WorldWideScience

Sample records for cell pemfc desenvolvimento

  1. Development of electrode-membrane-electrode assemblies for proton exchange membrane fuel cells (PEMFC) by Sieve printing; Desenvolvimento de conjuntos eletrodo-membrana-eletrodo para celulas a combustivel a membrana trocadora de protons (PEMFC) por impressao a tela

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Alexandre Bodart de

    2008-07-01

    The Sieve Printing process was studied in this work to apply the catalyst layers onto electrolytes utilized in PEMFC. Initially, 25 cm{sup 2} active area MEAs were built for comparison with others MEAs produced by the Spray technique. The two methods produced MEAs that showed current densities higher than 600 mA.cm{sup -2} at 600 mV. A scaling up study for 144 cm{sup 2} of active area MEAs was carried out. For this purpose, a new cell had to be projected for shelter the MEAs in such dimensions. The profile of the gas distribution channels was developed through the computational fluid dynamic tool 'Comsol Multiphysics'. For the design of the bipolar plates of the cell the 'Auto CAD' was used. The 144 cm{sup 2} MEAs made by Spray and by Sieve Printing methods were confronted with commercials MEAs ones of equal dimensions. These commercials MEAs presented better performance at 600 mV, however they were more costly than the solution developed in this study. The new method was showed to be adequate to fabricate low cost MEAs of different geometries and to produce any amount of MEAs for small scale stacks (up to 10 kW). (author)

  2. Development and testing of the proton exchange membrane fuel cell (PEMFC) for stationary generation; Desenvolvimento e ensaios de uma celula a combustivel de polimero solido (PEMFC) para geracao estacionaria

    Energy Technology Data Exchange (ETDEWEB)

    Ellern, Mara; Boccuzzi, Cyro Vicente [ELETROPAULO, Sao Caetano, SP (Brazil)], e-mail: mara.ellern@aes.com; Ett, Gerhard; Saiki, Gerson Yukio; Janolio, Gilberto [ELECTROCELL, Sao Paulo, SP (Brazil); Jardini, Jose Antonio [Universidade de Sao Paulo (USP), SP (Brazil)

    2004-07-01

    PEM (Proton Exchange Membrane) fuel cell uses a simple chemical reaction to combine hydrogen and oxygen into water, producing electric current in the process. It works something like reversed electrolysis: at the anode, hydrogen molecules give up electrons, forming hydrogen ions (this process is made possible by the platinum catalyst). The proton exchange membrane allows protons to flow through, but not electrons. As a result, the hydrogen ions flow directly through the proton exchange membrane to the cathode, while the electrons flow through an external circuit. As they travel to the cathode through the external circuit, the electrons produce electrical current. At the cathode, the electrons and hydrogen ions combine with oxygen to form water. In a fuel cell, hydrogen's natural tendency to oxidize and form water produces electricity and useful work. No pollution is produced and the only byproducts are water and heat. The huge advance on materials development combined with the growth demand of lower impact on environment is placing the fuel cells on the top of the most promising technologies world-wide. They are becoming in medium term feasible alternatives for energy generators up to energy plants of few MW. (author)

  3. Development of a membrane electrode as assembly production process for proton exchange membrane fuel cell (PEMFC) by sieve printing; Desenvolvimento de processo de producao de conjuntos eletrodo-membrana-eletrodo para celulas a combustivel baseadas no uso de membrana polimerica conditora de protons (PEMFC) por impressa a tela

    Energy Technology Data Exchange (ETDEWEB)

    Bonifacio, Rafael Nogueira

    2010-07-01

    Energy is a resource that presents historical trend of growth in demand. Projections indicate that future energy needs will require a massive use of hydrogen as fuel. The use of systems based on the use of proton exchange membrane fuel cell (PEMFC) has features that allow its application for stationary applications, automotive and portable power generation. The use of hydrogen as fuel for PEMFC has the advantage low pollutants' emission, when compared to fossil fuels. For the reactions in a PEMFC is necessary to build membrane electrode assembly (MEA). And the production of MEAs and its materials are relevant to the final cost of k W of power generated by systems of fuel cell. This represent currently a technological and financial barriers to large-scale application of this technology. In this work a process of MEAs fabrication were developed that showed high reproducibility, rapidity and low cost by sieve printing. The process of sieve printing and the ink composition as a precursor to the catalyst layer were developed, which allow the preparation of electrodes for MEAs fabrication with the implementation of the exact catalyst loading, 0.6 milligrams of platinum per square centimeters (mgPt.cm{sup -2}) suitable for cathodes and 0.4 mgPt.cm{sup -2} for anode in only one application step per electrode. The ink was developed, produced, characterized and used with similar characteristics to ink of sieve printing build for other applications. The MEAs produced had a performance of up to 712 m A.cm{sup -2} by 600 mV to 25 cm{sup 2} MEA area. The MEA cost production for MEAs of 247.86 cm{sup 2}, that can generate 1 kilowatt of energy was estimated to US$ 7,744.14 including cost of equipment, materials and labor. (author)

  4. Study and development of membrane electrode assemblies for Proton Exchange Membrane Fuel Cell (PEMFC) with palladium based catalysts; Estudo e desenvolvimento de conjuntos membrana-eletrodos (MEA) para celula a combustivel de eletrolito polimerico condutor de protons (PEMFC) com eletrocatalisadores a base de paladio

    Energy Technology Data Exchange (ETDEWEB)

    Bonifacio, Rafael Nogueira

    2013-07-01

    PEMFC systems are capable of generating electricity with high efficiency and low or no emissions, but durability and cost issues prevent its large commercialization. In this work MEA with palladium based catalysts were developed, Pd/C, Pt/C and alloys PdPt/C catalysts with different ratios between metals and carbon were synthesized and characterized. A study of the ratio between catalyst and Nafion Ionomer for formation of high performance triple-phase reaction was carried out, a mathematical model to implement this adjustment to catalysts with different relations between metal and support taking into account the volumetric aspects of the catalyst layer was developed and then a study of the catalyst layer thickness was performed. X-ray diffraction, Transmission and Scanning Electron Microscopy, X-ray Energy Dispersive, Gas Pycnometry, Mercury Intrusion Porosimetry, Gas adsorption according to the BET and BJH equations, and Thermo Gravimetric Analysis techniques were used for characterization and particle size, specific surface areas and lattice parameters determinations were also carried out. All catalysts were used on MEAs preparation and evaluated in 5 cm{sup 2} single cell from 25 to 100 °C at 1 atm and the best composition was also evaluated at 3 atm. In the study of metals for reactions, to reduce the platinum applied to the electrodes without performance losses, Pd/C and PdPt/C 1:1 were selected for anodes and cathodes, respectively. The developed MEA structure used 0,25 mgPt.cm{sup -2}, showing power densities up to 550 mW.cm{sup -2} and power of 2.2 kW{sub net} per gram of platinum. The estimated costs showed that there was a reduction of up to 64.5 %, compared to the MEA structures previously known. Depending on the temperature and operating pressure, values from US$ 1,475.30 to prepare MEAs for each installed kilowatt were obtained. Taking into account recent studies, it was concluded that the cost of the developed MEA is compatible with PEMFC stationary

  5. Particle Swarm Optimization based predictive control of Proton Exchange Membrane Fuel Cell (PEMFC)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Proton Exchange Membrane Fuel Cells (PEMFCs) are the main focus of their current development as power sources because they are capable of higher power density and faster start-up than other fuel cells. The humidification system and output performance of PEMFC stack are briefly analyzed. Predictive control of PEMFC based on Support Vector Regression Machine (SVRM) is presented and the SVRM is constructed. The processing plant is modelled on SVRM and the predictive control law is obtained by using Particle Swarm Optimization (PSO). The simulation and the results showed that the SVRM and the PSO receding optimization applied to the PEMFC predictive control yielded good performance.

  6. Carbon composite bipolar plate for high-temperature proton exchange membrane fuel cells (HT-PEMFCs)

    Science.gov (United States)

    Lee, Dongyoung; Lee, Dai Gil

    2016-09-01

    A carbon/epoxy composite bipolar plate is an ideal substitute for the brittle graphite bipolar plate for lightweight proton exchange membrane fuel cells (PEMFCs) because of its high specific strength and stiffness. However, conventional carbon/epoxy composite bipolar plates are not applicable for high-temperature PEMFCs (HT-PEMFCs) because these systems are operated at higher temperatures than the glass transition temperatures of conventional epoxies. Therefore, in this study, a cyanate ester-modified epoxy is adopted for the development of a carbon composite bipolar plate for HT-PEMFCs. The composite bipolar plate with exposed surface carbon fibers is produced without any surface treatments or coatings to increase the productivity and is integrated with a silicone gasket to reduce the assembly cost. The developed carbon composite bipolar plate exhibits not only superior electrical properties but also high thermo-mechanical properties. In addition, a unit cell test is performed, and the results are compared with those of the conventional graphite bipolar plate.

  7. Effects of temperature and stoichiometric ratio on performance of a proton exchange membrane fuel cell (PEMFC)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.H.; Caton, J.A. [Texas A and M Univ., College Station, TX (United States). Engines, Emissions, Energy Laboratory; Parulian, A. [Arbin Instruments, College Station, TX (United States)

    2007-07-01

    Relative to any power source using any hydrocarbon fuel, the fuel cell offers the potential to produce power with minimal or zero emissions. Depending on the electrolyte utilized in the cell, there are several types of fuel cells. The most common is the proton exchange membrane fuel cell (PEMFC) because of its simplicity, quick start-up, and diversity for any application from powering small portable device to automobile applications. However, the handling and storing of hydrogen is the biggest challenge of the PEMFC. The technology related with the PEMFC, however, enables it to be commercialized in the near future as both hydrogen generation and storage continues to evolve. This paper assessed the effects of temperature and stoichiometric flow rate for various conditions for a proton exchange membrane (PEM) fuel cell. The study investigated the performance associated with the reagent stoichiometric ratio and the desired current starting stoichiometric flow rate, the effect of operating temperature, and the relationship between quantity of air used at the cathode and cell performance. The paper discussed membrane and electrode assembly (MEA) preparation as well as the study results. It was concluded that higher air supply leads to better performance at the constant stoichiometric ratio at the anode, but there is not have much of an increase after the stoichiometric ratio of 5. 14 refs., 4 tabs., 5 figs.

  8. Characterisation of proton exchange membrane fuel cell (PEMFC) failures via electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Merida, W. [Clean Energy Research Centre, University of British Columbia, Vancouver, BC (Canada V6T 1Z4); Harrington, D.A. [Institute for Integrated Energy Systems, University of Victoria, Victoria, BC (Canada V8W 3P6); Le Canut, J.M. [Hydrogenics Corporation, 5985 McLaughlin Road, Mississauga, Ont. (Canada L5R 1B8); McLean, G. [Angstrom Power Corporation, 106-980 West 1st Street, North Vancouver, BC (Canada V7P 3N4)

    2006-10-20

    Two PEMFC failure modes (dehydration and flooding) were investigated using in situ electrochemical impedance spectroscopy (EIS) on a four-cell stack under load. The EIS measurements were made at different temperatures (70 and 80{sup o}C), covering the current density range 0.1-1.0Acm{sup -2}, and the frequency range 0.1-2x10{sup 5}Hz. Dehydration and flooding effects were observed in the frequency ranges 0.5-10{sup 5} and 0.5-10{sup 2}Hz, respectively. We propose that impedance measurements at separate frequency ranges (or narrow bands thereof) can be used to distinguish between flooding and dehydration events. Similar approaches may be used to diagnose other important PEMFC failures. (author)

  9. Description of gasket failure in a 7 cell PEMFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Husar, Attila; Serra, Maria [Institut de Robotica i Informatica Industrial, Parc Tecnologic de Barcelona, Edifici U, C. Llorens i Artigas, 4-6, 2a Planta, 08028 Barcelona (Spain); Kunusch, Cristian [Laboratorio de Electronica Industrial Control e Instrumentacion, Facultad de Ingenieria, UNLP (Argentina)

    2007-06-10

    This article presents the data and the description of a fuel cell stack that failed due to gasket degradation. The fuel cell under study is a 7 cell stack. The unexpected change in several variables such as temperature, pressure and voltage indicated the possible failure of the stack. The stack was monitored over a 6 h period in which data was collected and consequently analyzed to conclude that the fuel cell stack failed due to a crossover leak on the anode inlet port located on the cathode side gasket of cell 2. This stack failure analysis revealed a series of indicators that could be used by a super visional controller in order to initiate a shutdown procedure. (author)

  10. Thermal fields and saturation discussion in a PEMFC single cell

    Energy Technology Data Exchange (ETDEWEB)

    Ramousse, J. [Quebec Univ., Trois-Rivieres, PQ (Canada). Institut de recherche sur l' hydrogene; Didierjean, S.; Lottin, O.; Maillet, D. [Nancy-Univ., Vandoeuvre (France). Laboratoire d' Energetique et de Mecanique Theorique et Appliquee

    2007-07-01

    Water condensation in a fuel cell can imply drastic cell voltage drops. This is caused by flooding the electrodes or by forming water caps in the feeding channels. For high current densities, water condensation is an important point worth studying. Saturation mechanisms significantly depend on temperature fields through the saturation pressure. Vapour water partial pressure as well as thermal fields have to be known to analyse water condensation preferential sites. In order to get the temperature distribution for any operating condition, using numerical simulations, this paper presented the results of a study on the nature of heat sources and of the thermal properties of each element in the cell including: membrane, gas diffusion layers, and bipolar plates. The study then evaluated water saturation pressure and compared it to vapour water pressure to predict water condensation conditions. Vapour water pressure was obtained from a mass transport model. The paper provided a detailed discussion about heat source quantification and localization. A two-dimensional steady state thermal model that relied on a previous model of charge and mass transfer was then presented. A discussion about water condensation in the cell was also provided. It was concluded that the good thermal conductivity of the bipolar plates improved thermal transfer near the ribs. Temperatures were therefore lower at this location than near the gas channels. 52 refs., 3 tabs., 7 figs.

  11. A review of high-temperature polymer electrolyte membrane fuel-cell (HT-PEMFC)-based auxiliary power units for diesel-powered road vehicles

    Science.gov (United States)

    Liu, Yongfeng; Lehnert, Werner; Janßen, Holger; Samsun, Remzi Can; Stolten, Detlef

    2016-04-01

    This paper presents an extensive review of research on the development of auxiliary power units with enhanced reformate tolerance for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Developments in diesel reforming for fuel cells as auxiliary power units (APUs), single fuel cells and stacks and systems are outlined in detail and key findings are presented. Summaries of HT-PEMFC APU applications and start-up times for HT-PEMFC systems are then given. A summary of cooling HT-PEMFC stacks using a classic schematic diagram of a 24-cell HT-PEMFC stack, with a cooling plate for every third cell, is also presented as part of a stack analysis. Finally, a summary of CO tolerances for fuel cells is given, along with the effects of different CO volume fractions on polarization curves, the fraction of CO coverage, hydrogen coverage, anode overpotential and cell potential.

  12. PEMFC Optimization Strategy with Auxiliary Power Source in Fuel Cell Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    Tinton Dwi Atmaja

    2012-02-01

    Full Text Available Page HeaderOpen Journal SystemsJournal HelpUser You are logged in as...aulia My Journals My Profile Log Out Log Out as UserNotifications View (27 new ManageJournal Content SearchBrowse By Issue By Author By Title Other JournalsFont SizeMake font size smaller Make font size default Make font size largerInformation For Readers For Authors For LibrariansKeywords CBPNN Displacement FLC LQG/LTR Mixed PMA Ventilation bottom shear stress direct multiple shooting effective fuzzy logic geoelectrical method hourly irregular wave missile trajectory panoramic image predator-prey systems seawater intrusion segmentation structure development pattern terminal bunt manoeuvre Home About User Home Search Current Archives ##Editorial Board##Home > Vol 23, No 1 (2012 > AtmajaPEMFC Optimization Strategy with Auxiliary Power Source in Fuel Cell Hybrid VehicleTinton Dwi Atmaja, Amin AminAbstractone of the present-day implementation of fuel cell is acting as main power source in Fuel Cell Hybrid Vehicle (FCHV. This paper proposes some strategies to optimize the performance of Polymer Electrolyte Membrane Fuel Cell (PEMFC implanted with auxiliary power source to construct a proper FCHV hybridization. The strategies consist of the most updated optimization method determined from three point of view i.e. Energy Storage System (ESS, hybridization topology and control system analysis. The goal of these strategies is to achieve an optimum hybridization with long lifetime, low cost, high efficiency, and hydrogen consumption rate improvement. The energy storage system strategy considers battery, supercapacitor, and high-speed flywheel as the most promising alternative auxiliary power source. The hybridization topology strategy analyzes the using of multiple storage devices injected with electronic components to bear a higher fuel economy and cost saving. The control system strategy employs nonlinear control system to optimize the ripple factor of the voltage and the current

  13. Mechanisms of accelerated degradation in the front cells of PEMFC stacks and some mitigation strategies

    Science.gov (United States)

    Li, Pengcheng; Pei, Pucheng; He, Yongling; Yuan, Xing; Chao, Pengxiang; Wang, Xizhong

    2013-11-01

    The accelerated degradation in the front cells of a polymer electrolyte membrane fuel cell(PEMFC) stack seriously reduces the reliability and durability of the whole stack. Most researches only focus on the size and configuration of the gas intake manifold, which may lead to the maldistribution of flow and pressure. In order to find out the mechanisms of the accelerated degradation in the front cells, an extensive program of experimental and simulation work is initiated and the results are reported. It is found that after long-term lifetime tests the accelerated degradation in the front cells occurs in all three fuel cell stacks with different flow-fields under the U-type feed configuration. Compared with the rear cells of the stack, the voltage of the front cells is much lower at the same current densities and the membrane electrode assembly(MEA) has smaller active area, more catalyst particle agglomeration and higher ohmic impedance. For further investigation, a series of three dimensional isothermal numerical models are built to investigate the degradation mechanisms based on the experimental data. The simulation results reveal that the dry working condition of the membrane and the effect of high-speed gas scouring the MEA are the main causes of the accelerated degradation in the front cells of a PEM fuel cell stack under the U-type feed configuration. Several mitigation strategies that would mitigate these phenomena are presented: removing cells that have failed and replacing them with those of the same aging condition as the average of the stack; choosing a Z-type feed pattern instead of a U-type one; putting several air flow-field plates without MEA in the front of the stack; or exchanging the gas inlet and outlet alternately at a certain interval. This paper specifies the causes of the accelerated degradation in the front cells and provides the mitigation strategies.

  14. PEMFC modeling and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, J.V.C. [Federal University of Parana (UFPR), Curitiba, PR (Brazil). Dept. of Mechanical Engineering], E-mail: jvargas@demec.ufpr.br; Ordonez, J.C.; Martins, L.S. [Florida State University, Tallahassee, FL (United States). Center for Advanced Power Systems], Emails: ordonez@caps.fsu.edu, martins@caps.fsu.edu

    2009-07-01

    In this paper, a simplified and comprehensive PEMFC mathematical model introduced in previous studies is experimentally validated. Numerical results are obtained for an existing set of commercial unit PEM fuel cells. The model accounts for pressure drops in the gas channels, and for temperature gradients with respect to space in the flow direction, that are investigated by direct infrared imaging, showing that even at low current operation such gradients are present in fuel cell operation, and therefore should be considered by a PEMFC model, since large coolant flow rates are limited due to induced high pressure drops in the cooling channels. The computed polarization and power curves are directly compared to the experimentally measured ones with good qualitative and quantitative agreement. The combination of accuracy and low computational time allow for the future utilization of the model as a reliable tool for PEMFC simulation, control, design and optimization purposes. (author)

  15. Catalytic hydrogen/oxygen reaction assisted the proton exchange membrane fuel cell (PEMFC) startup at subzero temperature

    Science.gov (United States)

    Sun, Shucheng; Yu, Hongmei; Hou, Junbo; Shao, Zhigang; Yi, Baolian; Ming, Pingwen; Hou, Zhongjun

    Fuel cells for automobile application need to operate in a wide temperature range including freezing temperature. However, the rapid startup of a proton exchange membrane fuel cell (PEMFC) at subfreezing temperature, e.g., -20 °C, is very difficult. A cold-start procedure was developed, which made hydrogen and oxygen react to heat the fuel cell considering that the FC flow channel was the characteristic of microchannel reactor. The effect of hydrogen and oxygen reaction on fuel cell performance at ambient temperature was also investigated. The electrochemical characterizations such as I- V plot and cyclic voltammetry (CV) were performed. The heat generated rate for either the single cell or the stack was calculated. The results showed that the heat generated rate was proportional to the gas flow rate when H 2 concentration and the active area were constant. The fuel cell temperature rose rapidly and steadily by controlling gas flow rate.

  16. Polyester synthesis for application in PEMFC type fuel cells; Sintese de poliester para aplicacao em celulas a combustivel do tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, R.P.; Souza, D.R. de; Fiuza, R.A.; Jose, N.M.; Boaventura, J.S. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica], e-mail: raigenis@gmail.com

    2006-07-01

    The PEMFC (Proton Exchange Membrane Fuel Cell), along the SOFC (Solid Oxide Fuel Cell), is the most important technology, among the various types of fuels cell. The PEMFC shows a large versatility of applications, both for stationary and mobile use. However the PEMFC presents high manufacture cost, directly impacting in the cost of the produced energy. This work contemplates the previews sulfonation of phtalic acid and its subsequent polymerization with glycerol, using as catalytic tin dibutyl-dilaurate. The obtained material has been characterized by DSC, TGA, FTIR, MEV, DRX and XRF. The gotten results indicated that phtalic acid was sulfonated and the increase of the sulfonation degree significantly increased the crystallinity of the sulfonated ftalico acid. Furthermore, the polymer produced from the sulfonated monomer presented adequate thermal resistance and a high content of conducting groups, necessary conditions for application as electrolyte in PEMFC. All these characteristics, particularly the low cost of the reagents and the ease of production process, make the sulfonated polyester membrane a promising candidate as fuel cell electrolyte. (author)

  17. Current status and challenges in PEMFC stacks, systems and commercialization

    Institute of Scientific and Technical Information of China (English)

    任远; 曹广益; 朱新坚

    2006-01-01

    The current status of worldwide developments of polymer electrolyte membrane fuel cell (PEMFC) stacks and system,research activities in resent years to analyze the cost of PEMFC stacks and systems, the remaining research and development issues that should be resolved before the PEMFC available for commercial application were discussed. The two main problems that challenge the PEMFC commercialization were cost and fuel supply infrastructure. The ways to lower the cost, to choose the fuel and improve the efficiency and reliability were described. To research the cost target of 125 kW and stack lifetime of 40 000 ~ 100 000h, basic research in PEMFC was indispensable.

