WorldWideScience

Sample records for cell phenotype modulation

  1. NK cell phenotypic modulation in lung cancer environment.

    Directory of Open Access Journals (Sweden)

    Shi Jin

    Full Text Available Nature killer (NK cells play an important role in anti-tumor immunotherapy. But it indicated that tumor cells impacted possibly on NK cell normal functions through some molecules mechanisms in tumor microenvironment.Our study analyzed the change about NK cells surface markers (NK cells receptors through immunofluorescence, flow cytometry and real-time PCR, the killed function from mouse spleen NK cell and human high/low lung cancer cell line by co-culture. Furthermore we certificated the above result on the lung cancer model of SCID mouse.We showed that the infiltration of NK cells in tumor periphery was related with lung cancer patients' prognosis. And the number of NK cell infiltrating in lung cancer tissue is closely related to the pathological types, size of the primary cancer, smoking history and prognosis of the patients with lung cancer. The expression of NK cells inhibitor receptors increased remarkably in tumor micro-environment, in opposite, the expression of NK cells activated receptors decrease magnificently.The survival time of lung cancer patient was positively related to NK cell infiltration degree in lung cancer. Thus, the down-regulation of NKG2D, Ly49I and the up-regulation of NKG2A may indicate immune tolerance mechanism and facilitate metastasis in tumor environment. Our research will offer more theory for clinical strategy about tumor immunotherapy.

  2. Impaired Peroxisome Proliferator-activated Receptor-γ Contributes to Phenotypic Modulation of Vascular Smooth Muscle Cells during Hypertension*

    OpenAIRE

    Zhang, Lili; Xie, Peng; Wang, Jingzhou; Yang, Qingwu; Fang, Chuanqin; Zhou, Shuang; Li, Jingcheng

    2010-01-01

    The phenotypic modulation of vascular smooth muscle cells (VSMCs) plays a pivotal role in hypertension-induced vascular changes including vascular remodeling. The precise mechanisms underlying VSMC phenotypic modulation remain elusive. Here we test the role of peroxisome proliferator-activated receptor (PPAR)-γ in the VSMC phenotypic modulation during hypertension. Both spontaneously hypertensive rat (SHR) aortas and SHR-derived VSMCs exhibited reduced PPAR-γ expression and excessive VSMC phe...

  3. Phenotypic modulation of corpus cavernosum smooth muscle cells in a rat model of cavernous neurectomy.

    Directory of Open Access Journals (Sweden)

    Fan Yang

    Full Text Available Patients undergoing radical prostatectomy (RP are at high risk for erectile dysfunction (ED due to potential cavernous nerve (CN damage during surgery. Penile hypoxia after RP is thought to significantly contribute to ED pathogenesis.We previously showed that corpora cavernosum smooth muscle cells (CCSMCs undergo phenotypic modulation under hypoxic conditions in vitro. Here, we studied such changes in an in vivo post-RP ED model by investigating CCSMCs in bilateral cavernous neurectomy (BCN rats.Sprague-Dawley rats underwent sham (n = 12 or BCN (n = 12 surgery. After 12 weeks, they were injected with apomorphine to determine erectile function. The penile tissues were harvested and assessed for fibrosis using Masson trichrome staining and for molecular markers of phenotypic modulation using immunohistochemistry and western blotting. CCSMC morphological structure was evaluated by hematoxylin-eosin (H&E staining and transmission electron microscopy (TEM.Erectile function was significantly lower in BCN rats than in sham rats. BCN increased hypoxia-inducible factor-1α and collagen protein expression in corpora cavernous tissue. H&E staining and TEM showed that CCSMCs in BCN rats underwent hypertrophy and showed rough endoplasmic reticulum formation. The expression of CCSMC phenotypic markers, such as smooth muscle α-actin, smooth muscle myosin heavy chain, and desmin, was markedly lower, whereas vimentin protein expression was significantly higher in BCN rats than in control rats.CCSMCs undergo phenotype modulation in rats with cavernous neurectomy. The results have unveiled physiological transformations that occur at the cellular and molecular levels and have helped characterize CN injury-induced ED.

  4. Effects of activated fibroblasts on phenotype modulation, EGFR signalling and cell cycle regulation in OSCC cells

    Energy Technology Data Exchange (ETDEWEB)

    Berndt, Alexander, E-mail: alexander.berndt@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Büttner, Robert, E-mail: Robert-Buettner@gmx.net [Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, 07740 Jena (Germany); Gühne, Stefanie, E-mail: stefanie_guehne@gmx.net [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Gleinig, Anna, E-mail: annagleinig@yahoo.com [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Richter, Petra, E-mail: P.Richter@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Chen, Yuan, E-mail: Yuan.Chen@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Franz, Marcus, E-mail: Marcus.Franz@med.uni-jena.de [Clinic of Internal Medicine I, Jena University Hospital, 07740 Jena (Germany); Liebmann, Claus, E-mail: Claus.Liebmann@uni-jena.de [Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, 07740 Jena (Germany)

    2014-04-01

    Crosstalk between carcinoma associated fibroblasts (CAFs) and oral squamous cell carcinoma (OSCC) cells is suggested to mediate phenotype transition of cancer cells as a prerequisite for tumour progression, to predict patients’ outcome, and to influence the efficacy of EGFR inhibitor therapies. Here we investigate the influence of activated fibroblasts as a model for CAFs on phenotype and EGFR signalling in OSCC cells in vitro. For this, immortalised hTERT-BJ1 fibroblasts were activated with TGFβ1 and PDGFAB to generate a myofibroblast or proliferative phenotype, respectively. Conditioned media (FCM{sub TGF}, FCM{sub PDGF}) were used to stimulate PE/CA-PJ15 OSCC cells. Results were compared to the effect of conditioned media of non-stimulated fibroblasts (FCM{sub B}). FCM{sub TGF} stimulation leads to an up-regulation of vimentin in the OSCC cells and an enhancement of invasive behaviour, indicating EMT-like effects. Similarly, FCM{sub TGF}≫FCM{sub PDGF} induced up-regulation of EGFR, but not of ErbB2/ErbB3. In addition, we detected an increase in basal activities of ERK, PI3K/Akt and Stat3 (FCM{sub TGF}>FCM{sub PDGF}) accompanied by protein interaction of vimentin with pERK. These effects are correlated with an increased proliferation. In summary, our results suggest that the activated myofibroblast phenotype provides soluble factors which are able to induce EMT-like phenomena and to increase EGFR signalling as well as cell proliferation in OSCC cells. Our results indicate a possible influence of activated myofibroblasts on EGFR-inhibitor therapy. Therefore, CAFs may serve as promising novel targets for combined therapy strategies. - Highlights: • A cell culture model for cancer associated fibroblasts is described. • The mutual interaction with OSCC cells leads to up-regulation of EGFR in tumour cells. • mCAF induces EGFR downstream signalling with increased proliferation in OSCC. • Erk activation is associated with protein interaction with vimentin

  5. Electrical stimulation of cardiac adipose tissue-derived progenitor cells modulates cell phenotype and genetic machinery.

    Science.gov (United States)

    Llucià-Valldeperas, A; Sanchez, B; Soler-Botija, C; Gálvez-Montón, C; Prat-Vidal, C; Roura, S; Rosell-Ferrer, J; Bragos, R; Bayes-Genis, A

    2015-11-01

    A major challenge of cardiac tissue engineering is directing cells to establish the physiological structure and function of the myocardium being replaced. Our aim was to examine the effect of electrical stimulation on the cardiodifferentiation potential of cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs). Three different electrical stimulation protocols were tested; the selected protocol consisted of 2 ms monophasic square-wave pulses of 50 mV/cm at 1 Hz over 14 days. Cardiac and subcutaneous ATDPCs were grown on biocompatible patterned surfaces. Cardiomyogenic differentiation was examined by real-time PCR and immunocytofluorescence. In cardiac ATDPCs, MEF2A and GATA-4 were significantly upregulated at day 14 after stimulation, while subcutaneous ATDPCs only exhibited increased Cx43 expression. In response to electrical stimulation, cardiac ATDPCs elongated, and both cardiac and subcutaneous ATDPCs became aligned following the linear surface pattern of the construct. Cardiac ATDPC length increased by 11.3%, while subcutaneous ATDPC length diminished by 11.2% (p = 0.013 and p = 0.030 vs unstimulated controls, respectively). Compared to controls, electrostimulated cells became aligned better to the patterned surfaces when the pattern was perpendicular to the electric field (89.71 ± 28.47º for cardiac ATDPCs and 92.15 ± 15.21º for subcutaneous ATDPCs). Electrical stimulation of cardiac ATDPCs caused changes in cell phenotype and genetic machinery, making them more suitable for cardiac regeneration approaches. Thus, it seems advisable to use electrical cell training before delivery as a cell suspension or within engineered tissue.

  6. Impaired Peroxisome Proliferator-activated Receptor-γ Contributes to Phenotypic Modulation of Vascular Smooth Muscle Cells during Hypertension*

    Science.gov (United States)

    Zhang, Lili; Xie, Peng; Wang, Jingzhou; Yang, Qingwu; Fang, Chuanqin; Zhou, Shuang; Li, Jingcheng

    2010-01-01

    The phenotypic modulation of vascular smooth muscle cells (VSMCs) plays a pivotal role in hypertension-induced vascular changes including vascular remodeling. The precise mechanisms underlying VSMC phenotypic modulation remain elusive. Here we test the role of peroxisome proliferator-activated receptor (PPAR)-γ in the VSMC phenotypic modulation during hypertension. Both spontaneously hypertensive rat (SHR) aortas and SHR-derived VSMCs exhibited reduced PPAR-γ expression and excessive VSMC phenotypic modulation identified by reduced contractile proteins, α-smooth muscle actin (α-SMA) and smooth muscle 22α (SM22α), and enhanced proliferation and migration. PPAR-γ overexpression rescued the expression of α-SMA and SM22α, and inhibited the proliferation and migration in SHR-derived VSMCs. In contrast, PPAR-γ silencing exerted the opposite effect. Activating PPAR-γ using rosiglitazone in vivo up-regulated aortic α-SMA and SM22α expression and attenuated aortic remodeling in SHRs. Increased activation of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling was observed in SHR-derived VSMCs. PI3K inhibitor LY294002 rescued the impaired expression of contractile proteins, and inhibited proliferation and migration in VSMCs from SHRs, whereas constitutively active PI3K mutant had the opposite effect. Overexpression or silencing of PPAR-γ inhibited or excited PI3K/Akt activity, respectively. LY294002 counteracted the PPAR-γ silencing induced proliferation and migration in SHR-derived VSMCs, whereas active PI3K mutant had the opposite effect. In contrast, reduced proliferation and migration by PPAR-γ overexpression were reversed by the active PI3K mutant, and further inhibited by LY294002. We conclude that PPAR-γ inhibits VSMC phenotypic modulation through inhibiting PI3K/Akt signaling. Impaired PPAR-γ expression is responsible for VSMC phenotypic modulation during hypertension. These findings highlight an attractive therapeutic target for

  7. Mesothelioma tumor cells modulate dendritic cell lipid content, phenotype and function.

    Directory of Open Access Journals (Sweden)

    Joanne K Gardner

    Full Text Available Dendritic cells (DCs play an important role in the generation of anti-cancer immune responses, however there is evidence that DCs in cancer patients are dysfunctional. Lipid accumulation driven by tumor-derived factors has recently been shown to contribute to DC dysfunction in several human cancers, but has not yet been examined in mesothelioma. This study investigated if mesothelioma tumor cells and/or their secreted factors promote increases in DC lipid content and modulate DC function. Human monocyte-derived DCs (MoDCs were exposed to human mesothelioma tumor cells and tumor-derived factors in the presence or absence of lipoproteins. The data showed that immature MoDCs exposed to mesothelioma cells or factors contained increased lipid levels relative to control DCs. Lipid accumulation was associated with reduced antigen processing ability (measured using a DQ OVA assay, upregulation of the co-stimulatory molecule, CD86, and production of the tolerogenic cytokine, IL-10. Increases in DC lipid content were further enhanced by co-exposure to mesothelioma-derived factors and triglyceride-rich lipoproteins, but not low-density lipoproteins. In vivo studies using a murine mesothelioma model showed that the lipid content of tumor-infiltrating CD4+ CD8α- DCs, CD4- CD8α- DCs DCs and plasmacytoid DCs increased with tumor progression. Moreover, increasing tumor burden was associated with reduced proliferation of tumor-antigen-specific CD8+ T cells in tumor-draining lymph nodes. This study shows that mesothelioma promotes DC lipid acquisition, which is associated with altered activation status and reduced capacity to process and present antigens, which may impair the ability of DCs to generate effective anti mesothelioma T cell responses.

  8. Effect of basic fibroblast growth factor on the proliferation, migration and phenotypic modulation of airway smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    ZOU Hui; NIE Xiu-hong; ZHANG Yi; HU Mu; ZHANG Yu Alex

    2008-01-01

    Background Proliferation,cell migration and phenotypic modulation of airway smooth muscle cells(ASMCs)are important features of airway remodelling in asthma.The precise cellular and molecular mechanisms that regulate ASMCs proliferation,migration and phenotypic modulation in the lung remain unknown.Basic fibroblast growth factor(bFGF),a highly specific chemotactic and mitogenic factor for many cell types,appears to be involved in the development of airway remodelling.Our study assessed whether bFGF directly stimulates the proliferation,migration and phenotypic modulation of ASMCs.Methods Confluent and growth arrested human ASMCs were treated with human recombinant FGF.Proliferation was measured by BrdU incorporation and cell counting.Migration was examined using Boyden chamber apparatus.Expressions of smooth muscle(sm)-α-actin and sm-myosin heavy chain(MHC)isoform 1 were determined by RT-PCR and Western blot analysis.Results It was found that hrbFGF(10 ng/ml),when added to ASMCs,induced a significant increase in BrdU uptake and cell number by ASMCS as compared to controls and a significant increase in ASMCs migration with respect to controls.The mRNA and protein expressions of sm-α-actin and sm-MHC in ASMCs that were stimulated with hrbFGF decreased with respect to controls.Conclusion It appears that bFGF can directly stimulate proliferation and migration of ASMCs.however,the expressions of cells'contractive phenotype decreased.

  9. Phenotypic Modulation of Mesenteric Vascular Smooth Muscle Cells from Type 2 Diabetic Rats is Associated with Decreased Caveolin-1 Expression

    Directory of Open Access Journals (Sweden)

    Maria Alicia Carrillo-Sepulveda

    2014-10-01

    Full Text Available Aims: Diabetes-induced vascular complications are associated with vascular smooth muscle cell (VSMC phenotypic modulation, switching from a contractile to a synthetic-proliferative phenotype. Loss of caveolin-1 is involved with proliferation of VSMCs. We tested the hypothesis that mesenteric VSMCs from type 2 diabetic Goto-Kakizaki (GK rat undergo phenotypic modulation and it is linked to decreased caveolin-1 expression. Methods: VSMCs were isolated from mesenteric arteries from GK rats and age-matched control Wistar rats. Western blotting was used to determine expression of target proteins such as caveolin-1, calponin (marker of differentiation, and proliferating cell nuclear antigen (PCNA, marker of proliferation. In addition, we measured intracellular reactive oxygen species (ROS production using H2DCF-DA and activation of extracellular signal-regulated kinase (ERK1/2 by western blotting in VSMCs from GK stimulated with lipopolysaccharide (LPS, an endotoxin upregulated in diabetes. Results: Mesenteric VSMCs from diabetic GK rats exhibited decreased caveolin-1 and calponin expression and increased PCNA expression compared to control. Increased levels of ROS and phospho-ERK1/2 expression were also found in GK VSMCs. LPS augmented ROS and phosphorylated ERK1/2 levels to a greater extent in GK VSMCs than in control. Likewise, high glucose decreased caveolin-1 and calponin expression, increased PCNA expression and augmented ROS production in control mesenteric VSMCs. Conclusion: These results suggest that mesenteric VSMCs from diabetic GK rats undergo phenotypic modulation and it is associated with decreased caveolin-1 expression. These alterations may be due to enhanced inflammatory stimuli and glucose levels present in diabetic milieu.

  10. The mannose receptor LY75 (DEC205/CD205) modulates cellular phenotype and metastatic potential of ovarian cancer cells.

    Science.gov (United States)

    Faddaoui, Adnen; Bachvarova, Magdalena; Plante, Marie; Gregoire, Jean; Renaud, Marie-Claude; Sebastianelli, Alexandra; Gobeil, Stephane; Morin, Chantale; Macdonald, Elizabeth; Vanderhyden, Barbara; Bachvarov, Dimcho

    2016-03-22

    The molecular basis of epithelial ovarian cancer (EOC) dissemination is still poorly understood. Previously, we identified the mannose receptor LY75 gene as hypomethylated in high-grade (HG) serous EOC tumors, compared to normal ovarian tissues. LY75 represents endocytic receptor expressed on dendritic cells and so far, has been primarily studied for its role in antigen processing and presentation. Here we demonstrate that LY75 is overexpressed in advanced EOC and that LY75 suppression induces mesenchymal-to-epithelial transition (MET) in EOC cell lines with mesenchymal morphology (SKOV3 and TOV112), accompanied by reduction of their migratory and invasive capacity in vitro and enhanced tumor cell colonization and metastatic growth in vivo. LY75 knockdown in SKOV3 cells also resulted in predominant upregulation of functional pathways implicated in cell proliferation and metabolism, while pathways associated with cell signaling and adhesion, complement activation and immune response were mostly suppressed. Moreover, LY75 suppression had an opposite effect on EOC cell lines with epithelial phenotype (A2780s and OV2008), by directing epithelial-to-mesenchymal transition (EMT) associated with reduced capacity for in vivo EOC cell colonization, as similar/identical signaling pathways were reversely regulated, when compared to mesenchymal LY75 knockdown EOC cells.To our knowledge, this is the first report of a gene displaying such pleiotropic effects in sustaining the cellular phenotype of EOC cells and points to novel functions of this receptor in modulating EOC dissemination. Our data also support previous findings regarding the superior capacity of epithelial cancer cells in metastatic colonization of distant sites, compared to cancer cells with mesenchymal-like morphology. PMID:26871602

  11. The mannose receptor LY75 (DEC205/CD205) modulates cellular phenotype and metastatic potential of ovarian cancer cells.

    Science.gov (United States)

    Faddaoui, Adnen; Bachvarova, Magdalena; Plante, Marie; Gregoire, Jean; Renaud, Marie-Claude; Sebastianelli, Alexandra; Gobeil, Stephane; Morin, Chantale; Macdonald, Elizabeth; Vanderhyden, Barbara; Bachvarov, Dimcho

    2016-03-22

    The molecular basis of epithelial ovarian cancer (EOC) dissemination is still poorly understood. Previously, we identified the mannose receptor LY75 gene as hypomethylated in high-grade (HG) serous EOC tumors, compared to normal ovarian tissues. LY75 represents endocytic receptor expressed on dendritic cells and so far, has been primarily studied for its role in antigen processing and presentation. Here we demonstrate that LY75 is overexpressed in advanced EOC and that LY75 suppression induces mesenchymal-to-epithelial transition (MET) in EOC cell lines with mesenchymal morphology (SKOV3 and TOV112), accompanied by reduction of their migratory and invasive capacity in vitro and enhanced tumor cell colonization and metastatic growth in vivo. LY75 knockdown in SKOV3 cells also resulted in predominant upregulation of functional pathways implicated in cell proliferation and metabolism, while pathways associated with cell signaling and adhesion, complement activation and immune response were mostly suppressed. Moreover, LY75 suppression had an opposite effect on EOC cell lines with epithelial phenotype (A2780s and OV2008), by directing epithelial-to-mesenchymal transition (EMT) associated with reduced capacity for in vivo EOC cell colonization, as similar/identical signaling pathways were reversely regulated, when compared to mesenchymal LY75 knockdown EOC cells.To our knowledge, this is the first report of a gene displaying such pleiotropic effects in sustaining the cellular phenotype of EOC cells and points to novel functions of this receptor in modulating EOC dissemination. Our data also support previous findings regarding the superior capacity of epithelial cancer cells in metastatic colonization of distant sites, compared to cancer cells with mesenchymal-like morphology.

  12. Immuohistochemical study on smooth muscle cell proliferation, phenotypic modulation, and extracellular matrix accumulation in venous arterial grafts in rabbits

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-da; ZHU Hai-long

    2002-01-01

    Objective: To study the kinetics and distribution of smooth muscle cell (SMC) proliferation, phenotypic modulation, and various extracellular matrix (ECM) components accumulation during vein graft remodeling. Methods: Normal vein and vein graft in carotid arteries were examined on d 4, d 7, d 14, d 60 and d180 after bypass grafting with immunohistochemical markers of cellular proliferation (proliferating cell nuclear antigen, PCNA), cytoskeletal protein production (α-actin SMC), myosin heavy chain (MHC) isoforms, ECM proteins, and histochemistry (hematoxylin eosin and Elastica-van Gieson stain). Results: Normal veins demonstrated an extremely low level of cellular proliferation and expressed as adult phenotype SMCs in media. After bypass grafting, medial SMCs in the graft appeared to be damaged and began to proliferate on d 4, and subsequently migrated and formed the neointima on d 7. Thereafter, the neointima thickened throughout the 180-day period of the experiment, although the neointimal SMC proliferation decreased after d 14. Meanwhile SMCs underwent a distinct phenotypic change from normal adult type to embryonic type.On d 60, embryonic phenotype SMCs began to return to the adult phenotype, but remain to be present in the neointima for as long as 180 d. ECM components including type Ⅰ collagen, heparin sulfate proteoglucan (HSPG), and dermatan sulfate proteoglcan (decorin) were detected within the neointima on d 7. Thereafter,the accumulation of ECM increased progressively with time. On d 180, a large amount of ECM components were found in the neointima. HSPG mainly accumulated in the superficial and cellular region of the neointima, decorin, on other hand, located in hypocellular area deep in neointima. Type Ⅰ collagen scatted in both regions. The elastic fibers became rich and arranged continuously in the neointima. Conclusion.. The neointima of vein graft was initially formed by proliferation of the embryonic-type SMCs and then thickened infinitely

  13. Phenotypic modulation of chronic lymphocytic leukemia cells by phorbol ester: induction of IgM secretion and changes in the expression of B cell-associated surface antigens.

    Science.gov (United States)

    Gordon, J; Mellstedt, H; Aman, P; Biberfeld, P; Klein, G

    1984-01-01

    Freshly explanted neoplastic populations from 22 cases of phenotypically well-characterized chronic type B lymphocytic leukemia were studied for their capacity to respond to the phorbol ester TPA in vitro. In all but four cases the secretion of IgM was either induced or increased, often to a high level. In contrast, the export of free immunoglobulin (Ig) light chains, an almost consistent feature of the B lymphocytic leukemias, remained relatively constant after TPA treatment. Parallel changes in leukemic cell surface phenotype were probed with both "conventional" and monoclonal antibodies, revealing some modulation of markers in every case investigated. A diminution in the level of surface Ig (preferentially IgD) and the accumulation of cytoplasmic Ig observed after phorbol ester treatment were accompanied by a corresponding reduction or loss of the B1 antigen and usually of B2 when present. The most consistent change induced by TPA was the appearance of BB-1, a marker of activated B lymphocytes, which was rarely expressed on fresh leukemic cells. Another marker of activated lymphocytes, LB-1, was also often induced or increased in its expression after exposure of the cells to TPA. The magnitude of the TPA response appeared to relate to the stage of maturation arrest of the individual leukemic clones rather than to any clinical parameter explored. The significance of the findings to normal B cell differentiation and their potential clinical utility are discussed.

  14. Oral squamous cell carcinoma proliferative phenotype is modulated by proanthocyanidins: a potential prevention and treatment alternative for oral cancer

    Directory of Open Access Journals (Sweden)

    Swapp Aaron

    2007-06-01

    Full Text Available Abstract Background Despite the recently reported drop in the overall death rate from cancer, the estimated survival rate and number of deaths from oral cancer remain virtually unchanged. Early detection efforts, in combination with strategies for prevention and risk-reduction, have the potential to dramatically improve clinical outcomes. The identification of non-toxic, effective treatments, including complementary and alternative therapies, is critical if the survival rate is to be improved. Epidemiologic studies have suggested a protective effect from certain plant-derived foods and extracts; however, it has been difficult to isolate and identify the compounds most responsible for these observations. The primary purpose of this study was to investigate the response of human oral squamous cell carcinoma (OSCC to proanthocyanidin (PAC, a plant-derived compound that may inhibit the progression of several other cancers. Methods Using a series of in vitro assays, we sought to quantify the effects of PAC on OSCC, cervical carcinoma, and non-cancerous cell lines, specifically the effects of PAC on cell proliferation. Recent data suggest that infection with the human papillomavirus (HPV may also modulate the proliferative potential of OSCC; therefore, we also measured the effects of PAC administration on HPV-transfected OSCC proliferation. Results Our results demonstrated that PAC administration was sufficient to significantly suppress cellular proliferation of OSCC in a dose-dependent manner. In addition, the increased proliferation of OSCC after transfection with HPV 16 was reduced by the administration of PAC, as was the proliferation of the cervical cancer and non-cancerous cell lines tested. Our results also provide preliminary evidence that PAC administration may induce apoptosis in cervical and oral cancer cell lines, while acting merely to suppress proliferation of the normal cell line control. Conclusion These results signify that PAC may be

  15. Multidrug resistance modulators PSC 833 and CsA show differential capacity to induce apoptosis in lymphoid leukemia cell lines independently of their MDR phenotype.

    Science.gov (United States)

    Lopes, Eloisi C; Garcia, Mariana; Benavides, Fernando; Shen, Jianjun; Conti, Claudio J; Alvarez, Elida; Hajos, Silvia E

    2003-05-01

    Among the mechanisms that induce multidrug resistance (MDR), one of those most frequent is over-expression of a phosphoglycoprotein (Pgp) encoded in the mouse by the mdr-1 and mdr-3 genes. We have demonstrated that cyclosporin-A (CsA) as well as its analogue PSC 833 were able to revert the MDR phenotype in murine cell lines resistant to vincristine (LBR-V160) or doxorubicin (LBR-D160). The aim of this work was to evaluate the ability of PSC 833 and CsA to modulate mdr-1, mdr-3 and mrp-1 genes as well as to induce apoptosis analyzing the mechanism involved in the above tumor cell lines. By semi-quantitative RT-PCR, we demonstrated that mdr-3 was over-expressed in both resistant lines while mdr-1 was over-expressed only in LBR-V160; in contrast, mrp-1 expression was not evidenced in any of the cell lines. After treatment with 0.1 microg ml(-1) of either PSC 833 or CsA, LBR-V160 showed no changes in mdr-1 but decreased mdr-3 expression, while LBR-D160 failed to display any modification in the expression of these genes. Apoptosis was evidenced by fluorescence microscopy, S minuscule accumulation and agarose gel electrophoresis. Our results demonstrated that CsA (1 microg ml(-1)) was able to induce apoptosis in all cell lines: 18.31% (+/-4.46) for LBR-, 25.96% (+/-5.24) for LBR-V160 and 27.36% (+/-4.12) for LBR-D160, while PSC 833 (1 microg ml(-1)) only induced apoptosis 21.51% (+/-5.73) in LBR-V160 cell line. The expression of Bcl-2 family proteins (Bcl-2, Bax and Bcl-x(L)) was analyzed by flow cytometry showing high expression of the three proteins which was not significantly modified after treatment with either PSC 833 or CsA on the sensitive as well as on the resistant cell lines. Single stranded conformation polymorphisms analysis of p53 (Trp53) gene in the cell lines showed no mutation in exons 5-8 of the tumor suppressor gene. We conclude that depending on the concentration used, PSC 833 and CsA may act either by modulating the mdr-3 gene (0.1 microg ml(-1)) or

  16. The number of responding CD4 T cells and the dose of antigen conjointly determine the TH1/TH2 phenotype by modulating B7/CD28 interactions.

    Science.gov (United States)

    Rudulier, Christopher D; McKinstry, K Kai; Al-Yassin, Ghassan A; Kroeger, David R; Bretscher, Peter A

    2014-06-01

    Our previous in vivo studies show that both the amount of Ag and the number of available naive CD4 T cells affect the Th1/Th2 phenotype of the effector CD4 T cells generated. We examined how the number of OVA-specific CD4 TCR transgenic T cells affects the Th1/Th2 phenotype of anti-SRBC CD4 T cells generated in vivo upon immunization with different amounts of OVA-SRBC. Our observations show that a greater number of Ag-dependent CD4 T cell interactions are required to generate Th2 than Th1 cells. We established an in vitro system that recapitulates our main in vivo findings to more readily analyze the underlying mechanism. The in vitro generation of Th2 cells depends, as in vivo, upon both the number of responding CD4 T cells and the amount of Ag. We demonstrate, using agonostic/antagonistic Abs to various costimulatory molecules or their receptors, that the greater number of CD4 T cell interactions, required to generate Th2 over Th1 cells, does not involve CD40, OX40, or ICOS costimulation, but does involve B7/CD28 interactions. A comparison of the level of expression of B7 molecules by APC and CD4 T cells, under different conditions resulting in the substantial generation of Th1 and Th2 cells, leads us to propose that the critical CD28/B7 interactions, required to generate Th2 cells, may directly occur between CD4 T cells engaged with the same B cell acting as an APC.

  17. Depolarization Alters Phenotype, Maintains Plasticity of Predifferentiated Mesenchymal Stem Cells

    OpenAIRE

    Sundelacruz, Sarah; Levin, Michael; Kaplan, David L

    2013-01-01

    Although adult stem cell transplantation has been implemented as a therapy for tissue repair, it is limited by the availability of functional adult stem cells. A potential approach to generate stem and progenitor cells may be to modulate the differentiated status of somatic cells. Therefore, there is a need for a better understanding of how the differentiated phenotype of mature cells is regulated. We hypothesize that bioelectric signaling plays an important role in the maintenance of the dif...

  18. Ubiquitous Over-Expression of Chromatin Remodeling Factor SRG3 Ameliorates the T Cell-Mediated Exacerbation of EAE by Modulating the Phenotypes of both Dendritic Cells and Macrophages.

    Directory of Open Access Journals (Sweden)

    Sung Won Lee

    Full Text Available Although SWI3-related gene (SRG3, a chromatin remodeling factor, is critical for various biological processes including early embryogenesis and thymocyte development, it is unclear whether SRG3 is involved in the differentiation of CD4+ T cells, the key mediator of adaptive immune responses. Because it is known that experimental autoimmune encephalomyelitis (EAE development is determined by the activation of CD4+ T helper cells, here, we investigated the role of SRG3 in EAE development using SRG3 transgenic mouse models exhibiting two distinct SRG3 expression patterns: SRG3 expression driven by either the CD2 or β-actin promoter. We found that the outcome of EAE development was completely different depending on the expression pattern of SRG3. The specific over-expression of SRG3 using the CD2 promoter facilitated EAE via the induction of Th1 and Th17 cells, whereas the ubiquitous over-expression of SRG3 using the β-actin promoter inhibited EAE by promoting Th2 differentiation and suppressing Th1 and Th17 differentiation. In addition, the ubiquitous over-expression of SRG3 polarized CD4+ T cell differentiation towards the Th2 phenotype by converting dendritic cells (DCs or macrophages to Th2 types. SRG3 over-expression not only reduced pro-inflammatory cytokine production by DCs but also shifted macrophages from the inducible nitric oxide synthase (iNOS-expressing M1 phenotype to the arginase-1-expressing M2 phenotype during EAE. In addition, Th2 differentiation in β-actin-SRG3 Tg mice during EAE was associated with an increase in the basophil and mast cell populations and in IL4 production. Furthermore, the increased frequency of Treg cells in the spinal cord of β-actin-SRG3 Tg mice might induce the suppression of and accelerate the recovery from EAE symptoms. Taken together, our results provide the first evidence supporting the development of a new therapeutic strategy for EAE involving the modulation of SRG3 expression to induce M2 and Th2

  19. Ubiquitous Over-Expression of Chromatin Remodeling Factor SRG3 Ameliorates the T Cell-Mediated Exacerbation of EAE by Modulating the Phenotypes of both Dendritic Cells and Macrophages.

    Science.gov (United States)

    Lee, Sung Won; Park, Hyun Jung; Jeon, Sung Ho; Lee, Changjin; Seong, Rho Hyun; Park, Se-Ho; Hong, Seokmann

    2015-01-01

    Although SWI3-related gene (SRG3), a chromatin remodeling factor, is critical for various biological processes including early embryogenesis and thymocyte development, it is unclear whether SRG3 is involved in the differentiation of CD4+ T cells, the key mediator of adaptive immune responses. Because it is known that experimental autoimmune encephalomyelitis (EAE) development is determined by the activation of CD4+ T helper cells, here, we investigated the role of SRG3 in EAE development using SRG3 transgenic mouse models exhibiting two distinct SRG3 expression patterns: SRG3 expression driven by either the CD2 or β-actin promoter. We found that the outcome of EAE development was completely different depending on the expression pattern of SRG3. The specific over-expression of SRG3 using the CD2 promoter facilitated EAE via the induction of Th1 and Th17 cells, whereas the ubiquitous over-expression of SRG3 using the β-actin promoter inhibited EAE by promoting Th2 differentiation and suppressing Th1 and Th17 differentiation. In addition, the ubiquitous over-expression of SRG3 polarized CD4+ T cell differentiation towards the Th2 phenotype by converting dendritic cells (DCs) or macrophages to Th2 types. SRG3 over-expression not only reduced pro-inflammatory cytokine production by DCs but also shifted macrophages from the inducible nitric oxide synthase (iNOS)-expressing M1 phenotype to the arginase-1-expressing M2 phenotype during EAE. In addition, Th2 differentiation in β-actin-SRG3 Tg mice during EAE was associated with an increase in the basophil and mast cell populations and in IL4 production. Furthermore, the increased frequency of Treg cells in the spinal cord of β-actin-SRG3 Tg mice might induce the suppression of and accelerate the recovery from EAE symptoms. Taken together, our results provide the first evidence supporting the development of a new therapeutic strategy for EAE involving the modulation of SRG3 expression to induce M2 and Th2 polarization

  20. Phenotype modulation of airway smooth muscle in asthma

    NARCIS (Netherlands)

    Wright, David B.; Trian, Thomas; Siddiqui, Sana; Pascoe, Chris D.; Johnson, Jill R.; Dekkers, Bart G. J.; Dakshinamurti, Shyamala; Bagchi, Rushita; Burgess, Janette K.; Kanabar, Varsha; Ojo, Oluwaseun O.

    2013-01-01

    The biological responses of airway smooth muscle (ASM) are diverse, in part due to ASM phenotype plasticity. ASM phenotype plasticity refers to the ability of ASM cells to change the degree of a variety of functions, including contractility, proliferation, migration and secretion of inflammatory med

  1. The combination of ANT2 shRNA and hNIS radioiodine gene therapy increases CTL cytotoxic activity through the phenotypic modulation of cancer cells: combination treatment with ANT2 shRNA and I-131

    International Nuclear Information System (INIS)

    It is important to simultaneously induce strong cell death and antitumor immunity in cancer patients for successful cancer treatment. Here, we investigated the cytotoxic and phenotypic modulation effects of the combination of ANT2 shRNA and human sodium iodide symporter (hNIS) radioiodine gene therapy in vitro and in vivo and visualized the antitumor effects in an immunocompromised mouse colon cancer model. A mouse colon cancer cell line co-expressing hNIS and the luciferase gene (CT26/hNIS-Fluc, named CT26/NF) was established. CT26/NF cells and tumor-bearing mice were treated with HBSS, scramble, ANT2 shRNA, I-131, and ANT2 shRNA + I-131. The apoptotic rates (%) and MHC class I and Fas gene expression levels were determined in treated CT26/NF cells using flow cytometry. Concurrently, the level of caspase-3 activation was determined in treated cells in vitro. For in vivo therapy, tumor-bearing mice were treated with scramble, ANT2 shRNA, I-131, and the combination therapy, and the anti-tumor effects were monitored using bioluminescence. The killing activity of cytotoxic T cells (CTLs) was measured with a lactate dehydrogenase (LDH) assay. For the in vitro experiments, the combination of ANT2 shRNA and I-131 resulted in a higher apoptotic cell death rate compared with ANT2 shRNA or I-131 alone, and the levels of MHC class I and Fas-expressing cancer cells were highest in the cells receiving combination treatment, while single treatment modestly increased the level of MHC class I and Fas gene expression. The combination of ANT2 shRNA and I-131 resulted in a higher caspase-3 activation than single treatments. Interestingly, in vivo combination treatment led to increased gene expression of MHC class I and Fas than the respective mono-therapies; furthermore, bioluminescence showed increased antitumor effects after combination treatment than monotherapies. The LDH assay revealed that the CTL killing activity against CT26/NF cells was most effective after combination

  2. Effects of tetrandrine on phenotypic modulation of vascular smooth muscle cells and expression of p38 MAPK as well as MKP-1 after intimal injury of rabbit carotid arteries

    Institute of Scientific and Technical Information of China (English)

    Xinping Zhang; Lihong Xiang; Yibai Feng; Yongzhi Deng; Zhuolin Fu; Chunzhi Shi; Xiang Gu

    2006-01-01

    Objective: To study the effects of tetrandrine (Tet) on phenotypic modulation of vascular smooth muscle cells (VSMCs) and expression of p38 mitogen-activated protein kinase (p38MAPK) as well as mitogen-activated protein kinase phosphatase-1(MKP-1) after vascular intimal injury. Methods: HE staining was used to analyze vascular morphology of sham-injured group, injured group and Tet-treated group at day 28. Immunohistochemistry, Western blot and RT-PCR were respectively used to detect the expression change of smooth muscle α-actin (SMα-actin), proliferation cell nuclear antigen (PCNA), p38MAPK and MKP-1 of injured group and Tet neointimal area was significantly increased and the lumen area notably decreased in injured group at day 28. The neointimal proliferation in Tet treated group was less than that in injured group, and the lumen area of Tet group was significantly increased than that of injured group was no difference, and the neointimal proliferation condition was also basically as same as injured group at day 7 after injury. The expression of PCNA and p38MAKP in Tet group was obviously lower than that in injured group, and the expression of MKP-1 in Tet group was obviously higher than that in injured group at days 14 and 28 after injury. The expression of SMa-actin in Tet group was slightly higher than that in injured group at days 14 and 28 after injury. Conclusions: Tet could reduce neointimal proliferation by inhibiting VSMCs phenotypic modulation and p38MAPK signaling transduction pathway as well as its down regulation.

  3. Radiofrequency treatment alters cancer cell phenotype

    Science.gov (United States)

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-07-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.

  4. Innate lymphocyte cells in asthma phenotypes

    OpenAIRE

    Ozyigit, Leyla Pur; MORITA, Hideaki; Akdis, Mubeccel

    2015-01-01

    T helper type 2 (TH2) cells were previously thought to be the main initiating effector cell type in asthma; however, exaggerated TH2 cell activities alone were insufficient to explain all aspects of asthma. Asthma is a heterogeneous syndrome comprising different phenotypes that are characterized by their different clinical features, treatment responses, and inflammation patterns. The most-studied subgroups of asthma include TH2-associated early-onset allergic asthma, late-onset persistent eos...

  5. Solar cell module. Taiyo denchi module

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Akihiko.

    1990-01-24

    This invention concerns a module frame of solar cell and a solar cell module using this frame. In particular, it concerns a frame and a module useful for the CdS/CdTe or CdS/CuInSe {sub 2} based cell. In the existing solar cell module, sealant is packed in between the edges of a glass substrate, a resin layer and a back protective thin film, etc. and a grooved frame of U-shaped section. For the sealant, silicon based resin and butyl rubber based resin are used many times, but either resin has defects such as their overflow from the module structure. In order to solve these defects, this invention proposes to provide stair-shaped protrusions along the four sides of the bottom of the box frame (herein after called the lower frame) of the module and at the same time, provide a groove for pooling the sealant at the portion where such protrusion meets the side wall, furthermore to provide depressions for pooling the sealant at the upper edge inside the side wall of the lower frame or to punch holes at the corners of the bottom of the lower frame. 9 figs.

  6. Docosahexaenoic Acid Modulates a HER2-Associated Lipogenic Phenotype, Induces Apoptosis, and Increases Trastuzumab Action in HER2-Overexpressing Breast Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Graziela Rosa Ravacci

    2015-01-01

    Full Text Available In breast cancer, lipid metabolic alterations have been recognized as potential oncogenic stimuli that may promote malignancy. To investigate whether the oncogenic nature of lipogenesis closely depends on the overexpression of HER2 protooncogene, the normal breast cell line, HB4a, was transfected with HER2 cDNA to obtain HER2-overexpressing HB4aC5.2 cells. Both cell lines were treated with trastuzumab and docosahexaenoic acid. HER2 overexpression was accompanied by an increase in the expression of lipogenic genes involved in uptake (CD36, transport (FABP4, and storage (DGAT of exogenous fatty acids (FA, as well as increased activation of “de novo” FA synthesis (FASN. We further investigate whether this lipogenesis reprogramming might be regulated by mTOR/PPARγ pathway. Inhibition of the mTORC1 pathway markers, p70S6 K1, SREBP1, and LIPIN1, as well as an increase in DEPTOR expression (the main inhibitor of the mTOR was detected in HB4aC5.2. Based on these results, a PPARγ selective antagonist, GW9662, was used to treat both cells lines, and the lipogenic genes remained overexpressed in the HB4aC5.2 but not HB4a cells. DHA treatment inhibited all lipogenic genes (except for FABP4 in both cell lines yet only induced death in the HB4aC5.2 cells, mainly when associated with trastuzumab. Neither trastuzumab nor GW9662 alone was able to induce cell death. In conclusion, oncogenic transformation of breast cells by HER2 overexpression may require a reprogramming of lipogenic genetic that is independent of mTORC1 pathway and PPARγ activity. This reprogramming was inhibited by DHA.

  7. Giardia duodenalis arginine deiminase modulates the phenotype and cytokine secretion of human dendritic cells by depletion of arginine and formation of ammonia.

    Science.gov (United States)

    Banik, Stefanie; Renner Viveros, Pablo; Seeber, Frank; Klotz, Christian; Ignatius, Ralf; Aebischer, Toni

    2013-07-01

    Depletion of arginine is a recognized strategy that pathogens use to evade immune effector mechanisms. Depletion depends on microbial enzymes such as arginases, which are considered virulence factors. The effect is mostly interpreted as being a consequence of successful competition with host enzymes for the substrate. However, both arginases and arginine deiminases (ADI) have been associated with pathogen virulence. Both deplete arginine, but their reaction products differ. An ADI has been implicated in the virulence of Giardia duodenalis, an intestinal parasite that infects humans and animals, causing significant morbidity. Dendritic cells (DC) play a critical role in host defense and also in a murine G. duodenalis infection model. The functional properties of these innate immune cells depend on the milieu in which they are activated. Here, the dependence of the response of these cells on arginine was studied by using Giardia ADI and lipopolysaccharide-stimulated human monocyte-derived DC. Arginine depletion by ADI significantly increased tumor necrosis factor alpha and decreased interleukin-10 (IL-10) and IL-12p40 secretion. It also reduced the upregulation of surface CD83 and CD86 molecules, which are involved in cell-cell interactions. Arginine depletion also reduced the phosphorylation of S6 kinase in DC, suggesting the involvement of the mammalian target of rapamycin signaling pathway. The changes were due to arginine depletion and the formation of reaction products, in particular, ammonium ions. Comparison of NH(4)(+) and urea revealed distinct immunomodulatory activities of these products of deiminases and arginases, respectively. The data suggest that a better understanding of the role of arginine-depleting pathogen enzymes for immune evasion will have to take enzyme class and reaction products into consideration.

  8. Giardia duodenalis Arginine Deiminase Modulates the Phenotype and Cytokine Secretion of Human Dendritic Cells by Depletion of Arginine and Formation of Ammonia

    Science.gov (United States)

    Banik, Stefanie; Renner Viveros, Pablo; Seeber, Frank; Klotz, Christian; Ignatius, Ralf

    2013-01-01

    Depletion of arginine is a recognized strategy that pathogens use to evade immune effector mechanisms. Depletion depends on microbial enzymes such as arginases, which are considered virulence factors. The effect is mostly interpreted as being a consequence of successful competition with host enzymes for the substrate. However, both arginases and arginine deiminases (ADI) have been associated with pathogen virulence. Both deplete arginine, but their reaction products differ. An ADI has been implicated in the virulence of Giardia duodenalis, an intestinal parasite that infects humans and animals, causing significant morbidity. Dendritic cells (DC) play a critical role in host defense and also in a murine G. duodenalis infection model. The functional properties of these innate immune cells depend on the milieu in which they are activated. Here, the dependence of the response of these cells on arginine was studied by using Giardia ADI and lipopolysaccharide-stimulated human monocyte-derived DC. Arginine depletion by ADI significantly increased tumor necrosis factor alpha and decreased interleukin-10 (IL-10) and IL-12p40 secretion. It also reduced the upregulation of surface CD83 and CD86 molecules, which are involved in cell-cell interactions. Arginine depletion also reduced the phosphorylation of S6 kinase in DC, suggesting the involvement of the mammalian target of rapamycin signaling pathway. The changes were due to arginine depletion and the formation of reaction products, in particular, ammonium ions. Comparison of NH4+ and urea revealed distinct immunomodulatory activities of these products of deiminases and arginases, respectively. The data suggest that a better understanding of the role of arginine-depleting pathogen enzymes for immune evasion will have to take enzyme class and reaction products into consideration. PMID:23589577

  9. Expression QTL modules as functional components underlying higher-order phenotypes.

    Directory of Open Access Journals (Sweden)

    Lei Bao

    Full Text Available Systems genetics studies often involve the mapping of numerous regulatory relations between genetic loci and expression traits. These regulatory relations form a bipartite network consisting of genetic loci and expression phenotypes. Modular network organizations may arise from the pleiotropic and polygenic regulation of gene expression. Here we analyzed the expression QTL (eQTL networks derived from expression genetic data of yeast and mouse liver and found 65 and 98 modules respectively. Computer simulation result showed that such modules rarely occurred in randomized networks with the same number of nodes and edges and same degree distribution. We also found significant within-module functional coherence. The analysis of genetic overlaps and the evidences from biomedical literature have linked some eQTL modules to physiological phenotypes. Functional coherence within the eQTL modules and genetic overlaps between the modules and physiological phenotypes suggests that eQTL modules may act as functional units underlying the higher-order phenotypes.

  10. Calcitriol analog ZK191784 ameliorates acute and chronic dextran sodium sulfate-induced colitis by modulation of intestinal dendritic cell numbers and phenotype

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the effects of ZK1916784, a low calcemic analog of calcitriol on intestinal inflammation.METHODS: Acute and chronic colitis was induced by dextran sodium sulfate (DSS) according to standard procedures. Mice were treated intraperitoneally with ZK1916784 or placebo and colonic inflammation was evaluated. Cytokine production by mesenterial lymph node (MLN) cells was measured by ELISA.Immunohistochemistry was performed to detect intestinal dendritic cells (DCs) within the colonic tissue,and the effect of the calcitriol analog on DCs was investigated.RESULTS: Treatment with ZK191784 resulted in significant amelioration of disease with a reduced histological score in acute and chronic intestinal inflammation. In animals with acute DSS colitis, down-regulation of colonic inflammation was associated with a dramatic reduction in the secretion of the proinflammatory cytokine interferon (IFN)-γ and a significant increase in intereleukin (IL)-10 by MLN cells.Similarly, in chronic colitis, IL-10 expression in colonic tissue increased 1.4-fold when mice were treated with ZK191784, whereas expression of the Th1-specific transcription factor T-beta decreased by 81.6%. Lower numbers of infiltrating activated CD11c+ DCs were found in the colon in ZK191784-treated mice with acute DSS colitis, and secretion of proinflammatory cytokines by primary mucosal DCs was inhibited in the presence of the calcitriol analog.CONCLUSION: The calcitriol analog ZK191784 demonstrated significant anti-inflammatory properties in experimental colitis that were at least partially mediated by the immunosuppressive effects of the derivate on mucosal DCs.

  11. Modulation of cardiac myocyte phenotype in vitro by the composition and orientation of the extracellular matrix.

    Science.gov (United States)

    Simpson, D G; Terracio, L; Terracio, M; Price, R L; Turner, D C; Borg, T K

    1994-10-01

    Cellular phenotype is the result of a dynamic interaction between a cell's intrinsic genetic program and the morphogenetic signals that serve to modulate the extent to which that program is expressed. In the present study we have examined how morphogenetic information might be stored in the extracellular matrix (ECM) and communicated to the neonatal heart cell (NHC) by the cardiac alpha 1 beta 1 integrin molecule. A thin film of type I collagen (T1C) was prepared with a defined orientation. This was achieved by applying T1C to the peripheral edge of a 100 mm culture dish. The T1C was then drawn across the surface of the dish in a continuous stroke with a sterile cell scraper and allowed to polymerize. When NHCs were cultured on this substrate, they spread, as a population, along a common axis in parallel with the gel lattice and expressed an in vivo-like phenotype. Individual NHCs displayed an elongated, rod-like shape and disclosed parallel arrays of myofibrils. These phenotypic characteristics were maintained for at least 4 weeks in primary culture. The evolution of this tissue-like organizational pattern was dependent upon specific interactions between the NHCs and the collagen-based matrix that were mediated by the cardiac alpha 1 beta 1 integrin complex. This conclusion was supported by a variety of experimental results. Altering the tertiary structure of the matrix or blocking the extracellular domains of either the cardiac alpha 1 or beta 1 integrin chain inhibited the expression of the tissue-like pattern of organization. Neither cell-to-cell contact or contractile function were necessary to induce the formation of the rod-like cell shape. However, beating activity was necessary for the assembly of a well-differentiated myofibrillar apparatus. These data suggest that the cardiac alpha 1 beta 1 integrin complex serves to detect and transduce phenotypic information stored within the tertiary structure of the surrounding matrix.

  12. Phenotype heterogeneity in cancer cell populations

    Science.gov (United States)

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel

    2016-06-01

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as "bet hedging" of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  13. DENSE: efficient and prior knowledge-driven discovery of phenotype-associated protein functional modules

    Directory of Open Access Journals (Sweden)

    Hendrix Willam

    2011-10-01

    Full Text Available Abstract Background Identifying cellular subsystems that are involved in the expression of a target phenotype has been a very active research area for the past several years. In this paper, cellular subsystem refers to a group of genes (or proteins that interact and carry out a common function in the cell. Most studies identify genes associated with a phenotype on the basis of some statistical bias, others have extended these statistical methods to analyze functional modules and biological pathways for phenotype-relatedness. However, a biologist might often have a specific question in mind while performing such analysis and most of the resulting subsystems obtained by the existing methods might be largely irrelevant to the question in hand. Arguably, it would be valuable to incorporate biologist's knowledge about the phenotype into the algorithm. This way, it is anticipated that the resulting subsytems would not only be related to the target phenotype but also contain information that the biologist is likely to be interested in. Results In this paper we introduce a fast and theoretically guranteed method called DENSE (Dense and ENriched Subgraph Enumeration that can take in as input a biologist's prior knowledge as a set of query proteins and identify all the dense functional modules in a biological network that contain some part of the query vertices. The density (in terms of the number of network egdes and the enrichment (the number of query proteins in the resulting functional module can be manipulated via two parameters γ and μ, respectively. Conclusion This algorithm has been applied to the protein functional association network of Clostridium acetobutylicum ATCC 824, a hydrogen producing, acid-tolerant organism. The algorithm was able to verify relationships known to exist in literature and also some previously unknown relationships including those with regulatory and signaling functions. Additionally, we were also able to hypothesize

  14. Solar cell module. Taiyo denchi module

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Akihiko; Matsumoto, Hitoshi; Komatsu, Yasumitsu; Shirai, Sadaharu.

    1989-09-29

    In the solar cell module of this invention, such junctions as CdS/CdTe or CdS/CuInSe {sub 2} are contained as a photoelectromotive force part coexists with air in a closed space which consists of glass, metal parts and a bonding resin layer; the photoelectromotive force part is coated either with a fluorine resin or a silicone resin. The fluorine resin contains a fundamental skeleton of an alternative copolymer of fluoroolefin and a hydrocarbon-based vinyl monomer; the silicone resin has three types, i.e., addition-reacted, condensated or UV-curing type, and the released oxygen is sealed in the closed space. The resin layer which adheres the glass and the metal plate is a thermoplastic resin which is polyethylene modified by copolymerization of acid anhydride. By this, the reliability of the solar cell module was enhanced. 3 figs.

  15. Fibronectin matrix polymerization regulates smooth muscle cell phenotype through a Rac1 dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Feng Shi

    Full Text Available Smooth muscle cells are maintained in a differentiated state in the vessel wall, but can be modulated to a synthetic phenotype following injury. Smooth muscle phenotypic modulation is thought to play an important role in the pathology of vascular occlusive diseases. Phenotypically modulated smooth muscle cells exhibit increased proliferative and migratory properties that accompany the downregulation of smooth muscle cell marker proteins. Extracellular matrix proteins, including fibronectin, can regulate the smooth muscle phenotype when used as adhesive substrates. However, cells produce and organize a 3-dimensional fibrillar extracellular matrix, which can affect cell behavior in distinct ways from the protomeric 2-dimensional matrix proteins that are used as adhesive substrates. We previously showed that the deposition/polymerization of fibronectin into the extracellular matrix can regulate the deposition and organization of other extracellular matrix molecules in vitro. Further, our published data show that the presence of a fibronectin polymerization inhibitor results in increased expression of smooth muscle cell differentiation proteins and inhibits vascular remodeling in vivo. In this manuscript, we used an in vitro cell culture system to determine the mechanism by which fibronectin polymerization affects smooth muscle phenotypic modulation. Our data show that fibronectin polymerization decreases the mRNA levels of multiple smooth muscle differentiation genes, and downregulates the levels of smooth muscle α-actin and calponin proteins by a Rac1-dependent mechanism. The expression of smooth muscle genes is transcriptionally regulated by fibronectin polymerization, as evidenced by the increased activity of luciferase reporter constructs in the presence of a fibronectin polymerization inhibitor. Fibronectin polymerization also promotes smooth muscle cell growth, and decreases the levels of actin stress fibers. These data define a Rac1

  16. Murine fertilized ovum, blastomere and morula cells lacking SP phenotype

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the field of stem cell research, SP (side population) phenotype is used to define the property that cells maintain a high efflux capability for some fluorescent dye, such as Hoechst 33342. Recently, many researches proposed that SP phenotype is a phenotype shared by some stem cells and some progenitor cells, and that SP phenotype is regarded as a candidate purification marker for stem cells. In this research, murine fertilized ova (including conjugate and single nucleus fertilized ova), 2-cell stage and 8-cell stage blastomeres, morulas and blastocysts were isolated and directly stained by Hoechst 33342 dye. The results show that fertilized ovum, blastomere and morula cells do not demonstrate any ability to efflux the dye. However, the inner cell mass (ICM) cells of blastocyst exhibit SP phenotype, which is consistent with the result of embryonic stem cells (ESCs) in vitro. These results indicate that the SP phenotype of ICM-derived ESCs is an intrinsic property and independent of the culture condition in vitro, and that SP phenotype is one of the characteristics of at least some pluripotent stem cells, but is not shared by totipotent stem cells. In addition, the result that the SP phenotype of ICM cells disappeared when the inhibitor verapamil was added into medium implies that the SP phenotype is directly associated with ABCG2. These results suggest that not all the stem cells demonstrate SP phenotype, and that SP phenotype might act as a purification marker for partial stem cells such as some pluripotent embryonic stem cells and multipotent adult stem cells, but not for all stem cells exampled by the totipotent stem cells in the very early stage of mouse embryos.

  17. Targeted silver nanoparticles for ratiometric cell phenotyping

    Science.gov (United States)

    Willmore, Anne-Mari A.; Simón-Gracia, Lorena; Toome, Kadri; Paiste, Päärn; Kotamraju, Venkata Ramana; Mölder, Tarmo; Sugahara, Kazuki N.; Ruoslahti, Erkki; Braun, Gary B.; Teesalu, Tambet

    2016-04-01

    Affinity targeting is used to deliver nanoparticles to cells and tissues. For efficient targeting, it is critical to consider the expression and accessibility of the relevant receptors in the target cells. Here, we describe isotopically barcoded silver nanoparticles (AgNPs) as a tool for auditing affinity ligand receptors in cells. Tumor penetrating peptide RPARPAR (receptor: NRP-1) and tumor homing peptide GKRK (receptor: p32) were used as affinity ligands on the AgNPs. The binding and uptake of the peptide-functionalized AgNPs by cultured PPC-1 prostate cancer and M21 melanoma cells was dependent on the cell surface expression of the cognate peptide receptors. Barcoded peptide-functionalized AgNPs were synthesized from silver and palladium isotopes. The cells were incubated with a cocktail of the barcoded nanoparticles [RPARPAR (R), GKRK (K), and control], and cellular binding and internalization of each type of nanoparticle was assessed by inductively coupled plasma mass spectrometry. The results of isotopic analysis were in agreement with data obtained using optical methods. Using ratiometric measurements, we were able to classify the PPC-1 cell line as mainly NRP-1-positive, with 75 +/- 5% R-AgNP uptake, and the M21 cell line as only p32-positive, with 89 +/- 9% K-AgNP uptake. The isotopically barcoded multiplexed AgNPs are useful as an in vitro ratiometric phenotyping tool and have potential uses in functional evaluation of the expression of accessible homing peptide receptors in vivo.Affinity targeting is used to deliver nanoparticles to cells and tissues. For efficient targeting, it is critical to consider the expression and accessibility of the relevant receptors in the target cells. Here, we describe isotopically barcoded silver nanoparticles (AgNPs) as a tool for auditing affinity ligand receptors in cells. Tumor penetrating peptide RPARPAR (receptor: NRP-1) and tumor homing peptide GKRK (receptor: p32) were used as affinity ligands on the AgNPs. The

  18. Dietary methoxychlor exposure modulates splenic natural killer cell activity, antibody-forming cell response and phenotypic marker expression in F0 and F1 generations of Sprague Dawley rats.

    Science.gov (United States)

    White, K L; Germolec, D R; Booker, C D; Hernendez, D M; McCay, J A; Delclos, K B; Newbold, R R; Weis, C; Guo, T L

    2005-02-14

    Methoxychlor, a chlorinated hydrocarbon pesticide, is a persistent environmental contaminant that has been identified in human reproductive tissues. Methoxychlor has been shown to be estrogenic in both in vivo and in vitro studies. As an endocrine disrupter, it may have the potential to adversely affect endocrine, reproductive, and immune systems in animals. The present study evaluated methoxychlor's immunotoxic potential in F0 (dams) and F1 generations of Sprague Dawley rats exposed to an isoflavone-free diet containing methoxychlor at concentrations of 10, 100, and 1000 ppm. In dams, exposure to methoxychlor from gestation day 7 to postpartum day 51 (65 days total exposure) produced a significant increase in the NK activity (1000 ppm) and the percentages of T cells (1000 ppm), helper T cells (1000 ppm) and macrophages (100 and 1000 ppm). In contrast, a decrease in the numbers of splenocytes and B cells was observed at the 100 and 1000 ppm concentrations. In F1 males, exposure to methoxychlor gestationally, lactationally and through feed from postnatal day 22-64 (78 days total exposure) produced an increase in the spleen IgM antibody-forming cell response to sheep red blood cells (100 and 1000 ppm) and the activity of NK cells (1000 ppm). However, there was a decrease in the terminal body weight (1000 ppm), spleen weight (1000 ppm), thymus weight (100 and 1000 ppm), and the numbers of splenocytes (1000 ppm), B cells (100 and 1000 ppm), cytotoxic T cells (1000 ppm) and NK cells (100 and 1000 ppm). In F1 females, exposure to methoxychlor produced a decrease in the terminal body weight (1000 ppm) and the percentages of cytotoxic T cells (10, 100 and 1000 ppm). These results demonstrate that developmental and adult dietary exposure to methoxychlor modulates immune responses in Sprague Dawley rats. Immunological changes were more pronounced in the F1 generation male rats that were exposed during gestation and postpartum, when compared to the F0 and F1 generation

  19. Macrophage phenotype modulation by CXCL4 in vascular disease

    Directory of Open Access Journals (Sweden)

    Christian Albert Gleissner

    2012-01-01

    Full Text Available During atherogenesis, blood monocytes transmigrate into the subendothelial space and differentiate towards macrophages and foam cells. The major driver of this differentiation process is macrophage colony-stimulation factor (M-CSF. M-CSF-induced macrophages are important promoters of atherogenesis as demonstrated in M-CSF and M-CSF receptor knock out mice. However, M-CSF is not the only relevant promoter of macrophage differentiation. The platelet chemokine CXCL4 prevents monocyte apoptosis and promotes macrophage differentiation in vitro. It is secreted from activated platelets and has effects on various cell types relevant in atherogenesis. Knocking out the Pf4 gene coding for CXCL4 in Apoe-/- mice leads to reduced atherogenesis. Thus, it seems likely that CXC4-induced macrophages may have specific pro-atherogenic capacities. We have studied CXC4-induced differentiation of human macrophages using gene chips, systems biology and functional in vitro and ex vivo experiments. Our data indicate that CXCL4-induced macrophages are distinct from both their M-CSF-induced counterparts and other known macrophage polarizations like M1 macrophages (induced by LPS and interferon-gamma or M2 macrophages (induced by interleukin-4. CXCL4-induced macrophages have distinct phenotypic and functional characteristics, e.g. the complete loss of the hemoglobin-haptoglobin (Hb-Hp scavenger receptor CD163 which is necessary for effective hemoglobin clearance after plaque hemorrhage. Lack of CD163 is accompanied by the inability to upregulate the atheroprotective enzyme heme oxygenase-1 in response to Hb-Hp complexes.This review covers the current knowledge about CXCL4-induced macrophages, which based on their unique properties we have suggested to call these macrophages M4. CXCL4 may represent an important driver of macrophage heterogeneity within atherosclerotic lesions. Further dissecting its effects on macrophage differentiation may help to identify novel

  20. Solar cell module. Taiyo denchi module

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Akihiko; Matsumoto, Hitoshi.

    1989-09-06

    In the conventional solar cell module, the cell cost is elevated because the cross sections of the cell edge is surrounded with frames of various shape and the gap is filled with a sealant. In additionn, the top end of the module frame is placed roughly 1 mm above the glass surface; the photoelectromotive force part is covered with such deposits as soils and sands, thus badly affecting the photovoltaic generation. In this invention, weather-proof opaque paint is coated around the surface glass to interrupt the light irradiation to the adhesive resin layer between the glass and the back sheet, thus preventing the degradation of the resin layer. Cost is low because of using a thin film. The light interruption by the deposits can be prevented. The photoelectromotive force element is a n-type CdS film or CdS/CdTe. The resin layer around the glass is a thermoplastic polyolefin which is modified with acid anhydrides. 5 figs.

  1. Resin glycosides from Ipomoea wolcottiana as modulators of the multidrug resistance phenotype in vitro.

    Science.gov (United States)

    Corona-Castañeda, Berenice; Rosas-Ramírez, Daniel; Castañeda-Gómez, Jhon; Aparicio-Cuevas, Manuel Alejandro; Fragoso-Serrano, Mabel; Figueroa-González, Gabriela; Pereda-Miranda, Rogelio

    2016-03-01

    Recycling liquid chromatography was used for the isolation and purification of resin glycosides from the CHCl3-soluble extracts prepared using flowers of Ipomoea wolcottiana Rose var. wolcottiana. Bioassay-guided fractionation, using modulation of both antibiotic activity against multidrug-resistant strains of Gram-negative bacteria and vinblastine susceptibility in breast carcinoma cells, was used to isolate the active glycolipids as modulators of the multidrug resistance phenotype. An ester-type dimer, wolcottine I, one tetra- and three pentasaccharides, wolcottinosides I-IV, in addition to the known intrapilosin VII, were characterized by NMR spectroscopy and mass spectrometry. In vitro assays established that none of these metabolites displayed antibacterial activity (MIC>512 μg/mL) against multidrug-resistant strains of Escherichia coli, and two nosocomial pathogens: Salmonella enterica serovar Typhi and Shigella flexneri; however, when tested (25 μg/mL) in combination with tetracycline, kanamycin or chloramphenicol, they exerted a potentiation effect of the antibiotic susceptibility up to eightfold (64 μg/mL from 512 μg/mL). It was also determined that these non-cytotoxic (CI50>8.68 μM) agents modulated vinblastine susceptibility at 25 μg/mL in MFC-7/Vin(+) cells with a reversal factor (RFMCF-7/Vin(+)) of 2-130 fold.

  2. Hsp90 selectively modulates phenotype in vertebrate development.

    Directory of Open Access Journals (Sweden)

    Patricia L Yeyati

    2007-03-01

    Full Text Available Compromised heat shock protein 90 (Hsp90 function reveals cryptic phenotypes in flies and plants. These observations were interpreted to suggest that this molecular stress-response chaperone has a capacity to buffer underlying genetic variation. Conversely, the protective role of Hsp90 could account for the variable penetrance or severity of some heritable developmental malformations in vertebrates. Using zebrafish as a model, we defined Hsp90 inhibitor levels that did not induce a heat shock response or perturb phenotype in wild-type strains. Under these conditions the severity of the recessive eye phenotype in sunrise, caused by a pax6b mutation, was increased, while in dreumes, caused by a sufu mutation, it was decreased. In another strain, a previously unobserved spectrum of severe structural eye malformations, reminiscent of anophthalmia, microphthalmia, and nanophthalmia complex in humans, was uncovered by this limited inhibition of Hsp90 function. Inbreeding of offspring from selected unaffected carrier parents led to significantly elevated malformation frequencies and revealed the oligogenic nature of this phenotype. Unlike in Drosophila, Hsp90 inhibition can decrease developmental stability in zebrafish, as indicated by increased asymmetric presentation of anophthalmia, microphthalmia, and nanophthalmia and sunrise phenotypes. Analysis of the sunrise pax6b mutation suggests a molecular mechanism for the buffering of mutations by Hsp90. The zebrafish studies imply that mild perturbation of Hsp90 function at critical developmental stages may underpin the variable penetrance and expressivity of many developmental anomalies where the interaction between genotype and environment plays a major role.

  3. Pathogenic Mycobacterium bovis strains differ in their ability to modulate the proinflammatory activation phenotype of macrophages

    Directory of Open Access Journals (Sweden)

    Andrade Marcelle RM

    2012-08-01

    Full Text Available Abstract Background Tuberculosis, caused by Mycobacterium tuberculosis or Mycobacterium bovis, remains one of the leading infectious diseases worldwide. The ability of mycobacteria to rapidly grow in host macrophages is a factor contributing to enhanced virulence of the bacteria and disease progression. Bactericidal functions of phagocytes are strictly dependent on activation status of these cells, regulated by the infecting agent and cytokines. Pathogenic mycobacteria can survive the hostile environment of the phagosome through interference with activation of bactericidal responses. To study the mechanisms employed by highly virulent mycobacteria to promote their intracellular survival, we investigated modulating effects of two pathogenic M. bovis isolates and a reference M. tuberculosis H37Rv strain, differing in their ability to multiply in macrophages, on activation phenotypes of the cells primed with major cytokines regulating proinflammatory macrophage activity. Results Bone marrow- derived macrophages obtained from C57BL/6 mice were infected by mycobacteria after a period of cell incubation with or without treatment with IFN-γ, inducing proinflammatory type-1 macrophages (M1, or IL-10, inducing anti-inflammatory type-2 cells (M2. Phenotypic profiling of M1 and M2 was then evaluated. The M. bovis strain MP287/03 was able to grow more efficiently in the untreated macrophages, compared with the strains B2 or H37Rv. This strain induced weaker secretion of proinflammatory cytokines, coinciding with higher expression of M2 cell markers, mannose receptor (MR and arginase-1 (Arg-1. Treatment of macrophages with IFN-γ and infection by the strains B2 and H37Rv synergistically induced M1 polarization, leading to high levels of inducible nitric oxide synthase (iNOS expression, and reduced expression of the Arg-1. In contrast, the cells infected with the strain MP287/03 expressed high levels of Arg-1 which competed with iNOS for the common substrate

  4. Classification of dendritic cell phenotypes from gene expression data

    Directory of Open Access Journals (Sweden)

    Zolezzi Francesca

    2011-08-01

    Full Text Available Abstract Background The selection of relevant genes for sample classification is a common task in many gene expression studies. Although a number of tools have been developed to identify optimal gene expression signatures, they often generate gene lists that are too long to be exploited clinically. Consequently, researchers in the field try to identify the smallest set of genes that provide good sample classification. We investigated the genome-wide expression of the inflammatory phenotype in dendritic cells. Dendritic cells are a complex group of cells that play a critical role in vertebrate immunity. Therefore, the prediction of the inflammatory phenotype in these cells may help with the selection of immune-modulating compounds. Results A data mining protocol was applied to microarray data for murine cell lines treated with various inflammatory stimuli. The learning and validation data sets consisted of 155 and 49 samples, respectively. The data mining protocol reduced the number of probe sets from 5,802 to 10, then from 10 to 6 and finally from 6 to 3. The performances of a set of supervised classification models were compared. The best accuracy, when using the six following genes --Il12b, Cd40, Socs3, Irgm1, Plin2 and Lgals3bp-- was obtained by Tree Augmented Naïve Bayes and Nearest Neighbour (91.8%. Using the smallest set of three genes --Il12b, Cd40 and Socs3-- the performance remained satisfactory and the best accuracy was with Support Vector Machine (95.9%. These data mining models, using data for the genes Il12b, Cd40 and Socs3, were validated with a human data set consisting of 27 samples. Support Vector Machines (71.4% and Nearest Neighbour (92.6% gave the worst performances, but the remaining models correctly classified all the 27 samples. Conclusions The genes selected by the data mining protocol proposed were shown to be informative for discriminating between inflammatory and steady-state phenotypes in dendritic cells. The

  5. Posterior association networks and functional modules inferred from rich phenotypes of gene perturbations.

    Directory of Open Access Journals (Sweden)

    Xin Wang

    Full Text Available Combinatorial gene perturbations provide rich information for a systematic exploration of genetic interactions. Despite successful applications to bacteria and yeast, the scalability of this approach remains a major challenge for higher organisms such as humans. Here, we report a novel experimental and computational framework to efficiently address this challenge by limiting the 'search space' for important genetic interactions. We propose to integrate rich phenotypes of multiple single gene perturbations to robustly predict functional modules, which can subsequently be subjected to further experimental investigations such as combinatorial gene silencing. We present posterior association networks (PANs to predict functional interactions between genes estimated using a Bayesian mixture modelling approach. The major advantage of this approach over conventional hypothesis tests is that prior knowledge can be incorporated to enhance predictive power. We demonstrate in a simulation study and on biological data, that integrating complementary information greatly improves prediction accuracy. To search for significant modules, we perform hierarchical clustering with multiscale bootstrap resampling. We demonstrate the power of the proposed methodologies in applications to Ewing's sarcoma and human adult stem cells using publicly available and custom generated data, respectively. In the former application, we identify a gene module including many confirmed and highly promising therapeutic targets. Genes in the module are also significantly overrepresented in signalling pathways that are known to be critical for proliferation of Ewing's sarcoma cells. In the latter application, we predict a functional network of chromatin factors controlling epidermal stem cell fate. Further examinations using ChIP-seq, ChIP-qPCR and RT-qPCR reveal that the basis of their genetic interactions may arise from transcriptional cross regulation. A Bioconductor package

  6. Transparent solar cell window module

    Energy Technology Data Exchange (ETDEWEB)

    Chau, Joseph Lik Hang; Chen, Ruei-Tang; Hwang, Gan-Lin; Tsai, Ping-Yuan [Nanopowder and Thin Film Technology Center, ITRI South, Industrial Technology Research Institute, Tainan County 709 (China); Lin, Chien-Chu [I-Lai Acrylic Corporation, Tainan City (China)

    2010-03-15

    A transparent solar cell window module based on the integration of traditional silicon solar cells and organic-inorganic nanocomposite material was designed and fabricated. The transparent solar cell window module was composed of a nanocomposite light-guide plate and traditional silicon solar cells. The preparation of the nanocomposite light-guide plate is easy without modification of the traditional casting process, the nanoparticles sol can be added directly to the polymethyl methacrylate (PMMA) monomer syrup during the process. The solar energy collected by this window can be used to power up small household electrical appliances. (author)

  7. Battery cell module

    Energy Technology Data Exchange (ETDEWEB)

    Shambaugh, J.S.

    1981-11-23

    A modular lithium battery having a plurality of cells, having electrical connecting means connecting the cells to output terminals, and venting means for releasing discharge byproducts to a chemical scrubber is disclosed. Stainless steel cell casings are potted in an aluminum modular case with syntactic foam and epoxy. The wall thickness resulting is about 0.5 inches.

