veelaert, P.

    2011-01-01

    Photovoltaic (PV) energy is an efficient natural energy source for outdoor applications. However, for indoor applications, the efficiency of PV cells is much lower. Typically, the light intensity under artificial lighting conditions is less than 10 W/m 2 as compared to 100-1000 W/m 2 under outdoor conditions. Moreover, the spectrum is different from the outdoor solar spectrum. In this context, the question arises whether thin film chalcogenide photovoltaic cells are suitable for indoor use. This paper contributes to answering that question by comparing the power output of different thin film chalcogenide solar cells with the classical crystalline silicon cell as reference. The comparisons are done by efficiency simulation based on the quantum efficiencies of the solar cells and the light spectra of typical artificial light sources i.e. an LED lamp, a 'warm' and a 'cool' fluorescent tube and a common incandescent and halogen lamp, which are compared to the outdoor AM 1.5 spectrum as reference.

  17. Torque and power outputs on different subjects during manual wheelchair propulsion under different conditions

    Science.gov (United States)

    Hwang, Seonhong; Kim, Seunghyeon; Son, Jongsang; Kim, Youngho

    2012-02-01

    Manual wheelchair users are at a high risk of pain and injuries to the upper extremities due to mechanical inefficiency of wheelchair propulsion motion. The kinetic analysis of the upper extremities during manual wheelchair propulsion in various conditions needed to be investigated. We developed and calibrated a wheelchair dynamometer for measuring kinetic parameters during propulsion. We utilized the dynamometer to investigate and compare the propulsion torque and power values of experienced and novice users under four different conditions. Experienced wheelchair users generated lower torques with more power than novice users and reacted alertly and sensitively to changing conditions. We expect that these basic methods and results may help to quantitatively evaluate the mechanical efficiency of manual wheelchair propulsion.

  18. Reliable Grid Condition Detection and Control of Single-Phase Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai

    standards addressed to the grid-connected systems will harmonize the combination of the DPGS and the classical power plants. Consequently, the major tasks of this thesis were to develop new grid condition detection techniques and intelligent control in order to allow the DPGS not only to deliver power...... to the utility grid but also to sustain it. This thesis was divided into two main parts, namely "Grid Condition Detection" and "Control of Single-Phase DPGS". In the first part, the main focus was on reliable Phase Locked Loop (PLL) techniques for monitoring the grid voltage and on grid impedance estimation...... techniques. Additionally, a new technique for detecting the islanding mode has been developed and successfully tested. In the second part, the main reported research was concentrated around adaptive current controllers based on the information provided by the grid condition detection techniques. To guarantee...

  19. Data support system for controlling decentralised nuclear power industry facilities through uninterruptible condition monitoring

    Directory of Open Access Journals (Sweden)

    Povarov Vladimir

    2018-01-01

    Full Text Available The article describes the automated uninterruptible multi-parameter system for monitoring operational vulnerability of critical NPP components, which differs from existing ones by being universally applicable for analysing mechanical damage of nuclear power unit components. The system allows for performing routine assessment of metal structures. The assessment of strained condition of a deteriorating component is based on three-dimensional finite element simulation with calculations adjusted with reference to in-situ measurements. A program for calculation and experimental analysis of maximum load and durability of critical area forms the core of uninterruptible monitoring system. The knowledge base on performance of the monitored components in different operating conditions and the corresponding comprehensive analysis of strained condition and deterioration rates compose the basis of control system data support, both for operating nuclear power units and robotic maintenance and repair systems.

  20. A Review of the Condition Monitoring of Capacitors in Power Electronic Converters

    DEFF Research Database (Denmark)

    Soliman, Hammam Abdelaal Hammam; Wang, Huai; Blaabjerg, Frede

    2015-01-01

    Capacitor is one of the reliability critical components in power electronic systems. In the last two decades, many efforts in the academic research have been devoted to the condition monitoring of capacitors to estimate their health status. Industry applications demand more reliable power...... electronics products with preventive maintenance. Nevertheless, most of the developed capacitor condition monitoring technologies are rarely adopted by industry due to the complexity, increased cost and other relevant issues. An overview of the prior-art research in this area is therefore needed to justify....... Therefore, this paper firstly classifies the capacitor condition monitoring methods into three categories, then the respective technology evolution from 1993 to 2015 is summarized. Remarks on the state-of-the-art research and the future opportunities targeting for practical industry applications are given....

  1. A Review of the Condition Monitoring of Capacitors in Power Electronic Converters

    DEFF Research Database (Denmark)

    Soliman, Hammam Abdelaal Hammam; Wang, Huai; Blaabjerg, Frede

    2016-01-01

    Capacitors are one type of reliability-critical components in power electronic systems. In the last two decades, many efforts in academic research have been devoted to the condition monitoring of capacitors to estimate their health status. Industry applications are demanding more reliable power...... electronics products with preventive maintenance. Nevertheless, most of the developed capacitor condition monitoring technologies are rarely adopted by industry due to the complexity, increased cost, and other relevant issues. An overview of the prior-art research in this area is therefore needed to justify......, this paper first classifies the capacitor condition monitoring methods into three categories, then the respective technology evolution in the last two decades is summarized. Finally, the state-of-the-art research and the future opportunities targeting for industry applications are given....

  2. Fuel cells - a new contributor to stationary power

    Science.gov (United States)

    Dufour, Angelo U.

    Stationary power generation historically started as distributed generation near the user, with the configuration of a very open market, where a lot of small competing utilities were offering electricity to the customers. At a second time it became a `monopolistic' business because of technical reasons. Big steam turbines and electric generators, allowing better efficiencies, were more conveniently installed in very large power plants, necessarily located in sites far away from where the power was needed, and the transmission losses were bounded by AC high voltage technology. The Governments were, therefore, trying to balance the power of monopolies, that were limiting the economical development of the countries, by strengthening the concept of electrical energy price public control and, alternatively, by establishing rules to allow a free flow of electricity from one region to the other, or taking direct control through ownership of big and small utilities. The most effective way of making the electric energy system competitive has proved to be the opening of a partial competition in the generation field by forcing the utilities to compare the cost of their energy, produced with new centralised plants, to the price of the available energy, coming from combined heat and power dispersed generators. In fact, with reference to this cost, all the peculiar features of large central stations and dispersed generators were taken into account, like the widespread use of natural gas, the investment risk reduction with single smaller increments of capacity, the transmission and distribution siting difficulties and high costs, the improved system reliability, and, finally, the high quality electric power. Fuel Cells are a recently become available technology for distributed electrical energy production, because they share the main typical aspects, relevant for a distributed power system, like compatibility with other modular subsystem packages, fully automation possibility

  3. Fuel cell power plants for decentralised CHP applications

    International Nuclear Information System (INIS)

    Ohmer, Martin; Mattner, Katja

    2015-01-01

    Fuel cells are the most efficient technology to convert chemical energy into electricity and heat and thus they could have a major impact on reducing fuel consumption, CO 2 and other emissions (NO x , SO x and particulate matter). Fired with natural or biogas and operated with an efficiency of up to 49 % a significant reduction of fuel costs can be achieved in decentralised applications. Combined heat and power (CHP) configurations add value for a wide range of industrial applications. The exhaust heat of approximately 400 C can be utilised for heating purposes and the production of steam. Besides, it can be also fed directly to adsorption cooling systems. With more than 110 fuel cell power plants operating worldwide, this technology is a serious alternative to conventional gas turbines or gas engines.

  4. Starting characteristics of direct current motors powered by solar cells

    Science.gov (United States)

    Singer, S.; Appelbaum, J.

    1989-01-01

    Direct current motors are used in photovoltaic systems. Important characteristics of electric motors are the starting to rated current and torque ratios. These ratios are dictated by the size of the solar cell array and are different for the various dc motor types. Discussed here is the calculation of the starting to rated current ratio and starting to rated torque ratio of the permanent magnet, and series and shunt excited motors when powered by solar cells for two cases: with and without a maximum-power-point-tracker (MPPT) included in the system. Comparing these two cases, one gets a torque magnification of about 3 for the permanent magnet motor and about 7 for other motor types. The calculation of the torques may assist the PV system designer to determine whether or not to include an MPPT in the system.

  5. A real time fuzzy logic power management strategy for a fuel cell vehicle

    International Nuclear Information System (INIS)

    Hemi, Hanane; Ghouili, Jamel; Cheriti, Ahmed

    2014-01-01

    Highlights: • We present a real time fuzzy logic power management strategy. • This strategy is applied to hybrid electric vehicle dynamic model. • Three configurations evaluated during a drive cycle. • The hydrogen consumption is analysed for the three configurations. - Abstract: This paper presents real time fuzzy logic controller (FLC) approach used to design a power management strategy for a hybrid electric vehicle and to protect the battery from overcharging during the repetitive braking energy accumulation. The fuel cell (FC) and battery (B)/supercapacitor (SC) are the primary and secondary power sources, respectively. This paper analyzes and evaluates the performance of the three configurations, FC/B, FC/SC and FC/B/SC during real time driving conditions and unknown driving cycle. The MATLAB/Simulink and SimPowerSystems software packages are used to model the electrical and mechanical elements of hybrid vehicles and implement a fuzzy logic strategy

  6. Design and simulation of front end power converter for a microgrid with fuel cells and solar power sources

    Science.gov (United States)

    Jeevargi, Chetankumar; Lodhi, Anuj; Sateeshkumar, Allu; Elangovan, D.; Arunkumar, G.

    2017-11-01

    The need for Renewable Energy Sources (RES) is increasing due to increased demand for the supply of power and it is also environment friendly.In the recent few years, the cost of generation of the power from the RES has been decreased. This paper aims to design the front end power converter which is required for integrating the fuel cells and solar power sources to the micro grid. The simulation of the designed front end converter is carried out in the PSIM 9.1.1 software. The results show that the designed front end power converter is sufficient for integrating the micro grid with fuel cells and solar power sources.

  7. Myeloid Conditioning with c-kit-Targeted CAR-T Cells Enables Donor Stem Cell Engraftment.

    Science.gov (United States)

    Arai, Yasuyuki; Choi, Uimook; Corsino, Cristina I; Koontz, Sherry M; Tajima, Masaki; Sweeney, Colin L; Black, Mary A; Feldman, Steven A; Dinauer, Mary C; Malech, Harry L

    2018-05-02

    We report a novel approach to bone marrow (BM) conditioning using c-kit-targeted chimeric antigen receptor T (c-kit CAR-T) cells in mice. Previous reports using anti-c-kit or anti-CD45 antibody linked to a toxin such as saporin have been promising. We developed a distinctly different approach using c-kit CAR-T cells. Initial studies demonstrated in vitro killing of hematopoietic stem cells by c-kit CAR-T cells but poor expansion in vivo and poor migration of CAR-T cells into BM. Pre-treatment of recipient mice with low-dose cyclophosphamide (125 mg/kg) together with CXCR4 transduction in the CAR-T cells enhanced trafficking to and expansion in BM (c-kit + population (9.0%-0.1%). Because congenic Thy1.1 CAR-T cells were used in the Thy1.2-recipient mice, anti-Thy1.1 antibody could be used to deplete CAR-T cells in vivo before donor BM transplant. This achieved 20%-40% multilineage engraftment. We applied this conditioning to achieve an average of 28% correction of chronic granulomatous disease mice by wild-type BM transplant. Our findings provide a proof of concept that c-kit CAR-T cells can achieve effective BM conditioning without chemo-/radiotherapy. Our work also demonstrates that co-expression of a trafficking receptor can enhance targeting of CAR-T cells to a designated tissue. Published by Elsevier Inc.

  8. Maximum power point tracking for PV systems under partial shading conditions using current sweeping

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2015-01-01

    Highlights: • A novel approach for tracking the maximum power point of photovoltaic systems. • Able to handle both the uniform insolation and partial shading conditions. • Maximum power point tracking based on current sweeping. - Abstract: Partial shading on photovoltaic (PV) arrays causes multiple peaks on the output power–voltage characteristic curve and local searching technique such as perturb and observe (P&O) method could easily fail in searching for the global maximum. Moreover, existing global searching techniques are still not very satisfactory in terms of speed and implementation complexity. In this paper, a fast global maximum power point (MPPT) tracking method which is using current sweeping for photovoltaic arrays under partial shading conditions is proposed. Unlike conventional approach, the proposed method is current based rather than voltage based. The initial maximum power point will be derived based on a current sweeping test and the maximum power point can be enhanced by a finer local search. The speed of the global search is mainly governed by the apparent time constant of the PV array and the generation of a fast current sweeping test. The fast current sweeping test can easily be realized by a DC/DC boost converter with a very fast current control loop. Experimental results are included to demonstrate the effectiveness of the proposed global searching scheme

  9. Critical power characteristics in 37-rod tight lattice bundles under transient conditions

    International Nuclear Information System (INIS)

    Liu, Wei; Kureta, Masatoshi; Tamai, Hidesada; Ohnuki, Akira; Akimoto, Hajime

    2007-01-01

    Critical power characteristics in the postulated abnormal transient processes that may be possibly met in the operation of Innovative Water Reactor for Flexible Fuel Cycle (FLWR) were investigated for the design of the FLWR core. Transient Boiling Transition (BT) tests were carried out using two sets of 37-rod tight lattice rod bundles (rod diameter: 13 mm; rod clearance: 1.3 mm or 1.0 mm) at Japan Atomic Energy Agency (JAEA) under the conditions covering the FLWR operating condition (P ex =7.2 MPa, T in =556 K) for mass velocity G=400-800 kg/(m 2 s). For the postulated power increase and flow decrease transients, no obvious change of the critical power against the steady one was observed. The traditional quasi-steady characteristic was confirmed to be working for the postulated power increase and flow decrease transients. The experiments were analyzed with TRAC-BF1 code, where the JAEA newest critical power correlation for the tight lattice rod bundles was implemented for the BT judgment. The TRAC-BF1 code showed good prediction for the occurrence or the non occurrence of the BT and for the exact BT starting time. The tranditional quasi-steady state prediction of the BT in transient process was confirmed to be applicable for the postulated abnormal transient processes in the tight lattice rod bundles. (author)

  10. Multifunctional voltage source inverter for renewable energy integration and power quality conditioning.

    Science.gov (United States)

    Dai, NingYi; Lam, Chi-Seng; Zhang, WenChen

    2014-01-01

    In order to utilize the energy from the renewable energy sources, power conversion system is necessary, in which the voltage source inverter (VSI) is usually the last stage for injecting power to the grid. It is an economical solution to add the function of power quality conditioning to the grid-connected VSI in the low-voltage distribution system. Two multifunctional VSIs are studied in this paper, that is, inductive-coupling VSI and capacitive-coupling VSI, which are named after the fundamental frequency impedance of their coupling branch. The operation voltages of the two VSIs are compared when they are used for renewable energy integration and power quality conditioning simultaneously. The operation voltage of the capacitive-coupling VSI can be set much lower than that of the inductive-coupling VSI when reactive power is for compensating inductive loads. Since a large portion of the loads in the distribution system are inductive, the capacitive-coupling VSI is further studied. The design and control method of the multifunctional capacitive-coupling VSI are proposed in this paper. Simulation and experimental results are provided to show its validity.

  11. Advanced tendencies in development of photovoltaic cells for power engineering

    Science.gov (United States)

    Strebkov, D. S.

    2015-01-01

    Development of solar power engineering must be based on original innovative Russian and world technologies. It is necessary to develop promising Russian technologies of manufacturing of photovoltaic cells and semiconductor materials: chlorine-free technology for obtaining solar silicon; matrix solar cell technology with an efficiency of 25-30% upon the conversion of concentrated solar, thermal, and laser radiation; encapsulation technology for high-voltage silicon solar modules with a voltage up to 1000 V and a service life up to 50 years; new methods of concentration of solar radiation with the balancing illumination of photovoltaic cells at 50-100-fold concentration; and solar power systems with round-the-clock production of electrical energy that do not require energy storage devices and reserve sources of energy. The advanced tendency in silicon power engineering is the use of high-temperature reactions in heterogeneous modular silicate solutions for long-term (over one year) production of heat and electricity in the autonomous mode.

  12. Possible schemes for solar-powered air-conditioning in 2-storey terrace houses

    International Nuclear Information System (INIS)

    Chu, C.M.; Bono, A.; Prabhakar, A.

    2006-01-01

    Space cooling is required all year round in the tropics, and probably accounts for a considerable proportion of the cost of electricity. Solar radiation can be channeled into cooling by photovoltaic powered systems and through the relatively new adsorption cycle technology. Two-storey terrace housing appear to have the greatest potential of introducing solar-powered cooling to residential homes. There are two schemes to cool a two-storey terrace housing: 1) By spraying water down the roof a tank, circulated by a pump powered by PV panels on the roof or 2) By replacing the roof with solar hot water collectors and use adsorption cooling chillers to produce air-conditioning for the entire block of terrace houses. In scheme number 1, a preliminary, rough technical evaluation showed that it is possible to pump water to the roof to flow down as a thin film and cool the roof by evaporation to about 40 degree C from about 70 degree C if without water evaporation at the highest insolation rate of the day. Scheme number 2, which uses adsorption chilling technology, requires communal sharing of the air-conditioning facility. The effect of collecting solar heat using the roof is two fold: to absorb solar energy for producing hot water and reducing excess heat input to the house. Preliminary costing demonstrates that solar-powered air-conditioning is within reach of commercialisation, bearing in mind that bulk purchases will dramatically lower the price of a product

  13. Solar cell degradation under open circuit condition in out-doors-in desert region

    Directory of Open Access Journals (Sweden)

    M. Boussaid

    Full Text Available The reliability of solar cells is an important parameter in the design of photovoltaic systems and particularly for cost estimation. Solar cell degradation is the result of various operating conditions; temperature is one of most important factors. Installed PV modules in desert regions are subjected to various temperature changes with significant gradient leading to accelerated degradation. In the present work, we demonstrate the influence of open-circuit condition on the degradation of PV modules. The experiment is carried out in the desert region of ADRAR (southern Algeria using two modules IJISEL of single-crystal silicon. A continuous monitoring allows analysis of both performances of modules for duration of 330 days. The module in open-circuit condition reaches higher temperature means than the module in charging condition; therefore, it undergoes a higher degradation. By simulation, we found that the life of a PV module (whose power output is close to 50% in a condition of an open-circuit in the desert region could be reduced to 4 years, and that has a significant impact on economy. Keywords: WEIBULL, Photovoltaic, Degradation, Open-circuit, Single-crystal, Silicon

  14. Novel electrical energy storage system based on reversible solid oxide cells: System design and operating conditions

    Science.gov (United States)

    Wendel, C. H.; Kazempoor, P.; Braun, R. J.

    2015-02-01

    Electrical energy storage (EES) is an important component of the future electric grid. Given that no other widely available technology meets all the EES requirements, reversible (or regenerative) solid oxide cells (ReSOCs) working in both fuel cell (power producing) and electrolysis (fuel producing) modes are envisioned as a technology capable of providing highly efficient and cost-effective EES. However, there are still many challenges and questions from cell materials development to system level operation of ReSOCs that should be addressed before widespread application. This paper presents a novel system based on ReSOCs that employ a thermal management strategy of promoting exothermic methanation within the ReSOC cell-stack to provide thermal energy for the endothermic steam/CO2 electrolysis reactions during charging mode (fuel producing). This approach also serves to enhance the energy density of the stored gases. Modeling and parametric analysis of an energy storage concept is performed using a physically based ReSOC stack model coupled with thermodynamic system component models. Results indicate that roundtrip efficiencies greater than 70% can be achieved at intermediate stack temperature (680 °C) and elevated stack pressure (20 bar). The optimal operating condition arises from a tradeoff between stack efficiency and auxiliary power requirements from balance of plant hardware.

  15. Effect size and statistical power in the rodent fear conditioning literature - A systematic review.

    Science.gov (United States)

    Carneiro, Clarissa F D; Moulin, Thiago C; Macleod, Malcolm R; Amaral, Olavo B

    2018-01-01

    Proposals to increase research reproducibility frequently call for focusing on effect sizes instead of p values, as well as for increasing the statistical power of experiments. However, it is unclear to what extent these two concepts are indeed taken into account in basic biomedical science. To study this in a real-case scenario, we performed a systematic review of effect sizes and statistical power in studies on learning of rodent fear conditioning, a widely used behavioral task to evaluate memory. Our search criteria yielded 410 experiments comparing control and treated groups in 122 articles. Interventions had a mean effect size of 29.5%, and amnesia caused by memory-impairing interventions was nearly always partial. Mean statistical power to detect the average effect size observed in well-powered experiments with significant differences (37.2%) was 65%, and was lower among studies with non-significant results. Only one article reported a sample size calculation, and our estimated sample size to achieve 80% power considering typical effect sizes and variances (15 animals per group) was reached in only 12.2% of experiments. Actual effect sizes correlated with effect size inferences made by readers on the basis of textual descriptions of results only when findings were non-significant, and neither effect size nor power correlated with study quality indicators, number of citations or impact factor of the publishing journal. In summary, effect sizes and statistical power have a wide distribution in the rodent fear conditioning literature, but do not seem to have a large influence on how results are described or cited. Failure to take these concepts into consideration might limit attempts to improve reproducibility in this field of science.

  16. Effect size and statistical power in the rodent fear conditioning literature – A systematic review

    Science.gov (United States)

    Macleod, Malcolm R.

    2018-01-01

    Proposals to increase research reproducibility frequently call for focusing on effect sizes instead of p values, as well as for increasing the statistical power of experiments. However, it is unclear to what extent these two concepts are indeed taken into account in basic biomedical science. To study this in a real-case scenario, we performed a systematic review of effect sizes and statistical power in studies on learning of rodent fear conditioning, a widely used behavioral task to evaluate memory. Our search criteria yielded 410 experiments comparing control and treated groups in 122 articles. Interventions had a mean effect size of 29.5%, and amnesia caused by memory-impairing interventions was nearly always partial. Mean statistical power to detect the average effect size observed in well-powered experiments with significant differences (37.2%) was 65%, and was lower among studies with non-significant results. Only one article reported a sample size calculation, and our estimated sample size to achieve 80% power considering typical effect sizes and variances (15 animals per group) was reached in only 12.2% of experiments. Actual effect sizes correlated with effect size inferences made by readers on the basis of textual descriptions of results only when findings were non-significant, and neither effect size nor power correlated with study quality indicators, number of citations or impact factor of the publishing journal. In summary, effect sizes and statistical power have a wide distribution in the rodent fear conditioning literature, but do not seem to have a large influence on how results are described or cited. Failure to take these concepts into consideration might limit attempts to improve reproducibility in this field of science. PMID:29698451

  17. A Vibration-Based MEMS Piezoelectric Energy Harvester and Power Conditioning Circuit

    Directory of Open Access Journals (Sweden)

    Hua Yu

    2014-02-01

    Full Text Available This paper presents a micro-electro-mechanical system (MEMS piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of the geometric parameters on the output voltage. Based on simulation results, a MEMS Pb(Zr,TiO3 (PZT cantilever array with an integrated large Si proof mass is designed and fabricated to improve output voltage and power. Test results show that the fabricated generator, with five cantilever beams (with unit dimensions of about 3 × 2.4 × 0.05 mm3 and an individual integrated Si mass dimension of about 8 × 12.4 × 0.5 mm3, produces a output power of 66.75 μW, or a power density of 5.19 μW∙mm−3∙g−2 with an optimal resistive load of 220 kΩ from 5 m/s2 vibration acceleration at its resonant frequency of 234.5 Hz. In view of high internal impedance characteristic of the PZT generator, an efficient autonomous power conditioning circuit, with the function of impedance matching, energy storage and voltage regulation, is then presented, finding that the efficiency of the energy storage is greatly improved and up to 64.95%. The proposed self-supplied energy generator with power conditioning circuit could provide a very promising complete power supply solution for wireless sensor node loads.

  18. A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit.

    Science.gov (United States)

    Yu, Hua; Zhou, Jielin; Deng, Licheng; Wen, Zhiyu

    2014-02-19

    This paper presents a micro-electro-mechanical system (MEMS) piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM) is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of the geometric parameters on the output voltage. Based on simulation results, a MEMS Pb(Zr,Ti)O3 (PZT) cantilever array with an integrated large Si proof mass is designed and fabricated to improve output voltage and power. Test results show that the fabricated generator, with five cantilever beams (with unit dimensions of about 3 × 2.4 × 0.05 mm3) and an individual integrated Si mass dimension of about 8 × 12.4 × 0.5 mm3, produces a output power of 66.75 μW, or a power density of 5.19 μW∙mm-3∙g-2 with an optimal resistive load of 220 kΩ from 5 m/s2 vibration acceleration at its resonant frequency of 234.5 Hz. In view of high internal impedance characteristic of the PZT generator, an efficient autonomous power conditioning circuit, with the function of impedance matching, energy storage and voltage regulation, is then presented, finding that the efficiency of the energy storage is greatly improved and up to 64.95%. The proposed self-supplied energy generator with power conditioning circuit could provide a very promising complete power supply solution for wireless sensor node loads.

  19. Expected Future Conditions for Secure Power Operation with Large Scale of RES Integration

    International Nuclear Information System (INIS)

    Majstrovic, G.; Majstrovic, M.; Sutlovic, E.

    2015-01-01

    EU energy strategy is strongly focused on the large scale integration of renewable energy sources. The most dominant part here is taken by variable sources - wind power plants. Grid integration of intermittent sources along with keeping the system stable and secure is one of the biggest challenges for the TSOs. This part is often neglected by the energy policy makers, so this paper deals with expected future conditions for secure power system operation with large scale wind integration. It gives an overview of expected wind integration development in EU, as well as expected P/f regulation and control needs. The paper is concluded with several recommendations. (author).

  20. The maximum power condition of the brayton cycle with heat exchange processes

    International Nuclear Information System (INIS)

    Jung, Pyung Suk; Cha, Jin Girl; Ro, Sung Tack

    1985-01-01

    The ideal brayton cycle has been analyzed with the heat exchange processes between the working fluid and the heat source and the sink while their heat capacity rates are constant. The power of the cycle can be expressed in terms of a temperature of the cycle and the heat capacity rate of the working fluid. There exists an optimum power condition where the heat capacity rate of the working fluid has a value between those of the heat source and the heat sink, and the cycle efficiency is determined by the inlet temperatures of the heat source and the sink. (Author)

  1. Operational experience of air washer based ventilation system for power conditioning system of Indus-2

    International Nuclear Information System (INIS)

    Pandey, R.M.; Baghel, S.L.; Parate, J.K.; Ahlawat, Sandeep; Rawlani, B.K.; Chouksey, Sanjay

    2015-01-01

    Indus-2 Synchrotron Accelerator requires high quality conditioned uninterrupted AC mains power for their smooth and reliable operation. Three units of 1670 kVA and one unit of 1100 kVA capacity rotary uninterruptible power conditioning systems (UPS) were installed and commissioned. These UPS units require dust free and cool ambient conditions for smooth operation. In order to meet the ventilation requirements, an evaporative cooling system of 80000 cubic meter/hour capacity with filtration units was designed, installed and commissioned in February 2011 and is operational on round-the-clock basis. Evaporative cooling scheme was chosen as has various advantages over a refrigerated system like lower initial capital costs, lower energy usage, lower running costs, less greenhouse gas and it does not contribute to ozone depletion. The ventilation system filters the environment air in stages up to 5 micron level and being conditioned with an automatic controlled soft water circulating system with cooling pads. An instrumentation and control scheme is included in the system to provide the automation requirements for operating 24 x 7 through the year. All the mechanical, hydraulic and electrical devices are maintained by providing preventive maintenance work without affecting the accelerator machine operation. Availability and reliability of the system was analysed based on the failure data. In Year 2014, the ventilation system was upgraded to accommodate standby blower unit, coupling unit and improved quality of supply air with new air conditioning devices. The control panel monitors the condition of air in the UPS hall and maintainsup to 28°C air temperature and 85% maximum relative humidity in round-the clock shift with more than 98% operational reliability. In this paper, we present design philosophy, installation, instrumentation, testing, operation experience and availability of the ventilation system for Power Conditioning System, Indus complex. (author)

  2. Corrosion in batteries and fuel-cell power sources

    International Nuclear Information System (INIS)

    Cieslak, W.R.