  18. The optimal performance estimation for an unknown PEMFC based on the Taguchi method and a generic numerical PEMFC model

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Koan-Yuh [Department of Electronic Engineering, Chienkuo Technology University, No. 1, Chiehshou N. Rd., Changhua City 500 (China); Lin, Huan-Jung [Department of Aeronautical Engineering, National Formosa University, No. 64, Wen-Hwa Rd., Huwei Jen, Yunlin 632 (China); Chen, Pang-Chia [Department of Electrical Engineering, Kao Yuan University, No. 1821, Jhong-Shan Rd., Lu-Jhu Township, Kaohsiung 821 (China)

    2009-02-15

    In this paper, a new approach to estimate the optimal performance of an unknown proton exchange membrane fuel cell (PEMFC) has been proposed. This proposed approach combines the Taguchi method and the numerical PEMFC model. Simulation results obtained using the Taguchi method help to determine the value of control factors that represent the tested unknown PEMFC. The objective of reducing both fuel consumption and operation cost can be achieved by determining the parameters for the unknown PEMFC. In addition, the optimal operation power for the tested unknown PEMFC can also be predicted. Experimental results on the test equipment show that the proposed approach is effective in optimal performance estimation for the tested unknown PEMFC, thus demonstrating the success achieved by combining the Taguchi method and the numerical PEMFC model. (author)

  19. Preparation of gas diffusion layers for PEMFC fuel cells using carbon fibers; Elaboracao de uma camada de difusao de gas a partir de fibras de carbono para aplicacao em celulas combustiveis do tipo PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J.N.; Kunsti, S.R.; Malfatti, C.F. [Universidade Federal do Rio Grande do Sul - Departamento de Metalurgia (PPGEM) - Laboratorio de Pesquisa em Corrosao (LAPEC), Porto Alegre, RS (Brazil); Vargas, J.V.C. [Universidade Federal do Parana - Departamento de Engenharia Mecanica, PR (Brazil); Amico, S.C. [Universidade Federal do Rio Grande do Sul - Departamento de Materiais, RS (Brazil)

    2010-07-01

    The electrode/membrane system, called MEA, is the fundamental unit of a PEMFC (proton exchange membrane fuel cell). Within the MEA, the gas diffusion layer (GDL) is the bridge between the flow field and the catalyst layer. One of the important elements in a GDL is the substrate, typically a carbon cloth or paper, that has to be an excellent electrical conductor and show mechanical strength along with thermal and chemical stability. In this work, GDLs were produced from a suspension containing short carbon fibers in water-based polyurethane and poly(vinyl alcohol) (PVA) resins with appropriate characteristics to be used in low temperature fuel cells. The obtained GDL was characterized regarding its wettability, electrical conductivity and morphological aspects, evaluated by SEM. (author)

  20. On-line and real-time diagnosis method for proton membrane fuel cell (PEMFC) stack by the superposition principle

    Science.gov (United States)

    Lee, Young-Hyun; Kim, Jonghyeon; Yoo, Seungyeol

    2016-09-01

    The critical cell voltage drop in a stack can be followed by stack defect. A method of detecting defective cell is the cell voltage monitoring. The other methods are based on the nonlinear frequency response. In this paper, the superposition principle for the diagnosis of PEMFC stack is introduced. If critical cell voltage drops exist, the stack behaves as a nonlinear system. This nonlinearity can explicitly appear in the ohmic overpotential region of a voltage-current curve. To detect the critical cell voltage drop, a stack is excited by two input direct test-currents which have smaller amplitude than an operating stack current and have an equal distance value from the operating current. If the difference between one voltage excited by a test current and the voltage excited by a load current is not equal to the difference between the other voltage response and the voltage excited by the load current, the stack system acts as a nonlinear system. This means that there is a critical cell voltage drop. The deviation from the value zero of the difference reflects the grade of the system nonlinearity. A simulation model for the stack diagnosis is developed based on the SPP, and experimentally validated.

  1. Biomass gasification and fuel cells: system with PEM fuel cell; Gaseificacao de biomassa e celula a combustivel: sistema com celula tipo PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Sordi, Alexandre; Lobkov, Dmitri D.; Lopes, Daniel Gabriel; Rodrigues, Jean Robert Pereira [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Fac. de Engenharia Mecanica], e-mail: asordi@fem.unicamp.br, e-mail: lobkov@fem.unicamp.br, e-mail: danielg@fem.unicamp.br, e-mail: jrobert@fem.unicamp.br; Silva, Ennio Peres da [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Inst. de Fisica Gleb Wataghin], e-mail: Lh2ennio@ifi.unicamp.br

    2006-07-01

    The objective of this paper is to present the operation flow diagram of an electricity generation system based on the biomass integrated gasification fuel cell of the type PEMFC (Proton Exchange Membrane Fuel Cell). The integration between the gasification and a fuel cell of this type consists of the gas methane (CH4) reforming contained in the synthesis gas, the conversion of the carbon monoxide (CO), and the cleaning of the gaseous flow through a PSA (Pressure Swing Adsorption) system. A preliminary analysis was carried out to estimate the efficiency of the system with and without methane gas reforming. The performance was also analyzed for different gasification gas compositions, for larger molar fractions of hydrogen and methane. The system electrical efficiency was 29% respective to the lower heating value of the gasification gas. The larger the molar fraction of hydrogen at the shift reactor exit, the better the PSA exergetic performance. Comparative analysis with small gas turbines exhibited the superiority of the PEMFC system. (author)

  2. On flow maldistribution in PEMFC stacks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J. [Xi' an Jiaotong Univ., Xi' an (China). State Key Laboratory of Multiphase Flow in Power Engineering; Lund Univ., Lund (Sweden). Dept. of Energy Sciences, Heat Transfer Div.; Yan, J. [Xi' an Jiaotong Univ., Xi' an (China). State Key Laboratory of Multiphase Flow in Power Engineering; Yuan, J.; Sunden, B. [Lund Univ., Lund (Sweden). Dept. of Energy Sciences, Heat Transfer Div.

    2010-07-01

    Fuel cell devices have technical and environmental advantages over thermal power systems. The advantages include high performance characteristics, reliability, durability and low emissions. In order to increase the voltage in a single PEMFC for practical operations, many single cells are serially connected to fabricate a fuel cell stack. This study focused on the flow maldistribution at stack level. The flow maldistribution in unit cells may significantly influence the fuel cell stack performance, including the uniformity of current density and the voltage. Of the few studies on flow maldistribution in PEMFC stacks, the results are unsystematic, scattered, and even contradictory. As such, it is necessary to review and summarize previous studies to gain insight into methods to reduce the flow maldistribution in PEMFC stacks. This paper therefore reviewed existing literature concerning flow maldistributions in PEMFC stacks and discussed the effects of the arrangement of flow configurations, design parameters and operating conditions on the flow maldistribution. Some suggestions were outlined to reduce the flow maldistribution in PEMFC stacks. 34 refs., 1 tab., 13 figs.

  3. Quantification of in situ temperature measurements on a PBI-based high temperature PEMFC unit cell

    DEFF Research Database (Denmark)

    Lebæk, Jesper; Ali, Syed Talat; Møller, Per;

    2010-01-01

    The temperature is a very important operating parameter for all types of fuel cells. In the present work distributed in situ temperature measurements are presented on a polybenzimidazole based high temperature PEM fuel cell (HT-PEM). A total of 16 T-type thermocouples were embedded on both...

  4. Review on the Recent Developments of Photovoltaic Thermal (PV/T and Proton Exchange Membrane Fuel Cell (PEMFC Based Hybrid System

    Directory of Open Access Journals (Sweden)

    Zulkepli Afzam

    2016-01-01

    Full Text Available Photovoltaic Thermal (PV/T system emerged as one of the convenient type of renewable energy system acquire the ability to generate power and thermal energy in the absence of moving parts. However, the power output of PV/T is intermittent due to dependency on solar irradiation condition. Furthermore, its efficiency decreases because of cells instability at high temperature. On the other hand, fuel cell co-generation system (CGS is another technology that can generate power and heat simultaneously. Integration of PV/T and fuel cell CGS could enhance the reliability and sustainability of both systems as well as increasing the overall system performance. Hence, this paper intended to present the parameters that affect performance of PV/T and Proton Exchange Membrane Fuel Cell (PEMFC CGS. Moreover, recent developments on PV/T-fuel cell hybrid system are also presented. Based on literates, mass flow rate of moving fluid in PV/T was found to affect the system efficiency. For the PEMFC, when the heat is utilized, the system performance can be increased where the heat efficiency is similar to electrical efficiency which is about 50%. Recent developments of hybrid PV/T and fuel cell show that most of the studies only focus on the power generation of the system. There are less study on the both power and heat utilization which is indeed necessary in future development in term of operation strategy, optimization of size, and operation algorithm.

  5. Investigation on the origin of diffusion impedance in the porous cathode of a proton exchange membrane fuel cell (PEMFC) via electrochemical impedance spectroscopy (EIS)

    Energy Technology Data Exchange (ETDEWEB)

    Mainka, J.; Maranzana, G.; Dillet, J.; Didierjean, S.; Lottin, O. [Nancy Univ., Centre national de la recherche scientifique, Vandoeuvre les Nancy (France). Laboratoire d' Energetique et de Mecanique Theorique et Appliquee

    2009-07-01

    This study provided a preliminary examination of the impact of gas flow rate on the impedance characteristics of a proton exchange membrane fuel cell (PEMFC). The mass transport phenomena within the porous cathode of PEMFCs can be analyzed through electrochemical impedance spectroscopy (EIS). The geometrical description of the electrodes chosen to complete the EIS interpretations is a form of the agglomerate model, where the agglomerates are a mixture of carbon powder and catalyst particles, whereas the electrolyte is assumed to cover only the pore surfaces. Therefore, the reactants access the active catalyst sites by passing successively through the gas diffusion layer (GDL), the pores of the electrode, and finally through a thin electrolyte layer. The fuel cell equivalent electrical circuit is based on a Butler-Volmer formalism that takes into consideration oxygen diffusion in the pores of the GDL and/or the active layer through a Warburg element. The results reveal that in the cathode, the mass transfer limiting layer is most likely the active layer, provided liquid water is present within the pores. Under normal operating conditions, the mass transport resistance of the gas diffusion layer is negligible, as is the fine electrolyte layer coating the agglomerate.

  6. The production of sulfonated chitosan-sodium alginate found in brown algae (Sargassum sp.) composite membrane as proton exchange membrane fuel cell (PEMFC)

    Science.gov (United States)

    Wafiroh, Siti; Pudjiastuti, Pratiwi; Sari, Ilma Indana

    2016-03-01

    The majority of energy was used in this period is from fossil fuel, which getting decreased in the future. The objective of this research is production and characterization of sulfonated chitosan-sodium alginate found in brown algae (Sargassum sp.) composite membrane as Proton Exchange Membrane Fuel Cell (PEMFC) for alternative energy. PEMFC was produced with 4 variations (w/w) ratio between chitosan and sodium alginate, 8 : 0, 8 : 1, 8 : 2, 8 : 4 (w/w). The production of membrane was mixed sodium alginate solution into chitosan solution and sulfonated with H2SO4 0.72 N. The characterization of the PEM was uses Modulus Young analysis, water swelling, ion exchange capacity, FTIR, SEM, DTA, methanol permeability and proton conductivity. The result of the research, showed that the optimum membrane was with ratio 8 : 2 (w/w) that the Modulus Young 8564 kN/m2, water swelling 31.86%, ion exchange capacity 1.020 meq/g, proton conductivity 8,8 × 10-6 S/cm, methanol permeability 1.90 × 10-8 g/cm2s and glass transition temperature (Tg) 100.9 °C, crystalline temperature (Tc) 227.6 °C, and the melting temperature (Tm) 267.9 °C.

  7. Development and Validation of a Simple Analytical Model of the Proton Exchange Membrane Fuel Cell (Pemfc) in a Fork-Lift Truck Power System

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud

    2013-01-01

    for the auxilary components depending on the stack power or current. Further, at the higher current densities, heat losses and net power of the system increase, while system efficiency decreases. Furthermore, the system performance was not sensitive to the coolant temperature when water is used as the coolant....... management, system sensitivity to coolant inlet temperature, air and fuel stoichiometry, anode inlet pressure, stack operating conditions, etc. System efficiency and electrical power at different operating conditions are also discussed. The results show that 12–30% of stack power is allocated......In this study, a general proton exchange membrane fuel cell (PEMFC) model has been developed in order to investigate the balance of plant of a fork-lift truck thermodynamically. The model takes into account the effects of pressure losses, water crossovers, humidity aspects, and voltage...

  8. Modelling and control PEMFC using fuzzy neural networks

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Proton exchange membrane generation technology is highly efficient, clean and considered as the most hopeful "green" power technology. The operating principles of proton exchange membrane fuel cell (PEMFC) system involve thermodynamics, electrochemistry, hydrodynamics and mass transfer theory, which comprise a complex nonlinear system, for which it is difficult to establish a mathematical model and control online. This paper first simply analyzes the characters of the PEMFC; and then uses the approach and self-study ability of artificial neural networks to build the model of the nonlinear system, and uses the adaptive neural-networks fuzzy infer system (ANFIS) to build the temperature model of PEMFC which is used as the reference model of the control system, and adjusts the model parameters to control it online. The model and control are implemented in SIMULINK environment. Simulation results showed that the test data and model agreed well, so it will be very useful for optimal and real-time control of PEMFC system.

  9. Nonlinear Modeling and Neuro-Fuzzy Control of PEMFC

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The proton exchange membrane generation technology is highly efficient, and clean and is considered as the most hopeful "green" power technology. The operating principles of proton exchange membrane fuel cell (PEMFC) system involve thermodynamics, electrochemistry, hydrodynamics and mass transfer theory, which comprise a complex nonlinear system, for which it is difficult to establish a mathematical model and control online.This paper analyzed the characters of the PEMFC; and used the approach and self-study ability of artificial neural networks to build the model of nonlinear system, and adopted the adaptive neural-networks fuzzy infer system to build the temperature model of PEMFC which is used as the reference model of the control system, and adjusted the model parameters to control online. The model and control were implemented in SIMULINK environment.The results of simulation show the test data and model have a good agreement. The model is useful for the optimal and real time control of PEMFC system.

  10. Multivariable robust PID control for a PEMFC system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fu-Cheng; Ko, Chin-Chun [Department of Mechanical Engineering, National Taiwan University, No. 1 Roosevelt Rd. Sec. 4, Taipei 10617 (China)

    2010-10-15

    This paper proposes robust proportional-integral-derivative (PID) control for a proton exchange membrane fuel cell (PEMFC) system. We model a PEMFC as a multivariable system, and apply identification techniques to obtain the system's transfer function matrices, where system variations and disturbances are regarded as uncertainties. Because robust control can cope with system uncertainties and disturbances, it has been successfully applied to improve the stability, performance, and efficiency of PEMFC systems in previous studies. However, the resulting robust controllers might be too complicated for hardware implementation. On the other hand, PID control has been widely applicable to engineering practices because of its simple structure, but it lacks stability analysis for systems with uncertainties. Therefore, by combining the merits of robust control and PID control, we design robust PID controllers for the PEMFC system. Based on evaluation of stability, performance, and efficiencies, the proposed robust PID controllers are shown to be effective. (author)

  11. Life cycle assessment (LCA) methodology: importance in the integration of the fuel cell technology type PEMFC (proton exchange membrane fuel cells); Metodologia da analise de ciclo de vida: importancia na insercao da tecnologia de celula a combustivel do tipo PEMFC (membrana polimerica trocadora de protons)

    Energy Technology Data Exchange (ETDEWEB)

    Fukurozaki, Sandra Harumi; Seo, Emilia Satoshi Miyamaru [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)). Centro de Ciencia e Tecnologia de Materiais], e-mail: shfukuro@ipen.br

    2004-07-01

    To improve the standard of society's quality of life, it is necessary to improve the quality of distributed energy and its inherent services within a sustainability process. Among different technological routes that produce more sustainable energy are the fuel cells - also known as combustible batteries. The Global Environment Facility (GEF) has identified the fuel cells as a potential technology to reduce, in the future, the effect of greenhouse gases in both developed and developing countries. Although there are various types of fuel cells, the most used technology for research studies on fuel cells is the Polymer Electrolyte Fuel Cells (FEMFC). However, economic issues - related to the high cost of the membrane's materials and of the catalysts of groups of platinum metals - are still some of the obstacles that need to be overcome for this technology to be more accessible. There are also socio-environmental aspects related to the impacts caused by the extraction, the use and the destination of these metals. Taking in consideration the challenges of complying with the demands of the market and the society as well as with the growing tendency of more rigid patterns of environmental control, the objective of the present work is to show the tool of environmental management - Life Cycle Assessment (LCA) - and its importance on the pursuit for socio-economic and environmental alternatives feasible to the recycling of the catalysts of platinum of the PEMFC. This way, it intends to collaborate to the progress of the knowledge about environmental and socio-economic subjects related to the productive process of the PEMFC. (author)

  12. Effect of catalyst distribution in the active layers of proton exchange membrane fuel cells; Effet de la distribution du catalyseur dans les couches actives de piles a combustible de type PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Bultel, Y.; Durand, R.; Ozil, P. [Ecole Nationale Superieure d' Electrochimie et d' Electrometallurgie, Lab. d' Electrochimie et de Physico-chimie des Materiaux et des Interfaces, UMR 5631, 38 - Grenoble (France); Antoine, O. [Geneva Univ., Dept. de Chimie Minerale, Analytique et Appliquee, Sciences 2 (Switzerland)

    2000-07-01

    The aim of this work is to study the influence of the distribution of the platinum catalyst in the active layers on the performances of proton exchange membrane fuel cells (PEMFC) electrodes. In the one hand, the results predicted by the classical models and those in which the active layers is modified have been compared; these results have allowed to demonstrate theoretically the effect of the discrete distribution of the platinum catalyst in the form of nano-particles. On the other hand, the influence of a distribution gradient of the platinum catalyst for porous and non-porous active layers of PEMFC cathode has been experimentally demonstrated and predicted by numerical simulations. (O.M.)

  13. Evaluation of reciprocating electromagnetic air pumping for portable PEMFC

    Science.gov (United States)

    Kwon, Kilsung; Kang, Ho; Kang, Seongwon; Kim, Daejoong

    2013-06-01

    In this paper, we present a proton exchange membrane fuel cell (PEMFC) integrated with an electromagnetic (EM) air pump. The EM air pump provides the PEMFC with air by reciprocating motions of the permanent magnet attached to a flexible membrane. We performed a parametric study to decide the optimal dimensions of the reciprocating EM air pump. The effects of various operating parameters on the EM air pump were investigated with the root-mean-square (RMS) flow rate and current. A core with a higher relative permeability shows better performance. The RMS current linearly increases with the applied voltage and shows no dependence on the frequency. The RMS flow rate also increases with the voltage. The RMS flow rate per power consumption is highest at the frequency around 20 Hz and decreases as the applied voltage increases. When the reciprocating EM air pump was used to supply air to the portable PEMFC, it was found that the power density of the PEMFC increases with the applied voltage and shows the highest performance at the frequency of 10 Hz. We compared the performance of the PEMFC between the flow meter and the EM air pump used as an air supplier. About 81% of the output power using the flow meter was obtained when the EM air pump is operated at the applied voltage of 5 V. The parasitic power ratio reaches at its minimum value about 0.1 with an EM applied voltage of 0.25V.

  14. Nonlinear modeling of PEMFC based on neural networks identification

    Institute of Scientific and Technical Information of China (English)

    SUN Tao; CAO Guang-yi; ZHU Xin-jian

    2005-01-01

    The proton exchange membrane generation technology is highly efficient and clean, and is considered as the most hopeful "green" power technology. The operating principles of proton exchange membrane fuel cell (PEMFC) system involve thermodynamics, electrochemistry, hydrodynamics and mass transfer theory, which comprise a complex nonlinear system, for which it is difficult to establish a mathematical model. This paper first simply analyzes the necessity of the PEMFC generation technology, then introduces the generating principle from four aspects: electrode, single cell, stack, system; and then uses the approach and self-study ability of artificial neural network to build the model of nonlinear system, and adapts the Levenberg-Marquardt BP (LMBP) to build the electric characteristic model of PEMFC. The model uses experimental data as training specimens, on the condition the system is provided enough hydrogen. Considering the flow velocity of air (or oxygen) and the cell operational temperature as inputs, the cell voltage and current density as the outputs and establishing the electric characteristic model of PEMFC according to the different cell temperatures. The voltage-current output curves of model has some guidance effect for improving the cell performance, and provide basic data for optimizing cell performance that have practical significance.

  15. Nonlinear Predictive Control for PEMFC Stack Operation Temperature

    Institute of Scientific and Technical Information of China (English)

    LI Xi; CAO Guang-yi; ZHU Xin-jian

    2005-01-01

    Operating temperature of proton exchange membrane fuel cell stack should be controlled within a special range. The input-output data and operating experiences were used to establish a PEMFC stack model and operating temperature control system. A nonlinear predictive control algorithm based on fuzzy model was presented for a family of complex system with severe nonlinearity such as PEMFC. Based on the obtained fuzzy model, a discrete optimization of the control action was carried out according to the principle of Branch and Bound method. The test results demonstrate the effectiveness and advantage of this approach.

  16. Current density and polarization curves for radial flow field patterns applied to PEMFCs (Proton Exchange Membrane Fuel Cells)

    Energy Technology Data Exchange (ETDEWEB)

    Cano-Andrade, S.; Hernandez-Guerrero, A.; Damian-Ascencio, C.E.; Rubio-Arana, J.C. [Department of Mechanical Engineering, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago 3.5 + 1.8 km, Comunidad de Palo Blanco, Salamanca, Gto. (Mexico); von Spakovsky, M.R. [Center for Energy Systems Research, Mechanical Engineering Department, Virginia Tech, Blacksburg, VA 24061 (United States)

    2010-02-15

    A numerical solution of the current density and velocity fields of a 3-D PEM radial configuration fuel cell is presented. The energy, momentum and electrochemical equations are solved using a computational fluid dynamics (CFD) code based on a finite volume scheme. There are three cases of principal interest for this radial model: four channels, eight channels and twelve channels placed in a symmetrical path over the flow field plate. The figures for the current-voltage curves for the three models proposed are presented, and the main factors that affect the behavior of each of the curves are discussed. Velocity contours are presented for the three different models, showing how the fuel cell behavior is affected by the velocity variations in the radial configuration. All these results are presented for the case of high relative humidity. The favorable results obtained for this unconventional geometry seems to indicate that this geometry could replace the conventional commercial geometries currently in use. (author)

  17. Peclet number analysis of cross-flow in porous gas diffusion layer of polymer electrolyte membrane fuel cell (PEMFC).

    Science.gov (United States)

    Suresh, P V; Jayanti, Sreenivas

    2016-10-01

    Adoption of hydrogen economy by means of using hydrogen fuel cells is one possible solution for energy crisis and climate change issues. Polymer electrolyte membrane (PEM) fuel cell, which is an important type of fuel cells, suffers from the problem of water management. Cross-flow is induced in some flow field designs to enhance the water removal. The presence of cross-flow in the serpentine and interdigitated flow fields makes them more effective in proper distribution of the reactants on the reaction layer and evacuation of water from the reaction layer than diffusion-based conventional parallel flow fields. However, too much of cross-flow leads to flow maldistribution in the channels, higher pressure drop, and membrane dehydration. In this study, an attempt has been made to quantify the amount of cross-flow required for effective distribution of reactants and removal of water in the gas diffusion layer. Unit cells containing two adjacent channels with gas diffusion layer (GDL) and catalyst layer at the bottom have been considered for the parallel, interdigitated, and serpentine flow patterns. Computational fluid dynamics-based simulations are carried out to study the reactant transport in under-the-rib area with cross-flow in the GDL. A new criterion based on the Peclet number is presented as a quantitative measure of cross-flow in the GDL. The study shows that a cross-flow Peclet number of the order of 2 is required for effective removal of water from the GDL. Estimates show that this much of cross-flow is not usually produced in the U-bends of Serpentine flow fields, making these areas prone to flooding.

  18. Hybrid intelligent PID control design for PEMFC anode system

    Institute of Scientific and Technical Information of China (English)

    Rui-min WANG; Ying-ying ZHANG; Guang-yi CAO

    2008-01-01

    Control design is important for proton exchange membrane fuel cell (PEMFC) generator. This work researched the anode system of a 60-kW PEMFC generator. Both anode pressure and humidity must he maintained at ideal levels during steady operation. In view of characteristics and requirements of the system, a hybrid intelligent PID controller is designed specifically based on dynamic simulation. A single neuron PI controller is used for anode humidity by adjusting the water injection to the hydrogen cell. Another incremental PID controller, based on the diagonal recurrent neural network (DRNN) dynamic identification, is used to control anode pressure to be more stable and exact by adjusting the hydrogen flow rate. This control strategy can avoid the coupling problem of the PEMFC and achieve a more adaptive ability. Simulation results showed that the control strategy can maintain both anode humidity and pressure at ideal levels regardless of variable load, nonlinear dynamic and coupling characteristics of the system. This work will give some guides for further control design and applications of the total PEMFC generator.