  8. Efficient α, β-motif finder for identification of phenotype-related functional modules

    Directory of Open Access Journals (Sweden)

    Schmidt Matthew C

    2011-11-01

    Full Text Available Abstract Background Microbial communities in their natural environments exhibit phenotypes that can directly cause particular diseases, convert biomass or wastewater to energy, or degrade various environmental contaminants. Understanding how these communities realize specific phenotypic traits (e.g., carbon fixation, hydrogen production is critical for addressing health, bioremediation, or bioenergy problems. Results In this paper, we describe a graph-theoretical method for in silico prediction of the cellular subsystems that are related to the expression of a target phenotype. The proposed (α, β-motif finder approach allows for identification of these phenotype-related subsystems that, in addition to metabolic subsystems, could include their regulators, sensors, transporters, and even uncharacterized proteins. By comparing dozens of genome-scale networks of functionally associated proteins, our method efficiently identifies those statistically significant functional modules that are in at least α networks of phenotype-expressing organisms but appear in no more than β networks of organisms that do not exhibit the target phenotype. It has been shown via various experiments that the enumerated modules are indeed related to phenotype-expression when tested with different target phenotypes like hydrogen production, motility, aerobic respiration, and acid-tolerance. Conclusion Thus, we have proposed a methodology that can identify potential statistically significant phenotype-related functional modules. The functional module is modeled as an (α, β-clique, where α and β are two criteria introduced in this work. We also propose a novel network model, called the two-typed, divided network. The new network model and the criteria make the problem tractable even while very large networks are being compared. The code can be downloaded from http://www.freescience.org/cs/ABClique/

  9. A mathematical model of cancer cells with phenotypic plasticity

    Directory of Open Access Journals (Sweden)

    Da Zhou

    2015-12-01

    Full Text Available Purpose: The phenotypic plasticity of cancer cells is recently becoming a cutting-edge research area in cancer, which challenges the cellular hierarchy proposed by the conventional cancer stem cell theory. In this study, we establish a mathematical model for describing the phenotypic plasticity of cancer cells, based on which we try to find some salient features that can characterize the dynamic behavior of the phenotypic plasticity especially in comparison to the hierarchical model of cancer cells. Methods: We model cancer as population dynamics composed of different phenotypes of cancer cells. In this model, not only can cancer cells divide (symmetrically and asymmetrically and die, but they can also convert into other cellular phenotypes. According to the Law of Mass Action, the cellular processes can be captured by a system of ordinary differential equations (ODEs. On one hand, we can analyze the long-term stability of the model by applying qualitative method of ODEs. On the other hand, we are also concerned about the short-term behavior of the model by studying its transient dynamics. Meanwhile, we validate our model to the cell-state dynamics in published experimental data.Results: Our results show that the phenotypic plasticity plays important roles in both stabilizing the distribution of different phenotypic mixture and maintaining the cancer stem cells proportion. In particular, the phenotypic plasticity model shows decided advantages over the hierarchical model in predicting the phenotypic equilibrium and cancer stem cells’ overshoot reported in previous biological experiments in cancer cell lines.Conclusion: Since the validity of the phenotypic plasticity paradigm and the conventional cancer stem cell theory is still debated in experimental biology, it is worthy of theoretically searching for good indicators to distinguish the two models through quantitative methods. According to our study, the phenotypic equilibrium and overshoot

  10. Human pancreatic islet progenitor cells demonstrate phenotypic plasticity in vitro

    Indian Academy of Sciences (India)

    Maithili P Dalvi; Malati R Umrani; Mugdha V Joglekar; Anandwardhan A Hardikar

    2009-10-01

    Phenotypic plasticity is a phenomenon that describes the occurrence of 2 or more distinct phenotypes under diverse conditions. This article discusses the work carried out over the past few years in understanding the potential of human pancreatic islet-derived progenitors for cell replacement therapy in diabetes. The phenotypic plasticity exhibited by pancreatic progenitors during reversible epithelial-to-mesenchymal transition (EMT) and possible role of microRNAs in regulation of this process is also presented herein.

  11. Rescue of an in vitro neuron phenotype identified in Niemann-Pick disease, type C1 induced pluripotent stem cell-derived neurons by modulating the WNT pathway and calcium signaling.

    Science.gov (United States)

    Efthymiou, Anastasia G; Steiner, Joe; Pavan, William J; Wincovitch, Stephen; Larson, Denise M; Porter, Forbes D; Rao, Mahendra S; Malik, Nasir

    2015-03-01

    Niemann-Pick disease, type C1 (NPC1) is a familial disorder that has devastating consequences on postnatal development with multisystem effects, including neurodegeneration. There is no Food and Drug Administration-approved treatment option for NPC1; however, several potentially therapeutic compounds have been identified in assays using yeast, rodent models, and NPC1 human fibroblasts. Although these discoveries were made in fibroblasts from NPC1 subjects and were in some instances validated in animal models of the disease, testing these drugs on a cell type more relevant for NPC1 neurological disease would greatly facilitate both study of the disease and identification of more relevant therapeutic compounds. Toward this goal, we have generated an induced pluripotent stem cell line from a subject homozygous for the most frequent NPC1 mutation (p.I1061T) and subsequently created a stable line of neural stem cells (NSCs). These NSCs were then used to create neurons as an appropriate disease model. NPC1 neurons display a premature cell death phenotype, and gene expression analysis of these cells suggests dysfunction of important signaling pathways, including calcium and WNT. The clear readout from these cells makes them ideal candidates for high-throughput screening and will be a valuable tool to better understand the development of NPC1 in neural cells, as well as to develop better therapeutic options for NPC1.

  12. Topographical modulation of macrophage phenotype by shrink-film multi-scale wrinkles.

    Science.gov (United States)

    Wang, Tingting; Luu, Thuy U; Chen, Aaron; Khine, Michelle; Liu, Wendy F

    2016-06-24

    The host immune response to foreign materials is a major hurdle for implanted medical devices. To control this response, modulation of macrophage behavior has emerged as a promising strategy, given their prominent role in inflammation and wound healing. Towards this goal, we explore the effect of biomimetic multi-scale wrinkles on macrophage adhesion and expression of phenotype markers. We find that macrophages elongate along the direction of the uniaxial wrinkles made from shape memory polymers, and express more arginase-1 and IL-10, and less TNF-α, suggesting polarization towards an alternatively activated, anti-inflammatory phenotype. Materials were further implanted in the subcutaneous space of mice and tissue surrounding the material evaluated by histology and immunohistochemistry. We found that material surface topography altered the distribution of collagen deposition in the adjacent tissue, with denser collagen tissue observed near flat materials when compared to wrinkled materials. Furthermore, cells surrounding wrinkled materials exhibited higher arginase-1 expression. Together these data suggest that wrinkled material surfaces promote macrophage alternative activation, and may influence the foreign body response to implants.

  13. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils

    DEFF Research Database (Denmark)

    Galli, Stephen J; Borregaard, Niels; Wynn, Thomas A

    2011-01-01

    Hematopoietic cells, including lymphoid and myeloid cells, can develop into phenotypically distinct 'subpopulations' with different functions. However, evidence indicates that some of these subpopulations can manifest substantial plasticity (that is, undergo changes in their phenotype and function...

  14. MicroRNAs define distinct human neuroblastoma cell phenotypes and regulate their differentiation and tumorigenicity

    International Nuclear Information System (INIS)

    Neuroblastoma (NB) is the most common extracranial solid tumor in children. NB tumors and derived cell lines are phenotypically heterogeneous. Cell lines are classified by phenotype, each having distinct differentiation and tumorigenic properties. The neuroblastic phenotype is tumorigenic, has neuronal features and includes stem cells (I-cells) and neuronal cells (N-cells). The non-neuronal phenotype (S-cell) comprises cells that are non-tumorigenic with features of glial/smooth muscle precursor cells. This study identified miRNAs associated with each distinct cell phenotypes and investigated their role in regulating associated differentiation and tumorigenic properties. A miRNA microarray was performed on the three cell phenotypes and expression verified by qRT-PCR. miRNAs specific for certain cell phenotypes were modulated using miRNA inhibitors or stable transfection. Neuronal differentiation was induced by RA; non-neuronal differentiation by BrdU. Changes in tumorigenicity were assayed by soft agar colony forming ability. N-myc binding to miR-375 promoter was assayed by chromatin-immunoprecipitation. Unsupervised hierarchical clustering of miRNA microarray data segregated neuroblastic and non-neuronal cell lines and showed that specific miRNAs define each phenotype. qRT-PCR validation confirmed that increased levels of miR-21, miR-221 and miR-335 are associated with the non-neuronal phenotype, whereas increased levels of miR-124 and miR-375 are exclusive to neuroblastic cells. Downregulation of miR-335 in non-neuronal cells modulates expression levels of HAND1 and JAG1, known modulators of neuronal differentiation. Overexpression of miR-124 in stem cells induces terminal neuronal differentiation with reduced malignancy. Expression of miR-375 is exclusive for N-myc-expressing neuroblastic cells and is regulated by N-myc. Moreover, miR-375 downregulates expression of the neuronal-specific RNA binding protein HuD. Thus, miRNAs define distinct NB cell phenotypes

  15. Camptothecin and khat (Catha edulis Forsk. induced distinct cell death phenotypes involving modulation of c-FLIPL, Mcl-1, procaspase-8 and mitochondrial function in acute myeloid leukemia cell lines

    Directory of Open Access Journals (Sweden)

    Fossan Kjell O

    2009-11-01

    Full Text Available Abstract Background An organic extract of the recreational herb khat (Catha edulis Forsk. triggers cell death in various leukemia cell lines in vitro. The chemotherapeutics camptothecin, a plant alkaloid topoisomerase I inhibitor, was tested side-by-side with khat in a panel of acute myeloid leukemia cell lines to elucidate mechanisms of toxicity. Results Khat had a profound effect on MOLM-13 cells inducing mitochondrial damage, chromatin margination and morphological features of autophagy. The effects of khat on mitochondrial ultrastructure in MOLM-13 correlated with strongly impaired routine respiration, an effect neither found in the khat-resistant MV-4-11 cells nor in camptothecin treated cells. Enforced expression of anti-apoptotic Bcl-2 protein provided protection against camptothecin-induced cell death and partly against khat toxicity. Khat-induced cell death in MOLM-13 cells included reduced levels of anti-apoptotic Mcl-1 protein, while both khat and camptothecin induced c-FLIPL cleavage and procaspase-8 activation. Conclusion Khat activated a distinct cell death pathway in sensitive leukemic cells as compared to camptothecin, involving mitochondrial damage and morphological features of autophagy. This suggests that khat should be further explored in the search for novel experimental therapeutics.

  16. Lymphomatoid papulosis with a natural killer-cell phenotype

    NARCIS (Netherlands)

    Bekkenk, MW; Kluin, PM; Jansen, PM; Meijer, CJLM; Willemze, R

    2001-01-01

    Lymphomatoid papulosis (LyP) is defined as a recurrent self-healing papulonodular eruption with the histological features of a (CD30+) cutaneous T-cell lymphoma. The atypical cells usually have a CD3+/-, CD4+/-, CD8-, CD30+, CD56- T-cell phenotype. We report an unusual case of LyP, in which the atyp

  17. Multiparametric classification links tumor microenvironments with tumor cell phenotype.

    Directory of Open Access Journals (Sweden)

    Bojana Gligorijevic

    2014-11-01

    Full Text Available While it has been established that a number of microenvironment components can affect the likelihood of metastasis, the link between microenvironment and tumor cell phenotypes is poorly understood. Here we have examined microenvironment control over two different tumor cell motility phenotypes required for metastasis. By high-resolution multiphoton microscopy of mammary carcinoma in mice, we detected two phenotypes of motile tumor cells, different in locomotion speed. Only slower tumor cells exhibited protrusions with molecular, morphological, and functional characteristics associated with invadopodia. Each region in the primary tumor exhibited either fast- or slow-locomotion. To understand how the tumor microenvironment controls invadopodium formation and tumor cell locomotion, we systematically analyzed components of the microenvironment previously associated with cell invasion and migration. No single microenvironmental property was able to predict the locations of tumor cell phenotypes in the tumor if used in isolation or combined linearly. To solve this, we utilized the support vector machine (SVM algorithm to classify phenotypes in a nonlinear fashion. This approach identified conditions that promoted either motility phenotype. We then demonstrated that varying one of the conditions may change tumor cell behavior only in a context-dependent manner. In addition, to establish the link between phenotypes and cell fates, we photoconverted and monitored the fate of tumor cells in different microenvironments, finding that only tumor cells in the invadopodium-rich microenvironments degraded extracellular matrix (ECM and disseminated. The number of invadopodia positively correlated with degradation, while the inhibiting metalloproteases eliminated degradation and lung metastasis, consistent with a direct link among invadopodia, ECM degradation, and metastasis. We have detected and characterized two phenotypes of motile tumor cells in vivo, which

  18. Ubiquitous Over-Expression of Chromatin Remodeling Factor SRG3 Ameliorates the T Cell-Mediated Exacerbation of EAE by Modulating the Phenotypes of both Dendritic Cells and Macrophages

    OpenAIRE

    Sung Won Lee; Hyun Jung Park; Sung Ho Jeon; Changjin Lee; Rho Hyun Seong; Se-Ho Park; Seokmann Hong

    2015-01-01

    Although SWI3-related gene (SRG3), a chromatin remodeling factor, is critical for various biological processes including early embryogenesis and thymocyte development, it is unclear whether SRG3 is involved in the differentiation of CD4+ T cells, the key mediator of adaptive immune responses. Because it is known that experimental autoimmune encephalomyelitis (EAE) development is determined by the activation of CD4+ T helper cells, here, we investigated the role of SRG3 in EAE development usin...

  19. Single Cell Biomechanical Phenotyping using Microfluidics and Nanotechnology

    OpenAIRE

    Babahosseini, Hesam

    2016-01-01

    Cancer progression is accompanied with alterations in the cell biomechanical phenotype, including changes in cell structure, morphology, and responses to microenvironmental stress. These alterations result in an increased deformability of transformed cells and reduced resistance to mechanical stimuli, enabling motility and invasion. Therefore, single cell biomechanical properties could be served as a powerful label-free biomarker for effective characterization and early detection of single ca...

  20. Curcumin modulates chronic myelogenous leukemia exosomes composition and affects angiogenic phenotype via exosomal miR-21.

    Science.gov (United States)

    Taverna, Simona; Fontana, Simona; Monteleone, Francesca; Pucci, Marzia; Saieva, Laura; De Caro, Viviana; Cardinale, Valeria Giunta; Giallombardo, Marco; Vicario, Emanuela; Rolfo, Christian; Leo, Giacomo De; Alessandro, Riccardo

    2016-05-24

    Tumor derived exosomes are vesicles which contain proteins and microRNAs that mediate cell-cell communication and are involved in angiogenesis and tumor progression. Curcumin derived from the plant Curcuma longa, shows anticancer effects. Exosomes released by CML cells treated with Curcumin contain a high amount of miR-21 that is shuttled into the endothelial cells in a biologically active form. The treatment of HUVECs with CML Curcu-exosomes reduced RhoB expression and negatively modulated endothelial cells motility. We showed that the addition of CML control exosomes to HUVECs caused an increase in IL8 and VCAM1 levels, but Curcu-exosomes reversed these effects thus attenuating their angiogenic properties. This antiangiogenic effect was confirmed with in vitro and in vivo vascular network formation assays. SWATH analysis of the proteomic profile of Curcu-exosomes revealed that Curcumin treatment deeply changes their molecular properties, in particular, Curcumin induces a release of exosomes depleted in pro-angiogenic proteins and enriched in proteins endowed with anti-angiogenic activity. Among the proteins differential expressed we focused on MARCKS, since it was the most modulated protein and a target of miR-21. Taken together our data indicated that also Curcumin attenuates the exosome's ability to promote the angiogenic phenotype and to modulate the endothelial barrier organization. PMID:27050372

  1. Hsp90 modulates CAG repeat instability in human cells

    OpenAIRE

    Mittelman, David; Sykoudis, Kristen; Hersh, Megan; Lin, Yunfu; Wilson, John H.

    2010-01-01

    The Hsp90 molecular chaperone has been implicated as a contributor to evolution in several organisms by revealing cryptic variation that can yield dramatic phenotypes when the chaperone is diverted from its normal functions by environmental stress. In addition, as a cancer drug target, Hsp90 inhibition has been documented to sensitize cells to DNA-damaging agents, suggesting a function for Hsp90 in DNA repair. Here we explore the potential role of Hsp90 in modulating the stability of nucleoti...

  2. Single cell metastatic phenotyping using pulsed nanomechanical indentations

    Science.gov (United States)

    Babahosseini, Hesam; Strobl, Jeannine S.; Agah, Masoud

    2015-09-01

    The existing approach to characterize cell biomechanical properties typically utilizes switch-like models of mechanotransduction in which cell responses are analyzed in response to a single nanomechanical indentation or a transient pulsed stress. Although this approach provides effective descriptors at population-level, at a single-cell-level, there are significant overlaps in the biomechanical descriptors of non-metastatic and metastatic cells which precludes the use of biomechanical markers for single cell metastatic phenotyping. This study presents a new promising marker for biosensing metastatic and non-metastatic cells at a single-cell-level using the effects of a dynamic microenvironment on the biomechanical properties of cells. Two non-metastatic and two metastatic epithelial breast cell lines are subjected to a pulsed stresses regimen exerted by atomic force microscopy. The force-time data obtained for the cells revealed that the non-metastatic cells increase their resistance against deformation and become more stiffened when subjected to a series of nanomechanical indentations. On the other hand, metastatic cells become slightly softened when their mechanical microenvironment is subjected to a similar dynamical changes. This distinct behavior of the non-metastatic and metastatic cells to the pulsed stresses paradigm provided a signature for single-cell-level metastatic phenotyping with a high confidence level of ∼95%.

  3. Snail modulates cell metabolism in MDCK cells

    Energy Technology Data Exchange (ETDEWEB)

    Haraguchi, Misako, E-mail: haraguci@m3.kufm.kagoshima-u.ac.jp [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Indo, Hiroko P. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Iwasaki, Yasumasa [Health Care Center, Kochi University, Kochi 780-8520 (Japan); Iwashita, Yoichiro [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Fukushige, Tomoko [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Majima, Hideyuki J. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Izumo, Kimiko; Horiuchi, Masahisa [Department of Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Kanekura, Takuro [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Furukawa, Tatsuhiko [Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Ozawa, Masayuki [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan)

    2013-03-22

    Highlights: ► MDCK/snail cells were more sensitive to glucose deprivation than MDCK/neo cells. ► MDCK/snail cells had decreased oxidative phosphorylation, O{sub 2} consumption and ATP content. ► TCA cycle enzyme activity, but not expression, was lower in MDCK/snail cells. ► MDCK/snail cells showed reduced PDH activity and increased PDK1 expression. ► MDCK/snail cells showed reduced expression of GLS2 and ACLY. -- Abstract: Snail, a repressor of E-cadherin gene transcription, induces epithelial-to-mesenchymal transition and is involved in tumor progression. Snail also mediates resistance to cell death induced by serum depletion. By contrast, we observed that snail-expressing MDCK (MDCK/snail) cells undergo cell death at a higher rate than control (MDCK/neo) cells in low-glucose medium. Therefore, we investigated whether snail expression influences cell metabolism in MDCK cells. Although gylcolysis was not affected in MDCK/snail cells, they did exhibit reduced pyruvate dehydrogenase (PDH) activity, which controls pyruvate entry into the tricarboxylic acid (TCA) cycle. Indeed, the activity of multiple enzymes involved in the TCA cycle was decreased in MDCK/snail cells, including that of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDH2), succinate dehydrogenase (SDH), and electron transport Complex II and Complex IV. Consequently, lower ATP content, lower oxygen consumption and increased survival under hypoxic conditions was also observed in MDCK/snail cells compared to MDCK/neo cells. In addition, the expression and promoter activity of pyruvate dehydrogenase kinase 1 (PDK1), which phosphorylates and inhibits the activity of PDH, was increased in MDCK/snail cells, while expression levels of glutaminase 2 (GLS2) and ATP-citrate lyase (ACLY), which are involved in glutaminolysis and fatty acid synthesis, were decreased in MDCK/snail cells. These results suggest that snail modulates cell metabolism by altering the expression and activity of

  4. Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential.

    Science.gov (United States)

    Mo, Miaohua; Wang, Shan; Zhou, Ying; Li, Hong; Wu, Yaojiong

    2016-09-01

    Mesenchymal stem cells (MSC) are capable of differentiating into cells of multiple cell lineages and have potent paracrine effects. Due to their easy preparation and low immunogenicity, MSC have emerged as an extremely promising therapeutic agent in regenerative medicine for diverse diseases. However, MSC are heterogeneous with respect to phenotype and function in current isolation and cultivation regimes, which often lead to incomparable experimental results. In addition, there may be specific stem cell subpopulations with definite differentiation capacity toward certain lineages in addition to stem cells with multi-differentiation potential. Recent studies have identified several subsets of MSC which exhibit distinct features and biological activities, and enhanced therapeutic potentials for certain diseases. In this review, we give an overview of these subsets for their phenotypic, biological and functional properties. PMID:27141940

  5. Red blood cell phenotype matching for various ethnic groups.

    Science.gov (United States)

    Badjie, Karafa S W; Tauscher, Craig D; van Buskirk, Camille M; Wong, Clare; Jenkins, Sarah M; Smith, Carin Y; Stubbs, James R

    2011-01-01

    Patients requiring chronic transfusion support are at risk of alloimmunization after red blood cell (RBC) transfusion because of a disparity between donor and recipient antigen profiles. This research explored the probability of obtaining an exact extended phenotype match between blood donors randomly selected from our institution and patients randomly selected from particular ethnic groups. Blood samples from 1,000 blood donors tested by molecular method were evaluated for the predicted phenotype distribution of Rh, Kell, Kidd, Duffy, and MNS. A random subsample of 800 donor phenotypes was then evaluated for the probability of obtaining an exact match with respect to phenotype with a randomly selected patient from a particular ethnic group. Overall, there was a greater than 80 percent probability of finding an exact donor-recipient match for the K/k alleles in the Kell system. The probability ranged from 3 percent to 38 percent, depending on the ethnicity and disparities in phenotypic profiles, for the Rh, Kidd, Duffy, and MNS systems. A significant donor-recipient phenotype mismatch ratio exists with certain blood group antigens such that, with current routine ABO and D matching practices, recipients of certain ethnic groups are predisposed to alloimmunization. PMID:22356481

  6. Phosphatidylinositol 3 kinase modulation of trophoblast cell differentiation

    Directory of Open Access Journals (Sweden)

    Kent Lindsey N

    2010-09-01

    Full Text Available Abstract Background The trophoblast lineage arises as the first differentiation event during embryogenesis. Trophoblast giant cells are one of several end-stage products of trophoblast cell differentiation in rodents. These cells are located at the maternal-fetal interface and are capable of invasive and endocrine functions, which are necessary for successful pregnancy. Rcho-1 trophoblast stem cells can be effectively used as a model for investigating trophoblast cell differentiation. In this report, we evaluated the role of the phosphatidylinositol 3-kinase (PI3K signaling pathway in the regulation of trophoblast cell differentiation. Transcript profiles from trophoblast stem cells, differentiated trophoblast cells, and differentiated trophoblast cells following disruption of PI3K signaling were generated and characterized. Results Prominent changes in gene expression accompanied the differentiation of trophoblast stem cells. PI3K modulated the expression of a subset of trophoblast cell differentiation-dependent genes. Among the PI3K-responsive genes were those encoding proteins contributing to the invasive and endocrine phenotypes of trophoblast giant cells. Conclusions Genes have been identified with differential expression patterns associated with trophoblast stem cells and trophoblast cell differentiation; a subset of these genes are regulated by PI3K signaling, including those impacting the differentiated trophoblast giant cell phenotype.

  7. Acquired cancer stem cell phenotypes through Oct4-mediated dedifferentiation

    Science.gov (United States)

    Kumar, Suresh M.; Liu, Shujing; Lu, Hezhe; Zhang, Hongtao; Zhang, Paul J.; Gimotty, Phyllis A.; Guerra, Matthew; Guo, Wei; Xu, Xiaowei

    2012-01-01

    There is enormous interest to target cancer stem cells (CSCs) for clinical treatment because these cells are highly tumorigenic and resistant to chemotherapy. Oct4 is expressed by CSC-like cells in different types of cancer. However, function of Oct4 in tumor cells is unclear. In this study, we showed that expression of Oct4 gene or transmembrane delivery of Oct4 protein promoted dedifferentiation of melanoma cells to CSC-like cells. The dedifferentiated melanoma cells showed significantly decreased expression of melanocytic markers and acquired the ability to form tumor spheroids. They showed markedly increased resistance to chemotherapeutic agents and hypoxic injury. In the subcutaneous xenograft and tail vein injection assays, these cells had significantly increased tumorigenic capacity. The dedifferentiated melanoma cells acquired features associated with CSCs such as multipotent differentiation capacity and expression of melanoma CSC markers such as ABCB5 and CD271. Mechanistically, Oct4 induced dedifferentiation was associated with increased expression of endogenous Oct4, Nanog and Klf4, and global gene expression changes that enriched for transcription factors. RNAi mediated knockdown of Oct4 in dedifferentiated cells led to diminished CSC phenotypes. Oct4 expression in melanoma was regulated by hypoxia and its expression was detected in a subpopulation of melanoma cells in clinical samples. Our data indicate that Oct4 is a positive regulator of tumor dedifferentiation. The results suggest that CSC phenotype is dynamic and may be acquired through dedifferentiation. Oct4 mediated tumor cell dedifferentiation may play an important role during tumor progression. PMID:22286766

  8. Computational investigation of epithelial cell dynamic phenotype in vitro

    OpenAIRE

    Debnath Jayanta; Mostov Keith; Park Sunwoo; Kim Sean HJ; Hunt C Anthony

    2009-01-01

    Abstract Background When grown in three-dimensional (3D) cultures, epithelial cells typically form cystic organoids that recapitulate cardinal features of in vivo epithelial structures. Characterizing essential cell actions and their roles, which constitute the system's dynamic phenotype, is critical to gaining deeper insight into the cystogenesis phenomena. Methods Starting with an earlier in silico epithelial analogue (ISEA1) that validated for several Madin-Darby canine kidney (MDCK) epith...

  9. HDACs and the senescent phenotype of WI-38 cells

    Directory of Open Access Journals (Sweden)

    Noonan Emily J

    2005-10-01

    Full Text Available Abstract Background Normal cells possess a limited proliferative life span after which they enter a state of irreversible growth arrest. This process, known as replicative senescence, is accompanied by changes in gene expression that give rise to a variety of senescence-associated phenotypes. It has been suggested that these gene expression changes result in part from alterations in the histone acetylation machinery. Here we examine the influence of HDAC inhibitors on the expression of senescent markers in pre- and post-senescent WI-38 cells. Results Pre- and post-senescent WI-38 cells were treated with the HDAC inhibitors butyrate or trichostatin A (TSA. Following HDAC inhibitor treatment, pre-senescent cells increased p21WAF1 and β-galactosidase expression, assumed a flattened senescence-associated morphology, and maintained a lower level of proteasome activity. These alterations also occurred during normal replicative senescence of WI-38 cells, but were not accentuated further by HDAC inhibitors. We also found that HDAC1 levels decline during normal replicative senescence. Conclusion Our findings indicate that HDACs impact numerous phenotypic changes associated with cellular senescence. Reduced HDAC1 expression levels in senescent cells may be an important event in mediating the transition to a senescent phenotype.

  10. Phenotypic variability in human skin mast cells.

    Science.gov (United States)

    Babina, Magda; Guhl, Sven; Artuc, Metin; Trivedi, Neil N; Zuberbier, Torsten

    2016-06-01

    Mast cells (MCs) are unique constituents of the human body. While inter-individual differences may influence the ways by which MCs operate in their skin habitat, they have not been surveyed in a comprehensive manner so far. We therefore set out to quantify skin MC variability in a large cohort of subjects. Pathophysiologically relevant key features were quantified and correlated: transcripts of c-kit, FcεRIα, FcεRIβ, FcεRIγ, histidine decarboxylase, tryptase, and chymase; surface expression of c-Kit, FcεRIα; activity of tryptase, and chymase; histamine content and release triggered by FcεRI and Ca(2+) ionophore. While there was substantial variability among subjects, it strongly depended on the feature under study (coefficient of variation 33-386%). Surface expression of FcεRI was positively associated with FcεRIα mRNA content, histamine content with HDC mRNA, and chymase activity with chymase mRNA. Also, MC signature genes were co-regulated in distinct patterns. Intriguingly, histamine levels were positively linked to tryptase and chymase activity, whereas tryptase and chymase activity appeared to be uncorrelated. FcεRI triggered histamine release was highly variable and was unrelated to FcεRI expression but unexpectedly tightly correlated with histamine release elicited by Ca(2+) ionophore. This most comprehensive and systematic work of its kind provides not only detailed insights into inter-individual variability in MCs, but also uncovers unexpected patterns of co-regulation among signature attributes of the lineage. Differences in MCs among humans may well underlie clinical responses in settings of allergic reactions and complex skin disorders alike. PMID:26706922

  11. Label-free imaging to study phenotypic behavioural traits of cells in complex co-cultures

    Science.gov (United States)

    Suman, Rakesh; Smith, Gabrielle; Hazel, Kathryn E. A.; Kasprowicz, Richard; Coles, Mark; O'Toole, Peter; Chawla, Sangeeta

    2016-02-01

    Time-lapse imaging is a fundamental tool for studying cellular behaviours, however studies of primary cells in complex co-culture environments often requires fluorescent labelling and significant light exposure that can perturb their natural function over time. Here, we describe ptychographic phase imaging that permits prolonged label-free time-lapse imaging of microglia in the presence of neurons and astrocytes, which better resembles in vivo microenvironments. We demonstrate the use of ptychography as an assay to study the phenotypic behaviour of microglial cells in primary neuronal co-cultures through the addition of cyclosporine A, a potent immune-modulator.

  12. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils

    DEFF Research Database (Denmark)

    Galli, Stephen J; Borregaard, Niels; Wynn, Thomas A

    2011-01-01

    Hematopoietic cells, including lymphoid and myeloid cells, can develop into phenotypically distinct 'subpopulations' with different functions. However, evidence indicates that some of these subpopulations can manifest substantial plasticity (that is, undergo changes in their phenotype and function......). Here we focus on the occurrence of phenotypically distinct subpopulations in three lineages of myeloid cells with important roles in innate and acquired immunity: macrophages, mast cells and neutrophils. Cytokine signals, epigenetic modifications and other microenvironmental factors can substantially...... and, in some cases, rapidly and reversibly alter the phenotype of these cells and influence their function. This suggests that regulation of the phenotype and function of differentiated hematopoietic cells by microenvironmental factors, including those generated during immune responses, represents...

  13. Optimality and adaptation of phenotypically switching cells in fluctuating environments.

    Science.gov (United States)

    Belete, Merzu Kebede; Balázsi, Gábor

    2015-12-01

    Stochastic switching between alternative phenotypic states is a common cellular survival strategy during unforeseen environmental fluctuations. Cells can switch between different subpopulations that proliferate at different rates in different environments. Optimal population growth is typically assumed to occur when phenotypic switching rates match environmental switching rates. However, it is not well understood how this optimum behaves as a function of the growth rates of phenotypically different cells. In this study, we use mathematical and computational models to test how the actual parameters associated with optimal population growth differ from those assumed to be optimal. We find that the predicted optimum is practically always valid if the environmental durations are long. However, the regime of validity narrows as environmental durations shorten, especially if subpopulation growth rate differences differ from each other (are asymmetric) in two environments. Furthermore, we study the fate of mutants with switching rates previously predicted to be optimal. We find that mutants which match their phenotypic switching rates with the environmental ones can only sweep the population if the assumed optimum is valid, but not otherwise.

  14. Optimality and adaptation of phenotypically switching cells in fluctuating environments

    Science.gov (United States)

    Belete, Merzu Kebede; Balázsi, Gábor

    2015-12-01

    Stochastic switching between alternative phenotypic states is a common cellular survival strategy during unforeseen environmental fluctuations. Cells can switch between different subpopulations that proliferate at different rates in different environments. Optimal population growth is typically assumed to occur when phenotypic switching rates match environmental switching rates. However, it is not well understood how this optimum behaves as a function of the growth rates of phenotypically different cells. In this study, we use mathematical and computational models to test how the actual parameters associated with optimal population growth differ from those assumed to be optimal. We find that the predicted optimum is practically always valid if the environmental durations are long. However, the regime of validity narrows as environmental durations shorten, especially if subpopulation growth rate differences differ from each other (are asymmetric) in two environments. Furthermore, we study the fate of mutants with switching rates previously predicted to be optimal. We find that mutants which match their phenotypic switching rates with the environmental ones can only sweep the population if the assumed optimum is valid, but not otherwise.

  15. Troglitazone reverses the multiple drug resistance phenotype in cancer cells

    Directory of Open Access Journals (Sweden)

    Gerald F Davies

    2009-03-01

    Full Text Available Gerald F Davies1, Bernhard HJ Juurlink2, Troy AA Harkness11Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Canada; 2College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi ArabiaAbstract: A major problem in treating cancer is the development of drug resistance. We previously demonstrated doxorubicin (DOX resistance in K562 human leukemia cells that was associated with upregulation of glyoxalase 1 (GLO-1 and histone H3 expression. The thiazolidinedione troglitazone (TRG downregulated GLO-1 expression and further upregulated histone H3 expression and post-translational modifications in these cells, leading to a regained sensitivity to DOX. Given the pleiotropic effects of epigenetic changes in cancer development, we hypothesized that TRG may downregulate the multiple drug resistance (MDR phenotype in a variety of cancer cells. To test this, MCF7 human breast cancer cells and K562 cells were cultured in the presence of low-dose DOX to establish DOX-resistant cell lines (K562/DOX and MCF7/DOX. The MDR phenotype was confirmed by Western blot analysis of the 170 kDa P-glycoprotein (Pgp drug efflux pump multiple drug resistance protein 1 (MDR-1, and the breast cancer resistance protein (BCRP. TRG markedly decreased expression of both MDR-1 and BCRP in these cells, resulting in sensitivity to DOX. Silencing of MDR-1 expression also sensitized MCF7/DOX cells to DOX. Use of the specific and irreversible peroxisome proliferator-activated receptor gamma (PPARγ inhibitor GW9662 in the nanomolar range not only demonstrated that the action of TRG on MCF/DOX was PPARγ-independent, but indicated that PPARγ may play a role in the MDR phenotype, which is antagonized by TRG. We conclude that TRG is potentially a useful adjunct therapy in chemoresistant cancers. Keywords: chemotherapy, doxorubicin, breast cancer resistance protein-1, multiple drug resistance, multiple drug resistance protein 1

  16. PV Cell and Module Calibrations at NREL

    Energy Technology Data Exchange (ETDEWEB)

    Emery, Keith

    2012-10-22

    NREL has equipment to measure any conceivable cell or module technology. The lack of standards for low concentration modules complicates matters. Spectrally adjustable simulators are critical for more than three junctions. NREL's 10-channel fiber optic simulator has shown that the light can be set for each junction within 1% of what it would be under the reference spectrum for up to a five-junction cell. Uncertainty in module simulators dominated by spatial nonuniformity for calibration labs. Manufacturers can mitigate this error by using matched reference modules instead of cells.

  17. Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington's disease in vitro model.

    Science.gov (United States)

    Lee, Mijung; Liu, Tian; Im, Wooseok; Kim, Manho

    2016-08-01

    Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by the aggregation of mutant Huntingtin (mHtt). Adipose-derived stem cells (ASCs) have a potential for use in the treatment of incurable disorders, including HD. ASCs secrete various neurotrophic factors and microvesicles, and modulate hostile microenvironments affected by disease through paracrine mechanisms. Exosomes are small vesicles that transport nucleic acid and protein between cells. Here, we investigated the therapeutic role of exosomes from ASCs (ASC-exo) using in vitro HD model by examining pathological phenotypes of this model. Immunocytochemistry result showed that ASC-exo significantly decreases mHtt aggregates in R6/2 mice-derived neuronal cells. Western blot result further confirmed the reduction in mHtt aggregates level by ASC-exo treatment. ASC-exo up-regulates PGC-1, phospho-CREB and ameliorates abnormal apoptotic protein level in an in vitro HD model. In addition, MitoSOX Red, JC-1 and cell viability assay showed that ASC-exo reduces mitochondrial dysfunction and cell apoptosis of in vitro HD model. These findings suggest that ASC-exo has a therapeutic potential for treating HD by modulating representative cellular phenotypes of HD. PMID:27177616

  18. Characterization of vascular smooth muscle cell phenotype in long-term culture.

    Science.gov (United States)

    Absher, M; Woodcock-Mitchell, J; Mitchell, J; Baldor, L; Low, R; Warshaw, D

    1989-02-01

    Studies of bovine carotid artery smooth muscle cells, during long-term in vitro subcultivation (up to 100 population doublings), have revealed phenotypic heterogeneity among cells, as characterized by differences in proliferative behavior, cell morphology, and contractile-cytoskeletal protein profiles. In vivo, smooth muscle cells were spindle-shaped and expressed desmin and alpha-smooth muscle actin (50% of total actin) as their predominant cytoskeletal and contractile proteins. Within 24 h of culture, vimentin rather than desmin was the predominant intermediate filament protein, with little change in alpha-actin content. Upon initial subcultivation, all cells were flattened and fibroblastic in appearance with a concomitant fivefold reduction in alpha-actin content, whereas the beta and gamma nonmuscle actins predominated. In three out of four cell lines studied, fluctuations in proliferative activity were observed during the life span of the culture. These spontaneous fluctuations in proliferation were accompanied by coordinated changes in morphology and contractile-cytoskeletal protein profiles. During periods of enhanced proliferation a significant proportion of cells reverted to their original spindle-shaped morphology with a simultaneous increase in alpha-actin content (20 to 30% of total actin). These results suggest that in long-term culture smooth muscle cells undergo spontaneous modulations in cell phenotype and may serve as a useful model for studying the regulation of intracellular protein expression.

  19. IFN‐λ3 polymorphism indirectly influences NK cell phenotype and function during acute HCV infection

    Science.gov (United States)

    Depla, Marion; Pelletier, Sandy; Bédard, Nathalie; Brunaud, Camille; Bruneau, Julie

    2016-01-01

    Abstract Introduction Polymorphisms in the type III interferon IFN‐λ3 and the killer cell immunoglobulin‐like receptor (KIR) genes controlling the activity of natural killer (NK) cells can predict spontaneous resolution of acute hepatitis C virus (HCV) infection. We hypothesized that IFN‐λ3 polymorphism may modulate NK cell function during acute HCV. Methods We monitored the plasma levels of type III IFNs in relation to the phenotype and the function of NK cells in a cohort of people who inject drugs (PWID) during acute HCV infection with different outcomes. Results Early acute HCV was associated with high variability in type III IFNs plasma levels and the favorable IFN‐λ3 CC genotype was associated with higher viral loads. Reduced expression of Natural Killer Group Protein 2A (NKG2A) was associated with lower IFN‐λ3 plasma levels and the CC genotype. IFN‐γ production by NK cells was higher in individuals with the CC genotype during acute infection but this did not prevent viral persistence. IFN‐λ3 plasma levels did not correlate with function of NK cells and IFN‐λ3 prestimulation did not affect NK cell activation and function. Conclusions These results suggest that IFN‐λ3 polymorphism indirectly influences NK cell phenotype and function during acute HCV but other factors may act in concert to determine the outcome of the infection. PMID:27621819

  20. An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype.

    Directory of Open Access Journals (Sweden)

    Irina M Shapiro

    2011-08-01

    Full Text Available Epithelial-mesenchymal transition (EMT, a mechanism important for embryonic development, plays a critical role during malignant transformation. While much is known about transcriptional regulation of EMT, alternative splicing of several genes has also been correlated with EMT progression, but the extent of splicing changes and their contributions to the morphological conversion accompanying EMT have not been investigated comprehensively. Using an established cell culture model and RNA-Seq analyses, we determined an alternative splicing signature for EMT. Genes encoding key drivers of EMT-dependent changes in cell phenotype, such as actin cytoskeleton remodeling, regulation of cell-cell junction formation, and regulation of cell migration, were enriched among EMT-associated alternatively splicing events. Our analysis suggested that most EMT-associated alternative splicing events are regulated by one or more members of the RBFOX, MBNL, CELF, hnRNP, or ESRP classes of splicing factors. The EMT alternative splicing signature was confirmed in human breast cancer cell lines, which could be classified into basal and luminal subtypes based exclusively on their EMT-associated splicing pattern. Expression of EMT-associated alternative mRNA transcripts was also observed in primary breast cancer samples, indicating that EMT-dependent splicing changes occur commonly in human tumors. The functional significance of EMT-associated alternative splicing was tested by expression of the epithelial-specific splicing factor ESRP1 or by depletion of RBFOX2 in mesenchymal cells, both of which elicited significant changes in cell morphology and motility towards an epithelial phenotype, suggesting that splicing regulation alone can drive critical aspects of EMT-associated phenotypic changes. The molecular description obtained here may aid in the development of new diagnostic and prognostic markers for analysis of breast cancer progression.

  1. Single-Cell Phenotype Classification Using Deep Convolutional Neural Networks.

    Science.gov (United States)

    Dürr, Oliver; Sick, Beate

    2016-10-01

    Deep learning methods are currently outperforming traditional state-of-the-art computer vision algorithms in diverse applications and recently even surpassed human performance in object recognition. Here we demonstrate the potential of deep learning methods to high-content screening-based phenotype classification. We trained a deep learning classifier in the form of convolutional neural networks with approximately 40,000 publicly available single-cell images from samples treated with compounds from four classes known to lead to different phenotypes. The input data consisted of multichannel images. The construction of appropriate feature definitions was part of the training and carried out by the convolutional network, without the need for expert knowledge or handcrafted features. We compare our results against the recent state-of-the-art pipeline in which predefined features are extracted from each cell using specialized software and then fed into various machine learning algorithms (support vector machine, Fisher linear discriminant, random forest) for classification. The performance of all classification approaches is evaluated on an untouched test image set with known phenotype classes. Compared to the best reference machine learning algorithm, the misclassification rate is reduced from 8.9% to 6.6%.

  2. Rescue of an In Vitro Neuron Phenotype Identified in Niemann-Pick Disease, Type C1 Induced Pluripotent Stem Cell-Derived Neurons by Modulating the WNT Pathway and Calcium Signaling

    OpenAIRE

    Efthymiou, Anastasia G.; Steiner, Joe; Pavan, William J.; Wincovitch, Stephen; Larson, Denise M.; Porter, Forbes D.; Rao, Mahendra S; Malik, Nasir

    2015-01-01

    This study involved the generation of an induced pluripotent stem cell line from a subject homozygous for the most frequent Niemann-Pick disease, type C1 (NPC1) mutation and the subsequent creation of a stable line of neural stem cells as a disease model for NPC1. The clear readout from these cells makes them ideal candidates for high-throughput screening and is a valuable tool to better understand the development of NPC1 and to develop better therapeutic options.

  3. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shin [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Masamune, Atsushi, E-mail: amasamune@med.tohoku.ac.jp [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Takikawa, Tetsuya; Suzuki, Noriaki; Kikuta, Kazuhiro; Hirota, Morihisa [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Hamada, Hirofumi [Laboratory of Oncology, Department of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji (Japan); Kobune, Masayoshi [Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo (Japan); Satoh, Kennichi [Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori (Japan); Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. Black-Right-Pointing-Pointer Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. Black-Right-Pointing-Pointer Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. Black-Right-Pointing-Pointer Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. Black-Right-Pointing-Pointer This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called 'cancer stem cells', within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the 'stemness' of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  4. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. ► Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. ► Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. ► Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. ► This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called “cancer stem cells”, within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the “stemness” of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  5. Microglia in close vicinity of glioma cells: correlation between phenotype and metabolic alterations.

    Directory of Open Access Journals (Sweden)

    Pierre Voisin

    2010-10-01

    Full Text Available Microglia are immune cells within the central nervous system. In brain-developing tumors, gliomas are able to silence the defense and immune functions of microglia, a phenomenon which strongly contributes to tumor progression and treatment resistance. Being activated and highly motile, microglia infiltrate tumors and secrete macrophagic chemoattractant factors. Thereafter, tumor cells shut down their immune properties and stimulate the microglia to release tumor growth-promoting factors. The result of such modulation is that a kind of symbiosis occurs between microglia and tumor cells, in favor of tumor growth.However, little is known about microglial phenotype and metabolic modifications in a tumoral environment. Co-cultures were performed using CHME5 microglia cells grown on collagen beads or on coverslips and placed on monolayer of C6 cells, limiting cell/cell contacts. Phagocytic behavior and expression of macrophagic and cytoskeleton markers were monitored. Respiratory properties and energetic metabolism were also studied with regard to the activated phenotype of microglia. In co-cultures, transitory modifications of microglial morphology and metabolism were observed linked to a concomitant transitory increase of phagocytic properties. Therefore, after 1h of co-culture, microglia were activated but when longer in contact with tumor cells, phagocytic properties appear silenced. Like the behavior of the phenotype, microglial respiration showed a transitory readjustment although the mitochondria maintained their perinuclear relocation. Nevertheless, the energetic metabolism of the microglia was altered, suggesting a new energetic steady state. The results clearly indicate that like the depressed immune properties, the macrophagic and metabolic status of the microglia is quickly driven by the glioma environment, despite short initial phagocytic activation. Such findings question the possible contribution of diffusible tumor factors to the

  6. Consensus nomenclature for CD8+ T cell phenotypes in cancer

    Science.gov (United States)

    Apetoh, Lionel; Smyth, Mark J.; Drake, Charles G.; Abastado, Jean-Pierre; Apte, Ron N.; Ayyoub, Maha; Blay, Jean-Yves; Bonneville, Marc; Butterfield, Lisa H.; Caignard, Anne; Castelli, Chiara; Cavallo, Federica; Celis, Esteban; Chen, Lieping; Colombo, Mario P.; Comin-Anduix, Begoña; Coukos, Georges; Dhodapkar, Madhav V.; Dranoff, Glenn; Frazer, Ian H.; Fridman, Wolf-Hervé; Gabrilovich, Dmitry I.; Gilboa, Eli; Gnjatic, Sacha; Jäger, Dirk; Kalinski, Pawel; Kaufman, Howard L.; Kiessling, Rolf; Kirkwood, John; Knuth, Alexander; Liblau, Roland; Lotze, Michael T.; Lugli, Enrico; Marincola, Francesco; Melero, Ignacio; Melief, Cornelis J.; Mempel, Thorsten R.; Mittendorf, Elizabeth A.; Odun, Kunle; Overwijk, Willem W.; Palucka, Anna Karolina; Parmiani, Giorgio; Ribas, Antoni; Romero, Pedro; Schreiber, Robert D.; Schuler, Gerold; Srivastava, Pramod K.; Tartour, Eric; Valmori, Danila; van der Burg, Sjoerd H.; van der Bruggen, Pierre; van den Eynde, Benoît J.; Wang, Ena; Zou, Weiping; Whiteside, Theresa L.; Speiser, Daniel E.; Pardoll, Drew M.; Restifo, Nicholas P.; Anderson, Ana C.

    2015-01-01

    Whereas preclinical investigations and clinical studies have established that CD8+ T cells can profoundly affect cancer progression, the underlying mechanisms are still elusive. Challenging the prevalent view that the beneficial effect of CD8+ T cells in cancer is solely attributable to their cytotoxic activity, several reports have indicated that the ability of CD8+ T cells to promote tumor regression is dependent on their cytokine secretion profile and their ability to self-renew. Evidence has also shown that the tumor microenvironment can disarm CD8+ T cell immunity, leading to the emergence of dysfunctional CD8+ T cells. The existence of different types of CD8+ T cells in cancer calls for a more precise definition of the CD8+ T cell immune phenotypes in cancer and the abandonment of the generic terms “pro-tumor” and “antitumor.” Based on recent studies investigating the functions of CD8+ T cells in cancer, we here propose some guidelines to precisely define the functional states of CD8+ T cells in cancer. PMID:26137416

  7. Assembly jig assures reliable solar cell modules

    Science.gov (United States)

    Ofarrell, H. O.

    1966-01-01

    Assembly jig holds the components for a solar cell module in place as the assembly is soldered and bonded by the even heat of an oven. The jig is designed to the configuration of the planned module. It eliminates uneven thermal conditions caused by hand soldering methods.

  8. Mesenchymal stem cells differentially modulate effector CD8+ T cell subsets and exacerbate experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Glenn, Justin D; Smith, Matthew D; Calabresi, Peter A; Whartenby, Katharine A

    2014-10-01

    Mesenchymal stem cells (MSC) have emerged as a promising candidate for inflammatory suppression and disease amelioration, especially of neuro-inflammatory diseases such as multiple sclerosis (MS). Auto-reactive CD4+ and CD8+ T cells acquire pathogenic IFNγ-producing- (Type I) and IL-17A-producing- (Type 17) effector phenotypes in MS and its animal model experimental autoimmune encephalomyelitis (EAE). Although MSC have been extensively demonstrated to suppress pathogenic effector CD4+ T cells and CD4+ T cell-mediated EAE, surprisingly few studies have addressed their modulation of effector CD8+ T cells represented in MS or their impact on CD8+ T cell-mediated EAE. We find that MSC differentially modulate CD8+ T cell development depending on effector T cell subtype. MSC drive activated low-IFNγ producers toward an enhanced high-IFNγ Tc1-like phenotype but strongly inhibit the production of IL-17A and Tc17 polarization in vitro. These observations are underscored by differential MSC modulation of T cell activation, proliferation, and signature transcription factor up-regulation. In addition, effector CD8+ T cells co-cultured with MSC exhibited increased production of IL-2, a molecule known to enhance IFNγ, yet suppress IL-17A, production. Based on these in vitro effects on CD8+ T cells, we next evaluated their impact on the severity of EAE. To better evaluate CD8+ T cells, we immunized mice with MOG37-50 , which is a CD8-targeted epitope. Our results revealed a worsening of disease, consistent with their in vitro stimulation of Tc1 cells. These findings highlight the emerging duality of MSC in immune modulation and provide implications for their future use in immune-related diseases. PMID:24911892

  9. Cell shunt resistance and photovoltaic module performance

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, T.J.; Basso, T.S.; Rummel, S.R. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    Shunt resistance of cells in photovoltaic modules can affect module power output and could indicate flawed manufacturing processes and reliability problems. The authors describe a two-terminal diagnostic method to directly measure the shunt resistance of individual cells in a series-connected module non-intrusively, without deencapsulation. Peak power efficiency vs. light intensity was measured on a 12-cell, series-connected, single crystalline module having relatively high cell shunt resistances. The module was remeasured with 0.5-, 1-, and 2-ohm resistors attached across each cell to simulate shunt resistances of several emerging technologies. Peak power efficiencies decreased dramatically at lower light levels. Using the PSpice circuit simulator, the authors verified that cell shunt and series resistances can indeed be responsible for the observed peak power efficiency vs. intensity behavior. The authors discuss the effect of basic cell diode parameters, i.e., shunt resistance, series resistance, and recombination losses, on PV module performance as a function of light intensity.

  10. The proteasomal and apoptotic phenotype determine bortezomib sensitivity of non-small cell lung cancer cells

    Directory of Open Access Journals (Sweden)

    Chęcińska Agnieszka

    2007-11-01

    Full Text Available Abstract Bortezomib is a novel anti-cancer agent which has shown promising activity in non-small lung cancer (NSCLC patients. However, only a subset of patients respond to this treatment. We show that NSCLC cell lines are differentially sensitive to bortezomib, IC50 values ranging from 5 to 83 nM. The apoptosis-inducing potential of bortezomib in NSCLC cells was found to be dependent not only on the apoptotic phenotype but also on the proteasomal phenotype of individual cell lines. Upon effective proteasome inhibition, H460 cells were more susceptible to apoptosis induction by bortezomib than SW1573 cells, indicating a different apoptotic phenotype. However, exposure to a low dose of bortezomib did only result in SW1573 cells, and not in H460 cells, in inhibition of proteasome activity and subsequent apoptosis. This suggests a different proteasomal phenotype as well. Additionally, overexpression of anti-apoptotic protein Bcl-2 in H460 cells did not affect the proteasomal phenotype of H460 cells but did result in decreased bortezomib-induced apoptosis. In conclusion, successful proteasome-inhibitor based treatment strategies in NSCLC face the challenge of having to overcome apoptosis resistance as well as proteasomal resistance of individual lung cancer cells. Further studies in NSCLC are warranted to elucidate underlying mechanisms.

  11. Computational investigation of epithelial cell dynamic phenotype in vitro

    Directory of Open Access Journals (Sweden)

    Debnath Jayanta

    2009-05-01

    Full Text Available Abstract Background When grown in three-dimensional (3D cultures, epithelial cells typically form cystic organoids that recapitulate cardinal features of in vivo epithelial structures. Characterizing essential cell actions and their roles, which constitute the system's dynamic phenotype, is critical to gaining deeper insight into the cystogenesis phenomena. Methods Starting with an earlier in silico epithelial analogue (ISEA1 that validated for several Madin-Darby canine kidney (MDCK epithelial cell culture attributes, we built a revised analogue (ISEA2 to increase overlap between analogue and cell culture traits. Both analogues used agent-based, discrete event methods. A set of axioms determined ISEA behaviors; together, they specified the analogue's operating principles. A new experimentation framework enabled tracking relative axiom use and roles during simulated cystogenesis along with establishment of the consequences of their disruption. Results ISEA2 consistently produced convex cystic structures in a simulated embedded culture. Axiom use measures provided detailed descriptions of the analogue's dynamic phenotype. Dysregulating key cell death and division axioms led to disorganized structures. Adhering to either axiom less than 80% of the time caused ISEA1 to form easily identified morphological changes. ISEA2 was more robust to identical dysregulation. Both dysregulated analogues exhibited characteristics that resembled those associated with an in vitro model of early glandular epithelial cancer. Conclusion We documented the causal chains of events, and their relative roles, responsible for simulated cystogenesis. The results stand as an early hypothesis–a theory–of how individual MDCK cell actions give rise to consistently roundish, cystic organoids.

  12. Comparative Metabolomic and Lipidomic Analysis of Phenotype Stratified Prostate Cells.

    Directory of Open Access Journals (Sweden)

    Tanya C Burch

    Full Text Available Prostate cancer (PCa is the most prevalent cancer amongst men and the second most common cause of cancer related-deaths in the USA. Prostate cancer is a heterogeneous disease ranging from indolent asymptomatic cases to very aggressive life threatening forms. The goal of this study was to identify differentially expressed metabolites and lipids in prostate cells with different tumorigenic phenotypes. We have used mass spectrometry metabolomic profiling, lipidomic profiling, bioinformatic and statistical methods to identify, quantify and characterize differentially regulated molecules in five prostate derived cell lines. We have identified potentially interesting species of different lipid subclasses including phosphatidylcholines (PCs, phosphatidylethanolamines (PEs, glycerophosphoinositols (PIs and other metabolites that are significantly upregulated in prostate cancer cells derived from distant metastatic sites. Transcriptomic and biochemical analysis of key enzymes that are involved in lipid metabolism demonstrate the significant upregulation of choline kinase alpha in the metastatic cells compared to the non-malignant and non-metastatic cells. This suggests that different de novo lipogenesis and other specific signal transduction pathways are activated in aggressive metastatic cells as compared to normal and non-metastatic cells.

  13. Rasd2 Modulates Prefronto-Striatal Phenotypes in Humans and 'Schizophrenia-Like Behaviors' in Mice.

    Science.gov (United States)

    Vitucci, Daniela; Di Giorgio, Annabella; Napolitano, Francesco; Pelosi, Barbara; Blasi, Giuseppe; Errico, Francesco; Attrotto, Maria Teresa; Gelao, Barbara; Fazio, Leonardo; Taurisano, Paolo; Di Maio, Anna; Marsili, Valentina; Pasqualetti, Massimo; Bertolino, Alessandro; Usiello, Alessandro

    2016-02-01

    Rasd2 is a thyroid hormone target gene, which encodes for a GTP-binding protein enriched in the striatum where, among other functions, it modulates dopaminergic neurotransmission. Here we report that human RASD2 mRNA is abundant in putamen, but it also occurs in the cerebral cortex, with a distinctive expression pattern that differs from that present in rodents. Consistent with its localization, we found that a genetic variation in RASD2 (rs6518956) affects postmortem prefrontal mRNA expression in healthy humans and is associated with phenotypes of relevance to schizophrenia, including prefrontal and striatal grey matter volume and physiology during working memory, as measured with magnetic resonance imaging. Interestingly, quantitative real-time PCR analysis indicated that RASD2 mRNA is slightly reduced in postmortem prefrontal cortex of patients with schizophrenia. In the attempt to uncover the neurobiological substrates associated with Rasd2 activity, we used knockout mice to analyze the in vivo influence of this G-protein on the prepulse inhibition of the startle response and psychotomimetic drug-related behavioral response. Data showed that Rasd2 mutants display deficits in basal prepulse inhibition that, in turn, exacerbate gating disruption under psychotomimetic drug challenge. Furthermore, we documented that lack of Rasd2 strikingly enhances the behavioral sensitivity to motor stimulation elicited by amphetamine and phencyclidine. Based on animal model data, along with the finding that RASD2 influences prefronto-striatal phenotypes in healthy humans, we suggest that genetic mutation or reduced levels of this G-protein might have a role in cerebral circuitry dysfunction underpinning exaggerated psychotomimetic drugs responses and development of specific biological phenotypes linked to schizophrenia. PMID:26228524

  14. Dynamic Switch Between Two Adhesion Phenotypes in Colorectal Cancer Cells.

    Science.gov (United States)

    Geng, Yue; Chandrasekaran, Siddarth; Agastin, Sivaprakash; Li, Jiahe; King, Michael R

    2014-01-01

    The hematogenous metastatic cascade is mediated by the interaction of cancer cells and the endothelial cell lining of blood vessels. In this work, we examine the colon cancer cell line COLO 205, which grows simultaneously in both adherent and suspended states in culture and can serve as a good model for studying tumor heterogeneity. The two subpopulations of cells have different molecular characteristics despite being from the same parent cell line. We found that the ratio of adherent to suspended cells in culture is maintained at 7:3 (equilibrium ratio). The ratio was maintained even when we separate the two populations and culture them separately. After 8 h in culture the equilibrium was achieved only from either adherent or suspended population. The adherent cells were found to express less E-selectin binding glycans and demonstrated significantly weaker interaction with E-selectin under flow than the suspended cells. Manipulation of the epithelial-mesenchymal transition (EMT) markers β-catenin and E-cadherin expression, either by siRNA knockdown of β-catenin or incubation with E-cadherin antibody-coated microbeads, shifted the ratio of adherent to suspended cells to 9:1. Interestingly, human plasma supplemented media shifted the ratio of adherent to suspended cells in the opposite direction to 1:9, favoring the suspended state. The dynamic COLO 205 population switch presents unique differential phenotypes of their subpopulations and could serve as a good model for studying cell heterogeneity and the EMT process in vitro. PMID:24575161

  15. Phenotypic characterizations and comparison of adult dental stem cells with adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Razieh Alipour

    2010-01-01

    Conclusions: Both cell populations derived from adipose tissue and dental pulp showed common phenotypic markers of mesenchymal stem cells. In conclusion, mesenchymal stem cells could be isolated and cultured successfully from dental pulp of human exfo-liated deciduous teeth, they are very good candidates for treatment and prevention of human diseases.

  16. Induction of vascular endothelial phenotype and cellular proliferation from human cord blood stem cells cultured in simulated microgravity

    Science.gov (United States)

    Chiu, Brian; Z-M Wan, Jim; Abley, Doris; Akabutu, John

    2005-05-01

    Recent studies have demonstrated that stem cells derived from adult hematopoietic tissues are capable of trans-differentiation into non-hematopoietic cells, and that the culture in microgravity ( μg) may modulate the proliferation and differentiation. We investigated the application of μg to human umbilical cord blood stem cells (CBSC) in the induction of vascular endothelial phenotype expression and cellular proliferation. CD34+ mononuclear cells were isolated from waste human umbilical cord blood samples and cultured in simulated μg for 14 days. The cells were seeded in rotary wall vessels (RWV) with or without microcarrier beads (MCB) and vascular endothelial growth factor was added during culture. Controls consisted of culture in 1 G. The cell cultures in RWV were examined by inverted microscopy. Cell counts, endothelial cell and leukocyte markers performed by flow-cytometry and FACS scan were assayed at days 1, 4, 7 and at the termination of the experiments. Culture in RWV revealed significantly increased cellular proliferation with three-dimensional (3D) tissue-like aggregates. At day 4, CD34+ cells cultured in RWV bioreactor without MCB developed vascular tubular assemblies and exhibited endothelial phenotypic markers. These data suggest that CD34+ human umbilical cord blood progenitors are capable of trans-differentiation into vascular endothelial cell phenotype and assemble into 3D tissue structures. Culture of CBSC in simulated μg may be potentially beneficial in the fields of stem cell biology and somatic cell therapy.

  17. Epigenetic alterations differ in phenotypically distinct human neuroblastoma cell lines

    International Nuclear Information System (INIS)

    Epigenetic aberrations and a CpG island methylator phenotype have been shown to be associated with poor outcomes in children with neuroblastoma (NB). Seven cancer related genes (THBS-1, CASP8, HIN-1, TIG-1, BLU, SPARC, and HIC-1) that have been shown to have epigenetic changes in adult cancers and play important roles in the regulation of angiogenesis, tumor growth, and apoptosis were analyzed to investigate the role epigenetic alterations play in determining NB phenotype. Two NB cell lines (tumorigenic LA1-55n and non-tumorigenic LA1-5s) that differ in their ability to form colonies in soft agar and tumors in nude mice were used. Quantitative RNA expression analyses were performed on seven genes in LA1-5s, LA1-55n and 5-Aza-dC treated LA1-55n NB cell lines. The methylation status around THBS-1, HIN-1, TIG-1 and CASP8 promoters was examined using methylation specific PCR. Chromatin immunoprecipitation assay was used to examine histone modifications along the THBS-1 promoter. Luciferase assay was used to determine THBS-1 promoter activity. Cell proliferation assay was used to examine the effect of 5-Aza-dC on NB cell growth. The soft agar assay was used to determine the tumorigenicity. Promoter methylation values for THBS-1, HIN-1, TIG-1, and CASP8 were higher in LA1-55n cells compared to LA1-5s cells. Consistent with the promoter methylation status, lower levels of gene expression were detected in the LA1-55n cells. Histone marks associated with repressive chromatin states (H3K9Me3, H3K27Me3, and H3K4Me3) were identified in the THBS-1 promoter region in the LA1-55n cells, but not the LA1-5s cells. In contrast, the three histone codes associated with an active chromatin state (acetyl H3, acetyl H4, and H3K4Me3) were present in the THBS-1 promoter region in LA1-5s cells, but not the LA1-55n cells, suggesting that an accessible chromatin structure is important for THBS-1 expression. We also show that 5-Aza-dC treatment of LA1-55n cells alters the DNA methylation

  18. Two pimarane diterpenoids from Ephemerantha lonchophylla and their evaluation as modulators of the multidrug resistance phenotype.

    Science.gov (United States)

    Na, G X; Wang, T S; Yin, L; Pan, Y; Guo, Y L; LeBlanc, G A; Reinecke, M G; Watson, W H; Krawiec, M

    1998-01-01

    Two new pimarane diterpenoids, lonchophylloids A (1) and B (2), were isolated from the stems of Ephemerantha lonchophylla. The structures of 1 and 2 were established predominantly through the application of extensive 1H-and 13C-NMR, 1D- and 2D-homonuclear and heteronuclear correlation NMR experiments, and X-ray diffraction methods. Consistent with structure--activity predictions, both compounds were capable of sensitizing cells that expressed the multidrug resistance phenotype to the toxicity of the anticancer drug doxorubicin. PMID:9461658

  19. Regulatory T cells expanded from HIV-1-infected individuals maintain phenotype, TCR repertoire and suppressive capacity.

    Directory of Open Access Journals (Sweden)

    Mathieu Angin

    Full Text Available While modulation of regulatory T cell (Treg function and adoptive Treg transfer are being explored as therapeutic modalities in the context of autoimmune diseases, transplantation and cancer, their role in HIV-1 pathogenesis remains less well defined. Controversy persists regarding their beneficial or detrimental effects in HIV-1 disease, which warrants further detailed exploration. Our objectives were to investigate if functional CD4(+ Tregs can be isolated and expanded from HIV-1-infected individuals for experimental or potential future therapeutic use and to determine phenotype and suppressive capacity of expanded Tregs from HIV-1 positive blood and tissue. Tregs and conventional T cell controls were isolated from blood and gut-associated lymphoid tissue of individuals with HIV-1 infection and healthy donors using flow-based cell-sorting. The phenotype of expanded Tregs was assessed by flow-cytometry and quantitative PCR. T-cell receptor ß-chain (TCR-β repertoire diversity was investigated by deep sequencing. Flow-based T-cell proliferation and chromium release cytotoxicity assays were used to determine Treg suppressive function. Tregs from HIV-1 positive individuals, including infants, were successfully expanded from PBMC and GALT. Expanded Tregs expressed high levels of FOXP3, CTLA4, CD39 and HELIOS and exhibited a highly demethylated TSDR (Treg-specific demethylated region, characteristic of Treg lineage. The TCRß repertoire was maintained following Treg expansion and expanded Tregs remained highly suppressive in vitro. Our data demonstrate that Tregs can be expanded from blood and tissue compartments of HIV-1+ donors with preservation of Treg phenotype, function and TCR repertoire. These results are highly relevant for the investigation of potential future therapeutic use, as currently investigated for other disease states and hold great promise for detailed studies on the role of Tregs in HIV-1 infection.

  20. Histamine Transmission Modulates the Phenotype of Murine Narcolepsy Caused by Orexin Neuron Deficiency.

    Science.gov (United States)

    Bastianini, Stefano; Silvani, Alessandro; Berteotti, Chiara; Lo Martire, Viviana; Cohen, Gary; Ohtsu, Hiroshi; Lin, Jian-Sheng; Zoccoli, Giovanna

    2015-01-01

    Narcolepsy type 1 is associated with loss of orexin neurons, sleep-wake derangements, cataplexy, and a wide spectrum of alterations in other physiological functions, including energy balance, cardiovascular, and respiratory control. It is unclear which narcolepsy signs are directly related to the lack of orexin neurons or are instead modulated by dysfunction of other neurotransmitter systems physiologically controlled by orexin neurons, such as the histamine system. To address this question, we tested whether some of narcolepsy signs would be detected in mice lacking histamine signaling (HDC-KO). Moreover, we studied double-mutant mice lacking both histamine signaling and orexin neurons (DM) to evaluate whether the absence of histamine signaling would modulate narcolepsy symptoms produced by orexin deficiency. Mice were instrumented with electrodes for recording the electroencephalogram and electromyogram and a telemetric arterial pressure transducer. Sleep attacks fragmenting wakefulness, cataplexy, excess rapid-eye-movement sleep (R) during the activity period, and enhanced increase of arterial pressure during R, which are hallmarks of narcolepsy in mice, did not occur in HDC-KO, whereas they were observed in DM mice. Thus, these narcolepsy signs are neither caused nor abrogated by the absence of histamine. Conversely, the lack of histamine produced obesity in HDC-KO and to a greater extent also in DM. Moreover, the regularity of breath duration during R was significantly increased in either HDC-KO or DM relative to that in congenic wild-type mice. Defects of histamine transmission may thus modulate the metabolic and respiratory phenotype of murine narcolepsy.

  1. Histamine Transmission Modulates the Phenotype of Murine Narcolepsy Caused by Orexin Neuron Deficiency.

    Directory of Open Access Journals (Sweden)

    Stefano Bastianini

    Full Text Available Narcolepsy type 1 is associated with loss of orexin neurons, sleep-wake derangements, cataplexy, and a wide spectrum of alterations in other physiological functions, including energy balance, cardiovascular, and respiratory control. It is unclear which narcolepsy signs are directly related to the lack of orexin neurons or are instead modulated by dysfunction of other neurotransmitter systems physiologically controlled by orexin neurons, such as the histamine system. To address this question, we tested whether some of narcolepsy signs would be detected in mice lacking histamine signaling (HDC-KO. Moreover, we studied double-mutant mice lacking both histamine signaling and orexin neurons (DM to evaluate whether the absence of histamine signaling would modulate narcolepsy symptoms produced by orexin deficiency. Mice were instrumented with electrodes for recording the electroencephalogram and electromyogram and a telemetric arterial pressure transducer. Sleep attacks fragmenting wakefulness, cataplexy, excess rapid-eye-movement sleep (R during the activity period, and enhanced increase of arterial pressure during R, which are hallmarks of narcolepsy in mice, did not occur in HDC-KO, whereas they were observed in DM mice. Thus, these narcolepsy signs are neither caused nor abrogated by the absence of histamine. Conversely, the lack of histamine produced obesity in HDC-KO and to a greater extent also in DM. Moreover, the regularity of breath duration during R was significantly increased in either HDC-KO or DM relative to that in congenic wild-type mice. Defects of histamine transmission may thus modulate the metabolic and respiratory phenotype of murine narcolepsy.

  2. Copper modulates the phenotypic response of activated BV2 microglia through the release of nitric oxide

    OpenAIRE

    Rossi-George, Alba; GUO, CHANG-JIANG; Oakes, Benjamin L.; Gow, Andrew J.

    2012-01-01

    Microglia are resident immune cells of the central nervous system. Their persistent activation in neurodegenerative diseases, traditionally attributed to neuronal dysfunction, may be due to a microglial failure to modulate the release of cytotoxic mediators such as nitric oxide (NO). The persistent activation of microglia with the subsequent release of NO vis-á-vis the accumulation of redox transition metals such as copper (Cu) in neurodegenerative diseases, prompted the hypothesis that coppe...

  3. Stem Cell-Derived Extracellular Vesicles and Immune-Modulation.

    Science.gov (United States)

    Burrello, Jacopo; Monticone, Silvia; Gai, Chiara; Gomez, Yonathan; Kholia, Sharad; Camussi, Giovanni

    2016-01-01

    Extra-cellular vesicles (EVs) are bilayer membrane structures enriched with proteins, nucleic acids, and other active molecules and have been implicated in many physiological and pathological processes over the past decade. Recently, evidence suggests EVs to play a more dichotomic role in the regulation of the immune system, whereby an immune response may be enhanced or supressed by EVs depending on their cell of origin and its functional state. EVs derived from antigen (Ag)-presenting cells for instance, have been involved in both innate and acquired (or adaptive) immune responses, as Ag carriers or presenters, or as vehicles for delivering active signaling molecules. On the other hand, tumor and stem cell derived EVs have been identified to exert an inhibitory effect on immune responses by carrying immuno-modulatory effectors, such as transcriptional factors, non-coding RNA (Species), and cytokines. In addition, stem cell-derived EVs have also been reported to impair dendritic cell maturation and to regulate the activation, differentiation, and proliferation of B cells. They have been shown to control natural killer cell activity and to suppress the innate immune response (IIR). Studies reporting the role of EVs on T lymphocyte modulation are controversial. Discrepancy in literature may be due to stem cell culture conditions, methods of EV purification, EV molecular content, and functional state of both parental and target cells. However, mesenchymal stem cell-derived EVs were shown to play a more suppressive role by shifting T cells from an activated to a T regulatory phenotype. In this review, we will discuss how stem cell-derived EVs may contribute toward the modulation of the immune response. Collectively, stem cell-derived EVs mainly exhibit an inhibitory effect on the immune system. PMID:27597941

  4. Matrix rigidity regulates cancer cell growth and cellular phenotype.

    Directory of Open Access Journals (Sweden)

    Robert W Tilghman

    Full Text Available BACKGROUND: The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness of the microenvironment and how this response varies among cancer cell lines. METHODOLOGY/PRINCIPAL FINDINGS: In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: "rigidity dependent" (those which show an increase in cell growth as extracellular rigidity is increased, and "rigidity independent" (those which grow equally on both soft and stiff substrates. Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug. CONCLUSIONS/SIGNIFICANCE: These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models.

  5. Breast cancer cells mechanosensing in engineered matrices: Correlation with aggressive phenotype.

    Science.gov (United States)

    Li, Ji; Wu, Yang; Schimmel, Nicholas; Al-Ameen, Mohammad Ali; Ghosh, Gargi

    2016-08-01

    The pathogenesis of cancer is often driven by the modulation of the tumor microenvironment. Recent reports have highlighted that the progressive stiffening of tumor matrix is crucial for malignant transformation. Though extensive work has been done analyzing the mechanotransductive signals involved in tumor progression, it is still not clear whether the stiffness induced changes in cancer cell behavior is conserved across the invasive/aggressive phenotype of cells. Here, we used synthetic hydrogel based cell culture platform to correlate the aggressive potential of the breast cancer cells to the responses to matrix stiffness. The cellular functions such as proliferation, migration, and angiogenic capability were characterized. We report that the proliferation and motility of the highly aggressive cell line MDA-MB-231 increased with increase in matrix rigidity. We also demonstrated for the first time that the change in matrix stiffness stimulated the angiogenic activity of these cells as manifested from enhanced expression of vascular endothelial growth factor (VEGF). Inhibition of actomyosin contractility attenuated proliferation of MDA-MB-231 cells on stiff matrices while promoted the growth on soft gels. In addition, the release of VEGF was reduced upon inhibition of contractility. The less and non-aggressive breast cancer cells, SKBr3 and MCF-7 respectively displayed less dependency on matrix stiffness. PMID:26874251

  6. Definitions of the Phenotypic Manifestations of Sickle Cell Disease

    Science.gov (United States)

    Ballas, Samir K.; Lieff, Susan; Benjamin, Lennette J.; Dampier, Carlton D.; Heeney, Matthew M.; Hoppe, Carolyn; Johnson, Cage S.; Rogers, Zora R.; Smith-Whitley, Kim; Wang, Winfred C.; Telen, Marilyn J.

    2016-01-01

    Sickle cell disease (SCD) is a pleiotropic genetic disorder of hemoglobin that has profound multi-organ effects. The low prevalence of SCD (~100,000/US) has limited progress in clinical, basic, and translational research. Lack of a large, readily accessible population for clinical studies has contributed to the absence of standard definitions and diagnostic criteria for the numerous complications of SCD and inadequate understanding of SCD pathophysiology. In 2005, the Comprehensive Sickle Cell Centers initiated a project to establish consensus definitions of the most frequently occurring complications. A group of clinicians and scientists with extensive expertise in research and treatment of SCD gathered to identify and categorize the most common complications. From this group, a formal writing team was formed that further reviewed the literature, sought specialist input, and produced definitions in a standard format. This manuscript provides an overview of the process and describes twelve body system categories and the most prevalent or severe complications within these categories. A detailed Appendix provides standardized definitions for all complications identified within each system. This report proposes use of these definitions for studies of SCD complications, so future studies can be comparably robust and treatment efficacy measured. Use of these definitions will support greater accuracy in genotype-phenotype studies, thereby achieving a better understanding of SCD pathophysiology. This should nevertheless be viewed as a dynamic rather than final document; phenotype descriptions should be reevaluated and revised periodically to provide the most current standard definitions as etiologic factors are better understood and new diagnostic options are developed. PMID:19902523

  7. Application of Mass Cytometry (CyTOF) for Functional and Phenotypic Analysis of Natural Killer Cells.

    Science.gov (United States)

    Kay, Alexander W; Strauss-Albee, Dara M; Blish, Catherine A

    2016-01-01

    Mass cytometry is a novel platform for high-dimensional phenotypic and functional analysis of single cells. This system uses elemental metal isotopes conjugated to monoclonal antibodies to evaluate up to 42 parameters simultaneously on individual cells with minimal overlap between channels. The platform can be customized for analysis of both phenotypic and functional markers. Here, we will describe methods to stain, collect, and analyze intracellular functional markers and surface phenotypic markers on natural killer cells. PMID:27177653

  8. Glioma Cells in the Tumor Periphery Have a Stem Cell Phenotype

    DEFF Research Database (Denmark)

    Munthe, Sune; Petterson, Stine Asferg; Dahlrot, Rikke Hedegaard;

    2016-01-01

    in the periphery of patient gliomas have a stem cell phenotype, although it is less pronounced than in the tumor core. Novel therapies aiming at preventing recurrence should therefore take tumor stemness into account. Migrating cells in orthotopic glioblastoma xenografts preserve expression and stem cell markers......Gliomas are highly infiltrative tumors incurable with surgery. Although surgery removes the bulk tumor, tumor cells in the periphery are left behind resulting in tumor relapses. The aim of the present study was to characterize the phenotype of tumor cells in the periphery focusing on tumor stemness...... and a panel of markers was used. The panel comprised of six stem cell-related markers (CD133, Musashi-1, Bmi-1, Sox-2, Nestin and Glut-3), a proliferation marker (Ki-67) as well as a chemo-resistance marker (MGMT). Computer-based automated classifiers were designed to measure the mIDH1 positive nucleus area...