    1987-01-01

    Batteries and fuel cells, as electrochemical power sources, provide energy through controlled redox reactions. Because these devices contain electrochemically active components, they place metals in contact with environments in which the metals may corrode. The shelf lives of batteries, particularly those that operate at ambient temperatures depend on very slow rates of corrosion of the electrode materials at open circuit. The means of reducing this corrosion must also be evaluated for its influence on performance. A second major corrosion consideration in electrochemical power sources involves the hardware. Again, shelf lives and service lives depend on very good corrosion resistance of the containment materials and inactive components, such as separators. In those systems in which electrolyte purity is important, even small amounts of corrosion that have not lessened structural integrity can degrade performance. There is a wide variety of batteries and fuel cells, and new systems are constantly under development. Therefore, to illustrate the types of corrosion phenomena that occur, this article will discuss the following systems: lead-acid batteries, alkaline batteries (in terms of the sintered nickel electrode only), lithium ambient-temperature batteries, aluminum/air batteries, sodium/sulfur batteries, phosphoric acid (H/sub 3/PO/sub 4/) fuel cells, and molten carbonate fuel cells

  3. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2003-07-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the January 2003 to June 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. This report summarizes the results obtained to date on: System performance analysis and model optimization; Reliability and cost model development; System control including dynamic model development; Heat exchanger material tests and life analysis; Pressurized SOFC evaluation; and Pre-baseline system definition for coal gasification fuel cell system concept.

  4. Performance of diagonal control structures at different operating conditions for polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Serra, Maria; Husar, Attila; Feroldi, Diego; Riera, Jordi [Institut de Robotica i Informatica Industrial, Universitat Politecnica de Catalunya, Consejo Superior de Investigaciones Cientificas, C. Llorens i Artigas 4, 08028 Barcelona (Spain)

    2006-08-25

    This work is focused on the selection of operating conditions in polymer electrolyte membrane fuel cells. It analyses efficiency and controllability aspects, which change from one operating point to another. Specifically, several operating points that deliver the same amount of net power are compared, and the comparison is done at different net power levels. The study is based on a complex non-linear model, which has been linearised at the selected operating points. Different linear analysis tools are applied to the linear models and results show important controllability differences between operating points. The performance of diagonal control structures with PI controllers at different operating points is also studied. A method for the tuning of the controllers is proposed and applied. The behaviour of the controlled system is simulated with the non-linear model. Conclusions indicate a possible trade-off between controllability and optimisation of hydrogen consumption. (author)

  5. Wireless microwave acoustic sensor system for condition monitoring in power plant environments

    Energy Technology Data Exchange (ETDEWEB)

    Pereira da Cunha, Mauricio [Univ. of Maine, Orno, ME (United States)

    2017-03-30

    This project successfully demonstrated novel wireless microwave acoustic temperature and pressure sensors that can be embedded into equipment and structures located in fossil fuel power plant environments to monitor the condition of components such as steam headers, re-heat lines, water walls, burner tubes, and power turbines. The wireless microwave acoustic sensor technology researched and developed through a collaborative partnership between the University of Maine and Environetix Technologies Corporation can provide a revolutionary impact in the power industry since it is anticipated that the wireless sensors will deliver reliable real-time sensing information in harsh power plant conditions that involve temperatures up to 1100oC and pressures up to 750 psi. The work involved the research and development of novel high temperature harsh environment thin film electrodes, piezoelectric smart microwave acoustic sensing elements, sensor encapsulation materials that were engineered to function over long times up to 1100oC, and a radio-frequency (RF) wireless interrogation electronics unit that are located both inside and outside the high temperature harsh environment. The UMaine / Environetix team have interacted with diverse power plant facilities, and identified as a testbed a local power generation facility, which burns municipal solid waste (MSW), the Penobscot Energy Recovery Company (PERC), Orrington, Maine. In this facility Environetix / UMaine successfully implemented and tested multiple wireless temperature sensor systems within the harsh-environment of the economizer chamber and at the boiler tubes, transferring the developed technology to the power plant environment to perform real-time sensor monitoring experiments under typical operating conditions, as initially targeted in the project. The wireless microwave acoustic sensor technology developed under this project for power plant applications offers several significant advantages including wireless

  6. Development of planar solid oxide fuel cells for power generation applications

    Energy Technology Data Exchange (ETDEWEB)

    Minh, N.Q. [AlliedSignal Aerospce Equipment Systems, Torrance, CA (United States)

    1996-04-01

    Planar solid oxide fuel cells (SOFCs) are presently being developed for a variety of electric power generation application. The planar design offers simple cell geometry, high power density, and multiple fabrication and gas manifolding options. Planar SOFC technology has received much attention recently, and significant progress has been made in this area. Recent effort at AlliedSignal has focused on the development of high-performance, lightweight planar SOFCs, having thin-electrolyte films, that can be operated efficiently at reduced temperatures (< 1000{degrees}C). The advantages of reduced-temperature operation include wider material choice (including use of metallic interconnects), expected longer cell life, reduced thermal stress, improved reliability, and reduced fuel cell cost. The key aspect in the development of thin-film SIFCs is to incorporate the thin electrolyte layer into the desired structure of cells in a manner that yields the required characteristics. AlliedSignal has developed a simple and cost-effective method based on tape calendering for the fabrication of thin-electrolyte SOFCs. Thin-electrolyte cells made by tape calendering have shown extraordinary performance, e.g., producing more than 500mW/cm{sup 2} at 700{degrees}C and 800mW/cm{sup 2} at 800{degrees}C with hydrogen as fuel and air is oxidant. thin-electrolyte single cells have been incorporated into a compliant metallic stack structure and operated at reduced and operated at reduced-temperature conditions.

  7. Cell heterogeneity problems in the analysis of zero power experiments

    International Nuclear Information System (INIS)

    Grimstone, M.J.; Stevenson, J.M.

    1979-01-01

    Methods are described for treating plate and pin cell heterogeneity in the preparation of broad group cross-sections used in the analysis of zero power fast reactor experiments. Methods used at Karlsruhe and Winfrith are summarised and compared, with particular reference to the treatment of resonance shielding, the calculation of broad group spatial fine structure, the treatment of leakage and the calculation of anisotropic diffusion coefficients. The problems of cells near boundaries such as core-breeder interfaces and of singularities such as control rods are also considered briefly. Numerical studies carried out to investigate approximations in the methods are described. These include tests of the accuracy of one-dimensional cell modelling techniques, and the validation by Monte Carlo of methods for treating streaming in the calculation of diffusion coefficients. Comparisons are shown between the heterogeneity effects calculated by the Karlsruhe and Winfrith methods for typical pin and plate cells used in the BIZET experimental programme, and their effect in a whole reactor calculation is indicated. Comparisons are given with measurements which provide tests of the heterogeneity calculations. These include reaction rate scans within pin and plate cells, and reaction rate measurements across sectors of pin and plate fuel, where the flux tilt is determined by the relative reactivity of the pin and plate cells. Finally, the heterogeneity problems arising in the interpretation of reaction rate measurements are discussed. (author)

  8. Optical Frequency Optimization of a High Intensity Laser Power Beaming System Utilizing VMJ Photovoltaic Cells

    Science.gov (United States)

    Raible, Daniel E.; Dinca, Dragos; Nayfeh, Taysir H.

    2012-01-01

    An effective form of wireless power transmission (WPT) has been developed to enable extended mission durations, increased coverage and added capabilities for both space and terrestrial applications that may benefit from optically delivered electrical energy. The high intensity laser power beaming (HILPB) system enables long range optical 'refueling" of electric platforms such as micro unmanned aerial vehicles (MUAV), airships, robotic exploration missions and spacecraft platforms. To further advance the HILPB technology, the focus of this investigation is to determine the optimal laser wavelength to be used with the HILPB receiver, which utilizes vertical multi-junction (VMJ) photovoltaic cells. Frequency optimization of the laser system is necessary in order to maximize the conversion efficiency at continuous high intensities, and thus increase the delivered power density of the HILPB system. Initial spectral characterizations of the device performed at the NASA Glenn Research Center (GRC) indicate the approximate range of peak optical-to-electrical conversion efficiencies, but these data sets represent transient conditions under lower levels of illumination. Extending these results to high levels of steady state illumination, with attention given to the compatibility of available commercial off-the-shelf semiconductor laser sources and atmospheric transmission constraints is the primary focus of this paper. Experimental hardware results utilizing high power continuous wave (CW) semiconductor lasers at four different operational frequencies near the indicated band gap of the photovoltaic VMJ cells are presented and discussed. In addition, the highest receiver power density achieved to date is demonstrated using a single photovoltaic VMJ cell, which provided an exceptionally high electrical output of 13.6 W/sq cm at an optical-to-electrical conversion efficiency of 24 percent. These results are very promising and scalable, as a potential 1.0 sq m HILPB receiver of

  9. Minimal RED Cell Pairs Markedly Improve Electrode Kinetics and Power Production in Microbial Reverse Electrodialysis Cells

    KAUST Repository

    Cusick, Roland D.

    2013-12-17

    Power production from microbial reverse electrodialysis cell (MRC) electrodes is substantially improved compared to microbial fuel cells (MFCs) by using ammonium bicarbonate (AmB) solutions in multiple RED cell pair stacks and the cathode chamber. Reducing the number of RED membranes pairs while maintaining enhanced electrode performance could help to reduce capital costs. We show here that using only a single RED cell pair (CP), created by operating the cathode in concentrated AmB, dramatically increased power production normalized to cathode area from both acetate (Acetate: from 0.9 to 3.1 W/m 2-cat) and wastewater (WW: 0.3 to 1.7 W/m2), by reducing solution and charge transfer resistances at the cathode. A second RED cell pair increased RED stack potential and reduced anode charge transfer resistance, further increasing power production (Acetate: 4.2 W/m2; WW: 1.9 W/m2). By maintaining near optimal electrode power production with fewer membranes, power densities normalized to total membrane area for the 1-CP (Acetate: 3.1 W/m2-mem; WW: 1.7 W/m2) and 2-CP (Acetate: 1.3 W/m2-mem; WW: 0.6 W/m2) reactors were much higher than previous MRCs (0.3-0.5 W/m2-mem with acetate). While operating at peak power, the rate of wastewater COD removal, normalized to reactor volume, was 30-50 times higher in 1-CP and 2-CP MRCs than that in a single chamber MFC. These findings show that even a single cell pair AmB RED stack can significantly enhance electrical power production and wastewater treatment. © 2013 American Chemical Society.

  10. Minimal RED Cell Pairs Markedly Improve Electrode Kinetics and Power Production in Microbial Reverse Electrodialysis Cells

    KAUST Repository

    Cusick, Roland D.; Hatzell, Marta; Zhang, Fang; Logan, Bruce E.

    2013-01-01

    Power production from microbial reverse electrodialysis cell (MRC) electrodes is substantially improved compared to microbial fuel cells (MFCs) by using ammonium bicarbonate (AmB) solutions in multiple RED cell pair stacks and the cathode chamber. Reducing the number of RED membranes pairs while maintaining enhanced electrode performance could help to reduce capital costs. We show here that using only a single RED cell pair (CP), created by operating the cathode in concentrated AmB, dramatically increased power production normalized to cathode area from both acetate (Acetate: from 0.9 to 3.1 W/m 2-cat) and wastewater (WW: 0.3 to 1.7 W/m2), by reducing solution and charge transfer resistances at the cathode. A second RED cell pair increased RED stack potential and reduced anode charge transfer resistance, further increasing power production (Acetate: 4.2 W/m2; WW: 1.9 W/m2). By maintaining near optimal electrode power production with fewer membranes, power densities normalized to total membrane area for the 1-CP (Acetate: 3.1 W/m2-mem; WW: 1.7 W/m2) and 2-CP (Acetate: 1.3 W/m2-mem; WW: 0.6 W/m2) reactors were much higher than previous MRCs (0.3-0.5 W/m2-mem with acetate). While operating at peak power, the rate of wastewater COD removal, normalized to reactor volume, was 30-50 times higher in 1-CP and 2-CP MRCs than that in a single chamber MFC. These findings show that even a single cell pair AmB RED stack can significantly enhance electrical power production and wastewater treatment. © 2013 American Chemical Society.

  11. Using modular neural networks to monitor accident conditions in nuclear power plants

    International Nuclear Information System (INIS)

    Guo, Z.

    1992-01-01

    Nuclear power plants are very complex systems. The diagnoses of transients or accident conditions is very difficult because a large amount of information, which is often noisy, or intermittent, or even incomplete, need to be processed in real time. To demonstrate their potential application to nuclear power plants, neural networks axe used to monitor the accident scenarios simulated by the training simulator of TVA's Watts Bar Nuclear Power Plant. A self-organization network is used to compress original data to reduce the total number of training patterns. Different accident scenarios are closely related to different key parameters which distinguish one accident scenario from another. Therefore, the accident scenarios can be monitored by a set of small size neural networks, called modular networks, each one of which monitors only one assigned accident scenario, to obtain fast training and recall. Sensitivity analysis is applied to select proper input variables for modular networks

  12. Retinal ganglion cell topography and spatial resolving power in penguins.

    Science.gov (United States)

    Coimbra, João Paulo; Nolan, Paul M; Collin, Shaun P; Hart, Nathan S

    2012-01-01

    Penguins are a group of flightless seabirds that exhibit numerous morphological, behavioral and ecological adaptations to their amphibious lifestyle, but little is known about the topographic organization of neurons in their retinas. In this study, we used retinal wholemounts and stereological methods to estimate the total number and topographic distribution of retinal ganglion cells in addition to an anatomical estimate of spatial resolving power in two species of penguins: the little penguin, Eudyptula minor, and the king penguin, Aptenodytes patagonicus. The total number of ganglion cells per retina was approximately 1,200,000 in the little penguin and 1,110,000 in the king penguin. The topographic distribution of retinal ganglion cells in both species revealed the presence of a prominent horizontal visual streak with steeper gradients in the little penguin. The little penguin retinas showed ganglion cell density peaks of 21,867 cells/mm², affording spatial resolution in water of 17.07-17.46 cycles/degree (12.81-13.09 cycles/degree in air). In contrast, the king penguin showed a relatively lower peak density of ganglion cells of 14,222 cells/mm², but--due to its larger eye--slightly higher spatial resolution in water of 20.40 cycles/degree (15.30 cycles/degree in air). In addition, we mapped the distribution of giant ganglion cells in both penguin species using Nissl-stained wholemounts. In both species, topographic mapping of this cell type revealed the presence of an area gigantocellularis with a concentric organization of isodensity contours showing a peak in the far temporal retina of approximately 70 cells/mm² in the little penguin and 39 cells/mm² in the king penguin. Giant ganglion cell densities gradually fall towards the outermost isodensity contours revealing the presence of a vertically organized streak. In the little penguin, we confirmed our cytological characterization of giant ganglion cells using immunohistochemistry for microtubule

  13. Air conditioning and power generation for residential applications using liquid nitrogen

    International Nuclear Information System (INIS)

    Ahmad, Abdalqader; Al-Dadah, Raya; Mahmoud, Saad

    2016-01-01

    Highlights: • Using liquid nitrogen to provide power and air conditioning for domestic applications. • The proposed system leads to save energy and reduce the peak electricity demands. • Compared with conventional AC saving up to 36% was achieved at the current LN2 price. • The widespread of this technology leads to lower LN2 price and saving up to 81%. • The last configuration was the efficient system with overall thermal efficiency 74%. - Abstract: Current air conditioning (AC) systems consume a significant amount of energy, particularly during peak times where most electricity suppliers face difficulties to meet the users’ demands, and the global demands for AC systems have increased rapidly over the last few decades leading to significant power consumption and carbon dioxide emissions. This paper presents a new technique that uses liquid nitrogen (LN2) produced from renewable energy sources, or surplus electricity at off peak times, to provide cooling and power for domestic houses. Thermodynamic analyses of various cryogenic cycles have been carried out to achieve the most effective configuration that produces the maximum power output with minimum LN2 flow rate, to meet the required cooling of a 170 m"2 dwelling in Libya. A comparison with a conventional AC system was also made. Results showed that at the current LN2 prices, using LN2 to provide cooling and power demands of residential buildings is feasible and saves up to 36% compared to conventional air conditioning systems with an overall thermal efficiency of 74%. However, as the LN2 price decreases to around 1.3 pence per kg, the proposed technology will have significant advantages compared to conventional AC systems with savings of up to 81%.

  14. Experimental and theoretical investigations of Cs-Ba vapor tacitron inverter for power conditioning in space power systems

    International Nuclear Information System (INIS)

    El-Genk, M.; Murray, C.; Wernsman, B.

    1993-01-01

    The operation characteristics of the Cs-Ba tacitron as a switch are investigated experimentally in three modes: (a) breakdown mode, (b) I-V mode, and (c) current modulation mode. The switching frequency, grid potentials for ignition and extinguishing of discharge, and the Cs pressure and emission conditions (Ba pressure and emitter temperature) for stable current modulation are determined. The experimental data is also used to determine the off-time required for successful ignition, and the effects of the aforementioned operation parameters on the ignition duty cycle threshold for stable modulation. Operation parameters measured include switching frequency up to 20 kHz, hold-off voltage up to 180 V, current densities in excess of 15 A/cm 2 , switch power density of 1 kW/cm 2 . and a switching efficiency in excess of 90% at collector C: realer than 30 V. The voltage drop strongly depends on the Cs pressure and to a lesser extent on the emission conditions. Increasing the Cs pressure and/or the emission current lowers the voltage drop, however, for the same initial Cs pressure and emission conditions, the voltage drop in the I-V mode is usually lower than that during current modulation. As long as the discharge current is kept lower that the.emission current, the voltage drop during stable current modulation could be as low as 3 V

  15. Fuel cell - An alternative for power and heat generating

    International Nuclear Information System (INIS)

    Zubcu, Victor; Ursescu, Gabriel; Zubcu, Dorina Silvia; Miler, Mihai Cristian

    2004-01-01

    One of the most promising energy generating technologies is the fuel cell (FC) because of its high efficiency and low emissions. There are even zero chemical emissions FC and cogeneration plants based on FC generate low heat emissions too. FC was invented 160 years ago but it was usually used only since 1960 in space missions. A FC farm tractor was tested 40 years ago. FC was again taken into account by power engineering since 1990 and it is now considered a credible alternative to power and heat generating. The thermal power engineers (and not only they) have two problems of cardinal importance for mankind to solve: - Energy saving (by increasing of energy generating efficiency) and - Environmental protection (by reducing chemical and heat emissions). The possibilities to use FC to generate power and heat are practically endless: on the earth, in the air and outer space, by and under water, in numberless areas of human activities. FC are now powering buses, cars, trains, boats, plains, scooters, highway road signs etc. There are already miniature FC for portable electronics. Homes, schools, hospitals, institutes, banks, police stations, etc are using FC to generate power and heat for their facilities. The methane gas produced by wastewater treatment plants and landfills is converted into electricity by using FC. Being less expensive than nuclear and solar source of energy, FC is now generally used in the space missions (in addition FC generates water). In this work an analysis of the possibilities to use FC especially for combined power and heat generating is presented. FC is favourite as energy source in space missions because it is less expensive than nuclear or solar sources. All major automobile companies have FC powered automobiles in testing stage. Mini FC for phone, laptop, and electronics are already on market. FC will be use to pagers, video recorders, small portable tools, miniature robots, special devices as hearing aid various devices, smoke detectors

  16. Seismic-safe conditions of blasting near pressure pipe-lines during power installation construction

    International Nuclear Information System (INIS)

    Smolij, N.I.; Nikitin, A.S.

    1980-01-01

    Seismic-safe conditions for performing drill-blasting operations in the vicinity of underground gas pipelines when constructing thermal- or nuclear power plants are discussed. It is shown that, for the determination of seismic-safe parameters, of drill-blasting operations, the maximum permissible level of seismic loads should be specified taking into account the mechanical properties of the pipeline.metal, structural parameters of the gas pipeline and the pressure of the medium transported. Besides, the seismic effect of the blast should be considered with regard to particular conditions of blasting and rock properties. The equations and diagrams used in the calculation are given

  17. Open system architecture for condition based maintenance applied to a hydroelectric power plant

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, E.J.; Alvares, A.J. [University of Brasilia (UnB), DF (Brazil). Mechanical and Mechatronic Dept.], Emails: eamaya@unb.br, alvares@AlvaresTech.com; Gudwin, R.R. [State University of Campinas (UNICAMP), SP (Brazil). Computer Engineering and Industrial Automation Dept.], E-mail: gudwin@dca.fee.unicamp.br

    2009-07-01

    The hydroelectric power plant of Balbina is implementing a condition based maintenance system applying an open, modular and scalable integrated architecture to provide comprehensive solutions and support to the end users like operational and maintenance team. The system called SIMPREBAL (Predictive Maintenance System of Balbina) is advocate of open standards, in particular through collaborative research programmers. In the developing is clearly understands the need for both, industry standards and a simple to use software development tool chain, supporting the development of complex condition based maintenance systems with multiple partners. The Open System Architecture for Condition Based Maintenance (OSA-CBM) is a standard that consider seven hierarchic layers that represent a logic transition or performed data flow from the data acquisition layer, through the intermediates layers as signal processing, condition monitor, health assessment, prognostics and decision support, to arrive to the presentation layer. SIMPREBAL is being implementing as an OSA-CBM software framework and tool set that allows the creation of truly integrated, comprehensive maintenance solutions through the internet. This paper identifies specific benefits of the application of the OSA-CBM in comprehensive solutions of condition based maintenance for a hydroelectric power plant. (author)

  18. Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials

    KAUST Repository

    Zhu, Xiuping; Tokash, Justin C.; Hong, Yiying; Logan, Bruce E.

    2013-01-01

    Power density curves for microbial fuel cells (MFCs) often show power overshoot, resulting in inaccurate estimation of MFC performance at high current densities. The reasons for power overshoot are not well understood, but biofilm acclimation

  19. Fibroblast and T cells conditioned media induce maturation dendritic cell and promote T helper immune response

    Directory of Open Access Journals (Sweden)

    Masoumeh Asadi

    2012-06-01

    Full Text Available Dendritic cells (DCs induce pathogen-specific T cell responses. We comprehensively studied the effects of addition of maturation stimulus, fibroblasts (fibroblast conditioned medium, PHA activated T cells (T cell conditioned medium, and mixture of fibroblast & PHA activated T cells (FCM-TCCM conditioned media on maturation of DCs. Monocytes were cultured with GM-CSF and IL-4 for five days. Maturation factors included MCM and TNF-α as control group. FCM and TCCM, or FCM-TCCM supernatant were considered as the treatment group. Tumor antigens were added at day five. Matured DCs were harvested at day seven. Phenotypic and functional analyses were carried out using anti (CD14, CD80, CD86, CD83 and HLA-DR monoclonal antibodies. Phagocytic activity, mixed lymphocyte reaction (MLR and cytokine production were also evaluated. At the end of culturing period, significantly fully matured DCs with large amount cytoplasm and copious dendritic projections were found in the presence of MCM, TNF-α with or without FCM, TCCM, FCM as well as TCCM. Flow cytometric analysis revealed that expression of CD14 decreased in particular in treated DCs, at the 5th day and expression of CD80, CD86 and HLA-DR was higher when FCM, TCCM, FCM plus TCCM were added to maturation factor. This study demonstrated that DCs matured with these methods had optimum function in comparison with either factor alone.

  20. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: RESIDENTIAL ELECTRIC POWER GENERATION USING THE PLUG POWER SU1 FUEL CELL SYSTEM

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of the Plug Power SU1 Fuel Cell System manufactured by Plug Power. The SU1 is a proton exchange membrane fuel cell that requires hydrogen (H2) as fuel. H2 is generally not available, so the ...

  1. Assessment of Microbial Fuel Cell Configurations and Power Densities

    KAUST Repository

    Logan, Bruce E.

    2015-07-30

    Different microbial electrochemical technologies are being developed for a many diverse applications, including wastewater treatment, biofuel production, water desalination, remote power sources, and as biosensors. Current and energy densities will always be limited relative to batteries and chemical fuel cells, but these technologies have other advantages based on the self-sustaining nature of the microorganisms that can donate or accept electrons from an electrode, the range of fuels that can be used, and versatility in the chemicals that can be produced. The high cost of membranes will likely limit applications of microbial electrochemical technologies that might require a membrane. For microbial fuel cells, which do not need a membrane, questions remain on whether larger-scale systems can produce power densities similar to those obtained in laboratory-scale systems. It is shown here that configuration and fuel (pure chemicals in laboratory media versus actual wastewaters) remain the key factors in power production, rather than the scale of the application. Systems must be scaled up through careful consideration of electrode spacing and packing per unit volume of reactor.

  2. Cloud Instrument Powered by Solar Cell Sends Data to Pachube

    Directory of Open Access Journals (Sweden)

    Doru Ursutiu

    2010-11-01

    Full Text Available Despite the economic downturn, there have been quite a few new developments in the world of remote measurements lately. Tag4M (www.tag4m.com introduced the concept of cloud instrument where sensors connected to WiFi tags send data to off-the-shelf Access Points which are part of the WiFi infrastructure that exists in enterprises, retail outlets, factories, and warehouses. Access Points route the data to the Internet where specialized web applications receive the information for processing and display. One of these specialized web applications is Pachube, (http://www.pachube.com which bills itself as a “real-time data brokerage platform”. Pachube enables people to tag and share real time sensor data from objects, devices and spaces around the world. This article presents the pachube cloud instrument where sensors connected to Tag4M WiFi tags send digitized data to www.pachube.com for public display. The article contains very detailed analysis of the solar cell power source that is used to continuously power the Tag4M tag during this application. Cloud Instruments powered by solar cells enable people around the world to share real time sensor data using web pages on the Internet. This is a very interesting and exciting technology development that we want to bring to your attention.

  3. Assessment of Microbial Fuel Cell Configurations and Power Densities

    KAUST Repository

    Logan, Bruce E.; Wallack, Maxwell J; Kim, Kyoung-Yeol; He, Weihua; Feng, Yujie; Saikaly, Pascal

    2015-01-01

    Different microbial electrochemical technologies are being developed for a many diverse applications, including wastewater treatment, biofuel production, water desalination, remote power sources, and as biosensors. Current and energy densities will always be limited relative to batteries and chemical fuel cells, but these technologies have other advantages based on the self-sustaining nature of the microorganisms that can donate or accept electrons from an electrode, the range of fuels that can be used, and versatility in the chemicals that can be produced. The high cost of membranes will likely limit applications of microbial electrochemical technologies that might require a membrane. For microbial fuel cells, which do not need a membrane, questions remain on whether larger-scale systems can produce power densities similar to those obtained in laboratory-scale systems. It is shown here that configuration and fuel (pure chemicals in laboratory media versus actual wastewaters) remain the key factors in power production, rather than the scale of the application. Systems must be scaled up through careful consideration of electrode spacing and packing per unit volume of reactor.

  4. Development of EDG Engine Condition Diagnosis Logic in Korean Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Byoung Oh; Choi, Kwang Hee; Lee, Sang Guk

    2012-01-01

    Through benchmarking using the excellent record of the nuclear power plants under operation in the United States and Europe and with the continuous development of nuclear-related technology, the Korea Hydro and Nuclear Power Co., LTD (KHNP) reached an average planned preventive maintenance period of 29.6 days in 2009. In addition, KHNP plans to reduce the planned preventive maintenance period at Korea standard nuclear plants (KSNPs) from 29.6 days to less than 21 days by 2014 through a combination of domestic research and development (R and D) and the introduction of the technical know-how applied in the very best overseas nuclear power plants (NPPs). Accordingly, it is necessary to reduce the inspection and maintenance periods of an emergency diesel generator (EDG), which are currently set in the planned preventive maintenance period. If the condition-based predictive maintenance (CBM) technology is applied to EDG engines, the maintenance period of an EDG will be shortened because engine maintenance is accomplished according to the engine condition under this plan. In this study, in the series of CBM program developments which will be applied to EDG engines, the development results of condition diagnosis logic to be applied to EDG engines for exiting domestic NPPs are introduced

  5. Short-term power plant operation scheduling in thermal systems with long-term boundary conditions

    International Nuclear Information System (INIS)

    Wolter, H.