  19. Evaluation and application of PEMFC fuel cell's technologies developed at IPEN applied to a 500 W{sub e} fuel cell stack; Avaliacao e aplicacao de tecnologias de celulas a combustivel tipo PEMFC desenvolvida no IPEN em um modulo de 500 W{sub e} de potencia nominal

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Edgar Ferrari da

    2009-07-01

    This work is part of a research project on PEMFC technologies carried out in IPEN to develop and optimize a 500 W{sub e} fuel cell stack. The MEAs scaling up from 25 cm{sup 2} to 144 cm{sup 2} produced by the method of sieve printing; computational fluid dynamics by computer simulation of gas flow channels in bipolar plates using COMSOL{sup R} program and the use of Pt/C electrodes developed by alcohol reduction method in single cells were used to build a stack of 500 W{sub e} nominal power for possible commercial applications, produced with national technology and industrial support. A 100 hours fuel cell's test was carried out in a 144 cm{sup 2} single cell to study the stability of the MEA fabricated by sieve printing method. This single cell showed good stability within this period of time. The developed stack has reached the maximum power of 574 W{sub e} at 100 A (694.4 mA cm{sup -2}). The operating power of 500 W{sub e} was obtained at 77.7 A (540.1 mA cm{sup -2}) and potential of 6.43 V, with efficiency of 43.3%. In terms of cogeneration, the thermal power or generated heat by the stack was 652 W{sub t}. The initial estimated cost for the 500 W{sub e} stack was about R$ 4,500.00, considering only the used materials for its construction. (author)

  20. Electrical properties of carbon-based polypropylene composites for bipolar plates in polymer electrolyte membrane fuel cell (PEMFC)

    Science.gov (United States)

    Dweiri, Radwan; Sahari, Jaafar

    An investigation is made of the electrical properties of polypropylene/graphite (PP/G) composites as prospective replacements for the traditional graphite bipolar plate in proton-exchange membrane fuel cells. The composites have relatively low electrical conductivities, i.e., up to 28 S cm -1 at 90 wt.% G. Combination of G with carbon black (CB) is an effective way to develop higher conductivity composites. The conductivity reaches 35 S cm -1 by combination of 25 wt.% CB and 55 wt.% G to 20 wt.% PP. This is five times the value at 80 wt.% G and 20 wt.% PP (7 S cm -1). Two methods are mainly adopted for the preparation of composites, namely, melt compounding and solution blending. Solution blending of PP with conductive fillers followed by moulding of the dried powder leads to higher conductivities compared with those of melt-compounded composites. The combination of conjugated conducting polymers such as polyaniline (PANi) with the PP, G, and CB is also investigated. It is found that composites containing PANi have lower conductivities than those of the neat composites. This decrease in conductivity is attributed to the poor thermal stability of PANi.

  1. Integrated PEMFC Flow Field Design Concept for Gravity Independent Passive Water Removal Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ElectroChem proposes a Phase II program to advance its very successful SBIR Phase I PEM fuel cell (PEMFC) program. In Phase I, the unique integrated-flow-field...

  2. Uninterruptible power supply for GSM/UMTS base stations using fuel cells. PEM-FC back-up system - Final report; Unterbrechungsfreie Stromversorgung (USV) fuer GSM/UMTS-Basisstationen mit Brennstoffzellen. PEM-FC Back-Up System - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Trachte, U.; Wellig, B.; Luethi, E.; Gander, T.; Haerri, V.

    2010-06-15

    The Lucerne University of Applied Sciences and Arts - Lucerne School of Engineering and Architecture conducted field tests with an uninterruptible power supply (UPS) with fuel cell technology since January 2006. The project took place in collaboration with the industrial partners Swisscom (Schweiz) AG, as a user of UPS-systems in telecommunications and the American Power Conversion Corporation as a producer and market leader of UPS-Systems. In this project, the lead-acid batteries were replaced by a PEM fuel cell system. The delayed start-up behaviour of the fuel cell was bridged with supercapacitor technology. The system was connected to an existing working base station of a telecommunication installation, which was installed on the roof of the Lucerne School of Engineering and Architecture in Horw. Hydrogen was provided by two pressurized tanks. The full quantity of hydrogen assured a stand-alone operation for about 6 hours under the load of the telecommunication base station. The field test included monthly grid failure simulations of 5x5 minutes and 2x20 minutes power failures. Also during grid failure simulations for more than 4 hours and during two real outages up to one and a half hour the system provided the demanded power. The field test was performed for a period of three and a half years. Excellent results of the approximately 350 start-up's confirm the functionality, reliability and performance of the system. Under the load of the base station the fuel cell system started with a reliability of 100%. At the end of the tests a decrease of the fuel cell voltage of about 3.3% was measured. The fuel cell system was still fully operational at this time. An amount of energy of about 470 kWh was provided. In addition to the field test, the environmental impact of the lead-acid batteries, which are normally used, and of the fuel cell system was investigated. The comparison between the fuel cell system and lead-acid batteries without recycling showed a

  3. Oxygen starvation analysis during air feeding faults in PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Gerard, Mathias [Commissariat a l' Energie Atomique (CEA), DRT/LITEN, 17, rue des Martyrs -38000 Grenoble (France); University of Franche-Comte, FEMTO-ST ENISYS/FCLAB Laboratory, rue Thierry Mieg, bat. F -90010 Belfort (France); Poirot-Crouvezier, Jean-Philippe [Commissariat a l' Energie Atomique (CEA), DRT/LITEN, 17, rue des Martyrs -38000 Grenoble (France); Hissel, Daniel; Pera, Marie-Cecile [University of Franche-Comte, FEMTO-ST ENISYS/FCLAB Laboratory, rue Thierry Mieg, bat. F -90010 Belfort (France)

    2010-11-15

    A new analysis of performance degradation during oxygen starvation of PEMFC (Proton Exchange Membrane Fuel Cell) is proposed in this paper. Oxygen starvation happens for several reasons like compressor delay, fault during peak power demand or water management issues. The consequences on fuel cell performance degradation are not still well understood. This paper proposes a complete study with experimental tests and modeling. Impacts on performance were investigated under oxygen starvation and effects on the local conditions in the MEA (Membrane Electrode Assembly) were measured and modeled. In particular, current density measurements during oxygen starvation have been made with a specific bi-cell stack. Voltage oscillations were also found. Durability test have been realized on a PEMFC stack. Samples from the degraded MEA were analyzed by TEM (Transmission Electron Microscopy). Degradation mechanisms are proposed and the local conditions during oxygen starvation are identified. (author)

  4. Review on management, mechanisms and modelling of thermal processes in PEMFC

    Science.gov (United States)

    Bvumbe, Tatenda J.; Bujlo, Piotr; Tolj, Ivan; Mouton, Kobus; Swart, Gerhard; Pasupathi, Sivakumar; Pollet, Bruno G.

    2016-06-01

    In an effort to reduce the environmental impact of the energy sector that is mostly based on fossil fuels, researchers are looking for a clean alternative of our existing energy sources. Hydrogen Energy and Fuel Cells, and in particular Polymer ElectrolyteMembrane Fuel Cells (PEMFCs) have emerged as a leading candidate for transportation as well as stationary and portable applications. Due to the irreversibility of the electrochemical reactions and ohmic heating in the fuel cell components, the PEMFC produces a significant amount of heat and this heat has to be removed in order to avoid cell or stack overheating. In this paper, a review of the key heat transfer mechanisms and the various cooling strategies that are available for heat removal from PEMFCs are presented. Due to the interrelated nature and difficulty of conducting in-situ thermal measurements on the operating PEMFCs, computational modelling provides a fast and efficient way of designing PEMFC cooling systems and understanding the heat transfer mechanisms. Therefore PEMFC thermal modelling is also highlighted together with present challenges and potential areas for further research and development works.

  5. Plain carbon steel bipolar plates for PEMFC

    Institute of Scientific and Technical Information of China (English)

    WANG Jianli; SUN Juncai; TIAN Rujin; XU Jing

    2006-01-01

    Bipolar plates are a multifunctional component of PEMFC. Comparing with the machined graphite and stainless steels, the plain carbon steel is a very cheap commercial metal material. In this paper, the possibility of applying the plain carbon steels in the bipolar plate for PEMFC was exploited. In order to improve the corrosion resistance of the low carbon steel in the PEMFCs' environments,two surface modification processes was developed and then the electrochemical performances and interfacial contact resistance (ICR) of the surface modified plate of plain carbon steel were investigated. The results show that the surface modified steel plates have good corrosion resistance and relatively low contact resistance, and it may be a candidate material as bipolar plate of PEMFC.

  6. Monte Carlo simulation of the PEMFC catalyst layer

    Institute of Scientific and Technical Information of China (English)

    WANG Hongxing; CAO Pengzhen; WANG Yuxin

    2007-01-01

    The performance of the polymer electrolyte membrane fuel cell (PEMFC) is greatly controlled by the structure of the catalyst layer.Low catalyst utilization is still a significant obstacle to the commercialization of the PEMFC.In order to get a fundamental understanding of the electrode structure and to find the limiting factor in the low catalyst utilization,it is necessary to develop the mechanical model on the effect of catalyst layer structure on the catalyst utilization and the performance of the PEMFC.In this work,the structure of the catalyst layer is studied based on the lattice model with the Monte Carlo simulation.The model can predict the effects of some catalyst layer components,such as Pt/C catalyst,electrolyte and gas pores,on the utilization of the catalyst and the cell performance.The simulation result shows that the aggregation of conduction grains can greatly affect the degree of catalyst utilization.The better the dispersion of the conduction grains,the larger the total effective area of the catalyst is.To achieve higher utilization,catalyst layer components must be distributed by means of engineered design,which can prevent aggregation.

  7. Analysis for impedance electrochemistry 'on-line' of membrane/electrode assemble (MEA) of protons exchange membrane fuel cells (PEMFC); Analise por impedancia eletroquimica 'on-line' de conjuntos eletrodos/membrana (MEA) de celulas a combustivel a membrana polimetrica (PEMFC)

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Antonio Rodolfo dos

    2007-07-01

    This work reports results of studies and characterization on membrane electrode assemblies (MEAs) for proton exchange membrane fuel cell (PEMFC). Some cell operation conditions and different processes of MEA production were investigated. The electrochemical impedance spectroscopy technique (EIS) (in situ - 0 to 16 A) was used 'on-line' as a tool for diagnosis, concerning the cell performance. The EIS measurements were carried out with a FC350 Fuel Cell EIS System (GAMRY), coupled to a PC4 potentiostat/galvanostat and connected to the electronic load (TDI) for 'on-line' EIS experiments (100 mHz - 10 kHz, dU = 5 mV). MEAs with 25 cm{sup 2} surface area, using PtM/C 20% (M Ru, Sn or Ni) electrocatalysts were manufactured using the alcohol reduction process (ARP). The catalytic ink was applied directly into the carbon cloth (GDL) and pressed in the Nafion membrane (105). MEAs using Pt/C and Pt Ru/C 20% from E-TEK electrocatalysts were manufactured by comparison. All the cathodes were sprayed with Pt/C 20% from E-TEK. The noble metal concentrations used were set to 0.4 mg Pt.cm{sup -2} at the anode and 0.6 mg Pt.cm{sup -2} at the cathode (E-TEK). Nyquist diagrams of the MEAs with Pt/C and PtRu/C from E-TEK or PtM/C (M = Ru, Sn or Ni) ARP showed essentially the same ohmic resistances for the MEAs. This fact can be explained by suppression of agglomerates during the MEA preparation process or by the homogeneity of the anchored electrocatalysts at the carbon surface. It could also be observed, at low current densities, that there was a significant performance difference between the electrocatalysts from E-TEK and those prepared with the alcohol reduction process. The polarization curves results confirmed that the Pt M/C (M = Ru, Sn or Ni) ARP showed an activity increase for the methanol and ethanol fed cells. The technique of EIE was shown efficient for the evaluation of the method preparation of MEAs and the acting of the cell, the results of EIE

  8. Numerical investigation into the performance PEMFC with a wave-like gas flow channel design

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.M. [Kao Yuan Univ., Kaohsiung, Taiwan (China). Dept. of Mechanical and Automation Engineering; Kuo, J.K. [National Univ. of Tainan, Taiwan (China). Inst. of Greenergy

    2007-07-01

    Proton exchange membrane fuel cells (PEMFCs) are a viable power source for many applications. This inexpensive and compact power source has high power density, high performance and good electrical stability. A study was conducted to gain a better understanding of the transport mechanism in a fuel cell, which involves coupled fluid flow, heat and mass transfer and electrochemical reactions. In particular, a two-dimensional computational model was developed to study the transport phenomena in PEMFCs with wave-like gas flow channels and conventional straight gas flow channels, respectively. The velocity, temperature and gas concentration distributions within the novel wave-like gas flow channel were investigated numerically. The electrical performance of a PEMFC with wave-like gas flow channels was then compared with that of a PEMFC with conventional straight gas flow. Simulations were based on a steady state, single-phase, multi-species, two-dimensional mass transfer model of a PEMFC. The effect of the wave-like channel profile on the gas flow characteristics was determined along with temperature distribution, electrochemical reaction efficiency, and electrical performance. In comparison to a conventional straight gas flow channel, the wave-like channel increased the fuel flow velocity, enhanced the transport through the porous layer, and improved the temperature distribution. It was concluded that the PEMFC with wave-like gas flow has better fuel utilization efficiency and superior heat transfer characteristics. It also has a higher PEMFC output voltage and better current density and polarization characteristics. 12 refs., 1 tab., 8 figs.

  9. Optimization of parametric performance of a PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Kaytakoglu, Sueleyman; Akyalcin, Levent [Anadolu University, Eskisehir (Turkey). Department of Chemical Engineering

    2007-12-15

    In this study, the Taguchi method was applied to determine optimum working conditions in obtaining maximum power density of a PEMFC. Performance measure analysis was also followed by performing a variance analysis, in order to determine the optimum levels and relative magnitude of the effect of parameters. The optimum working conditions were found to be system pressure, 5 bar; flow rate ratio of H{sub 2} and O{sub 2}, 1/2; temperature of fuel cell, 75 {sup circle} C and temperature of humidifiers, 75 {sup circle} C. Under these conditions, the amount of maximum power density was predicted as 353mWcm{sup -2} by using experimental results obtained according to Taguchi's orthogonal array (OA) L{sub 9}(3{sup 4}). Verification experiment was done for the same optimum conditions and maximum power density was observed as 379.64mWcm{sup -2}. According to the results of this optimization, it was seen that pressure and humidification temperature were the effective parameters. (author)

  10. Pore-scale simulation of fluid flow through the electrodes of high temperature PEMFC using Lattice Boltzmann Method

    OpenAIRE

    Salomov, Uktam; Asinari, Pietro

    2013-01-01

    Polymer electrolyte membrane fuel cells (PEMFC) have received attention as new power sources for residential, transportation, as well as portable applications. Despite the tremendous progress in PEM fuel cell technology, namely development of the phosphoric acid doped PBI-based high temperature (> 100 oC) PEMFC with improved properties, reduced production cost, high efficiency and sufficient tolerance of Pt based hydrogen oxidation catalysts to CO impurity in hydrogen fuel (up to 2% at 180 oC...

  11. Study on behavior of plasma nitrided 316L in PEMFC working conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Rujin [Institute of Materials and Technology, Dalian Maritime University, Linghailu No.1, Ganjingzi District, Dalian, Lianoing 116026 (China); College of Materials and Engineering, Dalian Jiaotong University, Dalian 116028 (China); Sun, Juncai [Institute of Materials and Technology, Dalian Maritime University, Linghailu No.1, Ganjingzi District, Dalian, Lianoing 116026 (China); Wang, Jianli [Department of Basic Science, Changchun University of Technology, Changchun 130012 (China)

    2008-12-15

    Stainless steel bipolar plates for the polymer electrolyte membrane fuel cell (PEMFC) offer many advantages over conventional machined graphite and graphite-composites. However, the interfacial ohmic loss between the metallic bipolar plate and membrane electrode assembly due to corrosion decreases the overall power output of PEMFC. A lower temperature (at 370 C) plasma nitriding was applied to modify the surface of stainless steel 316L bipolar plates. The results of electrochemical measurements show that corrosion resistance of the plasma nitrided 316L is improved in simulated PEMFC anode/cathode environments purged with H{sub 2}/air at 70 C. The surface conductivity of the nitrided layer is better than that of the air-formed oxide film. The interfacial contact resistance (ICR) between the passive film and carbon paper increases very little after potentiostatic polarization for 4 h, which indicates potential for good stability of this material in highly corrosive fuel cell environments. (author)

  12. Waste Heat Recovery of a PEMFC System by Using Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Tianqi He

    2016-04-01

    Full Text Available In this study, two systems are brought forward to recover the waste heat of a proton exchange membrane fuel cell (PEMFC, which are named the organic Rankine cycle (ORC, and heat pump (HP combined organic Rankine cycle (HPORC. The performances of both systems are simulated on the platform of MATLAB with R123, R245fa, R134a, water, and ethanol being selected as the working fluid, respectively. The results show that, for PEMFC where operating temperature is constantly kept at 60 °C, there exists an optimum working temperature for each fluid in ORC and HPORC. In ORC, the maximal net power can be achieved with R245fa being selected as the working fluid. The corresponding thermal efficiency of the recovery system is 4.03%. In HPORC, the maximal net power can be achieved with water being selected in HP and R123 in ORC. The thermal efficiency of the recovery system increases to 4.73%. Moreover, the possibility of using ORC as the cooling system of PEMFC is also studied. The heat released from PEMFC stack is assumed to be wholly recovered by the ORC or HPORC system. The results indicate that the HPORC system is much more feasible for the cooling system of a PEMFC stack, since the heat recovery ability can be promoted due to the presence of HP.

  13. Rapid Prototyping Bipolar Plate of PEMFC by Gelcasting

    Institute of Scientific and Technical Information of China (English)

    LUO Bing; CHEN Shang-wei; HUANG Ming-yu; WANG Lian-jun

    2006-01-01

    Bipolar plate is one key component of proton exchange membrane fuel cell (PEMFC). According to this paper, mesocarbon microbeads were used as raw materials for forming the green bodies of bipolar plates with complex flow channels by gelcasting technique. Then, the final bipolar plates would be gained after the green parts were died, burned out and sintered. Meanwhile, its properties are researched and evaluated by the test of flexible strength and electric resistivity. The resultant flexural strength of sintered sample is 67 Mpa and the electric resistivity is 52 μΩ·m.

  14. Optimization of electrical conduction and passivity properties of stainless steels used for PEM fuel cell bipolar plates; Opmisation des proprietes de conduction electrique et de passivite d'aciers inoxydables pour la realisation de plaques bipolaires de pile a combustible de type PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Andre, J

    2007-10-15

    Among the new technologies for energy for sustainable development, PEMFC (proton exchange membrane fuel cells) offer seducing aspects. However, in order to make this technology fit large scale application requirements, it has to comply with stringent cost, performance, and durability criteria. In such a frame, the goal of this work was to optimize electrical conduction properties and passivity of stainless steels for the conception of PEMFC bipolar plates, used instead of graphite, the reference material. This work presents the possible ways of performance loss when using stainless steels and some methods to solve this problem. Passive film properties were studied, as well as their modifications by low cost industrial surface treatments, without deposition. Ex situ characterizations of corrosion resistance and electrical conduction were performed. Electrochemical impedance spectroscopy, water analysis, surface analysis by microscopy and photoelectron spectroscopy allowed to study the impact of ageing on two alloys in different states, and several conditions representative of an exposure to PEMFC media. Correlations between semi-conductivity properties, composition, and structure of passive layers were considered, but not leading to clear identification of all parameters responsible for electrical conduction and passivity. The plate industrial state is not convenient for direct use in fuel cell to comply with durability and performance requirements. A surface modification studied improves widely electrical conduction at initial state. The performance is degraded with ageing, but maintaining a level higher than the initial industrial state. This treatment increases also corrosion resistance, particularly on the anode side. (author)

  15. Research on a simulated 60 kW PEMFC cogeneration system for domestic application

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The electrical and thermal performances of a simulated 60 kW Proton Exchange Membrane Fuel Cell (PEMFC) cogeneration system are first analyzed and then strategies to make the system operation stable and efficient are developed. The system configuration is described first, and then the power response and coordination strategy are presented on the basis of the electricity model. Two different thermal models are used to estimate the thermal performance of this cogeneration system, and heat management is discussed. Based on these system designs, the 60 kW PEMFC cogeneration system is analyzed in detail. The analysis results will be useful for further study and development of the system.

  16. Incorporation of indium tin oxide nanoparticles in PEMFC electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wolz, Andre [Renewable Energies Group, Institute for Materials Science, Technische Universitaet Darmstadt (Germany); CRP Henri Tudor, Department of Advanced Materials and Structures, Esch-sur-Alzette (Luxembourg); Zils, Susanne; Ruch, David; Michel, Marc [CRP Henri Tudor, Department of Advanced Materials and Structures, Esch-sur-Alzette (Luxembourg); Kotov, Nicholas [University of Michigan, Department of Chemical Engineering, Ann Arbor, MI (United States); Roth, Christina [Renewable Energies Group, Institute for Materials Science, Technische Universitaet Darmstadt (Germany); Institute for Applied Materials (IAM)-Energy Storage Systems (ESS), Eggenstein-Leopoldshafen (Germany)

    2012-05-15

    Carbon materials suffer from corrosion at the cathode of polymer electrolyte membrane fuel cells (PEMFCs). In the presence of water, carbon support materials are oxidized to carbon dioxide even at low potentials. Hence, nowadays it is very fashionable to look for alternative support materials, like oxides or conductive polymers. To gain the maximum performance for a new material one should also consider an appropriate electrode structure. This study shows the results for the incorporation of nanosized alternative support materials into advanced electrode architectures. Commercially available indium tin oxide (ITO) nanoparticles (<50 nm) are used as support for Pt nanoparticles in combination with Nafion-coated multi-walled carbon nanotubes (MWCNTs) on the cathode side of a PEMFC. The MWCNTs promote a high electronic conductivity and help to form a porous network, which could accommodate the Pt/ITO nanoparticles. The microscopic investigations show a homogeneous electrode structure composed of Pt/ITO and MWCNT/Nafion multilayer. Single cell measurements show a maximum power density of 73 mW cm{sup -2} and a Pt utilization of 1468 mW mg{sub Pt}{sup -1} for the cathode. The performance data and the Pt utilization are comparable to a standard Pt/carbon black electrode possessing the same Pt loading in the electrode. Beside this, it is shown for the first time that ITO serves as support material under real fuel cell conditions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Crescimento e desenvolvimento nas doenças falciformes Growth and development in sickle cell disease

    Directory of Open Access Journals (Sweden)

    Monica P. A. Verissimo

    2007-09-01

    Full Text Available Os pacientes portadores de doença falciforme apresentam algumas características quanto ao crescimento e desenvolvimento que devem ser observados no acompanhamento destes pacientes. O crescimento apresenta um retardo que se inicia a partir dos dois anos de idade e que afeta mais o peso do que a altura, sendo que a altura é recuperada na vida adulta, mas o peso permanece menor que na população controle. Quanto à maturação esquelética e sexual também apresentam retardo, atingindo numa fase mais tardia da vida sua maturação esquelética e sexual normal. Vários fatores podem contribuir para este retardo de crescimento e maturação tais como fatores endócrinos, gasto energético e protéico aumentado devido à hemólise crônica e ao trabalho cardiovascular aumentado e deficiências nutricionais. Com a melhora no acompanhamento e no tratamento dos pacientes portadores de doença falciforme é possível ter uma melhora na qualidade de vida, sendo necessário um adequado monitoramento do crescimento e desenvolvimento.Sickle cell patients present some characteristics in respect to growth and development that must be observed in their accompaniment. Growth is delayed from the age of two years old with the weight being affected more than the height. By adulthood, a normal height is attained but the weight remains lower than in a control population. Skeletal and sexual maturity is also delayed, with normalization occurring at an older age. Some factors contribute to this delay in growth and maturity including endocrine factors, chronic hemolysis and increased cardiovascular function that increases energy and protein expenditure and nutritional deficiencies. With the improvement of the accompaniment and treatment of sickle cell patients, it is possible to improve the quality of life with adequate monitoring of the growth and development.