  9. Mouse models for pseudoxanthoma elasticum: genetic and dietary modulation of the ectopic mineralization phenotypes.

    Directory of Open Access Journals (Sweden)

    Qiaoli Li

    Full Text Available Pseudoxanthoma elasticum (PXE, a heritable ectopic mineralization disorder, is caused by mutations in the ABCC6 gene. Null mice (Abcc6(-/- recapitulate the genetic, histopathologic and ultrastructural features of PXE, and they demonstrate early and progressive mineralization of vibrissae dermal sheath, which serves as a biomarker of the overall mineralization process. Recently, as part of a mouse aging study at The Jackson Laboratory, 31 inbred mouse strains were necropsied, and two of them, KK/HlJ and 129S1/SvImJ, were noted to have vibrissae dermal mineralization similar to Abcc6(-/- mice. These two strains were shown to harbor a single nucleotide polymorphism (rs32756904 in the Abcc6 gene, which resulted in out-of-frame splicing and marked reduction in ABCC6 protein expression in the liver of these mice. The same polymorphism is present in two additional mouse strains, DBA/2J and C3H/HeJ, with similar reduction in Abcc6 protein levels, yet these mice did not demonstrate tissue mineralization when kept on standard rodent diet. However, all four mouse strains, when placed on experimental diet enriched in phosphate and low in magnesium, developed extensive ectopic mineralization. These results indicate that the genetic background of mice and the mineral composition of their diet can profoundly modulate the ectopic mineralization process predicated on mutations in the Abcc6 gene. These mice provide novel model systems to study the pathomechanisms and the reasons for strain background on phenotypic variability of PXE.

  10. MicroRNAs Induce Epigenetic Reprogramming and Suppress Malignant Phenotypes of Human Colon Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Hisataka Ogawa

    Full Text Available Although cancer is a genetic disease, epigenetic alterations are involved in its initiation and progression. Previous studies have shown that reprogramming of colon cancer cells using Oct3/4, Sox2, Klf4, and cMyc reduces cancer malignancy. Therefore, cancer reprogramming may be a useful treatment for chemo- or radiotherapy-resistant cancer cells. It was also reported that the introduction of endogenous small-sized, non-coding ribonucleotides such as microRNA (miR 302s and miR-369-3p or -5p resulted in the induction of cellular reprogramming. miRs are smaller than the genes of transcription factors, making them possibly suitable for use in clinical strategies. Therefore, we reprogrammed colon cancer cells using miR-302s and miR-369-3p or -5p. This resulted in inhibition of cell proliferation and invasion and the stimulation of the mesenchymal-to-epithelial transition phenotype in colon cancer cells. Importantly, the introduction of the ribonucleotides resulted in epigenetic reprogramming of DNA demethylation and histone modification events. Furthermore, in vivo administration of the ribonucleotides in mice elicited the induction of cancer cell apoptosis, which involves the mitochondrial Bcl2 protein family. The present study shows that the introduction of miR-302s and miR-369s could induce cellular reprogramming and modulate malignant phenotypes of human colorectal cancer, suggesting that the appropriate delivery of functional small-sized ribonucleotides may open a new avenue for therapy against human malignant tumors.

  11. Capillary regeneration in scleroderma: stem cell therapy reverses phenotype?

    Directory of Open Access Journals (Sweden)

    Jo N Fleming

    Full Text Available BACKGROUND: Scleroderma is an autoimmune disease with a characteristic vascular pathology. The vasculopathy associated with scleroderma is one of the major contributors to the clinical manifestations of the disease. METHODOLOGY/PRINCIPAL FINDINGS: We used immunohistochemical and mRNA in situ hybridization techniques to characterize this vasculopathy and showed with morphometry that scleroderma has true capillary rarefaction. We compared skin biopsies from 23 scleroderma patients and 24 normal controls and 7 scleroderma patients who had undergone high dose immunosuppressive therapy followed by autologous hematopoietic cell transplant. Along with the loss of capillaries there was a dramatic change in endothelial phenotype in the residual vessels. The molecules defining this phenotype are: vascular endothelial cadherin, a supposedly universal endothelial marker required for tube formation (lost in the scleroderma tissue, antiangiogenic interferon alpha (overexpressed in the scleroderma dermis and RGS5, a signaling molecule whose expression coincides with the end of branching morphogenesis during development and tumor angiogenesis (also overexpressed in scleroderma skin. Following high dose immunosuppressive therapy, patients experienced clinical improvement and 5 of the 7 patients with scleroderma had increased capillary counts. It was also observed in the same 5 patients, that the interferon alpha and vascular endothelial cadherin had returned to normal as other clinical signs in the skin regressed, and in all 7 patients, RGS5 had returned to normal. CONCLUSION/SIGNIFICANCE: These data provide the first objective evidence for loss of vessels in scleroderma and show that this phenomenon is reversible. Coordinate changes in expression of three molecules already implicated in angiogenesis or anti-angiogenesis suggest that control of expression of these three molecules may be the underlying mechanism for at least the vascular component of this disease

  12. Mitochondria Biogenesis and Bioenergetics Gene Profiles in Isogenic Prostate Cells with Different Malignant Phenotypes

    Directory of Open Access Journals (Sweden)

    Tanya C. Burch

    2016-01-01

    Full Text Available Background. The most significant hallmarks of cancer are directly or indirectly linked to deregulated mitochondria. In this study, we sought to profile mitochondria associated genes in isogenic prostate cell lines with different tumorigenic phenotypes from the same patient. Results. Two isogenic human prostate cell lines RC77N/E (nonmalignant cells and RC77T/E (malignant cells were profiled for expression of mitochondrial biogenesis and energy metabolism genes by qRT-PCR using the Human Mitochondria and the Mitochondrial Energy Metabolism RT2 PCR arrays. Forty-seven genes were differentially regulated between the two cell lines. The interaction and regulatory networks of these genes were generated by Ingenuity Pathway Analysis. UCP2 was the most significantly upregulated gene in primary adenocarcinoma cells in the current study. The overexpression of UCP2 upon malignant transformation was further validated using human prostatectomy clinical specimens. Conclusions. This study demonstrates the overexpression of multiple genes that are involved in mitochondria biogenesis, bioenergetics, and modulation of apoptosis. These genes may play a role in malignant transformation and disease progression. The upregulation of some of these genes in clinical samples indicates that some of the differentially transcribed genes could be the potential targets for therapeutic interventions.

  13. Mitochondria Biogenesis and Bioenergetics Gene Profiles in Isogenic Prostate Cells with Different Malignant Phenotypes.

    Science.gov (United States)

    Burch, Tanya C; Rhim, Johng S; Nyalwidhe, Julius O

    2016-01-01

    Background. The most significant hallmarks of cancer are directly or indirectly linked to deregulated mitochondria. In this study, we sought to profile mitochondria associated genes in isogenic prostate cell lines with different tumorigenic phenotypes from the same patient. Results. Two isogenic human prostate cell lines RC77N/E (nonmalignant cells) and RC77T/E (malignant cells) were profiled for expression of mitochondrial biogenesis and energy metabolism genes by qRT-PCR using the Human Mitochondria and the Mitochondrial Energy Metabolism RT(2) PCR arrays. Forty-seven genes were differentially regulated between the two cell lines. The interaction and regulatory networks of these genes were generated by Ingenuity Pathway Analysis. UCP2 was the most significantly upregulated gene in primary adenocarcinoma cells in the current study. The overexpression of UCP2 upon malignant transformation was further validated using human prostatectomy clinical specimens. Conclusions. This study demonstrates the overexpression of multiple genes that are involved in mitochondria biogenesis, bioenergetics, and modulation of apoptosis. These genes may play a role in malignant transformation and disease progression. The upregulation of some of these genes in clinical samples indicates that some of the differentially transcribed genes could be the potential targets for therapeutic interventions. PMID:27478826

  14. Naturally Occurring Deletion Mutants of the Pig-Specific, Intestinal Crypt Epithelial Cell Protein CLCA4b without Apparent Phenotype.

    Directory of Open Access Journals (Sweden)

    Stephanie Plog

    Full Text Available The human CLCA4 (chloride channel regulator, calcium-activated modulates the intestinal phenotype of cystic fibrosis (CF patients via an as yet unknown pathway. With the generation of new porcine CF models, species-specific differences between human modifiers of CF and their porcine orthologs are considered critical for the translation of experimental data. Specifically, the porcine ortholog to the human CF modulator gene CLCA4 has recently been shown to be duplicated into two separate genes, CLCA4a and CLCA4b. Here, we characterize the duplication product, CLCA4b, in terms of its genomic structure, tissue and cellular expression patterns as well as its in vitro electrophysiological properties. The CLCA4b gene is a pig-specific duplication product of the CLCA4 ancestor and its protein is exclusively expressed in small and large intestinal crypt epithelial cells, a niche specifically occupied by no other porcine CLCA family member. Surprisingly, a unique deleterious mutation of the CLCA4b gene is spread among modern and ancient breeds in the pig population, but this mutation did not result in an apparent phenotype in homozygously affected animals. Electrophysiologically, neither the products of the wild type nor of the mutated CLCA4b genes were able to evoke a calcium-activated anion conductance, a consensus feature of other CLCA proteins. The apparently pig-specific duplication of the CLCA4 gene with unique expression of the CLCA4b protein variant in intestinal crypt epithelial cells where the porcine CFTR is also present raises the question of whether it may modulate the porcine CF phenotype. Moreover, the naturally occurring null variant of CLCA4b will be valuable for the understanding of CLCA protein function and their relevance in modulating the CF phenotype.

  15. Understanding Cell Shape Phenotypes Associated with Stem Cell Differentiation Induced by Topographical Cues of Nanofiber Microenvironment

    Science.gov (United States)

    Chen, Desu; Sarkar, Sumona; Losert, Wolfgang

    It is increasingly important to understand cell responses to bioinspired material structures and topographies designed to guide cell functional alterations. In this study, we investigated association between early stage cell morphological response and osteogenic differentiation of human bone marrow stromal cells (hBMSCs) induced by poly(ɛ-caprolactone) (PCL) nanofiber scaffolds (PCL-NF). Accounting for both multi-parametric complexity and biological heterogeneity, we developed an analysis framework based on support vector machines and a multi-cell level averaging method (supercell) to determine the most pronounced cell shape features describing shape phenotypes of cells in PCL-NF compared to cells on flat PCL films. We found that smaller size and more dendritic shape were the major morphological responses of hBMSCs to PCL-NF on day 1 of cell culture. Further, we investigated the shape phenotypes of hBMSCs in PCL-NF of different fiber densities to monitor the transition between 2-D and 3-D topographies. We tracked the genotypic, phenotypic and morphological responses of hBMSCs to different fiber densities at multiple time points to identify correlations between hBMSCs differentiation and early stage morphology in PCL-NF scaffolds.

  16. NK Cells Preferentially Target Tumor Cells with a Cancer Stem Cell Phenotype.

    Science.gov (United States)

    Ames, Erik; Canter, Robert J; Grossenbacher, Steven K; Mac, Stephanie; Chen, Mingyi; Smith, Rachel C; Hagino, Takeshi; Perez-Cunningham, Jessica; Sckisel, Gail D; Urayama, Shiro; Monjazeb, Arta M; Fragoso, Ruben C; Sayers, Thomas J; Murphy, William J

    2015-10-15

    Increasing evidence supports the hypothesis that cancer stem cells (CSCs) are resistant to antiproliferative therapies, able to repopulate tumor bulk, and seed metastasis. NK cells are able to target stem cells as shown by their ability to reject allogeneic hematopoietic stem cells but not solid tissue grafts. Using multiple preclinical models, including NK coculture (autologous and allogeneic) with multiple human cancer cell lines and dissociated primary cancer specimens and NK transfer in NSG mice harboring orthotopic pancreatic cancer xenografts, we assessed CSC viability, CSC frequency, expression of death receptor ligands, and tumor burden. We demonstrate that activated NK cells are capable of preferentially killing CSCs identified by multiple CSC markers (CD24(+)/CD44(+), CD133(+), and aldehyde dehydrogenase(bright)) from a wide variety of human cancer cell lines in vitro and dissociated primary cancer specimens ex vivo. We observed comparable effector function of allogeneic and autologous NK cells. We also observed preferential upregulation of NK activation ligands MICA/B, Fas, and DR5 on CSCs. Blocking studies further implicated an NKG2D-dependent mechanism for NK killing of CSCs. Treatment of orthotopic human pancreatic cancer tumor-bearing NSG mice with activated NK cells led to significant reductions in both intratumoral CSCs and tumor burden. Taken together, these data from multiple preclinical models, including a strong reliance on primary human cancer specimens, provide compelling preclinical evidence that activated NK cells preferentially target cancer cells with a CSC phenotype, highlighting the translational potential of NK immunotherapy as part of a combined modality approach for refractory solid malignancies.

  17. A novel splicing mutation in the IQSEC2 gene that modulates the phenotype severity in a family with intellectual disability.

    Science.gov (United States)

    Madrigal, Irene; Alvarez-Mora, Maria Isabel; Rosell, Jordi; Rodríguez-Revenga, Laia; Karlberg, Olof; Sauer, Sascha; Syvänen, Ann-Christine; Mila, Montserrat

    2016-08-01

    The IQSEC2 gene is located on chromosome Xp11.22 and encodes a guanine nucleotide exchange factor for the ADP-ribosylation factor family of small GTPases. This gene is known to have a significant role in cytoskeletal organization, dendritic spine morphology and synaptic organization. Variants in IQSEC2 cause moderate to severe intellectual disability in males and a variable phenotype in females because this gene escapes from X-chromosome inactivation. Here we report on the first splicing variant in IQSEC2 (g.88032_88033del; NG_021296.1) that co-segregates in a family diagnosed with an X-linked form of ID. In a percentage of the cells, the variant activates an intraexonic splice acceptor site that abolishes 26 amino acids from the highly conserved PH domain of IQSEC2 and creates a premature stop codon 36 amino acids later in exon 13. Interestingly, the percentage of aberrant splicing seems to correlate with the severity of the disease in each patient. The impact of this variant in the target tissue is unknown, but we can hypothesize that these differences may be related to the amount of abnormal IQSEC2 transcript. To our knowledge, we are reporting a novel mechanism of IQSEC2 involvement in ID. Variants that affect splicing are related to many genetic diseases and the understanding of their role in disease expands potential opportunities for gene therapy. Modulation of aberrant splicing transcripts can become a potent therapeutic approach for many of these diseases. PMID:26733290

  18. Involvement of calcium-sensing receptors in hypoxia-induced vascular remodeling and pulmonary hypertension by promoting phenotypic modulation of small pulmonary arteries.

    Science.gov (United States)

    Peng, Xue; Li, Hong-Xia; Shao, Hong-Jiang; Li, Guang-Wei; Sun, Jian; Xi, Yu-Hui; Li, Hong-Zhu; Wang, Xin-Yan; Wang, Li-Na; Bai, Shu-Zhi; Zhang, Wei-Hua; Zhang, Li; Yang, Guang-Dong; Wu, Ling-Yun; Wang, Rui; Xu, Chang-Qing

    2014-11-01

    Phenotype modulation of pulmonary artery smooth muscle cells (PASMCs) plays an important role during hypoxia-induced vascular remodeling and pulmonary hypertension (PAH). We had previously shown that calcium-sensing receptor (CaSR) is expressed in rat PASMCs. However, little is known about the role of CaSR in phenotypic modulation of PASMCs in hypoxia-induced PAH as well as the underlying mechanisms. In this study, we investigated whether CaSR induces the proliferation of PASMCs in small pulmonary arteries from both rats and human with PAH. PAH was induced by exposing rats to hypoxia for 7-21 days. The mean pulmonary arterial pressure (mPAP), right ventricular hypertrophy index (RVI), the percentage of medial wall thickness to the external diameter (WT %), and cross-sectional total vessel wall area to the total area (WA %) of small pulmonary arteries were determined by hematoxylin and eosin (HE), masson trichrome and Weigert's staining. The protein expressions of matrix metalloproteinase (MMP)-2 and MMP-9, the tissue inhibitors of metalloproteinase (TIMP)-3, CaSR, proliferating cell nuclear antigen (PCNA), phosphorylated extracellular signal-regulated kinase (p-ERK), and smooth muscle cell (SMC) phenotype marker proteins in rat small pulmonary arteries, including calponin, SMα-actin (SMAα), and osteopontin (OPN), were analyzed by immunohistochemistry and Western blotting, respectively. In addition, immunohistochemistry was applied to paraffin-embedded human tissues from lungs of normal human and PAH patients with chronic heart failure (PAH/CHF). Compared with the control group, mPAP, RVI, WT % and WA % in PAH rats were gradually increased with the prolonged hypoxia. At the same time, the expressions of CaSR, MMP-2, MMP-9, TIMP-3, PCNA, OPN, and p-ERK were markedly increased, while the expressions of SMAα and calponin were significantly reduced in lung tissues or small pulmonary arteries of PAH rats. Neomycin (an agonist of CaSR) enhanced but NPS2390 (an

  19. Sensory ciliogenesis in Caenorhabditis elegans: assignment of IFT components into distinct modules based on transport and phenotypic profiles.

    Science.gov (United States)

    Ou, Guangshuo; Koga, Makato; Blacque, Oliver E; Murayama, Takashi; Ohshima, Yasumi; Schafer, Jenny C; Li, Chunmei; Yoder, Bradley K; Leroux, Michel R; Scholey, Jonathan M

    2007-05-01

    Sensory cilium biogenesis within Caenorhabditis elegans neurons depends on the kinesin-2-dependent intraflagellar transport (IFT) of ciliary precursors associated with IFT particles to the axoneme tip. Here we analyzed the molecular organization of the IFT machinery by comparing the in vivo transport and phenotypic profiles of multiple proteins involved in IFT and ciliogenesis. Based on their motility in wild-type and bbs (Bardet-Biedl syndrome) mutants, IFT proteins were classified into groups with similar transport profiles that we refer to as "modules." We also analyzed the distribution and transport of fluorescent IFT particles in multiple known ciliary mutants and 49 new ciliary mutants. Most of the latter mutants were snip-SNP mapped and one, namely dyf-14(ks69), was cloned and found to encode a conserved protein essential for ciliogenesis. The products of these ciliogenesis genes could also be assigned to the aforementioned set of modules or to specific aspects of ciliogenesis, based on IFT particle dynamics and ciliary mutant phenotypes. Although binding assays would be required to confirm direct physical interactions, the results are consistent with the hypothesis that the C. elegans IFT machinery has a modular design, consisting of modules IFT-subcomplex A, IFT-subcomplex B, and a BBS protein complex, in addition to motor and cargo modules, with each module contributing to distinct functional aspects of IFT or ciliogenesis. PMID:17314406

  20. Study on phenotypic and cytogenetic characteristics of bone marrow mesenchymal stem cells in myelodysplastic syndromes

    Institute of Scientific and Technical Information of China (English)

    宋陆茜

    2013-01-01

    Objective To investigate phenotype,cell differentiation and cytogenetic properties of bone marrow(BM) mesenchymal stem cells(MSC)separated from the myelodysplastic syndrome(MDS) patients,and to analyze cytogenetic

  1. Contribution of neural cell death to depressive phenotypes of streptozotocin-induced diabetic mice

    Directory of Open Access Journals (Sweden)

    Cheng Chen

    2014-06-01

    Full Text Available Major depression disorder (MDD or depression is highly prevalent in individuals with diabetes, and the depressive symptoms are more severe and less responsive to antidepressant therapies in these patients. The underlying mechanism is little understood. We hypothesized that the pathophysiology of comorbid depression was more complex than that proposed for MDD and that neural cell death played a role in the disease severity. To test this hypothesis, we generated streptozotocin (STZ-induced diabetic mice. These mice had blood glucose levels threefold above controls and exhibited depressive phenotypes as judged by a battery of behavioral tests, thus confirming the comorbidity in mice. Immunohistological studies showed markedly increased TUNEL-positive cells in the frontal cortex and hippocampus of the comorbid mice, indicating apoptosis. This finding was supported by increased caspase-3 and decreased Bcl-2 proteins in these brain regions. In addition, the serum brain-derived neurotrophic factor (BDNF level of comorbid mice was reduced compared with controls, further supporting the neurodegenerative change. Mechanistic analyses showed an increased expression of mitochondrial fission genes fission protein 1 (Fis1 and dynamin-related protein 1 (Drp1, and a decreased expression of mitochondrial fusion genes mitofusin 1 (Mfn1, mitofusin 2 (Mfn2 and optical atrophy 1 (Opa1. Representative assessment of the proteins Drp1 and Mfn2 mirrored the mRNA changes. The data demonstrated that neural cell death was associated with the depressive phenotype of comorbid mice and that a fission-dominant expression of genes and proteins mediating mitochondrial dynamics played a role in the hyperglycemia-induced cell death. The study provides new insight into the disease mechanism and could aid the development of novel therapeutics aimed at providing neuroprotection by modulating mitochondrial dynamics to treat comorbid depression with diabetes.

  2. Gigantol Suppresses Cancer Stem Cell-Like Phenotypes in Lung Cancer Cells

    OpenAIRE

    Narumol Bhummaphan; Pithi Chanvorachote

    2015-01-01

    As cancer stem cells (CSCs) contribute to malignancy, metastasis, and relapse of cancers, potential of compound in inhibition of CSCs has garnered most attention in the cancer research as well as drug development fields recently. Herein, we have demonstrated for the first time that gigantol, a pure compound isolated from Dendrobium draconis, dramatically suppressed stem-like phenotypes of human lung cancer cells. Gigantol at nontoxic concentrations significantly reduced anchorage-independent ...

  3. Chronic inhibition of tumor cell-derived VEGF enhances the malignant phenotype of colorectal cancer cells

    International Nuclear Information System (INIS)

    Vascular endothelial growth factor-a (VEGF)-targeted therapies have become an important treatment for a number of human malignancies. The VEGF inhibitors are actually effective in several types of cancers, however, the benefits are transiently, and the vast majority of patients who initially respond to the therapies will develop resistance. One of possible mechanisms for the acquired resistance may be the direct effect(s) of VEGF inhibitors on tumor cells expressing VEGF receptors (VEGFR). Thus, we investigated here the direct effect of chronic VEGF inhibition on phenotype changes in human colorectal cancer (CRC) cells. To chronically inhibit cancer cell-derived VEGF, human CRC cell lines (HCT116 and RKO) were chronically exposed (2 months) to an anti-VEGF monoclonal antibody (mAb) or were disrupted the Vegf gene (VEGF-KO). Effects of VEGF family members were blocked by treatment with a VEGF receptor tyrosine kinase inhibitor (VEGFR-TKI). Hypoxia-induced apoptosis under VEGF inhibited conditions was measured by TUNEL assay. Spheroid formation ability was assessed using a 3-D spheroid cell culture system. Chronic inhibition of secreted/extracellular VEGF by an anti-VEGF mAb redundantly increased VEGF family member (PlGF, VEGFR1 and VEGFR2), induced a resistance to hypoxia-induced apoptosis, and increased spheroid formation ability. This apoptotic resistance was partially abrogated by a VEGFR-TKI, which blocked the compensate pathway consisted of VEGF family members, or by knockdown of Vegf mRNA, which inhibited intracellular function(s) of all Vegf gene products. Interestingly, chronic and complete depletion of all Vegf gene products by Vegf gene knockout further augmented these phenotypes in the compensate pathway-independent manner. These accelerated phenotypes were significantly suppressed by knockdown of hypoxia-inducible factor-1α that was up-regulated in the VEGF-KO cell lines. Our findings suggest that chronic inhibition of tumor cell-derived VEGF

  4. Protective role of 5-azacytidine on myocardial infarction is associated with modulation of macrophage phenotype and inhibition of fibrosis

    Science.gov (United States)

    Kim, Yong Sook; Kang, Wan Seok; Kwon, Jin Sook; Hong, Moon Hwa; Jeong, Hye-yun; Jeong, Hae Chang; Jeong, Myung Ho; Ahn, Youngkeun

    2014-01-01

    We examined whether a shift in macrophage phenotype could be therapeutic for myocardial infarction (MI). The mouse macrophage cell line RAW264.7 was stimulated with peptidoglycan (PGN), with or without 5-azacytidine (5AZ) treatment. MI was induced by ligation of the left anterior descending coronary artery in rats, and the rats were divided into two groups; a saline-injection group and a 5AZ-injection group (2.5 mg/kg/day, intraperitoneal injection). LV function was evaluated and immunohistochemical analyses were performed 2 weeks after MI. Cardiac fibrosis was induced by angiotensin II (AngII) infusion with or without 5AZ (5 mg/kg/day) in mice. Nitric oxide was produced by PGN, which was reduced by 77.87% after 5AZ treatment. Both induction of inducible nitric oxide synthase (iNOS) and iNOS promoter activity by PGN were inhibited by 5AZ. Ejection fraction (59.00 ± 8.03% versus 42.52 ± 2.58%), contractility (LV dP/dt-max, 8299.76 ± 411.56 mmHg versus 6610.36 ± 282.37 mmHg) and relaxation indices (LV dP/dt-min, −4661.37 ± 210.73 mmHg versus −4219.50 ± 162.98 mmHg) were improved after 5AZ administration. Cardiac fibrosis in the MI+5AZ was 8.14 ± 1.00%, compared with 14.93 ± 2.98% in the MI group (P < 0.05). Arginase-1(+)CD68(+) macrophages with anti-inflammatory phenotype were predominant in the infarct border zone of the MI+5AZ group, in comparison with the MI group. AngII-induced cardiac fibrosis was also attenuated after 5AZ administration. In cardiac fibroblasts, pro-fibrotic mediators and cell proliferation were increased by AngII, and these increases were attenuated after 5AZ treatment. 5AZ exerts its cardiac protective role through modulation of macrophages and cardiac fibroblasts. PMID:24571348

  5. Protective role of 5-azacytidine on myocardial infarction is associated with modulation of macrophage phenotype and inhibition of fibrosis.

    Science.gov (United States)

    Kim, Yong Sook; Kang, Wan Seok; Kwon, Jin Sook; Hong, Moon Hwa; Jeong, Hye-Yun; Jeong, Hae Chang; Jeong, Myung Ho; Ahn, Youngkeun

    2014-06-01

    We examined whether a shift in macrophage phenotype could be therapeutic for myocardial infarction (MI). The mouse macrophage cell line RAW264.7 was stimulated with peptidoglycan (PGN), with or without 5-azacytidine (5AZ) treatment. MI was induced by ligation of the left anterior descending coronary artery in rats, and the rats were divided into two groups; a saline-injection group and a 5AZ-injection group (2.5 mg/kg/day, intraperitoneal injection). LV function was evaluated and immunohistochemical analyses were performed 2 weeks after MI. Cardiac fibrosis was induced by angiotensin II (AngII) infusion with or without 5AZ (5 mg/kg/day) in mice. Nitric oxide was produced by PGN, which was reduced by 77.87% after 5AZ treatment. Both induction of inducible nitric oxide synthase (iNOS) and iNOS promoter activity by PGN were inhibited by 5AZ. Ejection fraction (59.00 ± 8.03% versus 42.52 ± 2.58%), contractility (LV dP/dt-max, 8299.76 ± 411.56 mmHg versus 6610.36 ± 282.37 mmHg) and relaxation indices (LV dP/dt-min, -4661.37 ± 210.73 mmHg versus -4219.50 ± 162.98 mmHg) were improved after 5AZ administration. Cardiac fibrosis in the MI+5AZ was 8.14 ± 1.00%, compared with 14.93 ± 2.98% in the MI group (P < 0.05). Arginase-1(+)CD68(+) macrophages with anti-inflammatory phenotype were predominant in the infarct border zone of the MI+5AZ group, in comparison with the MI group. AngII-induced cardiac fibrosis was also attenuated after 5AZ administration. In cardiac fibroblasts, pro-fibrotic mediators and cell proliferation were increased by AngII, and these increases were attenuated after 5AZ treatment. 5AZ exerts its cardiac protective role through modulation of macrophages and cardiac fibroblasts. PMID:24571348

  6. Quantitative Phenotyping-Based In Vivo Chemical Screening in a Zebrafish Model of Leukemia Stem Cell Xenotransplantation

    Science.gov (United States)

    Zhang, Beibei; Shimada, Yasuhito; Kuroyanagi, Junya; Umemoto, Noriko; Nishimura, Yuhei; Tanaka, Toshio

    2014-01-01

    Zebrafish-based chemical screening has recently emerged as a rapid and efficient method to identify important compounds that modulate specific biological processes and to test the therapeutic efficacy in disease models, including cancer. In leukemia, the ablation of leukemia stem cells (LSCs) is necessary to permanently eradicate the leukemia cell population. However, because of the very small number of LSCs in leukemia cell populations, their use in xenotransplantation studies (in vivo) and the difficulties in functionally and pathophysiologically replicating clinical conditions in cell culture experiments (in vitro), the progress of drug discovery for LSC inhibitors has been painfully slow. In this study, we developed a novel phenotype-based in vivo screening method using LSCs xenotransplanted into zebrafish. Aldehyde dehydrogenase-positive (ALDH+) cells were purified from chronic myelogenous leukemia K562 cells tagged with a fluorescent protein (Kusabira-orange) and then implanted in young zebrafish at 48 hours post-fertilization. Twenty-four hours after transplantation, the animals were treated with one of eight different therapeutic agents (imatinib, dasatinib, parthenolide, TDZD-8, arsenic trioxide, niclosamide, salinomycin, and thioridazine). Cancer cell proliferation, and cell migration were determined by high-content imaging. Of the eight compounds that were tested, all except imatinib and dasatinib selectively inhibited ALDH+ cell proliferation in zebrafish. In addition, these anti-LSC agents suppressed tumor cell migration in LSC-xenotransplants. Our approach offers a simple, rapid, and reliable in vivo screening system that facilitates the phenotype-driven discovery of drugs effective in suppressing LSCs. PMID:24454867

  7. Phenotypic characterisation of immune cell infiltrates in testicular germ cell neoplasia

    DEFF Research Database (Denmark)

    Hvarness, Tine; Nielsen, John E; Almstrup, Kristian;

    2013-01-01

    and overt seminoma, in comparison to biopsies from infertile men without neoplasia. The composition of immune cells was similar across all the groups studied. Macrophages, CD8(+) and CD45R0(+) T lymphocytes constituted the majority of infiltrates, B lymphocytes were present in an intermediate proportion...... and very few CD4(+) and FoxP3(+) T cells were detected. HLA-I antigen was more abundant in Sertoli cells in tubules containing CIS than in those with normal spermatogenesis. This study showed a phenotypically comparable composition of infiltrating immune cells independently of the presence of neoplasia...

  8. Clusters of conserved beta cell marker genes for assessment of beta cell phenotype

    DEFF Research Database (Denmark)

    Martens, Geert A; Jiang, Lei; Hellemans, Karine H;

    2011-01-01

    The aim of this study was to establish a gene expression blueprint of pancreatic beta cells conserved from rodents to humans and to evaluate its applicability to assess shifts in the beta cell differentiated state. Genome-wide mRNA expression profiles of isolated beta cells were compared to those...... of a large panel of other tissue and cell types, and transcripts with beta cell-abundant and -selective expression were identified. Iteration of this analysis in mouse, rat and human tissues generated a panel of conserved beta cell biomarkers. This panel was then used to compare isolated versus laser capture...... microdissected beta cells, monitor adaptations of the beta cell phenotype to fasting, and retrieve possible conserved transcriptional regulators....

  9. Clusters of conserved beta cell marker genes for assessment of beta cell phenotype

    DEFF Research Database (Denmark)

    Martens, Geert A; Jiang, Lei; Hellemans, Karine H;

    2011-01-01

    of a large panel of other tissue and cell types, and transcripts with beta cell-abundant and -selective expression were identified. Iteration of this analysis in mouse, rat and human tissues generated a panel of conserved beta cell biomarkers. This panel was then used to compare isolated versus laser......The aim of this study was to establish a gene expression blueprint of pancreatic beta cells conserved from rodents to humans and to evaluate its applicability to assess shifts in the beta cell differentiated state. Genome-wide mRNA expression profiles of isolated beta cells were compared to those...... capture microdissected beta cells, monitor adaptations of the beta cell phenotype to fasting, and retrieve possible conserved transcriptional regulators....

  10. Pattern Recognition Receptors as modulators of Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Olga eDelaRosa

    2012-07-01

    Full Text Available Mesenchymal stem cells (MSCs have differentiation and immunomodulatory properties that make them interesting tools for the treatment of degenerative disorders, allograft rejection or inflammatory and autoimmune diseases. Biological properties of MSCs can be modulated by the inflammatory microenvironment they face at the sites of injury or inflammation. Indeed, MSCs do not constitutively exert their immunomodulating properties but have to be primed by inflammatory mediators released from immune cells and inflamed tissue. A polarization process, mediated by pattern recognition receptors (PRRs, towards either an anti-inflammatory or a pro-inflammatory phenotype has been described for MSCs. PRRs, including Toll-like receptors (TLRs and NOD-like receptors (NLRs, have been linked to allograft rejection and the perpetuation of chronic inflammatory diseases (e.g. Crohn´s disease, rheumatoid arthritis through the recognition of conserved pathogen-derived components or endogenous ligands (danger signals produced upon injury. Interest in understanding the effects of PRR activation on MSCs has greatly increased in the last few years since MSCs will likely encounter PRRs ligands at sites of injury, and it has been proven that the activation of PRRs in MSCs can modulate their function and therapeutic effect.

  11. Single cell mass cytometry reveals remodeling of human T cell phenotypes by varicella zoster virus.

    Science.gov (United States)

    Sen, Nandini; Mukherjee, Gourab; Arvin, Ann M

    2015-11-15

    The recent application of mass cytometry (CyTOF) to biology provides a 'systems' approach to monitor concurrent changes in multiple host cell factors at the single cell level. We used CyTOF to evaluate T cells infected with varicella zoster virus (VZV) infection, documenting virus-mediated phenotypic and functional changes caused by this T cell tropic human herpesvirus. Here we summarize our findings using two complementary panels of antibodies against surface and intracellular signaling proteins to elucidate the consequences of VZV-mediated perturbations on the surface and in signaling networks of infected T cells. CyTOF data was analyzed by several statistical, analytical and visualization tools including hierarchical clustering, orthogonal scaling, SPADE, viSNE, and SLIDE. Data from the mass cytometry studies demonstrated that VZV infection led to 'remodeling' of the surface architecture of T cells, promoting skin trafficking phenotypes and associated with concomitant activation of T-cell receptor and PI3-kinase pathways. This method offers a novel approach for understanding viral interactions with differentiated host cells important for pathogenesis. PMID:26213183

  12. Tumor cell phenotype is sustained by selective MAPK oxidation in mitochondria.

    Directory of Open Access Journals (Sweden)

    Soledad Galli

    Full Text Available Mitochondria are major cellular sources of hydrogen peroxide (H(2O(2, the production of which is modulated by oxygen availability and the mitochondrial energy state. An increase of steady-state cell H(2O(2 concentration is able to control the transition from proliferating to quiescent phenotypes and to signal the end of proliferation; in tumor cells thereby, low H(2O(2 due to defective mitochondrial metabolism can contribute to sustain proliferation. Mitogen-activated protein kinases (MAPKs orchestrate signal transduction and recent data indicate that are present in mitochondria and regulated by the redox state. On these bases, we investigated the mechanistic connection of tumor mitochondrial dysfunction, H(2O(2 yield, and activation of MAPKs in LP07 murine tumor cells with confocal microscopy, in vivo imaging and directed mutagenesis. Two redox conditions were examined: low 1 microM H(2O(2 increased cell proliferation in ERK1/2-dependent manner whereas high 50 microM H(2O(2 arrested cell cycle by p38 and JNK1/2 activation. Regarding the experimental conditions as a three-compartment model (mitochondria, cytosol, and nuclei, the different responses depended on MAPKs preferential traffic to mitochondria, where a selective activation of either ERK1/2 or p38-JNK1/2 by co-localized upstream kinases (MAPKKs facilitated their further passage to nuclei. As assessed by mass spectra, MAPKs activation and efficient binding to cognate MAPKKs resulted from oxidation of conserved ERK1/2 or p38-JNK1/2 cysteine domains to sulfinic and sulfonic acids at a definite H(2O(2 level. Like this, high H(2O(2 or directed mutation of redox-sensitive ERK2 Cys(214 impeded binding to MEK1/2, caused ERK2 retention in mitochondria and restricted shuttle to nuclei. It is surmised that selective cysteine oxidations adjust the electrostatic forces that participate in a particular MAPK-MAPKK interaction. Considering that tumor mitochondria are dysfunctional, their inability to

  13. Mesenchymal Stromal Cell Phenotype is not Influenced by Confluence during Culture Expansion

    DEFF Research Database (Denmark)

    Haack-Sørensen, Mandana; Hansen, Susanne Kofoed; Hansen, Louise;

    2013-01-01

    for cell quantity must not affect quality, but it is also a fact that in vitro culture conditions affect MSC phenotype. One possible variable is the degree of cell confluence during expansion. METHODS: We investigate the influence of cell density on homogeneity and differentiation during culture expansion...... of un-stimulated MSCs isolated from the bone marrow in DMEM and fetal bovine serum (FBS). MSC morphology, phenotype and differentiation were investigated weekly during 5 weeks culture expansion using electron microscopy, flow cytometry, immunocytochemistry, qualitative RT-PCR and quantitative Q...... differentiation. This phenotype persisted independent of increasing cell densities. DISCUSSION: These data demonstrate that MSC characteristics and plasticity can be maintained during culture expansion from bone marrow mononuclear cells to MSCs and that a homogeneous phenotype of undifferentiated MSCs which...

  14. The Proangiogenic Phenotype of Natural Killer Cells in Patients with Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Antonino Bruno

    2013-02-01

    Full Text Available The tumor microenvironment can polarize innate immune cells to a proangiogenic phenotype. Decidual natural killer (dNK cells show an angiogenic phenotype, yet the role for NK innate lymphoid cells in tumor angiogenesis remains to be defined. We investigated NK cells from patients with surgically resected non-small cell lung cancer (NSCLC and controls using flow cytometric and functional analyses. The CD56+CD16- NK subset in NSCLC patients, which represents the predominant NK subset in tumors and a minor subset in adjacent lung and peripheral blood, was associated with vascular endothelial growth factor (VEGF, placental growth factor (PIGF, and interleukin-8 (IL-8/CXCL8 production. Peripheral blood CD56+CD16- NK cells from patients with the squamous cell carcinoma (SCC subtype showed higher VEGF and PlGF production compared to those from patients with adenocarcinoma (AdC and controls. Higher IL-8 production was found for both SCC and AdC compared to controls. Supernatants derived from NSCLC CD56+CD16- NK cells induced endothelial cell chemotaxis and formation of capillary-like structures in vitro, particularly evident in SCC patients and absent from controls. Finally, exposure to transforming growth factor-β1 (TGFβ1, a cytokine associated with dNK polarization, upregulated VEGF and PlGF in peripheral blood CD56+CD16- NK cells from healthy subjects. Our data suggest that NK cells in NSCLC act as proangiogenic cells, particularly evident for SCC and in part mediated by TGFβ1.

  15. Colorectal cancer stem cells : regulation of the phenotype and implications for therapy resistance

    OpenAIRE

    Emmink, B.L.

    2014-01-01

    In this thesis different aspects of cancer stem cells in colorectal cancer are discribed. We focus on the therapy resistance of cancer stem cells and the effect that reactive oxygen species and hypoxia have on the cancer stem cell phenotype. For this purpose a novel culture method to propagate cancer stem cells form resected tumor specimens was used.

  16. Network Modules of the Cross-Species Genotype-Phenotype Map Reflect the Clinical Severity of Human Diseases.

    Science.gov (United States)

    Han, Seong Kyu; Kim, Inhae; Hwang, Jihye; Kim, Sanguk

    2015-01-01

    Recent advances in genome sequencing techniques have improved our understanding of the genotype-phenotype relationship between genetic variants and human diseases. However, genetic variations uncovered from patient populations do not provide enough information to understand the mechanisms underlying the progression and clinical severity of human diseases. Moreover, building a high-resolution genotype-phenotype map is difficult due to the diverse genetic backgrounds of the human population. We built a cross-species genotype-phenotype map to explain the clinical severity of human genetic diseases. We developed a data-integrative framework to investigate network modules composed of human diseases mapped with gene essentiality measured from a model organism. Essential and nonessential genes connect diseases of different types which form clusters in the human disease network. In a large patient population study, we found that disease classes enriched with essential genes tended to show a higher mortality rate than disease classes enriched with nonessential genes. Moreover, high disease mortality rates are explained by the multiple comorbid relationships and the high pleiotropy of disease genes found in the essential gene-enriched diseases. Our results reveal that the genotype-phenotype map of a model organism can facilitate the identification of human disease-gene associations and predict human disease progression.

  17. Regulatory networks define phenotypic classes of human stem cell lines

    OpenAIRE

    Müller, Franz-Josef; Louise C. Laurent; Kostka, Dennis; Ulitsky, Igor; Williams, Roy; Lu, Christina; Park, In-Hyun; Rao, Mahendra S.; Shamir, Ron; Philip H. Schwartz; Schmidt, Nils O.; Loring, Jeanne F.

    2008-01-01

    Stem cells are defined as self-renewing cell populations that can differentiate into multiple distinct cell types. However, hundreds of different human cell lines from embryonic, fetal, and adult sources have been called stem cells, even though they range from pluripotent cells, typified by embryonic stem cells, which are capable of virtually unlimited proliferation and differentiation, to adult stem cell lines, which can generate a far more limited repertory of differentiated cell types. The...

  18. Matrix and cell phenotype differences in Dupuytren's disease

    NARCIS (Netherlands)

    van Beuge, Marike M; Ten Dam, Evert-Jan P M; Werker, Paul M N; Bank, Ruud A

    2016-01-01

    BACKGROUND: Dupuytren's disease is a fibroproliferative disease of the hand and fingers, which usually manifests as two different phenotypes within the same patient. The disease first causes a nodule in the palm of the hand, while later, a cord develops, causing contracture of the fingers. RESULTS:

  19. Glioma Cells in the Tumor Periphery Have a Stem Cell Phenotype.

    Directory of Open Access Journals (Sweden)

    Sune Munthe

    Full Text Available Gliomas are highly infiltrative tumors incurable with surgery. Although surgery removes the bulk tumor, tumor cells in the periphery are left behind resulting in tumor relapses. The aim of the present study was to characterize the phenotype of tumor cells in the periphery focusing on tumor stemness, proliferation and chemo-resistance. This was investigated in situ in patient glioma tissue as well as in orthotopic glioblastoma xenografts. We identified 26 gliomas having the R132 mutation in Isocitrate DeHydrogenase 1 (mIDH1. A double immunofluorescence approach identifying mIDH1 positive tumor cells and a panel of markers was used. The panel comprised of six stem cell-related markers (CD133, Musashi-1, Bmi-1, Sox-2, Nestin and Glut-3, a proliferation marker (Ki-67 as well as a chemo-resistance marker (MGMT. Computer-based automated classifiers were designed to measure the mIDH1 positive nucleus area-fraction of the chosen markers. Moreover, orthotopic glioblastoma xenografts from five different patient-derived spheroid cultures were obtained and the tumor cells identified by human specific immunohistochemical markers. The results showed that tumor cells in the periphery of patient gliomas expressed stem cell markers, however for most markers at a significantly lower level than in the tumor core. The Ki-67 level was slightly reduced in the periphery, whereas the MGMT level was similar. In orthotopic glioblastoma xenografts all markers showed similar levels in the core and periphery. In conclusion tumor cells in the periphery of patient gliomas have a stem cell phenotype, although it is less pronounced than in the tumor core. Novel therapies aiming at preventing recurrence should therefore take tumor stemness into account. Migrating cells in orthotopic glioblastoma xenografts preserve expression and stem cell markers. The orthotopic model therefore has a promising translational potential.

  20. TLR4 and DC-SIGN receptors recognized Mycobacterium scrofulaceum promoting semi-activated phenotype on bone marrow dendritic cells.

    Science.gov (United States)

    Cruz-Aguilar, Marisa; Castillo-Rodal, Antonia I; Schcolnik-Cabrera, Alejandro; Bonifaz, Laura C; Molina, Gabriela; López-Vidal, Yolanda

    2016-07-01

    Nontuberculous mycobacteria (NTM) are recognized as emerging pathogens and their immune regulatory mechanisms are not well described yet. From them, Mycobacterium avium is known to be a weak activator of dendritic cells (DCs) that impairs the response induced by BCG vaccine. However, whether other NTM such as Mycobacterium scrofulaceum may modulate the activation of DCs, has not been extensively studied. Here, we exposed bone marrow-derived DCs (BMDCs) to M. scrofulaceum and we analyzed the effect on the activation of DCs. We found that M. scrofulaceum has a comparable ability to induce a semi-mature DC phenotype, which was produced by its interaction with DC-SIGN and TLR4 receptors in a synergic effect. BMDCs exposed to M. scrofulaceum showed high expression of PD-L2 and production of IL-10, as well as low levels of co-stimulatory molecules and pro-inflammatory cytokines. In addition to immunophenotype induced on DCs, changes in morphology, re-organization of cytoskeleton and decreased migratory capacity are consistent with a semi-mature phenotype. However, unlike other pathogenic mycobacteria, the DC-semi-mature phenotype induced by M. scrofulaceum was reversed after re-exposure to BCG, suggesting that modulation mechanisms of DC-activation used by M. scrofulaceum are different to other known pathogenic mycobacteria. This is the first report about the immunophenotypic characterization of DC stimulated by M. scrofulaceum.

  1. Epithelial cells with hepatobiliary phenotype: Is it another stem cell candidate for healthy adult human liver?

    Institute of Scientific and Technical Information of China (English)

    Dung Ngoc Khuu; Mustapha Najimi; Etienne M Sokal

    2007-01-01

    AIM: To investigate the presence and role of liver epithelial cells in the healthy human adult liver.METHODS: Fifteen days after human hepatocyte primary culture, epithelial like cells emerged and started proliferating. Cell colonies were isolated and sub-cultured for more than 160 d under specific culture conditions. Cells were analyzed for each passage using immunofluorescence, flow cytometry and reverse transcriptionpolymerase chain reaction (RT-PCR).RESULTS: Flow cytometry analysis demonstrated that liver epithelial cells expressed common markers for hepatic and stem cells such as CD90, CD44 and CD29 but were negative for CD34 and CD117. Using immunofluorescence we demonstrated that liver epithelial cells expressed not only immature (a-fetoprotein) but also differentiated hepatocyte (albumin and CK-18) and biliary markers (CK-7 and 19), whereas they were negative for OV-6. RT-PCR analysis confirmed immunofluorescence data and revealed that liver epithelial cells did not express mature hepatocyte markers such as CYP2B6, CYP3A4 and tyrosine amino-transferase. Purified liver epithelial cells were transplanted into SCID mice. One month after transplantation, albumin positive cell foci were detected in the recipient mouse parenchyma.CONCLUSION: According to their immature and bipotential phenotype, liver epithelial cells might represent a pool of precursors in the healthy human adult liver other than oval cells.

  2. Cytomegalovirus infection induces a stem cell phenotype in human primary glioblastoma cells

    DEFF Research Database (Denmark)

    Fornara, O; Rahbar, A; Odeberg, J;

    2016-01-01

    Glioblastoma (GBM) is associated with poor prognosis despite aggressive surgical resection, chemotherapy, and radiation therapy. Unfortunately, this standard therapy does not target glioma cancer stem cells (GCSCs), a subpopulation of GBM cells that can give rise to recurrent tumors. GBMs express...... human cytomegalovirus (HCMV) proteins, and previously we found that the level of expression of HCMV immediate-early (IE) protein in GBMs is a prognostic factor for poor patient survival. In this study, we investigated the relation between HCMV infection of GBM cells and the presence of GCSCs. Primary...... GBMs were characterized by their expression of HCMV-IE and GCSCs marker CD133 and by patient survival. The extent to which HCMV infection of primary GBM cells induced a GCSC phenotype was evaluated in vitro. In primary GBMs, a large fraction of CD133-positive cells expressed HCMV-IE, and higher co...

  3. Mesenchymal morphogenesis of embryonic stem cells dynamically modulates the biophysical microtissue niche

    Science.gov (United States)

    Kinney, Melissa A.; Saeed, Rabbia; McDevitt, Todd C.

    2014-01-01

    Stem cell fate and function are dynamically modulated by the interdependent relationships between biochemical and biophysical signals constituting the local 3D microenvironment. While approaches to recapitulate the stem cell niche have been explored for directing stem cell differentiation, a quantitative relationship between embryonic stem cell (ESC) morphogenesis and intrinsic biophysical cues within three-dimensional microtissues has not been established. In this study, we demonstrate that mesenchymal embryonic microtissues induced by BMP4 exhibited increased stiffness and viscosity accompanying differentiation, with cytoskeletal tension significantly contributing to multicellular stiffness. Perturbation of the cytoskeleton during ESC differentiation led to modulation of the biomechanical and gene expression profiles, with the resulting cell phenotype and biophysical properties being highly correlated by multivariate analyses. Together, this study elucidates the dynamics of biophysical and biochemical signatures within embryonic microenvironments, with broad implications for monitoring tissue dynamics, modeling pathophysiological and embryonic morphogenesis and directing stem cell patterning and differentiation. PMID:24598818

  4. Spontaneous transformation of human granulosa cell tumours into an aggressive phenotype: a metastasis model cell line

    International Nuclear Information System (INIS)

    Granulosa cell tumours (GCTs) are frequently seen in menopausal women and are relatively indolent. Although the physiological properties of normal granulosa cells have been studied extensively, little is known about the molecular mechanism of GCT progression. Here, we characterise the unique behavioural properties of a granulosa tumour cell line, KGN cells, for the molecular analysis of GCT progression. Population doubling was carried out to examine the proliferation capacity of KGN cells. Moreover, the invasive capacity of these cells was determined using the in vitro invasion assay. The expression level of tumour markers in KGN cells at different passages was then determined by Western blot analysis. Finally, the growth and metastasis of KGN cells injected subcutaneously (s.c.) into nude mice was observed 3 months after injection. During in vitro culture, the advanced passage KGN cells grew 2-fold faster than the early passage cells, as determined by the population doubling assay. Moreover, we found that the advanced passage cells were 2-fold more invasive than the early passage cells. The expression pattern of tumour markers, such as p53, osteopontin, BAX and BAG-1, supported the notion that with passage, KGN cells became more aggressive. Strikingly, KGN cells at both early and advanced passages metastasized to the bowel when injected s.c. into nude mice. In addition, more tumour nodules were formed when the advanced passage cells were implanted. KGN cells cultured in vitro acquire an aggressive phenotype, which was confirmed by the analysis of cellular activities and the expression of biomarkers. Interestingly, KGN cells injected s.c. are metastatic with nodule formation occurring mostly in the bowel. Thus, this cell line is a good model for analysing GCT progression and the mechanism of metastasis in vivo

  5. Aberrant Phenotype in Human Endothelial Cells of Diabetic Origin: Implications for Saphenous Vein Graft Failure?

    Directory of Open Access Journals (Sweden)

    Anna C. Roberts

    2015-01-01

    Full Text Available Type 2 diabetes (T2DM confers increased risk of endothelial dysfunction, coronary heart disease, and vulnerability to vein graft failure after bypass grafting, despite glycaemic control. This study explored the concept that endothelial cells (EC cultured from T2DM and nondiabetic (ND patients are phenotypically and functionally distinct. Cultured human saphenous vein- (SV- EC were compared between T2DM and ND patients in parallel. Proliferation, migration, and in vitro angiogenesis assays were performed; western blotting was used to quantify phosphorylation of Akt, ERK, and eNOS. The ability of diabetic stimuli (hyperglycaemia, TNF-α, and palmitate to modulate angiogenic potential of ND-EC was also explored. T2DM-EC displayed reduced migration (~30% and angiogenesis (~40% compared with ND-EC and a modest, nonsignificant trend to reduced proliferation. Significant inhibition of Akt and eNOS, but not ERK phosphorylation, was observed in T2DM cells. Hyperglycaemia did not modify ND-EC function, but TNF-α and palmitate significantly reduced angiogenic capacity (by 27% and 43%, resp., effects mimicked by Akt inhibition. Aberrancies of EC function may help to explain the increased risk of SV graft failure in T2DM patients. This study highlights the importance of other potentially contributing factors in addition to hyperglycaemia that may inflict injury and long-term dysfunction to the homeostatic capacity of the endothelium.

  6. Establishment and genetic characterization of a novel mixed-phenotype acute leukemia cell line with EP300-ZNF384 fusion

    OpenAIRE

    Ping, Nana; Qiu, Huiying; Wang, Qian; Dai, Haiping; Ruan, Changgeng; Ehrentraut, Stefan; Drexler, Hans G.; MacLeod, Roderick A. F.; Chen, Suning

    2015-01-01

    Herein, we describe the establishment and characterization of the first mixed-phenotype acute leukemia cell line (JIH-5). The JIH-5 cell line was established from leukemia cells with B lymphoid/myeloid phenotype from a female mixed-phenotype acute leukemia patient. JIH-5 cells exhibit an immunophenotype comprised of myeloid and B lymphoid antigens. Whole-exome sequencing revealed somatic mutations in nine genes in JIH-5 cells. Transcriptional sequencing of JIH-5 cells identified EP300-ZNF384 ...

  7. Rapamycin Conditioning of Dendritic Cells Differentiated from Human ES Cells Promotes a Tolerogenic Phenotype

    Directory of Open Access Journals (Sweden)

    Kathryn M. Silk

    2012-01-01

    Full Text Available While human embryonic stem cells (hESCs may one day facilitate the treatment of degenerative diseases requiring cell replacement therapy, the success of regenerative medicine is predicated on overcoming the rejection of replacement tissues. Given the role played by dendritic cells (DCs in the establishment of immunological tolerance, we have proposed that DC, rendered tolerogenic during their differentiation from hESC, might predispose recipients to accept replacement tissues. As a first step towards this goal, we demonstrate that DC differentiated from H1 hESCs (H1-DCs are particularly responsive to the immunosuppressive agent rapamycin compared to monocyte-derived DC (moDC. While rapamycin had only modest impact on the phenotype and function of moDC, H1-DC failed to upregulate CD40 upon maturation and displayed reduced immunostimulatory capacity. Furthermore, coculture of naïve allogeneic T cells with rapamycin-treated H1-DC promoted an increased appearance of CD25hi Foxp3+ regulatory T cells, compared to moDC. Our findings suggest that conditioning of hESC-derived DC with rapamycin favours a tolerogenic phenotype.

  8. Modulation of phosphoinositide metabolism in aortic smooth muscle cells by allylamine

    International Nuclear Information System (INIS)

    Aortic smooth muscle cells (SMC) modulate from a contractile to a proliferative phenotype upon subchronic exposure to allylamine. The present studies were designed to determine if this phenotypic modulation is associated with alterations in the metabolism of membrane phosphoinositides. 32P incorporation into phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol 4,5-bisphosphate (PIP2), and phosphatidic acid (PA) was lower by 31, 35, and 22%, respectively, in SMC from allylamine-treated animals relative to controls. In contrast, incorporation of [3H]myoinositol into inositol phosphates did not differ in allylamine cells relative to control cells. Exposure to dibutyryl (db) cAMP (0.2 mM) and theophylline (0.1 mM) reduced 32P incorporation into PIP and PIP2 in SMC from both experimental groups. Under these conditions, a decrease in [3H]myoinositol incorporation into inositol 1-phosphate was only observed in allylamine cells. The effects of db cAMP and theophylline in allylamine and control SMC correlated with a marked decrease in cellular proliferation. These results suggest that alterations in phosphoinositide synthesis and/or degradation contribute to the enhanced proliferation of SMC induced by allylamine. To further examine this concept, the effects of agents which modulate protein kinase C (PKC) activity were evaluated. Sphingosine (125-500 ng/ml), a PKC inhibitor, decreased SMC proliferation in allylamine, but not control cells. 12-O-Tetradecanoylphorbol-13-acetate (1-100 ng/ml), a PKC agonist, stimulated proliferation in control cells, but inhibited proliferation in cells from allylamine-treated animals. We conclude that allylamine-induced phenotypic modulation of SMC is associated with alterations in phosphoinositide metabolism

  9. Modulation of phosphoinositide metabolism in aortic smooth muscle cells by allylamine

    Energy Technology Data Exchange (ETDEWEB)

    Cox, L.R.; Murphy, S.K.; Ramos, K. (Philadelphia College of Pharmacy and Science, PA (USA))

    1990-08-01

    Aortic smooth muscle cells (SMC) modulate from a contractile to a proliferative phenotype upon subchronic exposure to allylamine. The present studies were designed to determine if this phenotypic modulation is associated with alterations in the metabolism of membrane phosphoinositides. 32P incorporation into phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol 4,5-bisphosphate (PIP2), and phosphatidic acid (PA) was lower by 31, 35, and 22%, respectively, in SMC from allylamine-treated animals relative to controls. In contrast, incorporation of (3H)myoinositol into inositol phosphates did not differ in allylamine cells relative to control cells. Exposure to dibutyryl (db) cAMP (0.2 mM) and theophylline (0.1 mM) reduced 32P incorporation into PIP and PIP2 in SMC from both experimental groups. Under these conditions, a decrease in (3H)myoinositol incorporation into inositol 1-phosphate was only observed in allylamine cells. The effects of db cAMP and theophylline in allylamine and control SMC correlated with a marked decrease in cellular proliferation. These results suggest that alterations in phosphoinositide synthesis and/or degradation contribute to the enhanced proliferation of SMC induced by allylamine. To further examine this concept, the effects of agents which modulate protein kinase C (PKC) activity were evaluated. Sphingosine (125-500 ng/ml), a PKC inhibitor, decreased SMC proliferation in allylamine, but not control cells. 12-O-Tetradecanoylphorbol-13-acetate (1-100 ng/ml), a PKC agonist, stimulated proliferation in control cells, but inhibited proliferation in cells from allylamine-treated animals. We conclude that allylamine-induced phenotypic modulation of SMC is associated with alterations in phosphoinositide metabolism.

  10. Type I collagen inhibits differentiation and promotes a stem cell-like phenotype in human colorectal carcinoma cells

    OpenAIRE

    Kirkland, S. C.

    2009-01-01

    Background: Human colorectal cancer is caused by mutations and is thought to be maintained by a population of cancer stem cells. Further phenotypic changes occurring at the invasive edge suggest that colon cancer cells are also regulated by their microenvironment. Type I collagen, a promoter of the malignant phenotype in pancreatic carcinoma cells, is highly expressed at the invasive front of human colorectal cancer. Methods: This study investigates the role of type I collagen in specifying t...

  11. Retinal Targets ALDH Positive Cancer Stem Cell and Alters the Phenotype of Highly Metastatic Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Xiaodong Mu

    2015-01-01

    Full Text Available Aldehyde dehydrogenase (ALDH is a cancer stem cell marker. Retinoic acid has antitumor properties, including the induction of apoptosis and inhibition of proliferation. Retinal, the precursor of retinoic acid, can be oxidized to retinoic acid by dehydrogenases, including ALDH. We hypothesized that retinal could potentially be transformed to retinoic acid with higher efficiency by cancer stem cells, due to the higher ALDH activity. We previously observed that ALDH activity is greater in highly metastatic K7M2 osteosarcoma (OS cells than in nonmetastatic K12 OS cells. We also demonstrated that ALDH activity correlates with clinical metastases in bone sarcoma patients, suggesting that ALDH may be a therapeutic target specific to cells with high metastatic potential. Our current results demonstrated that retinal preferentially affected the phenotypes of ALDH-high K7M2 cells in contrast to ALDH-low K12 cells, which could be mediated by the more efficient transformation of retinal to retinoic acid by ALDH in K7M2 cells. Retinal treatment of highly metastatic K7M2 cells decreased their proliferation, invasion capacity, and resistance to oxidative stress. Retinal altered the expression of metastasis-related genes. These observations indicate that retinal may be used to specifically target metastatic cancer stem cells in OS.

  12. Parenteral lipids modulate leukocyte phenotypes in whole blood, depending on their fatty acid composition.

    NARCIS (Netherlands)

    Versleijen, M.W.J.; Roelofs, H.; Preijers, F.W.M.B.; Roos, D.; Wanten, G.J.A.

    2005-01-01

    To characterize the immunological effects of various lipids that are applied as part of total parenteral nutrition (TPN) formulations, we analyzed phenotypical changes in leukocytes following lipid exposure. Importantly, the study was performed with whole blood in order to prevent the functional cha

  13. Colorectal cancer stem cells : regulation of the phenotype and implications for therapy resistance

    NARCIS (Netherlands)

    Emmink, B.L.

    2014-01-01

    In this thesis different aspects of cancer stem cells in colorectal cancer are discribed. We focus on the therapy resistance of cancer stem cells and the effect that reactive oxygen species and hypoxia have on the cancer stem cell phenotype. For this purpose a novel culture method to propagate cance

  14. PPARβ/δ and PPARγ maintain undifferentiated phenotypes of mouse adult neural precursor cells from the subventricular zone.

    Science.gov (United States)

    Bernal, Carolina; Araya, Claudia; Palma, Verónica; Bronfman, Miguel

    2015-01-01

    The subventricular zone (SVZ) is one of the main niches of neural stem cells in the adult mammalian brain. Stem and precursor cells in this region are the source for neurogenesis and oligodendrogesis, mainly in the olfactory bulb and corpus callosum, respectively. The identification of the molecular components regulating the decision of these cells to differentiate or maintain an undifferentiated state is important in order to understand the modulation of neurogenic processes in physiological and pathological conditions. PPARs are a group of transcription factors, activated by lipid ligands, with important functions in cellular differentiation and proliferation in several tissues. In this work, we demonstrate that mouse adult neural precursor cells (NPCs), in situ and in vitro, express PPARβ/δ and PPARγ. Pharmacological activation of both PPARs isoforms induces proliferation and maintenance of the undifferentiated phenotype. Congruently, inhibition of PPARβ/δ and PPARγ results in a decrease of proliferation and loss of the undifferentiated phenotype. Interestingly, PPARγ regulates the level of EGFR in adult NPCs, concurrent with it is function described in embryonic NPCs. Furthermore, we describe for the first time that PPARβ/δ regulates SOX2 level in adult NPCs, probably through a direct transcriptional regulation, as we identified two putative PPAR response elements in the promoter region of Sox2. EGFR and SOX2 are key players in neural stem/precursor cells self-renewal. Finally, rosiglitazone, a PPARγ ligand, increases PPARβ/δ level, suggesting a possible cooperation between these two PPARs in the control of cell fate behavior. Our work contributes to the understanding of the molecular mechanisms associated to neural cell fate decision and places PPARβ/δ and PPARγ as interesting new targets of modulation of mammalian brain homeostasis. PMID:25852474

  15. Alterations in Mesenteric Lymph Node T Cell Phenotype and Cytokine Secretion are Associated with Changes in Thymocyte Phenotype after LP-BM5 Retrovirus Infection

    Directory of Open Access Journals (Sweden)

    Maria C. Lopez

    2005-01-01

    Full Text Available In this study, mouse MLN cells and thymocytes from advanced stages of LP-BM5 retrovirus infection were studied. A decrease in the percentage of IL-7+ cells and an increase in the percentage of IL-16+ cells in the MLN indicated that secretion of these cytokines was also altered after LP-BM5 infection. The percentage of MLN T cells expressing IL-7 receptors was significantly reduced, while the percentage of MLN T cells expressing TNFR-p75 and of B cells expressing TNFR-p55 increased. Simultaneous analysis of surface markers and cytokine secretion was done in an attempt to understand whether the deregulation of IFN-Υ secretion could be ascribed to a defined cell phenotype, concluding that all T cell subsets studied increased IFN-Υ secretion after retrovirus infection. Finally, thymocyte phenotype was further analyzed trying to correlate changes in thymocyte phenotype with MLN cell phenotype. The results indicated that the increase in single positive either CD4+CD8- or CD4- CD8+ cells was due to accumulation of both immature (CD3- and mature (CD3+ single positive thymocytes. Moreover, single positive mature thymocytes presented a phenotype similar to the phenotype previously seen on MLN T cells. In summary, we can conclude that LP-BM5 uses the immune system to reach the thymus where it interferes with the generation of functionally mature T cells, favoring the development of T cells with an abnormal phenotype. These new T cells are activated to secrete several cytokines that in turn will favor retrovirus replication and inhibit any attempt of the immune system to control infection.

  16. Differentiation of human embryonic stem cells into cells with corneal keratocyte phenotype.

    Directory of Open Access Journals (Sweden)

    Audrey A Chan

    Full Text Available Corneal transparency depends on a unique extracellular matrix secreted by stromal keratocytes, mesenchymal cells of neural crest lineage. Derivation of keratocytes from human embryonic stem (hES cells could elucidate the keratocyte developmental pathway and open a potential for cell-based therapy for corneal blindness. This study seeks to identify conditions inducing differentiation of pluripotent hES cells to the keratocyte lineage. Neural differentiation of hES cell line WA01(H1 was induced by co-culture with mouse PA6 fibroblasts. After 6 days of co-culture, hES cells expressing cell-surface NGFR protein (CD271, p75NTR were isolated by immunoaffinity adsorption, and cultured as a monolayer for one week. Keratocyte phenotype was induced by substratum-independent pellet culture in serum-free medium containing ascorbate. Gene expression, examined by quantitative RT-PCR, found hES cells co-cultured with PA6 cells for 6 days to upregulate expression of neural crest genes including NGFR, SNAI1, NTRK3, SOX9, and MSX1. Isolated NGFR-expressing cells were free of PA6 feeder cells. After expansion as a monolayer, mRNAs typifying adult stromal stem cells were detected, including BMI1, KIT, NES, NOTCH1, and SIX2. When these cells were cultured as substratum-free pellets keratocyte markers AQP1, B3GNT7, PTDGS, and ALDH3A1 were upregulated. mRNA for keratocan (KERA, a cornea-specific proteoglycan, was upregulated more than 10,000 fold. Culture medium from pellets contained high molecular weight keratocan modified with keratan sulfate, a unique molecular component of corneal stroma. These results show hES cells can be induced to differentiate into keratocytes in vitro. Pluripotent stem cells, therefore, may provide a renewable source of material for development of treatment of corneal stromal opacities.

  17. A Quantitative Analysis of Photovoltaic Modules Using Halved Cells

    Directory of Open Access Journals (Sweden)

    S. Guo

    2013-01-01

    Full Text Available In a silicon wafer-based photovoltaic (PV module, significant power is lost due to current transport through the ribbons interconnecting neighbour cells. Using halved cells in PV modules is an effective method to reduce the resistive power loss which has already been applied by some major PV manufacturers (Mitsubishi, BP Solar in their commercial available PV modules. As a consequence, quantitative analysis of PV modules using halved cells is needed. In this paper we investigate theoretically and experimentally the difference between modules made with halved and full-size solar cells. Theoretically, we find an improvement in fill factor of 1.8% absolute and output power of 90 mW for the halved cell minimodule. Experimentally, we find an improvement in fill factor of 1.3% absolute and output power of 60 mW for the halved cell module. Also, we investigate theoretically how this effect confers to the case of large-size modules. It is found that the performance increment of halved cell PV modules is even higher for high-efficiency solar cells. After that, the resistive loss of large-size modules with different interconnection schemes is analysed. Finally, factors influencing the performance and cost of industrial halved cell PV modules are discussed.

  18. The Phenotypic Fate of Bone Marrow-Derived Stem Cells in Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Guowei Feng

    2013-11-01

    Full Text Available Background: Despite increasing attention on the role of bone marrow derived stem cells in repair or rejuvenation of tissues and organs, cellular mechanisms of such cell-based therapy remain poorly understood. Methods: We reconstituted hematopoiesis in recipient C57BL/6J mice by transplanting syngeneic GFP+ bone marrow (BM cells. Subsequently, the recipients received subcutaneous injection of granulocyte-colony stimulating factor (G-CSF and were subjected to acute renal ischemic injury. Flow cytometry and immunostaining were performed at various time points to assess engraftment and phenotype of BM derived stem cells. Results: Administration of G-CSF increased the release of BM derived stem cells into circulation and enhanced the ensuing recruitment of BM derived stem cells into injured kidney. During the second month post injury, migrated BM derived stem cells lost hematopoietic phenotype (CD45 but maintained the expression of other markers (Sca-1, CD133 and CD44, suggesting their potential of transdifferentiation into renal stem cells. Moreover, G-CSF treatment enhanced the phenotypic conversion. Conclusion: Our work depicted a time-course dependent transition of phenotypic characteristics of BM derived stem cells, demonstrated the existence of BM derived stem cells in damaged kidney and revealed the effects of G-CSF on cell transdifferentiation.

  19. Phenotypic and Molecular Characterization of MCF10DCIS and SUM Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Nandita Barnabas

    2013-01-01

    Full Text Available We reviewed the phenotypic and molecular characteristics of MCF10DCIS.com and the SUM cell lines based on numerous studies performed over the years. The major signaling pathways that give rise to the phenotype of these cells may serve as a good resource of information when researchers in drug discovery and development use these cells to identify novel targets and biomarkers. Major signaling pathways and mutations affecting the coding sequence are also described providing important information when using these cells as a model in a variety of studies.

  20. Nutritional and non-nutritional food components modulate phenotypic variation but not physiological trade-offs in an insect

    Science.gov (United States)

    Pascacio-Villafán, Carlos; Williams, Trevor; Birke, Andrea; Aluja, Martín

    2016-01-01

    Our understanding of how food modulates animal phenotypes and mediate trade-offs between life-history traits has benefited greatly from the study of combinations of nutritional and non-nutritional food components, such as plant secondary metabolites. We used a fruit fly pest, Anastrepha ludens, to examine phenotypic variation across larval, pupal and adult stages as a function of larval food with varying nutrient balance and content of chlorogenic acid, a secondary metabolite. Larval insects that fed on carbohydrate-biased diets relative to protein exhibited longer larval and pupal developmental periods, were often heavier as pupae and resisted desiccation and starvation for longer periods in the adult stage than insects fed on highly protein-biased diets. Except for a potential conflict between pupal development time and adult desiccation and starvation resistance, we did not detect physiological trade-offs mediated by the nutritional balance in larval food. Chlorogenic acid affected A. ludens development in a concentration and nutrient-dependent manner. Nutrients and host plant secondary metabolites in the larval diet induced changes in A. ludens phenotype and could influence fruit fly ecological interactions. We provide a unique experimental and modelling approach useful in generating predictive models of life history traits in a variety of organisms. PMID:27406923

  1. Nutritional and non-nutritional food components modulate phenotypic variation but not physiological trade-offs in an insect.

    Science.gov (United States)

    Pascacio-Villafán, Carlos; Williams, Trevor; Birke, Andrea; Aluja, Martín

    2016-01-01

    Our understanding of how food modulates animal phenotypes and mediate trade-offs between life-history traits has benefited greatly from the study of combinations of nutritional and non-nutritional food components, such as plant secondary metabolites. We used a fruit fly pest, Anastrepha ludens, to examine phenotypic variation across larval, pupal and adult stages as a function of larval food with varying nutrient balance and content of chlorogenic acid, a secondary metabolite. Larval insects that fed on carbohydrate-biased diets relative to protein exhibited longer larval and pupal developmental periods, were often heavier as pupae and resisted desiccation and starvation for longer periods in the adult stage than insects fed on highly protein-biased diets. Except for a potential conflict between pupal development time and adult desiccation and starvation resistance, we did not detect physiological trade-offs mediated by the nutritional balance in larval food. Chlorogenic acid affected A. ludens development in a concentration and nutrient-dependent manner. Nutrients and host plant secondary metabolites in the larval diet induced changes in A. ludens phenotype and could influence fruit fly ecological interactions. We provide a unique experimental and modelling approach useful in generating predictive models of life history traits in a variety of organisms. PMID:27406923

  2. Dynamic Switch Between Two Adhesion Phenotypes in Colorectal Cancer Cells

    OpenAIRE

    Geng, Yue; Chandrasekaran, Siddarth; Agastin, Sivaprakash; Li, Jiahe; King, Michael R.

    2013-01-01

    The hematogenous metastatic cascade is mediated by the interaction of cancer cells and the endothelial cell lining of blood vessels. In this work, we examine the colon cancer cell line COLO 205, which grows simultaneously in both adherent and suspended states in culture and can serve as a good model for studying tumor heterogeneity. The two subpopulations of cells have different molecular characteristics despite being from the same parent cell line. We found that the ratio of adherent to susp...

  3. The Stiffness of Collagen Fibrils Influences Vascular Smooth Muscle Cell Phenotype

    OpenAIRE

    McDaniel, Dennis P.; Shaw, Gordon A; Elliott, John T; Bhadriraju, Kiran; Meuse, Curt; Chung, Koo-Hyun; Plant, Anne L

    2006-01-01

    Cells receive signals from the extracellular matrix through receptor-dependent interactions, but they are also influenced by the mechanical properties of the matrix. Although bulk properties of substrates have been shown to affect cell behavior, we show here that nanoscale properties of collagen fibrils also play a significant role in determining cell phenotype. Type I collagen fibrils assembled into thin films provide excellent viewing of cells interacting with individual fibrils. Cells can ...

  4. Primary cardiac diffuse large B-cell lymphoma with activated B-cell-like phenotype

    Directory of Open Access Journals (Sweden)

    Vijaya Gadage

    2011-01-01

    Full Text Available Primary cardiac lymphoma (PCL is a rare and fatal disorder. It may often mimic other common cardiac tumors like cardiac myxoma because of similarities in the clinical presentation. We report a case of PCL of diffuse large B-cell type, in a 38-year-old, immunocompetent male who presented with superior vena cava syndrome that was excised as a myxoma. Histology revealed a large cell population diffusely and strongly expressing CD45, CD20, MUM1/IRF4 and FOXP1 hinting at an activated B-cell (ABC-like phenotype. After four cycles of Rituximab with CHOP (cyclophosphamide, hydroxydaunorubicin, Oncovin, and prednisolone the tumor regressed completely but the patient had a relapse and subsequently succumbed to the disease confirming the aggressive nature. The aggressive behavior of PCL may be possibly linked to its ABC-like origin.