    1990-01-01

    For the first time, the modeling of long-term quantitative conditions within the short-term planning of the application of power stations is made via their shadow prices. It corresponds to a decomposition of the quantitative conditions by means of the method of the Langrange relaxation. The shadow prices determined by the planning for energy application regarding long- term quantitative conditions pass into the short-term planning for power station application and subsidize or rather punish the application of limited amounts as for as they are not claimed for sufficiently or excessively. The clear advantage of this modeling is that the short-term planning of power station application can deviate from the envisioned energy application regarding the total optimum, because the shadow prices contain all information about the cost effect of the energy shifts in the residual total period, which become necessary due to the deviations in the short-term period to be planned in the current short-term period. (orig./DG) [de

  6. New digital reference current generation for shunt active power filter under distorted voltage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Abdusalam, Mohamed; Karimi, Shahram; Saadate, Shahrokh [Groupe de Recherche en Electrotechnique et Electronique de Nancy (GREEN), CNRS UMR 7037 (France); Poure, Philippe [Laboratoire d' Instrumentation Electronique de Nancy (LIEN), EA 3440, Universite Henri Poincare - Nancy Universite, B.P. 239, 54506 Vandoeuvre les Nancy Cedex (France)

    2009-05-15

    In this paper, a new reference current computation method suitable for shunt active power filter control under distorted voltage conditions is proposed. The active power filter control is based on the use of self-tuning filters (STF) for the reference current generation and on a modulated hysteresis current controller. This active filter is intended for harmonic compensation of a diode rectifier feeding a RL load under distorted voltage conditions. The study of the active filter control is divided in two parts. The first one deals with the harmonic isolator which generates the harmonic reference currents and is experimentally implemented in a DS1104 card of a DSPACE prototyping system. The second part focuses on the generation of the switching pattern of the inverter by using a modulated hysteresis current controller, implemented in an analogue card. The use of STF instead of classical extraction filters allows extracting directly the voltage and current fundamental components in the {alpha}-{beta} axis without phase locked loop (PLL). The performances are good even under distorted voltage conditions. First, the effectiveness of the new proposed method is mathematically studied and verified by computer simulation. Then, experimental results are presented using a DSPACE system associated with the analogue current controller for a real shunt active power filter. (author)

  7. Magnetic manipulation device for the optimization of cell processing conditions.

    Science.gov (United States)

    Ito, Hiroshi; Kato, Ryuji; Ino, Kosuke; Honda, Hiroyuki

    2010-02-01

    Variability in human cell phenotypes make it's advancements in optimized cell processing necessary for personalized cell therapy. Here we propose a strategy of palm-top sized device to assist physically manipulating cells for optimizing cell preparations. For the design of such a device, we combined two conventional approaches: multi-well plate formatting and magnetic cell handling using magnetite cationic liposomes (MCLs). From our previous works, we showed the labeling applications of MCL on adhesive cells for various tissue engineering approaches. To feasibly transfer cells in multi-well plate, we here evaluated the magnetic response of MCL-labeled suspension type cells. The cell handling performance of Jurkat cells proved to be faster and more robust compared to MACS (Magnetic Cell Sorting) bead methods. To further confirm our strategy, prototype palm-top sized device "magnetic manipulation device (MMD)" was designed. In the device, the actual cell transportation efficacy of Jurkat cells was satisfying. Moreover, as a model of the most distributed clinical cell processing, primary peripheral blood mononuclear cells (PBMCs) from different volunteers were evaluated. By MMD, individual PBMCs indicated to have optimum Interleukin-2 (IL-2) concentrations for the expansion. Such huge differences of individual cells indicated that MMD, our proposing efficient and self-contained support tool, could assist the feasible and cost-effective optimization of cell processing in clinical facilities. Copyright (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Stability of electric characteristics of solar cells for continuous power supply

    Directory of Open Access Journals (Sweden)

    Stojanović Nebojša M.

    2015-01-01

    Full Text Available This paper investigates the output characteristics of photovoltaic solar cells working in hostile working conditions. Examined cells, produced by different innovative procedures, are available in the market. The goal was to investigate stability of electric characteristics of solar cells, which are used today in photovoltaic solar modules for charging rechargeable batteries which, coupled with batteries, supply various electronic systems such as radio repeaters on mountains tops, airplanes, mobile communication stations and other remote facilities. Charging of rechargeable batteries requires up to 25 % higher voltage compared to nominal output voltage of the battery. This paper presents results of research of solar cells, which also apply to cases in which continuous power supply is required. [Projekat Ministarstva nauke Republike Srbije, br. III 171007

  9. Development of an empirical dynamic model for a Nexa PEM fuel cell power module

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Mehdi; Mohammad Taghi Bathaee, S. [Power Systems Laboratory, Department of Electrical Engineering, K.N. Toosi University of Technology, 16317-14191 Tehran (Iran)

    2010-12-15

    The goal of this study is to develop a fuel cell model which is capable of characterizing fuel cell steady-state performance as well as dynamic behavior. In this paper a new dynamic model of a 1.2 kW Polymer Electrolyte Membrane Fuel Cell (PEMFC) is developed and validated through a series of experiments. The experimental results have been obtained from a Nexa trademark PEM fuel cell power module under different load conditions. Based on this model, a simulator software package has been developed using the MATLAB {sup registered} and Simulink {sup registered} software and simulation results have been carried out. The proposed model exhibits good agreement with experiment results in steady-state and dynamic performance. (author)

  10. Demonstration of the SeptiStrand benthic microbial fuel cell powering a magnetometer for ship detection

    Science.gov (United States)

    Arias-Thode, Y. Meriah; Hsu, Lewis; Anderson, Greg; Babauta, Jerome; Fransham, Roy; Obraztsova, Anna; Tukeman, Gabriel; Chadwick, D. Bart

    2017-07-01

    The Navy has a need for monitoring conditions and gathering information in marine environments. Sensors can monitor and report environmental parameters and potential activities such as animal movements, ships, or personnel. However, there has to be a means to power these sensors. One promising enabling technology that has been shown to provide long-term power production in underwater environments is the benthic microbial fuel cells (BMFC). BMFCs are devices that generate energy by coupling bioanodes and biocathodes through an external energy harvester. Recent studies have demonstrated success for usage of BMFCs in powering small instruments and other devices on the seafloor over limited periods of time. In this effort, a seven-stranded BMFC linear array of 30 m was designed to power a seafloor magnetometer to detect passing ship movements through Pearl Harbor, Hawaii. The BMFC system was connected to a flyback energy harvesting circuit that charged the battery powering the magnetometer. The deployment was demonstrated the BMFC supplied power to the battery for approximately 38 days. This is the first large-scale demonstration system for usage of the SeptiStrand BMFC technology to power a relevant sensor.

  11. Dry cooling with night cool storage to enhance solar power plants performance in extreme conditions areas

    International Nuclear Information System (INIS)

    Muñoz, J.; Martínez-Val, J.M.; Abbas, R.; Abánades, A.

    2012-01-01

    Highlights: ► Solar thermo-electric power plants with thermal storage for condenser cooling. ► Technology to mitigate the negative effect on Rankine cycles of the day-time high temperatures in deserts. ► Electricity production augmentation in demand-peak hours by the use of day-night temperature difference. -- Abstract: Solar thermal power plants are usually installed in locations with high yearly average solar radiation, often deserts. In such conditions, cooling water required for thermodynamic cycles is rarely available. Moreover, when solar radiation is high, ambient temperature is very high as well; this leads to excessive condensation temperature, especially when air-condensers are used, and decreases the plant efficiency. However, temperature variation in deserts is often very high, which drives to relatively low temperatures during the night. This fact can be exploited with the use of a closed cooling system, so that the coolant (water) is chilled during the night and store. Chilled water is then used during peak temperature hours to cool the condenser (dry cooling), thus enhancing power output and efficiency. The present work analyzes the performance improvement achieved by night thermal cool storage, compared to its equivalent air cooled power plant. Dry cooling is proved to be energy-effective for moderately high day–night temperature differences (20 °C), often found in desert locations. The storage volume requirement for different power plant efficiencies has also been studied, resulting on an asymptotic tendency.

  12. Tissue Engineering Under Microgravity Conditions-Use of Stem Cells and Specialized Cells.

    Science.gov (United States)

    Grimm, Daniela; Egli, Marcel; Krüger, Marcus; Riwaldt, Stefan; Corydon, Thomas J; Kopp, Sascha; Wehland, Markus; Wise, Petra; Infanger, Manfred; Mann, Vivek; Sundaresan, Alamelu

    2018-03-29

    Experimental cell research studying three-dimensional (3D) tissues in space and on Earth using new techniques to simulate microgravity is currently a hot topic in Gravitational Biology and Biomedicine. This review will focus on the current knowledge of the use of stem cells and specialized cells for tissue engineering under simulated microgravity conditions. We will report on recent advancements in the ability to construct 3D aggregates from various cell types using devices originally created to prepare for spaceflights such as the random positioning machine (RPM), the clinostat, or the NASA-developed rotating wall vessel (RWV) bioreactor, to engineer various tissues such as preliminary vessels, eye tissue, bone, cartilage, multicellular cancer spheroids, and others from different cells. In addition, stem cells had been investigated under microgravity for the purpose to engineer adipose tissue, cartilage, or bone. Recent publications have discussed different changes of stem cells when exposed to microgravity and the relevant pathways involved in these biological processes. Tissue engineering in microgravity is a new technique to produce organoids, spheroids, or tissues with and without scaffolds. These 3D aggregates can be used for drug testing studies or for coculture models. Multicellular tumor spheroids may be interesting for radiation experiments in the future and to reduce the need for in vivo experiments. Current achievements using cells from patients engineered on the RWV or on the RPM represent an important step in the advancement of techniques that may be applied in translational Regenerative Medicine.

  13. Cell-Phone Tower Power System Prototype Testing for Verizon Wireless |

    Science.gov (United States)

    Advanced Manufacturing Research | NREL Cell-Phone Tower Power System Prototype Testing for Verizon Wireless Cell-Phone Tower Power System Prototype Testing for Verizon Wireless For Verizon Wireless , NREL tested a new cell-phone tower power system prototype based on DC interconnection and photovoltaics

  14. Thermally regenerative hydrogen/oxygen fuel cell power cycles

    Science.gov (United States)

    Morehouse, J. H.

    1986-01-01

    Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.

  15. Fuel economy and range estimates for fuel cell powered automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Steinbugler, M.; Ogden, J. [Princeton Univ., NJ (United States)

    1996-12-31

    While a number of automotive fuel cell applications have been demonstrated, including a golf cart, buses, and a van, these systems and others that have been proposed have utilized differing configurations ranging from direct hydrogen fuel cell-only power plants to fuel cell/battery hybrids operating on reformed methanol. To date there is no clear consensus on which configuration, from among the possible combinations of fuel cell, peaking device, and fuel type, is the most likely to be successfully commercialized. System simplicity favors direct hydrogen fuel cell vehicles, but infrastructure is lacking. Infrastructure favors a system using a liquid fuel with a fuel processor, but system integration and performance issues remain. A number of studies have analyzed particular configurations on either a system or vehicle scale. The objective of this work is to estimate, within a consistent framework, fuel economies and ranges for a variety of configurations using flexible models with the goal of identifying the most promising configurations and the most important areas for further research and development.

  16. Ventilation and air-conditioning system for PWR nuclear power plant

    International Nuclear Information System (INIS)

    Ohmoto, Kenji

    1987-01-01

    This report outlines the ventilation and air conditioning facilities for PWR nuclear power plant as well as design re-evaluation and optimization of ventilation and air-conditioning. The primary PWR installations are generally housed in the nuclear reactor building, auxiliary buildings and control building, which are equipped with their own ventilation and air-conditioning systems to serve for their specific purposes. A ventilation/air-conditioning system should be able to work effectively not only for maintaining the ordinary reactor operation but also for controlling the environmental temperature in the event of an accident. Designing of a ventilation/air-conditioning system relied on empirical data in the past, but currently it is performed based on information obtained from various analyses to optimize the system configuration and ventilation capacity. Design re-evaluation of ventilation/air-conditioning systems are conducted widely in various areas, aiming at the integration of safety systems, optimum combination of air-cooling and water-cooling systems, and optimization of the ventilation rate for controlling the concentrations of radioactive substances in the atmosphere in the facilities. It is pointed out that performance evaluation of ventilation/air-conditioning systems, which has been conducted rather macroscopically, should be carried out more in detal in the future to determine optimum air streams and temperature distribution. (Nogami, K.)

  17. Steam oxidation of TP 347H FG. Laboratory exposures versus service conditions at the power plant

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Anette N. [DONG Energy A/S, Copenhagen (Denmark); Montgomery, Melanie [DONG Energy A/S, Copenhagen (Denmark); Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering; Vattenfall Heat Nordic, Copenhagen (Denmark)

    2010-07-01

    TP347H FG is often used as final superheater tubing at Danish Power Plants. The oxidation behaviour of TP347H FG in steam was investigated both in laboratory conditions and field conditions. Short time exposures (336 hours) were performed in the laboratory at 500, 600 and 700 C in gasses with 8 or 46% H{sub 2}O and varying oxygen partial pressures. The shortest exposure time at the power plant was 7720 h, the temperature varied between 500 and 650 C. Surprisingly, thicker oxide layers formed within the laboratory facility at 600 and 700 C than during the long time exposures at the power plant. This could not be explained by spallation. Double-layered oxides developed during oxidation. The outer layer consist of Fe-oxides and the inner oxide contained Fe and the remaining alloy elements. Investigations with scanning electron microscopy (SEM) revealed that the morphology of the inner oxide was different for the two types of exposures. However, investigation using transmission electron microscopy (TEM) showed that the inner oxide in both cases consisted of particles of Fe-Mn-Cr spinel embedded in a metallic Fe-Ni matrix in the bulk of the (former) alloy grains and Cr-rich oxide layer along the (former) alloy grain boundaries. The main difference between the layers formed at the two locations is that the Cr-rich oxide layer is thicker for the samples exposed at the power plant than that for the samples exposed at the laboratory conditions. Furthermore, the depth of Cr depletion in the alloy adjacent the oxide layer is greater for the samples exposed at the power plant compared to those exposed in the laboratory. The microstructure investigation suggests that the slower oxidation rate of TP347H FG at the power plant as compared to the laboratory is due to a larger reservoir of Cr for the samples exposed at the power plant probably combined with a higher mobility of Cr within the alloy. (orig.)

  18. Operational limits and conditions and operating procedures for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide was prepared as part of the Agency's programme for establishing safety standards relating to nuclear power plants. The present Safety Guide supersedes the IAEA Safety Guide on Operational Limits and Conditions for Nuclear Power Plants which was issued in 1979 as Safety Series No. 50-SG-O3. For a nuclear power plant to be operated in a safe manner, the provisions made in the final design and subsequent modifications shall be reflected in limitations on plant operating parameters and in the requirements on plant equipment and personnel. Under the responsibility of the operating organization, these shall be developed during the design safety evaluation as a set of operational limits and conditions (OLCs). A major contribution to compliance with the OLCs is made by the development and utilization of operating procedures (OPs) that are consistent with and fully implement the OLCs. The requirements for the OLCs and OPs are established in Section 5 of the IAEA Safety Requirements publication Safety of Nuclear Power Plants: Operation, which this Safety Guide supplements. The purpose of this Safety Guide is to provide guidance on the development, content and implementation of OLCs and OPs. The Safety Guide is directed at both regulators and owners/operators. This Safety Guide covers the concept of OLCs, their content as applicable to land based stationary power plants with thermal neutron reactors, and the responsibilities of the operating organization regarding their establishment, modification, compliance and documentation. The OPs to support the implementation of the OLCs and to ensure their observance are also within the scope of this Safety Guide. The particular aspects of the procedures for maintenance, surveillance, in-service inspection and other safety related activities in connection with the safe operation of nuclear power plants are outside the scope of this Safety Guide but can be found in other IAEA Safety Guides. Section 2 indicates the

  19. Operational limits and conditions and operating procedures for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2000-01-01

    This Safety Guide was prepared as part of the Agency's programme for establishing safety standards relating to nuclear power plants. The present Safety Guide supersedes the IAEA Safety Guide on Operational Limits and Conditions for Nuclear Power Plants which was issued in 1979 as Safety Series No. 50-SG-O3. For a nuclear power plant to be operated in a safe manner, the provisions made in the final design and subsequent modifications shall be reflected in limitations on plant operating parameters and in the requirements on plant equipment and personnel. Under the responsibility of the operating organization, these shall be developed during the design safety evaluation as a set of operational limits and conditions (OLCs). A major contribution to compliance with the OLCs is made by the development and utilization of operating procedures (OPs) that are consistent with and fully implement the OLCs. The requirements for the OLCs and OPs are established in Section 5 of the IAEA Safety Requirements publication Safety of Nuclear Power Plants: Operation, which this Safety Guide supplements. The purpose of this Safety Guide is to provide guidance on the development, content and implementation of OLCs and OPs. The Safety Guide is directed at both regulators and owners/operators. This Safety Guide covers the concept of OLCs, their content as applicable to land based stationary power plants with thermal neutron reactors, and the responsibilities of the operating organization regarding their establishment, modification, compliance and documentation. The OPs to support the implementation of the OLCs and to ensure their observance are also within the scope of this Safety Guide. The particular aspects of the procedures for maintenance, surveillance, in-service inspection and other safety related activities in connection with the safe operation of nuclear power plants are outside the scope of this Safety Guide but can be found in other IAEA Safety Guides. Section 2 indicates the

  20. The Power and the Promise of Cell Reprogramming: Personalized Autologous Body Organ and Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Ana Belen Alvarez Palomo

    2014-04-01

    Full Text Available Reprogramming somatic cells to induced pluripotent stem cells (iPSCs or direct reprogramming to desired cell types are powerful and new in vitro methods for the study of human disease, cell replacement therapy, and drug development. Both methods to reprogram cells are unconstrained by the ethical and social questions raised by embryonic stem cells. iPSC technology promises to enable personalized autologous cell therapy and has the potential to revolutionize cell replacement therapy and regenerative medicine. Potential applications of iPSC technology are rapidly increasing in ambition from discrete cell replacement applications to the iPSC assisted bioengineering of body organs for personalized autologous body organ transplant. Recent work has demonstrated that the generation of organs from iPSCs is a future possibility. The development of embryonic-like organ structures bioengineered from iPSCs has been achieved, such as an early brain structure (cerebral organoids, bone, optic vesicle-like structures (eye, cardiac muscle tissue (heart, primitive pancreas islet cells, a tooth-like structure (teeth, and functional liver buds (liver. Thus, iPSC technology offers, in the future, the powerful and unique possibility to make body organs for transplantation removing the need for organ donation and immune suppressing drugs. Whilst it is clear that iPSCs are rapidly becoming the lead cell type for research into cell replacement therapy and body organ transplantation strategies in humans, it is not known whether (1 such transplants will stimulate host immune responses; and (2 whether this technology will be capable of the bioengineering of a complete and fully functional human organ. This review will not focus on reprogramming to iPSCs, of which a plethora of reviews can be found, but instead focus on the latest developments in direct reprogramming of cells, the bioengineering of body organs from iPSCs, and an analysis of the immune response induced by i

  1. Implementation strategies and tools for condition based monitoring at nuclear power plants

    International Nuclear Information System (INIS)

    2007-05-01

    There is now an acute need to optimize maintenance to improve both reliability and competitiveness of nuclear power plant operation. There is an increasing tendency to move from the preventive (time based) maintenance concept to one dependent on plant and component conditions. In this context, various on-line and off-line condition monitoring and diagnostics, nondestructive inspection techniques and surveillance are used. Component selection for condition based maintenance, parameter selection for monitoring condition, evaluation of condition monitoring results are issues influencing the effectiveness of condition based maintenance. All these selections of components and parameters to be monitored, monitoring and diagnostics techniques to be used, acceptance criteria and trending for condition evaluation, and the economic aspect of predictive maintenance and condition monitoring should be incorporated into an integrated, effective condition based maintenance programme, which is part of the plant's overall maintenance optimization programme. This publication collects and analyses proven condition based maintenance strategies and techniques (engineering and organizational) in Member States. It includes selected papers on maintenance optimization presented during its preparation. This report was prepared under IAEA project on integrated NPP life cycle management including decommissioning. The main objective of an integrated life cycle management programme is to enable NPP's to compete, without compromising safety, successfully in the changing energy markets throughout their service life and to facilitate life extension and eventual decommissioning through improved engineering, technological, economic and managerial actions. The technical working group on NPP life management and other advisory groups nominated by the Member States provide recommendations on high priority needs of Member States in this area

  2. Increased theta band EEG power in sickle cell disease patients

    Directory of Open Access Journals (Sweden)

    Case M

    2017-12-01

    Full Text Available Michelle Case,1 Sina Shirinpour,1 Huishi Zhang,1 Yvonne H Datta,2 Stephen C Nelson,3 Karim T Sadak,4 Kalpna Gupta,2 Bin He1,5 1Department of Biomedical Engineering, 2Department of Medicine, University of Minnesota, 3Pediatric Hematology-Oncology, Children’s Hospitals and Clinics of Minnesota, 4Pediatric Hematology-Oncology, University of Minnesota Masonic Children’s Hospital, 5Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA Objective: Pain is a major issue in the care of patients with sickle cell disease (SCD. The mechanisms behind pain and the best way to treat it are not well understood. We studied how electroencephalography (EEG is altered in SCD patients. Methods: We recruited 20 SCD patients and compared their resting state EEG to that of 14 healthy controls. EEG power was found across frequency bands using Welch’s method. Electrophysiological source imaging was assessed for each frequency band using the eLORETA algorithm. Results: SCD patients had increased theta power and decreased beta2 power compared to controls. Source localization revealed that areas of greater theta band activity were in areas related to pain processing. Imaging parameters were significantly correlated to emergency department visits, which indicate disease severity and chronic pain intensity. Conclusion: The present results support the pain mechanism referred to as thalamocortical dysrhythmia. This mechanism causes increased theta power in patients. Significance: Our findings show that EEG can be used to quantitatively evaluate differences between controls and SCD patients. Our results show the potential of EEG to differentiate between different levels of pain in an unbiased setting, where specific frequency bands could be used as biomarkers for chronic pain. Keywords: sickle cell disease, electroencephalography, chronic pain, electrophysiological source imaging, thalamocortical dysrhythmia

  3. High-power UV-LED degradation: Continuous and cycled working condition influence

    Science.gov (United States)

    Arques-Orobon, F. J.; Nuñez, N.; Vazquez, M.; Segura-Antunez, C.; González-Posadas, V.

    2015-09-01

    High-power (HP) UV-LEDs can replace UV lamps for real-time fluoro-sensing applications by allowing portable and autonomous systems. However, HP UV-LEDs are not a mature technology, and there are still open issues regarding their performance evolution over time. This paper presents a reliability study of 3 W UV-LEDs, with special focus on LED degradation for two working conditions: continuous and cycled (30 s ON and 30 s OFF). Accelerated life tests are developed to evaluate the influence of temperature and electrical working conditions in high-power LEDs degradation, being the predominant failure mechanism the degradation of the package. An analysis that includes dynamic thermal and optical HP UV-LED measurements has been performed. Static thermal and stress simulation analysis with the finite element method (FEM) identifies the causes of package degradation. Accelerated life test results prove that HP UV-LEDs working in cycled condition have a better performance than those working in continuous condition.

  4. Performance analysis and comparison of an Atkinson cycle coupled to variable temperature heat reservoirs under maximum power and maximum power density conditions

    International Nuclear Information System (INIS)

    Wang, P.-Y.; Hou, S.-S.

    2005-01-01

    In this paper, performance analysis and comparison based on the maximum power and maximum power density conditions have been conducted for an Atkinson cycle coupled to variable temperature heat reservoirs. The Atkinson cycle is internally reversible but externally irreversible, since there is external irreversibility of heat transfer during the processes of constant volume heat addition and constant pressure heat rejection. This study is based purely on classical thermodynamic analysis methodology. It should be especially emphasized that all the results and conclusions are based on classical thermodynamics. The power density, defined as the ratio of power output to maximum specific volume in the cycle, is taken as the optimization objective because it considers the effects of engine size as related to investment cost. The results show that an engine design based on maximum power density with constant effectiveness of the hot and cold side heat exchangers or constant inlet temperature ratio of the heat reservoirs will have smaller size but higher efficiency, compression ratio, expansion ratio and maximum temperature than one based on maximum power. From the view points of engine size and thermal efficiency, an engine design based on maximum power density is better than one based on maximum power conditions. However, due to the higher compression ratio and maximum temperature in the cycle, an engine design based on maximum power density conditions requires tougher materials for engine construction than one based on maximum power conditions

  5. Temperature and Humidity Sensor Powered by an Individual Microbial Fuel Cell in a Power Management System

    Directory of Open Access Journals (Sweden)

    Qi Zheng

    2015-09-01

    Full Text Available Microbial fuel cells (MFCs are of increasing interest as bioelectrochemical systems for decomposing organic materials and converting chemical energy into electricity. The main challenge for this technology is that the low power and voltage of the devices restricts the use of MFCs in practical applications. In this paper, a power management system (PMS is developed to store the energy and export an increased voltage. The designed PMS successfully increases the low voltage generated by an individual MFC to a high potential of 5 V, capable of driving a wireless temperature and humidity sensor based on nRF24L01 data transmission modules. With the PMS, MFCs can intermittently power the sensor for data transmission to a remote receiver. It is concluded that even an individual MFC can supply the energy required to power the sensor and telemetry system with the designed PMS. The presented PMS can be widely used for unmanned environmental monitoring such as wild rivers, lakes, and adjacent water areas, and offers promise for further advances in MFC technology.

  6. Temperature and Humidity Sensor Powered by an Individual Microbial Fuel Cell in a Power Management System.

    Science.gov (United States)

    Zheng, Qi; Xiong, Lei; Mo, Bing; Lu, Weihong; Kim, Suki; Wang, Zhenyu

    2015-09-11

    Microbial fuel cells (MFCs) are of increasing interest as bioelectrochemical systems for decomposing organic materials and converting chemical energy into electricity. The main challenge for this technology is that the low power and voltage of the devices restricts the use of MFCs in practical applications. In this paper, a power management system (PMS) is developed to store the energy and export an increased voltage. The designed PMS successfully increases the low voltage generated by an individual MFC to a high potential of 5 V, capable of driving a wireless temperature and humidity sensor based on nRF24L01 data transmission modules. With the PMS, MFCs can intermittently power the sensor for data transmission to a remote receiver. It is concluded that even an individual MFC can supply the energy required to power the sensor and telemetry system with the designed PMS. The presented PMS can be widely used for unmanned environmental monitoring such as wild rivers, lakes, and adjacent water areas, and offers promise for further advances in MFC technology.

  7. Solid polymer fuel cell stationary power generation design studies

    Energy Technology Data Exchange (ETDEWEB)

    Pyke, S.H.; Wood, A.; Williams, G.J.; Kearney, P.

    2000-07-01

    This report summarises the results of a study investigating potential markets for solid polymer fuel cells (SPFC) stationary power generating systems and evaluating design options for grid connected and stand-alone systems. The specification of potential application for SPFC systems, initial modelling and economic analysis of twelve candidate SPFC applications, and the ranking and evaluation of candidate applications are examined. Details are given of performance modelling and economic analysis of four preferred SPFC systems (domestic, commercial, light industrial, and transportable generation), and comparison of SPFC with competing technologies. The economics of SPFC and conventional technologies for commercial applications are compared and market opportunities and potential barriers to commercialisation are identified.

  8. Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

    Directory of Open Access Journals (Sweden)

    M. Bashirpour

    2016-09-01

    Full Text Available Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC in a speech emotion recognition system. We investigate its performance in emotion recognition using clean and noisy speech materials and compare it with the performances of the well-known MFCC, LPCC, RASTA-PLP, and also TEMFCC features. Speech samples are extracted from the Berlin emotional speech database (Emo DB and Persian emotional speech database (Persian ESD which are corrupted with 4 different noise types under various SNR levels. The experiments are conducted in clean train/noisy test scenarios to simulate practical conditions with noise sources. Simulation results show that higher recognition rates are achieved for PNCC as compared with the conventional features under noisy conditions.