  18. Identification of the Hammerstein model of a PEMFC stack based on least squares support vector machines

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chun-Hua; Zhu, Xin-Jian; Cao, Guang-Yi; Sui, Sheng; Hu, Ming-Ruo [Fuel Cell Research Institute, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2008-01-03

    This paper reports a Hammerstein modeling study of a proton exchange membrane fuel cell (PEMFC) stack using least squares support vector machines (LS-SVM). PEMFC is a complex nonlinear, multi-input and multi-output (MIMO) system that is hard to model by traditional methodologies. Due to the generalization performance of LS-SVM being independent of the dimensionality of the input data and the particularly simple structure of the Hammerstein model, a MIMO SVM-ARX (linear autoregression model with exogenous input) Hammerstein model is used to represent the PEMFC stack in this paper. The linear model parameters and the static nonlinearity can be obtained simultaneously by solving a set of linear equations followed by the singular value decomposition (SVD). The simulation tests demonstrate the obtained SVM-ARX Hammerstein model can efficiently approximate the dynamic behavior of a PEMFC stack. Furthermore, based on the proposed SVM-ARX Hammerstein model, valid control strategy studies such as predictive control, robust control can be developed. (author)

  19. Dynamic modeling and simulation test of a 60 kW PEMFC generation system

    Institute of Scientific and Technical Information of China (English)

    Ying-ying ZHANG; Ji-chang SUN; Ying ZHANG; Xi LI; Guang-yi CAO

    2011-01-01

    In this paper, a 60 kW proton exchange membrane fuel cell (PEMFC) generation system is modeled in order to design the system parameters and investigate the static and dynamic characteristics for control purposes. To achieve an overall system model, the system is divided into five modules: the PEMFC stack (anode and cathode flows, membrane hydration, and stack voltage and power), cathode air supply (air compressor, supply manifold, cooler, and humidifier), anode fuel supply (hydrogen valve and humidifier), cathode exhaust exit (exit manifold and water return), and power conditioning (DC/DC and DC/AC) modules. Using a combination of empirical and physical modeling techniques, the model is developed to set the operation conditions of current, temperature, and cathode and anode gas flows and pressures, which have major impacts on system performance.The current model is based on a 60 kW PEMFC power plant designed for residential applications and takes account of the electrochemical and thermal aspects of chemical reactions within the stack as well as flows of reactants across the system. The simulation tests show that the system model can represent the static and dynamic characteristics of a 60 kW PEMFC generation system, which is mathematically simple for system parameters and control designs.

  20. Nanostructured TiO2 Doped with Nb as a Novel Support for PEMFC

    Directory of Open Access Journals (Sweden)

    Edgar Valenzuela

    2013-01-01

    Full Text Available Nowadays, one of the major issues of the PEMFC concerns the durability. Historically, carbon has been used as a catalyst support in PEMFC; nevertheless, under the environmental conditions of the cell, the carbon is oxidized, leaving the catalyst unsupported. In order to increase the stability and durability of the catalyst in the PEMFC, a novel nanostructured metallic oxide support is proposed. In this work, TiO2 was doped with Nb to obtain a material that combines chemical stability, high surface area, and an adequate electronic conductivity in order to be a successful catalyst support candidate for long-term PEMFC applications. The TiO2-Nb nanostructured catalyst support was physically and electrochemically characterized. According to the results, the TiO2-Nb offers high surface area and good particle dispersion; also, the electrochemical activity and stability of the support were evaluated under high potential conditions, where the TiO2-Nb proved to be much more stable than carbon.

  1. Development of a novel portable-size PEMFC short stack with electrodeposited Pt hydrogen diffusion anodes

    Energy Technology Data Exchange (ETDEWEB)

    Alcaide, Francisco; Alvarez, Garbine; Blazquez, Jose Alberto; Miguel, Oscar [Dpto. de Energia, CIDETEC-IK4, P Miramon, 196, 20009 San Sebastian (Spain); Cabot, Pere L. [Laboratori d' Electroquimica de Materials i del Medi Ambient, Dept. Quimica Fisica, Universitat de Barcelona, Marti i Franques, 1-11, 08028 Barcelona (Spain)

    2010-06-15

    This paper presents, for the first time, a five-cell polymer electrolyte membrane fuel cell (PEMFC) short stack with electrodeposited hydrogen diffusion anodes. The anodes were manufactured by means of galvanostatic pulse electrodeposition and the cathodes by air-brushing. Nafion {sup registered} 212 was employed as a solid polymer electrolyte membrane in all cases. The short stack, whose cells had an active geometric area of 14 cm{sup 2}, was assembled and tested under different operating conditions. A peak power of about 11 W was obtained at 50 C and atmospheric pressure using hydrogen and air feed, whereas a smaller value of 8.6 W was obtained from a five-cell short PEMFC stack with conventional hydrogen diffusion anodes under the same operating conditions. The better performance of the cells described in this paper has been assigned to the higher utilization of the platinum in the electrodeposited anodes compared to the conventional ones. (author)

  2. Modeling and parametric study of a 1 kWe HT-PEMFC-based residential micro-CHP system

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2011-01-01

    A detailed thermodynamic, kinetic and geometric model of a micro-CHP (Combined-Heatand-Power) residential system based on High Temperature-Proton Exchange Membrane Fuel Cell (HT-PEMFC) technology is developed, implemented and validated. HT-PEMFC technology is investigated as a possible candidate...... for fuel cell-based residential micro-CHP systems, since it can operate at higher temperature than Nafion-based fuel cells, and therefore can reach higher cogeneration efficiencies. The proposed system can provide electric power, hot water, and space heating for a typical Danish single-family household...

  3. Surface Properties of PEMFC Gas Diffusion Layers

    Energy Technology Data Exchange (ETDEWEB)

    WoodIII, David L [Los Alamos National Laboratory (LANL); Rulison, Christopher [Augustine Scientific; Borup, Rodney [Los Alamos National Laboratory (LANL)

    2010-01-01

    The wetting properties of PEMFC Gas Diffusion Layers (GDLs) were quantified by surface characterization measurements and modeling of material properties. Single-fiber contact-angle and surface energy (both Zisman and Owens-Wendt) data of a wide spectrum of GDL types is presented to delineate the effects of hydrophobic post-processing treatments. Modeling of the basic sessile-drop contact angle demonstrates that this value only gives a fraction of the total picture of interfacial wetting physics. Polar forces are shown to contribute 10-20 less than dispersive forces to the composite wetting of GDLs. Internal water contact angles obtained from Owens-Wendt analysis were measured at 13-19 higher than their single-fiber counterparts. An inverse relationship was found between internal contact angle and both Owens-Wendt surface energy and % polarity of the GDL. The most sophisticated PEMFC mathematical models use either experimentally measured capillary pressures or the standard Young-Laplace capillary-pressure equation. Based on the results of the Owens-Wendt analysis, an advancement to the Young-Laplace equation is proposed for use in these mathematical models, which utilizes only solid surface energies and fractional surface coverage of fluoropolymer. Capillary constants for the spectrum of analyzed GDLs are presented for the same purpose.

  4. Online humidification diagnosis of a PEMFC using a static DC-DC converter

    Energy Technology Data Exchange (ETDEWEB)

    Hinaje, M.; Sadli, I.; Martin, J.-P.; Thounthong, P.; Rael, S.; Davat, B. [GREEN - Institut National Polytechnique de Lorraine 2, Avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy (France)

    2009-03-15

    This paper deals with the online checking of the humidification of a Proton Exchange Membrane Fuel Cell (PEMFC). Indeed, drying or flooding can decrease the performance of the PEMFC and even lead to its destruction. An online humidification diagnosis can allow a real-time control. A good indicator of the membrane humidification state is its internal resistance. As known, the membrane ionic conductivity increases with the membrane water content. This resistance can be calculated at high frequency by dividing the voltage variation by the current variation. The proposed scheme makes use of measurements of current and voltage ripples coming from the association of a static DC-DC converter and the fuel cell. The experiment thus consists in computing the internal resistance in wet and dry conditions. (author)

  5. Modeling and simulation of a residential micro-CHP system based on HT-PEMFC technology

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2009-01-01

    Combined-heat-and-power (CHP) technology is a well known and proved method to produce simultaneously power and heat at high efficiencies. This can be further improved by the introduction of a novel micro-CHP residential system based on High Temperature-Proton Exchange Membrane Fuel Cell (HT-PEMFC...... is simulated in LabVIEW environment to provide the ability of Data Acquisition of actual components and thereby more realistic design in the future....

  6. Synthesis of protons exchange polymeric membranes via co-poly-esters doped with sodium dodecyl sulfate for application in PEM fuel cells; Sintese de membranas polimericas condutoras de protons por imobilizacao de MDs em copoliesteres para aplicacao em PEM-FC

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, R.A.; Brioude, M.M.; Bresciani, D.; Jose, N.M.; Boaventura, J.S. [Universidade Federal da Bahia (IQ/UFBA), Salvador, BA (Brazil). Inst. de Quimica

    2008-07-01

    Polymers are largely studied for use in PEM-type fuel cell (Proton Exchange membrane, PEMFC). These fuel cells are based on polymer membranes as electrolyte, also called protons conductor. This work developed co-polyesters made electrical conductors by doping with sodium dodecyl sulfate. The copolymers were synthesized from the copolymerization of terephthalic and adipic acids with glycerol. The material was processed in a reactor and shaped by hot pressing, yielding homogeneous and flexible plates, with excellent surface finish. The co-polyesters were analyzed by SEM, FTIR, TG, DSC, and XRD. The thermal analysis showed that the composites were thermally stable up to about 250 deg C. The micrographics revealed the MDS homogeneously dispersed in the polymeric matrix. These copolymers showed electrical conductivity between 10-7 to 10-1 S/cm, suggesting strong potential use in PEM fuel cells. (author)

  7. Synthesis and characterization of polymer blends of sulfonated polyethersulfone and sulfonated polyethersulfone octylsulfonamide for PEMFC applications

    Energy Technology Data Exchange (ETDEWEB)

    Mabrouk, W. [ERAS Labo, St Nazaire Les Eymes, Grenoble (France); Laboratoire des Materiaux Industriels, Conservatoire National des Arts et Metiers de Paris, 75003 Paris (France); Laboratoire de Chimie Analytique et Electrochimie, Faculte des Sciences de Tunis, Campus Universitaire, 1092 Tunis (Tunisia); Ogier, L.; Vidal, S. [ERAS Labo, St Nazaire Les Eymes, Grenoble (France); Sollogoub, C.; Fauvarque, J.F. [Laboratoire des Materiaux Industriels, Conservatoire National des Arts et Metiers de Paris, 75003 Paris (France); Matoussi, F.; Dachraoui, M. [Laboratoire de Chimie Analytique et Electrochimie, Faculte des Sciences de Tunis, Campus Universitaire, 1092 Tunis (Tunisia)

    2012-04-15

    Our goal in the present work was to synthesize a new proton exchange membrane that could be used in proton exchange membrane fuel cell (PEMFC), based on a blend of sulfonated polyethersulfone (S-PES) and sulfonated polyethersulfone octylsulfonamide (S-PESOS). Five blends, using S-PESOS with different grafting ratios of sulfonamide groups, have been elaborated, characterized, and tested in a PEMFC. The similar chemical structure between these two polymers favored their compatibility. The synthesized membranes showed a high water swelling capacity and an ionic conductivity equivalent to that of Nafion registered (0.1 S cm{sup -1}) in the same conditions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Identification and novel adaptive fuzzy control of nonlinear system for PEMFC stack

    Institute of Scientific and Technical Information of China (English)

    WEI Dong; XU Hong; ZHU Xin-jian

    2006-01-01

    The operating temperature of a proton exchange membrane fuel cell stack is a very important control parameter. It should be controlled within a specific range, however, most of existing PEMFC mathematical models are too complicated to be effectively applied to on-line control. In this paper, input-output data and operating experiences will be used to establish PEMFC stack model and operating temperature control system. An adaptive learning algorithm and a nearest-neighbor clustering algorithm are applied to regulate the parameters and fuzzy rules so that the model and the control system are able to obtain higher accuracy. In the end, the simulation and the experimental results are presented and compared with traditional PID and fuzzy control algorithms.

  9. Proton exchange membrane fuel cells modeling based on artificial neural networks

    Institute of Scientific and Technical Information of China (English)

    Yudong Tian; Xinjian Zhu; Guangyi Cao

    2005-01-01

    To understand the complexity of the mathematical models of a proton exchange membrane fuel cell (PEMFC) and their shortage of practical PEMFC control, the PEMFC complex mechanism and the existing PEMFC models are analyzed, and artificial neural networks based PEMFC modeling is advanced. The structure, algorithm, training and simulation of PEMFC modeling based on improved BP networks are given out in detail. The computer simulation and conducted experiment verify that this model is fast and accurate, and can be used as a suitable operational model for PEMFC real-time control.

  10. Control of the Air Supply Subsystem in a PEMFC with Balance of Plant Simulation

    Directory of Open Access Journals (Sweden)

    Alan Cruz Rojas

    2017-01-01

    Full Text Available This paper deals with the design of a control scheme for improving the air supply subsystem of a Proton Exchange Membrane Fuel Cell (PEMFC with maximum power of 65 kW. The control scheme is evaluated in a plant simulator which incorporates the balance of plant (BOP components and is built in the aspenONE® platform. The aspenONE® libraries and tools allows introducing the compressor map and sizing the heat exchangers used to conduct the reactants temperature to the operating value. The PEMFC model and an adaptive controller were programmed to create customized libraries used in the simulator. The structure of the plant control is as follows: the stoichiometric oxygen excess ratio is regulated by manipulating the compressor power, the equilibrium of the anode-cathode pressures is achieved by tracking the anode pressure with hydrogen flow manipulation; the oxygen and hydrogen temperatures are regulated in the heat exchangers, and the gas humidity control is obtained with a simplified model of the humidifier. The control scheme performance is evaluated for load changes, perturbations and parametric variations, introducing a growing current profile covering a large span of power, and a current profile derived from a standard driving speed cycle. The impact of the control scheme is advantageous, since the control objectives are accomplished and the PEMFC tolerates reasonably membrane damage that can produce active surface reduction. The simulation analysis aids to identify the safe Voltage-Current region, where the compressor works with mechanical stability.

  11. Membranes optimization of the basis of S-peek with different degrees of sulfonation for PEMFC; Otimizacao de membranas a base de S-peek com diferentes graus de sulfonacao para PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, E.B.; Fiuza, R.A.; Jose, N.M.; Boaventura, J.S.; Carvalho, L.F.V. [Universidade Federal da Bahia (IQ/UFBA), Salvador, BA (Brazil). Inst. de Quimica. Grupo de Energia e Ciencia dos Materiais

    2008-07-01

    With the growing concern emission of polluting gases in the atmosphere and search for alternative sources of clean energy that can meet the future shortage of oil, the fuel cells have become the target of scientific research in everyone. Among the various types of fuel cells includes the PEMFC (Polymer exchange membrane fuel cell), in the case of a device with high efficiency, without emission of pollutants. This work was to produce membranes and optimizing the basis of S-PEEK (poly-ether-ether-sulfonate) with varying degrees of sulfonation to be applied as electrolytes in fuel cells to the type PEMFC. The membranes were characterized chemically, by thermal analysis, and electrochemistry. (author)

  12. High performance PEMFC stack with open-cathode at ambient pressure and temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Santa Rosa, D.T.; Pinto, D.G.; Silva, V.S. [SRE - Solucoes Racionais de Energia, S.A., Poligono Industrial do Alto do Ameal, Ramalhal (Portugal); Silva, R.A.; Rangel, C.M. [INETI, Unidade de Electroquimica de Materiais, Lisboa (Portugal)

    2007-12-15

    An open-air cathode proton exchange membrane fuel cell (PEMFC) was developed. This paper presents a study of the effect of several critical operating conditions on the performance of an 8-cell stack. The studied operating conditions such as cell temperature, air flow rate and hydrogen pressure and flow rate were varied in order to identify situations that could arise when the PEMFC stack is used in low-power portable PEMFC applications. The stack uses an air fan in the edge of the cathode manifolds, combining high stoichiometric oxidant supply and stack cooling purposes. In comparison with natural convection air-breathing stacks, the air dual-function approach brings higher stack performances, at the expense of having a lower use of the total stack power output. Although improving the electrochemical reactions kinetics and decreasing the polarization effects, the increase of the stack temperature lead to membrane excessive dehydration (loss of sorbed water), increasing the ohmic resistance of the stack (lower performance). The results show that the stack outputs a maximum power density of 310mW/cm{sup 2} at 790mA/cm{sup 2} when operating at ambient temperature, atmospheric air pressure, self-humidifying, air fan voltage at 5.0 V and 250 mbar hydrogen relative pressure. For the studied range of hydrogen relative pressure (150-750 mbar), it is found that the stack performance is practically not affected by this operation condition, although a slightly higher power output for 150 mbar was observed. On the other hand, it is found that the stack performance increases appreciably when operated with forced air convection instead of natural convection. Finally, the continuous fuel flow operation mode does not improve the stack performance in comparison with the hydrogen dead-end mode, in spite of being preferable to operate the stack with hydrogen flow rates above 0.20 l/min. (author)

  13. In situ and ex situ characterization of carbon corrosion in PEMFCs

    Energy Technology Data Exchange (ETDEWEB)

    Fairweather, Joseph D [Los Alamos National Laboratory; Bo, Li [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Fenton, James [FLORIDA SOLAR ENERGY CENTER

    2010-01-01

    Carbon corrosion is an important degradation mechanism that impairs PEMFC performance through destruction of catalyst connectivity, collapse of pore structure, and loss of hydrophobic character. In this study, carbon corrosion was quantified in situ by measurement of carbon dioxide in fuel cell exhaust gases through non-dispersive infrared spectroscopy (NDIR). Performance degradation was also studied by a DOE protocol for catalyst support accelerated stress testing. Finally, changes in gas diffusion layer and microporous layer carbon surfaces were observed through an ex situ aging procedure.

  14. Catalyst FeNi supported on nanometric mezoporous oxide for PEMFC applications

    DEFF Research Database (Denmark)

    Serban, E. C.; Banu, N.; Marinescu, A. C.;

    2011-01-01

    Proton exchange membrane fuel cells (PEMFC) are studied intensive for hydrogen - oxygen couple conversion into electrical power via electro-chemical process. Electrocatalyst performances (defined by specific area and catalytic activity) represent a key point for hydrogen oxidation - anode reaction....... Pt is a representative catalyst in these applications, but it has a few drawbacks, such as CO poisoning. The present work is focused on the study of catalytic activity of nanometric Iron (Fe) - Nickel (Ni) couple deposited on TiO(2) / SiO(2) materials....

  15. Development of solid oxide fuel cells; Desenvolvimento de celulas a combustivel do tipo oxido solido (SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Boaventura, Jaime S.; Alencar, Marcelo Goncalves F. de; Amaral, Alexandre Alves do; Benedicto, Joao Paulo Santos; Silva, Marcos A. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica. Dept. de Fisico-Quimica

    2006-07-01

    Fuel cells allow the energy production without the thermodynamic restriction of the conversion of heat into work. Among their various types, the solid oxide fuel cells (SOFC), operating at high temperatures, allow the methane conversion into electricity directly on the anode. The main element of the SOFC is the structure A/E/C: anode/electrolyte/cathode, all sintered at high temperature as resistant ceramic materials. Dense electrolyte (YSZ: zirconia stabilized for Yttria) separates the anode (Ni+Co/YSZ: cobalt promoted nickel, supported on YSZ) and cathode (LSM: strontium-doped lanthanum manganite), both with porosity obtained by graphite addition. To obtain suitable A/E/C pellets, the layer sintering with appropriate mechanical and textural characteristics is essential, requiring excellent electric junctions between them. The cell performance has been evaluated between 850 and 950 degree C, using hydrogen or methane fuel; the tension and current for different resistance values in the electrical circuit have been measured. The cobalt addition to the cell anode significantly increased its activity for the reform reaction. The beneficial effect was probably due to the easier nickel reduction in cobalt presence. This work had the objectives of developing and evaluating electro-catalysts, as well as the solid oxide fuel cells using these catalysts as anode. Five SOFC models (SOFC 1 to SOFC 5) are described; all of them were developed aiming at improving the preparation of the anode/electrolyte/cathode structure (A/E/C). (author)

  16. Quantification of the hydrogen produced by Spirulina maxima using a PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Juantorena, U.A.; Gamboa, S.A. [Univ. Nacional Autonoma de Mexico, Morelos (Mexico). Centro de Investigacion en Energia; Sebastian, P.J. [Univ. Nacional Autonoma de Mexico, Morelos (Mexico). Centro de Investigacion en Energia]|[Univ. Politecnica de Chiapas (Mexico); Bustos, G.A. [Univ. Nacional Autonoma de Mexico, Morelos (Mexico). Centro de Ciencias Fisicas

    2006-07-01

    This paper addressed the challenges associated with producing hydrogen through biological methods, and the potential for biotechnology to resolve them. It has been shown that cyanobacteria can produce hydrogen through auto-fermentation under anaerobic conditions in the dark. In this study, the amount of hydrogen produced by the photosynthetic micro-algae Spirulina maxima 2342 under different experimental conditions was quantified. The produced hydrogen was then fed into a proton exchange membrane fuel cell (PEMFC) and was quantified from the electricity generated in the fuel cell. The Faraday efficiency was calculated by substituting the current density in the regression equation. The hydrogen flow into the cell was calculated in terms of its relation to the hydrogen produced by the bioreactor. It was shown that higher potential values, hydrogen flow and Faraday efficiency correspond to higher light intensity values. It was concluded that a PEMFC can be used to quantify the hydrogen produced by a photosynthetic micro-algal system. 5 refs., 2 tabs.

  17. Coordinating IMC-PID and adaptive SMC controllers for a PEMFC.

    Science.gov (United States)

    Wang, Guo-Liang; Wang, Yong; Shi, Jun-Hai; Shao, Hui-He

    2010-01-01

    For a Proton Exchange Membrane Fuel Cell (PEMFC) power plant with a methanol reformer, the process parameters and power output are considered simultaneously to avoid violation of the constraints and to keep the fuel cell power plant safe and effective. In this paper, a novel coordinating scheme is proposed by combining an Internal Model Control (IMC) based PID Control and adaptive Sliding Mode Control (SMC). The IMC-PID controller is designed for the reformer of the fuel flow rate according to the expected first-order dynamic properties. The adaptive SMC controller of the fuel cell current has been designed using the constant plus proportional rate reaching law. The parameters of the SMC controller are adaptively tuned according to the response of the fuel flow rate control system. When the power output controller feeds back the current references to these two controllers, the coordinating controllers system works in a system-wide way. The simulation results of the PEMFC power plant demonstrate the effectiveness of the proposed method.