  5. Modulation of Lupus Phenotype by Adiponectin Deficiency in Autoimmune Mouse Models

    OpenAIRE

    Parker, Jennifer; Menn-Josephy, Hanni; Laskow, Bari; Takemura, Yukihiro; Aprahamian, Tamar

    2010-01-01

    Adiponectin is an adipocyte-derived cytokine with anti-inflammatory properties. Paradoxically, circulating adiponectin levels are increased in a number of inflammatory diseases. Thus, we sought to define the role of adiponectin deficiency in mouse models of autoimmunity. Adiponectin-deficient mice on a C57BL/6 background do not develop an autoimmune phenotype. Autoimmunity was also not observed in adiponectin-deficient mice generated on the permissive MRL background. However, adiponectin defi...

  6. Salivary gland NK cells are phenotypically and functionally unique.

    Directory of Open Access Journals (Sweden)

    Marlowe S Tessmer

    Full Text Available Natural killer (NK cells and CD8(+ T cells play vital roles in containing and eliminating systemic cytomegalovirus (CMV. However, CMV has a tropism for the salivary gland acinar epithelial cells and persists in this organ for several weeks after primary infection. Here we characterize a distinct NK cell population that resides in the salivary gland, uncommon to any described to date, expressing both mature and immature NK cell markers. Using RORγt reporter mice and nude mice, we also show that the salivary gland NK cells are not lymphoid tissue inducer NK-like cells and are not thymic derived. During the course of murine cytomegalovirus (MCMV infection, we found that salivary gland NK cells detect the infection and acquire activation markers, but have limited capacity to produce IFN-γ and degranulate. Salivary gland NK cell effector functions are not regulated by iNKT or T(reg cells, which are mostly absent in the salivary gland. Additionally, we demonstrate that peripheral NK cells are not recruited to this organ even after the systemic infection has been controlled. Altogether, these results indicate that viral persistence and latency in the salivary glands may be due in part to the presence of unfit NK cells and the lack of recruitment of peripheral NK cells.

  7. Salivary gland NK cells are phenotypically and functionally unique.

    Science.gov (United States)

    Tessmer, Marlowe S; Reilly, Emma C; Brossay, Laurent

    2011-01-13

    Natural killer (NK) cells and CD8(+) T cells play vital roles in containing and eliminating systemic cytomegalovirus (CMV). However, CMV has a tropism for the salivary gland acinar epithelial cells and persists in this organ for several weeks after primary infection. Here we characterize a distinct NK cell population that resides in the salivary gland, uncommon to any described to date, expressing both mature and immature NK cell markers. Using RORγt reporter mice and nude mice, we also show that the salivary gland NK cells are not lymphoid tissue inducer NK-like cells and are not thymic derived. During the course of murine cytomegalovirus (MCMV) infection, we found that salivary gland NK cells detect the infection and acquire activation markers, but have limited capacity to produce IFN-γ and degranulate. Salivary gland NK cell effector functions are not regulated by iNKT or T(reg) cells, which are mostly absent in the salivary gland. Additionally, we demonstrate that peripheral NK cells are not recruited to this organ even after the systemic infection has been controlled. Altogether, these results indicate that viral persistence and latency in the salivary glands may be due in part to the presence of unfit NK cells and the lack of recruitment of peripheral NK cells.

  8. Phenotypic classification of gastric signet ring cell carcinoma and its relationship with clinicopathologic parameters and prognosis

    Institute of Scientific and Technical Information of China (English)

    Meng-Meng Tian; Ai-Lian Zhao; Zhong-Wu Li; Ji-You Li

    2007-01-01

    AIM: To distinguish subtypes of gastric signet ring cell(SRC) carcinoma by investigating the expression of gastric and intestinal phenotypic markers, and to study the significance of phenotypic classification in predicting tumor progression and outcome.METHODS: Immunohistochemistry was performed in 66 cases of SRC carcinoma with MUC2. VILLIN, CDX2, Licadherin antibodies as intestinal phenotype markers and MUC5AC, HGM, MUC6 antibodies as gastric phenotype markers, and the relationship was analyzed between the phenotypic expression pation and clinicopathologic parameters, as well as the 3-year survival rate.RESULTS: Expression of intestinal phenotypic markers was positively associated with tumor size, wall invasion,vascular invasion, lymph node metastasis and tumornode-metastasis (TNM) stage. Cases expressing one or more intestinal markers had a significant lower survival rate than cases expressing none of the intestinal markers.CONCLUSION: The SRC carcinomas expressing intestinal phenotype markers exhibited a high proliferative potential, bad biological behaviors and poor prognosis. Examination of phenotype expression may be useful in distinguishing histological type and in prediciting the prognosis of gastric SRC carcinoma.

  9. Quantitative phenotyping-based in vivo chemical screening in a zebrafish model of leukemia stem cell xenotransplantation.

    Directory of Open Access Journals (Sweden)

    Beibei Zhang

    Full Text Available Zebrafish-based chemical screening has recently emerged as a rapid and efficient method to identify important compounds that modulate specific biological processes and to test the therapeutic efficacy in disease models, including cancer. In leukemia, the ablation of leukemia stem cells (LSCs is necessary to permanently eradicate the leukemia cell population. However, because of the very small number of LSCs in leukemia cell populations, their use in xenotransplantation studies (in vivo and the difficulties in functionally and pathophysiologically replicating clinical conditions in cell culture experiments (in vitro, the progress of drug discovery for LSC inhibitors has been painfully slow. In this study, we developed a novel phenotype-based in vivo screening method using LSCs xenotransplanted into zebrafish. Aldehyde dehydrogenase-positive (ALDH+ cells were purified from chronic myelogenous leukemia K562 cells tagged with a fluorescent protein (Kusabira-orange and then implanted in young zebrafish at 48 hours post-fertilization. Twenty-four hours after transplantation, the animals were treated with one of eight different therapeutic agents (imatinib, dasatinib, parthenolide, TDZD-8, arsenic trioxide, niclosamide, salinomycin, and thioridazine. Cancer cell proliferation, and cell migration were determined by high-content imaging. Of the eight compounds that were tested, all except imatinib and dasatinib selectively inhibited ALDH+ cell proliferation in zebrafish. In addition, these anti-LSC agents suppressed tumor cell migration in LSC-xenotransplants. Our approach offers a simple, rapid, and reliable in vivo screening system that facilitates the phenotype-driven discovery of drugs effective in suppressing LSCs.

  10. Clinical implications of immunologic phenotyping in cutaneous T cell lymphoma.

    Science.gov (United States)

    Vonderheid, E C; Tan, E; Sobel, E L; Schwab, E; Micaily, B; Jegasothy, B V

    1987-07-01

    The composition of cutaneous lesions from 158 patients with confirmed cutaneous T cell lymphoma, 91 patients with suspected cutaneous T cell lymphoma, and 145 patients with lymphoid disorders other than cutaneous T cell lymphoma was quantitated in situ with the use of commercially available murine monoclonal antibodies that identify the Pan T, T-helper/inducer (Th), T cytotoxic/suppressor (Ts), and Pan B lymphocyte subsets. On average, cutaneous infiltrates of confirmed cutaneous T cell lymphoma were found to contain significantly more Th and less Ts or Pan B cells compared to benign lymphoid disorders. Moreover, when analyzed in terms of the type of lesion examined by biopsy, the absolute amount of Th cells progressively expands with increasing magnitudes of infiltrate in the dermis while the amount of Ts and Pan B cells remains relatively constant among lesions. A useful diagnostic criterion (anti-Leu 1/4 greater than or equal to 70% and anti-Leu 3a/anti-Leu 2a ratio greater than or equal to 6) correctly discriminated between cutaneous T cell lymphoma and non-cutaneous T cell lymphoma in 87.5% of cases. A positive immunodiagnostic result also may be useful for the prediction of subsequent histopathologic confirmation of cutaneous T cell lymphoma in patients who have suspect lymphoid infiltrates, such as alopecia mucinosis or idiopathic generalized erythroderma, when first seen. With the use of multivariate analysis, stage and possibly the percentage of Th cells within the T cell component in cutaneous infiltrates were covariates with significant relationships to survival in patients with confirmed cutaneous T cell lymphoma. In addition, Ts cells in infiltrates did not correlate significantly with observed responses to topical treatment and subsequent course in pretumorous mycosis fungoides. These results indicate that Ts cells play little biologic role in modifying the natural history of cutaneous T cell lymphoma.

  11. Adipose tissue-derived stromal cells express neuronal phenotypes

    Institute of Scientific and Technical Information of China (English)

    杨立业; 刘相名; 孙兵; 惠国桢; 费俭; 郭礼和

    2004-01-01

    Background Adipose tissue-derived stromal cells (ADSCs) can be greatly expanded in vitro, and induced to differentiate into multiple mesenchymal cell types, including osteogenic, chondrogenic, myogenic, and adipogenic cells. This study was designed to investigate the possibility of ADSCs differentiating into neurons.Methods Adipose tissue from rats was digested with collagenase, and adherent stromal cells were cultured. A medium containing a low concentration of fetal bovine serum was adopted to induce the cells to differentiate. ADSCs were identified by immunocytochemistry, and semi-quantitative RT-PCR was applied to detect mRNA expression of neurofilament 1 (NF1), nestin, and neuron-specific enolase (NSE).Results Nestin-positive cells were found occasionally among ADSCs. ADSCs were found to express NSE mRNA and nestin mRNA, but not NF1 mRNA. ADSCs could differentiate into neuron-like cells in a medium composed of a low concentration of fetal bovine serum, and these differentiated cells displayed complicated neuron-like morphologies.Conclusions The data support the hypothesis that adipose tissue contains stem cells capable of differentiating into neurons. These stem cells can overcome their mesenchymal commitment, and may represent an alternative autologous stem cell source for CNS cell transplantation.

  12. Avian dendritic cells: Phenotype and ontogeny in lymphoid organs.

    Science.gov (United States)

    Nagy, Nándor; Bódi, Ildikó; Oláh, Imre

    2016-05-01

    Dendritic cells (DC) are critically important accessory cells in the innate and adaptive immune systems. Avian DCs were originally identified in primary and secondary lymphoid organs by their typical morphology, displaying long cell processes with cytoplasmic granules. Several subtypes are known. Bursal secretory dendritic cells (BSDC) are elongated cells which express vimentin intermediate filaments, MHC II molecules, macrophage colony-stimulating factor 1 receptor (CSF1R), and produce 74.3+ secretory granules. Avian follicular dendritic cells (FDC) highly resemble BSDC, express the CD83, 74.3 and CSF1R molecules, and present antigen in germinal centers. Thymic dendritic cells (TDC), which express 74.3 and CD83, are concentrated in thymic medulla while interdigitating DC are found in T cell-rich areas of secondary lymphoid organs. Avian Langerhans cells are a specialized 74.3-/MHC II+ cell population found in stratified squamous epithelium and are capable of differentiating into 74.3+ migratory DCs. During organogenesis hematopoietic precursors of DC colonize the developing lymphoid organ primordia prior to immigration of lymphoid precursor cells. This review summarizes our current understanding of the ontogeny, cytoarchitecture, and immunophenotype of avian DC, and offers an antibody panel for the in vitro and in vivo identification of these heterogeneous cell types.

  13. An expanded model of HIV cell entry phenotype based on multi-parameter single-cell data

    Directory of Open Access Journals (Sweden)

    Bozek Katarzyna

    2012-07-01

    Full Text Available Abstract Background Entry of human immunodeficiency virus type 1 (HIV-1 into the host cell involves interactions between the viral envelope glycoproteins (Env and the cellular receptor CD4 as well as a coreceptor molecule (most importantly CCR5 or CXCR4. Viral preference for a specific coreceptor (tropism is in particular determined by the third variable loop (V3 of the Env glycoprotein gp120. The approval and use of a coreceptor antagonist for antiretroviral therapy make detailed understanding of tropism and its accurate prediction from patient derived virus isolates essential. The aim of the present study is the development of an extended description of the HIV entry phenotype reflecting its co-dependence on several key determinants as the basis for a more accurate prediction of HIV-1 entry phenotype from genotypic data. Results Here, we established a new protocol of quantitation and computational analysis of the dependence of HIV entry efficiency on receptor and coreceptor cell surface levels as well as viral V3 loop sequence and the presence of two prototypic coreceptor antagonists in varying concentrations. Based on data collected at the single-cell level, we constructed regression models of the HIV-1 entry phenotype integrating the measured determinants. We developed a multivariate phenotype descriptor, termed phenotype vector, which facilitates a more detailed characterization of HIV entry phenotypes than currently used binary tropism classifications. For some of the tested virus variants, the multivariant phenotype vector revealed substantial divergences from existing tropism predictions. We also developed methods for computational prediction of the entry phenotypes based on the V3 sequence and performed an extrapolating calculation of the effectiveness of this computational procedure. Conclusions Our study of the HIV cell entry phenotype and the novel multivariate representation developed here contributes to a more detailed

  14. Sollar cell module; Taiyo denchi mojuru

    Energy Technology Data Exchange (ETDEWEB)

    Komori, A.; Mori, T.; Shiotsuka, H.; Kataoka, I.; Yamada, S.

    1997-02-25

    This invention relates to a solar cell module composed of a photovoltaic device with at least one layer of a semiconductor photoactive layer as a photoelectric conversion material and a covering material, in which thermoplastic transparent organic polymer resin of a gel fraction more than 80% is used as the covering material. This polymer resin has a diminution rate of ultraviolet absorption between 5 and 50% when exposed to an atmosphere of a temperature of 150{degree}C for 72 hours. The thermoplastic transparent polymer resin of a gel fraction more than 80% is cross-linked sufficiently and is hard to deteriorate. Therefore, the adhesion between the thermoplastic transparent polymer resin and the uppermost resin film is secured owing to no emergence of the glass fiber and moreover, reinforcement of the thermoplastic transparent polymer resin with glass fiber enable to reduce the thickness of the thermoplastic transparent polymer resin while securing the scratch resistance. 6 figs., 1 tab.

  15. IGF-1 Has Plaque-Stabilizing Effects in Atherosclerosis by Altering Vascular Smooth Muscle Cell Phenotype

    OpenAIRE

    von der Thüsen, Jan H; Borensztajn, Keren S.; Moimas, Silvia; van Heiningen, Sandra; Teeling, Peter; Van Berkel, Theo J. C.; Biessen, Erik A. L.

    2011-01-01

    Insulin-like growth factor-1 (IGF-1) signaling is important for the maintenance of plaque stability in atherosclerosis due to its effects on vascular smooth muscle cell (vSMC) phenotype. To investigate this hypothesis, we studied the effects of the highly inflammatory milieu of the atherosclerotic plaque on IGF-1 signaling and stability-related phenotypic parameters of murine vSMCs in vitro, and the effects of IGF-1 supplementation on plaque phenotype in an atherosclerotic mouse model. M1-pol...

  16. Early specification of dopaminergic phenotype during ES cell differentiation

    Directory of Open Access Journals (Sweden)

    Li Meng

    2007-07-01

    Full Text Available Abstract Background Understanding how lineage choices are made during embryonic stem (ES cell differentiation is critical for harnessing strategies for controlled production of therapeutic somatic cell types for cell transplantation and pharmaceutical drug screens. The in vitro generation of dopaminergic neurons, the type of cells lost in Parkinson's disease patients' brains, requires the inductive molecules sonic hedgehog and FGF8, or an unknown stromal cell derived inducing activity (SDIA. However, the exact identity of the responding cells and the timing of inductive activity that specify a dopaminergic fate in neural stem/progenitors still remain elusive. Results Using ES cells carrying a neuroepithelial cell specific vital reporter (Sox1-GFP and FACS purification of Sox1-GFP neural progenitors, we have investigated the temporal aspect of SDIA mediated dopaminergic neuron specification during ES cell differentiation. Our results establish that SDIA induces a dopaminergic neuron fate in nascent neural stem or progenitor cells at, or prior to, Sox1 expression and does not appear to have further instructive role or neurotrophic activity during late neuronal differentiation of neural precursors. Furthermore, we show that dopaminergic neurons could be produced efficiently in a monolayer differentiation paradigm independent of SDIA activity or exogenous signalling molecules. In this case, the competence for dopaminergic neuron differentiation is also established at the level of Sox1 expression. Conclusion Dopaminergic neurons are specified early during mouse ES cell differentiation. The subtype specification seems to be tightly linked with the acquisition of a pan neuroectoderm fate.

  17. Nonequilibrium population dynamics of phenotype conversion of cancer cells.

    Directory of Open Access Journals (Sweden)

    Joseph Xu Zhou

    Full Text Available Tumorigenesis is a dynamic biological process that involves distinct cancer cell subpopulations proliferating at different rates and interconverting between them. In this paper we proposed a mathematical framework of population dynamics that considers both distinctive growth rates and intercellular transitions between cancer cell populations. Our mathematical framework showed that both growth and transition influence the ratio of cancer cell subpopulations but the latter is more significant. We derived the condition that different cancer cell types can maintain distinctive subpopulations and we also explain why there always exists a stable fixed ratio after cell sorting based on putative surface markers. The cell fraction ratio can be shifted by changing either the growth rates of the subpopulations (Darwinism selection or by environment-instructed transitions (Lamarckism induction. This insight can help us to understand the dynamics of the heterogeneity of cancer cells and lead us to new strategies to overcome cancer drug resistance.

  18. Does the liposuction method influence the phenotypic characteristic of human adipose-derived stem cells?

    OpenAIRE

    Bajek, Anna; GURTOWSKA, NATALIA; Gackowska, Lidia; Kubiszewska, Izabela; Bodnar, Magdalena; Marszałek, Andrzej; Januszewski, Rafał; Michalkiewicz, Jacek; Drewa, Tomasz

    2015-01-01

    Adipose-derived stem cells (ASCs) possess a high differentiation and proliferation potential. However, the phenotypic characterization of ASCs is still difficult. Until now, there is no extensive analysis of ASCs markers depending on different liposuction methods. Therefore, the aim of the present study was to analyse 242 surface markers and determine the differences in the phenotypic pattern between ASCs obtained during mechanical and ultrasound-assisted liposuction. ASCs were isolated from ...

  19. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping

    Science.gov (United States)

    Augustsson, Per; Karlsen, Jonas T.; Su, Hao-Wei; Bruus, Henrik; Voldman, Joel

    2016-05-01

    Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells' interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance of single cells in continuous flow. While flowing through a microchannel, cells migrate sideways, influenced by an acoustic field, into streams of increasing acoustic impedance, until reaching their cell-type specific point of zero acoustic contrast. We establish an experimental procedure and provide theoretical justifications and models for iso-acoustic focusing. We describe a method for providing a suitable acoustic contrast gradient in a cell-friendly medium, and use acoustic forces to maintain that gradient in the presence of destabilizing forces. Applying this method we demonstrate iso-acoustic focusing of cell lines and leukocytes, showing that acoustic properties provide phenotypic information independent of size.

  20. Human memory T cells with a naive phenotype accumulate with aging and respond to persistent viruses.

    Science.gov (United States)

    Pulko, Vesna; Davies, John S; Martinez, Carmine; Lanteri, Marion C; Busch, Michael P; Diamond, Michael S; Knox, Kenneth; Bush, Erin C; Sims, Peter A; Sinari, Shripad; Billheimer, Dean; Haddad, Elias K; Murray, Kristy O; Wertheimer, Anne M; Nikolich-Žugich, Janko

    2016-08-01

    The number of naive T cells decreases and susceptibility to new microbial infections increases with age. Here we describe a previously unknown subset of phenotypically naive human CD8(+) T cells that rapidly secreted multiple cytokines in response to persistent viral antigens but differed transcriptionally from memory and effector T cells. The frequency of these CD8(+) T cells, called 'memory T cells with a naive phenotype' (TMNP cells), increased with age and after severe acute infection and inversely correlated with the residual capacity of the immune system to respond to new infections with age. CD8(+) TMNP cells represent a potential new target for the immunotherapy of persistent infections and should be accounted for and subtracted from the naive pool if truly naive T cells are needed to respond to antigens. PMID:27270402

  1. Machine learning based methodology to identify cell shape phenotypes associated with microenvironmental cues.

    Science.gov (United States)

    Chen, Desu; Sarkar, Sumona; Candia, Julián; Florczyk, Stephen J; Bodhak, Subhadip; Driscoll, Meghan K; Simon, Carl G; Dunkers, Joy P; Losert, Wolfgang

    2016-10-01

    Cell morphology has been identified as a potential indicator of stem cell response to biomaterials. However, determination of cell shape phenotype in biomaterials is complicated by heterogeneous cell populations, microenvironment heterogeneity, and multi-parametric definitions of cell morphology. To associate cell morphology with cell-material interactions, we developed a shape phenotyping framework based on support vector machines. A feature selection procedure was implemented to select the most significant combination of cell shape metrics to build classifiers with both accuracy and stability to identify and predict microenvironment-driven morphological differences in heterogeneous cell populations. The analysis was conducted at a multi-cell level, where a "supercell" method used average shape measurements of small groups of single cells to account for heterogeneous populations and microenvironment. A subsampling validation algorithm revealed the range of supercell sizes and sample sizes needed for classifier stability and generalization capability. As an example, the responses of human bone marrow stromal cells (hBMSCs) to fibrous vs flat microenvironments were compared on day 1. Our analysis showed that 57 cells (grouped into supercells of size 4) are the minimum needed for phenotyping. The analysis identified that a combination of minor axis length, solidity, and mean negative curvature were the strongest early shape-based indicator of hBMSCs response to fibrous microenvironment. PMID:27449947

  2. Visualizing and quantifying cell phenotype using soft X-ray tomography

    OpenAIRE

    McDermott, Gerry; Fox, Douglas M.; Epperly, Lindsay; Wetzler, Modi; Barron, Annelise E.; Le Gros, Mark A.; Larabell, Carolyn A.

    2012-01-01

    Soft X-ray tomography (SXT) is an imaging technique capable of characterizing and quantifying the structural phenotype of cells. In particular, SXT is used to visualize the internal architecture of fully hydrated, intact eukaryotic and prokaryotic cells at high spatial resolution (50 nm or better). Image contrast in SXT is derived from the biochemical composition of the cell, and obtained without the need to use potentially damaging contrast-enhancing agents, such as heavy metals. The cells a...

  3. Mitochondria Biogenesis and Bioenergetics Gene Profiles in Isogenic Prostate Cells with Different Malignant Phenotypes

    OpenAIRE

    Tanya C. Burch; Rhim, Johng S.; Julius O Nyalwidhe

    2016-01-01

    Background. The most significant hallmarks of cancer are directly or indirectly linked to deregulated mitochondria. In this study, we sought to profile mitochondria associated genes in isogenic prostate cell lines with different tumorigenic phenotypes from the same patient. Results. Two isogenic human prostate cell lines RC77N/E (nonmalignant cells) and RC77T/E (malignant cells) were profiled for expression of mitochondrial biogenesis and energy metabolism genes by qRT-PCR using the Human Mit...

  4. Phenotype of villous stromal cells in placentas with cytomegalovirus, syphilis, and nonspecific villitis.

    OpenAIRE

    Greco, M A; Wieczorek, R.; Sachdev, R.; Kaplan, C.; Nuovo, G. J.; Demopoulos, R. I.

    1992-01-01

    Villous stromal cells (VSC) play an important role in fetomaternal placental immune function. We studied the phenotype of VSC in infection by cytomegalovirus (CMV) and syphilis as well as nonspecific villitis and compared the findings with gestational age-matched controls. Monoclonal antibodies directed against total leukocytes, T cells, B cells, macrophages, dendritic cells, granulocytes and HLA-DR as well as polyclonal antibodies against S-100, alpha-1 antichymotrypsin, and lysozyme were us...

  5. Contextual regulation of pancreatic cancer stem cell phenotype and radioresistance by pancreatic stellate cells

    International Nuclear Information System (INIS)

    Background and purpose: Progression of pancreatic ductal adenocarcinoma (PDAC) is promoted by desmoplasia induced by pancreatic stellate cells (PSC). Contributory to this progression is epithelial mesenchymal transition (EMT), which shares many characteristics with the cancer stem cell (CSC) hypothesis. We investigated the role of these processes on the radioresponse and tumorigenicity of pancreatic cancer cells. Materials and methods: We used an in vitro sphere model and in vivo xenograft model to examine the role of PSC in EMT and CSC processes. Results: We demonstrated that PSC enhanced the CSC phenotype and radioresistance of pancreatic cancer cells. Furthermore, the expression of several EMT and CSC markers supported enhanced processes in our models and that translated into remarkable in vivo tumorigenicity. Multi-dose TGFβ neutralizing antibody inhibited the EMT and CSC processes, sensitized cells to radiation and reduced in vivo tumorigenicity. A proteomic screen identified multiple novel factors that were regulated by PSC in pancreatic cells. Conclusion: These results are critical in highlighting the role of PSC in tumor progression and radioresistance by manipulating the EMT and CSC processes. TGFβ and the novel factors identified are important targets for better therapeutic outcome in response to PSC mediated mechanisms

  6. Cell-based phenotypic screening of mast cell degranulation unveils kinetic perturbations of agents targeting phosphorylation

    Science.gov (United States)

    Qin, Shenlu; Wang, Xumeng; Wu, Huanwen; Xiao, Peng; Cheng, Hongqiang; Zhang, Xue; Ke, Yuehai

    2016-01-01

    Mast cells play an essential role in initiating allergic diseases. The activation of mast cells are controlled by a complicated signal network of reversible phosphorylation, and finding the key regulators involved in this network has been the focus of the pharmaceutical industry. In this work, we used a method named Time-dependent cell responding profile (TCRP) to track the process of mast cell degranulation under various perturbations caused by agents targeting phosphorylation. To test the feasibility of this high-throughput cell-based phenotypic screening method, a variety of biological techniques were used. We further screened 145 inhibitors and clustered them based on the similarities of their TCRPs. Stat3 phosphorylation has been widely reported as a key step in mast cell degranulation. Interestingly, our TCRP results showed that a Stat3 inhibitor JSI124 did not inhibit degranulation like other Stat3 inhibitors, such as Stattic, clearly inhibited degranulation. Regular endpoint assays demonstrated that the distinctive TCRP of JSI124 potentially correlated with the ability to induce apoptosis. Consequently, different agents possibly have disparate functions, which can be conveniently detected by TCRP. From this perspective, our TCRP screening method is reliable and sensitive when it comes to discovering and selecting novel compounds for new drug developments. PMID:27502076

  7. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Puente, Pilar de la, E-mail: pilardelapuentegarcia@gmail.com [Tissue Bank, San Francisco Clinic Foundation, Av./Facultad 51, 5°, 24004 León (Spain); Ludeña, Dolores [Pathology Service, University Hospital of Salamanca, P/San Vicente 58-182, 37007 Salamanca (Spain); López, Marta; Ramos, Jennifer; Iglesias, Javier [Tissue Bank, San Francisco Clinic Foundation, Av./Facultad 51, 5°, 24004 León (Spain)

    2013-02-01

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12 pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.

  8. Oxygen Modulates Human Decidual Natural Killer Cell Surface Receptor Expression and Interactions with Trophoblasts1

    Science.gov (United States)

    Wallace, Alison E.; Goulwara, Sonu S.; Whitley, Guy S.; Cartwright, Judith E.

    2014-01-01

    Decidual natural killer (dNK) cells have been shown to both promote and inhibit trophoblast behavior important for decidual remodeling in pregnancy and have a distinct phenotype compared to peripheral blood NK cells. We investigated whether different levels of oxygen tension, mimicking the physiological conditions of the decidua in early pregnancy, altered cell surface receptor expression and activity of dNK cells and their interactions with trophoblast. dNK cells were isolated from terminated first-trimester pregnancies and cultured in oxygen tensions of 3%, 10%, and 21% for 24 h. Cell surface receptor expression was examined by flow cytometry, and the effects of secreted factors in conditioned medium (CM) on the trophoblast cell line SGHPL-4 were assessed in vitro. SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 10% were significantly more invasive (P oxygen tensions of 3% or 21%. After 24 h, a lower percentage of dNK cells expressed CD56 at 21% oxygen (P oxygen (P oxygen tensions, with large patient variation. This study demonstrates dNK cell phenotype and secreted factors are modulated by oxygen tension, which induces changes in trophoblast invasion and endovascular-like differentiation. Alterations in dNK cell surface receptor expression and secreted factors at different oxygen tensions may represent regulation of function within the decidua during the first trimester of pregnancy. PMID:25232021

  9. Modulation of Malaria Phenotypes by Pyruvate Kinase (PKLR Variants in a Thai Population.

    Directory of Open Access Journals (Sweden)

    Rebekah van Bruggen

    Full Text Available Pyruvate kinase (PKLR is a critical erythrocyte enzyme that is required for glycolysis and production of ATP. We have shown that Pklr deficiency in mice reduces the severity (reduced parasitemia, increased survival of blood stage malaria induced by infection with Plasmodium chabaudi AS. Likewise, studies in human erythrocytes infected ex vivo with P. falciparum show that presence of host PK-deficiency alleles reduces infection phenotypes. We have characterized the genetic diversity of the PKLR gene, including haplotype structure and presence of rare coding variants in two populations from malaria endemic areas of Thailand and Senegal. We investigated the effect of PKLR genotypes on rich longitudinal datasets including haematological and malaria-associated phenotypes. A coding and possibly damaging variant (R41Q was identified in the Thai population with a minor allele frequency of ~4.7%. Arginine 41 (R41 is highly conserved in the pyruvate kinase family and its substitution to Glutamine (R41Q affects protein stability. Heterozygosity for R41Q is shown to be associated with a significant reduction in the number of attacks with Plasmodium falciparum, while correlating with an increased number of Plasmodium vivax infections. These results strongly suggest that PKLR protein variants may affect the frequency, and the intensity of malaria episodes induced by different Plasmodium parasites in humans living in areas of endemic malaria.

  10. Suppressor analyses identify threonine as a modulator of ridA mutant phenotypes in Salmonella enterica.

    Directory of Open Access Journals (Sweden)

    Melissa R Christopherson

    Full Text Available The RidA (YjgF/YER057c/UK114 family of proteins is broadly conserved in the three domains of life yet the functional understanding of these proteins is at an early stage. Physiological studies of ridA mutant strains of Salmonella enterica provided a framework to inform in vitro studies and led to the description of a conserved biochemical activity for this family. ridA mutant strains of S. enterica have characteristic phenotypes including new synthesis of thiamine biosynthetic intermediate phosphoribosylamine (PRA, inability to grow on pyruvate as a sole carbon and energy source or when serine is present in the minimal growth medium, and a decreased specific activity of transaminase B (IlvE. Secondary mutations restoring growth to a ridA mutant in the presence of serine were in dapA (encoding dihydrodipicolinate synthase and thrA (encoding homoserine dehydrogenase. These mutations suppressed multiple ridA mutant phenotypes by increasing the synthesis of threonine. The ability of threonine to suppress the metabolic defects of a ridA mutant is discussed in the context of recent biochemical data and in vivo results presented here.

  11. The emerging phenotype of the testicular carcinoma in situ germ cell

    DEFF Research Database (Denmark)

    Rajpert-De Meyts, Ewa; Bartkova, Jirina; Samson, Michel;

    2003-01-01

    This review summarises the existing knowledge on the phenotype of the carcinoma in situ (CIS) cell. CIS is a common pre-invasive precursor of testicular germ cell tumours of adolescents and young adults. These tumours display a variety of histological forms. Classical seminoma proliferates along...... differentiation and pluripotency, CIS cells found in adult patients seem to be predestined for further malignant progression into one or the other of the two main types of overt tumours. A new concept of phenotypic continuity of differentiation of germ cells along germinal lineage with a gradual loss of embryonic...... that CIS cells originate from primordial germ cells or gonocytes and not from germ cells in the adult testis....

  12. Corrosion In Amorphous-Silicon Solar Cells And Modules

    Science.gov (United States)

    Mon, Gordon R.; Wen, Liang-Chi; Ross, Ronald G., Jr.

    1988-01-01

    Paper reports on corrosion in amorphous-silicon solar cells and modules. Based on field and laboratory tests, discusses causes of corrosion, ways of mitigating effects, and consequences for modules already in field. Suggests sealing of edges as way of reducing entry of moisture. Cell-free perimeters or sacrificial electrodes suggested to mitigate effects of sorbed moisture. Development of truly watertight module proves to be more cost-effective than attempting to mitigate effects of moisture.

  13. Phenotypic changes of human cells in human-rat liver during partial hepatectomy-induced regeneration

    Institute of Scientific and Technical Information of China (English)

    Yan Sun; Dong Xiao; Hong-An Li; Jin-Fang Jiang; Qing Li; Ruo-Shuang Zhang; Xi-Gu Chen

    2009-01-01

    AIM: To examine the human hepatic parenchymal and stromal components in rat liver and the phenotypic changes of human cells in liver of human-rat chimera (HRC) generated by in utero transplantation of human cells during partial hepatectomy (PHx)-induced liver regeneration. METHODS: Human hepatic parenchymal and stromal components and phenotypic changes of human cells during liver regeneration were examined by flow cytometry, in situ hybridization and immunohistochemistry. RESULTS: ISH analysis demonstrated human Alupositive cells in hepatic parenchyma and stroma of recipient liver. Functional human hepatocytes generated in this model potentially constituted human hepatic functional units with the presence of donor-derived human endothelial and biliary duct cells in host liver. Alpha fetoprotein (AFP)+, CD34+ and CD45+ cells were observed in the chimeric liver on day 10 after PHxinduced liver regeneration and then disappeared in PHx group, but not in non-PHx group, suggesting that dynamic phenotypic changes of human cells expressing AFP, CD34 and CD45 cells may occur during the chimeric liver regeneration. Additionally, immunostaining for human proliferating cell nuclear antigen (PCNA) showed that the number of PCNA-positive cells in the chimeric liver of PHx group was markedly increased, as compared to that of control group, indicating that donor-derived human cells are actively proliferated during PHx-induced regeneration of HRC liver.

  14. Gigantol Suppresses Cancer Stem Cell-Like Phenotypes in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Narumol Bhummaphan

    2015-01-01

    Full Text Available As cancer stem cells (CSCs contribute to malignancy, metastasis, and relapse of cancers, potential of compound in inhibition of CSCs has garnered most attention in the cancer research as well as drug development fields recently. Herein, we have demonstrated for the first time that gigantol, a pure compound isolated from Dendrobium draconis, dramatically suppressed stem-like phenotypes of human lung cancer cells. Gigantol at nontoxic concentrations significantly reduced anchorage-independent growth and survival of the cancer cells. Importantly, gigantol significantly reduced the ability of the cancer cells to form tumor spheroids, a critical hallmark of CSCs. Concomitantly, the treatment of the compound was shown to reduce well-known lung CSCs markers, including CD133 and ALDH1A1. Moreover, we revealed that gigantol decreased stemness in the cancer cells by suppressing the activation of protein kinase B (Akt signal which in turn decreased the cellular levels of pluripotency and self-renewal factors Oct4 and Nanog. In conclusion, gigantol possesses CSCs suppressing activity which may facilitate the development of this compound for therapeutic approaches by targeting CSCs.

  15. Human endometrial side population cells exhibit genotypic, phenotypic and functional features of somatic stem cells.

    Directory of Open Access Journals (Sweden)

    Irene Cervelló

    Full Text Available During reproductive life, the human endometrium undergoes around 480 cycles of growth, breakdown and regeneration should pregnancy not be achieved. This outstanding regenerative capacity is the basis for women's cycling and its dysfunction may be involved in the etiology of pathological disorders. Therefore, the human endometrial tissue must rely on a remarkable endometrial somatic stem cells (SSC population. Here we explore the hypothesis that human endometrial side population (SP cells correspond to somatic stem cells. We isolated, identified and characterized the SP corresponding to the stromal and epithelial compartments using endometrial SP genes signature, immunophenotyping and characteristic telomerase pattern. We analyzed the clonogenic activity of SP cells under hypoxic conditions and the differentiation capacity in vitro to adipogenic and osteogenic lineages. Finally, we demonstrated the functional capability of endometrial SP to develop human endometrium after subcutaneous injection in NOD-SCID mice. Briefly, SP cells of human endometrium from epithelial and stromal compartments display genotypic, phenotypic and functional features of SSC.

  16. Application of crystalline silicon solar cells in photovoltaic modules

    OpenAIRE

    L.A. Dobrzański; A. Drygała; M. Giedroć

    2010-01-01

    Purpose: The aim of the paper is to determinate basic electrical properties of solar cells, made of them photovoltaic module and analysis of its main electrical parameters.Design/methodology/approach: In this study, several methods were used: current – voltage characteristic to determinate basic electrical properties of 36 monocrystalline silicon solar cells, soft soldering technique to bond solar cells . Photovoltaic module was produced from 31 solar cells with the largest short-circuit curr...

  17. Comparative study on the stem cell phenotypes of C6 cells under different culture conditions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Suo-jun; YE Fei; XIE Rui-fan; HU Feng; WANG Bao-feng; WAN Feng; GUO Dong-sheng; LEI Ting

    2011-01-01

    phenotypes that can be moderately enriched in vitro when transferred into stem cell culture condition. The resultant tumor-spheres may be not a prerequisite or sound source of GSCs and adherent culture in stem cell medium is not a growth condition in favor of GSCs expanding in vivo.

  18. Endothelial and Epithelial Cell Transition to a Mesenchymal Phenotype Was Delineated by Nestin Expression.

    Science.gov (United States)

    Chabot, Andréanne; Hertig, Vanessa; Boscher, Elena; Nguyen, Quang Trinh; Boivin, Benoît; Chebli, Jasmine; Bissonnette, Lyse; Villeneuve, Louis; Brochiero, Emmanuelle; Dupuis, Jocelyn; Calderone, Angelino

    2016-07-01

    Endothelial and epithelial cell transition to a mesenchymal phenotype was identified as cellular paradigms implicated in the appearance of fibroblasts and development of reactive fibrosis in interstitial lung disease. The intermediate filament protein nestin was highly expressed in fibrotic tissue, detected in fibroblasts and participated in proliferation and migration. The present study tested the hypothesis that the transition of endothelial and epithelial cells to a mesenchymal phenotype was delineated by nestin expression. Three weeks following hypobaric hypoxia, adult male Sprague-Dawley rats characterized by alveolar and perivascular lung fibrosis were associated with increased nestin protein and mRNA levels and marked appearance of nestin/collagen type I((+)) -fibroblasts. In the perivascular region of hypobaric hypoxic rats, displaced CD31((+)) -endothelial cells were detected, exhibited a mesenchymal phenotype and co-expressed nestin. Likewise, epithelial cells in the lungs of hypobaric hypoxic rats transitioned to a mesenchymal phenotype distinguished by the co-expression of E-cadherin and collagen. Following the removal of FBS from primary passage rat alveolar epithelial cells, TGF-β1 was detected in the media and a subpopulation acquired a mesenchymal phenotype characterized by E-cadherin downregulation and concomitant induction of collagen and nestin. Bone morphogenic protein-7 treatment of alveolar epithelial cells prevented E-cadherin downregulation, suppressed collagen induction but partially inhibited nestin expression. These data support the premise that the transition of endothelial and epithelial cells to a mesenchymal cell may have contributed in part to the appearance nestin/collagen type I((+)) -fibroblasts and the reactive fibrotic response in the lungs of hypobaric hypoxic rats. J. Cell. Physiol. 231: 1601-1610, 2016. © 2015 Wiley Periodicals, Inc. PMID:26574905

  19. Aldehyde dehydrogenase activity selects for the holoclone phenotype in prostate cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► Isolated ALDHHi PC3 cells preferentially form primitive holoclone-type colonies. ► Primitive holoclone colonies are predominantly ALDHLo but contain rare ALDHHi cells. ► Holoclone-forming cells are not restricted to the ALDHHi population. ► ALDH phenotypic plasticity occurs in PC3 cells (ALDHLo to ALDHHi and vice versa). ► ALDHHi cells are observed but very rare in PC3 spheroids grown in stem cell medium. -- Abstract: Aldehyde dehydrogenase 1 (ALDH) activity is considered to be a marker of cancer stem cells (CSCs) in many tumour models, since these cells are more proliferative and tumourigenic than ALDHLo cells in experimental models. However it is unclear whether all CSC-like cells are within the ALDHHi population, or whether all ALDHHi cells are highly proliferative and tumourigenic. The ability to establish a stem cell hierarchy in vitro, whereby sub-populations of cells have differing proliferative and differentiation capacities, is an alternate indication of the presence of stem cell-like populations within cell lines. In this study, we have examined the interaction between ALDH status and the ability to establish a stem cell hierarchy in PC3 prostate cancer cells. We demonstrate that PC3 cells contain a stem cell hierarchy, and isolation of ALDHHi cells enriches for the most primitive holoclone population, however holoclone formation is not restricted to ALDHHi cells. In addition, we show that ALDH activity undergoes phenotypic plasticity, since the ALDHLo population can develop ALDHHi populations comparable to parental cells within 2 weeks in culture. Furthermore, we show that the majority of ALDHHi cells are found within the least primitive paraclone population, which is circumvented by culturing PC3 cells as spheroids in defined medium favouring stem cell characteristics. Although ALDHHi status enriches for holoclone formation, this activity may be mediated by a minority of ALDHHi cells.

  20. Otospheres derived from neonatal mouse cochleae retain the progenitor cell phenotype after ex vivo expansions.

    Science.gov (United States)

    Lou, Xiang-Xin; Nakagawa, Takayuki; Ohnishi, Hiroe; Nishimura, Koji; Ito, Juichi

    2013-02-01

    Because of their limited regenerative potential, cochlear hair cell loss is one of the major causes of permanent hearing loss in mammals. However, recent studies have shown that postnatal cochlear epithelia retain the progenitor cells that form otospheres. Otospheres are capable of self-renewing and differentiating into inner ear cell lineages, thereby suggesting a promising source for hair cell regeneration. We investigated retention of the progenitor cell phenotype in otospheres after ex vivo expansion, which is crucial for transplantation approaches. Reverse transcriptase-polymerase chain reaction and immunocytochemical analyses showed that otospheres derived from neonatal mice retained expression of stem and cochlear cell markers. After in vitro differentiation, otosphere-consisting cells differentiated into hair cell phenotypes after ex vivo expansion. However, the capacity of otospheres for self-renewal weakened with subsequent generations of ex vivo expansion. Our results indicate that ex vivo expanded-otospheres are useful experimental tools for studying hair cell regeneration in transplantation approaches and that the mechanisms for retention of the progenitor cell phenotype in otospheres should be investigated. PMID:23238450

  1. Cellular and Phenotypic Characterization of Canine Osteosarcoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Marie E. Legare, Jamie Bush, Amanda K. Ashley, Taka Kato, William H. Hanneman

    2011-01-01

    Full Text Available Canine and human osteosarcoma (OSA have many similarities, with the majority of reported cases occurring in the appendicular skeleton, gender predominance noted, high rate of metastasis at the time of presentation, and a lack of known etiology for this devastating disease. Due to poor understanding of the molecular mechanisms underlying OSA, we have characterized seven different OSA canine cell lines: Abrams, D17, Grey, Hughes, Ingles, Jarques, and Marisco and compared them to U2, a human OSA cell line, for the following parameters: morphology, growth, contact inhibition, migrational tendencies, alkaline phosphatase staining, heterologous tumor growth, double-strand DNA breaks, and oxidative damage. All results demonstrated the positive characteristics of the Abrams cell line for use in future studies of OSA. Of particular interest, the robust growth of a subcutaneous tumor and rapid pulmonary metastasis of the Abrams cell line in an immunocompromised mouse shows incredible potential for the future use of Abrams as a canine OSA model. Further investigations utilizing a canine cell model of OSA, such as Abrams, will be invaluable to understanding the molecular events underlying OSA, pharmaceutical inhibition of metastasis, and eventual prevention of this devastating disease.

  2. Phenotypes and karyotypes of human malignant mesothelioma cell lines.

    Directory of Open Access Journals (Sweden)

    Vandana Relan

    Full Text Available BACKGROUND: Malignant mesothelioma is an aggressive tumour of serosal surfaces most commonly pleura. Characterised cell lines represent a valuable tool to study the biology of mesothelioma. The aim of this study was to develop and biologically characterise six malignant mesothelioma cell lines to evaluate their potential as models of human malignant mesothelioma. METHODS: Five lines were initiated from pleural biopsies, and one from pleural effusion of patients with histologically proven malignant mesothelioma. Mesothelial origin was assessed by standard morphology, Transmission Electron Microscopy (TEM and immunocytochemistry. Growth characteristics were assayed using population doubling times. Spectral karyotyping was performed to assess chromosomal abnormalities. Authentication of donor specific derivation was undertaken by DNA fingerprinting using a panel of SNPs. RESULTS: Most of cell lines exhibited spindle cell shape, with some retaining stellate shapes. At passage 2 to 6 all lines stained positively for calretinin and cytokeratin 19, and demonstrated capacity for anchorage-independent growth. At passage 4 to 16, doubling times ranged from 30-72 hours, and on spectral karyotyping all lines exhibited numerical chromosomal abnormalities ranging from 41 to 113. Monosomy of chromosomes 8, 14, 22 or 17 was observed in three lines. One line displayed four different karyotypes at passage 8, but only one karyotype at passage 42, and another displayed polyploidy at passage 40 which was not present at early passages. At passages 5-17, TEM showed characteristic features of mesothelioma ultrastructure in all lines including microvilli and tight intercellular junctions. CONCLUSION: These six cell lines exhibit varying cell morphology, a range of doubling times, and show diverse passage-dependent structural chromosomal changes observed in malignant tumours. However they retain characteristic immunocytochemical protein expression profiles of

  3. Differentiation of cancer cell type and phenotype using quantum dot-gold nanoparticle sensor arrays.

    Science.gov (United States)

    Liu, Qian; Yeh, Yi-Cheun; Rana, Subinoy; Jiang, Ying; Guo, Lin; Rotello, Vincent M

    2013-07-01

    We demonstrate rapid and efficient sensing of mammalian cell types and states using nanoparticle-based sensor arrays. These arrays are comprised of cationic quantum dots (QDs) and gold nanoparticles (AuNPs) that interact with cell surfaces to generate distinguishable fluorescence responses based on cell surface signatures. The use of QDs as the recognition elements as well as the signal transducers presents the potential for direct visualization of selective cell surface interactions. Notably, this sensor is unbiased, precluding the requirement of pre-knowledge of cell state biomarkers and thus providing a general approach for phenotypic profiling of cell states, with additional potential for imaging applications. PMID:23022266

  4. The Role of Bone Marrow Cells in the Phenotypic Changes Associated with Diabetic Nephropathy

    OpenAIRE

    Guang Yang; Qingli Cheng; Sheng Liu; Jiahui Zhao

    2015-01-01

    The aim of our study was to investigate the role of bone marrow cells in the phenotypic changes that occur in diabetic nephropathy. Bone marrow cells were obtained from either streptozotocin-induced diabetic or untreated control C3H/He mice and transplanted into control C3H/He mice. Eight weeks after bone marrow cell transplantation, renal morphologic changes and clinical parameters of diabetic nephropathy, including the urine albumin/creatinine ratio and glucose tolerance, were measured in v...

  5. Arctigenin Inhibits Lung Metastasis of Colorectal Cancer by Regulating Cell Viability and Metastatic Phenotypes

    OpenAIRE

    Yo-Han Han; Ji-Ye Kee; Dae-Seung Kim; Jeong-geon Mun; Mi-Young Jeong; Sang-Hyun Park; Byung-Min Choi; Sung-Joo Park; Hyun-Jung Kim; Jae-Young Um; Seung-Heon Hong

    2016-01-01

    Arctigenin (ARC) has been shown to have an anti-cancer effect in various cell types and tissues. However, there have been no studies concerning metastatic colorectal cancer (CRC). In this study, we investigated the anti-metastatic properties of ARC on colorectal metastasis and present a potential candidate drug. ARC induced cell cycle arrest and apoptosis in CT26 cells through the intrinsic apoptotic pathway via MAPKs signaling. In several metastatic phenotypes, ARC controlled epithelial-mese...

  6. Genomic and phenotypic profiles of two Brazilian breast cancer cell lines derived from primary human tumors

    OpenAIRE

    CORRÊA, NATÁSSIA C.R.; Kuasne, Hellen; Faria, Jerusa A. Q. A.; SEIXAS, CIÇA C.S.; SANTOS, IRIA G.D.; ABREU, FRANCINE B.; Nonogaki, Suely; Rocha, Rafael M.; Silva, Gerluza Aparecida Borges; Gobbi, Helenice; Silvia R Rogatto; Alfredo M. Goes; Gomes, Dawidson A

    2013-01-01

    Breast cancer is the most common type of cancer among women worldwide. Research using breast cancer cell lines derived from primary tumors may provide valuable additional knowledge regarding this type of cancer. Therefore, the aim of this study was to investigate the phenotypic profiles of MACL-1 and MGSO-3, the only Brazilian breast cancer cell lines available for comparative studies. We evaluated the presence of hormone receptors, proliferation, differentiation and stem cell markers, using ...

  7. In vitro analysis of the invasive phenotype of SUM 149, an inflammatory breast cancer cell line

    Directory of Open Access Journals (Sweden)

    Dharmawardhane Suranganie F

    2005-04-01

    Full Text Available Abstract Background Inflammatory breast cancer (IBC is the most lethal form of locally invasive breast cancer known. However, very little information is available on the cellular mechanisms responsible for manifestation of the IBC phenotype. To understand the unique phenotype of IBC, we compared the motile and adhesive interactions of an IBC cell line, SUM 149, to the non-IBC cell line SUM 102. Results Our results demonstrate that both IBC and non-IBC cell lines exhibit similar adhesive properties to basal lamina, but SUM 149 showed a marked increase in adhesion to collagen I. In vitro haptotaxis assays demonstrate that SUM 149 was less invasive, while wound healing assays show a less in vitro migratory phenotype for SUM 149 cells relative to SUM 102 cells. We also demonstrate a role for Rho and E-cadherin in the unique invasive phenotype of IBC. Immunoblotting reveals higher E-cadherin and RhoA expression in the IBC cell line but similar RhoC expression. Rhodamine phalloidin staining demonstrates increased formation of actin stress fibers and larger focal adhesions in SUM 149 relative to the SUM 102 cell line. Conclusion The observed unique actin and cellular architecture as well as the invasive and adhesive responses to the extracellular matrix of SUM 149 IBC cells suggest that the preference of IBC cells for connective tissue, possibly a mediator important for the vasculogenic mimicry via tubulogenesis seen in IBC pathological specimens. Overexpression of E-cadherin and RhoA may contribute to passive dissemination of IBC by promoting cell-cell adhesion and actin cytoskeletal structures that maintain tissue integrity. Therefore, we believe that these findings indicate a passive metastatic mechanism by which IBC cells invade the circulatory system as tumor emboli rather than by active migratory mechanisms.

  8. Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism.

    Science.gov (United States)

    Phiboonchaiyanan, Preeyaporn Plaimee; Kiratipaiboon, Chayanin; Chanvorachote, Pithi

    2016-04-25

    Cancer stem cells (CSCs), a subpopulation of cancer cells with high aggressive behaviors, have been identified in many types of cancer including lung cancer as one of the key mediators driving cancer progression and metastasis. Here, we have reported for the first time that ciprofloxacin (CIP), a widely used anti-microbial drug, has a potentiating effect on CSC-like features in human non-small cell lung cancer (NSCLC) cells. CIP treatment promoted CSC-like phenotypes, including enhanced anchorage-independent growth and spheroid formation. The known lung CSC markers: CD133, CD44, ABCG2 and ALDH1A1 were found to be significantly increased, while the factors involving in epithelial to mesenchymal transition (EMT): Slug and Snail, were depleted. Also, self-renewal transcription factors Oct-4 and Nanog were found to be up-regulated in CIP-treated cells. The treatment of CIP on CSC-rich populations obtained from secondary spheroids resulted in the further increase of CSC markers. In addition, we have proven that the mechanistic insight of the CIP induced stemness is through Caveolin-1 (Cav-1)-dependent mechanism. The specific suppression of Cav-1 by stably transfected Cav-1 shRNA plasmid dramatically reduced the effect of CIP on CSC markers as well as the CIP-induced spheroid formation ability. Cav-1 was shown to activate protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) pathways in CSC-rich population; however, such an effect was rarely found in the main lung cancer cells population. These findings reveal a novel effect of CIP in positively regulating CSCs in lung cancer cells via the activation of Cav-1, Akt and ERK, and may provoke the awareness of appropriate therapeutic strategy in cancer patients.

  9. Conditionally reprogrammed normal and transformed mouse mammary epithelial cells display a progenitor-cell-like phenotype.

    Directory of Open Access Journals (Sweden)

    Francisco R Saenz

    Full Text Available Mammary epithelial (ME cells cultured under conventional conditions senesce after several passages. Here, we demonstrate that mouse ME cells isolated from normal mammary glands or from mouse mammary tumor virus (MMTV-Neu-induced mammary tumors, can be cultured indefinitely as conditionally reprogrammed cells (CRCs on irradiated fibroblasts in the presence of the Rho kinase inhibitor Y-27632. Cell surface progenitor-associated markers are rapidly induced in normal mouse ME-CRCs relative to ME cells. However, the expression of certain mammary progenitor subpopulations, such as CD49f+ ESA+ CD44+, drops significantly in later passages. Nevertheless, mouse ME-CRCs grown in a three-dimensional extracellular matrix gave rise to mammary acinar structures. ME-CRCs isolated from MMTV-Neu transgenic mouse mammary tumors express high levels of HER2/neu, as well as tumor-initiating cell markers, such as CD44+, CD49f+, and ESA+ (EpCam. These patterns of expression are sustained in later CRC passages. Early and late passage ME-CRCs from MMTV-Neu tumors that were implanted in the mammary fat pads of syngeneic or nude mice developed vascular tumors that metastasized within 6 weeks of transplantation. Importantly, the histopathology of these tumors was indistinguishable from that of the parental tumors that develop in the MMTV-Neu mice. Application of the CRC system to mouse mammary epithelial cells provides an attractive model system to study the genetics and phenotype of normal and transformed mouse epithelium in a defined culture environment and in vivo transplant studies.

  10. Condensing Raman spectrum for single-cell phenotype analysis

    KAUST Repository

    Sun, Shiwei

    2015-12-09

    Background In recent years, high throughput and non-invasive Raman spectrometry technique has matured as an effective approach to identification of individual cells by species, even in complex, mixed populations. Raman profiling is an appealing optical microscopic method to achieve this. To fully utilize Raman proling for single-cell analysis, an extensive understanding of Raman spectra is necessary to answer questions such as which filtering methodologies are effective for pre-processing of Raman spectra, what strains can be distinguished by Raman spectra, and what features serve best as Raman-based biomarkers for single-cells, etc. Results In this work, we have proposed an approach called rDisc to discretize the original Raman spectrum into only a few (usually less than 20) representative peaks (Raman shifts). The approach has advantages in removing noises, and condensing the original spectrum. In particular, effective signal processing procedures were designed to eliminate noise, utilising wavelet transform denoising, baseline correction, and signal normalization. In the discretizing process, representative peaks were selected to signicantly decrease the Raman data size. More importantly, the selected peaks are chosen as suitable to serve as key biological markers to differentiate species and other cellular features. Additionally, the classication performance of discretized spectra was found to be comparable to full spectrum having more than 1000 Raman shifts. Overall, the discretized spectrum needs about 5storage space of a full spectrum and the processing speed is considerably faster. This makes rDisc clearly superior to other methods for single-cell classication.

  11. Fluid shear stress modulation of hepatocyte-like cell function.

    Science.gov (United States)

    Rashidi, Hassan; Alhaque, Sharmin; Szkolnicka, Dagmara; Flint, Oliver; Hay, David C

    2016-07-01

    Freshly isolated human adult hepatocytes are considered to be the gold standard tool for in vitro studies. However, primary hepatocyte scarcity, cell cycle arrest and the rapid loss of cell phenotype limit their widespread deployment. Human embryonic stem cells and induced pluripotent stem cells provide renewable sources of hepatocyte-like cells (HLCs). Despite the use of various differentiation methodologies, HLCs like primary human hepatocytes exhibit unstable phenotype in culture. It has been shown that the functional capacity can be improved by adding back elements of human physiology, such as cell co-culture or through the use of natural and/or synthetic surfaces. In this study, the effect of fluid shear stress on HLC performance was investigated. We studied two important liver functions, cytochrome P450 drug metabolism and serum protein secretion, in static cultures and those exposed to fluid shear stress. Our study demonstrates that fluid shear stress improved Cyp1A2 activity by approximately fivefold. This was paralleled by an approximate ninefold increase in sensitivity to a drug, primarily metabolised by Cyp2D6. In addition to metabolic capacity, fluid shear stress also improved hepatocyte phenotype with an approximate fourfold reduction in the secretion of a foetal marker, alpha-fetoprotein. We believe these studies highlight the importance of introducing physiologic cues in cell-based models to improve somatic cell phenotype. PMID:26979076

  12. Operating Cell Temperature Determination in Flat-Plate Photovoltaic Modules

    International Nuclear Information System (INIS)

    Two procedures (simplified and complete) to determine me operating cell temperature in photovoltaic modules operating in real conditions assuming isothermal stationary modules are presented in this work. Some examples are included that show me dependence of this temperature on several environmental (sky, ground and ambient temperatures, solar irradiance, wind speed, etc.) and structural (module geometry and size, encapsulating materials, anti reflexive optical coatings, etc.) factors and also on electrical module performance. In a further step temperature profiles for non-isothermal modules are analysed besides transitory effects due to variable irradiance and wind gusts. (Author) 27 refs

  13. Protective role of 5-azacytidine on myocardial infarction is associated with modulation of macrophage phenotype and inhibition of fibrosis

    OpenAIRE

    Kim, Yong Sook; Kang, Wan Seok; Kwon, Jin Sook; Hong, Moon Hwa; Jeong, Hye-yun; Jeong, Hae Chang; Jeong, Myung Ho; Ahn, Youngkeun

    2014-01-01

    We examined whether a shift in macrophage phenotype could be therapeutic for myocardial infarction (MI). The mouse macrophage cell line RAW264.7 was stimulated with peptidoglycan (PGN), with or without 5-azacytidine (5AZ) treatment. MI was induced by ligation of the left anterior descending coronary artery in rats, and the rats were divided into two groups; a saline-injection group and a 5AZ-injection group (2.5 mg/kg/day, intraperitoneal injection). LV function was evaluated and immunohistoc...

  14. Cancer Stem Cells and Epithelial-to-Mesenchymal Transition (EMT)-Phenotypic Cells: Are They Cousins or Twins?

    International Nuclear Information System (INIS)

    Cancer stem cells (CSCs) are cells within a tumor that possess the capacity to self-renew and maintain tumor-initiating capacity through differentiation into the heterogeneous lineages of cancer cells that comprise the whole tumor. These tumor-initiating cells could provide a resource for cells that cause tumor recurrence after therapy. Although the cell origin of CSCs remains to be fully elucidated, mounting evidence has demonstrated that Epithelial-to-Mesenchymal Transition (EMT), induced by different factors, is associated with tumor aggressiveness and metastasis and these cells share molecular characteristics with CSCs, and thus are often called cancer stem-like cells or tumor-initiating cells. The acquisition of an EMT phenotype is a critical process for switching early stage carcinomas into invasive malignancies, which is often associated with the loss of epithelial differentiation and gain of mesenchymal phenotype. Recent studies have demonstrated that EMT plays a critical role not only in tumor metastasis but also in tumor recurrence and that it is tightly linked with the biology of cancer stem-like cells or cancer-initiating cells. Here we will succinctly summarize the state-of-our-knowledge regarding the molecular similarities between cancer stem-like cells or CSCs and EMT-phenotypic cells that are associated with tumor aggressiveness focusing on solid tumors

  15. Cancer Stem Cells and Epithelial-to-Mesenchymal Transition (EMT)-Phenotypic Cells: Are They Cousins or Twins?

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Dejuan; Li, Yiwei; Wang, Zhiwei; Sarkar, Fazlul H., E-mail: fsarkar@med.wayne.edu [Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201 (United States)

    2011-02-21

    Cancer stem cells (CSCs) are cells within a tumor that possess the capacity to self-renew and maintain tumor-initiating capacity through differentiation into the heterogeneous lineages of cancer cells that comprise the whole tumor. These tumor-initiating cells could provide a resource for cells that cause tumor recurrence after therapy. Although the cell origin of CSCs remains to be fully elucidated, mounting evidence has demonstrated that Epithelial-to-Mesenchymal Transition (EMT), induced by different factors, is associated with tumor aggressiveness and metastasis and these cells share molecular characteristics with CSCs, and thus are often called cancer stem-like cells or tumor-initiating cells. The acquisition of an EMT phenotype is a critical process for switching early stage carcinomas into invasive malignancies, which is often associated with the loss of epithelial differentiation and gain of mesenchymal phenotype. Recent studies have demonstrated that EMT plays a critical role not only in tumor metastasis but also in tumor recurrence and that it is tightly linked with the biology of cancer stem-like cells or cancer-initiating cells. Here we will succinctly summarize the state-of-our-knowledge regarding the molecular similarities between cancer stem-like cells or CSCs and EMT-phenotypic cells that are associated with tumor aggressiveness focusing on solid tumors.

  16. Cancer Stem Cells and Epithelial-to-Mesenchymal Transition (EMT-Phenotypic Cells: Are They Cousins or Twins?

    Directory of Open Access Journals (Sweden)

    Fazlul H. Sarkar

    2011-02-01

    Full Text Available Cancer stem cells (CSCs are cells within a tumor that possess the capacity to self-renew and maintain tumor-initiating capacity through differentiation into the heterogeneous lineages of cancer cells that comprise the whole tumor. These tumor-initiating cells could provide a resource for cells that cause tumor recurrence after therapy. Although the cell origin of CSCs remains to be fully elucidated, mounting evidence has demonstrated that Epithelial-to-Mesenchymal Transition (EMT, induced by different factors, is associated with tumor aggressiveness and metastasis and these cells share molecular characteristics with CSCs, and thus are often called cancer stem-like cells or tumor-initiating cells. The acquisition of an EMT phenotype is a critical process for switching early stage carcinomas into invasive malignancies, which is often associated with the loss of epithelial differentiation and gain of mesenchymal phenotype. Recent studies have demonstrated that EMT plays a critical role not only in tumor metastasis but also in tumor recurrence and that it is tightly linked with the biology of cancer stem-like cells or cancer-initiating cells. Here we will succinctly summarize the state-of-our-knowledge regarding the molecular similarities between cancer stem-like cells or CSCs and EMT-phenotypic cells that are associated with tumor aggressiveness focusing on solid tumors.

  17. SIRT1 Overexpression Maintains Cell Phenotype and Function of Endothelial Cells Derived from Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Jiang, Bin; Jen, Michele; Perrin, Louisiane; Wertheim, Jason A; Ameer, Guillermo A

    2015-12-01

    Endothelial cells (ECs) that are differentiated from induced pluripotent stem cells (iPSCs) can be used in establishing disease models for personalized drug discovery or developing patient-specific vascularized tissues or organoids. However, a number of technical challenges are often associated with iPSC-ECs in culture, including instability of the endothelial phenotype and limited cell proliferative capacity over time. Early senescence is believed to be the primary mechanism underlying these limitations. Sirtuin1 (SIRT1) is an NAD(+)-dependent deacetylase involved in the regulation of cell senescence, redox state, and inflammatory status. We hypothesize that overexpression of the SIRT1 gene in iPSC-ECs will maintain EC phenotype, function, and proliferative capacity by overcoming early cell senescence. SIRT1 gene was packaged into a lentiviral vector (LV-SIRT1) and transduced into iPSC-ECs at passage 4. Beginning with passage 5, iPSC-ECs exhibited a fibroblast-like morphology, whereas iPSC-ECs overexpressing SIRT1 maintained EC cobblestone morphology. SIRT1 overexpressing iPSC-ECs also exhibited a higher percentage of canonical markers of endothelia (LV-SIRT1 61.8% CD31(+) vs. LV-empty 31.7% CD31(+), P cell lifespan, overcoming critical hurdles associated with the use of iPSC-ECs in translational research.

  18. Self-glycolipids modulate dendritic cells changing the cytokine profiles of committed autoreactive T cells.

    Directory of Open Access Journals (Sweden)

    Karsten Buschard

    Full Text Available The impact of glycolipids of non-mammalian origin on autoimmune inflammation has become widely recognized. Here we report that the naturally occurring mammalian glycolipids, sulfatide and β-GalCer, affect the differentiation and the quality of antigen presentation by monocyte-derived dendritic cells (DCs. In response to sulfatide and β-GalCer, monocytes develop into immature DCs with higher expression of HLA-DR and CD86 but lower expression of CD80, CD40 and CD1a and lower production of IL-12 compared to non-modulated DCs. Self-glycolipid-modulated DCs responded to lipopolysaccharide (LPS by changing phenotype but preserved low IL-12 production. Sulfatide, in particular, reduced the capacity of DCs to stimulate autoreactive Glutamic Acid Decarboxylase (GAD65 - specific T cell response and promoted IL-10 production by the GAD65-specific clone. Since sulfatide and β-GalCer induced toll-like receptor (TLR-mediated signaling, we hypothesize that self-glycolipids deliver a (tolerogenic polarizing signal to differentiating DCs, facilitating the maintenance of self-tolerance under proinflammatory conditions.

  19. Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells.

    Science.gov (United States)

    McFate, Thomas; Mohyeldin, Ahmed; Lu, Huasheng; Thakar, Jay; Henriques, Jeremy; Halim, Nader D; Wu, Hong; Schell, Michael J; Tsang, Tsz Mon; Teahan, Orla; Zhou, Shaoyu; Califano, Joseph A; Jeoung, Nam Ho; Harris, Robert A; Verma, Ajay

    2008-08-15

    High lactate generation and low glucose oxidation, despite normal oxygen conditions, are commonly seen in cancer cells and tumors. Historically known as the Warburg effect, this altered metabolic phenotype has long been correlated with malignant progression and poor clinical outcome. However, the mechanistic relationship between altered glucose metabolism and malignancy remains poorly understood. Here we show that inhibition of pyruvate dehydrogenase complex (PDC) activity contributes to the Warburg metabolic and malignant phenotype in human head and neck squamous cell carcinoma. PDC inhibition occurs via enhanced expression of pyruvate dehydrogenase kinase-1 (PDK-1), which results in inhibitory phosphorylation of the pyruvate dehydrogenase alpha (PDHalpha) subunit. We also demonstrate that PDC inhibition in cancer cells is associated with normoxic stabilization of the malignancy-promoting transcription factor hypoxia-inducible factor-1alpha (HIF-1alpha) by glycolytic metabolites. Knockdown of PDK-1 via short hairpin RNA lowers PDHalpha phosphorylation, restores PDC activity, reverts the Warburg metabolic phenotype, decreases normoxic HIF-1alpha expression, lowers hypoxic cell survival, decreases invasiveness, and inhibits tumor growth. PDK-1 is an HIF-1-regulated gene, and these data suggest that the buildup of glycolytic metabolites, resulting from high PDK-1 expression, may in turn promote HIF-1 activation, thus sustaining a feed-forward loop for malignant progression. In addition to providing anabolic support for cancer cells, altered fuel metabolism thus supports a malignant phenotype. Correction of metabolic abnormalities offers unique opportunities for cancer treatment and may potentially synergize with other cancer therapies. PMID:18541534

  20. Stochastic modeling and experimental analysis of phenotypic switching and survival of cancer cells under stress

    Science.gov (United States)

    Zamani Dahaj, Seyed Alireza; Kumar, Niraj; Sundaram, Bala; Celli, Jonathan; Kulkarni, Rahul

    The phenotypic heterogeneity of cancer cells is critical to their survival under stress. A significant contribution to heterogeneity of cancer calls derives from the epithelial-mesenchymal transition (EMT), a conserved cellular program that is crucial for embryonic development. Several studies have investigated the role of EMT in growth of early stage tumors into invasive malignancies. Also, EMT has been closely associated with the acquisition of chemoresistance properties in cancer cells. Motivated by these studies, we analyze multi-phenotype stochastic models of the evolution of cancers cell populations under stress. We derive analytical results for time-dependent probability distributions that provide insights into the competing rates underlying phenotypic switching (e.g. during EMT) and the corresponding survival of cancer cells. Experimentally, we evaluate these model-based predictions by imaging human pancreatic cancer cell lines grown with and without cytotoxic agents and measure growth kinetics, survival, morphological changes and (terminal evaluation of) biomarkers with associated epithelial and mesenchymal phenotypes. The results derived suggest approaches for distinguishing between adaptation and selection scenarios for survival in the presence of external stresses.

  1. Quantifying Solar Cell Cracks in Photovoltaic Modules by Electroluminescence Imaging

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso;

    2015-01-01

    This article proposes a method for quantifying the percentage of partially and totally disconnected solar cell cracks by analyzing electroluminescence images of the photovoltaic module taken under high- and low-current forward bias. The method is based on the analysis of the module’s electrolumin......This article proposes a method for quantifying the percentage of partially and totally disconnected solar cell cracks by analyzing electroluminescence images of the photovoltaic module taken under high- and low-current forward bias. The method is based on the analysis of the module......’s electroluminescence intensity distribution, applied at module and cell level. These concepts are demonstrated on a crystalline silicon photovoltaic module that was subjected to several rounds of mechanical loading and humidity-freeze cycling, causing increasing levels of solar cell cracks. The proposed method can...

  2. Intensity modulated short circuit current spectroscopy for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kavasoglu, Nese; Sertap Kavasoglu, A.; Birgi, Ozcan; Oktik, Sener [Mugla University, Faculty of Arts and Sciences, Physics Department, TR-48000 Mugla (Turkey); Mugla University Clean Energy Research and Development Centre, TR-48000 Mugla (Turkey)

    2011-02-15

    Understanding charge separation and transport is momentously important for the rectification of solar cell performance. To probe photo-generated carrier dynamics, we implemented intensity modulated short circuit current spectroscopy (IMSCCS) on porous Si and Cu(In{sub x},Ga{sub 1-x})Se{sub 2} solar cells. In this experiment, the solar cells were lightened with sinusoidally modulated monochromatic light. The photocurrent response of the solar cell as a function of modulation frequency is measured as the optoelectronic transfer function of the system. The optoelectronic transfer function introduces the connection between the modulated light intensity and measured AC current of the solar cell. In this study, interaction of free carriers with the density of states of the porous Si and Cu(In{sub x}, Ga{sub 1-x})Se{sub 2} solar cells was studied on the basis of charge transport time by IMSCCS data. (author)

  3. Significance of Epithelial-mesenchaymal Transition Phenotype in Invasive Tumor Front Cells of Lung Squamous Cell Carcinoma

    OpenAIRE

    Song, Yinghua; Caiqing ZHANG; Zhixin CAO; XU, Jiawen; Wang, Lingcheng; Lin, Xiaoyan

    2014-01-01

    Background and objective The invasive tumor front (ITF) refers to cells or invasive nests in the junctional region of a tumor and its host. The ITF contains the most invasive cells of a tumor, and has a high prognostic value in carcinoma. The aim of this study is to investigate the epithelial-mesenchymal transformation phenotype in ITF cells of lung squamous cell carcinoma (SCC), and analyze the relationship between clinicopathological features and clinical outcomes of patients. Methods Semiq...

  4. Maintenance of human amnion epithelial cell phenotype in pulmonary surfactant

    OpenAIRE

    McDonald, Courtney A.; Melville, Jacqueline M; Graeme R Polglase; Jenkin, Graham; Moss, Timothy JM

    2014-01-01

    Introduction Preterm newborns often require mechanical respiratory support that can result in ventilation-induced lung injury (VILI), despite exogenous surfactant treatment. Human amnion epithelial cells (hAECs) reduce lung inflammation and resultant abnormal lung development in preterm animals; co-administration with surfactant is a potential therapeutic strategy. We aimed to determine whether hAECs remain viable and maintain function after combination with surfactant. Methods hAECs were inc...

  5. Activation of Wnt/β-Catenin in Ewing Sarcoma Cells Antagonizes EWS/ETS Function and Promotes Phenotypic Transition to More Metastatic Cell States.

    Science.gov (United States)

    Pedersen, Elisabeth A; Menon, Rajasree; Bailey, Kelly M; Thomas, Dafydd G; Van Noord, Raelene A; Tran, Jenny; Wang, Hongwei; Qu, Ping Ping; Hoering, Antje; Fearon, Eric R; Chugh, Rashmi; Lawlor, Elizabeth R

    2016-09-01

    Ewing sarcomas are characterized by the presence of EWS/ETS fusion genes in the absence of other recurrent genetic alterations and mechanisms of tumor heterogeneity that contribute to disease progression remain unclear. Mutations in the Wnt/β-catenin pathway are rare in Ewing sarcoma but the Wnt pathway modulator LGR5 is often highly expressed, suggesting a potential role for the axis in tumor pathogenesis. We evaluated β-catenin and LGR5 expression in Ewing sarcoma cell lines and tumors and noted marked intra- and inter-tumor heterogeneity. Tumors with evidence of active Wnt/β-catenin signaling were associated with increased incidence of tumor relapse and worse overall survival. Paradoxically, RNA sequencing revealed a marked antagonism of EWS/ETS transcriptional activity in Wnt/β-catenin-activated tumor cells. Consistent with this, Wnt/β-catenin-activated cells displayed a phenotype that was reminiscent of Ewing sarcoma cells with partial EWS/ETS loss of function. Specifically, activation of Wnt/β-catenin induced alterations to the actin cytoskeleton, acquisition of a migratory phenotype, and upregulation of EWS/ETS-repressed genes. Notably, activation of Wnt/β-catenin signaling led to marked induction of tenascin C (TNC), an established promoter of cancer metastasis, and an EWS/ETS-repressed target gene. Loss of TNC function in Ewing sarcoma cells profoundly inhibited their migratory and metastatic potential. Our studies reveal that heterogeneous activation of Wnt/β-catenin signaling in subpopulations of tumor cells contributes to phenotypic heterogeneity and disease progression in Ewing sarcoma. Significantly, this is mediated, at least in part, by inhibition of EWS/ETS fusion protein function that results in derepression of metastasis-associated gene programs. Cancer Res; 76(17); 5040-53. ©2016 AACR.

