WorldWideScience

Sample records for cell polarity signaling

  1. Symmetry breaking signaling mechanisms during cell polarization

    NARCIS (Netherlands)

    Bruurs, LJM

    2017-01-01

    Breaking of cellular symmetry in order to establish an apico-basal polarity axis initiates de novo formation of cell polarity. However, symmetry breaking provides a formidable challenge from a signaling perspective, because by definition no spatial cues are present to instruct axis establishment.

  2. Cell polarity signaling in the plasticity of cancer cell invasiveness

    Czech Academy of Sciences Publication Activity Database

    Gandalovičová, A.; Vomastek, Tomáš; Rosel, D.; Brábek, J.

    2016-01-01

    Roč. 7, č. 18 (2016), s. 25022-25049 ISSN 1949-2553 R&D Projects: GA ČR GA13-06405S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : polarity * invasion * plasticity Subject RIV: EE - Microbiology, Virology Impact factor: 5.168, year: 2016

  3. LKB1 and AMPK Family Signaling: The Intimate Link Between Cell Polarity and Energy Metabolism

    NARCIS (Netherlands)

    Jansen, Marnix; ten Klooster, Jean Paul; Offerhaus, G. Johan; Clevers, Hans

    2009-01-01

    Jansen M, ten Klooster JP, Offerhaus GJ, Clevers H. LKB1 and AMPK Family Signaling: The Intimate Link Between Cell Polarity and Energy Metabolism. Physiol Rev 89: 777-798, 2009; doi:10.1152/physrev.00026.2008. Research on the LKB1 tumor suppressor protein mutated in cancer-prone Peutz-Jeghers

  4. Mathematical modeling of planar cell polarity signaling in the Drosophila melanogaster wing

    Science.gov (United States)

    Amonlirdviman, Keith

    Planar cell polarity (PCP) signaling refers to the coordinated polarization of cells within the plane of various epithelial tissues to generate sub-cellular asymmetry along an axis orthogonal to their apical-basal axes. For example, in the Drosophila wing, PCP is seen in the parallel orientation of hairs that protrude from each of the approximately 30,000 epithelial cells to robustly point toward the wing tip. Through a poorly understood mechanism, cell clones mutant for some PCP signaling components, including some, but not all alleles of the receptor frizzled, cause polarity disruptions of neighboring, wild-type cells, a phenomenon referred to as domineering nonautonomy. Previous models have proposed diffusible factors to explain nonautonomy, but no such factors have yet been found. This dissertation describes the mathematical modeling of PCP in the Drosophila wing, based on a contact dependent signaling hypothesis derived from experimental results. Intuition alone is insufficient to deduce that this hypothesis, which relies on a local feedback loop acting at the cell membrane, underlies the complex patterns observed in large fields of cells containing mutant clones, and others have argued that it cannot account for observed phenotypes. Through reaction-diffusion, partial differential equation modeling and simulation, the feedback loop is shown to fully reproduce PCP phenotypes, including domineering nonautonomy. The sufficiency of this model and the experimental validation of model predictions argue that previously proposed diffusible factors need not be invoked to explain PCP signaling and reveal how specific protein-protein interactions lead to autonomy or domineering nonautonomy. Based on these results, an ordinary differential equation model is derived to study the relationship of the feedback loop with upstream signaling components. The cadherin Fat transduces a cue to the local feedback loop, biasing the polarity direction of each cell toward the wing tip

  5. Expanding signaling-molecule wavefront model of cell polarization in the Drosophila wing primordium.

    Science.gov (United States)

    Wortman, Juliana C; Nahmad, Marcos; Zhang, Peng Cheng; Lander, Arthur D; Yu, Clare C

    2017-07-01

    In developing tissues, cell polarization and proliferation are regulated by morphogens and signaling pathways. Cells throughout the Drosophila wing primordium typically show subcellular localization of the unconventional myosin Dachs on the distal side of cells (nearest the center of the disc). Dachs localization depends on the spatial distribution of bonds between the protocadherins Fat (Ft) and Dachsous (Ds), which form heterodimers between adjacent cells; and the Golgi kinase Four-jointed (Fj), which affects the binding affinities of Ft and Ds. The Fj concentration forms a linear gradient while the Ds concentration is roughly uniform throughout most of the wing pouch with a steep transition region that propagates from the center to the edge of the pouch during the third larval instar. Although the Fj gradient is an important cue for polarization, it is unclear how the polarization is affected by cell division and the expanding Ds transition region, both of which can alter the distribution of Ft-Ds heterodimers around the cell periphery. We have developed a computational model to address these questions. In our model, the binding affinity of Ft and Ds depends on phosphorylation by Fj. We assume that the asymmetry of the Ft-Ds bond distribution around the cell periphery defines the polarization, with greater asymmetry promoting cell proliferation. Our model predicts that this asymmetry is greatest in the radially-expanding transition region that leaves polarized cells in its wake. These cells naturally retain their bond distribution asymmetry after division by rapidly replenishing Ft-Ds bonds at new cell-cell interfaces. Thus we predict that the distal localization of Dachs in cells throughout the pouch requires the movement of the Ds transition region and the simple presence, rather than any specific spatial pattern, of Fj.

  6. Zebrafish models of non-canonical Wnt/planar cell polarity signalling: fishing for valuable insight into vertebrate polarized cell behavior.

    Science.gov (United States)

    Jussila, Maria; Ciruna, Brian

    2017-05-01

    Planar cell polarity (PCP) coordinates the uniform orientation, structure and movement of cells within the plane of a tissue or organ system. It is beautifully illustrated in the polarized arrangement of bristles and hairs that project from specialized cell surfaces of the insect abdomen and wings, and pioneering genetic studies using the fruit fly, Drosophila melanogaster, have defined a core signalling network underlying PCP. This core PCP/non-canonical Wnt signalling pathway is evolutionarily conserved, and studies in zebrafish have helped transform our understanding of PCP from a peculiarity of polarized epithelia to a more universal cellular property that orchestrates a diverse suite of polarized cell behaviors that are required for normal vertebrate development. Furthermore, application of powerful genetics, embryonic cell-transplantation, and live-imaging capabilities afforded by the zebrafish model have yielded novel insights into the establishment and maintenance of vertebrate PCP, over the course of complex and dynamic morphogenetic events like gastrulation and neural tube morphogenesis. Although key questions regarding vertebrate PCP remain, with the emergence of new genome-editing technologies and the promise of endogenous labeling and Cre/LoxP conditional targeting strategies, zebrafish remains poised to deliver fundamental new insights into the function and molecular dynamic regulation of PCP signalling from embryonic development through to late-onset phenotypes and adult disease states. WIREs Dev Biol 2017, 6:e267. doi: 10.1002/wdev.267 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  7. Epidermal wound repair is regulated by the planar cell polarity signaling pathway

    Science.gov (United States)

    Caddy, Jacinta; Wilanowski, Tomasz; Darido, Charbel; Dworkin, Sebastian; Ting, Stephen B.; Zhao, Quan; Rank, Gerhard; Auden, Alana; Srivastava, Seema; Papenfuss, Tony A.; Murdoch, Jennifer N.; Humbert, Patrick O.; Boulos, Nidal; Weber, Thomas; Zuo, Jian; Cunningham, John M.; Jane, Stephen M.

    2010-01-01

    SUMMARY The mammalian PCP pathway regulates diverse developmental processes requiring coordinated cellular movement, including neural tube closure and cochlear stereociliary orientation. Here, we show that epidermal wound repair is regulated by PCP signaling. Mice carrying mutant alleles of PCP genes Vangl2, Celsr1, PTK7, and Scrb1, and the transcription factor Grhl3, interact genetically, exhibiting failed wound healing, neural tube defects and disordered cochlear polarity. Using phylogenetic analysis, ChIP, and gene expression in Grhl3−/− mice, we identified RhoGEF19, a homologue of a RhoA activator involved in PCP signaling in Xenopus, as a direct target of GRHL3. Knockdown of Grhl3 or RhoGEF19 in keratinocytes induced defects in actin polymerisation, cellular polarity and wound healing, and re-expression of RhoGEF19 rescued these defects in Grhl3-kd cells. These results define a role for Grhl3 in PCP signaling, and broadly implicate this pathway in epidermal repair. PMID:20643356

  8. CLAMP/Spef1 regulates planar cell polarity signaling and asymmetric microtubule accumulation in the Xenopus ciliated epithelia.

    Science.gov (United States)

    Kim, Sun K; Zhang, Siwei; Werner, Michael E; Brotslaw, Eva J; Mitchell, Jennifer W; Altabbaa, Mohamed M; Mitchell, Brian J

    2018-03-07

    Most epithelial cells polarize along the axis of the tissue, a feature known as planar cell polarity (PCP). The initiation of PCP requires cell-cell signaling via the noncanonical Wnt/PCP pathway. Additionally, changes in the cytoskeleton both facilitate and reflect this polarity. We have identified CLAMP/Spef1 as a novel regulator of PCP signaling. In addition to decorating microtubules (MTs) and the ciliary rootlet, a pool of CLAMP localizes at the apical cell cortex. Depletion of CLAMP leads to the loss of PCP protein asymmetry, defects in cilia polarity, and defects in the angle of cell division. Additionally, depletion of CLAMP leads to a loss of the atypical cadherin-like molecule Celrs2, suggesting that CLAMP facilitates the stabilization of junctional interactions responsible for proper PCP protein localization. Depletion of CLAMP also affects the polarized organization of MTs. We hypothesize that CLAMP facilitates the establishment of cell polarity and promotes the asymmetric accumulation of MTs downstream of the establishment of proper PCP. © 2018 Kim et al.

  9. Polarization of macrophages in the tumor microenvironment is influenced by EGFR signaling within colon cancer cells

    Science.gov (United States)

    Zhang, Weina; Chen, Lechuang; Ma, Kai; Zhao, Yahui; Liu, Xianghe; Wang, Yu; Liu, Mei; Liang, Shufang; Zhu, Hongxia; Xu, Ningzhi

    2016-01-01

    Epidermal growth factor receptor (EGFR) is a target of colon cancer therapy, but the effects of this therapy on the tumor microenvironment remain poorly understood. Our in vivo studies showed that cetuximab, an anti-EGFR monoclonal antibody, effectively inhibited AOM/DSS-induced, colitis-associated tumorigenesis, downregulated M2-related markers, and decreased F4/80+/CD206+ macrophage populations. Treatment with conditioned medium of colon cancer cells increased macrophage expression of the M2-related markers arginase-1 (Arg1), CCL17, CCL22, IL-10 and IL-4. By contrast, conditioned medium of EGFR knockout colon cancer cells inhibited expression of these M2-related markers and induced macrophage expression of the M1-related markers inducible nitric oxide synthase (iNOS), IL-12, TNF-α and CCR7. EGFR knockout in colon cancer cells inhibited macrophage-induced promotion of xenograft tumor growth. Moreover, colon cancer-derived insulin-like growth factor-1 (IGF-1) increased Arg1 expression, and treatment with the IGF1R inhibitor AG1024 inhibited that increase. These results suggest that inhibition of EGFR signaling in colon cancer cells modulates cytokine secretion (e.g. IGF-1) and prevents M1-to-M2 macrophage polarization, thereby inhibiting cancer cell growth. PMID:27683110

  10. Non-canonical Wnt signaling regulates cell polarity in female reproductive tract development via van gogh-like 2

    Science.gov (United States)

    vandenBerg, Alysia L.; Sassoon, David A.

    2009-01-01

    Summary Wnt signaling effectors direct the development and adult remodeling of the female reproductive tract (FRT); however, the role of non-canonical Wnt signaling has not been explored in this tissue. The non-canonical Wnt signaling protein van gogh-like 2 is mutated in loop-tail (Lp) mutant mice (Vangl2Lp), which display defects in multiple tissues. We find that Vangl2Lp mutant uterine epithelium displays altered cell polarity, concommitant with changes in cytoskeletal actin and scribble (scribbled, Scrb1) localization. The postnatal mutant phenotype is an exacerbation of that seen at birth, exhibiting more smooth muscle and reduced stromal mesenchyme. These data suggest that early changes in cell polarity have lasting consequences for FRT development. Furthermore, Vangl2 is required to restrict Scrb1 protein to the basolateral epithelial membrane in the neonatal uterus, and an accumulation of fibrillar-like structures observed by electron microscopy in Vangl2Lp mutant epithelium suggests that mislocalization of Scrb1 in mutants alters the composition of the apical face of the epithelium. Heterozygous and homozygous Vangl2Lp mutant postnatal tissues exhibit similar phenotypes and polarity defects and display a 50% reduction in Wnt7a levels, suggesting that the Vangl2Lp mutation acts dominantly in the FRT. These studies demonstrate that the establishment and maintenance of cell polarity through non-canonical Wnt signaling are required for FRT development. PMID:19363157

  11. Integrins and epithelial cell polarity.

    Science.gov (United States)

    Lee, Jessica L; Streuli, Charles H

    2014-08-01

    Cell polarity is characterised by differences in structure, composition and function between at least two poles of a cell. In epithelial cells, these spatial differences allow for the formation of defined apical and basal membranes. It has been increasingly recognised that cell-matrix interactions and integrins play an essential role in creating epithelial cell polarity, although key gaps in our knowledge remain. This Commentary will discuss the mounting evidence for the role of integrins in polarising epithelial cells. We build a model in which both inside-out signals to polarise basement membrane assembly at the basal surface, and outside-in signals to control microtubule apical-basal orientation and vesicular trafficking are required for establishing and maintaining the orientation of epithelial cell polarity. Finally, we discuss the relevance of the basal integrin polarity axis to cancer. This article is part of a Minifocus on Establishing polarity. © 2014. Published by The Company of Biologists Ltd.

  12. Regulation of cell polarity by cell adhesion receptors.

    Science.gov (United States)

    Ebnet, Klaus; Kummer, Daniel; Steinbacher, Tim; Singh, Amrita; Nakayama, Masanori; Matis, Maja

    2017-07-22

    The ability of cells to polarize is an intrinsic property of almost all cells and is required for the devlopment of most multicellular organisms. To develop cell polarity, cells integrate various signals derived from intrinsic as well as extrinsic sources. In the recent years, cell-cell adhesion receptors have turned out as important regulators of cellular polarization. By interacting with conserved cell polarity proteins, they regulate the recruitment of polarity complexes to specific sites of cell-cell adhesion. By initiating intracellular signaling cascades at those sites, they trigger their specific subcellular activation. Not surprisingly, cell-cell adhesion receptors regulate diverse aspects of cell polarity, including apico-basal polarity in epithelial and endothelial cells, front-to-rear polarity in collectively migrating cells, and planar cell polarity during organ development. Here, we review the recent developments highlighting the central roles of cell-cell adhesion molecules in the development of cell polarity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Ca2+ influx and phosphoinositide signalling are essential for the establishment and maintenance of cell polarity in monospores from the red alga Porphyra yezoensis.

    Science.gov (United States)

    Li, Lin; Saga, Naotsune; Mikami, Koji

    2009-01-01

    The asymmetrical distribution of F-actin directed by cell polarity has been observed during the migration of monospores from the red alga Porphyra yezoensis. The significance of Ca2+ influx and phosphoinositide signalling during the formation of cell polarity in migrating monospores was analysed pharmacologically. The results indicate that the inhibition of the establishment of cell polarity, as judged by the ability of F-actin to localize asymmetrically, cell wall synthesis, and development into germlings, occurred when monospores were treated with inhibitors of the Ca2+ permeable channel, phospholipase C (PLC), diacylglycerol kinase, and inositol-1,4,5-trisphosphate receptor. Moreover, it was also found that light triggered the establishment of cell polarity via photosynthetic activity but not its direction, indicating that the Ca2+ influx and PLC activation required for the establishment of cell polarity are light dependent. By contrast, inhibition of phospholipase D (PLD) prevented the migration of monospores but not the asymmetrical localization of F-actin. Taken together, these findings suggest that there is functional diversity between the PLC and PLD signalling systems in terms of the formation of cell polarity; the former being critical for the light-dependent establishment of cell polarity and the latter playing a role in the maintenance of established cell polarity.

  14. Identification of the arabidopsis RAM/MOR signalling network: adding new regulatory players in plant stem cell maintenance and cell polarization

    Science.gov (United States)

    Zermiani, Monica; Begheldo, Maura; Nonis, Alessandro; Palme, Klaus; Mizzi, Luca; Morandini, Piero; Nonis, Alberto; Ruperti, Benedetto

    2015-01-01

    Background and Aims The RAM/MOR signalling network of eukaryotes is a conserved regulatory module involved in co-ordination of stem cell maintenance, cell differentiation and polarity establishment. To date, no such signalling network has been identified in plants. Methods Genes encoding the bona fide core components of the RAM/MOR pathway were identified in Arabidopsis thaliana (arabidopsis) by sequence similarity searches conducted with the known components from other species. The transcriptional network(s) of the arabidopsis RAM/MOR signalling pathway were identified by running in-depth in silico analyses for genes co-regulated with the core components. In situ hybridization was used to confirm tissue-specific expression of selected RAM/MOR genes. Key Results Co-expression data suggested that the arabidopsis RAM/MOR pathway may include genes involved in floral transition, by co-operating with chromatin remodelling and mRNA processing/post-transcriptional gene silencing factors, and genes involved in the regulation of pollen tube polar growth. The RAM/MOR pathway may act upstream of the ROP1 machinery, affecting pollen tube polar growth, based on the co-expression of its components with ROP-GEFs. In silico tissue-specific co-expression data and in situ hybridization experiments suggest that different components of the arabidopsis RAM/MOR are expressed in the shoot apical meristem and inflorescence meristem and may be involved in the fine-tuning of stem cell maintenance and cell differentiation. Conclusions The arabidopsis RAM/MOR pathway may be part of the signalling cascade that converges in pollen tube polarized growth and in fine-tuning stem cell maintenance, differentiation and organ polarity. PMID:26078466

  15. M2-polarized tumor-associated macrophages facilitated migration and epithelial-mesenchymal transition of HCC cells via the TLR4/STAT3 signaling pathway.

    Science.gov (United States)

    Yao, Rong-Rong; Li, Jing-Huan; Zhang, Rui; Chen, Rong-Xin; Wang, Yan-Hong

    2018-01-16

    M2-polarized macrophages are tumor-associated-macrophages (TAMs), which are important contents of tumor-infiltrating immune cells. Toll-like receptor 4 (TLR4) is a molecular biomarker of tumor aggressiveness and poor prognosis. Toll-like receptors (TLRs) have important roles in the immune system and M2-polarized macrophages. However, the effects of TLR4 on M2-polarized macrophages in hepatocellular carcinoma (HCC) are unknown. Here, TLR4 expressed on HCC cells mediates the pro-tumor effects and mechanisms of M2-polarized macrophages. THP-1 cells were induced to differentiate into M2-like macrophages through treatments with IL-4, IL-13, and phorbol myristate acetate (PMA). We used the HCC cell lines SMMC-7721 and MHCC97-H cultured in conditioned medium from M2-like macrophages (M2-CM) to investigate the migration potential of HCC cells and epithelial-mesenchymal transition (EMT)-associated molecular genetics. Signaling pathways that mediated M2-CM-promoted HCC migration were detected using western blotting. HCC cells cultured with M2-CM displayed a fibroblast-like morphology, an increased metastatic capability, and expression of EMT markers. TLR4 expression was markedly increased in M2-CM-treated HCC cells. TLR4 overexpression promoted HCC cell migration, and a TLR4-neutralizing antibody markedly inhibited HCC EMT in cells cultured with M2-CM. Furthermore, the TLR4/(signal transducer and activator of transcription 3 (STAT3) signaling pathway contributed to the effects of M2-CM on HCC cells. Taken together, M2-polarized macrophages facilitated the migration and EMT of HCC cells via the TLR4/STAT3 signaling pathway, suggesting that TLR4 may be a novel therapeutic target. These results improve our understanding of M2-polarized macrophages.

  16. Microtubules in legume root hairs: cell polarity and response to rhizobial signal molecules

    NARCIS (Netherlands)

    Sieberer, B.

    2005-01-01

    Microtubules, which occur as hollow protein tubes with a diameter of 25 nanometers, are an important compound of the cytoskeleton and occur in plant cells as a highly organized and dynamic array, which actual arrangement will depend on its tasks during the cell cycle. Microtubules play a key-role in

  17. Wnt signaling and polarity in freshwater sponges.

    Science.gov (United States)

    Windsor Reid, Pamela J; Matveev, Eugueni; McClymont, Alexandra; Posfai, Dora; Hill, April L; Leys, Sally P

    2018-02-02

    The Wnt signaling pathway is uniquely metazoan and used in many processes during development, including the formation of polarity and body axes. In sponges, one of the earliest diverging animal groups, Wnt pathway genes have diverse expression patterns in different groups including along the anterior-posterior axis of two sponge larvae, and in the osculum and ostia of others. We studied the function of Wnt signaling and body polarity formation through expression, knockdown, and larval manipulation in several freshwater sponge species. Sponge Wnts fall into sponge-specific and sponge-class specific subfamilies of Wnt proteins. Notably Wnt genes were not found in transcriptomes of the glass sponge Aphrocallistes vastus. Wnt and its signaling genes were expressed in archaeocytes of the mesohyl throughout developing freshwater sponges. Osculum formation was enhanced by GSK3 knockdown, and Wnt antagonists inhibited both osculum development and regeneration. Using dye tracking we found that the posterior poles of freshwater sponge larvae give rise to tissue that will form the osculum following metamorphosis. Together the data indicate that while components of canonical Wnt signaling may be used in development and maintenance of osculum tissue, it is likely that Wnt signaling itself occurs between individual cells rather than whole tissues or structures in freshwater sponges.

  18. Evolutionary adaptations of plant AGC kinases: from light signaling to cell polarity regulation

    Directory of Open Access Journals (Sweden)

    Eike Hendrik Rademacher

    2012-11-01

    Full Text Available Signaling and trafficking over membranes involves a plethora of transmembrane proteins that control the flow of compounds or relay specific signaling events. Next to external cues internal stimuli can modify the activity or abundance of these proteins at the plasma membrane. One such regulatory mechanism is protein phosphorylation by membrane-associated kinases and phosphatases. The AGC kinase family is one of seven kinase families that are conserved in all eukaryotic genomes. In plants evolutionary adaptations introduced specific structural changes within the plant AGC kinases that most likely allow for sensing of external stimuli (i.e. light through controlled modification of kinase activity.Starting from the well-defined structural basis common to all AGC kinases we review the current knowledge on the structure-function relationship in plant AGC kinases. Nine of the 39 Arabidopsis AGC kinases have now been shown to be involved in the regulation of auxin transport. In particular, AGC kinase-mediated phosphorylation of the auxin transporters ABCB1 and ABCB19 has been shown to regulate their activity, while auxin transporters of the PIN family are located to different positions at the plasma membrane depending on their phosphorylation status, which is a result of counteracting AGC kinase and PP2A phosphatase activities. We therefore focus on regulation of AGC kinase activity in this context. Identified structural adaptations of the involved AGC kinases may provide new insight into AGC kinase functionality and demonstrate their position as central hubs in the cellular network controlling plant development and growth.

  19. Essential Function for PDLIM2 in Cell Polarization in Three-Dimensional Cultures by Feedback Regulation of the β1-Integrin–RhoA Signaling Axis

    Directory of Open Access Journals (Sweden)

    Ravi Kiran Deevi

    2014-05-01

    Full Text Available PDLIM2 is a cytoskeletal and nuclear PDZ-LIM domain protein that regulates the stability of Nuclear Factor kappa-B (NFκB and other transcription factors, and is required for polarized cell migration. PDLIM2 expression is suppressed by methylation in different cancers, but is strongly expressed in invasive breast cancer cells that have undergone an Epithelial Mesenchymal Transition (EMT. PDLIM2 is also expressed in non-transformed breast myoepithelial MCF10A cells and here we asked whether it is important for maintaining the polarized, epithelial phenotype of these cells. Suppression of PDLIM2 in MCF10A cells was sufficient to disrupt cell polarization and acini formation with increased proliferation and reduced apoptosis in the luminal space compared to control acini with hollow lumina. Spheroids with suppressed PDLIM2 exhibited increased expression of cell-cell and cell-matrix adhesion proteins including beta 1 (β1 integrin. Interestingly, levels of the Insulin-like growth factor 1 receptor (IGF-1 R and Receptor of activated protein kinase C 1 (RACK1, which scaffolds IGF-1R to β1 integrin, were also increased, indicating a transformed phenotype. Focal Adhesion Kinase (FAK and cofilin phosphorylation, and RhoA Guanosine Triphosphatase (GTPase activity were all enhanced in these spheroids compared to control acini. Importantly, inhibition of either FAK or Rho Kinase (ROCK was sufficient to rescue the polarity defect. We conclude that PDLIM2 expression is essential for feedback regulation of the β1-integrin-RhoA signalling axis and integration of cellular microenvironment signals with gene expression to control the polarity of breast epithelial acini structures. This is a mechanism by which PDLIM2 could mediate tumour suppression in breast epithelium.

  20. Loss of the Drosophila cell polarity regulator Scribbled promotes epithelial tissue overgrowth and cooperation with oncogenic Ras-Raf through impaired Hippo pathway signaling

    Directory of Open Access Journals (Sweden)

    Grusche Felix A

    2011-09-01

    Full Text Available Abstract Background Epithelial neoplasias are associated with alterations in cell polarity and excessive cell proliferation, yet how these neoplastic properties are related to one another is still poorly understood. The study of Drosophila genes that function as neoplastic tumor suppressors by regulating both of these properties has significant potential to clarify this relationship. Results Here we show in Drosophila that loss of Scribbled (Scrib, a cell polarity regulator and neoplastic tumor suppressor, results in impaired Hippo pathway signaling in the epithelial tissues of both the eye and wing imaginal disc. scrib mutant tissue overgrowth, but not the loss of cell polarity, is dependent upon defective Hippo signaling and can be rescued by knockdown of either the TEAD/TEF family transcription factor Scalloped or the transcriptional coactivator Yorkie in the eye disc, or reducing levels of Yorkie in the wing disc. Furthermore, loss of Scrib sensitizes tissue to transformation by oncogenic Ras-Raf signaling, and Yorkie-Scalloped activity is required to promote this cooperative tumor overgrowth. The inhibition of Hippo signaling in scrib mutant eye disc clones is not dependent upon JNK activity, but can be significantly rescued by reducing aPKC kinase activity, and ectopic aPKC activity is sufficient to impair Hippo signaling in the eye disc, even when JNK signaling is blocked. In contrast, warts mutant overgrowth does not require aPKC activity. Moreover, reducing endogenous levels of aPKC or increasing Scrib or Lethal giant larvae levels does not promote increased Hippo signaling, suggesting that aPKC activity is not normally rate limiting for Hippo pathway activity. Epistasis experiments suggest that Hippo pathway inhibition in scrib mutants occurs, at least in part, downstream or in parallel to both the Expanded and Fat arms of Hippo pathway regulation. Conclusions Loss of Scrib promotes Yorkie/Scalloped-dependent epithelial tissue

  1. Drosophila tensin plays an essential role in cell migration and planar polarity formation during oogenesis by mediating integrin-dependent extracellular signals to actin organization.

    Science.gov (United States)

    Cha, In Jun; Lee, Jang Ho; Cho, Kyoung Sang; Lee, Sung Bae

    2017-03-11

    Oogenesis in Drosophila involves very dynamic cellular changes such as cell migration and polarity formation inside an ovary during short period. Previous studies identified a number of membrane-bound receptors directly receiving certain types of extracellular inputs as well as intracellular signalings to be involved in the regulation of these dynamic cellular changes. However, yet our understanding on exactly how these receptor-mediated extracellular inputs lead to dynamic cellular changes remains largely unclear. Here, we identified Drosophila tensin encoded by blistery (by) as a novel regulator of cell migration and planar polarity formation and characterized the genetic interaction between tensin and integrin during oogenesis. Eggs from by mutant showed decreased hatching rate and morphological abnormality, a round-shape, compared to the wild-type eggs. Further analyses revealed that obvious cellular defects such as defective border cell migration and planar polarity formation might be primarily associated with the decreased hatching rate and the round-shape phenotype of by mutant eggs, respectively. Moreover, by mutation also induced marked defects in F-actin organization closely associated with both cell migration and planar polarity formation during oogenesis of Drosophila. Notably, all these defective phenotypes observed in by mutant eggs became much severer by reduced level of integrin, indicative of a close functional association between integrin and tensin during oogenesis. Collectively, our findings suggest that tensin acts as a crucial regulator of dynamic cellular changes during oogenesis by bridging integrin-dependent extracellular signals to intracellular cytoskeletal organization. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Evidence for involvement of Wnt signalling in body polarities, cell proliferation, and the neuro-sensory system in an adult ctenophore.

    Science.gov (United States)

    Jager, Muriel; Dayraud, Cyrielle; Mialot, Antoine; Quéinnec, Eric; le Guyader, Hervé; Manuel, Michaël

    2013-01-01

    Signalling through the Wnt family of secreted proteins originated in a common metazoan ancestor and greatly influenced the evolution of animal body plans. In bilaterians, Wnt signalling plays multiple fundamental roles during embryonic development and in adult tissues, notably in axial patterning, neural development and stem cell regulation. Studies in various cnidarian species have particularly highlighted the evolutionarily conserved role of the Wnt/β-catenin pathway in specification and patterning of the primary embryonic axis. However in another key non-bilaterian phylum, Ctenophora, Wnts are not involved in early establishment of the body axis during embryogenesis. We analysed the expression in the adult of the ctenophore Pleurobrachia pileus of 11 orthologues of Wnt signalling genes including all ctenophore Wnt ligands and Fz receptors and several members of the intracellular β-catenin pathway machinery. All genes are strongly expressed around the mouth margin at the oral pole, evoking the Wnt oral centre of cnidarians. This observation is consistent with primary axis polarisation by the Wnts being a universal metazoan feature, secondarily lost in ctenophores during early development but retained in the adult. In addition, local expression of Wnt signalling genes was seen in various anatomical structures of the body including in the locomotory comb rows, where their complex deployment suggests control by the Wnts of local comb polarity. Other important contexts of Wnt involvement which probably evolved before the ctenophore/cnidarian/bilaterian split include proliferating stem cells and progenitors irrespective of cell types, and developing as well as differentiated neuro-sensory structures.

  3. Epithelial cell polarity, stem cells and cancer

    DEFF Research Database (Denmark)

    Martin-Belmonte, Fernando; Perez-Moreno, Mirna

    2011-01-01

    After years of extensive scientific discovery much has been learned about the networks that regulate epithelial homeostasis. Loss of expression or functional activity of cell adhesion and cell polarity proteins (including the PAR, crumbs (CRB) and scribble (SCRIB) complexes) is intricately related......, deregulation of adhesion and polarity proteins can cause misoriented cell divisions and increased self-renewal of adult epithelial stem cells. In this Review, we highlight some advances in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis....

  4. Polarization Signals of Common Spacecraft Materials

    Science.gov (United States)

    Gravseth, Ian; Culp, Robert D.; King, Nicole

    1996-01-01

    This is the final report documenting the results of the polarization testing of near-planar objects with various reflectance properties. The purpose of this investigation was to determine the portion of the reflected signal which is polarized for materials commonly used in space applications. Tests were conducted on several samples, with surface characteristics ranging from highly reflective to relatively dark. The measurements were obtained by suspending the test object in a beam of collimated light. The amount of light falling on the sample was controlled by a circular aperture placed in the light field. The polarized reflectance at various phase angles was then measured. A nonlinear least squares fitting program was used for analysis. For the specular test objects, the reflected signals were measured in one degree increments near the specular point. Otherwise, measurements were taken every five degrees in phase angle. Generally, the more diffuse surfaces had lower polarized reflectances than their more specular counterparts. The reflected signals for the more diffuse surfaces were spread over a larger phase angle range, while the signals from the more specular samples were reflected almost entirely within five degrees of angular deviation from the specular point. The method used to test all the surfaces is presented. The results of this study will be used to support the NASA Orbital Debris Optical Signature Tests. These tests are intended to help better understand the reflectance properties of materials often used in space applications. This data will then be used to improve the capabilities for identification and tracking of space debris.

  5. Exendin-4 Induces Bone Marrow Stromal Cells Migration Through Bone Marrow-Derived Macrophages Polarization via PKA-STAT3 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2017-12-01

    Full Text Available Background/Aims: The synthesis and degradation processes involved in bone remodeling are critically regulated by osteoblasts and osteoclasts. The GLP-1 receptor agonist Exendin-4 is beneficial for osteoblast differentiation and increases the number of osteoblasts. Methods: We constructed an ovariectomized model to evaluate the impact of Exendin-4 on bone formation in osteoporosis. A macrophage-depleted model was also created to investigate the effect of macrophages on bone formation. Thirty-two female WT C57BL/6 mice (aged 3 months were randomly assigned to a normal control group and four ovariectomized (OVX subgroups: OVX + vehicle group, OVX + Exendin-4 (4.2 µg/kg/day group, OVX + chloride phosphate liposome group and OVX + chloride phosphate liposome + Exendin-4 group. Results: In this study, we found that Exendin-4 not only increased the number of osteoblasts and decreased the number of osteoclasts, but also increased the number of bone marrow stromal cells (BMSCs at the bone surface. Moreover, we found that OVX mice treated with Exendin-4 increased TGF-β1 levels at the bone surface compared with that in OVX mice. Besides, Exendin-4 promoted the polarization of bone marrow-derived macrophages into M2 subtype and increased TGF-β1 secretion by the M2 subtype. Finally, we found that Exendin-4 induced macrophage polarization via the cAMP-PKA-STAT3 signaling pathway. Conclusion: Exendin-4 promotes bone marrow-derived macrophage polarization to the M2 subtype and induces BMSC migration to the bone surface via PKA-STAT3 signaling.

  6. Evidence for involvement of Wnt signalling in body polarities, cell proliferation, and the neuro-sensory system in an adult ctenophore.

    Directory of Open Access Journals (Sweden)

    Muriel Jager

    Full Text Available Signalling through the Wnt family of secreted proteins originated in a common metazoan ancestor and greatly influenced the evolution of animal body plans. In bilaterians, Wnt signalling plays multiple fundamental roles during embryonic development and in adult tissues, notably in axial patterning, neural development and stem cell regulation. Studies in various cnidarian species have particularly highlighted the evolutionarily conserved role of the Wnt/β-catenin pathway in specification and patterning of the primary embryonic axis. However in another key non-bilaterian phylum, Ctenophora, Wnts are not involved in early establishment of the body axis during embryogenesis. We analysed the expression in the adult of the ctenophore Pleurobrachia pileus of 11 orthologues of Wnt signalling genes including all ctenophore Wnt ligands and Fz receptors and several members of the intracellular β-catenin pathway machinery. All genes are strongly expressed around the mouth margin at the oral pole, evoking the Wnt oral centre of cnidarians. This observation is consistent with primary axis polarisation by the Wnts being a universal metazoan feature, secondarily lost in ctenophores during early development but retained in the adult. In addition, local expression of Wnt signalling genes was seen in various anatomical structures of the body including in the locomotory comb rows, where their complex deployment suggests control by the Wnts of local comb polarity. Other important contexts of Wnt involvement which probably evolved before the ctenophore/cnidarian/bilaterian split include proliferating stem cells and progenitors irrespective of cell types, and developing as well as differentiated neuro-sensory structures.

  7. EGFR signalling controls cellular fate and pancreatic organogenesis by regulating apicobasal polarity

    DEFF Research Database (Denmark)

    Löf-Öhlin, Zarah M; Nyeng, Pia; Bechard, Matthew E

    2017-01-01

    Apicobasal polarity is known to affect epithelial morphogenesis and cell differentiation, but it remains unknown how these processes are mechanistically orchestrated. We find that ligand-specific EGFR signalling via PI(3)K and Rac1 autonomously modulates apicobasal polarity to enforce...

  8. Lunar skylight polarization signal polluted by urban lighting

    Science.gov (United States)

    Kyba, C. C. M.; Ruhtz, T.; Fischer, J.; Hölker, F.

    2011-12-01

    On clear moonlit nights, a band of highly polarized light stretches across the sky at a 90 degree angle from the moon, and it was recently demonstrated that nocturnal organisms are able to navigate based on it. Urban skyglow is believed to be almost unpolarized, and is therefore expected to dilute this unique partially linearly polarized signal. We found that urban skyglow has a greater than expected degree of linear polarization (p = 8.6 ± 0.3%), and confirmed that its presence diminishes the natural lunar polarization signal. We also observed that the degree of linear polarization can be reduced as the moon rises, due to the misalignment between the polarization angles of the skyglow and scattered moonlight. Under near ideal observing conditions, we found that the lunar polarization signal was clearly visible (p = 29.2 ± 0.8%) at a site with minimal light pollution 28 km from Berlin's center, but was reduced (p = 11.3 ± 0.3%) within the city itself. Daytime measurements indicate that without skyglow p would likely be in excess of 50%. These results indicate that nocturnal animal navigation systems based on perceiving polarized scattered moonlight likely fail to operate properly in highly light-polluted areas, and that future light pollution models must take polarization into account.

  9. Coronavirus infection of polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Horzinek, M C; Rottier, P J

    1995-01-01

    Epithelial cells are the first host cells to be infected by incoming c oronaviruses. Recent observations in vitro show that coronaviruses are released from a specific side of these polarized cells, and this polarized release might be important for the spread of the infection in vivo. Mechanisms for

  10. CREB pathway links PGE2 signaling with macrophage polarization.

    Science.gov (United States)

    Luan, Bing; Yoon, Young-Sil; Le Lay, John; Kaestner, Klaus H; Hedrick, Susan; Montminy, Marc

    2015-12-22

    Obesity is thought to promote insulin resistance in part via activation of the innate immune system. Increases in proinflammatory cytokine production by M1 macrophages inhibit insulin signaling in white adipose tissue. In contrast, M2 macrophages have been found to enhance insulin sensitivity in part by reducing adipose tissue inflammation. The paracrine hormone prostaglandin E2 (PGE2) enhances M2 polarization in part through activation of the cAMP pathway, although the underlying mechanism is unclear. Here we show that PGE2 stimulates M2 polarization via the cyclic AMP-responsive element binding (CREB)-mediated induction of Krupple-like factor 4 (KLF4). Targeted disruption of CREB or the cAMP-regulated transcriptional coactivators 2 and 3 (CRTC2/3) in macrophages down-regulated M2 marker gene expression and promoted insulin resistance in the context of high-fat diet feeding. As re-expression of KLF4 rescued M2 marker gene expression in CREB-depleted cells, our results demonstrate the importance of the CREB/CRTC pathway in maintaining insulin sensitivity in white adipose tissue via its effects on the innate immune system.

  11. [Cell polarity in the cardiovascular system].

    Science.gov (United States)

    Haller, C; Kübler, W

    1999-05-01

    The importance of cell polarity as a fundamental biological principle is increasingly recognized in the cardiovascular system. Polar cell mechanisms underlie not only the development of the heart and blood vessels, but also play a major role in the adult organism for polarized endothelial functions such as the separation of the intra- and extravascular compartment and the vectorial exchange of substances between these compartments. Endothelial cells are connected through intercellular junctions which separate the functionally and structurally distinct luminal and abluminal cell surfaces. The luminal plasma membrane is in contact with the blood and takes part in the regulation of hemostasis. The abluminal cell membrane connects the endothelial cell with the basement membrane and modulates blood flow through the release of vasoactive substances. Results from epithelial model systems have shown that the polarized cell phenotype is generated by specific protein sorting and regulated protein trafficking between the trans-Golgi network and the cell surface. The polarized distribution of cell membrane proteins is maintained by anchorage with the cytoskeleton and limitation of lateral diffusion by tight junctions. Disturbances of cell polarity may contribute to the pathogenesis of disease states, including ischemic and radiocontrast-induced acute renal failure and carcinomas. Recent results have demonstrated the importance of cholesterol for protein traffic from the trans-Golgi network to the apical cell membrane. This novel intracellular function of cholesterol could point to a connection between cell polarity and the pathogenesis of arteriosclerosis. The polarity of the endothelium also has to be taken into account when developing gene-therapeutic strategies, since therapeutic success will not only depend on the efficient expression of the desired gene product, but also on its correct cellular location or secretion into the correct extracellular compartment. These

  12. Synthetic spatially graded Rac activation drives cell polarization and movement.

    Science.gov (United States)

    Lin, Benjamin; Holmes, William R; Wang, C Joanne; Ueno, Tasuku; Harwell, Andrew; Edelstein-Keshet, Leah; Inoue, Takanari; Levchenko, Andre

    2012-12-26

    Migrating cells possess intracellular gradients of active Rho GTPases, which serve as central hubs in transducing signals from extracellular receptors to cytoskeletal and adhesive machinery. However, it is unknown whether shallow exogenously induced intracellular gradients of Rho GTPases are sufficient to drive cell polarity and motility. Here, we use microfluidic control to generate gradients of a small molecule and thereby directly induce linear gradients of active, endogenous Rac without activation of chemotactic receptors. Gradients as low as 15% were sufficient not only to trigger cell migration up the chemical gradient but to induce both cell polarization and repolarization. Cellular response times were inversely proportional to the steepness of Rac inducer gradient in agreement with a mathematical model, suggesting a function for chemoattractant gradient amplification upstream of Rac. Increases in activated Rac levels beyond a well-defined threshold augmented polarization and decreased sensitivity to the imposed gradient. The threshold was governed by initial cell polarity and PI3K activity, supporting a role for both in defining responsiveness to Rac activation. Our results reveal that Rac can serve as a starting point in defining cell polarity. Furthermore, our methodology may serve as a template to investigate processes regulated by intracellular signaling gradients.

  13. Polarization of Narrowband VLF Transmitter Signals as an Ionospheric Diagnostic

    Science.gov (United States)

    Gross, N. C.; Cohen, M. B.; Said, R. K.; Gołkowski, M.

    2018-01-01

    Very low frequency (VLF, 3-30 kHz) transmitter remote sensing has long been used as a simple yet useful diagnostic for the D region ionosphere (60-90 km). All it requires is a VLF radio receiver that records the amplitude and/or phase of a beacon signal as a function of time. During both ambient and disturbed conditions, the received signal can be compared to predictions from a theoretical model to infer ionospheric waveguide properties like electron density. Amplitude and phase have in most cases been analyzed each as individual data streams, often only the amplitude is used. Scattered field formulation combines amplitude and phase effectively, but does not address how to combine two magnetic field components. We present polarization ellipse analysis of VLF transmitter signals using two horizontal components of the magnetic field. The shape of the polarization ellipse is unchanged as the source phase varies, which circumvents a significant problem where VLF transmitters have an unknown source phase. A synchronized two-channel MSK demodulation algorithm is introduced to mitigate 90° ambiguity in the phase difference between the horizontal magnetic field components. Additionally, the synchronized demodulation improves phase measurements during low-SNR conditions. Using the polarization ellipse formulation, we take a new look at diurnal VLF transmitter variations, ambient conditions, and ionospheric disturbances from solar flares, lightning-ionospheric heating, and lightning-induced electron precipitation, and find differing signatures in the polarization ellipse.

  14. FijiWingsPolarity: An open source toolkit for semi-automated detection of cell polarity.

    Science.gov (United States)

    Dobens, Leonard L; Shipman, Anna; Axelrod, Jeffrey D

    2017-12-22

    Epithelial cells are defined by apical-basal and planar cell polarity (PCP) signaling, the latter of which establishes an orthogonal plane of polarity in the epithelial sheet. PCP signaling is required for normal cell migration, differentiation, stem cell generation and tissue repair, and defects in PCP have been associated with developmental abnormalities, neuropathologies and cancers. While the molecular mechanism of PCP is incompletely understood, the deepest insights have come from Drosophila, where PCP is manifest in hairs and bristles across the adult cuticle and organization of the ommatidia in the eye. Fly wing cells are marked by actin-rich trichome structures produced at the distal edge of each cell in the developing wing epithelium and in a mature wing the trichomes orient collectively in the distal direction. Genetic screens have identified key PCP signaling pathway components that disrupt trichome orientation, which has been measured manually in a tedious and error prone process. Here we describe a set of image processing and pattern-recognition macros that can quantify trichome arrangements in micrographs and mark these directly by color, arrow or colored arrow to indicate trichome location, length and orientation. Nearest neighbor calculations are made to exploit local differences in orientation to better and more reliably detect and highlight local defects in trichome polarity. We demonstrate the use of these tools on trichomes in adult wing preps and on actin-rich developing trichomes in pupal wing epithelia stained with phalloidin. FijiWingsPolarity is freely available and will be of interest to a broad community of fly geneticists studying the effect of gene function on PCP.

  15. Polarized Cell Division of Chlamydia trachomatis.

    Directory of Open Access Journals (Sweden)

    Yasser Abdelrahman

    2016-08-01

    Full Text Available Bacterial cell division predominantly occurs by a highly conserved process, termed binary fission, that requires the bacterial homologue of tubulin, FtsZ. Other mechanisms of bacterial cell division that are independent of FtsZ are rare. Although the obligate intracellular human pathogen Chlamydia trachomatis, the leading bacterial cause of sexually transmitted infections and trachoma, lacks FtsZ, it has been assumed to divide by binary fission. We show here that Chlamydia divides by a polarized cell division process similar to the budding process of a subset of the Planctomycetes that also lack FtsZ. Prior to cell division, the major outer-membrane protein of Chlamydia is restricted to one pole of the cell, and the nascent daughter cell emerges from this pole by an asymmetric expansion of the membrane. Components of the chlamydial cell division machinery accumulate at the site of polar growth prior to the initiation of asymmetric membrane expansion and inhibitors that disrupt the polarity of C. trachomatis prevent cell division. The polarized cell division of C. trachomatis is the result of the unipolar growth and FtsZ-independent fission of this coccoid organism. This mechanism of cell division has not been documented in other human bacterial pathogens suggesting the potential for developing Chlamydia-specific therapeutic treatments.

  16. Retracing the path of planar cell polarity.

    Science.gov (United States)

    Schenkelaars, Quentin; Fierro-Constain, Laura; Renard, Emmanuelle; Borchiellini, Carole

    2016-04-02

    The Planar Cell Polarity pathway (PCP) has been described as the main feature involved in patterning cell orientation in bilaterian tissues. Recently, a similar phenomenon was revealed in cnidarians, in which the inhibition of this pathway results in the absence of cilia orientation in larvae, consequently proving the functional conservation of PCP signaling between Cnidaria and Bilateria. Nevertheless, despite the growing accumulation of databases concerning basal lineages of metazoans, very few information concerning the existence of PCP components have been gathered outside of Bilateria and Cnidaria. Thus, the origin of this module or its prevalence in early emerging metazoans has yet to be elucidated. The present study addresses this question by investigating the genomes and transcriptomes from all poriferan lineages in addition to Trichoplax (Placozoa) and Mnemiopsis (Ctenophora) genomes for the presence of the core components of this pathway. Our results confirm that several PCP components are metazoan innovations. In addition, we show that all members of the PCP pathway, including a bona fide Strabismus ortholog (Van gogh), are retrieved only in one sponge lineage (Homoscleromorpha) out of four. This highly suggests that the full PCP pathway dates back at least to the emergence of homoscleromorph sponges. Consequently, several secondary gene losses would have occurred in the three other poriferan lineages including Amphimedon queenslandica (Demospongiae). Several proteins were not retrieved either in placozoans or ctenophores leading us to discuss the difficulties to predict orthologous proteins in basally branching animals. Finally, we reveal how the study of multigene families may be helpful to unravel the relationships at the base of the metazoan tree. The PCP pathway antedates the radiation of Porifera and may have arisen in the last common ancestor of animals. Oscarella species now appear as key organisms to understand the ancestral function of PCP

  17. Coronaviruses in polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J. W.; Bekker, C. P.; Voorhout, W. F.; Horzinek, M. C.; van der Ende, A.; Strous, G. J.; Rottier, P. J.

    1995-01-01

    Coronaviruses have a marked tropism for epithelial cells. In this paper the interactions of the porcine transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV-A59) with epithelial cells are compared. Porcine (LLC-PK1) and murine (mTAL) epithelial cells were grown on permeable

  18. Polarization-insensitive wavelength conversion of 40 Gb/s NRZ-DPSK signals in a silicon polarization diversity circuit

    DEFF Research Database (Denmark)

    Vukovic, Dragana; Ding, Yunhong; Hu, Hao

    2014-01-01

    Polarization insensitive wavelength conversion of a 40 Gb/s non-return-to-zero (NRZ) differential phase-shift keying (DPSK) data signal is demonstrated using four-wave mixing (FWM) in a silicon nanowire circuit. Polarization independence is achieved using a diversity circuit based on polarization...... rotators and splitters, which is fabricated by a simple process on the silicon-on-insulator (SOI) platform. Error-free performance is achieved with only 0.5 dB of power penalty compared to the wavelength conversion of a signal with well optimized input polarization. Additionally, data transmission over 161...

  19. Centrosome polarization in T cells: a task for formins

    Directory of Open Access Journals (Sweden)

    Laura eAndrés-Delgado

    2013-07-01

    Full Text Available T-cell antigen receptor (TCR engagement triggers the rapid reorientation of the centrosome, which is associated with the secretory machinery, towards the immunological synapse (IS for polarized protein trafficking. Recent evidence indicates that upon TCR triggering the INF2 formin, together with the formins DIA1 and FMNL1, promotes the formation of a specialized array of stable detyrosinated MTs that breaks the symmetrical organization of the T-cell microtubule (MT cytoskeleton. The detyrosinated MT array and TCR-induced tyrosine phosphorylation should coincide for centrosome polarization. We propose that the pushing forces produced by the detyrosinated MT array, which modify the position of the centrosome, in concert with Src kinase dependent TCR signaling, which provide the reference frame with respect to which the centrosome reorients, result in the repositioning of the centrosome to the IS.

  20. Simultaneous Polarization Demultiplexing and Demodulation of PolMux-DPSK Signals in a Silicon Chip

    DEFF Research Database (Denmark)

    Huang, Bo; Ding, Yunhong; Ou, Haiyan

    2013-01-01

    Simultaneous polarization demultiplexing and demodulation of PolMux-DPSK signals is demonstrated using a polarization splitter and rotator together with a single microring resonator on a silicon chip. System experimental results validate the concept.......Simultaneous polarization demultiplexing and demodulation of PolMux-DPSK signals is demonstrated using a polarization splitter and rotator together with a single microring resonator on a silicon chip. System experimental results validate the concept....

  1. Primary Cilia, Signaling Networks and Cell Migration

    DEFF Research Database (Denmark)

    Veland, Iben Rønn

    Primary cilia are microtubule-based, sensory organelles that emerge from the centrosomal mother centriole to project from the surface of most quiescent cells in the human body. Ciliary entry is a tightly controlled process, involving diffusion barriers and gating complexes that maintain a unique...... and cytoskeletal organization. Further, cell migration and polarization in are impaired in Invs MEFs. In two-dimensional cell migration, the centrosome is positioned between the nucleus and the leading edge with the primary cilium directed towards the direction of migration. PDGFRα is activated in the primary......, which leads to uncontrolled cell movements. Together, the results obtained from my PhD studies reflect the high level of complexity within signaling systems regulated by the primary cilium that control cellular processes during embryonic development and in tissue homeostasis. As such, this dissertation...

  2. Mechanistic Framework for Establishment, Maintenance, and Alteration of Cell Polarity in Plants

    Directory of Open Access Journals (Sweden)

    Pankaj Dhonukshe

    2012-01-01

    Full Text Available Cell polarity establishment, maintenance, and alteration are central to the developmental and response programs of nearly all organisms and are often implicated in abnormalities ranging from patterning defects to cancer. By residing at the distinct plasma membrane domains polar cargoes mark the identities of those domains, and execute localized functions. Polar cargoes are recruited to the specialized membrane domains by directional secretion and/or directional endocytic recycling. In plants, auxin efflux carrier PIN proteins display polar localizations in various cell types and play major roles in directional cell-to-cell transport of signaling molecule auxin that is vital for plant patterning and response programs. Recent advanced microscopy studies applied to single cells in intact plants reveal subcellular PIN dynamics. They uncover the PIN polarity generation mechanism and identified important roles of AGC kinases for polar PIN localization. AGC kinase family members PINOID, WAG1, and WAG2, belonging to the AGC-3 subclass predominantly influence the polar localization of PINs. The emerging mechanism for AGC-3 kinases action suggests that kinases phosphorylate PINs mainly at the plasma membrane after initial symmetric PIN secretion for eventual PIN internalization and PIN sorting into distinct ARF-GEF-regulated polar recycling pathways. Thus phosphorylation status directs PIN translocation to different cell sides. Based on these findings a mechanistic framework evolves that suggests existence of cell side-specific recycling pathways in plants and implicates AGC3 kinases for differential PIN recruitment among them for eventual PIN polarity establishment, maintenance, and alteration.

  3. Kif3a regulates planar polarization of auditory hair cells through both ciliary and non-ciliary mechanisms

    Science.gov (United States)

    Sipe, Conor W.; Lu, Xiaowei

    2011-01-01

    Auditory hair cells represent one of the most prominent examples of epithelial planar polarity. In the auditory sensory epithelium, planar polarity of individual hair cells is defined by their V-shaped hair bundle, the mechanotransduction organelle located on the apical surface. At the tissue level, all hair cells display uniform planar polarity across the epithelium. Although it is known that tissue planar polarity is controlled by non-canonical Wnt/planar cell polarity (PCP) signaling, the hair cell-intrinsic polarity machinery that establishes the V-shape of the hair bundle is poorly understood. Here, we show that the microtubule motor subunit Kif3a regulates hair cell polarization through both ciliary and non-ciliary mechanisms. Disruption of Kif3a in the inner ear led to absence of the kinocilium, a shortened cochlear duct and flattened hair bundle morphology. Moreover, basal bodies are mispositioned along both the apicobasal and planar polarity axes of mutant hair cells, and hair bundle orientation was uncoupled from the basal body position. We show that a non-ciliary function of Kif3a regulates localized cortical activity of p21-activated kinases (PAK), which in turn controls basal body positioning in hair cells. Our results demonstrate that Kif3a-PAK signaling coordinates planar polarization of the hair bundle and the basal body in hair cells, and establish Kif3a as a key component of the hair cell-intrinsic polarity machinery, which acts in concert with the tissue polarity pathway. PMID:21752934

  4. A Localized Complex of Two Protein Oligomers Controls the Orientation of Cell Polarity

    Directory of Open Access Journals (Sweden)

    Adam M. Perez

    2017-02-01

    Full Text Available Signaling hubs at bacterial cell poles establish cell polarity in the absence of membrane-bound compartments. In the asymmetrically dividing bacterium Caulobacter crescentus, cell polarity stems from the cell cycle-regulated localization and turnover of signaling protein complexes in these hubs, and yet the mechanisms that establish the identity of the two cell poles have not been established. Here, we recapitulate the tripartite assembly of a cell fate signaling complex that forms during the G1-S transition. Using in vivo and in vitro analyses of dynamic polar protein complex formation, we show that a polymeric cell polarity protein, SpmX, serves as a direct bridge between the PopZ polymeric network and the cell fate-directing DivJ histidine kinase. We demonstrate the direct binding between these three proteins and show that a polar microdomain spontaneously assembles when the three proteins are coexpressed heterologously in an Escherichia coli test system. The relative copy numbers of these proteins are essential for complex formation, as overexpression of SpmX in Caulobacter reorganizes the polarity of the cell, generating ectopic cell poles containing PopZ and DivJ. Hierarchical formation of higher-order SpmX oligomers nucleates new PopZ microdomain assemblies at the incipient lateral cell poles, driving localized outgrowth. By comparison to self-assembling protein networks and polar cell growth mechanisms in other bacterial species, we suggest that the cooligomeric PopZ-SpmX protein complex in Caulobacter illustrates a paradigm for coupling cell cycle progression to the controlled geometry of cell pole establishment.

  5. Cell signalling and phospholipid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Boss, W.F.

    1990-01-01

    These studies explored whether phosphoinositide (PI) has a role in plants analogous to its role in animal cells. Although no parallel activity of PI in signal transduction was found in plant cells, activity of inositol phospholipid kinase was found to be modulated by light and by cell wall degrading enzymes. These studies indicate a major role for inositol phospholipids in plant growth and development as membrane effectors but not as a source of second messengers.

  6. Actin polymerization drives polar growth in Arabidopsis root hair cells.

    Science.gov (United States)

    Vazquez, Luis Alfredo Bañuelos; Sanchez, Rosana; Hernandez-Barrera, Alejandra; Zepeda-Jazo, Isaac; Sánchez, Federico; Quinto, Carmen; Torres, Luis Cárdenas

    2014-01-01

    In plants, the actin cytoskeleton is a prime regulator of cell polarity, growth, and cytoplasmic streaming. Tip growth, as observed in root hairs, caulonema, and pollen tubes, is governed by many factors, including calcium gradients, exocytosis and endocytosis, reactive oxygen species, and the cytoskeleton. Several studies indicate that the polymerization of G-actin into F-actin also contributes to tip growth. The structure and function of F-actin within the apical dome is variable, ranging from a dense meshwork to sparse single filaments. The presence of multiple F-actin structures in the elongating apices of tip-growing cells suggests that this cytoskeletal array is tightly regulated. We recently reported that sublethal concentrations of fluorescently labeled cytochalasin could be used to visualize the distribution of microfilament plus ends using fluorescence microscopy, and found that the tip region of the growing root hair cells of a legume plant exhibits a clear response to the nodulation factors secreted by Rhizobium. (1) In this current work, we expanded our analysis using confocal microscopy and demonstrated the existence of highly dynamic fluorescent foci along Arabidopsis root hair cells. Furthermore, we show that the strongest fluorescence signal accumulates in the tip dome of the growing root hair and seems to be in close proximity to the apical plasma membrane. Based on these findings, we propose that actin polymerization within the dome of growing root hair cells regulates polar growth.

  7. [Signaling network-based functional cell design].

    Science.gov (United States)

    Ju, Jianqi; Wei, Ping

    2017-03-25

    Cellular signaling networks act as the central processor to deal with environmental signals and regulate cell function, and determine cell fate. Using synthetic biology approach to engineer cell signaling networks is crucial for ultimately constructing man-made "cell machines". Cellular signaling networks can encode sophisticated cell information by processing quantitatively signaling dynamics, which enables multi-dimensional regulation of functional sub-circuits. Here, we first review the research progresses on the signaling coding mechanisms; and then elaborate the methodologies and applications of cells signaling engineering; finally, we envision that signaling-based cell engineering are important for the increasingly-complicated next generation synthetic biology.

  8. Loss of polarity alters proliferation and differentiation in low-grade endometrial cancers by disrupting Notch signaling.

    Directory of Open Access Journals (Sweden)

    Erin Williams

    Full Text Available Cell adhesion and apicobasal polarity together maintain epithelial tissue organization and homeostasis. Loss of adhesion has been described as a prerequisite for the epithelial to mesenchymal transition. However, what role misregulation of apicobasal polarity promotes tumor initiation and/or early progression remains unclear. We find that human low-grade endometrial cancers are associated with disrupted localization of the apical polarity protein Par3 and Ezrin while, the adhesion molecule E-cadherin remains unchanged, accompanied by decreased Notch signaling, and altered Notch receptor localization. Depletion of Par3 or Ezrin, in a cell-based model, results in loss of epithelial architecture, differentiation, increased proliferation, migration and decreased Notch signaling. Re-expression of Par3 in endometrial cancer cell lines with disrupted Par3 protein levels blocks proliferation and reduces migration in a Notch dependent manner. These data uncover a function for apicobasal polarity independent of cell adhesion in regulating Notch-mediated differentiation signals in endometrial epithelial cells.

  9. Cytoskeleton in Mast Cell Signaling

    Science.gov (United States)

    Dráber, Pavel; Sulimenko, Vadym; Dráberová, Eduarda

    2012-01-01

    Mast cell activation mediated by the high affinity receptor for IgE (FcεRI) is a key event in allergic response and inflammation. Other receptors on mast cells, as c-Kit for stem cell factor and G protein-coupled receptors (GPCRs) synergistically enhance the FcεRI-mediated release of inflammatory mediators. Activation of various signaling pathways in mast cells results in changes in cell morphology, adhesion to substrate, exocytosis, and migration. Reorganization of cytoskeleton is pivotal in all these processes. Cytoskeletal proteins also play an important role in initial stages of FcεRI and other surface receptors induced triggering. Highly dynamic microtubules formed by αβ-tubulin dimers as well as microfilaments build up from polymerized actin are affected in activated cells by kinases/phosphatases, Rho GTPases and changes in concentration of cytosolic Ca2+. Also important are nucleation proteins; the γ-tubulin complexes in case of microtubules or Arp 2/3 complex with its nucleation promoting factors and formins in case of microfilaments. The dynamic nature of microtubules and microfilaments in activated cells depends on many associated/regulatory proteins. Changes in rigidity of activated mast cells reflect changes in intermediate filaments build up from vimentin. This review offers a critical appraisal of current knowledge on the role of cytoskeleton in mast cells signaling. PMID:22654883

  10. MCAM contributes to the establishment of cell autonomous polarity in myogenic and chondrogenic differentiation

    Directory of Open Access Journals (Sweden)

    Artal Moreno-Fortuny

    2017-11-01

    Full Text Available Cell polarity has a fundamental role in shaping the morphology of cells and growing tissues. Polarity is commonly thought to be established in response to extracellular signals. Here we used a minimal in vitro assay that enabled us to monitor the determination of cell polarity in myogenic and chondrogenic differentiation in the absence of external signalling gradients. We demonstrate that the initiation of cell polarity is regulated by melanoma cell adhesion molecule (MCAM. We found highly polarized localization of MCAM, Moesin (MSN, Scribble (SCRIB and Van-Gogh-like 2 (VANGL2 at the distal end of elongating myotubes. Knockout of MCAM or elimination of its endocytosis motif does not impair the initiation of myogenesis or myoblast fusion, but prevents myotube elongation. MSN, SCRIB and VANGL2 remain uniformly distributed in MCAM knockout cells. We show that MCAM is also required at early stages of chondrogenic differentiation. In both myogenic and chondrogenic differentiation MCAM knockout leads to transcriptional downregulation of Scrib and enhanced MAP kinase activity. Our data demonstrates the importance of cell autonomous polarity in differentiation.

  11. Mathematical analysis of steady-state solutions in compartment and continuum models of cell polarization.

    Science.gov (United States)

    Zheng, Zhenzhen; Chou, Ching-Shan; Yi, Tau-Mu; Nie, Qing

    2011-10-01

    Cell polarization, in which substances previously uniformly distributed become asymmetric due to external or/and internal stimulation, is a fundamental process underlying cell mobility, cell division, and other polarized functions. The yeast cell S. cerevisiae has been a model system to study cell polarization. During mating, yeast cells sense shallow external spatial gradients and respond by creating steeper internal gradients of protein aligned with the external cue. The complex spatial dynamics during yeast mating polarization consists of positive feedback, degradation, global negative feedback control, and cooperative effects in protein synthesis. Understanding such complex regulations and interactions is critical to studying many important characteristics in cell polarization including signal amplification, tracking dynamic signals, and potential trade-off between achieving both objectives in a robust fashion. In this paper, we study some of these questions by analyzing several models with different spatial complexity: two compartments, three compartments, and continuum in space. The step-wise approach allows detailed characterization of properties of the steady state of the system, providing more insights for biological regulations during cell polarization. For cases without membrane diffusion, our study reveals that increasing the number of spatial compartments results in an increase in the number of steady-state solutions, in particular, the number of stable steady-state solutions, with the continuum models possessing infinitely many steady-state solutions. Through both analysis and simulations, we find that stronger positive feedback, reduced diffusion, and a shallower ligand gradient all result in more steady-state solutions, although most of these are not optimally aligned with the gradient. We explore in the different settings the relationship between the number of steady-state solutions and the extent and accuracy of the polarization. Taken together

  12. Syndecans, signaling, and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Woods, A

    1996-01-01

    structures within the heparan sulfate chains, leaving the roles of chondroitin sulfate chains and extracellular portion of the core proteins to be elucidated. Evidence that syndecans are a class of receptor involved in cell adhesion is mounting, and their small cytoplasmic domains may link...... transmembrane signaling from matrix to cytoskeleton, as proposed for other classes of adhesion receptors....

  13. Polarity in plant asymmetric cell division: Division orientation and cell fate differentiation.

    Science.gov (United States)

    Shao, Wanchen; Dong, Juan

    2016-11-01

    Asymmetric cell division (ACD) is universally required for the development of multicellular organisms. Unlike animal cells, plant cells have a rigid cellulosic extracellular matrix, the cell wall, which provides physical support and forms communication routes. This fundamental difference leads to some unique mechanisms in plants for generating asymmetries during cell division. However, plants also utilize intrinsically polarized proteins to regulate asymmetric signaling and cell division, a strategy similar to the differentiation mechanism found in animals. Current progress suggests that common regulatory modes, i.e. protein spontaneous clustering and cytoskeleton reorganization, underlie protein polarization in both animal and plant cells. Despite these commonalities, it is important to note that intrinsic mechanisms in plants are heavily influenced by extrinsic cues. To control physical asymmetry in cell division, although our understanding is fragmentary thus far, plants might have evolved novel polarization strategies to orientate cell division plane. Recent studies also suggest that the phytohormone auxin, one of the most pivotal small molecules in plant development, regulates ACD in plants. Copyright © 2016. Published by Elsevier Inc.

  14. The RWP-RK factor GROUNDED promotes embryonic polarity by facilitating YODA MAP kinase signaling.

    Science.gov (United States)

    Jeong, Sangho; Palmer, Travis M; Lukowitz, Wolfgang

    2011-08-09

    The division of plant zygotes is typically asymmetric, generating daughter cells with different developmental fates. In Arabidopsis, the apical daughter cell produces the proembryo, whereas the basal daughter cell forms the mostly extraembryonic suspensor. Establishment of apical and basal fates is known to depend on the YODA (YDA) mitogen-associated protein (MAP) kinase cascade and WUSCHEL-LIKE HOMEOBOX (WOX) homeodomain transcription factors. Mutations in GROUNDED (GRD) cause anatomical defects implying a partial loss of developmental asymmetry in the first division. Subsequently, suspensor-specific WOX8 expression disappears while proembryo-specific ZLL expression expands in the mutants, revealing that basal fates are confounded. GRD encodes a small nuclear protein of the RWP-RK family and is broadly transcribed in the early embryo. Loss of GRD eliminates the dominant effects of hyperactive YDA variants, indicating that GRD is required for YDA-dependent signaling in the embryo. However, GRD function is not regulated via direct phosphorylation by MAP kinases, and forced expression of GRD does not suppress the effect of yda mutations. In a strong synthetic interaction, grd;wox8;wox9 triple mutants arrest as zygotes or one-cell embryos lacking apparent polarity. The predicted transcription factor GRD acts cooperatively with WOX homeodomain proteins to establish embryonic polarity in the first division. Like YDA, GRD promotes zygote elongation and basal cell fates. GRD function is required for YDA-dependent signaling but apparently not regulated by the YDA MAP kinase cascade. Similarity of GRD to Chlamydomonas MID suggests a conserved role for small RWP-RK proteins in regulating the transcriptional programs of generative cells and the zygote. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. A polarized cell model for Chikungunya virus infection: entry and egress of virus occurs at the apical domain of polarized cells.

    Directory of Open Access Journals (Sweden)

    Pei Jin Lim

    2014-02-01

    Full Text Available Chikungunya virus (CHIKV has resulted in several outbreaks in the past six decades. The clinical symptoms of Chikungunya infection include fever, skin rash, arthralgia, and an increasing incidence of encephalitis. The re-emergence of CHIKV with more severe pathogenesis highlights its potential threat on our human health. In this study, polarized HBMEC, polarized Vero C1008 and non-polarized Vero cells grown on cell culture inserts were infected with CHIKV apically or basolaterally. Plaque assays, viral binding assays and immunofluorescence assays demonstrated apical entry and release of CHIKV in polarized HBMEC and Vero C1008. Drug treatment studies were performed to elucidate both host cell and viral factors involved in the sorting and release of CHIKV at the apical domain of polarized cells. Disruption of host cell myosin II, microtubule and microfilament networks did not disrupt the polarized release of CHIKV. However, treatment with tunicamycin resulted in a bi-directional release of CHIKV, suggesting that N-glycans of CHIKV envelope glycoproteins could serve as apical sorting signals.

  16. Calcium signaling and cell proliferation.

    Science.gov (United States)

    Pinto, Mauro Cunha Xavier; Kihara, Alexandre Hiroaki; Goulart, Vânia A M; Tonelli, Fernanda M P; Gomes, Katia N; Ulrich, Henning; Resende, Rodrigo R

    2015-11-01

    Cell proliferation is orchestrated through diverse proteins related to calcium (Ca(2+)) signaling inside the cell. Cellular Ca(2+) influx that occurs first by various mechanisms at the plasma membrane, is then followed by absorption of Ca(2+) ions by mitochondria and endoplasmic reticulum, and, finally, there is a connection of calcium stores to the nucleus. Experimental evidence indicates that the fluctuation of Ca(2+) from the endoplasmic reticulum provides a pivotal and physiological role for cell proliferation. Ca(2+) depletion in the endoplasmatic reticulum triggers Ca(2+) influx across the plasma membrane in an phenomenon called store-operated calcium entries (SOCEs). SOCE is activated through a complex interplay between a Ca(2+) sensor, denominated STIM, localized in the endoplasmic reticulum and a Ca(2+) channel at the cell membrane, denominated Orai. The interplay between STIM and Orai proteins with cell membrane receptors and their role in cell proliferation is discussed in this review. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Enhancement of molecular NMR signal induced by polarization transfer from laser-polarized 129Xe

    International Nuclear Information System (INIS)

    Sun Xianping

    2001-01-01

    There is a large non-equilibrium nuclear polarization and a longer relaxation time in the laser-polarized 129 Xe produced by means of optical pumping and spin exchange. The characteristics of the laser-polarized 129 Xe permit the transfer of the polarization to enhance the atomic nuclear spin in liquid, solid and surface of solid molecules. Therefore, the sensitivity in nuclear magnetic resonance measurements for the molecules is enhanced and applications in the investigations of materials and surface sciences are expanded. The progress in the investigations of materials and surface sciences are expanded. The progress in the investigations of the polarization transfer between laser-polarized 129 Xe and the atomic nuclei in the molecules, the relative physics and the measurement of some parameters are introduced

  18. Glycosynapses: microdomains controlling carbohydrate-dependent cell adhesion and signaling

    OpenAIRE

    Hakomori Senitiroh

    2004-01-01

    The concept of microdomains in plasma membranes was developed over two decades, following observation of polarity of membrane based on clustering of specific membrane components. Microdomains involved in carbohydrate-dependent cell adhesion with concurrent signal transduction that affect cellular phenotype are termed "glycosynapse". Three types of glycosynapse have been distinguished: "type 1" having glycosphingolipid associated with signal transducers (small G-proteins, cSrc, Src family kina...