  18. Characterization of self-assembled electrodes based on Au-Pt nanoparticles for PEMFC application

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, E. [Politecnica Univ. de Chiapas, Tuxtla Gutierrez, Chiapas (Mexico). Energia y Sustentabilidad; Sebastian, P.J. [Politecnica Univ. de Chiapas, Chiapas (Mexico). Energia y Sustentabilidad; Centro de Investigacion en Energia, UNAM, Morelos (Mexico); Gamboa, S.A. [Centro de Investigacion en Energia, UNAM, Morelos (Mexico); Pal, U. [Inst. de Fisica, Universidad Autonoma de Puebla Univ., Puebla (Mexico). Inst. de Fisica; Gonzalez, I. [Autonoma Metropolitana Univ. (Mexico). Dept. de Quimica

    2008-07-01

    This paper reported on a study in which membrane electrode assemblies (MEAs) were fabricated by depositing Au, Pt and AuPt nanoparticles on Nafion 115 membrane for use in a proton exchange membrane fuel cell (PEMFC). A Rotating Disc Electrode (RDE) was used to measure the nanoparticle catalyst activity. After deposition of the nanoparticles on the membrane, the surface was studied by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The membrane proton conduction process was studied by Electrochemical Impedance Spectroscopy (EIS) with the 4 probe technique. The MEAs fabricated with Nafion/Metal membranes were evaluated in a PEMFC under standard conditions. Colloidal solutions were used to prepare self-assembled electrodes with nanoparticles deposited on Nafion membrane. The particles deposited on Nafion showed good stability and had homogeneous distribution along the membrane surface. The impedance results revealed an increase in the membrane proton resistance of the self-assembled electrodes compared to unmodified Nafion. The Au-Pt nanoparticles were obtained by chemical reduction. The nanoparticle size in the three systems was about 2 nm. The self-assembled electrodes performed well in standard conditions. The optimum colloidal concentration and immersion time must be determined in order to obtain good catalytic activity and high membrane conductance. The self-assembled Nafion/AuPt had the best open circuit potential (887 mV). The Au and Pt self-assemblies showed a similar performance in terms of maximum power and maximum current density. The performance of the Nafion/Au self-assembly was influenced more by ohmic losses, particularly in the membrane. The maximum power generation was obtained at 0.35 V. The mass transport losses increased after this value, thereby affecting the efficiency of the PEMFC. 2 figs.

  19. Nafion-stabilised bimetallic Pt–Cr nanoparticles as electrocatalysts for proton exchange membrane fuel cells (PEMFCs)† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6ra16025e Click here for additional data file.

    Science.gov (United States)

    Gupta, G.; Sharma, S.

    2016-01-01

    The current study investigated the unique combination of alloying (Pt with Cr) and Nafion stabilisation to reap the benefits of catalyst systems with enhanced catalytic activity and improved durability in PEMFCs. Pt–Cr alloy nanoparticles stabilised with Nafion were chosen in the current study owing to their higher stability in acidic and oxidising media at high temperatures compared to other Pt-transition metal alloys (e.g. Pt–Ni, Pt–Co). Two different precursor : reducing agent (1 : 10 and 1 : 20) ratios were used in order to prepare two different alloys, denoted as Pt–Cr 10 and Pt–Cr 20. The Pt–Cr 20 alloy system (with composition Pt80Cr20) demonstrated higher electrocatalytic activity for the oxygen reduction reaction compared to commercial Pt/C (TKK) catalysts. Accelerated stress tests and single cell tests revealed that Nafion stabilised alloy catalyst systems displayed significantly enhanced durability (only ∼20% loss of ECSA) compared with Pt/C (50% loss of ECSA) due to improved catalyst–ionomer interaction. Furthermore, the Pt–Cr 20 alloy system demonstrated a current density comparable to that of Pt/C making them promising potential electrocatalysts for proton exchange membrane fuel cells.

  20. Corrosion behavior of Cr/Ni alloy coated ferritic stainless steel in simulated cathodic PEMFC environments

    Energy Technology Data Exchange (ETDEWEB)

    Rendon, M.; Rivas, S.V.; Arriga, L.G.; Orozco, G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Queretaro (Mexico); Perez-Quiroz, J.T. [Inst. Mexicano del Transporte, Queretaro (Mexico); Porcayo, J. [Inst. de Investigaciones Electricas, Morelos (Mexico)

    2008-07-01

    The bipolar plate in a proton exchange membrane fuel cell (PEMFC) must be corrosion resistant and the interfacial contact resistance (ICR) with the gas diffusion layer must be low. For these reasons, stainless steel with high Cr content is considered to be a viable material for use in bipolar plate construction. This study evaluated the corrosion resistance of ferritic stainless steels 441 and 439, with and without a Cr/Ni coating, under simulated cathodic PEMFC conditions. Steel 441 without coating has a low corrosion current density and can be considered as a candidate material to be used as bipolar plate. The study showed that after the Cr/Ni coating was applied by Thermal Spray Metal method, the corrosion current density increased due to selective dissolution of an alloy element. The corrosion current density of the coatings was higher than the DOE target value, rendering them an unfeasible option to be used in bipolar plates for fuel cell applications. However, previous studies have shown that after the coating was applied, a passivation process improved the corrosion resistance. Although steel 441 appears to be a better candidate than steel 316 because of its lower cost, the behaviour of the Ni-Cr alloys was not satisfactory in corrosive acidic medium. 5 refs.

  1. Measurement of polarization curve and development of a unique semi-empirical model for description of PEMFC and DMFC performances

    Directory of Open Access Journals (Sweden)

    M. SHAKERI

    2011-06-01

    Full Text Available In this study, a single polymer electrolyte membrane fuel cell (PEMFC in H2/ /O2 form with an effective dimension of 5 cm5 cm as well as a single direct methanol fuel cell (DMFC with a dimension of 10 cm10 cm were fabricated. In an existing test station, the voltage-current density performances of the fabricated PEMFC and DMFC were examined under various operating conditions. As expected, DMFC showed a lower electrical performance which can be attributed to the slower methanol oxidation rate in comparison to the hydrogen oxidation. The results obtained from the cell operation indicated that the temperature has a great effect on the cell performance. At 60 C, the best power output was obtained for PEMFC. There was a drop in the cell voltage beyond 60 C, which can be attributed to the reduction of water content inside the membrane. For DMFC, the maximum power output resulted at 64 C. Increasing oxygen stoichiometry and total cell pressure had a marginal effect on the cell performance. The results also revealed that the cell performance improved by increasing pressure differences between the anode and cathode. A unified semi-empirical thermodynamic based model was developed to describe the cell voltage as a function of current density for both kinds of fuel cells. The model equation parameters were obtained through a nonlinear fit to the experimental data. There was a good agreement between the experimental data and the model predicted cell performance for both types of fuel cells.

  2. Thermodynamic analysis and performance of a 1 kW bioethanol processor for a PEMFC operation

    Energy Technology Data Exchange (ETDEWEB)

    Benito, M.; Padilla, R.; Sanz, J.L.; Daza, L. [Instituto de Catalisis y Petroleoquimica (CSIC), C/ Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain)

    2007-06-10

    A thermodynamic analysis of a bioethanol steam reforming processor for CO-free hydrogen production was performed. The stages selected to perform CO purification were water gas shift and CO preferential oxidation. In order to optimize the processor efficiency, several configurations were studied. A processor efficiency of 69% for a steam/carbon ratio (S/C) of 4.8 was achieved taking advantage of the heat released during the exothermic stages. An efficiency close to 28% at the same S/C ratio for a bioethanol processor-PEMFC system, which includes a heat recovery system for off-gas from the fuel cell anode, was obtained. To produce a CO-free hydrogen rich stream, a 1 kW bioethanol processor was designed, built and operated, based on previous simulation studies. A new catalyst developed in the Institute of Catalysis and Petro-chemistry (ICP-CSIC) and tested for more than 500 h, that demonstrated excellent results at laboratory scale, was selected for the steam reforming stage. From bioethanol processor operation, a hydrogen rich stream, with CO composition as low as 3 ppmV was obtained, which is able to supply a PEMFC. (author)

  3. Experimental characterization and numerical modeling of PEMFC stacks designed for different application fields

    Energy Technology Data Exchange (ETDEWEB)

    Jannelli, E.; Minutillo, M. [University of Naples, Parthenope, Centro Direzionale, Naples (Italy); Perna, A. [University of Cassino, Cassino (Italy)

    2011-12-15

    Proton exchange membrane fuel cell (PEMFC) is regarded as a potential future power technology for stationary and mobile applications due to its high efficiency (full and partial load), rapid start-up, high power density, and low emissions. Depending on their particular application field (decentralized combined heat and power production, uninterrupted power supplies (UPS), or mobile applications) different operating conditions and designing parameters are required and different performance can be expected. Thus, the aim of this paper is to investigate the behavior and performance of two stacks of the same size, developed with a different approach according to their application sectors. The first PEMFC stack is designed for UPS units or mobile purpose, the second one, is designed to supply heat and power in residential applications (CHP units). The analysis of the stacks behavior has been carried out by using both experimental and numerical investigations. Experimental results have allowed: (i) to characterize the stacks; (ii) to calibrate the numerical model; (iii) to supply useful data for setting and improving the control system. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Simulation and Optimization of Air-Cooled PEMFC Stack for Lightweight Hybrid Vehicle Application

    Directory of Open Access Journals (Sweden)

    Jingming Liang

    2015-01-01

    Full Text Available A model of 2 kW air-cooled proton exchange membrane fuel cell (PEMFC stack has been built based upon the application of lightweight hybrid vehicle after analyzing the characteristics of heat transfer of the air-cooled stack. Different dissipating models of the air-cooled stack have been simulated and an optimal simulation model for air-cooled stack called convection heat transfer (CHT model has been figured out by applying the computational fluid dynamics (CFD software, based on which, the structure of the air-cooled stack has been optimized by adding irregular cooling fins at the end of the stack. According to the simulation result, the temperature of the stack has been equally distributed, reducing the cooling density and saving energy. Finally, the 2 kW hydrogen-air air-cooled PEMFC stack is manufactured and tested by comparing the simulation data which is to find out its operating regulations in order to further optimize its structure.

  5. Highly durable MEA for PEMFC under high temperature and low humidity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Endoh, E. [Asahi Glass Co. Ltd., Kanagawaku, Yokohama (Japan). Research Center

    2007-07-01

    In order to use proton exchange membrane fuel cells in automobiles, they must operate at low humidity conditions and at temperatures between 110-120 degrees C. Perfluorosulfonic acid (PFSA) polymers are often used as the membranes of PEMFCs, but critical break-down of the MEA occurs at high temperatures. Conventional PFSA polymers also degrade under low humidity conditions even at 80 degrees C. A degradation study of the conventional MEA under low humidity conditions revealed that carbon radicals, notably the hydroxyl radical, exist within the catalyst layers of the degenerated MEA. This hydroxyl radical was found to be the main cause of MEA degradation. Therefore, a newly developed and highly durable perfluorinated polymer based membrane electrode assembly (MEA) for PEMFCs was developed. The MEA is composed a new composite membrane (NPC membrane) which has excellent chemical stability against degradation caused by the hydroxyl radical. The MEA can operate for more than 6,000 hours at 120 degrees C and 50 per cent relative humidity. The new MEA reduces the degradation rate to 1/100 - 1/1000 compared to the conventional MEA. 4 refs., 8 figs.

  6. A new alloy design concept for austenitic stainless steel with tungsten modification for bipolar plate application in PEMFC

    Science.gov (United States)

    Kim, Kwang Min; Kim, Kyoo Young

    The feasibility of a new alloy design concept utilizing the principle of 'tungsten bronze effect' is critically evaluated for the development of metallic bipolar plates for proton exchange membrane fuel cell (PEMFC). An austenitic stainless steel (ASS) is modified with W and La to improve the stability of the passive film in an acidic environment as well as to reduce the contact resistance by the tungsten bronze effect. The experimental ASS containing W and La was evaluated in a simulated PEMFC environment of H 3PO 4 and H 2SO 4 solutions at 80 °C, and the electrical property was evaluated by performing a contact resistance test. The test results show that the ASS modified with W and La has good passive film stability for corrosion resistance and low contact resistance. The X-ray photoelectron spectroscopy (XPS) analysis clearly suggests the possibility of the tungsten bronze effect from the change in valency state of W 6+ to W 5+ in the passive film formed on the modified ASS. The feasibility of a new alloy design concept utilizing the 'tungsten bronze effect' is well demonstrated; however, more study is highly required for the development of metallic bipolar plates of PEMFC.

  7. Assessment of the performance of a PEMFC in the presence of CO

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, S.; Daza, L. [Instituto de Catalisis y Petroleoquimica (CSIC), C/Marie Curie 2, Campus Cantoblanco, 20049 Madrid (Spain); Soler, J.; Valenzuela, R.X. [Dpto. Combustibles Fosiles, CIEMAT. Av. Complutense 22, 28040 Madrid (Spain)

    2005-10-10

    Carbon monoxide is a conventional contaminant in the fuel obtained from reforming processes with an important influence on the performance of a proton exchange membrane fuel cell (PEMFC). The studies of transient and continuous injection of CO presented here give information about poisoning and recovery processes, and recommend strategies for fuel cell operation. Pulsing study shows that up to 100ppm CO, has no significant effect on the performance. Constant current demand experiments show an oscillatory effect due to CO electro-oxidation at high over-potentials. In continuous poisoning process, kinetic and mass transfer affect the rate of CO removal. To recover the performance for continuous fuel cell operation, we propose cyclic feeding of hydrogen containing traces of CO (i.e. supplied by a reforming process) and pure hydrogen streams. (author)

  8. Low cost PEMFC generator manufacturing line. The competitiveness and trustability strategy

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Valdemar Stelita; Souza, Adler de; Ferreira, Mauricio S. [NovoCell Energy Systems S.A., Santa Barbara D' Oeste, SP (Brazil)], Email: valdemar.stelita@novocell.ind.br; Muschellack, Erich [Idee Technologies Ltda, Sao Paulo, SP (Brazil)

    2010-07-01

    Concepts of Lean Manufacturing Lines for Polymer Electrolyte Membrane Fuel Cells (PEMFC) have been searched for the last twenty years, with no fully success so far. As this is considered around the world the last barrier to spread the hydrogen economy for universities and science institutions to the normal life of people, we at NovoCell decided six years ago to develop and test all key aspects that can help making it by a 'Low Cost, Feasible and Reliable Production Process'. The present work is a demonstration of the results we achieved, the main characteristics of the prototypes produced from the lines and that will be the base for our commercial operation starting next year. (author)

  9. Papel das células T reguladoras no desenvolvimento de dermatoses Role of regulatory T cells in the development of skin diseases

    Directory of Open Access Journals (Sweden)

    Hermênio Cavalcante Lima

    2006-06-01

    Full Text Available Células T, em particular as células T CD4+, têm sido associadas a muitos aspectos das doenças de pele. A evidência atual sugere, porém, que o papel dos linfócitos T CD4+ no desenvolvimento de inflamação cutânea excede o de ativador pró-inflamatório das células T de ação que dirigem a resposta imune. Subtipos de células T com capacidade reguladora, tais como Tregs CD4+CD25+high, têm sido identificadas. Observações recentes sugerem que em algumas doenças da pele a função dessas células está modificada. Portanto, o desenvolvimento e a função de Tregs na dermatologia são atualmente um tópico atraente devido a sua importância no controle da resposta do sistema imune contra tumores e doenças infecciosas, bem como inibindo o desenvolvimento de auto-imunidade e alergia. Assim, mecanismos reguladores defeituosos podem permitir a quebra da tolerância imune periférica seguida por inflamação crônica e doença. Detalham-se as anormalidades funcionais e a contribuição de diferentes subtipos de células T reguladoras no desenvolvimento de doenças dermatológicas nesta revisão. Acentuam-se os possíveis alvos terapêuticos e as modificações dos T reguladores causados por imunomoduladores usados no campo da dermatologia.T cells, particularly CD4+ T cells, have been associated with many aspects of skin disease. Current evidence suggests, however, that the role of CD4+ T lymphocytes in the development of cutaneous inflammation surpasses that of pro-inflammatory activation of effector T cells that direct the immune response. T cell subtypes with regulatory capacity, such as CD4+CD25+high Tregs, have been identified. Recent observations suggest that in some skin diseases the function of these cells is modified. Therefore, the development and function of Treg cells in Dermatology are currently attractive topics because of their importance in controlling the immune system response against tumors and infectious diseases, as well

  10. Composite materials of glycerol polyesters and piassava fibers as conducting membranes for PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Alves, J.L.; Jose, N.M.; Boaventura, J.S. [Federal Univ. of Bahia, Salvador (Brazil). Dept. of Physical Chemistry

    2009-07-01

    This paper described a method of using piassava fibers to produce polymers for proton exchange membrane fuel cells (PEMFCs). The composite membranes were produced using polyesters obtained from adipic and phthalic acid reactions with glycerol and piassava fibers treated with phosphoric acid. The piassava and polyesters were prepared as a mixture in liquid nitrogen. The mixture was then hot-pressed in order to produce composites with a fiber mass of 3, 5, 10 and 15 per cent. The fibers were then analyzed using scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The analyses demonstrated that the piassava fibers gave mechanical strength to the composite and improved proton conductor properties. A high fiber dispersion was observed in the matrix. Electric conductivity tests revealed that the membrane had a conductivity of approximately 0.5 Siemens per cm of acidic media.

  11. Internal currents in PEMFC during start-up or shut-down

    Energy Technology Data Exchange (ETDEWEB)

    Maranzana, G.; Lottin, O.; Moyne, C.; Dillet, J.; Lamibrac, A.; Mainka, J.; Didierjean, S. [Nancy Univ. - CNRS (France). LEMTA

    2010-07-01

    Experiments show that the internal currents that occur during PEMFC start-up can reach up to 1 Acm{sup -2}. This is far more important than the expected order of magnitude of the current densities associated with carbon oxidation, which is only of a few mAcm{sup -2}. The predominant phenomenon that explains the internal currents is the charge and discharge of the double layer capacitances. A simple model with constant values of the electric parameters yields numerical results close to the experimental ones. It also explains the transient voltage rise (over the steady state open circuit voltage) that is sometimes observed experimentally shortly after the fuel cell start up. (orig.)

  12. Novel method for preparation of PEMFC electrodes by the electrospray technique

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, R.; Soler, J.; Daza, L. [Dpto. Combustibles Fosiles, CIEMAT Av. Complutense 22, 28040 Madrid (Spain)

    2005-10-10

    A novel method based on the electrospray technique has been developed for the preparation of electrodes for proton exchange membrane fuel cells (PEMFC). The material obtained was characterized by different techniques, which showed both morphological and structural improvements that contribute to a better catalyst utilization compared to conventional methods. These facts were corroborated after manufacturing several membrane electrode assemblies (MEAs) with electrodes prepared by three different methods. MEAs obtained by means of the electrospray technique exhibited three times higher power density than those prepared by the impregnation method ones and eight times higher than MEAs made with electrodes prepared by the spray technique with platinum loadings of 0.5mgcm{sup -2}. Moreover, the power density obtained was twice better than a commercial E-TEK. This technique can be scaled up and becomes a volume production method using a low-cost process. (author)

  13. The CO poisoning effect in PEMFCs operational at temperatures up to 200 degrees C

    DEFF Research Database (Denmark)

    Li, Qingfeng; He, Ronghuan; Gao, Ji-An;

    2003-01-01

    The CO poisoning effect on carbon-supported platinum catalysts (at a loading of 0.5 mg Pt/cm(2) per electrode! in polymer electrolyte membrane fuel cells (PEMFCs) has been investigated in a temperature range from 125 to 200 degreesC with the phosphoric acid-doped polybenzimidazole membranes...... as electrolyte. The effect is very temperature-dependent and can be sufficiently suppressed at elevated temperature. By defining the CO tolerance as a voltage loss less than 10 mV, it is evaluated that 3% CO in hydrogen can be tolerated at current densities up to 0.8 A/cm(2) at 200 degreesC, while at 125 degrees...

  14. Synthesis and characterization of novel sulfonated polyimide containing phthalazinone moieties as PEM for PEMFC

    Institute of Scientific and Technical Information of China (English)

    Hai Yan Pan; Yong Fang Liang; Xiu Ling Zhu; Xi Gao Jian

    2007-01-01

    A novel sulfonated diamine monomer, 1,2-dihydro-2-(3-sulfonic-4-aminophenyl)-4-[4-(4-aminophenoxy)-phenyl]phthalazin1-one (S-DHPZDA), was successfully synthesized by direct sulfonation of diamine 1,2-dihydro-2-(4-aminophenyl)-4-[4-(4-aminophenoxy)-phenyl]-phthalazin- 1-one (DHPZDA). A series of sulfonated polyimides (SPIs), which can be used as the material of the proton exchange membrane (PEM) for the proton exchange membrane fuel cell (PEMFC), were prepared from 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA), S-DHPZDA, and nonsulfonated diamines DHPZDA. The structure of the monomer and polymers were characterized by FT-IR and 1H NMR. The solubility of the S-DHPZDA-based SPIs has been improved due to the induction of the phthalazione moiety. The SPIs membranes have high thermo-stability, predominant swelling resistance with high ion exchange capacity.

  15. Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000. Part II. Engineering, technology development and application aspects

    Science.gov (United States)

    Costamagna, Paola; Srinivasan, Supramaniam

    The technology of proton exchange membrane fuel cells (PEMFCs) has now reached the test-phase, and engineering development and optimization are vital in order to achieve to the next step of the evolution, i.e. the realization of commercial units. This paper highlights the most important technological progresses in the areas of (i) water and thermal management, (ii) scale-up from single cells to cell stacks, (iii) bipolar plates and flow fields, and (iv) fuel processing. Modeling is another aspect of the technological development, since modeling studies have significantly contributed to the understanding of the physico-chemical phenomena occurring in a fuel cell, and also have provided a valuable tool for the optimization of structure, geometry and operating conditions of fuel cells and stacks. The 'quantum jumps' in this field are reviewed, starting from the studies at the electrode level up to the stack and system size, with particular emphasis on (i) the 'cluster-network' model of perfluorosulfonic membranes, and the percolative dependence of the membrane proton conductivity on its water content, (ii) the models of charge and mass transport coupled to electrochemical reaction in the electrodes, and (iii) the models of water transport trough the membrane, which have been usefully applied for the optimization of water management of PEMFCs. The evolution of PEMFC applications is discussed as well, starting from the NASA's Gemini Space Flights to the latest developments of fuel cell vehicles, including the evolutions in the areas of portable power sources and residential and building applications.

  16. Modeling and optimization of a 1 kWe HT-PEMFC-based micro-CHP residential system

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2012-01-01

    A high temperature-proton exchange membrane (HT-PEMFC)-based micro-combined-heat-and-power (CHP) residential system is designed and optimized, using a genetic algorithm (GA) optimization strategy. The proposed system consists of a fuel cell stack, steam methane reformer (SMR) reactor, water gas...... shift (WGS) reactor, heat exchangers, and other balance-of-plant (BOP) components. The objective function of the single-objective optimization strategy is the net electrical efficiency of the micro-CHP system. The implemented optimization procedure attempts to maximize the objective function...