  6. Phenotypic profile of expanded NK cells in chronic lymphoproliferative disorders: A surrogate marker for NK-cell clonality

    NARCIS (Netherlands)

    P. Bárcena (Paloma); M. Jara-Acevedo (M.); M.D. Tabernero; A. López (Antonio); M.-L. Sánchez (M.); A.C. García-Montero (Andrés); N. Muñoz-García (Noemí); M.B. Vidriales (M.); A. Paiva (Artur); Q. Lecrevisse (Quentin); M. Lima (Margarida); A.W. Langerak (Ton); S. Böttcher (Stephan); J.J.M. van Dongen (Jacques); A. Orfao (Alberto); J. Almeida (Julia)

    2015-01-01

    textabstractCurrently, the lack of a universal and specific marker of clonality hampers the diagnosis and classification of chronic expansions of natural killer (NK) cells. Here we investigated the utility of flow cytometric detection of aberrant/altered NK-cell phenotypes as a surrogate marker for

  7. GDF9 Modulates the Reproductive and Tumor Phenotype of Female Inha-Null Mice1

    OpenAIRE

    Myers, Michelle; Mansouri-Attia, Nadera; James, Rebecca; Peng, Jia; Pangas, Stephanie A.

    2013-01-01

    Intraovarian factors play important roles in coordinating germ cell and somatic cell growth in the ovary. Prior to the onset of gonadotropin stimulation and reproductive cyclicity, follicle development is dependent upon locally produced growth factors, such as the transforming growth factor beta family members inhibin, activin, and GDF9. In the absence of inhibin in prepubertal mice (Inha−/−), there are marked alterations in preantral follicle growth, but no evidence of ovarian tumors charact...

  8. Mesenchymal Tumors Can Derive from Ng2/Cspg4-Expressing Pericytes with β-Catenin Modulating the Neoplastic Phenotype

    Directory of Open Access Journals (Sweden)

    Shingo Sato

    2016-07-01

    Full Text Available The cell of origin for most mesenchymal tumors is unclear. One cell type that contributes to this lineages is the pericyte, a cell expressing Ng2/Cspg4. Using lineage tracing, we demonstrated that bone and soft tissue sarcomas driven by the deletion of the Trp53 tumor suppressor, or desmoid tumors driven by a mutation in Apc, can derive from cells expressing Ng2/Cspg4. Deletion of the Trp53 tumor suppressor gene in these cells resulted in the bone and soft tissue sarcomas that closely resemble human sarcomas, while stabilizing β-catenin in this same cell type caused desmoid tumors. Comparing expression between Ng2/Cspg4-expressing pericytes lacking Trp53 and sarcomas that arose from deletion of Trp53 showed inhibition of β-catenin signaling in the sarcomas. Activation of β-catenin inhibited the formation and growth of sarcomas. Thus, pericytes can be a cell of origin for mesenchymal tumors, and β-catenin dysregulation plays an important role in the neoplastic phenotype.

  9. Ectopic ERK Expression Induces Phenotypic Conversion of C10 Cells and Alters DNA Methyltransferase Expression

    Energy Technology Data Exchange (ETDEWEB)

    Sontag, Ryan L.; Weber, Thomas J.

    2012-05-04

    In some model systems constitutive extracellular signal regulated kinase (ERK) activation is sufficient to promote an oncogenic phenotype. Here we investigate whether constitutive ERK expression influences phenotypic conversion in murine C10 type II alveolar epithelial cells. C10 cells were stably transduced with an ERK1-green fluorescent protein (ERK1-GFP) chimera or empty vector and ectopic ERK expression was associated with the acquisition of soft agar focus-forming potential in late passage, but not early passage cells. Late passage ERK1-GFP cells exhibited a significant increase in the expression of DNA methyl transferases (DNMT1 and 3b) and a marked increase in sensitivity to 5-azacytidine (5-azaC)-mediated toxicity, relative to early passage ERK1-GFP cells and vector controls. The expression of xeroderma pigmentosum complementation group A (XPA) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were significantly increased in late passage cells, suggesting enhanced DNA damage recognition and repair activity which we interpret as a reflection of genomic instability. Phospho-ERK levels were dramatically decreased in late passage ERK1-GFP cells, relative to early passage and vector controls, and phospho-ERK levels were restored by treatment with sodium orthovanadate, indicating a role for phosphatase activity in this response. Collectively these observations suggest that ectopic ERK expression promotes phenotypic conversion of C10 cells that is associated with latent effects on epigenetic programming and phosphatase activities.

  10. The lipid phenotype of breast cancer cells characterized by Raman microspectroscopy: towards a stratification of malignancy.

    Directory of Open Access Journals (Sweden)

    Claudia Nieva

    Full Text Available Although molecular classification brings interesting insights into breast cancer taxonomy, its implementation in daily clinical care is questionable because of its expense and the information supplied in a single sample allocation is not sufficiently reliable. New approaches, based on a panel of small molecules derived from the global or targeted analysis of metabolic profiles of cells, have found a correlation between activation of de novo lipogenesis and poorer prognosis and shorter disease-free survival for many tumors. We hypothesized that the lipid content of breast cancer cells might be a useful indirect measure of a variety of functions coupled to breast cancer progression. Raman microspectroscopy was used to characterize metabolism of breast cancer cells with different degrees of malignancy. Raman spectra from MDA-MB-435, MDA-MB-468, MDA-MB-231, SKBR3, MCF7 and MCF10A cells were acquired with an InVia Raman microscope (Renishaw with a backscattered configuration. We used Principal Component Analysis and Partial Least Squares Discriminant Analyses to assess the different profiling of the lipid composition of breast cancer cells. Characteristic bands related to lipid content were found at 3014, 2935, 2890 and 2845 cm(-1, and related to lipid and protein content at 2940 cm(-1. A classificatory model was generated which segregated metastatic cells and non-metastatic cells without basal-like phenotype with a sensitivity of 90% and a specificity of 82.1%. Moreover, expression of SREBP-1c and ABCA1 genes validated the assignation of the lipid phenotype of breast cancer cells. Indeed, changes in fatty acid unsaturation were related with the epithelial-to-mesenchymal transition phenotype. Raman microspectroscopy is a promising technique for characterizing and classifying the malignant phenotype of breast cancer cells on the basis of their lipid profiling. The algorithm for the discrimination of metastatic ability is a first step towards

  11. Formation of photovoltaic modules based on polycrystalline solar cells

    OpenAIRE

    L.A. Dobrzański; A. Drygała; A. Januszka

    2009-01-01

    Purpose: The main aim of the paper is formation of photovoltaic modules and analysis of their main electric parameters.Design/methodology/approach: Photovoltaic modules were produced from four polycrystalline silicon solar cells, that were cut and next joined in series. Soft soldering technique and copper-tin strip were used for joining cells.Findings: In order to provide useful power for any application, the individual solar cells must be connected together to give the appropriate current an...

  12. IA-2 modulates dopamine secretion in PC12 cells

    OpenAIRE

    Nishimura, Takuya; Harashima, Shin-ichi; Yafang, Hu; Notkins, Abner Louis

    2009-01-01

    The secretion of the hormone insulin from beta cells is modulated by the expression of the dense core vesicle transmembrane protein IA-2. Since IA-2 is found in neuroendocrine cells throughout the body, the present experiments were initiated to determine whether the expression of IA-2 also modulates the secretion of neurotransmitters. Using the dopamine-secreting pheochromocytoma cell line PC12, we found that the overexpressions of IA-2 increased the cellular content and secretion of dopamine...

  13. 5-Azacytidine Promotes an Inhibitory T-Cell Phenotype and Impairs Immune Mediated Antileukemic Activity

    Directory of Open Access Journals (Sweden)

    Thomas Stübig

    2014-01-01

    Full Text Available Demethylating agent, 5-Azacytidine (5-Aza, has been shown to be active in treatment of myeloid malignancies. 5-Aza enhances anticancer immunity, by increasing expression of tumor-associated antigens. However, the impact of 5-Aza immune responses remains poorly understood. Here, T-cell mediated tumor immunity effects of 5-Aza, are investigated in vitro and in vivo. T-cells from healthy donors were treated with 5-Aza and analyzed by qRT-PCR and flow cytometry for changes in gene expression and phenotype. Functionality was assessed by a tumor lysis assay. Peripheral blood from patients treated with 5-Aza after alloSCT was monitored for changes in T-cell subpopulations. 5-Aza treatment resulted in a decrease in CD8+ T-cells, whereas CD4+ T-cells increased. Furthermore, numbers of IFN-γ+ T-helper 1 cells (Th1 were reduced, while Treg-cells showed substantial increase. Additionally, CD8+ T-cells exhibited limited killing capacity against leukemic target cells. In vivo data confirm the increase of Treg compartment, while CD8+ T-effector cell numbers were reduced. 5-Aza treatment results in a shift from cytotoxic to regulatory T-cells with a functional phenotype and a major reduction in proinflammatory Th1-cells, indicating a strong inhibition of tumor-specific T-cell immunity by 5-Aza.

  14. 5-Azacytidine Promotes an Inhibitory T-Cell Phenotype and Impairs Immune Mediated Antileukemic Activity

    Science.gov (United States)

    Stübig, Thomas; Luetkens, Tim; Hildebrandt, York; Atanackovic, Djordje; Binder, Thomas M. C.; Fehse, Boris; Kröger, Nicolaus

    2014-01-01

    Demethylating agent, 5-Azacytidine (5-Aza), has been shown to be active in treatment of myeloid malignancies. 5-Aza enhances anticancer immunity, by increasing expression of tumor-associated antigens. However, the impact of 5-Aza immune responses remains poorly understood. Here, T-cell mediated tumor immunity effects of 5-Aza, are investigated in vitro and in vivo. T-cells from healthy donors were treated with 5-Aza and analyzed by qRT-PCR and flow cytometry for changes in gene expression and phenotype. Functionality was assessed by a tumor lysis assay. Peripheral blood from patients treated with 5-Aza after alloSCT was monitored for changes in T-cell subpopulations. 5-Aza treatment resulted in a decrease in CD8+ T-cells, whereas CD4+ T-cells increased. Furthermore, numbers of IFN-γ+ T-helper 1 cells (Th1) were reduced, while Treg-cells showed substantial increase. Additionally, CD8+ T-cells exhibited limited killing capacity against leukemic target cells. In vivo data confirm the increase of Treg compartment, while CD8+ T-effector cell numbers were reduced. 5-Aza treatment results in a shift from cytotoxic to regulatory T-cells with a functional phenotype and a major reduction in proinflammatory Th1-cells, indicating a strong inhibition of tumor-specific T-cell immunity by 5-Aza. PMID:24757283

  15. 5-azacytidine promotes an inhibitory T-cell phenotype and impairs immune mediated antileukemic activity.

    Science.gov (United States)

    Stübig, Thomas; Badbaran, Anita; Luetkens, Tim; Hildebrandt, York; Atanackovic, Djordje; Binder, Thomas M C; Fehse, Boris; Kröger, Nicolaus

    2014-01-01

    Demethylating agent, 5-Azacytidine (5-Aza), has been shown to be active in treatment of myeloid malignancies. 5-Aza enhances anticancer immunity, by increasing expression of tumor-associated antigens. However, the impact of 5-Aza immune responses remains poorly understood. Here, T-cell mediated tumor immunity effects of 5-Aza, are investigated in vitro and in vivo. T-cells from healthy donors were treated with 5-Aza and analyzed by qRT-PCR and flow cytometry for changes in gene expression and phenotype. Functionality was assessed by a tumor lysis assay. Peripheral blood from patients treated with 5-Aza after alloSCT was monitored for changes in T-cell subpopulations. 5-Aza treatment resulted in a decrease in CD8+ T-cells, whereas CD4+ T-cells increased. Furthermore, numbers of IFN-γ + T-helper 1 cells (Th1) were reduced, while Treg-cells showed substantial increase. Additionally, CD8+ T-cells exhibited limited killing capacity against leukemic target cells. In vivo data confirm the increase of Treg compartment, while CD8+ T-effector cell numbers were reduced. 5-Aza treatment results in a shift from cytotoxic to regulatory T-cells with a functional phenotype and a major reduction in proinflammatory Th1-cells, indicating a strong inhibition of tumor-specific T-cell immunity by 5-Aza. PMID:24757283

  16. PLACENTAL SECRETORY FACTORS INFLUENCE TO THP-1 CELLS PHENOTYPE AND THP-1 CELLS TRANSENDOTHELIAL MIGRATION

    Directory of Open Access Journals (Sweden)

    O. I. Stepanova

    2013-01-01

    Full Text Available Decidual and placental macrophage pools are renewed due to its transendothelial monocyte migration from peripheral blood. Tissue macrophages control placental development and provide fetomaternal immunological tolerance. Preeclamptic pregnancy is accompanied by increased monocyte migration to decidual tissue and local inflammatory events. Regulatory mechanisms of monocyte recruitment to placental and decidual tissues is still unclear. Therefore we investigated the influence soluble placental factors (SPFs during the first- and third-trimester normal pregnancy, as compared to effects of these factors in preeclamptic pregnancy. We studied biological actions of SPF upon transendothelial migration of monocyte-like THP-1 cells and their phenotypic pattern. Transendothelial migration of THP-1 cells was more intensive with firsttrimester SPFs from normal pregnancy, when compared with third-trimester samples, and it was accompanied by decreased CD11a expression. SPFs from pre-eclamptic pregnancy caused an increase in transendothelial migration of THP-1 cells, as compared to SPFs from normal pregnancies, being accompanied by increased CD11b expression. The present study was supported by grants ГК №  02.740.11.0711, НШ-3594.2010.7, МД-150.2011.7 and a grant from St.-Petersburg Goverment for young scientists.

  17. Cytologic Phenotypes of B-Cell Acute Lymphoblastic Leukemia-

    Directory of Open Access Journals (Sweden)

    Ramyar Asghar

    2009-06-01

    Full Text Available Acute lymphoblastic leukemia (ALL is a malignant disorder of lymphoid precursor cells, which could be classified according to morphological and cytochemical methods as well as immunophenotyping. Twenty patients with ALL, who had been referred to the Children's Medical Center Hospital, during the year 2007, were enrolled in this study in order to evaluate the morphologic and immunophenotypic profile of these patients. Cytologic analysis of blood and bone marrow samples revealed that the frequency of ALL-L1 was 70%, followed by ALL-L2 and ALL-L3. The onset age of the patients with ALL-L1 was significantly lower than the patients with L2/L3. Severe anemia was significantly detected more in L1 group. Flow cytometic study of bone marrow showed that 10 cases had Pre-B1 ALL and 7 cases had Pre-B2 ALL, while three cases had Pro-B ALL. Comparisons of the characteristics and clinical manifestations among these groups did not show any appreciable difference. There were an increase percentage of CD20+ cells and a decrease CD10+ cells in pre-B2 group in comparison with pre-B1 group. Fifteen patients were in standard risk and five were in high risk. Although standard risk patients were more common in the group of pre-B1, this was not significant. Our results confirm the previous reports indicating heterogeneity of ALL. Immunophenotyping is not the only diagnostic test of importance, while morphological assessment still can be used in the diagnosis and classification of the disease.

  18. Cell Competition Promotes Phenotypically Silent Cardiomyocyte Replacement in the Mammalian Heart

    Directory of Open Access Journals (Sweden)

    Cristina Villa del Campo

    2014-09-01

    Full Text Available Heterogeneous anabolic capacity in cell populations can trigger a phenomenon known as cell competition, through which less active cells are eliminated. Cell competition has been induced experimentally in stem/precursor cell populations in insects and mammals and takes place endogenously in early mouse embryonic cells. Here, we show that cell competition can be efficiently induced in mouse cardiomyocytes by mosaic overexpression of Myc during both gestation and adult life. The expansion of the Myc-overexpressing cardiomyocyte population is driven by the elimination of wild-type cardiomyocytes. Importantly, this cardiomyocyte replacement is phenotypically silent and does not affect heart anatomy or function. These results show that the capacity for cell competition in mammals is not restricted to stem cell populations and suggest that stimulated cell competition has potential as a cardiomyocyte-replacement strategy.

  19. Machine learning in cell biology - teaching computers to recognize phenotypes.

    Science.gov (United States)

    Sommer, Christoph; Gerlich, Daniel W

    2013-12-15

    Recent advances in microscope automation provide new opportunities for high-throughput cell biology, such as image-based screening. High-complex image analysis tasks often make the implementation of static and predefined processing rules a cumbersome effort. Machine-learning methods, instead, seek to use intrinsic data structure, as well as the expert annotations of biologists to infer models that can be used to solve versatile data analysis tasks. Here, we explain how machine-learning methods work and what needs to be considered for their successful application in cell biology. We outline how microscopy images can be converted into a data representation suitable for machine learning, and then introduce various state-of-the-art machine-learning algorithms, highlighting recent applications in image-based screening. Our Commentary aims to provide the biologist with a guide to the application of machine learning to microscopy assays and we therefore include extensive discussion on how to optimize experimental workflow as well as the data analysis pipeline.

  20. Heritability of in vitro phenotypes exhibited by murine adipose-derived stromal cells.

    Science.gov (United States)

    Jiang, Zixuan; Harrison, David E; Parsons, Makayla E; McClatchy, Susan; Jacobs, Lawrence; Pazdro, Robert

    2016-10-01

    Adipose-derived stromal cells (ADSCs) exhibit significant potential as therapeutic agents to promote tissue regeneration. Success of ADSC-based therapies is dependent upon efficient cell expansion in vitro as well as postinjection survival in the caustic milieu of damaged tissue. Genetic background regulates ADSC proliferative capacity and stress resistance, but the extent of the genetic effect size is not completely defined. The present study aimed to quantify phenotypic ranges and heritability of in vitro ADSC characteristics. ADSCs were isolated from mice representing 16 genetically diverse inbred mouse strains, including 12 classical inbred strains and four wild-derived strains. Cells were grown in vitro, and proliferative capacity and oxidative stress resistance were assessed. The fold change for ADSC growth ranged from 0.87 (BALB/cByJ) to 23.60 (POHN/DehJ), relative to original seeding density. The heritability of proliferative capacity was estimated to be 0.6462 (p = 9.967 × 10(-15)), and this phenotype was not associated with other ADSC traits. Cell viability following H2O2 treatment ranged from 39.81 % (CAST/EiJ) to 91.60 % (DBA/2 J), and the heritability of this phenotype was calculated as 0.6146 (p = 1.22 × 10(-12)). Relationships between cell viability and weight of the donor fat pad were also discovered. Donor genetic background is a major determinant of in vitro ADSC phenotypes. This study supports the development of forward genetics strategies to identify genes that underlie ADSC phenotypic diversity, which will inform efforts to improve cell-based therapies.

  1. Cyclebase 3.0: a multi-organism database on cell-cycle regulation and phenotypes

    DEFF Research Database (Denmark)

    Santos Delgado, Alberto; Wernersson, Rasmus; Jensen, Lars Juhl

    2015-01-01

    3.0, we have updated the content of the database to reflect changes to genome annotation, added new mRNAand protein expression data, and integrated cell-cycle phenotype information from high-content screens and model-organism databases. The new version of Cyclebase also features a new web interface...

  2. miRNA dynamics in tumor-infiltrating myeloid cells modulating tumor progression in pancreatic cancer.

    Science.gov (United States)

    Mühlberg, Leonie; Kühnemuth, Benjamin; Costello, Eithne; Shaw, Victoria; Sipos, Bence; Huber, Magdalena; Griesmann, Heidi; Krug, Sebastian; Schober, Marvin; Gress, Thomas M; Michl, Patrick

    2016-06-01

    Myeloid cells including tumor-associated macrophages (TAM) and myeloid-derived suppressor cells (MDSC) are known as important mediators of tumor progression in solid tumors such as pancreatic cancer. Infiltrating myeloid cells have been identified not only in invasive tumors, but also in early pre-invasive pancreatic intraepithelial precursor lesions (PanIN). The functional dynamics of myeloid cells during carcinogenesis is largely unknown. We aimed to systematically elucidate phenotypic and transcriptional changes in infiltrating myeloid cells during carcinogenesis and tumor progression in a genetic mouse model of pancreatic cancer. Using murine pancreatic myeloid cells isolated from the genetic mouse model at different time points during carcinogenesis, we examined both established markers of macrophage polarization using RT-PCR and FACS as well as transcriptional changes focusing on miRNA profiling. Myeloid cells isolated during carcinogenesis showed a simultaneous increase of established markers of M1 and M2 polarization during carcinogenesis, indicating that phenotypic changes of myeloid cells during carcinogenesis do not follow the established M1/M2 classification. MiRNA profiling revealed distinct regulations of several miRNAs already present in myeloid cells infiltrating pre-invasive PanIN lesions. Among them miRNA-21 was significantly increased in myeloid cells surrounding both PanIN lesions and invasive cancers. Functionally, miRNA-21-5p and -3p altered expression of the immune-modulating cytokines CXCL-10 and CCL-3 respectively. Our data indicate that miRNAs are dynamically regulated in infiltrating myeloid cells during carcinogenesis and mediate their functional phenotype by facilitating an immune-suppressive tumor-promoting micro-milieu. PMID:27471627

  3. Protein kinase C θ regulates the phenotype of murine CD4+ Th17 cells.

    Directory of Open Access Journals (Sweden)

    Katarzyna Wachowicz

    Full Text Available Protein kinase C θ (PKCθ is involved in signaling downstream of the T cell antigen receptor (TCR and is important for shaping effector T cell functions and inflammatory disease development. Acquisition of Th1-like effector features by Th17 cells has been linked to increased pathogenic potential. However, the molecular mechanisms underlying Th17/Th1 phenotypic instability remain largely unknown. In the current study, we address the role of PKCθ in differentiation and function of Th17 cells by using genetic knock-out mice. Implementing in vitro (polarizing T cell cultures and in vivo (experimental autoimmune encephalomyelitis model, EAE techniques, we demonstrated that PKCθ-deficient CD4+ T cells show normal Th17 marker gene expression (interleukin 17A/F, RORγt, accompanied by enhanced production of the Th1-typical markers such as interferon gamma (IFN-γ and transcription factor T-bet. Mechanistically, this phenotype was linked to aberrantly elevated Stat4 mRNA levels in PKCθ-/- CD4+ T cells during the priming phase of Th17 differentiation. In contrast, transcription of the Stat4 gene was suppressed in Th17-primed wild-type cells. This change in cellular effector phenotype was reflected in vivo by prolonged neurological impairment of PKCθ-deficient mice during the course of EAE. Taken together, our data provide genetic evidence that PKCθ is critical for stabilizing Th17 cell phenotype by selective suppression of the STAT4/IFN-γ/T-bet axis at the onset of differentiation.

  4. Step-wise and punctuated genome evolution drive phenotype changes of tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Stepanenko, Aleksei, E-mail: a.a.stepanenko@gmail.com [Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680 (Ukraine); Andreieva, Svitlana; Korets, Kateryna; Mykytenko, Dmytro [Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680 (Ukraine); Huleyuk, Nataliya [Institute of Hereditary Pathology, National Academy of Medical Sciences of Ukraine, Lviv 79008 (Ukraine); Vassetzky, Yegor [CNRS UMR8126, Université Paris-Sud 11, Institut de Cancérologie Gustave Roussy, Villejuif 94805 (France); Kavsan, Vadym [Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680 (Ukraine)

    2015-01-15

    Highlights: • There are the step-wise continuous and punctuated phases of cancer genome evolution. • The system stresses during the different phases may lead to very different responses. • Stable transfection of an empty vector can result in genome and phenotype changes. • Functions of a (trans)gene can be opposite/versatile in cells with different genomes. • Contextually, temozolomide can both promote and suppress tumor cell aggressiveness. - Abstract: The pattern of genome evolution can be divided into two phases: the step-wise continuous phase (step-wise clonal evolution, stable dominant clonal chromosome aberrations (CCAs), and low frequency of non-CCAs, NCCAs) and punctuated phase (marked by elevated NCCAs and transitional CCAs). Depending on the phase, system stresses (the diverse CIN promoting factors) may lead to the very different phenotype responses. To address the contribution of chromosome instability (CIN) to phenotype changes of tumor cells, we characterized CCAs/NCCAs of HeLa and HEK293 cells, and their derivatives after genotoxic stresses (a stable plasmid transfection, ectopic expression of cancer-associated CHI3L1 gene or treatment with temozolomide) by conventional cytogenetics, copy number alterations (CNAs) by array comparative genome hybridization, and phenotype changes by cell viability and soft agar assays. Transfection of either the empty vector pcDNA3.1 or pcDNA3.1-CHI3L1 into 293 cells initiated the punctuated genome changes. In contrast, HeLa-CHI3L1 cells demonstrated the step-wise genome changes. Increased CIN correlated with lower viability of 293-pcDNA3.1 cells but higher colony formation efficiency (CFE). Artificial CHI3L1 production in 293-CHI3L1 cells increased viability and further contributed to CFE. The opposite growth characteristics of 293-CHI3L1 and HeLa-CHI3L1 cells were revealed. The effect and function of a (trans)gene can be opposite and versatile in cells with different genetic network, which is defined by

  5. Step-wise and punctuated genome evolution drive phenotype changes of tumor cells

    International Nuclear Information System (INIS)

    Highlights: • There are the step-wise continuous and punctuated phases of cancer genome evolution. • The system stresses during the different phases may lead to very different responses. • Stable transfection of an empty vector can result in genome and phenotype changes. • Functions of a (trans)gene can be opposite/versatile in cells with different genomes. • Contextually, temozolomide can both promote and suppress tumor cell aggressiveness. - Abstract: The pattern of genome evolution can be divided into two phases: the step-wise continuous phase (step-wise clonal evolution, stable dominant clonal chromosome aberrations (CCAs), and low frequency of non-CCAs, NCCAs) and punctuated phase (marked by elevated NCCAs and transitional CCAs). Depending on the phase, system stresses (the diverse CIN promoting factors) may lead to the very different phenotype responses. To address the contribution of chromosome instability (CIN) to phenotype changes of tumor cells, we characterized CCAs/NCCAs of HeLa and HEK293 cells, and their derivatives after genotoxic stresses (a stable plasmid transfection, ectopic expression of cancer-associated CHI3L1 gene or treatment with temozolomide) by conventional cytogenetics, copy number alterations (CNAs) by array comparative genome hybridization, and phenotype changes by cell viability and soft agar assays. Transfection of either the empty vector pcDNA3.1 or pcDNA3.1-CHI3L1 into 293 cells initiated the punctuated genome changes. In contrast, HeLa-CHI3L1 cells demonstrated the step-wise genome changes. Increased CIN correlated with lower viability of 293-pcDNA3.1 cells but higher colony formation efficiency (CFE). Artificial CHI3L1 production in 293-CHI3L1 cells increased viability and further contributed to CFE. The opposite growth characteristics of 293-CHI3L1 and HeLa-CHI3L1 cells were revealed. The effect and function of a (trans)gene can be opposite and versatile in cells with different genetic network, which is defined by

  6. Multiple loci are associated with white blood cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Michael A Nalls

    2011-06-01

    Full Text Available White blood cell (WBC count is a common clinical measure from complete blood count assays, and it varies widely among healthy individuals. Total WBC count and its constituent subtypes have been shown to be moderately heritable, with the heritability estimates varying across cell types. We studied 19,509 subjects from seven cohorts in a discovery analysis, and 11,823 subjects from ten cohorts for replication analyses, to determine genetic factors influencing variability within the normal hematological range for total WBC count and five WBC subtype measures. Cohort specific data was supplied by the CHARGE, HeamGen, and INGI consortia, as well as independent collaborative studies. We identified and replicated ten associations with total WBC count and five WBC subtypes at seven different genomic loci (total WBC count-6p21 in the HLA region, 17q21 near ORMDL3, and CSF3; neutrophil count-17q21; basophil count- 3p21 near RPN1 and C3orf27; lymphocyte count-6p21, 19p13 at EPS15L1; monocyte count-2q31 at ITGA4, 3q21, 8q24 an intergenic region, 9q31 near EDG2, including three previously reported associations and seven novel associations. To investigate functional relationships among variants contributing to variability in the six WBC traits, we utilized gene expression- and pathways-based analyses. We implemented gene-clustering algorithms to evaluate functional connectivity among implicated loci and showed functional relationships across cell types. Gene expression data from whole blood was utilized to show that significant biological consequences can be extracted from our genome-wide analyses, with effect estimates for significant loci from the meta-analyses being highly corellated with the proximal gene expression. In addition, collaborative efforts between the groups contributing to this study and related studies conducted by the COGENT and RIKEN groups allowed for the examination of effect homogeneity for genome-wide significant associations across

  7. Phenotype classification of single cells using SRS microscopy, RNA sequencing, and microfluidics (Conference Presentation)

    Science.gov (United States)

    Streets, Aaron M.; Cao, Chen; Zhang, Xiannian; Huang, Yanyi

    2016-03-01

    Phenotype classification of single cells reveals biological variation that is masked in ensemble measurement. This heterogeneity is found in gene and protein expression as well as in cell morphology. Many techniques are available to probe phenotypic heterogeneity at the single cell level, for example quantitative imaging and single-cell RNA sequencing, but it is difficult to perform multiple assays on the same single cell. In order to directly track correlation between morphology and gene expression at the single cell level, we developed a microfluidic platform for quantitative coherent Raman imaging and immediate RNA sequencing (RNA-Seq) of single cells. With this device we actively sort and trap cells for analysis with stimulated Raman scattering microscopy (SRS). The cells are then processed in parallel pipelines for lysis, and preparation of cDNA for high-throughput transcriptome sequencing. SRS microscopy offers three-dimensional imaging with chemical specificity for quantitative analysis of protein and lipid distribution in single cells. Meanwhile, the microfluidic platform facilitates single-cell manipulation, minimizes contamination, and furthermore, provides improved RNA-Seq detection sensitivity and measurement precision, which is necessary for differentiating biological variability from technical noise. By combining coherent Raman microscopy with RNA sequencing, we can better understand the relationship between cellular morphology and gene expression at the single-cell level.

  8. Chitosan Feasibility to Retain Retinal Stem Cell Phenotype and Slow Proliferation for Retinal Transplantation

    Directory of Open Access Journals (Sweden)

    Girish K. Srivastava

    2014-01-01

    Full Text Available Retinal stem cells (RSCs are promising in cell replacement strategies for retinal diseases. RSCs can migrate, differentiate, and integrate into retina. However, RSCs transplantation needs an adequate support; chitosan membrane (ChM could be one, which can carry RSCs with high feasibility to support their integration into retina. RSCs were isolated, evaluated for phenotype, and subsequently grown on sterilized ChM and polystyrene surface for 8 hours, 1, 4, and 11 days for analysing cell adhesion, proliferation, viability, and phenotype. Isolated RSCs expressed GFAP, PKC, isolectin, recoverin, RPE65, PAX-6, cytokeratin 8/18, and nestin proteins. They adhered (28 ± 16%, 8 hours and proliferated (40 ± 20 cells/field, day 1 and 244 ± 100 cells/field, day 4 significantly low (P95% and phenotype (cytokeratin 8/18, PAX6, and nestin proteins expression, day 11 on both surfaces (ChM and polystyrene. RSCs did not express alpha-SMA protein on both surfaces. RSCs express proteins belonging to epithelial, glial, and neural cells, confirming that they need further stimulus to reach a final destination of differentiation that could be provided in in vivo condition. ChM does not alternate RSCs behaviour and therefore can be used as a cell carrier so that slow proliferating RSCs can migrate and integrate into retina.

  9. Chitosan Feasibility to Retain Retinal Stem Cell Phenotype and Slow Proliferation for Retinal Transplantation

    Science.gov (United States)

    Srivastava, Girish K.; Rodriguez-Crespo, David; Singh, Amar K.; Casado-Coterillo, Clara; Garcia-Gutierrez, Maria T.; Coronas, Joaquin; Pastor, J. Carlos

    2014-01-01

    Retinal stem cells (RSCs) are promising in cell replacement strategies for retinal diseases. RSCs can migrate, differentiate, and integrate into retina. However, RSCs transplantation needs an adequate support; chitosan membrane (ChM) could be one, which can carry RSCs with high feasibility to support their integration into retina. RSCs were isolated, evaluated for phenotype, and subsequently grown on sterilized ChM and polystyrene surface for 8 hours, 1, 4, and 11 days for analysing cell adhesion, proliferation, viability, and phenotype. Isolated RSCs expressed GFAP, PKC, isolectin, recoverin, RPE65, PAX-6, cytokeratin 8/18, and nestin proteins. They adhered (28 ± 16%, 8 hours) and proliferated (40 ± 20 cells/field, day 1 and 244 ± 100 cells/field, day 4) significantly low (P 95%) and phenotype (cytokeratin 8/18, PAX6, and nestin proteins expression, day 11) on both surfaces (ChM and polystyrene). RSCs did not express alpha-SMA protein on both surfaces. RSCs express proteins belonging to epithelial, glial, and neural cells, confirming that they need further stimulus to reach a final destination of differentiation that could be provided in in vivo condition. ChM does not alternate RSCs behaviour and therefore can be used as a cell carrier so that slow proliferating RSCs can migrate and integrate into retina. PMID:24719852

  10. Temperature dependence of photovoltaic cells, modules, and systems

    Energy Technology Data Exchange (ETDEWEB)

    Emery, K.; Burdick, J.; Caiyem, Y. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    Photovoltaic (PV) cells and modules are often rated in terms of a set of standard reporting conditions defined by a temperature, spectral irradiance, and total irradiance. Because PV devices operates over a wide range of temperatures and irradiances, the temperature and irradiance related behavior must be known. This paper surveys the temperature dependence of crystalline and thin-film, state-of-the-art, research-size cells, modules, and systems measured by a variety of methods. The various error sources and measurement methods that contribute to cause differences in the temperature coefficient for a given cell or module measured with various methods are discussed.

  11. Upregulated expression of Ezrin and invasive phenotype in malignantly transformed esophageal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Zhong-Ying Shen; Li-Yan Xu; Ming-Hua Chen; En-Min Li; Jin-Tao Li; Xian-Ying Wu; Yi Zeng

    2003-01-01

    AIM: To investigate the correlation between ezrin expression and invasive phenotype formation in malignantly transformed esophageal epithelial cells. METHODS: The experimental cell line employed in the present study was originated form the progressive induction of a human embryonic esophageal epithelial cell line (SHEE)by the E6E7 genes of human papillomavirus (HPV) type 18.The cells at the 35th passage after induction called SHEEIMM were in a state of immortalized phase and used as the control,while that of the 85th passage denominated as SHEEMT represented the status of cells that were malignantly transformed. The expression changes of ezrin and its mRNA in both cell passages were respectively analyzed by RT-PCR and Western blot. Invasive phenotype was assessed in vivo by inoculating these cells into the severe combined immunodeficient (SCID) mice via subcutaneous and intraperitoneal injection, and in vitro by inoculating them on the surface of the amnion membranes, which then was determined by light microscopy and scanning electron microscopy. RESULTS: Upregulated expression of ezrin protein and its mRNA was observed in SHEEMT compared with that in SHEEIMM cells. The SHEEMT cells inoculated in SCID mice were observed forming tumor masses in both visceral organs and soft tissues in a period of 40 days with a special propensity to invading mesentery and pancreas, but did not exhibit hepatic metastases. Pathologically, these tumor cells harboring larger nucleus, nucleolus and less cytoplasm could infiltrate and destroy adjacent tissues. In the in vitro study,the inoculated SHEEMT cells could grow in cluster on the amniotic epithelial surface and intrude into the amniotic stroma. In contrast, unrestricted growth and invasiveness were not found in SHEEIMM cells in both in vivo and in vitroexperiment. CONCLUSION: The upregulated ezrin expression is one of the important factors that are possibly associated with the invasive phenotype formation in malignantly

  12. An endogenous inhibitor of angiogenesis inversely correlates with side population phenotype and function in human lung cancer cells.

    Science.gov (United States)

    Han, H; Bourboulia, D; Jensen-Taubman, S; Isaac, B; Wei, B; Stetler-Stevenson, W G

    2014-02-27

    The side population (SP) in human lung cancer cell lines and tumors is enriched with cancer stem cells. An endogenous inhibitor of angiogenesis known as tissue inhibitor of matrix metalloproteinase-2 (TIMP-2), characterized for its ability to inhibit matrix metalloproteinases (MMPs), has been shown by several laboratories to impede tumor progression through MMP-dependent or -independent mechanisms. We recently reported that forced expression of TIMP-2, as well as the modified form Ala+TIMP-2 (that lacks MMP inhibitory activity) significantly blocks growth of A549 human lung cancer cells in vivo. However, the mechanisms underlying TIMP-2 antitumor effects are not fully characterized. Here, we examine the hypothesis that the TIMP-2 antitumor activity may involve regulation of the SP in human lung cancer cells. Indeed, using Hoechst dye efflux assay and flow cytometry, as well as quantitative reverse transcriptase-PCR analysis, we found that endogenous TIMP-2 mRNA levels showed a significant inverse correlation with SP fraction size in six non-small cell lung cancer cell lines. In A549 cells expressing increased levels of TIMP-2, a significant decrease in SP was observed, and this decrease was associated with lowered gene expression of ABCG2, ABCB1 and AKR1C1. Functional analysis of A549 cells showed that TIMP-2 overexpression increased chemosensitivity to cytotoxic drugs. The SP isolated from TIMP-2-overexpressing A549 cells also demonstrated impaired migratory capacity compared with the SP from empty vector control. More importantly, our data provide strong evidence that these TIMP-2 functions occur independent of MMP inhibition, as A549 cells overexpressing Ala+TIMP-2 exhibited identical behavior to those overexpressing TIMP-2 alone. Our findings provide the first indication that TIMP-2 modulates SP phenotype and function, and suggests that TIMP-2 may act as an endogenous suppressor of the SP in human lung cancer cells.

  13. Adipose Stromal Cells Contain Phenotypically Distinct Adipogenic Progenitors Derived from Neural Crest

    OpenAIRE

    Yoshihiro Sowa; Tetsuya Imura; Toshiaki Numajiri; Kosuke Takeda; Yo Mabuchi; Yumi Matsuzaki; Kenichi Nishino

    2013-01-01

    Recent studies have shown that adipose-derived stromal/stem cells (ASCs) contain phenotypically and functionally heterogeneous subpopulations of cells, but their developmental origin and their relative differentiation potential remain elusive. In the present study, we aimed at investigating how and to what extent the neural crest contributes to ASCs using Cre-loxP-mediated fate mapping. ASCs harvested from subcutaneous fat depots of either adult P0-Cre/or Wnt1-Cre/Floxed-reporter mice contain...

  14. A monolithic glass chip for active single-cell sorting based on mechanical phenotyping

    OpenAIRE

    Faigle, C.; Lautenschläger, F.; Whyte, G; Homewood, P.; Martín Badosa, Estela; Guck, J.

    2014-01-01

    The mechanical properties of biological cells have long been considered as inherent markers of biological function and disease. However, the screening and active sorting of heterogeneous populations based on serial single-cell mechanical measurements has not been demonstrated. Here we present a novel monolithic glass chip for combined fluorescence detection and mechanical phenotyping using an optical stretcher. A new design and manufacturing process, involving the bonding of two asymmetricall...

  15. Mass cytometry analysis shows that a novel memory phenotype B cell is expanded in multiple myeloma

    OpenAIRE

    Hansmann, Leo; Blum, Lisa; Ju, Chia-Hsin; Liedtke, Michaela; Robinson, William H; Davis, Mark M.

    2015-01-01

    It would be very beneficial if the status of cancers could be determined from a blood specimen. However, peripheral blood leukocytes are very heterogeneous between individuals and thus high resolution technologies are likely required. We used cytometry by time-of-flight (CyTOF) and next generation sequencing to ask whether a plasma cell cancer (multiple myeloma) and related pre-cancerous states had any consistent effect on the peripheral blood mononuclear cell phenotypes of patients. Analysis...

  16. Hypoxic conditions induce a cancer-like phenotype in human breast epithelial cells

    DEFF Research Database (Denmark)

    Vaapil, Marica; Helczynska, Karolina; Villadsen, René;

    2012-01-01

    Solid tumors are less oxygenated than their tissue of origin. Low intra-tumor oxygen levels are associated with worse outcome, increased metastatic potential and immature phenotype in breast cancer. We have reported that tumor hypoxia correlates to low differentiation status in breast cancer. Les...... is known about effects of hypoxia on non-malignant cells. Here we address whether hypoxia influences the differentiation stage of non-malignant breast epithelial cells and potentially have bearing on early stages of tumorigenesis....

  17. Potential of thin-film solar cell module technology

    Science.gov (United States)

    Shimada, K.; Ferber, R. R.; Costogue, E. N.

    1985-01-01

    During the past five years, thin-film cell technology has made remarkable progress as a potential alternative to crystalline silicon cell technology. The efficiency of a single-junction thin-film cell, which is the most promising for use in flat-plate modules, is now in the range of 11 percent with 1-sq cm cells consisting of amorphous silicon, CuInSe2 or CdTe materials. Cell efficiencies higher than 18 percent, suitable for 15 percent-efficient flat plate modules, would require a multijunction configuration such as the CdTe/CuInSe2 and tandem amorphous-silicon (a-Si) alloy cells. Assessments are presented of the technology status of thin-film-cell module research and the potential of achieving the higher efficiencies required for large-scale penetration into the photovoltaic (PV) energy market.

  18. Ginsenoside Rd alleviates mouse acute renal ischemia/reperfusion injury by modulating macrophage phenotype

    OpenAIRE

    Ren, Kaixi; Jin, Chao; Ma, Pengfei; Ren, Qinyou; Jia, Zhansheng; Zhu, Daocheng

    2015-01-01

    Background Ginsenoside Rd (GSRd), a main component of the root of Panax ginseng, exhibits anti-inflammation functions and decreases infarct size in many injuries and ischemia diseases such as focal cerebral ischemia. M1 Macrophages are regarded as one of the key inflammatory cells having functions for disease progression. Methods To investigate the effect of GSRd on renal ischemia/reperfusion injury (IRI) and macrophage functional status, and their regulatory role on mouse polarized macrophag...

  19. Pathogenic Mycobacterium bovis strains differ in their ability to modulate the proinflammatory activation phenotype of macrophages

    OpenAIRE

    Andrade Marcelle RM; Amaral Eduardo P; Ribeiro Simone CM; Almeida Fabricio M; Peres Tanara V; Lanes Verônica; D’Império-Lima Maria; Lasunskaia Elena B

    2012-01-01

    Abstract Background Tuberculosis, caused by Mycobacterium tuberculosis or Mycobacterium bovis, remains one of the leading infectious diseases worldwide. The ability of mycobacteria to rapidly grow in host macrophages is a factor contributing to enhanced virulence of the bacteria and disease progression. Bactericidal functions of phagocytes are strictly dependent on activation status of these cells, regulated by the infecting agent and cytokines. Pathogenic mycobacteria can survive the hostile...

  20. Spironolactone attenuates bleomycin-induced pulmonary injury partially via modulating mononuclear phagocyte phenotype switching in circulating and alveolar compartments.

    Directory of Open Access Journals (Sweden)

    Wen-Jie Ji

    Full Text Available BACKGROUND: Recent experimental studies provide evidence indicating that manipulation of the mononuclear phagocyte phenotype could be a feasible approach to alter the severity and persistence of pulmonary injury and fibrosis. Mineralocorticoid receptor (MR has been reported as a target to regulate macrophage polarization. The present work was designed to investigate the therapeutic potential of MR antagonism in bleomycin-induced acute lung injury and fibrosis. METHODOLOGY/PRINCIPAL FINDINGS: We first demonstrated the expression of MR in magnetic bead-purified Ly6G-/CD11b+ circulating monocytes and in alveolar macrophages harvested in bronchoalveolar lavage fluid (BALF from C57BL/6 mice. Then, a pharmacological intervention study using spironolactone (20 mg/kg/day by oral gavage revealed that MR antagonism led to decreased inflammatory cell infiltration, cytokine production (downregulated monocyte chemoattractant protein-1, transforming growth factor β1, and interleukin-1β at mRNA and protein levels and collagen deposition (decreased lung total hydroxyproline content and collagen positive area by Masson' trichrome staining in bleomycin treated (2.5 mg/kg, via oropharyngeal instillation male C57BL/6 mice. Moreover, serial flow cytometry analysis in blood, BALF and enzymatically digested lung tissue, revealed that spironolactone could partially inhibit bleomycin-induced circulating Ly6C(hi monocyte expansion, and reduce alternative activation (F4/80+CD11c+CD206+ of mononuclear phagocyte in alveoli, whereas the phenotype of interstitial macrophage (F4/80+CD11c- remained unaffected by spironolactone during investigation. CONCLUSIONS/SIGNIFICANCE: The present work provides the experimental evidence that spironolactone could attenuate bleomycin-induced acute pulmonary injury and fibrosis, partially via inhibition of MR-mediated circulating monocyte and alveolar macrophage phenotype switching.

  1. Phenotypic evolutionary models in stem cell biology: replacement, quiescence, and variability.

    Directory of Open Access Journals (Sweden)

    Marc Mangel

    Full Text Available Phenotypic evolutionary models have been used with great success in many areas of biology, but thus far have not been applied to the study of stem cells except for investigations of cancer. We develop a framework that allows such modeling techniques to be applied to stem cells more generally. The fundamental modeling structure is the stochastic kinetics of stem cells in their niche and of transit amplifying and fully differentiated cells elsewhere in the organism, with positive and negative feedback. This formulation allows graded signals to be turned into all or nothing responses, and shows the importance of looking beyond the niche for understanding how stem cells behave. Using the deterministic version of this framework, we show how competition between different stem cell lines can be analyzed, and under what circumstances stem cells in a niche will be replaced by other stem cells with different phenotypic characteristics. Using the stochastic version of our framework and state dependent life history theory, we show that the optimal behavior of a focal stem cell will involve long periods of quiescence and that a population of identical stem cells will show great variability in the times at which activity occurs; we compare our results with classic ones on quiescence and variability in the hematopoietic system.

  2. Mass cytometry analysis shows that a novel memory phenotype B cell is expanded in multiple myeloma

    Science.gov (United States)

    Hansmann, Leo; Blum, Lisa; Ju, Chia-Hsin; Liedtke, Michaela; Robinson, William H.; Davis, Mark M.

    2015-01-01

    It would be very beneficial if the status of cancers could be determined from a blood specimen. However, peripheral blood leukocytes are very heterogeneous between individuals and thus high resolution technologies are likely required. We used cytometry by time-of-flight (CyTOF) and next generation sequencing to ask whether a plasma cell cancer (multiple myeloma) and related pre-cancerous states had any consistent effect on the peripheral blood mononuclear cell phenotypes of patients. Analysis of peripheral blood samples from 13 cancer patients, 9 pre-cancer patients, and 9 healthy individuals revealed significant differences in the frequencies of the T, B, and natural killer cell compartments. Most strikingly, we identified a novel B-cell population that normally accounts for 4.0±0.7% (mean±SD) of total B cells and is up to 13-fold expanded in multiple myeloma patients with active disease. This population expressed markers previously associated with both memory (CD27+) and naïve (CD24loCD38+) phenotypes. Single-cell immunoglobulin gene sequencing showed polyclonality, indicating that these cells are not precursors to the myeloma, and somatic mutations, a characteristic of memory cells. SYK, ERK, and p38 phosphorylation responses, and the fact that most of these cells expressed isotypes other than IgM or IgD, confirmed the memory character of this population, defining it as a novel type of memory B cells. PMID:25711758

  3. Synergistic role of three dimensional niche and hypoxia on conservation of cancer stem cell phenotype.

    Science.gov (United States)

    Gorgun, Cansu; Ozturk, Sukru; Gokalp, Sevtap; Vatansever, Seda; Gurhan, S Ismet Deliloglu; Urkmez, Aylin Sendemir

    2016-09-01

    Hypoxia is a pathalogical condition in which tissues are deprived of adequate oxygen supply. The hypoxia effect on tumors has a critically important role on maintenance of cancer stem cell phenotype. The aim of this study is to investigate the effects of hypoxia on cancer stem cells on three dimensional (3D) in vitro culture models. Osteosarcoma stem cells characterized by CD133 surface protein were isolated from osteosarcoma cell line (SaOS-2) by magnetic-activated cell sorting (MACS) technique. Isolated CD133(+) and CD133(-) cells were cultivated under hypoxic (1% O2) and normoxic conditions (21% O2) for 3 days. For the 3D model, bacterial cellulose scaffold was used as the culture substrate. 3D morphologies of cells were examined by scanning electron microscopy (SEM); RT-PCR and immunocytochemistry staining were used to demonstrate conservation of the cancer stem cell phenotype in 3D environment under hypoxic conditions. Cell viability was shown by MTT assay on 3. and 7. culture days. This study is seen as an introduction to develop a 3D hypoxic cancer stem cell based tumor model to study CSC behavior and tumor genesis in vitro. PMID:26718870

  4. Closing the Phenotypic Gap between Transformed Neuronal Cell Lines in Culture and Untransformed Neurons

    Science.gov (United States)

    Myers, Tereance A.; Nickerson, Cheryl A.; Kaushal, Deepak; Ott, C. Mark; HonerzuBentrup, Kerstin; Ramamurthy, Rajee; Nelman-Gonzales, Mayra; Pierson, Duane L.; Philipp, Mario T.

    2008-01-01

    Studies of neuronal dysfunction in the central nervous system (CNS) are frequently limited by the failure of primary neurons to propagate in vitro. Neuronal cell lines can be substituted for primary cells but they often misrepresent normal conditions. We hypothesized that a dimensional (3-D) cell culture system would drive the phenotype of transformed neurons closer to that of untransformed cells. In our studies comparing 3-D versus 2-dimensional (2-D) culture, neuronal SH-SY5Y (SY) cells underwent distinct morphological changes combined with a significant drop in their rate of cell division. Expression of the proto-oncogene N-myc and the RNA binding protein HuD was decreased in 3-D culture as compared to standard 2-D conditions. We observed a decline in the anti-apoptotic protein Bcl-2 in 3-D culture, coupled with increased expression of the pro-apoptotic proteins Bax and Bak. Moreover, thapsigargin (TG)-induced apoptosis was enhanced in the 3-D cells. Microarray analysis demonstrated significantly differing mRNA levels for over 700 genes in the cells of each culture type. These results indicate that a 3-D culture approach narrows the phenotypic gap between neuronal cell lines and primary neurons. The resulting cells may readily be used for in vitro research of neuronal pathogenesis.

  5. Phenotypic characterization of bovine memory cells responding to mycobacteria in IFNγ enzyme linked immunospot assays.

    Science.gov (United States)

    Blunt, Laura; Hogarth, Philip J; Kaveh, Daryan A; Webb, Paul; Villarreal-Ramos, Bernardo; Vordermeier, Hans Martin

    2015-12-16

    Bovine tuberculosis (bTB) remains a globally significant veterinary health problem. Defining correlates of protection can accelerate the development of novel vaccines against TB. As the cultured IFNγ ELISPOT (cELISPOT) assay has been shown to predict protection and duration of immunity in vaccinated cattle, we sought to characterize the phenotype of the responding T-cells. Using expression of CD45RO and CD62L we purified by cytometric cell sorting four distinct CD4(+) populations: CD45RO(+)CD62L(hi), CD45RO(+)CD62L(lo), CD45RO(-)CD62L(hi) and CD45RO(-)CD62L(lo) (although due to low and inconsistent cell recovery, this population was not considered further in this study), in BCG vaccinated and Mycobacterium bovis infected cattle. These populations were then tested in the cELISPOT assay. The main populations contributing to production of IFNγ in the cELISPOT were of the CD45RO(+)CD62L(hi) and CD45RO(+)CD62L(lo) phenotypes. These cell populations have been described in other species as central and effector memory cells, respectively. Following in vitro culture and flow cytometry we observed plasticity within the bovine CD4(+) T-cell phenotype. Populations switched phenotype, increasing or decreasing expression of CD45RO and CD62L within 24h of in vitro stimulation. After 14 days all IFNγ producing CD4(+) T cells expressed CD45RO regardless of the original phenotype of the sorted population. No differences were detected in behavior of cells derived from BCG-vaccinated animals compared to cells derived from naturally infected animals. In conclusion, although multiple populations of CD4(+) T memory cells from both BCG vaccinated and M. bovis infected animals contributed to cELISPOT responses, the dominant contributing population consists of central-memory-like T cells (CD45RO(+)CD62L(hi)).

  6. Phenotypic profile of expanded NK cells in chronic lymphoproliferative disorders: a surrogate marker for NK-cell clonality.

    Science.gov (United States)

    Bárcena, Paloma; Jara-Acevedo, María; Tabernero, María Dolores; López, Antonio; Sánchez, María Luz; García-Montero, Andrés C; Muñoz-García, Noemí; Vidriales, María Belén; Paiva, Artur; Lecrevisse, Quentin; Lima, Margarida; Langerak, Anton W; Böttcher, Sebastian; van Dongen, Jacques J M; Orfao, Alberto; Almeida, Julia

    2015-12-15

    Currently, the lack of a universal and specific marker of clonality hampers the diagnosis and classification of chronic expansions of natural killer (NK) cells. Here we investigated the utility of flow cytometric detection of aberrant/altered NK-cell phenotypes as a surrogate marker for clonality, in the diagnostic work-up of chronic lymphoproliferative disorders of NK cells (CLPD-NK). For this purpose, a large panel of markers was evaluated by multiparametric flow cytometry on peripheral blood (PB) CD56(low) NK cells from 60 patients, including 23 subjects with predefined clonal (n = 9) and polyclonal (n = 14) CD56(low) NK-cell expansions, and 37 with CLPD-NK of undetermined clonality; also, PB samples from 10 healthy adults were included. Clonality was established using the human androgen receptor (HUMARA) assay. Clonal NK cells were found to show decreased expression of CD7, CD11b and CD38, and higher CD2, CD94 and HLADR levels vs. normal NK cells, together with a restricted repertoire of expression of the CD158a, CD158b and CD161 killer-associated receptors. In turn, NK cells from both clonal and polyclonal CLPD-NK showed similar/overlapping phenotypic profiles, except for high and more homogeneous expression of CD94 and HLADR, which was restricted to clonal CLPD-NK. We conclude that the CD94(hi)/HLADR+ phenotypic profile proved to be a useful surrogate marker for NK-cell clonality.

  7. Development of the Theta Comparative Cell Scoring Method to Quantify Diverse Phenotypic Responses Between Distinct Cell Types

    Science.gov (United States)

    Warchal, Scott J.; Dawson, John C.

    2016-01-01

    Abstract In this article, we have developed novel data visualization tools and a Theta comparative cell scoring (TCCS) method, which supports high-throughput in vitro pharmacogenomic studies across diverse cellular phenotypes measured by multiparametric high-content analysis. The TCCS method provides a univariate descriptor of divergent compound-induced phenotypic responses between distinct cell types, which can be used for correlation with genetic, epigenetic, and proteomic datasets to support the identification of biomarkers and further elucidate drug mechanism-of-action. Application of these methods to compound profiling across high-content assays incorporating well-characterized cells representing known molecular subtypes of disease supports the development of personalized healthcare strategies without prior knowledge of a drug target. We present proof-of-principle data quantifying distinct phenotypic response between eight breast cancer cells representing four disease subclasses. Application of the TCCS method together with new advances in next-generation sequencing, induced pluripotent stem cell technology, gene editing, and high-content phenotypic screening are well placed to advance the identification of predictive biomarkers and personalized medicine approaches across a broader range of disease types and therapeutic classes. PMID:27552144

  8. Phenotypic characterization of the bone marrow stem cells used in regenerative cellular therapy

    International Nuclear Information System (INIS)

    Regenerative medicine is a novel therapeutic method with broad potential for the treatment of various illnesses, based on the use of bone marrow (BM) stem cells, whose phenotypic characterization is limited. The paper deals with the expression of different cell membrane markers in mononuclear BM cells from 14 patients who underwent autologous cell therapy, obtained by medullary puncture and mobilization to peripheral blood, with the purpose of characterizing the different types of cells present in that heterogeneous cellular population and identifying the adhesion molecules involved in their adhesion. A greater presence was observed of adherent stem cells from the marrow stroma in mononuclear cells obtained directly from the BM; a larger population of CD90+cells in mononuclear cells from CD34-/CD45-peripheral blood with a high expression of molecules CD44 and CD62L, which suggests a greater presence of mesenchymal stem cells (MSC) in mobilized cells from the marrow stroma. The higher levels of CD34+cells in peripheral blood stem cells with a low expression of molecules CD117-and DR-suggests the presence of hematopoietic stem cells, hemangioblasts and progenitor endothelial cells mobilized to peripheral circulation. It was found that mononuclear cells from both the BM and peripheral blood show a high presence of stem cells with expression of adhesion molecule CD44 (MMC marker), probably involved in their migration, settling and differentiation

  9. Phenotypic and Functional Alterations in Circulating Memory CD8 T Cells with Time after Primary Infection.

    Directory of Open Access Journals (Sweden)

    Matthew D Martin

    2015-10-01

    Full Text Available Memory CD8 T cells confer increased protection to immune hosts upon secondary viral, bacterial, and parasitic infections. The level of protection provided depends on the numbers, quality (functional ability, and location of memory CD8 T cells present at the time of infection. While primary memory CD8 T cells can be maintained for the life of the host, the full extent of phenotypic and functional changes that occur over time after initial antigen encounter remains poorly characterized. Here we show that critical properties of circulating primary memory CD8 T cells, including location, phenotype, cytokine production, maintenance, secondary proliferation, secondary memory generation potential, and mitochondrial function change with time after infection. Interestingly, phenotypic and functional alterations in the memory population are not due solely to shifts in the ratio of effector (CD62Llo and central memory (CD62Lhi cells, but also occur within defined CD62Lhi memory CD8 T cell subsets. CD62Lhi memory cells retain the ability to efficiently produce cytokines with time after infection. However, while it is was not formally tested whether changes in CD62Lhi memory CD8 T cells over time occur in a cell intrinsic manner or are due to selective death and/or survival, the gene expression profiles of CD62Lhi memory CD8 T cells change, phenotypic heterogeneity decreases, and mitochondrial function and proliferative capacity in either a lymphopenic environment or in response to antigen re-encounter increase with time. Importantly, and in accordance with their enhanced proliferative and metabolic capabilities, protection provided against chronic LCMV clone-13 infection increases over time for both circulating memory CD8 T cell populations and for CD62Lhi memory cells. Taken together, the data in this study reveal that memory CD8 T cells continue to change with time after infection and suggest that the outcome of vaccination strategies designed to elicit

  10. Chemistry and biology of the compounds that modulate cell migration.

    Science.gov (United States)

    Tashiro, Etsu; Imoto, Masaya

    2016-03-01

    Cell migration is a fundamental step for embryonic development, wound repair, immune responses, and tumor cell invasion and metastasis. Extensive studies have attempted to reveal the molecular mechanisms behind cell migration; however, they remain largely unclear. Bioactive compounds that modulate cell migration show promise as not only extremely powerful tools for studying the mechanisms behind cell migration but also as drug seeds for chemotherapy against tumor metastasis. Therefore, we have screened cell migration inhibitors and analyzed their mechanisms for the inhibition of cell migration. In this mini-review, we introduce our chemical and biological studies of three cell migration inhibitors: moverastin, UTKO1, and BU-4664L.

  11. Cholesterol lowering modulates T cell function in vivo and in vitro.

    Directory of Open Access Journals (Sweden)

    Kuang-Yuh Chyu

    Full Text Available The lipid milleu exacerbates the inflammatory response in atherosclerosis but its effect on T cell mediated immune response has not been fully elucidated. We hypothesized that lipid lowering would modulate T cell mediated immune function.T cells isolated from human PBMC or splenic T cells from apoE-/- mouse had higher proliferative response to T cell receptor (TCR ligation in medium supplemented with 10% fetal bovine serum (FBS compared to medium with 10% delipidated FBS. The differences in proliferation were associated with changes in lipid rafts, cellular cholesterol content, IL-10 secretion and subsequent activation of signaling molecule activated by TCR ligation. Immune biomarkers were also assessed in vivo using male apoE-/- mice fed atherogenic diet (AD starting at 7 weeks of age. At 25 weeks of age, a sub-group was switched to normal diet (ND whereas the rest remained on AD until euthanasia at 29 weeks of age. Dietary change resulted in a lower circulating level of cholesterol, reduced plaque size and inflammatory phenotype of plaques. These changes were associated with reduced intracellular IL-10 and IL-12 expression in CD4+ and CD8+ T cells.Our results show that lipid lowering reduces T cell proliferation and function, supporting the notion that lipid lowering modulates T cell function in vivo and in vitro.

  12. Accelerated cellular senescence phenotype of GAPDH-depleted human lung carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Manali; Krynetskaia, Natalia [Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Mishra, Anurag [Jayne Haines Center for Pharmacogenomics, Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Krynetskiy, Evgeny, E-mail: ekrynets@temple.edu [Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Jayne Haines Center for Pharmacogenomics, Temple University School of Pharmacy, Philadelphia, PA 19140 (United States)

    2011-07-29

    Highlights: {yields} We examined the effect of glyceraldehyde 3-phosphate (GAPDH) depletion on proliferation of human carcinoma A549 cells. {yields} GAPDH depletion induces accelerated senescence in tumor cells via AMPK network, in the absence of DNA damage. {yields} Metabolic and genetic rescue experiments indicate that GAPDH has regulatory functions linking energy metabolism and cell cycle. {yields} Induction of senescence in LKB1-deficient lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation. -- Abstract: Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a pivotal glycolytic enzyme, and a signaling molecule which acts at the interface between stress factors and the cellular apoptotic machinery. Earlier, we found that knockdown of GAPDH in human carcinoma cell lines resulted in cell proliferation arrest and chemoresistance to S phase-specific cytotoxic agents. To elucidate the mechanism by which GAPDH depletion arrests cell proliferation, we examined the effect of GAPDH knockdown on human carcinoma cells A549. Our results show that GAPDH-depleted cells establish senescence phenotype, as revealed by proliferation arrest, changes in morphology, SA-{beta}-galactosidase staining, and more than 2-fold up-regulation of senescence-associated genes DEC1 and GLB1. Accelerated senescence following GAPDH depletion results from compromised glycolysis and energy crisis leading to the sustained AMPK activation via phosphorylation of {alpha} subunit at Thr172. Our findings demonstrate that GAPDH depletion switches human tumor cells to senescent phenotype via AMPK network, in the absence of DNA damage. Rescue experiments using metabolic and genetic models confirmed that GAPDH has important regulatory functions linking the energy metabolism and the cell cycle networks. Induction of senescence in LKB1-deficient non-small cell lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation.

  13. Isolation of stem-like cells from spontaneous feline mammary carcinomas: Phenotypic characterization and tumorigenic potential

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Federica; Wurth, Roberto [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy); Ratto, Alessandra; Campanella, Chiara; Vito, Guendalina [Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D' Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila, 16129, Genova (Italy); Thellung, Stefano [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy); Daga, Antonio [Laboratory of Translational Oncology, IRCCS Azienda Ospedaliera Universitaria San Martino - IST- Istituto Nazionale Ricerca sul Cancro, L.go R. Benzi, 10, 16132 Genova Italy (Italy); Cilli, Michele [Animal Facility, IRCCS Azienda Ospedaliera Universitaria San Martino - IST- Istituto Nazionale Ricerca sul Cancro, L.go R. Benzi, 10, 16132 Genova Italy (Italy); Ferrari, Angelo [Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D' Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila, 16129, Genova (Italy); Florio, Tullio, E-mail: tullio.florio@unige.it [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy)

    2012-04-15

    Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell-like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67, EGFR, ER-{alpha} and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. -- Highlights: Black-Right-Pointing-Pointer Feline mammary carcinoma contain a sub-population of stem-like cells expressing CD44 Black-Right-Pointing-Pointer These grow as spheres in serum-free medium and self-renew Black-Right-Pointing-Pointer Isolated stem-like cancer cells initiate tumor in immunodeficient mice Black-Right-Pointing-Pointer Xenografted tumors are phenotypically similar to the original tumor Black

  14. High antigen levels induce an exhausted phenotype in a chronic infection without impairing T cell expansion and survival.

    Science.gov (United States)

    Utzschneider, Daniel T; Alfei, Francesca; Roelli, Patrick; Barras, David; Chennupati, Vijaykumar; Darbre, Stephanie; Delorenzi, Mauro; Pinschewer, Daniel D; Zehn, Dietmar

    2016-08-22

    Chronic infections induce T cells showing impaired cytokine secretion and up-regulated expression of inhibitory receptors such as PD-1. What determines the acquisition of this chronic phenotype and how it impacts T cell function remain vaguely understood. Using newly generated recombinant antigen variant-expressing chronic lymphocytic choriomeningitis virus (LCMV) strains, we uncovered that T cell differentiation and acquisition of a chronic or exhausted phenotype depend critically on the frequency of T cell receptor (TCR) engagement and less significantly on the strength of TCR stimulation. In fact, we noted that low-level antigen exposure promotes the formation of T cells with an acute phenotype in chronic infections. Unexpectedly, we found that T cell populations with an acute or chronic phenotype are maintained equally well in chronic infections and undergo comparable primary and secondary expansion. Thus, our observations contrast with the view that T cells with a typical chronic infection phenotype are severely functionally impaired and rapidly transition into a terminal stage of differentiation. Instead, our data unravel that T cells primarily undergo a form of phenotypic and functional differentiation in the early phase of a chronic LCMV infection without inheriting a net survival or expansion deficit, and we demonstrate that the acquired chronic phenotype transitions into the memory T cell compartment.

  15. Formation of photovoltaic modules based on polycrystalline solar cells

    Directory of Open Access Journals (Sweden)

    L. A. Dobrzański

    2009-12-01

    Full Text Available Purpose: The main aim of the paper is formation of photovoltaic modules and analysis of their main electric parameters.Design/methodology/approach: Photovoltaic modules were produced from four polycrystalline silicon solar cells, that were cut and next joined in series. Soft soldering technique and copper-tin strip were used for joining cells.Findings: In order to provide useful power for any application, the individual solar cells must be connected together to give the appropriate current and voltage levels. Taking this fact into account the analysis of photovoltaic module construction was performed.Research limitations/implications: The main goal of the research is to show the practical application of solar cells. Two photovoltaic modules were assembled and their basic electric properties were analysed. It was shown that they may be successively applied as an alternative energy source.Practical implications: Photovoltaic modules are irreplaceable in areas which are far away from power network. Simply photovoltaic module can supply small device without any problem.Originality/value: The produced photovoltaic modules and photovoltaic systems confirm the utility of solar energy in every place where the sun radiation is available. Because of exhaust conventional energy sources like coal or earth gas, new renewable sources of energy (sunlight, wind are more and more often used. It brings huge ecological benefits.

  16. Adeno-associated virus-mediated brain delivery of 5-lipoxygenase modulates the AD-like phenotype of APP mice

    Directory of Open Access Journals (Sweden)

    Chu Jin

    2012-01-01

    Full Text Available Abstract Background The 5-lipoxygenase (5LO enzymatic pathway is widely distributed within the central nervous system. Previous works showed that this protein is up-regulated in Alzheimer's disease (AD, and that its genetic absence results in a reduction of Amyloid beta (Aβ levels in the Tg2576 mice. Here by employing an adeno-associated viral (AAV vector system to over-express 5LO in the same mouse model, we examined its contribution to their cognitive impairments and brain AD-like amyloid pathology. Results Our results showed that compared with controls, 5LO-targeted gene brain over-expression in Tg2576 mice results in significant memory deficits. On the other hand, brain tissues had a significant elevation in the levels of Aβ peptides and deposition, no change in the steady state levels of amyloid-β precursor protein (APP, BACE-1 or ADAM-10, but a significant increase in PS1, nicastrin, and Pen-2, three major components of the γ-secretase complex. Additional data indicate that the transcription factor CREB was elevated and so were the mRNA levels for PS1, nicastrin and Pen-2. Conclusions These data demonstrate that neuronal 5LO plays a functional role in the pathogenesis of AD-like amyloidotic phenotype by modulating the γ-secretase pathway. They support the hypothesis that this enzyme is a novel therapeutic target for the treatment and prevention of AD.

  17. Polymorphic changes of cell phenotype caused by elevated expression of an exogenous NEU proto-oncogene.

    Science.gov (United States)

    Tarakhovsky, A M; Resnikov, M; Zaichuk, T; Tugusheva, M V; Butenko, Z A; Prassolov, V S

    1990-03-01

    The NEU proto-oncogene encodes a 185,000 dalton transmembrane glycoprotein with extensive homology to epidermal growth factor receptor. In the current study the effect of exogenous NEU expression on phenotype and growth properties of cells established lines was examined. The replication defective retroviruses were used to express constitutively NEU cDNA in the Rat-1, NIH3T3 and Balb/c3T3 cells. In spite of the practically similar NEU mRNA and protein content in infected cells only in Balb/c3T3 cells, high NEU expression ultimately led to oncogenic transformation. The Rat-1 cells were practically insensitive to oncogenic action of NEU. Subpopulation divergency with respect to NEU-dependent transformation was also revealed in infected NIH3T3 cells. These results suggest the existence of unknown host-specific factor(s) determining the response of cells to NEU overexpression.

  18. Silencing KRAS overexpression in arsenic-transformed prostate epithelial and stem cells partially mitigates malignant phenotype.

    Science.gov (United States)

    Ngalame, Ntube N O; Tokar, Erik J; Person, Rachel J; Waalkes, Michael P

    2014-12-01

    Inorganic arsenic is a human carcinogen that likely targets the prostate. Chronic arsenic exposure malignantly transforms the RWPE-1 human prostate epithelial line to chronic arsenic exposed-prostate epithelial (CAsE-PE) cells, and a derivative normal prostate stem cell (SC) line, WPE-stem to arsenic-cancer SCs (As-CSCs). The KRAS oncogene is highly overexpressed in CAsE-PE cells and activation precedes transformation, inferring mechanistic significance. As-CSCs also highly overexpress KRAS. Thus, we hypothesize KRAS activation is key in causing and maintaining an arsenic-induced malignant phenotype, and hence, KRAS knockdown (KD) may reverse this malignant phenotype. RNA interference using shRNAmirs to obtain KRAS KD was used in CAsE-PE and As-CSC cells. Cells analyzed 2 weeks post transduction showed KRAS protein decreased to 5% of control after KD, confirming stable KD. KRAS KD decreased phosphorylated ERK, indicating inhibition of RAS/ERK signaling, a proliferation/survival pathway activated with arsenic transformation. Secreted metalloproteinase (MMP) activity was increased by arsenic-induced malignant transformation, but KRAS KD from 4 weeks on decreased secreted MMP-9 activity by 50% in As-CSCs. Colony formation, a characteristic of cancer cells, was decreased in both KRAS KD transformants. KRAS KD also decreased the invasive capacity of both cell types. KRAS KD decreased proliferation in As-CSCs, consistent with loss of rapid tumor growth. Genes predicted to impact cell proliferation (eg, Cyclin D1, p16, and p21) changed accordingly in both KD cell types. Thus, KRAS silencing impacts aspects of arsenic-induced malignant phenotype, inducing loss of many typical cancer characteristics particularly in As-CSCs.

  19. Cytomegalovirus infection induces a stem cell phenotype in human primary glioblastoma cells: prognostic significance and biological impact.

    Science.gov (United States)

    Fornara, O; Bartek, J; Rahbar, A; Odeberg, J; Khan, Z; Peredo, I; Hamerlik, P; Bartek, J; Stragliotto, G; Landázuri, N; Söderberg-Nauclér, C

    2016-02-01

    Glioblastoma (GBM) is associated with poor prognosis despite aggressive surgical resection, chemotherapy, and radiation therapy. Unfortunately, this standard therapy does not target glioma cancer stem cells (GCSCs), a subpopulation of GBM cells that can give rise to recurrent tumors. GBMs express human cytomegalovirus (HCMV) proteins, and previously we found that the level of expression of HCMV immediate-early (IE) protein in GBMs is a prognostic factor for poor patient survival. In this study, we investigated the relation between HCMV infection of GBM cells and the presence of GCSCs. Primary GBMs were characterized by their expression of HCMV-IE and GCSCs marker CD133 and by patient survival. The extent to which HCMV infection of primary GBM cells induced a GCSC phenotype was evaluated in vitro. In primary GBMs, a large fraction of CD133-positive cells expressed HCMV-IE, and higher co-expression of these two proteins predicted poor patient survival. Infection of GBM cells with HCMV led to upregulation of CD133 and other GSCS markers (Notch1, Sox2, Oct4, Nestin). HCMV infection also promoted the growth of GBM cells as neurospheres, a behavior typically displayed by GCSCs, and this phenotype was prevented by either chemical inhibition of the Notch1 pathway or by treatment with the anti-viral drug ganciclovir. GBM cells that maintained expression of HCMV-IE failed to differentiate into neuronal or astrocytic phenotypes. Our findings imply that HCMV infection induces phenotypic plasticity of GBM cells to promote GCSC features and may thereby increase the aggressiveness of this tumor. PMID:26138445

  20. Isolation of stem-like cells from spontaneous feline mammary carcinomas: Phenotypic characterization and tumorigenic potential

    International Nuclear Information System (INIS)

    Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell–like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67, EGFR, ER-α and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. -- Highlights: ► Feline mammary carcinoma contain a sub-population of stem-like cells expressing CD44 ► These grow as spheres in serum-free medium and self-renew ► Isolated stem-like cancer cells initiate tumor in immunodeficient mice ► Xenografted tumors are phenotypically similar to the original tumor ► Upon differentiation, cells grow as monolayers, loosing the tumorigenic potential

  1. Tissue transglutaminase treatment leads to concentration-dependent changes in dendritic cell phenotype - implications for the role of transglutaminase in coeliac disease

    Directory of Open Access Journals (Sweden)

    Dalleywater William J

    2012-04-01

    Full Text Available Abstract Dendritic cells (DCs are part of the innate immune system with a key role in initiating and modulating T cell mediated immune responses. Coeliac disease is caused by inappropriate activation of such a response leading to small intestinal inflammation when gluten is ingested. Tissue transglutaminase, an extracellular matrix (ECM protein, has an established role in coeliac disease; however, little work to date has examined its impact on DCs. The aim of this study was to investigate the effect of small intestinal ECM proteins, fibronectin (FN and tissue transglutaminase 2 (TG-2, on human DCs by including these proteins in DC cultures. The study used flow cytometry and scanning electron microscopy to determine the effect of FN and TG-2 on phenotype, endocytic ability and and morphology of DCs. Furthermore, DCs treated with FN and TG-2 were cultured with T cells and subsequent T cell proliferation and cytokine profile was determined. The data indicate that transglutaminase affected DCs in a concentration-dependent manner. High concentrations were associated with a more mature phenotype and increased ability to stimulate T cells, while lower concentrations led to maintenance of an immature phenotype. These data provide support for an additional role for transglutaminase in coeliac disease and demonstrate the potential of in vitro modelling of coeliac disease pathogenesis.