  19. Interaction of activator of G-protein signaling 3 (AGS3) with LKB1, a serine/threonine kinase involved in cell polarity and cell cycle progression: phosphorylation of the G-protein regulatory (GPR) motif as a regulatory mechanism for the interaction of GPR motifs with Gi alpha.

    Science.gov (United States)

    Blumer, Joe B; Bernard, Michael L; Peterson, Yuri K; Nezu, Jun-ichi; Chung, Peter; Dunican, Dara J; Knoblich, Juergen A; Lanier, Stephen M

    2003-06-27

    Activator of G-protein signaling 3 (AGS3) has a modular domain structure consisting of seven tetratricopeptide repeats (TPRs) and four G-protein regulatory (GPR) motifs. Each GPR motif binds to the alpha subunit of Gi/Go (Gialpha > Goalpha) stabilizing the GDP-bound conformation of Galpha and apparently competing with Gbetagamma for GalphaGDP binding. As an initial approach to identify regulatory mechanisms for AGS3-G-protein interactions, a yeast two-hybrid screen was initiated using the TPR and linker region of AGS3 as bait. This screen identified the serine/threonine kinase LKB1, which is involved in the regulation of cell cycle progression and polarity. Protein interaction assays in mammalian systems using transfected cells or brain lysate indicated the regulated formation of a protein complex consisting of LKB1, AGS3, and G-proteins. The interaction between AGS3 and LKB1 was also observed with orthologous proteins in Drosophila where both proteins are involved in cell polarity. LKB1 immunoprecipitates from COS7 cells transfected with LKB1 phosphorylated the GPR domains of AGS3 and the related protein LGN but not the AGS3-TPR domain. GPR domain phosphorylation was completely blocked by a consensus GPR motif peptide, and placement of a phosphate moiety within a consensus GPR motif reduced the ability of the peptide to interact with G-proteins. These data suggest that phosphorylation of GPR domains may be a general mechanism regulating the interaction of GPR-containing proteins with G-proteins. Such a mechanism may be of particular note in regard to localized signal processing in the plasma membrane involving G-protein subunits and/or intracellular functions regulated by heterotrimeric G-proteins that occur independently of a typical G-protein-coupled receptor.

  20. Curcumin Modulates Macrophage Polarization Through the Inhibition of the Toll-Like Receptor 4 Expression and its Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Yaoyao Zhou

    2015-05-01

    Full Text Available Background: Curcumin, the active ingredient in curcuma rhizomes, has a wide range of therapeutic effects. However, its atheroprotective activity in human acute monocytic leukemia THP-1 cells remains unclear. We investigated the activity and molecular mechanism of action of curcumin in polarized macrophages. Methods: Phorbol myristate acetate (PMA-treated THP-1 cells were differentiated to macrophages, which were further polarized to M1 cells by lipopolysaccharide (LPS; 1 µg/ml and interferon (IFN-γ (20 ng/ml and treated with varying curcumin concentrations. [3H]thymidine (3H-TdR incorporation assays were utilized to measure curcumin-induced growth inhibition. The expression of tumor necrosis factor-a (TNF-a, interleukin (IL-6, and IL-12B (p40 were measured by quantitative real-time polymerase chain reaction (PCR and enzyme-linked immunosorbent assay (ELISA. Macrophage polarization and its mechanism were evaluated by flow cytometry and western blot. Additionally, toll-like receptor 4 (TLR4 small interfering RNA and mitogen-activated protein kinase (MAPK inhibitors were used to further confirm the molecular mechanism of curcumin on macrophage polarization. Results: Curcumin dose-dependently inhibited M1 macrophage polarization and the production of TNF-a, IL-6, and IL-12B (p40. It also decreased TLR4 expression, which regulates M1 macrophage polarization. Furthermore, curcumin significantly inhibited the phosphorylation of ERK, JNK, p38, and nuclear factor (NF-γB. In contrast, SiTLR4 in combination with p-JNK, p-ERK, and p-p38 inhibition reduced the effect of curcumin on polarization. Conclusions: Curcumin can modulate macrophage polarization through TLR4-mediated signaling pathway inhibition, indicating that its effect on macrophage polarization is related to its anti-inflammatory and atheroprotective effects. Our data suggest that curcumin could be used as a therapeutic agent in atherosclerosis.

  1. Single-molecule tracking of small GTPase Rac1 uncovers spatial regulation of membrane translocation and mechanism for polarized signaling

    Science.gov (United States)

    Das, Sulagna; Yin, Taofei; Yang, Qingfen; Zhang, Jingqiao; Wu, Yi I.; Yu, Ji

    2015-01-01

    Polarized Rac1 signaling is a hallmark of many cellular functions, including cell adhesion, motility, and cell division. The two steps of Rac1 activation are its translocation to the plasma membrane and the exchange of nucleotide from GDP to GTP. It is, however, unclear whether these two processes are regulated independent of each other and what their respective roles are in polarization of Rac1 signaling. We designed a single-particle tracking (SPT) method to quantitatively analyze the kinetics of Rac1 membrane translocation in living cells. We found that the rate of Rac1 translocation was significantly elevated in protrusions during cell spreading on collagen. Furthermore, combining FRET sensor imaging with SPT measurements in the same cell, the recruitment of Rac1 was found to be polarized to an extent similar to that of the nucleotide exchange process. Statistical analysis of single-molecule trajectories and optogenetic manipulation of membrane lipids revealed that Rac1 membrane translocation precedes nucleotide exchange, and is governed primarily by interactions with phospholipids, particularly PI(3,4,5)P3, instead of protein factors. Overall, the study highlights the significance of membrane translocation in spatial Rac1 signaling, which is in addition to the traditional view focusing primarily on GEF distribution and exchange reaction. PMID:25561548

  2. Cytoskeleton in mast cell signaling

    Czech Academy of Sciences Publication Activity Database

    Dráber, Pavel; Sulimenko, Vadym; Dráberová, Eduarda

    2012-01-01

    Roč. 3, May (2012), s. 130 ISSN 1664-3224 R&D Projects: GA ČR GAP302/10/1701; GA ČR GPP302/11/P709; GA ČR GAP302/12/1673 Grant - others:ECST(XE) Action BM1007 Institutional research plan: CEZ:AV0Z50520514 Keywords : cytoskeleton * mast cell activation * signal transduction Subject RIV: EB - Genetics ; Molecular Biology

  3. The Probing Radio Signal Polarization Effect on Separation Efficiency of Surface Target Response

    Directory of Open Access Journals (Sweden)

    A. N. Pinchuk

    2015-01-01

    Full Text Available The aim of the study was a quantitative analysis of the level of interference with radar monitoring characteristics of surface targets, caused by the scattered electromagnetic field, arising due to the interaction between radio waves and sea surface, which is a study aspect a radiooceanography encompasses. Backscatter signal, arising from the interaction of radio waves and sea surface, extends in a direction opposite the probing radar signal of spread marine and coastal radar stations.With radar sounding of sea surface at high incidence angles of radio waves, a basic physical mechanism to form the received signal is resonant (Bragg scattering, and at small incidence angles of radio waves it is quasi-specular reflection. Consequently, the energy of electromagnetic radiation, backscattered by the sea surface, depends on the type of wave polarization: for horizontal polarization it is less than for vertical one.The paper presents a mathematical model, which describes dependence of interference level caused by interaction between radio waves and sea surface, on the radio wave polarization for the case when the same polarization is used to sent-out and receive a radio wave.To determine the noise reduction to be achievable with radar monitoring the surface targets by selecting the polarization of the probing radar signal, a signal/noise ratio is analyzed for its different polarizations.It is shown that in order to reduce the noise level caused by the interaction between radio waves and sea surface, it is possible to use the differences in the level of scattered radio signals of different polarization: with horizontally-polarized radar operation at incidence angles of 75°- 85° a signal/noise ratio is by 20-35 dB higher than that of vertically- polarized one.

  4. Classical cadherins control nucleus and centrosome position and cell polarity.

    Science.gov (United States)

    Dupin, Isabelle; Camand, Emeline; Etienne-Manneville, Sandrine

    2009-06-01

    Control of cell polarity is crucial during tissue morphogenesis and renewal, and depends on spatial cues provided by the extracellular environment. Using micropatterned substrates to impose reproducible cell-cell interactions, we show that in the absence of other polarizing cues, cell-cell contacts are the main regulator of nucleus and centrosome positioning, and intracellular polarized organization. In a variety of cell types, including astrocytes, epithelial cells, and endothelial cells, calcium-dependent cadherin-mediated cell-cell interactions induce nucleus and centrosome off-centering toward cell-cell contacts, and promote orientation of the nucleus-centrosome axis toward free cell edges. Nucleus and centrosome off-centering is controlled by N-cadherin through the regulation of cell interactions with the extracellular matrix, whereas the orientation of the nucleus-centrosome axis is determined by the geometry of N-cadherin-mediated contacts. Our results demonstrate that in addition to the specific function of E-cadherin in regulating baso-apical epithelial polarity, classical cadherins control cell polarization in otherwise nonpolarized cells.

  5. A Density-Dependent Switch Drives Stochastic Clustering and Polarization of Signaling Molecules

    Science.gov (United States)

    Jilkine, Alexandra; Angenent, Sigurd B.; Wu, Lani F.; Altschuler, Steven J.

    2011-01-01

    Positive feedback plays a key role in the ability of signaling molecules to form highly localized clusters in the membrane or cytosol of cells. Such clustering can occur in the absence of localizing mechanisms such as pre-existing spatial cues, diffusional barriers, or molecular cross-linking. What prevents positive feedback from amplifying inevitable biological noise when an un-clustered “off” state is desired? And, what limits the spread of clusters when an “on” state is desired? Here, we show that a minimal positive feedback circuit provides the general principle for both suppressing and amplifying noise: below a critical density of signaling molecules, clustering switches off; above this threshold, highly localized clusters are recurrently generated. Clustering occurs only in the stochastic regime, suggesting that finite sizes of molecular populations cannot be ignored in signal transduction networks. The emergence of a dominant cluster for finite numbers of molecules is partly a phenomenon of random sampling, analogous to the fixation or loss of neutral mutations in finite populations. We refer to our model as the “neutral drift polarity model.” Regulating the density of signaling molecules provides a simple mechanism for a positive feedback circuit to robustly switch between clustered and un-clustered states. The intrinsic ability of positive feedback both to create and suppress clustering is a general mechanism that could operate within diverse biological networks to create dynamic spatial organization. PMID:22102805

  6. A density-dependent switch drives stochastic clustering and polarization of signaling molecules.

    Directory of Open Access Journals (Sweden)

    Alexandra Jilkine

    2011-11-01

    Full Text Available Positive feedback plays a key role in the ability of signaling molecules to form highly localized clusters in the membrane or cytosol of cells. Such clustering can occur in the absence of localizing mechanisms such as pre-existing spatial cues, diffusional barriers, or molecular cross-linking. What prevents positive feedback from amplifying inevitable biological noise when an un-clustered "off" state is desired? And, what limits the spread of clusters when an "on" state is desired? Here, we show that a minimal positive feedback circuit provides the general principle for both suppressing and amplifying noise: below a critical density of signaling molecules, clustering switches off; above this threshold, highly localized clusters are recurrently generated. Clustering occurs only in the stochastic regime, suggesting that finite sizes of molecular populations cannot be ignored in signal transduction networks. The emergence of a dominant cluster for finite numbers of molecules is partly a phenomenon of random sampling, analogous to the fixation or loss of neutral mutations in finite populations. We refer to our model as the "neutral drift polarity model." Regulating the density of signaling molecules provides a simple mechanism for a positive feedback circuit to robustly switch between clustered and un-clustered states. The intrinsic ability of positive feedback both to create and suppress clustering is a general mechanism that could operate within diverse biological networks to create dynamic spatial organization.

  7. Planar polarization of Vangl2 in the vertebrate neural plate is controlled by Wnt and Myosin II signaling

    Directory of Open Access Journals (Sweden)

    Olga Ossipova

    2015-07-01

    Full Text Available The vertebrate neural tube forms as a result of complex morphogenetic movements, which require the functions of several core planar cell polarity (PCP proteins, including Vangl2 and Prickle. Despite the importance of these proteins for neurulation, their subcellular localization and the mode of action have remained largely unknown. Here we describe the anteroposterior planar cell polarity (AP-PCP of the cells in the Xenopus neural plate. At the neural midline, the Vangl2 protein is enriched at anterior cell edges and that this localization is directed by Prickle, a Vangl2-interacting protein. Our further analysis is consistent with the model, in which Vangl2 AP-PCP is established in the neural plate as a consequence of Wnt-dependent phosphorylation. Additionally, we uncover feedback regulation of Vangl2 polarity by Myosin II, reiterating a role for mechanical forces in PCP. These observations indicate that both Wnt signaling and Myosin II activity regulate cell polarity and cell behaviors during vertebrate neurulation.

  8. The polarized double cell target of the SMC

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.; Adeva, B.; Arik, E.; Arvidson, A.; Badelek, B.; Ballintijn, M.K.; Bardin, G.; Baum, G.; Berglund, P.; Betev, L.; Bird, I.G.; Birsa, R.; Bjoerkholm, P.; Bonner, B.E.; Botton, N. de; Boutemeur, M.; Bradamante, F.; Bravar, A.; Bressan, A.; Bueltmann, S.; Burtin, E.; Cavata, C.; Crabb, D.; Cranshaw, J.; Cuhadar, T.; Torre, S. Dalla; Dantzig, R. van; Derro, B.; Deshpande, A.; Dhawan, S.; Dulya, C.; Dyring, A.; Eichblatt, S.; Faivre, J.C.; Fasching, D.; Feinstein, F.; Fernandez, C.; Forthmann, S.; Frois, B.; Gallas, A.; Garzon, J.A.; Gaussiran, T.; Gilly, H.; Giorgi, M.; Goeler, E. von; Goertz, S.; Gracia, G.; Groot, N. de; Perdekamp, M. Grosse; Guelmez, E.; Haft, K.; Harrach, D. von; Hasegawa, T.; Hautle, P.; Hayashi, N.; Heusch, C.A.; Horikawa, N.; Hughes, V.W.; Igo, G.; Ishimoto, S.; Iwata, T.; Kabuss, E.M.; Kageya, T.; Karev, A.; Kessler, H.J.; Ketel, T.J.; Kiryluk, J.; Kishi, A.; Kisselev, Yu.; Klostermann, L.; Kraemer, D.; Krivokhijine, V.; Kroeger, W.; Kurek, K.; Kyynaeraeinen, J.; Lamanna, M.; Landgraf, U.; Layda, T.; Le Goff, J.M.; Lehar, F.; Lesquen, A. de; Lichtenstadt, J.; Lindqvist, T.; Litmaath, M.; Lowe, M.; Magnon, A.; Mallot, G.K.; Marie, F.; Martin, A.; Martino, J.; Matsuda, T.; Mayes, B.; McCarthy, J.S.; Medved, K.; Meyer, W.; Middelkoop, G. van; Miller, D.; Miyachi, Y.; Mori, K.; Moromisato, J.; Nassalski, J.; Naumann, L.; Neganov, B.; Niinikoski, T.O.; Oberski, J.E.J.; Ogawa, A.; Ozben, C.; Parks, D.P.; Pereira, H.; Penzo, A.; Perrot-Kunne, F.; Peshekhonov, D.; Piegaia, R.; Pinsky, L.; Platchkov, S.; Plo, M.; Pose, D.; Postma, H. E-mail: hpostma@dataweb.nl; Pretz, J.; Pussieux, T.; Pyrlik, J.; Raedel, G.; Reyhancan, I.; Reicherz, G.; Rieubland, J.M.; Rijllart, A.; Roberts, J.B.; Rock, S.; Rodriguez, M.; Rondio, E.; Rosado, A.; Roscherr, B.; Sabo, I.; Saborido, J.; Sandacz, A.; Savin, I.; Schiavon, P.; Schiller, A.; Schueler, K.P.; Segel, R.; Seitz, R.; Semertzidis, Y.; Sever, F.; Shanahan, P.; Sichtermann, E.P.; Simeoni, F. [and others

    1999-11-11

    The polarized target of the Spin Muon Collaboration at CERN was used for deep inelastic muon scattering experiments during 1993-1996 with a polarized muon beam to investigate the spin structure of the nucleon. Most of the experiments were carried out with longitudinal target polarization and 190 GeV muons, and some were done with transverse polarization and 100 GeV muons. Protons as well as deuterons were polarized by dynamic nuclear polarization (DNP) in three kinds of solid materials -- butanol, ammonia, and deuterated butanol -- with maximum degrees of polarization of 94%, 91% and 60%, respectively. Considerable attention was paid to the accuracies of the NMR polarization measurements and their analyses, the accuracies achieved were between 2.0% and 3.2%. The SMC target system with two cells of opposite polarizations, each cell 65 cm long and 5 cm in diameter, constitutes the largest polarized target system ever built and facilitates accurate spin asymmetry measurements. The design considerations, construction and performance of the target are reviewed.

  9. The polarized double cell target of the SMC

    CERN Document Server

    Adams, D; Arik, E; Arvidson, A; Badelek, B; Ballintijn, M K; Bardin, G; Baum, G; Berglund, P; Betev, L; Bird, I G; Birsa, R; Björkholm, P; Bonner, B E; De Botton, N R; Boutemeur, M; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Cavata, C; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garzón, J A; Gaussiran, T; Gilly, H; Giorgi, M A; von Goeler, E; Görtz, S; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Gülmez, E; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kishi, A; Kiselev, Yu F; Klostermann, L; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Layda, T; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nassalski, J P; Naumann, Lutz; Neganov, B S; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Parks, D P; Pereira, H; Penzo, Aldo L; Perrot-Kunne, F; Peshekhonov, V D; Piegaia, R; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Pussieux, T; Pyrlik, J; Rädel, G; Reyhancan, I; Reicherz, G; Rijllart, A; Roberts, J B; Rock, S E; Rodríguez, M; Rondio, Ewa; Rosado, A; Roscherr, B; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schiller, A; Schüler, K P; Segel, R E; Seitz, R; Semertzidis, Y K; Sever, F; Shanahan, P; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Teichert, K M; Tessarotto, F; Thers, D; Tlaczala, W; Trentalange, S; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Weinstein, R; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Zanetti, A M; Zaremba, K; Zhao, J

    1999-01-01

    The polarized target of the Spin Muon Collaboration at CERN was used for deep inelastic muon scattering experiments during 1993 to 1996 with a polarized muon beam to investigate the spin structure of the nucleon. Most of the experiments were carried out with longitudinal target polarization and 190 GeV muons, and some were done with transverse polarization and 100 GeV muons. Protons as well as deuterons were polarized by dynamic nuclear polarization (DNP) in three kinds of solid materials $-$ butanol, ammonia, and deuterated butanol, with maximum degrees of polarization of 94, 91, and 60 \\%, respectively. Considerable attention was paid to the accuracies of the NMR polarization measurements and their analyses. The achieved accuracies were between 2.0 and 3.2 \\%. The SMC target system with two cells of opposite polarizations, each cell 65 cm long and 5 cm in diameter, constitutes the largest polarized target system ever built and facilitates accurate spin asymmetry measurements. The design considerations, the ...

  10. The polarity protein Par1b/EMK/MARK2 regulates T cell receptor-induced microtubule-organizing center polarization.

    Science.gov (United States)

    Lin, Joseph; Hou, Kirk K; Piwnica-Worms, Helen; Shaw, Andrey S

    2009-07-15

    Engagement of a T cell to an APC induces the formation of an immunological synapse as well as reorientation of the microtubule-organizing center (MTOC) toward the APC. How signals emanating from the TCR induce MTOC polarization is not known. One group of proteins known to play a critical role in asymmetric cell division and cell polarization is the partitioning defective (Par) family of proteins. In this study we found that Par1b, a member of the Par family of proteins, was inducibly phosphorylated following TCR stimulation. This phosphorylation resulted in 14-3-3 protein binding and caused the relocalization of Par1b from the membrane into the cytoplasm. Because a dominant-negative form of Par1b blocked TCR-induced MTOC polarization, our data suggest that Par1b functions in the establishment of T cell polarity following engagement to an APC.

  11. Diacylglycerol Kinases: Shaping Diacylglycerol and Phosphatidic Acid Gradients to Control Cell Polarity

    Directory of Open Access Journals (Sweden)

    Gianluca Baldanzi

    2016-11-01

    Full Text Available Diacylglycerol kinases (DGKs terminate diacylglycerol (DAG signaling and promote phosphatidic acid (PA production. Isoform specific regulation of DGKs activity and localization allows DGKs to shape the DAG and PA gradients. The capacity of DGKs to constrain the areas of DAG signaling is exemplified by their role in defining the contact interface between T cells and antigen presenting cells: the immune synapse. Upon T cell receptor engagement, both DGK α and ζ metabolize DAG at the immune synapse thus constraining DAG signaling. Interestingly, their activity and localization are not fully redundant because DGKζ activity metabolizes the bulk of DAG in the cell, whereas DGKα limits the DAG signaling area localizing specifically at the periphery of the immune synapse.When DGKs terminate DAG signaling, the local PA production defines a new signaling domain, where PA recruits and activates a second wave of effector proteins. The best-characterized example is the role of DGKs in protrusion elongation and cell migration. Indeed, upon growth factor stimulation, several DGK isoforms, such as α, ζ, and γ, are recruited and activated at the plasma membrane. Here, local PA production controls cell migration by finely modulating cytoskeletal remodeling and integrin recycling. Interestingly, DGK-produced PA also controls the localization and activity of key players in cell polarity such as aPKC, Par3, and integrin β1. Thus, T cell polarization and directional migration may be just two instances of the general contribution of DGKs to the definition of cell polarity by local specification of membrane identity signaling.

  12. Polymer photovoltaic cells sensitive to the circular polarization of light

    Energy Technology Data Exchange (ETDEWEB)

    Gilot, Jan; Abbel, Robert; Lakhwani, Girish; Meijer, E.W.; Schenning, Albertus P.H.J.; Meskers, Stefan C.J. [Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology (Netherlands)

    2010-05-25

    Chiral conjugated polymer is used to construct a photovoltaic cell whose response depends on the circular polarization of the incoming light. The selectivity for left and right polarized light as a function of the thickness of the polymer layer is accounted for by modeling of the optical properties of all layers inside the device. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  13. Plasma membrane protein polarity and trafficking in RPE cells: Past, present and future

    Science.gov (United States)

    Lehmann, Guillermo L.; Benedicto, Ignacio; Philp, Nancy J.; Rodriguez-Boulan, Enrique

    2015-01-01

    The retinal pigment epithelium (RPE) comprises a monolayer of polarized pigmented epithelial cells that is strategically interposed between the neural retina and the fenestrated choroid capillaries. The RPE performs a variety of vectorial transport functions (water, ions, metabolites, nutrients and waste products) that regulate the composition of the subretinal space and support the functions of photoreceptors (PRs) and other cells in the neural retina. To this end, RPE cells display a polarized distribution of channels, transporters and receptors in their plasma membrane (PM) that is remarkably different from that found in conventional extra-ocular epithelia, e.g. intestine, kidney, and gall bladder. This characteristic PM protein polarity of RPE cells depends on the interplay of sorting signals in the RPE PM proteins and sorting mechanisms and biosynthetic/recycling trafficking routes in the RPE cell. Although considerable progress has been made in our understanding of the RPE trafficking machinery, most available data have been obtained from immortalized RPE cell lines that only partially maintain the RPE phenotype and by extrapolation of data obtained in the prototype Madin–Darby Canine Kidney (MDCK) cell line. The increasing availability of RPE cell cultures that more closely resemble the RPE in vivo together with the advent of advanced live imaging microscopy techniques provides a platform and an opportunity to rapidly expand our understanding of how polarized protein trafficking contributes to RPE PM polarity. PMID:25152359

  14. Subversion of cell signaling by pathogens.

    Science.gov (United States)

    Alto, Neal M; Orth, Kim

    2012-09-01

    Pathogens exploit several eukaryotic signaling pathways during an infection. They have evolved specific effectors and toxins to hijack host cell machinery for their own benefit. Signaling molecules are preferentially targeted by pathogens because they globally regulate many cellular processes. Both viruses and bacteria manipulate and control pathways that regulate host cell survival and shape, including MAPK signaling, G-protein signaling, signals controlling cytoskeletal dynamics, and innate immune responses.

  15. A Kinome RNAi Screen inDrosophilaIdentifies Novel Genes Interacting with Lgl, aPKC, and Crb Cell Polarity Genes in Epithelial Tissues.

    Science.gov (United States)

    Parsons, Linda M; Grzeschik, Nicola A; Amaratunga, Kasun; Burke, Peter; Quinn, Leonie M; Richardson, Helena E

    2017-08-07

    In both Drosophila melanogaster and mammalian systems, epithelial structure and underlying cell polarity are essential for proper tissue morphogenesis and organ growth. Cell polarity interfaces with multiple cellular processes that are regulated by the phosphorylation status of large protein networks. To gain insight into the molecular mechanisms that coordinate cell polarity with tissue growth, we screened a boutique collection of RNAi stocks targeting the kinome for their capacity to modify Drosophila "cell polarity" eye and wing phenotypes. Initially, we identified kinase or phosphatase genes whose depletion modified adult eye phenotypes associated with the manipulation of cell polarity complexes (via overexpression of Crb or aPKC). We next conducted a secondary screen to test whether these cell polarity modifiers altered tissue overgrowth associated with depletion of Lgl in the wing. These screens identified Hippo, Jun kinase (JNK), and Notch signaling pathways, previously linked to cell polarity regulation of tissue growth. Furthermore, novel pathways not previously connected to cell polarity regulation of tissue growth were identified, including Wingless (Wg/Wnt), Ras, and lipid/Phospho-inositol-3-kinase (PI3K) signaling pathways. Additionally, we demonstrated that the "nutrient sensing" kinases Salt Inducible Kinase 2 and 3 ( SIK2 and 3 ) are potent modifiers of cell polarity phenotypes and regulators of tissue growth. Overall, our screen has revealed novel cell polarity-interacting kinases and phosphatases that affect tissue growth, providing a platform for investigating molecular mechanisms coordinating cell polarity and tissue growth during development. Copyright © 2017 Parsons et al.

  16. Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning.

    Science.gov (United States)

    Song, Hai; Hu, Jianxin; Chen, Wen; Elliott, Gene; Andre, Philipp; Gao, Bo; Yang, Yingzi

    2010-07-15

    Defining the three body axes is a central event of vertebrate morphogenesis. Establishment of left-right (L-R) asymmetry in development follows the determination of dorsal-ventral and anterior-posterior (A-P) body axes, although the molecular mechanism underlying precise L-R symmetry breaking in reference to the other two axes is still poorly understood. Here, by removing both Vangl1 and Vangl2, the two mouse homologues of a Drosophila core planar cell polarity (PCP) gene Van Gogh (Vang), we reveal a previously unrecognized function of PCP in the initial breaking of lateral symmetry. The leftward nodal flow across the posterior notochord (PNC) has been identified as the earliest event in the de novo formation of L-R asymmetry. We show that PCP is essential in interpreting the A-P patterning information and linking it to L-R asymmetry. In the absence of Vangl1 and Vangl2, cilia are positioned randomly around the centre of the PNC cells and nodal flow is turbulent, which results in disrupted L-R asymmetry. PCP in mouse, unlike what has been implicated in other vertebrate species, is not required for ciliogenesis, cilium motility, Sonic hedgehog (Shh) signalling or apical docking of basal bodies in ciliated tracheal epithelial cells. Our data suggest that PCP acts earlier than the unidirectional nodal flow during bilateral symmetry breaking in vertebrates and provide insight into the functional mechanism of PCP in organizing the vertebrate tissues in development.

  17. Mammalian aPKC/Par polarity complex mediated regulation of epithelial division orientation and cell fate

    Energy Technology Data Exchange (ETDEWEB)

    Vorhagen, Susanne; Niessen, Carien M., E-mail: carien.niessen@uni-koeln.de

    2014-11-01

    Oriented cell division is a key regulator of tissue architecture and crucial for morphogenesis and homeostasis. Balanced regulation of proliferation and differentiation is an essential property of tissues not only to drive morphogenesis but also to maintain and restore homeostasis. In many tissues orientation of cell division is coupled to the regulation of differentiation producing daughters with similar (symmetric cell division, SCD) or differential fate (asymmetric cell division, ACD). This allows the organism to generate cell lineage diversity from a small pool of stem and progenitor cells. Division orientation and/or the ratio of ACD/SCD need to be tightly controlled. Loss of orientation or an altered ratio can promote overgrowth, alter tissue architecture and induce aberrant differentiation, and have been linked to morphogenetic diseases, cancer and aging. A key requirement for oriented division is the presence of a polarity axis, which can be established through cell intrinsic and/or extrinsic signals. Polarity proteins translate such internal and external cues to drive polarization. In this review we will focus on the role of the polarity complex aPKC/Par3/Par6 in the regulation of division orientation and cell fate in different mammalian epithelia. We will compare the conserved function of this complex in mitotic spindle orientation and distribution of cell fate determinants and highlight common and differential mechanisms in which this complex is used by tissues to adapt division orientation and cell fate to the specific properties of the epithelium.

  18. Flux and polarization signals of spatially inhomogeneous gaseous exoplanets

    NARCIS (Netherlands)

    Karalidi, T.; Stam, D.M.; Guirado, D.

    2013-01-01

    Aims. We present numerically calculated, disk-integrated, spectropolarimetric signals of starlight that is reflected by vertically and horizontally inhomogeneous gaseous exoplanets. We include various spatial features that are present on Solar System’s gaseous planets: belts and zones, cyclonic

  19. THE HANLE AND ZEEMAN POLARIZATION SIGNALS OF THE SOLAR Ca II 8542 Å LINE

    Energy Technology Data Exchange (ETDEWEB)

    Štěpán, Jiri [Astronomical Institute ASCR, Fričova 298, 251 65 Ondřejov (Czech Republic); Bueno, Javier Trujillo [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2016-07-20

    We highlight the main results of a three-dimensional (3D) multilevel radiative transfer investigation about the solar disk-center polarization of the Ca ii 8542 Å line. First, through the use of a 3D model of the solar atmosphere, we investigate the linear polarization that occurs due to the atomic level polarization produced by the absorption and scattering of anisotropic radiation, taking into account the symmetry-breaking effects caused by its thermal, dynamic, and magnetic structure. Second, we study the contribution of the Zeeman effect to the linear and circular polarization. Finally, we show examples of the Stokes profiles produced by the joint action of the atomic level polarization and the Hanle and Zeeman effects. We find that the Zeeman effect tends to dominate the linear polarization signals only in the localized patches of opposite magnetic polarity, where the magnetic field is relatively strong and slightly inclined; outside such very localized patches, the linear polarization is often dominated by the contribution of atomic level polarization. We demonstrate that a correct modeling of this last contribution requires taking into account the symmetry-breaking effects caused by the thermal, dynamic, and magnetic structure of the solar atmosphere, and that in the 3D model used the Hanle effect in forward-scattering geometry (disk-center observation) mainly reduces the polarization corresponding to the zero-field case. We emphasize that, in general, a reliable modeling of the linear polarization in the Ca ii 8542 Å line requires taking into account the joint action of atomic level polarization and the Hanle and Zeeman effects.

  20. Studies on optical pumping cells (OPC) to polarize 3He

    International Nuclear Information System (INIS)

    Hutanu, V.; Rupp, A.

    2004-01-01

    The technique applied at HMI to obtain nuclear-spin-polarized 3 He, used in neutron spin filters (NSFs), is metastability-exchange optical pumping. To prepare efficient NSF, one must highly polarize 3 He nuclei in the optical pumping volume (OPV) and reduce the polarization losses during the compression phase. Great progress has been achieved in reducing of depolarization due to the recent development of both, large polarization preserving piston compressors and long relaxation time filter cells. It is even more important to significantly enhance the 3 He polarization rate during optical pumping in order to increase NSF efficiency. Different cells materials were tested, such as Duran and quartz glass. In order to use the laser light more efficiently and to decrease the risk of 3 He depolarization due to unfavorable reflections, antireflection (AR) coatings were used on cell windows made of quartz glass. They were compared with the ones without coating, made of quartz, Duran and BK7 glass. The comparison of various techniques to mount the windows such as blowing, gluing or molecular diffusion was also conducted. It indicated that the molecular diffusion is the most suitable technique because of a better purity of the gas in the cell and the preservation of the optical flatness of the windows. Cells, for practical reasons each entirely made from the same material (Duran, Quartz glass) with windows mounted using this method, showed the best polarization performance

  1. Changes of quantum state of polarization in coexistence scheme of quantum-classical signal

    Science.gov (United States)

    Luo, Jun Wen; Li, Yun Xia; Shi, Lei; Xue, Yang

    2017-10-01

    State of polarization(SOP) of single photon is the information carrier of polarization encoding BB84 protocol. SOP of quantum must be interrupted when quantum key distribution(QKD) propagates with classical signal in the same fiber. Coexistence schemes of quantum-classical signal based on two-channel and four-channel have been built respectively on Optisystem in this paper. The influence on SOP of quantum signal in BB84 protocol from different classical optical signal channel has been analyzed and compared by Stokes vector method and Poincare sphere method. SOP of 100 photons in QKD have been simulated. The results show that more channels will increase the bit error rate of QKD, and this paper has described the SOP changes well in coexistence scheme of quantum-classical signal based on wavelength division multiplexing.

  2. Llgl1 Connects Cell Polarity with Cell-Cell Adhesion in Embryonic Neural Stem Cells.

    Science.gov (United States)

    Jossin, Yves; Lee, Minhui; Klezovitch, Olga; Kon, Elif; Cossard, Alexia; Lien, Wen-Hui; Fernandez, Tania E; Cooper, Jonathan A; Vasioukhin, Valera

    2017-06-05

    Malformations of the cerebral cortex (MCCs) are devastating developmental disorders. We report here that mice with embryonic neural stem-cell-specific deletion of Llgl1 (Nestin-Cre/Llgl1 fl/fl ), a mammalian ortholog of the Drosophila cell polarity gene lgl, exhibit MCCs resembling severe periventricular heterotopia (PH). Immunohistochemical analyses and live cortical imaging of PH formation revealed that disruption of apical junctional complexes (AJCs) was responsible for PH in Nestin-Cre/Llgl1 fl/fl brains. While it is well known that cell polarity proteins govern the formation of AJCs, the exact mechanisms remain unclear. We show that LLGL1 directly binds to and promotes internalization of N-cadherin, and N-cadherin/LLGL1 interaction is inhibited by atypical protein kinase C-mediated phosphorylation of LLGL1, restricting the accumulation of AJCs to the basolateral-apical boundary. Disruption of the N-cadherin-LLGL1 interaction during cortical development in vivo is sufficient for PH. These findings reveal a mechanism responsible for the physical and functional connection between cell polarity and cell-cell adhesion machineries in mammalian cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. ErbB receptors and cell polarity: New pathways and paradigms for understanding cell migration and invasion

    International Nuclear Information System (INIS)

    Feigin, Michael E.; Muthuswamy, Senthil K.

    2009-01-01

    The ErbB family of receptor tyrosine kinases is involved in initiation and progression of a number of human cancers, and receptor activation or overexpression correlates with poor patient survival. Research over the past two decades has elucidated the molecular mechanisms underlying ErbB-induced tumorigenesis, which has resulted in the development of effective targeted therapies. ErbB-induced signal transduction cascades regulate a wide variety of cell processes, including cell proliferation, apoptosis, cell polarity, migration and invasion. Within tumors, disruption of these core processes, through cooperative oncogenic lesions, results in aggressive, metastatic disease. This review will focus on the ErbB signaling networks that regulate migration and invasion and identify a potential role for cell polarity pathways during cancer progression

  4. Wavelength Conversion of DP-QPSK Signals in a Silicon Polarization Diversity Circuit

    DEFF Research Database (Denmark)

    Vukovic, Dragana; Schroeder, Jochen; Ding, Yunhong

    2015-01-01

    Multichannel wavelength conversion is experimentally demonstrated for high-speed 128 Gb/s dual-polarization quadrature phase-shift keying signals using four-wave mixing in a polarization diversity circuit with silicon nanowires as nonlinear elements. The wavelength conversion performance is inves...... is investigated for both single-and three-channel input signals, showing quality factors well >9.8 dB (corresponding to bit-error-ratios better than 10(-3)) and with a negligible power penalty compared with the back-to-back case....

  5. Blended learning fitting algorithm for polarization curves of fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fengxiang; Ji, Guangji; Zhang, Chuansheng [School of Automotive Studies of Tongji University, Shanghai 201804 (China); Zhou, Su [School of Automotive Studies of Tongji University, Shanghai 201804 (China); CDHK of Tongji University, Shanghai 200092 (China); Sundmacher, Kai [Max-Planck-Institute for Dynamics of Complex Technical Systems, Magdeburg 39106 (Germany)

    2009-07-15

    Fuel cell polarization curves, characterized by nonlinear models and the parameters of which are time-consuming to be identified, can represent fuel cell performance but will alter as the fuel cell degrades. For getting the information on degradation in time, a less time-consuming and an easily programmed algorithm, based on blended learning technique and linear least square estimation (LSE), is proposed to fit polarization curves obtained from the fuel cell systems. Simulations show that the proposed algorithm, compared with classical nonlinear LSE algorithms, converges much faster, features better extrapolation and less average quadratic error, and is easy to be programmed by C language. Therefore, the algorithm is a good option not only for fitting the polarization curves but also for implementation in embedded systems. (author)

  6. Defective planar cell polarity in polycystic kidney disease.

    Science.gov (United States)

    Fischer, Evelyne; Legue, Emilie; Doyen, Antonia; Nato, Faridabano; Nicolas, Jean-François; Torres, Vicente; Yaniv, Moshe; Pontoglio, Marco

    2006-01-01

    Morphogenesis involves coordinated proliferation, differentiation and spatial distribution of cells. We show that lengthening of renal tubules is associated with mitotic orientation of cells along the tubule axis, demonstrating intrinsic planar cell polarization, and we demonstrate that mitotic orientations are significantly distorted in rodent polycystic kidney models. These results suggest that oriented cell division dictates the maintenance of constant tubule diameter during tubular lengthening and that defects in this process trigger renal tubular enlargement and cyst formation.

  7. Label-free investigation of the effects of lithium niobate polarization on cell adhesion

    Science.gov (United States)

    Mandracchia, B.; Gennari, O.; Paturzo, M.; Grilli, S.; Ferraro, P.

    2017-06-01

    The determination of contact area is pivotal to understand how biomaterials properties influence cell adhesion. In particular, the influence of surface charges is well-known but still controversial, especially when new functional materials and methods are introduced. Here, we use for the first time Holographic Total Internal Reflection Microscopy (HoloTIRM) to study the influence of the spontaneous polarization of ferroelectric lithium niobate (LN) on the adhesion properties of fibroblast cells. The selective illumination of a very thin region directly above the substrate, achieved by Total Internal Reflection, provides high-contrast images of the contact regions. Holographic recording, on the other hand, allows for label-free quantitative phase imaging of the contact areas between cells and LN. Phase signal is more sensitive in the first 100nm and, thus more reliable in order to locate focal contacts. This work shows that cells adhering on negatively polarized LN present a significant increase of the contact area in comparison with cells adhering on the positively polarized LN substrate, as well as an intensification of contact vicinity. This confirms the potential of LN as a platform for investigating the role of charges on cellular processes. The similarity of cell adhesion behavior on negatively polarized LN and glass control also confirms the possibility to use LN as an active substrate without impairing cell behavior.

  8. Compartmentalized Signaling in Neurons: From Cell Biology to Neuroscience.

    Science.gov (United States)

    Terenzio, Marco; Schiavo, Giampietro; Fainzilber, Mike

    2017-11-01

    Neurons are the largest known cells, with complex and highly polarized morphologies. As such, neuronal signaling is highly compartmentalized, requiring sophisticated transfer mechanisms to convey and integrate information within and between sub-neuronal compartments. Here, we survey different modes of compartmentalized signaling in neurons, highlighting examples wherein the fundamental cell biological processes of protein synthesis and degradation, membrane trafficking, and organelle transport are employed to enable the encoding and integration of information, locally and globally within a neuron. Comparisons to other cell types indicate that neurons accentuate widely shared mechanisms, providing invaluable models for the compartmentalization and transfer mechanisms required and used by most eukaryotic cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Geometric effects on the flux and polarization signals of Jupiter-sized exoplanets

    NARCIS (Netherlands)

    Palmer (student TUDelft), Chris; Rossi, L.C.G.; Stam, D.M.

    2017-01-01

    The direct detection of reflected starlight from exoplanets marks the beginning of a new era in the characterization of extrasolar planetary atmospheres. The flux and in particular the linear polarization signals from such planets are sensitive to atmospheric structure and composition, but other

  10. Cell polarity and neurogenesis in embryonic stem cell-derived neural rosettes.

    Science.gov (United States)

    Banda, Erin; McKinsey, Anna; Germain, Noelle; Carter, James; Anderson, Nickesha Camille; Grabel, Laura

    2015-04-15

    Embryonic stem cells (ESCs) undergoing neural differentiation form radial arrays of neural stem cells, termed neural rosettes. These structures manifest many of the properties associated with embryonic and adult neurogenesis, including cell polarization, interkinetic nuclear migration (INM), and a gradient of neuronal differentiation. We now identify novel rosette structural features that serve to localize key regulators of neurogenesis. Cells within neural rosettes have specialized basal as well as apical surfaces, based on localization of the extracellular matrix receptor β1 integrin. Apical processes of cells in mature rosettes terminate at the lumen, where adherens junctions are apparent. Primary cilia are randomly distributed in immature rosettes and tightly associated with the neural stem cell's apical domain as rosettes mature. Components of two signaling pathways known to regulate neurogenesis in vivo and in rosettes, Hedgehog and Notch, are apically localized, with the Hedgehog effector Smoothened (Smo) associated with primary cilia and the Notch pathway γ-secretase subunit Presenilin 2 associated with the adherens junction. Increased neuron production upon treatment with the Notch inhibitor DAPT suggests a major role for Notch signaling in maintaining the neural stem cell state, as previously described. A less robust outcome was observed with manipulation of Hedgehog levels, though consistent with a role in neural stem cell survival or proliferation. Inhibition of both pathways resulted in an additive effect. These data support a model by which cells extending a process to the rosette lumen maintain neural stem cell identity whereas release from this association, either through asymmetric cell division or apical abscission, promotes neuronal differentiation.

  11. Kv7.1 surface expression is regulated by epithelial cell polarization

    DEFF Research Database (Denmark)

    Andersen, Martin N; Olesen, Søren-Peter; Rasmussen, Hanne Borger

    2011-01-01

    The potassium channel K(V)7.1 is expressed in the heart where it contributes to the repolarization of the cardiac action potential. In addition, K(V)7.1 is expressed in epithelial tissues where it plays a role in salt and water transport. Mutations in the kcnq1 gene can lead to long QT syndrome...... and deafness, and several mutations have been described as trafficking mutations. To learn more about the basic mechanisms that regulate K(V)7.1 surface expression, we have investigated the trafficking of K(V)7.1 during the polarization process of the epithelial cell line Madin-Darby Canine Kidney (MDCK) using...... is regulated by signaling mechanisms involved in epithelial cell polarization in particular signaling cascades involving protein kinase C and PI3K....

  12. Rap1 integrates tissue polarity, lumen formation, and tumorigenicpotential in human breast epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Masahiko; Nelson, Celeste M.; Myers, Connie A.; Bissell,Mina J.

    2006-09-29

    Maintenance of apico-basal polarity in normal breast epithelial acini requires a balance between cell proliferation, cell death, and proper cell-cell and cell-extracellular matrix signaling. Aberrations in any of these processes can disrupt tissue architecture and initiate tumor formation. Here we show that the small GTPase Rap1 is a crucial element in organizing acinar structure and inducing lumen formation. Rap1 activity in malignant HMT-3522 T4-2 cells is appreciably higher than in S1 cells, their non-malignant counterparts. Expression of dominant-negative Rap1 resulted in phenotypic reversion of T4-2 cells, led to formation of acinar structures with correct apico-basal polarity, and dramatically reduced tumor incidence despite the persistence of genomic abnormalities. The resulting acini contained prominent central lumina not observed when other reverting agents were used. Conversely, expression of dominant-active Rap1 in T4-2 cells inhibited phenotypic reversion and led to increased invasiveness and tumorigenicity. Thus, Rap1 acts as a central regulator of breast architecture, with normal levels of activation instructing apical polarity during acinar morphogenesis, and increased activation inducing tumor formation and progression to malignancy.

  13. High Throughput Method to Quantify Anterior-Posterior Polarity of T-Cells and Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Susan J. Marriott

    2011-11-01

    Full Text Available The virologic synapse (VS, which is formed between a virus-infected and uninfected cell, plays a central role in the transmission of certain viruses, such as HIV and HTLV-1. During VS formation, HTLV-1-infected T-cells polarize cellular and viral proteins toward the uninfected T-cell. This polarization resembles anterior-posterior cell polarity induced by immunological synapse (IS formation, which is more extensively characterized than VS formation and occurs when a T-cell interacts with an antigen-presenting cell. One measure of cell polarity induced by both IS or VS formation is the repositioning of the microtubule organizing center (MTOC relative to the contact point with the interacting cell. Here we describe an automated, high throughput system to score repositioning of the MTOC and thereby cell polarity establishment. The method rapidly and accurately calculates the angle between the MTOC and the IS for thousands of cells. We also show that the system can be adapted to score anterior-posterior polarity establishment of epithelial cells. This general approach represents a significant advancement over manual cell polarity scoring, which is subject to experimenter bias and requires more time and effort to evaluate large numbers of cells.

  14. Polarization of Sunyaev-Zel'dovich signal due to electron pressure anisotropy in galaxy clusters

    Science.gov (United States)

    Khabibullin, I.; Komarov, S.; Churazov, E.; Schekochihin, A.

    2018-02-01

    We describe polarization of the Sunyaev-Zel'dovich (SZ) effect associated with electron pressure anisotropy likely present in the intracluster medium (ICM). The ICM is an astrophysical example of a weakly collisional plasma where the Larmor frequencies of charged particles greatly exceed their collision frequencies. This permits formation of pressure anisotropies, driven by evolving magnetic fields via adiabatic invariance, or by heat fluxes. SZ polarization arises in the process of Compton scattering of the cosmic microwave background (CMB) photons off the thermal ICM electrons due to the difference in the characteristic thermal velocities of the electrons along two mutually orthogonal directions in the sky plane. The signal scales linearly with the optical depth of the region containing large-scale correlated anisotropy, and with the degree of anisotropy itself. It has the same spectral dependence as the polarization induced by cluster motion with respect to the CMB frame (kinematic SZ effect polarization), but can be distinguished by its spatial pattern. For the illustrative case of a galaxy cluster with a cold front, where electron transport is mediated by Coulomb collisions, we estimate the CMB polarization degree at the level of 10-8 (˜10 nK). An increase of the effective electron collisionality due to plasma instabilities will reduce the effect. Such polarization, therefore, may be an independent probe of the electron collisionality in the ICM, which is one of the key properties of a high-β weakly collisional plasma from the point of view of both astrophysics and plasma theory.

  15. Dishevelled is essential for neural connectivity and planar cell polarity in planarians.

    Science.gov (United States)

    Almuedo-Castillo, Maria; Saló, Emili; Adell, Teresa

    2011-02-15

    The Wingless/Integrated (Wnt) signaling pathway controls multiple events during development and homeostasis. It comprises multiple branches, mainly classified according to their dependence on β-catenin activation. The Wnt/β-catenin branch is essential for the establishment of the embryonic anteroposterior (AP) body axis throughout the phylogenetic tree. It is also required for AP axis establishment during planarian regeneration. Wnt/β-catenin-independent signaling encompasses several different pathways, of which the most extensively studied is the planar cell polarity (PCP) pathway, which is responsible for planar polarization of cell structures within an epithelial sheet. Dishevelled (Dvl) is the hub of Wnt signaling because it regulates and channels the Wnt signal into every branch. Here, we analyze the role of Schmidtea mediterranea Dvl homologs (Smed-dvl-1 and Smed-dvl-2) using gene silencing. We demonstrate that in addition to a role in AP axis specification, planarian Dvls are involved in at least two different β-catenin-independent processes. First, they are essential for neural connectivity through Smed-wnt5 signaling. Second, Smed-dvl-2, together with the S. mediterranea homologs of Van-Gogh (Vang) and Diversin (Div), is required for apical positioning of the basal bodies of epithelial cells. These data represent evidence not only of the function of the PCP network in lophotrocozoans but of the involvement of the PCP core elements Vang and Div in apical positioning of the cilia.

  16. Planar Cell Polarity Controls Pancreatic Beta Cell Differentiation and Glucose Homeostasis

    DEFF Research Database (Denmark)

    Cortijo, Cedric; Gouzi, Mathieu; Tissir, Fadel

    2012-01-01

    Planar cell polarity (PCP) refers to the collective orientation of cells within the epithelial plane. We show that progenitor cells forming the ducts of the embryonic pancreas express PCP proteins and exhibit an active PCP pathway. Planar polarity proteins are acquired at embryonic day 11.5 synch...... that tridimensional organization and collective communication of cells are needed in the pancreatic epithelium in order to generate appropriate numbers of endocrine cells....

  17. Lipid rafts and B cell signaling.

    Science.gov (United States)

    Gupta, Neetu; DeFranco, Anthony L

    2007-10-01

    B cells comprise an essential component of the humoral immune system. They are equipped with the unique ability to synthesize and secrete pathogen-neutralizing antibodies, and share with professional antigen presenting cells the ability to internalize foreign antigens, and process them for presentation to helper T cells. Recent evidence indicates that specialized cholesterol- and glycosphingolipid-rich microdomains in the plasma membrane commonly referred to as lipid rafts, serve to compartmentalize key signaling molecules during the different stages of B cell activation including B cell antigen receptor (BCR)-initiated signal transduction, endocytosis of BCR-antigen complexes, loading of antigenic peptides onto MHC class II molecules, MHC-II associated antigen presentation to helper T cells, and receipt of helper signals via the CD40 receptor. Here we review the recent literature arguing for a role of lipid rafts in the spatial organization of B cell function.

  18. Notch signalling in cancer stem cells.

    Science.gov (United States)

    Bolós, V; Blanco, M; Medina, V; Aparicio, G; Díaz-Prado, S; Grande, E

    2009-01-01

    A new theory about the development of solid tumours is emerging from the idea that solid tumours, like normal adult tissues, contain stem cells (called cancer stem cells) and arise from them. Genetic mutations encoding for proteins involved in critical signalling pathways for stem cells such as BMP, Notch, Hedgehog and Wnt would allow stem cells to undergo uncontrolled proliferation and form tumours. Taking into account that cancer stem cells (CSCs) would represent the real driving force behind tumour growth and that they may be drug resistant, new agents that target the above signalling pathways could be more effective than current anti-solid tumour therapies. In the present paper we will review the molecular basis of the Notch signalling pathway. Additionally, we will pay attention to their role in adult stem cell self-renewal, and cell fate specification and differentiation, and we will also review evidence that supports their implication in cancer.

  19. Attractant Binding Induces Distinct Structural Changes to the Polar and Lateral Signaling Clusters in Bacillus subtilis Chemotaxis*

    Science.gov (United States)

    Wu, Kang; Walukiewicz, Hanna E.; Glekas, George D.; Ordal, George W.; Rao, Christopher V.

    2011-01-01

    Bacteria employ a modified two-component system for chemotaxis, where the receptors form ternary complexes with CheA histidine kinases and CheW adaptor proteins. These complexes are arranged in semi-ordered arrays clustered predominantly at the cell poles. The prevailing models assume that these arrays are static and reorganize only locally in response to attractant binding. Recent studies have shown, however, that these structures may in fact be much more fluid. We investigated the localization of the chemotaxis signaling arrays in Bacillus subtilis using immunofluorescence and live cell fluorescence microscopy. We found that the receptors were localized in clusters at the poles in most cells. However, when the cells were exposed to attractant, the number exhibiting polar clusters was reduced roughly 2-fold, whereas the number exhibiting lateral clusters distinct from the poles increased significantly. These changes in receptor clustering were reversible as polar localization was reestablished in adapted cells. We also investigated the dynamic localization of CheV, a hybrid protein consisting of an N-terminal CheW-like adaptor domain and a C-terminal response regulator domain that is known to be phosphorylated by CheA, using immunofluorescence. Interestingly, we found that CheV was localized predominantly at lateral clusters in unstimulated cells. However, upon exposure to attractant, CheV was found to be predominantly localized to the cell poles. Moreover, changes in CheV localization are phosphorylation-dependent. Collectively, these results suggest that the chemotaxis signaling arrays in B. subtilis are dynamic structures and that feedback loops involving phosphorylation may regulate the positioning of individual proteins. PMID:21098025

  20. Attractant binding induces distinct structural changes to the polar and lateral signaling clusters in Bacillus subtilis chemotaxis.

    Science.gov (United States)

    Wu, Kang; Walukiewicz, Hanna E; Glekas, George D; Ordal, George W; Rao, Christopher V

    2011-01-28

    Bacteria employ a modified two-component system for chemotaxis, where the receptors form ternary complexes with CheA histidine kinases and CheW adaptor proteins. These complexes are arranged in semi-ordered arrays clustered predominantly at the cell poles. The prevailing models assume that these arrays are static and reorganize only locally in response to attractant binding. Recent studies have shown, however, that these structures may in fact be much more fluid. We investigated the localization of the chemotaxis signaling arrays in Bacillus subtilis using immunofluorescence and live cell fluorescence microscopy. We found that the receptors were localized in clusters at the poles in most cells. However, when the cells were exposed to attractant, the number exhibiting polar clusters was reduced roughly 2-fold, whereas the number exhibiting lateral clusters distinct from the poles increased significantly. These changes in receptor clustering were reversible as polar localization was reestablished in adapted cells. We also investigated the dynamic localization of CheV, a hybrid protein consisting of an N-terminal CheW-like adaptor domain and a C-terminal response regulator domain that is known to be phosphorylated by CheA, using immunofluorescence. Interestingly, we found that CheV was localized predominantly at lateral clusters in unstimulated cells. However, upon exposure to attractant, CheV was found to be predominantly localized to the cell poles. Moreover, changes in CheV localization are phosphorylation-dependent. Collectively, these results suggest that the chemotaxis signaling arrays in B. subtilis are dynamic structures and that feedback loops involving phosphorylation may regulate the positioning of individual proteins.

  1. Planar Cell Polarity Breaks the Symmetry of PAR Protein Distribution prior to Mitosis in Drosophila Sensory Organ Precursor Cells.

    Science.gov (United States)

    Besson, Charlotte; Bernard, Fred; Corson, Francis; Rouault, Hervé; Reynaud, Elodie; Keder, Alyona; Mazouni, Khalil; Schweisguth, François

    2015-04-20

    During development, cell-fate diversity can result from the unequal segregation of fate determinants at mitosis. Polarization of the mother cell is essential for asymmetric cell division (ACD). It often involves the formation of a cortical domain containing the PAR complex proteins Par3, Par6, and atypical protein kinase C (aPKC). In the fly notum, sensory organ precursor cells (SOPs) divide asymmetrically within the plane of the epithelium and along the body axis to generate two distinct cells. Fate asymmetry depends on the asymmetric localization of the PAR complex. In the absence of planar cell polarity (PCP), SOPs divide with a random planar orientation but still asymmetrically, showing that PCP is dispensable for PAR asymmetry at mitosis. To study when and how the PAR complex localizes asymmetrically, we have used a quantitative imaging approach to measure the planar polarization of the proteins Bazooka (Baz, fly Par3), Par6, and aPKC in living pupae. By using imaging of functional GFP-tagged proteins with image processing and computational modeling, we find that Baz, Par6, and aPKC become planar polarized prior to mitosis in a manner independent of the AuroraA kinase and that PCP is required for the planar polarization of Baz, Par6, and aPKC during interphase. This indicates that a "mitosis rescue" mechanism establishes asymmetry at mitosis in PCP mutants. This study therefore identifies PCP as the initial symmetry-breaking signal for the planar polarization of PAR proteins in asymmetrically dividing SOPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Syndecans, signaling, and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Woods, A

    1996-01-01

    with the microfilament cytoskeleton, thereby mediating signaling events. The molecular details are unknown, but the conservation of regions of syndecan cytoplasmic domains, and a strong tendency for homotypic association, support the idea that the ligand-induced clustering may be a discrete source of specific...

  3. RHOA GTPase Controls YAP-Mediated EREG Signaling in Small Intestinal Stem Cell Maintenance

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2017-12-01

    Full Text Available Summary: RHOA, a founding member of the Rho GTPase family, is critical for actomyosin dynamics, polarity, and morphogenesis in response to developmental cues, mechanical stress, and inflammation. In murine small intestinal epithelium, inducible RHOA deletion causes a loss of epithelial polarity, with disrupted villi and crypt organization. In the intestinal crypts, RHOA deficiency results in reduced cell proliferation, increased apoptosis, and a loss of intestinal stem cells (ISCs that mimic effects of radiation damage. Mechanistically, RHOA loss reduces YAP signaling of the Hippo pathway and affects YAP effector epiregulin (EREG expression in the crypts. Expression of an active YAP (S112A mutant rescues ISC marker expression, ISC regeneration, and ISC-associated Wnt signaling, but not defective epithelial polarity, in RhoA knockout mice, implicating YAP in RHOA-regulated ISC function. EREG treatment or active β-catenin Catnblox(ex3 mutant expression rescues the RhoA KO ISC phenotypes. Thus, RHOA controls YAP-EREG signaling to regulate intestinal homeostasis and ISC regeneration. : In this article, Zheng and colleagues show that inducible RHOA deletion in mice causes defects in intestine epithelial polarity and deficiencies in intestinal stem cell proliferation, survival, and regeneration. They further demonstrate by genetic rescues that RHOA controls a YAP-EREG axis to mediate canonical Wnt signaling, intestinal stem cell function, and intestinal homeostasis. Keywords: mouse model, intestinal stem cell, regeneration, Rho GTPase, RhoA, Hippo signaling, YAP, Wnt signaling

  4. Dystroglycan loss disrupts polarity and beta-casein induction inmammary epithelial cells by perturbing laminin anchoring

    Energy Technology Data Exchange (ETDEWEB)

    Weir, M. Lynn; Oppizzi, Maria Luisa; Henry, Michael D.; Onishi,Akiko; Campbell, Kevin P.; Bissell, Mina J.; Muschler, John L.

    2006-02-17

    Precise contact between epithelial cells and their underlying basement membrane is critical to the maintenance of tissue architecture and function. To understand the role that the laminin receptor dystroglycan (DG) plays in these processes, we assayed cell responses to laminin-111 following conditional ablation of DG expression in cultured mammary epithelial cells (MECs). Strikingly, DG loss disrupted laminin-111-induced polarity and {beta}-casein production, and abolished laminin assembly at the step of laminin binding to the cell surface. DG re-expression restored these deficiencies. Investigations of mechanism revealed that DG cytoplasmic sequences were not necessary for laminin assembly and signaling, and only when the entire mucin domain of extracellular DG was deleted did laminin assembly not occur. These results demonstrate that DG is essential as a laminin-111 co-receptor in MECs that functions by mediating laminin anchoring to the cell surface, a process that allows laminin polymerization, tissue polarity, and {beta}-casein induction. The observed loss of laminin-111 assembly and signaling in DG-/-MECs provides insights into the signaling changes occurring in breast carcinomas and other cancers, where DG's laminin-binding function is frequently defective.

  5. T cell receptor reversed polarity recognition of a self-antigen major histocompatibility complex.

    Science.gov (United States)

    Beringer, Dennis X; Kleijwegt, Fleur S; Wiede, Florian; van der Slik, Arno R; Loh, Khai Lee; Petersen, Jan; Dudek, Nadine L; Duinkerken, Gaby; Laban, Sandra; Joosten, Antoinette; Vivian, Julian P; Chen, Zhenjun; Uldrich, Adam P; Godfrey, Dale I; McCluskey, James; Price, David A; Radford, Kristen J; Purcell, Anthony W; Nikolic, Tatjana; Reid, Hugh H; Tiganis, Tony; Roep, Bart O; Rossjohn, Jamie

    2015-11-01

    Central to adaptive immunity is the interaction between the αβ T cell receptor (TCR) and peptide presented by the major histocompatibility complex (MHC) molecule. Presumably reflecting TCR-MHC bias and T cell signaling constraints, the TCR universally adopts a canonical polarity atop the MHC. We report the structures of two TCRs, derived from human induced T regulatory (iT(reg)) cells, complexed to an MHC class II molecule presenting a proinsulin-derived peptide. The ternary complexes revealed a 180° polarity reversal compared to all other TCR-peptide-MHC complex structures. Namely, the iT(reg) TCR α-chain and β-chain are overlaid with the α-chain and β-chain of MHC class II, respectively. Nevertheless, this TCR interaction elicited a peptide-reactive, MHC-restricted T cell signal. Thus TCRs are not 'hardwired' to interact with MHC molecules in a stereotypic manner to elicit a T cell signal, a finding that fundamentally challenges our understanding of TCR recognition.

  6. Dual Polarized Monopole Patch Antennas for UWB Applications with Elimination of WLAN Signals

    Directory of Open Access Journals (Sweden)

    P. Kumar

    2016-05-01

    Full Text Available This paper presents the design, fabrication and measurement of dual polarized microstrip patch antennas for ultra wideband (UWB applications with notch at 5-6 GHz band. The proposed antenna rejects the wireless local area network (WLAN signals and work properly in the entire remaining ultra-wideband. Two antennas are designed for two different frequency bands of ultra wideband and both antennas together produce the entire ultra wideband with notch at 5-6 GHz band. The antennas are fed by a 50 coaxial probe and the entire design is optimized using CST Microwave Studio. The bandwidth of 3.1-5 GHz is achieved by the optimized design of Antenna-1 and the bandwidth of 6 -10.6 GHz is achieved by the optimized design of Antenna-2. The bandwidth of the optimized combined antenna is 3.1-10.6 GHz with elimination of the 5-6 GHz band. Both antennas are simulated, developed and measured. The simulated and measured results are presented. The two designed dual polarized antennas i.e. Antenna-1 and Antenna-2 can be used for 3.1-5 GHz band and 6-10.6 GHz band dual polarized applications, respectively, and the combined antenna structure can be used for UWB dual polarized applications with elimination of 5-6 GHz band signals.

  7. Contribution of the polarization moments of different rank to the integral CPT signal

    Science.gov (United States)

    Taskova, E.; Alipieva, E.; Todorov, G.

    2016-01-01

    In the present work we investigate the relation of the polarization moments having different ranks with the tensor components which form the observable integral CPT signal, in the presence of a stray magnetic field. A numerical experiment with parameters close to the real ones is performed, using a program based on the irreducible tensor operator formalism1. The integral fluorescent signal is calculated for the non-polarized fluorescence at different laser power excitation. Detailed analysis of the numerical solutions for all tensor components which describe population and alignment allows visualizing the dynamics of their behavior in dependence on the experimental geometry and laboratory magnetic field B'. The dependence of population f00, longitudinal f02 and transverse f22 alignment in the presence of transverse magnetic field is investigated. The shape and sign of the resonance change with laser power.

  8. Long-distance delivery of multi-channel polarization signals in nuclear fusion research

    Science.gov (United States)

    Ko, Jinseok; Chung, Jinil; Lee, Kyuhang

    2017-04-01

    A polarization-preserving optical system that includes a dual photoelastic modulator (PEM) has been designed and fabricated for the motional Stark effect (MSE) diagnostic system which measures internal magnetic field structures inside the tokamak for the Korea Superconducting Tokamak Advanced Research. The collection optics located outside the vacuum window is composed of four lenses, a dielectric coated mirror, and a dichroic beam splitter in addition to the PEM and a polarizer. The fiber dissector is designed based on the focal plane that aligns 25 lines of sight, each of which constitutes a bundle of 19 600-μm fibers. The fibers run about 40 m from the front optics in the tokamak vacuum vessel to the detector in the diagnostic area remote from the tokamak hall. This takes the advantage of the fact that the polarization information is intensity-modulated once going through the PEM and the polarizer. The polarization signals measured by the MSE diagnostic successfully demonstrates its proof-of-principle physics that is critical in the stable and steady-state operation of the tokamak plasmas.

  9. Wnt Signaling in Cancer Stem Cell Biology

    NARCIS (Netherlands)

    de Sousa E Melo, Felipe; Vermeulen, Louis

    2016-01-01

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells

  10. Structure of polarization-resolved conoscopic patterns of planar oriented liquid crystal cells

    Science.gov (United States)

    Kiselev, A. D.; Vovk, R. G.

    2010-05-01

    The geometry of distributions of the polarization of light in conoscopic patterns of planar oriented nematic and cholesteric liquid crystal (LC) cells is described in terms of the polarization singularities including C-points (points of circular polarization) and L lines (lines of linear polarization). Conditions for the formation of polarization singularities ( C-points) in an ensemble of conoscopic patterns parametrized by the polarization azimuth and ellipticity of the incident light wave have been studied. A characteristic feature of these conditions is selectivity with respect to the polarization parameters of the incident light wave. The polarization azimuth and ellipticity are determining parameters for nematic and cholesteric LC cells, respectively.

  11. Kermit interacts with Gαo, Vang, and motor proteins in Drosophila planar cell polarity.

    Directory of Open Access Journals (Sweden)

    Chen Lin

    Full Text Available In addition to the ubiquitous apical-basal polarity, epithelial cells are often polarized within the plane of the tissue--the phenomenon known as planar cell polarity (PCP. In Drosophila, manifestations of PCP are visible in the eye, wing, and cuticle. Several components of the PCP signaling have been characterized in flies and vertebrates, including the heterotrimeric Go protein. However, Go signaling partners in PCP remain largely unknown. Using a genetic screen we uncover Kermit, previously implicated in G protein and PCP signaling, as a novel binding partner of Go. Through pull-down and genetic interaction studies, we find that Kermit interacts with Go and another PCP component Vang, known to undergo intracellular relocalization during PCP establishment. We further demonstrate that the activity of Kermit in PCP differentially relies on the motor proteins: the microtubule-based dynein and kinesin motors and the actin-based myosin VI. Our results place Kermit as a potential transducer of Go, linking Vang with motor proteins for its delivery to dedicated cellular compartments during PCP establishment.

  12. A Two Dimensional Overlapped Subaperture Polar Format Algorithm Based on Stepped-chirp Signal.

    Science.gov (United States)

    Mao, Xinhua; Zhu, Daiyin; Nie, Xin; Zhu, Zhaoda

    2008-05-26

    In this work, a 2-D subaperture polar format algorithm (PFA) based on steppedchirp signal is proposed. Instead of traditional pulse synthesis preprocessing, the presented method integrates the pulse synthesis process into the range subaperture processing. Meanwhile, due to the multi-resolution property of subaperture processing, this algorithm is able to compensate the space-variant phase error caused by the radar motion during the period of a pulse cluster. Point target simulation has validated the presented algorithm.

  13. A Two Dimensional Overlapped Subaperture Polar Format Algorithm Based on Stepped-chirp Signal

    Directory of Open Access Journals (Sweden)

    Zhaoda Zhu

    2008-05-01

    Full Text Available In this work, a 2-D subaperture polar format algorithm (PFA based on steppedchirp signal is proposed. Instead of traditional pulse synthesis preprocessing, the presented method integrates the pulse synthesis process into the range subaperture processing. Meanwhile, due to the multi-resolution property of subaperture processing, this algorithm is able to compensate the space-variant phase error caused by the radar motion during the period of a pulse cluster. Point target simulation has validated the presented algorithm.

  14. A Two Dimensional Overlapped Subaperture Polar Format Algorithm Based on Stepped-chirp Signal

    OpenAIRE

    Mao, Xinhua; Zhu, Daiyin; Nie, Xin; Zhu, Zhaoda

    2008-01-01

    In this work, a 2-D subaperture polar format algorithm (PFA) based on stepped-chirp signal is proposed. Instead of traditional pulse synthesis preprocessing, the presented method integrates the pulse synthesis process into the range subaperture processing. Meanwhile, due to the multi-resolution property of subaperture processing, this algorithm is able to compensate the space-variant phase error caused by the radar motion during the period of a pulse cluster. Point target simulation has valid...

  15. Blind equalization for dual-polarization two-subcarrier coherent QPSK-OFDM signals.

    Science.gov (United States)

    Li, Fan; Zhang, Junwen; Yu, Jianjun; Li, Xinying

    2014-01-15

    Dual-polarization two-subcarrier coherent optical orthogonal frequency division multiplexing (CO-OFDM) transmission and reception is successfully demonstrated with blind equalization. A two-subcarrier quadrature phase shift keyed OFDM (QPSK-OFDM) signal can be equalized as a 9-ary quadrature amplitude modulation signal in the time domain with the cascaded multimodulus algorithm equalization method. The nonlinear effect resistance and transmission distance can be enhanced compared with the traditional CO-OFDM transmission system based on frequency equalization with training sequence.

  16. Daple coordinates organ-wide and cell-intrinsic polarity to pattern inner-ear hair bundles.

    Science.gov (United States)

    Siletti, Kimberly; Tarchini, Basile; Hudspeth, A J

    2017-12-26

    The establishment of planar polarization by mammalian cells necessitates the integration of diverse signaling pathways. In the inner ear, at least two systems regulate the planar polarity of sensory hair bundles. The core planar cell polarity (PCP) proteins coordinate the orientations of hair cells across the epithelial plane. The cell-intrinsic patterning of hair bundles is implemented independently by the G protein complex classically known for orienting the mitotic spindle. Although the primary cilium also participates in each of these pathways, its role and the integration of the two systems are poorly understood. We show that Dishevelled-associating protein with a high frequency of leucine residues (Daple) interacts with PCP and cell-intrinsic signals. Regulated by the cell-intrinsic pathway, Daple is required to maintain the polarized distribution of the core PCP protein Dishevelled and to position the primary cilium at the abneural edge of the apical surface. Our results suggest that the primary cilium or an associated structure influences the domain of cell-intrinsic signals that shape the hair bundle. Daple is therefore essential to orient and pattern sensory hair bundles. Copyright © 2017 the Author(s). Published by PNAS.