  9. Efficient Biomass Fuel Cell Powered by Sugar with Photo- and Thermal-Catalysis by Solar Irradiation.

    Science.gov (United States)

    Liu, Wei; Gong, Yutao; Wu, Weibing; Yang, Weisheng; Liu, Congmin; Deng, Yulin; Chao, Zi-Sheng

    2018-06-19

    The utilization of biomass sugars has received great interesting recently. Herein, we present a highly efficient hybrid solar biomass fuel cell that utilizes thermal- and photocatalysis of solar irradiation and converts biomass sugars into electricity with high power output. The fuel cell uses polyoxometalates (POMs) as photocatalyst to decompose sugars and capture their electrons. The reduced POMs have strong visible and near-infrared light adsorption, which can significantly increase the temperature of the reaction system and largely promotes the thermal oxidation of sugars by the POM. In addition, the reduced POM functions as charge carrier that can release electrons at the anode in the fuel cell to generate electricity. The electron-transfer rates from glucose to POM under thermal and light-irradiation conditions were investigated in detail. The power outputs of this solar biomass fuel cell are investigated by using different types of sugars as fuels, with the highest power density reaching 45 mW cm -2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Simulation of a resonant-type ring magnet power supply with multiple resonant cells and energy storage chokes

    International Nuclear Information System (INIS)

    Kim, J.M.S.; Blackmore, E.W.; Reiniger, K.W.

    1992-01-01

    For the TRIUMF KAON Factory Booster Ring, a resonant-type magnet power supply has been proposed for the dipole magnet excitation. The Booster Ring magnet power supply system based on resonant circuits, coupled with distributed energy make-up networks, is a complex system, sensitive to many system parameters. When multiple resonant cells, each with its own energy make-up network, are connected in a ring, it is very difficult to derive closed-form solutions to determine the operating conditions of the power supply system. A meaningful way to understand and analyze such a complex system is to use a simulation tool. This paper presents the analysis of operating conditions of the resonant-type ring magnet power supply with multiple resonant cells, using the circuit simulation tool, SPICE. The focus of the study is on the effect of circuit parameter variations in energy storage chokes

  11. Characterisation of a fuel cell based uninteruptable power supply

    Energy Technology Data Exchange (ETDEWEB)

    Aklil, D.; Gazey, R.; McGrath, D.

    2004-07-01

    This report presents the findings of tests carried out to determine if a fuel cell (FC) could be used instead of external batteries in UPS systems. Details are given of the configuration of the 1kW fuel cell based test UPS system (FC-UPS), fuel cell suitability for UPS, the start-up conditions, the on-load dynamic response, comparative weight/space savings of FC-UPS, lifetime costs compared to battery installations, and market readiness of FC systems for UPS deployment. The importance of the collaboration between the FC manufacturers and system integrator for the implementation of the project and of the testing and characterisation of FC products is stressed.

  12. Introduction condition of a tokamak fusion power plant as an advanced technology in world energy scenario

    International Nuclear Information System (INIS)

    Hiwatari, R.; Tokimatsu, K.; Asaoka, Y.; Okano, K.; Konishi, S.; Ogawa, Y.

    2005-01-01

    The present study reveals the following two introduction conditions of a tokamak fusion power plant in a long term world energy scenario. The first condition is the electric breakeven condition, which is required for the fusion energy to be recognized as a suitable candidate of an alternative energy source in the long term world energy scenario. As for the plasma performance (normalized beta value β N , confinement improvement factor for H-mode HH, the ratio of plasma density to Greenwald density limit fn GW ), the electric breakeven condition requires the simultaneous achievement of 1.2 N GW tmax =16 T, thermal efficiency η e =30%, and current drive power P NBI N ∼1.8, HH∼1.0, and fn GW ∼0.9, which correspond to the ITER reference operation parameters, have a strong potential to achieve the electric breakeven condition. The second condition is the economic breakeven condition, which is required to be selected as an alternative energy source. By using a long term world energy and environment model, the potential of the fusion energy in the long term world energy scenario is being investigated. Under the constraint of 550 ppm CO 2 concentration in the atmosphere, a breakeven price for introduction of the fusion energy in the year 2050 is estimated from 65mill/kWh to 135mill/kWh, which is considered as the economic breakeven condition in the present study. Under the conditions of B tmax =16T, η e =40%, plant availability 60%, and a radial build with/without CS coil, the economic breakeven condition requires β N ∼2.5 for 135mill/kWh of higher breakeven price case and β N ∼6.0 for 65mill/kWh of lower breakeven price case. Finally, the demonstration of steady state operation with β N ∼3.0 in the ITER project leads to the prospect to achieve the upper region of breakeven price in the world energy scenario. (author)

  13. Response of unirradiated and irradiated PWR fuel rods tested under power-cooling-mismatch conditions

    International Nuclear Information System (INIS)

    MacDonald, P.E.; Quapp, W.J.; Martinson, Z.R.; McCardell, R.K.; Mehner, A.S.

    1978-01-01

    This report summarizes the results from the single-rod power-cooling-mismatch (PCM) and irradiation effects (IE) tests conducted to date in the Power Burst Facility (PBF) at the U.S. DOE Idaho National Engineering Laboratory. This work was performed for the U.S. NRC under contact to the Department of Energy. These tests are part of the NRC Fuel Behavior Program, which is designed to provide data for the development and verification of analytical fuel behavior models that are used to predict fuel response to abnormal or postulated accident conditions in commercial LWRs. The mechanical, chemical and thermal response of both previously unirradiated and previously irradiated LWR-type fuel rods tested under power-cooling-mismatch condition is discussed. A brief description of the test designs is presented. The results of the PCM thermal-hydraulic studies are summarized. Primary emphasis is placed on the behavior of the fuel and cladding during and after stable film boiling. (orig.) [de

  14. Planning future studies based on the conditional power of a meta-analysis

    Science.gov (United States)

    Roloff, Verena; Higgins, Julian PT; Sutton, Alex J

    2013-01-01

    Systematic reviews often provide recommendations for further research. When meta-analyses are inconclusive, such recommendations typically argue for further studies to be conducted. However, the nature and amount of future research should depend on the nature and amount of the existing research. We propose a method based on conditional power to make these recommendations more specific. Assuming a random-effects meta-analysis model, we evaluate the influence of the number of additional studies, of their information sizes and of the heterogeneity anticipated among them on the ability of an updated meta-analysis to detect a prespecified effect size. The conditional powers of possible design alternatives can be summarized in a simple graph which can also be the basis for decision making. We use three examples from the Cochrane Database of Systematic Reviews to demonstrate our strategy. We demonstrate that if heterogeneity is anticipated, it might not be possible for a single study to reach the desirable power no matter how large it is. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22786670

  15. Insulation resistance abnormal condition detector for a local power range monitor

    International Nuclear Information System (INIS)

    Akiyama, Takao; Mizuno, Katsuhiro; Kai, Takaaki.

    1976-01-01

    Object: To permit determination of abnormal condition by a number of local power range monitors (LPRM ) to be quickly made through estimation of the leakage current value by precisely estimating the ratio between the true rate of change in neutron flux and true change in the neutron flux by making use of the fact that the status of the neutron distribution does not widely change with a change of the core flow rate for a short period of time. Structure: While carrying out power control according to the core flow rate, detection values from LPRM which are disposed in a three-dimensional fashion within the reactor core are indicated on an indicator. The average value of rates of change in the indicated values for a group of LPRM under substantially the same fluid dynamic condition as that for each LPRM is determined by measuring the ratio before and after the alteration of the power of the indicated value. Further, the estimation of leakage current is determined by using the ratio of the indicated value, average value thereof and amplifier gain of each LPRM. When the estimation leakage current exceeds a prescribed value, the corresponding LPRM is determined to be defective. (Moriyama, K.)

  16. Extraction of diode parameters of silicon solar cells under high illumination conditions

    International Nuclear Information System (INIS)

    Khan, Firoz; Baek, Seong-Ho; Park, Yiseul; Kim, Jae Hyun

    2013-01-01

    Graphical abstract: We have developed an analytical method to determine the diode parameters of concentrator solar cells under high illumination conditions. The determined values of diode parameters have been used to compute the theoretical values of performance parameters. The computed values of the open circuit voltage, curve factor, and efficiency obtained using diode parameters determined with this method showed good agreement (<2% discrepancy) with their experimental values in the temperature range 298–323 K. Highlights: • An analytical method to extract the diode parameters of concentrated Si solar cells. • This method uses single I–V curve under high illumination conditions. • The theoretical values of performance parameters have been computed. • Theoretical values of parameters matched within 2% discrepancy limit. • This method gives best results among the methods used in this work. - Abstract: An analytical method has been developed to extract all four diode parameters, namely the shunt resistance, series resistance, diode ideality factor, and reverse saturation current density, using a single J–V curve, based on one exponential model of silicon solar cells under high illumination conditions. The slope of the J–V curve (dV/dJ) at a short circuit condition is used to determine the value of the shunt resistance. The slope of the J–V curve at an open circuit condition together with the short circuit current density, open circuit voltage, current density, and voltage at maximum power point have been used to determine the values of the series resistance, diode ideality factor, and reverse saturation current density. The determined values of the diode parameters have been used to compute the theoretical values of the open circuit voltage, curve factor, and efficiency of the solar cell. The theoretical J–V curves matched well with the corresponding experimental curves. This method is applied to determine the diode parameters of concentrator

  17. Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow conditions

    KAUST Repository

    Ren, Lijiao

    2014-07-01

    Power production of four hydraulically connected microbial fuel cells (MFCs) was compared with the reactors operated using individual electrical circuits (individual), and when four anodes were wired together and connected to four cathodes all wired together (combined), in fed-batch or continuous flow conditions. Power production under these different conditions could not be made based on a single resistance, but instead required polarization tests to assess individual performance relative to the combined MFCs. Based on the power curves, power produced by the combined MFCs (2.12 ± 0.03 mW, 200 ω) was the same as the summed power (2.13 mW, 50 ω) produced by the four individual reactors in fed-batch mode. With continuous flow through the four MFCs, the maximum power (0.59 ± 0.01 mW) produced by the combined MFCs was slightly lower than the summed maximum power of the four individual reactors (0.68 ± 0.02 mW). There was a small parasitic current flow from adjacent anodes and cathodes, but overall performance was relatively unaffected. These findings demonstrate that optimal power production by reactors hydraulically and electrically connected can be predicted from performance by individual reactors. © 2013 Elsevier B.V. All rights reserved.

  18. The Business Case for Fuel Cells 2012. America's Partner in Power

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, Sandra [Fuel Cells 2000, Washington, DC (United States); Gangi, Jennifer [Fuel Cells 2000, Washington, DC (United States); Skukowski, Ryan [Fuel Cells 2000, Washington, DC (United States)

    2012-12-01

    This report, compiled by Fuel Cells 2000 with support from the Fuel Cell Technologies Program, profiles a select group of nationally recognizable companies and corporations that are deploying or demonstrating fuel cells. These businesses are taking advantage of a fuel cell's unique benefits, especially for powering lift trucks and providing combined heat and power to their stores and administrative offices.

  19. Conditions and possibilities for inclusion the hydro-power plants from the 'Shara' hydroelectric system into the power system of the Republic of Macedonia

    International Nuclear Information System (INIS)

    Rumenova, Evica; Naumoski, Kliment

    2001-01-01

    At the and of 1998, a study on conditions and possibilities of the 'Shara' hydroelectric system construction was prepared. The study considers an interesting idea for building up three reversible power plants. From electricity point of view the study emphasizes several significant issues that require comprehensive analyses in order to define the conditions and possibilities for their development. This paper attempts to give an overview of one of this issues: Conditions and possibilities for inclusion the hydro-power plants from the 'Shara' - system into the power supply system of Republic of Macedonia. (Original)

  20. Energy management of fuel cell/solar cell/supercapacitor hybrid power source

    Energy Technology Data Exchange (ETDEWEB)

    Thounthong, Phatiphat; Sethakul, Panarit [Department of Teacher Training in Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Chunkag, Viboon [Department of Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Sikkabut, Suwat [Thai-French Innovation Institute, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Pierfederici, Serge; Davat, Bernard [Groupe de Recherche en Electrotechnique et Electronique de Nancy (GREEN: UMR 7037), Nancy Universite, INPL-ENSEM, 2, Avenue de la Foret de Haye, Vandoeuvre-les-Nancy, Lorraine 54516 (France)

    2011-01-01

    This study presents an original control algorithm for a hybrid energy system with a renewable energy source, namely, a polymer electrolyte membrane fuel cell (PEMFC) and a photovoltaic (PV) array. A single storage device, i.e., a supercapacitor (ultracapacitor) module, is in the proposed structure. The main weak point of fuel cells (FCs) is slow dynamics because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. The very fast power response and high specific power of a supercapacitor complements the slower power output of the main source to produce the compatibility and performance characteristics needed in a load. The energy in the system is balanced by d.c.-bus energy regulation (or indirect voltage regulation). A supercapacitor module functions by supplying energy to regulate the d.c.-bus energy. The fuel cell, as a slow dynamic source in this system, supplies energy to the supercapacitor module in order to keep it charged. The photovoltaic array assists the fuel cell during daytime. To verify the proposed principle, a hardware system is realized with analog circuits for the fuel cell, solar cell and supercapacitor current control loops, and with numerical calculation (dSPACE) for the energy control loops. Experimental results with small-scale devices, namely, a PEMFC (1200 W, 46 A) manufactured by the Ballard Power System Company, a photovoltaic array (800 W, 31 A) manufactured by the Ekarat Solar Company and a supercapacitor module (100 F, 32 V) manufactured by the Maxwell Technologies Company, illustrate the excellent energy-management scheme during load cycles. (author)

  1. Retinoic acid combined with spermatogonial stem cell conditions facilitate the generation of mouse germ-like cells

    DEFF Research Database (Denmark)

    Dong, Guoyi; Shang, Zhouchun; Liu, Longqi

    2017-01-01

    Spermatogenic lineage has been directly generated in spermatogonial stem cell (SSC) conditions from human pluripotent stem cells (PSCs). However, it remains unknown whether mouse embryonic stem cells (ESCs) can directly differentiate into advanced male germ cell lineage in the same conditions. Here......, we showed rather low efficiency of germ-like cell generation from mouse ESCs in SSC conditions. Interestingly, addition of retinoic acid (RA) into SSC conditions enabled efficient differentiation of mouse ESCs into germ-like cells, as shown by the activation of spermatogenesis-associated genes...... such as Mvh, Dazl, Prdm14, Stella, Scp1, Scp3, Stra8 and Rec8. In contrast, for cells cultured in control medium, the activation of the above genes barely occurred. In addition, RA with SSC conditions yielded colonies of Acrosin-expressing cells and the positive ratio reached a peak at day 6. Our work thus...

  2. Nonlinear observer designs for fuel cell power systems

    Science.gov (United States)

    Gorgun, Haluk

    A fuel cell is an electrochemical device that combines hydrogen and oxygen, with the aid of electro-catalysts, to produce electricity. A fuel cell consists of a negatively charged anode, a positively charged cathode and an electrolyte, which transports protons or ions. A low temperature fuel cell has an electrical potential of about 0.7 Volt when generating a current density of 300--500 mA/cm2. Practical fuel cell power systems will require a combination of several cells in series (a stack) to satisfy the voltage requirements of specific applications. Fuel cells are suitable for a potentially wide variety of applications, from stationary power generation in the range of hundreds of megawatts to portable electronics in the range of a couple of watts. Efficient operation of a fuel cell system requires advanced feedback control designs. Reliable measurements from the system are necessary to implement such designs. However, most of the commercially available sensors do not operate properly in the reformate and humidified gas streams in fuel cell systems. Sensors working varying degrees of success are too big and costly, and sensors that are potentially low cost are not reliable or do not have the required life time [28]. Observer designs would eliminate sensor needs for measurements, and make feedback control implementable. Since the fuel cell system dynamics are highly nonlinear, observer design is not an easy task. In this study we aim to develop nonlinear observer design methods applicable to fuel cell systems. In part I of the thesis we design an observer to estimate the hydrogen partial pressure in the anode channel. We treat inlet partial pressure as an unknown slowly varying parameter and develop an adaptive observer that employs a nonlinear voltage injection term. However in this design Fuel Processing System (FPS) dynamics are not modelled, and their effect on the anode dynamics are treated as plant uncertainty. In part II of the thesis we study the FPS

  3. A reliability program for emergency diesel generators at nuclear power plants: Maintenance, surveillance, and condition monitoring

    International Nuclear Information System (INIS)

    Lofgren, E.V.; Henderson, W.; Burghardt, D.; Kripps, L.; Rothleder, B.

    1988-12-01

    This report is a companion report on NUREG/CR-5078, Volume 1, ''A Reliability Program for Emergency Diesel Generators at Nuclear Power Plants: Program Structure.'' The purpose of this report is to provide technical findings and insights related to: failure evaluation, troubleshooting, maintenance, surveillance, and condition monitoring. Examples and recommendations are provided for each of these areas based on actual emergency diesel generator (EDG) operating experience and the opinions of diesel generator experts. This report expands the more general guidance provided in Volume 1. In addition, a discussion of EDG interactions with other plant systems (e.g., instrument, air, service water, dc power) is provided since experience has shown that these support systems and their operation can adversely affect EDG reliability. Portions of this report have been designed for use by onsite personnel for evaluating operational characteristics of EDGs. 5 refs., 8 figs., 7 tabs

  4. On effects produced by tidal power plants upon environmental conditions in adjacent sea areas

    International Nuclear Information System (INIS)

    Nekrasov, A.V.; Romanenkov, D.A.

    1997-01-01

    Consideration is given to the change in natural (oceanographic) environmental conditions due to the transformation of the tidal oscillations structure resulting from erection and operation of tidal power plants (TPP). The relevant transformation of tidal movements encompasses practically all its main characteristics: amplitudes, phases and spectral composition of sea level oscillations, as well as the similar parameters of tidal currents and also the intensity and positioning of extremes zones. The changes in positioning and width of the inter-tidal zone, the inter-tidal zone regime, mutual arrangement of mixed, stratified and transient frontal zones, transportation of suspended matter and bottom sedimentation, owing to residual tidal currents, sea ice characteristics, air these changes can be estimated on the basis of mathematical predictive modelling of tidal characteristics transformed by a contemplated tidal power plant. Some results are presented for the Russian large-scale TPP projects in the White and Okhotsk seas. (author)

  5. Operating experience with the 50 MeV 10kA ATA power conditioning system

    International Nuclear Information System (INIS)

    Rogers, D.; Lee, F.D.; Newton, M.; Reginato, L.L.; Smith, M.E.

    1984-06-01

    The Advanced Test Accelerator (ATA) has been operational for over one year and has achieved full parameters in the power conditioning system. The pulsed power system has been previously described, however, during the past year of operation a considerable amount of statistical data has been accumulated on the 211 gas blown spark gaps that perform the main switching function in the ATA. These spark gaps were designed for 250kV, 40 kA and 70ns pulse. The parameter that made this spark gap somewhat unique was the requirement that it be able to provide a burst of ten pulses at one kilohertz with an average repetition rate of 5Hz. 2 references, 7 figures

  6. Thermal design of a modern, air-conditioned, single-floor, solar-powered desert house

    KAUST Repository

    Serag-Eldin, M. A.

    2011-12-01

    The paper presents a thermal analysis of a single-floor, solar-powered desert house. The house is air-conditioned and provides all modern comforts and facilities. Electrical power, which drives the entire energy system, is generated by roof-mounted photovoltaic modules. The modules are fixed on special cradles which fold at night to expose the roof to the night sky, thereby enhancing night-time cooling, which is substantial in the desert environment. A detailed dynamic heat transfer analysis is conducted for the building envelope, coupled with a solar radiation model. Application to a typical Middle-Eastern desert site reveals that indeed such a design is feasible with present-day technology; and should be even more attractive with future advances in technology. © 2011 Copyright Taylor and Francis Group, LLC.

  7. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    Science.gov (United States)

    Ushimaru, Kenji

    1990-08-01

    Since 1983, technological advances and market growth of inverter-driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries, microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices, were able to direct the development and market success of inverter-driven heat pumps. As a result, leading U.S. variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales.

  8. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    Energy Technology Data Exchange (ETDEWEB)

    Ushimaru, Kenji.

    1990-08-01

    Since 1983, technological advances and market growth of inverter- driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries-- microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices--were able to direct the development and market success of inverter-driven heat pumps. As a result, leading US variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales. 54 refs., 47 figs., 1 tab.

  9. A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2018-01-01

    Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three......-dimensional thermal models based on Finite Element Method (FEM) need massive computations, which make the long-term thermal dynamics difficult to calculate. In this paper, a new lumped three-dimensional thermal model is proposed, which can be easily characterized from FEM simulations and can acquire the critical...

  10. Structure and frame conditions for power exchange agreements with the Continent

    International Nuclear Information System (INIS)

    Wiedswang, R.

    1996-01-01

    The conference paper relates to the obtained agreements between Norway and the Continent on the exchange of electric power. The paper discusses the structure and frame conditions for the ELSAM, PreussenElektra, SEP and EuroStrom agreements. ELSAM covers the agreement with Denmark which started on 27 July 1995. The PreussenElektra agreement includes the exchange of power with the German PreussenElektra AG which starts on 1 October 1998. SEP covers the agreement with the Netherlands which is planned to start on 1 October 2001, and the EuroStrom agreement with the German EST EuroStrom Trading GmbH in Hamburg which is planned to start on 1 January 2003. 8 figs

  11. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells

    KAUST Repository

    Cheng, Shaoan; Logan, Bruce E.

    2011-01-01

    Scaling up microbial fuel cells (MFCs) requires a better understanding the importance of the different factors such as electrode surface area and reactor geometry relative to solution conditions such as conductivity and substrate concentration. It is shown here that the substrate concentration has significant effect on anode but not cathode performance, while the solution conductivity has a significant effect on the cathode but not the anode. The cathode surface area is always important for increasing power. Doubling the cathode size can increase power by 62% with domestic wastewater, but doubling the anode size increases power by 12%. Volumetric power density was shown to be a linear function of cathode specific surface area (ratio of cathode surface area to reactor volume), but the impact of cathode size on power generation depended on the substrate strength (COD) and conductivity. These results demonstrate the cathode specific surface area is the most critical factor for scaling-up MFCs to obtain high power densities. © 2010 Elsevier Ltd.

  12. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells

    KAUST Repository

    Cheng, Shaoan

    2011-03-01

    Scaling up microbial fuel cells (MFCs) requires a better understanding the importance of the different factors such as electrode surface area and reactor geometry relative to solution conditions such as conductivity and substrate concentration. It is shown here that the substrate concentration has significant effect on anode but not cathode performance, while the solution conductivity has a significant effect on the cathode but not the anode. The cathode surface area is always important for increasing power. Doubling the cathode size can increase power by 62% with domestic wastewater, but doubling the anode size increases power by 12%. Volumetric power density was shown to be a linear function of cathode specific surface area (ratio of cathode surface area to reactor volume), but the impact of cathode size on power generation depended on the substrate strength (COD) and conductivity. These results demonstrate the cathode specific surface area is the most critical factor for scaling-up MFCs to obtain high power densities. © 2010 Elsevier Ltd.

  13. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping; Logan, Bruce E.

    2013-01-01

    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  14. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping

    2013-07-16

    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  15. Altering Anode Thickness To Improve Power Production in Microbial Fuel Cells with Different Electrode Distances

    KAUST Repository

    Ahn, Yongtae

    2013-01-17

    A better understanding of how anode and separator physical properties affect power production is needed to improve energy and power production by microbial fuel cells (MFCs). Oxygen crossover from the cathode can limit power production by bacteria on the anode when using closely spaced electrodes [separator electrode assembly (SEA)]. Thick graphite fiber brush anodes, as opposed to thin carbon cloth, and separators have previously been examined as methods to reduce the impact of oxygen crossover on power generation. We examined here whether the thickness of the anode could be an important factor in reducing the effect of oxygen crossover on power production, because bacteria deep in the electrode could better maintain anaerobic conditions. Carbon felt anodes with three different thicknesses were examined to see the effects of thicker anodes in two configurations: widely spaced electrodes and SEA. Power increased with anode thickness, with maximum power densities (604 mW/m 2, 0.32 cm; 764 mW/m2, 0.64 cm; and 1048 mW/m2, 1.27 cm), when widely spaced electrodes (4 cm) were used, where oxygen crossover does not affect power generation. Performance improved slightly using thicker anodes in the SEA configuration, but power was lower (maximum of 689 mW/m2) than with widely spaced electrodes, despite a reduction in ohmic resistance to 10 Ω (SEA) from 51-62 Ω (widely spaced electrodes). These results show that thicker anodes can work better than thinner anodes but only when the anodes are not adversely affected by proximity to the cathode. This suggests that reducing oxygen crossover and improving SEA MFC performance will require better separators. © 2012 American Chemical Society.

  16. Altering Anode Thickness To Improve Power Production in Microbial Fuel Cells with Different Electrode Distances

    KAUST Repository

    Ahn, Yongtae; Logan, Bruce E.

    2013-01-01

    A better understanding of how anode and separator physical properties affect power production is needed to improve energy and power production by microbial fuel cells (MFCs). Oxygen crossover from the cathode can limit power production by bacteria on the anode when using closely spaced electrodes [separator electrode assembly (SEA)]. Thick graphite fiber brush anodes, as opposed to thin carbon cloth, and separators have previously been examined as methods to reduce the impact of oxygen crossover on power generation. We examined here whether the thickness of the anode could be an important factor in reducing the effect of oxygen crossover on power production, because bacteria deep in the electrode could better maintain anaerobic conditions. Carbon felt anodes with three different thicknesses were examined to see the effects of thicker anodes in two configurations: widely spaced electrodes and SEA. Power increased with anode thickness, with maximum power densities (604 mW/m 2, 0.32 cm; 764 mW/m2, 0.64 cm; and 1048 mW/m2, 1.27 cm), when widely spaced electrodes (4 cm) were used, where oxygen crossover does not affect power generation. Performance improved slightly using thicker anodes in the SEA configuration, but power was lower (maximum of 689 mW/m2) than with widely spaced electrodes, despite a reduction in ohmic resistance to 10 Ω (SEA) from 51-62 Ω (widely spaced electrodes). These results show that thicker anodes can work better than thinner anodes but only when the anodes are not adversely affected by proximity to the cathode. This suggests that reducing oxygen crossover and improving SEA MFC performance will require better separators. © 2012 American Chemical Society.

  17. Characteristics of thin film fullerene coatings formed under different deposition conditions by power ion beams

    International Nuclear Information System (INIS)

    Petrov, A.V.; Ryabchikov, A.I.; Struts, V.K.; Usov, Yu.P.; Renk, T.J.

    2007-01-01

    Carbon allotropic form - C 60 and C 70 can be used in microelectronics, superconductors, solar batteries, logic and memory devices to increase processing tool wear resistance, as magnetic nanocomposite materials for record and storage information, in biology, medicine and pharmacology. In many cases it is necessary to have a thin-film containing C 60 and C 70 fullerene carbon coatings. A possibility in principle of thin carbon films formation with nanocrystalline structure and high content ∼30-95% of C 60 and C 70 fullerene mixture using the method of graphite targets sputtering by a power ion beam has been shown. Formation of thin-film containing C 60 and C 70 fullerene carbon coatings were carried out by means of deposition of ablation plasma on silicon substrates. Ablation plasma was generated as result of interaction of high-power pulsed ion beams (HPPIB) with graphite targets of different densities. It has been demonstrated that formation of fullerenes, their amount and characteristics of thin-film coatings depend on the deposition conditions. The key parameter for such process is the deposition rate, which determines thin film formation conditions and, subsequently, its structure and mechanical properties. Nano-hardness, Young module, adhesion to mono-crystalline silicon substrate, friction coefficient, roughness surface of synthesized coatings at the different deposition conditions were measured. These characteristics are under influence of such main process parameters as energy density of HPPIB, which, in turn, determinates the density and temperature of ablation plasma and deposition speed, which is thickness of film deposited for one pulse of ion current. Nano-hardness and Young module meanings are higher at the increasing of power density of ion beam. Adhesion value is less at the high deposition speed. As rule, friction coefficient depends on vice versa from roughness. (authors)

  18. A neural network based computational model to predict the output power of different types of photovoltaic cells.

    Science.gov (United States)

    Xiao, WenBo; Nazario, Gina; Wu, HuaMing; Zhang, HuaMing; Cheng, Feng

    2017-01-01

    In this article, we introduced an artificial neural network (ANN) based computational model to predict the output power of three types of photovoltaic cells, mono-crystalline (mono-), multi-crystalline (multi-), and amorphous (amor-) crystalline. The prediction results are very close to the experimental data, and were also influenced by numbers of hidden neurons. The order of the solar generation power output influenced by the external conditions from smallest to biggest is: multi-, mono-, and amor- crystalline silicon cells. In addition, the dependences of power prediction on the number of hidden neurons were studied. For multi- and amorphous crystalline cell, three or four hidden layer units resulted in the high correlation coefficient and low MSEs. For mono-crystalline cell, the best results were achieved at the hidden layer unit of 8.