  2. Phenotypic and functional characterization of human mammary stem/progenitor cells in long term culture.

    Directory of Open Access Journals (Sweden)

    Devaveena Dey

    Full Text Available BACKGROUND: Cancer stem cells exhibit close resemblance to normal stem cells in phenotype as well as function. Hence, studying normal stem cell behavior is important in understanding cancer pathogenesis. It has recently been shown that human breast stem cells can be enriched in suspension cultures as mammospheres. However, little is known about the behavior of these cells in long-term cultures. Since extensive self-renewal potential is the hallmark of stem cells, we undertook a detailed phenotypic and functional characterization of human mammospheres over long-term passages. METHODOLOGY: Single cell suspensions derived from human breast 'organoids' were seeded in ultra low attachment plates in serum free media. Resulting primary mammospheres after a week (termed T1 mammospheres were subjected to passaging every 7th day leading to the generation of T2, T3, and T4 mammospheres. PRINCIPAL FINDINGS: We show that primary mammospheres contain a distinct side-population (SP that displays a CD24(low/CD44(low phenotype, but fails to generate mammospheres. Instead, the mammosphere-initiating potential rests within the CD44(high/CD24(low cells, in keeping with the phenotype of breast cancer-initiating cells. In serial sphere formation assays we find that even though primary (T1 mammospheres show telomerase activity and fourth passage T4 spheres contain label-retaining cells, they fail to initiate new mammospheres beyond T5. With increasing passages, mammospheres showed an increase in smaller sized spheres, reduction in proliferation potential and sphere forming efficiency, and increased differentiation towards the myoepithelial lineage. Significantly, staining for senescence-associated beta-galactosidase activity revealed a dramatic increase in the number of senescent cells with passage, which might in part explain the inability to continuously generate mammospheres in culture. CONCLUSIONS: Thus, the self-renewal potential of human breast stem cells is

  3. Do dental stem cells depict distinct characteristics? — Establishing their “phenotypic fingerprint”

    Science.gov (United States)

    Ponnaiyan, Deepa

    2014-01-01

    Dental tissues provide an alternate source of stem cells compared with bone marrow and have a similar potency as that of bone marrow derived mesenchymal stem cells. It has been established there are six types of dental stem cells: Dental pulp stem cells, stem cells from human exfoliated deciduous teeth, stem cells from apical papilla, periodontal ligament stem cells, dental follicle progenitor cells, oral periosteum stem cells and recently gingival connective tissue stem cells. Most of the dental tissues have a common developmental pathway; thus, it is relevant to understand whether stem cells derived from these closely related tissues are programmed differently. The present review analyzes whether stem cells form dental tissues depict distinct characteristics by gaining insight into differences in their immunophenotype. In addition, to explore the possibility of establishing a unique phenotypic fingerprint of these stem cells by identifying the unique markers that can be used to isolate these stem cells. This, in future will help in developing better techniques and markers for identification and utilization of these stem cells for regenerative therapy. PMID:24932185

  4. Melanoma Cells Can Adopt the Phenotype of Stromal Fibroblasts and Macrophages by Spontaneous Cell Fusion in Vitro

    Science.gov (United States)

    Kemény, Lajos V.; Kurgyis, Zsuzsanna; Buknicz, Tünde; Groma, Gergely; Jakab, Ádám; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B.

    2016-01-01

    After the removal of primary cutaneous melanoma some patients develop local recurrences, even after having histologically tumor-free re-excision. A potential explanation behind this phenomenon is that tumor cells switch their phenotype, making their recognition via standard histopathological assessments extremely difficult. Tumor-stromal cell fusion has been proposed as a potential mechanism for tumor cells to acquire mesenchymal traits; therefore, we hypothesized that melanoma cells could acquire fibroblast- and macrophage-like phenotypes via cell fusion. We show that melanoma cells spontaneously fuse with human dermal fibroblasts and human peripheral blood monocytes in vitro. The hybrid cells’ nuclei contain chromosomes from both parental cells and are indistinguishable from the parental fibroblasts or macrophages based on their morphology and immunophenotype, as they could lose the melanoma specific MART1 marker, but express the fibroblast marker smooth muscle actin or the macrophage marker CD68. Our results suggest that, by spontaneous cell fusion in vitro, tumor cells can adopt the morphology and immunophenotype of stromal cells while still carrying oncogenic, tumor-derived genetic information. Therefore, melanoma–stromal cell fusion might play a role in missing tumor cells by routine histopathological assessments. PMID:27271591

  5. Circuit analysis method for thin-film solar cell modules

    Science.gov (United States)

    Burger, D. R.

    1985-01-01

    The design of a thin-film solar cell module is dependent on the probability of occurrence of pinhole shunt defects. Using known or assumed defect density data, dichotomous population statistics can be used to calculate the number of defects expected in a module. Probability theory is then used to assign the defective cells to individual strings in a selected series-parallel circuit design. Iterative numerical calculation is used to calcuate I-V curves using cell test values or assumed defective cell values as inputs. Good and shunted cell I-V curves are added to determine the module output power and I-V curve. Different levels of shunt resistance can be selected to model different defect levels.

  6. Tubular cell phenotype in HIV-associated nephropathy: role of phospholipid lysophosphatidic acid.

    Science.gov (United States)

    Ayasolla, Kamesh R; Rai, Partab; Rahimipour, Shai; Hussain, Mohammad; Malhotra, Ashwani; Singhal, Pravin C

    2015-08-01

    Collapsing glomerulopathy and microcysts are characteristic histological features of HIV-associated nephropathy (HIVAN). We have previously reported the role of epithelial mesenchymal transition (EMT) in the development of glomerular and tubular cell phenotypes in HIVAN. Since persistent tubular cell activation of NFκB has been reported in HIVAN, we now hypothesize that HIV may be contributing to tubular cell phenotype via lysophosphatidic acid (LPA) mediated downstream signaling. Interestingly, LPA and its receptors have also been implicated in the tubular interstitial cell fibrosis (TIF) and cyst formation in autosomal dominant polycystic kidney disease (PKD). Primary human proximal tubular cells (HRPTCs) were transduced with either empty vector (EV/HRPTCs), HIV (HIV/HRPTCs) or treated with LPA (LPA/HRPTC). Immunoelectrophoresis of HIV/HRPTCs and LPA/HRPTCs displayed enhanced expression of pro-fibrotic markers: a) fibronectin (2.25 fold), b) connective tissue growth factor (CTGF; 4.8 fold), c) α-smooth muscle actin (α-SMA; 12 fold), and d) collagen I (5.7 fold). HIV enhanced tubular cell phosphorylation of ILK-1, FAK, PI3K, Akt, ERKs and P38 MAPK. HIV increased tubular cell transcriptional binding activity of NF-κB; whereas, a LPA biosynthesis inhibitor (AACOCF3), a DAG kinase inhibitor, a LPA receptor blocker (Ki16425), a NF-κB inhibitor (PDTC) and NFκB-siRNA not only displayed downregulation of a NFκB activity but also showed attenuated expression of profibrotic/EMT genes in HIV milieu. These findings suggest that LPA could be contributing to HIV-induced tubular cell phenotype via NFκB activation in HIVAN. PMID:26079546

  7. Probiotic modulation of dendritic cells co-cultured with intestinal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Ji Yeun Kim; Myeong Soo Park; Geun Eog Ji

    2012-01-01

    AIM:TO investigate cytokine production and cell surface phenotypes of dendritic cells (DC) in the presence of epithelial cells stimulated by probiotics.METHODS:Mouse DC were cultured alone or together with mouse epithelial cell monolayers in normal or inverted systems and were stimulated with heat-killed probiotic bacteria,Bifidobacteriumlactis AD011 (BL),Bifidobacterium bifidum BGN4 (BB),Lactobacillus casei IBS041 (LC),and Lactobacillus acidophilus AD031 (LA),for 12 h.Cytokine levels in the culture supernatants were determined by enzyme-linked immunosorbent assay and phenotypic analysis of DC was investigated by flow cytometry.RESULTS:BB and LC in single-cultured DC increased the expression of I-Ad,CD86 and CD40 (I-Ad,18.51 vs 30.88,46.11; CD86,62.74 vs 92.7,104.12; CD40,0.67vs 6.39,3.37,P < 0.05).All of the experimental probiotics increased the production of inflammatory cytokines,interleukin (IL)-6 and tumor necrosis factor (TNF)-α.However,in the normal co-culture systems,LC and LA decreased the expression of I-Ad (39.46 vs 30.32,33.26,P < 0.05),and none of the experimental probiotics increased the levels of IL-6 or TNF-α.In the inverted coculture systems,LC decreased the expression of CD40 (1.36 vs-2.27,P < 0.05),and all of the experimental probiotics decreased the levels of IL-6.In addition,BL increased the production of IL-10 (103.8 vs 166.0,P< 0.05) and LC and LA increased transforming growth factor-3 secretion (235.9 vs 618.9,607.6,P < 0.05).CONCLUSION:These results suggest that specific probiotic strains exert differential immune modulation mediated by the interaction of dendritic cells and epithelial cells in the homeostasis of gastrointestinal tract.

  8. Solar cell module and its manufacturing process. Taiyo denchi module oyobi sono seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Akihiko.

    1990-01-12

    The reason behind the high power costs of solar cells is expensiveness of solar cell element devices and its modules, and efforts to lower the costs of the former have so far been made, but the same efforts are necessary for the latter too. Concerning CdS/CdTe or CdS/CuInSe {sub 2} solar cells, when the oxygen concentration in the atmosphere available around the element device becomes less, deterioration of its performance occurs. Heretofore, concerning the above two kinds of solar cell modules, a stress was placed on prevention of infiltration of water into the element device and no concern has been paid to the effect of oxygen. Consequently, several issues have remained unsolved like alteration of crude material around the element of module with material which does not react with oxygen or absorb it. In view of the above, this invention proposes to make a solar cell module of the structure that thermosetting resin is set at the peripheral blank part of the substrate with no formation of solar cell element and a box with a flange is applied to that part in the heated and pressurized condition at the time of making protection of the back of the CdS/CdTe or CdS/CuInSe {sub 2} solar cell element device. 7 figs.

  9. Dickkopf-3, a tissue-derived modulator of local T cell responses

    Directory of Open Access Journals (Sweden)

    Michael eMeister

    2015-02-01

    Full Text Available The adaptive immune system protects organisms from harmful environmental insults. In parallel, regulatory mechanisms control immune responses in order to assure preservation of organ integrity. Yet, molecules involved in the control of T cell responses in peripheral tissues are poorly characterized. Here, we investigated the function of Dickkopf-3 in the modulation of local T cell reactivity. Dkk3 is a secreted, mainly tissue derived protein with highest expression in organs considered as immune privileged such as the eye, embryo, placenta and brain. While T cell development and activation status in naïve Dkk3 deficient mice was comparable to littermate controls, we found that Dkk3 contributes to the immunosuppressive microenvironment that protects transplanted, class-I mismatched embryoid bodies from T cell mediated rejection. Moreover, genetic deletion or antibody mediated neutralization of Dkk3 led to an exacerbated experimental autoimmune encephalomyelitis (EAE. This phenotype was accompanied by a change of T cell polarization displayed by an increase of IFNγ producing T cells within in the CNS. In the wild type situation, Dkk3 expression in the brain was up-regulated during the course of EAE in an IFNγ dependent manner. In turn, Dkk3 decreased IFNγ activity and served as part of a negative feedback mechanism. Thus, our findings suggest that Dkk3 functions as a tissue-derived modulator of local CD4+ and CD8+ T cell responses.

  10. Local electromechanical properties of different phenotype models of vascular smooth muscle cells using force microscopy

    Science.gov (United States)

    Thompson, Gary; Reukov, Vladimir; Nikiforov, Maxim; Guo, Senli; Ovchinnikov, Oleg; Jesse, Stephen; Kalinin, Sergei; Vertegel, Alexey

    2010-03-01

    Vascular smooth muscle cells (VSMCs) exist as a spectrum of diverse phenotypes raning between contractile and synthetic, the latter being associated with disease states. Different VSMC phenotypes, modeled using serum-starvation, exhibit characteristic electromechanical responses that can be distinguished using band excitation piezoresponse force microscopy (BEPFM), which maps information at the same rate as the atomic force microscope (AFM) scan performed simultaneously. BEPFM image formation mechanism in the culture medium is determined using excitation steps from 1 mV to 100 V. High voltage improves contrast between cells and collagen-coated substrates. Viscoelasticity from AFM stress relaxation experiments and local elasticity from force maps correlate to BEPFM data providing a map of local mechanical properties on different VSMCs.

  11. The Wnt gatekeeper SFRP4 modulates EMT, cell migration and downstream Wnt signalling in serous ovarian cancer cells.

    Directory of Open Access Journals (Sweden)

    Caroline E Ford

    Full Text Available Aberrant Wnt signalling is implicated in numerous human cancers, and understanding the effects of modulation of pathway members may lead to the development of novel therapeutics. Expression of secreted frizzled related protein 4 (SFRP4, an extracellular modulator of the Wnt signalling pathway, is progressively lost in more aggressive ovarian cancer phenotypes. Here we show that recombinant SFRP4 (rSFRP4 treatment of a serous ovarian cancer cell line results in inhibition of β-catenin dependent Wnt signalling as measured by TOP/FOP Wnt reporter assay and decreased transcription of Wnt target genes, Axin2, CyclinD1 and Myc. In addition, rSFRP4 treatment significantly increased the ability of ovarian cancer cells to adhere to collagen and fibronectin, and decreased their ability to migrate across an inflicted wound. We conclude that these changes in cell behaviour may be mediated via mesenchymal to epithelial transition (MET, as rSFRP4 treatment also resulted in increased expression of the epithelial marker E-cadherin, and reduced expression of Vimentin and Twist. Combined, these results indicate that modulation of a single upstream gatekeeper of Wnt signalling can have effects on downstream Wnt signalling and ovarian cancer cell behaviour, as mediated through epithelial to mesenchymal plasticity (EMP. This raises the possibility that SFRP4 may be used both diagnostically and therapeutically in epithelial ovarian cancer.

  12. Plumbagin Modulates Leukemia Cell Redox Status

    Directory of Open Access Journals (Sweden)

    François Gaascht

    2014-07-01

    Full Text Available Plumbagin is a plant naphtoquinone exerting anti-cancer properties including apoptotic cell death induction and generation of reactive oxygen species (ROS. The aim of this study was to elucidate parameters explaining the differential leukemia cell sensitivity towards this compound. Among several leukemia cell lines, U937 monocytic leukemia cells appeared more sensitive to plumbagin treatment in terms of cytotoxicity and level of apoptotic cell death compared to more resistant Raji Burkitt lymphoma cells. Moreover, U937 cells exhibited a ten-fold higher ROS production compared to Raji. Neither differential incorporation, nor efflux of plumbagin was detected. Pre-treatment with thiol-containing antioxidants prevented ROS production and subsequent induction of cell death by apoptosis whereas non-thiol-containing antioxidants remained ineffective in both cellular models. We conclude that the anticancer potential of plumbagin is driven by pro-oxidant activities related to the cellular thiolstat.

  13. Comparison of phenotype of gammadelta T cells generated using various cultivation methods.

    Science.gov (United States)

    Mehrle, Stefan; Watzl, Carsten; von Lilienfeld-Toal, Marie; Amoroso, Alfredo; Schmidt, Jan; Märten, Angela

    2009-06-30

    It has been demonstrated, that gammadelta T cells play an important role in the development of immune responses to many pathogens. gammadelta T cells play a role in the clearance of viral and microbiological infections, anti-tumor responses, but also in autoimmune diseases. Many different protocols for the isolation and cultivation of gammadelta T cells can be found in the literature. Here we compare three common cultivation protocols for gammadelta T cells derived from peripheral blood with a newly developed protocol depending on SLAM (Signaling Lymphocyte Activation Molecule) stimulation. We demonstrate that the cultivation protocol chosen to raise gammadelta T cells has direct impact on the resulting gammadelta T cell phenotype. We show differences in gammadelta TCR composition, memory phenotype formation, CD8 receptor expression and the expression of NK cell markers depending on the stimulation protocol used. As such, the cultivation protocol chosen for a series of experiments might have significant impact on the outcome of the experiments and should be considered carefully.

  14. Bacterial Probiotic Modulation of Dendritic Cells

    OpenAIRE

    Drakes, Maureen; Blanchard, Thomas; Czinn, Steven

    2004-01-01

    Intestinal dendritic cells are continually exposed to ingested microorganisms and high concentrations of endogenous bacterial flora. These cells can be activated by infectious agents and other stimuli to induce T-cell responses and to produce chemokines which recruit other cells to the local environment. Bacterial probiotics are of increasing use against intestinal disorders such as inflammatory bowel disease. They act as nonpathogenic stimuli within the gut to regain immunologic quiescence. ...

  15. Perk gene dosage regulates glucose homeostasis by modulating pancreatic β-cell functions.

    Directory of Open Access Journals (Sweden)

    Rong Wang

    Full Text Available Insulin synthesis and cell proliferation are under tight regulation in pancreatic β-cells to maintain glucose homeostasis. Dysfunction in either aspect leads to development of diabetes. PERK (EIF2AK3 loss of function mutations in humans and mice exhibit permanent neonatal diabetes that is characterized by insufficient β-cell mass and reduced proinsulin trafficking and insulin secretion. Unexpectedly, we found that Perk heterozygous mice displayed lower blood glucose levels.Longitudinal studies were conducted to assess serum glucose and insulin, intracellular insulin synthesis and storage, insulin secretion, and β-cell proliferation in Perk heterozygous mice. In addition, modulation of Perk dosage specifically in β-cells showed that the glucose homeostasis phenotype of Perk heterozygous mice is determined by reduced expression of PERK in the β-cells.We found that Perk heterozygous mice first exhibited enhanced insulin synthesis and secretion during neonatal and juvenile development followed by enhanced β-cell proliferation and a substantial increase in β-cell mass at the adult stage. These differences are not likely to entail the well-known function of PERK to regulate the ER stress response in cultured cells as several markers for ER stress were not differentially expressed in Perk heterozygous mice.In addition to the essential functions of PERK in β-cells as revealed by severely diabetic phenotype in humans and mice completely deficient for PERK, reducing Perk gene expression by half showed that intermediate levels of PERK have a profound impact on β-cell functions and glucose homeostasis. These results suggest that an optimal level of PERK expression is necessary to balance several parameters of β-cell function and growth in order to achieve normoglycemia.

  16. Vascular smooth muscle cell-derived adiponectin: a paracrine regulator of contractile phenotype

    OpenAIRE

    Ding, Min; Carrao, Ana Catarina; Wagner, Robert J.; Xie, Yi; Jin, Yu; Rzucidlo, Eva M.; Yu, Jun; Li, Wei; Tellides, George; Hwa, John; Aprahamian, Tamar R.; Martin, Kathleen A.

    2011-01-01

    Adiponectin is a cardioprotective adipokine derived predominantly from visceral fat. We recently demonstrated that exogenous adiponectin induces vascular smooth muscle cell (VSMC) differentiation via repression of mTORC1 and FoxO4. Here we report for the first time that VSMC express and secrete adiponectin, which acts in an autocrine and paracrine manner to regulate VSMC contractile phenotype. Adiponectin was found to be expressed in human coronary artery and mouse aortic VSMC. Importantly, s...

  17. Application of crystalline silicon solar cells in photovoltaic modules

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2010-08-01

    Full Text Available Purpose: The aim of the paper is to determinate basic electrical properties of solar cells, made of them photovoltaic module and analysis of its main electrical parameters.Design/methodology/approach: In this study, several methods were used: current – voltage characteristic to determinate basic electrical properties of 36 monocrystalline silicon solar cells, soft soldering technique to bond solar cells . Photovoltaic module was produced from 31 solar cells with the largest short-circuit current, which were joined in series.Findings: In order to obtain a device producing an electrical current with a higher current and voltage level, solar cells were connected in a photovoltaic module and then protected from damages derived from external factors. In series connection solar cell with the lowest current determines the current flowing in the PV module. Taking this fact into account the analysis of photovoltaic module construction was performed.Practical implications: Because of low operating cost and simplicity of photovoltaic installation, photovoltaic technology is perfectly suitable for supplying objects which are beyond powers network range as well as connected to it. In many cases, they are less costly option than a direct extension of the power network.Originality/value: Protecting the environment from degradation due to pollution, which has source in conventional power industry, as well as diminishing resources of fossil fuels, tend to increase development of renewable energy production such as photovoltaic technology.

  18. Uncovering cancer cell behavioral phenotype in 3-D in vitro metastatic landscapes

    Science.gov (United States)

    Liu, Liyu; Sun, Bo; Duclos, Guillaume; Kam, Yoonseok; Gatenby, Robert; Stone, Howard; Austin, Robert

    2012-02-01

    One well-known fact is that cancer cell genetics determines cell metastatic potentials. However, from a physics point of view, genetics as cell properties cannot directly act on metastasis. An agent is needed to unscramble the genetics first before generating dynamics for metastasis. Exactly this agent is cell behavioral phenotype, which is rarely studied due to the difficulties of real-time cell tracking in in vivo tissue. Here we have successfully constructed a micro in vitro environment with collagen based Extracellular Matrix (ECM) structures for cell 3-D metastasis. With stable nutrition (glucose) gradient inside, breast cancer cell MDA-MB-231 is able to invade inside the collagen from the nutrition poor site towards the nutrition rich site. Continuous confocal microscopy captures images of the cells every 12 hours and tracks their positions in 3-D space. The micro fluorescent beads pre-mixed inside the ECM demonstrate that invasive cells have altered the structures through mechanics. With the observation and the analysis of cell collective behaviors, we argue that game theory may exist between the pioneering cells and their followers in the metastatic cell group. The cell collaboration may explain the high efficiency of metastasis.

  19. Disease Modeling and Phenotypic Drug Screening for Diabetic Cardiomyopathy using Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Faye M. Drawnel

    2014-11-01

    Full Text Available Diabetic cardiomyopathy is a complication of type 2 diabetes, with known contributions of lifestyle and genetics. We develop environmentally and genetically driven in vitro models of the condition using human-induced-pluripotent-stem-cell-derived cardiomyocytes. First, we mimic diabetic clinical chemistry to induce a phenotypic surrogate of diabetic cardiomyopathy, observing structural and functional disarray. Next, we consider genetic effects by deriving cardiomyocytes from two diabetic patients with variable disease progression. The cardiomyopathic phenotype is recapitulated in the patient-specific cells basally, with a severity dependent on their original clinical status. These models are incorporated into successive levels of a screening platform, identifying drugs that preserve cardiomyocyte phenotype in vitro during diabetic stress. In this work, we present a patient-specific induced pluripotent stem cell (iPSC model of a complex metabolic condition, showing the power of this technique for discovery and testing of therapeutic strategies for a disease with ever-increasing clinical significance.

  20. In vitro analysis of the invasive phenotype of SUM 149, an inflammatory breast cancer cell line

    OpenAIRE

    Dharmawardhane Suranganie F; Wall Kristin M; Hoffmeyer Michaela R

    2005-01-01

    Abstract Background Inflammatory breast cancer (IBC) is the most lethal form of locally invasive breast cancer known. However, very little information is available on the cellular mechanisms responsible for manifestation of the IBC phenotype. To understand the unique phenotype of IBC, we compared the motile and adhesive interactions of an IBC cell line, SUM 149, to the non-IBC cell line SUM 102. Results Our results demonstrate that both IBC and non-IBC cell lines exhibit similar adhesive prop...

  1. Applications of ``PV Optics`` for solar cell and module design

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.L.; Madjdpour, J.; Chen, W. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    This paper describes some applications of a new optics software package, PV Optics, developed for the optical design of solar cells and modules. PV Optics is suitable for the analysis and design of both thick and thin solar cells. It also includes a feature for calculation of metallic losses related to contacts and back reflectors.

  2. DNMT3b overexpression contributes to a hypermethylator phenotype in human breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Rivenbark Ashley G

    2008-01-01

    Full Text Available Abstract Background DNA hypermethylation events and other epimutations occur in many neoplasms, producing gene expression changes that contribute to neoplastic transformation, tumorigenesis, and tumor behavior. Some human cancers exhibit a hypermethylator phenotype, characterized by concurrent DNA methylation-dependent silencing of multiple genes. To determine if a hypermethylation defect occurs in breast cancer, the expression profile and promoter methylation status of methylation-sensitive genes were evaluated among breast cancer cell lines. Results The relationship between gene expression (assessed by RT-PCR and quantitative real-time PCR, promoter methylation (assessed by methylation-specific PCR, bisulfite sequencing, and 5-aza-2'deoxycytidine treatment, and the DNA methyltransferase machinery (total DNMT activity and expression of DNMT1, DNMT3a, and DNMT3b proteins were examined in 12 breast cancer cell lines. Unsupervised cluster analysis of the expression of 64 methylation-sensitive genes revealed two groups of cell lines that possess distinct methylation signatures: (i hypermethylator cell lines, and (ii low-frequency methylator cell lines. The hypermethylator cell lines are characterized by high rates of concurrent methylation of six genes (CDH1, CEACAM6, CST6, ESR1, LCN2, SCNN1A, whereas the low-frequency methylator cell lines do not methylate these genes. Hypermethylator cell lines coordinately overexpress total DNMT activity and DNMT3b protein levels compared to normal breast epithelial cells. In contrast, most low-frequency methylator cell lines possess DNMT activity and protein levels that are indistinguishable from normal. Microarray data mining identified a strong cluster of primary breast tumors that express the hypermethylation signature defined by CDH1, CEACAM6, CST6, ESR1, LCN2, and SCNN1A. This subset of breast cancers represents 18/88 (20% tumors in the dataset analyzed, and 100% of these tumors were classified as basal

  3. Effects of blood transportation on human peripheral mononuclear cell yield, phenotype and function: implications for immune cell biobanking.

    Directory of Open Access Journals (Sweden)

    Anita Posevitz-Fejfár

    Full Text Available Human biospecimen collection, processing and preservation are rapidly emerging subjects providing essential support to clinical as well as basic researchers. Unlike collection of other biospecimens (e.g. DNA and serum, biobanking of viable immune cells, such as peripheral blood mononuclear cells (PBMC and/or isolated immune cell subsets is still in its infancy. While certain aspects of processing and freezing conditions have been studied in the past years, little is known about the effect of blood transportation on immune cell survival, phenotype and specific functions. However, especially for multicentric and cooperative projects it is vital to precisely know those effects. In this study we investigated the effect of blood shipping and pre-processing delay on immune cell phenotype and function both on cellular and subcellular levels. Peripheral blood was collected from healthy volunteers (n = 9: at a distal location (shipped overnight and in the central laboratory (processed immediately. PBMC were processed in the central laboratory and analyzed post-cryopreservation. We analyzed yield, major immune subset distribution, proliferative capacity of T cells, cytokine pattern and T-cell receptor signal transduction. Results show that overnight transportation of blood samples does not globally compromise T- cell subsets as they largely retain their phenotype and proliferative capacity. However, NK and B cell frequencies, the production of certain PBMC-derived cytokines and IL-6 mediated cytokine signaling pathway are altered due to transportation. Various control experiments have been carried out to compare issues related to shipping versus pre-processing delay on site. Our results suggest the implementation of appropriate controls when using multicenter logistics for blood transportation aiming at subsequent isolation of viable immune cells, e.g. in multicenter clinical trials or studies analyzing immune cells/subsets. One important conclusion might

  4. RhoC GTPase Overexpression Modulates Induction of Angiogenic Factors in Breast Cells

    Directory of Open Access Journals (Sweden)

    Kenneth L. van Golen

    2000-09-01

    Full Text Available Inflammatory breast cancer (IBC is a distinct and aggressive form of locally advanced breast cancer. IBC is highly angiogenic, invasive, and metastatic at its inception. Previously, we identified specific genetic alterations of IBC that contribute to this highly invasive phenotype. RhoC GTPase was overexpressed in 90% of archival IBC tumor samples, but not in stage-matched, non-IBC tumors. To study the role of RhoC GTPase in contributing to an IBC-like phenotype, we generated stable transfectants of human mammary epithelial cells overexpressing the RhoC gene, and studied the effect of RhoC GTPase overexpression on the modulation of angiogenesis in IBC. Levels of vascular endothelial growth factor (VEGF, basic fibroblast growth factor (bFGF, interleukin-6 (IL-6, and interleukin-8 (IL-8 were significantly higher in the conditioned media of the HME-RhoC transfectants than in the untransfected HME and HME-β-galactosidase control media, similar to the SUM149 IBC cell line. Inhibition of RhoC function by introduction of C3 exotransferase decreased production of angiogenic factors by the HME-RhoC transfectants and the SUM149 IBC cell line, but did not affect the control cells. These data support the conclusion that overexpression of RhoC GTPase is specifically and directly implicated in the control of the production of angiogenic factors by IBC cells.

  5. Transparent electrode requirements for thin film solar cell modules

    KAUST Repository

    Rowell, Michael W.

    2011-01-01

    The transparent conductor (TC) layer in thin film solar cell modules has a significant impact on the power conversion efficiency. Reflection, absorption, resistive losses and lost active area either from the scribed interconnect region in monolithically integrated modules or from the shadow losses of a metal grid in standard modules typically reduce the efficiency by 10-25%. Here, we perform calculations to show that a competitive TC must have a transparency of at least 90% at a sheet resistance of less than 10 Ω/sq (conductivity/absorptivity ≥ 1 Ω -1) for monolithically integrated modules. For standard modules, losses are much lower and the performance of alternative lower cost TC materials may already be sufficient to replace conducting oxides in this geometry. © 2011 The Royal Society of Chemistry.

  6. Modulation transfer spectroscopy in a lithium atomic vapor cell.

    Science.gov (United States)

    Sun, Dali; Zhou, Chao; Zhou, Lin; Wang, Jin; Zhan, Mingsheng

    2016-05-16

    We have investigated modulation transfer spectroscopy of D2 transitions of 7Li atoms in a vapor cell. The role of the intensity of the probe beam in the spectrum is important, we have seen unique characteristics of the signal in the crossover peak. In order to find the best signal for laser locking, the slope and frequency offset of the zero-crossing signal are determined. The dependence of the modulation transfer spectra on polarizations of pump and probe beam is demonstrated. The residual amplitude modulation in the system is also considered, and the distortion of the spectra due to the modulation is analyzed. It was found that the crossover peak is more suitable for frequency stabilization due to its better residual amplitude modulation compensation. PMID:27409886

  7. 3D hepatic cultures simultaneously maintain primary hepatocyte and liver sinusoidal endothelial cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Yeonhee Kim

    Full Text Available Developing in vitro engineered hepatic tissues that exhibit stable phenotype is a major challenge in the field of hepatic tissue engineering. However, the rapid dedifferentiation of hepatic parenchymal (hepatocytes and non-parenchymal (liver sinusoidal endothelial, LSEC cell types when removed from their natural environment in vivo remains a major obstacle. The primary goal of this study was to demonstrate that hepatic cells cultured in layered architectures could preserve or potentially enhance liver-specific behavior of both cell types. Primary rat hepatocytes and rat LSECs (rLSECs were cultured in a layered three-dimensional (3D configuration. The cell layers were separated by a chitosan-hyaluronic acid polyelectrolyte multilayer (PEM, which served to mimic the Space of Disse. Hepatocytes and rLSECs exhibited several key phenotypic characteristics over a twelve day culture period. Immunostaining for the sinusoidal endothelial 1 antibody (SE-1 demonstrated that rLSECs cultured in the 3D hepatic model maintained this unique feature over twelve days. In contrast, rLSECs cultured in monolayers lost their phenotype within three days. The unique stratified structure of the 3D culture resulted in enhanced heterotypic cell-cell interactions, which led to improvements in hepatocyte functions. Albumin production increased three to six fold in the rLSEC-PEM-Hepatocyte cultures. Only rLSEC-PEM-Hepatocyte cultures exhibited increasing CYP1A1/2 and CYP3A activity. Well-defined bile canaliculi were observed only in the rLSEC-PEM-Hepatocyte cultures. Together, these data suggest that rLSEC-PEM-Hepatocyte cultures are highly suitable models to monitor the transformation of toxins in the liver and their transport out of this organ. In summary, these results indicate that the layered rLSEC-PEM-hepatocyte model, which recapitulates key features of hepatic sinusoids, is a potentially powerful medium for obtaining comprehensive knowledge on liver metabolism

  8. Human mesenchymal stem cells cultured with salivary gland biopsies adopt an epithelial phenotype.

    Science.gov (United States)

    Maria, Ola M; Tran, Simon D

    2011-06-01

    Sjogren's syndrome and radiotherapy for head and neck cancer result in severe xerostomia and irreversible salivary gland damage for which no effective treatment is currently available. Cell culture methods of primary human salivary gland epithelial cells (huSGs) are slow and cannot provide a sufficient number of cells. In addition, the majority of cultured huSGs are of a ductal phenotype and thus not fluid/saliva secretory cells. Some reports indicated that mesenchymal stem cells (MSCs) possessed the potential to differentiate into epithelial cells. To test this hypothesis with huSGs, a coculture system containing 2 chambers separated by a polyester membrane was used to study the capacity of human MSCs to adopt an epithelial phenotype when cocultured with human salivary gland biopsies. Results were that 20%-40% of cocultured MSCs expressed tight junction proteins [claudin-1 (CLDN-1), -2, -3, and -4; occludin; junctional adhesion molecule-A; and zonula occludens-1] as well as other epithelial markers [aquaporin-5, α-amylase (α-AMY), and E-cadherin], and generated a higher transepithelial electrical resistance. Electron microscopy demonstrated that these MSCs had comparable cellular structures to huSGs, such as tight junction structures and numerous secretory granules. Quantitative real time (RT)-polymerase chain reaction revealed an upregulation of several salivary genes (aquaporin-5, AMY, and CLDN-2). Moreover, the amounts of α-AMY detected in cocultured MSCs were comparable to those detected in huSGs control cultures. These data suggest that cocultured MSCs can demonstrate a temporary change into a salivary gland acinar phenotype.

  9. Chronic inorganic arsenic exposure in vitro induces a cancer cell phenotype in human peripheral lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Person, Rachel J.; Olive Ngalame, Ntube N.; Makia, Ngome L.; Bell, Matthew W.; Waalkes, Michael P.; Tokar, Erik J., E-mail: tokare@niehs.nih.gov

    2015-07-01

    Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomous growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells provide a

  10. Chronic inorganic arsenic exposure in vitro induces a cancer cell phenotype in human peripheral lung epithelial cells

    International Nuclear Information System (INIS)

    Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomous growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells provide a

  11. Identifying A Molecular Phenotype for Bone Marrow Stromal Cells With In Vivo Bone Forming Capacity

    DEFF Research Database (Denmark)

    Larsen, Kenneth H; Frederiksen, Casper M; Burns, Jorge S;

    2009-01-01

    Abstract The ability of bone marrow stromal cells (BMSCs) to differentiate into osteoblasts is being exploited in cell-based therapy for repair of bone defects. However, the phenotype of ex vivo cultured BMSCs predicting their bone forming capacity is not known. Thus, we employed DNA microarrays...... comparing two human bone marrow stromal cell (hBMSC) populations: one is capable of in vivo heterotopic bone formation (hBMSC-TERT(+Bone)) and the other is not (hBMSC-TERT(-Bone)). Compared to hBMSC-TERT(-Bone), the hBMSC-TERT(+Bone) cells had an increased over-representation of extracellular matrix genes...... (17% versus 5%) and a larger percentage of genes with predicted SP3 transcription factor binding sites in their promoter region (21% versus 8%). On the other hand, hBMSC-TERT(-Bone) cells expressed a larger number of immune-response related genes (26% versus 8%). In order to test for the predictive...

  12. ISG15 predicts poor prognosis and promotes cancer stem cell phenotype in nasopharyngeal carcinoma

    Science.gov (United States)

    Han, Ping; Wang, Hong-Bo; Liang, Fa-Ya; Feng, Guo-Kai; Zhou, Ai-Jun; Cai, Mu-Yan; Zhong, Qian; Zeng, Mu-Sheng; Huang, Xiao-Ming

    2016-01-01

    Interferon-stimulated gene 15 (ISG15), the first identified ubiquitin-like protein, is known for its anti-viral capacity. However, its role in tumorigenesis remains controversial. Here, using RNA-seq profiling analysis, we identified ISG15 as a differentially expressed gene in nasopharyngeal carcinoma (NPC) and validated its overexpression in NPC samples and cells. High ISG15 levels in NPC tissues were correlated with more frequent local recurrence and shorter overall survival and disease-free survival. ISG15 overexpression promoted a cancer stem cell phenotype in NPC cells, including increased colony and tumorsphere formation abilities, pluripotency-associated genes expression, and in vivo tumorigenicity. By contrast, knockdown of ISG15 attenuated stemness characteristics in NPC cells. Furthermore, overexpression of ISG15 increased NPC cell resistance to radiation and cisplatin (DDP) treatment. Our study demonstrates a protumor role of ISG15, and suggests that ISG15 is a prognostic predictor and a potential therapeutic target for NPC. PMID:26919245

  13. Phenotypic and Functional Alterations of Dendritic Cells Induced by Human Herpesvirus 6 Infection

    OpenAIRE

    Kakimoto, Miki; Hasegawa, Atsuhiko; Fujita, Shigeru; Yasukawa, Masaki

    2002-01-01

    Human herpesvirus 6 (HHV-6) has a tropism for T lymphocytes and monocytes/macrophages, suggesting that HHV-6 infection affects the immunosurveillance system. In the present study, we investigated the HHV-6-induced phenotypic and functional alterations of dendritic cells (DCs), which are professional antigen-presenting cells. HHV-6 infection of monocyte-derived immature DCs appeared to induce the up-regulation of CD80, CD83, CD86, and HLA class I and class II molecules, suggesting that HHV-6 i...

  14. Phenotype-dependent apoptosis signalling in mesothelioma cells after selenite exposure

    Directory of Open Access Journals (Sweden)

    Rundlöf Anna-Klara

    2009-06-01

    Full Text Available Abstract Background Selenite is a promising anticancer agent which has been shown to induce apoptosis in malignant mesothelioma cells in a phenotype-dependent manner, where cells of the chemoresistant sarcomatoid phenotype are more sensitive. Methods In this paper, we investigate the apoptosis signalling mechanisms in sarcomatoid and epithelioid mesothelioma cells after selenite treatment. Apoptosis was measured with the Annexin-PI assay. The mitochondrial membrane potential, the expression of Bax, Bcl-XL, and the activation of caspase-3 were assayed with flow cytometry and a cytokeratin 18 cleavage assay. Signalling through JNK, p38, p53, and cathepsins B, D, and E was investigated with chemical inhibitors. Furthermore, the expression, nuclear translocation and DNA-binding activity of p53 was investigated using ICC, EMSA and the monitoring of p21 expression as a downstream event. Levels of thioredoxin (Trx were measured by ELISA. Results In both cell lines, 10 μM selenite caused apoptosis and a marked loss of mitochondrial membrane potential. Bax was up-regulated only in the sarcomatoid cell line, while the epithelioid cell line down-regulated Bcl-XL and showed greater caspase-3 activation. Nuclear translocation of p53 was seen in both cell lines, but very little p21 expression was induced. Chemical inhibition of p53 did not protect the cells from apoptosis. p53 lost its DNA binding ability after selenite treatment and was enriched in an inactive form. Levels of thioredoxin decreased after selenite treatment. Chemical inhibition of MAP kinases and cathepsins showed that p38 and cathepsin B had some mediatory effect while JNK had an anti-apoptotic role. Conclusion We delineate pathways of apoptosis signalling in response to selenite, showing differences between epithelioid and sarcomatoid mesothelioma cells. These differences may partly explain why sarcomatoid cells are more sensitive to selenite.

  15. Non-CLL-like monoclonal B-Cell lymphocytosis in the general population: Prevalence and phenotypic/genetic characteristics

    NARCIS (Netherlands)

    W.G. Nieto (Wendy); C. Teodosio (Cristina); A. López (Antonio); A. Rodríguez-Caballero (Arancha); A. Romero (Alfonso); P. Bárcena (Paloma); M.L. Gutierrez; A.W. Langerak (Ton); P. Fernandez-Navarro (Paulino); A. Orfao; J. Almeida (Julia); A.O.M.C.C.S. Santa Marta de Tormes; B.H.P.C.S. Garrido Sur; C.L.M.T.C.S. Ledesma; C.R.J.M.C.S. Alba de Tormes; C.L.R.C.S.F. Villalobos; D.V.P.J.C.S. Peñaranda; F.E.E.C.S. Pizarrales-Vidal; G.R.B.L.C.S. La Alberca; G.S.F.C.S. Periurbana Norte; G.M.J.C.S. Guijuelo; G.M.J.M.C.S. Vitigudino; J.R.M.J.C.S. Garrido Norte; J.C.T.B.C.S. Elena Ginel Diez; M.P.M.C.S. Fuentes de Oñoro; M.L.J.C.S. San Juan; M.D.M.P.C.S. Miguel Armijo; S.A.B.C.S. Aldeadavila de La Ribera; S.P.R.C.S. San Jose

    2010-01-01

    textabstractBackground: Monoclonal B-cell lymphocytosis (MBL) indicates <5 × 109peripheral blood (PB) clonal B-cells/L in healthy individuals. In most cases, MBL cells show similar phenotypic/genetic features to chronic lymphocytic leukemia cells - CLL-like MBL - but little is known about non-CLL-li

  16. Selective loss of B-cell phenotype in lymphocyte predominant Hodgkin lymphoma.

    Science.gov (United States)

    Tedoldi, S; Mottok, A; Ying, J; Paterson, J C; Cui, Y; Facchetti, F; van Krieken, J H J M; Ponzoni, M; Ozkal, S; Masir, N; Natkunam, Y; Pileri, Sa; Hansmann, M-L; Mason, Dy; Tao, Q; Marafioti, T

    2007-12-01

    The neoplastic Reed-Sternberg cells characteristic of classical Hodgkin's lymphoma (cHL) are of B-cell origin but they almost always show striking loss of a range of B-cell-associated molecules. In contrast, the neoplastic cells found in lymphocyte predominant Hodgkin's lymphoma (LPHL) (L&H cells) are traditionally thought of as possessing the full repertoire of features associated with germinal centre B cells (eg BCL-6 expression, 'ongoing' Ig gene mutation). In the present paper, we report an extensive phenotypic analysis of L&H cells which revealed down-regulation of a number of markers associated with the B-cell lineage (eg CD19, CD37) and with the germinal centre maturation stage (eg PAG, LCK). The promoter methylation status of three of these down-regulated genes (CD10, CD19, and LCK) was further studied in microdissected L&H cells, and this revealed that their promoters were unmethylated. In contrast, these genes showed promoter methylation in cell lines derived from CHL. Further investigation of the mechanisms responsible for the deregulation of these molecules in L&H cells may provide new insights into the genetic abnormalities underlying LPHL. PMID:17935142

  17. Phenotype and functions of natural killer cells in critically-ill septic patients.

    Directory of Open Access Journals (Sweden)

    Jean-Marie Forel

    Full Text Available RATIONALE: Natural killer cells, as a major source of interferon-γ, contribute to the amplification of the inflammatory response as well as to mortality during severe sepsis in animal models. OBJECTIVE: We studied the phenotype and functions of circulating NK cells in critically-ill septic patients. METHODS: Blood samples were taken <48 hours after admission from 42 ICU patients with severe sepsis (n = 15 or septic shock (n = 14 (Sepsis group, non-septic SIRS (n = 13 (SIRS group, as well as 21 healthy controls. The immuno-phenotype and functions of NK cells were studied by flow cytometry. RESULTS: The absolute number of peripheral blood CD3-CD56(+ NK cells was similarly reduced in all groups of ICU patients, but with a normal percentage of NK cells. When NK cell cytotoxicity was evaluated with degranulation assays (CD107 expression, no difference was observed between Sepsis patients and healthy controls. Under antibody-dependent cell cytotoxicity (ADCC conditions, SIRS patients exhibited increased CD107 surface expression on NK cells (62.9[61.3-70]% compared to healthy controls (43.5[32.1-53.1]% or Sepsis patients (49.2[37.3-62.9]% (p = 0.002. Compared to healthy (10.2[6.3-13.1]%, reduced interferon-γ production by NK cells (K562 stimulation was observed in Sepsis group (6.2[2.2-9.9]%, p<0.01, and especially in patients with septic shock. Conversely, SIRS patients exhibited increased interferon-γ production (42.9[30.1-54.7]% compared to Sepsis patients (18.4[11.7-35.7]%, p<0.01 or healthy controls (26.8[19.3-44.9]%, p = 0.09 in ADCC condition. CONCLUSIONS: Extensive monitoring of the NK-cell phenotype and function in critically-ill septic patients revealed early decreased NK-cell function with impaired interferon-γ production. These results may aid future NK-based immuno-interventions. TRIAL REGISTRATION: NTC00699868.

  18. Bone Marrow Transplantation Alters the Tremor Phenotype in the Murine Model of Globoid-Cell Leukodystrophy

    Directory of Open Access Journals (Sweden)

    Adarsh S. Reddy

    2012-01-01

    Full Text Available Tremor is a prominent phenotype of the twitcher mouse, an authentic genetic model of Globoid-Cell Leukodystrophy (GLD, Krabbe’s disease. In the current study, the tremor was quantified using a force-plate actometer designed to accommodate low-weight mice. The actometer records the force oscillations caused by a mouse’s movements, and the rhythmic structure of the force variations can be revealed. Results showed that twitcher mice had significantly increased power across a broad band of higher frequencies compared to wildtype mice. Bone marrow transplantation (BMT, the only available therapy for GLD, worsened the tremor in the twitcher mice and induced a measureable alteration of movement phenotype in the wildtype mice. These data highlight the damaging effects of conditioning radiation and BMT in the neonatal period. The behavioral methodology used herein provides a quantitative approach for assessing the efficacy of potential therapeutic interventions for Krabbe’s disease.

  19. Cross-talk between Dopachrome Tautomerase and Caveolin-1 Is Melanoma Cell Phenotype-specific and Potentially Involved in Tumor Progression.

    Science.gov (United States)

    Popa, Ioana L; Milac, Adina L; Sima, Livia E; Alexandru, Petruta R; Pastrama, Florin; Munteanu, Cristian V A; Negroiu, Gabriela

    2016-06-10

    l-Dopachrome tautomerase (l-DCT), also called tyrosinase-related protein-2 (TRP-2), is a melanoma antigen overexpressed in most chemo-/radiotherapeutic stress-resistant tumor clones, and caveolin-1 (CAV1) is a main regulator of numerous signaling processes. A structural and functional relationship between DCT and CAV1 is first presented here in two human amelanotic melanoma cell lines, derived from vertical growth phase (MelJuSo) and metastatic (SKMel28) melanomas. DCT co-localizes at the plasma membrane with CAV1 and Cavin-1, another molecular marker for caveolae in both cell phenotypes. Our novel structural model proposed for the DCT-CAV1 complex, in addition to co-immunoprecipitation and mass spectrometry data, indicates a possible direct interaction between DCT and CAV1. The CAV1 control on DCT gene expression, DCT post-translational processing, and subcellular distribution is cell phenotype-dependent. DCT is a modulator of CAV1 stability and supramolecular assembly in both cell phenotypes. During autocrine stimulation, the expressions of DCT and CAV1 are oppositely regulated; DCT increases while CAV1 decreases. Sub-confluent MelJuSo clones DCT(high)/CAV1(low) are proliferating and acquire fibroblast-like morphology, forming massive, confluent clusters as demonstrated by immunofluorescent staining and TissueFAXS quantitative image cytometry analysis. CAV1 down-regulation directly contributes to the expansion of MelJuSo DCT(high) subtype. CAV1 involved in the perpetuation of cell phenotype-overexpressing anti-stress DCT molecule supports the concept that CAV1 functions as a tumor suppressor in early stages of melanoma. DCT is a regulator of the CAV1-associated structures and is possibly a new molecular player in CAV1-mediated processes in melanoma.

  20. Microfluidic single-cell analysis links boundary environments and individual microbial phenotypes.

    Science.gov (United States)

    Dusny, Christian; Schmid, Andreas

    2015-06-01

    Life is based on the cell as the elementary replicative and self-sustaining biological unit. Each single cell constitutes an independent and highly dynamic system with a remarkable individuality in a multitude of physiological traits and responses to environmental fluctuations. However, with traditional population-based cultivation set-ups, it is not possible to decouple inherent stochastic processes and extracellular contributions to phenotypic individuality for two central reasons: the lack of environmental control and the occlusion of single-cell dynamics by the population average. With microfluidic single-cell analysis as a new cell assay format, these issues can now be addressed, enabling cultivation and time-resolved analysis of single cells in precisely manipulable extracellular environments beyond the bulk. In this article, we explore the interplay of cellular physiology and environment at a single-cell level. We review biological basics that govern the functional state of the cell and put them in context with physical fundamentals that shape the extracellular environment. Furthermore, the significance of single-cell growth rates as pivotal descriptors for global cellular physiology is discussed and highlighted by selected studies. These examples illustrate the unique opportunities of microfluidic single-cell cultivation in combination with growth rate analysis, addressing questions of fundamental bio(techno)logical interest.

  1. Arctigenin Inhibits Lung Metastasis of Colorectal Cancer by Regulating Cell Viability and Metastatic Phenotypes.

    Science.gov (United States)

    Han, Yo-Han; Kee, Ji-Ye; Kim, Dae-Seung; Mun, Jeong-Geon; Jeong, Mi-Young; Park, Sang-Hyun; Choi, Byung-Min; Park, Sung-Joo; Kim, Hyun-Jung; Um, Jae-Young; Hong, Seung-Heon

    2016-01-01

    Arctigenin (ARC) has been shown to have an anti-cancer effect in various cell types and tissues. However, there have been no studies concerning metastatic colorectal cancer (CRC). In this study, we investigated the anti-metastatic properties of ARC on colorectal metastasis and present a potential candidate drug. ARC induced cell cycle arrest and apoptosis in CT26 cells through the intrinsic apoptotic pathway via MAPKs signaling. In several metastatic phenotypes, ARC controlled epithelial-mesenchymal transition (EMT) through increasing the expression of epithelial marker E-cadherin and decreasing the expressions of mesenchymal markers; N-cadherin, vimentin, β-catenin, and Snail. Moreover, ARC inhibited migration and invasion through reducing of matrix metalloproteinase-2 (MMP-2) and MMP-9 expressions. In an experimental metastasis model, ARC significantly inhibited lung metastasis of CT26 cells. Taken together, our study demonstrates the inhibitory effects of ARC on colorectal metastasis. PMID:27618887

  2. Arctigenin Inhibits Lung Metastasis of Colorectal Cancer by Regulating Cell Viability and Metastatic Phenotypes.

    Science.gov (United States)

    Han, Yo-Han; Kee, Ji-Ye; Kim, Dae-Seung; Mun, Jeong-Geon; Jeong, Mi-Young; Park, Sang-Hyun; Choi, Byung-Min; Park, Sung-Joo; Kim, Hyun-Jung; Um, Jae-Young; Hong, Seung-Heon

    2016-08-27

    Arctigenin (ARC) has been shown to have an anti-cancer effect in various cell types and tissues. However, there have been no studies concerning metastatic colorectal cancer (CRC). In this study, we investigated the anti-metastatic properties of ARC on colorectal metastasis and present a potential candidate drug. ARC induced cell cycle arrest and apoptosis in CT26 cells through the intrinsic apoptotic pathway via MAPKs signaling. In several metastatic phenotypes, ARC controlled epithelial-mesenchymal transition (EMT) through increasing the expression of epithelial marker E-cadherin and decreasing the expressions of mesenchymal markers; N-cadherin, vimentin, β-catenin, and Snail. Moreover, ARC inhibited migration and invasion through reducing of matrix metalloproteinase-2 (MMP-2) and MMP-9 expressions. In an experimental metastasis model, ARC significantly inhibited lung metastasis of CT26 cells. Taken together, our study demonstrates the inhibitory effects of ARC on colorectal metastasis.

  3. Arctigenin Inhibits Lung Metastasis of Colorectal Cancer by Regulating Cell Viability and Metastatic Phenotypes

    Directory of Open Access Journals (Sweden)

    Yo-Han Han

    2016-08-01

    Full Text Available Arctigenin (ARC has been shown to have an anti-cancer effect in various cell types and tissues. However, there have been no studies concerning metastatic colorectal cancer (CRC. In this study, we investigated the anti-metastatic properties of ARC on colorectal metastasis and present a potential candidate drug. ARC induced cell cycle arrest and apoptosis in CT26 cells through the intrinsic apoptotic pathway via MAPKs signaling. In several metastatic phenotypes, ARC controlled epithelial-mesenchymal transition (EMT through increasing the expression of epithelial marker E-cadherin and decreasing the expressions of mesenchymal markers; N-cadherin, vimentin, β-catenin, and Snail. Moreover, ARC inhibited migration and invasion through reducing of matrix metalloproteinase-2 (MMP-2 and MMP-9 expressions. In an experimental metastasis model, ARC significantly inhibited lung metastasis of CT26 cells. Taken together, our study demonstrates the inhibitory effects of ARC on colorectal metastasis.

  4. Identification of distinct human invariant natural killer T-cell response phenotypes to alpha-galactosylceramide

    Directory of Open Access Journals (Sweden)

    Besra Gurdyal S

    2008-12-01

    Full Text Available Abstract Background Human CD1d-restricted, invariant natural killer T cells (iNKT are a unique class of T lymphocytes that recognise glycolipid antigens such as α-galactosylceramide (αGalCer and upon T cell receptor (TCR activation produce both Th1 and Th2 cytokines. iNKT cells expand when cultured in-vitro with αGalCer and interleukin 2 (IL-2 in a CD1d-restricted manner. However, the expansion ratio of human iNKT cells varies between individuals and this has implications for attempts to manipulate this pathway therapeutically. We have studied a panel of twenty five healthy human donors to assess the variability in their in-vitro iNKT cell expansion responses to stimulation with CD1d ligands and investigated some of the factors that may influence this phenomenon. Results Although all donors had comparable numbers of circulating iNKT cells their growth rates in-vitro over 14 days in response to a range of CD1d ligands and IL-2 were highly donor-dependent. Two reproducible donor response patterns of iNKT expansion were seen which we have called 'strong' or 'poor' iNKT responders. Donor response phenotype did not correlate with age, gender, frequency of circulating iNKT, or with the CD1d ligand utilised. Addition of exogenous recombinant human interleukin 4 (IL-4 to 'poor' responder donor cultures significantly increased their iNKT proliferative capacity, but not to levels equivalent to that of 'strong' responder donors. However in 'strong' responder donors, addition of IL-4 to their cultures did not significantly alter the frequency of iNKT cells in the expanded CD3+ population. Conclusion (i in-vitro expansion of human iNKT cells in response to CD1d ligand activation is highly donor variable, (ii two reproducible patterns of donor iNKT expansion were observed, which could be classified into 'strong' and 'poor' responder phenotypes, (iii donor iNKT response phenotypes did not correlate with age, gender, frequency of circulating iNKT cells, or

  5. In vivo phenotypic characterisation of nucleoside label-retaining cells in mouse periosteum

    Directory of Open Access Journals (Sweden)

    HM Cherry

    2014-03-01

    Full Text Available Periosteum is known to contain cells that, after isolation and culture-expansion, display properties of mesenchymal stromal/stem cells (MSCs. However, the equivalent cells have not been identified in situ mainly due to the lack of specific markers. Postnatally, stem cells are slow-cycling, long-term nucleoside-label-retaining cells. This study aimed to identify and characterise label-retaining cells in mouse periosteum in vivo. Mice received iodo-deoxy-uridine (IdU via the drinking water for 30 days, followed by a 40-day washout period. IdU+ cells were identified by immunostaining in conjunction with MSC and lineage markers. IdU-labelled cells were detected throughout the periosteum with no apparent focal concentration, and were negative for the endothelial marker von Willebrand factor and the pan-haematopoietic marker CD45. Subsets of IdU+ cells were positive for the mesenchymal/stromal markers vimentin and cadherin-11. IdU+ cells expressed stem cell antigen-1, CD44, CD73, CD105, platelet-derived growth factor receptor-α and p75, thereby displaying an MSC-like phonotype. Co-localisation was not detectable between IdU and the pericyte markers CD146, alpha smooth muscle actin or NG2, nor did IdU co-localise with β-galactosidase in a transgenic mouse expressing this reporter gene in pericytes and smooth muscle cells. Subsets of IdU+ cells expressed the osteoblast-lineage markers Runx2 and osteocalcin. The IdU+ cells expressing osteocalcin were lining the bone and were negative for the MSC marker p75. In conclusion, mouse periosteum contains nucleoside-label-retaining cells with a phenotype compatible with MSCs that are distinct from pericytes and osteoblasts. Future studies characterising the MSC niche in vivo could reveal novel therapeutic targets for promoting bone regeneration/repair.

  6. Phenotypic and gene expression changes between low (glucose-responsive) and High (glucose non-responsive) MIN-6 beta cells

    DEFF Research Database (Denmark)

    O´Driscoll, L.; Gammell, p.; McKierman, E.;

    2006-01-01

    The long-term potential to routinely use replacement beta cells/islets as cell therapy for type 1 diabetes relies on our ability to culture such cells/islets, in vitro, while maintaining their functional status. Previous beta cell studies, by ourselves and other researchers, have indicated......-potential), poorly differentiated, 'precursor-like' cell type. This observation is supported by increased expression of the stem cell marker, alkaline phosphatase...... that the glucose-stimulated insulin secretion (GSIS) phenotype is relatively unstable, in long-term culture. This study aimed to investigate phenotypic and gene expression changes associated with this loss of GSIS, using the MIN-6 cell line as model. Phenotypic differences between MIN-6(L, low passage) and MIN-6(H...

  7. Characterization of DNA repair phenotypes of Xeroderma pigmentosum cell lines by a paralleled in vitro test

    International Nuclear Information System (INIS)

    DNA is constantly damaged modifying the genetic information for which it encodes. Several cellular mechanisms as the Base Excision Repair (BER) and the Nucleotide Excision Repair (NER) allow recovering the right DNA sequence. The Xeroderma pigmentosum is a disease characterised by a deficiency in the NER pathway. The aim of this study was to propose an efficient and fast test for the diagnosis of this disease as an alternative to the currently available UDS test. DNA repair activities of XP cell lines were quantified using in vitro miniaturized and paralleled tests in order to establish DNA repair phenotypes of XPA and XPC deficient cells. The main advantage of the tests used in this study is the simultaneous measurement of excision or excision synthesis (ES) of several lesions by only one cellular extract. We showed on one hand that the relative ES of the different lesions depend strongly on the protein concentration of the nuclear extract tested. Working at high protein concentration allowed discriminating the XP phenotype versus the control one, whereas it was impossible under a certain concentration's threshold. On the other hand, while the UVB irradiation of control cells stimulated their repair activities, this effect was not observed in XP cells. This study brings new information on the XPA and XPC protein roles during BER and NER and underlines the complexity of the regulations of DNA repair processes. (author)

  8. Human breast microvascular endothelial cells retain phenotypic traits in long-term finite life span culture

    DEFF Research Database (Denmark)

    Sigurdsson, Valgardur; Fridriksdottir, Agla J R; Kjartansson, Jens;

    2007-01-01

    Attempts to study endothelial-epithelial interactions in the human breast have been hampered by lack of protocols for long-term cultivation of breast endothelial cells (BRENCs). The aim of this study was to establish long-term cultures of BRENCs and to compare their phenotypic traits with the tis......Attempts to study endothelial-epithelial interactions in the human breast have been hampered by lack of protocols for long-term cultivation of breast endothelial cells (BRENCs). The aim of this study was to establish long-term cultures of BRENCs and to compare their phenotypic traits...... with the tissue of origin. Microvasculature was localized in situ by immunohistochemistry in breast samples. From this tissue, collagen-rich stroma and adipose tissue were dissected mechanically and further disaggregated to release microvessel organoids. BRENCs were cultured from these organoids in endothelial......-galactosidase staining. We demonstrate here that breast microvasculature may serve as a large-scale source for expansion of BRENCs with molecular and functional traits preserved. These cells will form the basis for studies on the role of endothelial cells in breast morphogenesis....

  9. Divergent Label-free Cell Phenotypic Pharmacology of Ligands at the Overexpressed β2-Adrenergic Receptors

    Science.gov (United States)

    Ferrie, Ann M.; Sun, Haiyan; Zaytseva, Natalya; Fang, Ye

    2014-01-01

    We present subclone sensitive cell phenotypic pharmacology of ligands at the β2-adrenergic receptor (β2-AR) stably expressed in HEK-293 cells. The parental cell line was transfected with green fluorescent protein (GFP)-tagged β2-AR. Four stable subclones were established and used to profile a library of sixty-nine AR ligands. Dynamic mass redistribution (DMR) profiling resulted in a pharmacological activity map suggesting that HEK293 endogenously expresses functional Gi-coupled α2-AR and Gs-coupled β2-AR, and the label-free cell phenotypic activity of AR ligands are subclone dependent. Pathway deconvolution revealed that the DMR of epinephrine is originated mostly from the remodeling of actin microfilaments and adhesion complexes, to less extent from the microtubule networks and receptor trafficking, and certain agonists displayed different efficacy towards the cAMP-Epac pathway. We demonstrate that receptor signaling and ligand pharmacology is sensitive to the receptor expression level, and the organization of the receptor and its signaling circuitry.

  10. The Role of Bone Marrow Cells in the Phenotypic Changes Associated with Diabetic Nephropathy.

    Directory of Open Access Journals (Sweden)

    Guang Yang

    Full Text Available The aim of our study was to investigate the role of bone marrow cells in the phenotypic changes that occur in diabetic nephropathy. Bone marrow cells were obtained from either streptozotocin-induced diabetic or untreated control C3H/He mice and transplanted into control C3H/He mice. Eight weeks after bone marrow cell transplantation, renal morphologic changes and clinical parameters of diabetic nephropathy, including the urine albumin/creatinine ratio and glucose tolerance, were measured in vivo. Expression levels of the genes encoding α1 type IV collagen and transforming growth factor-β1 in the kidney were assayed. Our results demonstrated that glucose tolerance was normal in the recipients of bone marrow transplants from both diabetic and control donors. However, compared with recipients of the control bone marrow transplant, the urinary albumin/creatinine ratio, glomerular size, and the mesangial/glomerular area ratio increased 3.3-fold (p < 0.01, 1.23-fold (p < 0.01, and 2.13-fold (p < 0.001, respectively, in the recipients of the diabetic bone marrow transplant. Expression levels of the genes encoding glomerular α1 type IV collagen and transforming growth factor-β1 were also significantly increased (p < 0.01 in the recipients of the diabetic bone marrow transplant. Our data suggest that bone marrow cells from the STZ-induced diabetic mice can confer a diabetic phenotype to recipient control mice without the presence of hyperglycemia.

  11. ISOLATION AND INDUCTION OF RABBIT BONE MARROW MESENCHYMAL STEM CELLS TO EXPRESS CHONDROCYTIC PHENOTYPE

    Institute of Scientific and Technical Information of China (English)

    尹战海; 刘淼; 王金堂; 曹峻岭; 张璟; 郑钧

    2002-01-01

    Objective To isolate rabbit bone marrow mesenchymal stem cells (MSCs), and observe the inducing effect of growth factors on MSCs to express chondrocytic phenotype. Methods MSCs were seperated from bone marrow of New Zealand rabbit. TGF-β1, IGF-I, Vitamin C and dexamethasone were added into culture medium to induce proliferation and differention of MSCs. Procollagen α1(Ⅱ) mRNA in cells was detected by RT-PCR to observe the chondrogenous effect of inducing factors. ALP in culture medium was detected by automatic biochemical analyser, and lipid droplet in cells was stained by Sudan Ⅲ to clarify whether these factors given had osteogenic and adipogenic potential. Results Expression of articular cartilage specific procollagen α1 (Ⅱ)mRNA was promoted by inducing factors-TGF-β1, IGF-I, Vitamine C and dexamethasone; elevated level of ALP in culture medium and lipid droplet in cells were also detected. Whereas ALP level was decreased and lipid stain were negative in groups without dexamethasone. Conclusion ① Expression of chondrocytic phenotype by MSCs could be induced by the synergistic action of TGF-β1, IGF-I and Vitamine C. ② Dexmathasone had osteogenic and adipogenic potential, it should not be chosen to induce chondrogenic differention of MSCs.

  12. Fractionated irradiation-induced EMT-like phenotype conferred radioresistance in esophageal squamous cell carcinoma

    Science.gov (United States)

    Zhang, Hongfang; Luo, Honglei; Jiang, Zhenzhen; Yue, Jing; Hou, Qiang; Xie, Ruifei; Wu, Shixiu

    2016-01-01

    The efficacy of radiotherapy, one major treatment modality for esophageal squamous cell carcinoma (ESCC) is severely attenuated by radioresistance. Epithelial-to-mesenchymal transition (EMT) is a cellular process that determines therapy response and tumor progression. However, whether EMT is induced by ionizing radiation and involved in tumor radioresistance has been less studied in ESCC. Using multiple fractionated irradiation, the radioresistant esophageal squamous cancer cell line KYSE-150R had been established from its parental cell line KYSE-150. We found KYSE-150R displayed a significant EMT phenotype with an elongated spindle shape and down-regulated epithelial marker E-cadherin and up-regulated mesenchymal marker N-cadherin in comparison with KYSE-150. Furthermore, KYSE-150R also possessed some stemness-like properties characterized by density-dependent growth promotion and strong capability for sphere formation and tumorigenesis in NOD-SCID mice. Mechanical studies have revealed that WISP1, a secreted matricellular protein, is highly expressed in KYSE-150R and mediates EMT-associated radioresistance both in ESCC cells and in xenograft tumor models. Moreover, WISP1 has been demonstrated to be closely associated with the EMT phenotype observed in ESCC patients and to be an independent prognosis factor of ESCC patients treated with radiotherapy. Our study highlighted WISP1 as an attractive target to reverse EMT-associated radioresistance in ESCC and can be used as an independent prognostic factor of patients treated with radiotherapy. PMID:27125498

  13. Endothelial Cells Can Regulate Smooth Muscle Cells in Contractile Phenotype through the miR-206/ARF6&NCX1/Exosome Axis

    OpenAIRE

    Lin, Xiao; He, Yu; Hou, Xue; Zhang, Zhenming; Wang, Rui; Wu, Qiong

    2016-01-01

    Active interactions between endothelial cells and smooth muscle cells (SMCs) are critical to maintaining the SMC phenotype. Exosomes play an important role in intercellular communication. However, little is known about the mechanisms that regulate endothelial cells and SMCs crosstalk. We aimed to determine the mechanisms underlying the regulation of the SMC phenotype by human umbilical vein endothelial cells (HUVECs) through exosomes. We found that HUVECs overexpressing miR-206 upregulated co...

  14. CD161 Defines a Transcriptional and Functional Phenotype across Distinct Human T Cell Lineages

    Directory of Open Access Journals (Sweden)

    Joannah R. Fergusson

    2014-11-01

    Full Text Available The C-type lectin CD161 is expressed by a large proportion of human T lymphocytes of all lineages, including a population known as mucosal-associated invariant T (MAIT cells. To understand whether different T cell subsets expressing CD161 have similar properties, we examined these populations in parallel using mass cytometry and mRNA microarray approaches. The analysis identified a conserved CD161++/MAIT cell transcriptional signature enriched in CD161+CD8+ T cells, which can be extended to CD161+ CD4+ and CD161+TCRγδ+ T cells. Furthermore, this led to the identification of a shared innate-like, TCR-independent response to interleukin (IL-12 plus IL-18 by different CD161-expressing T cell populations. This response was independent of regulation by CD161, which acted as a costimulatory molecule in the context of T cell receptor stimulation. Expression of CD161 hence identifies a transcriptional and functional phenotype, shared across human T lymphocytes and independent of both T cell receptor (TCR expression and cell lineage.

  15. Niche-modulated and niche-modulating genes in bone marrow cells

    International Nuclear Information System (INIS)

    Bone marrow (BM) cells depend on their niche for growth and survival. However, the genes modulated by niche stimuli have not been discriminated yet. For this purpose, we investigated BM aspirations from patients with various hematological malignancies. Each aspirate was fractionated, and the various samples were fixed at different time points and analyzed by microarray. Identification of niche-modulated genes relied on sustained change in expression following loss of niche regulation. Compared with the reference (‘authentic') samples, which were fixed immediately following aspiration, the BM samples fixed after longer stay out-of-niche acquired numerous changes in gene-expression profile (GEP). The overall genes modulated included a common subset of functionally diverse genes displaying prompt and sustained ‘switch' in expression irrespective of the tumor type. Interestingly, the ‘switch' in GEP was reversible and turned ‘off-and-on' again in culture conditions, resuming cell–cell–matrix contact versus respread into suspension, respectively. Moreover, the resuming of contact prolonged the survival of tumor cells out-of-niche, and the regression of the ‘contactless switch' was followed by induction of a new set of genes, this time mainly encoding extracellular proteins including angiogenic factors and extracellular matrix proteins. Our data set, being unique in authentic expression design, uncovered niche-modulated and niche-modulating genes capable of controlling homing, expansion and angiogenesis

  16. Committed Tc17 cells are phenotypically and functionally resistant to the effects of IL-27.

    Science.gov (United States)

    El-Behi, Mohamed; Dai, Hong; Magalhaes, Joao G; Hwang, Daniel; Zhang, Guang-Xian; Rostami, Abdolmohamad; Ciric, Bogoljub

    2014-10-01

    IL-17-secreting CD8(+) T cells (Tc17 cells) have been implicated in immunity to infections, cancer, and autoimmune diseases. Thus far, studies on Tc17 cells have primarily investigated their development from naïve precursors, while the biology of committed Tc17 cells has been less characterized, in particular during the effector phase of immune responses. IL-27 is an important regulator of inflammation through the induction of regulatory Tr1 cells, as well as a suppressor of Th17-cell development. IL-27 suppresses the development of Tc17 cells, but its effects on committed Tc17 cells are unknown. Here we demonstrate that even though IL-27 completely inhibited the development of C57BL/6 mouse Tc17 cells, it had little effect on previously committed Tc17 cells. Although committed Tc17 cells were capable of responding to IL-27, it had no effect on expression of RORγt and RORα, or production of various cytokines. Committed Tc17 cells did not express granzyme B and lacked cytotoxicity in vitro, features that remained unaltered by IL-27 treatment. Nonetheless, they efficiently induced diabetes, irrespective of treatment with IL-27 prior to transfer into RIP-mOVA mice. These findings suggest that use of IL-27 to modulate autoimmune diseases might have limited therapeutic efficacy if autoaggressive Tc17 cells have already developed. PMID:25070084

  17. Surfactant protein A integrates activation signal strength to differentially modulate T cell proliferation.

    Science.gov (United States)

    Mukherjee, Sambuddho; Giamberardino, Charles; Thomas, Joseph; Evans, Kathy; Goto, Hisatsugu; Ledford, Julie G; Hsia, Bethany; Pastva, Amy M; Wright, Jo Rae

    2012-02-01

    Pulmonary surfactant lipoproteins lower the surface tension at the alveolar-airway interface of the lung and participate in host defense. Previous studies reported that surfactant protein A (SP-A) inhibits lymphocyte proliferation. We hypothesized that SP-A-mediated modulation of T cell activation depends upon the strength, duration, and type of lymphocyte activating signals. Modulation of T cell signal strength imparted by different activating agents ex vivo and in vivo in different mouse models and in vitro with human T cells shows a strong correlation between strength of signal (SoS) and functional effects of SP-A interactions. T cell proliferation is enhanced in the presence of SP-A at low SoS imparted by exogenous mitogens, specific Abs, APCs, or in homeostatic proliferation. Proliferation is inhibited at higher SoS imparted by different doses of the same T cell mitogens or indirect stimuli such as LPS. Importantly, reconstitution with exogenous SP-A into the lungs of SP-A(-/-) mice stimulated with a strong signal also resulted in suppression of T cell proliferation while elevating baseline proliferation in unstimulated T cells. These signal strength and SP-A-dependent effects are mediated by changes in intracellular Ca(2+) levels over time, involving extrinsic Ca(2+)-activated channels late during activation. These effects are intrinsic to the global T cell population and are manifested in vivo in naive as well as memory phenotype T cells. Thus, SP-A appears to integrate signal thresholds to control T cell proliferation. PMID:22219327

  18. Extracorporeal shock waves modulate myofibroblast differentiation of adipose-derived stem cells.

    Science.gov (United States)

    Rinella, Letizia; Marano, Francesca; Berta, Laura; Bosco, Ornella; Fraccalvieri, Marco; Fortunati, Nicoletta; Frairia, Roberto; Catalano, Maria Graziella

    2016-03-01

    Mesenchymal stem cells are precursors of myofibroblasts, cells deeply involved in promoting tissue repair and regeneration. However, since myofibroblast persistence is associated with the development of tissue fibrosis, the use of tools that can modulate stem cell differentiation toward myofibroblasts is central. Extracorporeal shock waves are transient short-term acoustic pulses first employed to treat urinary stones. They are a leading choice in the treatment of several orthopedic diseases and, notably, they have been reported as an effective treatment for patients with fibrotic sequels from burn scars. Based on these considerations, the aim of this study is to define the role of shock waves in modulating the differentiation of human adipose-derived stem cells toward myofibroblasts. Shock waves inhibit the development of a myofibroblast phenotype; they down-regulate the expression of the myofibroblast marker alpha smooth muscle actin and the extracellular matrix protein type I collagen. Functionally, stem cells acquire a more fibroblast-like profile characterized by a low contractility and a high migratory ability. Shock wave treatment reduces the expression of integrin alpha 11, a major collagen receptor in fibroblastic cells, involved in myofibroblast differentiation. Mechanistically, the resistance of integrin alpha 11-overexpressing cells to shock waves in terms of alpha smooth muscle actin expression and cell migration and contraction suggests also a role of this integrin in the translation of shock wave signal into stem cell responses. In conclusion, this in vitro study shows that stem cell differentiation toward myofibroblasts can be controlled by shock waves and, consequently, sustains their use as a therapeutic approach in reducing the risk of skin and tissue fibrosis. PMID:26808471

  19. Solar cell junction temperature measurement of PV module

    KAUST Repository

    Huang, B.J.

    2011-02-01

    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well as the cell junction in thermal equilibrium with the chamber. The open-circuit voltage of PV module Voc is then measured using a short pulse of solar irradiation provided by a solar simulator. Repeating the measurements at different environment temperature (40-80°C) and solar irradiation S (200-1000W/m2), the correlation between the open-circuit voltage Voc, the junction temperature Tj, and solar irradiation S is derived.The fundamental correlation of the PV module is utilized for on-site monitoring of solar cell junction temperature using the measured Voc and S at a short time instant with open circuit. The junction temperature Tj is then determined using the measured S and Voc through the fundamental correlation. The outdoor test results show that the junction temperature measured using the present method, Tjo, is more accurate. The maximum error using the average surface temperature Tave as the junction temperature is 4.8 °C underestimation; while the maximum error using the present method is 1.3 °C underestimation. © 2010 Elsevier Ltd.