  17. Human B cells induce dendritic cell maturation and favour Th2 polarization by inducing OX-40 ligand

    Science.gov (United States)

    Maddur, Mohan S.; Sharma, Meenu; Hegde, Pushpa; Stephen-Victor, Emmanuel; Pulendran, Bali; Kaveri, Srini V.; Bayry, Jagadeesh

    2015-01-01

    Dendritic cells (DCs) play a critical role in immune homeostasis by regulating the functions of various immune cells, including T and B cells. Notably, DCs also undergo education on reciprocal signalling by these immune cells and environmental factors. Various reports demonstrated that B cells have profound regulatory functions, although only few reports have explored the regulation of human DCs by B cells. Here we demonstrate that activated but not resting B cells induce maturation of DCs with distinct features to polarize Th2 cells that secrete interleukin (IL)-5, IL-4 and IL-13. B-cell-induced maturation of DCs is contact dependent and implicates signalling of B-cell activation molecules CD69, B-cell-activating factor receptor, and transmembrane activator and calcium-modulating cyclophilin ligand interactor. Mechanistically, differentiation of Th2 cells by B-cell-matured DCs is dependent on OX-40 ligand. Collectively, our results suggest that B cells have the ability to control their own effector functions by enhancing the ability of human DCs to mediate Th2 differentiation. PMID:24910129

  18. Knockin' on pollen's door: live cell imaging of early polarization events in germinating Arabidopsis pollen

    Science.gov (United States)

    Vogler, Frank; Konrad, Sebastian S. A.; Sprunck, Stefanie

    2015-01-01

    Pollen tubes are an excellent system for studying the cellular dynamics and complex signaling pathways that coordinate polarized tip growth. Although several signaling mechanisms acting in the tip-growing pollen tube have been described, our knowledge on the subcellular and molecular events during pollen germination and growth site selection at the pollen plasma membrane is rather scarce. To simultaneously track germinating pollen from up to 12 genetically different plants we developed an inexpensive and easy mounting technique, suitable for every standard microscope setup. We performed high magnification live-cell imaging during Arabidopsis pollen activation, germination, and the establishment of pollen tube tip growth by using fluorescent marker lines labeling either the pollen cytoplasm, vesicles, the actin cytoskeleton or the sperm cell nuclei and membranes. Our studies revealed distinctive vesicle and F-actin polarization during pollen activation and characteristic growth kinetics during pollen germination and pollen tube formation. Initially, the germinating Arabidopsis pollen tube grows slowly and forms a uniform roundish bulge, followed by a transition phase with vesicles heavily accumulating at the growth site before switching to rapid tip growth. Furthermore, we found the two sperm cells to be transported into the pollen tube after the phase of rapid tip growth has been initiated. The method presented here is suitable to quantitatively study subcellular events during Arabidopsis pollen germination and growth, and for the detailed analysis of pollen mutants with respect to pollen polarization, bulging, or growth site selection at the pollen plasma membrane. PMID:25954283

  19. Domain-specific control of germ cell polarity and migration by multifunction Tre1 GPCR

    Science.gov (United States)

    2017-01-01

    The migration of primordial germ cells (PGCs) from their place of origin to the embryonic gonad is an essential reproductive feature in many animal species. In Drosophila melanogaster, a single G protein–coupled receptor, Trapped in endoderm 1 (Tre1), mediates germ cell polarization at the onset of active migration and directs subsequent migration of PGCs through the midgut primordium. How these different aspects of cell behavior are coordinated through a single receptor is not known. We demonstrate that two highly conserved domains, the E/N/DRY and NPxxY motifs, have overlapping and unique functions in Tre1. The Tre1-NRY domain via G protein signaling is required for reading and responding to guidance and survival cues controlled by the lipid phosphate phosphatases Wunen and Wunen2. In contrast, the Tre1-NPIIY domain has a separate role in Rho1- and E-cadherin–mediated polarization at the initiation stage independent of G protein signaling. We propose that this bifurcation of the Tre1 G protein–coupled receptor signaling response via G protein–dependent and independent branches enables distinct spatiotemporal regulation of germ cell migration. PMID:28687666

  20. Polarization of migrating monocytic cells is independent of PI 3-kinase activity.

    Directory of Open Access Journals (Sweden)

    Silvia Volpe

    Full Text Available BACKGROUND: Migration of mammalian cells is a complex cell type and environment specific process. Migrating hematopoietic cells assume a rapid amoeboid like movement when exposed to gradients of chemoattractants. The underlying signaling mechanisms remain controversial with respect to localization and distribution of chemotactic receptors within the plasma membrane and the role of PI 3-kinase activity in cell polarization. METHODOLOGY/PRINCIPAL FINDINGS: We present a novel model for the investigation of human leukocyte migration. Monocytic THP-1 cells transfected with the alpha(2A-adrenoceptor (alpha(2AAR display comparable signal transduction responses, such as calcium mobilization, MAP-kinase activation and chemotaxis, to the noradrenaline homologue UK 14'304 as when stimulated with CCL2, which binds to the endogenous chemokine receptor CCR2. Time-lapse video microscopy reveals that chemotactic receptors remain evenly distributed over the plasma membrane and that their internalization is not required for migration. Measurements of intramolecular fluorescence resonance energy transfer (FRET of alpha(2AAR-YFP/CFP suggest a uniform activation of the receptors over the entire plasma membrane. Nevertheless, PI 3-kinase activation is confined to the leading edge. When reverting the gradient of chemoattractant by moving the dispensing micropipette, polarized monocytes--in contrast to neutrophils--rapidly flip their polarization axis by developing a new leading edge at the previous posterior side. Flipping of the polarization axis is accompanied by re-localization of PI-3-kinase activity to the new leading edge. However, reversal of the polarization axis occurs in the absence of PI 3-kinase activation. CONCLUSIONS/SIGNIFICANCE: Accumulation and internalization of chemotactic receptors at the leading edge is dispensable for cell migration. Furthermore, uniformly distributed receptors allow the cells to rapidly reorient and adapt to changes in the

  1. B Cells Producing Type I IFN Modulate Macrophage Polarization in Tuberculosis.

    Science.gov (United States)

    Bénard, Alan; Sakwa, Imme; Schierloh, Pablo; Colom, André; Mercier, Ingrid; Tailleux, Ludovic; Jouneau, Luc; Boudinot, Pierre; Al-Saati, Talal; Lang, Roland; Rehwinkel, Jan; Loxton, Andre G; Kaufmann, Stefan H E; Anton-Leberre, Véronique; O'Garra, Anne; Sasiain, Maria Del Carmen; Gicquel, Brigitte; Fillatreau, Simon; Neyrolles, Olivier; Hudrisier, Denis

    2018-03-15

    In addition to their well-known function as antibody-producing cells, B lymphocytes can markedly influence the course of infectious or noninfectious diseases via antibody-independent mechanisms. In tuberculosis (TB), B cells accumulate in lungs, yet their functional contribution to the host response remains poorly understood. To document the role of B cells in TB in an unbiased manner. We generated the transcriptome of B cells isolated from Mycobacterium tuberculosis (Mtb)-infected mice and validated the identified key pathways using in vitro and in vivo assays. The obtained data were substantiated using B cells from pleural effusion of patients with TB. B cells isolated from Mtb-infected mice displayed a STAT1 (signal transducer and activator of transcription 1)-centered signature, suggesting a role for IFNs in B-cell response to infection. B cells stimulated in vitro with Mtb produced type I IFN, via a mechanism involving the innate sensor STING (stimulator of interferon genes), and antagonized by MyD88 (myeloid differentiation primary response 88) signaling. In vivo, B cells expressed type I IFN in the lungs of Mtb-infected mice and, of clinical relevance, in pleural fluid from patients with TB. Type I IFN expression by B cells induced an altered polarization of macrophages toward a regulatory/antiinflammatory profile in vitro. In vivo, increased provision of type I IFN by B cells in a murine model of B cell-restricted Myd88 deficiency correlated with an enhanced accumulation of regulatory/antiinflammatory macrophages in Mtb-infected lungs. Type I IFN produced by Mtb-stimulated B cells favors macrophage polarization toward a regulatory/antiinflammatory phenotype during Mtb infection.

  2. Biophysical Attributes of CpG Presentation Control TLR9 Signaling to Differentially Polarize Systemic Immune Responses

    Directory of Open Access Journals (Sweden)

    Jardin A. Leleux

    2017-01-01

    Full Text Available It is currently unknown whether and how mammalian pathogen recognition receptors (PRRs respond to biophysical patterns of pathogen-associated molecular danger signals. Using synthetic pathogen-like particles (PLPs that mimic physical properties of bacteria or large viruses, we have discovered that the quality and quantity of Toll-like receptor 9 (TLR9 signaling by CpG in mouse dendritic cells (mDCs are uniquely dependent on biophysical attributes; specifically, the surface density of CpG and size of the presenting PLP. These physical patterns control DC programming by regulating the kinetics and magnitude of MyD88-IRAK4 signaling, NF-κB-driven responses, and STAT3 phosphorylation, which, in turn, controls differential T cell responses and in vivo immune polarization, especially T helper 1 (Th1 versus T helper 2 (Th2 antibody responses. Our findings suggest that innate immune cells can sense and respond not only to molecular but also pathogen-associated physical patterns (PAPPs, broadening the tools for modulating immunity and helping to better understand innate response mechanisms to pathogens and develop improved vaccines.

  3. Cell Survival Signaling in Neuroblastoma

    Science.gov (United States)

    Megison, Michael L.; Gillory, Lauren A.; Beierle, Elizabeth A.

    2013-01-01

    Neuroblastoma is the most common extracranial solid tumor of childhood and is responsible for over 15% of pediatric cancer deaths. Neuroblastoma tumorigenesis and malignant transformation is driven by overexpression and dominance of cell survival pathways and a lack of normal cellular senescence or apoptosis. Therefore, manipulation of cell survival pathways may decrease the malignant potential of these tumors and provide avenues for the development of novel therapeutics. This review focuses on several facets of cell survival pathways including protein kinases (PI3K, AKT, ALK, and FAK), transcription factors (NF-κB, MYCN and p53), and growth factors (IGF, EGF, PDGF, and VEGF). Modulation of each of these factors decreases the growth or otherwise hinders the malignant potential of neuroblastoma, and many therapeutics targeting these pathways are already in the clinical trial phase of development. Continued research and discovery of effective modulators of these pathways will revolutionize the treatment of neuroblastoma. PMID:22934706

  4. Reconfigurable Analog Signal Processing by Living Cells.

    Science.gov (United States)

    Lewis, Daniel D; Chavez, Michael; Chiu, Kwan Lun; Tan, Cheemeng

    2018-01-19

    Living cells are known for their capacity for versatile signal processing, particularly the ability to respond differently to the same stimuli using biochemical networks that integrate environmental signals and reconfigure their dynamic responses. However, the complexity of natural biological networks confounds the discovery of fundamental mechanisms behind versatile signaling. Here, we study one specific aspect of reconfigurable signal processing in which a minimal biological network integrates two signals, using one to reconfigure the network's transfer function with respect to the other, producing an emergent switch between induction and repression. In contrast to known mechanisms, the new mechanism reconfigures transfer functions through genetic networks without extensive protein-protein interactions. These results provide a novel explanation for the versatility of genetic programs, and suggest a new mechanism of signal integration that may govern flexibility and plasticity of gene expression.

  5. Prion infection of epithelial Rov cells is a polarized event.

    Science.gov (United States)

    Paquet, Sophie; Sabuncu, Elifsu; Delaunay, Jean-Louis; Laude, Hubert; Vilette, Didier

    2004-07-01

    During prion infections, the cellular glycosylphosphatidylinositol-anchored glycoprotein PrP is converted into a conformational isoform. This abnormal conformer is thought to recruit and convert the normal cellular PrP into a likeness of itself and is proposed to be the infectious agent. We investigated the distribution of the PrP protein on the surface of Rov cells, an epithelial cell line highly permissive to prion multiplication, and we found that PrP is primarily expressed on the apical side. We further show that prion transmission to Rov cells is much more efficient if infectivity contacts the apical side, indicating that the apical and basolateral sides of Rov cells are not equally competent for prion infection and adding prions to the list of the conventional infectious agents (viruses and bacteria) that infect epithelial cells in a polarized manner. These data raise the possibility that apically expressed PrP may be involved in this polarized process of infection. This would add further support for a crucial role of PrP at the cell surface in prion infection of target cells.

  6. Heme and non-heme iron transporters in non-polarized and polarized cells

    Directory of Open Access Journals (Sweden)

    Yasui Yumiko

    2010-06-01

    Full Text Available Abstract Background Heme and non-heme iron from diet, and recycled iron from hemoglobin are important products of the synthesis of iron-containing molecules. In excess, iron is potentially toxic because it can produce reactive oxygen species through the Fenton reaction. Humans can absorb, transport, store, and recycle iron without an excretory system to remove excess iron. Two candidate heme transporters and two iron transporters have been reported thus far. Heme incorporated into cells is degraded by heme oxygenases (HOs, and the iron product is reutilized by the body. To specify the processes of heme uptake and degradation, and the reutilization of iron, we determined the subcellular localizations of these transporters and HOs. Results In this study, we analyzed the subcellular localizations of 2 isoenzymes of HOs, 4 isoforms of divalent metal transporter 1 (DMT1, and 2 candidate heme transporters--heme carrier protein 1 (HCP1 and heme responsive gene-1 (HRG-1--in non-polarized and polarized cells. In non-polarized cells, HCP1, HRG-1, and DMT1A-I are located in the plasma membrane. In polarized cells, they show distinct localizations: HCP1 and DMT1A-I are located in the apical membrane, whereas HRG-1 is located in the basolateral membrane and lysosome. 16Leu at DMT1A-I N-terminal cytosolic domain was found to be crucial for plasma membrane localization. HOs are located in smooth endoplasmic reticulum and colocalize with NADPH-cytochrome P450 reductase. Conclusions HCP1 and DMT1A-I are localized to the apical membrane, and HRG-1 to the basolateral membrane and lysosome. These findings suggest that HCP1 and DMT1A-I have functions in the uptake of dietary heme and non-heme iron. HRG-1 can transport endocytosed heme from the lysosome into the cytosol. These localization studies support a model in which cytosolic heme can be degraded by HOs, and the resulting iron is exported into tissue fluids via the iron transporter ferroportin 1, which is

  7. Sonic hedgehog signaling in basal cell carcinomas.

    Science.gov (United States)

    Daya-Grosjean, Leela; Couvé-Privat, Sophie

    2005-07-28

    The development of basal cell carcinoma, the commonest human cancer in fair skinned populations, is clearly associated with constitutive activation of sonic hedgehog signaling. Insight into the genesis of BCC came from the identification of germline mutations of the tumor suppressor gene, PATCHED, a key regulatory component of hedgehog signaling in the nevoid basal cell carcinoma syndrome. Analysis of sporadic basal cell carcinomas and those from repair deficient xeroderma pigmentosum patients has revealed mutational inactivation of PATCHED and gain of function mutations of the proto-oncogenes, SMOOTHENED and SONIC HEDGEHOG associated with solar UV exposure. The molecular mechanisms involved in alterations of the hedgehog signaling pathway that lead to the formation of basal cell carcinomas are being unraveled and has already allowed the investigation of future therapeutic strategies for treating these skin cancers.

  8. NKp46 clusters at the immune synapse and regulates NK cell polarization

    Directory of Open Access Journals (Sweden)

    Uzi eHadad

    2015-09-01

    Full Text Available Natural killer cells play an important role in first-line defense against tumor and virus-infected cells. The activity of NK cells is tightly regulated by a repertoire of cell-surface expressed inhibitory and activating receptors. NKp46 is a major NK cell activating receptor that is involved in the elimination of target cells. NK cells form different types of synapses that result in distinct functional outcomes: cytotoxic, inhibitory, and regulatory. Recent studies revealed that complex integration of NK receptor signaling controls cytoskeletal rearrangement and other immune synapse-related events. However the distinct nature by which NKp46 participates in NK immunological synapse formation and function remains unknown. In this study we determined that NKp46 forms microclusters structures at the immune synapse between NK cells and target cells. Over-expression of human NKp46 is correlated with increased accumulation of F-actin mesh at the immune synapse. Concordantly, knock-down of NKp46 in primary human NK cells decreased recruitment of F-actin to the synapse. Live cell imaging experiments showed a linear correlation between NKp46 expression and lytic granules polarization to the immune synapse. Taken together, our data suggest that NKp46 signaling directly regulates the NK lytic immune synapse from early formation to late function.

  9. Polarization-resolved angular patterns of nematic liquid crystal cells: Topological events driven by incident light polarization

    Science.gov (United States)

    Kiselev, Alexei D.; Vovk, Roman G.; Egorov, Roman I.; Chigrinov, Vladimir G.

    2008-09-01

    We study the angular structure of polarization of light transmitted through a nematic liquid crystal (NLC) cell by analyzing the polarization state as a function of the incidence angles and the polarization of the incident wave. The polarization-resolved angular (conoscopic) patterns emerging after the NLC cell illuminated by the convergent light beam are described in terms of the polarization singularities such as C points (points of circular polarization) and L lines (lines of linear polarization). For the homeotropically aligned cell, the Stokes polarimetry technique is used to measure the polarization resolved conoscopic patterns at different values of the ellipticity of the incident light, γell(inc) , impinging onto the cell. Using the exact analytical expressions for the transfer matrix we show that variations of the ellipticity, γell(inc) , induce transformations of the angular pattern exhibiting the effect of avoided L -line crossings and characterized by topological events such as creation and annihilation of the C points. The predictions of the theory are found to be in good agreement with the experimental results.

  10. Endoplasmic reticulum calcium signaling in nerve cells

    Directory of Open Access Journals (Sweden)

    ALEXEI VERKHRATSKY

    2004-01-01

    Full Text Available The endoplasmic reticulum (ER is an important organelle involved in various types of signaling in nerve cells. The ER serves as a dynamic Ca2+ pool being thus involved in rapid signaling events associated with cell stimulation by either electrical (action potential or chemical (neurotransmitters signals. This function is supported by Ca2+ release channels (InsP3 and ryanodine receptors and SERCA Ca2+ pumps residing in the endomembrane. In addition the ER provides a specific environment for the posttranslational protein processing and transport of various molecules towards their final destination. In parallel, the ER acts as a "calcium tunnel," which facilitates Ca2+ movements within the cell by avoiding cytoplasmic routes. Finally the ER appears as a source of numerous signals aimed at the nucleus and involved in long-lasting adaptive cellular responses. All these important functions are controlled by intra-ER free Ca2+ which integrates various signaling events and establishes a link between fast signaling, associated with ER Ca2+ release/uptake, and long-lasting adaptive responses relying primarily on the regulation of protein synthesis. Disruption of ER Ca2+ homeostasis triggers several forms of cellular stress response and is intimately involved in neurodegeneration and neuronal cell death

  11. Cell signalling and phospholipid metabolism. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Boss, W.F.

    1990-12-31

    These studies explored whether phosphoinositide (PI) has a role in plants analogous to its role in animal cells. Although no parallel activity of PI in signal transduction was found in plant cells, activity of inositol phospholipid kinase was found to be modulated by light and by cell wall degrading enzymes. These studies indicate a major role for inositol phospholipids in plant growth and development as membrane effectors but not as a source of second messengers.

  12. Appearance of differentiated cells derived from polar body nuclei in the silkworm, Bombyx mori

    Directory of Open Access Journals (Sweden)

    Hiroki eSakai

    2013-09-01

    Full Text Available AbstractIn Bombyx mori, polar body nuclei are observed until 9h after egg lying, however, the fate of polar body nuclei remains unclear. To examine the fate of polar body nuclei, we employed a mutation of serosal cell pigmentation, pink-eyed white egg (pe. The heterozygous pe/+pe females produced black serosal cells in white eggs, while pe/pe females did not produce black serosal cells in white eggs. These results suggest that the appearance of black serosal cells in white eggs depends on the genotype (pe/ +pe of the mother. Because the polar body nuclei had +pe genes in the white eggs laid by a pe/ +pe female, polar body nuclei participate in development and differentiate into functional cell (serosal cells. Analyses of serosal cells pigmentation indicated that approximately 30% of the eggs contained polar-body-nucleus-derived cells. These results demonstrate that polar-body-nucleus-derived cells appeared at a high frequency under natural conditions. Approximately 80% of polar-body-nucleus-derived cells appeared near the anterior pole and the dorsal side, which is opposite to where embryogenesis occurs. The number of cells derived from the polar body nuclei was very low. Approximately 26 % of these eggs contained only one black serosal cell. PCR-based analysis revealed that the polar-body-nucleus-derived cells disappeared in late embryonic stages (stage 25. Overall, polar-body-nuclei-derived cells were unlikely to contribute to embryos.

  13. All-optical clocked flip-flops and random access memory cells using the nonlinear polarization rotation effect of low-polarization-dependent semiconductor optical amplifiers

    Science.gov (United States)

    Wang, Yongjun; Liu, Xinyu; Tian, Qinghua; Wang, Lina; Xin, Xiangjun

    2018-03-01

    Basic configurations of various all-optical clocked flip-flops (FFs) and optical random access memory (RAM) based on the nonlinear polarization rotation (NPR) effect of low-polarization-dependent semiconductor optical amplifiers (SOA) are proposed. As the constituent elements, all-optical logic gates and all-optical SR latches are constructed by taking advantage of the SOA's NPR switch. Different all-optical FFs (AOFFs), including SR-, D-, T-, and JK-types as well as an optical RAM cell were obtained by the combination of the proposed all-optical SR latches and logic gates. The effectiveness of the proposed schemes were verified by simulation results and demonstrated by a D-FF and 1-bit RAM cell experimental system. The proposed all-optical clocked FFs and RAM cell are significant to all-optical signal processing.

  14. Wavelength conversion of a 128 Gbit/s DP-QPSK signal in a silicon polarization diversity circuit

    DEFF Research Database (Denmark)

    Vukovic, Dragana; Schroeder, Jochen; Ding, Yunhong

    2014-01-01

    Wavelength conversion of a 128 Gbit/s DP-QPSK signal is demonstrated using FWM in a polarization diversity circuit with silicon nanowires as nonlinear elements. Error-free performances are achieved with a negligible power penalty.......Wavelength conversion of a 128 Gbit/s DP-QPSK signal is demonstrated using FWM in a polarization diversity circuit with silicon nanowires as nonlinear elements. Error-free performances are achieved with a negligible power penalty....

  15. Protocadherin FAT1 binds Ena/VASP proteins and is necessary for actin dynamics and cell polarization.

    Science.gov (United States)

    Moeller, Marcus J; Soofi, Abdulsalam; Braun, Gerald S; Li, Xiaodong; Watzl, Carsten; Kriz, Wilhelm; Holzman, Lawrence B

    2004-10-01

    Cell migration requires integration of cellular processes resulting in cell polarization and actin dynamics. Previous work using tools of Drosophila genetics suggested that protocadherin fat serves in a pathway necessary for determining cell polarity in the plane of a tissue. Here we identify mammalian FAT1 as a proximal element of a signaling pathway that determines both cellular polarity in the plane of the monolayer and directed actin-dependent cell motility. FAT1 is localized to the leading edge of lamellipodia, filopodia, and microspike tips where FAT1 directly interacts with Ena/VASP proteins that regulate the actin polymerization complex. When targeted to mitochondrial outer leaflets, FAT1 cytoplasmic domain recruits components of the actin polymerization machinery sufficient to induce ectopic actin polymerization. In an epithelial cell wound model, FAT1 knockdown decreased recruitment of endogenous VASP to the leading edge and resulted in impairment of lamellipodial dynamics, failure of polarization, and an attenuation of cell migration. FAT1 may play an integrative role regulating cell migration by participating in Ena/VASP-dependent regulation of cytoskeletal dynamics at the leading edge and by transducing an Ena/VASP-independent polarity cue.

  16. ImaEdge - a platform for quantitative analysis of the spatiotemporal dynamics of cortical proteins during cell polarization.

    Science.gov (United States)

    Zhang, Zhen; Lim, Yen Wei; Zhao, Peng; Kanchanawong, Pakorn; Motegi, Fumio

    2017-12-15

    Cell polarity involves the compartmentalization of the cell cortex. The establishment of cortical compartments arises from the spatial bias in the activity and concentration of cortical proteins. The mechanistic dissection of cell polarity requires the accurate detection of dynamic changes in cortical proteins, but the fluctuations of cell shape and the inhomogeneous distributions of cortical proteins greatly complicate the quantitative extraction of their global and local changes during cell polarization. To address these problems, we introduce an open-source software package, ImaEdge, which automates the segmentation of the cortex from time-lapse movies, and enables quantitative extraction of cortical protein intensities. We demonstrate that ImaEdge enables efficient and rigorous analysis of the dynamic evolution of cortical PAR proteins during Caenorhabditis elegans embryogenesis. It is also capable of accurate tracking of varying levels of transgene expression and discontinuous signals of the actomyosin cytoskeleton during multiple rounds of cell division. ImaEdge provides a unique resource for quantitative studies of cortical polarization, with the potential for application to many types of polarized cells.This article has an associated First Person interview with the first authors of the paper. © 2017. Published by The Company of Biologists Ltd.

  17. An Instructive Role for C. elegans HMR-1/E-cadherin in Translating Cell Contact Cues into Cortical Polarity

    Science.gov (United States)

    Klompstra, Diana; Anderson, Dorian C.; Yeh, Justin Y.; Zilberman, Yuliya; Nance, Jeremy

    2015-01-01

    Cell contacts provide spatial cues that polarize early embryos and epithelial cells. The homophilic adhesion protein E-cadherin is required for contact-induced polarity in many cells. However, it is debated whether E-cadherin functions instructively as a spatial cue, or permissively by ensuring adequate adhesion so that cells can sense other contact signals. In C. elegans, contacts polarize early embryonic cells by recruiting the RhoGAP PAC-1 to the adjacent cortex, inducing PAR protein asymmetry. Here we show that HMR-1/E-cadherin, which is dispensable for adhesion, functions together with HMP-1/α-catenin, JAC-1/p120 catenin, and the previously uncharacterized linker PICC-1/CCDC85/DIPA to bind PAC-1 and recruit it to contacts. Mislocalizing the HMR-1 intracellular domain to contact-free surfaces draws PAC-1 to these sites and depolarizes cells, demonstrating an instructive role for HMR-1 in polarization. Our findings identify an E-cadherin-mediated pathway that translates cell contacts into cortical polarity by directly recruiting a symmetry-breaking factor to the adjacent cortex. PMID:25938815

  18. NO signaling in retinal bipolar cells.

    Science.gov (United States)

    Agurto, A; Vielma, A H; Cadiz, B; Couve, E; Schmachtenberg, O

    2017-08-01

    Nitric oxide (NO) is a neuromodulator involved in physiological and pathological processes in the retina. In the inner retina, a subgroup of amacrine cells have been shown to synthesize NO, but bipolar cells remain controversial as NO sources. This study correlates NO synthesis in dark-adapted retinas, through labeling with the NO marker DAF-FM, with neuronal nitric oxide synthase (nNOS) and inducible NOS expression, and presence of the NO receptor soluble guanylate cyclase in bipolar cells. NO containing bipolar cells were morphologically identified by dialysis of DAF fluorescent cells with intracellular dyes, or by DAF labeling followed by immunohistochemistry for nNOS and other cellular markers. DAF fluorescence was observed in all types of bipolar cells that could be identified, but the most intense DAF fluorescence was observed in bipolar cells with severed processes, supporting pathological NO signaling. Among nNOS expressing bipolar cells, type 9 was confirmed unequivocally, while types 2, 3a, 3b, 4, 5, 7, 8 and the rod bipolar cell were devoid of this enzyme. These results establish specific bipolar cell types as NO sources in the inner retina, and support the involvement of NO signaling in physiological and pathological processes in the inner retina. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Cytokine signalling in embryonic stem cells

    DEFF Research Database (Denmark)

    Kristensen, David Møbjerg; Kalisz, Mark; Nielsen, Jens Høiriis

    2006-01-01

    signalling pathways have been documented. In addition, gp130 activation leads to both PI3K and Src activation. The canonical Wnt pathway is sufficient to maintain self-renewal of both human ES cells and mouse ES cells. It seems quite possible that the main pathway maintaining self-renewal in ES cells...... is the Wnt pathway, while the LIF-JAK-STAT3 pathway is present in mouse cells as an adaptation for sustaining self-renewal during embryonic diapause, a condition of delayed implantation in mammals. In keeping with this scenario, the Wnt pathway has been shown to elevate the level of c-myc. Thus, the two...

  20. Activation of natural killer T cells promotes M2 macrophage polarization in adipose tissue and improves systemic glucose tolerance via the IL-4/STAT6 signaling axis in obesity

    NARCIS (Netherlands)

    Ji, Yewei; Sun, Shengyi; Xu, Aimin; Yang, Liu; Bhargava, Prerna; Lam, Karen S.; Gao, Bin; Lee, Chih-Hao; Kersten, Sander; Qi, Ling

    2012-01-01

    Natural killer T (NKT) cells are important therapeutic targets in various disease models and under clinical trials for cancer patients. However, their function in obesity and type 2 diabetes remains unclear. Our data show that adipose tissues of both mice and humans contain a population of type-1

  1. Activation of natural killer T Cells promotes M2 macrophage polarization in adipose tissue and improves systemic glucose tolerance via interleukin-4 (IL-4)/STAT6 protein signalling axis in obesity

    NARCIS (Netherlands)

    Ji, Y.; Sun, S.; Xu, Aimin; Bhargava, P.; Yang, Liu; Lam, K.S.L.; Gao, Bin; Lee, Chih-Hao; Kersten, A.H.; Qi, L.

    2012-01-01

    Natural killer T (NKT) cells are important therapeutic targets in various disease models and are under clinical trials for cancer patients. However, their function in obesity and type 2 diabetes remains unclear. Our data show that adipose tissues of both mice and humans contain a population of type

  2. Neuropeptide Y induces potent migration of human immature dendritic cells and promotes a Th2 polarization.

    Science.gov (United States)

    Buttari, Brigitta; Profumo, Elisabetta; Domenici, Giacomo; Tagliani, Angela; Ippoliti, Flora; Bonini, Sergio; Businaro, Rita; Elenkov, Ilia; Riganò, Rachele

    2014-07-01

    Neuropeptide Y (NPY), a major autonomic nervous system and stress mediator, is emerging as an important regulator of inflammation, implicated in autoimmunity, asthma, atherosclerosis, and cancer. Yet the role of NPY in regulating phenotype and functions of dendritic cells (DCs), the professional antigen-presenting cells, remains undefined. Here we investigated whether NPY could induce DCs to migrate, mature, and polarize naive T lymphocytes. We found that NPY induced a dose-dependent migration of human monocyte-derived immature DCs through the engagement of NPY Y1 receptor and the activation of ERK and p38 mitogen-activated protein kinases. NPY promoted DC adhesion to endothelial cells and transendothelial migration. It failed to induce phenotypic DC maturation, whereas it conferred a T helper 2 (Th2) polarizing profile to DCs through the up-regulation of interleukin (IL)-6 and IL-10 production. Thus, during an immune/inflammatory response NPY may exert proinflammatory effects through the recruitment of immature DCs, but it may exert antiinflammatory effects by promoting a Th2 polarization. Locally, at inflammatory sites, cell recruitment could be amplified in conditions of intense acute, chronic, or cold stress. Thus, altered or amplified signaling through the NPY-NPY-Y1 receptor-DC axis may have implications for the development of inflammatory conditions.-Buttari, B., Profumo, E., Domenici, G., Tagliani, A., Ippoliti, F., Bonini, S., Businaro, R., Elenkov, I., Riganò, R. Neuropeptide Y induces potent migration of human immature dendritic cells and promotes a Th2 polarization. © FASEB.

  3. Differences between signal currents for both polarities of applied voltages on cavity ionization chambers

    International Nuclear Information System (INIS)

    Takata, N.

    2000-01-01

    It is necessary to obtain precise values of signal currents for the measurement of exposure rates for gamma rays with cavity ionization chambers. Signal currents are usually expected to have the same absolute values for both polarities of applied voltages. In the case of cylindrical cavity ionization chambers, volume recombination loss of ion pairs depends on the polarity of the applied voltage. This is because the values of mobility are different for positive and negative ions. It was found, however, that values of signal currents from a cylindrical ionization chamber change slightly more with a negative than with a positive applied voltage, even after being corrected for volume recombination loss. Moreover, absolute values of saturation currents, which are obtained by extrapolation of correction of initial recombination and diffusion loss, were larger for the negative than for the positive applied voltage. It is known from an experiment with parallel plate ionization chambers that when negative voltage is applied to the repeller electrode, the saturated signal current decreases with an increase in the applied voltage. This is because secondary electrons are accelerated and the stopping power of air for these electrons decreases. When positive voltage is applied, the reverse is true. The effects of acceleration and deceleration of secondary electrons by the electric field thus seem to cause a tendency opposite to the experimental results on the signal currents from cylindrical ionization chambers. The experimental results for the cylindrical ionization chamber can be explained as follows. When negative voltage is applied, secondary electrons are attracted to the central (collecting) electrode. Consequently, the path length of the trajectories of these secondary electrons in the ionization volume increases and signal current increases. The energy gain from the electric field by secondary electrons which stop in the ionization chamber also contributes to the

  4. Bipolar Plasma Membrane Distribution of Phosphoinositides and Their Requirement for Auxin-Mediated Cell Polarity and Patterning in Arabidopsis.

    Science.gov (United States)

    Tejos, Ricardo; Sauer, Michael; Vanneste, Steffen; Palacios-Gomez, Miriam; Li, Hongjiang; Heilmann, Mareike; van Wijk, Ringo; Vermeer, Joop E M; Heilmann, Ingo; Munnik, Teun; Friml, Jiří

    2014-05-01

    Cell polarity manifested by asymmetric distribution of cargoes, such as receptors and transporters, within the plasma membrane (PM) is crucial for essential functions in multicellular organisms. In plants, cell polarity (re)establishment is intimately linked to patterning processes. Despite the importance of cell polarity, its underlying mechanisms are still largely unknown, including the definition and distinctiveness of the polar domains within the PM. Here, we show in Arabidopsis thaliana that the signaling membrane components, the phosphoinositides phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P 2 ] as well as PtdIns4P 5-kinases mediating their interconversion, are specifically enriched at apical and basal polar plasma membrane domains. The PtdIns4P 5-kinases PIP5K1 and PIP5K2 are redundantly required for polar localization of specifically apical and basal cargoes, such as PIN-FORMED transporters for the plant hormone auxin. As a consequence of the polarity defects, instructive auxin gradients as well as embryonic and postembryonic patterning are severely compromised. Furthermore, auxin itself regulates PIP5K transcription and PtdIns4P and PtdIns(4,5)P 2 levels, in particular their association with polar PM domains. Our results provide insight into the polar domain-delineating mechanisms in plant cells that depend on apical and basal distribution of membrane lipids and are essential for embryonic and postembryonic patterning. © 2014 American Society of Plant Biologists. All rights reserved.

  5. YAP and TAZ in epithelial stem cells: A sensor for cell polarity, mechanical forces and tissue damage.

    Science.gov (United States)

    Elbediwy, Ahmed; Vincent-Mistiaen, Zoé I; Thompson, Barry J

    2016-07-01

    The YAP/TAZ family of transcriptional co-activators drives cell proliferation in epithelial tissues and cancers. Yet, how YAP and TAZ are physiologically regulated remains unclear. Here we review recent reports that YAP and TAZ act primarily as sensors of epithelial cell polarity, being inhibited when cells differentiate an apical membrane domain, and being activated when cells contact the extracellular matrix via their basal membrane domain. Apical signalling occurs via the canonical Crumbs/CRB-Hippo/MST-Warts/LATS kinase cascade to phosphorylate and inhibit YAP/TAZ. Basal signalling occurs via Integrins and Src family kinases to phosphorylate and activate YAP/TAZ. Thus, YAP/TAZ is localised to the nucleus in basal stem/progenitor cells and cytoplasm in differentiated squamous cells or columnar cells. In addition, other signals such as mechanical forces, tissue damage and possibly receptor tyrosine kinases (RTKs) can influence MST-LATS or Src family kinase activity to modulate YAP/TAZ activity. © 2016 The Authors BioEssays Published by WILEY Periodicals, Inc.

  6. Designer cell signal processing circuits for biotechnology.

    Science.gov (United States)

    Bradley, Robert W; Wang, Baojun

    2015-12-25

    Microorganisms are able to respond effectively to diverse signals from their environment and internal metabolism owing to their inherent sophisticated information processing capacity. A central aim of synthetic biology is to control and reprogramme the signal processing pathways within living cells so as to realise repurposed, beneficial applications ranging from disease diagnosis and environmental sensing to chemical bioproduction. To date most examples of synthetic biological signal processing have been built based on digital information flow, though analogue computing is being developed to cope with more complex operations and larger sets of variables. Great progress has been made in expanding the categories of characterised biological components that can be used for cellular signal manipulation, thereby allowing synthetic biologists to more rationally programme increasingly complex behaviours into living cells. Here we present a current overview of the components and strategies that exist for designer cell signal processing and decision making, discuss how these have been implemented in prototype systems for therapeutic, environmental, and industrial biotechnological applications, and examine emerging challenges in this promising field. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Self-organized spatiotemporal patterns of PIP3 and PTEN during spontaneous cell polarization

    Science.gov (United States)

    Knoch, Fabian; Tarantola, Marco; Rappel, Wouter-Jan; Bodenschatz, Eberhard

    2014-03-01

    During spontaneous cell polarization of Dictyostelium discoideum cells, PIP3 (phosphatidylinositol (3,4,5)-triphoshpate) and PTEN (phosphatase tensin homolog) have been identified as key signaling molecules, which govern the process of polarization in a self-organized manner. Gerisch et al. have shown that randomly triggered excitable PIP3 waves regulate the anti-correlated PTEN concentration. Here we show that this requires a switch-like dynamics of the overall membrane bound PTEN concentration in combination with two species of PTEN differing in their dephosphorylation rates. A quantitative modeling with a coupled reaction-diffusion system shows excellent agreement with experimental results and predicts a ratio σ of dephosphorylation rates acting on PIP3 of σ ~ 80 - 100. Our quantitative analysis suggests that surface-attached cell membrane spanning PIP3 waves are necessary for resetting the global actin network. This is evidenced by the experimentally observed delay between polarization-cycles also quantitatively captured by our analysis. Max Planck Society and Center for Theoretical Biological Physics.

  8. T-helper 17 cell polarization in pulmonary arterial hypertension.

    Science.gov (United States)

    Hautefort, Aurélie; Girerd, Barbara; Montani, David; Cohen-Kaminsky, Sylvia; Price, Laura; Lambrecht, Bart N; Humbert, Marc; Perros, Frédéric

    2015-06-01

    Inflammation may contribute to the pathobiology of pulmonary arterial hypertension (PAH). Deciphering the PAH fingerprint on the inflammation orchestrated by dendritic cells (DCs) and T cells, key driver and effector cells, respectively, of the immune system, may allow the identification of immunopathologic approaches to PAH management. Using flow cytometry, we performed immunophenotyping of monocyte-derived DCs (MoDCs) and circulating lymphocytes from patients with idiopathic PAH and control subjects. With the same technique, we performed cytokine profiling of both populations following stimulation, coculture, or both. We tested the immunomodulatory effects of a glucocorticoid (dexamethasone [Dex]) on this immunophenotype and cytokine profile. Using an epigenetic approach, we confirmed the immune polarization in blood DNA of patients with PAH. The profile of membrane costimulatory molecules of PAH MoDCs was similar to that of control subjects. However, PAH MoDCs retained higher levels of the T-cell activating molecules CD86 and CD40 after Dex pretreatment than did control MoDCs. This was associated with an increased expression of IL-12p40 and a reduced migration toward chemokine (C-C motif) ligand 21. Moreover, both with and without Dex, PAH MoDCs induced a higher activation and proliferation of CD4+ T cells, associated with a reduced expression of IL-4 (T helper 2 response) and a higher expression of IL-17 (T helper 17 response). Purified PAH CD4+ T cells expressed a higher level of IL-17 after activation than did those of control subjects. Lastly, there was significant hypomethylation of the IL-17 promoter in the PAH blood DNA as compared with the control blood. We have highlighted T helper 17 cell immune polarization in patients with PAH, as has been previously demonstrated in other chronic inflammatory and autoimmune conditions.

  9. The first cell-fate decision of mouse preimplantation embryo development: integrating cell position and polarity.

    Science.gov (United States)

    Mihajlović, Aleksandar I; Bruce, Alexander W

    2017-11-01

    During the first cell-fate decision of mouse preimplantation embryo development, a population of outer-residing polar cells is segregated from a second population of inner apolar cells to form two distinct cell lineages: the trophectoderm and the inner cell mass (ICM), respectively. Historically, two models have been proposed to explain how the initial differences between these two cell populations originate and ultimately define them as the two stated early blastocyst stage cell lineages. The 'positional' model proposes that cells acquire distinct fates based on differences in their relative position within the developing embryo, while the 'polarity' model proposes that the differences driving the lineage segregation arise as a consequence of the differential inheritance of factors, which exhibit polarized subcellular localizations, upon asymmetric cell divisions. Although these two models have traditionally been considered separately, a growing body of evidence, collected over recent years, suggests the existence of a large degree of compatibility. Accordingly, the main aim of this review is to summarize the major historical and more contemporarily identified events that define the first cell-fate decision and to place them in the context of both the originally proposed positional and polarity models, thus highlighting their functional complementarity in describing distinct aspects of the developmental programme underpinning the first cell-fate decision in mouse embryogenesis. © 2017 The Authors.

  10. Regulation of Microglia and Macrophage Polarization via Apoptosis Signal-Regulating Kinase 1 Silencing after Ischemic/Hypoxic Injury

    Directory of Open Access Journals (Sweden)

    So Yeong Cheon

    2017-08-01

    Full Text Available Inflammation is implicated in ischemic stroke and is involved in abnormal homeostasis. Activation of the immune system leads to breakdown of the blood–brain barrier and, thereby, infiltration of immune cells into the brain. Upon cerebral ischemia, infiltrated macrophages and microglia (resident CNS immune cell are activated, change their phenotype to M1 or M2 based on the microenvironment, migrate toward damaged tissue, and are involved in repair or damage. Those of M1 phenotype release pro-inflammatory mediators, which are associated with tissue damage, while those of M2 phenotype release anti-inflammatory mediators, which are related to tissue recovery. Moreover, late inflammation continually stimulates immune cell infiltration and leads to brain infarction. Therefore, regulation of M1/M2 phenotypes under persistent inflammatory conditions after cerebral ischemia is important for brain repair. Herein, we focus on apoptosis signal-regulating kinase 1 (ASK1, which is involved in apoptotic cell death, brain infarction, and production of inflammatory mediators after cerebral ischemia. We hypothesized that ASK1 is involved in the polarization of M1/M2 phenotype and the function of microglia and macrophage during the late stage of ischemia/hypoxia. We investigated the effects of ASK1 in mice subjected to middle cerebral artery occlusion and on BV2 microglia and RAW264.7 macrophage cell lines subjected to oxygen-glucose deprivation. Our results showed that ASK1 silencing effectively reduced Iba-1 or CD11b-positive cells in ischemic areas, suppressed pro-inflammatory cytokines, and increased anti-inflammatory mediator levels at 7 days after cerebral ischemia. In cultured microglia and macrophages, ASK1 inhibition, induced by NQDI-1 drug, decreased the expression and release of M1-associated factors and increased those of M2-associated factors after hypoxia/reperfusion (H/R. At the gene level, ASK1 inhibition suppressed M1-associated genes and

  11. Cell polarity, cell adhesion, and spermatogenesis: role of cytoskeletons [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Linxi Li

    2017-08-01

    Full Text Available In the rat testis, studies have shown that cell polarity, in particular spermatid polarity, to support spermatogenesis is conferred by the coordinated efforts of the Par-, Crumbs-, and Scribble-based polarity complexes in the seminiferous epithelium. Furthermore, planar cell polarity (PCP is conferred by PCP proteins such as Van Gogh-like 2 (Vangl2 in the testis. On the other hand, cell junctions at the Sertoli cell–spermatid (steps 8–19 interface are exclusively supported by adhesion protein complexes (for example, α6β1-integrin-laminin-α3,β3,γ3 and nectin-3-afadin at the actin-rich apical ectoplasmic specialization (ES since the apical ES is the only anchoring device in step 8–19 spermatids. For cell junctions at the Sertoli cell–cell interface, they are supported by adhesion complexes at the actin-based basal ES (for example, N-cadherin-β-catenin and nectin-2-afadin, tight junction (occludin-ZO-1 and claudin 11-ZO-1, and gap junction (connexin 43-plakophilin-2 and also intermediate filament-based desmosome (for example, desmoglein-2-desmocollin-2. In short, the testis-specific actin-rich anchoring device known as ES is crucial to support spermatid and Sertoli cell adhesion. Accumulating evidence has shown that the Par-, Crumbs-, and Scribble-based polarity complexes and the PCP Vangl2 are working in concert with actin- or microtubule-based cytoskeletons (or both and these polarity (or PCP protein complexes exert their effects through changes in the organization of the cytoskeletal elements across the seminiferous epithelium of adult rat testes. As such, there is an intimate relationship between cell polarity, cell adhesion, and cytoskeletal function in the testis. Herein, we critically evaluate these recent findings based on studies on different animal models. We also suggest some crucial future studies to be performed.

  12. Role of the epithelial cell-specific clathrin adaptor complex AP-1B in cell polarity

    Science.gov (United States)

    Fölsch, Heike

    2015-01-01

    Epithelial cells are important for organ development and function. To this end, they polarize their plasma membrane into biochemically and physically distinct membrane domains. The apical membrane faces the luminal site of an organ and the basolateral domain is in contact with the basement membrane and neighboring cells. To establish and maintain this polarity it is important that newly synthesized and endocytic cargos are correctly sorted according to their final destinations at either membrane. Sorting takes place at one of 2 major sorting stations in the cells, the trans-Golgi network (TGN) and recycling endosomes (REs). Polarized sorting may involve epithelial cell-specific sorting adaptors like the AP-1B clathrin adaptor complex. AP-1B facilitates basolateral sorting from REs. This review will discuss various aspects of basolateral sorting in epithelial cells with a special emphasis on AP-1B. PMID:27057418

  13. Sulforaphane attenuates EGFR signaling in NSCLC cells.

    Science.gov (United States)

    Chen, Chi-Yuan; Yu, Zhu-Yun; Chuang, Yen-Shu; Huang, Rui-Mei; Wang, Tzu-Chien V

    2015-06-03

    EGFR, a receptor tyrosine kinase (RTK), is frequently overexpressed and mutated in non-small cell lung cancer (NSCLC). Tyrosine kinase inhibitors (TKIs) have been widely used in the treatment of many cancers, including NSCLC. However, intrinsic and acquired resistance to TKI remains a common obstacle. One strategy that may help overcome EGFR-TKI resistance is to target EGFR for degradation. As EGFR is a client protein of heat-shock protein 90 (HSP90) and sulforaphane is known to functionally regulate HSP90, we hypothesized that sulforaphane could attenuate EGFR-related signaling and potentially be used to treat NSCLC. Our study revealed that sulforaphane displayed antitumor activity against NSCLC cells both in vitro and in vivo. The sensitivity of NSCLC cells to sulforaphane appeared to positively correlate with the inhibition of EGFR-related signaling, which was attributed to the increased proteasomal degradation of EGFR. Combined treatment of NSCLC cells with sulforaphane plus another HSP90 inhibitor (17-AAG) enhanced the inhibition of EGFR-related signaling both in vitro and in vivo. We have shown that sulforaphane is a novel inhibitory modulator of EGFR expression and is effective in inhibiting the tumor growth of EGFR-TKI-resistant NSCLC cells. Our findings suggest that sulforaphane should be further explored for its potential clinical applications against NSCLC.

  14. Polarization-based enhancement of ocean color signal for estimating suspended particulate matter: radiative transfer simulations and laboratory measurements.

    Science.gov (United States)

    Liu, Jia; He, Xianqiang; Liu, Jiahang; Bai, Yan; Wang, Difeng; Chen, Tieqiao; Wang, Yihao; Zhu, Feng

    2017-04-17

    Absorption and scattering by molecules, aerosols and hydrosols, and the reflection and transmission over the sea surface can modify the original polarization state of sunlight. However, water-leaving radiance polarization, containing embedded water constituent information, has largely been neglected. Here, the efficiency of the parallel polarization radiance (PPR) for enhancing ocean color signal of suspended particulate matter is examined via vector radiative transfer simulations and laboratory experiments. The simulation results demonstrate that the PPR has a slightly higher ocean color signal at the top-of-atmosphere as compared with that of the total radiance. Moreover, both the simulations and laboratory measurements reveal that, compared with total radiance, PPR can effectively enhance the normalized ocean color signal for a large range of observation geometries, wavelengths, and suspended particle concentrations. Thus, PPR has great potential for improving the ocean color signal detection from satellite.

  15. Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Villadsen, Rene; Rank, Fritz; Bissell, Mina J.; Petersen, Ole William

    2001-10-04

    The signals that determine the correct polarity of breast epithelial structures in vivo are not understood. We have shown previously that luminal epithelial cells can be polarized when cultured within a reconstituted basement membrane gel. We reasoned that such cues in vivo may be given by myoepithelial cells. Accordingly, we used an assay where luminal epithelial cells are incorrectly polarized to test this hypothesis. We show that culturing human primary luminal epithelial cells within collagen-I gels leads to formation of structures with no lumina and with reverse polarity as judged by dual stainings for sialomucin, epithelial specific antigen or occludin. No basement membrane is deposited, and {beta}4-integrin staining is negative. Addition of purified human myoepithelial cells isolated from normal glands corrects the inverse polarity, and leads to formation of double-layered acini with central lumina. Among the laminins present in the human breast basement membrane (laminin-1, -5 and -10/11), laminin-1 was unique in its ability to substitute for myoepithelial cells in polarity reversal. Myoepithelial cells were purified also from four different breast cancer sources including a biphasic cell line. Three out of four samples either totally lacked the ability to interact with luminal epithelial cells, or conveyed only correction of polarity in a fraction of acini. This behavior was directly related to the ability of the tumor myoepithelial cells to produce {alpha}-1 chain of laminin. In vivo, breast carcinomas were either negative for laminin-1 (7/12 biopsies) or showed a focal, fragmented deposition of a less intensely stained basement membrane (5/12 biopsies). Dual staining with myoepithelial markers revealed that tumorassociated myoepithelial cells were either negative or weakly positive for expression of laminin-1, establishing a strong correlation between loss of laminin-1 and breast cancer. We conclude that the double-layered breast acinus may be

  16. Mycobacterium tuberculosislpdC, Rv0462, induces dendritic cell maturation and Th1 polarization

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Deok Rim [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Shin, Sung Jae; Kim, Woo Sik [Department of Microbiology, College of Medicine, Chungnam National University, Munwha-Dong, Jung-Ku, Daejeon 301-747 (Korea, Republic of); Noh, Kyung Tae; Park, Jin Wook; Son, Kwang Hee [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Park, Won Sun [Department of Physiology, Kangwon National University, School of Medicine, Chuncheon 200-701 (Korea, Republic of); Lee, Min-Goo [Department of Physiology, Korea University, College of Medicine, Anam-dong, Sungbuk-Gu, Seoul 136-705 (Korea, Republic of); Kim, Daejin [Department of Anatomy, Chung-Ang University, College of Medicine, 221 Heuksuk-Dong, Dongjak-Ku, Seoul 156-756 (Korea, Republic of); Shin, Yong Kyoo [Department of Pharmacology, Chung-Ang University, College of Medicine, 221 Heuksuk-Dong, Dongjak-Ku, Seoul 156-756 (Korea, Republic of); Jung, In Duk, E-mail: jungid@pusan.ac.kr [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Park, Yeong-Min, E-mail: immunpym@pusan.ac.kr [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of)

    2011-08-05

    Highlights: {yields} Treatment with Rv0462 induces the expression of surface molecules and the production of cytokines in DCs. {yields} Rv0462 induces the activation of MAPKs. {yields} Rv0462-treated DCs enhances the proliferation of CD4{sup +} T cells. -- Abstract: Mycobacterium tuberculosis, the etiological factor of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Activation of host immune responses for containment of mycobacterial infections involves participation of innate immune cells, such as dendritic cells (DCs). In this study, we demonstrated that the gene encoding lipoamide dehydrogenase C (lpdC) from M. tuberculosis, Rv0462, induce maturation and activation of DCs involved in the MAPKs signaling pathway. Moreover, Rv0462-treated DCs activated naive T cells, polarized CD4{sup +} and CD8{sup +} T cells to secrete IFN-{gamma} in syngeneic mixed lymphocyte reactions, which would be expected to contribute to Th1 polarization of the immune response. Our results suggest that Rv0462 can contribute to the innate and adaptive immune responses during tuberculosis infection, and thus modulate the clinical course of tuberculosis.

  17. Topological events in polarization resolved angular patterns of nematic liquid crystal cells at varying ellipticity of incident wave

    OpenAIRE

    Kiselev, Alexei D.; Vovk, Roman G.

    2008-01-01

    We study the angular structure of polarization of light transmitted through a nematic liquid crystal (NLC) cell by analyzing the polarization state as a function of the incidence angles and the polarization of the incident wave. The polarization resolved angular patterns emerging after the NLC cell illuminated by the convergent light beam are described in terms of the polarization singularities such as C-points (points of circular polarization) and L-lines (lines of linear polarization). For ...

  18. The cell polarity determinant CDC42 controls division symmetry to block leukemia cell differentiation.

    Science.gov (United States)

    Mizukawa, Benjamin; O'Brien, Eric; Moreira, Daniel C; Wunderlich, Mark; Hochstetler, Cindy L; Duan, Xin; Liu, Wei; Orr, Emily; Grimes, H Leighton; Mulloy, James C; Zheng, Yi

    2017-09-14

    As a central regulator of cell polarity, the activity of CDC42 GTPase is tightly controlled in maintaining normal hematopoietic stem and progenitor cell (HSC/P) functions. We found that transformation of HSC/P to acute myeloid leukemia (AML) is associated with increased CDC42 expression and activity in leukemia cells. In a mouse model of AML, the loss of Cdc42 abrogates MLL-AF9 -induced AML development. Furthermore, genetic ablation of CDC42 in both murine and human MLL-AF9 (MA9) cells decreased survival and induced differentiation of the clonogenic leukemia-initiating cells. We show that MLL-AF9 leukemia cells maintain cell polarity in the context of elevated Cdc42-guanosine triphosphate activity, similar to nonmalignant, young HSC/Ps. The loss of Cdc42 resulted in a shift to depolarized AML cells that is associated with a decrease in the frequency of symmetric and asymmetric cell divisions producing daughter cells capable of self-renewal. Importantly, we demonstrate that inducible CDC42 suppression in primary human AML cells blocks leukemia progression in a xenograft model. Thus, CDC42 loss suppresses AML cell polarity and division asymmetry, and CDC42 constitutes a useful target to alter leukemia-initiating cell fate for differentiation therapy. © 2017 by The American Society of Hematology.

  19. Cell to cell signalling during vertebrate limb bud development

    NARCIS (Netherlands)

    Panman, Lia

    2004-01-01

    Communication between cells is essential during embryonic development. The vertebrate limb bud provides us a model to study signalling interactions between cells during patterning of embryonic tissues and organogenesis. In chapter 1 I give an introduction about limb bud development that is focussed

  20. Apical trafficking in epithelial cells: signals, clusters and motors.

    Science.gov (United States)

    Weisz, Ora A; Rodriguez-Boulan, Enrique

    2009-12-01

    In the early days of epithelial cell biology, researchers working with kidney and/or intestinal epithelial cell lines and with hepatocytes described the biosynthetic and recycling routes followed by apical and basolateral plasma membrane (PM) proteins. They identified the trans-Golgi network and recycling endosomes as the compartments that carried out apical-basolateral sorting. They described complex apical sorting signals that promoted association with lipid rafts, and simpler basolateral sorting signals resembling clathrin-coated-pit endocytic motifs. They also noticed that different epithelial cell types routed their apical PM proteins very differently, using either a vectorial (direct) route or a transcytotic (indirect) route. Although these original observations have generally held up, recent studies have revealed interesting complexities in the routes taken by apically destined proteins and have extended our understanding of the machinery required to sustain these elaborate sorting pathways. Here, we critically review the current status of apical trafficking mechanisms and discuss a model in which clustering is required to recruit apical trafficking machineries. Uncovering the mechanisms responsible for polarized trafficking and their epithelial-specific variations will help understand how epithelial functional diversity is generated and the pathogenesis of many human diseases.

  1. Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells

    Science.gov (United States)

    2017-10-01

    since, in the absence of such knowledge, the development of effective therapeutic interventions to target CSCs and prevent cancer progression and...yes) (2) Presentations: a. 2016 Keystone Symposia- Stem Cells & Cancer, Breckenridge, “Epigenetic regulation promotes obesity related breast

  2. Modeling self-organized spatio-temporal patterns of PIP₃ and PTEN during spontaneous cell polarization.

    Science.gov (United States)

    Knoch, Fabian; Tarantola, Marco; Bodenschatz, Eberhard; Rappel, Wouter-Jan

    2014-08-01

    During spontaneous cell polarization of Dictyostelium discoideum cells, phosphatidylinositol (3,4,5)-triphoshpate (PIP3) and PTEN (phosphatase tensin homolog) have been identified as key signaling molecules which govern the process of polarization in a self-organized manner. Recent experiments have quantified the spatio-temporal dynamics of these signaling components. Surprisingly, it was found that membrane-bound PTEN can be either in a high or low state, that PIP3 waves were initiated in areas lacking PTEN through an excitable mechanism, and that PIP3 was degraded even though the PTEN concentration remained low. Here we develop a reaction-diffusion model that aims to explain these experimental findings. Our model contains bistable dynamics for PTEN, excitable dynamics for PIP3, and postulates the existence of two species of PTEN with different dephosphorylation rates. We show that our model is able to produce results that are in good qualitative agreement with the experiments, suggesting that our reaction-diffusion model underlies the self-organized spatio-temporal patterns observed in experiments.

  3. Signal transduction and chemotaxis in mast cells

    Czech Academy of Sciences Publication Activity Database

    Dráber, Petr; Hálová, Ivana; Polakovičová, Iva; Kawakami, T.

    2016-01-01

    Roč. 778, jaro (2016), s. 11-23 ISSN 0014-2999 R&D Projects: GA ČR(CZ) GA14-09807S; GA ČR(CZ) GBP302/12/G101; GA ČR(CZ) GA14-00703S Institutional support: RVO:68378050 Keywords : Mast cell * IgE receptor * KIT receptor * Signal transduction * Chemotaxis * Plasma membrane Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.896, year: 2016

  4. Cerebellar endocannabinoids: retrograde signaling from purkinje cells.

    Science.gov (United States)

    Marcaggi, Païkan

    2015-06-01

    The cerebellar cortex exhibits a strikingly high expression of type 1 cannabinoid receptor (CB1), the cannabinoid binding protein responsible for the psychoactive effects of marijuana. CB1 is primarily found in presynaptic elements in the molecular layer. While the functional importance of cerebellar CB1 is supported by the effect of gene deletion or exogenous cannabinoids on animal behavior, evidence for a role of endocannabinoids in synaptic signaling is provided by in vitro experiments on superfused acute rodent cerebellar slices. These studies have demonstrated that endocannabinoids can be transiently released by Purkinje cells and signal at synapses in a direction opposite to information transfer (retrograde). Here, following a description of the reported expression pattern of the endocannabinoid system in the cerebellum, I review the accumulated in vitro data, which have addressed the mechanism of retrograde endocannabinoid signaling and identified 2-arachidonoylglycerol as the mediator of this signaling. The mechanisms leading to endocannabinoid release, the effects of CB1 activation, and the associated synaptic plasticity mechanisms are discussed and the remaining unknowns are pointed. Notably, it is argued that the spatial specificity of this signaling and the physiological conditions required for its induction need to be determined in order to understand endocannabinoid function in the cerebellar cortex.

  5. Inflammatory signals regulate hematopoietic stem cells.

    Science.gov (United States)

    Baldridge, Megan T; King, Katherine Y; Goodell, Margaret A

    2011-02-01

    Hematopoietic stem cells (HSCs) are the progenitors of all blood and immune cells, yet their role in immunity is not well understood. Most studies have focused on the ability of committed lymphoid and myeloid precursors to replenish immune cells during infection. Recent studies, however, have indicated that HSCs also proliferate in response to systemic infection and replenish effector immune cells. Inflammatory signaling molecules including interferons, tumor necrosis factor-α and Toll-like receptors are essential to the HSC response. Observing the biology of HSCs through the lens of infection and inflammation has led to the discovery of an array of immune-mediators that serve crucial roles in HSC regulation and function. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Structural polarity and dynamics of male germline stem cells in the milkweed bug (Oncopeltus fasciatus).

    Science.gov (United States)

    Schmidt, Esther D; Dorn, August

    2004-11-01

    The male germline stem cells (GSCs) of the milkweed bug present an extraordinary structural polarity that is, to our knowledge, unequalled by any other type of stem cells. They consist of a perikaryon and numerous projections arising from the cell pole directed toward the apical cells, the proposed niche of the GSCs. The projections can traverse a considerable distance until their terminals touch the apical cells. From hatching until death, the GSC projections undergo conspicuous changes, the sequence of which has been deduced from observations of all developmental stages. Projection formation starts from lobular cell protrusions showing trabecular ingrowths of the cell membrane. Finger-like projections result from a process of growth and "carving out". The newly formed projections contain mostly only free ribosomes other than a few mitochondria. A stereotyped degradation process commences in the projection terminals: profiles of circular, often concentric, cisternae of rough endoplasmic reticulum appear and turn into myelin bodies, whereas mitochondria become more numerous. The cytoplasm vesiculates, lysosomal bodies appear, and mitochondria become swollen. At the same time, the projection terminals are segregated by transverse ingrowths of the cell membrane. Finally, autophagic vacuoles and myelin bodies fill the segregated terminals, which then rupture. Simultaneously, new projections seem to sprout from the perikaryon of the GSCs. These dynamics, which are not synchronized among the GSCs, indicate that a novel type of signal exchange and transduction between the stem cells and their niche is involved in the regulation of asymmetric versus symmetric division of GSCs.

  7. Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells

    Science.gov (United States)

    2016-10-01

    stably express miR-200c (pCDH- miR200c) and MCF7 cells with knock- down of miR-200c (pZIP-miR200c) (Months 1-2) Completed! We have successfully...established BT549-pCDH-miR200c and MCF7 - pZIP-miR200c and examined the protein expression levels as described in subtask 2 (Fig. 1). Subtask 2...Determine expression levels of PKCζ and phospho-NUMB (p- NUMB), by re-expressing PKCζ in BT549-pCDH-miR200c cells and knocking-down PKCζ in MCF7

  8. Bipolar Plasma Membrane Distribution of Phosphoinositides and Their Requirement for Auxin-Mediated Cell Polarity and Patterning in Arabidopsis[W

    Science.gov (United States)

    Tejos, Ricardo; Sauer, Michael; Vanneste, Steffen; Palacios-Gomez, Miriam; Li, Hongjiang; Heilmann, Mareike; van Wijk, Ringo; Vermeer, Joop E.M.; Heilmann, Ingo; Munnik, Teun; Friml, Jiří

    2014-01-01

    Cell polarity manifested by asymmetric distribution of cargoes, such as receptors and transporters, within the plasma membrane (PM) is crucial for essential functions in multicellular organisms. In plants, cell polarity (re)establishment is intimately linked to patterning processes. Despite the importance of cell polarity, its underlying mechanisms are still largely unknown, including the definition and distinctiveness of the polar domains within the PM. Here, we show in Arabidopsis thaliana that the signaling membrane components, the phosphoinositides phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] as well as PtdIns4P 5-kinases mediating their interconversion, are specifically enriched at apical and basal polar plasma membrane domains. The PtdIns4P 5-kinases PIP5K1 and PIP5K2 are redundantly required for polar localization of specifically apical and basal cargoes, such as PIN-FORMED transporters for the plant hormone auxin. As a consequence of the polarity defects, instructive auxin gradients as well as embryonic and postembryonic patterning are severely compromised. Furthermore, auxin itself regulates PIP5K transcription and PtdIns4P and PtdIns(4,5)P2 levels, in particular their association with polar PM domains. Our results provide insight into the polar domain–delineating mechanisms in plant cells that depend on apical and basal distribution of membrane lipids and are essential for embryonic and postembryonic patterning. PMID:24876254

  9. Angular structure of light polarization and singularities in transmittance of nematic liquid crystal cells

    Science.gov (United States)

    Kiselev, Alexei D.; Vovk, Roman G.; Buinyi, Igor O.; Soskin, Marat S.

    2007-06-01

    We study the angular structure of polarization of light transmitted through a nematic liquid crystal (NLC) cell by analyzing the polarization state as a function of the incidence angles. Our theoretical results are obtained by evaluating the Stokes parameters that characterize the polarization state of plane waves propagating through the NLC layer at varying direction of incidence. Using the Stokes polarimetry technique we carried out the measurements of the polarization resolved conoscopic patterns emerging after the homeotropically aligned NLC cell illuminated by the convergent light beam. The resulting polarization resolved angular patterns are described both theoretically and experimentally in terms of the polarization singularities such as C-points (points of circular polarization) and L-lines (lines of linear polarization). When the ellipticity of the incident light varies, the angular patterns are found to undergo transformations involving the processes of creation and annihilation of the C-points.

  10. Muscle Stem Cell Fate Is Controlled by the Cell-Polarity Protein Scrib

    Directory of Open Access Journals (Sweden)

    Yusuke Ono

    2015-02-01

    Full Text Available Satellite cells are resident skeletal muscle stem cells that supply myonuclei for homeostasis, hypertrophy, and repair in adult muscle. Scrib is one of the major cell-polarity proteins, acting as a potent tumor suppressor in epithelial cells. Here, we show that Scrib also controls satellite-cell-fate decisions in adult mice. Scrib is undetectable in quiescent cells but becomes expressed during activation. Scrib is asymmetrically distributed in dividing daughter cells, with robust accumulation in cells committed to myogenic differentiation. Low Scrib expression is associated with the proliferative state and preventing self-renewal, whereas high Scrib levels reduce satellite cell proliferation. Satellite-cell-specific knockout of Scrib in mice causes a drastic and insurmountable defect in muscle regeneration. Thus, Scrib is a regulator of tissue stem cells, controlling population expansion and self-renewal with Scrib expression dynamics directing satellite cell fate.

  11. Connexin 43-mediated modulation of polarized cell movement and the directional migration of cardiac neural crest cells.

    Science.gov (United States)

    Xu, Xin; Francis, Richard; Wei, Chih Jen; Linask, Kaari L; Lo, Cecilia W

    2006-09-01

    Connexin 43 knockout (Cx43alpha1KO) mice have conotruncal heart defects that are associated with a reduction in the abundance of cardiac neural crest cells (CNCs) targeted to the heart. In this study, we show CNCs can respond to changing fibronectin matrix density by adjusting their migratory behavior, with directionality increasing and speed decreasing with increasing fibronectin density. However, compared with wild-type CNCs, Cx43alpha1KO CNCs show reduced directionality and speed, while CNCs overexpressing Cx43alpha1 from the CMV43 transgenic mice show increased directionality and speed. Altered integrin signaling was indicated by changes in the distribution of vinculin containing focal contacts, and altered temporal response of Cx43alpha1KO and CMV43 CNCs to beta1 integrin function blocking antibody treatment. High resolution motion analysis showed Cx43alpha1KO CNCs have increased cell protrusive activity accompanied by the loss of polarized cell movement. They exhibited an unusual polygonal arrangement of actin stress fibers that indicated a profound change in cytoskeletal organization. Semaphorin 3A, a chemorepellent known to inhibit integrin activation, was found to inhibit CNC motility, but in the Cx43alpha1KO and CMV43 CNCs, cell processes failed to retract with semaphorin 3A treatment. Immunohistochemical and biochemical analyses suggested close interactions between Cx43alpha1, vinculin and other actin-binding proteins. However, dye coupling analysis showed no correlation between gap junction communication level and fibronectin plating density. Overall, these findings indicate Cx43alpha1 may have a novel function in mediating crosstalk with cell signaling pathways that regulate polarized cell movement essential for the directional migration of CNCs.

  12. A Molecular Probe for the Detection of Polar Lipids in Live Cells.

    Directory of Open Access Journals (Sweden)

    Christie A Bader

    Full Text Available Lipids have an important role in many aspects of cell biology, including membrane architecture/compartment formation, intracellular traffic, signalling, hormone regulation, inflammation, energy storage and metabolism. Lipid biology is therefore integrally involved in major human diseases, including metabolic disorders, neurodegenerative diseases, obesity, heart disease, immune disorders and cancers, which commonly display altered lipid transport and metabolism. However, the investigation of these important cellular processes has been limited by the availability of specific tools to visualise lipids in live cells. Here we describe the potential for ReZolve-L1™ to localise to intracellular compartments containing polar lipids, such as for example sphingomyelin and phosphatidylethanolamine. In live Drosophila fat body tissue from third instar larvae, ReZolve-L1™ interacted mainly with lipid droplets, including the core region of these organelles. The presence of polar lipids in the core of these lipid droplets was confirmed by Raman mapping and while this was consistent with the distribution of ReZolve-L1™ it did not exclude that the molecular probe might be detecting other lipid species. In response to complete starvation conditions, ReZolve-L1™ was detected mainly in Atg8-GFP autophagic compartments, and showed reduced staining in the lipid droplets of fat body cells. The induction of autophagy by Tor inhibition also increased ReZolve-L1™ detection in autophagic compartments, whereas Atg9 knock down impaired autophagosome formation and altered the distribution of ReZolve-L1™. Finally, during Drosophila metamorphosis fat body tissues showed increased ReZolve-L1™ staining in autophagic compartments at two hours post puparium formation, when compared to earlier developmental time points. We concluded that ReZolve-L1™ is a new live cell imaging tool, which can be used as an imaging reagent for the detection of polar lipids in

  13. A Molecular Probe for the Detection of Polar Lipids in Live Cells.

    Science.gov (United States)

    Bader, Christie A; Shandala, Tetyana; Carter, Elizabeth A; Ivask, Angela; Guinan, Taryn; Hickey, Shane M; Werrett, Melissa V; Wright, Phillip J; Simpson, Peter V; Stagni, Stefano; Voelcker, Nicolas H; Lay, Peter A; Massi, Massimiliano; Plush, Sally E; Brooks, Douglas A

    2016-01-01

    Lipids have an important role in many aspects of cell biology, including membrane architecture/compartment formation, intracellular traffic, signalling, hormone regulation, inflammation, energy storage and metabolism. Lipid biology is therefore integrally involved in major human diseases, including metabolic disorders, neurodegenerative diseases, obesity, heart disease, immune disorders and cancers, which commonly display altered lipid transport and metabolism. However, the investigation of these important cellular processes has been limited by the availability of specific tools to visualise lipids in live cells. Here we describe the potential for ReZolve-L1™ to localise to intracellular compartments containing polar lipids, such as for example sphingomyelin and phosphatidylethanolamine. In live Drosophila fat body tissue from third instar larvae, ReZolve-L1™ interacted mainly with lipid droplets, including the core region of these organelles. The presence of polar lipids in the core of these lipid droplets was confirmed by Raman mapping and while this was consistent with the distribution of ReZolve-L1™ it did not exclude that the molecular probe might be detecting other lipid species. In response to complete starvation conditions, ReZolve-L1™ was detected mainly in Atg8-GFP autophagic compartments, and showed reduced staining in the lipid droplets of fat body cells. The induction of autophagy by Tor inhibition also increased ReZolve-L1™ detection in autophagic compartments, whereas Atg9 knock down impaired autophagosome formation and altered the distribution of ReZolve-L1™. Finally, during Drosophila metamorphosis fat body tissues showed increased ReZolve-L1™ staining in autophagic compartments at two hours post puparium formation, when compared to earlier developmental time points. We concluded that ReZolve-L1™ is a new live cell imaging tool, which can be used as an imaging reagent for the detection of polar lipids in different intracellular

  14. A Molecular Probe for the Detection of Polar Lipids in Live Cells

    Science.gov (United States)

    Bader, Christie A.; Shandala, Tetyana; Carter, Elizabeth A.; Ivask, Angela; Guinan, Taryn; Hickey, Shane M.; Werrett, Melissa V.; Wright, Phillip J.; Simpson, Peter V.; Stagni, Stefano; Voelcker, Nicolas H.; Lay, Peter A.; Massi, Massimiliano; Brooks, Douglas A.