  17. Experimental investigation of air relative humidity (RH) cycling tests on MEA/cell aging in PEMFC. Pt. II. Study of low RH cycling test with air RH at 62%/0%

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.T.; Chatillon, Y.; Bonnet, C.; Lapicque, F. [Laboratoire Reactions et Genie des Procedes, CNRS-Nancy University, Nancy (France); Leclerc, S. [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee, CNRS-Nancy University, Vandoeuvre-les-Nancy (France); Hinaje, M.; Rael, S. [Groupe de Recherche en Electrotechnique et Electronique de Nancy, Nancy University, Vandoeuvre-les-Nancy (France)

    2012-06-15

    The effect of low relative humidity (RH) cycling (RH{sub C} 62%/0%) on the degradation mechanisms of a single proton exchange membrane fuel cell (5 x 5 cm{sup 2}) was investigated and compared to a cell operated at constant humidification (RH{sub C} = 62%). The overall cell performance loss was near 33 {mu}V h{sup -1}, which is greater than the voltage decay under constant RH condition near 3 {mu}V h{sup -1}. The electroactive surface was reduced but to an acceptable level. Impedance spectroscopy revealed that the ohmic and charge transfer resistances were reduced by the likely improved hydration of the ionomeric layer at the catalyst due to hydrogen crossover. This was so important that H{sub 2} starvation was finally responsible for the collapse of the cell after 650 h. Transmission electron microscopy showed occurrence of various phenomena, e.g., bubbles and pinholes formation in the membrane due to local overheat from hydrogen combustion at the cathode, and thickness reduction of catalytic layers. The water up take obtained by {sup 1}H NMR within the membrane electrode assembly (MEA) after low RH cycling reduced by 24% compared to a fresh MEA. Observations are also compared to those obtained at high RH cycling (RH{sub C} 62%/100%) presented in Part I of this study [1]. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Experimental investigation of air relative humidity (RH) cycling tests on MEA/cell aging in PEMFC. Pt. I. Study of high RH cycling test with air RH at 62%/100%

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.T.; Chatillon, Y.; Bonnet, C.; Lapicque, F. [Laboratoire Reactions et Genie des Procedes, CNRS-Nancy University, Nancy (France); Leclerc, S. [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee, CNRS-Nancy University, Vandoeuvre-les-Nancy (France); Hinaje, M.; Rael, S. [Groupe de Recherche en Electrotechnique et Electronique de Nancy, CNRS-Nancy University, Vandoeuvre-les-Nancy (France)

    2012-06-15

    The effect of high air relative humidity (RH) cycling (RH{sub C} 62%/100%) on the degradation mechanisms of a single (5 x 5 cm{sup 2}) proton exchange membrane fuel cells was investigated. The cell performance was compared to a cell operated at constant humidification (RH{sub C} = 62%). Runs were conducted over approximately 1,500 h at 0.3 A cm{sup -2}. The overall loss in cell performance for the high RH cycling test was 12 {mu}V h{sup -1} whereas it was at 3 {mu}V h{sup -1} under constant humidification. Impedance spectroscopy reveals that the ohmic and charge transfer resistances were little modified in both runs. H{sub 2} crossover measurement indicated that both high RH cycling and constant RH test did not promote serious effect on gas permeability. The electroactive surface loss for anode and cathode during high air RH cycling was more significant than at constant RH operation. The water uptake determined by {sup 1}H nuclear magnetic resonance within the membrane electrode assembly (MEA) after high RH cycling was reduced by 12% in comparison with a fresh MEA. Transmission electron microscopy showed bubbles and pinholes formation in the membrane, catalyst particles agglomeration (also observed by X-ray diffraction), catalyst particles migration in the membrane and thickness reduction of the catalytic layers. Scanning electron microscopy was conducted to observe the changes in morphology of gas diffusion layers after the runs. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Surface stability and conductivity of a high Cr and Ni austenitic stainless steel plates for PEMFC

    Institute of Scientific and Technical Information of China (English)

    TIAN Rujin; SUN Juncai; WANG Jianli

    2006-01-01

    In order to use stainless steel as bipolar plate for PEMFC, electrochemical behavior of a high Cr and Ni austenitic stainless steel was studied in the solutions containing different concentration of H2SO4 and 2 mg·L-1 F-, and interfacial contact resistance was measured after corrosion tests. The experimental results show that the passive current density lowers with decreasing the concentration of H2SO4. The interfacial contact resistance between carbon paper and passive film formed in the simulated PEMFC environment is higher than the goal of bipolar plate for PEMFC. Surface conductivity should be further reduced by surface modification.

  20. Desenvolvimento psicossocial (Erik Erikson)

    OpenAIRE

    2002-01-01

    Na sua heterodoxia, a perspectiva sobre o desenvolvimento da personalidade de Erikson, aqui apresentada no contexto da sua própria biografia, é mais positiva (menos depressiva) que a de Freud. Sobretudo na medida em que, se o indivíduo é responsabilizado pelo seu desenvolvimento, também resulta num certo clima de optimismo o ponto de vista de que em cada estado as pessoas podem modificar o seu comportamento. Ou seja, de que não são aceitáveis padrões fixos e imutáveis, uma vez submetidos ao t...

  1. Study of the catalytic layer in polybenzimidazole-based high temperature PEMFC: effect of platinum content on the carbon support

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, J.; Canizares, P.; Rodrigo, M.A.; Linares, J.J.; Ubeda, D.; Pinar, F.J. [Chemical Engineering Department, University of Castilla-La Mancha, Ciudad Real (Spain)

    2010-04-15

    In this work, the effect of platinum percentage on the carbon support of commercial catalyst for electrodes to be used in a Polybenzimidazole (PBI)-based PEMFC has been studied. Three percentages were studied (20, 40 and 60%). In all cases, the same quantity of PBI in the catalyst layer was added, which is required as a 'binder'. From Hg porosimetry analyses, pore size distribution, porosity, mean pore size and tortuosity of all electrodes were obtained. The amount of mesopores gets larger as the platinum percentage in the catalytic layer decreases, which reduces the overall porosity and the mean pore size and increases the tortuosity. The electrochemical characterisation was performed by voltamperometric studies, assessing the effective electrochemical surface area (ESA) of the electrodes, by impedance spectroscopy (IS), determining the polarisation resistance, and by the corresponding fuel cell measurements. The best results were obtained for the electrodes with a content of 40% Pt on carbon, as a result of an adequate combination of catalytic activity and mass transfer characteristics of the electrode. It has been demonstrated that the temperature favours the fuel cell performance, and the humidification does not have remarkable effects on the performance of a PBI-based polymer electrolyte membrane fuel cell (PEMFC). (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  2. Study of thermal management in water-cooled PEMFC%水冷型PEMFC的热管理研究

    Institute of Scientific and Technical Information of China (English)

    朱柳; 朱新坚; 沈海峰

    2012-01-01

    质子交换膜燃料电池(PEMFC)电堆内气、水两相的分布和热量的产生与传递间相互影响.为提高电堆的性能和寿命,根据连续方程和质量守恒定律,建立了电堆内气、水两相传输的动态模型;根据能量守衡原理,建立了PEMFC电堆温度和冷却水温度的动态模型;并在此基础上采用李雅普诺夫函数反向递推法设计了—种非线性鲁棒控制器,使系统温度能在一定摄动范围内保持稳定.最后,在Matlab/Simulink平台上验证了该模型及控制策略的有效性.%The distributions of gas and liquid water, thermal generation and transferring are interacting with each other dosely in proton exchange membrane fuel cell (PEMFC). According to the continuity equation and law of mass conservation, a dynamic model of two-phase (gas and liquid water) transmission in PEMFC was established; and on the basis of energy conservation theory, models of stack temperature and cooling water temperature were developed; what's more, based on these foregoing models, a nonlinear robust controller was proposed by adopting the method of Lyapunov function reverse recursion. Finally, the effectiveness and robustness of the whole model and control strategies were verified on the platform of Matlab/Simulink.

  3. PEMFC 引射器的设计及特性分析%The Design and Performance of Ejector for PEMFC

    Institute of Scientific and Technical Information of China (English)

    刘英; 许思传; 常国峰

    2014-01-01

    According to a high-pressure proton exchange membrane fuel cell system , the size of the ejec-tor and did the CFD simulation was designed on basis of the Sokolov ejector design theories , research on the ejec-tor potential performance was carried out .The results show that:①Increasing the ejector outlet pressure and e-jector fluent presser will improve the ejecting factor .②the working fluid impact on the performance of the ejector is more complex , and cannot simply be summarized as increased or decreased , but depends on the value of the outlet pressure of the ejector .%以索科洛夫的引射器设计方法为基础,对一个高压质子交换膜燃料电池系统( PEM-FC )的引射器进行结构设计以及CFD仿真分析,研究了引射器的使用特性。研究表明:随着压缩流体出口压力和引射流体压力的增加,引射器的引射系数随之增大;工作流体压力对引射器性能的影响随引射器出口所处工况的变化而变化。

  4. Effects of NOx and SO2 in cathode stream on the performance of PEMFC

    Institute of Scientific and Technical Information of China (English)

    杨代军; 马建新; 周伟; 马晓伟; 邬敏忠; 徐麟; 万钢

    2006-01-01

    The effects of NOx(in a ratio of NO:NO2 = 9:1) and SO2 in cathode stream on the performance of a single proton exchange membrane fuel cell (PEMFC) were investigated. NOx with concentrations of 1×10-3% (in volume, the same as follows), 1.4×10-2% and 1×10-3% could cause significant detrimental effects on the cell performance. However, nearly complete recovery of the cell performance could be observed after NOx was shut off and purged with clean air. The electrochemical measurements suggested that the impacts of NOx resulted mainly from the superposition of the oxygen reduction reaction (ORR),NO and HNO2 oxidation reactions, and the increased cathodic impedance. Trace SO2 with concentrations of 5 × 10-6%, 5 ×10-3%, 2 × 10-4% and 3.2 × 10-4% influenced the cell much severer, which could be attributed to its strong adsorption on the surface of Pt atoms. The cell performance could not be completely recovered after purged with clean air and cyclic voltammetry (CV) tests, due to the changes of electrochemical impedance spectroscopy (ELS) and electrochemical active surface (EAS) caused by surface state change after SO2 exposure.

  5. Valores e Desenvolvimento Humano

    NARCIS (Netherlands)

    F. Comim (Flavio); A. Macedo de Jesus (Anderson); R.C.B Oliveira (Raissa); A. Davison (Anna); S. Galeno (Sabrina); A.C.V. Ribeiro (Ana)

    2010-01-01

    markdownabstractA primeira parte desse Relatório de Desenvolvimento Humano do Brasil 2009/2010 começa com a descrição de um amplo processo de consulta aberta à sociedade, denominada Brasil Ponto a Ponto, para a escolha do tema do relatório. A Campanha Brasil Ponto a Ponto teve por objetivo estimul

  6. A method for the ad hoc and real-time determination of the water balance in a PEMFC

    DEFF Research Database (Denmark)

    Berning, Torsten

    2014-01-01

    A novel method for the ad hoc and real-time determination of the water balance in a proton exchange membrane fuel cell is presented. The method requires the anode side of the fuel cell to be operated in open-ended mode and to use dry, pure hydrogen as is typical for vehicular applications...... anemometry, and this method provides a voltage signal that can be fed to the board computer of a fuel cell vehicle for PEMFC diagnosis. It is also shown that the nitrogen cross-over from cathode to anode has only a small effect on the anode outlet velocity. In addition to detecting the velocity, the relative...... humidity may be measured which is shown to be independent of the current density, but measurement techniques suffer fromlower accuracy. It is argued that this method can also be applied to quantify fuel cell degradation. Finally, it is fundamentally shown that when operating the fuel cell in steady state...

  7. Optimization of Ru{sub x}Se{sub y} electrocatalyst loading for oxygen reduction in a PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Huerta, R.G. [Instituto Politecnico Nacional, Laboratorio de Electroquimica y Corrosion ESIQIE, UPALP, 07738 Mexico, D.F., Mexico (Mexico); Guzman-Guzman, A.; Solorza-Feria, O. [Depto. Quimica, Centro de Investigacion y de Estudios Avanzados del IPN, A. Postal 14-740, 07360 Mexico D.F., Mexico (Mexico)

    2010-11-15

    The synthesis, characterization and optimization of Ru{sub x}Se{sub y} catalyst loading as a cathode electrode for a single polymer electrolyte membrane fuel cell, PEMFC were investigated. Ru{sub x}Se{sub y} catalyst was synthesized via a decarbonylation of Ru{sub 3}(CO){sub 12} and elemental selenium in 1,6-hexanediol under refluxing conditions for 2 h. The powder electrocatalyst was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and examined for the oxygen reduction reaction (ORR) in 0.5M H{sub 2}SO{sub 4} by rotating disk electrode (RDE) and in membrane-electrode assemblies, MEAs for a single PEMFC. Results indicate the formation of agglomerates of crystalline particles with nanometric size embedded in an amorphous phase. The catalyst exhibited high current density and lower overpotential for the ORR compared to that of Ru{sub x} cluster catalyst. Dispersed Ru{sub x}Se{sub y} catalyst loading on Vulcan carbon was optimized as a cathode electrode by performance testing in a single H{sub 2}-O{sub 2} fuel cell. (author)

  8. Optimisation of the microporous layer for a polybenzimidazole-based high temperature PEMFC - effect of carbon content

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, J.; Canizares, P.; Rodrigo, M.A.; Ubeda, D.; Pinar, F.J.; Linares, J.J. [Department of Chemical Engineering, University of Castilla-La Mancha, Av. Camilo Jose Cela, n 12. 13071, Ciudad Real (Spain)

    2010-10-15

    This work aims at studying the role of the microporous layer (MPL) in electrodes prepared for high temperature PBI-based PEMFC. The two main components of this layer are carbon black and a polymeric binder (Teflon). This work addresses the effect of the MPL carbon amount on the performance of a high temperature PEMFC. Thus, gas diffusion layers (GDLs) containing MPL with different carbon contents (from 0.5 to 4 mg cm{sup -2}) were prepared. Firstly, they were physically characterised by Hg-porosimetry measuring pore size distribution, porosity, tortuosity and mean pore size. Permeability measurements were also performed. The higher the carbon content was the lower both porosity and permeability were. Afterwards, electrodes were prepared with these GDLs and were electrochemically characterised. Electrochemical surface area (ESA) was determined and fuel cell performance was evaluated under different fuel and comburent stoichiometries, supporting these results with impedance spectra. This made it possible to see the benefits of the MPL inclusion in the electrode structure, with a significant increase in the fuel cell performance and ESA. Once the goodness of the MPL was confirmed, result analysis led to an optimum MPL composition of 2 mg cm{sup -2} of carbon for both electrodes, anode and cathode. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  9. Estimation of hydrogen crossover through Nafion {sup registered} membranes in PEMFCs

    Energy Technology Data Exchange (ETDEWEB)

    Francia, Carlotta; Ijeri, Vijaykumar S.; Specchia, Stefania; Spinelli, Paolo [Department of Materials Science and Chemical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2011-02-15

    It is well known that the membrane electrode assembly (MEA) of proton exchange membrane fuel cells (PEMFCs) can undergo deterioration, during long term operation, of both the electrode materials and the membrane. Hydrogen crossover, i.e., the undesired diffusion of the gas from the anode to the cathode through the membrane, has been ascribed as one of the main causes of deterioration of perfluorinated ionomer membranes, normally employed in PEMFCs. One of the effects of the hydrogen permeation across the membrane is the decrease of the cell's open circuit voltage (OCV), due to the reaction between the fuel and the oxidant at the cathode surface. Such reaction can lead to the production of peroxide radicals, causing the degradation of both the PEM and the catalyst layer. Hydrogen crossover increases when temperature, pressure and humidity of the cell rise. The hydrogen permeation rate through a very thin PEM is typically lower than 1 mA cm{sup -2} for a new MEA, but it can exceed 10-20 mA cm{sup -2} after long term operation. Various methods have been proposed to measure the rate of hydrogen crossover, mainly based on electrochemical tests on a single FC with a flow of nitrogen at the cathode, so that the steady state current corresponds to the oxidation of crossed hydrogen. Hydrogen crossover has been also determined indirectly by assuming that the changes in the OCV values are due to the passage of fuel from the anode to the cathode. In this paper, a simplified mathematical model for the direct determination of hydrogen crossover permeation rate is presented. Such a model is based on analytical expressions of the polarization terms and it is employed to determine the hydrogen crossover rate. The main results show that the hydrogen crossover current densities increased from 0.12 to 0.32 mA cm{sup -2}, by decreasing the thickness of the membranes and increasing the operating cell temperature. Moreover, the hydrogen crossover determined for a fresh MEA was

  10. Development of an electrolyte based on a composite of TEOS/PDMS/ALUMINA with phosphotungstic acid for PEMFC application

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, D.G.; Lima, M.O.; Santa Rosa, L.O.; Jose, N.M.; Boaventura, F.J.S. [Univ. Federal da Bahia, Salvador (Brazil). Dept. of Physical Chemistry

    2009-07-01

    This study analyzed the suitability of PDMS/TEOS/Al203/PWA membranes for use in proton exchange membrane fuel cells (PEMFC) applications. The membranes were prepared using a sol-gel method and were comprised of polydimethylsiloxane (PDMS) reticulated with tetraethoxysilane (TEOS) reinforced with alumina. Phosphotunguistic acid was used as a proton conducting species. PDMS and TEOS were reacted in a 70-30 mass proportion. Al203 and PWA were then incorporated in mass proportions of 5, 10, 15, 20, and 25 per cent. The membranes were then analyzed using X-ray diffraction (XRD), thermogravimetric (TG), direct scanning calorimetry (DSC) and Fourier Transform Infrared (FTIR) techniques. The band characteristics of the hybrid matrix and alumina were characterized. Results of the study showed that the thermal stability and residual mass of the membranes increased with the addition of reinforcing materials. Conductivity was 10 mS per cm, which decreased with increases in crystallinity. Homogenous reinforcement distribution was observed throughout the matrix. It was concluded that the materials are suitable for PEMFC applications.

  11. Corrosion kinetics of 316L stainless steel bipolar plate with chromiumcarbide coating in simulated PEMFC cathodic environment

    Science.gov (United States)

    Huang, N. B.; Yu, H.; Xu, L. S.; Zhan, S.; Sun, M.; Kirk, Donald W.

    Stainless steel with chromium carbide coating is an ideal candidate for bipolar plates. However, the coating still cannot resist the corrosion of a proton exchange membrane fuel cell (PEMFC) environment. In this work, the corrosion kinetics of 316L stainless steel with chromium carbide is investigated in simulated PEMFC cathodic environment by combining electrochemical tests with morphology and microstructure analysis. SEM results reveal that the steel's surface is completely coated by Cr and chromium carbide but there are pinholes in the coating. After the coated 316L stainless steel is polarized, the diffraction peak of Fe oxide is found. EIS results indicate that the capacitive resistance and the reaction resistance first slowly decrease (2-32 h) and then increase. The potentiostatic transient curve declines sharply within 2000 s and then decreases slightly. The pinholes, which exist in the coating, result in pitting corrosion. The corrosion kinetics of the coated 316L stainless steel are modeled and accords the following equation: i0 = 7.6341t-0.5, with the corrosion rate controlled by ion migration in the pinholes.

  12. Electrochemical characteristics and performance of platinum nanoparticles supported by Vulcan/polyaniline for oxygen reduction in PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Kakaei, K. [Faculty of Science, Department of Chemistry, University Of Maragheh, P.O. Box. 55181-83111, Maragheh (Iran, Islamic Republic of)

    2012-12-15

    We report a Pt/Vulcan carbon-polyaniline (VC-PANI) catalyst for the oxygen reduction reaction (ORR). This electrocatalyst was prepared from Pt nanoparticles supported by a VC-PANI composite substrate. Electrochemical performance was measured using potentiostat/galvanostats technique and a proton exchange membrane fuel cell (PEMFC) test station. The electrochemical properties of the electrodes were characterized using linear sweep voltammetry, AC impedance spectroscopy and chronoamperometry. Electrochemical characterization by hydrogen adsorption/desorption cyclic voltammetry and CO stripping voltammetry indicates that the electrochemical active surface areas of the Pt/VC-PANI are comparable to the commercial catalyst. The performance of the Pt/VC-PANI and Pt/C(E-TEK) + PANI electrocatalysts were found to be 1.82 and 1.33 times higher than of the Pt/C(E-TEK) electrode. The surface morphologies of the electrodes were characterized by using scanning electron microscopy (SEM). PANI has a fibrous structure and the improved performance was attributed to the PANI effect and synergistic effects between the carbon Vulcan and the PANI fiber. These results indicate that Pt/VC-PANI is a promising catalyst for the ORR in PEMFCs using an H{sub 2}/O{sub 2} feed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Spraying Techniques for Large Scale Manufacturing of PEM-FC Electrodes

    Science.gov (United States)

    Hoffman, Casey J.

    Fuel cells are highly efficient energy conversion devices that represent one part of the solution to the world's current energy crisis in the midst of global climate change. When supplied with the necessary reactant gasses, fuel cells produce only electricity, heat, and water. The fuel used, namely hydrogen, is available from many sources including natural gas and the electrolysis of water. If the electricity for electrolysis is generated by renewable energy (e.g., solar and wind power), fuel cells represent a completely 'green' method of producing electricity. The thought of being able to produce electricity to power homes, vehicles, and other portable or stationary equipment with essentially zero environmentally harmful emissions has been driving academic and industrial fuel cell research and development with the goal of successfully commercializing this technology. Unfortunately, fuel cells cannot achieve any appreciable market penetration at their current costs. The author's hypothesis is that: the development of automated, non-contact deposition methods for electrode manufacturing will improve performance and process flexibility, thereby helping to accelerate the commercialization of PEMFC technology. The overarching motivation for this research was to lower the cost of manufacturing fuel cell electrodes and bring the technology one step closer to commercial viability. The author has proven this hypothesis through a detailed study of two non-contact spraying methods. These scalable deposition systems were incorporated into an automated electrode manufacturing system that was designed and built by the author for this research. The electrode manufacturing techniques developed by the author have been shown to produce electrodes that outperform a common lab-scale contact method that was studied as a baseline, as well as several commercially available electrodes. In addition, these scalable, large scale electrode manufacturing processes developed by the author are

  14. PEMFC performance of MEAS based on Nafion{sup R} and sPSEBS hybrid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Carretero, F.J.; Compan, V. [Univ, Politecnica de Valencia, Valencia (Spain). Dept. Termodinamica Aplicada; Suarez, K.; Solorza, O. [Inst. Politecnico Nacional, Centro de Investigacion y de Estudios Avanzados, Mexico City (Mexico). Dept. de Quimica; Riande, E. [Inst. de Ciencia y Tecnologia de Polimeros, Madrid (Spain)

    2010-07-15

    Important scientific, technical and economic problems must be solved before widespread commercialization of polymer electrolyte membrane fuel cells (PEMFC). The main issues facing the development of commercial low temperature fuel cells are the synthesis of efficient solid electrolytes separating the anode from the cathode as well as the development of cheaper catalysts for fuel oxidation. This study involved the preparation of hybrid membranes based on Nafion 117 and sulfonated Calprene H6120 containing partially sulfonated inorganic fillers such as silica, SBA-15 and sepiolite. The feasibility of using the membranes as polyelectrolytes for low temperature fuel cells was then evaluated. The water uptake of Nafion hybrid membranes is 1/3 to 1/4 of that in composite membranes based on sulfonated Calprene H6120. The proton conductivity of Nafion 117 hybrid membranes-electrode assemblies is nearly 1/5 of the pristine Nafion membrane assembly. Sulfonated Calprene H6120 hybrid membranes typically have better proton conductivity than the Nafion 117 composites. The performance of fuel cells containing different MEAs was examined by measuring their polarization curves in different operating conditions. The kinetic parameters governing the voltage dependence on current density were also estimated. It was concluded that the superior performance of the fuel cells with MEAs of NAF-SEP, sPSEBS-SIL and sPSEBS-SBA is not due to the membranes themselves, but to the kinetic processes that occur at the electrodes, which in this study were less efficient for fuel cells with the Nafion MEA. 34 refs., 3 tabs., 9 figs.

  15. A numerical model for CO effect evaluation in HT-PEMFCs: Part 2 - Application to different membranes

    Science.gov (United States)

    Cozzolino, R.; Chiappini, D.; Tribioli, L.

    2016-06-01

    In this paper, a self-made numerical model of a high temperature polymer electrolyte membrane fuel cell is presented. In particular, we focus on the impact of CO poisoning on fuel cell performance and its influence on electrochemical modelling. More specifically, the aim of this work is to demonstrate the effectiveness of our zero-dimensional electrochemical model of HT-PEMFCs, by comparing numerical and experimental results, obtained from two different commercial membranes electrode assemblies: the first one is based on polybenzimidazole (PBI) doped with phosphoric acid, while the second one uses a PBI electrolyte with aromatic polyether polymers/copolymers bearing pyridine units, always doped with H3PO4. The analysis has been carried out considering both the effect of CO poisoning and operating temperature for the two membranes above mentioned.