  20. Staurosporine and extracellular matrix proteins mediate the conversion of small cell lung carcinoma cells into a neuron-like phenotype.

    Science.gov (United States)

    Murmann, Tamara; Carrillo-García, Carmen; Veit, Nadine; Courts, Cornelius; Glassmann, Alexander; Janzen, Viktor; Madea, Burkhard; Reinartz, Markus; Harzen, Anne; Nowak, Michael; Perner, Sven; Winter, Jochen; Probstmeier, Rainer

    2014-01-01

    Small cell lung carcinomas (SCLCs) represent highly aggressive tumors with an overall five-year survival rate in the range of 5 to 10%. Here, we show that four out of five SCLC cell lines reversibly develop a neuron-like phenotype on extracellular matrix constituents such as fibronectin, laminin or thrombospondin upon staurosporine treatment in an RGD/integrin-mediated manner. Neurite-like processes extend rapidly with an average speed of 10 µm per hour. Depending on the cell line, staurosporine treatment affects either cell cycle arrest in G2/M phase or induction of polyploidy. Neuron-like conversion, although not accompanied by alterations in the expression pattern of a panel of neuroendocrine genes, leads to changes in protein expression as determined by two-dimensional gel electrophoresis. It is likely that SCLC cells already harbour the complete molecular repertoire to convert into a neuron-like phenotype. More extensive studies are needed to evaluate whether the conversion potential of SCLC cells is suitable for therapeutic interventions.

  1. Staurosporine and extracellular matrix proteins mediate the conversion of small cell lung carcinoma cells into a neuron-like phenotype.

    Directory of Open Access Journals (Sweden)

    Tamara Murmann

    Full Text Available Small cell lung carcinomas (SCLCs represent highly aggressive tumors with an overall five-year survival rate in the range of 5 to 10%. Here, we show that four out of five SCLC cell lines reversibly develop a neuron-like phenotype on extracellular matrix constituents such as fibronectin, laminin or thrombospondin upon staurosporine treatment in an RGD/integrin-mediated manner. Neurite-like processes extend rapidly with an average speed of 10 µm per hour. Depending on the cell line, staurosporine treatment affects either cell cycle arrest in G2/M phase or induction of polyploidy. Neuron-like conversion, although not accompanied by alterations in the expression pattern of a panel of neuroendocrine genes, leads to changes in protein expression as determined by two-dimensional gel electrophoresis. It is likely that SCLC cells already harbour the complete molecular repertoire to convert into a neuron-like phenotype. More extensive studies are needed to evaluate whether the conversion potential of SCLC cells is suitable for therapeutic interventions.

  2. 天然杀伤T细胞对多树突状细胞的调节作用%Modulation of DC function by NKT cells

    Institute of Scientific and Technical Information of China (English)

    杨熙

    2011-01-01

    Both dendritic cells (DC) and natural killer T (NKT) cells are small cell populations related to immune regulation.The interaction between these two types of immune cells is a hot topic in current study on immunobiology.Recent data not only demonstrate that DC can influence the activation/function of NKT cells but also suggest that NKT cells can feedback on DC,thus modulating the phenotype and function of DC.This two-way interaction between NKT cells and DC may play an important role in the linkage of innate and adaptive immune responses.

  3. Directed Dedifferentiation Using Partial Reprogramming Induces Invasive Phenotype in Melanoma Cells.

    Science.gov (United States)

    Knappe, Nathalie; Novak, Daniel; Weina, Kasia; Bernhardt, Mathias; Reith, Maike; Larribere, Lionel; Hölzel, Michael; Tüting, Thomas; Gebhardt, Christoffer; Umansky, Viktor; Utikal, Jochen

    2016-04-01

    The combination of cancer-focused studies and research related to nuclear reprogramming has gained increasing importance since both processes-reprogramming towards pluripotency and malignant transformation-share essential features. Studies have revealed that incomplete reprogramming of somatic cells leads to malignant transformation indicating that epigenetic regulation associated with iPSC generation can drive cancer development [J Mol Cell Biol 2011;341-350; Cell 2012;151:1617-1632; Cell 2014;156:663-677]. However, so far it is unclear whether incomplete reprogramming also affects cancer cells and their function. In the context of melanoma, dedifferentiation correlates to therapy resistance in mouse studies and has been documented in melanoma patients [Nature 2012;490:412-416; Clin Cancer Res 2014;20:2498-2499]. Therefore, we sought to investigate directed dedifferentiation using incomplete reprogramming of melanoma cells. Using a murine model we investigated the effects of partial reprogramming on the cellular plasticity of melanoma cells. We demonstrate for the first time that induced partial reprogramming results in a reversible phenotype switch in melanoma cells. Partially reprogrammed cells at day 12 after transgene induction display elevated invasive potential in vitro and increased lung colonization in vivo. Additionally, using global gene expression analysis of partially reprogrammed cells, we identified SNAI3 as a novel invasion-related marker in human melanoma. SNAI3 expression correlates with tumor thickness in primary melanomas and thus, may be of prognostic value. In summary, we show that investigating intermediate states during the process of reprogramming melanoma cells can reveal novel insights into the pathogenesis of melanoma progression. We propose that deeper analysis of partially reprogrammed melanoma cells may contribute to identification of yet unknown signaling pathways that can drive melanoma progression. Stem Cells 2016;34:832-846. PMID

  4. Method for physiologic phenotype characterization at the single-cell level in non-interacting and interacting cells

    Science.gov (United States)

    Kelbauskas, Laimonas; Ashili, Shashanka P.; Houkal, Jeff; Smith, Dean; Mohammadreza, Aida; Lee, Kristen B.; Forrester, Jessica; Kumar, Ashok; Anis, Yasser H.; Paulson, Thomas G.; Youngbull, Cody A.; Tian, Yanqing; Holl, Mark R.; Johnson, Roger H.; Meldrum, Deirdre R.

    2012-03-01

    Intercellular heterogeneity is a key factor in a variety of core cellular processes including proliferation, stimulus response, carcinogenesis, and drug resistance. However, cell-to-cell variability studies at the single-cell level have been hampered by the lack of enabling experimental techniques. We present a measurement platform that features the capability to quantify oxygen consumption rates of individual, non-interacting and interacting cells under normoxic and hypoxic conditions. It is based on real-time concentration measurements of metabolites of interest by means of extracellular optical sensors in cell-isolating microwells of subnanoliter volume. We present the results of a series of measurements of oxygen consumption rates (OCRs) of individual non-interacting and interacting human epithelial cells. We measured the effects of cell-to-cell interactions by using the system's capability to isolate two and three cells in a single well. The major advantages of the approach are: 1. ratiometric, intensity-based characterization of the metabolic phenotype at the single-cell level, 2. minimal invasiveness due to the distant positioning of sensors, and 3. ability to study the effects of cell-cell interactions on cellular respiration rates.

  5. The phenotype of FancB-mutant mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Moon; Ko, Jun Ho; Choi, Yong Jun; Hu Lingchuan [Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245 (United States); Hasty, Paul, E-mail: hastye@uthscsa.edu [Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245 (United States)

    2011-07-01

    Fanconi anemia (FA) is a rare autosomal recessive disease characterized by bone marrow failure, developmental defects and cancer. There are multiple FA genes that enable the repair of interstrand crosslinks (ICLs) in coordination with a variety of other DNA repair pathways in a way that is poorly understood. Here we present the phenotype of mouse embryonic stem (ES) cells mutated for FancB. We found FancB-mutant cells exhibited reduced cellular proliferation, hypersensitivity to the crosslinking agent mitomycin C (MMC), increased spontaneous and MMC-induced chromosomal abnormalities, reduced spontaneous sister chromatid exchanges (SCEs), reduced gene targeting, reduced MMC-induced Rad51 foci and absent MMC-induced FancD2 foci. Since FancB is on the X chromosome and since ES cells are typically XY, FancB is an excellent target for an epistatic analysis to elucidate FA's role in ICL repair.

  6. Target cell-specific modulation of neuronal activity by astrocytes

    OpenAIRE

    Kozlov, A. S.; Angulo, M. C.; Audinat, E.; Charpak, S

    2006-01-01

    Interaction between astrocytes and neurons enriches the behavior of brain circuits. By releasing glutamate and ATP, astrocytes can directly excite neurons and modulate synaptic transmission. In the rat olfactory bulb, we demonstrate that the release of GABA by astrocytes causes long-lasting and synchronous inhibition of mitral and granule cells. In addition, astrocytes release glutamate, leading to a selective activation of granule-cell NMDA receptors. Thus, by releasing excitatory and inhibi...

  7. Quercetin Partially Preserves Development of Osteoblast Phenotype in Fetal Rat Calvaria Cells in an Oxidative Stress Environment.

    Science.gov (United States)

    Messer, Jonathan G; La, Stephanie; Hopkins, Robin G; Kipp, Deborah E

    2016-12-01

    Studies are needed to improve understanding of the osteoblast antioxidant response, and the balance between oxidative homeostasis and osteoblast differentiation. The flavonol quercetin aglycone (QRC) up-regulates the osteoblast antioxidant response in vitro without suppressing osteoblast phenotype, suggesting that QRC may preserve osteoblast phenotypic development in cells subsequently exposed to oxidative stress, which suppresses osteoblast differentiation. The aims of this study were to assess the extent that QRC pretreatment preserved development of the osteoblast phenotype in cells subsequently cultured with hydrogen peroxide, an oxidative stressor, and to characterize alterations in the osteoblast antioxidant response and in key antioxidant signaling pathways. We hypothesized that pretreatment with QRC would preserve phenotypic development after hydrogen peroxide treatment, suppress the hydrogen peroxide-induced antioxidant response, and that the antioxidant response would involve alterations in Nrf2 and ERK1/2 signaling. Results showed that treating fetal rat calvarial osteoblasts for 4 days (D5-9) with 300 μM hydrogen peroxide resulted in fewer alkaline phosphatase-positive cells and mineralized nodules, altered cell morphology, and significantly lower osteoblast phenotypic gene expression (P stress response coincided with alterations in phosphorylated ERK1/2, but not Nrf2. These results suggest that QRC suppresses hydrogen peroxide-induced activation of the antioxidant response, and partially preserves osteoblast phenotypic development. J. Cell. Physiol. 231: 2779-2788, 2016. © 2016 Wiley Periodicals, Inc. PMID:27028516

  8. Kinetics and phenotype of vaccine-induced CD8+ T-cell responses to Toxoplasma gondii.

    Science.gov (United States)

    Jordan, Kimberly A; Wilson, Emma H; Tait, Elia D; Fox, Barbara A; Roos, David S; Bzik, David J; Dzierszinski, Florence; Hunter, Christopher A

    2009-09-01

    Multiple studies have established that the ability of CD8(+) T cells to act as cytolytic effectors and produce gamma interferon is important in mediating resistance to the intracellular parasite Toxoplasma gondii. To better understand the generation of the antigen-specific CD8(+) T-cell responses induced by T. gondii, mice were immunized with replication-deficient parasites that express the model antigen ovalbumin (OVA). Class I tetramers specific for SIINFEKL were used to track the OVA-specific endogenous CD8(+) T cells. The peak CD8(+) T-cell response was found at day 10 postimmunization, after which the frequency and numbers of antigen-specific cells declined. Unexpectedly, replication-deficient parasites were found to induce antigen-specific cells with faster kinetics than replicating parasites. The generation of optimal numbers of antigen-specific CD8(+) effector T cells was found to require CD4(+) T-cell help. At 7 days following immunization, antigen-specific cells were found to be CD62L(low), KLRG1(+), and CD127(low), and they maintained this phenotype for more than 70 days. Antigen-specific CD8(+) effector T cells in immunized mice exhibited potent perforin-dependent OVA-specific cytolytic activity in vivo. Perforin-dependent cytolysis appeared to be the major cytolytic mechanism; however, a perforin-independent pathway that was not mediated via Fas-FasL was also detected. This study provides further insight into vaccine-induced cytotoxic T-lymphocyte responses that correlate with protective immunity to T. gondii and identifies a critical role for CD4(+) T cells in the generation of protective CD8(+) T-cell responses. PMID:19528214

  9. Kinetics and Phenotype of Vaccine-Induced CD8+ T-Cell Responses to Toxoplasma gondii▿

    Science.gov (United States)

    Jordan, Kimberly A.; Wilson, Emma H.; Tait, Elia D.; Fox, Barbara A.; Roos, David S.; Bzik, David J.; Dzierszinski, Florence; Hunter, Christopher A.

    2009-01-01

    Multiple studies have established that the ability of CD8+ T cells to act as cytolytic effectors and produce gamma interferon is important in mediating resistance to the intracellular parasite Toxoplasma gondii. To better understand the generation of the antigen-specific CD8+ T-cell responses induced by T. gondii, mice were immunized with replication-deficient parasites that express the model antigen ovalbumin (OVA). Class I tetramers specific for SIINFEKL were used to track the OVA-specific endogenous CD8+ T cells. The peak CD8+ T-cell response was found at day 10 postimmunization, after which the frequency and numbers of antigen-specific cells declined. Unexpectedly, replication-deficient parasites were found to induce antigen-specific cells with faster kinetics than replicating parasites. The generation of optimal numbers of antigen-specific CD8+ effector T cells was found to require CD4+ T-cell help. At 7 days following immunization, antigen-specific cells were found to be CD62Llow, KLRG1+, and CD127low, and they maintained this phenotype for more than 70 days. Antigen-specific CD8+ effector T cells in immunized mice exhibited potent perforin-dependent OVA-specific cytolytic activity in vivo. Perforin-dependent cytolysis appeared to be the major cytolytic mechanism; however, a perforin-independent pathway that was not mediated via Fas-FasL was also detected. This study provides further insight into vaccine-induced cytotoxic T-lymphocyte responses that correlate with protective immunity to T. gondii and identifies a critical role for CD4+ T cells in the generation of protective CD8+ T-cell responses. PMID:19528214

  10. A matter of identity — Phenotype and differentiation potential of human somatic stem cells

    Directory of Open Access Journals (Sweden)

    S.E.P. New

    2015-07-01

    Full Text Available Human somatic stem cells with neural differentiation potential can be valuable for developing cell-based therapies, including treatment of birth-related defects, while avoiding issues associated with cell reprogramming. Precisely defining the “identity” and differentiation potential of somatic stem cells from different sources, has proven difficult, given differences in sets of specific markers, protocols used and lack of side-by-side characterization of these cells in different studies. Therefore, we set to compare expression of mesenchymal and neural markers in human umbilical cord-derived mesenchymal stem cells (UC-MSCs, pediatric adipose-derived stem cells (p-ADSCs in parallel with human neural stem cells (NSCs. We show that UC-MSCs at a basal level express mesenchymal and so-called “neural” markers, similar to that we previously reported for the p-ADSCs. All somatic stem cell populations studied, independently from tissue and patient of origin, displayed a remarkably similar expression of surface markers, with the main difference being the restricted expression of CD133 and CD34 to NSCs. Expression of certain surface and neural markers was affected by the expansion medium used. As predicted, UC-MSCs and p-ADSCs demonstrated tri-mesenchymal lineage differentiation potential, though p-ADSCs display superior chondrogenic differentiation capability. UC-MSCs and p-ADSCs responded also to neurogenic induction by up-regulating neuronal markers, but crucially they appeared morphologically immature when compared with differentiated NSCs. This highlights the need for further investigation into the use of these cells for neural therapies. Crucially, this study demonstrates the lack of simple means to distinguish between different cell types and the effect of culture conditions on their phenotype, and indicates that a more extensive set of markers should be used for somatic stem cell characterization, especially when developing therapeutic

  11. Tumor-derived death receptor 6 modulates dendritic cell development.

    Science.gov (United States)

    DeRosa, David C; Ryan, Paul J; Okragly, Angela; Witcher, Derrick R; Benschop, Robert J

    2008-06-01

    Studies in murine models of cancer as well as in cancer patients have demonstrated that the immune response to cancer is often compromised. This paradigm is viewed as one of the major mechanisms of tumor escape. Many therapies focus on employing the professional antigen presenting dendritic cells (DC) as a strategy to overcome immune inhibition in cancer patients. Death receptor 6 (DR6) is an orphan member of the tumor necrosis factor receptor superfamily (TNFRSF21). It is overexpressed on many tumor cells and DR6(-/-) mice display altered immunity. We investigated whether DR6 plays a role in tumorigenesis by negatively affecting the generation of anti-tumor activity. We show that DR6 is uniquely cleaved from the cell surface of tumor cell lines by the membrane-associated matrix metalloproteinase (MMP)-14, which is often overexpressed on tumor cells and is associated with malignancy. We also demonstrate that >50% of monocytes differentiating into DC die when the extracellular domain of DR6 is present. In addition, DR6 affects the cell surface phenotype of the resulting immature DC and changes their cytokine production upon stimulation with LPS/IFN-gamma. The effects of DR6 are mostly amended when these immature DC are matured with IL-1beta/TNF-alpha, as measured by cell surface phenotype and their ability to present antigen. These results implicate MMP-14 and DR6 as a mechanism tumor cells can employ to actively escape detection by the immune system by affecting the generation of antigen presenting cells.

  12. Induction of predominant tenogenic phenotype in human dermal fibroblasts via synergistic effect of TGF-β and elongated cell shape.

    Science.gov (United States)

    Wang, Wenbo; Li, Jie; Wang, Keyun; Zhang, Zhiyong; Zhang, Wenjie; Zhou, Guangdong; Cao, Yilin; Ye, Mingliang; Zou, Hanfa; Liu, Wei

    2016-03-01

    Micropattern topography is widely investigated for its role in mediating stem cell differentiation, but remains unexplored for phenotype switch between mature cell types. This study investigated the potential of inducing tenogenic phenotype in human dermal fibroblasts (hDFs) by artificial elongation of cultured cells. Our results showed that a parallel microgrooved topography could convert spread hDFs into an elongated shape and induce a predominant tenogenic phenotype as the expression of biomarkers was significantly enhanced, such as scleraxis, tenomodulin, collagens I, III, VI, and decorin. It also enhanced the expression of transforming growth factor (TGF)-β1, but not α-smooth muscle actin. Elongated hDFs failed to induce other phenotypes, such as adiopogenic, chondrogenic, neurogenic, and myogenic lineages. By contrast, no tenogenic phenotype could be induced in elongated human chondrocytes, although chondrogenic phenotype was inhibited. Exogenous TGF-β1 could enhance the tenogenic phenotype in elongated hDFs at low dose (2 ng/ml), but promoted myofibroblast transdifferentiation of hDFs at high dose (10 ng/ml), regardless of cell shape. Elongated shape also resulted in decreased RhoA activity and increased Rho-associated protein kinase (ROCK) activity. Antagonizing TGF-β or inhibiting ROCK activity with Y27632 or depolymerizing actin with cytochalasin D could all significantly inhibit tenogenic phenotype induction, particularly in elongated hDFs. In conclusion, elongation of cultured dermal fibroblasts can induce a predominant tenogenic phenotype likely via synergistic effect of TGF-β and cytoskeletal signaling. PMID:26632599

  13. Staphylococcal Enterotoxin O Exhibits Cell Cycle Modulating Activity

    Science.gov (United States)

    Hodille, Elisabeth; Alekseeva, Ludmila; Berkova, Nadia; Serrier, Asma; Badiou, Cedric; Gilquin, Benoit; Brun, Virginie; Vandenesch, François; Terman, David S.; Lina, Gerard

    2016-01-01

    Maintenance of an intact epithelial barrier constitutes a pivotal defense mechanism against infections. Staphylococcus aureus is a versatile pathogen that produces multiple factors including exotoxins that promote tissue alterations. The aim of the present study is to investigate the cytopathic effect of staphylococcal exotoxins SEA, SEG, SEI, SElM, SElN and SElO on the cell cycle of various human cell lines. Among all tested exotoxins only SEIO inhibited the proliferation of a broad panel of human tumor cell lines in vitro. Evaluation of a LDH release and a DNA fragmentation of host cells exposed to SEIO revealed that the toxin does not induce necrosis or apoptosis. Analysis of the DNA content of tumor cells synchronized by serum starvation after exposure to SEIO showed G0/G1 cell cycle delay. The cell cycle modulating feature of SEIO was confirmed by the flow cytometry analysis of synchronized cells exposed to supernatants of isogenic S. aureus strains wherein only supernatant of the SElO producing strain induced G0/G1 phase delay. The results of yeast-two-hybrid analysis indicated that SEIO’s potential partner is cullin-3, involved in the transition from G1 to S phase. In conclusion, we provide evidence that SEIO inhibits cell proliferation without inducing cell death, by delaying host cell entry into the G0/G1 phase of the cell cycle. We speculate that this unique cell cycle modulating feature allows SEIO producing bacteria to gain advantage by arresting the cell cycle of target cells as part of a broader invasive strategy. PMID:27148168

  14. Cosmetics as a Feature of the Extended Human Phenotype: Modulation of the Perception of Biologically Important Facial Signals

    OpenAIRE

    Nancy L Etcoff; Shannon Stock; Haley, Lauren E.; Vickery, Sarah A.; House, David M.

    2011-01-01

    Research on the perception of faces has focused on the size, shape, and configuration of inherited features or the biological phenotype, and largely ignored the effects of adornment, or the extended phenotype. Research on the evolution of signaling has shown that animals frequently alter visual features, including color cues, to attract, intimidate or protect themselves from conspecifics. Humans engage in conscious manipulation of visual signals using cultural tools in real time rather than g...

  15. Nonsense mutations in the rhodopsin gene that give rise to mild phenotypes trigger mRNA degradation in human cells by nonsense-mediated decay.

    Science.gov (United States)

    Roman-Sanchez, Ramon; Wensel, Theodore G; Wilson, John H

    2016-04-01

    Eight different nonsense mutations in the human rhodopsin gene cause retinitis pigmentosa (RP), an inherited degenerative disease of the retina that can lead to complete blindness. Although all these nonsense mutations lead to premature termination codons (PTCs) in rhodopsin mRNA, some display dominant inheritance, while others are recessive. Because nonsense-mediated decay (NMD) can degrade mRNAs containing PTCs and modulate the inheritance patterns of genetic diseases, we asked whether any of the nonsense mutations in the rhodopsin gene generated mRNAs that were susceptible to degradation by NMD. We hypothesized that nonsense mutations that caused mild RP phenotypes would trigger NMD, whereas those that did not engage NMD would cause more severe RP phenotypes-presumably due to the toxicity of the truncated protein. To test our hypothesis, we transfected human rhodopsin nonsense mutants into HEK293 and HT1080 human cells and measured transcript levels by qRT-PCR. In both cell lines, rhodopsin mutations Q64X and Q344X, which cause severe phenotypes that are dominantly inherited, yielded the same levels of rhodopsin mRNA as wild type. By contrast, rhodopsin mutations W161X and E249X, which cause recessive RP, showed decreased rhodopsin mRNA levels, consistent with NMD. Rhodopsin mutant Y136X, a dominant mutation that causes late-onset RP with a very mild pathology, also gave lower mRNA levels. Treatment of cells with Wortmannin, an inhibitor of NMD, eliminated the degradation of Y136X, W161X, and E249X rhodopsin mRNAs. These results suggest that NMD modulates the severity of RP in patients with nonsense mutations in the rhodopsin gene. PMID:26416182

  16. Adaptive Immunity in Ankylosing Spondylitis: Phenotype and Functional Alterations of T-Cells before and during Infliximab Therapy

    Directory of Open Access Journals (Sweden)

    Balázs Szalay

    2012-01-01

    Flow cytometry was used to determine T-cell subsets in peripheral blood and their intracellular signaling during activation. The prevalence of Th2 and Th17 cells responsible for the regulation of adaptive immunity was higher in AS than in 9 healthy controls. Although IFX therapy improved patients' condition, immune phenotype did not normalize. Cytoplasmic and mitochondrial calcium responses of CD4+ and CD8+ cells to a specific activation were delayed, while NO generation was increased in AS. NO generation normalized sooner upon IFX than calcium response. These results suggest an abnormal immune phenotype with functional disturbances of CD4+ and CD8+ cells in AS.

  17. Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype

    DEFF Research Database (Denmark)

    Martinat, Cecile; Bacci, Jean-Jacques; Leete, Thomas;

    2006-01-01

    Midbrain dopamine (DA) neurons play a central role in the regulation of voluntary movement, and their degeneration is associated with Parkinson's disease. Cell replacement therapies, and in particular embryonic stem (ES) cell-derived DA neurons, offer a potential therapeutic venue for Parkinson...... to the midbrain DA neuron phenotype in murine and human ES cell cultures.......'s disease. We sought to identify genes that can potentiate maturation of ES cell cultures to the midbrain DA neuron phenotype. A number of transcription factors have been implicated in the development of midbrain DA neurons by expression analyses and loss-of-function knockout mouse studies, including Nurr1...

  18. Alteration of lymphocyte phenotype and function in sickle cell anemia: Implications for vaccine responses.

    Science.gov (United States)

    Balandya, Emmanuel; Reynolds, Teri; Obaro, Stephen; Makani, Julie

    2016-09-01

    Individuals with sickle cell anemia (SCA) have increased susceptibility to infections, secondary to impairment of immune function. Besides the described dysfunction in innate immunity, including impaired opsonization and phagocytosis of bacteria, evidence of dysfunction of T and B lymphocytes in SCA has also been reported. This includes reduction in the proportion of circulating CD4+ and CD8+ T cells, reduction of CD4+ helper: CD8+ suppressor T cell ratio, aberrant activation and dysfunction of regulatory T cells (Treg ), skewing of CD4+ T cells towards Th2 response and loss of IgM-secreting CD27 + IgM(high) IgD(low) memory B cells. These changes occur on the background of immune activation characterized by predominance of memory CD4+ T cell phenotypes, increased Th17 signaling and elevated levels of C-reactive protein and pro-inflammatory cytokines IL-6 and TNF-α, which may affect the immunogenicity and protective efficacy of vaccines available to prevent infections in SCA. Thus, in order to optimize the use of vaccines in SCA, a thorough understanding of T and B lymphocyte functions and vaccine reactivity among individuals with SCA is needed. Studies should be encouraged of different SCA populations, including sub-Saharan Africa where the burden of SCA is highest. This article summarizes our current understanding of lymphocyte biology in SCA, and highlights areas that warrant future research. Am. J. Hematol. 91:938-946, 2016. © 2016 Wiley Periodicals, Inc. PMID:27237467

  19. Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment.

    Science.gov (United States)

    Brohée, Laura; Demine, Stéphane; Willems, Jérome; Arnould, Thierry; Colige, Alain C; Deroanne, Christophe F

    2015-05-10

    Lipogenesis inhibition was reported to induce apoptosis and repress proliferation of cancer cells while barely affecting normal cells. Lipins exhibit dual function as enzymes catalyzing the dephosphorylation of phosphatidic acid to diacylglycerol and as co-transcriptional regulators. Thus, they are able to regulate lipid homeostasis at several nodal points. Here, we show that lipin-1 is up-regulated in several cancer cell lines and overexpressed in 50 % of high grade prostate cancers. The proliferation of prostate and breast cancer cells, but not of non-tumorigenic cells, was repressed upon lipin-1 knock-down. Lipin-1 depletion also decreased cancer cell migration through RhoA activation. Lipin-1 silencing did not significantly affect global lipid synthesis but enhanced the cellular concentration of phosphatidic acid. In parallel, autophagy was induced while AKT and ribosomal protein S6 phosphorylation were repressed. We also observed a compensatory regulation between lipin-1 and lipin-2 and demonstrated that their co-silencing aggravates the phenotype induced by lipin-1 silencing alone. Most interestingly, lipin-1 depletion or lipins inhibition with propranolol sensitized cancer cells to rapamycin. These data indicate that lipin-1 controls main cellular processes involved in cancer progression and that its targeting, alone or in combination with other treatments, could open new avenues in anticancer therapy.

  20. Identification of T-cell factor-4 isoforms that contribute to the malignant phenotype of hepatocellular carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsedensodnom, Orkhontuya [Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI (United States); Department of Molecular Biology Cell Biology and Biochemistry, The Warren Alpert Medical School of Brown University, Providence, RI (United States); Koga, Hironori; Rosenberg, Stephen A.; Nambotin, Sarah B.; Carroll, John J.; Wands, Jack R. [Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI (United States); Kim, Miran, E-mail: Miran_Kim@brown.edu [Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI (United States)

    2011-04-15

    The Wnt/{beta}-catenin signaling pathway is frequently activated in hepatocellular carcinoma (HCC). Downstream signaling events involving the Wnt/{beta}-catenin cascade occur through T-cell factor (TCF) proteins. The human TCF-4 gene is composed of 17 exons with multiple alternative splicing sites. However, the role of different TCF-4 isoforms in the pathogenesis of HCC is unknown. The purpose of this study was to identify and characterize TCF-4 isoforms in HCC. We identified 14 novel TCF-4 isoforms from four HCC cell lines. Functional analysis following transfection and expression in HCC cells revealed distinct effects on the phenotype. The TCF-4J isoform expression produced striking features of malignant transformation characterized by high cell proliferation rate, migration and colony formation even though its transcriptional activity was low. In contrast, the TCF-4K isoform displayed low TCF transcriptional activity; cell proliferation rate and colony formation were reduced as well. Interestingly, TCF-4J and TCF-4K differed by only five amino acids (the SxxSS motif). Thus, these studies suggest that conserved splicing motifs may have a major influence on the transcriptional activity and functional properties of TCF-4 isoforms and alter the characteristics of the malignant phenotype.

  1. Modulation of Vascular Cell Function by Bim Expression

    Directory of Open Access Journals (Sweden)

    Margaret E. Morrison

    2013-01-01

    Full Text Available Apoptosis of vascular cells, including pericytes and endothelial cells, contributes to disease pathogenesis in which vascular rarefaction plays a central role. Bim is a proapoptotic protein that modulates not only apoptosis but also cellular functions such as migration and extracellular matrix (ECM protein expression. Endothelial cells and pericytes each make a unique contribution to vascular formation and function although the details require further delineation. Here we set out to determine the cell autonomous impact of Bim expression on retinal endothelial cell and pericyte function using cells prepared from Bim deficient (Bim−/− mice. Bim−/− endothelial cells displayed an increased production of ECM proteins, proliferation, migration, adhesion, and VEGF expression but, a decreased eNOS expression and nitric oxide production. In contrast, pericyte proliferation decreased in the absence of Bim while migration, adhesion, and VEGF expression were increased. In addition, we demonstrated that the coculturing of either wild-type or Bim−/− endothelial cells with Bim−/− pericytes diminished their capillary morphogenesis. Thus, our data further emphasizes the importance of vascular cell autonomous regulatory mechanisms in modulation of vascular function.

  2. SLUG/SNAI2 and Tumor Necrosis Factor Generate Breast Cells With CD44+/CD24- Phenotype

    Directory of Open Access Journals (Sweden)

    Bhat-Nakshatri Poornima

    2010-08-01

    Full Text Available Abstract Background Breast cancer cells with CD44+/CD24- cell surface marker expression profile are proposed as cancer stem cells (CSCs. Normal breast epithelial cells that are CD44+/CD24- express higher levels of stem/progenitor cell associated genes. We, amongst others, have shown that cancer cells that have undergone epithelial to mesenchymal transition (EMT display the CD44+/CD24- phenotype. However, whether all genes that induce EMT confer the CD44+/CD24- phenotype is unknown. We hypothesized that only a subset of genes associated with EMT generates CD44+/CD24- cells. Methods MCF-10A breast epithelial cells, a subpopulation of which spontaneously acquire the CD44+/CD24- phenotype, were used to identify genes that are differentially expressed in CD44+/CD24- and CD44-/CD24+ cells. Ingenuity pathway analysis was performed to identify signaling networks that linked differentially expressed genes. Two EMT-associated genes elevated in CD44+/CD24- cells, SLUG and Gli-2, were overexpressed in the CD44-/CD24+ subpopulation of MCF-10A cells and MCF-7 cells, which are CD44-/CD24+. Flow cytometry and mammosphere assays were used to assess cell surface markers and stem cell-like properties, respectively. Results Two thousand thirty five genes were differentially expressed (p Conclusions EMT-mediated generation of CD44+/CD24- or CD44+/CD24+ cells depends on the genes that induce or are associated with EMT. Our studies reveal a role for TNF in altering the phenotype of breast CSC. Additionally, the CD44+/CD24+ phenotype, in the context of SLUG overexpression, can be associated with breast CSC "stemness" behavior based on mammosphere forming ability.

  3. Performance of Photovoltaic Modules of Different Solar Cells

    Directory of Open Access Journals (Sweden)

    Ankita Gaur

    2013-01-01

    Full Text Available In this paper, an attempt of performance evaluation of semitransparent and opaque photovoltaic (PV modules of different generation solar cells, having the maximum efficiencies reported in the literature at standard test conditions (STC, has been carried out particularly for the months of January and June. The outdoor performance is also evaluated for the commercially available semitransparent and opaque PV modules. Annual electrical energy, capitalized cost, annualized uniform cost (unacost, and cost per unit electrical energy for both types of solar modules, namely, semitransparent and opaque have also been computed along with their characteristics curves. Semitransparent PV modules have shown higher efficiencies compared to the opaque ones. Calculations show that for the PV modules made in laboratory, CdTe exhibits the maximum annual electrical energy generation resulting into minimum cost per unit electrical energy, whereas a-Si/nc-Si possesses the maximum annual electrical energy generation giving minimum cost per unit electrical energy when commercially available solar modules are concerned. CIGS has shown the lowest capitalized cost over all other PV technologies.

  4. Adipose stromal cells contain phenotypically distinct adipogenic progenitors derived from neural crest.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Sowa

    Full Text Available Recent studies have shown that adipose-derived stromal/stem cells (ASCs contain phenotypically and functionally heterogeneous subpopulations of cells, but their developmental origin and their relative differentiation potential remain elusive. In the present study, we aimed at investigating how and to what extent the neural crest contributes to ASCs using Cre-loxP-mediated fate mapping. ASCs harvested from subcutaneous fat depots of either adult P0-Cre/or Wnt1-Cre/Floxed-reporter mice contained a few neural crest-derived ASCs (NCDASCs. This subpopulation of cells was successfully expanded in vitro under standard culture conditions and their growth rate was comparable to non-neural crest derivatives. Although NCDASCs were positive for several mesenchymal stem cell markers as non-neural crest derivatives, they exhibited a unique bipolar or multipolar morphology with higher expression of markers for both neural crest progenitors (p75NTR, Nestin, and Sox2 and preadipocytes (CD24, CD34, S100, Pref-1, GATA2, and C/EBP-delta. NCDASCs were able to differentiate into adipocytes with high efficiency but their osteogenic and chondrogenic potential was markedly attenuated, indicating their commitment to adipogenesis. In vivo, a very small proportion of adipocytes were originated from the neural crest. In addition, p75NTR-positive neural crest-derived cells were identified along the vessels within the subcutaneous adipose tissue, but they were negative for mural and endothelial markers. These results demonstrate that ASCs contain neural crest-derived adipocyte-restricted progenitors whose phenotype is distinct from that of non-neural crest derivatives.

  5. Are clear cell carcinomas of the ovary and endometrium phenotypically identical? A proteomic analysis.

    Science.gov (United States)

    Fata, Cynthia R; Seeley, Erin H; Desouki, Mohamed M; Du, Liping; Gwin, Katja; Hanley, Krisztina Z; Hecht, Jonathan L; Jarboe, Elke A; Liang, Sharon X; Parkash, Vinita; Quick, Charles M; Zheng, Wenxin; Shyr, Yu; Caprioli, Richard M; Fadare, Oluwole

    2015-10-01

    Phenotypic differences between otherwise similar tumors arising from different gynecologic locations may be highly significant in understanding the underlying driver molecular events at each site and may potentially offer insights into differential responses to treatment. In this study, the authors sought to identify and quantify phenotypic differences between ovarian clear cell carcinoma (OCCC) and endometrial clear cell carcinoma (ECCC) using a proteomic approach. Tissue microarrays were constructed from tumor samples of 108 patients (54 ECCCs and 54 OCCCs). Formalin-fixed samples on microarray slides were analyzed by matrix-assisted laser desorption/ionization mass spectrometry, and 730 spectral peaks were generated from the combined data set. A linear mixed-effect model with random intercept was used to generate 93 (12.7%) peaks that were significantly different between OCCCs and ECCCs at the fold cutoffs of 1.5 and 0.667 and an adjusted P value cutoff of 1.0 × 10(-10). Liquid chromatography-tandem mass spectrometry was performed on selected cores from each group, and peptides identified therefrom were compared with lists of statistically significant peaks from the aforementioned linear mixed-effects model to find matches within 0.2 Da. A total of 53 candidate proteins were thus identified as being differentially expressed in OCCCs and ECCCs, 45 (85%) of which were expressed at higher levels in ECCCs than OCCCs. These proteins were functionally diverse and did not highlight a clearly dominant cellular theme or molecular pathway. Although ECCCs and OCCCs are very similar, some phenotypic differences are demonstrable. Additional studies of these differentially expressed proteins may ultimately clarify the significance of these differences. PMID:26243671

  6. NOPO modulates Egr-induced JNK-independent cell death in Drosophila

    Institute of Scientific and Technical Information of China (English)

    Xianjue Ma; Jiuhong Huang; Lixia Yang; Yang Yang; Wenzhe Li; Lei Xue

    2012-01-01

    Tumor necrosis factor (TNF) family ligands play essential roles in regulating a variety of cellular processes including proliferation,differentiation and survival.Expression of Drosophila TNF ortholog Eiger (Egr) induces JNK-dependent cell death,while the roles of caspases in this process remain elusive.To further delineate the Egr-triggered cell death pathway,we performed a genetic screen to identify dominant modifiers of the Egr-induced cell death phenotype.Here we report that Egr elicits a caspase-mediated cell death pathway independent of JNK signaling.Furthermore,we show NOPO,the Drosophila ortholog of TRIP (TRAF interacting protein) encoding an E3 ubiquitin ligase,modulates Egr-induced Caspase-mediated cell death through transcriptional activation of pro-apoptotic genes reaper and hid.Finally,we found Bendless and dUEV1a,an ubiquitin-conjugating E2 enzyme complex,regulates NOPO-triggered cell death.Our results indicate that the Ben-dUEV1a complex constitutes a molecular switch that bifurcates the Egr-induced cell death signaling into two pathways mediated by JNK and caspases respectively.

  7. Characterization of the collagen phenotype of rabbit proximal tubule cells in culture.

    Science.gov (United States)

    Gibbs, S R; Goins, R A; Belvin, E L; Dimari, S J; Merriam, A P; Bowling-Brown, S; Harris, R C; Haralson, M A

    1999-01-01

    Studies were performed to characterize the collagen phenotype of cultured rabbit proximal tubule (RPT) epithelial cells grown on plastic and on the reconstituted basement membrane preparation, Matrigel. When grown on a plastic substratum, RPT cells display a cobblestone appearance characteristic of glomerular epithelial cells. While initially forming an interlocking network of cells after subculture on Matrigel, this pattern of culture morphology rapidly develops into one characterized by isolated, organized groups of cells. Notwithstanding the effects of Matrigel on culture morphology, total cellular proliferation was reduced only 25% when RPT cells were grown on this substrate. Greater than 90% of the collagen synthesized by RPT cells grown on plastic was secreted into the culture medium. Qualitative analysis by SDS-PAGE revealed components exhibiting electrophoretic mobilities corresponding to the chains present in type IV and type I collagens. Quantitative analysis by CM-Trisacryl chromatography established that approximately 2/3 of the total collagen synthesized by RPT cells grown on plastic was type IV and approximately 1/3 type I. Quantitative analysis of the collagens produced by RPT cells grown on Matrigel again indicated the synthesis of only type IV and type I molecules but in a slightly more equal ratio of both collagen types and in the ratio of secreted to cell-associated molecules. However, the total amount of collagen synthesized by RPT cells grown on Matrigel was reduced to approximately 1% of the level synthesized by the cells grown on plastic. On plastic, approximately 3/4 of the type I collagen produced was recovered as the type I homotrimer, but on Matrigel type I homotrimers represented only approximately 55% of the total type I collagen synthesized. On Matrigel, the majority of the type IV collagen was recovered as heterotrimers containing alpha1(IV) and alpha2(IV) chains. In contrast, RTP cells grown on plastic predominantly produced type IV

  8. Dysregulation of gene expression in the artificial human trisomy cells of chromosome 8 associated with transformed cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Hisakatsu Nawata

    Full Text Available A change in chromosome number, known as aneuploidy, is a common characteristic of cancer. Aneuploidy disrupts gene expression in human cancer cells and immortalized human epithelial cells, but not in normal human cells. However, the relationship between aneuploidy and cancer remains unclear. To study the effects of aneuploidy in normal human cells, we generated artificial cells of human primary fibroblast having three chromosome 8 (trisomy 8 cells by using microcell-mediated chromosome transfer technique. In addition to decreased proliferation, the trisomy 8 cells lost contact inhibition and reproliferated after exhibiting senescence-like characteristics that are typical of transformed cells. Furthermore, the trisomy 8 cells exhibited chromosome instability, and the overall gene expression profile based on microarray analyses was significantly different from that of diploid human primary fibroblasts. Our data suggest that aneuploidy, even a single chromosome gain, can be introduced into normal human cells and causes, in some cases, a partial cancer phenotype due to a disruption in overall gene expression.

  9. Modulation of lens cell adhesion molecules by particle beams

    Science.gov (United States)

    McNamara, M. P.; Bjornstad, K. A.; Chang, P. Y.; Chou, W.; Lockett, S. J.; Blakely, E. A.

    2001-01-01

    Cell adhesion molecules (CAMs) are proteins which anchor cells to each other and to the extracellular matrix (ECM), but whose functions also include signal transduction, differentiation, and apoptosis. We are testing a hypothesis that particle radiations modulate CAM expression and this contributes to radiation-induced lens opacification. We observed dose-dependent changes in the expression of beta 1-integrin and ICAM-1 in exponentially-growing and confluent cells of a differentiating human lens epithelial cell model after exposure to particle beams. Human lens epithelial (HLE) cells, less than 10 passages after their initial culture from fetal tissue, were grown on bovine corneal endothelial cell-derived ECM in medium containing 15% fetal bovine serum and supplemented with 5 ng/ml basic fibroblast growth factor (FGF-2). Multiple cell populations at three different stages of differentiation were prepared for experiment: cells in exponential growth, and cells at 5 and 10 days post-confluence. The differentiation status of cells was characterized morphologically by digital image analysis, and biochemically by Western blotting using lens epithelial and fiber cell-specific markers. Cultures were irradiated with single doses (4, 8 or 12 Gy) of 55 MeV protons and, along with unirradiated control samples, were fixed using -20 degrees C methanol at 6 hours after exposure. Replicate experiments and similar experiments with helium ions are in progress. The intracellular localization of beta 1-integrin and ICAM-1 was detected by immunofluorescence using monoclonal antibodies specific for each CAM. Cells known to express each CAM were also processed as positive controls. Both exponentially-growing and confluent, differentiating cells demonstrated a dramatic proton-dose-dependent modulation (upregulation for exponential cells, downregulation for confluent cells) and a change in the intracellular distribution of the beta 1-integrin, compared to unirradiated controls. In contrast

  10. Infrared modulation spectroscopy of interfaces in amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Kai; Schiff, E.A. [Department of Physics, Syracuse University, 13244-1130 Syracuse, NY (United States); Ganguly, G. [BP Solar, 23168 Toano, VA (United States)

    2002-04-01

    We report infrared depletion modulation spectra for near-interface states in a-Si pin solar cells. The effect of additional visible illumination (optical bias) was explored as a means to separate the spectra for n/i and p/i interface states. We found a sharp, optical bias-induced spectral line near 0.8 eV. We attribute this line due to internal optical transitions of dopant-defect complexes in the a-SiC:H:B p-layer of the cells. We discuss the spatial location of the depletion modulation regions, and suggest that this location shifts across the n/i and p/i interfaces for cells with differing deposition and illumination conditions.

  11. Phenotypic and functional characteristics of dendritic cells derived from human peripheral blood monocytes

    Institute of Scientific and Technical Information of China (English)

    TANG Ling-ling; ZHANG Zhe; ZHENG Jie-sheng; SHENG Ji-fang; LIU Ke-zhou

    2005-01-01

    Objective: This study is aimed at developing a simple and easy way to generate dendritic cells (DCs) from human peripheral blood monocytes (PBMCs) in vitro. Methods: PBMCs were isolated directly from white blood cell rather than whole blood and purified by patching methods (collecting the attached cell and removing the suspension cell). DCs were then generated by culturing PBMCs for six days with 30 ng/ml recombinant human granulocyte-macrophage stimulating factor (rhGM-CSF) and 20 ng/ml recombinant human interleukin-4 (rhIL-4) in vitro. On the sixth day, TNF-alpha (TNFα) 30 ng/ml was added into some DC cultures, which were then incubated for two additional days. The morphology was monitored by light microscopy and transmission electronic microscopy, and the phenotypes were determined by flow cytometry. Autologous mixed leukocyte reactions (MLR) were used to characterize DC function after TNFα or lipopolysaccharide (LPS) stimulations for 24 h. Results: After six days of culture, the monocytes developed significant dendritic morphology and a portion of cells expressed CD 1 a, CD80 and CD86, features of DCs. TNFα treatment induced DCs maturation and up-regulation of CD80, CD86 and CD83. Autologous MLR demonstrated that these DCs possess potent T-cell stimulatory capacity. Conclusion: This study developed a simple and easy way to generate DCs from PBMCs exposed to rhGM-CSF and rhIL-4. The DCs produced by this method acquired morphologic and antigenic characteristics of DCs.

  12. Cyclebase 3.0: a multi-organism database on cell-cycle regulation and phenotypes.

    Science.gov (United States)

    Santos, Alberto; Wernersson, Rasmus; Jensen, Lars Juhl

    2015-01-01

    The eukaryotic cell division cycle is a highly regulated process that consists of a complex series of events and involves thousands of proteins. Researchers have studied the regulation of the cell cycle in several organisms, employing a wide range of high-throughput technologies, such as microarray-based mRNA expression profiling and quantitative proteomics. Due to its complexity, the cell cycle can also fail or otherwise change in many different ways if important genes are knocked out, which has been studied in several microscopy-based knockdown screens. The data from these many large-scale efforts are not easily accessed, analyzed and combined due to their inherent heterogeneity. To address this, we have created Cyclebase--available at http://www.cyclebase.org--an online database that allows users to easily visualize and download results from genome-wide cell-cycle-related experiments. In Cyclebase version 3.0, we have updated the content of the database to reflect changes to genome annotation, added new mRNA and protein expression data, and integrated cell-cycle phenotype information from high-content screens and model-organism databases. The new version of Cyclebase also features a new web interface, designed around an overview figure that summarizes all the cell-cycle-related data for a gene.

  13. The Malignant Phenotype of Breast Cancer Cells Is Reduced by COX-2 Silencing

    Directory of Open Access Journals (Sweden)

    Ioannis Stasinopoulos

    2008-11-01

    Full Text Available The cyclooxygenase (COX pathway is currently targeted for therapeutic intervention in different cancers. We have previously shown that silencing of COX-2 in the poorly differentiated metastatic breast cell line MDA-MB-231 by RNA interference markedly delayed tumor onset and inhibited metastasis. To understand the functional effects of COX-2 silencing underlying the inhibition of tumor growth and metastasis previously reported, we investigated changes in these cells for a number of cancer-associated phenotypes. Cyclooxygenase-2-silenced cells were less able to acidify tissue culture medium, a response that could partly be attributed to decreased lactate production or export detected by reduced lactate in the medium. Consistent with the significantly reduced transcript levels of hyaluronan synthase 2, an enzyme responsible for the total level of hyaluronan secreted by these cells, COX-2 silencing resulted in lower hyaluronan levels secreted in culture medium. Inhibition of human umbilical vein endothelial cell network association in a coculture assay was also observed in COX-2-silenced cells. These data highlight the functional role of COX-2 in pathways that mediate increased malignancy.

  14. Notch Signaling Is Associated With ALDH Activity And An Aggressive Metastatic Phenotype In Murine Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Xiaodong eMu

    2013-06-01

    Full Text Available Osteosarcoma (OS is the most common primary malignancy of bone, and pulmonary metastatic disease accounts for nearly all mortality. However, little is known about the biochemical signaling alterations that drive the progression of metastatic disease. Two murine OS cell populations, K7M2 and K12, are clonally related but differ significantly in their metastatic phenotypes and therefore represent excellent tools for studying metastatic OS molecular biology. K7M2 cells are highly metastatic, whereas K12 cells display limited metastatic potential. Here we report that the expression of Notch genes (Notch1, 2, 4 are up-regulated, including downstream targets Hes1 and Stat3, in the highly metastatic K7M2 cells compared to the less metastatic K12 cells, indicating that the Notch signaling pathway is more active in K7M2 cells. We have previously described that K7M2 cells exhibit higher levels of aldehyde dehydrogenase (ALDH activity. Here we report that K7M2 cell ALDH activity is reduced with Notch inhibition, suggesting that ALDH activity may be regulated in part by the Notch pathway. Notch signaling is also associated with increased resistance to oxidative stress, migration, invasion, and VEGF expression in vitro. However, Notch inhibition did not significantly alter K7M2 cell proliferation. In conclusion, we provide evidence that Notch signaling is associated with ALDH activity and increased metastatic behavior in OS cells. Both Notch and ALDH are putative molecular targets for the treatment and prevention of OS metastasis.

  15. Omeprazole inhibits proliferation and modulates autophagy in pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Andrej Udelnow

    Full Text Available BACKGROUND: Omeprazole has recently been described as a modulator of tumour chemoresistance, although its underlying molecular mechanisms remain controversial. Since pancreatic tumours are highly chemoresistant, a logical step would be to investigate the pharmacodynamic, morphological and biochemical effects of omeprazole on pancreatic cancer cell lines. METHODOLOGY/PRINCIPAL FINDINGS: Dose-effect curves of omeprazole, pantoprazole, gemcitabine, 5-fluorouracil and the combinations of omeprazole and 5-fluorouracil or gemcitabine were generated for the pancreatic cancer cell lines MiaPaCa-2, ASPC-1, Colo357, PancTu-1, Panc1 and Panc89. They revealed that omeprazole inhibited proliferation at probably non-toxic concentrations and reversed the hormesis phenomena of 5-fluorouracil. Electron microscopy showed that omeprazole led to accumulation of phagophores and early autophagosomes in ASPC-1 and MiaPaCa-2 cells. Signal changes indicating inhibited proliferation and programmed cell death were found by proton NMR spectroscopy of both cell lines when treated with omeprazole which was identified intracellularly. Omeprazole modulates the lysosomal transport pathway as shown by Western blot analysis of the expression of LAMP-1, Cathepsin-D and β-COP in lysosome- and Golgi complex containing cell fractions. Acridine orange staining revealed that the pump function of the vATPase was not specifically inhibited by omeprazole. Gene expression of the autophagy-related LC3 gene as well as of Bad, Mdr-1, Atg12 and the vATPase was analysed after treatment of cells with 5-fluorouracil and omeprazole and confirmed the above mentioned results. CONCLUSIONS: We hypothesise that omeprazole interacts with the regulatory functions of the vATPase without inhibiting its pump function. A modulation of the lysosomal transport pathway and autophagy is caused in pancreatic cancer cells leading to programmed cell death. This may circumvent common resistance mechanisms of

  16. Cell wall remodelling enzymes modulate fungal cell wall elasticity and osmotic stress resistance

    OpenAIRE

    Ene, Iuliana; Walker, Louise; Schiavone, Marion; Lee, Keunsook K.; Dague, Etienne; Gow, Neil A.R.; Munro, Carol A

    2015-01-01

    The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Ce...

  17. Histo-Cytometry: in situ multiplex cell phenotyping, quantification, and spatial analysis applied to dendritic cell subset micro-anatomy in lymph nodes

    OpenAIRE

    Gerner, Michael Y.; Kastenmuller, Wolfgang; Ifrim, Ina; Kabat, Juraj; Germain, Ronald N.

    2012-01-01

    Flow cytometry allows highly quantitative analysis of complex dissociated populations at the cost of neglecting their tissue localization. In contrast, conventional microscopy methods provide spatial information, but visualization and quantification of cellular subsets defined by complex phenotypic marker combinations is challenging. Here we describe an analytical microscopy method, "Histo-Cytometry," for visualizing and quantifying phenotypically complex cell populations directly in tissue s...

  18. Extracellular Matrix Ligand and Stiffness Modulate Immature Nucleus Pulposus Cell-Cell Interactions

    Science.gov (United States)

    Gilchrist, Christopher L.; Darling, Eric M.; Chen, Jun; Setton, Lori A.

    2011-01-01

    The nucleus pulposus (NP) of the intervertebral disc functions to provide compressive load support in the spine, and contains cells that play a critical role in the generation and maintenance of this tissue. The NP cell population undergoes significant morphological and phenotypic changes during maturation and aging, transitioning from large, vacuolated immature cells arranged in cell clusters to a sparse population of smaller, isolated chondrocyte-like cells. These morphological and organizational changes appear to correlate with the first signs of degenerative changes within the intervertebral disc. The extracellular matrix of the immature NP is a soft, gelatinous material containing multiple laminin isoforms, features that are unique to the NP relative to other regions of the disc and that change with aging and degeneration. Based on this knowledge, we hypothesized that a soft, laminin-rich extracellular matrix environment would promote NP cell-cell interactions and phenotypes similar to those found in immature NP tissues. NP cells were isolated from porcine intervertebral discs and cultured in matrix environments of varying mechanical stiffness that were functionalized with various matrix ligands; cellular responses to periods of culture were assessed using quantitative measures of cell organization and phenotype. Results show that soft (<720 Pa), laminin-containing extracellular matrix substrates promote NP cell morphologies, cell-cell interactions, and proteoglycan production in vitro, and that this behavior is dependent upon both extracellular matrix ligand and substrate mechanical properties. These findings indicate that NP cell organization and phenotype may be highly sensitive to their surrounding extracellular matrix environment. PMID:22087260

  19. Extracellular matrix ligand and stiffness modulate immature nucleus pulposus cell-cell interactions.

    Directory of Open Access Journals (Sweden)

    Christopher L Gilchrist

    Full Text Available The nucleus pulposus (NP of the intervertebral disc functions to provide compressive load support in the spine, and contains cells that play a critical role in the generation and maintenance of this tissue. The NP cell population undergoes significant morphological and phenotypic changes during maturation and aging, transitioning from large, vacuolated immature cells arranged in cell clusters to a sparse population of smaller, isolated chondrocyte-like cells. These morphological and organizational changes appear to correlate with the first signs of degenerative changes within the intervertebral disc. The extracellular matrix of the immature NP is a soft, gelatinous material containing multiple laminin isoforms, features that are unique to the NP relative to other regions of the disc and that change with aging and degeneration. Based on this knowledge, we hypothesized that a soft, laminin-rich extracellular matrix environment would promote NP cell-cell interactions and phenotypes similar to those found in immature NP tissues. NP cells were isolated from porcine intervertebral discs and cultured in matrix environments of varying mechanical stiffness that were functionalized with various matrix ligands; cellular responses to periods of culture were assessed using quantitative measures of cell organization and phenotype. Results show that soft (<720 Pa, laminin-containing extracellular matrix substrates promote NP cell morphologies, cell-cell interactions, and proteoglycan production in vitro, and that this behavior is dependent upon both extracellular matrix ligand and substrate mechanical properties. These findings indicate that NP cell organization and phenotype may be highly sensitive to their surrounding extracellular matrix environment.

  20. Natural killer cells phenotypic characterization as an outcome predictor of HCV-linked HCC after curative treatments.

    Science.gov (United States)

    Cariani, Elisabetta; Pilli, Massimo; Barili, Valeria; Porro, Emanuela; Biasini, Elisabetta; Olivani, Andrea; Dalla Valle, Raffaele; Trenti, Tommaso; Ferrari, Carlo; Missale, Gabriele

    2016-08-01

    NK-cell number and function have been associated with cancer progression. A detailed analysis of phenotypic and functional characteristics of NK-cells in HCC is still lacking. NK-cell function is regulated by activating and inhibitory receptors determined by genetic factors and engagement with cognate ligands on transformed or infected cells. We evaluated phenotypic and functional characteristic of NK-cells in HCC patients undergoing curative treatment in relation to clinical outcome. NK-cells from 70 HCC patients undergoing resection or ablative treatment, 18 healthy volunteers and 12 cirrhotic patients with HCV-infection (controls) were phenotypically characterized. Unsupervised clustering based on the frequency of cells expressing different phenotypic NK-cell markers segregated HCC patients into different cohorts that were compared for outcome. NK-cell cytokine production and cytotoxicity were compared between cohorts with different overall survival (OS) and time to disease recurrence (TTR). By multivariate analysis, age, Child-Pugh class and NK-cell phenotypic clustering could independently identify patients with significantly different OS. NK-cells from patients with better outcome expressed higher levels of cytotoxic granules and CD3ζ and lower levels of natural cytotoxic receptors (NCRs) that were co-expressed with the inhibitory receptor NKG2A known to negatively regulate NCR function. Cytotoxic function and IFNγ production were significantly lower in the cohort of patients with worse outcome compared to controls (p < 0.05). Our results show a role for NK-cells in the control of HCC progression and survival providing the basis for the development of immunotherapeutic strategies to potentiate NK-cell response.

  1. Establishment of hepatitis C virus RNA-replicating cell lines possessing ribavirin-resistant phenotype.

    Directory of Open Access Journals (Sweden)

    Shinya Satoh

    Full Text Available Ribavirin (RBV is a potential partner of interferon-based therapy and recently approved therapy using direct acting antivirals for patients with chronic hepatitis C. However, the precise mechanisms underlying RBV action against hepatitis C virus (HCV replication are not yet understood. To clarify this point, we attempted to develop RBV-resistant cells from RBV-sensitive HCV RNA-replicating cells.By repetitive RBV (100 μM treatment (10 weeks of 3.5-year-cultured OL8 cells, in which genome-length HCV RNA (O strain of genotype 1b efficiently replicates, dozens of colonies that survived RBV treatment were obtained. These colonies were mixed together and further treated with high doses of RBV (up to 200 μM. By such RBV treatment, we successfully established 12 RBV-survived genome-length HCV RNA-replicating cell lines. Among them, three representative cell lines were characterized. HCV RNA replication in these cells resisted RBV significantly more than that in the parental OL8 cells. Genetic analysis of HCV found several common and conserved amino acid substitutions in HCV proteins among the three RBV-resistant cell species. Furthermore, using cDNA microarray and quantitative RT-PCR analyses, we identified 5 host genes whose expression levels were commonly altered by more than four-fold among these RBV-resistant cells compared with the parental cells. Moreover, to determine whether viral or host factor contributes to RBV resistance, we developed newly HCV RNA-replicating cells by introducing total RNAs isolated from RBV-sensitive parental cells or RBV-resistant cells into the HCV RNA-cured-parental or -RBV-resistant cells using an electroporation method, and evaluated the degrees of RBV resistance of these developed cells. Consequently, we found that RBV-resistant phenotype was conferred mainly by host factor and partially by viral factor.These newly established HCV RNA-replicating cell lines should become useful tools for further understanding the

  2. Impact of rapamycin on phenotype and tolerogenic function of dendritic cells via intravital optical imaging

    Science.gov (United States)

    Luo, Meijie; Zhang, Zhihong

    2014-03-01

    Rapamycin (RAPA) as a unique tolerance-promoting therapeutic drug is crucial to successful clinical organ transplantation. DC (Dendritic cells) play a critical role in antigen presentation to T cells to initiate immune responses involved in tissue rejection. Although the influence of RAPA on DC differentiation and maturation had been reported by some research groups, it is still controversial and unclear right now. In addition, it is also lack of study on investigating the role of DC in DTH reaction via intravital optical imaging. Herein, we investigated the effect of rapamycin on phenotype and function of bone marrow monocyte-derived DC both in vitro and in vivo. In vitro experiments by flow cytometry (FACS) showed that DC displayed decreased cell size and lower expression levels of surface molecule CD80 induced by RAPA; Furthermore, the phagocytic ability to OVA of DC was inhibited by RAPA started from 1 h to 2 h post co-incubation, but recovered after 4 h; In addition, the capacity of DC to activate naïve OT-II T cell proliferation was also inhibited at 3 day post co-incubation, but had no effect at 5 day, the data indicated this effect was reversible when removing the drug. More importantly, the DC-T interaction was monitored both in vitro and in intravital lymph node explant, and showed that RAPA-DC had a significant lower proportion of long-lived (>15min) contacts. Thus, RAPA displayed immunosuppressive to phenotypic and functional maturation of DC, and this phenomenon induced by RAPA may favorable in the clinical organ transplantation in future.

  3. Proteomics reveals multiple routes to the osteogenic phenotype in mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Yener Bülent

    2007-10-01

    Full Text Available Abstract Background Recently, we demonstrated that human mesenchymal stem cells (hMSC stimulated with dexamethazone undergo gene focusing during osteogenic differentiation (Stem Cells Dev 14(6: 1608–20, 2005. Here, we examine the protein expression profiles of three additional populations of hMSC stimulated to undergo osteogenic differentiation via either contact with pro-osteogenic extracellular matrix (ECM proteins (collagen I, vitronectin, or laminin-5 or osteogenic media supplements (OS media. Specifically, we annotate these four protein expression profiles, as well as profiles from naïve hMSC and differentiated human osteoblasts (hOST, with known gene ontologies and analyze them as a tensor with modes for the expressed proteins, gene ontologies, and stimulants. Results Direct component analysis in the gene ontology space identifies three components that account for 90% of the variance between hMSC, osteoblasts, and the four stimulated hMSC populations. The directed component maps the differentiation stages of the stimulated stem cell populations along the differentiation axis created by the difference in the expression profiles of hMSC and hOST. Surprisingly, hMSC treated with ECM proteins lie closer to osteoblasts than do hMSC treated with OS media. Additionally, the second component demonstrates that proteomic profiles of collagen I- and vitronectin-stimulated hMSC are distinct from those of OS-stimulated cells. A three-mode tensor analysis reveals additional focus proteins critical for characterizing the phenotypic variations between naïve hMSC, partially differentiated hMSC, and hOST. Conclusion The differences between the proteomic profiles of OS-stimulated hMSC and ECM-hMSC characterize different transitional phenotypes en route to becoming osteoblasts. This conclusion is arrived at via a three-mode tensor analysis validated using hMSC plated on laminin-5.

  4. Flow cytometric analysis of cytokine expression in short-term allergen-stimulated T cells mirrors the phenotype of proliferating T cells in long-term cultures

    NARCIS (Netherlands)

    Van Hemelen, D.; Elberink, J. N. G. Oude; Bohle, B.; Heimweg, J.; Nawijn, M. C.; van Oosterhout, A. J. M.

    2011-01-01

    Background: Allergen-specific T(H) cells play an important role in IgE-mediated disorders as allergies. Since this T(H) cell-population only accounts for a small percentage of Tv, cells, they are difficult to phenotype without prior selection or expansion. Methods: Grass-pollen-specific T(H) cell pr

  5. Polycrystalline thin-film solar cells and modules

    Energy Technology Data Exchange (ETDEWEB)

    Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

    1991-12-01

    This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG&E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

  6. Polycrystalline thin-film solar cells and modules

    Energy Technology Data Exchange (ETDEWEB)

    Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

    1991-12-01

    This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

  7. New test and characterization methods for PV modules and cells

    Energy Technology Data Exchange (ETDEWEB)

    Van Aken, B.; Sommeling, P. [ECN Solar Energy, Petten (Netherlands); Scholten, H. [Solland, Heerlen (Netherlands); Muller, J. [Moser-Baer, Eindhoven (Netherlands); Grossiord, N. [Holst Centre, Eindhoven (Netherlands); Smits, C.; Blanco Mantecon, M. [Holland Innovative, Eindhoven (Netherlands); Verheijen, M.; Van Berkum, J. [Philips Innovation Services, Eindhoven (Netherlands)

    2012-08-15

    The results of the project geZONd (shared facility for solar module analysis and reliability testing) are described. The project was set up by Philips, ECN, Holst, Solland, OM and T and Holland Innovative. The partners have shared most of their testing and analysis equipment for PV modules and cells, and together developed new or improved methods (including the necessary application know-how). This enables faster and more efficient innovation projects for each partner, and via commercial exploitation for other interested parties. The project has concentrated on five failure modes: corrosion, delamination, moisture ingress, UV irradiation, and mechanical bending. Test samples represented all main PV technologies: wafer based PV and rigid and flexible thin-film PV. Breakthroughs are in very early detection of corrosion, in quantitative characterization of adhesion, in-situ detection of humidity and oxygen inside modules, and ultra-fast screening of materials on UV stability.

  8. Expansion of highly activated invariant natural killer T cells with altered phenotype in acute dengue infection.

    Science.gov (United States)

    Kamaladasa, A; Wickramasinghe, N; Adikari, T N; Gomes, L; Shyamali, N L A; Salio, M; Cerundolo, V; Ogg, G S; Malavige, G Neelika

    2016-08-01

    Invariant natural killer T (iNKT) cells are capable of rapid activation and production of cytokines upon recognition of antigenic lipids presented by CD1d molecules. They have been shown to play a significant role in many viral infections and were observed to be highly activated in patients with acute dengue infection. In order to characterize further their role in dengue infection, we investigated the proportion of iNKT cells and their phenotype in adult patients with acute dengue infection. The functionality of iNKT cells in patients was investigated by both interferon (IFN)-γ and interleukin (IL)-4 ex-vivo enzyme-linked immunospot (ELISPOT) assays following stimulation with alpha-galactosyl-ceramide (αGalCer). We found that circulating iNKT cell proportions were significantly higher (P = 0·03) in patients with acute dengue when compared to healthy individuals and were predominantly of the CD4(+) subset. iNKT cells of patients with acute dengue had reduced proportions expressing CD8α and CD161 when compared to healthy individuals. The iNKT cells of patients were highly activated and iNKT activation correlated significantly with dengue virus-specific immunoglobulin (Ig)G antibody levels. iNKT cells expressing Bcl-6 (P = 0·0003) and both Bcl-6 and inducible T cell co-stimulator (ICOS) (P = 0·006) were increased significantly in patients when compared to healthy individuals. Therefore, our data suggest that in acute dengue infection there is an expansion of highly activated CD4(+) iNKT cells, with reduced expression of CD161 markers. PMID:26874822

  9. Cranberry and Grape Seed Extracts Inhibit the Proliferative Phenotype of Oral Squamous Cell Carcinomas

    Directory of Open Access Journals (Sweden)

    Kourt Chatelain

    2011-01-01

    Full Text Available Proanthocyanidins, compounds highly concentrated in dietary fruits, such as cranberries and grapes, demonstrate significant cancer prevention potential against many types of cancer. The objective of this study was to evaluate cranberry and grape seed extracts to quantitate and compare their anti-proliferative effects on the most common type of oral cancer, oral squamous cell carcinoma. Using two well-characterized oral squamous cell carcinoma cell lines, CAL27 and SCC25, assays were performed to evaluate the effects of cranberry and grape seed extract on phenotypic behaviors of these oral cancers. The proliferation of both oral cancer cell lines was significantly inhibited by the administration of cranberry and grape seed extracts, in a dose-dependent manner. In addition, key regulators of apoptosis, caspase-2 and caspase-8, were concomitantly up-regulated by these treatments. However, cranberry and grape seed extracts elicited differential effects on cell adhesion, cell morphology, and cell cycle regulatory pathways. This study represents one of the first comparative investigations of cranberry and grape seed extracts and their anti-proliferative effects on oral cancers. Previous findings using purified proanthocyanidin from grape seed extract demonstrated more prominent growth inhibition, as well as apoptosis-inducing, properties on CAL27 cells. These observations provide evidence that cranberry and grape seed extracts not only inhibit oral cancer proliferation but also that the mechanism of this inhibition may function by triggering key apoptotic regulators in these cell lines. This information will be of benefit to researchers interested in elucidating which dietary components are central to mechanisms involved in the mediation of oral carcinogenesis and progression.

  10. Tc17 cells are capable of mediating immunity to vaccinia virus by acquisition of a cytotoxic phenotype

    OpenAIRE

    Yeh, Norman; Glosson, Nicole L.; Wang, Nan; Guindon, Lynette; McKinley, Carl; Hamada, Hiromasa; Li, Qingsheng; Dutton, Richard W.; Shrikant, Protul; Zhou, Baohua; Brutkiewicz, Randy R.; Blum, Janice S.; Kaplan, Mark H.

    2010-01-01

    CD8 T cells can acquire cytokine-secreting phenotypes paralleling cytokine production from Th cells. IL-17-secreting CD8 T cells, termed Tc17 cells, have been shown to promote inflammation and mediate immunity to influenza. However, most reports have observed a lack of cytotoxic activity by Tc17 cells. In this report, we explored the anti-viral activity of Tc17 cells using a vaccinia virus infection (VV) model. Tc17 cells expanded during VV infection, and TCR transgenic Tc17 cells were capabl...

  11. Long Term Culture of the A549 Cancer Cell Line Promotes Multilamellar Body Formation and Differentiation towards an Alveolar Type II Pneumocyte Phenotype

    Science.gov (United States)

    Cooper, James Ross; Abdullatif, Muhammad Bilal; Burnett, Edward C.; Kempsell, Karen E.; Conforti, Franco; Tolley, Howard; Collins, Jane E.; Davies, Donna E.

    2016-01-01

    Pulmonary research requires models that represent the physiology of alveolar epithelium but concerns with reproducibility, consistency and the technical and ethical challenges of using primary or stem cells has resulted in widespread use of continuous cancer or other immortalized cell lines. The A549 ‘alveolar’ cell line has been available for over four decades but there is an inconsistent view as to its suitability as an appropriate model for primary alveolar type II (ATII) cells. Since most work with A549 cells involves short term culture of proliferating cells, we postulated that culture conditions that reduced proliferation of the cancer cells would promote a more differentiated ATII cell phenotype. We examined A549 cell growth in different media over long term culture and then used microarray analysis to investigate temporal regulation of pathways involved in cell cycle and ATII differentiation; we also made comparisons with gene expression in freshly isolated human ATII cells. Analyses indicated that long term culture in Ham’s F12 resulted in substantial modulation of cell cycle genes to result in a quiescent population of cells with significant up-regulation of autophagic, differentiation and lipidogenic pathways. There were also increased numbers of up- and down-regulated genes shared with primary cells suggesting adoption of ATII characteristics and multilamellar body (MLB) development. Subsequent Oil Red-O staining and Transmission Electron Microscopy confirmed MLB expression in the differentiated A549 cells. This work defines a set of conditions for promoting ATII differentiation characteristics in A549 cells that may be advantageous for studies with this cell line. PMID:27792742

  12. 1,25-Dihydroxyvitamin D3 and its analog TX527 promote a stable regulatory T cell phenotype in T cells from type 1 diabetes patients.

    Science.gov (United States)

    Van Belle, Tom L; Vanherwegen, An-Sofie; Feyaerts, Dorien; De Clercq, Pierre; Verstuyf, Annemieke; Korf, Hannelie; Gysemans, Conny; Mathieu, Chantal

    2014-01-01

    The emergence of regulatory T cells (Tregs) as central mediators of peripheral tolerance in the immune system has led to an important area of clinical investigation to target these cells for the treatment of autoimmune diseases such as type 1 diabetes. We have demonstrated earlier that in vitro treatment of T cells from healthy individuals with TX527, a low-calcemic analog of bioactive vitamin D, can promote a CD4+ CD25high CD127low regulatory profile and imprint a migratory signature specific for homing to sites of inflammation. Towards clinical application of vitamin D-induced Tregs in autologous adoptive immunotherapy for type 1 diabetes, we show here that 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and TX527 similarly imprint T cells from type 1 diabetes patients with a CD4+ CD25high CD127low regulatory profile, modulate surface expression of skin- and inflammation-homing receptors, and increase expression of CTLA-4 and OX-40. Also, 1,25(OH)2D3 and TX527 treatment inhibit the production of effector cytokines IFN-γ, IL-9, and IL-17. Importantly, 1,25(OH)2D3 and TX527 promote the induction of IL-10-producing CD4+ CD25high CD127low T cells with a stable phenotype and the functional capacity to suppress proliferation of autologous responder T cells in vitro. These findings warrant additional validation of vitamin D-induced Tregs in view of future autologous adoptive immunotherapy in type 1 diabetes. PMID:25279717

  13. 1,25-Dihydroxyvitamin D3 and its analog TX527 promote a stable regulatory T cell phenotype in T cells from type 1 diabetes patients.

    Directory of Open Access Journals (Sweden)

    Tom L Van Belle

    Full Text Available The emergence of regulatory T cells (Tregs as central mediators of peripheral tolerance in the immune system has led to an important area of clinical investigation to target these cells for the treatment of autoimmune diseases such as type 1 diabetes. We have demonstrated earlier that in vitro treatment of T cells from healthy individuals with TX527, a low-calcemic analog of bioactive vitamin D, can promote a CD4+ CD25high CD127low regulatory profile and imprint a migratory signature specific for homing to sites of inflammation. Towards clinical application of vitamin D-induced Tregs in autologous adoptive immunotherapy for type 1 diabetes, we show here that 1,25-dihydroxyvitamin D3 [1,25(OH2D3] and TX527 similarly imprint T cells from type 1 diabetes patients with a CD4+ CD25high CD127low regulatory profile, modulate surface expression of skin- and inflammation-homing receptors, and increase expression of CTLA-4 and OX-40. Also, 1,25(OH2D3 and TX527 treatment inhibit the production of effector cytokines IFN-γ, IL-9, and IL-17. Importantly, 1,25(OH2D3 and TX527 promote the induction of IL-10-producing CD4+ CD25high CD127low T cells with a stable phenotype and the functional capacity to suppress proliferation of autologous responder T cells in vitro. These findings warrant additional validation of vitamin D-induced Tregs in view of future autologous adoptive immunotherapy in type 1 diabetes.