    2016-01-01

    Lipids have an important role in many aspects of cell biology, including membrane architecture/compartment formation, intracellular traffic, signalling, hormone regulation, inflammation, energy storage and metabolism. Lipid biology is therefore integrally involved in major human diseases, including metabolic disorders, neurodegenerative diseases, obesity, heart disease, immune disorders and cancers, which commonly display altered lipid transport and metabolism. However, the investigation of these important cellular processes has been limited by the availability of specific tools to visualise lipids in live cells. Here we describe the potential for ReZolve-L1™ to localise to intracellular compartments containing polar lipids, such as for example sphingomyelin and phosphatidylethanolamine. In live Drosophila fat body tissue from third instar larvae, ReZolve-L1™ interacted mainly with lipid droplets, including the core region of these organelles. The presence of polar lipids in the core of these lipid droplets was confirmed by Raman mapping and while this was consistent with the distribution of ReZolve-L1™ it did not exclude that the molecular probe might be detecting other lipid species. In response to complete starvation conditions, ReZolve-L1™ was detected mainly in Atg8-GFP autophagic compartments, and showed reduced staining in the lipid droplets of fat body cells. The induction of autophagy by Tor inhibition also increased ReZolve-L1™ detection in autophagic compartments, whereas Atg9 knock down impaired autophagosome formation and altered the distribution of ReZolve-L1™. Finally, during Drosophila metamorphosis fat body tissues showed increased ReZolve-L1™ staining in autophagic compartments at two hours post puparium formation, when compared to earlier developmental time points. We concluded that ReZolve-L1™ is a new live cell imaging tool, which can be used as an imaging reagent for the detection of polar lipids in different intracellular

  15. Endothelial cell oxidative stress and signal transduction

    Directory of Open Access Journals (Sweden)

    ROCIO FONCEA

    2000-01-01

    Full Text Available Endothelial dysfunction (ED is an early event in atherosclerotic disease, preceding clinical manifestations and complications. Increased reactive oxygen species (ROS have been implicated as important mechanisms that contribute to ED, and ROS’s may function as intracellular messengers that modulate signaling pathways. Several intracellular signal events stimulated by ROS have been defined, including the identification of two members of the mitogen activated protein kinase family (ERK1/2 and big MAP kinase, BMK1, tyrosine kinases (Src and Syk and different isoenzymes of PKC as redox-sensitive kinases. ROS regulation of signal transduction components include the modification in the activity of transcriptional factors such as NFkB and others that result in changes in gene expression and modifications in cellular responses. In order to understand the intracellular mechanisms induced by ROS in endothelial cells (EC, we are studying the response of human umbilical cord vein endothelial cells to increased ROS generation by different pro-atherogenic stimuli. Our results show that Homocysteine (Hcy and oxidized LDL (oxLDL enhance the activity and expression of oxidative stress markers, such as NFkB and heme oxygenase 1. These results suggest that these pro-atherogenic stimuli increase oxidative stress in EC, and thus explain the loss of endothelial function associated with the atherogenic process

  16. Secretion of endogenous and exogenous proteins from polarized MDCK cell monolayers.

    Science.gov (United States)

    Gottlieb, T A; Beaudry, G; Rizzolo, L; Colman, A; Rindler, M; Adesnik, M; Sabatini, D D

    1986-04-01

    Confluent monolayers of MDCK (Madin-Darby canine kidney) cells provide a widely used system to study the biogenesis of epithelial cell polarity. We now report that these cells are also capable of the vectorial constitutive secretion of a major endogenous product, a glycoprotein of 81 kDa, which is released into the medium from the apical surface within 30 min of its synthesis. This release represents a bona fide exocytotic secretory process and is not the result of proteolytic cleavage of a plasma membrane-associated precursor since, in cells treated with chloroquine, a protein indistinguishable from the mature secretory product accumulated intracellularly. In contrast to the vectorial secretion of the endogenous product, a variety of exogenous exocrine and endocrine proteins synthesized in MDCK cells transfected with the corresponding genes were secreted from both the apical and basolateral surfaces. These included proteins such as rat growth hormone, chicken oviduct lysozyme, bovine gastric prochymosin, and rat salivary gland alpha 2u-globulin, which in their cells of origin are secreted via a regulated pathway, as well as the liver form of the alpha 2u-globulin and the immunoglobulin kappa chain, which are normally released constitutively. These results demonstrate the existence of secretory pathways that lead to both surfaces of MDCK cells and are accessible to the foreign secretory products. They are consistent with the operation of a sorting mechanism in which the polarized secretion of the endogenous product is effected through the recognition of signals that prevent its random distribution within the fluid phase in the cellular endomembrane system.

  17. Dystroglycan is required for polarizing the epithelial cells and the oocyte in Drosophila

    DEFF Research Database (Denmark)

    Deng, Wu-Min; Schneider, Martina; Frock, Richard

    2003-01-01

    , and plays a role in linking the ECM to the actin cytoskeleton; however, how these interactions are regulated and their basic cellular functions are poorly understood. Using mosaic analysis and RNAi in the model organism Drosophila melanogaster, we show that Dystroglycan is required cell......-autonomously for cellular polarity in two different cell types, the epithelial cells (apicobasal polarity) and the oocyte (anteroposterior polarity). Loss of Dystroglycan function in follicle and disc epithelia results in expansion of apical markers to the basal side of cells and overexpression results in a reduced apical...... localization of these same markers. In Dystroglycan germline clones early oocyte polarity markers fail to be localized to the posterior, and oocyte cortical F-actin organization is abnormal. Dystroglycan is also required non-cell-autonomously to organize the planar polarity of basal actin in follicle cells...

  18. Sequential development of apical-basal and planar polarities in aggregating epitheliomuscular cells of Hydra.

    Science.gov (United States)

    Seybold, Anna; Salvenmoser, Willi; Hobmayer, Bert

    2016-04-01

    Apical-basal and planar cell polarities are hallmarks of metazoan epithelia required to separate internal and external environments and to regulate trans- and intracellular transport, cytoskeletal organization, and morphogenesis. Mechanisms of cell polarization have been intensively studied in bilaterian model organisms, particularly in early embryos and cultured cells, while cell polarity in pre-bilaterian tissues is poorly understood. Here, we have studied apical-basal and planar polarization in regenerating (aggregating) clusters of epitheliomuscular cells of Hydra, a simple representative of the ancestral, pre-bilaterian phylum Cnidaria. Immediately after dissociation, single epitheliomuscular cells do not exhibit cellular polarity, but they polarize de novo during aggregation. Reestablishment of the Hydra-specific epithelial bilayer is a result of short-range cell sorting. In the early phase of aggregation, apical-basal polarization starts with an enlargement of the epithelial apical-basal diameter and by the development of belt-like apical septate junctions. Specification of the basal pole of epithelial cells occurs shortly later and is linked to synthesis of mesoglea, development of hemidesmosome-like junctions, and formation of desmosome-like junctions connecting the basal myonemes of neighbouring cells. Planar polarization starts, while apical-basal polarization is already ongoing. It is executed gradually starting with cell-autonomous formation, parallelization, and condensation of myonemes at the basal end of each epithelial cell and continuing with a final planar alignment of epitheliomuscular cells at the tissue level. Our findings reveal that epithelial polarization in Hydra aggregates occurs in defined steps well accessible by histological and ultrastructural techniques and they will provide a basis for future molecular studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Chemokines: a new dendritic cell signal for T cell activation

    Directory of Open Access Journals (Sweden)

    Christoph A Thaiss

    2011-08-01

    Full Text Available Dendritic cells (DCs are the main inducers and regulators of cytotoxic T lymphocyte (CTL responses against viruses and tumors. One checkpoint to avoid misguided CTL activation, which might damage healthy cells of the body, is the necessity for multiple activation signals, involving both antigenic as well as additional signals that reflect the presence of pathogens. DCs provide both signals when activated by ligands of pattern recognition receptors and licensed by helper lymphocytes. Recently, it has been established that such T cell licensing can be facilitated by CD4+ T helper cells (classical licensing or by NKT cells (alternative licensing. Licensing regulates the DC/CTL cross-talk at multiple layers. Direct recruitment of CTLs through chemokines released by licensed DCs has recently emerged as a common theme and has a crucial impact on the efficiency of CTL responses. Here, we discuss recent advances in our understanding of DC licensing for cross-priming and implications for the temporal and spatial regulation underlying this process. Future vaccination strategies will benefit from a deeper insight into the mechanisms that govern CTL activation.

  20. Non-invasive Optical Biosensor for Probing Cell Signaling

    Directory of Open Access Journals (Sweden)

    Ye Fang

    2007-10-01

    Full Text Available Cell signaling mediated through a cellular target is encoded by spatial andtemporal dynamics of downstream signaling networks. The coupling of temporal dynamicswith spatial gradients of signaling activities guides cellular responses upon stimulation.Monitoring the integration of cell signaling in real time, if realized, would provide a newdimension for understanding cell biology and physiology. Optical biosensors includingresonant waveguide grating (RWG biosensor manifest a physiologically relevant andintegrated cellular response related to dynamic redistribution of cellular matters, thusproviding a non-invasive means for cell signaling study. This paper reviews recentprogresses in biosensor instrumentation, and theoretical considerations and potentialapplications of optical biosensors for whole cell sensing.

  1. Phenotype and polarization of autologous T cells by biomaterial-treated dendritic cells.

    Science.gov (United States)

    Park, Jaehyung; Gerber, Michael H; Babensee, Julia E

    2015-01-01

    Given the central role of dendritic cells (DCs) in directing T-cell phenotypes, the ability of biomaterial-treated DCs to dictate autologous T-cell phenotype was investigated. In this study, we demonstrate that differentially biomaterial-treated DCs differentially directed autologous T-cell phenotype and polarization, depending on the biomaterial used to pretreat the DCs. Immature DCs (iDCs) were derived from human peripheral blood monocytes and treated with biomaterial films of alginate, agarose, chitosan, hyaluronic acid, or 75:25 poly(lactic-co-glycolic acid) (PLGA), followed by co-culture of these biomaterial-treated DCs and autologous T cells. When autologous T cells were co-cultured with DCs treated with biomaterial film/antigen (ovalbumin, OVA) combinations, different biomaterial films induced differential levels of T-cell marker (CD4, CD8, CD25, CD69) expression, as well as differential cytokine profiles [interferon (IFN)-γ, interleukin (IL)-12p70, IL-10, IL-4] in the polarization of T helper (Th) types. Dendritic cells treated with agarose films/OVA induced CD4+CD25+FoxP3+ (T regulatory cells) expression, comparable to untreated iDCs, on autologous T cells in the DC-T co-culture system. Furthermore, in this co-culture, agarose treatment induced release of IL-12p70 and IL-10 at higher levels as compared with DC treatment with other biomaterial films/OVA, suggesting Th1 and Th2 polarization, respectively. Dendritic cells treated with PLGA film/OVA treatment induced release of IFN-γ at higher levels compared with that observed for co-cultures with iDCs or DCs treated with all other biomaterial films. These results indicate that DC treatment with different biomaterial films has potential as a tool for immunomodulation by directing autologous T-cell responses. © 2014 Wiley Periodicals, Inc.

  2. Phantom phone signals: An investigation into the prevalence and predictors of imagined cell phone signals

    NARCIS (Netherlands)

    Tanis, M.A.; Beukeboom, C.J.; Hartmann, T.; Vermeulen, I.E.

    2015-01-01

    This paper aims to elucidate the peculiar phenomenon of imagined cell phone signals, or Phantom Phone Signals (PPS), which is defined as an individual's perception of a phone signal, indicating an incoming call, message, or social media notification, when in fact no such signal was transmitted. A

  3. Non-Invasive Optical Biosensor for Probing Cell Signaling

    OpenAIRE

    Fang, Ye

    2007-01-01

    Cell signaling mediated through a cellular target is encoded by spatial and temporal dynamics of downstream signaling networks. The coupling of temporal dynamics with spatial gradients of signaling activities guides cellular responses upon stimulation. Monitoring the integration of cell signaling in real time, if realized, would provide a new dimension for understanding cell biology and physiology. Optical biosensors including resonant waveguide grating (RWG) biosensor manifest a physiologica...

  4. The keratin-binding protein Albatross regulates polarization of epithelial cells

    OpenAIRE

    Sugimoto, Masahiko; Inoko, Akihito; Shiromizu, Takashi; Nakayama, Masanori; Zou, Peng; Yonemura, Shigenobu; Hayashi, Yuko; Izawa, Ichiro; Sasoh, Mikio; Uji, Yukitaka; Kaibuchi, Kozo; Kiyono, Tohru; Inagaki, Masaki

    2008-01-01

    The keratin intermediate filament network is abundant in epithelial cells, but its function in the establishment and maintenance of cell polarity is unclear. Here, we show that Albatross complexes with Par3 to regulate formation of the apical junctional complex (AJC) and maintain lateral membrane identity. In nonpolarized epithelial cells, Albatross localizes with keratin filaments, whereas in polarized epithelial cells, Albatross is primarily localized in the vicinity of the AJC. Knockdown o...

  5. Cigarette smoke extract-treated mast cells promote alveolar macrophage infiltration and polarization in experimental chronic obstructive pulmonary disease.

    Science.gov (United States)

    Li, Hong; Yang, Tian; Ning, Qian; Li, Feiyan; Chen, Tianjun; Yao, Yan; Sun, Zhongmin

    2015-01-01

    Cigarette smoking is the main cause of chronic obstructive pulmonary disease (COPD) and may modulate the immune response of exposed individuals. Mast cell function can be altered by cigarette smoking, but the role of smoking in COPD remains poorly understood. The current study aimed to explore the role of cigarette smoke extract (CSE)-treated mast cells in COPD pathogenesis. Cytokine and chemokine expression as well as degranulation of bone marrow-derived mast cells (BMMCs) were detected in cells exposed to immunoglobulin E (IgE) and various doses of CSE. Adoptive transfer of CSE-treated BMMCs into C57BL/6J mice was performed, and macrophage infiltration and polarization were evaluated by fluorescence-activated cell sorting (FACS). Furthermore, a coculture system of BMMCs and macrophages was established to examine macrophage phenotype transition. The role of protease serine member S31 (Prss31) was also investigated in the co-culture system and in COPD mice. CSE exposure suppressed cytokine expression and degranulation in BMMCs, but promoted the expressions of chemokines and Prss31. Adoptive transfer of CSE-treated BMMCs induced macrophage infiltration and M2 polarization in the mouse lung. Moreover, CSE-treated BMMCs triggered macrophage M2 polarization via Prss31 secretion. Recombinant Prss31 was shown to activate interleukin (IL)-13/IL-13Rα/Signal transducers and activators of transcription (Stat) 6 signaling in macrophages. Additionally, a positive correlation was found between Prss31 expression and the number of M2 macrophages in COPD mice. In conclusion, CSE-treated mast cells may induce macrophage infiltration and M2 polarization via Prss31 expression, and potentially contribute to COPD progression.

  6. Carbon nanotube signal amplification for ultrasensitive fluorescence polarization detection of DNA methyltransferase activity and inhibition.

    Science.gov (United States)

    Huang, Yong; Shi, Ming; Zhao, Limin; Zhao, Shulin; Hu, Kun; Chen, Zheng-Feng; Chen, Jia; Liang, Hong

    2014-04-15

    A versatile sensing platform based on multiwalled carbon nanotube (MWCNT) signal amplification and fluorescence polarization (FP) is developed for the simple and ultrasensitive monitoring of DNA methyltransferase (MTase) activity and inhibition in homogeneous solution. This method uses a dye-labeled DNA probe that possess a doubled-stranded DNA (dsDNA) part for Mtase and its corresponding restriction endonuclease recognition, and a single-stranded DNA part for binding MWCNTs. In the absence of MTase, the dye-labeled DNA is cleaved by restriction endonuclease, and releases very short DNA carrying the dye that cannot bind to MWCNTs, which has relatively small FP value. However, in the presence of MTase, the specific recognition sequence in the dye-labeled DNA probe is methylated and not cleaved by restriction endonuclease. Thus, the dye-labeled methylated DNA product is adsorbed onto MWCNTs via strong π-π stacking interactions, which leads to a significant increase in the FP value due to the enlargement of the molecular volume of the dye-labeled methylated DNA/MWCNTs complex. This provides the basic of a quantitative measurement of MTase activity. By using the MWCNT signal amplification approach, the detection sensitivity can be significantly improved by two orders of magnitude over the previously reported methods. Moreover, this method also has high specificity and a wide dynamic range of over five orders of magnitude. Additionally, the suitability of this sensing platform for MTase inhibitor screening has also been demonstrated. This approach may serve as a general detection platform for sensitive assay of a variety of DNA MTases and screening potential drugs. © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Flotillins are involved in the polarization of primitive and mature hematopoietic cells.

    Directory of Open Access Journals (Sweden)

    Lawrence Rajendran

    Full Text Available BACKGROUND: Migration of mature and immature leukocytes in response to chemokines is not only essential during inflammation and host defense, but also during development of the hematopoietic system. Many molecules implicated in migratory polarity show uniform cellular distribution under non-activated conditions, but acquire a polarized localization upon exposure to migratory cues. METHODOLOGY/PRINCIPAL FINDINGS: Here, we present evidence that raft-associated endocytic proteins (flotillins are pre-assembled in lymphoid, myeloid and primitive hematopoietic cells and accumulate in the uropod during migration. Furthermore, flotillins display a polarized distribution during immunological synapse formation. Employing the membrane lipid-order sensitive probe Laurdan, we show that flotillin accumulation in the immunological synapse is concomittant with membrane ordering in these regions. CONCLUSIONS: Together with the observation that flotillin polarization does not occur in other polarized cell types such as polarized epithelial cells, our results suggest a specific role for flotillins in hematopoietic cell polarization. Based on our results, we propose that in hematopoietic cells, flotillins provide intrinsic cues that govern segregation of certain microdomain-associated molecules during immune cell polarization.

  8. Polarization resolved conoscopic patterns in nematic cells: effects induced by the incident light ellipticity

    Science.gov (United States)

    Buinyi, Igor O.; Soskin, Marat S.; Vovk, Roman G.

    2008-05-01

    Topological structure of the polarization resolved conoscopic patterns, calculated theoretically and measured experimentally for nematic liquid crystal (NLC) cells, is described in terms of polarization singularities, saddle points and bifurcation lines. The parametric dynamics of the topological network, induced by the variation of the incident light ellipticity, is analyzed for the nematic cells with uniform and non-uniform director configuration. Different stages of similar dynamics are observed for homeotropically oriented NLC cell. Non-uniform director configuration within the cell results in broken central symmentry in the arrangement of the topological network. Main features of the experimentally obtained polarization resolved conoscopic patterns are the same to the theoretically predicted ones.

  9. Topological structure in polarization resolved conoscopic patterns for nematic liquid crystal cells

    Science.gov (United States)

    Buinyi, Igor O.; Denisenko, Vladimir G.; Soskin, Marat S.

    2009-01-01

    We investigate the polarization structure of coherent light, produced by a convergent light beam transmitted through nematic liquid crystal (NLC) cells with different director configurations. Employing solutions to the transmission problem for the case when plane wave propagates through an anisotropic layer, we analyze the arrangement of the topological elements, such as polarization singularities (C points with circular polarization and L lines with linear polarization), saddle points and extrema of polarization azimuth. We observe transformations of the topological structure under the variation of the incident light ellipticity and represent it by corresponding trajectories of topological elements in three-dimensional space. For the cells with uniform and non-uniform director configuration we describe the processes of creation/annihilation of C point pairs, which can be controlled precisely in the case of the cell with non-uniform director. Our experimental measurements for the homeotropically oriented NLC cells are in good agreement with the theoretical predictions.

  10. Structural polarity and dynamics of male germline stem cells in an insect (milkweed bug Oncopeltus fasciatus).

    Science.gov (United States)

    Dorn, David C; Dorn, August

    2008-01-01

    Knowing the structure opens a door for a better understanding of function because there is no function without structure. Male germline stem cells (GSCs) of the milkweed bug (Oncopeltus fasciatus) exhibit a very extraordinary structure and a very special relationship with their niche, the apical cells. This structural relationship is strikingly different from that known in the fruit fly (Drosophila melanogaster) -- the most successful model system, which allowed deep insights into the signaling interactions between GSCs and niche. The complex structural polarity of male GSCs in the milkweed bug combined with their astonishing dynamics suggest that cell morphology and dynamics are causally related with the most important regulatory processes that take place between GSCs and niche and ensure maintenance, proliferation, and differentiation of GSCs in accordance with the temporal need of mature sperm. The intricate structure of the GSCs of the milkweed bug (and probably of some other insects, i.e., moths) is only accessible by electron microscopy. But, studying singular sections through the apical complex (i.e., GSCs and apical cells) is not sufficient to obtain a full picture of the GSCs; especially, the segregation of projection terminals is not tangible. Only serial sections and their overlay can establish whether membrane ingrowths merely constrict projections or whether a projection terminal is completely cut off. To sequence the GSC dynamics, it is necessary to include juvenile stages, when the processes start and the GSCs occur in small numbers. The fine structural analysis of segregating projection terminals suggests that these terminals undergo autophagocytosis. Autophagosomes can be labeled by markers. We demonstrated acid phosphatase and thiamine pyrophosphatase (TPPase). Both together are thought to identify autophagosomes. Using the appropriate substrate of the enzymes and cerium chloride, the precipitation of electron-dense cerium phosphate granules

  11. Monitoring single-channel water permeability in polarized cells.

    Science.gov (United States)

    Erokhova, Liudmila; Horner, Andreas; Kügler, Philipp; Pohl, Peter

    2011-11-18

    So far the determination of unitary permeability (p(f)) of water channels that are expressed in polarized cells is subject to large errors because the opening of a single water channel does not noticeably increase the water permeability of a membrane patch above the background. That is, in contrast to the patch clamp technique, where the single ion channel conductance may be derived from a single experiment, two experiments separated in time and/or space are required to obtain the single-channel water permeability p(f) as a function of the incremental water permeability (P(f,c)) and the number (n) of water channels that contributed to P(f,c). Although the unitary conductance of ion channels is measured in the native environment of the channel, p(f) is so far derived from reconstituted channels or channels expressed in oocytes. To determine the p(f) of channels from live epithelial monolayers, we exploit the fact that osmotic volume flow alters the concentration of aqueous reporter dyes adjacent to the epithelia. We measure these changes by fluorescence correlation spectroscopy, which allows the calculation of both P(f,c) and osmolyte dilution within the unstirred layer. Shifting the focus of the laser from the aqueous solution to the apical and basolateral membranes allowed the FCS-based determination of n. Here we validate the new technique by determining the p(f) of aquaporin 5 in Madin-Darby canine kidney cell monolayers. Because inhibition and subsequent activity rescue are monitored on the same sample, drug effects on exocytosis or endocytosis can be dissected from those on p(f).

  12. Spatial and temporal dynamics of T cell receptor signaling with a photoactivatable agonist.

    Science.gov (United States)

    Huse, Morgan; Klein, Lawrence O; Girvin, Andrew T; Faraj, Joycelyn M; Li, Qi-Jing; Kuhns, Michael S; Davis, Mark M

    2007-07-01

    The precise timing of signals downstream of the T cell receptor (TCR) is poorly understood. To address this problem, we prepared major histocompatibility complexes containing an antigenic peptide that is biologically inert until exposed to ultraviolet (UV) light. UV irradiation of these complexes in contact with cognate T cells enabled the high-resolution temporal analysis of signaling. Phosphorylation of the LAT adaptor molecule was observed in 4 s, and diacylglycerol production and calcium flux was observed in 6-7 s. TCR activation also induced cytoskeletal polarization within 2 min. Antibody blockade of CD4 reduced the intensity of LAT phosphorylation and the speed of calcium flux. Furthermore, strong desensitization of diacylglycerol production, but not LAT phosphorylation, occurred shortly after TCR activation, suggesting that different molecular events play distinct signal-processing roles. These results establish the speed and localization of early signaling steps, and have important implications regarding the overall structure of the network.

  13. BMP signaling regulates satellite cell-dependent postnatal muscle growth.

    Science.gov (United States)

    Stantzou, Amalia; Schirwis, Elija; Swist, Sandra; Alonso-Martin, Sonia; Polydorou, Ioanna; Zarrouki, Faouzi; Mouisel, Etienne; Beley, Cyriaque; Julien, Anaïs; Le Grand, Fabien; Garcia, Luis; Colnot, Céline; Birchmeier, Carmen; Braun, Thomas; Schuelke, Markus; Relaix, Frédéric; Amthor, Helge

    2017-08-01

    Postnatal growth of skeletal muscle largely depends on the expansion and differentiation of resident stem cells, the so-called satellite cells. Here, we demonstrate that postnatal satellite cells express components of the bone morphogenetic protein (BMP) signaling machinery. Overexpression of noggin in postnatal mice (to antagonize BMP ligands), satellite cell-specific knockout of Alk3 (the gene encoding the BMP transmembrane receptor) or overexpression of inhibitory SMAD6 decreased satellite cell proliferation and accretion during myofiber growth, and ultimately retarded muscle growth. Moreover, reduced BMP signaling diminished the adult satellite cell pool. Abrogation of BMP signaling in satellite cell-derived primary myoblasts strongly diminished cell proliferation and upregulated the expression of cell cycle inhibitors p21 and p57 In conclusion, these results show that BMP signaling defines postnatal muscle development by regulating satellite cell-dependent myofiber growth and the generation of the adult muscle stem cell pool. © 2017. Published by The Company of Biologists Ltd.

  14. Tests of a polarized source of hydrogen and deuterium based on spin-exchange optical pumping and a storage cell for polarized deuterium

    International Nuclear Information System (INIS)

    Holt, R.J.; Gilman, R.; Kinney, E.R.

    1988-01-01

    A novel laser-driven polarized source of hydrogen and deuterium which is based on the principle of spin-exchange optical pumping has been developed at Argonne. The advantages of this method over conventional polarized sources for internal target experiments is discussed. At present, the laser-driven polarized source delivers hydrogen 8 x 10 16 atoms/s with a polarization of 24% and deuterium at 6 x 10 16 atoms/s with a polarization of 25%. A passive storage cell for polarized deuterium was tested in the VEPP-3 electron storage ring. The storage cell was found to increase the target thickness by approximately a factor of three and no loss in polarization was observed. 10 refs., 4 figs., 2 tabs

  15. Probing Embryonic Stem Cell Autocrine and Paracrine Signaling Using Microfluidics

    Science.gov (United States)

    Przybyla, Laralynne; Voldman, Joel

    2012-07-01

    Although stem cell fate is traditionally manipulated by exogenously altering the cells' extracellular signaling environment, the endogenous autocrine and paracrine signals produced by the cells also contribute to their two essential processes: self-renewal and differentiation. Autocrine and/or paracrine signals are fundamental to both embryonic stem cell self-renewal and early embryonic development, but the nature and contributions of these signals are often difficult to fully define using conventional methods. Microfluidic techniques have been used to explore the effects of cell-secreted signals by controlling cell organization or by providing precise control over the spatial and temporal cellular microenvironment. Here we review how such techniques have begun to be adapted for use with embryonic stem cells, and we illustrate how many remaining questions in embryonic stem cell biology could be addressed using microfluidic technologies.

  16. Airway Epithelial Cell Integrity Protects from Cytotoxicity of Pseudomonas aeruginosa Quorum-Sensing Signals.

    Science.gov (United States)

    Losa, Davide; Köhler, Thilo; Bacchetta, Marc; Saab, Joanna Bou; Frieden, Maud; van Delden, Christian; Chanson, Marc

    2015-08-01

    Cell-to-cell communication via gap junctions regulates airway epithelial cell homeostasis and maintains the epithelium host defense. Quorum-sensing molecules produced by Pseudomonas aeruginosa coordinate the expression of virulence factors by this respiratory pathogen. These bacterial signals may also incidentally modulate mammalian airway epithelial cell responses to the pathogen, a process called interkingdom signaling. We investigated the interactions between the P. aeruginosa N-3-oxo-dodecanoyl-L-homoserine lactone (C12) quorum-sensing molecule and human airway epithelial cell gap junctional intercellular communication (GJIC). C12 degradation and its effects on cells were monitored in various airway epithelial cell models grown under nonpolarized and polarized conditions. Its concentration was further monitored in daily tracheal aspirates of colonized intubated patients. C12 rapidly altered epithelial integrity and decreased GJIC in nonpolarized airway epithelial cells, whereas other quorum-sensing molecules had no effect. The effects of C12 were dependent on [Ca(2+)]i and could be prevented by inhibitors of Src tyrosine family and Rho-associated protein kinases. In contrast, polarized airway cells grown on Transwell filters were protected from C12 except when undergoing repair after wounding. In vivo during colonization of intubated patients, C12 did not accumulate, but it paralleled bacterial densities. In vitro C12 degradation, a reaction catalyzed by intracellular paraoxonase 2 (PON2), was impaired in nonpolarized cells, whereas PON2 expression was increased during epithelial polarization. The cytotoxicity of C12 on nonpolarized epithelial cells, combined with its impaired degradation allowing its accumulation, provides an additional pathogenic mechanism for P. aeruginosa infections.

  17. Polarity governed selective amplification of through plane proton shuttling in proton exchange membrane fuel cells.

    Science.gov (United States)

    Gautam, Manu; Chattanahalli Devendrachari, Mruthyunjayachari; Thimmappa, Ravikumar; Raja Kottaichamy, Alagar; Pottachola Shafi, Shahid; Gaikwad, Pramod; Makri Nimbegondi Kotresh, Harish; Ottakam Thotiyl, Musthafa

    2017-03-15

    Graphene oxide (GO) anisotropically conducts protons with directional dominance of in plane ionic transport (σ IP) over the through plane (σ TP). In a typical H 2 -O 2 fuel cell, since the proton conduction occurs through the plane during its generation at the fuel electrode, it is indeed inevitable to selectively accelerate GO's σ TP for advancement towards a potential fuel cell membrane. We successfully achieved ∼7 times selective amplification of GO's σ TP by tuning the polarity of the dopant molecule in its nanoporous matrix. The coexistence of strongly non-polar and polar domains in the dopant demonstrated a synergistic effect towards σ TP with the former decreasing the number of water molecules coordinated to protons by ∼3 times, diminishing the effects of electroosmotic drag exerted on ionic movements, and the latter selectively accelerating σ TP across the catalytic layers by bridging the individual GO planes via extensive host guest H-bonding interactions. When they are decoupled, the dopant with mainly non-polar or polar features only marginally enhances the σ TP, revealing that polarity factors contribute to fuel cell relevant transport properties of GO membranes only when they coexist. Fuel cell polarization and kinetic analyses revealed that these multitask dopants increased the fuel cell performance metrics of the power and current densities by ∼3 times compared to the pure GO membranes, suggesting that the functional group factors of the dopants are of utmost importance in GO-based proton exchange membrane fuel cells.

  18. Hierarchy of mechanisms involved in generating Na/K-ATPase polarity in MDCK epithelial cells

    NARCIS (Netherlands)

    Mays, R.W.; Siemers, K.A.; Fritz, B.A.; Lowe, A.W.; van Meer, G.; Nelson, W.J.

    1995-01-01

    We have studied mechanisms involved in generating a polarized distribution of Na/K-ATPase in the basal-lateral membrane of two clones of MDCK II cells. Both clones exhibit polarized distributions of marker proteins of the apical and basal-lateral membranes, including Na/K-ATPase, at steady state.

  19. Real-time photonic sampling with improved signal-to-noise and distortion ratio using polarization-dependent modulators

    Science.gov (United States)

    Liang, Dong; Zhang, Zhiyao; Liu, Yong; Li, Xiaojun; Jiang, Wei; Tan, Qinggui

    2018-04-01

    A real-time photonic sampling structure with effective nonlinearity suppression and excellent signal-to-noise ratio (SNR) performance is proposed. The key points of this scheme are the polarization-dependent modulators (P-DMZMs) and the sagnac loop structure. Thanks to the polarization sensitive characteristic of P-DMZMs, the differences between transfer functions of the fundamental signal and the distortion become visible. Meanwhile, the selection of specific biases in P-DMZMs is helpful to achieve a preferable linearized performance with a low noise level for real-time photonic sampling. Compared with the quadrature-biased scheme, the proposed scheme is capable of valid nonlinearity suppression and is able to provide a better SNR performance even in a large frequency range. The proposed scheme is proved to be effective and easily implemented for real time photonic applications.

  20. Networking for proteins : A yeast two-hybrid and RNAi profiling approach to uncover C. elegans cell polarity regulators

    NARCIS (Netherlands)

    Koorman, T.

    2016-01-01

    Cell polarity is a near universal trait of life and guides many aspects of animal development. Although a number of key polarity proteins have been identified, many interactions with proteins acting downstream likely remain to be elucidated. Mutations in polarity proteins or deregulation of polarity

  1. Par1b links lumen polarity with LGN-NuMA positioning for distinct epithelial cell division phenotypes.

    Science.gov (United States)

    Lázaro-Diéguez, Francisco; Cohen, David; Fernandez, Dawn; Hodgson, Louis; van Ijzendoorn, Sven C D; Müsch, Anne

    2013-10-28

    Columnar epithelia establish their luminal domains and their mitotic spindles parallel to the basal surface and undergo symmetric cell divisions in which the cleavage furrow bisects the apical domain. Hepatocyte lumina interrupt the lateral domain of neighboring cells perpendicular to two basal domains and their cleavage furrow rarely bifurcates the luminal domains. We determine that the serine/threonine kinase Par1b defines lumen position in concert with the position of the astral microtubule anchoring complex LGN-NuMA to yield the distinct epithelial division phenotypes. Par1b signaling via the extracellular matrix (ECM) in polarizing cells determined RhoA/Rho-kinase activity at cell-cell contact sites. Columnar MDCK and Par1b-depleted hepatocytic HepG2 cells featured high RhoA activity that correlated with robust LGN-NuMA recruitment to the metaphase cortex, spindle alignment with the substratum, and columnar organization. Reduced RhoA activity at the metaphase cortex in HepG2 cells and Par1b-overexpressing MDCK cells correlated with a single or no LGN-NuMA crescent, tilted spindles, and the development of lateral lumen polarity.

  2. Atypical B cell receptor signaling: straddling immune diseases and cancer.

    Science.gov (United States)

    Faris, Mary

    2013-08-01

    The B-cell receptor (BCR) signaling pathway plays an essential role in the survival, proliferation, differentiation and trafficking of lymphocytic. Recent findings associate aberrant BCR signaling with specific disease pathologies, including B-cell malignancies and autoimmune disorders. Inhibition of the BCR signaling pathway may therefore provide promising new strategies for the treatment of B-cell diseases. This special issue of International Reviews of Immunology focuses on atypical B-cell receptor signaling, its role in immune diseases and cancer, and its implications for potential therapeutic intervention.

  3. An Effective Feedback Loop between Cell-Cell Contact Duration and Morphogen Signaling Determines Cell Fate.

    Science.gov (United States)

    Barone, Vanessa; Lang, Moritz; Krens, S F Gabriel; Pradhan, Saurabh J; Shamipour, Shayan; Sako, Keisuke; Sikora, Mateusz; Guet, Călin C; Heisenberg, Carl-Philipp

    2017-10-23

    Cell-cell contact formation constitutes an essential step in evolution, leading to the differentiation of specialized cell types. However, remarkably little is known about whether and how the interplay between contact formation and fate specification affects development. Here, we identify a positive feedback loop between cell-cell contact duration, morphogen signaling, and mesendoderm cell-fate specification during zebrafish gastrulation. We show that long-lasting cell-cell contacts enhance the competence of prechordal plate (ppl) progenitor cells to respond to Nodal signaling, required for ppl cell-fate specification. We further show that Nodal signaling promotes ppl cell-cell contact duration, generating a positive feedback loop between ppl cell-cell contact duration and cell-fate specification. Finally, by combining mathematical modeling and experimentation, we show that this feedback determines whether anterior axial mesendoderm cells become ppl or, instead, turn into endoderm. Thus, the interdependent activities of cell-cell signaling and contact formation control fate diversification within the developing embryo. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Airway epithelial cell-derived insulin-like growth factor-1 triggers skewed CD8(+) T cell polarization.

    Science.gov (United States)

    Zou, Jian-Yong; Huang, Shao-hong; Li, Yun; Chen, Hui-guo; Rong, Jian; Ye, Sheng

    2014-10-01

    Skewed CD8(+) T cell responses are important in airway inflammation. This study investigates the role of the airway epithelial cell-derived insulin-like growth factor 1 (IGF1) in contributing to CD8(+) T cell polarization. Expression of IGF1 in the airway epithelial cell line, RPMI2650 cells, was assessed by quantitative real time RT-PCR and Western blotting. The role of IGF1 in regulating CD8(+) T cell activation was observed by coculture of mite allergen-primed RPMI2650 cells and naïve CD8(+) T cells. CD8(+) T cell polarization was assessed by the carboxyfluorescein succinimidyl ester-dilution assay and the determination of cytotoxic cytokine levels in the culture medium. Exposure to mite allergen, Der p1, increased the expression of IGF1 by RPMI2650 cells. The epithelial cell-derived IGF1 prevented the activation-induced cell death by inducing the p53 gene hypermethylation. Mite allergen-primed RPMI2650 cells induced an antigen-specific CD8(+) T cell polarization. We conclude that mite allergens induce airway epithelial cell line, RPMI2650 cells, to produce IGF1; the latter contributes to antigen-specific CD8(+) T cell polarization. © 2014 International Federation for Cell Biology.

  5. Cell shape, spreading symmetry, and the polarization of stress-fibers in cells

    Energy Technology Data Exchange (ETDEWEB)

    Zemel, A [Institute of Dental Sciences, Faculty of Dental Medicine, and the Fritz Haber Center for Molecular Dynamics, Hebrew University-Hadassah Medical Center, Jerusalem, 91120 (Israel); Rehfeldt, F [III. Physikalisches Institut, Georg-August-Universitaet, 37077 Goettingen (Germany); Brown, A E X [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Discher, D E [Graduate Group of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Safran, S A [Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2010-05-19

    The active regulation of cellular forces during cell adhesion plays an important role in the determination of cell size, shape, and internal structure. While on flat, homogeneous and isotropic substrates some cells spread isotropically, others spread anisotropically and assume elongated structures. In addition, in their native environment as well as in vitro experiments, the cell shape and spreading asymmetry can be modulated by the local distribution of adhesive molecules and topography of the environment. We present a simple elastic model and experiments on stem cells to explain the variation of cell size with the matrix rigidity. In addition, we predict the experimental consequences of two mechanisms of acto-myosin polarization and focus here on the effect of the cell spreading asymmetry on the regulation of the stress-fiber alignment in the cytoskeleton. We show that when cell spreading is sufficiently asymmetric the alignment of acto-myosin forces in the cell increases monotonically with the matrix rigidity; however, in general this alignment is non-monotonic, as shown previously. These results highlight the importance of the symmetry characteristics of cell spreading in the regulation of cytoskeleton structure and suggest a mechanism by which different cell types may acquire different morphologies and internal structures in different mechanical environments.

  6. Polarization splitting phenomenon of photonic crystals constructed by two-fold rotationally symmetric unit-cells

    Science.gov (United States)

    Yasa, U. G.; Giden, I. H.; Turduev, M.; Kurt, H.

    2017-09-01

    We present an intrinsic polarization splitting characteristic of low-symmetric photonic crystals (PCs) formed by unit-cells with C 2 rotational symmetry. This behavior emerges from the polarization sensitive self-collimation effect for both transverse-magnetic (TM) and transverse-electric (TE) modes depending on the rotational orientations of the unit-cell elements. Numerical analyzes are performed in both frequency and time domains for different types of square lattice two-fold rotational symmetric PC structures. At incident wavelength of λ = 1550 nm, high polarization extinction ratios with ˜26 dB (for TE polarization) and ˜22 dB (for TM polarization) are obtained with an operating bandwidth of 59 nm. Moreover, fabrication feasibilities of the designed structure are analyzed to evaluate their robustness in terms of the unit-cell orientation: for the selected PC unit-cell composition, corresponding extinction ratios for both polarizations still remain to be over 18 dB for the unit-cell rotation interval of θ = [40°-55°]. Taking all these advantages, two-fold rotationally symmetric PCs could be considered as an essential component in photonic integrated circuits for polarization control of light.

  7. Signaling pathways regulating red blood cell aggregation.

    Science.gov (United States)

    Muravyov, Alexei; Tikhomirova, Irina

    2014-01-01

    The exposure of red blood cells (RBC) to some hormones (epinephrine, insulin and glucagon) and agonists of α- and β-adrenergic receptors (phenylephrine, clonidine and isoproterenol) may modify RBC aggregation (RBCA). Prostaglandin E1 (PGE1) significantly decreased RBCA, and PGE2 had a similar but lesser effect. Adenylyl cyclase (AC) stimulator forskolin added to RBC suspension, caused a decrease of RBCA. More marked lowering of RBCA occurred after RBC treatment by dB-cAMP. Phosphodiesterase (PDE) inhibitors markedly reduced RBCA. Ca2+ influx stimulated by A23187 was accompanied by an increase of RBCA. The blocking of Ca2+ entry into the RBC by verapamil or the chelation of Ca2+ by EGTA led to a significant RBCA decrease. Lesser changes of aggregation were found after RBC incubation with protein kinase C stimulator phorbol 12-myristate 13-acetate (PMA). A significant inhibitory effect of tyrosine protein kinase (TPK) activator cisplatin on RBCA was revealed, while selective TPK inhibitor, lavendustin, eliminated the above mentioned effect. Taken together, the data demonstrate that changes in RBCA are connected with activation of different intracellular signaling pathways. We suggest that alterations in RBCA are mainly associated with the crosstalk between the adenylyl cyclase-cAMP system and Ca2+ control mechanisms.

  8. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine

    NARCIS (Netherlands)

    Klunder, Leon J.; Faber, Klaas Nico; Dijkstra, Gerard; van IJzendoorn, Sven C. D.

    Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we

  9. Concomitant use of polarization and positive phase contrast microscopy for the study of microbial cells

    Czech Academy of Sciences Publication Activity Database

    Žižka, Zdeněk; Gabriel, Jiří

    2015-01-01

    Roč. 60, č. 6 (2015), s. 545-550 ISSN 0015-5632 Institutional support: RVO:61388971 Keywords : polarization microscopy * microbial cells * positive phase contrast Subject RIV: EE - Microbiology, Virology Impact factor: 1.335, year: 2015

  10. Glycosynapses: microdomains controlling carbohydrate-dependent cell adhesion and signaling

    Directory of Open Access Journals (Sweden)

    Senitiroh Hakomori

    2004-09-01

    Full Text Available The concept of microdomains in plasma membranes was developed over two decades, following observation of polarity of membrane based on clustering of specific membrane components. Microdomains involved in carbohydrate-dependent cell adhesion with concurrent signal transduction that affect cellular phenotype are termed "glycosynapse". Three types of glycosynapse have been distinguished: "type 1" having glycosphingolipid associated with signal transducers (small G-proteins, cSrc, Src family kinases and proteolipids; "type 2" having O-linked mucin-type glycoprotein associated with Src family kinases; and "type 3" having N-linked integrin receptor complexed with tetraspanin and ganglioside. Different cell types are characterized by presence of specific types of glycosynapse or their combinations, whose adhesion induces signal transduction to either facilitate or inhibit signaling. E.g., signaling through type 3 glycosynapse inhibits cell motility and differentiation. Glycosynapses are distinct from classically-known microdomains termed "caveolae", "caveolar membrane", or more recently "lipid raft", which are not involved in carbohydrate-dependent cell adhesion. Type 1 and type 3 glycosynapses are resistant to cholesterol-binding reagents, whereas structure and function of "caveolar membrane" or "lipid raft" are disrupted by these reagents. Various data indicate a functional role of glycosynapses during differentiation, development, and oncogenic transformation.O conceito de microdomínios em membrana plasmática foi desenvolvido há mais de duas décadas, após a observação da polaridade da membrana baseada no agrupamento de componentes específicos da membrana. Microdomínios envolvidos na adesão celular dependente de carboidrato, com transdução de sinal que afeta o fenótipo celular são denominados ''glicosinapses''. Três tipos de glicosinapse foram observados: ''tipo 1'' que possue glicoesfingolipídio associado com transdutores de sinal

  11. Decoding Signal Processing at the Single-Cell Level

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, H. Steven

    2017-12-01

    The ability of cells to detect and decode information about their extracellular environment is critical to generating an appropriate response. In multicellular organisms, cells must decode dozens of signals from their neighbors and extracellular matrix to maintain tissue homeostasis while still responding to environmental stressors. How cells detect and process information from their surroundings through a surprisingly limited number of signal transduction pathways is one of the most important question in biology. Despite many decades of research, many of the fundamental principles that underlie cell signal processing remain obscure. However, in this issue of Cell Systems, Gillies et al present compelling evidence that the early response gene circuit can act as a linear signal integrator, thus providing significant insight into how cells handle fluctuating signals and noise in their environment.

  12. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine.

    Science.gov (United States)

    Klunder, Leon J; Faber, Klaas Nico; Dijkstra, Gerard; van IJzendoorn, Sven C D

    2017-07-05

    Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we highlight recent advances with regard to the molecular mechanisms of cell polarity-controlled epithelial homeostasis and immunity in the human intestine. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  13. Negative signaling in B cells: SHIP Grbs Shc.

    Science.gov (United States)

    Tridandapani, S; Kelley, T; Cooney, D; Pradhan, M; Coggeshall, K M

    1997-09-01

    Negative signaling in B cells is initiated by co-crosslinking of the antigen receptor and the Fcy receptor, resulting in cessation of B-cell signaling events and, in turn, inhibiting B-cell proliferation and antibody secretion. Here, a competitive role is proposed for SHIP in blocking the interaction of Shc with the Grb2-Sos complex of proteins that lead to Ras activation in B cells.

  14. Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Yingying; Li, Xiaoxue; Bai, Yunyun [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); Lv, Xiaonan [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience & Technology of China, Beijing 100090 (China); Herrler, Georg [Institute for Virology, University of Veterinary Medicine, Hannover D-30559 (Germany); Enjuanes, Luis [Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid (Spain); Zhou, Xingdong [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); Qu, Bo [Faculty of Life Sciences, Northeast Agricultural University, Harbin 150030 (China); Meng, Fandan [Institute for Virology, University of Veterinary Medicine, Hannover D-30559 (Germany); Cong, Chengcheng [College Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110161 (China); Ren, Xiaofeng; Li, Guangxing [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China)

    2015-04-15

    Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus released into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. - Highlights: • PEDV infection of polarized intestinal epithelial cells (IECs) was characterized. • Porcine aminpeptidase N (pAPN) facilitated PEDV infection in IECs. • PEDV entry into and release from polarized cell via its apical membrane. • PEDV infection may proceed by lateral spread of virus in IECs.

  15. Signaling for synergistic activation of natural killer cells.

    Science.gov (United States)

    Kwon, Hyung-Joon; Kim, Hun Sik

    2012-12-01

    Natural killer (NK) cells play a pivotal role in early surveillance against virus infection and cellular transformation, and are also implicated in the control of inflammatory response through their effector functions of direct lysis of target cells and cytokine secretion. NK cell activation toward target cell is determined by the net balance of signals transmitted from diverse activating and inhibitory receptors. A distinct feature of NK cell activation is that stimulation of resting NK cells with single activating receptor on its own cannot mount natural cytotoxicity. Instead, specific pairs of co-activation receptors are required to unleash NK cell activation via synergy-dependent mechanism. Because each co-activation receptor uses distinct signaling modules, NK cell synergy relies on the integration of such disparate signals. This explains why the study of the mechanism underlying NK cell synergy is important and necessary. Recent studies revealed that NK cell synergy depends on the integration of complementary signals converged at a critical checkpoint element but not on simple amplification of the individual signaling to overcome intrinsic activation threshold. This review focuses on the signaling events during NK cells activation and recent advances in the study of NK cell synergy.

  16. Harmful intrusion detection algorithm of optical fiber pre-warning system based on correlation of orthogonal polarization signals

    Science.gov (United States)

    Bi, Fukun; Feng, Chong; Qu, Hongquan; Zheng, Tong; Wang, Chonglei

    2017-09-01

    At present, advanced researches of optical fiber intrusion measurement are based on the constant false alarm rate (CFAR) algorithm. Although these conventional methods overcome the interference of non-stationary random signals, there are still a large number of false alarms in practical applications. This is because there is no specific study on orthogonal polarization signals of false alarm and intrusion. In order to further reduce false alarms, we analyze the correlation of optical fiber signals using birefringence of single-mode fiber. This paper proposes the harmful intrusion detection algorithm based on the correlation of two orthogonal polarization signals. The proposed method uses correlation coefficient to distinguish false alarms and intrusions, which can decrease false alarms. Experiments on real data, which are collected from the practical environment, demonstrate that the difference in correlation is a robust feature. Furthermore, the results show that the proposed algorithm can reduce the false alarms and ensure the detection performance when it is used in optical fiber pre-warning system (OFPS).

  17. Vertebrate kidney tubules elongate using a planar cell polarity-dependent, rosette-based mechanism of convergent extension.

    Science.gov (United States)

    Lienkamp, Soeren S; Liu, Kun; Karner, Courtney M; Carroll, Thomas J; Ronneberger, Olaf; Wallingford, John B; Walz, Gerd

    2012-12-01

    Cystic kidney diseases are a global public health burden, affecting over 12 million people. Although much is known about the genetics of kidney development and disease, the cellular mechanisms driving normal kidney tubule elongation remain unclear. Here, we used in vivo imaging to show for the first time that mediolaterally oriented cell intercalation is fundamental to vertebrate kidney morphogenesis. Unexpectedly, we found that kidney tubule elongation is driven in large part by a myosin-dependent, multicellular rosette-based mechanism, previously only described in Drosophila melanogaster. In contrast to findings in Drosophila, however, non-canonical Wnt and planar cell polarity (PCP) signaling is required to control rosette topology and orientation during vertebrate kidney tubule elongation. These data resolve long-standing questions concerning the role of PCP signaling in the developing kidney and, moreover, establish rosette-based intercalation as a deeply conserved cellular engine for epithelial morphogenesis.

  18. Bioinspired Polarization Imaging Sensors: From Circuits and Optics to Signal Processing Algorithms and Biomedical Applications: Analysis at the focal plane emulates nature's method in sensors to image and diagnose with polarized light.

    Science.gov (United States)

    York, Timothy; Powell, Samuel B; Gao, Shengkui; Kahan, Lindsey; Charanya, Tauseef; Saha, Debajit; Roberts, Nicholas W; Cronin, Thomas W; Marshall, Justin; Achilefu, Samuel; Lake, Spencer P; Raman, Baranidharan; Gruev, Viktor

    2014-10-01

    In this paper, we present recent work on bioinspired polarization imaging sensors and their applications in biomedicine. In particular, we focus on three different aspects of these sensors. First, we describe the electro-optical challenges in realizing a bioinspired polarization imager, and in particular, we provide a detailed description of a recent low-power complementary metal-oxide-semiconductor (CMOS) polarization imager. Second, we focus on signal processing algorithms tailored for this new class of bioinspired polarization imaging sensors, such as calibration and interpolation. Third, the emergence of these sensors has enabled rapid progress in characterizing polarization signals and environmental parameters in nature, as well as several biomedical areas, such as label-free optical neural recording, dynamic tissue strength analysis, and early diagnosis of flat cancerous lesions in a murine colorectal tumor model. We highlight results obtained from these three areas and discuss future applications for these sensors.

  19. Diffusion wave and signal transduction in biological live cells

    OpenAIRE

    Fan, Tian You; Fan, Lei

    2012-01-01

    Transduction of mechanical stimuli into biochemical signals is a fundamental subject for cell physics. In the experiments of FRET signal in cells a wave propagation in nanoscope was observed. We here develop a diffusion wave concept and try to give an explanation to the experimental observation. The theoretical prediction is in good agreement to result of the experiment.

  20. The viral spike protein is not involved in the polarized sorting of coronaviruses in epithelial cells

    NARCIS (Netherlands)

    Horzinek, M.C.; Rossen, J.W.A.; Beer, R. de; Godeke, G.J.; Raamsman, M.J.; Vennema, H.; Rottier, P.J.M.

    1998-01-01

    Coronaviruses are assembled by budding into a pre-Golgi compartment from which they are transported along the secretory pathway to leave the cell. In cultured epithelial cells, they are released in a polarized fashion; depending on the virus and cell type, they are sorted preferentially either to

  1. Anti-inflammatory effect of stem cells against spinal cord injury via regulating macrophage polarization

    Directory of Open Access Journals (Sweden)

    Cheng ZJ

    2017-02-01

    Full Text Available Zhijian Cheng, Xijing He Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China Abstract: Spinal cord injury (SCI is a traumatic event that involves not just an acute physical injury but also inflammation-driven secondary injury. Macrophages play a very important role in secondary injury. The effects of macrophages on tissue damage and repair after SCI are related to macrophage polarization. Stem cell transplantation has been studied as a promising treatment for SCI. Recently, increasing evidence shows that stem cells, including mesenchymal stem, neural stem/progenitor, and embryonic stem cells, have an anti-inflammatory capacity and promote functional recovery after SCI by inducing macrophages M1/M2 phenotype transformation. In this review, we will discuss the role of stem cells on macrophage polarization and its role in stem cell-based therapies for SCI. Keywords: stem cells, macrophages, spinal cord injury, polarization

  2. n3 PUFAs reduce mouse CD4+ T-cell ex vivo polarization into Th17 cells.

    Science.gov (United States)

    Monk, Jennifer M; Hou, Tim Y; Turk, Harmony F; McMurray, David N; Chapkin, Robert S

    2013-09-01

    Little is known about the impact of n3 (ω3) PUFAs on polarization of CD4(+) T cells into effector subsets other than Th1 and Th2. We assessed the effects of dietary fat [corn oil (CO) vs. fish oil (FO)] and fermentable fiber [cellulose (C) vs. pectin (P)] (2 × 2 design) in male C57BL/6 mice fed CO-C, CO-P, FO-C, or FO-P diets for 3 wk on the ex vivo polarization of purified splenic CD4(+) T cells (using magnetic microbeads) into regulatory T cells [Tregs; forkhead box P3 (Foxp3(+)) cells] or Th17 cells [interleukin (IL)-17A(+) and retinoic acid receptor-related orphan receptor (ROR) γτ(+) cells] by flow cytometry. Treg polarization was unaffected by diet; however, FO independently reduced the percentage of both CD4(+) IL-17A(+) (P diets enriched in eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or DHA + EPA similarly reduced Th17-cell polarization in comparison to CO by reducing expression of the Th17-cell signature cytokine (IL-17A; P = 0.0015) and transcription factor (RORγτ P = 0.02), whereas Treg polarization was unaffected. Collectively, these data show that n3 PUFAs exert a direct effect on the development of Th17 cells in healthy mice, implicating a novel n3 PUFA-dependent, anti-inflammatory mechanism of action via the suppression of the initial development of this inflammatory T-cell subset.

  3. Differential effects of Mycobacterium bovis - derived polar and apolar lipid fractions on bovine innate immune cells

    Directory of Open Access Journals (Sweden)

    Pirson Chris

    2012-06-01

    Full Text Available Abstract Mycobacterial lipids have long been known to modulate the function of a variety of cells of the innate immune system. Here, we report the extraction and characterisation of polar and apolar free lipids from Mycobacterium bovis AF 2122/97 and identify the major lipids present in these fractions. Lipids found included trehalose dimycolate (TDM and trehalose monomycolate (TMM, the apolar phthiocerol dimycocersates (PDIMs, triacyl glycerol (TAG, pentacyl trehalose (PAT, phenolic glycolipid (PGL, and mono-mycolyl glycerol (MMG. Polar lipids identified included glucose monomycolate (GMM, diphosphatidyl glycerol (DPG, phenylethanolamine (PE and a range of mono- and di-acylated phosphatidyl inositol mannosides (PIMs. These lipid fractions are capable of altering the cytokine profile produced by fresh and cultured bovine monocytes as well as monocyte derived dendritic cells. Significant increases in the production of IL-10, IL-12, MIP-1β, TNFα and IL-6 were seen after exposure of antigen presenting cells to the polar lipid fraction. Phenotypic characterisation of the cells was performed by flow cytometry and significant decreases in the expression of MHCII, CD86 and CD1b were found after exposure to the polar lipid fraction. Polar lipids also significantly increased the levels of CD40 expressed by monocytes and cultured monocytes but no effect was seen on the constitutively high expression of CD40 on MDDC or on the levels of CD80 expressed by any of the cells. Finally, the capacity of polar fraction treated cells to stimulate alloreactive lymphocytes was assessed. Significant reduction in proliferative activity was seen after stimulation of PBMC by polar fraction treated cultured monocytes whilst no effect was seen after lipid treatment of MDDC. These data demonstrate that pathogenic mycobacterial polar lipids may significantly hamper the ability of the host APCs to induce an appropriate immune response to an invading pathogen.

  4. Human β-Cell Proliferation and Intracellular Signaling: Part 3

    Science.gov (United States)

    Hussain, Mehboob A.; García-Ocaña, Adolfo; Vasavada, Rupangi C.; Bhushan, Anil; Bernal-Mizrachi, Ernesto

    2015-01-01

    This is the third in a series of Perspectives on intracellular signaling pathways coupled to proliferation in pancreatic β-cells. We contrast the large knowledge base in rodent β-cells with the more limited human database. With the increasing incidence of type 1 diabetes and the recognition that type 2 diabetes is also due in part to a deficiency of functioning β-cells, there is great urgency to identify therapeutic approaches to expand human β-cell numbers. Therapeutic approaches might include stem cell differentiation, transdifferentiation, or expansion of cadaver islets or residual endogenous β-cells. In these Perspectives, we focus on β-cell proliferation. Past Perspectives reviewed fundamental cell cycle regulation and its upstream regulation by insulin/IGF signaling via phosphatidylinositol-3 kinase/mammalian target of rapamycin signaling, glucose, glycogen synthase kinase-3 and liver kinase B1, protein kinase Cζ, calcium-calcineurin–nuclear factor of activated T cells, epidermal growth factor/platelet-derived growth factor family members, Wnt/β-catenin, leptin, and estrogen and progesterone. Here, we emphasize Janus kinase/signal transducers and activators of transcription, Ras/Raf/extracellular signal–related kinase, cadherins and integrins, G-protein–coupled receptors, and transforming growth factor β signaling. We hope these three Perspectives will serve to introduce these pathways to new researchers and will encourage additional investigators to focus on understanding how to harness key intracellular signaling pathways for therapeutic human β-cell regeneration for diabetes. PMID:25999530

  5. Inhibition of Wnt Signaling Pathways Impairs Chlamydia trachomatis Infection in Endometrial Epithelial Cells.

    Science.gov (United States)

    Kintner, Jennifer; Moore, Cheryl G; Whittimore, Judy D; Butler, Megan; Hall, Jennifer V

    2017-01-01

    Chlamydia trachomatis infections represent the predominant cause of bacterial sexually transmitted infections. As an obligate intracellular bacterium, C. trachomatis is dependent on the host cell for survival, propagation, and transmission. Thus, factors that affect the host cell, including nutrition, cell cycle, and environmental signals, have the potential to impact chlamydial development. Previous studies have demonstrated that activation of Wnt/β-catenin signaling benefits C. trachomatis infections in fallopian tube epithelia. In cervical epithelial cells chlamydiae sequester β-catenin within the inclusion. These data indicate that chlamydiae interact with the Wnt signaling pathway in both the upper and lower female genital tract (FGT). However, hormonal activation of canonical and non-canonical Wnt signaling pathways is an essential component of cyclic remodeling in another prominent area of the FGT, the endometrium. Given this information, we hypothesized that Wnt signaling would impact chlamydial infection in endometrial epithelial cells. To investigate this hypothesis, we analyzed the effect of Wnt inhibition on chlamydial inclusion development and elementary body (EB) production in two endometrial cell lines, Ishikawa (IK) and Hec-1B, in nonpolarized cell culture and in a polarized endometrial epithelial (IK)/stromal (SHT-290) cell co-culture model. Inhibition of Wnt by the small molecule inhibitor (IWP2) significantly decreased inclusion size in IK and IK/SHT-290 cultures ( p Wnt inhibition caused chlamydiae to become aberrant in morphology. EB formation was also impaired in IK, Hec-1B and IK/SHT-290 cultures regardless of whether Wnt inhibition occurred throughout, in the middle (24 hpi) or late (36 hpi) during the development cycle. Overall, these data lead us to conclude that Wnt signaling in the endometrium is a key host pathway for the proper development of C. trachomatis .

  6. Deregulation of Interferon Signaling in Malignant Cells

    Directory of Open Access Journals (Sweden)

    Leonidas C. Platanias

    2010-02-01

    Full Text Available Interferons (IFNs are a family of cytokines with potent antiproliferative, antiviral, and immunomodulatory properties. Much has been learned about IFNs and IFN-activated signaling cascades over the last 50 years. Due to their potent antitumor effects in vitro and in vivo, recombinant IFNs have been used extensively over the years, alone or in combination with other drugs, for the treatment of various malignancies. This review summarizes the current knowledge on IFN signaling components and pathways that are deregulated in human malignancies. The relevance of deregulation of IFN signaling pathways in defective innate immune surveillance and tumorigenesis are discussed.

  7. Compressive Parameter Estimation for Sparse Translation-Invariant Signals Using Polar Interpolation

    DEFF Research Database (Denmark)

    Fyhn, Karsten; Duarte, Marco F.; Jensen, Søren Holdt

    2015-01-01

    We propose new compressive parameter estimation algorithms that make use of polar interpolation to improve the estimator precision. Our work extends previous approaches involving polar interpolation for compressive parameter estimation in two aspects: (i) we extend the formulation from real non...... to attain good estimation precision and keep the computational complexity low. Our numerical experiments show that the proposed algorithms outperform existing approaches that either leverage polynomial interpolation or are based on a conversion to a frequency-estimation problem followed by a super...... interpolation increases the estimation precision....

  8. The keratin-binding protein Albatross regulates polarization of epithelial cells.

    Science.gov (United States)

    Sugimoto, Masahiko; Inoko, Akihito; Shiromizu, Takashi; Nakayama, Masanori; Zou, Peng; Yonemura, Shigenobu; Hayashi, Yuko; Izawa, Ichiro; Sasoh, Mikio; Uji, Yukitaka; Kaibuchi, Kozo; Kiyono, Tohru; Inagaki, Masaki

    2008-10-06

    The keratin intermediate filament network is abundant in epithelial cells, but its function in the establishment and maintenance of cell polarity is unclear. Here, we show that Albatross complexes with Par3 to regulate formation of the apical junctional complex (AJC) and maintain lateral membrane identity. In nonpolarized epithelial cells, Albatross localizes with keratin filaments, whereas in polarized epithelial cells, Albatross is primarily localized in the vicinity of the AJC. Knockdown of Albatross in polarized cells causes a disappearance of key components of the AJC at cell-cell borders and keratin filament reorganization. Lateral proteins E-cadherin and desmoglein 2 were mislocalized even on the apical side. Although Albatross promotes localization of Par3 to the AJC, Par3 and ezrin are still retained at the apical surface in Albatross knockdown cells, which retain intact microvilli. Analysis of keratin-deficient epithelial cells revealed that keratins are required to stabilize the Albatross protein, thus promoting the formation of AJC. We propose that keratins and the keratin-binding protein Albatross are important for epithelial cell polarization.

  9. Planar polarity pathway and Nance-Horan syndrome-like 1b have essential cell-autonomous functions in neuronal migration.

    Science.gov (United States)

    Walsh, Gregory S; Grant, Paul K; Morgan, John A; Moens, Cecilia B

    2011-07-01

    Components of the planar cell polarity (PCP) pathway are required for the caudal tangential migration of facial branchiomotor (FBM) neurons, but how PCP signaling regulates this migration is not understood. In a forward genetic screen, we identified a new gene, nhsl1b, required for FBM neuron migration. nhsl1b encodes a WAVE-homology domain-containing protein related to human Nance-Horan syndrome (NHS) protein and Drosophila GUK-holder (Gukh), which have been shown to interact with components of the WAVE regulatory complex that controls cytoskeletal dynamics and with the polarity protein Scribble, respectively. Nhsl1b localizes to FBM neuron membrane protrusions and interacts physically and genetically with Scrib to control FBM neuron migration. Using chimeric analysis, we show that FBM neurons have two modes of migration: one involving interactions between the neurons and their planar-polarized environment, and an alternative, collective mode involving interactions between the neurons themselves. We demonstrate that the first mode of migration requires the cell-autonomous functions of Nhsl1b and the PCP components Scrib and Vangl2 in addition to the non-autonomous functions of Scrib and Vangl2, which serve to polarize the epithelial cells in the environment of the migrating neurons. These results define a role for Nhsl1b as a neuronal effector of PCP signaling and indicate that proper FBM neuron migration is directly controlled by PCP signaling between the epithelium and the migrating neurons.

  10. Manipulating cell signaling with subcellular spatial resolution

    Czech Academy of Sciences Publication Activity Database

    Yushchenko, Dmytro A.; Nadler, A.; Schultz, C.

    2016-01-01

    Roč. 15, č. 8 (2016), s. 1023-1024 ISSN 1538-4101 Institutional support: RVO:61388963 Keywords : arachidonic acid * caging group * insulin secretion * photorelease * signaling lipids Subject RIV: CE - Biochemistry Impact factor: 3.530, year: 2016

  11. Classification of cell signalling in tissue development.

    Science.gov (United States)

    Platt, Craig Charles; Nicholls, Clare; Brookes, Chris; Wood, Ian

    2011-02-01

    The traditional classification of signalling in biological systems is insufficient and outdated and novel efforts must take into account advances in systems theory, information theory and linguistics. We present some of the classification systems currently used both within and outside of the biological field and discuss some specific aspects of the nature of signalling in tissue development. The analytical methods used in understanding non-biological networks provide a valuable vocabulary, which requires integration and a system of classification to further facilitate development.

  12. Are Molecular Vibration Patterns of Cell Structural Elements Used for Intracellular Signalling?

    Science.gov (United States)

    Jaross, Werner

    2016-01-01

    To date the manner in which information reaches the nucleus on that part within the three-dimensional structure where specific restorative processes of structural components of the cell are required is unknown. The soluble signalling molecules generated in the course of destructive and restorative processes communicate only as needed. All molecules show temperature-dependent molecular vibration creating a radiation in the infrared region. Each molecule species has in its turn a specific frequency pattern under given specific conditions. Changes in their structural composition result in modified frequency patterns of the molecules in question. The main structural elements of the cell membrane, of the endoplasmic reticulum, of the Golgi apparatus, and of the different microsomes representing the great variety of polar lipids show characteristic frequency patterns with peaks in the region characterised by low water absorption. These structural elements are very dynamic, mainly caused by the creation of signal molecules and transport containers. By means of the characteristic radiation, the area where repair or substitution services are needed could be identified; this spatial information complements the signalling of the soluble signal molecules. Based on their resonance properties receptors located on the outer leaflet of the nuclear envelope should be able to read typical frequencies and pass them into the nucleus. Clearly this physical signalling must be blocked by the cell membrane to obviate the flow of information into adjacent cells. If the hypothesis can be proved experimentally, it should be possible to identify and verify characteristic infrared frequency patterns. The application of these signal frequencies onto cells would open entirely new possibilities in medicine and all biological disciplines specifically to influence cell growth and metabolism. Similar to this intracellular system, an extracellular signalling system with many new therapeutic options

  13. Guard Cell Signal Transduction Network: Advances in Understanding Abscisic Acid, CO2, and Ca2+ Signaling

    KAUST Repository

    Kim, Tae-Houn

    2010-05-04

    Stomatal pores are formed by pairs of specialized epidermal guard cells and serve as major gateways for both CO2 influx into plants from the atmosphere and transpirational water loss of plants. Because they regulate stomatal pore apertures via integration of both endogenous hormonal stimuli and environmental signals, guard cells have been highly developed as a model system to dissect the dynamics and mechanisms of plant-cell signaling. The stress hormone ABA and elevated levels of CO2 activate complex signaling pathways in guard cells that are mediated by kinases/phosphatases, secondary messengers, and ion channel regulation. Recent research in guard cells has led to a new hypothesis for how plants achieve specificity in intracellular calcium signaling: CO2 and ABA enhance (prime) the calcium sensitivity of downstream calcium-signaling mechanisms. Recent progress in identification of early stomatal signaling components are reviewed here, including ABA receptors and CO2-binding response proteins, as well as systems approaches that advance our understanding of guard cell-signaling mechanisms.