  19. A neural network based computational model to predict the output power of different types of photovoltaic cells.

    Directory of Open Access Journals (Sweden)

    WenBo Xiao

    Full Text Available In this article, we introduced an artificial neural network (ANN based computational model to predict the output power of three types of photovoltaic cells, mono-crystalline (mono-, multi-crystalline (multi-, and amorphous (amor- crystalline. The prediction results are very close to the experimental data, and were also influenced by numbers of hidden neurons. The order of the solar generation power output influenced by the external conditions from smallest to biggest is: multi-, mono-, and amor- crystalline silicon cells. In addition, the dependences of power prediction on the number of hidden neurons were studied. For multi- and amorphous crystalline cell, three or four hidden layer units resulted in the high correlation coefficient and low MSEs. For mono-crystalline cell, the best results were achieved at the hidden layer unit of 8.

  20. Thermal and nuclear power plants: Competitiveness in the new economic conditions

    Science.gov (United States)

    Aminov, R. Z.; Shkret, A. F.; Garievskii, M. V.

    2017-05-01

    In recent years, the conditions of development and functionality of power generating assets have notably changed. Considering the decline in the price of hydrocarbon fuel on the global market, the efficiency of combined-cycle gas-turbine plants in the European part of Russia is growing in comparison with nuclear power plants. Capital investments in the construction of nuclear power plants have also increased as a result of stiffening the safety requirements. In view of this, there has been an increasing interest in exploration of effective lines of development of generating assets in the European part of Russia, taking consideration of the conditions that may arise in the nearest long-term perspective. In particular, the assessment of comparative efficiency of developing combined-cycle gas-turbine plants (operating on natural gas) in the European part of Russia and nuclear power plants is of academic and practical interest. In this article, we analyze the trends of changes in the regional price of hydrocarbon fuel. Using the prognosis of net-weighted import prices of natural gas in Western European countries—prepared by the International Energy Agency (IEA) and the Energy Research Institute of the Russian Academy of Sciences (ERIRAS)—the prices of natural gas in the European part of Russia equilibrated with import prices of this heat carrier in Western Europe were determined. The methodology of determining the comparative efficiency of combined-cycle gas turbine plants (CCGT) and nuclear power plants (NPP) were described; based on this, the possible development of basic CCGTs and NPPs with regard to the European part of Russia for various scenarios in the prognosis of prices of gaseous fuel in a broad range of change of specific investments in the given generating sources were assessed, and the extents of their comparative efficiency were shown. It was proven that, at specific investments in the construction of new NPPs in the amount of 5000 dollars/kW, nuclear

  1. Explicit analytical expression for the condition number of polynomials in power form

    Science.gov (United States)

    Rack, Heinz-Joachim

    2017-07-01

    In his influential papers [1-3] W. Gautschi has defined and reshaped the condition number κ∞ of polynomials Pn of degree ≤ n which are represented in power form on a zero-symmetric interval [-ω, ω]. Basically, κ∞ is expressed as the product of two operator norms: an explicit factor times an implicit one (the l∞-norm of the coefficient vector of the n-th Chebyshev polynomial of the first kind relative to [-ω, ω]). We provide a new proof, economize the second factor and express it by an explicit analytical formula.

  2. Capability of LOFT vital batteries to supply emergency power demands during severe cold weather conditions

    International Nuclear Information System (INIS)

    Yeates, J.A.

    1978-01-01

    This study evaluates the capability of the vital batteries (PPS) to provide electrical power via the vital DC-AC motor generator sets to the LOFT PPS loads during severe cold weather conditions. It is concluded that these batteries while at a temperature of 5 0 F will supply the necessary PPS electrical loads for a time in excess of the one hour permitted to start the diesel generators and are, therefore, adequate at this temperature. This Revision B of the LTR includes revised, more recent, and complete technical data relating to MG set efficiency, battery operating procedures and cold temperature derating. Revision B supersedes and replaces all previous issues

  3. Supply risk under the condition of discontinuous demand in the field of nuclear power industry

    International Nuclear Information System (INIS)

    Wei Qiyan; Tian Zhilong

    2006-01-01

    Demands can be divided into two kinds: continuous and discontinuous demands. Based on the analysis of the results on common supply risk studies, discontinuous demand is studied concerning its definition, characteristics, and the more obvious and severe risks and consequences induced by its characteristics. Furthermore, the discontinuous characteristics and relevant precautions of demand of nuclear power industry are analyzed. Analysis and research on supply risks under the condition of discontinuous demand would be helpful to enterprises to take this issue serious and prevent the risks. (authors)

  4. Culture media from hypoxia conditioned endothelial cells protect human intestinal cells from hypoxia/reoxygenation injury.

    Science.gov (United States)

    Hummitzsch, Lars; Zitta, Karina; Bein, Berthold; Steinfath, Markus; Albrecht, Martin

    2014-03-10

    Remote ischemic preconditioning (RIPC) is a phenomenon, whereby short episodes of non-lethal ischemia to an organ or tissue exert protection against ischemia/reperfusion injury in a distant organ. However, there is still an apparent lack of knowledge concerning the RIPC-mediated mechanisms within the target organ and the released factors. Here we established a human cell culture model to investigate cellular and molecular effects of RIPC and to identify factors responsible for RIPC-mediated intestinal protection. Human umbilical vein cells (HUVEC) were exposed to repeated episodes of hypoxia (3 × 15 min) and conditioned culture media (CM) were collected after 24h. Human intestinal cells (CaCo-2) were cultured with or without CM and subjected to 90 min of hypoxia/reoxygenation injury. Reverse transcription-polymerase chain reaction, Western blotting, gelatin zymography, hydrogen peroxide measurements and lactate dehydrogenase (LDH) assays were performed. In HUVEC cultures hypoxic conditioning did not influence the profile of secreted proteins but led to an increased gelatinase activity (Pcultures 90 min of hypoxia/reoxygenation resulted in morphological signs of cell damage, increased LDH levels (Pculture model may help to unravel RIPC-mediated cellular events and to identify molecules released by RIPC. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Investigations on an advanced power system based on a high temperature polymer electrolyte membrane fuel cell and an organic Rankine cycle for heating and power production

    International Nuclear Information System (INIS)

    Perna, Alessandra; Minutillo, Mariagiovanna; Jannelli, Elio

    2015-01-01

    Energy systems based on fuel cells technology can have a strategic role in the range of small-size power generation for the sustainable energy development. In order to enhance their performance, it is possible to recover the “waste heat” from the fuel cells, for producing or thermal power (cogeneration systems) or further electric power by means of a bottoming power cycle (combined systems). In this work an advanced system based on the integration between a HT-PEMFC (high temperature polymer electrolyte membrane fuel cell) power unit and an ORC (organic Rankine cycle) plant, has been proposed and analysed as suitable energy power plant for supplying electric and thermal energies to a stand-alone residential utility. The system can operate both as cogeneration system, in which the electric and thermal loads are satisfied by the HT-PEMFC power unit and as electric generation system, in which the low temperature heat recovered from the fuel cells is used as energy source in the ORC plant for increasing the electric power production. A numerical model, able to characterize the behavior and to predict the performance of the HT-PEMFC/ORC system under different working conditions, has been developed by using the AspenPlus™ code. - Highlights: • The advanced plant can operate both as CHP system and as electric generation system. • The performance prediction of the integrated system is carried out by numerical modeling. • ORC thermodynamic optimization is carried out by a sensitivity analysis. • Thermal coupling between the HT-PEMC system and the ORC plant is analyzed. • Results are very promising in the field of the distributed generation

  6. Comparative Analysis of Maximum Power Point Tracking Controllers under Partial Shaded Conditions in a Photovoltaic System

    Directory of Open Access Journals (Sweden)

    R. Ramaprabha

    2015-06-01

    Full Text Available Mismatching effects due to partial shaded conditions are the major drawbacks existing in today’s photovoltaic (PV systems. These mismatch effects are greatly reduced in distributed PV system architecture where each panel is effectively decoupled from its neighboring panel. To obtain the optimal operation of the PV panels, maximum power point tracking (MPPT techniques are used. In partial shaded conditions, detecting the maximum operating point is difficult as the characteristic curves are complex with multiple peaks. In this paper, a neural network control technique is employed for MPPT. Detailed analyses were carried out on MPPT controllers in centralized and distributed architecture under partial shaded environments. The efficiency of the MPPT controllers and the effectiveness of the proposed control technique under partial shaded environments was examined using MATLAB software. The results were validated through experimentation.

  7. Acoustic emission condition monitoring of a nuclear power plant check valve using artificial neural networks

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Lee, Min Rae; Kim, Jung Teak

    2005-01-01

    In this study, an advanced condition monitoring technique based on acoustic emission (AE) detection and artificial neural networks was applied to a check valve, one of the components being used extensively in a safety system of a nuclear power plant (Npp). AE testing for a check valve under controlled flow loop conditions was performed to detect and evaluate disk movement for valve degradation such as wear and leakage due to foreign object interference in a check valve. It is clearly demonstrated that the evaluation of different types of failure modes such as disk wear and check valve leakage were successful by systematically analyzing the characteristics of various AE parameters. It is also shown that the leak size can be determined with an artificial neural network

  8. Condition monitoring of a check valve for nuclear power plants by means of acoustic emission technique

    International Nuclear Information System (INIS)

    Lee, M. R.; Lee, J. H.; Kim, J. T.; Kim, J. S.; Luk, V. K.

    2003-01-01

    This work performed in support of the International Nuclear Energy Research Institute (INERI) program, which was to develop and demonstrate advanced sensor and computational technology for on-line monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This primary object of this work is to investigate advanced condition monitoring systems based on acoustic emission detection that can provide timely detection of check valve degeneration and service aging so that maintenance/replacement could be preformed prior to loss safety function. The research is focused on the capability of AE technique to provide diagnostic information useful in determining check valve aging and degradation check valve failure and undesirable operating modes. This work also includes the investigation and adaptation of several advanced sensor technologies such as accelerometer and advanced ultrasonic technique. In addition, this work will develop advanced sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms from check valve degradation.

  9. A Low-Power and Low-Voltage Power Management Strategy for On-Chip Micro Solar Cells

    Directory of Open Access Journals (Sweden)

    Ismail Cevik

    2015-01-01

    Full Text Available Fundamental characteristics of on-chip micro solar cell (MSC structures were investigated in this study. Several MSC structures using different layers in three different CMOS processes were designed and fabricated. Effects of PN junction structure and process technology on solar cell performance were measured. Parameters for low-power and low-voltage implementation of power management strategy and boost converter based circuits utilizing fractional voltage maximum power point tracking (FVMPPT algorithm were determined. The FVMPPT algorithm works based on the fraction between the maximum power point operation voltage and the open circuit voltage of the solar cell structure. This ratio is typically between 0.72 and 0.78 for commercially available poly crystalline silicon solar cells that produce several watts of power under typical daylight illumination. Measurements showed that the fractional voltage ratio is much higher and fairly constant between 0.82 and 0.85 for on-chip mono crystalline silicon micro solar cell structures that produce micro watts of power. Mono crystalline silicon solar cell structures were observed to result in better power fill factor (PFF that is higher than 74% indicating a higher energy harvesting efficiency.

  10. Investigations to the potential of the high temperature reactor for steam power processes with highest steam conditions and comparison with according conventional power plants

    International Nuclear Information System (INIS)

    Mondry, M.

    1988-04-01

    Already in the fifties conventional power plants with high parameters of the live steam were built to improve the total efficiency. The power plant with the highest steam conditions in the Federal Republic of Germany has 300 bar pressure and 600deg C temperature. Because of high material costs and other problems power plants with such high conditions were not continued to be built. Standard conditions of today's power plants are in the order of 180-250 bar pressure and 535deg C temperature. As the high temperature reactor is partly built up in another way than a conventional power plant, the results regarding the high steam parameters are not transferable. Possibilities for the technical realization of determined HTR-specific components are introduced and discussed. Then different HTR-power plants with steam conditions up to 350 bar pressure and 650deg C temperature are projected. Economical considerations show that an HTR with higher steam parameters brings financial profits. Further efficiency increase, which is possible by the high steam conditions, is shortly presented. The work ends with a technical and economical comparison of corresponding conventional power plants. (orig./UA) [de

  11. Dynamic Performance of Maximum Power Point Trackers in TEG Systems Under Rapidly Changing Temperature Conditions

    Science.gov (United States)

    Man, E. A.; Sera, D.; Mathe, L.; Schaltz, E.; Rosendahl, L.

    2016-03-01

    Characterization of thermoelectric generators (TEG) is widely discussed and equipment has been built that can perform such analysis. One method is often used to perform such characterization: constant temperature with variable thermal power input. Maximum power point tracking (MPPT) methods for TEG systems are mostly tested under steady-state conditions for different constant input temperatures. However, for most TEG applications, the input temperature gradient changes, exposing the MPPT to variable tracking conditions. An example is the exhaust pipe on hybrid vehicles, for which, because of the intermittent operation of the internal combustion engine, the TEG and its MPPT controller are exposed to a cyclic temperature profile. Furthermore, there are no guidelines on how fast the MPPT must be under such dynamic conditions. In the work discussed in this paper, temperature gradients for TEG integrated in several applications were evaluated; the results showed temperature variation up to 5°C/s for TEG systems. Electrical characterization of a calcium-manganese oxide TEG was performed at steady-state for different input temperatures and a maximum temperature of 401°C. By using electrical data from characterization of the oxide module, a solar array simulator was emulated to perform as a TEG. A trapezoidal temperature profile with different gradients was used on the TEG simulator to evaluate the dynamic MPPT efficiency. It is known that the perturb and observe (P&O) algorithm may have difficulty accurately tracking under rapidly changing conditions. To solve this problem, a compromise must be found between the magnitude of the increment and the sampling frequency of the control algorithm. The standard P&O performance was evaluated experimentally by using different temperature gradients for different MPPT sampling frequencies, and efficiency values are provided for all cases. The results showed that a tracking speed of 2.5 Hz can be successfully implemented on a TEG

  12. Effect of 3D Cultivation Conditions on the Differentiation of Endodermal Cells

    Science.gov (United States)

    Petrakova, O. S.; Ashapkin, V. V.; Voroteliak, E. A.; Bragin, E. Y.; Shtratnikova, V. Y.; Chernioglo, E. S.; Sukhanov, Y. V.; Terskikh, V. V.; Vasiliev, A. V.

    2012-01-01

    Cellular therapy of endodermal organs is one of the most important issues in modern cellular biology and biotechnology. One of the most promising directions in this field is the study of the transdifferentiation abilities of cells within the same germ layer. A method for anin vitroinvestigation of the cell differentiation potential (the cell culture in a three-dimensional matrix) is described in this article. Cell cultures of postnatal salivary gland cells and postnatal liver progenitor cells were obtained; their comparative analysis under 2D and 3D cultivation conditions was carried out. Both cell types have high proliferative abilities and can be cultivated for more than 20 passages. Under 2D cultivation conditions, the cells remain in an undifferentiated state. Under 3D conditions, they undergo differentiation, which was confirmed by a lower cell proliferation and by an increase in the differentiation marker expression. Salivary gland cells can undergo hepatic and pancreatic differentiation under 3D cultivation conditions. Liver progenitor cells also acquire a pancreatic differentiation capability under conditions of 3D cultivation. Thus, postnatal salivary gland cells exhibit a considerable differentiation potential within the endodermal germ layer and can be used as a promising source of endodermal cells for the cellular therapy of liver pathologies. Cultivation of cells under 3D conditions is a useful model for thein vitroanalysis of the cell differentiation potential. PMID:23346379

  13. Fear conditioning-related changes in cerebellar Purkinje cell activities in goldfish

    Directory of Open Access Journals (Sweden)

    Yoshida Masayuki

    2012-10-01

    Full Text Available Abstract Background Fear conditioning-induced changes in cerebellar Purkinje cell responses to a conditioned stimulus have been reported in rabbits. It has been suggested that synaptic long-term potentiation and the resulting increases in firing rates of Purkinje cells are related to the acquisition of conditioned fear in mammals. However, Purkinje cell activities during acquisition of conditioned fear have not been analysed, and changes in Purkinje cell activities throughout the development of conditioned fear have not yet been investigated. In the present study, we tracked Purkinje cell activities throughout a fear conditioning procedure and aimed to elucidate further how cerebellar circuits function during the acquisition and expression of conditioned fear. Methods Activities of single Purkinje cells in the corpus cerebelli were tracked throughout a classical fear conditioning procedure in goldfish. A delayed conditioning paradigm was used with cardiac deceleration as the conditioned response. Conditioning-related changes of Purkinje cell responses to a conditioned stimulus and unconditioned stimulus were examined. Results The majority of Purkinje cells sampled responded to the conditioned stimulus by either increasing or decreasing their firing rates before training. Although there were various types of conditioning-related changes in Purkinje cells, more than half of the cells showed suppressed activities in response to the conditioned stimulus after acquisition of conditioned fear. Purkinje cells that showed unconditioned stimulus-coupled complex-spike firings also exhibited conditioning-related suppression of simple-spike responses to the conditioned stimulus. A small number of Purkinje cells showed increased excitatory responses in the acquisition sessions. We found that the magnitudes of changes in the firing frequencies of some Purkinje cells in response to the conditioned stimulus correlated with the magnitudes of the conditioned

  14. Energy harvesting using TEG and PV cell for low power application

    Science.gov (United States)

    Tawil, Siti Nooraya Mohd; Zainal, Mohd Zulkarnain

    2018-02-01

    A thermoelectric generator (TEG) module and photovoltaic cell (PV) were utilized to harvest energy from temperature gradients of heat sources from ambient heat and light of sun. The output of TEG and PV were connected to a power management circuit consist of step-up dc-dc converter in order to increase the output voltage to supply a low power application such as wireless communication module and the photovoltaic cell for charging an energy storage element in order to switch on a fan for cooling system of the thermoelectric generator. A switch is used as a selector to choose the input of source either from photovoltaic cell or thermoelectric generator to switch on DC-DC step-up converter. In order to turn on the DC-DC step-up converter, the input must be greater than 3V. The energy harvesting was designed so that it can be used continuously and portable anywhere. Multiple sources used in this energy harvesting system is to ensure the system can work in whatever condition either in good weather or not good condition of weather. This energy harvesting system has the potential to be used in military operation and environment that require sustainability of energy resources.

  15. Investigation on premature occurrence of critical heat flux under oscillatory flow and power conditions

    International Nuclear Information System (INIS)

    Vishnoi, A.K.; Dasgupta, A.; Chandraker, D.K.; Nayak, A.K.; Vijayan, P.K.

    2015-01-01

    Two-phase natural circulation loops have extensive applications in nuclear and process industries. One of the major concerns with natural circulation is the occurrence of the various types of flow instabilities, which can cause premature boiling crisis due to flow and power oscillations. In this work a transient computer code COPCOS (Code for Prediction of CHF under Oscillating flow and power condition) has been developed to predict the premature occurrence of CHF (critical heat flux) under oscillating flow and power. The code incorporates conduction equation of the fuel and coolant energy equation. For CHF prediction, CHF look-up table developed by Groeneveld is used. A facility named CHF and Instability Loop (CHIL) has been set up to study the effect of oscillatory flow on CHF. CHF and Instability Loop (CHIL) is a simple rectangular loop having a 10.5 mm ID and 1.2 m long test section. The flow through the test section is controlled by a canned motor pump using a Variable Frequency Drive (VFD). This leads to the ability of having a very precise control over flow oscillations which can be induced in the test section. The effect of frequency and amplitude of flow oscillation on occurrence of premature CHF has been investigated in this facility using COPCOS. Full paper covers details of COPCOS code, description of the facility and effect of frequency and the effect of oscillatory flow on CHF in the facility. (author)

  16. FANTM: The First Article NIF Test Module for the Laser Power Conditioning System

    International Nuclear Information System (INIS)

    Hammon, Jud; Harjes, Henry C.; Moore, William B.S.; Smith, David L.; Wilson, J. Michael

    1999-01-01

    Designing and developing the 1.7 to 2. 1-MJ Power Conditioning System (PCS) that powers the flashlamps for the National Ignition Facility (NIF), currently being constructed at Lawrence Livermore National Labs (LLNL), is one of several responsibilities assumed by Sandia National Labs (SNL) in support of the NIF Project. The test facility that has evolved over the last three years to satisfy the project requirements is called FANTM. It was built at SNL and has operated for about 17,000 shots to demonstrate component performance expectations over the lifetime of NIF. A few modules similar to the one shown in Fig. 1 will be used initially in the amplifier test phase of the project. The final till NIF system will require 192 of them (48 in each of four capacitor bays). This paper briefly summarizes the final design of the FANTM facility and compares its performance with the predictions of circuit simulations for both normal operation and fault-mode response. Applying both the measured and modeled power pulse waveforms as input to a physics-based, semi-empirical amplifier gain code indicates that the 20-capacitor PCS can satisfy the NIF requirement for an average gain coefficient of 5.00 %/cm and can exceed 5.20%/cm with 24 capacitors

  17. Nuclear power plant Olkiluoto 3. Containment leakage test under extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fleckenstein, Tobias [TUEV SUED Industrie Service GmbH, Munich (Germany). Measaruement Technology Dept.

    2015-01-15

    Modern nuclear power plants place high demands on the design and execution of safety checks. TUEV SUED supported the containment leakage test for the largest- capacity third generation nuclear power plant in the world - Olkiluoto 3 in Finland. The experts successfully met the challenges presented by exceptional parameters of the project. The containment of Olkiluoto 3 is unique in that the vessel's volume is 80,000 m{sup 3} while measurements were carried out over a period of ten days. To execute the test, 75 temperature and 15 humidity sensors had to be installed and correctly interlinked by more than ten kilometres of cable. These instruments also needed to withstand an absolute pressure of 6 bar, ambient temperatures of 30 C and high levels of humidity. These conditions required comprehensive preparation and a high amount of qualification tests. Parts of the qualifications were carried out at the autoclave system of the Technical University in Munich, Germany, where the project test conditions could be simulated. The software required to determine the tests was developed by TUEV SUED and verified by German's national accreditation body DAkkS under ISO 17025. TUEV SUED enabled the test schedule to continue without delay by analysing all recorded data continuously on site, including pressure, temperature, humidity and leakage mass flow curves. With the comprehensive preparation, data acquisition system recording measurements continuously and the on-time result calculation, all components of the leak-tightness assessment were successfully completed in accordance with requirements.

  18. Conditions of external loading of nuclear power plant structures by vapor cloud explosions and design requirements

    International Nuclear Information System (INIS)

    Geiger, W.

    1977-01-01

    In the design of nuclear power plant structures in the Federal Republic of Germany (FRG) the external loading by pressure waves from unconfined vapor cloud explosions is taken into account. The loading conditions used are based on simplified model considerations for the sequence of events which generates the pressure wave. The basic assumption is that the explosion of unconfined vapor clouds can evolve only in the form of a deflagration wave with a maximum overpressure of 0.3 bar. The research on gas explosions conducted in the FRG with a view to external reactor safety just as similar work in other countries demonstrates that there are still various problems which need further clarification. The principal issues are the maximum conceivable load and the modes of structrual response. This paper presents the main results of a status report commissioned by the German Ministry of the Inertior in which the whole sequence of events leading to the external loading of nuclear power plants and the corresponding response of the structure was scrutinized. Constitutive in establishing the status report have been thorough discussions with experts of the various fields. The following problem areas are discussed in the paper. Incidents leading to the release of large amounts of liquefied gas; Formation of explosive vapor clouds, ignition conditions; Development of the explosion, generation of the pressure wave; Interaction between pressure wave and reactor building. It is outlined where definite statements are possible and where uncertainties and information gaps exist. (Auth.)

  19. Aging and condition monitoring of electric cables in nuclear power plants

    International Nuclear Information System (INIS)

    Lofaro, R.J.; Grove, E.; Soo, P.

    1998-05-01

    There are a variety of environmental stressors in nuclear power plants that can influence the aging rate of components; these include elevated temperatures, high radiation fields, and humid conditions. Exposure to these stressors over long periods of time can cause degradation of components that may go undetected unless the aging mechanisms are identified and monitored. In some cases the degradation may be mitigated by maintenance or replacement. However, some components receive neither and are thus more susceptible to aging degradation, which might lead to failure. One class of components that falls in this category is electric cables. Cables are very often overlooked in aging analyses since they are passive components that require no maintenance. However, they are very important components since they provide power to safety related equipment and transmit signals to and from instruments and controls. This paper will look at the various aging mechanisms and failure modes associated with electric cables. Condition monitoring techniques that may be useful for monitoring degradation of cables will also be discussed

  20. Fuel processing requirements and techniques for fuel cell propulsion power

    Science.gov (United States)

    Kumar, R.; Ahmed, S.; Yu, M.

    Fuels for fuel cells in transportation systems are likely to be methanol, natural gas, hydrogen, propane, or ethanol. Fuels other than hydrogen will need to be reformed to hydrogen on-board the vehicle. The fuel reformer must meet stringent requirements for weight and volume, product quality, and transient operation. It must be compact and lightweight, must produce low levels of CO and other byproducts, and must have rapid start-up and good dynamic response. Catalytic steam reforming, catalytic or noncatalytic partial oxidation reforming, or some combination of these processes may be used. This paper discusses salient features of the different kinds of reformers and describes the catalysts and processes being examined for the oxidation reforming of methanol and the steam reforming of ethanol. Effective catalysts and reaction conditions for the former have been identified; promising catalysts and reaction conditions for the latter are being investigated.

  1. Solid Oxide Fuel Cell/Turbine Hybrid Power System for Advanced Aero-propulsion and Power, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Solid oxide fuel cell (SOFC)/ gas turbine hybrid power systems (HPSs) have been recognized by federal agencies and other entities as having the potential to operate...