  16. Development of solid oxide fuel cells (SOFC); Desenvolvimento de celulas a combustivel do tipo oxido solido (SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Souza, F.M.B. de; Carvalho, L.F.V. de; Alencar, M.G de; Boaventura, J.S. [Universidade Federal da Bahia (DFQ/UFBA), Salvador, BA (Brazil). Dept de Fisico-Quimica. Grupo de energia e Ciencias dos Materiais], e-mail: bventura@ufba.br

    2008-07-01

    The most promising technology for generating electric power, with reduced environmental impact, is the fuel cell. This technology is virtually non-polluting and the fuel supplies can be renewable. Therefore is necessary to study the technique of preparing the entire anode / electrolyte / cathode to optimize its operation. There are still major challenges to making the SOFC economically viable. The key is the improvement of manufacturing of its components and use of materials that can simultaneously reduce costs and reduce the temperature of operation. Among the properties of the cell, was shown the dependence of the efficiency of the device on the properties of the electrolyte, particularly its thickness. The mixture of YSZ with GDC in the composition of the anode and electrolyte aims to obtain a material with greater ionic conductivity. After sintering the cell was characterized by scanning electron microscopy (SEM). (author)

  17. Study of membrane electrode assemblies for PEMFC, with cathodes prepared by the electrospray method

    Energy Technology Data Exchange (ETDEWEB)

    Chaparro, A.M.; Benitez, R. [CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Gubler, L.; Scherer, G.G. [Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen (Switzerland); Daza, L. [CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Instituto de Catalisis y Petroleoquimica (CSIC), Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain)

    2007-06-10

    The electrospray deposition of platinum supported on carbon (Pt/C) particles has been used for the preparation of electrodes for proton exchange membrane fuel cells (PEMFCs). The departing suspensions contain the Pt/C electrocatalyst together with an ionomer (Nafion {sup registered}) and a solvent. Two types of solvent have been used, isopropanol and a mixture of butylacetate, ethanol and glycerol (BEG). The microscopic characterisation of electrosprayed films shows the electrospray deposited Pt/C films with a dendritic morphology. XPS analysis of the films reflects changes in the ionomer component after electrospray deposition. A decrease in the signal corresponding to backbone chain (CF{sub 2}) is observed on the films deposited with the low evaporation temperature solvent (isopropanol), indicating some disruption of ionomer chains during the electrospray process. With high evaporation temperature solvent (BEG), the disruption effect seems less acute. Membrane electrode assemblies were prepared with the electrosprayed electrodes as cathodes. Good general performance is encountered, comparable with standard commercial cathodes. Electrosprayed electrodes prepared from high evaporation temperature solvent (BEG) show a higher surface specific area. The internal resistance is something higher for MEAs with electrosprayed cathodes. The long term stability test shows a performance loss of about 10 {mu}V h{sup -1} over 700 h continuous testing. (author)

  18. Characterization of self-assembled electrodes based on Au-Pt nanoparticles for PEMFC application

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, E. [Univ. Politecnica de Chiapas (Mexico). Energia y Sustentabilidad; Sebastian, P.J.; Gamboa, S.A.; Joseph, S. [Univ. Nacional Autonoma de Mexico, Morelos (Mexico). Centrode Investigacion en Energia; Pal, U. [Univ. Autonoma de Puebla, Pue (Mexico). Inst. de Fisica; Gonzalez, I. [Univ. Autonoma Metropolitana, Mexico City (Mexico). Dept. de Quimica

    2010-07-01

    This paper described the synthesis and characterization of gold (Au), platinum (Pt) and Au-Pt nanoparticles impregnated on a Nafion membrane in a proton exchange membrane fuel cell (PEMFC). The aim of the study was to fabricate the membrane electrode assembly (MEA) by depositing the nanoparticles on the membrane using an immersion technique. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to study the deposition process. Electrochemical impedance spectroscopy (EIS) was used to study the membrane proton conduction process. An elemental mapping analysis was performed in order to study the location of the Au and Pt in the self-assemblies. Results of the study showed that the particles deposited on the Nafion had good stability and a homogenous distribution along the membrane surface. The particles showed a direct relation in size and location with the hydrophilic and hydrophobic distribution phases of the membrane. The main membrane resistance was located between the membrane and the electrolyte. The self-assembled electrodes demonstrated a good performance at standard conditions. 33 refs., 4 tabs., 11 figs.

  19. Catalyst layers for PEMFC manufactured by flexography printing process: performances and structure

    Energy Technology Data Exchange (ETDEWEB)

    Bois, C.; Blayo, A.; Chaussy, D. [Laboratory of Pulp and Paper Science and Graphic Arts (LGP2) (UMR 5518 CNRS-CTP-INPG), Grenoble Institute of Technology (INP Grenoble - PAGORA), St Martin d' Heres (France); Vincent, R.; Mercier, A.G.; Nayoze, C. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA)/DRT/LITEN, Laboratoire des Composants Piles a Combustible, Electrolyse et Modelisation (LCPEM), Grenoble (France)

    2012-04-15

    This article focuses on the potential of a classic printing process, flexography, for manufacturing proton exchange membrane fuel cells (PEMFCs). Gas diffusion electrodes (GDEs) are produced by deposition of a water-based catalyst ink on a gas diffusion layer (GDL). The affinity between the ink and the GDL is quantified. Thus, the strong hydrophobic character of the GDL and the poor printability of the ink are demonstrated. However, the permeability of the GDL allows developing a multilayer protocol. The deposition by superimposition of ink layers allows control of the platinum amount and to obtain catalyst layers with a similar density of platinum nanoparticles to coated samples. At similar platinum loading, flexography and coating made catalyst layers offer similar performances, which confirm the relevance of flexography in catalyst layer manufacturing. Structural characterization shows that manufacturing protocol and process has an influence on catalyst layer microstructure. However, catalyst layer cracking and aggregation are increased with the catalyst layer thickness, diminishing the charge and gas diffusion into the catalyst layer resulting in performance degradation. Consequently, a catalyst layer with 0.46 mgPt cm{sup -2} reaches similar performances to catalyst layers with 1.77 and 2.01 times less platinum loading. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Modified pulse electrodeposition of Pt nanocatalyst as high-performance electrode for PEMFC

    Science.gov (United States)

    Fouda-Onana, F.; Guillet, N.; AlMayouf, A. M.

    2014-12-01

    Low platinum loading electrode was successfully deposited by a modified pulse galvanic signal in H2PtCl6 electrolyte using carbon black as support directly on a GDL (Gas Diffusion Layer). SEM images of the deposition were composed by rough Pt particles of 50 nm leading to specific electrochemical surface area of 53 m2 g-1. In spite of large particle size and a low cathode loading of 0.12 mg cm-2, the proton exchange membrane fuel cell (PEMFC) fed with humidified H2 and O2 at 80 °C, 1.5 absolute bar reached 0.2 mA cmPt-2 and 0.1 A mg-1 at 0.9 VIR-free which were twice higher than a reference membrane electrodes assembly (MEA) with a cathode loaded at 0.4 mgPt.cm-2. Such an active cathode electrode may be ascribed to a higher utilization rate of the platinum caused by an efficient catalyst deposition by electrochemical route.

  1. Proton Exchange Membrane Fuel Cells Applied for Transport Sector

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud

    2010-01-01

    A thermodynamic analysis of a PEMFC (proton exchange membrane fuel cell) is investigated. PEMFC may be the most promising technology for fuel cell automotive systems, which is operating at quite low temperatures, (between 60 to 80℃). In this study the fuel cell motive power part of a lift truck has...

  2. Effect of channel arrangement on fluid flow in PEMFC flow field using serpentine channel system with trapezoidal cross-section

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L.; Oosthuizen, P.H. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering; McAuley, K.B. [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemical Engineering

    2005-07-01

    Developments in Computational Flow Dynamics (CFD) software have meant that Proton Exchange Membrane Fuel Cell (PEMFC) modelling is now able to include cell components such as gas channels and porous diffusion layers. This paper discussed a numerical model which was developed to study air flow in the flow plate and gas diffusion layer assembly on the cathode side of a PEMFC. The flow plate in this fuel cell often has serpentine channels, and the porous layer is adjacent to the flow plate in order to diffuse the air to the catalyst layer. Flow crossover of air through the porous diffusion layer from one part of the channel to another can occur as a result of pressure differences between different parts of the channel. The numerical study was undertaken to compare the cases of a single channel and 2 parallel channels, with the channels having a trapezoidal cross-sectional shape. The objective of the study was to examine the effect of the flow plate geometry on the basic fluid flow through the plate. Flow was assumed to be 3-dimensional, steady, incompressible, isothermal and single-phase. The flow through the porous diffusion layer was described using the Darcy model. Dimensionless governing equations were solved using FIDAP, a commercial CFD solver. The results indicate that single channel systems have a greater maximum flow rate difference than the parallel channel systems under the conditions considered in the experiment. In addition, the size ratio R of trapezoidal cross-sectional shape has a significant effect on the flow crossover and pressure variation in the flow field. 16 refs., 15 figs.

  3. “Distributed hybrid” MH–CGH2 system for hydrogen storage and its supply to LT PEMFC power modules

    Energy Technology Data Exchange (ETDEWEB)

    Lototskyy, M., E-mail: mlototskyy@uwc.ac.za [HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Tolj, I.; Davids, M.W.; Bujlo, P. [HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Smith, F. [Impala Platinum Ltd, Springs (South Africa); Pollet, B.G. [HySA Systems Competence Centre, South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa)

    2015-10-05

    Highlights: • Prototype hydrogen storage and supply system for LTPEMFC applications was developed. • Combination of MH and CGH2 tanks with common gas manifold was used. • Thermal coupling of fuel cell stack and MH tank was applied. • The system uses AB2-type MH; H2 equilibrium pressure ∼10 bar at room temperature. • Shorter H2 charge time and stable H2 supply at a fluctuating load were observed. - Abstract: This paper describes the layout and presents the results of the testing of a novel prototype “distributed hybrid” hydrogen storage and supply system that has the potential to be used for Low Temperature Proton Exchange Membrane Fuel Cell (LT-PEMFC) applications. The system consists of individual Metal Hydride (MH) and Compressed Gas (CGH2) tanks with common gas manifold, and a thermal management system where heat exchanger of the liquid heated-cooled MH tank is integrated with the cooling system of the LT-PEMFC BoP. The MH tank is filled with a medium-stability AB{sub 2}-type MH material (H{sub 2} equilibrium pressure of about 10 bar at room temperature). This innovative solution allows for (i) an increase in hydrogen storage capacity of the whole gas storage system and the reduction of H{sub 2} charge pressure; (ii) shorter charging times in the refuelling mode and smoother peaks of H{sub 2} consumption during its supply to the fuel cell stack; (iii) the use of standard parts with simple layout and lower costs; and (iv) adding flexibility in the layout and placement of the components of the hydrogen storage and supply system.

  4. New types of Brönsted acid-base ionic liquids-based membranes for applications in PEMFCs.

    Science.gov (United States)

    Fernicola, Alessandra; Panero, Stefania; Scrosati, Bruno; Tamada, Masahiro; Ohno, Hiroyuki

    2007-05-14

    A series of ionic liquids (ILs) are prepared by neutralizing tertiary amines with N,N-bis(trifluoromethanesulfonyl)imide (HTFSI). As demonstrated by thermal and electrochemical characterizations, these ILs have very good temperature stability and a high ionic conductivity, that is, of the order of 10(-2) S cm-1. By incorporating these ILs into a poly(vinylidenfluoride-co-hexafluoropropylene) polymer matrix, membranes with a high melting temperature, high decomposition point and with an ionic conductivity of about 10(-2) S cm-1 at 140 degrees C, are obtained. These IL-based, proton-conducting membranes are proposed as new polymer electrolytes for high-temperature polymer electrolyte membrane fuel cells (PEMFCs).

  5. PEMFC分散发电系统的压力控制研究%Pressure control of PEMFC distributed power generator

    Institute of Scientific and Technical Information of China (English)

    张颖颖; 曹广益; 朱新坚

    2006-01-01

    Control design is important for PEMFC (proton exchange membrane fuel cell) distributed power generator to satisfy user requirement for safe and stable operation.For a complex multi-variable dynamic system, a dynamic simulation model is first established.In view of close coupling and non-linear relationships between variables, the intelligent auto-adapted PI decoupling control method is used.From the simulation results it is found that, by bringing quadratic performance index in the single neuron, constructing adaptive PI controller, and adjusting gas flow rates through the second pressure relief valve and air compressor coordinately, both anode and cathode pressures can be maintained at ideal levels.

  6. Humidifying system design of PEMFC test platform based on the mixture of dry and wet air

    Directory of Open Access Journals (Sweden)

    Tiancai Ma

    2015-01-01

    Full Text Available Based on the present humidifying system of PEMFC test platform, a novel design based on dry and wet air mixture is proposed. Key parameters are calculated, and test platform is built. Three experiments are implemented to test the performance of proposed design. Results show that the new design can meet the requirements, and realize the quick response and accurate control.

  7. The Effects of the PEM Fuel Cell Performance with the Waved Flow Channels

    OpenAIRE

    Yue-Tzu Yang; Kuo-Teng Tsai; Cha’o-Kuang Chen

    2013-01-01

    The objective of this study is to use a new style of waved flow channel instead of the plane surface channel in the proton exchange membrane fuel cell (PEMFC). The velocity, concentration, and electrical performance with the waved flow channel in PEMFC are investigated by numerical simulations. The results show that the waved channel arises when the transport benefits through the porous layer and improves the performance of the PEMFC. This is because the waved flow channel enhances the forced...

  8. Impasses do desenvolvimento

    Directory of Open Access Journals (Sweden)

    Yilmaz Akyüz

    2005-07-01

    Full Text Available Este artigo fornece um panorama dos principais impasses que se impõem aos países em desenvolvimento no que diz respeito à industrialização e ao comércio internacional. O autor examina os matizes envolvidos nas estratégias de incremento da exportação de produtos manufaturados e argumenta que a retomada do crescimento regional requer apoio não apenas de políticas voltadas para esse setor, mas também de acordos monetários e de cooperação destinados a garantir a estabilidade dos mercados.This article focuses on the main aspects concerning trade, foreign direct investment and industrialization in developing countries. The author states that a return to stable and rapid regional growth needs to be underpinned not only by policies directed at the upgrading of production and exports, but also by accompanying regional monetary arrangements and cooperation designed to ensure the stability of financial markets.

  9. Rapid prototyping methods for the manufacture of fuel cells

    Directory of Open Access Journals (Sweden)

    Dudek Piotr

    2016-01-01

    The potential for the application of this method for the manufacture of metallic bipolar plates (BPP for use in proton exchange membrane fuel cells (PEMFCs is presented and discussed. Special attention is paid to the fabrication of light elements for the construction of PEMFC stacks designed for mobile applications such as aviation technology and unmanned aerial vehicles (UAVs.

  10. Numerical study of droplet dynamics in a PEMFC gas channel with multiple pores

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ji Young; Son, Gi Hun [Sogang University, Seoul (Korea, Republic of)

    2009-07-15

    The water droplet motion in a PEMFC gas channel with multiple pores, through which water emerges, is studied numerically by solving the equations governing the conservation of mass and momentum. The liquid-gas interface is tracked by a level set method which is based on a sharp-interface representation for accurately imposing the matching conditions at the interface. The method is modified to implement the contact angle conditions on the walls and pores. The dynamic interaction between the droplets growing on multiple pores is investigated by conducting the computations until the droplet growth and sliding motion exhibits a periodic pattern. The numerical results show that the configuration subject to droplet merging is not effective for water removal and that the wettability of channel wall strongly affects water management in the PEMFC gas channel

  11. CAPITAL SOCIAL, DEMOCRACIA E DESENVOLVIMENTO

    Directory of Open Access Journals (Sweden)

    Luciene Dal Ri

    2011-12-01

    Full Text Available Este artigo apresenta uma revisão critica da literatura sobre a relação entre Capital Social, Democracia e o Desenvolvimento. É relevante refletirmos sobre estes três temas, pois não se consegue ver um distanciamento entre ambos. Todavia, como meio para promover o capital social, o desenvolvimento e a democracia, é necessária que haja uma melhoria do bem-estar social, devendo ser associada com liberdades econômicas e abertura de mercado de modo a viabilizar o crescimento econômico e a melhoria na qualidade de vida da população.

  12. Preparation of Multiwall Carbon Nanotubes-supported High Loading Platinum for Vehicular PEMFC Application

    Institute of Scientific and Technical Information of China (English)

    Bing ZHANG; Li Juan CHEN; Kai Yong GE; Yan Chuan GUO; Bi Xian PENG

    2005-01-01

    Multiwall carbon nanotube-supported Pt (Pt/MWNTs) catalysts with high dispersion and high loading of Pt were prepared by chemical reduction method and the loading of Pt got to 40wt%. The average diameter of Pt nanoparticles on MWNTs was about 3.5 nm. When the hydrogen and air were used as reactant gases for PEMFC, Pt/MWNTs catalysts showed significantly higher performance than the Pt/XC-72 (carbon black) catalysts.

  13. The study on carbon nanotubes-supported Pt catalysts for PEMFC

    Institute of Scientific and Technical Information of China (English)

    朱捷; 朱红; 康晓红; 葛奉娟; 杨玉国

    2004-01-01

    Carbon nanotube-supported-platinum (Pt/CNTs) and carbon-supported-platinum (Pt/C) catalysts were prepared by in situ chemical reduction method and analyzed by TEM and XRD. Then the experiments were carried out to test the performance of PEMFCs with the Pt electrodes. The results showed that in both catalyst, Pt was of small particle size (about 4 nm) and Pt/CNTs exhibited higher catalytic activity than Pt/C.

  14. 基于USB通信的PEMFC内阻在线测试系统设计%Online Testing System of PEMFC Internal Resistance Based on USB Communication

    Institute of Scientific and Technical Information of China (English)

    李小君; 陈启宏

    2012-01-01

    The resistance line for the PEMFC test system was designed to complete a high - precision programmable AC excitation source. The major controller of the excitation source was LM3S5749 high - performance ARM processing chip. And a Visual C + +6.0 USB communication protocol was proposed and realized to meet the actual needs of high - speed data acquisition system. The test system can avoid overheads resulted from frequently task scheduling. At the same time it can timely response to the hardware interrupts,hardware polling and other special assignments,which meets the real -time nature of the project needs.%针对PEMFC(proton exchange membrane fuel cell)内阻在线测试系统,设计了以TMLM3S5749高性能ARM处理器为主控制器的高精度程控交流激励源,满足了高速数据采集系统的实际需要,给出了以Visual C++6.0为开发平台的USB通信协议的设计与实现方法,测试系统可以减少由于任务的频繁调度所带来的开销,同时又能够对硬件中断和硬件轮询等特别任务进行及时响应,符合项目的实时性需求.

  15. Current short circuit implementation for performance improvement and lifetime extension of proton exchange membrane fuel cell

    Science.gov (United States)

    Zhan, Yuedong; Guo, Youguang; Zhu, Jianguo; Li, Li

    2014-12-01

    To improve its performance, extend its lifetime, and overcome the problem of the slow dynamic during the start-up and the operation process of a proton exchange membrane fuel cell (PEMFC), this paper presents current short circuit and smart energy management approaches for a main PEMFC with auxiliary PEMFC, battery and supercapacitor as hybrid power source in parallel with an intelligent uninterrupted power supply (UPS) system. The hybrid UPS system consists of two low-cost 63-cell 300 W PEMFC stacks, 3-cell lead-acid battery, and 20-cell series-connected supercapacitors. Based on the designed intelligent hybrid UPS system, experimental tests and theoretical studies are conducted. Firstly, the modeling of PEMFC is obtained and evaluated. Then the performance improvement mechanism of the current short circuit is proposed and analyzed based on the Faradaic process and non-Faradaic process of electrochemical theory. Finally, the performances of the main PEMFC with the auxiliary PEMFC/battery/supercapacitor hybrid power source and intelligent energy management are experimentally measured and analyzed. The proposed current short circuit method can significantly extend the lifetime, improve the performance of PEMFC and decrease the size of the main FC for stationary, backup power sources and vehicular applications.

  16. Dynamic Thermal Model and Temperature Control of Proton Exchange Membrane Fuel Cell Stack

    Institute of Scientific and Technical Information of China (English)

    邵庆龙; 卫东; 曹广益; 朱新坚

    2005-01-01

    A dynamic thermal transfer model of a proton exchange membrane fuel cell (PEMFC) stack is developed based on energy conservation in order to reach better temperature control of PEMFC stack. Considering its uncertain parameters and disturbance, we propose a robust adaptive controller based on backstepping algorithm of Lyaponov function. Numerical simulations indicate the validity of the proposed controller.

  17. Prognostics of Proton Exchange Membrane Fuel Cells stack using an ensemble of constraints based connectionist networks

    Science.gov (United States)

    Javed, Kamran; Gouriveau, Rafael; Zerhouni, Noureddine; Hissel, Daniel

    2016-08-01

    Proton Exchange Membrane Fuel Cell (PEMFC) is considered the most versatile among available fuel cell technologies, which qualify for diverse applications. However, the large-scale industrial deployment of PEMFCs is limited due to their short life span and high exploitation costs. Therefore, ensuring fuel cell service for a long duration is of vital importance, which has led to Prognostics and Health Management of fuel cells. More precisely, prognostics of PEMFC is major area of focus nowadays, which aims at identifying degradation of PEMFC stack at early stages and estimating its Remaining Useful Life (RUL) for life cycle management. This paper presents a data-driven approach for prognostics of PEMFC stack using an ensemble of constraint based Summation Wavelet- Extreme Learning Machine (SW-ELM) models. This development aim at improving the robustness and applicability of prognostics of PEMFC for an online application, with limited learning data. The proposed approach is applied to real data from two different PEMFC stacks and compared with ensembles of well known connectionist algorithms. The results comparison on long-term prognostics of both PEMFC stacks validates our proposition.

  18. Studies on the efficiency during reactivation of a generation system based on natural gas reformer and a 5 k W fuel cell; Estudos de eficiencia durante reativacao de um sistema de geracao baseado em reformador de gas natural e celula a combustivel de 5 kW

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Francisco da Costa; Furtado, Jose Geraldo de Melo; Silva Junior, Fernando Rodrigues da; Serra, Eduardo Torres [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)]. E-mail: fcl@cepel.br

    2008-07-01

    Fuel cell based power generation systems have been pointing as promising technology for stationary applications mainly to supply power to critical loads. Among several types of fuel cells the Polymer Electrolyte Membrane Fuel Cells (PEMFC) are the main type used around the world. Nowadays reformers are widely employed to produce hydrogen for fuel cells. The Fuel Cell Laboratory of CEPEL has a power plant based on a 5 kW PEMFC and a natural gas reformer. For a long time the PEMFC was inoperable due to reformer malfunctioning and during this time the full power availability of PEMFC was lost due to deactivation of its catalytic sites. In most cases this deactivation is reversible. So it was started a reactivation process aiming to recover the full operational condition of the PEMFC unit. During this process the gas flow relationship and efficiency of the reformer were studied. An analysis of the PEMFC reactivation was conducted where it was noted that the reactivation took place as expected. During the reactivation process the PEMFC and the whole system efficiency were analyzed. The results suggest that the PEMFC can reach efficiency compatible with conventional power generation systems thus allowing PEMFC technology to compete with these energy sources in point of efficiency. (author)

  19. Electrochemical Behavior of Niobium Electrodeposited 316 Stainless Steel Bipolar Plate for PEMFC in Choline Chloride Based Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    CAO Caihong; LIANG Chenghao; HUANG Naibao

    2015-01-01

    Niobium was electrodeposited on 316 stainless steel bipolar plates of a fuel cell in water and air-stable choline chloride based ionic liquids. The electrochemical corruption property of bipolar plates in simulated PEMFC environment was investigated. It was showed that the plating iflm was distributed on the surface of 316 stainless steel like isolated islands with height less than 50 nm. The XPS, XRD results showed that a smooth and strong chemical inert iflm of NbO and Nb2O5 was formed on the surface of 316 stainless steel. In simulated cathodic condition, the corrosion potential of Nb coated stainless steel was improved by 244 mV, whilst in an anodic condition, it was improved by 105 mV. The current densities for the coated 316 stainless steel were decreased to 2.479 4 µA•cm-2 from 14.810 µA•cm-2 at-0.1 V and to 0.576 µA•cm-2 from 13.417 µA/•cm-2 at 0.6 V, respectively. It was implied that the niobium coating effectively decreased the corrosion rate. The results of the electrochemical tests indicated that the corrosion resistance of stainless steel was greatly improved after coated with niobium.