  14. Inositol Trisphosphate-Induced Ca2+ Signaling Modulates Auxin Transport and PIN Polarity

    Czech Academy of Sciences Publication Activity Database

    Zhang, J.; Vanneste, S.; Brewer, P. B.; Michniewicz, M.; Grones, P.; Kleine-Vehn, J.; Löfke, Ch.; Teichmann, T.; Bielach, A.; Cannoot, B.; Hoyerová, Klára; Chen, X.; Xue, H. W.; Benková, E.; Zažímalová, Eva; Friml, J.

    2011-01-01

    Roč. 20, č. 6 (2011), s. 855-866 ISSN 1534-5807 Institutional research plan: CEZ:AV0Z50380511 Keywords : PIN polarity * auxin distribution * Inositol trisphosphate Subject RIV: ED - Physiology Impact factor: 14.030, year: 2011

  15. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division.

    Science.gov (United States)

    Dumont, Nicolas A; Wang, Yu Xin; von Maltzahn, Julia; Pasut, Alessandra; Bentzinger, C Florian; Brun, Caroline E; Rudnicki, Michael A

    2015-12-01

    Dystrophin is expressed in differentiated myofibers, in which it is required for sarcolemmal integrity, and loss-of-function mutations in the gene that encodes it result in Duchenne muscular dystrophy (DMD), a disease characterized by progressive and severe skeletal muscle degeneration. Here we found that dystrophin is also highly expressed in activated muscle stem cells (also known as satellite cells), in which it associates with the serine-threonine kinase Mark2 (also known as Par1b), an important regulator of cell polarity. In the absence of dystrophin, expression of Mark2 protein is downregulated, resulting in the inability to localize the cell polarity regulator Pard3 to the opposite side of the cell. Consequently, the number of asymmetric divisions is strikingly reduced in dystrophin-deficient satellite cells, which also display a loss of polarity, abnormal division patterns (including centrosome amplification), impaired mitotic spindle orientation and prolonged cell divisions. Altogether, these intrinsic defects strongly reduce the generation of myogenic progenitors that are needed for proper muscle regeneration. Therefore, we conclude that dystrophin has an essential role in the regulation of satellite cell polarity and asymmetric division. Our findings indicate that muscle wasting in DMD not only is caused by myofiber fragility, but also is exacerbated by impaired regeneration owing to intrinsic satellite cell dysfunction.

  16. Nonimmune cells equipped with T-cell-receptor-like signaling for cancer cell ablation.

    Science.gov (United States)

    Kojima, Ryosuke; Scheller, Leo; Fussenegger, Martin

    2018-01-01

    The ability to engineer custom cell-contact-sensing output devices into human nonimmune cells would be useful for extending the applicability of cell-based cancer therapies and for avoiding risks associated with engineered immune cells. Here we have developed a new class of synthetic T-cell receptor-like signal-transduction device that functions efficiently in human nonimmune cells and triggers release of output molecules specifically upon sensing contact with a target cell. This device employs an interleukin signaling cascade, whose OFF/ON switching is controlled by biophysical segregation of a transmembrane signal-inhibitory protein from the sensor cell-target cell interface. We further show that designer nonimmune cells equipped with this device driving expression of a membrane-penetrator/prodrug-activating enzyme construct could specifically kill target cells in the presence of the prodrug, indicating its potential usefulness for target-cell-specific, cell-based enzyme-prodrug cancer therapy. Our study also contributes to the advancement of synthetic biology by extending available design principles to transmit extracellular information to cells.

  17. Signaling profiling at the single-cell level identifies a distinct signaling signature in murine hematopoietic stem cells.

    Science.gov (United States)

    Du, Juan; Wang, Jinyong; Kong, Guangyao; Jiang, Jing; Zhang, Jingfang; Liu, Yangang; Tong, Wei; Zhang, Jing

    2012-07-01

    Hematopoietic stem cell (HSC) function is tightly regulated by cytokine signaling. Although phospho-flow cytometry allows us to study signaling in defined populations of cells, there has been tremendous hurdle to carry out this study in rare HSCs due to unrecoverable critical HSC markers, low HSC number, and poor cell recovery rate. Here, we overcame these difficulties and developed a "HSC phospho-flow" method to analyze cytokine signaling in murine HSCs at the single-cell level and compare HSC signaling profile to that of multipotent progenitors (MPPs), a cell type immediately downstream of HSCs, and commonly used Lin(-) cKit(+) cells (LK cells, enriched for myeloid progenitors). We chose to study signaling evoked from three representative cytokines, stem cell factor (SCF) and thrombopoietin (TPO) that are essential for HSC function and granulocyte macrophage-colony-stimulating factor (GM-CSF) that is dispensable for HSCs. HSCs display a distinct TPO and GM-CSF signaling signature from MPPs and LK cells, which highly correlates with receptor surface expression. In contrast, although majority of LK cells express lower levels of cKit than HSCs and MPPs, SCF-evoked ERK1/2 activation in LK cells shows a significantly increased magnitude for a prolonged period. These results suggest that specific cellular context plays a more important role than receptor surface expression in SCF signaling. Our study of HSC signaling at the homeostasis stage paves the way to investigate signaling changes in HSCs under conditions of stress, aging, and hematopoietic diseases. Copyright © 2012 AlphaMed Press.

  18. Regulation of vascular endothelial cell polarization and migration by Hsp70/Hsp90-organizing protein.

    Science.gov (United States)

    Li, Jingyu; Sun, Xiaodong; Wang, Zaizhu; Chen, Li; Li, Dengwen; Zhou, Jun; Liu, Min

    2012-01-01

    Hsp70/Hsp90-organizing protein (HOP) is a member of the co-chaperone family, which directly binds to chaperones to regulate their activities. The participation of HOP in cell motility and endothelial cell functions remains largely unknown. In this study, we demonstrate that HOP is critically involved in endothelial cell migration and angiogenesis. Tube formation and capillary sprouting experiments reveal that depletion of HOP expression significantly inhibits vessel formation from endothelial cells. Wound healing and transwell migration assays show that HOP is important for endothelial cell migration. By examination of centrosome reorientation and membrane ruffle dynamics, we find that HOP plays a crucial role in the establishment of cell polarity in response to migratory stimulus. Furthermore, our data show that HOP interacts with tubulin and colocalizes with microtubules in endothelial cells. These findings indicate HOP as a novel regulator of angiogenesis that functions through promoting vascular endothelial cell polarization and migration.

  19. Intracellular trafficking and PIN-mediated cell polarity during tropic responses in plants.

    Science.gov (United States)

    Rakusová, Hana; Fendrych, Matyáš; Friml, Jiří

    2015-02-01

    Subcellular trafficking and cell polarity are basic cellular processes crucial for plant development including tropisms - directional growth responses to environmental stimuli such as light or gravity. Tropisms involve auxin gradient across the stimulated organ that underlies the differential cell elongation and bending. The perception of light or gravity is followed by changes in the polar, cellular distribution of the PIN auxin transporters. Such re-specification of polar trafficking pathways is a part of the mechanism, by which plants adjust their phenotype to environmental changes. Recent genetic and biochemical studies provided the important insights into mechanisms of PIN polarization during tropisms. In this review, we summarize the present state of knowledge on dynamic PIN repolarization and its specific regulations during hypocotyl tropisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Wnt signaling in the stem cell niche

    NARCIS (Netherlands)

    Rattis, Frédérique Marie; Voermans, Carlijn; Reya, Tannishtha

    2004-01-01

    All the cells present in the blood are derived from the hematopoietic stem cell (HSC). Because mature blood cells have a limited life span, HSCs must perpetuate themselves through self-renewal to maintain a functional hematopoietic compartment for the lifetime of an organism. This review focuses on

  1. Effect of III-nitride polarization on V{sub OC} in p-i-n and MQW solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Namkoong, Gon; Boland, Patrick; Foe, Kurniawan; Latimer, Kevin [Department of Electrical and Computer Engineering, Old Dominion University, Applied Research Center, 12050 Jefferson Avenue, Newport News, VA 23606 (United States); Bae, Si-Young; Shim, Jae-Phil; Lee, Dong-Seon [School of Information and Communications, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju 500-712 (Korea, Republic of); Jeon, Seong-Ran [Korea Photonics Technology Institute, 971-35, Wolchul-dong, Buk-gu, Gwangju, 500-779 (Korea, Republic of); Doolittle, W. Alan [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2011-02-15

    We performed detailed studies of the effect of polarization on III-nitride solar cells. Spontaneous and piezoelectric polarizations were assessed to determine their impacts upon the open circuit voltages (V{sub OC}) in p-i(InGaN)-n and multi-quantum well (MQW) solar cells. We found that the spontaneous polarization in Ga-polar p-i-n solar cells strongly modifies energy band structures and corresponding electric fields in a way that degrades V{sub OC} compared to non-polar p-i-n structures. In contrast, we found that piezoelectric polarization in Ga-polar MQW structures does not have a large influence on V{sub OC} compared to non-polar MQW structures. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Modulation of Dendritic Cell Activation and Subsequent Th1 Cell Polarization by Lidocaine

    Science.gov (United States)

    Chung, Yeonseok

    2015-01-01

    Dendritic cells play an essential role in bridging innate and adaptive immunity by recognizing cellular stress including pathogen- and damage-associated molecular patterns and by shaping the types of antigen-specific T cell immunity. Although lidocaine is widely used in clinical settings that trigger cellular stress, it remains unclear whether such treatment impacts the activation of innate immune cells and subsequent differentiation of T cells. Here we showed that lidocaine inhibited the production of IL–6, TNFα and IL–12 from dendritic cells in response to toll-like receptor ligands including lipopolysaccharide, poly(I:C) and R837 in a dose-dependent manner. Notably, the differentiation of Th1 cells was significantly suppressed by the addition of lidocaine while the same treatment had little effect on the differentiation of Th17, Th2 and regulatory T cells in vitro. Moreover, lidocaine suppressed the ovalbumin-specific Th1 cell responses in vivo induced by the adoptive transfer of ovalbumin-pulsed dendritic cells. These results demonstrate that lidocaine inhibits the activation of dendritic cells in response to toll-like receptor signals and subsequently suppresses the differentiation of Th1 cell responses. PMID:26445366

  3. Protein kinase C signaling and cell cycle regulation

    OpenAIRE

    Black, Adrian R.; Black, Jennifer D.

    2013-01-01

    A link between T cell proliferation and the protein kinase C (PKC) family of serine/threonine kinases has been recognized for about thirty years. However, despite the wealth of information on PKC-mediated control of T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. Th...

  4. Evidence for Nuclear Tensor Polarization of Deuterium Molecules in Storage Cells

    International Nuclear Information System (INIS)

    van den Brand, J.; Bulten, H.; Zhou, Z.; Unal, O.; van den Brand, J.; Ferro-Luzzi, M.; Botto, T.; Bouwhuis, M.; Heimberg, P.; de Jager, C.; de Lange, D.; Nooren, G.; Papadakis, N.; Passchier, I.; Poolman, H.; Steijger, J.; Vodinas, N.; de Vries, H.; van den Brand, J.; Ferro-Luzzi, M.; Lang, J.; Alarcon, R.; Dolfini, S.; Ent, R.; Higinbotham, D.

    1997-01-01

    Deuterium molecules were obtained by recombination, on a copper surface, of deuterium atoms prepared in specific hyperfine states. The molecules were stored for about 5ms in an open-ended cylindrical cell, placed in a 23mT magnetic field, and their tensor polarization was measured by elastic scattering of 704MeV electrons. The results of the measurements are consistent with the deuterium molecules retaining the tensor polarization of the initial atoms. copyright 1997 The American Physical Society

  5. Retinoic acid signalling in thymocytes regulates T cell development

    DEFF Research Database (Denmark)

    Wendland, Kerstin; Sitnik, Katarzyna Maria; Kotarsky, Knut

    further enhanced in recently generated CD69+ CD4+ SP cells. To address the potential biological significance of RA signaling in developing thymocytes, we evaluated T cell development in CD4Cre-dnRAR mice, where RA signaling is blocked in thymocytes from the CD4+CD8+ double positive (DP) stage onwards due...... precursor entry and/or survival. Furthermore, CD4Cre-dnRAR mice showed a 4-fold reduction in CD4+/CD8+ SP ratio that was mainly due to enhanced accumulation of mature CD8+ SP cells, indicating that RA signaling may be directly involved in regulating thymic retention and/or post-selection expansion...

  6. Tropospheric entrainment as a source of ground level aerosols within the polar Antarctic cell

    Science.gov (United States)

    Humphries, R. S.; Schofield, R.; Keywood, M.; Wilson, S. R.; Klekociuk, A. R.; Paton-Walsh, C.

    2013-12-01

    The Antarctic region is a pristine environment without any significant anthropogenic influence. Measurements of aerosols in this environment therefore allow the study of natural aerosol properties and formation mechanisms in polar conditions, and also allow insight into polar atmospheric dynamics. Measurements in this region have been limited primarily to continental and coastal locations where permanent stations exist, with only one other measurement campaign passing through the sea ice region. The MAPS campaign (Measurements of Aerosols and Precursors during SIPEXII) occurred as part of SIPEX II (Sea Ice Physics and Ecosystems eXperiment II) voyage in Spring, 2012, and produced the first sea-ice focused aerosol dataset aimed at characterizing new particle formation processes in the pack ice off the coast of East Antarctica (~65°S, 120°E). Numerous atmospheric parameters and species were measured, including the number of aerosol particles in the 3-10 nm size range, the range associated with new particle formation. During the latitudinal transect through the sea ice, these measurements were used to identify the polar front - the boundary between the Polar cell and the Ferrel cell. Nuclei concentrations showed a clear and sudden change with latitude, averaging 51cm-3 north of the front in the Ferrel cell, and 766 cm-3 south of the front, in the Polar cell region. The latitudinal location of the polar front was also confirmed by wind directions which reflected global circulation patterns (Ferrel cell westerlies and Polar cell easterlies). Background aerosol populations in the Polar cell fluctuated significantly (3-10 nm particle concentrations ranged between 153 cm-3 to 2312 cm-3) but displayed no growth indicators, suggesting transport. Back-trajectories revealed that air parcels often descended from the free-troposphere within the previous 24-48 hrs. It is proposed that particle formation occurs in the free troposphere from precursors uplifted at the polar front

  7. Quantifying microbe-mineral interactions leading to remotely detectable induced polarization signals

    Energy Technology Data Exchange (ETDEWEB)

    Ntarlagiannis, Dimitrios; Moysey, Stephen; Dean, Delphine

    2013-11-14

    The objective of this project was to investigate controls on induced polarization responses in porous media. The approach taken in the project was to compare electrical measurements made on mineral surfaces with atomic force microscopy (AFM) techniques to observations made at the column-scale using traditional spectral induced polarization measurements. In the project we evaluated a number of techniques for investigating the surface properties of materials, including the development of a new AFM measurement protocol that utilizes an external electric field to induce grain-scale polarizations that can be probed using a charged AFM tip. The experiments we performed focused on idealized systems (i.e., glass beads and silica gel) where we could obtain the high degree of control needed to understand how changes in the pore environment, which are determined by biogeochemical controls in the subsurface, affect mechanisms contributing to complex electrical conductivity, i.e., conduction and polarization, responses. The studies we performed can be classified into those affecting the chemical versus physical properties of the grain surface and pore space. Chemical alterations of the surface focused on evaluating how changes in pore fluid pH and ionic composition control surface conduction. These were performed as column flow through experiments where the pore fluid was exchanged in a column of silica gel. Given that silica gel has a high surface area due to internal grain porosity, high-quality data could be obtained where the chemical influences on the surface are clearly apparent and qualitatively consistent with theories of grain (i.e., Stern layer) polarization controlled by electrostatic surface sorption processes (i.e., triple layer theory). Quantitative fitting of the results by existing process-based polarization models (e.g., Leroy et al., 2008) has been less successful, however, due to what we have attributed to differences between existing models developed for

  8. Quantifying Microbe-Mineral Interactions Leading to Remotely Detectable Induced Polarization Signals (Final Project Report)

    Energy Technology Data Exchange (ETDEWEB)

    Moysey, Stephen [Clemson University; Dean, Delphine [Clemson University; Dimitrios, Ntarlagiannis [Rutgers University

    2013-11-13

    The objective of this project was to investigate controls on induced polarization responses in porous media. The approach taken in the project was to compare electrical measurements made on mineral surfaces with atomic force microscopy (AFM) techniques to observations made at the column-scale using traditional spectral induced polarization measurements. In the project we evaluated a number of techniques for investigating the surface properties of materials, including the development of a new AFM measurement protocol that utilizes an external electric field to induce grain-scale polarizations that can be probed using a charged AFM tip. The experiments we performed focused on idealized systems (i.e., glass beads and silica gel) where we could obtain the high degree of control needed to understand how changes in the pore environment, which are determined by biogeochemical controls in the subsurface, affect mechanisms contributing to complex electrical conductivity, i.e., conduction and polarization, responses. The studies we performed can be classified into those affecting the chemical versus physical properties of the grain surface and pore space. Chemical alterations of the surface focused on evaluating how changes in pore fluid pH and ionic composition control surface conduction. These were performed as column flow through experiments where the pore fluid was exchanged in a column of silica gel. Given that silica gel has a high surface area due to internal grain porosity, high-quality data could be obtained where the chemical influences on the surface are clearly apparent and qualitatively consistent with theories of grain (i.e., Stern layer) polarization controlled by electrostatic surface sorption processes (i.e., triple layer theory). Quantitative fitting of the results by existing process-based polarization models (e.g., Leroy et al., 2008) has been less successful, however, due to what we have attributed to differences between existing models developed for

  9. Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR.

    Science.gov (United States)

    White, Paul B; Wang, Tuo; Park, Yong Bum; Cosgrove, Daniel J; Hong, Mei

    2014-07-23

    Polysaccharide-rich plant cell walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ polarization transfer solid-state NMR techniques to study the hydration of primary-wall polysaccharides of the model plant, Arabidopsis thaliana. By transferring water (1)H polarization to polysaccharides through distance- and mobility-dependent (1)H-(1)H dipolar couplings and detecting it through polysaccharide (13)C signals, we obtain information about water proximity to cellulose, hemicellulose, and pectins as well as water mobility. Both intact and partially extracted cell wall samples are studied. Our results show that water-pectin polarization transfer is much faster than water-cellulose polarization transfer in all samples, but the extent of extraction has a profound impact on the water-polysaccharide spin diffusion. Removal of calcium ions and the consequent extraction of homogalacturonan (HG) significantly slowed down spin diffusion, while further extraction of matrix polysaccharides restored the spin diffusion rate. These trends are observed in cell walls with similar water content, thus they reflect inherent differences in the mobility and spatial distribution of water. Combined with quantitative analysis of the polysaccharide contents, our results indicate that calcium ions and HG gelation increase the amount of bound water, which facilitates spin diffusion, while calcium removal disrupts the gel and gives rise to highly dynamic water, which slows down spin diffusion. The recovery of spin diffusion rates after more extensive extraction is attributed to increased water-exposed surface areas of the polysaccharides. Water-pectin spin diffusion precedes water-cellulose spin diffusion, lending support to the single-network model of plant primary walls in which a substantial fraction of the cellulose surface is surrounded by pectins.

  10. Optically-driven red blood cell rotor in linearly polarized laser tweezers

    Indian Academy of Sciences (India)

    We have constructed a dual trap optical tweezers set-up around an inverted microscope where both the traps can be independently controlled and manipulated in all the three dimensions. Here we report our observations on rotation of red blood cells (RBCs) in a linearly polarized optical trap. Red blood cells deform and ...

  11. Barley disease susceptibility factor RACB acts in epidermal cell polarity and positioning of the nucleus.

    Science.gov (United States)

    Scheler, Björn; Schnepf, Vera; Galgenmüller, Carolina; Ranf, Stefanie; Hückelhoven, Ralph

    2016-05-01

    RHO GTPases are regulators of cell polarity and immunity in eukaryotes. In plants, RHO-like RAC/ROP GTPases are regulators of cell shaping, hormone responses, and responses to microbial pathogens. The barley (Hordeum vulgare L.) RAC/ROP protein RACB is required for full susceptibility to penetration by Blumeria graminis f.sp. hordei (Bgh), the barley powdery mildew fungus. Disease susceptibility factors often control host immune responses. Here we show that RACB does not interfere with early microbe-associated molecular pattern-triggered immune responses such as the oxidative burst or activation of mitogen-activated protein kinases. RACB also supports rather than restricts expression of defence-related genes in barley. Instead, silencing of RACB expression by RNAi leads to defects in cell polarity. In particular, initiation and maintenance of root hair growth and development of stomatal subsidiary cells by asymmetric cell division is affected by silencing expression of RACB. Nucleus migration is a common factor of developmental cell polarity and cell-autonomous interaction with Bgh RACB is required for positioning of the nucleus near the site of attack from Bgh We therefore suggest that Bgh profits from RACB's function in cell polarity rather than from immunity-regulating functions of RACB. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Hugl1 and Hugl2 in mammary epithelial cells: polarity, proliferation, and differentiation.

    Directory of Open Access Journals (Sweden)

    Atlantis Russ

    Full Text Available Loss of epithelial polarity is described as a hallmark of epithelial cancer. To determine the role of Hugl1 and Hugl2 expression in the breast, we investigated their localization in human mammary duct tissue and the effects of expression modulation in normal and cancer cell lines on polarity, proliferation and differentiation. Expression of Hugl1 and Hugl2 was silenced in both MCF10A cells and Human Mammary Epithelial Cells and cell lines were grown in 2-D on plastic and in 3-D in Matrigel to form acini. Cells in monolayer were compared for proliferative and phenotypic changes while acini were examined for differences in size, ability to form a hollow lumen, nuclear size and shape, and localization of key domain-specific proteins as a measure of polarity. We detected overlapping but distinct localization of Hugl1 and Hugl2 in the human mammary gland, with Hugl1 expressed in both luminal and myoepithelium and Hugl2 largely restricted to myoepithelium. On a plastic surface, loss of Hugl1 or Hugl2 in normal epithelium induced a mesenchymal phenotype, and these cells formed large cellular masses when grown in Matrigel. In addition, loss of Hugl1 or Hugl2 expression in MCF10A cells resulted in increased proliferation on Matrigel, while gain of Hugl1 expression in tumor cells suppressed proliferation. Loss of polarity was also observed with knockdown of either Hugl1 or Hugl2, with cells growing in Matrigel appearing as a multilayered epithelium, with randomly oriented Golgi and multiple enlarged nuclei. Furthermore, Hugl1 knock down resulted in a loss of membrane identity and the development of cellular asymmetries in Human Mammary Epithelial Cells. Overall, these data demonstrate an essential role for both Hugl1 and Hugl2 in the maintenance of breast epithelial polarity and differentiated cell morphology, as well as growth control.

  13. ROCK and RHO Playlist for Preimplantation Development: Streaming to HIPPO Pathway and Apicobasal Polarity in the First Cell Differentiation.

    Science.gov (United States)

    Alarcon, Vernadeth B; Marikawa, Yusuke

    2018-01-01

    In placental mammalian development, the first cell differentiation produces two distinct lineages that emerge according to their position within the embryo: the trophectoderm (TE, placenta precursor) differentiates in the surface, while the inner cell mass (ICM, fetal body precursor) forms inside. Here, we discuss how such position-dependent lineage specifications are regulated by the RHOA subfamily of small GTPases and RHO-associated coiled-coil kinases (ROCK). Recent studies in mouse show that activities of RHO/ROCK are required to promote TE differentiation and to concomitantly suppress ICM formation. RHO/ROCK operate through the HIPPO signaling pathway, whose cell position-specific modulation is central to establishing unique gene expression profiles that confer cell fate. In particular, activities of RHO/ROCK are essential in outside cells to promote nuclear localization of transcriptional co-activators YAP/TAZ, the downstream effectors of HIPPO signaling. Nuclear localization of YAP/TAZ depends on the formation of apicobasal polarity in outside cells, which requires activities of RHO/ROCK. We propose models of how RHO/ROCK regulate lineage specification and lay out challenges for future investigations to deepen our understanding of the roles of RHO/ROCK in preimplantation development. Finally, as RHO/ROCK may be inhibited by certain pharmacological agents, we discuss their potential impact on human preimplantation development in relation to fertility preservation in women.

  14. Iron repletion relocalizes hephaestin to a proximal basolateral compartment in polarized MDCK and Caco2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Min [Department of Biological Sciences, University of Columbia, NY (United States); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Attieh, Zouhair K. [Department of Laboratory Science and Technology, American University of Science and Technology, Ashrafieh (Lebanon); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Son, Hee Sook [Department of Food Science and Human Nutrition, College of Human Ecology, Chonbuk National University (Korea, Republic of); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Chen, Huijun [Medical School, Nanjing University, Nanjing 210008, Jiangsu Province (China); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Bacouri-Haidar, Mhenia [Department of Biology, Faculty of Sciences (I), Lebanese University, Hadath (Lebanon); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Vulpe, Chris D., E-mail: vulpe@berkeley.edu [Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Hephaestin localizes in the perinuclear space in non-polarized cells. Black-Right-Pointing-Pointer Hephaestin localizes in the perinuclear space in iron deficient and polarized cells. Black-Right-Pointing-Pointer Hephaestin with apical iron moves near to basolateral membrane of polarized cells. Black-Right-Pointing-Pointer Peri-basolateral location of hephaestin is accessible to the extracellular space. Black-Right-Pointing-Pointer Hephaestin is involved in iron mobilization from the intestine to circulation. -- Abstract: While intestinal cellular iron entry in vertebrates employs multiple routes including heme and non-heme routes, iron egress from these cells is exclusively channeled through the only known transporter, ferroportin. Reduced intestinal iron export in sex-linked anemia mice implicates hephaestin, a ferroxidase, in this process. Polarized cells are exposed to two distinct environments. Enterocytes contact the gut lumen via the apical surface of the cell, and through the basolateral surface, to the body. Previous studies indicate both local and systemic control of iron uptake. We hypothesized that differences in iron availability at the apical and/or basolateral surface may modulate iron uptake via cellular localization of hephaestin. We therefore characterized the localization of hephaestin in two models of polarized epithelial cell lines, MDCK and Caco2, with varying iron availability at the apical and basolateral surfaces. Our results indicate that hephaestin is expressed in a supra-nuclear compartment in non-polarized cells regardless of the iron status of the cells and in iron deficient and polarized cells. In polarized cells, we found that both apical (as FeSO{sub 4}) and basolateral iron (as the ratio of apo-transferrin to holo-transferrin) affect mobilization of hephaestin from the supra-nuclear compartment. We find that the presence of apical iron is essential for relocalization of hephaestin to a

  15. Dual-polarization wavelength conversion of 16-QAM signals in a single silicon waveguide with a lateral p-i-n diode [Invited

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Gajda, Andrzej; Liebig, Erik

    2018-01-01

    with an optical signal-to-noise ratio penalty below 0.7 dB. High-quality converted signals are generated thanks to the low polarization dependence (≤0.5 dB) and the high conversion efficiency (CE) achievable. The strong Kerr nonlinearity in silicon and the decrease of detrimental free-carrier absorption due......A polarization-diversity loop with a silicon waveguide with a lateral p-i-n diode as a nonlinear medium is used to realize polarization insensitive four-wave mixing. Wavelength conversion of seven dual-polarization 16-quadrature amplitude modulation (QAM) signals at 16 GBd is demonstrated...... to the reverse-biased p-i-n diode are key in ensuring high CE levels....

  16. Modeling self-organized spatio-temporal patterns of PIP3 and PTEN during spontaneous cell polarization

    International Nuclear Information System (INIS)

    Knoch, Fabian; Tarantola, Marco; Bodenschatz, Eberhard; Rappel, Wouter-Jan

    2014-01-01

    During spontaneous cell polarization of Dictyostelium discoideum cells, phosphatidylinositol (3,4,5)-triphoshpate (PIP 3 ) and PTEN (phosphatase tensin homolog) have been identified as key signaling molecules which govern the process of polarization in a self-organized manner. Recent experiments have quantified the spatio-temporal dynamics of these signaling components. Surprisingly, it was found that membrane-bound PTEN can be either in a high or low state, that PIP 3 waves were initiated in areas lacking PTEN through an excitable mechanism, and that PIP 3 was degraded even though the PTEN concentration remained low. Here we develop a reaction-diffusion model that aims to explain these experimental findings. Our model contains bistable dynamics for PTEN, excitable dynamics for PIP 3 , and postulates the existence of two species of PTEN with different dephosphorylation rates. We show that our model is able to produce results that are in good qualitative agreement with the experiments, suggesting that our reaction-diffusion model underlies the self-organized spatio-temporal patterns observed in experiments. (paper)

  17. Modeling self-organized spatio-temporal patterns of PIP3 and PTEN during spontaneous cell polarization

    Science.gov (United States)

    Knoch, Fabian; Tarantola, Marco; Bodenschatz, Eberhard; Rappel, Wouter-Jan

    2014-08-01

    During spontaneous cell polarization of Dictyostelium discoideum cells, phosphatidylinositol (3,4,5)-triphoshpate (PIP3) and PTEN (phosphatase tensin homolog) have been identified as key signaling molecules which govern the process of polarization in a self-organized manner. Recent experiments have quantified the spatio-temporal dynamics of these signaling components. Surprisingly, it was found that membrane-bound PTEN can be either in a high or low state, that PIP3 waves were initiated in areas lacking PTEN through an excitable mechanism, and that PIP3 was degraded even though the PTEN concentration remained low. Here we develop a reaction-diffusion model that aims to explain these experimental findings. Our model contains bistable dynamics for PTEN, excitable dynamics for PIP3, and postulates the existence of two species of PTEN with different dephosphorylation rates. We show that our model is able to produce results that are in good qualitative agreement with the experiments, suggesting that our reaction-diffusion model underlies the self-organized spatio-temporal patterns observed in experiments.

  18. The Hanle and Zeeman Polarization Signals of the Solar Ca II 8542 angstromLine

    Czech Academy of Sciences Publication Activity Database

    Štěpán, Jiří; Trujillo Bueno, J.

    2016-01-01

    Roč. 826, č. 1 (2016), L10/1-L10/6 ISSN 2041-8205 R&D Projects: GA ČR(CZ) GA16-16861S Grant - others:COST Action(XE) MP1104 Institutional support: RVO:67985815 Keywords : line profiles * polarization * radiative transfer Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.522, year: 2016

  19. Monitoring the initiation and kinetics of human dendritic cell-induced polarization of autologous naive CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Tammy Oth

    Full Text Available A crucial step in generating de novo immune responses is the polarization of naive cognate CD4+ T cells by pathogen-triggered dendritic cells (DC. In the human setting, standardized DC-dependent systems are lacking to study molecular events during the initiation of a naive CD4+ T cell response. We developed a TCR-restricted assay to compare different pathogen-triggered human DC for their capacities to instruct functional differentiation of autologous, naive CD4+ T cells. We demonstrated that this methodology can be applied to compare differently matured DC in terms of kinetics, direction, and magnitude of the naive CD4+ T cell response. Furthermore, we showed the applicability of this assay to study the T cell polarizing capacity of low-frequency blood-derived DC populations directly isolated ex vivo. This methodology for addressing APC-dependent instruction of naive CD4+ T cells in a human autologous setting will provide researchers with a valuable tool to gain more insight into molecular mechanisms occurring in the early phase of T cell polarization. In addition, it may also allow the study of pharmacological agents on DC-dependent T cell polarization in the human system.

  20. Krüppel-like factor 4 regulates intestinal epithelial cell morphology and polarity.

    Directory of Open Access Journals (Sweden)

    Tianxin Yu

    Full Text Available Krüppel-like factor 4 (KLF4 is a zinc finger transcription factor that plays a vital role in regulating cell lineage differentiation during development and maintaining epithelial homeostasis in the intestine. In normal intestine, KLF4 is predominantly expressed in the differentiated epithelial cells. It has been identified as a tumor suppressor in colorectal cancer. KLF4 knockout mice demonstrated a decrease in number of goblet cells in the colon, and conditional ablation of KLF4 from the intestinal epithelium led to altered epithelial homeostasis. However, the role of KLF4 in differentiated intestinal cells and colon cancer cells, as well as the mechanism by which it regulates homeostasis and represses tumorigenesis in the intestine is not well understood. In our study, KLF4 was partially depleted in the differentiated intestinal epithelial cells by a tamoxifen-inducible Cre recombinase. We found a significant increase in the number of goblet cells in the KLF4-deleted small intestine, suggesting that KLF4 is not only required for goblet cell differentiation, but also required for maintaining goblet cell numbers through its function in inhibiting cell proliferation. The number and position of Paneth cells also changed. This is consistent with the KLF4 knockout study using villin-Cre [1]. Through immunohistochemistry (IHC staining and statistical analysis, we found that a stem cell and/or tuft cell marker, DCAMKL1, and a proliferation marker, Ki67, are affected by KLF4 depletion, while an enteroendocrine cell marker, neurotensin (NT, was not affected. In addition, we found KLF4 depletion altered the morphology and polarity of the intestinal epithelial cells. Using a three-dimensional (3D intestinal epithelial cyst formation assay, we found that KLF4 is essential for cell polarity and crypt-cyst formation in human colon cancer cells. These findings suggest that, as a tumor suppressor in colorectal cancer, KLF4 affects intestinal epithelial cell

  1. Cell biology symposium: Membrane trafficking and signal transduction

    Science.gov (United States)

    In general, membrane trafficking is a broad group of processes where proteins and other large molecules are distributed throughout the cell as well as adjacent extracellular spaces. Whereas signal transduction is a process where signals are transmitted through a series of chemical or molecular event...

  2. Effect of atomic noise on optical squeezing via polarization self-rotation in a thermal vapor cell

    DEFF Research Database (Denmark)

    Hsu, M.T.L.; Hetet, G.; Peng, A.

    2006-01-01

    The traversal of an elliptically polarized optical field through a thermal vapor cell can give rise to a rotation of its polarization axis. This process, known as polarization self-rotation (PSR), has been suggested as a mechanism for producing squeezed light at atomic transition wavelengths. We...

  3. Stem cell signaling. An integral program for tissue renewal and regeneration : Wnt signaling and stem cell control

    NARCIS (Netherlands)

    Clevers, Hans; Loh, Kyle M; Nusse, Roel

    2014-01-01

    Stem cells fuel tissue development, renewal, and regeneration, and these activities are controlled by the local stem cell microenvironment, the "niche." Wnt signals emanating from the niche can act as self-renewal factors for stem cells in multiple mammalian tissues. Wnt proteins are lipid-modified,

  4. A link between planar polarity and staircase-like bundle architecture in hair cells.

    Science.gov (United States)

    Tarchini, Basile; Tadenev, Abigail L D; Devanney, Nicholas; Cayouette, Michel

    2016-11-01

    Sensory perception in the inner ear relies on the hair bundle, the highly polarized brush of movement detectors that crowns hair cells. We previously showed that, in the mouse cochlea, the edge of the forming bundle is defined by the 'bare zone', a microvilli-free sub-region of apical membrane specified by the Insc-LGN-Gαi protein complex. We now report that LGN and Gαi also occupy the very tip of stereocilia that directly abut the bare zone. We demonstrate that LGN and Gαi are both essential for promoting the elongation and differential identity of stereocilia across rows. Interestingly, we also reveal that total LGN-Gαi protein amounts are actively balanced between the bare zone and stereocilia tips, suggesting that early planar asymmetry of protein enrichment at the bare zone confers adjacent stereocilia their tallest identity. We propose that LGN and Gαi participate in a long-inferred signal that originates outside the bundle to model its staircase-like architecture, a property that is essential for direction sensitivity to mechanical deflection and hearing. © 2016. Published by The Company of Biologists Ltd.

  5. PrPC Undergoes Basal to Apical Transcytosis in Polarized Epithelial MDCK Cells.

    Directory of Open Access Journals (Sweden)

    Alexander Arkhipenko

    Full Text Available The Prion Protein (PrP is an ubiquitously expressed glycosylated membrane protein attached to the external leaflet of the plasma membrane via a glycosylphosphatidylinositol anchor (GPI. While the misfolded PrPSc scrapie isoform is the infectious agent of prion disease, the cellular isoform (PrPC is an enigmatic protein with unclear function. Of interest, PrP localization in polarized MDCK cells is controversial and its mechanism of trafficking is not clear. Here we investigated PrP traffic in MDCK cells polarized on filters and in three-dimensional MDCK cysts, a more physiological model of polarized epithelia. We found that, unlike other GPI-anchored proteins (GPI-APs, PrP undergoes basolateral-to-apical transcytosis in fully polarized MDCK cells. Following this event full-length PrP and its cleavage fragments are segregated in different domains of the plasma membrane in polarized cells in both 2D and 3D cultures.

  6. Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization.

    Science.gov (United States)

    Mohamadzadeh, Mansour; Olson, Scott; Kalina, Warren V; Ruthel, Gordon; Demmin, Gretchen L; Warfield, Kelly L; Bavari, Sina; Klaenhammer, Todd R

    2005-02-22

    Professional antigen-presenting dendritic cells (DCs) are critical in regulating T cell immune responses at both systemic and mucosal sites. Many Lactobacillus species are normal members of the human gut microflora and most are regarded as safe when administered as probiotics. Because DCs can naturally or therapeutically encounter lactobacilli, we investigated the effects of several well defined strains, representing three species of Lactobacillus on human myeloid DCs (MDCs) and found that they modulated the phenotype and functions of human MDCs. Lactobacillus-exposed MDCs up-regulated HLA-DR, CD83, CD40, CD80, and CD86 and secreted high levels of IL-12 and IL-18, but not IL-10. IL-12 was sustained in MDCs exposed to all three Lactobacillus species in the presence of LPS from Escherichia coli, whereas LPS-induced IL-10 was greatly inhibited. MDCs activated with lactobacilli clearly skewed CD4(+) and CD8(+) T cells to T helper 1 and Tc1 polarization, as evidenced by secretion of IFN-gamma, but not IL-4 or IL-13. These results emphasize a potentially important role for lactobacilli in modulating immunological functions of DCs and suggest that certain strains could be particularly advantageous as vaccine adjuvants, by promoting DCs to regulate T cell responses toward T helper 1 and Tc1 pathways.

  7. 110 km transmission of 160 Gbit/s RZ-DQPSK signals by midspan polarization-insensitive optical phase conjugation in a Ti:PPLN waveguide

    DEFF Research Database (Denmark)

    Hu, Hao; Nouroozi, R.; Ludwig, R.

    2010-01-01

    We demonstrate 160Gbit/s return-to-zero (RZ) differential quarternary phase-shift keying (DQPSK) signal transmission over a 110km single-mode fiber by taking advantage of mid-span optical phase conjugation (OPC). The technique is based on nonlinear wavelength conversion by cascaded second harmonic...... and difference frequency generation in a Ti:PPLN waveguide. Error-free operation with a negligible optical signal-to-noise ratio penalty for the signal after the OPC transmission without and with polarization scrambling was achieved. The results also show the polarization insensitivity of the OPC system using...

  8. The effect of suppressor of cytokine signaling 3 on GH signaling in beta-cells

    DEFF Research Database (Denmark)

    Rønn, Sif G; Hansen, Johnny A; Lindberg, Karen

    2002-01-01

    GH is an important regulator of cell growth and metabolism. In the pancreas, GH stimulates mitogenesis as well as insulin production in beta-cells. The cellular effects of GH are exerted mainly through activation of the Janus kinase-signal transducer and activator of transcription (STAT) pathway...

  9. Estrogen Signaling Contributes to Sex Differences in Macrophage Polarization during Asthma.

    Science.gov (United States)

    Keselman, Aleksander; Fang, Xi; White, Preston B; Heller, Nicola M

    2017-09-01

    Allergic asthma is a chronic Th2 inflammation in the lungs that constricts the airways and presents as coughing and wheezing. Asthma mostly affects boys in childhood and women in adulthood, suggesting that shifts in sex hormones alter the course of the disease. Alveolar macrophages have emerged as major mediators of allergic lung inflammation in animal models as well as humans. Whether sex differences exist in macrophage polarization and the molecular mechanism(s) that drive differential responses are not well understood. We found that IL-4-stimulated bone marrow-derived and alveolar macrophages from female mice exhibited greater expression of M2 genes in vitro and after allergen challenge in vivo. Alveolar macrophages from female mice exhibited greater expression of the IL-4Rα and estrogen receptor (ER) α compared with macrophages from male mice following allergen challenge. An ERα-specific agonist enhanced IL-4-induced M2 gene expression in macrophages from both sexes, but more so in macrophages from female mice. Furthermore, IL-4-stimulated macrophages from female mice exhibited more transcriptionally active histone modifications at M2 gene promoters than did macrophages from male mice. We found that supplementation of estrogen into ovariectomized female mice enhanced M2 polarization in vivo upon challenge with allergen and that macrophage-specific deletion of ERα impaired this M2 polarization. The effects of estrogen are long-lasting; bone marrow-derived macrophages from ovariectomized mice implanted with estrogen exhibited enhanced IL-4-induced M2 gene expression compared with macrophages from placebo-implanted littermates. Taken together, our findings suggest that estrogen enhances IL-4-induced M2 gene expression and thereby contributes to sex differences observed in asthma. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. Vimentin intermediate filaments template microtubule networks to enhance persistence in cell polarity and directed migration

    OpenAIRE

    Gan, Zhuo; Ding, Liya; Burckhardt, Christoph J.; Lowery, Jason; Zaritsky, Assaf; Sitterley, Karlyndsay; Mota, Andressa; Costigliola, Nancy; Starker, Colby G.; Voytas, Daniel F.; Tytell, Jessica; Goldman, Robert D.; Danuser, Gaudenz

    2016-01-01

    Increased expression of vimentin intermediate filaments (VIF) enhances directed cell migration, but the mechanism behind VIF’s effect on motility is not understood. VIF interact with microtubules, whose organization contributes to polarity maintenance in migrating cells. Here we characterize the dynamic coordination of VIF and microtubule networks in wounded monolayers of Retinal Pigment Epithelial cells. By genome editing we fluorescently labelled endogenous vimentin and α-...

  11. Polarization Curve of a Non-Uniformly Aged PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    Andrei Kulikovsky

    2014-01-01

    Full Text Available We develop a semi-analytical model for polarization curve of a polymer electrolyte membrane (PEM fuel cell with distributed (aged along the oxygen channel MEA transport and kinetic parameters of the membrane–electrode assembly (MEA. We show that the curve corresponding to varying along the channel parameter, in general, does not reduce to the curve for a certain constant value of this parameter. A possibility to determine the shape of the deteriorated MEA parameter along the oxygen channel by fitting the model equation to the cell polarization data is demonstrated.

  12. Cdc42 is not essential for filopodium formation, directed migration, cell polarization, and mitosis in fibroblastoid cells

    DEFF Research Database (Denmark)

    Czuchra, Aleksandra; Wu, Xunwei; Meyer, Hannelore

    2005-01-01

    Cdc42 is a small GTPase involved in the regulation of the cytoskeleton and cell polarity. To test whether Cdc42 has an essential role in the formation of filopodia or directed cell migration, we generated Cdc42-deficient fibroblastoid cells by conditional gene inactivation. We report here that loss...... of Cdc42 did not affect filopodium or lamellipodium formation and had no significant influence on the speed of directed migration nor on mitosis. Cdc42-deficient cells displayed a more elongated cell shape and had a reduced area. Furthermore, directionality during migration and reorientation of the Golgi...... apparatus into the direction of migration was decreased. However, expression of dominant negative Cdc42 in Cdc42-null cells resulted in strongly reduced directed migration, severely reduced single cell directionality, and complete loss of Golgi polarization and of directionality of protrusion formation...

  13. Reconstruction and signal propagation analysis of the Syk signaling network in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Aurélien Naldi

    2017-03-01

    Full Text Available The ability to build in-depth cell signaling networks from vast experimental data is a key objective of computational biology. The spleen tyrosine kinase (Syk protein, a well-characterized key player in immune cell signaling, was surprisingly first shown by our group to exhibit an onco-suppressive function in mammary epithelial cells and corroborated by many other studies, but the molecular mechanisms of this function remain largely unsolved. Based on existing proteomic data, we report here the generation of an interaction-based network of signaling pathways controlled by Syk in breast cancer cells. Pathway enrichment of the Syk targets previously identified by quantitative phospho-proteomics indicated that Syk is engaged in cell adhesion, motility, growth and death. Using the components and interactions of these pathways, we bootstrapped the reconstruction of a comprehensive network covering Syk signaling in breast cancer cells. To generate in silico hypotheses on Syk signaling propagation, we developed a method allowing to rank paths between Syk and its targets. We first annotated the network according to experimental datasets. We then combined shortest path computation with random walk processes to estimate the importance of individual interactions and selected biologically relevant pathways in the network. Molecular and cell biology experiments allowed to distinguish candidate mechanisms that underlie the impact of Syk on the regulation of cortactin and ezrin, both involved in actin-mediated cell adhesion and motility. The Syk network was further completed with the results of our biological validation experiments. The resulting Syk signaling sub-networks can be explored via an online visualization platform.

  14. Evolution and development of hair cell polarity and efferent function in the inner ear.

    Science.gov (United States)

    Sienknecht, Ulrike J; Köppl, Christine; Fritzsch, Bernd

    2014-01-01

    The function of the inner ear critically depends on mechanoelectrically transducing hair cells and their afferent and efferent innervation. The first part of this review presents data on the evolution and development of polarized vertebrate hair cells that generate a sensitive axis for mechanical stimulation, an essential part of the function of hair cells. Beyond the cellular level, a coordinated alignment of polarized hair cells across a sensory epithelium, a phenomenon called planar cell polarity (PCP), is essential for the organ's function. The coordinated alignment of hair cells leads to hair cell orientation patterns that are characteristic of the different sensory epithelia of the vertebrate inner ear. Here, we review the developmental mechanisms that potentially generate molecular and morphological asymmetries necessary for the control of PCP. In the second part, this review concentrates on the evolution, development and function of the enigmatic efferent neurons terminating on hair cells. We present evidence suggestive of efferents being derived from motoneurons and synapsing predominantly onto a unique but ancient cholinergic receptor. A review of functional data shows that the plesiomorphic role of the efferent system likely was to globally shut down and protect the peripheral sensors, be they vestibular, lateral line or auditory hair cells, from desensitization and damage during situations of self-induced sensory overload. The addition of a dedicated auditory papilla in land vertebrates appears to have favored the separation of vestibular and auditory efferents and specializations for more sophisticated and more diverse functions. © 2014 S. Karger AG, Basel.

  15. New Modeling Approaches to Investigate Cell Signaling in Radiation Response

    Science.gov (United States)

    Plante, Ianik; Cucinotta, Francis A.; Ponomarev, Artem L.

    2011-01-01

    Ionizing radiation damages individual cells and tissues leading to harmful biological effects. Among many radiation-induced lesions, DNA double-strand breaks (DSB) are considered the key precursors of most early and late effects [1] leading to direct mutation or aberrant signal transduction processes. In response to damage, a flow of information is communicated to cells not directly hit by the radiation through signal transduction pathways [2]. Non-targeted effects (NTE), which includes bystander effects and genomic instability in the progeny of irradiated cells and tissues, may be particularly important for space radiation risk assessment [1], because astronauts are exposed to a low fluence of heavy ions and only a small fraction of cells are traversed by an ion. NTE may also have important consequences clinical radiotherapy [3]. In the recent years, new simulation tools and modeling approaches have become available to study the tissue response to radiation. The simulation of signal transduction pathways require many elements such as detailed track structure calculations, a tissue or cell culture model, knowledge of biochemical pathways and Brownian Dynamics (BD) propagators of the signaling molecules in their micro-environment. Recently, the Monte-Carlo simulation code of radiation track structure RITRACKS was used for micro and nano-dosimetry calculations [4]. RITRACKS will be used to calculate the fraction of cells traversed by an ion and delta-rays and the energy deposited in cells in a tissue model. RITRACKS also simulates the formation of chemical species by the radiolysis of water [5], notably the .OH radical. This molecule is implicated in DNA damage and in the activation of the transforming growth factor beta (TGF), a signaling molecule involved in NTE. BD algorithms for a particle near a membrane comprising receptors were also developed and will be used to simulate trajectories of signaling molecules in the micro-environment and characterize autocrine

  16. Shared signaling pathways in normal and breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Gautam K Malhotra

    2011-01-01

    Full Text Available Recent advances in our understanding of breast cancer biology have led to the identification of a subpopulation of cells within tumors that appear to be responsible for initiating and propagating the cancer. These tumor initiating cells are not only unique in their ability to generate tumors, but also share many similarities with elements of normal adult tissue stem cells, and have therefore been termed cancer stem cells (CSCs. These CSCs often inappropriately use many of the same signaling pathways utilized by their normal stem cell counterparts which may present a challenge to the development of CSC specific therapies. Here, we discuss three major stem cell signaling pathways (Notch, Wnt, and Hedgehog; with a focus on their function in normal mammary gland development and their misuse in breast cancer stem cell fate determination.

  17. Plant cell wall signalling and receptor-like kinases.

    Science.gov (United States)

    Wolf, Sebastian

    2017-02-15

    Communication between the extracellular matrix and the cell interior is essential for all organisms as intrinsic and extrinsic cues have to be integrated to co-ordinate development, growth, and behaviour. This applies in particular to plants, the growth and shape of which is governed by deposition and remodelling of the cell wall, a rigid, yet dynamic, extracellular network. It is thus generally assumed that cell wall surveillance pathways exist to monitor the state of the wall and, if needed, elicit compensatory responses such as altered expression of cell wall remodelling and biosynthesis genes. Here, I highlight recent advances in the field of cell wall signalling in plants, with emphasis on the role of plasma membrane receptor-like kinase complexes. In addition, possible roles for cell wall-mediated signalling beyond the maintenance of cell wall integrity are discussed. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  18. n3 PUFAs Reduce Mouse CD4+ T-Cell Ex Vivo Polarization into Th17 Cells123

    Science.gov (United States)

    Monk, Jennifer M.; Hou, Tim Y.; Turk, Harmony F.; McMurray, David N.; Chapkin, Robert S.

    2013-01-01

    Little is known about the impact of n3 (ω3) PUFAs on polarization of CD4+ T cells into effector subsets other than Th1 and Th2. We assessed the effects of dietary fat [corn oil (CO) vs. fish oil (FO)] and fermentable fiber [cellulose (C) vs. pectin (P)] (2 × 2 design) in male C57BL/6 mice fed CO-C, CO-P, FO-C, or FO-P diets for 3 wk on the ex vivo polarization of purified splenic CD4+ T cells (using magnetic microbeads) into regulatory T cells [Tregs; forkhead box P3 (Foxp3+) cells] or Th17 cells [interleukin (IL)-17A+ and retinoic acid receptor-related orphan receptor (ROR) γτ+ cells] by flow cytometry. Treg polarization was unaffected by diet; however, FO independently reduced the percentage of both CD4+ IL-17A+ (P diets enriched in eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or DHA + EPA similarly reduced Th17-cell polarization in comparison to CO by reducing expression of the Th17-cell signature cytokine (IL-17A; P = 0.0015) and transcription factor (RORγτ P = 0.02), whereas Treg polarization was unaffected. Collectively, these data show that n3 PUFAs exert a direct effect on the development of Th17 cells in healthy mice, implicating a novel n3 PUFA–dependent, anti-inflammatory mechanism of action via the suppression of the initial development of this inflammatory T-cell subset. PMID:23864512

  19. Proliferative effects of apical, but not basal, matrix metalloproteinase-7 activity in polarized MDCK cells

    International Nuclear Information System (INIS)

    Harrell, Permila C.; McCawley, Lisa J.; Fingleton, Barbara; McIntyre, J. Oliver; Matrisian, Lynn M.

    2005-01-01

    Matrix metalloproteinase-7 (MMP-7) is primarily expressed in glandular epithelium. Therefore, its mechanism of action may be influenced by its regulated vectorial release to either the apical and/or basolateral compartments, where it would act on its various substrates. To gain a better understanding of where MMP-7 is released in polarized epithelium, we have analyzed its pattern of secretion in polarized MDCK cells expressing stably transfected human MMP-7 (MDCK-MMP-7), and HCA-7 and Caco2 human colon cancer cell lines. In all cell lines, latent MMP-7 was secreted to both cellular compartments, but was 1.5- to 3-fold more abundant in the basolateral compartment as compared to the apical. However, studies in the MDCK system demonstrated that MMP-7 activity was 2-fold greater in the apical compartment of MDCK-MMP-7 HIGH -polarized monolayers, which suggests the apical co-release of an MMP-7 activator. In functional assays, MMP-7 over-expression increased cell saturation density as a result of increased cell proliferation with no effect on apoptosis. Apical MMP-7 activity was shown to be responsible for the proliferative effect, which occurred, as demonstrated by media transfer experiments, through cleavage of an apical substrate and not through the generation of a soluble factor. Taken together, our findings demonstrate the importance of MMP-7 secretion in relation to its mechanism of action when expressed in a polarized epithelium

  20. IKKα Promotes Intestinal Tumorigenesis by Limiting Recruitment of M1-like Polarized Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Serkan I. Göktuna

    2014-06-01

    Full Text Available The recruitment of immune cells into solid tumors is an essential prerequisite of tumor development. Depending on the prevailing polarization profile of these infiltrating leucocytes, tumorigenesis is either promoted or blocked. Here, we identify IκB kinase α (IKKα as a central regulator of a tumoricidal microenvironment during intestinal carcinogenesis. Mice deficient in IKKα kinase activity are largely protected from intestinal tumor development that is dependent on the enhanced recruitment of interferon γ (IFNγ-expressing M1-like myeloid cells. In IKKα mutant mice, M1-like polarization is not controlled in a cell-autonomous manner but, rather, depends on the interplay of both IKKα mutant tumor epithelia and immune cells. Because therapies aiming at the tumor microenvironment rather than directly at the mutated cancer cell may circumvent resistance development, we suggest IKKα as a promising target for colorectal cancer (CRC therapy.

  1. The role of secretory and endocytic pathways in the maintenance of cell polarity.

    Science.gov (United States)

    Ang, Su Fen; Fölsch, Heike

    2012-01-01

    Epithelial cells line virtually every organ cavity in the body and are important for vectorial transport through epithelial monolayers such as nutrient uptake or waste product excretion. Central to these tasks is the establishment of epithelial cell polarity. During organ development, epithelial cells set up two biochemically distinct plasma membrane domains, the apical and the basolateral domain. Targeting of correct constituents to each of these regions is essential for maintaining epithelial cell polarity. Newly synthesized transmembrane proteins destined for the basolateral or apical membrane domain are sorted into separate transport carriers either at the TGN (trans-Golgi network) or in perinuclear REs (recycling endosomes). After initial delivery, transmembrane proteins, such as nutrient receptors, frequently undergo multiple rounds of endocytosis followed by re-sorting in REs. Recent work in epithelial cells highlights the REs as a potent sorting station with different subdomains representing individual targeting zones that facilitate the correct surface delivery of transmembrane proteins.

  2. Primary Cilia, Signaling Networks and Cell Migration

    DEFF Research Database (Denmark)

    Veland, Iben Rønn

    Primary cilia are microtubule-based, sensory organelles that emerge from the centrosomal mother centriole to project from the surface of most quiescent cells in the human body. Ciliary entry is a tightly controlled process, involving diffusion barriers and gating complexes that maintain a unique...

  3. A reverse signaling pathway downstream of Sema4A controls cell migration via Scrib.

    Science.gov (United States)

    Sun, Tianliang; Yang, Lida; Kaur, Harmandeep; Pestel, Jenny; Looso, Mario; Nolte, Hendrik; Krasel, Cornelius; Heil, Daniel; Krishnan, Ramesh K; Santoni, Marie-Josée; Borg, Jean-Paul; Bünemann, Moritz; Offermanns, Stefan; Swiercz, Jakub M; Worzfeld, Thomas

    2017-01-02

    Semaphorins comprise a large family of ligands that regulate key cellular functions through their receptors, plexins. In this study, we show that the transmembrane semaphorin 4A (Sema4A) can also function as a receptor, rather than a ligand, and transduce signals triggered by the binding of Plexin-B1 through reverse signaling. Functionally, reverse Sema4A signaling regulates the migration of various cancer cells as well as dendritic cells. By combining mass spectrometry analysis with small interfering RNA screening, we identify the polarity protein Scrib as a downstream effector of Sema4A. We further show that binding of Plexin-B1 to Sema4A promotes the interaction of Sema4A with Scrib, thereby removing Scrib from its complex with the Rac/Cdc42 exchange factor βPIX and decreasing the activity of the small guanosine triphosphatase Rac1 and Cdc42. Our data unravel a role for Plexin-B1 as a ligand and Sema4A as a receptor and characterize a reverse signaling pathway downstream of Sema4A, which controls cell migration. © 2017 Sun et al.

  4. Surface code—biophysical signals for apoptotic cell clearance

    International Nuclear Information System (INIS)

    Biermann, Mona; Maueröder, Christian; Brauner, Jan M; Chaurio, Ricardo; Herrmann, Martin; Muñoz, Luis E; Janko, Christina

    2013-01-01

    Apoptotic cell death and the clearance of dying cells play an important and physiological role in embryonic development and normal tissue turnover. In contrast to necrosis, apoptosis proceeds in an anti-inflammatory manner. It is orchestrated by the timed release and/or exposure of so-called ‘find-me’, ‘eat me’ and ‘tolerate me’ signals. Mononuclear phagocytes are attracted by various ‘find-me’ signals, including proteins, nucleotides, and phospholipids released by the dying cell, whereas the involvement of granulocytes is prevented via ‘stay away’ signals. The exposure of anionic phospholipids like phosphatidylserine (PS) by apoptotic cells on the outer leaflet of the plasma membrane is one of the main ‘eat me’ signals. PS is recognized by a number of innate receptors as well as by soluble bridging molecules on the surface of phagocytes. Importantly, phagocytes are able to discriminate between viable and apoptotic cells both exposing PS. Due to cytoskeleton remodeling PS has a higher lateral mobility on the surfaces of apoptotic cells thereby promoting receptor clustering on the phagocyte. PS not only plays an important role in the engulfment process, but also acts as ‘tolerate me’ signal inducing the release of anti-inflammatory cytokines by phagocytes. An efficient and fast clearance of apoptotic cells is required to prevent secondary necrosis and leakage of intracellular danger signals into the surrounding tissue. Failure or prolongation of the clearance process leads to the release of intracellular antigens into the periphery provoking inflammation and development of systemic inflammatory autoimmune disease like systemic lupus erythematosus. Here we review the current findings concerning apoptosis-inducing pathways, important players of apoptotic cell recognition and clearance as well as the role of membrane remodeling in the engulfment of apoptotic cells by phagocytes. (paper)

  5. Hydrogen peroxide as a signal controlling plant programmed cell death

    NARCIS (Netherlands)

    Gechev, Tsanko S.; Hille, Jacques

    2005-01-01

    Hydrogen peroxide (H2O2) has established itself as a key player in stress and programmed cell death responses, but little is known about the signaling pathways leading from H2O2 to programmed cell death in plants. Recently, identification of key regulatory mutants and near-full genome coverage

  6. BMP signalling differentially regulates distinct haematopoietic stem cell types

    NARCIS (Netherlands)

    M. Crisan (Mihaela); P. Solaimani Kartalaei (Parham); C.S. Vink (Chris); T. Yamada-Inagawa (Tomoko); K. Bollerot (Karine); W.F.J. van IJcken (Wilfred); R. Van Der Linden (Reinier); S.C. de Sousa Lopes (Susana Chuva); R. Monteiro (Rui); C.L. Mummery (Christine); E.A. Dzierzak (Elaine)

    2015-01-01

    textabstractAdult haematopoiesis is the outcome of distinct haematopoietic stem cell (HSC) subtypes with self-renewable repopulating ability, but with different haematopoietic cell lineage outputs. The molecular basis for this heterogeneity is largely unknown. BMP signalling regulates HSCs as they

  7. Requirement for Dlgh-1 in planar cell polarity and skeletogenesis during vertebrate development.

    Directory of Open Access Journals (Sweden)

    Charlene Rivera

    Full Text Available The development of specialized organs is tightly linked to the regulation of cell growth, orientation, migration and adhesion during embryogenesis. In addition, the directed movements of cells and their orientation within the plane of a tissue, termed planar cell polarity (PCP, appear to be crucial for the proper formation of the body plan. In Drosophila embryogenesis, Discs large (dlg plays a critical role in apical-basal cell polarity, cell adhesion and cell proliferation. Craniofacial defects in mice carrying an insertional mutation in Dlgh-1 suggest that Dlgh-1 is required for vertebrate development. To determine what roles Dlgh-1 plays in vertebrate development, we generated mice carrying a null mutation in Dlgh-1. We found that deletion of Dlgh-1 caused open eyelids, open neural tube, and misorientation of cochlear hair cell stereociliary bundles, indicative of defects in planar cell polarity (PCP. Deletion of Dlgh-1 also caused skeletal defects throughout the embryo. These findings identify novel roles for Dlgh-1 in vertebrates that differ from its well-characterized roles in invertebrates and suggest that the Dlgh-1 null mouse may be a useful animal model to study certain human congenital birth defects.

  8. Effect of Polarization on Airway Epithelial Conditioning of Monocyte-Derived Dendritic Cells

    DEFF Research Database (Denmark)

    Papazian, Dick; Chhoden, Tashi; Arge, Maria

    2015-01-01

    ' immunoregulatory properties; thus, previous observations obtained using traditional setups should be considered with caution. Using the optimized setup, AEC conditioning of MDDCs led to increased expression of programmed death 1 ligand 1 (PD-L1), Immunoglobulin-Like Transcript 3, CD40, CD80 and CD23...... were allowed to polarize on filter inserts, and MDDCs were allowed to adhere to the epithelial basal side. In an optimized setup, the cell application was reversed, and the culture conditions were modified to preserve cellular polarization and integrity. These two parameters were crucial for the MDDCs...... to sample allergens administered to the apical side. Allergen uptake depended on both polarization and the nature of the allergen. AEC conditioning led to decreased birch allergen-specific proliferation of autologous T cells and a trend toward decreased secretion of the Th2-specific cytokines IL-5 and IL-13...

  9. Traces of exomoons in flux and polarization signals of starlight reflected by exoplanets

    NARCIS (Netherlands)

    Berzosa Molina (student TUDelft), Javier; Stam, D.M.; Rossi, L.C.G.

    2017-01-01

    The detection of moons around extrasolar planets is one of the main focuses of current and future observatories. These silent companions contribute to the planets' observed signals but are barely detectable with current methods. Numerous gaseous exoplanets are known to orbit in the habitable zones

  10. Amplitude and dynamics of polarization-plane signaling in the central complex of the locust brain.

    Science.gov (United States)

    Bockhorst, Tobias; Homberg, Uwe

    2015-05-01

    The polarization pattern of skylight provides a compass cue that various insect species use for allocentric orientation. In the desert locust, Schistocerca gregaria, a network of neurons tuned to the electric field vector (E-vector) angle of polarized light is present in the central complex of the brain. Preferred E-vector angles vary along slices of neuropils in a compasslike fashion (polarotopy). We studied how the activity in this polarotopic population is modulated in ways suited to control compass-guided locomotion. To this end, we analyzed tuning profiles using measures of correlation between spike rate and E-vector angle and, furthermore, tested for adaptation to stationary angles. The results suggest that the polarotopy is stabilized by antagonistic integration across neurons with opponent tuning. Downstream to the input stage of the network, responses to stationary E-vector angles adapted quickly, which may correlate with a tendency to steer a steady course previously observed in tethered flying locusts. By contrast, rotating E-vectors corresponding to changes in heading direction under a natural sky elicited nonadapting responses. However, response amplitudes were particularly variable at the output stage, covarying with the level of ongoing activity. Moreover, the responses to rotating E-vector angles depended on the direction of rotation in an anticipatory manner. Our observations support a view of the central complex as a substrate of higher-stage processing that could assign contextual meaning to sensory input for motor control in goal-driven behaviors. Parallels to higher-stage processing of sensory information in vertebrates are discussed. Copyright © 2015 the American Physiological Society.

  11. Calcium signaling mediates five types of cell morphological changes to form neural rosettes.

    Science.gov (United States)

    Hříbková, Hana; Grabiec, Marta; Klemová, Dobromila; Slaninová, Iva; Sun, Yuh-Man

    2018-02-12

    Neural rosette formation is a critical morphogenetic process during neural development, whereby neural stem cells are enclosed in rosette niches to equipoise proliferation and differentiation. How neural rosettes form and provide a regulatory micro-environment remains to be elucidated. We employed the human embryonic stem cell-based neural rosette system to investigate the structural development and function of neural rosettes. Our study shows that neural rosette formation consists of five types of morphological change: intercalation, constriction, polarization, elongation and lumen formation. Ca 2+ signaling plays a pivotal role in the five steps by regulating the actions of the cytoskeletal complexes, actin, myosin II and tubulin during intercalation, constriction and elongation. These, in turn, control the polarizing elements, ZO-1, PARD3 and β-catenin during polarization and lumen production for neural rosette formation. We further demonstrate that the dismantlement of neural rosettes, mediated by the destruction of cytoskeletal elements, promotes neurogenesis and astrogenesis prematurely, indicating that an intact rosette structure is essential for orderly neural development. © 2018. Published by The Company of Biologists Ltd.

  12. Mast cell chemotaxis - chemoattractants and signaling pathways

    Czech Academy of Sciences Publication Activity Database

    Hálová, Ivana; Dráberová, Lubica; Dráber, Petr

    2012-01-01

    Roč. 3, May (2012), s. 119 ISSN 1664-3224 R&D Projects: GA MŠk LD12073; GA ČR GA301/09/1826; GA ČR GAP302/10/1759 Grant - others:ECST(XE) BM1007; AV ČR(CZ) MC200520901 Institutional support: RVO:68378050 Keywords : mast cell * IgE receptor * plasma membrane Subject RIV: EB - Genetics ; Molecular Biology

  13. The subapical compartment and its role in intracellular trafficking and cell polarity

    NARCIS (Netherlands)

    Van Ijzendoorn, Sven C. D.; Maier, Olaf; Van Der Wouden, Johanna M.; Hoekstra, Dick

    In polarized epithelial cells and hepatocytes, apical and basolateral plasma membrane surfaces are maintained, each displaying a distinct molecular composition. In recent years, it has become apparent that a subapical compartment, referred to as SAC, plays a prominent if not crucial role in the

  14. TH1 and TH2 cell polarization increases with aging and is modulated by zinc supplementation

    OpenAIRE

    2008-01-01

    TH1 and TH2 cell polarization increases with aging and is modulated by zinc supplementation correspondence: Corresponding author. Tel.: +49 241 8080208; fax: +49 241 8082613. (Rink, Lothar) (Rink, Lothar) Institute of Immunology, University Hospital, RWTH Aachen University - Aachen--> - GERMANY (Uciechowski, Peter) Institute of Immunology, University Hospital, RWTH Aachen University - Aachen--> - GERMAN...

  15. Apical–basal polarity: why plant cells don't stand on their heads

    Czech Academy of Sciences Publication Activity Database

    Friml, J.; Benfey, P.; Benková, E.; Bennett, M. D.; Berleth, T.; Geldner, N.; Grebe, M.; Heisler, M.; Hejátko, J.; Jürgens, G.; Laux, T.; Lindsey, K.; Lukowitz, W.; Luschnig, Ch.; Offringa, R.; Scheres, B.; Swarup, R.; Torres-Ruiz, R.; Weijers, D.; Zažímalová, Eva

    2006-01-01

    Roč. 11, č. 1 (2006), s. 12-14 ISSN 1360-1385 R&D Projects: GA AV ČR IAA6038303 Institutional research plan: CEZ:AV0Z50380511 Keywords : Apical * Basal * Polarity of plant cell Subject RIV: EF - Botanics Impact factor: 8.000, year: 2006

  16. Mutation of the planar cell polarity gene VANGL1 in adolescent idiopathic scoliosis

    DEFF Research Database (Denmark)

    Andersen, Malene Rask; Farooq, Muhammad; Rasmussen, Karen Koefoed

    2017-01-01

    STUDY DESIGN: Mutation analysis of a candidate disease gene in a cohort of patients with moderate to severe Adolescent idiopathic scoliosis (AIS). OBJECTIVE: To investigate if damaging mutations in the planar cell polarity gene VANGL1 could be identified in AIS patients. SUMMARY OF BACKGROUND DATA...

  17. Measurement of cell wall depolarization of polarized hydrogen gas targets in a weak magnetic field

    International Nuclear Information System (INIS)

    Price, J.S.; Haeberli, W.

    1994-01-01

    Polarized gas targets using windowless storage cells are being developed for use as internal targets in medium and high energy particle storage rings. Tests were conducted to evaluate wall depolarization for different cell wall materials. Measurements of the target polarization were made on polarized vector H 0 gas targets in a weak magnetic field. Fifteen materials were tested in geometries corresponding to different average number of wall collisions, N 0 , from 40 to 380 collisions, for wall temperatures, T, from 20 K to 300 K. A method was developed to measure the polarization of a vector H 0 target in a 0.5 mT field: a beam of 50 keV D + picks up electrons from the target gas and the vector D 0 acquires a tensor polarization, p zz , which is measured by means of the 3 H( vector d, n) 4 He reaction. A simple model for depolarization at surfaces is proposed. Comparison to the data shows fair agreement, but the model is unrealistic in that it does not include the effects of the recombination of atoms on the surface to form molecules. ((orig.))

  18. Suppression of Quasiparticle Scattering Signals in Bilayer Graphene Due to Layer Polarization and Destructive Interference

    Science.gov (United States)

    Jolie, Wouter; Lux, Jonathan; Pörtner, Mathias; Dombrowski, Daniela; Herbig, Charlotte; Knispel, Timo; Simon, Sabina; Michely, Thomas; Rosch, Achim; Busse, Carsten

    2018-03-01

    We study chemically gated bilayer graphene using scanning tunneling microscopy and spectroscopy complemented by tight-binding calculations. Gating is achieved by intercalating Cs between bilayer graphene and Ir(111), thereby shifting the conduction band minima below the chemical potential. Scattering between electronic states (both intraband and interband) is detected via quasiparticle interference. However, not all expected processes are visible in our experiment. We uncover two general effects causing this suppression: first, intercalation leads to an asymmetrical distribution of the states within the two layers, which significantly reduces the scanning tunneling spectroscopy signal of standing waves mainly present in the lower layer; second, forward scattering processes, connecting points on the constant energy contours with parallel velocities, do not produce pronounced standing waves due to destructive interference. We present a theory to describe the interference signal for a general n -band material.