  2. High temperature polymer film dielectrics for aerospace power conditioning capacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Venkat, Narayanan, E-mail: venkats3@gmail.co [University of Dayton Research Institute (UDRI), Dayton, OH 45469 (United States); Dang, Thuy D. [Air Force Research Laboratory-Nanostructured and Biological Materials Branch (AFRL/RXBN) (United States); Bai Zongwu; McNier, Victor K. [University of Dayton Research Institute (UDRI), Dayton, OH 45469 (United States); DeCerbo, Jennifer N. [Air Force Research Laboratory-Electrical Technology Branch (AFRL/RZPE), Wright-Patterson Air Force Base, OH 45433 (United States); Tsao, B.-H. [University of Dayton Research Institute (UDRI), Dayton, OH 45469 (United States); Stricker, Jeffery T. [Air Force Research Laboratory-Electrical Technology Branch (AFRL/RZPE), Wright-Patterson Air Force Base, OH 45433 (United States)

    2010-04-15

    Polymer dielectrics are the preferred materials of choice for capacitive energy-storage applications because of their potential for high dielectric breakdown strengths, low dissipation factors and good dielectric stability over a wide range of frequencies and temperatures, despite having inherently lower dielectric constants relative to ceramic dielectrics. They are also amenable to large area processing into films at a relatively lower cost. Air Force currently has a strong need for the development of compact capacitors which are thermally robust for operation in a variety of aerospace power conditioning applications. While such applications typically use polycarbonate (PC) dielectric films in wound capacitors for operation from -55 deg. C to 125 deg. C, future power electronic systems would require the use of polymer dielectrics that can reliably operate up to elevated temperatures in the range of 250-350 deg. C. The focus of this research is the generation and dielectric evaluation of metallized, thin free-standing films derived from high temperature polymer structures such as fluorinated polybenzoxazoles, post-functionalized fluorinated polyimides and fluorenyl polyesters incorporating diamond-like hydrocarbon units. The discussion is centered mainly on variable temperature dielectric measurements of film capacitance and dissipation factor and the effects of thermal cycling, up to a maximum temperature of 350 deg. C, on film dielectric performance. Initial studies clearly point to the dielectric stability of these films for high temperature power conditioning applications, as indicated by their relatively low temperature coefficient of capacitance (TCC) (approx2%) over the entire range of temperatures. Some of the films were also found to exhibit good dielectric breakdown strengths (up to 470 V/mum) and a film dissipation factor of the order of <0.003 (0.3%) at the frequency of interest (10 kHz) for the intended applications. The measured relative dielectric

  3. Computer Simulation of Complex Power System Faults under various Operating Conditions

    International Nuclear Information System (INIS)

    Khandelwal, Tanuj; Bowman, Mark

    2015-01-01

    A power system is normally treated as a balanced symmetrical three-phase network. When a fault occurs, the symmetry is normally upset, resulting in unbalanced currents and voltages appearing in the network. For the correct application of protection equipment, it is essential to know the fault current distribution throughout the system and the voltages in different parts of the system due to the fault. There may be situations where protection engineers have to analyze faults that are more complex than simple shunt faults. One type of complex fault is an open phase condition that can result from a fallen conductor or failure of a breaker pole. In the former case, the condition is often accompanied by a fault detectable with normal relaying. In the latter case, the condition may be undetected by standard line relaying. The effect on a generator is dependent on the location of the open phase and the load level. If an open phase occurs between the generator terminals and the high-voltage side of the GSU in the switchyard, and the generator is at full load, damaging negative sequence current can be generated. However, for the same operating condition, an open conductor at the incoming transmission lines located in the switchyard can result in minimal negative sequence current. In 2012, a nuclear power generating station (NPGS) suffered series or open phase fault due to insulator mechanical failure in the 345 kV switchyard. This resulted in both reactor units tripping offline in two separate incidents. Series fault on one of the phases resulted in voltage imbalance that was not detected by the degraded voltage relays. These under-voltage relays did not initiate a start signal to the emergency diesel generators (EDG) because they sensed adequate voltage on the remaining phases exposing a design vulnerability. This paper is intended to help protection engineers calculate complex circuit faults like open phase condition using computer program. The impact of this type of

  4. Decommissioning of hot cells using a hydraulically powered servo manipulator

    International Nuclear Information System (INIS)

    Asquith, J.D.; Loughborough, D.

    1993-01-01

    This paper describes the preparations and initial trials involved in remotely dismantling the containment boxes within two concrete shielded hot cells at Harwell Laboratory using a hydraulically powered servo manipulator, ARTISAN. The manipulator deploys a variety of tools for cutting operations. The modular design has enabled it to be specifically configured for this application by adjusting the link lengths using spacers between the joints. In addition to the remote handling requirements, a new posting and ventilation system for the facility is outlined. Trials with ARTISAN in an in-active mock-up have now been successfully completed, and the manipulator is installed in the active facility. The considerations and approach adopted in this project are typical of many situations where remote techniques are required for decommissioning activities. (author)

  5. Performance Evaluation of a Solar-Powered Regenerative Organic Rankine Cycle in Different Climate Conditions

    Directory of Open Access Journals (Sweden)

    Emily Spayde

    2017-01-01

    Full Text Available A model to evaluate the performance of a solar powered regenerative Organic Rankine Cycle (R-ORC using five dry organic fluids: RC318, R227ea, R236ea, R236fa, and R218, is presented in this paper. The system is evaluated in two locations in the U.S.: Jackson, MS and Tucson, AZ. The weather data for each location is used to determine the heat available from the solar collector that could be used by the R-ORC to generate power. Results from the R-ORC performance are compared with a basic ORC using first and second law criteria as well as primary energy consumption (PEC and carbon dioxide emission (CDE savings for both locations. An economic analysis to determine the maximum capital cost for a desired payback period is presented in this paper. A parametric analysis is also performed to study the effect of the turbine efficiency as well as the open feed organic fluid heater intermediate pressure on the system performance. Results indicate that the R-ORC is able to generate more power than the basic ORC for some of the selected working fluids. For the R-ORC, R236ea is the working fluid that show the best performance among the evaluated fluids under the modeled conditions. On the other hand, the basic ORC with R236ea as the working fluid outperformed three of the fluids in the R-ORC. Also, the R-ORC evaluated in Tucson, AZ is able to generate more power, to provide more PEC and CDE savings, and had a higher available capital cost than the R-ORC evaluated in in Jackson, MS.

  6. Sonoporation of adherent cells under regulated ultrasound cavitation conditions.

    Science.gov (United States)

    Muleki Seya, Pauline; Fouqueray, Manuela; Ngo, Jacqueline; Poizat, Adrien; Inserra, Claude; Béra, Jean-Christophe

    2015-04-01

    A sonoporation device dedicated to the adherent cell monolayer has been implemented with a regulation process allowing the real-time monitoring and control of inertial cavitation activity. Use of the cavitation-regulated device revealed first that adherent cell sonoporation efficiency is related to inertial cavitation activity, without inducing additional cell mortality. Reproducibility is enhanced for the highest sonoporation rates (up to 17%); sonoporation efficiency can reach 26% when advantage is taken of the standing wave acoustic configuration by applying a frequency sweep with ultrasound frequency tuned to the modal acoustic modes of the cavity. This device allows sonoporation of adherent and suspended cells, and the use of regulation allows some environmental parameters such as the temperature of the medium to be overcome, resulting in the possibility of cell sonoporation even at ambient temperature. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Power generation from furfural using the microbial fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yong; Liu, Guangli; Zhang, Renduo; Zhang, Cuiping [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275 (China)

    2010-01-01

    Furfural is a typical inhibitor in the ethanol fermentation process using lignocellulosic hydrolysates as raw materials. In the literature, no report has shown that furfural can be utilized as the fuel to produce electricity in the microbial fuel cell (MFC), a device that uses microbes to convert organic compounds to generate electricity. In this study, we demonstrated that electricity was successfully generated using furfural as the sole fuel in both the ferricyanide-cathode MFC and the air-cathode MFC. In the ferricyanide-cathode MFC, the maximum power densities reached 45.4, 81.4, and 103 W m{sup -3}, respectively, when 1000 mg L{sup -1} glucose, a mixture of 200 mg L{sup -1} glucose and 5 mM furfural, and 6.68 mM furfural were used as the fuels in the anode solution. The corresponding Coulombic efficiencies (CE) were 4.0, 7.1, and 10.2% for the three treatments, respectively. For pure furfural as the fuel, the removal efficiency of furfural reached up to 95% within 12 h. In the air-cathode MFC using 6.68 mM furfural as the fuel, the maximum values of power density and CE were 361 mW m{sup -2} (18 W m{sup -3}) and 30.3%, respectively, and the COD removal was about 68% at the end of the experiment (about 30 h). Increase in furfural concentrations from 6.68 to 20 mM resulted in increase in the maximum power densities from 361 to 368 mW m{sup -2}, and decrease in CEs from 30.3 to 20.6%. These results indicated that some toxic and biorefractory organics such as furfural might still be suitable resources for electricity generation using the MFC technology. (author)

  8. Direct fuel cell power plants: the final steps to commercialization

    Science.gov (United States)

    Glenn, Donald R.

    Since the last paper presented at the Second Grove Fuel Cell Symposium, the Energy Research Corporation (ERC) has established two commercial subsidiaries, become a publically-held firm, expanded its facilities and has moved the direct fuel cell (DFC) technology and systems significantly closer to commercial readiness. The subsidiaries, the Fuel Cell Engineering Corporation (FCE) and Fuel Cell Manufacturing Corporation (FCMC) are perfecting their respective roles in the company's strategy to commercialize its DFC technology. FCE is the prime contractor for the Santa Clara Demonstration and is establishing the needed marketing, sales, engineering, and servicing functions. FCMC in addition to producing the stacks and stack modules for the Santa Clara demonstration plant is now upgrading its production capability and product yields, and retooling for the final stack scale-up for the commercial unit. ERC has built and operated the tallest and largest capacities-to-date carbonate fuel cell stacks as well as numerous short stacks. While most of these units were tested at ERC's Danbury, Connecticut (USA) R&D Center, others have been evaluated at other domestic and overseas facilities using a variety of fuels. ERC has supplied stacks to Elkraft and MTU for tests with natural gas, and RWE in Germany where coal-derived gas were used. Additional stack test activities have been performed by MELCO and Sanyo in Japan. Information from some of these activities is protected by ERC's license arrangements with these firms. However, permission for limited data releases will be requested to provide the Grove Conference with up-to-date results. Arguably the most dramatic demonstration of carbonate fuel cells in the utility-scale, 2 MW power plant demonstration unit, located in the City of Santa Clara, California. Construction of the unit's balance-of-plant (BOP) has been completed and the installed equipment has been operationally checked. Two of the four DFC stack sub-modules, each

  9. Proton irradiation effects of amorphous silicon solar cell for solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Yousuke; Oshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Sasaki, Susumu; Kuroda, Hideo; Ushirokawa, Akio

    1997-03-01

    Flexible amorphous silicon(fa-Si) solar cell module, a thin film type, is regarded as a realistic power generator for solar power satellite. The radiation resistance of fa-Si cells was investigated by the irradiations of 3,4 and 10 MeV protons. The hydrogen gas treatment of the irradiated fa-Si cells was also studied. The fa-Si cell shows high radiation resistance for proton irradiations, compared with a crystalline silicon solar cell. (author)

  10. Performance evaluation of an open-cathode PEM fuel cell stack under ambient conditions: Case study of United Arab Emirates

    International Nuclear Information System (INIS)

    Al-Zeyoudi, Hend; Sasmito, Agus P.; Shamim, Tariq

    2015-01-01

    Highlights: • Performance evaluation of open-cathode PEM fuel cell stacks with forced air-convection. • Stack performance can vary up to 40% from winter to summer. • Hot and arid condition leads to membrane drying and performance deterioration. • Anode humidification improves the stack performance up to 40% during summer. - Abstract: The open-cathode polymer electrolyte membrane (PEM) fuel cell stack has been a promising candidate as a sustainable energy conversion system for replacing fossil fuel-based energy conversion devices in portable and automotive applications. As the ambient air is directly used to provide both oxidant and cooling, the complex cooling loop can be avoided which reduces the complexity and cost. However, the stack performance is highly affected by ambient conditions, i.e., ambient temperature and humidity. In this study, the effect of monthly ambient air conditions (temperature and humidity) is evaluated with respect to the stack’s power production performance as well as thermal, water and gas management by employing a validated three-dimensional open-cathode PEM fuel cell stack model. The annual climate data from the hot and arid environment of Abu Dhabi, United Arab Emirates (UAE) are used as a case study. The objective is to develop a better fundamental understanding of the interactions of physical phenomena in a fuel cell stack, which can assist in improving the performance and operation of an open-cathode PEM fuel cell-powered vehicle. The results indicate that the stack performance can vary significantly (up to 40%) from winter to summer, especially at high operating currents, with significant changes in the stack temperature and the water content at the membrane. Moreover, the anode humidification results in a significant improvement in the stack performance (up to 40%) in hot and dry conditions. However, a careful balance has to be struck between the humidifier parasitic load and the stack power.

  11. Osteogenic stimulatory conditions enhance growth and maturation of endothelial cell microvascular networks in culture with mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Torbjorn O Pedersen

    2012-12-01

    Full Text Available To optimize culture conditions for in vitro prevascularization of tissue-engineered bone constructs, the development of organotypic blood vessels under osteogenic stimulatory conditions (OM was investigated. Coculture of endothelial cells and mesenchymal stem cells was used to assess proangiogenic effects of mesenchymal stem cells on endothelial cells. Four different culture conditions were evaluated for their effect on development of microvascular endothelial cell networks. Mineralization, deposition of extracellular matrix, and perivascular gene expression were studied in OM. After 3 days, endothelial cells established elongated capillary-like networks, and upregulated expression of vascular markers was seen. After 15 days, all parameters evaluated were significantly increased for cultures in OM. Mature networks developed in OM presented lumens enveloped by basement membrane-like collagen IV, with obvious mineralization and upregulated perivascular gene expression from mesenchymal stem cells. Our results suggest osteogenic stimulatory conditions to be appropriate for in vitro development of vascularized bone implants for tissue engineering.

  12. Gas Boiler Powered by the Fuel Cell System

    Directory of Open Access Journals (Sweden)

    Nicolae Badea

    2014-09-01

    Full Text Available The paper presents a new solution for supply of boilers with electrical energy in the order to achieve autonomy from electrical grid. The paper presents the experimental system implemented in the university lab, the components and implementation in Matlab-Simulink for simulation. As a result of numeric simulation performed, the experimental bench has been achieved. The problem of power quality, especially the THD factor, affects the sensitivity of equipment at perturbations. In achieving of these systems, the authors propose that the electrical part of the supply system for building appliances must satisfy the EN 50160 standard, having the main voltage parameters and their permissile deviation ranges at the customer’s point of common coupling in public low voltage (LV, under normal operating conditions.

  13. CONTROLLING THE SPEED OF ROLLING CUTS IN CONDITIONS OF REDUCTION OF BRAKE POWER OF CAR RETARDERS

    Directory of Open Access Journals (Sweden)

    D. M. Kozachenko

    2016-06-01

    Full Text Available Purpose. The study aims to develop the requirements for organization of the marshalling process in the conditions when the power of retarder positions is less than the nominal one. Methodology. The research is carried out using the train traffic safety theory and mathematical modelling of hump processes. Findings. The current technical standard documents regulating the operational performance of humps do not contain direct instructions on how to proceed in the event of brake power loss by car retarders, thus creating threats to the traffic safety. This problem is quite acute for the Ukrainian railways in connection with a chronic shortage of funds for the repair and renewal of technical equipment, including the humps. At the same time, a significant drop in the volume of work leads to the fact that the hump required processing capacity can be provided in case of partial failure of retarders as well. Herewith the most important task is to ensure the breaking-up safety in conditions of parametric failures of retarders. The analysis of dangerous situations, the occurrence of which is possible at humps, as well as the modelling of cut rolling, allowed establishing the connection between the value of retarder tire pressing force on the car wheels and the breaking-up modes, providing the safety of marshalling process. The paper sets the application areas of such measures as the breaking-up speed reduction, breaking-up termination, the use of additional braking by block hangers. Originality. The originality of the work lies in the fact that it first obtained the complex of dependencies that determine the performance requirements for the power of hump retarders and allow the staff to enter the appropriate limits for breaking-up modes to ensure the marshalling process safety. Practical value. The results of the research can be used to supplement the «Instruction on the maintenance of facilities of mechanized and automated humps» in order to determine

  14. Some defaults of OILs under emergency conditions in nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Pengfei; Zhong Chongjun; Gou Quanlu; Wu Deqiang

    2005-01-01

    Based on the formulae presented in IAEA-TECDOC-955 for operational intervention levels (OILs) under emergency conditions in nuclear power plant (NPP) and by InterRAS1.3 computer code, this paper calculates OIL1 and OIL2 for two kinds of postulated severe accidents (core melt-containment integrity failure or leakage accident and SG integrity severe failure accident) of PWR NPP respectively. OIL1 and OIL2 are used to recommend for public evacuation and taking iodine-blocking agent during the period of plume exposure resulted from the above postulated severe accidents. The effects on OIL1 and OIL2 calculation results of related times (e.g. expected plume exposure time, beginning time of the radioactivity released into the environment), weather conditions (wind speed, height of mixing layer, stability, and rainfall), distance from release source and release patterns (release at low elevation and high elevation) are also discussed. On the basis of the calculation and discussion, this paper presents the relevant recommended defaults of OIL1 and OIL2 for above-mentioned postulated severe accidents, and also points out that OIL1 and OIL2 not only depend on the specific type of accidents, but also on the factors such as whether radioactivity are reduced before being released into the environment, so the defaults shall be presented for different accident types and specific conditions under which radioactivity are how reduced. (authors)

  15. Demonstration of TEG-powered wireless autonomous transducer solution for condition monitoring in industrial environment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ziyang; Patrascu, Mihai; Su, Jiale; Vullers, Ruud J.M. [imec the Netherlands, Eindhoven (Netherlands)

    2011-07-01

    Imec/Holst Centre focuses on the development of wireless autonomous transducer solution, which is poised to bring about huge impact in the sectors of health care, machinery, transportation and energy, etc. In this paper, we first showcase a TEG-powered demonstration for condition monitoring in industrial environment. Composing of sensor-actuator, front-end interface, digital signal processing unit and radio, the developed wireless sensor node can monitor the changing operating condition, i.e. the loading on a rolling-element bearing, on a rotating shaft. The use of a specially designed TEG, working in tandem with an energy storage device, can significantly improve the energy autonomy of the condition monitoring system as a whole. The different components in the demonstration are presented. Subsequently, the experimental results of vibration signature analysis are exhibited. On one hand, the presented demonstration sheds light on the huge potential of thermoelectric energy harvesting to achieve energy autonomy. On the other hand, it also points to the aspects that are in need of further development, namely miniaturization and cost reduction of energy harvesters. Aimed at the delivery of cost-effective miniaturized thermoelectric harvesting devices, imec/Holst Centre has been tackling with the relevant challenges by resorting to, but not limited to, its expertise in micromachining. An update on the latest research results is subsequently given with regard to various micromachined thermoelectric devices, fully fledged wearable TEGs with custom designed package and thermoelectric material property optimization. (orig.)

  16. Comparison of different culture conditions for human mesenchymal stromal cells for clinical stem cell therapy

    DEFF Research Database (Denmark)

    Haack-Sorensen, M.; Friis, T.; Bindslev, L.

    2008-01-01

    OBJECTIVE: Mesenchymal stromal cells (MSCs) from adult bone marrow (BM) are considered potential candidates for therapeutic neovascularization in cardiovascular disease. When implementing results from animal trials in clinical treatment, it is essential to isolate and expand the MSCs under...... conditions following good manufacturing practice (GMP). The aims of the study were first to establish culture conditions following GMP quality demands for human MSC expansion and differentiation for use in clinical trials, and second to compare these MSCs with MSCs derived from culture in four media commonly...... analysis showed that the plastic-adherent MSCs cultured in EMEA medium or in the other four media were identically negative for the haematopoietic surface markers CD45 and CD34 and positive for CD105, CD73, CD90, CD166 and CD13, which in combined expression is characteristic of MSCs. MSC stimulation...

  17. Hydrogen sulfide-powered solid oxide fuel cells

    Science.gov (United States)

    Liu, Man

    2004-12-01

    The potential utilization of hydrogen sulfide as fuel in solid oxide fuel cells has been investigated using an oxide-ion conducting YSZ electrolyte and different kinds of anode catalysts at operating temperatures in the range of 700--900°C and at atmospheric pressure. This technology offers an economically attractive alternative to present methods for removing toxic and corrosive H2S gas from sour gas streams and a promising approach for cogenerating electrical energy and useful chemicals. The primary objective of the present research was to find active and stable anode materials. Fuel cell experimental results showed that platinum was a good electrocatalyst for the conversion of H2S, but the Pt/YSZ interface was physically unstable due to the reversible formation and decomposition of PtS in H 2S streams at elevated temperatures. Moreover, instability of the Pt/YSZ interface was accelerated significantly by electrochemical reactions, and ultimately led to the detachment of the Pt anode from the electrolyte. It has been shown that an interlayer of TiO2 stabilized the Pt anode on YSZ electrolyte, thereby prolonging cell lifetime. However, the current output for a fuel cell using Pt/TiO2 as anode was not improved compared to using Pt alone. It was therefore necessary to investigate novel anode systems for H 2S-air SOFCs. New anode catalysts comprising composite metal sulfides were developed. These catalysts exhibited good electrical conductivity and better catalytic activity than Pt. In contrast to MoS2 alone, composite catalysts (M-Mo-S, M = Fe, Co, Ni) were not volatile and had superior stability. However, when used for extended periods of time, detachment of Pt current collecting film from anodes comprising metal sulfides alone resulted in a large increase in contact resistance and reduction in cell performance. Consequently, a systematic investigation was conducted to identify alternative electronic conductors for use with M-Mo-S catalysts. Anode catalysts

  18. Financing aspects of nuclear power plant construction under Polish economic conditions

    International Nuclear Information System (INIS)

    Besant-Jones, John E.

    1999-01-01

    Within the framework of the new Polish Energy Law the different issues important far financing a programme to develop nuclear power power in Poland such as: economic competitiveness of nuclear power, financing options for nuclear power projects, managing the various risks for financing nuclear power as well as nuclear and business liability are considered. The importance of policy issues is stressed

  19. Continuity and boundary conditions in thermodynamics: From Carnot's efficiency to efficiencies at maximum power

    Science.gov (United States)

    Ouerdane, H.; Apertet, Y.; Goupil, C.; Lecoeur, Ph.

    2015-07-01

    object of the article is thus to cover some of the milestones of thermodynamics, and show through the illustrative case of thermoelectric generators, our model heat engine, that the shift from Carnot's efficiency to efficienc ies at maximum power explains itself naturally as one considers continuity and boundary conditions carefully; indeed, as an adaptation of Friedrich Nietzche's quote, we may say that the thermodynamic demon is in the details. This article is supplemented with comments by J.M.R. Parrondo and a final reply by the authors.

  20. Participation of nuclear power plants in variable operation regimes under conditions of combined electric power and heat generation

    International Nuclear Information System (INIS)

    Rydzi, S.

    1988-01-01

    The incorporation of nuclear power units in the control of the output of an electric power system is affected by technical and economic factors as well as by the manner of heat take-off from the nuclear power unit for heating purposes. The effect was therefore studied of the technological solution of converting the heat output of WWER-440 units to operating parameters of turbines in nonrated regimes of operation. Some results of the study are graphically represented. An analysis was also made of limitations preventing WWER-440 units from supplying heat with regard to their incorporation in the electric power transmission system. The results show that using nuclear power units for district heating will in the future strictly determine the seasonal shut-down of nuclear units for fuel exchange and overhauls. This could interfere with the considered concept of the 1.5 year duty time of WWER-440 reactors. With regard to the economy of operation of the nuclear power system and reduced demands on weekend unloading it will be necessary to incorporate in the power system pumped-storage power plants with one-week pumped-storage systems. (Z.M.). 5 figs., 2 tabs., 6 refs

  1. Effect of growth conditions on the photovoltaic efficiency of poly(terthiophene) based photoelectrochemical cells

    International Nuclear Information System (INIS)

    Tsekouras, George; Too, Chee O.; Wallace, Gordon G.

    2005-01-01

    Conditions associated with the electrochemical growth of poly(terthiophene) (PTTh) were shown to have a considerable effect on photovoltaic (PV) performance indicators, namely, short-circuit-current (I sc ), open-circuit-voltage (V oc ), fill-factor (FF) and power-conversion-efficiency (PCE). The solvent and electrochemical technique used during growth were found to have an effect on PV performance. Increasing the upper potential limit associated with growth by cyclic voltammetry (CV) was found to decrease PV efficiency. The use of higher temperatures during growth was found to improve PV performance. Conditions associated with the electrochemical growth of PTTh were found to affect PV performance because of resultant changes to the polymer morphology. Such changes were characterised using scanning electron microscopy (SEM). In general, PTTh morphologies that exhibited increased porosity gave better PV performance by increasing the contact area between the PTTh and the liquid electrolyte. Combining the optimum conditions for the electrochemical growth of PTTh yielded a photoelectrochemical cell (PEC) showing I sc = 888 μA cm -2 , V oc 152 mV, FF = 37.3% and PCE = 0.101% under halogen light (solar simulated) intensity of 500 W m -2

  2. Conditions of call for tenders on the offshore wind power plants; Conditions de l'appel d'offres portant sur des centrales eolienne en mer

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    In the framework of the renewable energies sources development, the french government decided to launch a call for tenders for the realization of offshore wind power plants in 2007. The call for tenders conditions concern: the energetic and technical characteristics of the installations as the primary energy, the production technic, the power; the industrial implementing delay; the exploitation and the operating time; the implementing sites; the weighting and the classification principles. The main conditions concerning the utilization of the maritime public land property outside of the harbors. (A.L.B.)

  3. Fuzzy Logic Based Control of Power of PEM Fuel Cell System for Residential Application

    Directory of Open Access Journals (Sweden)

    Khaled MAMMAR

    2009-07-01

    Full Text Available This paper presents a dynamic model of Fuel cell system for residential power generation. The models proposed include a fuel cell stack model, reformer model and DC/AC inverter model. Furthermore a fuzzy logic (FLC controller is used to control active power of PEM fuel cell system. The controller modifies the hydrogen flow feedback from the terminal load. Simulation results confirmed the high performance capability of the fuzzy logic controller to control power generation.

  4. Expression of Heat Shock Proteins in Human Fibroblast Cells under Magnetic Resonant Coupling Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Kohei Mizuno

    2015-10-01

    Full Text Available Since 2007, resonant coupling wireless power transfer (WPT technology has been attracting attention and has been widely researched for practical use. Moreover, dosimetric evaluation has also been discussed to evaluate the potential health risks of the electromagnetic field from this WPT technology based on the International Commission on Non-Ionizing Radiation Protection (ICNIRP guidelines. However, there has not been much experimental evaluation of the potential health risks of this WPT technology. In this study, to evaluate whether magnetic resonant coupling WPT induces cellular stress, we focused on heat shock proteins (Hsps and determined the expression level of Hsps 27, 70 and 90 in WI38VA13 subcloned 2RA human fibroblast cells using a western blotting method. The expression level of Hsps under conditions of magnetic resonant coupling WPT for 24 h was not significantly different compared with control cells, although the expression level of Hsps for cells exposed to heat stress conditions was significantly increased. These results suggested that exposure to magnetic resonant coupling WPT did not cause detectable cell stress.

  5. Problems and necessary conditions of the safe shut down and decommissioning of Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    Umanets, M.

    1996-01-01

    The paper discusses the following issues: current situation in the nuclear power complex of Ukraine; Analyses of the current safety status at nuclear power units in Ukraine; analysis of violations in the NPPs performance; situation at Chernobyl nuclear power plant

  6. Determination of maximum power transfer conditions of bimorph piezoelectric energy harvesters

    KAUST Repository

    Ahmad, Mahmoud Al

    2012-07-23

    In this paper, a method to find the maximum power transfer conditions in bimorph piezoelectric-based harvesters is proposed. Explicitly, we derive a closed form expression that relates the load resistance to the mechanical parameters describing the bimorph based on the electromechanical, single degree of freedom, analogy. Further, by taking into account the intrinsic capacitance of the piezoelectric harvester, a more descriptive expression of the resonant frequency in piezoelectric bimorphs was derived. In interest of impartiality, we apply the proposed philosophy on previously published experimental results and compare it with other reported hypotheses. It was found that the proposed method was able to predict the actual optimum load resistance more accurately than other methods reported in the literature. © 2012 American Institute of Physics.