  14. HIV-Specific ADCC Improves After Antiretroviral Therapy and Correlates With Normalization of the NK Cell Phenotype

    DEFF Research Database (Denmark)

    Jensen, Sanne S; Hartling, Hans J; Tingstedt, Jeanette L;

    2015-01-01

    BACKGROUND: Natural killer (NK) cell phenotype and function have recently gained much attention as playing crucial roles in antibody-dependent cellular cytotoxicity (ADCC). We investigated NK cell function, as measured by ADCC, in HIV-1-positive individuals before and 6 months after highly active...... antiretroviral therapy (HAART) initiation. METHOD: The ability of antibodies and NK cells to mediate ADCC was investigated separately and in combination in an autologous model. The NK cell subset distribution and NK cell phenotype (ie, expression of maturation and activation markers within NK cell subsets) were....... For individuals with no increase in ADCC after 6 months of HAART, the frequency of NK cells expressing NKp46 was downregulated. The ability of antibodies to mediate ADCC alone and in combination in an autologous model was not improved. CONCLUSIONS: HAART improves the ability of NK cells to mediate ADCC after 6...

  15. The microenvironment determines the breast cancer cells' phenotype: organization of MCF7 cells in 3D cultures

    Directory of Open Access Journals (Sweden)

    Soto Ana M

    2010-06-01

    Full Text Available Abstract Background Stromal-epithelial interactions mediate breast development, and the initiation and progression of breast cancer. In the present study, we developed 3-dimensional (3D in vitro models to study breast cancer tissue organization and the role of the microenvironment in phenotypic determination. Methods The human breast cancer MCF7 cells were grown alone or co-cultured with primary human breast fibroblasts. Cells were embedded in matrices containing either type I collagen or a combination of reconstituted basement membrane proteins and type I collagen. The cultures were carried out for up to 6 weeks. For every time point (1-6 weeks, the gels were fixed and processed for histology, and whole-mounted for confocal microscopy evaluation. The epithelial structures were characterized utilizing immunohistochemical techniques; their area and proliferation index were measured using computerized morphometric analysis. Statistical differences between groups were analyzed by ANOVA, Dunnett's T3 post-hoc test and chi-square. Results Most of the MCF7 cells grown alone within a collagen matrix died during the first two weeks; those that survived organized into large, round and solid clusters. The presence of fibroblasts in collagen gels reduced MCF7 cell death, induced cell polarity, and the formation of round and elongated epithelial structures containing a lumen. The addition of reconstituted basement membrane to collagen gels by itself had also survival and organizational effects on the MCF7 cells. Regardless of the presence of fibroblasts, the MCF7 cells both polarized and formed a lumen. The addition of fibroblasts to the gel containing reconstituted basement membrane and collagen induced the formation of elongated structures. Conclusions Our results indicate that a matrix containing both type I collagen and reconstituted basement membrane, and the presence of normal breast fibroblasts constitute the minimal permissive microenvironment to

  16. The microenvironment determines the breast cancer cells' phenotype: organization of MCF7 cells in 3D cultures

    International Nuclear Information System (INIS)

    Stromal-epithelial interactions mediate breast development, and the initiation and progression of breast cancer. In the present study, we developed 3-dimensional (3D) in vitro models to study breast cancer tissue organization and the role of the microenvironment in phenotypic determination. The human breast cancer MCF7 cells were grown alone or co-cultured with primary human breast fibroblasts. Cells were embedded in matrices containing either type I collagen or a combination of reconstituted basement membrane proteins and type I collagen. The cultures were carried out for up to 6 weeks. For every time point (1-6 weeks), the gels were fixed and processed for histology, and whole-mounted for confocal microscopy evaluation. The epithelial structures were characterized utilizing immunohistochemical techniques; their area and proliferation index were measured using computerized morphometric analysis. Statistical differences between groups were analyzed by ANOVA, Dunnett's T3 post-hoc test and chi-square. Most of the MCF7 cells grown alone within a collagen matrix died during the first two weeks; those that survived organized into large, round and solid clusters. The presence of fibroblasts in collagen gels reduced MCF7 cell death, induced cell polarity, and the formation of round and elongated epithelial structures containing a lumen. The addition of reconstituted basement membrane to collagen gels by itself had also survival and organizational effects on the MCF7 cells. Regardless of the presence of fibroblasts, the MCF7 cells both polarized and formed a lumen. The addition of fibroblasts to the gel containing reconstituted basement membrane and collagen induced the formation of elongated structures. Our results indicate that a matrix containing both type I collagen and reconstituted basement membrane, and the presence of normal breast fibroblasts constitute the minimal permissive microenvironment to induce near-complete tumor phenotype reversion. These human

  17. Comparison of photovoltaic cell temperatures in modules operating with exposed and enclosed back surfaces

    Science.gov (United States)

    Namkoong, D.; Simon, F. F.

    1981-01-01

    Four different photovoltaic module designs were tested to determine the cell temperature of each design. The cell temperatures were compared to those obtained on identical design, using the same nominal operating cell temperature (NOCT) concept. The results showed that the NOCT procedure does not apply to the enclosed configurations due to continuous transient conditions. The enclosed modules had higher cell temperatures than the open modules, and insulated modules higher than the uninsulated. The severest performance loss - when translated from cell temperatures - 17.5 % for one enclosed, insulated module as a compared to that module mounted openly.

  18. Characterization of T cell clones from chagasic patients: predominance of CD8 surface phenotype in clones from patients with pathology

    Directory of Open Access Journals (Sweden)

    Washington R. Cuna

    1995-08-01

    Full Text Available Human Chagas' disease, caused by the protozoan Trypanosoma cruzi, is associated with pathological processes whose mechanisms are not known. To address this question, T cell lines were developed from chronic chagasic patients peripheral blood mononuclear cells (PBMC and cloned. These T cell clones (TCC were analyzed phenotypically with monoclonal antibodies by the use of a fluorescence microscope. The surface phenotype of the TCC from the asymptomatic patient were predominantly CD4 positive (86%. On the contrary, the surface phenotype CD8 was predominant in the TCC from the patients suffering from cardiomegaly with right bundle branch block (83%, bradycardia with megacolon (75 % and bradycardia (75%. Future studies will be developed in order to identify the antigens eliciting these T cell subpopulations.

  19. Equine herpesvirus type 1 modulates inflammatory host immune response genes in equine endothelial cells.

    Science.gov (United States)

    Johnstone, Stephanie; Barsova, Jekaterina; Campos, Isabel; Frampton, Arthur R

    2016-08-30

    Equine herpesvirus myeloencephalopathy (EHM), a disease caused by equine herpesvirus type 1 (EHV-1), is characterized by severe inflammation, thrombosis, and hypoxia in central nervous system (CNS) endothelial cells, which can result in a spectrum of clinical signs including urinary incontinence, ataxia, and paralysis. Strains of EHV-1 that contain a single point mutation within the viral DNA polymerase (nucleotide A2254>G2254: amino acid N752→D752) are isolated from EHM afflicted horses at higher frequencies than EHV-1 strains that do not harbor this mutation. Due to the correlation between the DNA Pol mutation and EHM disease, EHV-1 strains that contain the mutation have been designated as neurologic. In this study, we measured virus replication, cell to cell spread efficacy, and host inflammatory responses in equine endothelial cells infected with 12 different strains of EHV-1. Two strains, T953 (Ohio 2003) (neurologic) and Kentucky A (KyA) (non-neurologic), have well described disease phenotypes while the remaining strains used in this study are classified as neurologic or non-neurologic based solely on the presence or absence of the DNA pol mutation, respectively. Results show that the neurologic strains do not replicate better or spread more efficiently in endothelial cells. Also, the majority of the host inflammatory genes were modulated similarly regardless of EHV-1 genotype. Analyses of host gene expression showed that a subset of pro-inflammatory cytokines, including the CXCR3 ligands CXCL9, CXCL10, and CXCL11, as well as CCL5, IL-6 and TNF-α were consistently up-regulated in endothelial cells infected with each EHV-1 strain. The identification of specific pro-inflammatory cytokines in endothelial cells that are modulated by EHV-1 provides further insight into the factors that contribute to the immunopathology observed after infection and may also reveal new targets for disease intervention. PMID:27527764

  20. Phenotypic characterization of GPR120-expressing cells in the interstitial tissue of pancreas.

    Science.gov (United States)

    Zhao, Yufeng; Zha, Dingjun; Wang, Li; Qiao, Li; Lu, Lianjun; Mei, Lin; Chen, Chen; Qiu, Jianhua

    2013-12-01

    GPR120 functions as a plasma membrane receptor for unsaturated long-chain free fatty acids and involves in GLP-1 secretion, adipogenesis and the control of energy balance. Pancreas is the key organ in fuel and energy metabolism. Here GPR120 expression in human and rat pancreas was observed by RT-PCR, and the distribution and phenotypes of GPR120-positive cells in human and rat pancreas were shown by immunohistochemical staining. GPR120 mRNA expression was found in human and rat pancreas. GPR120-positive cells were scattered mainly in the interstitial tissues of human and rat pancreas, and they were not co-localized with nestin, vimentin, alpha-SMA and glucagon, respectively. However, GPR120 was distributed on the cells positively stained by CD68, the specific marker of macrophages, and on the cells positive stained by CD34 and CD117, the markers of interstitial cells. In conclusion, this study demonstrates the expression of GPR120 in pancreas and shows the distribution of GPR120 in human and rat pancreas.

  1. Molecular and phenotypic characterisation of paediatric glioma cell lines as models for preclinical drug development.

    Directory of Open Access Journals (Sweden)

    Dorine A Bax

    Full Text Available BACKGROUND: Although paediatric high grade gliomas resemble their adult counterparts in many ways, there appear to be distinct clinical and biological differences. One important factor hampering the development of new targeted therapies is the relative lack of cell lines derived from childhood glioma patients, as it is unclear whether the well-established adult lines commonly used are representative of the underlying molecular genetics of childhood tumours. We have carried out a detailed molecular and phenotypic characterisation of a series of paediatric high grade glioma cell lines in comparison to routinely used adult lines. PRINCIPAL FINDINGS: All lines proliferate as adherent monolayers and express glial markers. Copy number profiling revealed complex genomes including amplification and deletions of genes known to be pivotal in core glioblastoma signalling pathways. Expression profiling identified 93 differentially expressed genes which were able to distinguish between the adult and paediatric high grade cell lines, including a number of kinases and co-ordinated sets of genes associated with DNA integrity and the immune response. SIGNIFICANCE: These data demonstrate that glioma cell lines derived from paediatric patients show key molecular differences to those from adults, some of which are well known, whilst others may provide novel targets for evaluation in primary tumours. We thus provide the rationale and demonstrate the practicability of using paediatric glioma cell lines for preclinical and mechanistic studies.

  2. CdTe Thin Film Solar Cells and Modules Tutorial; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Albin, David S.

    2015-06-13

    This is a tutorial presented at the 42nd IEEE Photovoltaics Specialists Conference to cover the introduction, background, and updates on CdTe cell and module technology, including CdTe cell and module structure and fabrication.

  3. Immunosuppression in murine renal cell carcinoma. II. Identification of responsible lymphoid cell phenotypes and examination of elimination of suppression.

    Science.gov (United States)

    Gregorian, S K; Battisto, J R

    1990-01-01

    In our companion paper we have reported that cell-mediated immunity of mice bearing renal cell carcinoma is profoundly suppressed. The non-responsiveness of such animals was found to be attributable to Renca cells themselves and to splenic lymphoid cells that down-regulate other fully capable lymphoid cells. In this communication the lymphoid cell source of suppression within Renca-bearing mice has been explored with the aim of identifying phenotypes of the responsible cells, the manner by which suppression is mediated, and initial ways by which suppression may be eliminated. A plastic-adherent cell bearing the Thy1.2 surface marker as well as the Lyt1 and Lyt2 antigens has been found to operate, perhaps in conjunction with macrophages, to down-regulate lymphokine-activated killer (LAK) cell development for natural killer (NK) and non-NK targets that include Renca cells themselves. The splenic suppressor cells lost the capacity to suppress the NK response of normal recipient mice upon shallow irradiation (250 rad) prior to adoptive transfer. Spleen cells, presumably macrophages, from Renca-bearing mice were found to suppress the generation of LAK and NK cells in vitro by synthesizing prostaglandins. Indomethacin, a prostaglandin synthetase inhibitor, blocked the induction of suppression both in vitro and in vivo, suggesting the presence of endogenous prostaglandins in Renca-bearing mice. The suppression seen in Renca-bearing mice that derives from multiple sources and has been prevented by two separate methods has been discussed from the viewpoint of the inter-relatedness of the sources. PMID:1974826

  4. Phenotypical and functional characteristics of mesenchymal stem cells derived from equine umbilical cord blood.

    Science.gov (United States)

    Mohanty, N; Gulati, B R; Kumar, R; Gera, S; Kumar, S; Kumar, P; Yadav, P S

    2016-08-01

    Mesenchymal stem cells (MSCs) offer promise as therapeutic aid in the repair of tendon and ligament injuries in race horses. Fetal adnexa is considered as an ideal source of MSCs due to many advantages, including non-invasive nature of isolation procedures and availability of large tissue mass for harvesting the cells. However, MSCs isolated from equine fetal adnexa have not been fully characterized due to lack of species-specific markers. Therefore, this study was carried out to isolate MSCs from equine umbilical cord blood (UCB) and characterize them using cross-reactive markers. The plastic-adherent cells could be isolated from 13 out of 20 (65 %) UCB samples. The UCB derived cells proliferated till passage 20 with average cell doubling time of 46.40 ± 2.86 h. These cells expressed mesenchymal surface markers but did not express haematopoietic/leucocytic markers by RT-PCR and immunocytochemistry. The phenotypic expression of CD29, CD44, CD73 and CD90 was shown by 96.36 ± 1.28, 93.40 ± 0.70, 73.23 ± 1.29 and 46.75 ± 3.95 % cells, respectively in flow cytometry, whereas, reactivity against the haematopoietic antigens CD34 and CD45 was observed only in 2.4 ± 0.20 and 0.1 ± 0.0 % of cells, respectively. Osteogenic and chondrogenic differentiation could be achieved using established methods, whereas the optimum adipogenic differentiation was achieved after supplementing media with 15 % rabbit serum and 20 ng/ml of recombinant human insulin. In this study, we optimized methodology for isolation, cultural characterization, differentiation and immunophenotyping of MSCs from equine UCB. Protocols and markers used in this study can be employed for unequivocal characterization of equine MSCs. PMID:25487085

  5. B cells as a target of immune modulation

    Directory of Open Access Journals (Sweden)

    Hawker Kathleen

    2009-01-01

    Full Text Available B cells have recently been identified as an integral component of the immune system; they play a part in autoimmunity through antigen presentation, antibody secretion, and complement activation. Animal models of multiple sclerosis (MS suggest that myelin destruction is partly mediated through B cell activation (and plasmablasts. MS patients with evidence of B cell involvement, as compared to those without, tend to have a worse prognosis. Finally, the significant decrease in new gadolinium-enhancing lesions, new T2 lesions, and relapses in MS patients treated with rituximab (a monoclonal antibody against CD20 on B cells leads us to the conclusion that B cells play an important role in MS and that immune modulation of these cells may ameliorate the disease. This article will explore the role of B cells in MS and the rationale for the development of B cell-targeted therapeutics. MS is an immune-mediated disease that affects over 2 million people worldwide and is the number one cause of disability in young patients. Most therapeutic targets have focused on T cells; however, recently, the focus has shifted to the role of B cells in the pathogenesis of MS and the potential of B cells as a therapeutic target.

  6. Automated three-dimensional single cell phenotyping of spindle dynamics, cell shape, and volume

    CERN Document Server

    Plumb, Kemp; Pelletier, Vincent; Kilfoil, Maria L

    2015-01-01

    We present feature finding and tracking algorithms in 3D in living cells, and demonstrate their utility to measure metrics important in cell biological processes. We developed a computational imaging hybrid approach that combines automated three-dimensional tracking of point-like features with surface determination from which cell (or nuclear) volume, shape, and planes of interest can be extracted. After validation, we applied the technique to real space context-rich dynamics of the mitotic spindle, and cell volume and its relationship to spindle length, in dividing living cells. These methods are additionally useful for automated segregation of pre-anaphase and anaphase spindle populations in budding yeast. We found that genetic deletion of the yeast kinesin-5 mitotic motor cin8 leads to large mother and daughter cells that were indistinguishable based on size, and that in those cells the spindle length becomes uncorrelated with cell size. The technique can be used to visualize and quantify tracked feature c...

  7. Activated Notch Causes Deafness by Promoting a Supporting Cell Phenotype in Developing Auditory Hair Cells

    OpenAIRE

    Grace Savoy-Burke; Felicia A Gilels; Wei Pan; Diana Pratt; Jianwen Que; Lin Gan; White, Patricia M.; Kiernan, Amy E.

    2014-01-01

    Purpose To determine whether activated Notch can promote a supporting cell fate during sensory cell differentiation in the inner ear. Methods An activated form of the Notch1 receptor (NICD) was expressed in early differentiating hair cells using a Gfi1-Cre mouse allele. To determine the effects of activated Notch on developing hair cells, Gfi1-NICD animals and their littermate controls were assessed at 5 weeks for hearing by measuring auditory brainstem responses (ABRs) and distortion product...

  8. Radio-frequency-modulated Rydberg states in a vapor cell

    CERN Document Server

    Miller, Stephanie A; Raithel, Georg

    2016-01-01

    We measure strong radio-frequency (RF) electric fields using rubidium Rydberg atoms prepared in a room-temperature vapor cell as field sensors. Electromagnetically induced transparency is employed as an optical readout. We RF-modulate the 60$S_{1/2}$ and 58$D_{5/2}$ Rydberg states with 50~MHz and 100~MHz fields, respectively. For weak to moderate RF fields, the Rydberg levels become Stark-shifted, and sidebands appear at even multiples of the driving frequency. In high fields, the adjacent hydrogenic manifold begins to intersect the shifted levels, providing rich spectroscopic structure suitable for precision field measurements. A quantitative description of strong-field level modulation and mixing of $S$ and $D$ states with hydrogenic states is provided by Floquet theory. Additionally, we estimate the shielding of DC electric fields in the interior of the glass vapor cell.

  9. Molecular Pathways Regulating Macrovascular Pathology and Vascular Smooth Muscle Cells Phenotype in Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Sara Casella

    2015-10-01

    Full Text Available Type 2 diabetes mellitus (T2DM is a disease reaching a pandemic proportion in developed countries and a major risk factor for almost all cardiovascular diseases and their adverse clinical manifestations. T2DM leads to several macrovascular and microvascular alterations that influence the progression of cardiovascular diseases. Vascular smooth muscle cells (VSMCs are fundamental players in macrovascular alterations of T2DM patients. VSMCs display phenotypic and functional alterations that reflect an altered intracellular biomolecular scenario of great vessels of T2DM patients. Hyperglycemia itself and through intraparietal accumulation of advanced glycation-end products (AGEs activate different pathways, in particular nuclear factor-κB and MAPKs, while insulin and insulin growth-factor receptors (IGFR are implicated in the activation of Akt and extracellular-signal-regulated kinases (ERK 1/2. Nuclear factor-κB is also responsible of increased susceptibility of VSMCs to pro-apoptotic stimuli. Down-regulation of insulin growth-factor 1 receptors (IGFR-1R activity in diabetic vessels also influences negatively miR-133a levels, so increasing apoptotic susceptibility of VSMCs. Alterations of those bimolecular pathways and related genes associate to the prevalence of a synthetic phenotype of VSMCs induces extracellular matrix alterations of great vessels. A better knowledge of those biomolecular pathways and related genes in VSMCs will help to understand the mechanisms leading to macrovascular alterations in T2DM patients and to suggest new targeted therapies.

  10. Prognostic significance of CpG island methylator phenotype in surgically resected small cell lung carcinoma.

    Science.gov (United States)

    Saito, Yuichi; Nagae, Genta; Motoi, Noriko; Miyauchi, Eisaku; Ninomiya, Hironori; Uehara, Hirofumi; Mun, Mingyon; Okumura, Sakae; Ohyanagi, Fumiyoshi; Nishio, Makoto; Satoh, Yukitoshi; Aburatani, Hiroyuki; Ishikawa, Yuichi

    2016-03-01

    Methylation is closely involved in the development of various carcinomas. However, few datasets are available for small cell lung cancer (SCLC) due to the scarcity of fresh tumor samples. The aim of the present study is to clarify relationships between clinicopathological features and results of the comprehensive genome-wide methylation profile of SCLC. We investigated the genome-wide DNA methylation status of 28 tumor and 13 normal lung tissues, and gene expression profiling of 25 SCLC tissues. Following unsupervised hierarchical clustering and non-negative matrix factorization, gene ontology analysis was performed. Clustering of SCLC led to the important identification of a CpG island methylator phenotype (CIMP) of the tumor, with a significantly poorer prognosis (P = 0.002). Multivariate analyses revealed that postoperative chemotherapy and non-CIMP were significantly good prognostic factors. Ontology analyses suggested that the extrinsic apoptosis pathway was suppressed, including TNFRSF1A, TNFRSF10A and TRADD in CIMP tumors. Here we revealed that CIMP was an important prognostic factor for resected SCLC. Delineation of this phenotype may also be useful for the development of novel apoptosis-related chemotherapeutic agents for treatment of the aggressive tumor.

  11. Promoter DNA methylation of farnesoid X receptor and pregnane X receptor modulates the intrahepatic cholestasis of pregnancy phenotype.

    Directory of Open Access Journals (Sweden)

    Romina Cabrerizo

    Full Text Available The intrahepatic cholestasis of pregnancy (ICP is a multifactorial liver disorder which pathogenesis involves the interplay among abnormal bile acid (BA levels, sex hormones, environmental factors, and genetic susceptibility. The dynamic nature of ICP that usually resolves soon after delivery suggests the possibility that its pathobiology is under epigenetic modulation. We explored the status of white blood peripheral cells-DNA methylation of CpG-enriched sites at the promoter of targeted genes (FXR/NR1H4, PXR/NR1I2, NR1I3, ESR1, and ABCC2 in a sample of 88 ICP patients and 173 healthy pregnant women in the third trimester of their pregnancies. CpG dinucleotides at the gene promoter of nuclear receptors subfamily 1 members and ABCC2 transporter were highly methylated during healthy pregnancy. We observed significant differences at the distal (-1890 and proximal promoter (-358 CpG sites of the FXR/NR1H4 and at the distal PXR/NR1I2 (-1224 promoter, which were consistently less methylated in ICP cases when compared with controls. In addition, we observed that methylation at FXR/NR1H4-1890 and PXR/NR1I2-1224 promoter sites was highly and positively correlated with BA profiling, particularly, conjugated BAs. Conversely, methylation level at the proximal FXR/NR1H4-358 CpG site was significantly and negatively correlated with the primary cholic and secondary deoxycholic acid. In vitro exploration showed that epiallopregnanolone sulfate, a reported FXR inhibitor, regulates the transcriptional activity of FXR/NR1H4 but seems to be not involved in the methylation changes. In conclusion, the identification of epigenetic marks in target genes provides a basis for the understanding of adverse liver-related pregnancy outcomes, including ICP.

  12. Significance of Epithelial-mesenchaymal Transition Phenotype in Invasive Tumor Front Cells of Lung Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Yinghua SONG

    2014-04-01

    Full Text Available Background and objective The invasive tumor front (ITF refers to cells or invasive nests in the junctional region of a tumor and its host. The ITF contains the most invasive cells of a tumor, and has a high prognostic value in carcinoma. The aim of this study is to investigate the epithelial-mesenchymal transformation phenotype in ITF cells of lung squamous cell carcinoma (SCC, and analyze the relationship between clinicopathological features and clinical outcomes of patients. Methods Semiquantitative immunohistochemistry was used to examine the expression of epithelial markers (E-cadherin and β-catenin and mesenchymal marker (vimentin in 104 lung SCC tumor tissues. Results A decrease in E-cadherin expression in ITF cells was observed in 56 of 104 (53.8% tumors from patients. This result was markedly lower than that of non-ITF cells, which eventually developed metastatic tumors and were also associated with death (P=0.04. Vimentin expression was observed in 44 of 104 (42.3% ITF cells, which was much higher than that of non-ITF cells. The downregulation of E-cadherin and overexpression of vimentin were associated with tumor invasive pattern, lymphatic metastasis, and poor prognosis (P<0.01. The expression of β-catenin was 67.3% (70/104 in ITF cells. Moreover, ITF cells showed more nuclear and plasma-positive cells, which were closely associated with metastasis (P<0.01. Conclusion The loss in expression of E-cadherin/β-catenin and overexpression of vimentin in ITF cells may be associated with poor prognosis of lung SCC patients.

  13. Extracellular microvesicle microRNAs in children with sickle cell anaemia with divergent clinical phenotypes.

    Science.gov (United States)

    Khalyfa, Abdelnaby; Khalyfa, Ahamed A; Akbarpour, Mahzad; Connes, Phillippe; Romana, Marc; Lapping-Carr, Gabrielle; Zhang, Chunling; Andrade, Jorge; Gozal, David

    2016-09-01

    Sickle cell anaemia (SCA) is the most frequent genetic haemoglobinopathy, which exhibits a highly variable clinical course characterized by hyper-coagulable and pro-inflammatory states, as well as endothelial dysfunction. Extracellular microvesicles are released into biological fluids and play a role in modifying the functional phenotype of target cells. We hypothesized that potential differences in plasma-derived extracellular microvesicles (EV) function and cargo from SCA patients may underlie divergent clinical trajectories. Plasma EV from SCA patients with mild, intermediate and severe clinical disease course were isolated, and primary endothelial cell cultures were exposed. Endothelial cell activation, monocyte adhesion, barrier disruption and exosome cargo (microRNA microarrays) were assessed. EV disrupted the endothelial barrier and induced expression of adhesion molecules and monocyte adhesion in a SCA severity-dependent manner compared to healthy children. Microarray approaches identified a restricted signature of exosomal microRNAs that readily distinguished severe from mild SCA, as well as from healthy children. The microRNA candidates were further validated using quantitative real time polymerase chain reaction assays, and revealed putative gene targets. Circulating exosomal microRNAs may play important roles in predicting the clinical course of SCA, and in delineation of individually tailored, mechanistically-based clinical treatment approaches of SCA patients in the near future. PMID:27161653

  14. Beyond the Definitions of the Phenotypic Complications of Sickle Cell Disease: An Update on Management

    Directory of Open Access Journals (Sweden)

    Samir K. Ballas

    2012-01-01

    Full Text Available The sickle hemoglobin is an abnormal hemoglobin due to point mutation (GAG → GTG in exon 1 of the β globin gene resulting in the substitution of glutamic acid by valine at position 6 of the β globin polypeptide chain. Although the molecular lesion is a single-point mutation, the sickle gene is pleiotropic in nature causing multiple phenotypic expressions that constitute the various complications of sickle cell disease in general and sickle cell anemia in particular. The disease itself is chronic in nature but many of its complications are acute such as the recurrent acute painful crises (its hallmark, acute chest syndrome, and priapism. These complications vary considerably among patients, in the same patient with time, among countries and with age and sex. To date, there is no well-established consensus among providers on the management of the complications of sickle cell disease due in part to lack of evidence and in part to differences in the experience of providers. It is the aim of this paper to review available current approaches to manage the major complications of sickle cell disease. We hope that this will establish another preliminary forum among providers that may eventually lead the way to better outcomes.

  15. Acquiring Chondrocyte Phenotype from Human Mesenchymal Stem Cells under Inflammatory Conditions

    Directory of Open Access Journals (Sweden)

    Masahiro Kondo

    2014-11-01

    Full Text Available An inflammatory milieu breaks down the cartilage matrix and induces chondrocyte apoptosis, resulting in cartilage destruction in patients with cartilage degenerative diseases, such as rheumatoid arthritis or osteoarthritis. Because of the limited regenerative ability of chondrocytes, defects in cartilage are irreversible and difficult to repair. Mesenchymal stem cells (MSCs are expected to be a new tool for cartilage repair because they are present in the cartilage and are able to differentiate into multiple lineages of cells, including chondrocytes. Although clinical trials using MSCs for patients with cartilage defects have already begun, its efficacy and repair mechanisms remain unknown. A PubMed search conducted in October 2014 using the following medical subject headings (MeSH terms: mesenchymal stromal cells, chondrogenesis, and cytokines resulted in 204 articles. The titles and abstracts were screened and nine articles relevant to “inflammatory” cytokines and “human” MSCs were identified. Herein, we review the cell biology and mechanisms of chondrocyte phenotype acquisition from human MSCs in an inflammatory milieu and discuss the clinical potential of MSCs for cartilage repair.

  16. Abnormal phenotypic distribution of regulatory and effector T cells in octogenarian and nonagenarian women

    Directory of Open Access Journals (Sweden)

    Wilson de Melo Cruvinel

    2015-08-01

    Full Text Available SummaryIntroduction:aging is associated with several immunologic changes. Regulatory (Treg and effector T cells are involved in the pathogenesis of infectious, neoplastic, and autoimmune diseases. Little is known about the effects of aging on the frequency and function of these T cell subpopulations.Methods:peripheral blood mononuclear cells (PBMC were obtained from 26 young (under 44 years old and 18 elderly (above 80 years old healthy women. T cell subpopulations were analyzed by flow cytometry.Results:elderly individuals had lower frequency of several activated effector T cell phenotypes as compared with young individuals: CD3+CD4+CD25+ (3.82±1.93 versus 9.53±4.49; p<0.0001; CD3+CD4+CD25+CD127+(2.39±1.19 versus 7.26±3.84; p<0.0001; CD3+CD4+CD25+ (0.41±0.22 versus 1.86±0.85, p<0.0001; and CD3+CD4+CD25highCD127+(0.06±0.038 versus 0.94±0.64, p<0.0001. Treg (CD3+CD4+CD25+CD127øFoxp3+ presented lower frequency in elderly individuals as compared to young adults (0.34±0.18 versus 0.76±0.48; p=0.0004 and its frequency was inversely correlated with age in the whole group (r=-0.439; p=0.013. The elderly group showed higher frequency of two undefined CD25øFoxp3+ phenotypes: CD3+CD4+CD25øFoxp3+(15.05±7.34 versus 1.65±1.71; p<0.0001 and CD3+CD4+CD25øCD127øFoxp3+(13.0±5.52 versus 3.51±2.87; p<0.0001.Conclusions:the altered proportion of different T cell subsets herein documented in healthy elderly women may be relevant to the understanding of the immunologic behavior and disease susceptibility patterns observed in geriatric patients.

  17. Renal cell carcinoma primary cultures maintain genomic and phenotypic profile of parental tumor tissues

    International Nuclear Information System (INIS)

    Clear cell renal cell carcinoma (ccRCC) is characterized by recurrent copy number alterations (CNAs) and loss of heterozygosity (LOH), which may have potential diagnostic and prognostic applications. Here, we explored whether ccRCC primary cultures, established from surgical tumor specimens, maintain the DNA profile of parental tumor tissues allowing a more confident CNAs and LOH discrimination with respect to the original tissues. We established a collection of 9 phenotypically well-characterized ccRCC primary cell cultures. Using the Affymetrix SNP array technology, we performed the genome-wide copy number (CN) profiling of both cultures and corresponding tumor tissues. Global concordance for each culture/tissue pair was assayed evaluating the correlations between whole-genome CN profiles and SNP allelic calls. CN analysis was performed using the two CNAG v3.0 and Partek software, and comparing results returned by two different algorithms (Hidden Markov Model and Genomic Segmentation). A very good overlap between the CNAs of each culture and corresponding tissue was observed. The finding, reinforced by high whole-genome CN correlations and SNP call concordances, provided evidence that each culture was derived from its corresponding tissue and maintained the genomic alterations of parental tumor. In addition, primary culture DNA profile remained stable for at least 3 weeks, till to third passage. These cultures showed a greater cell homogeneity and enrichment in tumor component than original tissues, thus enabling a better discrimination of CNAs and LOH. Especially for hemizygous deletions, primary cultures presented more evident CN losses, typically accompanied by LOH; differently, in original tissues the intensity of these deletions was weaken by normal cell contamination and LOH calls were missed. ccRCC primary cultures are a reliable in vitro model, well-reproducing original tumor genetics and phenotype, potentially useful for future functional approaches

  18. Relationship between phenotypes of cell-function differentiation and pathobiological behavior of gastric carcinomas

    Institute of Scientific and Technical Information of China (English)

    Yan Xin; Xiao Ling Li; Yan Ping Wang; Su Min Zhang; Hua Chuan Zheng; Dong Ying Wu; Yin Chang Zhang

    2001-01-01

    AIM To reveal the correlation between thefunctional differentiation phenotypes of gastriccarcinoma cells and the invasion and metastasisby a new way of cell-function classification.METHODS Surgically resected specimens of361 gastric carcinomas (GC) were investigatedwith enzyme-, mucin-, and tumor-related markerimmunohistochemist ry. According to thedirection of cell-function differentiation,stomach carcinomas were divided into fivefunctionally differentiated types.iation type (AFDT): there were 82 (22.7%)patients including 76 (92.7%) aged 45 years.Sixty-nine (84.1%) cases belonged to theintestinal type. Thirty-eight (46.3%) expressedCD44v6 and 9 (13.6%) of 66 male patientsdeveloped liver metastasis. The 5-year survivalrate of patients in this group (58.5%) was higherMucin secreting function differentiation type(MSFDT): 54 (15%) cases. Fifty-three (98.1%)tumors had penetrated the serosa, 12 (22.2%)expressed ER and 22 (40.7%) expressedCD44v6. The postoperative 5-year survival ratefunction differentiation type (AMPFDT): therewere 180 (49.9%) cases, including 31 (17.2%)aged yanger than 45 years. The tumor was morecommon in women (62, 34.4%,) and expressedmore frequently estrogen receptors (ER) ( 129,81.7%) than other types (P<0.01). Ovarymetastasis was found in 12 (19.4%) out of 62female subjects. The patients with this type GChad the lowest 5-year survival rate (24.7%)differentiation type (SFDT): 13 (3.6%) cases.Nine (69.2%) tumors of this type derived fromAPUD system, the other 4 (30.7%) were ofdifferent histological differentiation. Sixty percent of the patients survived at least five years.(8.9%) cases. Nineteen (59.4%) cases hadlymph node metastases but no one with liver orovary metastasis. The 5-year survival rate was28.1%.CONCLUSION This new cell-functionclassification of GC is helpful in indicating thecharacteristics of invasion and metastasis of GCwith different cell-function differentiationphenotypes. Further study is needed to disclosethe correlation

  19. 77 FR 72884 - Crystalline Silicon Photovoltaic Cells and Modules From China

    Science.gov (United States)

    2012-12-06

    ... COMMISSION Crystalline Silicon Photovoltaic Cells and Modules From China Determinations On the basis of the... reason of imports of crystalline silicon photovoltaic cells and modules from China, provided for in... silicon photovoltaic cells and modules from China. Chairman Irving A. Williamson and Commissioner Dean...

  20. NHERF-1: Modulator of Glioblastoma Cell Migration and Invasion

    Directory of Open Access Journals (Sweden)

    Kerri L. Kislin

    2009-04-01

    Full Text Available The invasive nature of malignant gliomas is a clinical problem rendering tumors incurable by conventional treatment modalities such as surgery, ionizing radiation, and temozolomide. Na+/H+ exchanger regulatory factor 1 (NHERF-1 is a multifunctional adaptor protein, recruiting cytoplasmic signaling proteins and membrane receptors/transporters into functional complexes. This study revealed that NHERF-1 expression is increased in highly invasive cells that reside in the rim of glioblastoma multiforme (GBM tumors and that NHERF-1 sustains glioma migration and invasion. Gene expression profiles were evaluated from laser capture-microdissected human GBM cells isolated from patient tumor cores and corresponding invaded white matter regions. The role of NHERF-1 in the migration and dispersion of GBM cell lines was examined by reducing its expression with small-interfering RNA followed by radial migration, three-dimensional collagen dispersion, immunofluorescence, and survival assays. The in situ expression of NHERF-1 protein was restricted to glioma cells and the vascular endothelium, with minimal to no detection in adjacent normal brain tissue. Depletion of NHERF-1 arrested migration and dispersion of glioma cell lines and caused an increase in cell-cell cohesiveness. Glioblastoma multiforme cells with depleted NHERF-1 evidenced a marked decrease in stress fibers, a larger cell size, and a more rounded shape with fewer cellular processes. When NHERF-1 expression was reduced, glioma cells became sensitized to temozolomide treatment resulting in increased apoptosis. Taken together, these results provide the first evidence for NHERF-1 as a participant in the highly invasive phenotype of malignant gliomas and implicate NHERF-1 as a possible therapeutic target for treatment of GBM.

  1. Novel immune modulators used in hematology: impact on NK cells.

    Science.gov (United States)

    Krieg, Stephanie; Ullrich, Evelyn

    2012-01-01

    There is a wide range of important pharmaceuticals used in treatment of cancer. Besides their known effects on tumor cells, there is growing evidence for modulation of the immune system. Immunomodulatory drugs (IMiDs(®)) play an important role in the treatment of patients with multiple myeloma or myelodysplastic syndrome and have already demonstrated antitumor, anti-angiogenic, and immunostimulating effects, in particular on natural killer (NK) cells. Tyrosine kinase inhibitors are directly targeting different kinases and are known to regulate effector NK cells and expression of NKG2D ligands (NKG2DLs) on tumor cells. Demethylating agents, histone deacetylases, and proteasome inhibitors interfere with the epigenetic regulation and protein degradation of malignant cells. There are first hints that these drugs also sensitize tumor cells to chemotherapy, radiation, and NK cell-mediated cytotoxicity by enhanced expression of TRAIL and NKG2DLs. However, these pharmaceuticals may also impair NK cell function in a dose- and time-dependent manner. In summary, this review provides an update on the effects of different novel molecules on the immune system focusing NK cells. PMID:23316191

  2. Phenotypic and functional characterization of human memory T cell responses to Burkholderia pseudomallei.

    Directory of Open Access Journals (Sweden)

    Patcharaporn Tippayawat

    Full Text Available BACKGROUND: Infection with the Gram-negative bacterium Burkholderia pseudomallei is an important cause of community-acquired lethal sepsis in endemic regions in southeast Asia and northern Australia and is increasingly reported in other tropical areas. In animal models, production of interferon-gamma (IFN-gamma is critical for resistance, but in humans the characteristics of IFN-gamma production and the bacterial antigens that are recognized by the cell-mediated immune response have not been defined. METHODS: Peripheral blood from 133 healthy individuals who lived in the endemic area and had no history of melioidosis, 60 patients who had recovered from melioidosis, and 31 other patient control subjects were stimulated by whole bacteria or purified bacterial proteins in vitro, and IFN-gamma responses were analyzed by ELISPOT and flow cytometry. FINDINGS: B. pseudomallei was a potent activator of human peripheral blood NK cells for innate production of IFN-gamma. In addition, healthy individuals with serological evidence of exposure to B. pseudomallei and patients recovered from active melioidosis developed CD4(+ (and CD8(+ T cells that recognized whole bacteria and purified proteins LolC, OppA, and PotF, members of the B. pseudomallei ABC transporter family. This response was primarily mediated by terminally differentiated T cells of the effector-memory (T(EMRA phenotype and correlated with the titer of anti-B. pseudomallei antibodies in the serum. CONCLUSIONS: Individuals living in a melioidosis-endemic region show clear evidence of T cell priming for the ability to make IFN-gamma that correlates with their serological status. The ability to detect T cell responses to defined B. pseudomallei proteins in large numbers of individuals now provides the opportunity to screen candidate antigens for inclusion in protein or polysaccharide-conjugate subunit vaccines against this important but neglected disease.

  3. Loss of EBP50 stimulates EGFR activity to induce EMT phenotypic features in biliary cancer cells.

    Science.gov (United States)

    Clapéron, A; Guedj, N; Mergey, M; Vignjevic, D; Desbois-Mouthon, C; Boissan, M; Saubaméa, B; Paradis, V; Housset, C; Fouassier, L

    2012-03-15

    Scaffold proteins form multiprotein complexes that are central to the regulation of intracellular signaling. The scaffold protein ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) is highly expressed at the plasma membrane of normal biliary epithelial cells and binds epidermal growth factor receptor (EGFR), a tyrosine kinase receptor with oncogenic properties. This study investigated EBP50-EGFR interplay in biliary cancer. We report that in a collection of 106 cholangiocarcinomas, EBP50 was delocalized to the cytoplasm of tumor cells in 66% of the cases. Ectopic expression of EBP50 was correlated with the presence of satellite nodules and with the expression of EGFR, which was at the plasma membrane, implying a loss of interaction with EBP50 in these cases. In vitro, loss of interaction between EBP50 and EGFR was mimicked by EBP50 depletion using a small interfering RNA approach in human biliary carcinoma cells co-expressing the two proteins at their plasma membrane, and in which interaction between EBP50 and EGFR was validated. EBP50 depletion caused an increase in EGFR expression at their surface, and a sustained activation of the receptor and of its downstream effectors (extracellular signal-regulated kinase 1/2, signal transducer and activator of transcription 3) in both basal and EGF-stimulated conditions. Cells lacking EBP50 showed epithelial-to-mesenchymal transition-associated features, including reduction in E-cadherin and cytokeratin-19 expression, induction of S100A4 and of the E-cadherin transcriptional repressor, Slug, and loss of cell polarity. Accordingly, depletion of EBP50 induced the disruption of adherens junctional complexes, the development of lamellipodia structures and the subsequent acquisition of motility properties. All these phenotypic changes were prevented upon inhibition of EGFR tyrosine kinase by gefitinib. These findings indicate that loss of EBP50 at the plasma membrane in tumor cells may contribute to biliary carcinogenesis

  4. Targeting ID2 expression triggers a more differentiated phenotype and reduces aggressiveness in human salivary gland cancer cells.

    Science.gov (United States)

    Sumida, Tomoki; Ishikawa, Akiko; Nakano, Hiroyuki; Yamada, Tomohiro; Mori, Yoshihide; Desprez, Pierre-Yves

    2016-08-01

    Inhibitors of DNA-binding (ID) proteins are negative regulators of basic helix-loop-helix transcription factors and generally stimulate cell proliferation and inhibit differentiation. We previously determined that ID1 was highly expressed in aggressive salivary gland cancer (SGC) cells in culture. Here, we show that ID2 is also expressed in aggressive SGC cells. ID2 knockdown triggers important changes in cell behavior, that is, it significantly reduces the expression of N-cadherin, vimentin and Snail, induces E-cadherin expression and leads to a more differentiated phenotype exemplified by changes in cell shape. Moreover, ID2 knockdown almost completely suppresses invasion and the expression of matrix metalloproteinase 9. In conclusion, ID2 expression maintains an aggressive phenotype in SGC cells, and ID2 repression triggers a reduction in cell aggressiveness. ID2 therefore represents a potential therapeutic target during SGC progression. ID proteins are negative regulators of basic helix-loop-helix transcription factors and generally stimulate cell proliferation and inhibit differentiation. ID2 knockdown triggers important changes in cell behavior, that is, it significantly reduces the expression of N-cadherin, vimentin and Snail, induces E-cadherin expression and leads to a more differentiated phenotype exemplified by changes in cell shape. ID2 therefore represents a potential therapeutic target during SGC progression. PMID:27364596

  5. CD4 T cells with effector memory phenotype and function develop in the sterile environment of the fetus.

    Science.gov (United States)

    Zhang, Xiaoming; Mozeleski, Brian; Lemoine, Sebastien; Dériaud, Edith; Lim, Annick; Zhivaki, Dania; Azria, Elie; Le Ray, Camille; Roguet, Gwenaelle; Launay, Odile; Vanet, Anne; Leclerc, Claude; Lo-Man, Richard

    2014-05-28

    The T cell compartment is considered to be naïve and dedicated to the development of tolerance during fetal development. We have identified and characterized a population of fetally developed CD4 T cells with an effector memory phenotype (TEM), which are present in cord blood. This population is polyclonal and has phenotypic features similar to those of conventional adult memory T cells, such as CD45RO expression. These cells express low levels of CD25 but are distinct from regulatory T cells because they lack Foxp3 expression. After T cell receptor activation, neonatal TEM cells readily produced tumor necrosis factor-α (TNF-α) and granulocyte-macrophage colony-stimulating factor (GM-CSF). We also detected interferon-γ (IFN-γ)-producing T helper 1 (TH1) cells and interleukin-4 (IL-4)/IL-13-producing TH2-like cells, but not IL-17-producing cells. We used chemokine receptor expression patterns to divide this TEM population into different subsets and identified distinct transcriptional programs using whole-genome microarray analysis. IFN-γ was found in CXCR3(+) TEM cells, whereas IL-4 was found in both CXCR3(+) TEM cells and CCR4(+) TEM cells. CCR6(+) TEM cells displayed a genetic signature that corresponded to TH17 cells but failed to produce IL-17A. However, the TH17 function of TEM cells was observed in the presence of IL-1β and IL-23. In summary, in the absence of reported pathology or any major infectious history, T cells with a memory-like phenotype develop in an environment thought to be sterile during fetal development and display a large variety of inflammatory effector functions associated with CD4 TH cells at birth. PMID:24871133

  6. Human Stromal (Mesenchymal) Stem Cells from Bone Marrow, Adipose Tissue and Skin Exhibit Differences in Molecular Phenotype and Differentiation Potential

    DEFF Research Database (Denmark)

    Al-Nbaheen, May; Vishnubalaji, Radhakrishnan; Ali, Dalia;

    2013-01-01

    Human stromal (mesenchymal) stem cells (hMSCs) are multipotent stem cells with ability to differentiate into mesoderm-type cells e.g. osteoblasts and adipocytes and thus they are being introduced into clinical trials for tissue regeneration. Traditionally, hMSCs have been isolated from bone marrow......, but the number of cells obtained is limited. Here, we compared the MSC-like cell populations, obtained from alternative sources for MSC: adipose tissue and skin, with the standard phenotype of human bone marrow MSC (BM-MSCs). MSC from human adipose tissue (human adipose stromal cells (hATSCs)) and human skin......, MSC populations obtained from different tissues exhibit significant differences in their proliferation, differentiation and molecular phenotype, which should be taken into consideration when planning their use in clinical protocols....

  7. HLA‐G modulates the radiosensitivity of human neoplastic cells

    International Nuclear Information System (INIS)

    Tumor cells show a very broad range of radiosensitivities. The differential radiosensitivity may depend on many factors, being the efficiency to recognize and/or repair the DNA lesion, and the cell cycle control mechanisms, the most important (Jeggo and Lavin, 2009; Kumala et al., 2003). Human leukocyte antigen‐G (HLA‐G) is a non‐classical HLA class I molecule involved in fetus protection form the maternal immune system, transplant tolerance, and viral and tumoral immune escape (Carosella et al., 2008). It has been determined that gamma radiation modulates HLA‐G expression at the plasma membrane of human melanoma cells. However, its role in tumoral radiosensitivity has not been demonstrated yet. The objective of this work was to determine if the radiosensitivity of human neoplastic cell lines cultured in vitro was mediated by HLA‐G expression. (authors)

  8. Sensory Ciliogenesis in Caenorhabditis elegans: Assignment of IFT Components into Distinct Modules Based on Transport and Phenotypic Profiles

    OpenAIRE

    Ou, Guangshuo; Koga, Makato; Oliver E Blacque; Murayama, Takashi; Ohshima, Yasumi; Schafer, Jenny C.; LI, Chunmei; Yoder, Bradley K.; Leroux, Michel R.; Scholey, Jonathan M.

    2007-01-01

    Sensory cilium biogenesis within Caenorhabditis elegans neurons depends on the kinesin-2–dependent intraflagellar transport (IFT) of ciliary precursors associated with IFT particles to the axoneme tip. Here we analyzed the molecular organization of the IFT machinery by comparing the in vivo transport and phenotypic profiles of multiple proteins involved in IFT and ciliogenesis. Based on their motility in wild-type and bbs (Bardet-Biedl syndrome) mutants, IFT proteins were classified into grou...

  9. Phenotypes of Aging Postovulatory Oocytes After Somatic Cell Nuclear Transfer in Mice.

    Science.gov (United States)

    Lee, Ah Reum; Shimoike, Takashi; Wakayama, Teruhiko; Kishigami, Satoshi

    2016-06-01

    Oocytes rapidly lose their developmental potential after ovulation, termed postovulatory oocyte aging, and often exhibit characteristic phenotypes, such as cytofragmentation, abnormal spindle shapes, and chromosome misalignments. Here, we reconstructed mouse oocytes using somatic cell nuclear transfer (SCNT) to reveal the effect of somatic cell-derived nuclei on oocyte physiology during aging. Normal oocytes started undergoing cytofragmentation 24 hours after oocyte collection; however, this occurred earlier in SCNT oocytes and was more severe at 48 hours, suggesting that the transferred somatic cell nuclei affected oocyte physiology. We found no difference in the status of acetylated α-tubulin (Ac-Tub) and α-tubulin (Tub) between normal and SCNT aging oocytes, but unlike normal oocytes, aging SCNT oocytes did not have astral microtubules. Interestingly, aging SCNT oocytes displayed more severely scattered chromosomes or irregularly shaped spindles. Observations of the microfilaments showed that, in normal oocytes, there was a clear actin ring beneath the plasma membrane and condensed microfilaments around the spindle (the actin cap) at 0 hours, and the actin filaments started degenerating at 1 hour, becoming completely disrupted and distributed to the cytoplasm at 24 hours. By contrast, in SCNT oocytes, an actin cap formed around the transplanted nuclei within 1 hour of SCNT, which was still present at 24 hours. Thus, SCNT oocytes age in a similar but distinct way, suggesting that they not only contain nuclei with abnormal epigenetics but are also physiologically different. PMID:27253626

  10. Phenotypic transition of microglia into astrocyte-like cells associated with disease onset in a model of inherited ALS

    OpenAIRE

    Emiliano eTrias; Pablo eDíaz-Amarilla; Silvia eOlivera-Bravo; Eugenia eIsasi; Drechsel, Derek A.; Nathan eLopez; Charles Samuel Bradford; Kyle Edward Ireton; Beckman, Joseph S; Luis Hector Barbeito

    2013-01-01

    Microglia and reactive astrocytes accumulate in the spinal cord of rats expressing the Amyotrophic lateral sclerosis (ALS)-linked SOD1 G93A mutation. We previously reported that the rapid progression of paralysis in ALS rats is associated with the appearance of proliferative astrocyte-like cells that surround motor neurons. These cells, designated as Aberrant Astrocytes (AbA cells) because of their atypical astrocytic phenotype, exhibit high toxicity to motor neurons. However, the cellular or...

  11. Characterization of lung infection-induced TCRγδ T cell phenotypes by CyTOF mass cytometry.

    Science.gov (United States)

    Wanke-Jellinek, Lorenz; Keegan, Joshua W; Dolan, James W; Lederer, James A

    2016-03-01

    T cell receptor γδ cells are known to be the primary effector T cells involved in the response to bacterial infections, yet their phenotypic characteristics are not as well established as other T cell subsets. In this study, we used cytometry by time-of-flight mass cytometry to better characterize the phenotypic response of T cell receptor γδ cells to Streptococcus pneumoniae lung infection. Mice were infected, and cells from lung washouts, spleen, and lymph nodes were stained to detect cell-surface, intracellular, and signaling markers. We observed that infection caused a significant increase in T cell receptor γδ cells, which expressed high interferon-γ and interleukin-17A levels. Profiling T cell receptor γδ cells by cytometry by time-of-flight revealed that activated γδ T cells uniquely coexpressed cell-surface Gr-1, cluster of differentiation 14, and cluster of differentiation 274 (programmed death-ligand 1). Further classification of Gr-1 expression patterns on T cell receptor γδ cells demonstrated that Gr-1(+) T cell receptor γδ cells were the primary source of interferon-γ, whereas Gr-1(-) cells mostly expressed interleukin-17A. Gr-1(+) T cell receptor γδ cells also showed higher ζ-chain-associated protein kinase 70, p38, and 4eBP1 signaling in response to infection as compared with Gr-1(-) T cell receptor γδ cells. Taken together, Gr-1 expression patterns on γδ T cells in the lung provide a robust marker to differentiate interferon-γ- and interleukin-17A-producing subsets involved in the early immune response to bacterial pneumonia. PMID:26428679

  12. Research on polycrystalline thin-film materials, cells, and modules

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R.L.; Zweibel, K.; Ullal, H.S.

    1990-11-01

    The US Department of Energy (DOE) supports research activities in polycrystalline thin films through the Polycrystalline Thin-Film Program at the Solar Energy Research Institute (SERI). This program includes research and development (R D) in both copper indium diselenide and cadmium telluride thin films for photovoltaic applications. The objective of this program is to support R D of photovoltaic cells and modules that meet the DOE long-term goals of high efficiency (15%--20%), low cost ($50/m{sup 2}), and reliability (30-year life time). Research carried out in this area is receiving increased recognition due to important advances in polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells and modules. These have become the leading thin-film materials for photovoltaics in terms of efficiency and stability. DOE has recognized this potential through a competitive initiative for the development of CuInSe{sub 2} and CdTe modules. This paper focuses on the recent progress and future directions of the Polycrystalline Thin-Film Program and the status of the subcontracted research on these promising photovoltaic materials. 26 refs., 12 figs, 1 tab.

  13. Research on polycrystalline thin-film materials, cells, and modules

    Science.gov (United States)

    Mitchell, R. L.; Zweibel, K.; Ullal, H. S.

    1990-11-01

    DOE supports research activities in polycrystalline thin films through the Polycrystalline Thin Film Program. This program includes includes R and D in both copper indium diselenide and cadmium telluride thin films for photovoltaic applications. The objective is to support R and D of photovoltaic cells and modules that meet the DOE long term goals of high efficiency (15 to 20 percent), low cost ($50/sq cm), and reliability (30-year life time). Research carried out in this area is receiving increased recognition due to important advances in polycrystalline thin film CuInSe2 and CdTe solar cells and modules. These have become the leading thin film materials for photovoltaics in terms of efficiency and stability. DOE has recognized this potential through a competitive initiative for the development of CuInSe(sub 2) and CdTe modules. The recent progress and future directions are studied of the Polycrystalline Thin Film Program and the status of the subcontracted research on these promising photovoltaic materials.

  14. Clinical Significance of Immuno phenotypic Markers in Pediatric T-cell Acute Lymphoblastic Leukemia

    International Nuclear Information System (INIS)

    Background: Cell-marker profiling has led to conflicting conclusions about its prognostic significance in T-ALL. Aim: To investigate the prevalence of the expression of CD34, CD10 and myeloid associated antigens (CD13/ CD33) in childhood T-ALL and to relate their presence to initial clinical and biologic features and early response to therapy. Patients and Methods: This study included 67 consecutive patients with newly diagnosed T-ALL recruited from the Children's Cancer Hospital in Egypt during the time period from July 2007 to June 2008. Immuno phenotypic markers and minimal residual disease (MRD) were studied by five-color flow cytometry. Results: The frequency of CD34 was 34.9%, CD10 33.3%, while CD13/CD33 was 18.8%. No significant association was encountered between CD34, CD10 or myeloid antigen positivity and the presenting clinical features as age, sex, TLC and CNS leukemia. Only CD10+ expression had significant association with initial CNS involvement (p=0.039). CD34 and CD13/CD33 expression was significantly associated with T-cell maturation stages (p<0.05). No relationship was observed for age, TLC, gender, NCI risk or CNS involvement with early response to therapy illustrated by BM as well as MRD day 15 and day 42. CD34+, CD13/CD33+ and early T-cell stage had high MRD levels on day 15 that was statistically highly significant (p<0.01), but CD10+ had statistically significant lower MRD level on day 15 (p=0.049). However, only CD34 retained its significance at an MRD cut-off level of 0.01%. Conclusion: CD34, CD10, CD13/CD33 expression, as well as T-cell maturation stages, may have prognostic significance in pediatric T-ALL as they have a significant impact on early clearance of leukemic cells detected by MRD day 15.

  15. CD83 Modulates B Cell Activation and Germinal Center Responses.

    Science.gov (United States)

    Krzyzak, Lena; Seitz, Christine; Urbat, Anne; Hutzler, Stefan; Ostalecki, Christian; Gläsner, Joachim; Hiergeist, Andreas; Gessner, André; Winkler, Thomas H; Steinkasserer, Alexander; Nitschke, Lars

    2016-05-01

    CD83 is a maturation marker for dendritic cells. In the B cell lineage, CD83 is expressed especially on activated B cells and on light zone B cells during the germinal center (GC) reaction. The function of CD83 during GC responses is unclear. CD83(-/-) mice have a strong reduction of CD4(+) T cells, which makes it difficult to analyze a functional role of CD83 on B cells during GC responses. Therefore, in the present study we generated a B cell-specific CD83 conditional knockout (CD83 B-cKO) model. CD83 B-cKO B cells show defective upregulation of MHC class II and CD86 expression and impaired proliferation after different stimuli. Analyses of GC responses after immunization with various Ags revealed a characteristic shift in dark zone and light zone B cell numbers, with an increase of B cells in the dark zone of CD83 B-cKO mice. This effect was not accompanied by alterations in the level of IgG immune responses or by major differences in affinity maturation. However, an enhanced IgE response was observed in CD83 B-cKO mice. Additionally, we observed a strong competitive disadvantage of CD83-cKO B cells in GC responses in mixed bone marrow chimeras. Furthermore, infection of mice with Borrelia burgdorferi revealed a defect in bacterial clearance of CD83 B-cKO mice with a shift toward a Th2 response, indicated by a strong increase in IgE titers. Taken together, our results show that CD83 is important for B cell activation and modulates GC composition and IgE Ab responses in vivo. PMID:26983787

  16. Phenotypic Heterogeneity in Cell Proliferation and Radiosensitivity in Human Laryngocarcinoma Hep-2 Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionRadiotherapy is one of the major clinical treatments for malignant tumors. However, tumor cells are heterogenic in response to radiation (radiosensitivity) which limits the achievement ratio of radiotherapy in many non-sensitive tumors. At the same time, radiosensitivity plays an important role in radiobiology and it is regarded as the fifth “R”- Radiosensitivity in fractionation radiotherapy. Understanding the mechanism of heterogeneity of tumor cell radiosensitivity is critical in radiation ...

  17. Haemodynamic and extracellular matrix cues regulate the mechanical phenotype and stiffness of aortic endothelial cells.

    Science.gov (United States)

    Collins, Caitlin; Osborne, Lukas D; Guilluy, Christophe; Chen, Zhongming; O'Brien, E Tim; Reader, John S; Burridge, Keith; Superfine, Richard; Tzima, Ellie

    2014-06-11

    Endothelial cells (ECs) lining blood vessels express many mechanosensors, including platelet endothelial cell adhesion molecule-1 (PECAM-1), that convert mechanical force into biochemical signals. While it is accepted that mechanical stresses and the mechanical properties of ECs regulate vessel health, the relationship between force and biological response remains elusive. Here we show that ECs integrate mechanical forces and extracellular matrix (ECM) cues to modulate their own mechanical properties. We demonstrate that the ECM influences EC response to tension on PECAM-1. ECs adherent on collagen display divergent stiffening and focal adhesion growth compared with ECs on fibronectin. This is because of protein kinase A (PKA)-dependent serine phosphorylation and inactivation of RhoA. PKA signalling regulates focal adhesion dynamics and EC compliance in response to shear stress in vitro and in vivo. Our study identifies an ECM-specific, mechanosensitive signalling pathway that regulates EC compliance and may serve as an atheroprotective mechanism that maintains blood vessel integrity in vivo.

  18. Identification of Vaccine-Altered Circulating B Cell Phenotypes Using Mass Cytometry and a Two-Step Clustering Analysis.

    Science.gov (United States)

    Pejoski, David; Tchitchek, Nicolas; Rodriguez Pozo, André; Elhmouzi-Younes, Jamila; Yousfi-Bogniaho, Rahima; Rogez-Kreuz, Christine; Clayette, Pascal; Dereuddre-Bosquet, Nathalie; Lévy, Yves; Cosma, Antonio; Le Grand, Roger; Beignon, Anne-Sophie

    2016-06-01

    Broadening our understanding of the abundance and phenotype of B cell subsets that are induced or perturbed by exogenous Ags will improve the vaccine evaluation process. Mass cytometry (CyTOF) is being used to increase the number of markers that can be investigated in single cells, and therefore characterize cell phenotype at an unprecedented level. We designed a panel of CyTOF Abs to compare the B cell response in cynomolgus macaques at baseline, and 8 and 28 d after the second homologous immunization with modified vaccinia virus Ankara. The spanning-tree progression analysis of density-normalized events (SPADE) algorithm was used to identify clusters of CD20(+) B cells. Our data revealed the phenotypic complexity and diversity of circulating B cells at steady-state and significant vaccine-induced changes in the proportions of some B cell clusters. All SPADE clusters, including those altered quantitatively by vaccination, were characterized phenotypically and compared using double hierarchical clustering. Vaccine-altered clusters composed of previously described subsets including CD27(hi)CD21(lo) activated memory and CD27(+)CD21(+) resting memory B cells, and subphenotypes with novel patterns of marker coexpression. The expansion, followed by the contraction, of a single memory B cell SPADE cluster was positively correlated with serum anti-vaccine Ab titers. Similar results were generated by a different algorithm, automatic classification of cellular expression by nonlinear stochastic embedding. In conclusion, we present an in-depth characterization of B cell subphenotypes and proportions, before and after vaccination, using a two-step clustering analysis of CyTOF data, which is suitable for longitudinal studies and B cell subsets and biomarkers discovery. PMID:27183591

  19. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy

    OpenAIRE

    Fillmore, Christine M.; Kuperwasser, Charlotte

    2008-01-01

    Introduction The phenotypic and functional differences between cells that initiate human breast tumors (cancer stem cells) and those that comprise the tumor bulk are difficult to study using only primary tumor tissue. We embarked on this study hypothesizing that breast cancer cell lines would contain analogous hierarchical differentiation programs to those found in primary breast tumors. Methods Eight human breast cell lines (human mammary epithelial cells, and MCF10A, MCF7, SUM149, SUM159, S...

  20. STAT3 contributes to NK cell recognition by modulating expression of NKG2D ligands in adriamycin-resistant K562/AO2 cells.

    Science.gov (United States)

    Cai, Xiaohui; Lu, Xuzhang; Jia, Zhuxia; Zhang, Xiuwen; Han, Wenmin; Rong, Xiao; Ma, Lingdi; Zhou, Min; Chen, Baoan

    2015-11-01

    Leukemic cells can survive after chemotherapy by acquisition of multidrug resistance genes, but other phenotypes related to escape from immune recognition remain elusive. Adriamycin-resistant K562/AO2 cells are less susceptible to elimination by NK cells compared with wild type K562 cells due to lower expression of NKG2D ligands. Treatment of K562/AO2 cells with STAT3 inhibitor VII resulted in reduced expression of multidrug resistance gene P-glycoprotein, and up-regulation of NKG2D ligands on K562/AO2 cells. Meanwhile, K562/AO2 cells treated with STAT3 inhibitor proliferated less and were more susceptible to killing by NK cells than untreated K562/AO2 cells. The enhanced cytotoxicity of NK cells against K562/AO2 cells was partly blocked by treatment of NK cells with anti-NKG2D antibodies. These data suggest that STAT3 contributes to NK cell recognition by modulating NKG2D ligands in K562/AO2 cells, which may a mechanism by which cells survive and cause relapse of leukemia.

  1. Stackable and submergible microbial fuel cell modules for wastewater treatment.

    Science.gov (United States)

    Kim, Minsoo; Cha, Jaehwan; Yu, Jaecheul; Kim, Changwon

    2016-08-01

    The stackable and submergible microbial fuel cell (SS-MFC) system was fabricated consisting of three MFC modules (#1, #2 and #3) that were immersed in an anaerobic tank as a 30 L anode compartment. Each module consisted of the anion exchange membrane-membrane electrode assembly (A-MEA) and cation exchange membrane-MEA (C-MEA). Two MEAs shared a cathode compartment in the module and the three modules shared a anode compartment The SS-MFC system was operated with two phase. After batch feeding (phase I), the system was operated under continuous mode (phase II) with different organic concentrations (from 50 to 1000 mg/L) and different hydraulic retention times (HRT; from 3.4 to 7.2 h). The SS-MFC system successfully produced a stable voltage. A-MEA generated a lower power density than the C-MEA because of the former's high activation and resistance loss. C-MEA showed a higher average maximum power density (3.16 W/m(3)) than A-MEA (2.82 W/m(3)) at 70 mL/min (HRT of 7.2 h). The current density increased as the organic concentration was increased from 70 to 1000 mg/L in a manner consistent with Monod kinetics. When the HRT was increased from 3.4 to 7.2 h, the power densities of the C-MEAs increased from 34.3-40.9 to 40.7-45.7 mW/m(2), but those of the A-MEAs decreased from 25.3-48.0 to 27.7-40.9 mW/m(2). Although power generation was affected by HRT, organic concentrations, and separator types, the proposed SS-MFC modules can be applied to existing wastewater treatment plants. PMID:27033857

  2. Flexible CIGS solar cells and mini-modules (Flexcim)

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, A. N.

    2007-08-15

    This final report for the Swiss Federal Office of Energy (SFOE) reports on a project that has contributed significantly to further developments in the field of Cu(In,Ga)Se{sub 2} thin film solar cells on flexible substrates such as plastic and metal foils. Process optimisation at low temperature deposition conditions is reported on that have resulted in a new world record of the highest achieved solar conversion efficiency for any solar cell on plastic substrate: cells with an efficiency of 14.1% were obtained. Efficiencies beyond 15% are to be sought for by the reduction of reflection losses. The results obtained are presented in both illustrations and in graphical form. The authors state that more work, especially on up-scaling of CIGS deposition and further increasing the efficiency of flexible solar modules, is needed.

  3. THP-1 cell line: an in vitro cell model for immune-modulation approach : Review

    NARCIS (Netherlands)

    Chanput, W.; Mes, J.J.; Wichers, H.J.

    2014-01-01

    THP-1 is a human leukemia monocytic cell line, which has been extensively used to study monocyte/macrophage functions, mechanisms, signaling pathways, and nutrient and drug transport. This cell line has become a common model to estimate modulation of monocyte and macrophage activities. This review a

  4. Probiotic modulation of dendritic cells and T cell responses in the intestine

    NARCIS (Netherlands)

    Meijerink, M.; Wells, J.

    2010-01-01

    Over the past decade it has become clear that probiotic and commensal interactions with mucosal dendritic cells in the lamina propria or epithelial cells lining the mucosa can modulate specific functions of the mucosal immune system. Innate pattern-recognition receptors such as TLRs, NLRs and CLRs p

  5. Phenotype overlap in glial cell populations: astroglia, oligodendroglia and NG-2(+ cells

    Directory of Open Access Journals (Sweden)

    Robert eFern

    2015-05-01

    Full Text Available The extent to which NG-2(+ cells form a distinct population separate from astrocytes is central to understanding whether this important cell class is wholly an oligodendrocyte precursor cell (OPC or has additional functions akin to those classically ascribed to astrocytes. Early immuno-staining studies indicate that NG-2(+ cells do not express the astrocyte marker GFAP, but orthogonal reconstructions of double-labelled confocal image stacks here reveal a significant degree of co-expression in individual cells within post-natal day 10 (P10 rat optic nerve (RON and rat cortex. Extensive scanning of various antibody/fixation/embedding approaches identified a protocol for selective post-embedded immuno-gold labelling. This first ultrastructural characterization of identified NG-2(+ cells revealed populations of both OPCs and astrocytes in P10 RON. NG-2(+ astrocytes had classic features including the presence of glial filaments but low levels of glial filament expression were also found in OPCs and myelinating oligodendrocytes. P0 RONs contained few OPCs but positively identified astrocytes were observed to ensheath pre-myelinated axons in a fashion previously described as a definitive marker of the oligodendrocyte lineage. Astrocyte ensheathment was also apparent in P10 RONs, was absent from developing nodes of Ranvier and was never associated with compact myelin. Astrocyte processes were also shown to encapsulate some oligodendrocyte somata. The data indicate that common criteria for delineating astrocytes and oligodendroglia are insufficiently robust and that astrocyte features ascribed to OPCs are likely to arise from misidentification.

  6. Cosmetics as a feature of the extended human phenotype: modulation of the perception of biologically important facial signals.

    Directory of Open Access Journals (Sweden)

    Nancy L Etcoff

    Full Text Available Research on the perception of faces has focused on the size, shape, and configuration of inherited features or the biological phenotype, and largely ignored the effects of adornment, or the extended phenotype. Research on the evolution of signaling has shown that animals frequently alter visual features, including color cues, to attract, intimidate or protect themselves from conspecifics. Humans engage in conscious manipulation of visual signals using cultural tools in real time rather than genetic changes over evolutionary time. Here, we investigate one tool, the use of color cosmetics. In two studies, we asked viewers to rate the same female faces with or without color cosmetics, and we varied the style of makeup from minimal (natural, to moderate (professional, to dramatic (glamorous. Each look provided increasing luminance contrast between the facial features and surrounding skin. Faces were shown for 250 ms or for unlimited inspection time, and subjects rated them for attractiveness, competence, likeability and trustworthiness. At 250 ms, cosmetics had significant positive effects on all outcomes. Length of inspection time did not change the effect for competence or attractiveness. However, with longer inspection time, the effect of cosmetics on likability and trust varied by specific makeup looks, indicating that cosmetics could impact automatic and deliberative judgments differently. The results suggest that cosmetics can create supernormal facial stimuli, and that one way they may do so is by exaggerating cues to sexual dimorphism. Our results provide evidence that judgments of facial trustworthiness and attractiveness are at least partially separable, that beauty has a significant positive effect on judgment of competence, a universal dimension of social cognition, but has a more nuanced effect on the other universal dimension of social warmth, and that the extended phenotype significantly influences perception of biologically important

  7. Cosmetics as a feature of the extended human phenotype: modulation of the perception of biologically important facial signals.

    Science.gov (United States)

    Etcoff, Nancy L; Stock, Shannon; Haley, Lauren E; Vickery, Sarah A; House, David M

    2011-01-01

    Research on the perception of faces has focused on the size, shape, and configuration of inherited features or the biological phenotype, and largely ignored the effects of adornment, or the extended phenotype. Research on the evolution of signaling has shown that animals frequently alter visual features, including color cues, to attract, intimidate or protect themselves from conspecifics. Humans engage in conscious manipulation of visual signals using cultural tools in real time rather than genetic changes over evolutionary time. Here, we investigate one tool, the use of color cosmetics. In two studies, we asked viewers to rate the same female faces with or without color cosmetics, and we varied the style of makeup from minimal (natural), to moderate (professional), to dramatic (glamorous). Each look provided increasing luminance contrast between the facial features and surrounding skin. Faces were shown for 250 ms or for unlimited inspection time, and subjects rated them for attractiveness, competence, likeability and trustworthiness. At 250 ms, cosmetics had significant positive effects on all outcomes. Length of inspection time did not change the effect for competence or attractiveness. However, with longer inspection time, the effect of cosmetics on likability and trust varied by specific makeup looks, indicating that cosmetics could impact automatic and deliberative judgments differently. The results suggest that cosmetics can create supernormal facial stimuli, and that one way they may do so is by exaggerating cues to sexual dimorphism. Our results provide evidence that judgments of facial trustworthiness and attractiveness are at least partially separable, that beauty has a significant positive effect on judgment of competence, a universal dimension of social cognition, but has a more nuanced effect on the other universal dimension of social warmth, and that the extended phenotype significantly influences perception of biologically important signals at first

  8. Cosmetics as a feature of the extended human phenotype: modulation of the perception of biologically important facial signals.

    Science.gov (United States)

    Etcoff, Nancy L; Stock, Shannon; Haley, Lauren E; Vickery, Sarah A; House, David M

    2011-01-01

    Research on the perception of faces has focused on the size, shape, and configuration of inherited features or the biological phenotype, and largely ignored the effects of adornment, or the extended phenotype. Research on the evolution of signaling has shown that animals frequently alter visual features, including color cues, to attract, intimidate or protect themselves from conspecifics. Humans engage in conscious manipulation of visual signals using cultural tools in real time rather than genetic changes over evolutionary time. Here, we investigate one tool, the use of color cosmetics. In two studies, we asked viewers to rate the same female faces with or without color cosmetics, and we varied the style of makeup from minimal (natural), to moderate (professional), to dramatic (glamorous). Each look provided increasing luminance contrast between the facial features and surrounding skin. Faces were shown for 250 ms or for unlimited inspection time, and subjects rated them for attractiveness, competence, likeability and trustworthiness. At 250 ms, cosmetics had significant positive effects on all outcomes. Length of inspection time did not change the effect for competence or attractiveness. However, with longer inspection time, the effect of cosmetics on likability and trust varied by specific makeup looks, indicating that cosmetics could impact automatic and deliberative judgments differently. The results suggest that cosmetics can create supernormal facial stimuli, and that one way they may do so is by exaggerating cues to sexual dimorphism. Our results provide evidence that judgments of facial trustworthiness and attractiveness are at least partially separable, that beauty has a significant positive effect on judgment of competence, a universal dimension of social cognition, but has a more nuanced effect on the other universal dimension of social warmth, and that the extended phenotype significantly influences perception of biologically important signals at first

  9. Phenotypic characterization of prostate cancer LNCaP cells cultured within a bioengineered microenvironment.

    Directory of Open Access Journals (Sweden)

    Shirly Sieh

    Full Text Available Biophysical and biochemical properties of the microenvironment regulate cellular responses such as growth, differentiation, morphogenesis and migration in normal and cancer cells. Since two-dimensional (2D cultures lack the essential characteristics of the native cellular microenvironment, three-dimensional (3D cultures have been developed to better mimic the natural extracellular matrix. To date, 3D culture systems have relied mostly on collagen and Matrigel™ hydrogels, allowing only limited control over matrix stiffness, proteolytic degradability, and ligand density. In contrast, bioengineered hydrogels allow us to independently tune and systematically investigate the influence of these parameters on cell growth and differentiation. In this study, polyethylene glycol (PEG hydrogels, functionalized with the Arginine-glycine-aspartic acid (RGD motifs, common cell-binding motifs in extracellular matrix proteins, and matrix metalloproteinase (MMP cleavage sites, were characterized regarding their stiffness, diffusive properties, and ability to support growth of androgen-dependent LNCaP prostate cancer cells. We found that the mechanical properties modulated the growth kinetics of LNCaP cells in the PEG hydrogel. At culture periods of 28 days, LNCaP cells underwent morphogenic changes, forming tumor-like structures in 3D culture, with hypoxic and apoptotic cores. We further compared protein and gene expression levels between 3D and 2D cultures upon stimulation with the synthetic androgen R1881. Interestingly, the kinetics of R1881 stimulated androgen receptor (AR nuclear translocation differed between 2D and 3D cultures when observed by immunofluorescent staining. Furthermore, microarray studies revealed that changes in expression levels of androgen responsive genes upon R1881 treatment differed greatly between 2D and 3D cultures. Taken together, culturing LNCaP cells in the tunable PEG hydrogels reveals differences in the cellular responses to