  19. PlGF/VEGFR-1 Signaling Promotes Macrophage Polarization and Accelerated Tumor Progression in Obesity.

    Science.gov (United States)

    Incio, Joao; Tam, Josh; Rahbari, Nuh N; Suboj, Priya; McManus, Dan T; Chin, Shan M; Vardam, Trupti D; Batista, Ana; Babykutty, Suboj; Jung, Keehoon; Khachatryan, Anna; Hato, Tai; Ligibel, Jennifer A; Krop, Ian E; Puchner, Stefan B; Schlett, Christopher L; Hoffmman, Udo; Ancukiewicz, Marek; Shibuya, Masabumi; Carmeliet, Peter; Soares, Raquel; Duda, Dan G; Jain, Rakesh K; Fukumura, Dai

    2016-06-15

    Obesity promotes pancreatic and breast cancer progression via mechanisms that are poorly understood. Although obesity is associated with increased systemic levels of placental growth factor (PlGF), the role of PlGF in obesity-induced tumor progression is not known. PlGF and its receptor VEGFR-1 have been shown to modulate tumor angiogenesis and promote tumor-associated macrophage (TAM) recruitment and activity. Here, we hypothesized that increased activity of PlGF/VEGFR-1 signaling mediates obesity-induced tumor progression by augmenting tumor angiogenesis and TAM recruitment/activity. We established diet-induced obese mouse models of wild-type C57BL/6, VEGFR-1 tyrosine kinase (TK)-null, or PlGF-null mice, and evaluated the role of PlGF/VEGFR-1 signaling in pancreatic and breast cancer mouse models and in human samples. We found that obesity increased TAM infiltration, tumor growth, and metastasis in pancreatic cancers, without affecting vessel density. Ablation of VEGFR-1 signaling prevented obesity-induced tumor progression and shifted the tumor immune environment toward an antitumor phenotype. Similar findings were observed in a breast cancer model. Obesity was associated with increased systemic PlGF, but not VEGF-A or VEGF-B, in pancreatic and breast cancer patients and in various mouse models of these cancers. Ablation of PlGF phenocopied the effects of VEGFR-1-TK deletion on tumors in obese mice. PlGF/VEGFR-1-TK deletion prevented weight gain in mice fed a high-fat diet, but exacerbated hyperinsulinemia. Addition of metformin not only normalized insulin levels but also enhanced antitumor immunity. Targeting PlGF/VEGFR-1 signaling reprograms the tumor immune microenvironment and inhibits obesity-induced acceleration of tumor progression. Clin Cancer Res; 22(12); 2993-3004. ©2016 AACR. ©2016 American Association for Cancer Research.

  20. Photonics-based multi-function analog signal processor based on a polarization division multiplexing Mach-Zehnder modulator.

    Science.gov (United States)

    Zhang, Yamei; Pan, Shilong

    2017-12-01

    A photonics-based multi-function analog signal processor based on an optical polarization division multiplexing dual-parallel Mach-Zehnder modulator is proposed and demonstrated, which can implement simultaneously photonic microwave phase shifting, upconversion/downconversion and filtering with excellent tunability. An experiment is carried out. Downconverted and upconverted phase shifters with phases continuously tuned from -180 to 180 deg over 0-11 and 11-33 GHz are implemented. Based on the frequency-mixed phase shifter, a four-tap microwave photonic filter that has the capability to select a frequency-mixed component is built. The proposed approach features multi-function, scalable independent channels, a wide bandwidth, and high tunability, which can find applications in beamforming networks, radio frequency frontends, and radio over fiber systems.

  1. Bipolar Plasma Membrane Distribution of Phosphoinositides and Their Requirement for Auxin-Mediated Cell Polarity and Patterning in Arabidopsis

    NARCIS (Netherlands)

    Tejos, R.; Sauer, M.; Vanneste, S.; Palacios-Gomez, M.; Li, H.; Heilmann, M.; van Wijk, R.; Vermeer, J.E.M.; Heilmann, I.; Munnik, T.; Friml, J.

    2014-01-01

    Cell polarity manifested by asymmetric distribution of cargoes, such as receptors and transporters, within the plasma membrane (PM) is crucial for essential functions in multicellular organisms. In plants, cell polarity (re)establishment is intimately linked to patterning processes. Despite the

  2. Single-cell analysis of G-protein signal transduction.

    Science.gov (United States)

    Clister, Terri; Mehta, Sohum; Zhang, Jin

    2015-03-13

    The growing use of fluorescent biosensors to directly probe the spatiotemporal dynamics of biochemical processes in living cells has revolutionized the study of intracellular signaling. In this review, we summarize recent developments in the use of biosensors to illuminate the molecular details of G-protein-coupled receptor (GPCR) signaling pathways, which have long served as the model for our understanding of signal transduction, while also offering our perspectives on the future of this exciting field. Specifically, we highlight several ways in which biosensor-based single-cell analyses are being used to unravel many of the enduring mysteries that surround these diverse signaling pathways. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Polarity establishment, morphogenesis, and cultured plant cells in space

    Science.gov (United States)

    Krikorian, Abraham D.

    1989-01-01

    Plant development entails an orderly progression of cellular events both in terms of time and geometry. There is only circumstantial evidence that, in the controlled environment of the higher plant embryo sac, gravity may play a role in embryo development. It is still not known whether or not normal embryo development and differentiation in higher plants can be expected to take place reliably and efficiently in the micro g space environment. It seems essential that more attention be given to studying aspects of reproductive biology in order to be confident that plants will survive seed to seed to seed in a space environment. Until the time arrives when successive generations of plants can be grown, the best that can be done is utilize the most appropriate systems and begin, piece meal, to accumulate information on important aspects of plant reproduction. Cultured plant cells can play an important role in these activities since they can be grown so as to be morphogenetically competent, and thus can simulate those embryogenic events more usually identified with fertilized eggs in the embryo sac of the ovule in the ovary. Also, they can be manipulated with relative ease. The extreme plasticity of such demonstrably totipotent cell systems provides a means to test environmental effects such as micro g on a potentially free-running entity. The successful manipulation and management of plant cells and propagules in space also has significance for exploitation of biotechnologies in space since such systems, perforce, are an important vehicle whereby many genetic engineering manipulations are achieved.

  4. Basolateral invasion and trafficking of Campylobacter jejuni in polarized epithelial cells.

    Directory of Open Access Journals (Sweden)

    Lieneke I Bouwman

    Full Text Available Campylobacter jejuni is a major cause of bacterial diarrheal disease. Most enteropathogenic bacteria including C. jejuni can invade cultured eukaryotic cells via an actin- and/or microtubule-dependent and an energy-consuming uptake process. Recently, we identified a novel highly efficient C. jejuni invasion pathway that involves bacterial migration into the subcellular space of non-polarized epithelial cells (termed subvasion followed by invasion from the cell basis. Here we report cellular requirements of this entry mechanism and the subsequent intracellular trafficking route of C. jejuni in polarized islands of Caco-2 intestinal epithelial cells. Advanced microscopy on infected cells revealed that C. jejuni invades the polarized intestinal cells via the subcellular invasion pathway. Remarkably, invasion was not blocked by the inhibitors of microtubule dynamics colchicine or paclitaxel, and was even enhanced after disruption of host cell actin filaments by cytochalasin D. Invasion also continued after dinitrophenol-induced cellular depletion of ATP, whereas this compound effectively inhibited the uptake of invasive Escherichia coli. Confocal microscopy demonstrated that intracellular C. jejuni resided in membrane-bound CD63-positive cellular compartments for up to 24 h. Establishment of a novel luciferase reporter-based bacterial viability assay, developed to overcome the limitations of the classical bacterial recovery assay, demonstrated that a subset of C. jejuni survived intracellularly for up to 48 h. Taken together, our results indicate that C. jejuni is able to actively invade polarized intestinal epithelial cells via a novel actin- and microtubule-independent mechanism and remains metabolically active in the intracellular niche for up to 48 hours.

  5. Influenza H5N1 virus infection of polarized human alveolar epithelial cells and lung microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Yuen Kit M

    2009-10-01

    Full Text Available Abstract Background Highly pathogenic avian influenza (HPAI H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease. Aim To study influenza A (H5N1 virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease. Methods We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces. Results We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our

  6. Human Cytotoxic T Lymphocytes Form Dysfunctional Immune Synapses with B Cells Characterized by Non-Polarized Lytic Granule Release

    Directory of Open Access Journals (Sweden)

    Anna Kabanova

    2016-04-01

    Full Text Available Suppression of the cytotoxic T cell (CTL immune response has been proposed as one mechanism for immune evasion in cancer. In this study, we have explored the underlying basis for CTL suppression in the context of B cell malignancies. We document that human B cells have an intrinsic ability to resist killing by freshly isolated cytotoxic T cells (CTLs, but are susceptible to lysis by IL-2 activated CTL blasts and CTLs isolated from immunotherapy-treated patients with chronic lymphocytic leukemia (CLL. Impaired killing was associated with the formation of dysfunctional non-lytic immune synapses characterized by the presence of defective linker for activation of T cells (LAT signaling and non-polarized release of the lytic granules transported by ADP-ribosylation factor-like protein 8 (Arl8. We propose that non-lytic degranulation of CTLs are a key regulatory mechanism of evasion through which B cells may interfere with the formation of functional immune synapses by CTLs.

  7. Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling.

    Science.gov (United States)

    Head, Brian P; Patel, Hemal H; Insel, Paul A

    2014-02-01

    The plasma membrane in eukaryotic cells contains microdomains that are enriched in certain glycosphingolipids, gangliosides, and sterols (such as cholesterol) to form membrane/lipid rafts (MLR). These regions exist as caveolae, morphologically observable flask-like invaginations, or as a less easily detectable planar form. MLR are scaffolds for many molecular entities, including signaling receptors and ion channels that communicate extracellular stimuli to the intracellular milieu. Much evidence indicates that this organization and/or the clustering of MLR into more active signaling platforms depends upon interactions with and dynamic rearrangement of the cytoskeleton. Several cytoskeletal components and binding partners, as well as enzymes that regulate the cytoskeleton, localize to MLR and help regulate lateral diffusion of membrane proteins and lipids in response to extracellular events (e.g., receptor activation, shear stress, electrical conductance, and nutrient demand). MLR regulate cellular polarity, adherence to the extracellular matrix, signaling events (including ones that affect growth and migration), and are sites of cellular entry of certain pathogens, toxins and nanoparticles. The dynamic interaction between MLR and the underlying cytoskeleton thus regulates many facets of the function of eukaryotic cells and their adaptation to changing environments. Here, we review general features of MLR and caveolae and their role in several aspects of cellular function, including polarity of endothelial and epithelial cells, cell migration, mechanotransduction, lymphocyte activation, neuronal growth and signaling, and a variety of disease settings. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé. Published by Elsevier B.V.

  8. Chemical signals of past climate and environment from polar ice cores and firn air.

    Science.gov (United States)

    Wolff, Eric W

    2012-10-07

    Chemical and isotopic records obtained from polar ice cores have provided some of the most iconic datasets in Earth system science. Here, I discuss how the different records are formed in the ice sheets, emphasising in particular the contrast between chemistry held in the snow/ice phase, and that which is trapped in air bubbles. Air diffusing slowly through the upper firn layers of the ice sheet can also be sampled in large volumes to give more recent historical information on atmospheric composition. The chemical and geophysical issues that have to be solved to interpret ice core data in terms of atmospheric composition and emission changes are also highlighted. Ice cores and firn air have provided particularly strong evidence about recent changes (last few decades to centuries), including otherwise inaccessible data on increases in compounds that are active as greenhouse gases or as agents of stratospheric depletion. On longer timescales (up to 800,000 years in Antarctica), ice cores reveal major changes in biogeochemical cycling, which acted as feedbacks on the very major changes in climate between glacial and interglacial periods.

  9. Robo signaling regulates the production of cranial neural crest cells.

    Science.gov (United States)

    Li, Yan; Zhang, Xiao-Tan; Wang, Xiao-Yu; Wang, Guang; Chuai, Manli; Münsterberg, Andrea; Yang, Xuesong

    2017-12-01

    Slit/Robo signaling plays an important role in the guidance of developing neurons in developing embryos. However, it remains obscure whether and how Slit/Robo signaling is involved in the production of cranial neural crest cells. In this study, we examined Robo1 deficient mice to reveal developmental defects of mouse cranial frontal and parietal bones, which are derivatives of cranial neural crest cells. Therefore, we determined the production of HNK1 + cranial neural crest cells in early chick embryo development after knock-down (KD) of Robo1 expression. Detection of markers for pre-migratory and migratory neural crest cells, PAX7 and AP-2α, showed that production of both was affected by Robo1 KD. In addition, we found that the transcription factor slug is responsible for the aberrant delamination/EMT of cranial neural crest cells induced by Robo1 KD, which also led to elevated expression of E- and N-Cadherin. N-Cadherin expression was enhanced when blocking FGF signaling with dominant-negative FGFR1 in half of the neural tube. Taken together, we show that Slit/Robo signaling influences the delamination/EMT of cranial neural crest cells, which is required for cranial bone development. Copyright © 2017. Published by Elsevier Inc.

  10. Apolar and polar transitions drive the conversion between amoeboid and mesenchymal shapes in melanoma cells.

    Science.gov (United States)

    Cooper, Sam; Sadok, Amine; Bousgouni, Vicky; Bakal, Chris

    2015-11-05

    Melanoma cells can adopt two functionally distinct forms, amoeboid and mesenchymal, which facilitates their ability to invade and colonize diverse environments during the metastatic process. Using quantitative imaging of single living tumor cells invading three-dimensional collagen matrices, in tandem with unsupervised computational analysis, we found that melanoma cells can switch between amoeboid and mesenchymal forms via two different routes in shape space--an apolar and polar route. We show that whereas particular Rho-family GTPases are required for the morphogenesis of amoeboid and mesenchymal forms, others are required for transitions via the apolar or polar route and not amoeboid or mesenchymal morphogenesis per se. Altering the transition rates between particular routes by depleting Rho-family GTPases can change the morphological heterogeneity of cell populations. The apolar and polar routes may have evolved in order to facilitate conversion between amoeboid and mesenchymal forms, as cells are either searching for, or attracted to, particular migratory cues, respectively. © 2015 Cooper et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. AlliedSignal solid oxide fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Minh, N.; Barr, K.; Kelly, P.; Montgomery, K. [AlliedSignal Aerospace Equipment Systems, Torrance, CA (United States)

    1996-12-31

    AlliedSignal has been developing high-performance, lightweight solid oxide fuel cell (SOFC) technology for a broad spectrum of electric power generation applications. This technology is well suited for use in a variety of power systems, ranging from commercial cogeneration to military mobile power sources. The AlliedSignal SOFC is based on stacking high-performance thin-electrolyte cells with lightweight metallic interconnect assemblies to form a compact structure. The fuel cell can be operated at reduced temperatures (600{degrees} to 800{degrees}C). SOFC stacks based on this design has the potential of producing 1 kW/kg and 1 ML. This paper summarizes the technical status of the design, manufacture, and operation of AlliedSignal SOFCs.

  12. Cell wall integrity signalling in human pathogenic fungi.

    Science.gov (United States)

    Dichtl, Karl; Samantaray, Sweta; Wagener, Johannes

    2016-09-01

    Fungi are surrounded by a rigid structure, the fungal cell wall. Its plasticity and composition depend on active regulation of the underlying biosynthesis and restructuring processes. This involves specialised signalling pathways that control gene expression and activities of biosynthetic enzymes. The cell wall integrity (CWI) pathway is the central signalling cascade required for the adaptation to a wide spectrum of cell wall perturbing conditions, including heat, oxidative stress and antifungals. In the recent years, great efforts were made to analyse the CWI pathway of diverse fungi. It turned out that the CWI signalling cascade is mostly conserved in the fungal kingdom. In this review, we summarise as well as compare the current knowledge on the canonical CWI pathway in the human pathogenic fungi Candida albicans, Candida glabrata, Aspergillus fumigatus and Cryptococcus neoformans. Understanding the differences and similarities in the stress responses of these organisms could become a key to improving existing or developing new antifungal therapies. © 2016 John Wiley & Sons Ltd.

  13. Continuous requirement of ErbB2 kinase activity for loss of cell polarity and lumen formation in a novel ErbB2/Neu-driven murine cell line model of metastatic breast cancer

    Directory of Open Access Journals (Sweden)

    Cesar F Ortega-Cava

    2011-01-01

    Full Text Available Background: Well over a quarter of human breast cancers are ErbB2-driven and constitute a distinct subtype with substantially poorer prognosis. Yet, there are substantial gaps in our understanding of how ErbB2 tyrosine kinase activity unleashes a coordinated program of cellular and extracellular alterations that culminate in aggressive breast cancers. Cellular models that exhibit ErbB2 kinase dependency and can induce metastatic breast cancer in immune competent hosts are likely to help bridge this gap. Materials and Methods: Here, we derived and characterized a cell line model obtained from a transgenic ErbB2/Neu-driven mouse mammary adenocarcinoma. Results: The MPPS1 cell line produces metastatic breast cancers when implanted in the mammary fat pads of immune-compromised as well as syngeneic immune-competent hosts. MPPS1 cells maintain high ErbB2 overexpression when propagated in DFCI-1 or related media, and their growth is ErbB2-dependent, as demonstrated by concentration-dependent inhibition of proliferation with the ErbB kinase inhibitor Lapatinib. When grown in 3-dimensional (3-D culture on Matrigel, MPPS1 cells predominantly form large irregular cystic and solid structures. Remarkably, low concentrations of Lapatinib led to a switch to regular acinar growth on Matrigel. Immunofluorescence staining of control vs. Lapatinib-treated acini for markers of epithelial polarity revealed that inhibition of ErbB2 signaling led to rapid resumption of normal mammary epithelium-like cell polarity. Conclusions: The strict dependence of the MPPS1 cell system on ErbB2 signals for proliferation and alterations in cell polarity should allow its use to dissect ErbB2 kinase-dependent signaling pathways that promote loss of cell polarity, a key component of the epithelial mesenchymal transition and aggressiveness of ErbB2-driven breast cancers.

  14. New, simple theory-based, accurate polarization microscope for birefringence imaging of biological cells

    Science.gov (United States)

    Shin, In Hee; Shin, Sang-Mo; Kim, Dug Young

    2010-01-01

    We propose a new, simple theory-based, accurate polarization microscope for birefringence imaging of cytoskeletal structures of biological cells. The new theory lets us calculate very easily the phase retardation and the orientation of the principal axis of a particular area of a biological living cell in media by simply measuring the intensity variation of a pixel of a CCD camera while rotating a single polarizer. Just from the measured intensity maxima and minima, the amount of phase retardation δ between the fast and the slow axis of the sample area is obtained with an accuracy of 5.010+/-0.798×10-3 rad. The orientation of the principal axis is calculated from the angle of the polarizer for the intensity maximum. We have compared our microscopes with two previously reported polarization microscopes for birefringence imaging of cytoskeletal structures and demonstrated the utility of our microscope with the phase retardation and orientation images of weakly invasive MCF7 and highly invasive MDA MB 231 human breast cancer cells as an example.

  15. Concomitant use of polarization and positive phase contrast microscopy for the study of microbial cells.

    Science.gov (United States)

    Žižka, Zdeněk; Gabriel, Jiří

    2015-11-01

    Polarization and positive phase contrast microscope were concomitantly used in the study of the internal structure of microbial cells. Positive phase contrast allowed us to view even the fine cell structure with a refractive index approaching that of the surrounding environment, e.g., the cytoplasm, and transferred the invisible phase image to a visible amplitude image. With polarization microscopy, crossed polarizing filters together with compensators and a rotary stage showed the birefringence of different cell structures. Material containing algae was collected in ponds in Sýkořice and Zbečno villages (Křivoklát region). The objects were studied in laboratory microscopes LOMO MIN-8 Sankt Petersburg and Polmi A Carl Zeiss Jena fitted with special optics for positive phase contrast, polarizers, analyzers, compensators, rotary stages, and digital SLR camera Nikon D 70 for image capture. Anisotropic granules were found in the cells of flagellates of the order Euglenales, in green algae of the orders Chlorococcales and Chlorellales, and in desmid algae of the order Desmidiales. The cell walls of filamentous algae of the orders Zygnematales and Ulotrichales were found to exhibit significant birefringence; in addition, relatively small amounts of small granules were found in the cytoplasm. A typical shape-related birefringence of the cylindrical walls and the septa between the cells differed in intensity, which was especially apparent when using a Zeiss compensator RI-c during its successive double setting. In conclusion, the anisotropic granules found in the investigated algae mostly showed strong birefringence and varied in number, size, and location of the cells. Representatives of the order Chlorococcales contained the highest number of granules per cell, and the size of these granules was almost double than that of the other monitored microorganisms. Very strong birefringence was exhibited by cell walls of filamentous algae; it differed in the intensity

  16. Participation of the cell polarity protein PALS1 to T-cell receptor-mediated NF-κB activation.

    Directory of Open Access Journals (Sweden)

    Gabrielle Carvalho

    Full Text Available BACKGROUND: Beside their established function in shaping cell architecture, some cell polarity proteins were proposed to participate to lymphocyte migration, homing, scanning, as well as activation following antigen receptor stimulation. Although PALS1 is a central component of the cell polarity network, its expression and function in lymphocytes remains unknown. Here we investigated whether PALS1 is present in T cells and whether it contributes to T Cell-Receptor (TCR-mediated activation. METHODOLOGY/PRINCIPAL FINDINGS: By combining RT-PCR and immunoblot assays, we found that PALS1 is constitutively expressed in human T lymphocytes as well as in Jurkat T cells. siRNA-based knockdown of PALS1 hampered TCR-induced activation and optimal proliferation of lymphocyte. We further provide evidence that PALS1 depletion selectively hindered TCR-driven activation of the transcription factor NF-κB. CONCLUSIONS: The cell polarity protein PALS1 is expressed in T lymphocytes and participates to the optimal activation of NF-κB following TCR stimulation.

  17. Apoptosis and signalling in acid sphingomyelinase deficient cells

    Directory of Open Access Journals (Sweden)

    Sillence Dan J

    2001-11-01

    Full Text Available Abstract Background Recent evidence suggests that the activation of a non-specific lipid scramblase during apoptosis induces the flipping of sphingomyelin from the cell surface to the cytoplasmic leaftet of the plasma membrane. Inner leaflet sphingomyelin is then cleaved to ceramide by a neutral sphingomyelinase. The production of this non-membrane forming lipid induces blebbing of the plasma membrane to aid rapid engulfment by professional phagocytes. However contrary evidence suggests that cells which are deficient in acid sphingomyelinase are defective in apoptosis signalling. This data has been interpreted as support for the activation of acid sphingomyelinase as an early signal in apoptosis. Hypothesis An alternative explanation is put forward whereby the accumulation of intracellular sphingomyelin in sphingomyelinase deficient cells leads to the formation of intracellular rafts which lead to the sequestration of important signalling molecules that are normally present on the cell surface where they perform their function. Testing the hypothesis It is expected that the subcellular distribution of important signalling molecules is altered in acid sphingomyelinase deficient cells, leading to their sequestration in late endosomes / lysosomes. Other sphingolipid storage diseases such as Niemann-Pick type C which have normal acid sphingomyelinase activity would also be expected to show the same phenotype. Implications of the hypothesis If true the hypothesis would provide a mechanism for the pathology of the sphingolipid storage diseases at the cellular level and also have implications for the role of ceramide in apoptosis.

  18. Discrete dynamic modeling of T cell survival signaling networks

    Science.gov (United States)

    Zhang, Ranran

    2009-03-01

    Biochemistry-based frameworks are often not applicable for the modeling of heterogeneous regulatory systems that are sparsely documented in terms of quantitative information. As an alternative, qualitative models assuming a small set of discrete states are gaining acceptance. This talk will present a discrete dynamic model of the signaling network responsible for the survival and long-term competence of cytotoxic T cells in the blood cancer T-LGL leukemia. We integrated the signaling pathways involved in normal T cell activation and the known deregulations of survival signaling in leukemic T-LGL, and formulated the regulation of each network element as a Boolean (logic) rule. Our model suggests that the persistence of two signals is sufficient to reproduce all known deregulations in leukemic T-LGL. It also indicates the nodes whose inactivity is necessary and sufficient for the reversal of the T-LGL state. We have experimentally validated several model predictions, including: (i) Inhibiting PDGF signaling induces apoptosis in leukemic T-LGL. (ii) Sphingosine kinase 1 and NFκB are essential for the long-term survival of T cells in T-LGL leukemia. (iii) T box expressed in T cells (T-bet) is constitutively activated in the T-LGL state. The model has identified potential therapeutic targets for T-LGL leukemia and can be used for generating long-term competent CTL necessary for tumor and cancer vaccine development. The success of this model, and of other discrete dynamic models, suggests that the organization of signaling networks has an determining role in their dynamics. Reference: R. Zhang, M. V. Shah, J. Yang, S. B. Nyland, X. Liu, J. K. Yun, R. Albert, T. P. Loughran, Jr., Network Model of Survival Signaling in LGL Leukemia, PNAS 105, 16308-16313 (2008).

  19. Racial differences in B cell receptor signaling pathway activation.

    Science.gov (United States)

    Longo, Diane M; Louie, Brent; Mathi, Kavita; Pos, Zoltan; Wang, Ena; Hawtin, Rachael E; Marincola, Francesco M; Cesano, Alessandra

    2012-06-06

    Single-cell network profiling (SCNP) is a multi-parametric flow cytometry-based approach that simultaneously measures basal and modulated intracellular signaling activity in multiple cell subpopulations. Previously, SCNP analysis of a broad panel of immune signaling pathways in cell subsets within PBMCs from 60 healthy donors identified a race-associated difference in B cell anti-IgD-induced PI3K pathway activity. The present study extended this analysis to a broader range of signaling pathway components downstream of the B cell receptor (BCR) in European Americans and African Americans using a subset of donors from the previously analyzed cohort of 60 healthy donors. Seven BCR signaling nodes (a node is defined as a paired modulator and intracellular readout) were measured at multiple time points by SCNP in PBMCs from 10 healthy donors [5 African Americans (36-51 yrs), 5 European Americans (36-56 yrs), all males]. Analysis of BCR signaling activity in European American and African American PBMC samples revealed that, compared to the European American donors, B cells from African Americans had lower anti-IgD induced phosphorylation of multiple BCR pathway components, including the membrane proximal proteins Syk and SFK as well as proteins in the PI3K pathway (S6 and Akt), the MAPK pathways (Erk and p38), and the NF-κB pathway (NF-κB). In addition to differences in the magnitude of anti-IgD-induced pathway activation, racial differences in BCR signaling kinetic profiles were observed. Further, the frequency of IgD+ B cells differed by race and strongly correlated with BCR pathway activation. Thus, the race-related difference in BCR pathway activation appears to be attributable at least in part to a race-associated difference in IgD+ B cell frequencies. SCNP analysis enabled the identification of statistically significant race-associated differences in BCR pathway activation within PBMC samples from healthy donors. Understanding race-associated contrasts in immune

  20. Racial differences in B cell receptor signaling pathway activation

    Directory of Open Access Journals (Sweden)

    Longo Diane M

    2012-06-01

    Full Text Available Abstract Background Single-cell network profiling (SCNP is a multi-parametric flow cytometry-based approach that simultaneously measures basal and modulated intracellular signaling activity in multiple cell subpopulations. Previously, SCNP analysis of a broad panel of immune signaling pathways in cell subsets within PBMCs from 60 healthy donors identified a race-associated difference in B cell anti-IgD-induced PI3K pathway activity. Methods The present study extended this analysis to a broader range of signaling pathway components downstream of the B cell receptor (BCR in European Americans and African Americans using a subset of donors from the previously analyzed cohort of 60 healthy donors. Seven BCR signaling nodes (a node is defined as a paired modulator and intracellular readout were measured at multiple time points by SCNP in PBMCs from 10 healthy donors [5 African Americans (36-51 yrs, 5 European Americans (36-56 yrs, all males]. Results Analysis of BCR signaling activity in European American and African American PBMC samples revealed that, compared to the European American donors, B cells from African Americans had lower anti-IgD induced phosphorylation of multiple BCR pathway components, including the membrane proximal proteins Syk and SFK as well as proteins in the PI3K pathway (S6 and Akt, the MAPK pathways (Erk and p38, and the NF-κB pathway (NF-κB. In addition to differences in the magnitude of anti-IgD-induced pathway activation, racial differences in BCR signaling kinetic profiles were observed. Further, the frequency of IgD+ B cells differed by race and strongly correlated with BCR pathway activation. Thus, the race-related difference in BCR pathway activation appears to be attributable at least in part to a race-associated difference in IgD+ B cell frequencies. Conclusions SCNP analysis enabled the identification of statistically significant race-associated differences in BCR pathway activation within PBMC samples from

  1. Nuclear fallout provides a new link between aPKC and polarized cell trafficking.

    Science.gov (United States)

    Calero-Cuenca, Francisco J; Espinosa-Vázquez, José Manuel; Reina-Campos, Miguel; Díaz-Meco, María T; Moscat, Jorge; Sotillos, Sol

    2016-04-18

    Cell polarity, essential for cell physiology and tissue coherence, emerges as a consequence of asymmetric localization of protein complexes and directional trafficking of cellular components. Although molecules required in both processes are well known their relationship is still poorly understood. Here we show a molecular link between Nuclear Fallout (Nuf), an adaptor of Rab11-GTPase to the microtubule motor proteins during Recycling Endosome (RE) trafficking, and aPKC, a pivotal kinase in the regulation of cell polarity. We demonstrate that aPKC phosphorylates Nuf modifying its subcellular distribution. Accordingly, in aPKC mutants Nuf and Rab11 accumulate apically indicating altered RE delivery. We show that aPKC localization in the apico-lateral cortex is dynamic. When we block exocytosis, by means of exocyst-sec mutants, aPKC accumulates inside the cells. Moreover, apical aPKC concentration is reduced in nuf mutants, suggesting aPKC levels are maintained by recycling. We demonstrate that active aPKC interacts with Nuf, phosphorylating it and, as a result, modifying its subcellular distribution. We propose a regulatory loop by which Nuf promotes aPKC apical recycling until sufficient levels of active aPKC are reached. Thus, we provide a novel link between cell polarity regulation and traffic control in epithelia.

  2. Trafficking through COPII stabilises cell polarity and drives secretion during Drosophila epidermal differentiation.

    Directory of Open Access Journals (Sweden)

    Michaela Norum

    2010-05-01

    Full Text Available The differentiation of an extracellular matrix (ECM at the apical side of epithelial cells implies massive polarised secretion and membrane trafficking. An epithelial cell is hence engaged in coordinating secretion and cell polarity for a correct and efficient ECM formation.We are studying the molecular mechanisms that Drosophila tracheal and epidermal cells deploy to form their specific apical ECM during differentiation. In this work we demonstrate that the two genetically identified factors haunted and ghost are essential for polarity maintenance, membrane topology as well as for secretion of the tracheal luminal matrix and the cuticle. We show that they code for the Drosophila COPII vesicle-coating components Sec23 and Sec24, respectively, that organise vesicle transport from the ER to the Golgi apparatus.Taken together, epithelial differentiation during Drosophila embryogenesis is a concerted action of ECM formation, plasma membrane remodelling and maintenance of cell polarity that all three rely mainly, if not absolutely, on the canonical secretory pathway from the ER over the Golgi apparatus to the plasma membrane. Our results indicate that COPII vesicles constitute a central hub for these processes.

  3. Protein kinase C signaling and cell cycle regulation

    Directory of Open Access Journals (Sweden)

    Adrian R Black

    2013-01-01

    Full Text Available A link between T cell proliferation and the protein kinase C (PKC family of serine/threonine kinases has been recognized for about thirty years. However, despite the wealth of information on PKC-mediated control of T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. The outcome of PKC activation is highly context-dependent, with the precise cell cycle target(s and overall effects determined by the specific isozyme involved, the timing of PKC activation, the cell type, and the signaling environment. Although PKCs can regulate all stages of the cell cycle, they appear to predominantly affect G0/G1 and G2. PKCs can modulate multiple cell cycle regulatory molecules, including cyclins, cyclin-dependent kinases (cdks, cdk inhibitors and cdc25 phosphatases; however, evidence points to Cip/Kip cdk inhibitors and D-type cyclins as key mediators of PKC-regulated cell cycle-specific effects. Several PKC isozymes can target Cip/Kip proteins to control G0/G1→S and/or G2→M transit, while effects on D-type cyclins regulate entry into and progression through G1. Analysis of PKC signaling in T cells has largely focused on its roles in T cell activation; thus, observed cell cycle effects are mainly positive. A prominent role is emerging for PKCθ, with non-redundant functions of other isozymes also described. Additional evidence points to PKCδ as a negative regulator of the cell cycle in these cells. As in other cell types, context-dependent effects of individual isozymes have been noted in T cells, and Cip/Kip cdk inhibitors and D-type cyclins appear to be major PKC targets. Future studies are anticipated to take advantage of the similarities between these various systems to enhance understanding of PKC-mediated cell cycle regulation in

  4. Optogenetic control of chemokine receptor signal and T-cell migration

    Science.gov (United States)

    Xu, Yuexin; Hyun, Young-Min; Lim, Kihong; Lee, Hyunwook; Cummings, Ryan J.; Gerber, Scott A.; Bae, Seyeon; Cho, Thomas Yoonsang; Lord, Edith M.; Kim, Minsoo

    2014-01-01

    Adoptive cell transfer of ex vivo-generated immune-promoting or tolerogenic T cells to either enhance immunity or promote tolerance in patients has been used with some success. However, effective trafficking of the transferred cells to the target tissue sites is the main barrier to achieving successful clinical outcomes. Here we developed a strategy for optically controlling T-cell trafficking using a photoactivatable (PA) chemokine receptor. Photoactivatable-chemokine C-X-C motif receptor 4 (PA-CXCR4) transmitted intracellular CXCR4 signals in response to 505-nm light. Localized activation of PA-CXCR4 induced T-cell polarization and directional migration (phototaxis) both in vitro and in vivo. Directing light onto the melanoma was sufficient to recruit PA-CXCR4–expressing tumor-targeting cytotoxic T cells and improved the efficacy of adoptive T-cell transfer immunotherapy, with a significant reduction in tumor growth in mice. These findings suggest that the use of photoactivatable chemokine receptors allows remotely controlled leukocyte trafficking with outstanding spatial resolution in tissues and may be feasible in other cell transfer therapies. PMID:24733886

  5. Prolactin/Jak2 directs apical/basal polarization and luminal linage maturation of mammary epithelial cells through regulation of the Erk1/2 pathway

    Directory of Open Access Journals (Sweden)

    Fengming Liu

    2015-09-01

    Full Text Available Tissue development/remodeling requires modulations in both cellular architecture and phenotype. Aberration in these processes leads to tumorigenesis. During the pregnancy/lactation cycle the mammary epithelial cells undergo complex morphological and phenotypic programs resulting in the acquisition of apical/basal (A/B polarization and cellular maturation necessary for proper lactation. Still the hormonal regulations and cellular mechanisms controlling these events are not entirely elucidated. Here we show that prolactin (PRL/Jak2 pathway in mammary epithelial cells uniquely signals to establish A/B polarity as determined by the apical localization of the tight junction protein zona occludens 1 (ZO-1 and the basal/lateral localization of E-cadherin, and the apical trafficking of lipid droplets. As well, our results indicate that this pathway regulates mammary stem cell hierarchy by inducing the differentiation of luminal progenitor (EpCAMhi/CD49fhi cells to mature luminal (EpCAMhi/CD49flow cells. Moreover, our data indicate that PRL/Jak2 coordinates both of these cellular events through limiting the mitogen activated protein kinase (Erk1/2 pathway. Together our findings define a novel unifying mechanism coupling mammary epithelial cell A/B polarization and terminal differentiation.

  6. Systems biology. Conditional density-based analysis of T cell signaling in single-cell data.

    Science.gov (United States)

    Krishnaswamy, Smita; Spitzer, Matthew H; Mingueneau, Michael; Bendall, Sean C; Litvin, Oren; Stone, Erica; Pe'er, Dana; Nolan, Garry P

    2014-11-28

    Cellular circuits sense the environment, process signals, and compute decisions using networks of interacting proteins. To model such a system, the abundance of each activated protein species can be described as a stochastic function of the abundance of other proteins. High-dimensional single-cell technologies, such as mass cytometry, offer an opportunity to characterize signaling circuit-wide. However, the challenge of developing and applying computational approaches to interpret such complex data remains. Here, we developed computational methods, based on established statistical concepts, to characterize signaling network relationships by quantifying the strengths of network edges and deriving signaling response functions. In comparing signaling between naïve and antigen-exposed CD4(+) T lymphocytes, we find that although these two cell subtypes had similarly wired networks, naïve cells transmitted more information along a key signaling cascade than did antigen-exposed cells. We validated our characterization on mice lacking the extracellular-regulated mitogen-activated protein kinase (MAPK) ERK2, which showed stronger influence of pERK on pS6 (phosphorylated-ribosomal protein S6), in naïve cells as compared with antigen-exposed cells, as predicted. We demonstrate that by using cell-to-cell variation inherent in single-cell data, we can derive response functions underlying molecular circuits and drive the understanding of how cells process signals. Copyright © 2014, American Association for the Advancement of Science.

  7. Ultrastructural analyses of somatic embryo initiation, development and polarity establishment from mesophyll cells of Dactylis glomerata

    Science.gov (United States)

    Vasilenko, A.; McDaniel, J. K.; Conger, B. V.

    2000-01-01

    Somatic embryos initiate and develop directly from single mesophyll cells in in vitro-cultured leaf segments of orchardgrass (Dactylis glomerata L.). Embryogenic cells establish themselves in the predivision stage by formation of thicker cell walls and dense cytoplasm. Electron microscopy observations for embryos ranging from the pre-cell-division stage to 20-cell proembryos confirm previous light microscopy studies showing a single cell origin. They also confirm that the first division is predominantly periclinal and that this division plane is important in establishing embryo polarity and in determining the embryo axis. If the first division is anticlinal or if divisions are in random planes after the first division, divisions may not continue to produce an embryo. This result may produce an embryogenic cell mass, callus formation, or no structure at all. Grant numbers: NAGW-3141, NAG10-0221.

  8. Signal peptide of eosinophil cationic protein is toxic to cells lacking signal peptide peptidase

    International Nuclear Information System (INIS)

    Wu, C.-M.; Chang, Margaret Dah-Tsyr

    2004-01-01

    Eosinophil cationic protein (ECP) is a toxin secreted by activated human eosinophils. The properties of mature ECP have been well studied but those of the signal peptide of ECP (ECPsp) are not clear. In this study, several chimeric proteins containing N-terminal fusion of ECPsp were generated, and introduced into Escherichia coli, Pichia pastoris, and human epidermoid carcinoma cell line A431 to study the function of ECPsp. We found that expression of ECPsp chimeric proteins inhibited the growth of E. coli and P. pastoris but not A431 cells. Primary sequence analysis and in vitro transcription/translation of ECPsp have revealed that it is a potential substrate for human signal peptide peptidase (hSPP), an intramembrane protease located in endoplasmic reticulum. In addition, knockdown of the hSPP mRNA expression in ECPsp-eGFP/A431 cells caused the growth inhibitory effect, whereas complementally expression of hSPP in P. pastoris system rescued the cell growth. Taken together, we have demonstrated that ECPsp is a toxic signal peptide, and expression of hSPP protects the cells from growth inhibition

  9. Oxidative Stress, Signal Transduction, Cell-Cell Communication

    National Research Council Canada - National Science Library

    Trosko, James

    1999-01-01

    .... The integration of intercellular communication through gap junctions and intracellular pathways plays a role in maintaining the homeostasis by controlling the expression of genes that control cell...

  10. Folic Acid Is Able to Polarize the Inflammatory Response in LPS Activated Microglia by Regulating Multiple Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Antonia Cianciulli

    2016-01-01

    Full Text Available We investigated the ability of folic acid to modulate the inflammatory responses of LPS activated BV-2 microglia cells and the signal transduction pathways involved. To this aim, the BV-2 cell line was exposed to LPS as a proinflammatory response inducer, in presence or absence of various concentrations of folic acid. The production of nitric oxide (NO was determined by the Griess test. The levels of tumor necrosis factor-alpha (TNF-α, interleukin-1 beta (IL-1β, and IL-10 were determined by ELISA. Inducible NO synthase (iNOS, nuclear transcription factor-kappa B (NF-κB p65, MAPKs protein, and suppressors of cytokine signaling (SOCS1 and SOCS3 were analyzed by western blotting. TNF-α and IL-1β, as well as iNOS dependent NO production, resulted significantly inhibited by folic acid pretreatment in LPS-activated BV-2 cells. We also observed that folic acid dose-dependently upregulated both SOCS1 and SOCS3 expression in BV-2 cells, leading to an increased expression of the anti-inflammatory cytokine IL-10. Finally, p-IκBα, which indirectly reflects NF-κB complex activation, and JNK phosphorylation resulted dose-dependently downregulated by folic acid pretreatment of LPS-activated cells, whereas p38 MAPK phosphorylation resulted significantly upregulated by folic acid treatment. Overall, these results demonstrated that folic acid was able to modulate the inflammatory response in microglia cells, shifting proinflammatory versus anti-inflammatory responses through regulating multiple signaling pathways.

  11. Tuning Cell and Tissue Development by Combining Multiple Mechanical Signals.

    Science.gov (United States)

    Sinha, Ravi; Verdonschot, Nico; Koopman, Bart; Rouwkema, Jeroen

    2017-10-01

    Mechanical signals offer a promising way to control cell and tissue development. It has been established that cells constantly probe their mechanical microenvironment and employ force feedback mechanisms to modify themselves and when possible, their environment, to reach a homeostatic state. Thus, a correct mechanical microenvironment (external forces and mechanical properties and shapes of cellular surroundings) is necessary for the proper functioning of cells. In vitro or in the case of nonbiological implants in vivo, where cells are in an artificial environment, addition of the adequate mechanical signals can, therefore, enable the cells to function normally as in vivo. Hence, a wide variety of approaches have been developed to apply mechanical stimuli (such as substrate stretch, flow-induced shear stress, substrate stiffness, topography, and modulation of attachment area) to cells in vitro. These approaches have not just revealed the effects of the mechanical signals on cells but also provided ways for probing cellular molecules and structures that can provide a mechanistic understanding of the effects. However, they remain lower in complexity compared with the in vivo conditions, where the cellular mechanical microenvironment is the result of a combination of multiple mechanical signals. Therefore, combinations of mechanical stimuli have also been applied to cells in vitro. These studies have had varying focus-developing novel platforms to apply complex combinations of mechanical stimuli, observing the co-operation/competition between stimuli, combining benefits of multiple stimuli toward an application, or uncovering the underlying mechanisms of their action. In general, they provided new insights that could not have been predicted from previous knowledge. We present here a review of several such studies and the insights gained from them, thereby making a case for such studies to be continued and further developed.

  12. Probiotic Modulation of Innate Cell Pathogen Sensing and Signaling Events

    Directory of Open Access Journals (Sweden)

    Amy Llewellyn

    2017-10-01

    Full Text Available There is a growing body of evidence documenting probiotic bacteria to have a beneficial effect to the host through their ability to modulate the mucosal immune system. Many probiotic bacteria can be considered to act as either immune activators or immune suppressors, which have appreciable influence on homeostasis, inflammatory- and suppressive-immunopathology. What is becoming apparent is the ability of these probiotics to modulate innate immune responses via direct or indirect effects on the signaling pathways that drive these activatory or suppressive/tolerogenic mechanisms. This review will focus on the immunomodulatory role of probiotics on signaling pathways in innate immune cells: from positive to negative regulation associated with innate immune cells driving gut mucosal functionality. Research investigations have shown probiotics to modulate innate functionality in many ways including, receptor antagonism, receptor expression, binding to and expression of adaptor proteins, expression of negative regulatory signal molecules, induction of micro-RNAs, endotoxin tolerisation and finally, the secretion of immunomodulatory proteins, lipids and metabolites. The detailed understanding of the immunomodulatory signaling effects of probiotic strains will facilitate strain-specific selective manipulation of innate cell signal mechanisms in the modulation of mucosal adjuvanticity, immune deviation and tolerisation in both healthy subjects and patients with inflammatory and suppressive pathology.

  13. Curcumin blocks interleukin-1 signaling in chondrosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Thomas Kalinski

    Full Text Available Interleukin (IL-1 signaling plays an important role in inflammatory processes, but also in malignant processes. The essential downstream event in IL-1 signaling is the activation of nuclear factor (NF-κB, which leads to the expression of several genes that are involved in cell proliferation, invasion, angiogenesis and metastasis, among them VEGF-A. As microenvironment-derived IL-1β is required for invasion and angiogenesis in malignant tumors, also in chondrosarcomas, we investigated IL-1β-induced signal transduction and VEGF-A expression in C3842 and SW1353 chondrosarcoma cells. We additionally performed in vitro angiogenesis assays and NF-κB-related gene expression analyses. Curcumin is a substance which inhibits IL-1 signaling very early by preventing the recruitment of IL-1 receptor associated kinase (IRAK to the IL-1 receptor. We demonstrate that IL-1 signaling and VEGF-A expression are blocked by Curcumin in chondrosarcoma cells. We further show that Curcumin blocks IL-1β-induced angiogenesis and NF-κB-related gene expression. We suppose that IL-1 blockade is an additional treatment option in chondrosarcoma, either by Curcumin, its derivatives or other IL-1 blocking agents.

  14. Hierarchical feedback modules and reaction hubs in cell signaling networks.

    Science.gov (United States)

    Xu, Jianfeng; Lan, Yueheng

    2015-01-01

    Despite much effort, identification of modular structures and study of their organizing and functional roles remain a formidable challenge in molecular systems biology, which, however, is essential in reaching a systematic understanding of large-scale cell regulation networks and hence gaining capacity of exerting effective interference to cell activity. Combining graph theoretic methods with available dynamics information, we successfully retrieved multiple feedback modules of three important signaling networks. These feedbacks are structurally arranged in a hierarchical way and dynamically produce layered temporal profiles of output signals. We found that global and local feedbacks act in very different ways and on distinct features of the information flow conveyed by signal transduction but work highly coordinately to implement specific biological functions. The redundancy embodied with multiple signal-relaying channels and feedback controls bestow great robustness and the reaction hubs seated at junctions of different paths announce their paramount importance through exquisite parameter management. The current investigation reveals intriguing general features of the organization of cell signaling networks and their relevance to biological function, which may find interesting applications in analysis, design and control of bio-networks.

  15. Hierarchical feedback modules and reaction hubs in cell signaling networks.

    Directory of Open Access Journals (Sweden)

    Jianfeng Xu

    Full Text Available Despite much effort, identification of modular structures and study of their organizing and functional roles remain a formidable challenge in molecular systems biology, which, however, is essential in reaching a systematic understanding of large-scale cell regulation networks and hence gaining capacity of exerting effective interference to cell activity. Combining graph theoretic methods with available dynamics information, we successfully retrieved multiple feedback modules of three important signaling networks. These feedbacks are structurally arranged in a hierarchical way and dynamically produce layered temporal profiles of output signals. We found that global and local feedbacks act in very different ways and on distinct features of the information flow conveyed by signal transduction but work highly coordinately to implement specific biological functions. The redundancy embodied with multiple signal-relaying channels and feedback controls bestow great robustness and the reaction hubs seated at junctions of different paths announce their paramount importance through exquisite parameter management. The current investigation reveals intriguing general features of the organization of cell signaling networks and their relevance to biological function, which may find interesting applications in analysis, design and control of bio-networks.

  16. Hierarchical Feedback Modules and Reaction Hubs in Cell Signaling Networks

    Science.gov (United States)

    Xu, Jianfeng; Lan, Yueheng

    2015-01-01

    Despite much effort, identification of modular structures and study of their organizing and functional roles remain a formidable challenge in molecular systems biology, which, however, is essential in reaching a systematic understanding of large-scale cell regulation networks and hence gaining capacity of exerting effective interference to cell activity. Combining graph theoretic methods with available dynamics information, we successfully retrieved multiple feedback modules of three important signaling networks. These feedbacks are structurally arranged in a hierarchical way and dynamically produce layered temporal profiles of output signals. We found that global and local feedbacks act in very different ways and on distinct features of the information flow conveyed by signal transduction but work highly coordinately to implement specific biological functions. The redundancy embodied with multiple signal-relaying channels and feedback controls bestow great robustness and the reaction hubs seated at junctions of different paths announce their paramount importance through exquisite parameter management. The current investigation reveals intriguing general features of the organization of cell signaling networks and their relevance to biological function, which may find interesting applications in analysis, design and control of bio-networks. PMID:25951347

  17. Molecular regulation of cytoskeletal rearrangements during T cell signalling.

    Science.gov (United States)

    Stradal, Theresia E B; Pusch, Rico; Kliche, Stefanie

    2006-01-01

    Regulation of the cytoskeleton in cells of the haematopoietic system is essential for fulfilling diverse tasks such as migration towards a chemoattractant, phagocytosis or cell-cell communication. This is particularly true for the many types of T cells, which are at the foundation of the adaptive immune system in vertebrates. Deregulation of actin filament turnover is known to be involved in the development of severe immunodeficiencies or immunoproliferative diseases. Therefore, molecular dissection of signalling complexes and effector molecules, which leads to controlled cytoskeletal assembly, has been the focus of immunological research in the last decade. In the past, cytoskeletal remodelling was frequently understood as the finish line of signalling, while today it becomes increasingly evident that actin and microtubule dynamics are required for proper signal transmission in many processes such as T cell activation. Significant effort is made in many laboratories to further elucidate the contribution of cytoskeletal remodelling to immune function. The objective of this article is to summarise the current knowledge on how actin and microtubules are reorganised to support the formation of structures as diverse as the immunological synapse and peripheral protrusions during cell migration.

  18. Signal transduction events in aluminum-induced cell death in tomato suspension cells

    NARCIS (Netherlands)

    Iakimova, E.T.; Kapchina-Toteva, V.M.; Woltering, E.J.

    2007-01-01

    In this study, some of the signal transduction events involved in AlCl3-induced cell death in tomato (Lycopersicon esculentum Mill.) suspension cells were elucidated. Cells treated with 100 ¿M AlCl3 showed typical features of programmed cell death (PCD) such as nuclear and cytoplasmic condensation.

  19. A Kinome RNAi Screen in Drosophila Identifies Novel Genes Interacting with Lgl, aPKC, and Crb Cell Polarity Genes in Epithelial Tissues

    NARCIS (Netherlands)

    Parsons, Linda M.; Grzeschik, Nicola A; Amaratunga, Kasun; Burke, Peter; Quinn, Leonie M; Richardson, Helena E

    2017-01-01

    In both Drosophila melanogaster and mammalian systems, epithelial structure and underlying cell polarity are essential for proper tissue morphogenesis and organ growth. Cell polarity interfaces with multiple cellular processes that are regulated by the phosphorylation status of large protein

  20. A signal processing analysis of Purkinje cells in vitro

    Directory of Open Access Journals (Sweden)

    Ze'ev R Abrams

    2010-05-01

    Full Text Available Cerebellar Purkinje cells in vitro fire recurrent sequences of Sodium and Calcium spikes. Here, we analyze the Purkinje cell using harmonic analysis, and our experiments reveal that its output signal is comprised of three distinct frequency bands, which are combined using Amplitude and Frequency Modulation (AM/FM. We find that the three characteristic frequencies - Sodium, Calcium and Switching – occur in various combinations in all waveforms observed using whole-cell current clamp recordings. We found that the Calcium frequency can display a frequency doubling of its frequency mode, and the Switching frequency can act as a possible generator of pauses that are typically seen in Purkinje output recordings. Using a reversibly photo-switchable kainate receptor agonist, we demonstrate the external modulation of the Calcium and Switching frequencies. These experiments and Fourier analysis suggest that the Purkinje cell can be understood as a harmonic signal oscillator, enabling a higher level of interpretation of Purkinje signaling based on modern signal processing techniques.

  1. Comparison of clinical grade type 1 polarized and standard matured dendritic cells for cancer immunotherapy

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Donia, Marco

    2013-01-01

    induction of type 1 effector T cells. Standard matured clinical grade DCs “sDCs” were compared with DCs matured with either of two type 1 polarizing maturation cocktails; the alpha-type-1 DCs “αDC1s” (TNF-α, IL-1β, IFN-γ, IFN-α, Poly(I:C)) and “mDCs” (monophosphoryl lipid A (MPL), IFN-γ) or a mixed cocktail....... αDC1s and mDCs were functionally superior to sDCs as they polarized naïve CD4+ T cells most efficiently into T helper type 1 effector cells and primed more functional MART-1 specific CD8+ T cells although with variation between donors. αDC1s and mDCs were transiently less capable of CCL21-directed......DCs and strikingly had the highest expression of the inhibitory molecules PD-L1 and CD25. Thus, further studies with type 1 polarized DCs are warranted for use in immunotherapy, but when combined with PGE2 as in mpDCs, they seems to be less optimal for maturation of DCs....

  2. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa

    Science.gov (United States)

    Pesci, Everett C.; Milbank, Jared B. J.; Pearson, James P.; McKnight, Susan; Kende, Andrew S.; Greenberg, E. Peter; Iglewski, Barbara H.

    1999-01-01

    Numerous species of bacteria use an elegant regulatory mechanism known as quorum sensing to control the expression of specific genes in a cell-density dependent manner. In Gram-negative bacteria, quorum sensing systems function through a cell-to-cell signal molecule (autoinducer) that consists of a homoserine lactone with a fatty acid side chain. Such is the case in the opportunistic human pathogen Pseudomonas aeruginosa, which contains two quorum sensing systems (las and rhl) that operate via the autoinducers, N-(3-oxododecanoyl)-l-homoserine lactone and N-butyryl-l-homoserine lactone. The study of these signal molecules has shown that they bind to and activate transcriptional activator proteins that specifically induce numerous P. aeruginosa virulence genes. We report here that P. aeruginosa produces another signal molecule, 2-heptyl-3-hydroxy-4-quinolone, which has been designated as the Pseudomonas quinolone signal. It was found that this unique cell-to-cell signal controlled the expression of lasB, which encodes for the major virulence factor, LasB elastase. We also show that the synthesis and bioactivity of Pseudomonas quinolone signal were mediated by the P. aeruginosa las and rhl quorum sensing systems, respectively. The demonstration that 2-heptyl-3-hydroxy-4-quinolone can function as an intercellular signal sheds light on the role of secondary metabolites and shows that P. aeruginosa cell-to-cell signaling is not restricted to acyl-homoserine lactones. PMID:10500159

  3. Coupling Mechanical Deformations and Planar Cell Polarity to Create Regular Patterns in the Zebrafish Retina

    Science.gov (United States)

    Salbreux, Guillaume; Barthel, Linda K.; Raymond, Pamela A.; Lubensky, David K.

    2012-01-01

    The orderly packing and precise arrangement of epithelial cells is essential to the functioning of many tissues, and refinement of this packing during development is a central theme in animal morphogenesis. The mechanisms that determine epithelial cell shape and position, however, remain incompletely understood. Here, we investigate these mechanisms in a striking example of planar order in a vertebrate epithelium: The periodic, almost crystalline distribution of cone photoreceptors in the adult teleost fish retina. Based on observations of the emergence of photoreceptor packing near the retinal margin, we propose a mathematical model in which ordered columns of cells form as a result of coupling between planar cell polarity (PCP) and anisotropic tissue-scale mechanical stresses. This model recapitulates many observed features of cone photoreceptor organization during retinal growth and regeneration. Consistent with the model's predictions, we report a planar-polarized distribution of Crumbs2a protein in cone photoreceptors in both unperturbed and regenerated tissue. We further show that the pattern perturbations predicted by the model to occur if the imposed stresses become isotropic closely resemble defects in the cone pattern in zebrafish lrp2 mutants, in which intraocular pressure is increased, resulting in altered mechanical stress and ocular enlargement. Evidence of interactions linking PCP, cell shape, and mechanical stresses has recently emerged in a number of systems, several of which show signs of columnar cell packing akin to that described here. Our results may hence have broader relevance for the organization of cells in epithelia. Whereas earlier models have allowed only for unidirectional influences between PCP and cell mechanics, the simple, phenomenological framework that we introduce here can encompass a broad range of bidirectional feedback interactions among planar polarity, shape, and stresses; our model thus represents a conceptual framework

  4. RCAN1.4 regulates VEGFR-2 internalisation, cell polarity and migration in human microvascular endothelial cells.

    Science.gov (United States)

    Alghanem, Ahmad F; Wilkinson, Emma L; Emmett, Maxine S; Aljasir, Mohammad A; Holmes, Katherine; Rothermel, Beverley A; Simms, Victoria A; Heath, Victoria L; Cross, Michael J

    2017-08-01

    Regulator of calcineurin 1 (RCAN1) is an endogenous inhibitor of the calcineurin pathway in cells. It is expressed as two isoforms in vertebrates: RCAN1.1 is constitutively expressed in most tissues, whereas transcription of RCAN1.4 is induced by several stimuli that activate the calcineurin-NFAT pathway. RCAN1.4 is highly upregulated in response to VEGF in human endothelial cells in contrast to RCAN1.1 and is essential for efficient endothelial cell migration and tubular morphogenesis. Here, we show that RCAN1.4 has a role in the regulation of agonist-stimulated VEGFR-2 internalisation and establishment of endothelial cell polarity. siRNA-mediated gene silencing revealed that RCAN1 plays a vital role in regulating VEGF-mediated cytoskeletal reorganisation and directed cell migration and sprouting angiogenesis. Adenoviral-mediated overexpression of RCAN1.4 resulted in increased endothelial cell migration. Antisense-mediated morpholino silencing of the zebrafish RCAN1.4 orthologue revealed a disrupted vascular development further confirming a role for the RCAN1.4 isoform in regulating vascular endothelial cell physiology. Our data suggest that RCAN1.4 plays a novel role in regulating endothelial cell migration by establishing endothelial cell polarity in response to VEGF.

  5. Ca2+ signaling in pancreatic acinar cells: physiology and pathophysiology

    Directory of Open Access Journals (Sweden)

    O.H. Petersen

    2009-01-01

    Full Text Available The pancreatic acinar cell is a classical model for studies of secretion and signal transduction mechanisms. Because of the extensive endoplasmic reticulum and the large granular compartment, it has been possible - by direct measurements - to obtain considerable insights into intracellular Ca2+ handling under both normal and pathological conditions. Recent studies have also revealed important characteristics of stimulus-secretion coupling mechanisms in isolated human pancreatic acinar cells. The acinar cells are potentially dangerous because of the high intra-granular concentration of proteases, which become inappropriately activated in the human disease acute pancreatitis. This disease is due to toxic Ca2+ signals generated by excessive liberation of Ca2+ from both the endoplasmic reticulum and the secretory granules.

  6. The DSF Family of Cell-Cell Signals: An Expanding Class of Bacterial Virulence Regulators.

    Directory of Open Access Journals (Sweden)

    Robert P Ryan

    2015-07-01

    Full Text Available Many pathogenic bacteria use cell-cell signaling systems involving the synthesis and perception of diffusible signal molecules to control virulence as a response to cell density or confinement to niches. Bacteria produce signals of diverse structural classes. Signal molecules of the diffusible signal factor (DSF family are cis-2-unsaturated fatty acids. The paradigm is cis-11-methyl-2-dodecenoic acid from Xanthomonas campestris pv. campestris (Xcc, which controls virulence in this plant pathogen. Although DSF synthesis was thought to be restricted to the xanthomonads, it is now known that structurally related molecules are produced by the unrelated bacteria Burkholderia cenocepacia and Pseudomonas aeruginosa. Furthermore, signaling involving these DSF family members contributes to bacterial virulence, formation of biofilms and antibiotic tolerance in these important human pathogens. Here we review the recent advances in understanding DSF signaling and its regulatory role in different bacteria. These advances include the description of the pathway/mechanism of DSF biosynthesis, identification of novel DSF synthases and new members of the DSF family, the demonstration of a diversity of DSF sensors to include proteins with a Per-Arnt-Sim (PAS domain and the description of some of the signal transduction mechanisms that impinge on virulence factor expression. In addition, we address the role of DSF family signals in interspecies signaling that modulates the behavior of other microorganisms. Finally, we consider a number of recently reported approaches for the control of bacterial virulence through the modulation of DSF signaling.

  7. A microfluidic platform for regulating signal transduction in single cells

    Science.gov (United States)

    Wong, Pak Kin; Yu, Fuqu; Sun, Ren; Ho, Chih-Ming

    2004-11-01

    Recent progress in micro cell culture systems has lead to new approaches in cell biology studies. Using micro devices for cell culturing possesses distinctive advantages over traditional methods. Length scale matching facilitates manipulation and detection at the single cell level. Previously, we have demonstrated generation of various stimulations such as spatial chemical gradient, electric field, and shear stress to study the dynamic responses of individual cells. Dynamic stimulations and continuous monitoring in a microfluidic system can be useful in studying different aspects of cellular process. In this work, we present a microfluidic platform for regulating nuclear factor kappa B (NF-kB) signal transduction in human embryonic kidney 293T cells. Time-varying bio-chemical stimulants, such as interleukin 1 and tumor necrosis factor, are introduced into the microchannel to activate the NF-kB signaling pathway. The dynamic responses of individual cells are monitored with the expression of reporter gene, green fluorescent protein. Regulation of the NF-kB activity is successfully demonstrated. This work is supported by CMISE through NASA URETI program.

  8. 14-3-3 proteins in guard cell signaling

    Directory of Open Access Journals (Sweden)

    Valérie eCotelle

    2016-01-01

    Full Text Available Guard cells are specialized cells located at the leaf surface delimiting pores which control gas exchanges between the plant and the atmosphere. To optimize the CO2 uptake necessary for photosynthesis while minimizing water loss, guard cells integrate environmental signals to adjust stomatal aperture. The size of the stomatal pore is regulated by movements of the guard cells driven by variations in their volume and turgor. As guard cells perceive and transduce a wide array of environmental cues, they provide an ideal system to elucidate early events of plant signaling. Reversible protein phosphorylation events are known to play a crucial role in the regulation of stomatal movements. However, in some cases, phosphorylation alone is not sufficient to achieve complete protein regulation, but is necessary to mediate the binding of interactors that modulate protein function. Among the phosphopeptide-binding proteins, the 14-3-3 proteins are the best characterized in plants. The 14-3-3s are found as multiple isoforms in eukaryotes and have been shown to be involved in the regulation of stomatal movements. In this review, we describe the current knowledge about 14-3-3 roles in the regulation of their binding partners in guard cells: receptors, ion pumps, channels, protein kinases and some of their substrates. Regulation of these targets by 14-3-3 proteins is discussed and related to their function in guard cells during stomatal movements in response to abiotic or biotic stresses.

  9. Romidepsin targets multiple survival signaling pathways in malignant T cells

    International Nuclear Information System (INIS)

    Valdez, B C; Brammer, J E; Li, Y; Murray, D; Liu, Y; Hosing, C; Nieto, Y; Champlin, R E; Andersson, B S

    2015-01-01

    Romidepsin is a cyclic molecule that inhibits histone deacetylases. It is Food and Drug Administration-approved for treatment of cutaneous and peripheral T-cell lymphoma, but its precise mechanism of action against malignant T cells is unknown. To better understand the biological effects of romidepsin in these cells, we exposed PEER and SUPT1 T-cell lines, and a primary sample from T-cell lymphoma patient (Patient J) to romidepsin. We then examined the consequences in some key oncogenic signaling pathways. Romidepsin displayed IC 50 values of 10.8, 7.9 and 7.0 nm in PEER, SUPT1 and Patient J cells, respectively. Strong inhibition of histone deacetylases and demethylases, increased production of reactive oxygen species and decreased mitochondrial membrane potential were observed, which may contribute to the observed DNA-damage response and apoptosis. The stress-activated protein kinase/c-Jun N-terminal kinase signaling pathway and unfolded protein response in the endoplasmic reticulum were activated, whereas the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) and β-catenin pro-survival pathways were inhibited. The decreased level of β-catenin correlated with the upregulation of its inhibitor SFRP1 through romidepsin-mediated hypomethylation of its gene promoter. Our results provide new insights into how romidepsin invokes malignant T-cell killing, show evidence of its associated DNA hypomethylating activity and offer a rationale for the development of romidepsin-containing combination therapies

  10. Rescue effects in radiobiology: Unirradiated bystander cells assist irradiated cells through intercellular signal feedback

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhao, Y. [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Han, W. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Chiu, S.K. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Zhu, L. [Office of Admission and Careers Advisory Service, Shenzhen University, Shenzhen 518060 (China); Wu, L. [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Yu, K.N., E-mail: peter.yu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2011-01-10

    Mammalian cells respond to ionization radiation by sending out extracellular signals to affect non-irradiated neighboring cells, which is referred to as radiation induced bystander effect. In the present paper, we described a phenomenon entitled the 'rescue effects', where the bystander cells rescued the irradiated cells through intercellular signal feedback. The effect was observed in both human primary fibroblast (NHLF) and cancer cells (HeLa) using two-cell co-culture systems. After co-culturing irradiated cells with unirradiated bystander cells for 24 h, the numbers of 53BP1 foci, corresponding to the number of DNA double-strand breaks in the irradiated cells were less than those in the irradiated cells that were not co-cultured with the bystander cells (0.78 {+-} 0.04 foci/cell vs. 0.90 {+-} 0.04 foci/cell) at a statistically significant level. Similarly, both micronucleus formation and extent of apoptosis in the irradiated cells were different at statistically significant levels if they were co-cultured with the bystander cells. Furthermore, it was found that unirradiated normal cells would also reduce the micronucleus formation in irradiated cancer cells. These results suggested that the rescue effects could participate in repairing the radiation-induced DNA damages through a media-mediated signaling feedback, thereby mitigating the cytotoxicity and genotoxicity of ionizing radiation.

  11. Characterization of a pancreatic islet cell tumor in a polar bear (Ursus maritimus).

    Science.gov (United States)

    Fortin, Jessica S; Benoit-Biancamano, Marie-Odile

    2014-01-01

    Herein, we report a 25-year-old male polar bear suffering from a pancreatic islet cell tumor. The aim of this report is to present a case of this rare tumor in a captive polar bear. The implication of potential risk factors such as high carbohydrate diet or the presence of amyloid fibril deposits was assessed. Necropsy examination revealed several other changes, including nodules observed in the liver, spleen, pancreas, intestine, and thyroid glands that were submitted for histopathologic analysis. Interestingly, the multiple neoplastic nodules were unrelated and included a pancreatic islet cell tumor. Immunohistochemistry of the pancreas confirmed the presence of insulin and islet amyloid polypeptide (IAPP) within the pancreatic islet cells. The IAPP gene was extracted from the paraffin-embedded liver tissue and sequenced. IAPP cDNA from the polar bear exhibits some differences as compared to the sequence published for several other species. Different factors responsible for neoplasms in bears such as diet, infectious agents, and industrial chemical exposure are reviewed. This case report raised several issues that further studies may address by evaluating the prevalence of cancers in captive or wild animals. © 2014 Wiley Periodicals, Inc.

  12. Effect of Toxic Components on Microbial Fuel Cell-Polarization Curves and Estimation of the Type of Toxic Inhibition

    NARCIS (Netherlands)

    Stein, N.E.; Hamelers, H.V.M.; Straten, van G.; Keesman, K.J.

    2012-01-01

    Polarization curves are of paramount importance for the detection of toxic components in microbial fuel cell (MFC) based biosensors. In this study, polarization curves were made under non-toxic conditions and under toxic conditions after the addition of various concentrations of nickel, bentazon,

  13. Effect of toxic components on microbial fuel cell-polarization curves and estimation of the type of toxic inhibition

    NARCIS (Netherlands)

    Stein, N.E.; Hamelers, H.V.M.; Straten, G. van; Keesman, K.J.

    2012-01-01

    Polarization curves are of paramount importance for the detection of toxic components in microbial fuel cell (MFC) based biosensors. In this study, polarization curves were made under non-toxic conditions and under toxic conditions after the addition of various concentrations of nickel, bentazon,

  14. Phosphorylation site dynamics of early T-cell receptor signaling

    DEFF Research Database (Denmark)

    Chylek, Lily A; Akimov, Vyacheslav; Dengjel, Jörn

    2014-01-01

    a systems-level understanding of how these components cooperate to control signaling dynamics, especially during the crucial first seconds of stimulation. Here, we used quantitative proteomics to characterize reshaping of the T-cell phosphoproteome in response to TCR/CD28 co-stimulation, and found...... that diverse dynamic patterns emerge within seconds. We detected phosphorylation dynamics as early as 5 s and observed widespread regulation of key TCR signaling proteins by 30 s. Development of a computational model pointed to the presence of novel regulatory mechanisms controlling phosphorylation of sites...

  15. Signaling through EAAT-1/GLAST in cultured Bergmann glia cells.

    Science.gov (United States)

    Martínez-Lozada, Zila; Hernández-Kelly, Luisa C; Aguilera, José; López-Bayghen, Esther; Ortega, Arturo

    2011-11-01

    Glutamate, the major excitatory amino acid, activates a wide variety of signal transduction cascades. Synaptic plasticity relies on activity-dependent differential protein expression. Ionotropic and metabotropic glutamate receptors have been critically involved in long-term synaptic changes, although recent findings suggest that the electrogenic Na(+)-dependent glutamate transporters, responsible of its removal from the synaptic cleft, participate in glutamate-induced signaling. Transporter proteins are expressed in neurons and glia cells albeit most of the glutamate uptake occurs in the glial compartment. Within the cerebellum, Bergmann glial cells are close to glutamatergic synapses and participate actively in the recycling of glutamate through the glutamate/glutamine shuttle. In this context, we decided to investigate a plausible role of Bergmann glia glutamate transporters as signaling entities. To this end, primary cultures of chick cerebellar Bergmann glial cells were exposed to d-aspartate (D-Asp) and other transporter ligands and the serine 2448 phosphorylation pattern of the master regulator of protein synthesis, namely the mammalian target of rapamycin (mTOR), determined. An increase in mTOR phosphorylation and activity was detected. The signaling cascade included Ca(2+) influx, activation of the phosphatidylinositol 3-kinase and protein kinase B. Furthermore, transporter signaling resulted also in an increase in activator protein-1 (AP-1) binding to DNA and the up-regulation of the transcription of an AP-1 driven gene construct. These results add a novel mediator of the glutamate effects at the translational and transcriptional levels and further strengthen the notion of the critical involvement of glia cells in synaptic function. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Polarity of fatty acid uptake and metabolism in a human intestinal cell line (CACO-2)

    Energy Technology Data Exchange (ETDEWEB)

    Trotter, P.J.; Storch, J. (Harvard School of Public Health, Boston, MA (United States))

    1990-02-26

    Free fatty acids (ffa) can enter the intestinal cell via the apical (AP) or basolateral (BL) membrane. The authors are using the Caco-2 intestinal cell line to examine the polarity of ffa uptake and metabolism in the enterocyte. Cells are grown on permeable polycarbonate Transwell filters in order to obtain access to both AP and BL compartments. Differentiated Caco-2 cells form tight polarized monolayers which express small intestine-specific enzymes and are impermeable to the fluid phase marker Lucifer Yellow. Submicellar concentrations of {sup 3}H-palmitic acid (2uM) were added to AP or BL sides of Caco-2 monolayers at 37{degrees}C and cells were incubated for various times between 2 and 120 minutes. Total AP and BL uptake is similar; however, when relative membrane surface areas are accounted for, AP uptake is about 2-fold higher. The metabolism of AP and BL ffa is not significantly different: triacylglycerol and phosphatidylcholine account for most of the metabolites (32{plus minus}4 and 24{plus minus}2% respectively at 5 minutes). Little ffa oxidation is observed. Preincubation with albumin-bound 2-monoolein (100uM) and palmitate (50uM) increases the level of TG metabolites. The results suggest that in this cell line the uptake of AP ffa may be greater than BL ffa, but that AP (dietary) ffa and BL (plasma) ffa are metabolized similarly.