  7. Panorama Image Processing for Condition Monitoring with Thermography in Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Byoung Joon; Kim, Tae Hwan; Kim, Soon Geol; Mo, Yoon Syub [UNETWARE, Seoul (Korea, Republic of); Kim, Won Tae [Kongju National University, Gongju (Korea, Republic of)

    2010-04-15

    In this paper, imaging processing study obtained from CCD image and thermography image was performed in order to treat easily thermographic data without any risks of personnel who conduct the condition monitoring for the abnormal or failure status occurrable in industrial power plants. This imaging processing is also applicable to the predictive maintenance. For confirming the broad monitoring, a methodology producting single image from the panorama technique was developed no matter how many cameras are employed, including fusion method for discrete configuration for the target. As results, image fusion from quick realtime processing was obtained and it was possible to save time to track the location monitoring in matching the images between CCTV and thermography

  8. Panorama Image Processing for Condition Monitoring with Thermography in Power Plant

    International Nuclear Information System (INIS)

    Jeon, Byoung Joon; Kim, Tae Hwan; Kim, Soon Geol; Mo, Yoon Syub; Kim, Won Tae

    2010-01-01

    In this paper, imaging processing study obtained from CCD image and thermography image was performed in order to treat easily thermographic data without any risks of personnel who conduct the condition monitoring for the abnormal or failure status occurrable in industrial power plants. This imaging processing is also applicable to the predictive maintenance. For confirming the broad monitoring, a methodology producting single image from the panorama technique was developed no matter how many cameras are employed, including fusion method for discrete configuration for the target. As results, image fusion from quick realtime processing was obtained and it was possible to save time to track the location monitoring in matching the images between CCTV and thermography

  9. Probabilistic methods for condition assessment and life prediction of concrete structures in nuclear power plants

    International Nuclear Information System (INIS)

    Ellingwood, B.R.; Mori, Yasuhiro

    1993-01-01

    A probability-based methodology is being developed in support of the NRC Structural Aging Program to assist in evaluating the reliability of existing concrete structures in nuclear power plants under potential future operating loads and extreme evironmental and accidental events. The methodology includes models to predict structural deterioration due to environmental stressors, a database to support the use of these models, and methods for analyzing time-dependent reliability of concrete structural components subjected to stochastic loads. The methodology can be used to support a plant license extension application by providing evidence that safety-related concrete structures in their current (service) condition are able to withstand future extreme events with a level of reliability sufficient for public health and safety. (orig.)

  10. Predicting speech intelligibility in adverse conditions: evaluation of the speech-based envelope power spectrum model

    DEFF Research Database (Denmark)

    Jørgensen, Søren; Dau, Torsten

    2011-01-01

    conditions by comparing predictions to measured data from [Kjems et al. (2009). J. Acoust. Soc. Am. 126 (3), 1415-1426] where speech is mixed with four different interferers, including speech-shaped noise, bottle noise, car noise, and cafe noise. The model accounts well for the differences in intelligibility......The speech-based envelope power spectrum model (sEPSM) [Jørgensen and Dau (2011). J. Acoust. Soc. Am., 130 (3), 1475–1487] estimates the envelope signal-to-noise ratio (SNRenv) of distorted speech and accurately describes the speech recognition thresholds (SRT) for normal-hearing listeners...... observed for the different interferers. None of the standardized models successfully describe these data....

  11. Power and loads for wind turbines in yawed conditions. Analysis of field measurements and aerodynamic predictions

    Energy Technology Data Exchange (ETDEWEB)

    Boorsma, K. [ECN Wind Energy, Petten (Netherlands)

    2012-11-15

    A description is given of the work carried out within the framework of the FLOW (Far and Large Offshore Wind) project on single turbine performance in yawed flow conditions. Hereto both field measurements as well as calculations with an aerodynamic code are analyzed. The rotors of horizontal axis wind turbines follow the changes in the wind direction for optimal performance. The reason is that the power is expected to decrease for badly oriented rotors. So, insight in the effects of the yaw angle on performance is important for optimization of the yaw control of each individual turbine. The effect of misalignment on performance and loads of a single 2.5 MW wind turbine during normal operation is investigated. Hereto measurements at the ECN Wind Turbine Test Site Wieringermeer (EWTW) are analyzed from December 2004 until April 2009. Also, the influence of yaw is studied using a design code and results from this design code are compared with wind tunnel measurements.

  12. Optimum operating conditions for a combined power and cooling thermodynamic cycle

    International Nuclear Information System (INIS)

    Sadrameli, S.M.; Goswami, D.Y.

    2007-01-01

    The combined production of thermal power and cooling with an ammonia-water based cycle proposed by Goswami is under intensive investigation. In the cycle under consideration, simultaneous cooling output is produced by expanding an ammonia-rich vapor in an expander to sub-ambient temperatures and subsequently heating the cool exhaust. When this mechanism for cooling production is considered in detail, it is apparent that the cooling comes at some expense to work production. To optimize this trade-off, a very specific coefficient-of-performance has been defined. In this paper, the simulation of the cycle was carried out in the process simulator ASPEN Plus. The optimum operating conditions have been found by using the Equation Oriented mode of the simulator and some of the results have been compared with the experimental data obtained from the cycle. The agreement between the two sets proves the accuracy of the optimization results

  13. Continuous Covariate Imbalance and Conditional Power for Clinical Trial Interim Analyses

    Science.gov (United States)

    Ciolino, Jody D.; Martin, Renee' H.; Zhao, Wenle; Jauch, Edward C.; Hill, Michael D.; Palesch, Yuko Y.

    2014-01-01

    Oftentimes valid statistical analyses for clinical trials involve adjustment for known influential covariates, regardless of imbalance observed in these covariates at baseline across treatment groups. Thus, it must be the case that valid interim analyses also properly adjust for these covariates. There are situations, however, in which covariate adjustment is not possible, not planned, or simply carries less merit as it makes inferences less generalizable and less intuitive. In this case, covariate imbalance between treatment groups can have a substantial effect on both interim and final primary outcome analyses. This paper illustrates the effect of influential continuous baseline covariate imbalance on unadjusted conditional power (CP), and thus, on trial decisions based on futility stopping bounds. The robustness of the relationship is illustrated for normal, skewed, and bimodal continuous baseline covariates that are related to a normally distributed primary outcome. Results suggest that unadjusted CP calculations in the presence of influential covariate imbalance require careful interpretation and evaluation. PMID:24607294

  14. Effect of power oscillations on suppression pool heating during ATWS [Anticipated Transients Without Scram] conditions

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Mallen, A.N.

    1990-01-01

    Nine selected Anticipated Transients Without Scram (ATWS) have been simulated on the BNL Engineering Plant Analyzer (EPA), to determine how power and flow oscillations, similar to those that did or could have occurred at the LaSalle-2 boiling Water Reactor (BWR), could affect the rate of Pressure Suppression Pool heating. It has been determined that the pool can reach its temperature limit of 80 degree C in 4.3 min. after Turbine Trip without Bypass, if the feedwater pumps are not tripped. The pool will not reach its limit, if Boron is injected, even when oscillations are encountered. Simultaneous turbine and recirculation pump trips, introduced under stable conditions, can lead to instability. 2 refs., 17 figs., 9 tabs

  15. Policy and regulatory framework conditions for small hydro power in Sub-Saharan Africa

    Energy Technology Data Exchange (ETDEWEB)

    Koelling, Fritz [Sustainable Energy and Environment, Karlsruhe (Germany); Gaul, Mirco; Schroeder, Miriam [SiNERGi Consultancy for Renewable Energies, Berlin (Germany)

    2011-07-01

    The vast potential of mini and micro hydro power (MHP) in Sub-Saharan African countries is one promising option to cover increasing energy demand and to enable electricity access for remote rural communities. Based on the analysis of 6 African countries (Ethiopia, Kenya, Mozambique, Nigeria, Rwanda, South Africa), this study sheds light on some of the main barriers on the level of political and regulatory framework conditions which include gap between the national-level policies and regulations and local MHP project implementation, lack of financing and limited capacities for project planning, building and operation. The paper also identifies some promising practices employed in several SSA countries of how to overcome these barriers and concludes with recommendations of how to create positive feed-backs between ambitious policies and regulations and MHP financing and capacity development needs in order to scale up MHP deployment and MHP sector development. (orig.)

  16. Sewage sludge conditioning with the application of ash from biomass-fired power plant

    Science.gov (United States)

    Wójcik, Marta; Stachowicz, Feliks; Masłoń, Adam

    2018-02-01

    During biomass combustion, there are formed combustion products. Available data indicates that only 29.1 % of biomass ashes were recycled in Poland in 2013. Chemical composition and sorptive properties of ashes enable their application in the sewage sludge treatment. This paper analyses the impact of ashes from biomass-combustion power plant on sewage sludge dewatering and higienisation. The results obtained in laboratory tests proved the possitive impact of biomass ashes on sewage sludge hydration reduction after dewatering and the increase of filtrate volume. After sludge conditioning with the use of biomass combustion by-products, the final moisture content decreased by approximatelly 10÷25 % in comparison with raw sewage sludge depending on the method of dewatering. The application of biomass combustion products in sewage sludge management could provide an alternative method of their utilization according to law and environmental requirements.

  17. Differentiation of human mesenchymal stem cell spheroids under microgravity conditions

    Directory of Open Access Journals (Sweden)

    Wolfgang H Cerwinka

    2012-01-01

    Full Text Available To develop and characterize a novel cell culture method for the generation of undifferentiated and differentiated human mesenchymal stem cell 3D structures, we utilized the RWV system with a gelatin-based scaffold. 3 × 106 cells generated homogeneous spheroids and maximum spheroid loading was accomplished after 3 days of culture. Spheroids cultured in undifferentiated spheroids of 3 and 10 days retained expression of CD44, without expression of differentiation markers. Spheroids cultured in adipogenic and osteogenic differentiation media exhibited oil red O staining and von Kossa staining, respectively. Further characterization of osteogenic lineage, showed that 10 day spheroids exhibited stronger calcification than any other experimental group corresponding with significant expression of vitamin D receptor, alkaline phosphatase, and ERp60 . In conclusion this study describes a novel RWV culture method that allowed efficacious engineering of undifferentiated human mesenchymal stem cell spheroids and rapid osteogenic differentiation. The use of gelatin scaffolds holds promise to design implantable stem cell tissue of various sizes and shapes for future regenerative treatment.

  18. A New Technique for Tracking the Global Maximum Power Point of PV Arrays Operating Under Partial-Shading Conditions

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2012-01-01

    The power-voltage characteristic of photovoltaic (PV) arrays operating under partial-shading conditions exhibits multiple local maximum power points (MPPs). In this paper, a new method to track the global MPP is presented, which is based on controlling a dc/dc converter connected at the PV array...

  19. The study on the recycle condition for existence of the decommissioning waste in the nuclear power station

    International Nuclear Information System (INIS)

    Hironaga, Michihiko; Ozaki, Sachio; Hirai, Mitsuyuki; Sakamoto, Hiroyuki; Usui, Tatsuo; Simizu, Yasuo; Ogane, Daisuke

    2000-01-01

    To establish the technique of the recycle for concrete waste, this paper describes the recycle condition for existence of the decommissioning concrete waste in the nuclear power plant and considers the durability of cask yard concrete constructed at about twenty years ago. The authors examine the recycle system of concrete in the power plant. (author)

  20. 2D simulation and performance evaluation of bifacial rear local contact c-Si solar cells under variable illumination conditions

    KAUST Repository

    Katsaounis, Theodoros

    2017-09-18

    A customized 2D computational tool has been developed to simulate bifacial rear local contact PERC type PV structures based on the numerical solution of the transport equations through the finite element method. Simulations were performed under various device material parameters and back contact geometry configurations in order to optimize bifacial solar cell performance under different simulated illumination conditions. Bifacial device maximum power output was also compared with the monofacial equivalent one and the industrial standard Al-BSF structure. The performance of the bifacial structure during highly diffused irradiance conditions commonly observed in the Middle East region due to high concentrations of airborne dust particles was also investigated. Simulation results demonstrated that such conditions are highly favorable for the bifacial device because of the significantly increased diffuse component of the solar radiation which enters the back cell surface.

  1. 2D simulation and performance evaluation of bifacial rear local contact c-Si solar cells under variable illumination conditions

    KAUST Repository

    Katsaounis, Theodoros; Kotsovos, Konstantinos; Gereige, Issam; Al-Saggaf, Ahmed; Tzavaras, Athanasios

    2017-01-01

    A customized 2D computational tool has been developed to simulate bifacial rear local contact PERC type PV structures based on the numerical solution of the transport equations through the finite element method. Simulations were performed under various device material parameters and back contact geometry configurations in order to optimize bifacial solar cell performance under different simulated illumination conditions. Bifacial device maximum power output was also compared with the monofacial equivalent one and the industrial standard Al-BSF structure. The performance of the bifacial structure during highly diffused irradiance conditions commonly observed in the Middle East region due to high concentrations of airborne dust particles was also investigated. Simulation results demonstrated that such conditions are highly favorable for the bifacial device because of the significantly increased diffuse component of the solar radiation which enters the back cell surface.

  2. Cost competitiveness of a solar cell array power source for ATS-6 educational TV terminal

    Science.gov (United States)

    Masters, R. M.

    1975-01-01

    A cost comparison is made between a terrestrial solar cell array power system and a variety of other power sources for the ATS-6 Satellite Instructional Television Experiment (SITE) TV terminals in India. The solar array system was sized for a typical Indian location, Lahore. Based on present capital and fuel costs, the solar cell array power system is a close competitor to the least expensive alternate power system. A feasibility demonstration of a terrestrial solar cell array system powering an ATS-6 receiver terminal at Cleveland, Ohio is described.

  3. The Influence of Solar Power Plants on Microclimatic Conditions and the Biotic Community in Chilean Desert Environments

    Science.gov (United States)

    Suuronen, Anna; Muñoz-Escobar, Christian; Lensu, Anssi; Kuitunen, Markku; Guajardo Celis, Natalia; Espinoza Astudillo, Pablo; Ferrú, Marcos; Taucare-Ríos, Andrés; Miranda, Marcelo; Kukkonen, Jussi V. K.

    2017-10-01

    The renewable energy sector is growing at a rapid pace in northern Chile and the solar energy potential is one of the best worldwide. Therefore, many types of solar power plant facilities are being built to take advantage of this renewable energy resource. Solar energy is considered a clean source of energy, but there are potential environmental effects of solar technology, such as landscape fragmentation, extinction of local biota, microclimate changes, among others. To be able to minimize environmental impacts of solar power plants, it is important to know what kind of environmental conditions solar power plants create. This study provides information about abiotic and biotic conditions in the vicinity of photovoltaic solar power plants. Herein, the influence of these power plants as drivers of new microclimate conditions and arthropods diversity composition in the Atacama Desert was evaluated. Microclimatic conditions between panel mounts was found to be more extreme than in the surrounding desert yet beneath the panels temperature is lower and relative humidity higher than outside the panel area. Arthropod species composition was altered in fixed-mount panel installations. In contrast, solar tracking technology showed less influence on microclimate and species composition between Sun and Shade in the power plant. Shady conditions provided a refuge for arthropod species in both installation types. For example, Dipterans were more abundant in the shade whereas Solifugaes were seldom present in the shade. The presented findings have relevance for the sustainable planning and construction of solar power plants.

  4. The Influence of Solar Power Plants on Microclimatic Conditions and the Biotic Community in Chilean Desert Environments.

    Science.gov (United States)

    Suuronen, Anna; Muñoz-Escobar, Christian; Lensu, Anssi; Kuitunen, Markku; Guajardo Celis, Natalia; Espinoza Astudillo, Pablo; Ferrú, Marcos; Taucare-Ríos, Andrés; Miranda, Marcelo; Kukkonen, Jussi V K

    2017-10-01

    The renewable energy sector is growing at a rapid pace in northern Chile and the solar energy potential is one of the best worldwide. Therefore, many types of solar power plant facilities are being built to take advantage of this renewable energy resource. Solar energy is considered a clean source of energy, but there are potential environmental effects of solar technology, such as landscape fragmentation, extinction of local biota, microclimate changes, among others. To be able to minimize environmental impacts of solar power plants, it is important to know what kind of environmental conditions solar power plants create. This study provides information about abiotic and biotic conditions in the vicinity of photovoltaic solar power plants. Herein, the influence of these power plants as drivers of new microclimate conditions and arthropods diversity composition in the Atacama Desert was evaluated. Microclimatic conditions between panel mounts was found to be more extreme than in the surrounding desert yet beneath the panels temperature is lower and relative humidity higher than outside the panel area. Arthropod species composition was altered in fixed-mount panel installations. In contrast, solar tracking technology showed less influence on microclimate and species composition between Sun and Shade in the power plant. Shady conditions provided a refuge for arthropod species in both installation types. For example, Dipterans were more abundant in the shade whereas Solifugaes were seldom present in the shade. The presented findings have relevance for the sustainable planning and construction of solar power plants.

  5. In search of extendable conditions for cable environmental qualification in nuclear power plants

    International Nuclear Information System (INIS)

    Alshaketheep, Tariq; Sekimura, Naoto; Itoi, Tatsuya; Murakami, Kenta

    2016-01-01

    The environmental qualification (EQ) for cable insulators in nuclear power plants (NPPs) has been developed on the basis of the design basis accident (DBA) to prevent reactor core damage. However, the latest safety principles require extending the design concept to prepare the utilized equipment for scenarios after core damage. Thus, we propose a modification to the EQ for cables connecting utilized equipment at design extension conditions. This paper surveys all electrical components for accident management in boiling water reactor-4 (BWR-4), and identifies their connecting cables' functional category as low-voltage power, instrumentation, and control cables. The EQ temperature profile of these cables during the incident phase was addressed for extension. This required postulating maximum temperature environments according to accident scenarios, knowledge of cable integrity degradation, and their current evaluation by the EQ. To evaluate whether these environments are suitable stressors, heat testing was conducted on flame-retardant ethylene propylene rubber (FR-EPR)-insulated cables. On the basis of those results, we suggest a maximum primary peak temperature of the EQ temperature profile of 250degC. We also suggest increasing the primary peak period of the EQ temperature profile to 48 h without experiment, on the basis of inherent excessive margin for mechanical integrity during the ageing phase. (author)

  6. Normal and Extreme Wind Conditions for Power at Coastal Locations in China.

    Science.gov (United States)

    Gao, Meng; Ning, Jicai; Wu, Xiaoqing

    2015-01-01

    In this paper, the normal and extreme wind conditions for power at 12 coastal locations along China's coastline were investigated. For this purpose, the daily meteorological data measured at the standard 10-m height above ground for periods of 40-62 years are statistically analyzed. The East Asian Monsoon that affects almost China's entire coastal region is considered as the leading factor determining wind energy resources. For most stations, the mean wind speed is higher in winter and lower in summer. Meanwhile, the wind direction analysis indicates that the prevalent winds in summer are southerly, while those in winter are northerly. The air densities at different coastal locations differ significantly, resulting in the difference in wind power density. The Weibull and lognormal distributions are applied to fit the yearly wind speeds. The lognormal distribution performs better than the Weibull distribution at 8 coastal stations according to two judgement criteria, the Kolmogorov-Smirnov test and absolute error (AE). Regarding the annual maximum extreme wind speed, the generalized extreme value (GEV) distribution performs better than the commonly-used Gumbel distribution. At these southeastern coastal locations, strong winds usually occur in typhoon season. These 4 coastal provinces, that is, Guangdong, Fujian, Hainan, and Zhejiang, which have abundant wind resources, are also prone to typhoon disasters.

  7. Modeling and simulation of a solar powered two bed adsorption air conditioning system

    International Nuclear Information System (INIS)

    Li Yong; Sumathy, K.

    2004-01-01

    A simple lumped parameter model is established to investigate the performance of a solar powered adsorption air conditioning system driven by flat-type solar collectors with three different configurations of glazes: (i) single glazed cover; (ii) double glazed cover and (iii) transparent insulation material (TIM) cover. The dynamic performance of a continuous adsorption cycle using a double adsorber along with heat recovery is measured in terms of the temperature histories, gross solar coefficient of performance and specific cooling power. Also, the influences of some important design and operational parameters on the performance of the system are studied. It is found that the chosen three types of collector configurations make no big difference on the performance, but the adsorbent mass and lumped capacitance have significant effects on the system performance as well as on the system size. Simulation results indicate that the effect of overall heat transfer coefficient is not predominant if the cycle duration is longer. Also, there exists an optimum time to initiate the heating of the adsorbent bed in a day's operation

  8. A Study on Introduction of Nuclear Power Plants in India and the Nuclear Non- Proliferation Conditions

    International Nuclear Information System (INIS)

    Yang, Seung Hyo; Lim, Dong Hyuk

    2011-01-01

    Nuclear Suppliers Group (NSG) which was formed to build nuclear export control has been accepting the nuclear cooperation for the member nation of the international nuclear non-proliferation regime. Korea exported nuclear power plants to United Arab Emirates in 2009 and research and training reactor to Jordan in 2010 based on the forcible non-proliferation regime as a member nation of NSG, so it is strengthening its position in the atomic energy industry. In addition, Korea concluded an agreement with India which is planning the construction of 25.based or more nuclear power plants for the next 20 years in last July, 25, so it will enter the atomic energy market in India. But India has been accepted the exceptionally civilian nuclear cooperation as a de facto Nuclear Weapon State (NWS) and non-member state of NPT, so concerns about nuclear proliferation has been raised. This study aims to introduce the allowance of exceptions background in India, to analyze its effect on the non-proliferation regime and to find nuclear non-proliferation conditions

  9. A knowledge based operator support system for emergency conditions in nuclear power plants

    International Nuclear Information System (INIS)

    Venkatesh Babu, C.; Subramanium, K.

    1992-01-01

    The control centres of the operating Indian nuclear power plants contain a large number of indicators and controls spread over many panels. In the event of onset of an emergency condition, there results a profusion of information, both numeric and symbolic. The operator may succumb to an information and cognitive overload that may be compounded by a lack of knowledge. The failure to apply knowledge and reasoning to solve an operational problem can lead to human error, which has been a major contributing factor in nuclear accidents. From the viewpoint of Artificial Intelligence, human error occurs if the operational problem requires computing resources that exceed human capabilities. The application of Artificial Intelligence, particularly expert systems, to nuclear power plant control room activities has considerable potential to reduce operator error and improve safety and reliability. The purpose of this paper is to discuss an investigative study of the feasibility of developing an operator support system incorporating Artificial Intelligence techniques. An information processing model of such a system, herein designated as Knowledge Based Operator Support System - KBOSS, employing expert systems technology, has been developed. The features of this system are described, and issues involved in its development are discussed. (author). 2 refs., 5 figs., 1 tab

  10. Study on condition monitoring techniques for low voltage electrical cables in nuclear power plants

    International Nuclear Information System (INIS)

    Hirao, Hideo; Sakai, Takeshi; Kajimura, Yuusaku

    2017-01-01

    Low voltage electrical cables installed in nuclear power plants are required to maintain its function in a design basis accident environment and they are qualified to that environment. The cables degrade also in normal operating conditions due to ageing and they must maintain integrity until the end of their qualified life. Demands for the condition monitoring technique for low voltage electrical cables have therefore been increasing as nuclear power plants operate longer. A single perfect method for this purpose is not available yet, but the possibility to use two different types of methods which can complement with each other has been examined. The combination of Fourier Transform Infrared Spectroscopy (FT-IR) and Indenter Modulus (IM) method was found highly effective. FT-IR is a method that determines chemical properties (changes in molecular bindings) of cables by using infrared rays, while IM is a method that determines mechanical properties (changes in hardness) of cables by indenters. Both methods are non-destructive and can be applied in-situ to the same material. Reliability of the evaluation can be assured by applying two different types of measurement principles that complement with each other. In this study, various cable samples with different kinds of insulation material (cross-linked polyethylene, ethylene propylene rubber, silicone rubber etc.) were aged with a special accelerated ageing technique which applies simultaneous thermal and radiation ageing to simulate ageing phenomena in a more realistic manner, and the degree of ageing was evaluated with FT-IR and IM. The evaluation result shows good correlation with ageing time and other ageing properties for most material types and the effectiveness of these methods were demonstrated. (author)

  11. Condition Based Prognostics of Passive Components - A New Era for Nuclear Power Plant Life Management

    International Nuclear Information System (INIS)

    Bakhtiari, S.; Mohanty, S.; Prokofiev, I.; Tregoning, R.

    2012-01-01

    As part of a research project sponsored by the U.S. NRC, Argonne National Laboratory (ANL) conducted scoping studies to identify viable and promising sensors and techniques for in-situ inspection and real-time monitoring of degradation in nuclear power plant (NPP) systems, structures, and components (SSC). Significant advances have been made over the past two decades toward development of online monitoring (OLM) techniques for detection, diagnostics, and prognostics of degradation in active nuclear power plant (NPP) components (e.g., pumps, valves). However, early detection of damage and degradation in safety-critical passive components, (e.g. piping, tubing pressure vessel), is challenging, and will likely remain so for the foreseeable future. Ensuring the structural integrity of the reactor pressure vessel (RPV) and piping systems in particular is a prerequisite to long term safe operation of NPPs. The current practice is to implement inservice inspection (ISI) and preventive maintenance programs. While these programs have generally been successful, they are limited in that information is only obtained during plant outages. Additionally, these inspections, often the critical path in the outage schedule, are costly, time consuming, and involve potentially high dose to nondestructive examination/evaluation (NDE) personnel. A viable plant-wide on-line structural health monitoring program for continuous and automatic monitoring of critical SSCs could be a more effective approach for guarding against unexpected failures. Specifically, OLM information about the current condition of the SSCs could be input to an online prognostics (OLP) system to forecast their remaining useful life in real time. This paper provides an overview of scoping studies performed at ANL on assessing the viability of OLM and OLP systems for real time and automated monitoring and remaining of condition and the remaining useful life of passive components in NPPs. (author)

  12. Investigations on an energy efficient air conditioning of hybrid vehicles and electric-powered vehicles; Untersuchungen zur energieeffizienten Klimatisierung von Hybrid- und Elektrofahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Aurich, Joerg; Baumgart, Rico; Danzer, Christoph; Unwerth, Thomas von [Technische Univ. Chemnitz (Germany). Professur Alternative Fahrzeugantriebe

    2012-11-01

    The energy-efficient air conditioning of passenger cells is an ever-increasing challenge in the development of electric vehicles because the electric heating in particular reduces the cruising range significantly. For this reason, a simulation model has been developed at Chemnitz University of Technology, which simulates the whole air conditioning system including the passenger cell and the complete powertrain in electric cars. Using this model, different optimization approaches have been analyzed and evaluated concerning the cruising range. This paper first illustrates how much the cruising range of an exemplary electric vehicle is reduced by using the electric heating under different wintery weather conditions. Afterwards, the exploitation of the waste heat produced by the powertrain components (electric motor and power electronics) will be explained. Finally, it shall be described to what extent this exploitation increases the cruising range. (orig.)

  13. Influence of Mesenchymal Stem Cells Conditioned Media on Proliferation of Urinary Tract Cancer Cell Lines and Their Sensitivity to Ciprofloxacin.

    Science.gov (United States)

    Maj, Malgorzata; Bajek, Anna; Nalejska, Ewelina; Porowinska, Dorota; Kloskowski, Tomasz; Gackowska, Lidia; Drewa, Tomasz

    2017-06-01

    Mesenchymal stem cells (MSCs) are known to interact with cancer cells through direct cell-to-cell contact and secretion of paracrine factors, although their exact influence on tumor progression in vivo remains unclear. To better understand how fetal and adult stem cells affect tumors, we analyzed viability of human renal (786-0) and bladder (T24) carcinoma cell lines cultured in conditioned media harvested from amniotic fluid-derived stem cells (AFSCs) and adipose-derived stem cells (ASCs). Both media reduced metabolic activity of 786-0 cells, however, decreased viability of T24 cells was noted only after incubation with conditioned medium from ASCs. To test the hypothesis that MSCs-secreted factors might be involved in chemoresistance acquisition, we further analyzed influence of mesenchymal stem cell conditioned media (MSC-CM) on cancer cells sensitivity to ciprofloxacin, that is considered as potential candidate agent for urinary tract cancers treatment. Significantly increased resistance to tested drug indicates that MSCs may protect cancer cells from chemotherapy. J. Cell. Biochem. 118: 1361-1368, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Impact of scaffold micro and macro architecture on Schwann cell proliferation under dynamic conditions in a rotating wall vessel bioreactor

    International Nuclear Information System (INIS)

    Valmikinathan, Chandra M.; Hoffman, John; Yu, Xiaojun

    2011-01-01

    Over the last decade tissue engineering has emerged as a powerful alternative to regenerate lost tissues owing to trauma or tumor. Evidence shows that Schwann cell containing scaffolds have improved performance in vivo as compared to scaffolds that depend on cellularization post implantation. However, owing to limited supply of cells from the patients themselves, several approaches have been taken to enhance cell proliferation rates to produce complete and uniform cellularization of scaffolds. The most common approach is the application of a bioreactor to enhance cell proliferation rate and therefore reduce the time needed to obtain sufficiently significant number of glial cells, prior to implantation. In this study, we show the application of a rotating wall bioreactor system for studying Schwann cell proliferation on nanofibrous spiral shaped scaffolds, prepared by solvent casting and salt leaching techniques. The scaffolds were fabricated from polycaprolactone (PCL), which has ideal mechanical properties and upon degradation does not produce acidic byproducts. The spiral scaffolds were coated with aligned or random nanofibers, produced by electrospinning, to provide a substrate that mimics the native extracellular matrix and the essential contact guidance cues. At the 4 day time point, an enhanced rate of cell proliferation was observed on the open structured nanofibrous spiral scaffolds in a rotating wall bioreactor, as compared to static culture conditions. However, the cell proliferation rate on the other contemporary scaffolds architectures such as the tubular and cylindrical scaffolds show reduced cell proliferation in the bioreactor as compared to static conditions, at the same time point. Moreover, the rotating wall bioreactor does not alter the orientation or the phenotype of the Schwann cells on the aligned nanofiber containing scaffolds, wherein, the cells remain aligned along the length of the scaffolds. Therefore, these open structured spiral

  15. Dye-sensitized solar cells for efficient power generation under ambient lighting

    Science.gov (United States)

    Freitag, Marina; Teuscher, Joël; Saygili, Yasemin; Zhang, Xiaoyu; Giordano, Fabrizio; Liska, Paul; Hua, Jianli; Zakeeruddin, Shaik M.; Moser, Jacques-E.; Grätzel, Michael; Hagfeldt, Anders

    2017-06-01

    Solar cells that operate efficiently under indoor lighting are of great practical interest as they can serve as electric power sources for portable electronics and devices for wireless sensor networks or the Internet of Things. Here, we demonstrate a dye-sensitized solar cell (DSC) that achieves very high power-conversion efficiencies (PCEs) under ambient light conditions. Our photosystem combines two judiciously designed sensitizers, coded D35 and XY1, with the copper complex Cu(II/I)(tmby) as a redox shuttle (tmby, 4,4‧,6,6‧-tetramethyl-2,2‧-bipyridine), and features a high open-circuit photovoltage of 1.1 V. The DSC achieves an external quantum efficiency for photocurrent generation that exceeds 90% across the whole visible domain from 400 to 650 nm, and achieves power outputs of 15.6 and 88.5 μW cm-2 at 200 and 1,000 lux, respectively, under illumination from a model Osram 930 warm-white fluorescent light tube. This translates into a PCE of 28.9%.

  16. Tissue Source and Cell Expansion Condition Influence Phenotypic Changes of Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Lauren H. Mangum

    2017-01-01

    Full Text Available Stem cells derived from the subcutaneous adipose tissue of debrided burned skin represent an appealing source of adipose-derived stem cells (ASCs for regenerative medicine. Traditional tissue culture uses fetal bovine serum (FBS, which complicates utilization of ASCs in human medicine. Human platelet lysate (hPL is one potential xeno-free, alternative supplement for use in ASC culture. In this study, adipogenic and osteogenic differentiation in media supplemented with 10% FBS or 10% hPL was compared in human ASCs derived from abdominoplasty (HAP or from adipose associated with debrided burned skin (BH. Most (95–99% cells cultured in FBS were stained positive for CD73, CD90, CD105, and CD142. FBS supplementation was associated with increased triglyceride content and expression of adipogenic genes. Culture in hPL significantly decreased surface staining of CD105 by 31% and 48% and CD142 by 27% and 35% in HAP and BH, respectively (p<0.05. Culture of BH-ASCs in hPL also increased expression of markers of osteogenesis and increased ALP activity. These data indicate that application of ASCs for wound healing may be influenced by ASC source as well as culture conditions used to expand them. As such, these factors must be taken into consideration before ASCs are used for regenerative purposes.

  17. Tissue Source and Cell Expansion Condition Influence Phenotypic Changes of Adipose-Derived Stem Cells

    Science.gov (United States)

    Mangum, Lauren H.; Stone, Randolph; Wrice, Nicole L.; Larson, David A.; Florell, Kyle F.; Christy, Barbara A.; Herzig, Maryanne C.; Cap, Andrew P.

    2017-01-01

    Stem cells derived from the subcutaneous adipose tissue of debrided burned skin represent an appealing source of adipose-derived stem cells (ASCs) for regenerative medicine. Traditional tissue culture uses fetal bovine serum (FBS), which complicates utilization of ASCs in human medicine. Human platelet lysate (hPL) is one potential xeno-free, alternative supplement for use in ASC culture. In this study, adipogenic and osteogenic differentiation in media supplemented with 10% FBS or 10% hPL was compared in human ASCs derived from abdominoplasty (HAP) or from adipose associated with debrided burned skin (BH). Most (95–99%) cells cultured in FBS were stained positive for CD73, CD90, CD105, and CD142. FBS supplementation was associated with increased triglyceride content and expression of adipogenic genes. Culture in hPL significantly decreased surface staining of CD105 by 31% and 48% and CD142 by 27% and 35% in HAP and BH, respectively (p < 0.05). Culture of BH-ASCs in hPL also increased expression of markers of osteogenesis and increased ALP activity. These data indicate that application of ASCs for wound healing may be influenced by ASC source as well as culture conditions used to expand them. As such, these factors must be taken into consideration before ASCs are used for regenerative purposes. PMID:29138638

  18. Graft rejection after hematopoietic cell transplantation with nonmyeloablative conditioning

    DEFF Research Database (Denmark)

    Masmas, T.N.; Petersen, S.L.; Madsen, H.O.

    2008-01-01

    over time. The storage temperature of the apheresis products was identified as a risk factor for rejection. Storage of the apheresis products at 5 degrees C diminished the risk of rejection. Low donor T cell chimerism at Day +14 significantly increased the risk of rejection. Seven patients were...

  19. Mechanisms of eosinophil adhesion to endothelial cells under flow conditions

    NARCIS (Netherlands)

    Ulfman, L.H.

    2002-01-01

    Eosinophils play an important role in allergic inflammatory diseases such as allergic asthma. Infiltrates of these cells are present in the interstitium and the lumen of the bronchi of asthmatic patients. Eosinophils must pass the endothelium to enter this site of inflammation. A widely accepted

  20. Polymer Separators for High-Power, High-Efficiency Microbial Fuel Cells

    KAUST Repository

    Chen, Guang; Wei, Bin; Luo, Yong; Logan, Bruce E.; Hickner, Michael A.

    2012-01-01

    Microbial fuel cells (MFCs) with hydrophilic poly(vinyl alcohol) (PVA) separators showed higher Coulombic efficiencies (94%) and power densities (1220 mW m-2) than cells with porous glass fiber separators or reactors without a separator after 32

  1. Optimization, selection and feasibility study of solar parabolic trough power plants for Algerian conditions

    International Nuclear Information System (INIS)

    Boukelia, T.E.; Mecibah, M.S.; Kumar, B.N.; Reddy, K.S.

    2015-01-01

    Highlights: • Evaluation of solar resources in the absence of measured data. • Optimization of 2 PTSTPPs integrated with TES and FBS and using oil and salt as HTFs. • 4E comparative study of the two optimized plants alongside the Andasol 1 plant. • The salt plant resulting as the best one and has been chosen for the viability study. • Tamanrasset is the best location for construction of PTSTPPs. - Abstract: In the present study, optimization of two parabolic trough solar thermal power plants integrated with thermal energy storage (TES), and fuel backup system (FBS) has been performed. The first plant uses Therminol VP-1 as heat transfer fluid in the solar field and the second plant uses molten salt. The optimization is carried out with solar multiple (SM) and full load hours of TES as the parameters, with an objective of minimizing the levelized cost of electricity (LCOE) and maximizing the annual energy yield. A 4E (energy–exergy–environment–economic) comparison of the optimized plants alongside the Andasol 1 as reference plant is studied. The molten salt plant resulting as the best technology, from the optimization and 4E comparative study has been chosen for the viability analysis of ten locations in Algeria with semi-arid and arid climatic conditions. The results indicate that Andasol 1 reference plant has the highest mean annual energy efficiency (17.25%) and exergy efficiency (23.30%). Whereas, the highest capacity factor (54.60%) and power generation (236.90 GW h) are exhibited by the molten salt plant. The molten salt plant has least annual water usage of about 800,482 m 3 , but demands more land for the operation. Nevertheless the oil plant emits the lowest amount of CO 2 gas (less than 40.3 kilo tonnes). From the economic viewpoint, molten salt seems to be the best technology compared to other plants due to its lowest investment cost (less than 360 million dollars) and lower levelized cost of electricity (LCOE) (8.48 ¢/kW h). The

  2. THE MARKET OF ELECTRICAL POWER MUTUAL INVESTMENT FUNDS IN THE CONDITIONS OF REFORM OF ELECTRICAL POWER BRANCH OF RUSSIA

    Directory of Open Access Journals (Sweden)

    Olga A. Zhdanova

    2015-01-01

    Full Text Available In article the quantitative and qualitativeanalysis of the Russian market of electrical power mutual investment funds (Mutual funds is carried out, problems andprospects of its development in modernconditions are revealed.

  3. Automated system for efficient microwave power coupling in an S-band ECR ion source driven under different operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Muguira, L., E-mail: lmuguira@essbilbao.org [ESS-Bilbao, Edificio Rectorado, Vivero de Empresas, 48940 Leioa (Bizkaia) (Spain); Portilla, J. [University of Basque Country (UPV/EHU), Department of Electricity and Electronics, Science and Technology Faculty, 48940 Leioa (Bizkaia) (Spain); Gonzalez, P.J.; Garmendia, N.; Feuchtwanger, J. [ESS-Bilbao, Edificio Rectorado, Vivero de Empresas, 48940 Leioa (Bizkaia) (Spain); Etxebarria, V. [University of Basque Country (UPV/EHU), Department of Electricity and Electronics, Science and Technology Faculty, 48940 Leioa (Bizkaia) (Spain); Eguiraun, M.; Arredondo, I.; Miracoli, R.; Belver, D. [ESS-Bilbao, Edificio Rectorado, Vivero de Empresas, 48940 Leioa (Bizkaia) (Spain)

    2014-03-21

    This article presents an automated system for optimizing the microwave power coupling to the plasma generated in a proton/deuteron Electron Cyclotron Resonance (ECR) source, based on a specific model of a rectangular waveguide triple-stub tuner and the integrated measurement and control electronics, helping to get stable plasma states. The control and improvement of the RF power absorption into the plasma is a complex process, essential for the ion source development and optimization under different operating conditions. A model and a matching algorithm for the triple-stub tuner have been developed and, besides, different methods to accurately measure the power transfer in a waveguide RF system have been studied and deployed in the ESS-Bilbao ion source system. The different parts have been integrated through a controller, which allows to run an automatic plasma matching system in closed loop. The behavior of the system implemented for low and high power regimes has been tested under different conditions: with several load impedances, with plasma inside the chamber, in continuous wave and pulsed wave operation modes, demonstrating power absorption typically over 90% in all the ion source configurations. The developed system allows to achieve significant improvement in the ECR ion source power absorption efficiency, both in continuous and pulsed mode. The automatic tuning unit enhances the system operation finding an optimum solution much faster than manually, also behaving as an adaptive system able to respond in few pulses to ion source configuration changes to maintain the power coupling as high as possible. - Highlights: • An automated system optimizing plasma and microwave power interaction is presented. • A model and a matching algorithm for the triple-stub tuner have been developed. • Different methods to measure the power transfer have been studied and deployed. • The system works for low or high power regimes under different ion source conditions.

  4. Automated system for efficient microwave power coupling in an S-band ECR ion source driven under different operating conditions

    International Nuclear Information System (INIS)

    Muguira, L.; Portilla, J.; Gonzalez, P.J.; Garmendia, N.; Feuchtwanger, J.; Etxebarria, V.; Eguiraun, M.; Arredondo, I.; Miracoli, R.; Belver, D.

    2014-01-01

    This article presents an automated system for optimizing the microwave power coupling to the plasma generated in a proton/deuteron Electron Cyclotron Resonance (ECR) source, based on a specific model of a rectangular waveguide triple-stub tuner and the integrated measurement and control electronics, helping to get stable plasma states. The control and improvement of the RF power absorption into the plasma is a complex process, essential for the ion source development and optimization under different operating conditions. A model and a matching algorithm for the triple-stub tuner have been developed and, besides, different methods to accurately measure the power transfer in a waveguide RF system have been studied and deployed in the ESS-Bilbao ion source system. The different parts have been integrated through a controller, which allows to run an automatic plasma matching system in closed loop. The behavior of the system implemented for low and high power regimes has been tested under different conditions: with several load impedances, with plasma inside the chamber, in continuous wave and pulsed wave operation modes, demonstrating power absorption typically over 90% in all the ion source configurations. The developed system allows to achieve significant improvement in the ECR ion source power absorption efficiency, both in continuous and pulsed mode. The automatic tuning unit enhances the system operation finding an optimum solution much faster than manually, also behaving as an adaptive system able to respond in few pulses to ion source configuration changes to maintain the power coupling as high as possible. - Highlights: • An automated system optimizing plasma and microwave power interaction is presented. • A model and a matching algorithm for the triple-stub tuner have been developed. • Different methods to measure the power transfer have been studied and deployed. • The system works for low or high power regimes under different ion source conditions.

  5. A microfabricated low cost enzyme-free glucose fuel cell for powering low-power implantable devices

    Science.gov (United States)

    Oncescu, Vlad; Erickson, David

    In the past decade the scientific community has showed considerable interest in the development of implantable medical devices such as muscle stimulators, neuroprosthetic devices, and biosensors. Those devices have low power requirements and can potentially be operated through fuel cells using reactants present in the body such as glucose and oxygen instead of non-rechargeable lithium batteries. In this paper, we present a thin, enzyme-free fuel cell with high current density and good stability at a current density of 10 μA cm -2. A non-enzymatic approach is preferred because of higher long term stability. The fuel cell uses a stacked electrode design in order to achieve glucose and oxygen separation. An important characteristic of the fuel cell is that it has no membrane separating the electrodes, which results in low ohmic losses and small fuel cell volume. In addition, it uses a porous carbon paper support for the anodic catalyst layer which reduces the amount of platinum or other noble metal catalysts required for fabricating high surface area electrodes with good reactivity. The peak power output of the fuel cell is approximately 2 μW cm -2 and has a sustainable power density of 1.5 μW cm -2 at 10 μA cm -2. An analysis on the effects of electrode thickness and inter electrode gap on the maximum power output of the fuel cell is also performed.

  6. Modeling of a Membrane Based Humidifier for Fuel Cell Applications Subject to End-Of-Life Conditions

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Olesen, Anders Christian; Menard, Alan

    2014-01-01

    applications. For instance for automotive applications and various backup power systems substituting batteries. Humidification of the inlet air of PEM fuel cell stacks is essential to obtain optimum proton conductivity. Operational humidities of the anode and cathode streams having dew points close to the fuel......Proton Exchange Membrane (PEM) Fuel Cell Stacks efficiently convert the chemical energy in hydrogen to electricity through electrochemical reactions occurring on either side of a proton conducting electrolyte. This is a promising and very robust energy conversion process which can be used in many...... cell operating temperature are required. These conditions must be met at the Beginning-Of-Life (BOL) as well as at the End-Of-Life (EOL) of the fuel cell system. This paper presents results of a numerical 1D model of the heat- and mass transport phenomena in a membrane humidifier with a Nafion...

  7. In Situ Irradiation and Measurement of Triple Junction Solar Cells at Low Intensity, Low Temperature (LILT) Conditions

    Science.gov (United States)

    Harris, R.D.; Imaizumi, M.; Walters, R.J.; Lorentzen, J.R.; Messenger, S.R.; Tischler, J.G.; Ohshima, T.; Sato, S.; Sharps, P.R.; Fatemi, N.S.

    2008-01-01

    The performance of triple junction InGaP/(In)GaAs/Ge space solar cells was studied following high energy electron irradiation at low temperature. Cell characterization was carried out in situ at the irradiation temperature while using low intensity illumination, and, as such, these conditions reflect those found for deep space, solar powered missions that are far from the sun. Cell characterization consisted of I-V measurements and quantum efficiency measurements. The low temperature irradiations caused substantial degradation that differs in some ways from that seen after room temperature irradiations. The short circuit current degrades more at low temperature while the open circuit voltage degrades more at room temperature. A room temperature anneal after the low temperature irradiation produced a substantial recovery in the degradation. Following irradiation at both temperatures and an extended room temperature anneal, quantum efficiency measurement suggests that the bulk of the remaining damage is in the (In)GaAs sub-cell

  8. Analytical model for power plant condenser for transients and off-normal operating conditions

    International Nuclear Information System (INIS)

    Thangamani, I.; Dutta, Anu; Chakraborty, G.; Ghosh, A.K.

    2006-11-01

    A computer code for power plant condenser dynamic analysis has been developed based on a lumped parameter approach considering time dependent mass and energy conservation equations over the control volumes for the shell side as well as tube side fluids. Effects of heat transfer on condenser structure and hot well level transients were considered in the analysis. Suitable heat transfer coefficient recommended by various standards and codes were employed. The code was used to analyze the condenser performance during steady state as well as transient (load rejection or turbine trip) conditions. The condenser performance is predicted in terms of condenser back pressure, shell side steam temperature and tube side coolant exit temperature with respect to time. As a part of parametric studies, the effect of change in tube side coolant flow rate and inlet temperature was also studied. The analysis predicted that up to 47% of rated coolant flow rate on the tube side (for design conditions), the steam dumping can be continued without condenser isolation. The paper describes the detailed methodology adopted for the condenser modeling and presents the results obtained from the different parametric studies and code validation. (author)

  9. Condition monitoring of a check valve for nuclear power plants by means of acoustic emission technique

    International Nuclear Information System (INIS)

    Lee, Min Rae; Leee, Jun Hyun; Kim, Jung Tack; Kim, Jung Soo; Luk, V. K.

    2003-01-01

    This work performed in support of the International Nuclear Energy Research Initiative(INERI) program, which was to develop and demonstrate advanced sensor and computational technology for on-line monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). The primary object of this work is to investigate advanced condition monitoring systems based on acoustic emission detection that can provide timely detection of check valve degradation and service aging so that maintenance/replacement could be preformed prior to loss of safety function. The research is focused on the capability of AE technique to provide diagnostic information useful in determining check valve aging and degradation, check valve failures and undesirable operating modes. This work also includes the investigation and adaptation of several advanced sensor technologies such as accelerometer and advanced ultrasonic technique. In addition, this work will develop advanced sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms from check valve degradation.

  10. Response of Nuclear Power Plant Instrumentation Cables Exposed to Fire Conditions.

    Energy Technology Data Exchange (ETDEWEB)

    Muna, Alice Baca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaFleur, Chris Bensdotter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brooks, Dusty Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    This report presents the results of instrumentation cable tests sponsored by the US Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research and performed at Sandia National Laboratories (SNL). The goal of the tests was to assess thermal and electrical response behavior under fire-exposure conditions for instrumentation cables and circuits. The test objective was to assess how severe radiant heating conditions surrounding an instrumentation cable affect current or voltage signals in an instrumentation circuit. A total of thirty-nine small-scale tests were conducted. Ten different instrumentation cables were tested, ranging from one conductor to eight-twisted pairs. Because the focus of the tests was thermoset (TS) cables, only two of the ten cables had thermoplastic (TP) insulation and jacket material and the remaining eight cables were one of three different TS insulation and jacket material. Two instrumentation cables from previous cable fire testing were included, one TS and one TP. Three test circuits were used to simulate instrumentation circuits present in nuclear power plants: a 4–20 mA current loop, a 10–50 mA current loop and a 1–5 VDC voltage loop. A regression analysis was conducted to determine key variables affecting signal leakage time.

  11. 1000kW phosphoric acid fuel cell power plant. Outline of the plant

    Energy Technology Data Exchange (ETDEWEB)

    Shinobe, Kenji; Suzuki, Kazuo; Kaneko, Hideo

    1988-02-10

    The outline of the 1000KW phosphoric acid fuel cell power plant, developed as part of the Moonlight plan, was described. The plant was composed of 4 stacks of 260KW DC output. They were devided into two train with 680V and 765A. The generation efficiency of the plant was 40% and more. Steam reforming of natural gas was used. As the fuel, fuel cell exhaust gas was used in composition with the natural gas. The DC-AC inverter had an efficiency of 96%. The capacity of hot water generator and demineralized water plant for cell cooling were 2t/h and 1.6t/h, respectively, and air-system was incorporated. In September of 1987, the plant has succeeded in 1000KW power generation, and put in operation now. Under the 100% loaded condition, each cell had a voltage of 0.7V with little variation, and the current was 200mA/cm/sup 2/. No problems were found in cooling conditions and in the control of interpole differential pressure. The reformer has been operated for 1200h scince its commisioning, and had experiences of 100 times on start up-shut down operations, the reformer also indicated good performances in the gas compositions. The starting time of 8h and the load follow-up rate 10%/min remain as the subjects for shortening. DC-AC conversion was good. The concentration of NOx and the noise level satisfied the target values. (12 figs, 1 tab)

  12. Effective donor cell fusion conditions for production of cloned dogs by somatic cell nuclear transfer.

    Science.gov (United States)

    Park, JungEun; Oh, HyunJu; Hong, SoGun; Kim, MinJung; Kim, GeonA; Koo, OkJae; Kang, SungKeun; Jang, Goo; Lee, ByeongChun

    2011-03-01

    As shown by the birth of the first cloned dog 'Snuppy', a protocol to produce viable cloned dogs has been reported. In order to evaluate optimum fusion conditions for improving dog cloning efficiency, in vivo matured oocytes were reconstructed with adult somatic cells from a female Pekingese using different fusion conditions. Fusion with needle vs chamber methods, and with low vs high pulse strength was compared by evaluating fusion rate and in vivo development of canine cloned embryos. The fusion rates in the high voltage groups were significantly higher than in the low voltage groups regardless of fusion method (83.5 vs 66.1% for the needle fusion method, 67.4 vs 37.9% for the fusion chamber method). After embryo transfer, one each pregnancy was detected after using the needle fusion method with high and low voltage and in the chamber fusion method with high voltage, whereas no pregnancy was detected using the chamber method with low voltage. However, only the pregnancy from the needle fusion method with high voltage was maintained to term and one healthy puppy was delivered. The results of the present study demonstrated that two DC pulses of 3.8 to 4.0 kV/cm for 15 μsec using the needle fusion method were the most effective method for the production of cloned dogs under the conditions of this experiment. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells

    KAUST Repository

    Nam, Joo-Youn

    2010-01-15

    Microbial fuel cells (MFCs) are operated with solutions containing various chemical species required for the growth of electrochemically active microorganisms including nutrients and vitamins, substrates, and chemical buffers. Many different buffers are used in laboratory media, but the effects of these buffers and their inherent electrolyte conductivities have not been examined relative to current generation in MFCs. We investigated the effect of several common buffers (phosphate, MES, HEPES, and PIPES) on power production in single chambered MFCs compared to a non-buffered control. At the same concentrations the buffers produced different solution conductivities which resulted in different ohmic resistances and power densities. Increasing the solution conductivities to the same values using NaCl produced comparable power densities for all buffers. Very large increases in conductivity resulted in a rapid voltage drop at high current densities. Our results suggest that solution conductivity at a specific pH for each buffer is more important in MFC studies than the buffer itself given relatively constant pH conditions. Based on our analysis of internal resistance and a set neutral pH, phosphate and PIPES are the most useful buffers of those examined here because pH was maintained close to the pKa of the buffer, maximizing the ability of the buffer to contribute to increase current generation at high power densities. © 2009 Elsevier B.V. All rights reserved.

  14. Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells.

    Science.gov (United States)

    Nam, Joo-Youn; Kim, Hyun-Woo; Lim, Kyeong-Ho; Shin, Hang-Sik; Logan, Bruce E

    2010-01-15

    Microbial fuel cells (MFCs) are operated with solutions containing various chemical species required for the growth of electrochemically active microorganisms including nutrients and vitamins, substrates, and chemical buffers. Many different buffers are used in laboratory media, but the effects of these buffers and their inherent electrolyte conductivities have not been examined relative to current generation in MFCs. We investigated the effect of several common buffers (phosphate, MES, HEPES, and PIPES) on power production in single chambered MFCs compared to a non-buffered control. At the same concentrations the buffers produced different solution conductivities which resulted in different ohmic resistances and power densities. Increasing the solution conductivities to the same values using NaCl produced comparable power densities for all buffers. Very large increases in conductivity resulted in a rapid voltage drop at high current densities. Our results suggest that solution conductivity at a specific pH for each buffer is more important in MFC studies than the buffer itself given relatively constant pH conditions. Based on our analysis of internal resistance and a set neutral pH, phosphate and PIPES are the most useful buffers of those examined here because pH was maintained close to the pK(a) of the buffer, maximizing the ability of the buffer to contribute to increase current generation at high power densities. Copyright 2009 Elsevier B.V. All rights reserved.

  15. Evaluation of power conditioning architectures for energy production enhancement in thermoelectric generator systems

    DEFF Research Database (Denmark)

    Wu, Hongfei; Sun, Kai; Chen, Min

    2014-01-01

    A large-scale thermoelectric generator (TEG) system has an unbalanced temperature distribution among the TEG modules, which leads to power mismatch among the modules and decreases the power output of the TEG system. To maximize the power output and minimize the power conversion loss, a centralize...

  16. Fuel Cell-Powered Lift Truck Fleet Deployment Projects Final Technical Report May 2014

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, James J [GENCO Infrastructure Solutions, Inc.

    2014-05-06

    The overall objectives of this project were to evaluate the performance, operability and safety of fork lift trucks powered by fuel cells in large distribution centers. This was accomplished by replacing the batteries in over 350 lift trucks with fuel cells at five distribution centers operated by GENCO. The annual cost savings of lift trucks powered by fuel cell power units was between $2,400 and $5,300 per truck compared to battery powered lift trucks, excluding DOE contributions. The greatest savings were in fueling labor costs where a fuel cell powered lift truck could be fueled in a few minutes per day compared to over an hour for battery powered lift trucks which required removal and replacement of batteries. Lift truck operators where generally very satisfied with the performance of the fuel cell power units, primarily because there was no reduction in power over the duration of a shift as experienced with battery powered lift trucks. The operators also appreciated the fast and easy fueling compared to the effort and potential risk of injury associated with switching heavy batteries in and out of lift trucks. There were no safety issues with the fueling or operation of the fuel cells. Although maintenance costs for the fuel cells were higher than for batteries, these costs are expected to decrease significantly in the next generation of fuel cells, making them even more cost effective.

  17. Integral Plus Resonant Sliding Mode Direct Power Control for VSC-HVDC Systems under Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Weipeng Yang

    2017-10-01

    Full Text Available An integral plus resonant sliding mode direct power control (IRSMC DPC strategy for voltage source converter high voltage direct current (VSC-HVDC systems under unbalanced grid voltage conditions is proposed in this paper. Through detailed instantaneous power flow analysis, a generalized power compensation method, by which the ratio between the amplitude of active and reactive power ripples can be controlled continuously, is obtained. This enables the system to provide flexible power control, so that the desired performance of the system on both the ac and dc sides can be attained under different operating conditions. When the grid voltage is unbalanced, one or both of the active and reactive power terms contain ripples, oscillating at twice the grid frequency, to obtain non-distorted ac current. A power controller consisting of the proportional, integral and resonant control laws is designed using the sliding mode control approach, to achieve accurate power control objective. Simulation studies on a two-terminal VSC-HVDC system using MATLAB/SIMULINK (R2013b, Mathworks, Natick, MA, USA are conducted to verify the effectiveness of the IRSMC DPC strategy. The results show that this strategy ensures satisfactory performance of the system over a wide range of operating conditions.

  18. A Modular Cascaded Multilevel Inverter Based Shunt Hybrid Active Power Filter for Selective Harmonic and Reactive Power Compensation Under Distorted/Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    T. Demirdelen

    2016-10-01

    Full Text Available In recent years, shunt hybrid active power filters are being increasingly considered as a viable alternative to both passive filters and active power filters for compensating harmonics. In literature, their applications are restricted to balanced systems and low voltage applications and therefore not for industrial applications. T