  17. Polarity of fatty acid uptake and metabolism in a human intestinal cell line (CACO-2)

    International Nuclear Information System (INIS)

    Trotter, P.J.; Storch, J.

    1990-01-01

    Free fatty acids (ffa) can enter the intestinal cell via the apical (AP) or basolateral (BL) membrane. The authors are using the Caco-2 intestinal cell line to examine the polarity of ffa uptake and metabolism in the enterocyte. Cells are grown on permeable polycarbonate Transwell filters in order to obtain access to both AP and BL compartments. Differentiated Caco-2 cells form tight polarized monolayers which express small intestine-specific enzymes and are impermeable to the fluid phase marker Lucifer Yellow. Submicellar concentrations of 3 H-palmitic acid (2uM) were added to AP or BL sides of Caco-2 monolayers at 37 degrees C and cells were incubated for various times between 2 and 120 minutes. Total AP and BL uptake is similar; however, when relative membrane surface areas are accounted for, AP uptake is about 2-fold higher. The metabolism of AP and BL ffa is not significantly different: triacylglycerol and phosphatidylcholine account for most of the metabolites (32±4 and 24±2% respectively at 5 minutes). Little ffa oxidation is observed. Preincubation with albumin-bound 2-monoolein (100uM) and palmitate (50uM) increases the level of TG metabolites. The results suggest that in this cell line the uptake of AP ffa may be greater than BL ffa, but that AP (dietary) ffa and BL (plasma) ffa are metabolized similarly

  18. Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures

    Science.gov (United States)

    Cerruti, Benedetta; Puliafito, Alberto; Shewan, Annette M.; Yu, Wei; Combes, Alexander N.; Little, Melissa H.; Chianale, Federica; Primo, Luca; Serini, Guido; Mostov, Keith E.; Celani, Antonio

    2013-01-01

    The growth of a well-formed epithelial structure is governed by mechanical constraints, cellular apico-basal polarity, and spatially controlled cell division. Here we compared the predictions of a mathematical model of epithelial growth with the morphological analysis of 3D epithelial structures. In both in vitro cyst models and in developing epithelial structures in vivo, epithelial growth could take place close to or far from mechanical equilibrium, and was determined by the hierarchy of time-scales of cell division, cell–cell rearrangements, and lumen dynamics. Equilibrium properties could be inferred by the analysis of cell–cell contact topologies, and the nonequilibrium phenotype was altered by inhibiting ROCK activity. The occurrence of an aberrant multilumen phenotype was linked to fast nonequilibrium growth, even when geometric control of cell division was correctly enforced. We predicted and verified experimentally that slowing down cell division partially rescued a multilumen phenotype induced by altered polarity. These results improve our understanding of the development of epithelial organs and, ultimately, of carcinogenesis. PMID:24145168

  19. Co-regulation of cell polarization and migration by caveolar proteins PTRF/Cavin-1 and caveolin-1.

    Directory of Open Access Journals (Sweden)

    Michelle M Hill

    Full Text Available Caveolin-1 and caveolae are differentially polarized in migrating cells in various models, and caveolin-1 expression has been shown to quantitatively modulate cell migration. PTRF/cavin-1 is a cytoplasmic protein now established to be also necessary for caveola formation. Here we tested the effect of PTRF expression on cell migration. Using fluorescence imaging, quantitative proteomics, and cell migration assays we show that PTRF/cavin-1 modulates cellular polarization, and the subcellular localization of Rac1 and caveolin-1 in migrating cells as well as PKCα caveola recruitment. PTRF/cavin-1 quantitatively reduced cell migration, and induced mesenchymal epithelial reversion. Similar to caveolin-1, the polarization of PTRF/cavin-1 was dependent on the migration mode. By selectively manipulating PTRF/cavin-1 and caveolin-1 expression (and therefore caveola formation in multiple cell systems, we unveil caveola-independent functions for both proteins in cell migration.

  20. Characteristics of anodic polarization of solid oxide fuel cells under pressurized conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Ryuji; Yano, Tatsuya; Eguchi, Koichi [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Takeguchi, Tatsuya [Catalysis Research Center, Hokkaido University, Kita-ku, Sapporo 001-0021 (Japan)

    2004-10-29

    AC impedance measurements were carried out under pressurized conditions by using a Ni-Y{sub 2}O{sub 3}-stabilized zirconia (YSZ)/YSZ half cell in order to investigate anodic polarization at high-pressure conditions. AC impedance spectra were measured at 900 and 1000C in H{sub 2}-H{sub 2}O system with a constant H{sub 2}/H{sub 2}O ratio, or a constant partial pressure of H{sub 2} or H{sub 2}O for different total pressures of 1 to 10 atm. At high pressures, the resistance characterized by the semicircle at high frequency was lowered, whereas that at low frequency was raised. A model based on one-dimensional diffusion was developed to estimate concentration polarization based on the impedance measurements, and activation polarization was evaluated using a linear current-potential relation derived from the Butler-Volmer equation. The activation overvoltage was at most 40 mV at 10 mA/cm{sup 2}, irrespective of the total pressure. Concentration polarization was computed to increase as the total pressure was raised, whereas it was almost constant for temperature change. Large voltage drop at small current densities was calculated for the system with low partial pressure of oxygen.

  1. An alternative pathway for signal flow from rod photoreceptors to ganglion cells in mammalian retina.

    OpenAIRE

    DeVries, S H; Baylor, D A

    1995-01-01

    Rod signals in the mammalian retina are thought to reach ganglion cells over the circuit rod-->rod depolarizing bipolar cell-->AII amacrine cell-->cone bipolar cells-->ganglion cells. A possible alternative pathway involves gap junctions linking the rods and cones, the circuit being rod-->cone-->cone bipolar cells-->ganglion cells. It is not clear whether this second pathway indeed relays rod signals to ganglion cells. We studied signal flow in the isolated rabbit retina with a multielectrode...

  2. Vitamin D controls T cell antigen receptor signaling and activation of human T cells

    DEFF Research Database (Denmark)

    von Essen, Marina Rode; Kongsbak-Wismann, Martin; Schjerling, Peter

    2010-01-01

    Phospholipase C (PLC) isozymes are key signaling proteins downstream of many extracellular stimuli. Here we show that naive human T cells had very low expression of PLC-gamma1 and that this correlated with low T cell antigen receptor (TCR) responsiveness in naive T cells. However, TCR triggering...... led to an upregulation of approximately 75-fold in PLC-gamma1 expression, which correlated with greater TCR responsiveness. Induction of PLC-gamma1 was dependent on vitamin D and expression of the vitamin D receptor (VDR). Naive T cells did not express VDR, but VDR expression was induced by TCR...... signaling via the alternative mitogen-activated protein kinase p38 pathway. Thus, initial TCR signaling via p38 leads to successive induction of VDR and PLC-gamma1, which are required for subsequent classical TCR signaling and T cell activation....

  3. Active Electro-Location of Objects in the Underwater Environment Based on the Mixed Polarization Multiple Signal Classification Algorithm

    Science.gov (United States)

    Guo, Lili; Qi, Junwei; Xue, Wei

    2018-01-01

    This article proposes a novel active localization method based on the mixed polarization multiple signal classification (MP-MUSIC) algorithm for positioning a metal target or an insulator target in the underwater environment by using a uniform circular antenna (UCA). The boundary element method (BEM) is introduced to analyze the boundary of the target by use of a matrix equation. In this method, an electric dipole source as a part of the locating system is set perpendicularly to the plane of the UCA. As a result, the UCA can only receive the induction field of the target. The potential of each electrode of the UCA is used as spatial-temporal localization data, and it does not need to obtain the field component in each direction compared with the conventional fields-based localization method, which can be easily implemented in practical engineering applications. A simulation model and a physical experiment are constructed. The simulation and the experiment results provide accurate positioning performance, with the help of verifying the effectiveness of the proposed localization method in underwater target locating. PMID:29439495

  4. A logical model provides insights into T cell receptor signaling.

    Directory of Open Access Journals (Sweden)

    Julio Saez-Rodriguez

    2007-08-01

    Full Text Available Cellular decisions are determined by complex molecular interaction networks. Large-scale signaling networks are currently being reconstructed, but the kinetic parameters and quantitative data that would allow for dynamic modeling are still scarce. Therefore, computational studies based upon the structure of these networks are of great interest. Here, a methodology relying on a logical formalism is applied to the functional analysis of the complex signaling network governing the activation of T cells via the T cell receptor, the CD4/CD8 co-receptors, and the accessory signaling receptor CD28. Our large-scale Boolean model, which comprises 94 nodes and 123 interactions and is based upon well-established qualitative knowledge from primary T cells, reveals important structural features (e.g., feedback loops and network-wide dependencies and recapitulates the global behavior of this network for an array of published data on T cell activation in wild-type and knock-out conditions. More importantly, the model predicted unexpected signaling events after antibody-mediated perturbation of CD28 and after genetic knockout of the kinase Fyn that were subsequently experimentally validated. Finally, we show that the logical model reveals key elements and potential failure modes in network functioning and provides candidates for missing links. In summary, our large-scale logical model for T cell activation proved to be a promising in silico tool, and it inspires immunologists to ask new questions. We think that it holds valuable potential in foreseeing the effects of drugs and network modifications.

  5. EAT-2, a SAP-like adaptor, controls NK cell activation through phospholipase Cγ, Ca++, and Erk, leading to granule polarization.

    Science.gov (United States)

    Pérez-Quintero, Luis-Alberto; Roncagalli, Romain; Guo, Huaijian; Latour, Sylvain; Davidson, Dominique; Veillette, André

    2014-04-07

    Ewing's sarcoma-associated transcript 2 (EAT-2) is an Src homology 2 domain-containing intracellular adaptor related to signaling lymphocytic activation molecule (SLAM)-associated protein (SAP), the X-linked lymphoproliferative gene product. Both EAT-2 and SAP are expressed in natural killer (NK) cells, and their combined expression is essential for NK cells to kill abnormal hematopoietic cells. SAP mediates this function by coupling SLAM family receptors to the protein tyrosine kinase Fyn and the exchange factor Vav, thereby promoting conjugate formation between NK cells and target cells. We used a variety of genetic, biochemical, and imaging approaches to define the molecular and cellular mechanisms by which EAT-2 controls NK cell activation. We found that EAT-2 mediates its effects in NK cells by linking SLAM family receptors to phospholipase Cγ, calcium fluxes, and Erk kinase. These signals are triggered by one or two tyrosines located in the carboxyl-terminal tail of EAT-2 but not found in SAP. Unlike SAP, EAT-2 does not enhance conjugate formation. Rather, it accelerates polarization and exocytosis of cytotoxic granules toward hematopoietic target cells. Hence, EAT-2 promotes NK cell activation by molecular and cellular mechanisms distinct from those of SAP. These findings explain the cooperative and essential function of these two adaptors in NK cell activation.

  6. Oxidized Extracellular DNA as a Stress Signal in Human Cells

    Directory of Open Access Journals (Sweden)

    Aleksei V. Ermakov

    2013-01-01

    Full Text Available The term “cell-free DNA” (cfDNA was recently coined for DNA fragments from plasma/serum, while DNA present in in vitro cell culture media is known as extracellular DNA (ecDNA. Under oxidative stress conditions, the levels of oxidative modification of cellular DNA and the rate of cell death increase. Dying cells release their damaged DNA, thus, contributing oxidized DNA fragments to the pool of cfDNA/ecDNA. Oxidized cell-free DNA could serve as a stress signal that promotes irradiation-induced bystander effect. Evidence points to TLR9 as a possible candidate for oxidized DNA sensor. An exposure to oxidized ecDNA stimulates a synthesis of reactive oxygen species (ROS that evokes an adaptive response that includes transposition of the homologous loci within the nucleus, polymerization and the formation of the stress fibers of the actin, as well as activation of the ribosomal gene expression, and nuclear translocation of NF-E2 related factor-2 (NRF2 that, in turn, mediates induction of phase II detoxifying and antioxidant enzymes. In conclusion, the oxidized DNA is a stress signal released in response to oxidative stress in the cultured cells and, possibly, in the human body; in particular, it might contribute to systemic abscopal effects of localized irradiation treatments.

  7. Group A Streptococcus tissue invasion by CD44-mediated cell signalling

    Science.gov (United States)

    Cywes, Colette; Wessels, Michael R.

    2001-12-01

    Streptococcus pyogenes (also known as group A Streptococcus, GAS), the agent of streptococcal sore throat and invasive soft-tissue infections, attaches to human pharyngeal or skin epithelial cells through specific recognition of its hyaluronic acid capsular polysaccharide by the hyaluronic-acid-binding protein CD44 (refs 1, 2). Because ligation of CD44 by hyaluronic acid can induce epithelial cell movement on extracellular matrix, we investigated whether molecular mimicry by the GAS hyaluronic acid capsule might induce similar cellular responses. Here we show that CD44-dependent GAS binding to polarized monolayers of human keratinocytes induced marked cytoskeletal rearrangements manifested by membrane ruffling and disruption of intercellular junctions. Transduction of the signal induced by GAS binding to CD44 on the keratinocyte surface involved Rac1 and the cytoskeleton linker protein ezrin, as well as tyrosine phosphorylation of cellular proteins. Studies of bacterial translocation in two models of human skin indicated that cell signalling triggered by interaction of the GAS capsule with CD44 opened intercellular junctions and promoted tissue penetration by GAS through a paracellular route. These results support a model of host cytoskeleton manipulation and tissue invasion by an extracellular bacterial pathogen.

  8. Pi sensing and signalling: from prokaryotic to eukaryotic cells.

    Science.gov (United States)

    Qi, Wanjun; Baldwin, Stephen A; Muench, Stephen P; Baker, Alison

    2016-06-15

    Phosphorus is one of the most important macronutrients and is indispensable for all organisms as a critical structural component as well as participating in intracellular signalling and energy metabolism. Sensing and signalling of phosphate (Pi) has been extensively studied and is well understood in single-cellular organisms like bacteria (Escherichia coli) and Saccharomyces cerevisiae In comparison, the mechanism of Pi regulation in plants is less well understood despite recent advances in this area. In most soils the available Pi limits crop yield, therefore a clearer understanding of the molecular basis underlying Pi sensing and signalling is of great importance for the development of plants with improved Pi use efficiency. This mini-review compares some of the main Pi regulation pathways in prokaryotic and eukaryotic cells and identifies similarities and differences among different organisms, as well as providing some insight into future research. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  9. Nrf2 regulates cellular behaviors and Notch signaling in oral squamous cell carcinoma cells.

    Science.gov (United States)

    Fan, Hong; Paiboonrungruan, Chorlada; Zhang, Xinyan; Prigge, Justin R; Schmidt, Edward E; Sun, Zheng; Chen, Xiaoxin

    2017-11-04

    Oxidative stress is known to play a pivotal role in the development of oral squamous cell carcinoma (OSCC). We have demonstrated that activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway has chemopreventive effects against oxidative stress-associated OSCC. However, Nrf2 have dual roles in cancer development; while it prevents carcinogenesis of normal cells, hyperactive Nrf2 also promotes the survival of cancer cells. This study is aimed to understand the function of Nrf2 in regulating cellular behaviors of OSCC cells, and the potential mechanisms through which Nrf2 facilitates OSCC. We established the Nrf2-overexpressing and Nrf2-knockdown OSCC cell lines, and examined the function of Nrf2 in regulating cell proliferation, migration, invasion, cell cycle and colony formation. Our data showed that Nrf2 overexpression promoted cancer phenotypes in OSCC cells, whereas Nrf2 silencing inhibited these phenotypes. In addition, Nrf2 positively regulated Notch signaling pathway in OSCC cells in vitro. Consistent with this observation, Nrf2 activation in Keap1 -/- mice resulted in not only hyperproliferation of squamous epithelial cells in mouse tongue as evidenced by increased expression of PCNA, but also activation of Notch signaling in these cells as evidenced by increased expression of NICD1 and Hes1. In conclusion, Nrf2 regulates cancer behaviors and Notch signaling in OSCC cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Evolutionarily conserved sites in yeast tropomyosin function in cell polarity, transport and contractile ring formation

    Directory of Open Access Journals (Sweden)

    Susanne Cranz-Mileva

    2015-08-01

    Full Text Available Tropomyosin is a coiled-coil protein that binds and regulates actin filaments. The tropomyosin gene in Schizosaccharomyces pombe, cdc8, is required for formation of actin cables, contractile rings, and polar localization of actin patches. The roles of conserved residues were investigated in gene replacement mutants. The work validates an evolution-based approach to identify tropomyosin functions in living cells and sites of potential interactions with other proteins. A cdc8 mutant with near-normal actin affinity affects patch polarization and vacuole fusion, possibly by affecting Myo52p, a class V myosin, function. The presence of labile residual cell attachments suggests a delay in completion of cell division and redistribution of cell patches following cytokinesis. Another mutant with a mild phenotype is synthetic negative with GFP-fimbrin, inferring involvement of the mutated tropomyosin sites in interaction between the two proteins. Proteins that assemble in the contractile ring region before actin do so in a mutant cdc8 strain that cannot assemble condensed actin rings, yet some cells can divide. Of general significance, LifeAct-GFP negatively affects the actin cytoskeleton, indicating caution in its use as a biomarker for actin filaments.

  11. Hedgehog signaling establishes precursors for germline stem cell niches by regulating cell adhesion.

    Science.gov (United States)

    Lai, Chun-Ming; Lin, Kun-Yang; Kao, Shih-Han; Chen, Yi-Ning; Huang, Fu; Hsu, Hwei-Jan

    2017-05-01

    Stem cells require different types of supporting cells, or niches, to control stem cell maintenance and differentiation. However, little is known about how those niches are formed. We report that in the development of the Drosophila melanogaster ovary, the Hedgehog (Hh) gradient sets differential cell affinity for somatic gonadal precursors to specify stromal intermingled cells, which contributes to both germline stem cell maintenance and differentiation niches in the adult. We also report that Traffic Jam (an orthologue of a large Maf transcription factor in mammals) is a novel transcriptional target of Hh signaling to control cell-cell adhesion by negative regulation of E-cadherin expression. Our results demonstrate the role of Hh signaling in niche establishment by segregating somatic cell lineages for differentiation. © 2017 Lai et al.

  12. Ikaros limits follicular B cell activation by regulating B cell receptor signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Heizmann, Beate [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); Sellars, MacLean [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Macias-Garcia, Alejandra [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); Institute for Medical Engineering and Science at MIT, Cambridge, MA 02139 (United States); Chan, Susan, E-mail: scpk@igbmc.fr [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); Kastner, Philippe, E-mail: scpk@igbmc.fr [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); Faculté de Médecine, Université de Strasbourg, Strasbourg (France)

    2016-02-12

    The Ikaros transcription factor is essential for early B cell development, but its effect on mature B cells is debated. We show that Ikaros is required to limit the response of naive splenic B cells to B cell receptor signals. Ikaros deficient follicular B cells grow larger and enter cell cycle faster after anti-IgM stimulation. Unstimulated mutant B cells show deregulation of positive and negative regulators of signal transduction at the mRNA level, and constitutive phosphorylation of ERK, p38, SYK, BTK, AKT and LYN. Stimulation results in enhanced and prolonged ERK and p38 phosphorylation, followed by hyper-proliferation. Pharmacological inhibition of ERK and p38 abrogates the increased proliferative response of Ikaros deficient cells. These results suggest that Ikaros functions as a negative regulator of follicular B cell activation.

  13. Ikaros limits follicular B cell activation by regulating B cell receptor signaling pathways

    International Nuclear Information System (INIS)

    Heizmann, Beate; Sellars, MacLean; Macias-Garcia, Alejandra; Chan, Susan; Kastner, Philippe

    2016-01-01

    The Ikaros transcription factor is essential for early B cell development, but its effect on mature B cells is debated. We show that Ikaros is required to limit the response of naive splenic B cells to B cell receptor signals. Ikaros deficient follicular B cells grow larger and enter cell cycle faster after anti-IgM stimulation. Unstimulated mutant B cells show deregulation of positive and negative regulators of signal transduction at the mRNA level, and constitutive phosphorylation of ERK, p38, SYK, BTK, AKT and LYN. Stimulation results in enhanced and prolonged ERK and p38 phosphorylation, followed by hyper-proliferation. Pharmacological inhibition of ERK and p38 abrogates the increased proliferative response of Ikaros deficient cells. These results suggest that Ikaros functions as a negative regulator of follicular B cell activation.

  14. Sonic hedgehog signaling in Basal cell nevus syndrome.

    Science.gov (United States)

    Athar, Mohammad; Li, Changzhao; Kim, Arianna L; Spiegelman, Vladimir S; Bickers, David R

    2014-09-15

    The hedgehog (Hh) signaling pathway is considered to be a major signal transduction pathway during embryonic development, but it usually shuts down after birth. Aberrant Sonic hedgehog (Shh) activation during adulthood leads to neoplastic growth. Basal cell carcinoma (BCC) of the skin is driven by this pathway. Here, we summarize information related to the pathogenesis of this neoplasm, discuss pathways that crosstalk with Shh signaling, and the importance of the primary cilium in this neoplastic process. The identification of the basic/translational components of Shh signaling has led to the discovery of potential mechanism-driven druggable targets and subsequent clinical trials have confirmed their remarkable efficacy in treating BCCs, particularly in patients with nevoid BCC syndrome (NBCCS), an autosomal dominant disorder in which patients inherit a germline mutation in the tumor-suppressor gene Patched (Ptch). Patients with NBCCS develop dozens to hundreds of BCCs due to derepression of the downstream G-protein-coupled receptor Smoothened (SMO). Ptch mutations permit transposition of SMO to the primary cilium followed by enhanced expression of transcription factors Glis that drive cell proliferation and tumor growth. Clinical trials with the SMO inhibitor, vismodegib, showed remarkable efficacy in patients with NBCCS, which finally led to its FDA approval in 2012. ©2014 American Association for Cancer Research.

  15. Simultaneously improving optical absorption of both transverse-electric polarized and transverse-magnetic polarized light for organic solar cells with Ag grating used as transparent electrode

    Directory of Open Access Journals (Sweden)

    Yongbing Long

    2014-08-01

    Full Text Available Theoretical simulations are performed to investigate optical performance of organic solar cells with Ag grating electrode. It is demonstrated that optical absorption for both transverse-electric (TE polarized and transverse-magnetic(TM polarized light is simultaneously improved when compared with that for the device without the Ag grating. The improvement is respectively attributed to the resonance and the surface plasmon polaritons within the device. After an additional WO3 layer is capped on the Ag grating, absorption of TE-polarized light is further improved due to resonance of double microcavities within the device, and absorption of TM-polarized light is improved by the combined effects of the microcavity resonance and the surface plasmon polaritons. Correspondingly, the short current density for randomly polarized light is improved by 18.1% from that of the device without the Ag grating. Finally, it is demonstrated that high transmission may not be an essential prerequisite for metallic gratings when they are used as transparent electrode since absorption loss caused by low transmission can be compensated by using a capping layer to optimize optical resonance of the WMC structure within the device.

  16. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells

    International Nuclear Information System (INIS)

    Dontu, Gabriela; Jackson, Kyle W; McNicholas, Erin; Kawamura, Mari J; Abdallah, Wissam M; Wicha, Max S

    2004-01-01

    Notch signaling has been implicated in the regulation of cell-fate decisions such as self-renewal of adult stem cells and differentiation of progenitor cells along a particular lineage. Moreover, depending on the cellular and developmental context, the Notch pathway acts as a regulator of cell survival and cell proliferation. Abnormal expression of Notch receptors has been found in different types of epithelial metaplastic lesions and neoplastic lesions, suggesting that Notch may act as a proto-oncogene. The vertebrate Notch1 and Notch4 homologs are involved in normal development of the mammary gland, and mutated forms of these genes are associated with development of mouse mammary tumors. In order to determine the role of Notch signaling in mammary cell-fate determination, we have utilized a newly described in vitro system in which mammary stem/progenitor cells can be cultured in suspension as nonadherent 'mammospheres'. Notch signaling was activated using exogenous ligands, or was inhibited using previously characterized Notch signaling antagonists. Utilizing this system, we demonstrate that Notch signaling can act on mammary stem cells to promote self-renewal and on early progenitor cells to promote their proliferation, as demonstrated by a 10-fold increase in secondary mammosphere formation upon addition of a Notch-activating DSL peptide. In addition to acting on stem cells, Notch signaling is also able to act on multipotent progenitor cells, facilitating myoepithelial lineage-specific commitment and proliferation. Stimulation of this pathway also promotes branching morphogenesis in three-dimensional Matrigel cultures. These effects are completely inhibited by a Notch4 blocking antibody or a gamma secretase inhibitor that blocks Notch processing. In contrast to the effects of Notch signaling on mammary stem/progenitor cells, modulation of this pathway has no discernable effect on fully committed, differentiated, mammary epithelial cells. These studies

  17. Spontaneous cell polarization: Feedback control of Cdc42 GTPase breaks cellular symmetry.

    Science.gov (United States)

    Martin, Sophie G

    2015-11-01

    Spontaneous polarization without spatial cues, or symmetry breaking, is a fundamental problem of spatial organization in biological systems. This question has been extensively studied using yeast models, which revealed the central role of the small GTPase switch Cdc42. Active Cdc42-GTP forms a coherent patch at the cell cortex, thought to result from amplification of a small initial stochastic inhomogeneity through positive feedback mechanisms, which induces cell polarization. Here, I review and discuss the mechanisms of Cdc42 activity self-amplification and dynamic turnover. A robust Cdc42 patch is formed through the combined effects of Cdc42 activity promoting its own activation and active Cdc42-GTP displaying reduced membrane detachment and lateral diffusion compared to inactive Cdc42-GDP. I argue the role of the actin cytoskeleton in symmetry breaking is not primarily to transport Cdc42 to the active site. Finally, negative feedback and competition mechanisms serve to control the number of polarization sites. © 2015 WILEY Periodicals, Inc.

  18. Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance

    Science.gov (United States)

    Mohammed, Maryam K.; Shao, Connie; Wang, Jing; Wei, Qiang; Wang, Xin; Collier, Zachary; Tang, Shengli; Liu, Hao; Zhang, Fugui; Huang, Jiayi; Guo, Dan; Lu, Minpeng; Liu, Feng; Liu, Jianxiang; Ma, Chao; Shi, Lewis L.; Athiviraham, Aravind; He, Tong-Chuan; Lee, Michael J.

    2016-01-01

    Wnt signaling transduces evolutionarily conserved pathways which play important roles in initiating and regulating a diverse range of cellular activities, including cell proliferation, calcium homeostasis, and cell polarity. The role of Wnt signaling in control of cell proliferation and stem cell self-renewal is primarily carried out through the canonical pathway, which is the best characterized among the multiple Wnt signaling branches. The past 10 years has seen a rapid expansion in our understanding of the complexity of this pathway, as many new components of Wnt signaling have been identified and linked to signaling regulation, stem cell functions, and adult tissue homeostasis. Additionally, a substantial body of evidence links Wnt signaling to tumorigenesis of many cancer types and implicates it in the development of cancer drug resistance. Thus, a better understanding of the mechanisms by which dysregulation of Wnt signaling precedes the development and progression of human cancer may hasten the development of pathway inhibitors to augment current therapy. This review summarizes and synthesizes our current knowledge of the canonical Wnt pathway in development and disease. We begin with an overview of the components of the canonical Wnt signaling pathway and delve into the role this pathway has been shown to play in stemness, tumorigenesis, and cancer drug resistance. Ultimately, we hope to present an organized collection of evidence implicating Wnt signaling in tumorigenesis and chemoresistance to facilitate the pursuit of Wnt pathway modulators that may improve outcomes of cancers in which Wnt signaling contributes to aggressive disease and/or treatment resistance. PMID:27077077

  19. Sensors and signal transduction pathways in vertebrate cell volume regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else K; Pedersen, Stine F

    2006-01-01

    to the identification of transporter binding partners such as protein kinases and phosphatases, cytoskeletal elements and lipids. Considerable progress has also been made recently in understanding the upstream elements in volume sensing and volume-sensitive signal transduction, and salient features of these systems...... will be discussed. In contrast to the simple pathway of osmosensing in yeast, cells from vertebrate organisms appear to exhibit multiple volume sensing systems, the specific mechanism(s) activated being cell type- and stimulus-dependent. Candidate sensors include integrins and growth factor receptors, while other...

  20. Cell volume homeostatic mechanisms: effectors and signalling pathways

    DEFF Research Database (Denmark)

    Hoffmann, E K; Pedersen, Stine Helene Falsig

    2011-01-01

    Cell volume homeostasis and its fine-tuning to the specific physiological context at any given moment are processes fundamental to normal cell function. The understanding of cell volume regulation owes much to August Krogh, yet has advanced greatly over the last decades. In this review, we outline...... the historical context of studies of cell volume regulation, focusing on the lineage started by Krogh, Bodil Schmidt-Nielsen, Hans-Henrik Ussing, and their students. The early work was focused on understanding the functional behaviour, kinetics and thermodynamics of the volume-regulatory ion transport mechanisms....... Later work addressed the mechanisms through which cellular signalling pathways regulate the volume regulatory effectors or flux pathways. These studies were facilitated by the molecular identification of most of the relevant channels and transporters, and more recently also by the increased...

  1. Retinoic acid signalling in thymocytes regulates T cell development

    DEFF Research Database (Denmark)

    Wendland, Kerstin; Sitnik, Katarzyna Maria; Kotarsky, Knut

    The Vitamin A derivative retinoic acid (RA) works as a ligand for a family of nuclearRA receptors (RARα, RARβ and RARγ) which form heterodimers with retinoid Xreceptors (RXR). These complexes function as ligand-activated transcription factors,recognizing specific RA responsive elements in the reg......The Vitamin A derivative retinoic acid (RA) works as a ligand for a family of nuclearRA receptors (RARα, RARβ and RARγ) which form heterodimers with retinoid Xreceptors (RXR). These complexes function as ligand-activated transcription factors,recognizing specific RA responsive elements...... in the regulatory regions of targetgenes. RA has been reported to play a direct role in regulating multiple aspects of peripheralT cell responses1, but whether endogenous RA signalling occurs in developingthymocytes and the potential impact of such signals in regulating T cell developmentremains unclear. To address......RARα. This blocks RA signalling in developing thymocytes from the DN3/4 stageonwards and thus allows us to study the role of RA in T cell development...

  2. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment

    Directory of Open Access Journals (Sweden)

    Martin eAugsten

    2014-03-01

    Full Text Available Tumor- or cancer-associated fibroblasts (CAFs are one of the most abundant stromal cell types in different carcinomas and comprise a heterogeneous cell population. Classically, CAFs are assigned with pro-tumorigenic effects stimulating tumor growth and progression. More recent studies demonstrated also tumor-inhibitory effects of CAFs suggesting that tumor-residing fibroblasts exhibit a similar degree of plasticity as other stromal cell types. Reciprocal interactions with the tumor milieu and different sources of origin are emerging as two important factors underlying CAF heterogeneity. This review highlights recent advances in our understanding of CAF biology and proposes to expand the term of cellular ´polarization´, previously introduced to describe different activation states of various immune cells, onto CAFs to reflect their phenotypic diversity.

  3. Hydrodynamic instabilities and concentration polarization coupled by osmotic pressure in a Taylor-Couette cell

    Science.gov (United States)

    Martinand, Denis; Tilton, Nils

    2016-11-01

    This study addresses analytically and numerically the coupling between hydrodynamic instabilities and osmotic pressure driven by concentration polarization. The configuration consists of a Taylor-Couette cell filled with a Newtonian fluid carrying a passive scalar. Whereas the concentric inner and outer cylinders are membranes permeable to the solvent, they totally reject the scalar. As a radial in- or outflow of solvent is imposed through both cylinders, a concentration boundary layer develops on the cylinder where the solvent exits, until an equilibrium steady state is reached. In addition, the rotation of the inner cylinder is used to drive centrifugal instabilities in the form of toroidal vortices, which interact with the concentration boundary layer. By means of the osmotic pressure, concentration polarization is found to promote or hinder the hydrodynamic instabilities, depending on capacity of the vortices and diffusion to increase the concentration field at the membrane. The results obtained by analytical stability analysis agree with dedicated Direct Numerical Simulations.

  4. Metformin affects the features of a human hepatocellular cell line (HepG2) by regulating macrophage polarization in a co-culture microenviroment.

    Science.gov (United States)

    Chen, Miaojiao; Zhang, Jingjing; Hu, Fang; Liu, Shiping; Zhou, Zhiguang

    2015-11-01

    Accumulating evidence suggests an association between diabetes and cancer. Inflammation is a key event that underlies the pathological processes of the two diseases. Metformin displays anti-cancer effects, but the mechanism is not completely clear. This study investigated whether metformin regulated the microenvironment of macrophage polarization to affect the characteristics of HepG2 cells and the possible role of the Notch-signalling pathway. RAW264.7 macrophages were cultured alone or co-cultured with HepG2 cells and treated with metformin. We analysed classical (M1) and alternative (M2) gene expression in RAW264.7 cells using quantitative real-time polymerase chain reaction. Changes in mRNA and protein expressions of Notch signalling in both cell types were also detected using quantitative real-time polymerase chain reaction and Western-blotting analyses. The proliferation, apoptosis and migration of HepG2 cells were detected using Cell Titer 96 AQueous One Solution Cell Proliferation Assay (MTS) (Promega Corporation, Fitchburg, WI, USA), Annexin V-FITC/PI (7SeaPharmTech, Shanghai, China) and the cell scratch assay, respectively. Metformin induced single-cultured RAW264.7 macrophages with an M2 phenotype but attenuated the M2 macrophage differentiation and inhibited monocyte chemoattractant protein-1 (MCP-1) secretion in a co-culture system. The co-cultured group of metformin pretreatment activated Notch signalling in macrophages but repressed it inHepG2 cells. Co-culture also promoted the proliferation and migration of HepG2 cells. However, along with the enhanced apoptosis, the proliferation and the migration of HepG2 cells were remarkably inhibited in another co-culture system with metformin pretreatment. Metformin can skew RAW264.7 macrophages toward different phenotypes according to changes in the microenvironment, which may affect the inflammatory conditions mediated by macrophages, induce apoptosis and inhibit the proliferation and migration of HepG2

  5. Induction of primordial germ cell-like cells from mouse embryonic stem cells by ERK signal inhibition.

    Science.gov (United States)

    Kimura, Tohru; Kaga, Yoshiaki; Ohta, Hiroshi; Odamoto, Mika; Sekita, Yoichi; Li, Kunpeng; Yamano, Noriko; Fujikawa, Keita; Isotani, Ayako; Sasaki, Norihiko; Toyoda, Masashi; Hayashi, Katsuhiko; Okabe, Masaru; Shinohara, Takashi; Saitou, Mitinori; Nakano, Toru

    2014-10-01

    Primordial germ cells (PGCs) are embryonic germ cell precursors. Specification of PGCs occurs under the influence of mesodermal induction signaling during in vivo gastrulation. Although bone morphogenetic proteins and Wnt signaling play pivotal roles in both mesodermal and PGC specification, the signal regulating PGC specification remains unknown. Coculture of mouse embryonic stem cells (ESCs) with OP9 feeder cells induces mesodermal differentiation in vitro. Using this mesodermal differentiation system, we demonstrated that PGC-like cells were efficiently induced from mouse ESCs by extracellular signal-regulated kinase (ERK) signaling inhibition. Inhibition of ERK signaling by a MAPK/ERK kinase (MEK) inhibitor upregulated germ cell marker genes but downregulated mesodermal genes. In addition, the PGC-like cells showed downregulation of DNA methylation and formed pluripotent stem cell colonies upon treatment with retinoic acid. These results show that inhibition of ERK signaling suppresses mesodermal differentiation but activates germline differentiation program in this mesodermal differentiation system. Our findings provide a new insight into the signaling networks regulating PGC specification. © 2014 AlphaMed Press.

  6. Electrochemical regulation of budding yeast polarity.

    Directory of Open Access Journals (Sweden)

    Armin Haupt

    2014-12-01

    Full Text Available Cells are naturally surrounded by organized electrical signals in the form of local ion fluxes, membrane potential, and electric fields (EFs at their surface. Although the contribution of electrochemical elements to cell polarity and migration is beginning to be appreciated, underlying mechanisms are not known. Here we show that an exogenous EF can orient cell polarization in budding yeast (Saccharomyces cerevisiae cells, directing the growth of mating projections towards sites of hyperpolarized membrane potential, while directing bud emergence in the opposite direction, towards sites of depolarized potential. Using an optogenetic approach, we demonstrate that a local change in membrane potential triggered by light is sufficient to direct cell polarization. Screens for mutants with altered EF responses identify genes involved in transducing electrochemical signals to the polarity machinery. Membrane potential, which is regulated by the potassium transporter Trk1p, is required for polarity orientation during mating and EF response. Membrane potential may regulate membrane charges through negatively charged phosphatidylserines (PSs, which act to position the Cdc42p-based polarity machinery. These studies thus define an electrochemical pathway that directs the orientation of cell polarization.

  7. Aberrant signaling pathways in medulloblastomas: a stem cell connection

    Directory of Open Access Journals (Sweden)

    Carolina Oliveira Rodini

    2010-12-01

    Full Text Available Medulloblastoma is a highly malignant primary tumor of the central nervous system. It represents the most frequent type of solid tumor and the leading cause of death related to cancer in early childhood. Current treatment includes surgery, chemotherapy and radiotherapy which may lead to severe cognitive impairment and secondary brain tumors. New perspectives for therapeutic development have emerged with the identification of stem-like cells displaying high tumorigenic potential and increased radio- and chemo-resistance in gliomas. Under the cancer stem cell hypothesis, transformation of neural stem cells and/or granular neuron progenitors of the cerebellum are though to be involved in medulloblastoma development. Dissecting the genetic and molecular alterations associated with this process should significantly impact both basic and applied cancer research. Based on cumulative evidences in the fields of genetics and molecular biology of medulloblastomas, we discuss the possible involvement of developmental signaling pathways as critical biochemical switches determining normal neurogenesis or tumorigenesis. From the clinical viewpoint, modulation of signaling pathways such as TGFβ, regulating neural stem cell proliferation and tumor development, might be attempted as an alternative strategy for future drug development aiming at more efficient therapies and improved clinical outcome of patients with pediatric brain cancers.

  8. Purinergic Signaling in Mast Cell Degranulation and Asthma

    Directory of Open Access Journals (Sweden)

    Zhan-Guo Gao

    2017-12-01

    Full Text Available Mast cells are responsible for the majority of allergic conditions. It was originally thought that almost all allergic events were mediated directly only via the high-affinity immunoglobulin E receptors. However, recent evidence showed that many other receptors, such as G protein-coupled receptors and ligand-gated ion channels, are also directly involved in mast cell degranulation, the release of inflammatory mediators such as histamine, serine proteases, leukotrienes, heparin, and serotonin. These mediators are responsible for the symptoms in allergic conditions such as allergic asthma. In recent years, it has been realized that purinergic signaling, induced via the activation of G protein-coupled adenosine receptors and P2Y nucleotide receptors, as well as by ATP-gated P2X receptors, plays a significant role in mast cell degranulation. Both adenosine and ATP can induce degranulation and bronchoconstriction on their own and synergistically with allergens. All three classes of receptors, adenosine, P2X and P2Y are involved in tracheal mucus secretion. This review will summarize the currently available knowledge on the role of purinergic signaling in mast cell degranulation and its most relevant disease, asthma.

  9. Endothelial juxtaposition of distinct adult stem cells activates angiogenesis signaling molecules in endothelial cells.

    Science.gov (United States)

    Mohammadi, Elham; Nassiri, Seyed Mahdi; Rahbarghazi, Reza; Siavashi, Vahid; Araghi, Atefeh

    2015-12-01

    Efficacy of therapeutic angiogenesis needs a comprehensive understanding of endothelial cell (EC) function and biological factors and cells that interplay with ECs. Stem cells are considered the key components of pro- and anti-angiogenic milieu in a wide variety of physiopathological states, and interactions of EC-stem cells have been the subject of controversy in recent years. In this study, the potential effects of three tissue-specific adult stem cells, namely rat marrow-derived mesenchymal stem cells (rBMSCs), rat adipose-derived stem cells (rADSCs) and rat muscle-derived satellite cells (rSCs), on the endothelial activation of key angiogenic signaling molecules, including VEGF, Ang-2, VEGFR-2, Tie-2, and Tie2-pho, were investigated. Human umbilical vein endothelial cells (HUVECs) and rat lung microvascular endothelial cells (RLMECs) were cocultured with the stem cells or incubated with the stem cell-derived conditioned media on Matrigel. Following HUVEC-stem cell coculture, CD31-positive ECs were flow sorted and subjected to western blotting to analyze potential changes in the expression of the pro-angiogenic signaling molecules. Elongation and co-alignment of the stem cells were seen along the EC tubes in the EC-stem cell cocultures on Matrigel, with cell-to-cell dye communication in the EC-rBMSC cocultures. Moreover, rBMSCs and rADSCs significantly improved endothelial tubulogenesis in both juxtacrine and paracrine manners. These two latter stem cells dynamically up-regulated VEGF, Ang-2, VREGR-2, and Tie-2 but down-regulated Tie2-pho and the Tie2-pho/Tie-2 ratio in HUVECs. Induction of pro-angiogenic signaling in ECs by marrow- and adipose-derived MSCs further indicates the significance of stem cell milieu in angiogenesis dynamics.

  10. Absence of the Polar Organizing Protein PopZ Results in Reduced and Asymmetric Cell Division in Agrobacterium tumefaciens.

    Science.gov (United States)

    Howell, Matthew; Aliashkevich, Alena; Salisbury, Anne K; Cava, Felipe; Bowman, Grant R; Brown, Pamela J B

    2017-09-01

    Agrobacterium tumefaciens is a rod-shaped bacterium that grows by polar insertion of new peptidoglycan during cell elongation. As the cell cycle progresses, peptidoglycan synthesis at the pole ceases prior to insertion of new peptidoglycan at midcell to enable cell division. The A. tumefaciens homolog of the Caulobacter crescentus polar organelle development protein PopZ has been identified as a growth pole marker and a candidate polar growth-promoting factor. Here, we characterize the function of PopZ in cell growth and division of A. tumefaciens Consistent with previous observations, we observe that PopZ localizes specifically to the growth pole in wild-type cells. Despite the striking localization pattern of PopZ, we find the absence of the protein does not impair polar elongation or cause major changes in the peptidoglycan composition. Instead, we observe an atypical cell length distribution, including minicells, elongated cells, and cells with ectopic poles. Most minicells lack DNA, suggesting a defect in chromosome segregation. Furthermore, the canonical cell division proteins FtsZ and FtsA are misplaced, leading to asymmetric sites of cell constriction. Together, these data suggest that PopZ plays an important role in the regulation of chromosome segregation and cell division. IMPORTANCE A. tumefaciens is a bacterial plant pathogen and a natural genetic engineer. However, very little is known about the spatial and temporal regulation of cell wall biogenesis that leads to polar growth in this bacterium. Understanding the molecular basis of A. tumefaciens growth may allow for the development of innovations to prevent disease or to promote growth during biotechnology applications. Finally, since many closely related plant and animal pathogens exhibit polar growth, discoveries in A. tumefaciens may be broadly applicable for devising antimicrobial strategies. Copyright © 2017 American Society for Microbiology.

  11. Periplasmic Acid Stress Increases Cell Division Asymmetry (Polar Aging of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Michelle W Clark

    Full Text Available Under certain kinds of cytoplasmic stress, Escherichia coli selectively reproduce by distributing the newer cytoplasmic components to new-pole cells while sequestering older, damaged components in cells inheriting the old pole. This phenomenon is termed polar aging or cell division asymmetry. It is unknown whether cell division asymmetry can arise from a periplasmic stress, such as the stress of extracellular acid, which is mediated by the periplasm. We tested the effect of periplasmic acid stress on growth and division of adherent single cells. We tracked individual cell lineages over five or more generations, using fluorescence microscopy with ratiometric pHluorin to measure cytoplasmic pH. Adherent colonies were perfused continually with LBK medium buffered at pH 6.00 or at pH 7.50; the external pH determines periplasmic pH. In each experiment, cell lineages were mapped to correlate division time, pole age and cell generation number. In colonies perfused at pH 6.0, the cells inheriting the oldest pole divided significantly more slowly than the cells inheriting the newest pole. In colonies perfused at pH 7.50 (near or above cytoplasmic pH, no significant cell division asymmetry was observed. Under both conditions (periplasmic pH 6.0 or pH 7.5 the cells maintained cytoplasmic pH values at 7.2-7.3. No evidence of cytoplasmic protein aggregation was seen. Thus, periplasmic acid stress leads to cell division asymmetry with minimal cytoplasmic stress.

  12. Interleukin 4: signalling mechanisms and control of T cell differentiation.

    Science.gov (United States)

    Paul, W E

    1997-01-01

    Interleukin 4 (IL-4) is a pleiotropic type I cytokine that controls both growth and differentiation among haemopoietic and non-haemopoietic cells. Its receptor is a heterodimer. One chain, the IL-4R alpha chain, binds IL-4 with high affinity and determines the nature of the biochemical signals that are induced. The second chain, gamma c, is required for the induction of such signals. IL-4-mediated growth depends upon activation events that involve phosphorylation of Y497 of IL-4R alpha, leading to the binding and phosphorylation of 4PS/IRS-2 in haemopoietic cells and of IRS-1 in non-haemopoietic cells. By contrast, IL-4-mediated differentiation events depend upon more distal regions of the IL-4R alpha chain that include a series of STAT-6 binding sites. The distinctive roles of these receptor domains was verified by receptor-reconstruction experiments. The 'growth' and 'differentiation' domains of the IL-4R alpha chain, independently expressed as chimeric structures with a truncated version of the IL-2R beta chain, were shown to convey their functions to the hybrid receptor. The critical role of STAT-6 in IL-4-mediated gene activation and differentiation was made clear by the finding that lymphocytes from STAT-6 knockout mice are strikingly deficient in these functions but have retained the capacity to grow, at least partially, in response to IL-4. IL-4 plays a central role in determining the phenotype of naive CD4+ T cells. In the presence of IL-4, newly primed naive T cells develop into IL-4 producers while in its absence they preferentially become gamma-interferon (IFN-gamma) producers. Recently, a specialized subpopulation of T cells, CD4+/NK1.1+ cells, has been shown to produce large amounts of IL-4 upon stimulation. Two examples of mice with deficiencies in these cells are described--beta 2-microglobulin knockout mice and SJL mice. Both show defects in the development of IL-4-producing cells and in the increase in serum IgE in response to stimulation with the

  13. Arsenic inhibits hedgehog signaling during P19 cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jui Tung [Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Bain, Lisa J., E-mail: lbain@clemson.edu [Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States)

    2014-12-15

    Arsenic is a toxicant found in ground water around the world, and human exposure mainly comes from drinking water or from crops grown in areas containing arsenic in soils or water. Epidemiological studies have shown that arsenic exposure during development decreased intellectual function, reduced birth weight, and altered locomotor activity, while in vitro studies have shown that arsenite decreased muscle and neuronal cell differentiation. The sonic hedgehog (Shh) signaling pathway plays an important role during the differentiation of both neurons and skeletal muscle. The purpose of this study was to investigate whether arsenic can disrupt Shh signaling in P19 mouse embryonic stem cells, leading to changes muscle and neuronal cell differentiation. P19 embryonic stem cells were exposed to 0, 0.25, or 0.5 μM of sodium arsenite for up to 9 days during cell differentiation. We found that arsenite exposure significantly reduced transcript levels of genes in the Shh pathway in both a time and dose-dependent manner. This included the Shh ligand, which was decreased 2- to 3-fold, the Gli2 transcription factor, which was decreased 2- to 3-fold, and its downstream target gene Ascl1, which was decreased 5-fold. GLI2 protein levels and transcriptional activity were also reduced. However, arsenic did not alter GLI2 primary cilium accumulation or nuclear translocation. Moreover, additional extracellular SHH rescued the inhibitory effects of arsenic on cellular differentiation due to an increase in GLI binding activity. Taken together, we conclude that arsenic exposure affected Shh signaling, ultimately decreasing the expression of the Gli2 transcription factor. These results suggest a mechanism by which arsenic disrupts cell differentiation. - Highlights: • Arsenic exposure decreases sonic hedgehog pathway-related gene expression. • Arsenic decreases GLI2 protein levels and transcriptional activity in P19 cells. • Arsenic exposure does not alter the levels of SHH

  14. Cell-geometry-dependent changes in plasma membrane order direct stem cell signalling and fate.

    Science.gov (United States)

    von Erlach, Thomas C; Bertazzo, Sergio; Wozniak, Michele A; Horejs, Christine-Maria; Maynard, Stephanie A; Attwood, Simon; Robinson, Benjamin K; Autefage, Hélène; Kallepitis, Charalambos; Del Río Hernández, Armando; Chen, Christopher S; Goldoni, Silvia; Stevens, Molly M

    2018-03-01

    Cell size and shape affect cellular processes such as cell survival, growth and differentiation 1-4 , thus establishing cell geometry as a fundamental regulator of cell physiology. The contributions of the cytoskeleton, specifically actomyosin tension, to these effects have been described, but the exact biophysical mechanisms that translate changes in cell geometry to changes in cell behaviour remain mostly unresolved. Using a variety of innovative materials techniques, we demonstrate that the nanostructure and lipid assembly within the cell plasma membrane are regulated by cell geometry in a ligand-independent manner. These biophysical changes trigger signalling events involving the serine/threonine kinase Akt/protein kinase B (PKB) that direct cell-geometry-dependent mesenchymal stem cell differentiation. Our study defines a central regulatory role by plasma membrane ordered lipid raft microdomains in modulating stem cell differentiation with potential translational applications.

  15. Bactericidal Antibiotics Increase Hydroxyphenyl Fluorescein Signal by Altering Cell Morphology

    DEFF Research Database (Denmark)

    Paulander, Wilhelm; Wang, Ying; Folkesson, Sven Anders

    2014-01-01

    It was recently proposed that for bactericidal antibiotics a common killing mechanism contributes to lethality involving indirect stimulation of hydroxyl radical (OH center dot) formation. Flow cytometric detection of OH center dot by hydroxyphenyl fluorescein (HPF) probe oxidation was used...... to support this hypothesis. Here we show that increased HPF signals in antibiotics-exposed bacterial cells are explained by fluorescence associated with increased cell size, and do not reflect reactive oxygen species (ROS) concentration. Independently of antibiotics, increased fluorescence was seen...... for elongated cells expressing the oxidative insensitive green fluorescent protein (GFP). Although our data question the role of ROS in lethality of antibiotics other research approaches point to important interplays between basic bacterial metabolism and antibiotic susceptibility. To underpin...

  16. Bactericidal antibiotics increase hydroxyphenyl fluorescein signal by altering cell morphology.

    Directory of Open Access Journals (Sweden)

    Wilhelm Paulander

    Full Text Available It was recently proposed that for bactericidal antibiotics a common killing mechanism contributes to lethality involving indirect stimulation of hydroxyl radical (OH• formation. Flow cytometric detection of OH• by hydroxyphenyl fluorescein (HPF probe oxidation was used to support this hypothesis. Here we show that increased HPF signals in antibiotics-exposed bacterial cells are explained by fluorescence associated with increased cell size, and do not reflect reactive oxygen species (ROS concentration. Independently of antibiotics, increased fluorescence was seen for elongated cells expressing the oxidative insensitive green fluorescent protein (GFP. Although our data question the role of ROS in lethality of antibiotics other research approaches point to important interplays between basic bacterial metabolism and antibiotic susceptibility. To underpin such relationships, methods for detecting bacterial metabolites at a cellular level are needed.

  17. Bactericidal Antibiotics Increase Hydroxyphenyl Fluorescein Signal by Altering Cell Morphology

    Science.gov (United States)

    Folkesson, Anders; Charbon, Godefroid; Løbner-Olesen, Anders; Ingmer, Hanne

    2014-01-01

    It was recently proposed that for bactericidal antibiotics a common killing mechanism contributes to lethality involving indirect stimulation of hydroxyl radical (OH•) formation. Flow cytometric detection of OH• by hydroxyphenyl fluorescein (HPF) probe oxidation was used to support this hypothesis. Here we show that increased HPF signals in antibiotics-exposed bacterial cells are explained by fluorescence associated with increased cell size, and do not reflect reactive oxygen species (ROS) concentration. Independently of antibiotics, increased fluorescence was seen for elongated cells expressing the oxidative insensitive green fluorescent protein (GFP). Although our data question the role of ROS in lethality of antibiotics other research approaches point to important interplays between basic bacterial metabolism and antibiotic susceptibility. To underpin such relationships, methods for detecting bacterial metabolites at a cellular level are needed. PMID:24647480

  18. Protein and signaling networks in vertebrate photoreceptor cells

    Directory of Open Access Journals (Sweden)

    Karl-Wilhelm eKoch

    2015-11-01

    Full Text Available Vertebrate photoreceptor cells are exquisite light detectors operating under very dim and bright illumination. The photoexcitation and adaptation machinery in photoreceptor cells consists of protein complexes that can form highly ordered supramolecular structures and control the homeostasis and mutual dependence of the secondary messengers cGMP and Ca2+. The visual pigment in rod photoreceptors, the G protein-coupled receptor rhodopsin is organized in tracks of dimers thereby providing a signaling platform for the dynamic scaffolding of the G protein transducin. Illuminated rhodopsin is turned off by phosphorylation catalyzed by rhodopsin kinase GRK1 under control of Ca2+-recoverin. The GRK1 protein complex partly assembles in lipid raft structures, where shutting off rhodopsin seems to be more effective. Re-synthesis of cGMP is another crucial step in the recovery of the photoresponse after illumination. It is catalyzed by membrane bound sensory guanylate cyclases and is regulated by specific neuronal Ca2+-sensor proteins called GCAPs. At least one guanylate cyclase (ROS-GC1 was shown to be part of a multiprotein complex having strong interactions with the cytoskeleton and being controlled in a multimodal Ca2+-dependent fashion. The final target of the cGMP signaling cascade is a cyclic nucleotide-gated channel that is a hetero-oligomeric protein located in the plasma membrane and interacting with accessory proteins in highly organized microdomains. We summarize results and interpretations of findings related to the inhomogeneous organization of signaling units in photoreceptor outer segments.

  19. Activation of Apoptotic Signal in Endothelial Cells through Intracellular Signaling Molecules Blockade in Tumor-Induced Angiogenesis

    Directory of Open Access Journals (Sweden)

    Hossein Bazmara

    2015-01-01

    Full Text Available Tumor-induced angiogenesis is the bridge between avascular and vascular tumor growth phases. In tumor-induced angiogenesis, endothelial cells start to migrate and proliferate toward the tumor and build new capillaries toward the tumor. There are two stages for sprout extension during angiogenesis. The first stage is prior to anastomosis, when single sprouts extend. The second stage is after anastomosis when closed flow pathways or loops are formed and blood flows in the closed loops. Prior to anastomosis, biochemical and biomechanical signals from extracellular matrix regulate endothelial cell phenotype; however, after anastomosis, blood flow is the main regulator of endothelial cell phenotype. In this study, the critical signaling pathways of each stage are introduced. A Boolean network model is used to map environmental and flow induced signals to endothelial cell phenotype (proliferation, migration, apoptosis, and lumen formation. Using the Boolean network model, blockade of intracellular signaling molecules of endothelial cell is investigated prior to and after anastomosis and the cell fate is obtained in each case. Activation of apoptotic signal in endothelial cell can prevent the extension of new vessels and may inhibit angiogenesis. It is shown that blockade of a few signaling molecules in endothelial cell activates apoptotic signal that are proposed as antiangiogenic strategies.

  20. Loss of PodJ in Agrobacterium tumefaciens Leads to Ectopic Polar Growth, Branching, and Reduced Cell Division.

    Science.gov (United States)

    Anderson-Furgeson, James C; Zupan, John R; Grangeon, Romain; Zambryski, Patricia C

    2016-07-01

    Agrobacterium tumefaciens is a rod-shaped Gram-negative bacterium that elongates by unipolar addition of new cell envelope material. Approaching cell division, the growth pole transitions to a nongrowing old pole, and the division site creates new growth poles in sibling cells. The A. tumefaciens homolog of the Caulobacter crescentus polar organizing protein PopZ localizes specifically to growth poles. In contrast, the A. tumefaciens homolog of the C. crescentus polar organelle development protein PodJ localizes to the old pole early in the cell cycle and accumulates at the growth pole as the cell cycle proceeds. FtsA and FtsZ also localize to the growth pole for most of the cell cycle prior to Z-ring formation. To further characterize the function of polar localizing proteins, we created a deletion of A. tumefaciens podJ (podJAt). ΔpodJAt cells display ectopic growth poles (branching), growth poles that fail to transition to an old pole, and elongated cells that fail to divide. In ΔpodJAt cells, A. tumefaciens PopZ-green fluorescent protein (PopZAt-GFP) persists at nontransitioning growth poles postdivision and also localizes to ectopic growth poles, as expected for a growth-pole-specific factor. Even though GFP-PodJAt does not localize to the midcell in the wild type, deletion of podJAt impacts localization, stability, and function of Z-rings as assayed by localization of FtsA-GFP and FtsZ-GFP. Z-ring defects are further evidenced by minicell production. Together, these data indicate that PodJAt is a critical factor for polar growth and that ΔpodJAt cells display a cell division phenotype, likely because the growth pole cannot transition to an old pole. How rod-shaped prokaryotes develop and maintain shape is complicated by the fact that at least two distinct species-specific growth modes exist: uniform sidewall insertion of cell envelope material, characterized in model organisms such as Escherichia coli, and unipolar growth, which occurs in several

  1. Polarization Sensitive Measurements of Molecular Reorientation in a Glass Capacitor Cell

    Science.gov (United States)

    Cooper, Nathan; Lawhead, Carlos; Anderson, Josiah; Shiver, Tegan; Prayaga, Chandra; Ujj, Laszlo

    2014-03-01

    It is well known that molecules having a permanent dipole moment tend to orient in the direction of the electric field at room temperature. The reorientation can be probed with the help of linear spectroscopy methods such as fluorescence anisotropy measurements. We have used nonlinear polarization sensitive Raman scattering spectroscopy to quantify the orientation effect of the dipoles. Vibrational spectra of the molecules has been recorded as a function of the external electric field. The polarization changes observed during the measurement are directly linked to the molecular reorientation rearrangement. Spectra has been recorded with a laser spectrometer comprised of a Nd:YAG laser and an optical parametric oscillator and an imaging spectrometer with a CCD detector. In order to make this measurement we have constructed a glass capacitor cell coated in TiO and applied a significant electric field (0-3 kV/mm) to the sample. Our measurements showed that the orientation effect is most significant for liquid crystals as observed previously with non-polarization sensitive CARS spectroscopy.

  2. Perturbed microRNA Expression by Mycobacterium tuberculosis Promotes Macrophage Polarization Leading to Pro-survival Foam Cell.

    Science.gov (United States)

    Ahluwalia, Pankaj Kumar; Pandey, Rajan Kumar; Sehajpal, Prabodh Kumar; Prajapati, Vijay Kumar

    2017-01-01

    Tuberculosis (TB) is one of the prevalent causes of death worldwide, with 95% of these deaths occurring in developing countries, like India. The causative agent, Mycobacterium tuberculosis (MTb) has the tenacious ability to circumvent the host's immune system for its own advantage. Macrophages are one of the phagocytic cells that are central to immunity against MTb. These are highly plastic cells dependent on the milieu and can showcase M1/M2 polarization. M1 macrophages are bactericidal in action, but M2 macrophages are anti-inflammatory in their immune response. This computational study is an effort to elucidate the role of miRNAs that influences the survival of MTb in the macrophage. To identify the miRNAs against critical transcription factors, we selected only conserved hits from TargetScan database. Further, validation of these miRNAs was achieved using four databases viz . DIANA-microT, miRDB, miRanda-mirSVR, and miRNAMap. All miRNAs were identified through a conserved seed sequence against the 3'-UTR of transcription factors. This bioinformatics study found that miR-27a and miR-27b has a putative binding site at 3'-UTR of IRF4, and miR-302c against IRF5. miR-155, miR-132, and miR-455-5p are predicted microRNAs against suppressor of cytokine signaling transcription factors. Several other microRNAs, which have an affinity for critical transcription factors, are also predicted in this study. This MTb-associated modulation of microRNAs to modify the expression of the target gene(s) plays a critical role in TB pathogenesis. Other than M1/M2 plasticity, MTb has the ability to convert macrophage into foam cells that are rich in lipids and cholesterol. We have highlighted few microRNAs which overlap between M2/foam cell continuums. miR-155, miR-33, miR-27a, and miR-27b plays a dual role in deciding macrophage polarity and its conversion to foam cells. This study shows a glimpse of microRNAs which can be modulated by MTb not only to prevent its elimination but also

  3. Functional assessment of sodium chloride cotransporter NCC mutants in polarized mammalian epithelial cells

    DEFF Research Database (Denmark)

    Rosenbaek, Lena L; Rizzo, Federica; MacAulay, Nanna

    2017-01-01

    -free solutions. NCC was detected in the plasma membrane, and both membrane abundance and phosphorylation of NCC were increased by incubation in chloride-free solutions. Furthermore, in cells exposed for 15 min to low or high extracellular K(+), the levels of phosphorylated NCC increased and decreased...... constitutively active, even without chloride-free stimulation. In conclusion, this system allows the activity, cellular localization, and abundance of wild-type or mutant NCC to be examined in the same polarized mammalian expression system in a rapid, easy, and low-cost fashion....

  4. Mast cell chemotaxis – Chemoattractants and signaling pathways

    Directory of Open Access Journals (Sweden)

    Ivana eHalova

    2012-05-01

    Full Text Available Migration of mast cells is essential for their recruitment within target tissues where they play an important role in innate and adaptive immune responses. These processes rely on the ability of mast cells to recognize appropriate chemotactic stimuli and react to them by a chemotactic response. Another level of intercellular communication is attained by production of chemoattractants by activated mast cells, which results in accumulation of mast cells and other hematopoietic cells at the sites of inflammation. Mast cells express numerous surface receptors for various ligands with properties of potent chemoattractants. They include the stem cell factor recognized by c-Kit, antigen, which binds to immunoglobulin E (IgE anchored to the high affinity IgE receptor (FcRI, highly cytokinergic IgE recognized by FcRI, lipid mediator sphingosine-1-phosphate (S1P, which binds to G-protein-coupled receptors (GPCRs. Other large groups of chemoattractants are eicosanoids [prostaglandin E2 and D2, leukotriene (LT B4, LTD4 and LTC4, and others] and chemokines (CC, CXC, C and CX3X, which also bind to various GPCRs. Further noteworthy chemoattractants are isoforms of transforming growth factor (TGF , which are sensitively recognized by TGF- serine/threonine type I and II  receptors, adenosine, C1q, C3a, and C5a components of the complement, 5-hydroxytryptamine, neuroendocrine peptide catestatin, interleukin-6, tumor necrosis factor- and others. Here we discuss the major types of chemoattractants recognized by mast cells, their target receptors, as well as signaling pathways they utilize. We also briefly deal with methods used for studies of mast cell chemotaxis and with ways of how these studies profited from the results obtained in other cellular systems.

  5. The Wilms tumor gene, Wt1, is critical for mouse spermatogenesis via regulation of sertoli cell polarity and is associated with non-obstructive azoospermia in humans.

    Directory of Open Access Journals (Sweden)

    Xiao Na Wang

    Full Text Available Azoospermia is one of the major reproductive disorders which cause male infertility in humans; however, the etiology of this disease is largely unknown. In the present study, six missense mutations of WT1 gene were detected in 529 human patients with non-obstructive azoospermia (NOA, indicating a strong association between WT1 mutation and NOA. The Wilms tumor gene, Wt1, is specifically expressed in Sertoli cells (SCs which support spermatogenesis. To examine the functions of this gene in spermatogenesis, Wt1 was deleted in adult testis using Wt1(flox and Cre-ER(TM mice strains. We found that inactivation of Wt1 resulted in massive germ cell death and only SCs were present in most of the seminiferous tubules which was very similar to NOA in humans. In investigating the potential mechanism for this, histological studies revealed that the blood-testis barrier (BTB was disrupted in Wt1 deficient testes. In vitro studies demonstrated that Wt1 was essential for cell polarity maintenance in SCs. Further studies found that the expression of cell polarity associated genes (Par6b and E-cadherin and Wnt signaling genes (Wnt4, Wnt11 were downregulated in Wt1 deficient SCs, and that the expression of Par6b and E-cadherin was regulated by Wnt4. Our findings suggest that Wt1 is important in spermatogenesis by regulating the polarity of SCs via Wnt signaling pathway and that WT1 mutation is one of the genetic causes of NOA in humans.

  6. In vitro biocompatibility and proliferative effects of polar and non-polar extracts of cucurbita ficifolia on human mesenchymal stem cells.

    Science.gov (United States)

    Aristatile, Balakrishnan; Alshammari, Ghedeir M

    2017-05-01

    Cucurbita ficifolia (C. ficifolia) has been traditionally known for its medicinal properties as an antioxidant, anti-diabetic and anti-inflammatory agent. However, there has been an enduring attention towards the identification of unique method, to isolate the natural components for therapeutic applications. Our study focuses on different polar and non-polar solvents (methanol, hexane and chloroform) to extract the bioactive components from C. ficifolia (pumpkin) and to study the biocompatibility and cytotoxicity effects on human bone marrow-mesenchymal stem cells (hBM-MSCs). The extracts were screened for their effects on cytotoxicity, cell proliferation and cell cycle on the hBM-MSCs cell line. The assays demonstrated that the chloroform extract was highly biocompatible, with less cytotoxic effect, and enhanced the cell proliferation. The methanol extract did not exhibit significant cytotoxicity when compare to the control. Concordantly, the cell cycle analysis confirmed that chloroform extract enhances the proliferation at lower concentrations. On the other hand, hexane extract showed high level of cytotoxicity with apoptotic and necrotic changes in hBM-MSCs. Collectively, our data revealed that chloroform is a good candidate to extract the bioactive components from C. ficifolia. Furthermore, our results suggest that specific gravity and density of the solvent might play a crucial role in the extraction process, which warrants further investigations. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. BMP9 signaling in stem cell differentiation and osteogenesis

    Science.gov (United States)

    Lamplot, Joseph D; Qin, Jiaqiang; Nan, Guoxin; Wang, Jinhua; Liu, Xing; Yin, Liangjun; Tomal, Justin; Li, Ruidong; Shui, Wei; Zhang, Hongyu; Kim, Stephanie H; Zhang, Wenwen; Zhang, Jiye; Kong, Yuhan; Denduluri, Sahitya; Rogers, Mary Rose; Pratt, Abdullah; Haydon, Rex C; Luu, Hue H; Angeles, Jovito; Shi, Lewis L; He, Tong-Chuan

    2013-01-01

    Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily and play a critical role in skeletal development, bone formation and stem cell differentiation. Disruptions in BMP signaling result in a variety of skeletal and extraskeletal anomalies. BMP9 is a poorly characterized member of the BMP family and is among the most osteogenic BMPs, promoting osteoblastic differentiation of mesenchymal stem cells (MSCs) both in vitro and in vivo. Recent findings from various in vivo and molecular studies strongly suggest that the mechanisms governing BMP9-mediated osteoinduction differ from other osteogenic BMPs. Many signaling pathways with diverse functions have been found to play a role in BMP9-mediated osteogenesis. Several of these pathways are also critical in the differentiation of other cell lineages, including adipocytes and chondrocytes. While BMP9 is known to be a potent osteogenic factor, it also influences several other pathways including cancer development, angiogenesis and myogenesis. Although BMP9 has been demonstrated as one of the most osteogenic BMPs, relatively little is known about the specific mechanisms responsible for these effects. BMP9 has demonstrated efficacy in promoting spinal fusion and bony non-union repair in animal models, demonstrating great translational promise. This review aims to summarize our current knowledge of BMP9-mediated osteogenesis by presenting recently completed work which may help us to further elucidate these pathways. PMID:23671813

  8. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways.

    Science.gov (United States)

    Kunnumakkara, Ajaikumar B; Bordoloi, Devivasha; Harsha, Choudhary; Banik, Kishore; Gupta, Subash C; Aggarwal, Bharat B

    2017-08-01

    Curcumin, a component of a spice native to India, was first isolated in 1815 by Vogel and Pelletier from the rhizomes of Curcuma longa (turmeric) and, subsequently, the chemical structure of curcumin as diferuloylmethane was reported by Milobedzka et al. [(1910) 43., 2163-2170]. Since then, this polyphenol has been shown to exhibit antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antifungal activities. The current review primarily focuses on the anticancer potential of curcumin through the modulation of multiple cell signaling pathways. Curcumin modulates diverse transcription factors, inflammatory cytokines, enzymes, kinases, growth factors, receptors, and various other proteins with an affinity ranging from the pM to the mM range. Furthermore, curcumin effectively regulates tumor cell growth via modulation of numerous cell signaling pathways and potentiates the effect of chemotherapeutic agents and radiation against cancer. Curcumin can interact with most of the targets that are modulated by FDA-approved drugs for cancer therapy. The focus of this review is to discuss the molecular basis for the anticancer activities of curcumin based on preclinical and clinical findings. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. GITR signaling potentiates airway hyperresponsiveness by enhancing Th2 cell activity in a mouse model of asthma

    Directory of Open Access Journals (Sweden)

    Van Oosterhout Antoon JM

    2009-10-01

    Full Text Available Abstract Background Allergic asthma is characterized by airway hyperresponsiveness (AHR and allergic inflammation of the airways, driven by allergen-specific Th2 cells. The asthma phenotypes and especially AHR are sensitive to the presence and activity of regulatory T (Treg cells in the lung. Glucocorticoid-induced tumor necrosis factor receptor (GITR is known to have a co-stimulatory function on effector CD4+ T cells, rendering these cells insensitive to Treg suppression. However, the effects of GITR signaling on polarized Th1 and Th2 cell effector functions are not well-established. We sought to evaluate the effect of GITR signaling on fully differentiated Th1 and Th2 cells and to determine the effects of GITR activation at the time of allergen provocation on AHR and airway inflammation in a Th2-driven mouse model of asthma. Methods CD4+CD25- cells were polarized in vitro into Th1 and Th2 effector cells, and re-stimulated in the presence of GITR agonistic antibodies to assess the effect on IFNγ and IL-4 production. To evaluate the effects of GITR stimulation on AHR and allergic inflammation in a mouse asthma model, BALB/c mice were sensitized to OVA followed by airway challenges in the presence or absence of GITR agonist antibodies. Results GITR engagement potentiated cytokine release from CD3/CD28-stimulated Th2 but not Th1 cells in vitro. In the mouse asthma model, GITR triggering at the time of challenge induced enhanced airway hyperresponsiveness, serum IgE and ex vivo Th2 cytokine release, but did not increase BAL eosinophilia. Conclusion GITR exerts a differential effect on cytokine release of fully differentiated Th1 and Th2 cells in vitro, potentiating Th2 but not Th1 cytokine production. This effect on Th2 effector functions was also observed in vivo in our mouse model of asthma, resulting in enhanced AHR, serum IgE responses and Th2 cytokine production. This is the first report showing the effects of GITR activation on cytokine

  10. Cell swelling and ion redistribution assessed with intrinsic optical signals

    Directory of Open Access Journals (Sweden)

    WITTE OTTO W.

    2001-01-01

    Full Text Available Cell volume changes are associated with alterations of intrinsic optical signals (IOS. In submerged brain slices in vitro, afferent stimulation induces an increase in light transmission. As assessed by measurement of the largely membrane impermeant ion tetramethylammonium (TMA in the extracellular space, these IOS correlate with the extent and time course of the change of the extracellular space size. They have a high signal to noise ratio and allow measurements of IOS changes in the order of a few percent. Under conditions of reduced net KCl uptake (low Cl solution a directed spatial buffer mechanism (K syphoning can be demonstrated in the neocortex with widening of the extracellular space in superficial layers associated with a reduced light transmission and an increase of extracellular K concentration. The nature of the IOS under pathophysiological conditions is less clear. Spreading depressions first cause an increase of light transmission, then a decrease. Such a decrease has also been observed following application of NMDA where it was associated with structural damage. Pharmacological analyses suggest that under physiological conditions changes of extracellular space size are mainly caused by astrocytic volume changes while with strong stimuli and under pathophysiological conditions also neuronal swelling occurs. With reflected light usually signals opposite to those observed with transmitted light are seen. Recording of IOS from interface slices gives very complex signals since under these conditions an increase of light transmission has been reported to be superimposed by a decrease of the signal due to mechanical lensing effects of the slice surface. Depending on the method of measurement and the exact conditions, several mechanisms may contribute to IOS. Under well defined conditions IOS are a useful supplementary tool to monitor changes of extracellular volume both in space and time.

  11. DMPD: Lipopolysaccharide signaling in endothelial cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16357866 Lipopolysaccharide signaling in endothelial cells. Dauphinee SM, Karsan A.... Lab Invest. 2006 Jan;86(1):9-22. (.png) (.svg) (.html) (.csml) Show Lipopolysaccharide signaling in endothe...lial cells. PubmedID 16357866 Title Lipopolysaccharide signaling in endothelial cells. Authors Dauphinee SM,

  12. Signaling by Small GTPases at Cell-Cell junctions: Protein Interactions Building Control and Networks.

    Science.gov (United States)

    Braga, Vania

    2017-09-11

    A number of interesting reports highlight the intricate network of signaling proteins that coordinate formation and maintenance of cell-cell contacts. We have much yet to learn about how the in vitro binding data is translated into protein association inside the cells and whether such interaction modulates the signaling properties of the protein. What emerges from recent studies is the importance to carefully consider small GTPase activation in the context of where its activation occurs, which upstream regulators are involved in the activation/inactivation cycle and the GTPase interacting partners that determine the intracellular niche and extent of signaling. Data discussed here unravel unparalleled cooperation and coordination of functions among GTPases and their regulators in supporting strong adhesion between cells. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  13. Ras and Rheb Signaling in Survival and Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Ehrkamp, Anja [Molecular Neurobiochemistry, Ruhr University of Bochum, 44780 Bochum (Germany); Herrmann, Christian [Department of Physical Chemistry1, Protein Interaction, Ruhr University of Bochum, 44780 Bochum (Germany); Stoll, Raphael [Biomolecular NMR, Ruhr University of Bochum, 44780 Bochum (Germany); Heumann, Rolf, E-mail: rolf.heumann@rub.de [Molecular Neurobiochemistry, Ruhr University of Bochum, 44780 Bochum (Germany)

    2013-05-28

    One of the most obvious hallmarks of cancer is uncontrolled proliferation of cells partly due to independence of growth factor supply. A major component of mitogenic signaling is Ras, a small GTPase. It was the first identified human protooncogene and is known since more than three decades to promote cellular proliferation and growth. Ras was shown to support growth factor-independent survival during development and to protect from chemical or mechanical lesion-induced neuronal degeneration in postmitotic neurons. In contrast, for specific patho-physiological cases and cellular systems it has been shown that Ras may also promote cell death. Proteins from the Ras association family (Rassf, especially Rassf1 and Rassf5) are tumor suppressors that are activated by Ras-GTP, triggering apoptosis via e.g., activation of mammalian sterile 20-like (MST1) kinase. In contrast to Ras, their expression is suppressed in many types of tumours, which makes Rassf proteins an exciting model for understanding the divergent effects of Ras activity. It seems likely that the outcome of Ras signaling depends on the balance between the activation of its various downstream effectors, thus determining cellular fate towards either proliferation or apoptosis. Ras homologue enriched in brain (Rheb) is a protein from the Ras superfamily that is also known to promote proliferation, growth, and regeneration through the mammalian target of rapamycin (mTor) pathway. However, recent evidences indicate that the Rheb-mTor pathway may switch its function from a pro-growth into a cell death pathway, depending on the cellular situation. In contrast to Ras signaling, for Rheb, the cellular context is likely to modulate the whole Rheb-mTor pathway towards cellular death or survival, respectively.

  14. Ras and Rheb Signaling in Survival and Cell Death

    International Nuclear Information System (INIS)

    Ehrkamp, Anja; Herrmann, Christian; Stoll, Raphael; Heumann, Rolf

    2013-01-01

    One of the most obvious hallmarks of cancer is uncontrolled proliferation of cells partly due to independence of growth factor supply. A major component of mitogenic signaling is Ras, a small GTPase. It was the first identified human protooncogene and is known since more than three decades to promote cellular proliferation and growth. Ras was shown to support growth factor-independent survival during development and to protect from chemical or mechanical lesion-induced neuronal degeneration in postmitotic neurons. In contrast, for specific patho-physiological cases and cellular systems it has been shown that Ras may also promote cell death. Proteins from the Ras association family (Rassf, especially Rassf1 and Rassf5) are tumor suppressors that are activated by Ras-GTP, triggering apoptosis via e.g., activation of mammalian sterile 20-like (MST1) kinase. In contrast to Ras, their expression is suppressed in many types of tumours, which makes Rassf proteins an exciting model for understanding the divergent effects of Ras activity. It seems likely that the outcome of Ras signaling depends on the balance between the activation of its various downstream effectors, thus determining cellular fate towards either proliferation or apoptosis. Ras homologue enriched in brain (Rheb) is a protein from the Ras superfamily that is also known to promote proliferation, growth, and regeneration through the mammalian target of rapamycin (mTor) pathway. However, recent evidences indicate that the Rheb-mTor pathway may switch its function from a pro-growth into a cell death pathway, depending on the cellular situation. In contrast to Ras signaling, for Rheb, the cellular context is likely to modulate the whole Rheb-mTor pathway towards cellular death or survival, respectively

  15. Signals involved in the early TH1/TH2 polarization of an immune response depending on the type of antigen.

    Science.gov (United States)

    Bellinghausen, I; Brand, U; Enk, A H; Knop, J; Saloga, J

    1999-02-01

    The early production of distinct cytokines by epidermal cells (ECs) in response to antigen exposure may govern the development of TH1 -like immune responses, such as contact sensitivity, or TH2 -like immune responses, such as IgE-dependent allergies of the immediate type, depending on the type of antigen. The aim of this study was to compare the signals induced by protein allergens with those induced by haptens in ECs and subsequently in local draining lymph node cells (LNCs) or splenocytes. BALB/c mice were primed in vivo with the protein allergens ovalbumin or birch pollen or the haptens 2, 4-dinitrofluorobenzene or trinitrochlorbenzene, respectively, and cytokine and immunoglobulin secretions of responding splenocytes were measured by ELISA after in vitro coculture with ECs. Induction of cytokine mRNA expression in ECs and LNCs was analyzed by reverse transcriptase-PCR. In the presence of protein allergens, ECs enhance the induction of a TH2 immune response (IL-4 and IgE production of splenocytes), whereas a TH1 immune response (IFN-gamma and IgG2a production) was only induced in the context of haptens. Heat inactivation of ovalbumin did not diminish the development of a TH2 immune response. One direct effect of antigen on ECs was the earlier expression of IL-10 mRNA after stimulation with protein allergens (30 minutes) than with haptens (2 hours) in vitro. By using an in vivo approach, sensitization of the skin with trinitrochlorbenzene, but not with ovalbumin, resulted in an early induction of IL-1beta, IL-12p40, and IFN-gamma mRNA in LNCs, whereas IL-18 was induced by both. These data indicate that the type of antigen strongly influences the type of immune response by eliciting distinct signals already in the epithelium.

  16. Lipopolysaccharide-induced multinuclear cells: Increased internalization of polystyrene beads and possible signals for cell fusion

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi-Matsui, Mayumi, E-mail: nakanim@iwate-med.ac.jp; Yano, Shio; Futai, Masamitsu

    2013-11-01

    Highlights: •LPS induces multinuclear cells from murine macrophage-derived RAW264.7 cells. •Large beads are internalized by cells actively fusing to become multinuclear. •The multinuclear cell formation is inhibited by anti-inflammatory cytokine, IL10. •Signal transduction for cell fusion is different from that for inflammation. -- Abstract: A murine macrophage-derived line, RAW264.7, becomes multinuclear on stimulation with lipopolysaccharide (LPS), an outer membrane component of Gram-negative bacteria. These multinuclear cells internalized more polystyrene beads than mononuclear cells or osteoclasts (Nakanishi-Matsui, M., Yano, S., Matsumoto, N., and Futai, M., 2012). In this study, we analyzed the time courses of cell fusion in the presence of large beads. They were internalized into cells actively fusing to become multinuclear. However, the multinuclear cells once formed showed only low phagocytosis activity. These results suggest that formation of the multinuclear cells and bead internalization took place simultaneously. The formation of multinuclear cells was blocked by inhibitors for phosphoinositide 3-kinase, phospholipase C, calcineurin, and c-Jun N-terminal kinase. In addition, interleukin 6 and 10 also exhibited inhibitory effects. These signaling molecules and cytokines may play a crucial role in the LPS-induced multinuclear cell formation.

  17. Porcine pluripotency cell signaling develops from the inner cell mass to the epiblast during early development

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane; Christensen, Josef; Gao, Yu

    2009-01-01

    (LIF, LIFR, GP130), FGF pathway (bFGF, FGFR1, FGFR2), BMP pathway (BMP4), and downstream-activated genes (STAT3, c-Myc, c-Fos, and SMAD4). We discovered two different expression profiles exist in the developing porcine embryo. The D6 porcine blastocyst (inner cell mass stage) is devoid......  The signaling mechanisms regulating pluripotency in porcine embryonic stem cells and embryos are unknown. In this study, we characterize cell signaling in the in-vivo porcine inner cell mass and later-stage epiblast. We evaluate expression of OCT4, NANOG, SOX2, genes within the JAK/STAT pathway...... pluripotency in human embryonic stem cells is detectable in the porcine epiblast, but not in the inner cell mass. Copyright (c) 2009 Wiley-Liss, Inc....

  18. Wnt/β-catenin signaling regulates cancer stem cells in lung cancer A549 cells

    International Nuclear Information System (INIS)

    Teng, Ying; Wang, Xiuwen; Wang, Yawei; Ma, Daoxin

    2010-01-01

    Wnt/β-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that β-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of β-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking down the expression of β-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/β-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.

  19. SIRT1/Adenosine Monophosphate-Activated Protein Kinase α Signaling Enhances Macrophage Polarization to an Anti-inflammatory Phenotype in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    So Youn Park

    2017-09-01

    Full Text Available Macrophages are crucially involved in the pathogenesis of rheumatoid arthritis (RA. Macrophages of the M1 phenotype act as pro-inflammatory mediators in synovium, whereas those of the M2 phenotype suppress inflammation and promote tissue repair. SIRT1 is a class 3 histone deacetylase with anti-inflammatory characteristics. However, the role played by SIRT1 in macrophage polarization has not been defined in RA. We investigated whether SIRT1 exerts anti-inflammatory effects by modulating M1/M2 polarization in macrophages from RA patients. In this study, SIRT1 activation promoted the phosphorylation of an adenosine monophosphate-activated protein kinase (AMPK α/acetyl-CoA carboxylase in macrophages exposed to interleukin (IL-4, and that this resulted in the expressions of M2 genes, including MDC, FcεRII, MrC1, and IL-10, at high levels. Furthermore, these expressions were inhibited by sirtinol (an inhibitor of SIRT1 and compound C (an inhibitor of AMPK. Moreover, SIRT1 activation downregulated LPS/interferon γ-mediated NF-κB activity by inhibiting p65 acetylation and the expression of M1 genes, such as CCL2, iNOS, IL-12 p35, and IL-12 p40. Macrophages from SIRT1 transgenic (Tg-mice exhibited enhanced polarization of M2 phenotype macrophages and reduced polarization of M1 phenotype macrophages. In line with these observations, SIRT1-Tg mice showed less histological signs of arthritis, that is, lower TNFα and IL-1β expressions and less severe arthritis in the knee joints, compared to wild-type mice. Taken together, the study shows activation of SIRT1/AMPKα signaling exerts anti-inflammatory activities by regulating M1/M2 polarization, and thereby reduces inflammatory responses in RA. Furthermore, it suggests that SIRT1 signaling be viewed as a therapeutic target in RA.

  20. Transcription factor-mediated cell-to-cell signalling in plants.

    Science.gov (United States)

    Han, Xiao; Kumar, Dhinesh; Chen, Huan; Wu, Shuwei; Kim, Jae-Yean

    2014-04-01

    Plant cells utilize mobile transcription factors to transmit intercellular signals when they perceive environmental stimuli or initiate developmental programmes. Studies on these novel cell-to-cell signals have accumulated multiple pieces of evidence showing that non-cell-autonomous transcription factors play pivotal roles in most processes related to the formation and development of plant organs. Recent studies have explored the evolution of mobile transcription factors and proposed mechanisms for their trafficking through plasmodesmata, where a selective system exists to facilitate this process. Mobile transcription factors contribute to the diversity of the intercellular signalling network, which is also established by peptides, hormones, and RNAs. Crosstalk between mobile transcription factors and other intercellular molecules leads to the development of complex biological signalling networks in plants. The regulation of plasmodesmata appears to have been another major step in controlling the intercellular trafficking of transcription factors based on studies of many plasmodesmal components. Furthermore, diverse omics approaches are being successfully applied to explore a large number of candidate transcription factors as mobile signals in plants. Here, we review these fascinating discoveries to integrate current knowledge of non-cell-autonomous transcription factors.

  1. Ror2 Enhances Polarity and Directional Migration of Primordial Germ Cells

    Science.gov (United States)

    Kissner, Michael D.; Zhou, Xin; Anderson, Kathryn V.

    2011-01-01

    The trafficking of primordial germ cells (PGCs) across multiple embryonic structures to the nascent gonads ensures the transmission of genetic information to the next generation through the gametes, yet our understanding of the mechanisms underlying PGC migration remains incomplete. Here we identify a role for the receptor tyrosine kinase-like protein Ror2 in PGC development. In a Ror2 mouse mutant we isolated in a genetic screen, PGC migration and survival are dysregulated, resulting in a diminished number of PGCs in the embryonic gonad. A similar phenotype in Wnt5a mutants suggests that Wnt5a acts as a ligand to Ror2 in PGCs, although we do not find evidence that WNT5A functions as a PGC chemoattractant. We show that cultured PGCs undergo polarization, elongation, and reorientation in response to the chemotactic factor SCF (secreted KitL), whereas Ror2 PGCs are deficient in these SCF-induced responses. In the embryo, migratory PGCs exhibit a similar elongated geometry, whereas their counterparts in Ror2 mutants are round. The protein distribution of ROR2 within PGCs is asymmetric, both in vitro and in vivo; however, this asymmetry is lost in Ror2 mutants. Together these results indicate that Ror2 acts autonomously to permit the polarized response of PGCs to KitL. We propose a model by which Wnt5a potentiates PGC chemotaxis toward secreted KitL by redistribution of Ror2 within the cell. PMID:22216013

  2. Ror2 enhances polarity and directional migration of primordial germ cells.

    Directory of Open Access Journals (Sweden)

    Diana J Laird

    2011-12-01

    Full Text Available The trafficking of primordial germ cells (PGCs across multiple embryonic structures to the nascent gonads ensures the transmission of genetic information to the next generation through the gametes, yet our understanding of the mechanisms underlying PGC migration remains incomplete. Here we identify a role for the receptor tyrosine kinase-like protein Ror2 in PGC development. In a Ror2 mouse mutant we isolated in a genetic screen, PGC migration and survival are dysregulated, resulting in a diminished number of PGCs in the embryonic gonad. A similar phenotype in Wnt5a mutants suggests that Wnt5a acts as a ligand to Ror2 in PGCs, although we do not find evidence that WNT5A functions as a PGC chemoattractant. We show that cultured PGCs undergo polarization, elongation, and reorientation in response to the chemotactic factor SCF (secreted KitL, whereas Ror2 PGCs are deficient in these SCF-induced responses. In the embryo, migratory PGCs exhibit a similar elongated geometry, whereas their counterparts in Ror2 mutants are round. The protein distribution of ROR2 within PGCs is asymmetric, both in vitro and in vivo; however, this asymmetry is lost in Ror2 mutants. Together these results indicate that Ror2 acts autonomously to permit the polarized response of PGCs to KitL. We propose a model by which Wnt5a potentiates PGC chemotaxis toward secreted KitL by redistribution of Ror2 within the cell.

  3. Anthocyanins: targeting of signaling networks in cancer cells.

    Science.gov (United States)

    Sehitoglu, Muserref Hilal; Farooqi, Ammad Ahmad; Qureshi, Muhammad Zahid; Butt, Ghazala; Aras, Aliye

    2014-01-01

    It is becoming progressively more understandable that phytochemicals derived from edible plants have shown potential in modelling their interactions with their target proteins. Rapidly accumulating in-vitro and in- vivo evidence indicates that anthocyanins have anticancer activity in rodent models of cancer. More intriguingly, evaluation of bilberry anthocyanins as chemopreventive agents in twenty-five colorectal cancer patients has opened new window of opportunity in translating the findings from laboratory to clinic. Confluence of information suggests that anthocyanins treated cancer cells reveal up-regulation of tumor suppressor genes. There is a successive increase in the research-work in nutrigenomics and evidence has started to shed light on intracellular-signaling cascades as common molecular targets for anthocyanins. In this review we bring to limelight how anthocyanins induced apoptosis in cancer cells via activation of extrinsic and intrinsic pathways.

  4. Syndecans – key regulators of cell signaling and biological functions

    DEFF Research Database (Denmark)

    Afratis, Nikolaos A.; Nikitovic, Dragana; Multhaupt, Hinke A.B.

    2017-01-01

    molecules during cancer initiation and progression. Particularly syndecans interact with other cell surface receptors, such as growth factor receptors and integrins, which lead to activation of downstream signaling pathways, which are critical for the cellular behavior. Moreover, this review describes...... has been established, which has consequences for the regulation of cell adhesion and migration. Specifically, ecto- and cytoplasmic domains are responsible for the interaction with extracellular matrix molecules and intracellular kinases, respectively. These interactions indicate syndecans as key...... the key role of syndecans in intracellular calcium regulation and homeostasis. The syndecan-mediated regulation of calcium metabolism is highly correlated with cells’ adhesion phenotype through the actin cytoskeleton and formation of junctions, with implications during differentiation and disease...

  5. TNF-α decreases VEGF secretion in highly polarized RPE cells but increases it in non-polarized RPE cells related to crosstalk between JNK and NF-κB pathways.

    Directory of Open Access Journals (Sweden)

    Hiroto Terasaki

    Full Text Available Asymmetrical secretion of vascular endothelial growth factor (VEGF by retinal pigment epithelial (RPE cells in situ is critical for maintaining the homeostasis of the retina and choroid. VEGF is also involved in the development and progression of age-related macular degeneration (AMD. We studied the effect of tumor necrosis factor-α (TNF-α on the secretion of VEGF in polarized and non-polarized RPE cells (P-RPE cells and N-RPE cells, respectively in culture and in situ in rats. A subretinal injection of TNF-α caused a decrease in VEGF expression and choroidal atrophy. Porcine RPE cells were seeded on Transwell™ filters, and their maturation and polarization were confirmed by the asymmetrical VEGF secretion and trans electrical resistance. Exposure to TNF-α decreased the VEGF secretion in P-RPE cells but increased it in N-RPE cells in culture. TNF-α inactivated JNK in P-RPE cells but activated it in N-RPE cells, and TNF-α activated NF-κB in P-RPE cells but not in N-RPE cells. Inhibition of NF-κB activated JNK in both types of RPE cells indicating crosstalk between JNK and NF-κB. TNF-α induced the inhibitory effects of NF-κB on JNK in P-RPE cells because NF-κB is continuously inactivated. In N-RPE cells, however, it was not evident because NF-κB was already activated. The basic activation pattern of JNK and NF-κB and their crosstalk led to opposing responses of RPE cells to TNF-α. These results suggest that VEGF secretion under inflammatory conditions depends on cellular polarization, and the TNF-α-induced VEGF down-regulation may result in choroidal atrophy in polarized physiological RPE cells. TNF-α-induced VEGF up-regulation may cause neovascularization by non-polarized or non-physiological RPE cells.

  6. Apoptotic Cells Induced Signaling for Immune Homeostasis in Macrophages and Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Uriel Trahtemberg

    2017-10-01

    Full Text Available Inefficient and abnormal clearance of apoptotic cells (efferocytosis contributes to systemic autoimmune disease in humans and mice, and inefficient chromosomal DNA degradation by DNAse II leads to systemic polyarthritis and a cytokine storm. By contrast, efficient clearance allows immune homeostasis, generally leads to a non-inflammatory state for both macrophages and dendritic cells (DCs, and contributes to maintenance of peripheral tolerance. As many as 3 × 108 cells undergo apoptosis every hour in our bodies, and one of the primary “eat me” signals expressed by apoptotic cells is phosphatidylserine (PtdSer. Apoptotic cells themselves are major contributors to the “anti-inflammatory” nature of the engulfment process, some by secreting thrombospondin-1 (TSP-1 or adenosine monophosphate and possibly other immune modulating “calm-down” signals that interact with macrophages and DCs. Apoptotic cells also produce “find me” and “tolerate me” signals to attract and immune modulate macrophages and DCs that express specific receptors for some of these signals. Neither macrophages nor DCs are uniform, and each cell type may variably express membrane proteins that function as receptors for PtdSer or for opsonins like complement or opsonins that bind to PtdSer, such as protein S and growth arrest-specific 6. Macrophages and DCs also express scavenger receptors, CD36, and integrins that function via bridging molecules such as TSP-1 or milk fat globule-EGF factor 8 protein and that differentially engage in various multi-ligand interactions between apoptotic cells and phagocytes. In this review, we describe the anti-inflammatory and pro-homeostatic nature of apoptotic cell interaction with the immune system. We do not review some forms of immunogenic cell death. We summarize the known apoptotic cell signaling events in macrophages and DCs that are related to toll-like receptors, nuclear factor kappa B, inflammasome, the lipid

  7. Polar transport in plants mediated by membrane transporters: focus on mechanisms of polar auxin transport.

    Science.gov (United States)

    Naramoto, Satoshi

    2017-12-01

    Directional cell-to-cell transport of functional molecules, called polar transport, enables plants to sense and respond to developmental and environmental signals. Transporters that localize to plasma membranes (PMs) in a polar manner are key components of these systems. PIN-FORMED (PIN) auxin efflux carriers, which are the most studied polar-localized PM proteins, are implicated in the polar transport of auxin that in turn regulates plant development and tropic growth. In this review, the regulatory mechanisms underlying polar localization of PINs, control of auxin efflux activity, and PIN abundance at PMs are considered. Up to date information on polar-localized nutrient transporters that regulate directional nutrient movement from soil into the root vasculature is also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Constitutive activation of BMP signalling abrogates experimental metastasis of OVCA429 cells via reduced cell adhesion

    Directory of Open Access Journals (Sweden)

    Shepherd Trevor G

    2010-02-01

    Full Text Available Abstract Background Activation of bone morphogenetic protein (BMP4 signalling in human ovarian cancer cells induces a number of phenotypic changes in vitro, including altered cell morphology, adhesion, motility and invasion, relative to normal human ovarian surface epithelial cells. From these in vitro analyses, we had hypothesized that active BMP signalling promotes the metastatic potential of ovarian cancer. Methods To test this directly, we engineered OVCA429 human ovarian cancer cells possessing doxycycline-inducible expression of a constitutively-active mutant BMP receptor, ALK3QD, and administered these cells to immunocompromised mice. Further characterization was performed in vitro to address the role of activated BMP signalling on the EOC phenotype, with particular emphasis on epithelial-mesenchymal transition (EMT and cell adhesion. Results Unexpectedly, doxycycline-induced ALK3QD expression in OVCA429 cells reduced tumour implantation on peritoneal surfaces and ascites formation when xenografted into immunocompromised mice by intraperitoneal injection. To determine the potential mechanisms controlling this in vivo observation, we followed with several cell culture experiments. Doxycycline-induced ALK3QD expression enhanced the refractile, spindle-shaped morphology of cultured OVCA429 cells eliciting an EMT-like response. Using in vitro wound healing assays, we observed that ALK3QD-expressing cells migrated with long, cytoplasmic projections extending into the wound space. The phenotypic alterations of ALK3QD-expressing cells correlated with changes in specific gene expression patterns of EMT, including increased Snail and Slug and reduced E-cadherin mRNA expression. In addition, ALK3QD signalling reduced β1- and β3-integrin expression, critical molecules involved in ovarian cancer cell adhesion. The combination of reduced E-cadherin and β-integrin expression correlates directly with the reduced EOC cell cohesion in spheroids and

  9. Modulation of cell polarization by the Na+-K+-ATPase-associated protein FXYD5 (dysadherin).

    Science.gov (United States)

    Lubarski, Irina; Asher, Carol; Garty, Haim

    2014-06-01

    FXYD5 (dysadherin or also called a related to ion channel, RIC) is a transmembrane auxiliary subunit of the Na(+)-K(+)-ATPase shown to increase its maximal velocity (Vmax). FXYD5 has also been identified as a cancer-associated protein whose expression in tumor-derived cell lines impairs cytoskeletal organization and increases cell motility. Previously, we have demonstrated that the expression of FXYD5 in M1 cells derived from mouse kidney collecting duct impairs the formation of tight and adherence junctions. The current study aimed to further explore effects of FXYD5 at a single cell level. It was found that in M1, as well as three other cell lines, FXYD5 inhibits transformation of adhered single cells from the initial radial shape to a flattened, elongated shape in the first stage of monolayer formation. This is also correlated to less ordered actin cables and fewer focal points. Structure-function analysis has demonstrated that the transmembrane domain of FXYD5, and not its unique extracellular segment, mediates the inhibition of change in cell shape. This domain has been shown before to be involved in the association of FXYD5 with the Na(+)-K(+)-ATPase, which leads to the increase in Vmax. Furthermore, specific transmembrane point mutations in FXYD5 that either increase or decrease its effect on cell elongation had a corresponding effect on the coimmunoprecipitation of FXYD5 with α Na(+)-K(+)-ATPase. These findings lend support to the possibility that FXYD5 affects cell polarization through its transmembrane domain interaction with the Na(+)-K(+)-ATPase. Yet interaction of FXYD5 with other proteins cannot be excluded. Copyright © 2014 the American Physiological Society.

  10. MHV-A59 enters polarized murine epithelial cells through the apical surface but is released basolaterally

    NARCIS (Netherlands)

    Rossen, J W; Voorhout, W F; Horzinek, M C; van der Ende, A; Strous, G J; Rottier, P J

    1995-01-01

    Coronaviruses have a marked tropism for epithelial cells. Entry and release of the porcine transmissible gastroenteritis virus (TGEV) is restricted to apical surfaces of polarized epithelial cells, as we have recently shown (J. W. A. Rossen, C. P. J. Bekker, W. F. Voorhout, G. J. A. M. Strous, A.

  11. Clonal expansion of genome-intact HIV-1 in functionally polarized Th1 CD4+ T cells.

    Science.gov (United States)

    Lee, Guinevere Q; Orlova-Fink, Nina; Einkauf, Kevin; Chowdhury, Fatema Z; Sun, Xiaoming; Harrington, Sean; Kuo, Hsiao-Hsuan; Hua, Stephane; Chen, Hsiao-Rong; Ouyang, Zhengyu; Reddy, Kavidha; Dong, Krista; Ndung'u, Thumbi; Walker, Bruce D; Rosenberg, Eric S; Yu, Xu G; Lichterfeld, Mathias

    2017-06-30

    HIV-1 causes a chronic, incurable disease due to its persistence in CD4+ T cells that contain replication-competent provirus, but exhibit little or no active viral gene expression and effectively resist combination antiretroviral therapy (cART). These latently infected T cells represent an extremely small proportion of all circulating CD4+ T cells but possess a remarkable long-term stability and typically persist throughout life, for reasons that are not fully understood. Here we performed massive single-genome, near-full-length next-generation sequencing of HIV-1 DNA derived from unfractionated peripheral blood mononuclear cells, ex vivo-isolated CD4+ T cells, and subsets of functionally polarized memory CD4+ T cells. This approach identified multiple sets of independent, near-full-length proviral sequences from cART-treated individuals that were completely identical, consistent with clonal expansion of CD4+ T cells harboring intact HIV-1. Intact, near-full-genome HIV-1 DNA sequences that were derived from such clonally expanded CD4+ T cells constituted 62% of all analyzed genome-intact sequences in memory CD4 T cells, were preferentially observed in Th1-polarized cells, were longitudinally detected over a duration of up to 5 years, and were fully replication- and infection-competent. Together, these data suggest that clonal proliferation of Th1-polarized CD4+ T cells encoding for intact HIV-1 represents a driving force for stabilizing the pool of latently infected CD4+ T cells.

  12. Cell signaling by reactive nitrogen and oxygen species in atherosclerosis

    Science.gov (United States)

    Patel, R. P.; Moellering, D.; Murphy-Ullrich, J.; Jo, H.; Beckman, J. S.; Darley-Usmar, V. M.

    2000-01-01

    The production of reactive oxygen and nitrogen species has been implicated in atherosclerosis principally as means of damaging low-density lipoprotein that in turn initiates the accumulation of cholesterol in macrophages. The diversity of novel oxidative modifications to lipids and proteins recently identified in atherosclerotic lesions has revealed surprising complexity in the mechanisms of oxidative damage and their potential role in atherosclerosis. Oxidative or nitrosative stress does not completely consume intracellular antioxidants leading to cell death as previously thought. Rather, oxidative and nitrosative stress have a more subtle impact on the atherogenic process by modulating intracellular signaling pathways in vascular tissues to affect inflammatory cell adhesion, migration, proliferation, and differentiation. Furthermore, cellular responses can affect the production of nitric oxide, which in turn can strongly influence the nature of oxidative modifications occurring in atherosclerosis. The dynamic interactions between endogenous low concentrations of oxidants or reactive nitrogen species with intracellular signaling pathways may have a general role in processes affecting wound healing to apoptosis, which can provide novel insights into the pathogenesis of atherosclerosis.

  13. Determination of apical membrane polarity in mammary epithelial cell cultures: The role of cell-cell, cell-substratum, and membrane-cytoskeleton interactions

    Energy Technology Data Exchange (ETDEWEB)

    Parry, G.; Beck, J.C.; Moss, L.; Bartley, J. (Lawrence Berkeley Lab., CA (United States)); Ojakian, G.K. (State Univ. of New York, Brooklyn (United States))

    1990-06-01

    The membrane glycoprotein, PAS-O, is a major differentiation antigen on mammary epithelial cells and is located exclusively in the apical domain of the plasma membrane. The authors have used 734B cultured human mammary carcinoma cells as a model system to study the role of tight junctions, cell-substratum contacts, and submembranous cytoskeletal elements in restricting PAS-O to the apical membrane. Immunofluorescence and immunoelectronmicroscopy experiments demonstrated that while tight junctions demarcate PAS-O distribution in confluent cultures, apical polarity could be established at low culture densities when cells could not form tight junctions with neighboring cells. They suggest, then, that interactions between vitronectin and its receptor, are responsible for establishment of membrane domains in the absence of tight junctions. The role of cytoskeletal elements in restricting PAS-O distribution was examined by treating cultures with cytochalasin D, colchicine, or acrylamide. Cytochalasin D led to a redistribution of PAS0O while colchicine and acrylamide did not. They hypothesize that PAS-O is restricted to the apical membrane by interactions with a microfilament network and that the cytoskeletal organization is dependent upon cell-cell and cell-substratum interactions.

  14. CD70 reverse signaling enhances NK cell function and immunosurveillance in CD27-expressing B-cell malignancies.

    Science.gov (United States)

    Al Sayed, Mohamad F; Ruckstuhl, Carla A; Hilmenyuk, Tamara; Claus, Christina; Bourquin, Jean-Pierre; Bornhauser, Beat C; Radpour, Ramin; Riether, Carsten; Ochsenbein, Adrian F

    2017-07-20

    The interaction of the tumor necrosis factor receptor (TNFR) CD27 with its ligand CD70 is an emerging target to treat cancer. CD27 signaling provides costimulatory signals to cytotoxic T cells but also increases the frequency of regulatory T cells. Similar to other TNFR ligands, CD70 has been shown to initiate intracellular signaling pathways (CD70 reverse signaling). CD27 is expressed on a majority of B-cell non-Hodgkin lymphoma, but its role in the immune control of lymphoma and leukemia is unknown. We therefore generated a cytoplasmic deletion mutant of CD27 (CD27-trunc) to study the role of CD70 reverse signaling in the immunosurveillance of B-cell malignancies in vivo. Expression of CD27-trunc on malignant cells increased the number of tumor-infiltrating interferon γ-producing natural killer (NK) cells. In contrast, the antitumoral T-cell response remained largely unchanged. CD70 reverse signaling in NK cells was mediated via the AKT signaling pathway and increased NK cell survival and effector function. The improved immune control by activated NK cells prolonged survival of CD27-trunc-expressing lymphoma-bearing mice. Finally, CD70 reverse signaling enhanced survival and effector function of human NK cells in a B-cell acute lymphoblastic leukemia xenotransplants model. Therefore, CD70 reverse signaling in NK cells contributes to the immune control of CD27-expressing B-cell lymphoma and leukemia. © 2017 by The American Society of Hematology.

  15. Endocytic machinery protein SlaB is dispensable for polarity establishment but necessary for polarity maintenance in hyphal tip cells of Aspergillus nidulans.

    Science.gov (United States)

    Hervás-Aguilar, América; Peñalva, Miguel A

    2010-10-01

    The Aspergillus nidulans endocytic internalization protein SlaB is essential, in agreement with the key role in apical extension attributed to endocytosis. We constructed, by gene replacement, a nitrate-inducible, ammonium-repressible slaB1 allele for conditional SlaB expression. Video microscopy showed that repressed slaB1 cells are able to establish but unable to maintain a stable polarity axis, arresting growth with budding-yeast-like morphology shortly after initially normal germ tube emergence. Using green fluorescent protein (GFP)-tagged secretory v-SNARE SynA, which continuously recycles to the plasma membrane after being efficiently endocytosed, we establish that SlaB is crucial for endocytosis, although it is dispensable for the anterograde traffic of SynA and of the t-SNARE Pep12 to the plasma and vacuolar membrane, respectively. By confocal microscopy, repressed slaB1 germlings show deep plasma membrane invaginations. Ammonium-to-nitrate medium shift experiments demonstrated reversibility of the null polarity maintenance phenotype and correlation of normal apical extension with resumption of SynA endocytosis. In contrast, SlaB downregulation in hyphae that had progressed far beyond germ tube emergence led to marked polarity maintenance defects correlating with deficient SynA endocytosis. Thus, the strict correlation between abolishment of endocytosis and disability of polarity maintenance that we report here supports the view that hyphal growth requires coupling of secretion and endocytosis. However, downregulated slaB1 cells form F-actin clumps containing the actin-binding protein AbpA, and thus F-actin misregulation cannot be completely disregarded as a possible contributor to defective apical extension. Latrunculin B treatment of SlaB-downregulated tips reduced the formation of AbpA clumps without promoting growth and revealed the formation of cortical "comets" of AbpA.

  16. Signal transduction in cells of the immune system in microgravity

    Directory of Open Access Journals (Sweden)

    Huber Kathrin

    2008-10-01

    Full Text Available Abstract Life on Earth developed in the presence and under the constant influence of gravity. Gravity has been present during the entire evolution, from the first organic molecule to mammals and humans. Modern research revealed clearly that gravity is important, probably indispensable for the function of living systems, from unicellular organisms to men. Thus, gravity research is no more or less a fundamental question about the conditions of life on Earth. Since the first space missions and supported thereafter by a multitude of space and ground-based experiments, it is well known that immune cell function is severely suppressed in microgravity, which renders the cells of the immune system an ideal model organism to investigate the influence of gravity on the cellular and molecular level. Here we review the current knowledge about the question, if and how cellular signal transduction depends on the existence of gravity, with special focus on cells of the immune system. Since immune cell function is fundamental to keep the organism under imnological surveillance during the defence against pathogens, to investigate the effects and possible molecular mechanisms of altered gravity is indispensable for long-term space flights to Earth Moon or Mars. Thus, understanding the impact of gravity on cellular functions on Earth will provide not only important informations about the development of life on Earth, but also for therapeutic and preventive strategies to cope successfully with medical problems during space exploration.

  17. Itraconazole induces apoptosis and cell cycle arrest via inhibiting Hedgehog signaling in gastric cancer cells.

    Science.gov (United States)

    Hu, Qiang; Hou, Yi-Chao; Huang, Jiao; Fang, Jing-Yuan; Xiong, Hua

    2017-04-11

    Itraconazole has been proved therapeutically effective against a variety of human cancers. This study assessed the effect of itraconazole on the Hedgehog (Hh) pathway and proliferation of human gastric cancer cells. CCK-8 assay and colony formation assay were used to assess the effects of itraconazole on proliferation of gastric cancer cells. The expression of Hh signaling components in gastric cancer cells treated with itraconazole was evaluated by reverse-transcription polymerase chain reaction, immunoblotting and dual luciferase assay. Tumor xenograft models were used to assess the inhibitory effect of itraconazole on the proliferation of gastric cancer cells in vivo. Itraconazole could remarkably inhibit the proliferation of gastric cancer cells. When in combination with 5-FU, itraconazole significantly reduced the proliferation rate of cancer cells. Furthermore, itraconazole could regulate the G 1 -S transition and induce apoptosis of gastric cancer cells. Hh signaling was abnormally activated in human gastric cancer samples. In vitro, studies showed that the expression of glioma-associated zinc finger transcription factor 1 (Gli1) was decreased at both transcriptional and translational levels after treatment with itraconazole. Dual luciferase assay also indicated that itraconazole could inhibit the transcription of Gli1. In vivo studies demonstrated that monotherapy with itraconazole by oral administration could inhibit the growth of xenografts, and that itraconazole could significantly enhance the antitumor efficacy of the chemotherapeutic agent 5-FU. Hh signaling is activated in gastric tumor and itraconazole can inhibit the growth of gastric cancer cells by inhibiting Gli1 expression.

  18. High expression of Rac1 is correlated with partial reversed cell polarity and poor prognosis in invasive ductal carcinoma of the breast.

    Science.gov (United States)

    Liu, Bingbing; Xiong, Jianhua; Liu, Guiqiu; Wu, Jing; Wen, Likun; Zhang, Qin; Zhang, Chuanshan

    2017-07-01

    The change of cell polarity is usually associated with invasion and metastasis. Partial reverse cell polarity in IDC-NOS may play a role in lymphatic tumor spread. Rac1 is a kind of polarity related protein. It plays an important role in invasion and metastasis in tumors. We here investigated the expression of Rac1 and partial reverse cell polarity status in breast cancer and evaluated their value for prognosis in breast cancer. The association of the expression of Rac1 and MUC-1 with clinicopathological parameters and prognostic significance was evaluated in 162 cases of IDC-NOS paraffin-embedded tissues by immunohistochemical method. The Rac1 messenger RNA expression was measured by real-time polymerase chain reaction in 30 breast cancer patients, which was divided into two groups of partial reverse cell polarity and no partial reverse cell polarity. We found that lymph node metastasis of partial reverse cell polarity patients was higher than no partial reverse cell polarity patients (Z = -4.030, p = 0.000). Rac1 was upregulated in partial reverse cell polarity group than no partial reverse cell polarity group (Z = -3.164, p = 0.002), and there was correlationship between the expression of Rac1 and partial reverse cell polarity status (r s  = 0.249, p = 0.001). The level of Rac1 messenger RNA expression in partial reverse cell polarity group was significantly higher compared to no partial reverse cell polarity group (t = -2.527, p = 0.017). Overexpression of Rac1 and partial reverse cell polarity correlates with poor prognosis of IDC-NOS patients (p = 0.011). Partial reverse cell polarity and lymph node metastasis remained as independent predictors for poor disease-free survival of IDC-NOS (p = 0.023, p = 0.046). Our study suggests that partial reverse cell polarity may lead to poor prognosis of breast cancer. Overexpression of Rac1 may lead to polarity change in IDC-NOS of the breast. Therefore, Rac1 could be a

  19. Notch signaling is significantly suppressed in basal cell carcinomas and activation induces basal cell carcinoma cell apoptosis.

    Science.gov (United States)

    Shi, Feng-Tao; Yu, Mei; Zloty, David; Bell, Robert H; Wang, Eddy; Akhoundsadegh, Noushin; Leung, Gigi; Haegert, Anne; Carr, Nicholas; Shapiro, Jerry; McElwee, Kevin J

    2017-04-01

    A subset of basal cell carcinomas (BCCs) are directly derived from hair follicles (HFs). In some respects, HFs can be defined as 'ordered' skin appendage growths, while BCCs can be regarded as 'disordered' skin appendage growths. The aim of the present study was to examine HFs and BCCs to define the expression of common and unique signaling pathways in each skin appendage. Human nodular BCCs, along with HFs and non‑follicular skin epithelium from normal individuals, were examined using microarrays, qPCR, and immunohistochemistry. Subsequently, BCC cells and root sheath keratinocyte cells from HFs were cultured and treated with Notch signaling peptide Jagged1 (JAG1). Gene expression, protein levels, and cell apoptosis susceptibility were assessed using qPCR, immunoblotting, and flow cytometry, respectively. Specific molecular mechanisms were found to be involved in the process of cell self‑renewal in the HFs and BCCs, including Notch and Hedgehog signaling pathways. However, several key Notch signaling factors showed significant differential expression in BCCs compared with HFs. Stimulating Notch signaling with JAG1 induced apoptosis of BCC cells by increasing Fas ligand expression and downstream caspase-8 activation. The present study showed that Notch signaling pathway activity is suppressed in BCCs, and is highly expressed in HFs. Elements of the Notch pathway could, therefore, represent targets for the treatment of BCCs and potentially in hair follicle engineering.

  20. THE CONTENTS OF NEUTRAL AND POLAR LIPIDS IN CLOSTRIDIA CELLS UNDER CULTIVATION IN THE PRESENCE OF BUTANOL

    Directory of Open Access Journals (Sweden)

    S. I. Voychuk

    2017-02-01

    Full Text Available The aim of the study was to evaluate changes in the portion of polar and neutral lipids in the cells of Clostridium during their cultivation in the presence of butanol. Four natural isolates of Clostridium genus were studied with flow cytometry approaches. Under the optimal culture conditions, the polar lipids prevailed over neutral ones in bacterial cells; the content of neutral lipids doubled in spores of these microorganisms, while the content of polar ones was reduced. Strains No 1 and No 2 were able to grow at 1% butanol in the medium, and the strain No 4 was at 1.5%. When cultivated in the presence of different concentrations of butanol, the bacterial strains did not differ in such cytomorphological features as granularity and cell size. The quantitative content of polar and neutral lipids in the presence of butanol varied depending on the content of butanol in the medium, however this effect had a strain-specific character and did not show a correlation with the resistance of these bacteria to butanol. So, the content of polar and neutral lipids varied depending on butanol content in the medium. However this effect was strain-specific independently of resistance of these bacteria to butanol. The use of bacterial biomass as a source of lipids for the production of biofuels requires further optimization of the process to increase the content of the neutral lipid fraction in bacterial cells.

  1. Shifted T Helper Cell Polarization in a Murine Staphylococcus aureus Mastitis Model.

    Science.gov (United States)

    Zhao, Yanqing; Zhou, Ming; Gao, Yang; Liu, Heyuan; Yang, Wenyu; Yue, Jinhua; Chen, Dekun

    2015-01-01

    Mastitis, one of the most costly diseases in dairy ruminants, is an inflammation of the mammary gland caused by pathogenic infection. The mechanisms of adaptive immunity against pathogens in mastitis have not been fully elucidated. To investigate T helper cell-mediated adaptive immune responses, we established a mastitis model by challenge with an inoculum of 4 × 106 colony-forming units of Staphylococcus aureus in the mammary gland of lactating mice, followed by quantification of bacterial burden and histological analysis. The development of mastitis was accompanied by a significant increase in both Th17 and Th1 cells in the mammary gland. Moreover, the relative expression of genes encoding cytokines and transcription factors involved in the differentiation and function of these T helper cells, including Il17, Rorc, Tgfb, Il1b, Il23, Ifng, Tbx21, and Il12, was greatly elevated in the infected mammary gland. IL-17 is essential for neutrophil recruitment to infected mammary gland via CXC chemokines, whereas the excessive IL-17 production contributes to tissue damage in mastitis. In addition, a shift in T helper cell polarization toward Th2 and Treg cells was observed 5 days post-infection, and the mRNA expression of the anti-inflammatory cytokine Il10 was markedly increased at day 7 post-infection. These results indicate that immune clearance of Staphylococcus aureus in mastitis is facilitated by the enrichment of Th17, Th1 and Th2 cells in the mammary gland mediated by pro-inflammatory cytokine production, which is tightly regulated by Treg cells and the anti-inflammatory cytokine IL-10.

  2. Liver progenitor cells develop cholangiocyte-type epithelial polarity in three-dimensional culture.

    OpenAIRE

    Tanimizu, Naoki; Miyajima, Atsushi; Mostov, Keith E

    2007-01-01

    Cholangiocytes are cellular components of the bile duct system of the liver, which originate from hepatoblasts during embryonic liver development. Although several transcription factors and signaling molecules have been implicated in bile duct development, its molecular mechanism has not been studied in detail. Here, we applied a three-dimensional (3D) culture technique to a liver progenitor cell line, HPPL, to establish an in vitro culture system in which HPPL acquire differentiated cholangi...

  3. Priming dendritic cells for Th2 polarization: lessons learned from helminths and implications for metabolic disorders

    Directory of Open Access Journals (Sweden)

    Leonie eHussaarts

    2014-10-01

    Full Text Available Nearly one quarter of the world’s population is infected with helminth parasites. A common feature of helminth infections is the manifestation of a type 2 immune response, characterized by T helper 2 (Th2 cells that mediate anti-helminth immunity. In addition, recent literature described a close association between type 2 immune responses and wound repair, suggesting that a Th2 response may concurrently mediate repair of parasite-induced damage. The molecular mechanisms that govern Th2 responses are poorly understood, although it is clear that dendritic cells (DCs, which are the most efficient antigen-presenting cells in the immune system, play a central role. Here, we review the molecular mechanisms by which DCs polarize Th2 cells, examining both helminth antigens and helminth-mediated tissue damage as Th2-inducing triggers. Finally, we discuss the implication of these findings in the context of metabolic disorders, as recent literature indicates that various aspects of the Th2-associated inflammatory response contribute to metabolic homeostasis.

  4. Analysis of polarization methods for elimination of power overshoot in microbial fuel cells

    KAUST Repository

    Watson, Valerie J.

    2011-01-01

    Polarization curves from microbial fuel cells (MFCs) often show an unexpectedly large drop in voltage with increased current densities, leading to a phenomenon in the power density curve referred to as "power overshoot". Linear sweep voltammetry (LSV, 1 mV s- 1) and variable external resistances (at fixed intervals of 20 min) over a single fed-batch cycle in an MFC both resulted in power overshoot in power density curves due to anode potentials. Increasing the anode enrichment time from 30 days to 100 days did not eliminate overshoot, suggesting that insufficient enrichment of the anode biofilm was not the primary cause. Running the reactor at a fixed resistance for a full fed-batch cycle (~ 1 to 2 days), however, completely eliminated the overshoot in the power density curve. These results show that long times at a fixed resistance are needed to stabilize current generation by bacteria in MFCs, and that even relatively slow LSV scan rates and long times between switching circuit loads during a fed-batch cycle may produce inaccurate polarization and power density results for these biological systems. © 2010 Elsevier B.V. All rights reserved.

  5. Robustness of MEK-ERK Dynamics and Origins of Cell-to-Cell Variability in MAPK Signaling

    Directory of Open Access Journals (Sweden)

    Sarah Filippi

    2016-06-01

    Full Text Available Cellular signaling processes can exhibit pronounced cell-to-cell variability in genetically identical cells. This affects how individual cells respond differentially to the same environmental stimulus. However, the origins of cell-to-cell variability in cellular signaling systems remain poorly understood. Here, we measure the dynamics of phosphorylated MEK and ERK across cell populations and quantify the levels of population heterogeneity over time using high-throughput image cytometry. We use a statistical modeling framework to show that extrinsic noise, particularly that from upstream MEK, is the dominant factor causing cell-to-cell variability in ERK phosphorylation, rather than stochasticity in the phosphorylation/dephosphorylation of ERK. We furthermore show that without extrinsic noise in the core module, variable (including noisy signals would be faithfully reproduced downstream, but the within-module extrinsic variability distorts these signals and leads to a drastic reduction in the mutual information between incoming signal and ERK activity.

  6. The dual effects of polar methanolic extract of Hypericum perforatum L. in bladder cancer cells

    Science.gov (United States)

    Nseyo, U. O.; Nseyo, O. U.; Shiverick, K. T.; Medrano, T.; Mejia, M.; Stavropoulos, N.; Tsimaris, I.; Skalkos, D.

    2007-02-01

    Introduction and background: We have reported on the polar methanolic fraction (PMF) of Hypericum Perforatum L as a novel photosensitizing agent for photodynamic therapy (PDT) and photodynamic diagnosis (PDD). PMF has been tested in human leukemic cells, HL-60 cells, cord blood hemopoietic progenitor cells, bladder cancers derived from metastatic lymph node (T-24) and primary papillary bladder lesion (RT-4). However, the mechanisms of the effects of PMF on these human cell lines have not been elucidated. We have investigated mechanisms of PMF + light versus PMF-alone (dark experiment) in T-24 human bladder cancer cells. Methods: PMF was prepared from an aerial herb of HPL which was brewed in methanol and extracted with ether and methanol. Stock solutions of PMF were made in DSMO and stored in dark conditions. PMF contains 0.57% hypericin and 2.52% hyperforin. The T24 cell line was obtained from American Type Culture Collection (ATCC). In PDT treatment, PMF (60μg/ml) was incubated with cells, which were excited with laser light (630nm) 24 hours later. Apoptosis was determined by DNA fragmentation/laddering assay. DNA isolation was performed according to the manufacture's instructions with the Kit (Oncogene Kit#AM41). Isolated DNA samples were separated by electrophoresis in 1.5% in agarose gels and bands were visualized by ethidium bromide labeling. The initial cell cycle analysis and phase distribution was by flow cytometry. DNA synthesis was measured by [3H] thymidine incorporation, and cell cycle regulatory proteins were assayed by Western immunoblot. Results: The results of the flow cytometry showed PMF +light induced significant (40%) apoptosis in T24 cells, whereas Light or PMF alone produced little apoptosis. The percentage of cells in G 0/G I phase was decreased by 25% and in G2/M phase by 38%. The main impact was observed on the S phase which was blocked by 78% from the specific photocytotoxic process. DNA laddering analysis showed that PMF (60

  7. DMPD: Signals and receptors involved in recruitment of inflammatory cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 7744810 Signals and receptors involved in recruitment of inflammatory cells. Ben-Ba...ruch A, Michiel DF, Oppenheim JJ. J Biol Chem. 1995 May 19;270(20):11703-6. (.png) (.svg) (.html) (.csml) Show Signals... and receptors involved in recruitment of inflammatory cells. PubmedID 7744810 Title Signals and r

  8. Endothelial Cell Migration and Vascular Endothelial Growth Factor Expression Are the Result of Loss of Breast Tissue Polarity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Amy; Cuevas, Ileana; Kenny, Paraic A; Miyake, Hiroshi; Mace, Kimberley; Ghajar, Cyrus; Boudreau, Aaron; Bissell, Mina; Boudreau, Nancy

    2009-05-26

    Recruiting a new blood supply is a rate-limiting step in tumor progression. In a three-dimensional model of breast carcinogenesis, disorganized, proliferative transformed breast epithelial cells express significantly higher expression of angiogenic genes compared with their polarized, growth-arrested nonmalignant counterparts. Elevated vascular endothelial growth factor (VEGF) secretion by malignant cells enhanced recruitment of endothelial cells (EC) in heterotypic cocultures. Significantly, phenotypic reversion of malignant cells via reexpression of HoxD10, which is lost in malignant progression, significantly attenuated VEGF expression in a hypoxia-inducible factor 1{alpha}-independent fashion and reduced EC migration. This was due primarily to restoring polarity: forced proliferation of polarized, nonmalignant cells did not induce VEGF expression and EC recruitment, whereas disrupting the architecture of growth-arrested, reverted cells did. These data show that disrupting cytostructure activates the angiogenic switch even in the absence of proliferation and/or hypoxia and restoring organization of malignant clusters reduces VEGF expression and EC activation to levels found in quiescent nonmalignant epithelium. These data confirm the importance of tissue architecture and polarity in malignant progression.

  9. Cell fate decisions: emerging roles for metabolic signals and cell morphology.

    Science.gov (United States)

    Tatapudy, Sumitra; Aloisio, Francesca; Barber, Diane; Nystul, Todd

    2017-12-01

    Understanding how cell fate decisions are regulated is a fundamental goal of developmental and stem cell biology. Most studies on the control of cell fate decisions address the contributions of changes in transcriptional programming, epigenetic modifications, and biochemical differentiation cues. However, recent studies have found that other aspects of cell biology also make important contributions to regulating cell fate decisions. These cues can have a permissive or instructive role and are integrated into the larger network of signaling, functioning both upstream and downstream of developmental signaling pathways. Here, we summarize recent insights into how cell fate decisions are influenced by four aspects of cell biology: metabolism, reactive oxygen species (ROS), intracellular pH (pHi), and cell morphology. For each topic, we discuss how these cell biological cues interact with each other and with protein-based mechanisms for changing gene transcription. In addition, we highlight several questions that remain unanswered in these exciting and relatively new areas of the field. © 2017 The Authors.

  10. Cell type specificity of signaling: view from membrane receptors distribution and their downstream transduction networks.

    Science.gov (United States)

    He, Ying; Yu, Zhonghao; Ge, Dongya; Wang-Sattler, Rui; Thiesen, Hans-Jürgen; Xie, Lu; Li, Yixue

    2012-09-01

    Studies on cell signaling pay more attention to spatial dynamics and how such diverse organization can relate to high order of cellular capabilities. To overview the specificity of cell signaling, we integrated human receptome data with proteome spatial expression profiles to systematically investigate the specificity of receptors and receptor-triggered transduction networks across 62 normal cell types and 14 cancer types. Six percent receptors showed cell-type-specific expression, and 4% signaling networks presented enriched cell-specific proteins induced by the receptors. We introduced a concept of "response context" to annotate the cell-type dependent signaling networks. We found that most cells respond similarly to the same stimulus, as the "response contexts" presented high functional similarity. Despite this, the subtle spatial diversity can be observed from the difference in network architectures. The architecture of the signaling networks in nerve cells displayed less completeness than that in glandular cells, which indicated cellular-context dependent signaling patterns are elaborately spatially organized. Likewise, in cancer cells most signaling networks were generally dysfunctional and less complete than that in normal cells. However, glioma emerged hyper-activated transduction mechanism in malignant state. Receptor ATP6AP2 and TNFRSF21 induced rennin-angiotensin and apoptosis signaling were found likely to explain the glioma-specific mechanism. This work represents an effort to decipher context-specific signaling network from spatial dimension. Our results indicated that although a majority of cells engage general signaling response with subtle differences, the spatial dynamics of cell signaling can not only deepen our insights into different signaling mechanisms, but also help understand cell signaling in disease.

  11. Initiation of Antiviral B Cell Immunity Relies on Innate Signals from Spatially Positioned NKT Cells.

    Science.gov (United States)

    Gaya, Mauro; Barral, Patricia; Burbage, Marianne; Aggarwal, Shweta; Montaner, Beatriz; Warren Navia, Andrew; Aid, Malika; Tsui, Carlson; Maldonado, Paula; Nair, Usha; Ghneim, Khader; Fallon, Padraic G; Sekaly, Rafick-Pierre; Barouch, Dan H; Shalek, Alex K; Bruckbauer, Andreas; Strid, Jessica; Batista, Facundo D

    2018-01-25

    B cells constitute an essential line of defense from pathogenic infections through the generation of class-switched antibody-secreting cells (ASCs) in germinal centers. Although this process is known to be regulated by follicular helper T (TfH) cells, the mechanism by which B cells initially seed germinal center reactions remains elusive. We found that NKT cells, a population of innate-like T lymphocytes, are critical for the induction of B cell immunity upon viral infection. The positioning of NKT cells at the interfollicular areas of lymph nodes facilitates both their direct priming by resident macrophages and the localized delivery of innate signals to antigen-experienced B cells. Indeed, NKT cells secrete an early wave of IL-4 and constitute up to 70% of the total IL-4-producing cells during the initial stages of infection. Importantly, the requirement of this innate immunity arm appears to be evolutionarily conserved because early NKT and IL-4 gene signatures also positively correlate with the levels of neutralizing antibodies in Zika-virus-infected macaques. In conclusion, our data support a model wherein a pre-TfH wave of IL-4 secreted by interfollicular NKT cells triggers the seeding of germinal center cells and serves as an innate link between viral infection and B cell immunity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. A Cascade of Wnt, Eda, and Shh Signaling Is Essential for Touch Dome Merkel Cell Development.

    Directory of Open Access Journals (Sweden)

    Ying Xiao

    2016-07-01

    Full Text Available The Sonic hedgehog (Shh signaling pathway regulates developmental, homeostatic, and repair processes throughout the body. In the skin, touch domes develop in tandem with primary hair follicles and contain sensory Merkel cells. The developmental signaling requirements for touch dome specification are largely unknown. We found dermal Wnt signaling and subsequent epidermal Eda/Edar signaling promoted Merkel cell morphogenesis by inducing Shh expression in early follicles. Lineage-specific gene deletions revealed intraepithelial Shh signaling was necessary for Merkel cell specification. Additionally, a Shh signaling agonist was sufficient to rescue Merkel cell differentiation in Edar-deficient skin. Moreover, Merkel cells formed in Fgf20 mutant skin where primary hair formation was defective but Shh production was preserved. Although developmentally associated with hair follicles, fate mapping demonstrated Merkel cells primarily originated outside the hair follicle lineage. These findings suggest that touch dome development requires Wnt-dependent mesenchymal signals to establish reciprocal signaling within the developing ectoderm, including Eda signaling to primary hair placodes and ultimately Shh signaling from primary follicles to extrafollicular Merkel cell progenitors. Shh signaling often demonstrates pleiotropic effects within a structure over time. In postnatal skin, Shh is known to regulate the self-renewal, but not the differentiation, of touch dome stem cells. Our findings relate the varied effects of Shh in the touch dome to the ligand source, with locally produced Shh acting as a morphogen essential for lineage specification during development and neural Shh regulating postnatal touch dome stem cell maintenance.

  13. Resistant Starch Regulates Gut Microbiota: Structure, Biochemistry and Cell Signalling.

    Science.gov (United States)

    Yang, Xiaoping; Darko, Kwame Oteng; Huang, Yanjun; He, Caimei; Yang, Huansheng; He, Shanping; Li, Jianzhong; Li, Jian; Hocher, Berthold; Yin, Yulong

    2017-01-01

    Starch is one of the most popular nutritional sources for both human and animals. Due to the variation of its nutritional traits and biochemical specificities, starch has been classified into rapidly digestible, slowly digestible and resistant starch. Resistant starch has its own unique chemical structure, and various forms of resistant starch are commercially available. It has been found being a multiple-functional regulator for treating metabolic dysfunction. Different functions of resistant starch such as modulation of the gut microbiota, gut peptides, circulating growth factors, circulating inflammatory mediators have been characterized by animal studies and clinical trials. In this mini-review, recent remarkable progress in resistant starch on gut microbiota, particularly the effect of structure, biochemistry and cell signaling on nutrition has been summarized, with highlights on its regulatory effect on gut microbiota. © 2017 The Author(s). Published by S. Karger AG, Basel.

  14. Kurarinol induces hepatocellular carcinoma cell apoptosis through suppressing cellular signal transducer and activator of transcription 3 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Guangwen; Yang, Jing; Zhao, Wenhao; Xu, Chan; Hong, Zongguo; Mei, Zhinan; Yang, Xinzhou, E-mail: xinzhou_yang@hotmail.com

    2014-12-01

    Kurarinol is a flavonoid isolated from roots of the medical plant Sophora flavescens. However, its cytotoxic activity against hepatocellular carcinoma (HCC) cells and toxic effects on mammalians remain largely unexplored. Here, the pro-apoptotic activities of kurarinol on HCC cells and its toxic impacts on tumor-bearing mice were evaluated. The molecular mechanisms underlying kurarinol-induced HCC cell apoptosis were also investigated. We found that kurarinol dose-dependently provoked HepG2, Huh-7 and H22 HCC cell apoptosis. In addition, kurarinol gave rise to a considerable decrease in the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) in HCC cells. Suppression of STAT3 signaling is involved in kurarinol-induced HCC cell apoptosis. In vivo studies showed that kurarinol injection substantially induced transplanted H22 cell apoptosis with low toxic impacts on tumor-bearing mice. Similarly, the transcriptional activity of STAT3 in transplanted tumor tissues was significantly suppressed after kurarinol treatment. Collectively, our current research demonstrated that kurarinol has the capacity of inducing HCC cell apoptosis both in vitro and in vivo with undetectable toxic impacts on the host. Suppressing STAT3 signaling is implicated in kurarinol-mediated HCC cell apoptosis. - Highlights: • Kurarinol induces hepatocellular carcinoma (HCC) cell apoptosis. • Kurarinol induces HCC cell apoptosis via inhibiting STAT3. • Kurarinol exhibits low toxic effects on tumor-bearing animals.

  15. Kurarinol induces hepatocellular carcinoma cell apoptosis through suppressing cellular signal transducer and activator of transcription 3 signaling

    International Nuclear Information System (INIS)

    Shu, Guangwen; Yang, Jing; Zhao, Wenhao; Xu, Chan; Hong, Zongguo; Mei, Zhinan; Yang, Xinzhou

    2014-01-01

    Kurarinol is a flavonoid isolated from roots of the medical plant Sophora flavescens. However, its cytotoxic activity against hepatocellular carcinoma (HCC) cells and toxic effects on mammalians remain largely unexplored. Here, the pro-apoptotic activities of kurarinol on HCC cells and its toxic impacts on tumor-bearing mice were evaluated. The molecular mechanisms underlying kurarinol-induced HCC cell apoptosis were also investigated. We found that kurarinol dose-dependently provoked HepG2, Huh-7 and H22 HCC cell apoptosis. In addition, kurarinol gave rise to a considerable decrease in the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) in HCC cells. Suppression of STAT3 signaling is involved in kurarinol-induced HCC cell apoptosis. In vivo studies showed that kurarinol injection substantially induced transplanted H22 cell apoptosis with low toxic impacts on tumor-bearing mice. Similarly, the transcriptional activity of STAT3 in transplanted tumor tissues was significantly suppressed after kurarinol treatment. Collectively, our current research demonstrated that kurarinol has the capacity of inducing HCC cell apoptosis both in vitro and in vivo with undetectable toxic impacts on the host. Suppressing STAT3 signaling is implicated in kurarinol-mediated HCC cell apoptosis. - Highlights: • Kurarinol induces hepatocellular carcinoma (HCC) cell apoptosis. • Kurarinol induces HCC cell apoptosis via inhibiting STAT3. • Kurarinol exhibits low toxic effects on tumor-bearing animals

  16. Notch signalling inhibits CD4 expression during initiation and differentiation of human T cell lineage.

    Directory of Open Access Journals (Sweden)

    Stephen M Carlin

    Full Text Available The Delta/Notch signal transduction pathway is central to T cell differentiation from haemopoietic stem cells (HSCs. Although T cell development is well characterized using expression of cell surface markers, the detailed mechanisms driving differentiation have not been established. This issue becomes central with observations that adult HSCs exhibit poor differentiation towards the T cell lineage relative to neonatal or embryonic precursors. This study investigates the contribution of Notch signalling and stromal support cells to differentiation of adult and Cord Blood (CB human HSCs, using the Notch signalling OP9Delta co-culture system. Co-cultured cells were assayed at weekly intervals during development for phenotype markers using flow cytometry. Cells were also assayed for mRNA expression at critical developmental stages. Expression of the central thymocyte marker CD4 was initiated independently of Notch signalling, while cells grown with Notch signalling had reduced expression of CD4 mRNA and protein. Interruption of Notch signalling in partially differentiated cells increased CD4 mRNA and protein expression, and promoted differentiation to CD4(+ CD8(+ T cells. We identified a set of genes related to T cell development that were initiated by Notch signalling, and also a set of genes subsequently altered by Notch signal interruption. These results demonstrate that while Notch signalling is essential for establishment of the T cell lineage, at later stages of differentiation, its removal late in differentiation promotes more efficient DP cell generation. Notch signalling adds to signals provided by stromal cells to allow HSCs to differentiate to T cells via initiation of transcription factors such as HES1, GATA3 and TCF7. We also identify gene expression profile differences that may account for low generation of T cells from adult HSCs.

  17. Regulation of cell behavior and tissue patterning by bioelectrical signals: challenges and opportunities for biomedical engineering.

    Science.gov (United States)

    Levin, Michael; Stevenson, Claire G

    2012-01-01

    Achieving control over cell behavior and pattern formation requires molecular-level understanding of regulatory mechanisms. Alongside transcriptional networks and biochemical gradients, there functions an important system of cellular communication and control: transmembrane voltage gradients (V(mem)). Bioelectrical signals encoded in spatiotemporal changes of V(mem) control cell proliferation, migration, and differentiation. Moreover, endogenous bioelectrical gradients serve as instructive cues mediating anatomical polarity and other organ-level aspects of morphogenesis. In the past decade, significant advances in molecular physiology have enabled the development of new genetic and biophysical tools for the investigation and functional manipulation of bioelectric cues. Recent data implicate V(mem) as a crucial epigenetic regulator of patterning events in embryogenesis, regeneration, and cancer. We review new conceptual and methodological developments in this fascinating field. Bioelectricity offers a novel way of quantitatively understanding regulation of growth and form in vivo, and it reveals tractable, powerful control points that will enable truly transformative applications in bioengineering, regenerative medicine, and synthetic biology.

  18. Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis.

    Directory of Open Access Journals (Sweden)

    Dragana Antic

    2010-02-01

    Full Text Available Left-right asymmetry in vertebrates is initiated in an early embryonic structure called the ventral node in human and mouse, and the gastrocoel roof plate (GRP in the frog. Within these structures, each epithelial cell bears a single motile cilium, and the concerted beating of these cilia produces a leftward fluid flow that is required to initiate left-right asymmetric gene expression. The leftward fluid flow is thought to result from the posterior tilt of the cilia, which protrude from near the posterior portion of each cell's apical surface. The cells, therefore, display a morphological planar polarization. Planar cell polarity (PCP is manifested as the coordinated, polarized orientation of cells within epithelial sheets, or as directional cell migration and intercalation during convergent extension. A set of evolutionarily conserved proteins regulates PCP. Here, we provide evidence that vertebrate PCP proteins regulate planar polarity in the mouse ventral node and in the Xenopus gastrocoel roof plate. Asymmetric anterior localization of VANGL1 and PRICKLE2 (PK2 in mouse ventral node cells indicates that these cells are planar polarized by a conserved molecular mechanism. A weakly penetrant Vangl1 mutant phenotype suggests that compromised Vangl1 function may be associated with left-right laterality defects. Stronger functional evidence comes from the Xenopus GRP, where we show that perturbation of VANGL2 protein function disrupts the posterior localization of motile cilia that is required for leftward fluid flow, and causes aberrant expression of the left side-specific gene Nodal. The observation of anterior-posterior PCP in the mouse and in Xenopus embryonic organizers reflects a strong evolutionary conservation of this mechanism that is important for body plan determination.

  19. TCDD induces cell migration via NFATc1/ATX-signaling in MCF-7 cells.

    Science.gov (United States)

    Seifert, Anja; Rau, Steffi; Küllertz, Gerhard; Fischer, Bernd; Santos, Anne Navarrete

    2009-01-10

    Breast cancer is characterized, among others, by the concurrence of lipophilic xenobiotica such as 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD) with hypoxic tissue conditions. This condition activates the transcription factors