  20. Conductive and corrosion behaviors of silver-doped carbon-coated stainless steel as PEMFC bipolar plates

    Institute of Scientific and Technical Information of China (English)

    Ming Liu; Hong-feng Xu; Jie Fu; Ying Tian

    2016-01-01

    Ni–Cr enrichment on stainless steel SS316L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was depositedin situ to prepare a thin continuous Ag-doped carbon film on a porous carbon-coated SS316L substrate. The corrosion resistance of this film in 0.5 mol·L−1 H2SO4 solution containing 5 ppm F− at 80°C was inves-tigated using polarization tests. The results showed that the surface treatment of the SS316L strongly affected the adhesion of the carbon coating to the stainless steel. Compared to the bare SS316L, the Ag-doped carbon-coated SS316L bipolar plate was remarkably more stable in both the anode and cathode environments of proton exchange membrane fuel cell (PEMFC) and the interface contact resistance between the specimen and Toray 060 carbon paper was reduced from 333.0 mΩ·cm2 to 21.6 mΩ·cm2 at a compaction pressure of 1.2 MPa.

  1. Hydrogen sulfide poisoning and recovery of PEMFC Pt-anodes

    Science.gov (United States)

    Shi, Weiyu; Yi, Baolian; Hou, Ming; Jing, Fenning; Ming, Pingwen

    A simple and effective method for reactivation of H 2S poisoned Pt-anodes is described and the feasibility of the method was examined by single cell tests and 1 kW stack tests. The performance of the H 2S poisoned Pt-anode can be basically recovered by applying a high voltage pulse (1.5 V for 20 s) followed by a low voltage pulse (0.2 V for 20 s) in a single cell. During the 10 poisoning-recovery cycles, the ohmic resistance and electrochemical surface area did not change significantly. The 1 kW stack tests show that the stack performance decayed severely and the maximum power decreased to 0.366 kW (32% of the original value) after exposure to 18 ppm H 2S/H 2 for 2 h at 600 mA cm -2. The stack performance can be significantly recovered by applying a high voltage pulse (1.5 V for 2 min) followed by a low voltage pulse (0.2 V for 2 min) to each cell. The maximum power recovered to 1.095 kW (97.5% of the original value).

  2. High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Cleemann, Lars Nilausen; Steenberg, T.;

    2014-01-01

    High temperature operation of proton exchange membrane fuel cells under ambient pressure has been achieved by using phosphoric acid doped polybenzimidazole (PBI) membranes. To optimize the membrane and fuel cells, high performance polymers were synthesized of molecular weights from 30 to 94 k...... showed enhanced chemical stability towards radical attacks under the Fenton test, reduced volume swelling upon the acid doping and improved mechanical strength at acid doping levels of as high as about 11 mol H3PO4 per molar repeat polymer unit. The PBI‐78kDa/10.8PA membrane, for example, exhibited...... tensile strength of 30.3 MPa at room temperature or 7.3 MPa at 130 °C and a proton conductivity of 0.14 S cm–1 at 160 °C. Fuel cell tests with H2 and air at 160 °C showed high open circuit voltage, power density and a low degradation rate of 1.5 μV h–1 at a constant load of 300 mA cm–2....

  3. Proton exchange fuel cell : the design, construction and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Heinzen, M.R.; Simoes, G.C.; Da Silva, L. [Univ. do Vale do Itajai, Sao Jose, SC (Brazil). Lab. de Pesquisa em Energia; Fiori, M.A.; Paula, M.M.S. [Univ. do Extremo Sul Catarinense, Santa Catarina (Brazil). Lab. de Sintese de Complexos Multifuncionais; Benavides, R. [Centro de Investigacion en Quimica Aplicada, Coahuila (Mexico)

    2010-07-15

    Polymer electrolyte membrane fuel cells (PEMFC) convert the chemical energy stored in the fuel directly into electrical energy without intermediate steps. The PEMFC operates at a relatively low operating temperature making it a good choice for mobile applications, but a high power density is needed in order to decrease the total weight of the vehicles. This paper presented a simple methodology to construct a PEMFC-type fuel cell, with particular reference to the gaseous diffuser, cell structure, the fixing plate, mounting bracket, gas distribution plates, and the membrane electrode assembly (MEA). The geometric design and meshing of the PEMFC were also described. The electrode was made using graphite with flow-field geometry. The PEMFC was tested for 100 hour of continuous work, during which time the current and voltage produced were monitored in order to evaluate the performance of the PEMFC. The materials used in the preparation of the fuel cell proved to be suitable. There was no loss of efficiency during the tests. The most relevant aspects affecting the PEMFC design were examined in an effort to optimize the performance of the cell. 13 refs., 6 figs.

  4. Composite plasma polymerized sulfonated polystyrene membrane for PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Bhabesh Kumar; Khan, Aziz; Chutia, Joyanti, E-mail: jchutiaiasst@gmail.com

    2015-10-15

    Highlights: • Methyl methane sulfonate (MMS) is used as the sulfonating agent. • The proton conductivity of the membrane is found to be 0.141 S cm{sup −1}. • Power density of fuel cell with styrene/MMS membrane is 0.5 W cm{sup −2}. • The membrane exhibits thermal stability up to 140 °C. - Abstract: This work presents the introduction of an organic compound methyl methane sulfonate (MMS) for the first time in fabrication of polystyrene based proton exchange membrane (PEM) by plasma polymerization process. The membrane is fabricated by co-polymerizing styrene and MMS in capacitively coupled continuous RF plasma. The chemical composition of the plasma polymerized polymer membrane is investigated using Fourier Transform Infrared Spectroscopy which reveals the formation of composite structure of styrene and MMS. The surface morphology studied using AFM and SEM depicts the effect of higher partial pressure of MMS on surface topography of the membrane. The proton transport property of the membrane studied using electrochemical impedance spectroscopy shows the achievement of maximum proton conductivity of 0.141 S cm{sup −1} which is comparable to Nafion 117 membrane. Fuel cell performance test of the synthesized membrane shows a maximum power density of 500 mW cm{sup −2} and current density of 0.62 A cm{sup −2} at 0.6 V.

  5. An Energy Dense-AI-NaBH4-PEMFC Based Power Generator for Unmanned Undersea Vehicles

    Science.gov (United States)

    2016-03-01

    combination of two hydrides (NaBH4 and KBH4) in the presence ofNaOH stabilizer resulted in the improvement in mechanical and chemical stability of...liquid phases in the NaBH4 slurry. Furthermore, KBH4 is less reactive than NaBH4 in aqueous so lutions which also adds to the improved chemical ...generation unit consisting ofNaBH4 delivery system, AI-NaBH4 hydrolysis reactor and PEMFC has been designed, assembled and performance tested. The unit ’ s

  6. Interaction between Nafion ionomer and noble metal catalyst for PEMFCs

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    The implement of polymer impregnation in electrode structure (catalyst layer) decreasing the noble metal catalyst loading by a factor of ten , , is one of the essential mile stones in the evolution of Proton Exchange Membrane Fuel Cells’ development among the application of catalyst support...... and electrode deposition etc. In fuel cell reactions, both electrons and protons are involved. Impregnation of Nafion ionomer in catalyst layer effectively increases the proton-electron contact, enlarge the reaction zone, extend the reaction from the surface to the entire electrode. Therefore, the entire...... catalyst layer conducts both electrons and protons so that catalyst utilization in the layer is improved dramatically. The catalyst layer will in turn generate and sustain a higher current density. One of the generally adapted methods to impregnate Nafion into the catalyst layer is to mix the catalysts...

  7. Graphitised Carbon Nanofibres as Catalyst Support for PEMFC

    DEFF Research Database (Denmark)

    Yli-Rantala, E.; Pasanen, A.; Kauranen, P.;

    2011-01-01

    Graphitised carbon nanofibres (G-CNFs) show superior thermal stability and corrosion resistance in PEM fuel cell environment over traditional carbon black (CB) and carbon nanotube catalyst supports. However, G-CNFs have an inert surface with only very limited amount of surface defects...... catalyst and the effects of the different surface treatments were discussed. On the basis of these results, new membrane electrode assemblies (MEAs) were manufactured and tested also for carbon corrosion by in situ FTIR analysis of the cathode exhaust gases. It was observed that the G-CNFs showed 5?times...... lower carbon corrosion compared to CB based catalyst when potential reached 1.5?V versus RHE in simulated start/stop cycling....

  8. Engineering Platinum Alloy Electrocatalysts in Nanoscale for PEMFC Application

    Energy Technology Data Exchange (ETDEWEB)

    He, Ting [Idaho National Laboratory

    2016-03-01

    Fuel cells are expected to be a key next-generation energy source used for vehicles and homes, offering high energy conversion efficiency and minimal pollutant emissions. However, due to large overpotentials on anode and cathode, the efficiency is still much lower than theoretically predicted. During the past decades, considerable efforts have been made to investigate synergy effect of platinum alloyed with base metals. But, engineering the alloy particles in nanoscale has been a challenge. Most important challenges in developing nanostructured materials are the abilities to control size, monodispersity, microcomposition, and even morphology or self-assembly capability, so called Nanomaterials-by-Design, which requires interdisciplinary collaborations among computational modeling, chemical synthesis, nanoscale characterization as well as manufacturing processing. Electrocatalysts, particularly fuel cell catalysts, are dramatically different from heterogeneous catalysts because the surface area in micropores cannot be electrochemically controlled on the same time scale as more transport accessible surfaces. Therefore, electrocatalytic architectures need minimal microporous surface area while maximizing surfaces accessible through mesopores or macropores, and to "pin" the most active, highest performance physicochemical state of the materials even when exposed to thermodynamic forces, which would otherwise drive restructuring, crystallization, or densification of the nanoscale materials. In this presentation, results of engineering nanoscale platinum alloy particles down to 2 ~ 4 nm will be discussed. Based on nature of alloyed base metals, various synthesis technologies have been studied and developed to achieve capabilities of controlling particle size and particle microcomposition, namely, core-shell synthesis, microemulsion technique, thermal decomposition process, surface organometallic chemical method, etc. The results show that by careful engineering the

  9. Evaluation of Electrochemical Characteristics on Graphene Coated Austenitic and Martensitic Stainless Steels for Metallic Bipolar Plates in PEMFC Fabricated with Hydrazine Reduction Methods

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Seong-Yun; Lee, Jae-Bong [School of Advanced Materials Engineering, Kookmin University, Seoul (Korea, Republic of)

    2016-04-15

    Graphene was coated on austenitic and martensitic stainless steels to simulate the metallic bipolar plate of proton exchange membrane fuel cell (PEMFC). Graphene oxide (GO) was synthesized and was reduced to reduced graphene oxide (rGO) via a hydrazine process. rGO was confirmed by FE-SEM, Raman spectroscopy and XPS. Interfacial contact resistance (ICR) between the bipolar plate and the gas diffusion layer (GDL) was measured to confirm the electrical conductivity. Both ICR and corrosion current density decreased on graphene coated stainless steels. Corrosion resistance was also improved with immersion time in cathodic environments and satisfied the criteria of the Department of Energy (DOE), USA. The total concentrations of metal ions dissolved from graphene coated stainless steels were reduced. Furthermore hydrophobicity was improved by increasing the contact angle.

  10. Effect of a rigid gas diffusion media applied as distributor of reagents in a PEMFC in operation, part 1 : dry gases

    Energy Technology Data Exchange (ETDEWEB)

    Bautista-Rodriquez, C.M.; Rosas-Paleta, M.G.A.; Tapia-Pachuca, A.B. [Alter Energias Group, Puebla (Mexico); Rivera-Marquez, J.A. [Benemerita Univ. Autonoma de Puebla, Puebla (Mexico). Faculty of Chemical Engineering; Garcia de la Vega, J.R. [Uhde Engineering de Mexico, Mexico City (Mexico)

    2010-07-15

    During the operation of a proton exchange membrane fuel cell (PEMFC), several mass transport phenomena develop, generating a mechanical-physics resistance to some extent, implying limitations during operation. In a conventional fuel cell, the feeding reactive gases to the sites of reaction are performed by a series of elements, such as channels in the polar plates, diffusion layer on the electrodes and the active layer where it realizes the electrochemical semi reaction. Previous studies have reported and demonstrated the generation of gradients of concentration in reagents between the channels of distribution and diffusion layer, representing a limiting in the transport of reagents to the active sites as well as resistance to the mass transport of reagents as a result of the presence of water product in the pores of electrodes. This paper focused on lowering the resistance to mass transport by applying a rigid gas diffusion media with many macropores as distributor of reagents. The objective was to encourage the mass transport phenomena to the active sites on the electrodes. This paper described the experiment and presented the results of the study. The experiment involved the application of a rigid gas diffusion media as a reagents distributor with a serpentine channel distributor, both manufactured with mixes of carbon and graphite powder. The study showed that in general, the GDMR became a diffusion layer, integrating a composite electrode with the graphitized paper and catalyst coated membrane assembly. Under conditions of variable cathodic pressure, the response of the GDMR became a combined distribution plate (conductive and diffusion mass transport), favouring the increase in current density and power developed by the PEMFC in pressure function. 33 refs., 2 tabs., 14 figs.

  11. 电解重整式甲醇燃料电池系统%PEMFC system incorporating a methanol electrolytic reformer

    Institute of Scientific and Technical Information of China (English)

    李庆; 叶强; 杨晓光

    2013-01-01

    为解决直接甲醇燃料电池中甲醇氧化活性低及甲醇穿透问题,提出一种新型的电解重整式甲醇燃料电池系统.在系统中,高温电解重整器重整甲醇为常温燃料电池供氢,燃料电池的部分电能供给电解重整器使用.通过对系统的物料流、焓流、有效能流的分析,确定了系统中的不可逆因素.结果表明:电解重整器电压是影响系统效率的重要参数;升高重整器温度可以显著降低其电压,但必须采用合理的压力、甲醇溶液浓度以抑制甲醇溶液的蒸发,降低热量损失.与传统的直接甲醇燃料电池系统以及高温甲醇热重整联合质子交换膜燃料电池系统相比,该系统性能较高、结构紧凑.%Slow rate of methanol oxidation and its crossover are two major challenges for direct methanol fuel cells (DMFC). The sluggish kinetics can be relieved by elevating cell temperature which, however, leads to other problems like membrane dehydration. To solve these problems, it is proposed that a methanol electrolytic reformer ( MER) is combined with polymer electrolyte membrane fuel cell (PEMFC) system. Working at elevated temperature, the MER provides hydrogen for the PEMFC and is driven by power provided by the PEMFC. Essential components included in this system are described and flows of mass, enthalpy and exergy are presented. Thermodynamic analysis shows that exergy destructions occur in main components, i.e. , PEMFC and MER. The voltage of MER is an important parameter influencing the efficiency of the system. Rising temperature in MER, MER voltage required significantly decreases, but exergy losses caused by heat dissipation and heat transfer increase exponentially due to the intensified evaporation of methanol solution. To mitigate evaporation, low methanol concentration and high pressure could be necessary. When MER works at higher methanol concentration, higher pressure is required for efficient operation. The overall performance

  12. Heat science and transport phenomena in fuel cells; Thermique et phenomenes de transport dans les piles a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Liberatore, P.M.; Boillot, M. [Laboratoire des Sciences du Genie Chimique de Nancy, 54 - Vandoeuvre-les-Nancy (France); Bonnet, C.; Didieerjean, S.; Lapicque, F.; Deseure, J.; Lottin, O.; Maillet, D.; Oseen-Senda, J. [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee, 54 - Vandoeuvre Les Nancy (France); Alexandre, A. [Laboratoire d' Etudes Thermiques, ENSMA, 86 Poitiers (France); Topin, F.; Occelli, R.; Daurelle, J.V. [IUSTI / Polytech' Marseille, Institut universitaire des Systemes Thermiques Industriels Ecole, 13 - Marseille (France); Pauchet, J.; Feidt, M. [CEA Grenoble, Groupement pour la recherche sur les echangeurs thermiques (Greth), 38 (France); Voarino, C. [CEA Centre d' Etudes du Ripault, 37 - Tours (France); Morel, B.; Laurentin, J.; Bultel, Y.; Lefebvre-Joud, F. [CEA Grenoble, LEPMI, 38 (France); Auvity, B.; Lasbet, Y.; Castelain, C.; Peerohossaini, H. [Ecole Centrale de Nantes, Laboratoire de Thermocinetique de Nantes (LTN), 44 - Nantes (France)

    2005-07-01

    In this work are gathered the transparencies of the lectures presented at the conference 'heat science and transport phenomena in fuel cells'. The different lectures have dealt with 1)the gas distribution in the bipolar plates of a fuel cell: experimental studies and computerized simulations 2)two-phase heat distributors in the PEMFC 3)a numerical study of the flow properties of the backing layers on the transfers in a PEMFC 4)modelling of the heat and mass transfers in a PEMFC 5)two-phase cooling of the PEMFC with pentane 6)stationary thermodynamic model of the SOFC in the GECOPAC system 7)modelling of the internal reforming at the anode of the SOFC 8)towards a new thermal design of the PEMFC bipolar plates. (O.M.)

  13. Comparative analysis of the electroactive area of Pt/C PEMFC electrodes in liquid and solid polymer contact by underpotential hydrogen adsorption/desorption

    Energy Technology Data Exchange (ETDEWEB)

    Chaparro, A.M.; Martin, A.J.; Folgado, M.A.; Gallardo, B. [Dep. de Energia, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Daza, L. [Dep. de Energia, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Instituto de Catalisis y Petroleoquimica (CSIC), Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain)

    2009-06-15

    Because of the different experimental conditions found in literature for the measurement of the electroactive area of Pt/C electrodes of proton exchange membrane fuel cells (PEMFC) by means of underpotential hydrogen adsorption (H{sub UPD}) voltammetry, specially concerning sweep rate and temperature, it was found necessary to perform an analysis of these parameters. With this aim, the electroactive area of PEMFC electrodes has been measured by means of H{sub UPD} voltammetry at different sweep rates and temperatures, in liquid electrolyte and solid polymer contact. Both configurations show that H{sub UPD} adsorption and desorption charges are strongly dependent on sweep rate voltage and temperature. The most common behaviour observed is a maximum in H{sub UPD} desorption charge, typically in the 100-10 mV s{sup -1} sweep rate range, whereas H{sub UPD} adsorption charge shows continuous increase with decreasing sweep rate. The decrease of desorption charge at low sweep rates is attributed to adsorbing species related with carbon support reactivity. These processes are also responsible for the increase in desorption H{sub UPD} charge at low sweep rate. At high sweep rate, both adsorption and desorption H{sub UPD} charges decrease due to limiting diffusion of protons through the microporous electrode. As a consequence, it is found that the closest approximation to the real electroactive area (i.e. the area accessible to protons) corresponds to the maximum in the H{sub UPD} desorption charge in the range of 10-100 mV s{sup -1} sweep rate. The influence of measuring temperature is also tested in the range 25 C-80 C. A dependence of the adsorption and desorption hydrogen charges is found, due to thermodynamic and kinetics factors. We observe that the processes competing with hydrogen adsorption, i.e. generation and adsorption of carbon species are enhanced with temperature, so a low measuring temperature is found as most appropriate. (author)

  14. 质子交换膜燃料电池电堆的动态热模型及其温度控制%Dynamic Thermal Model and Temperature Control of Proton Exchange Membrane Fuel Cell Stack

    Institute of Scientific and Technical Information of China (English)

    邵庆龙; 卫东; 曹广益; 朱新坚

    2005-01-01

    A dynamic thermal transfer model of a proton exchange membrane fuel cell (PEMFC) stack is developed based on energy conservation in order to reach better temperature control of PEMFC stack. Considering its uncertain parameters and disturbance, we propose a robust adaptive controller based on backstepping algorithm of Lyaponov function. Numerical simulations indicate the validity of the proposed controller.

  15. PEMFC cold-start performance after twice purge%二次吹扫条件下的PEMFC冷启动实验

    Institute of Scientific and Technical Information of China (English)

    罗马吉; 王芳芳; 刘威; 詹志刚

    2011-01-01

    通过使用干空气二次吹扫的方式对稳定工作后的质子交换膜燃料电池(PEMFC)单电池进行除水处理,考察了单电池经过吹扫除水操作后的除水量以及内阻变化过程,并研究了单电池经过吹扫除水处理后的常温启动性能以及-10℃下的冷启动性能.实验研究发现:单电池经过干空气二次吹扫处理后,可以在较短时间内经济有效地移除电池内的水,同时单电池的内阻升高.单电池经过干空气二次吹扫后常温启动性能下降,且随二次吹扫流量的增加而加剧,但未造成不可恢复的性能损失.适当的二次吹扫流量可以使电池成功冷启动.吹扫除水策略是优化PEMFC冷启动性能的关键因素之一.%Water in an operated proton exchange membrane fuel cell (PEMFC) was removed by twice purging with dry air. The weight of removed water and the process of resistance-change were investigated after the gas purging operation on the cell. The start-up performance of the cell in normal temperature and the cold start-up performance at -10 °C after purge were studied. The experimental results indicate that the water in a single cell can be removed in quite short time effectively and the cell electric resistance increase after twice purging. The start-up performance of the cells in normal temperature become deteriorated and get worse with the increased purging gas volume after twice purging, but the performance degradation can be recovered. Cold start-up of single cell can perform successfully by appropriate flow rate of twice purging. Purge strategy is one of the key points of optimizing fuel cell cold start-up performance.

  16. Effectiveness of heat-integrated methanol steam reformer and polymer electrolyte membrane fuel cell stack systems for portable applications

    Science.gov (United States)

    Lotrič, A.; Sekavčnik, M.; Hočevar, S.

    2014-12-01

    Efficiently combining proton exchange membrane fuel cell (PEMFC) stack with methanol steam reformer (MSR) into a small portable system is still quite a topical issue. Using methanol as a fuel in PEMFC stack includes a series of chemical processes where each proceeds at a unique temperature. In a combined MSR-PEMFC-stack system with integrated auxiliary fuel processors (vaporizer, catalytic combustor, etc.) the processes are both endothermic and exothermic hence their proper thermal integration can help raising the system efficiency. A concept of such fully integrated and compact system is proposed in this study. Three separate systems are designed based on different PEMFC stacks and MSR. Low-temperature (LT) and conventional high-temperature (cHT) PEMFC stack characteristics are based on available data from suppliers. Also, a novel high-temperature (nHT) PEMFC stack is proposed because its operating temperature coincides with that of MSR. A comparative study of modelled systems is performed using a mass and energy balances zero-dimensional model, which is interdependently coupled to a physical model based on finite element method (FEM). The results indicate that a system with nHT PEMFC stack is feasible and has the potential to reach higher system efficiencies than systems with LT or cHT PEMFC stacks.

  17. PEMFC emergency power supply system based on BQ24610%基于BQ24610的质子膜燃料电池应急供电系统

    Institute of Scientific and Technical Information of China (English)

    赵波; 肖铎; 戚伟

    2012-01-01

    设计了一种基于BQ24610的质子膜燃料电池(PEMFC)和锂聚合物电池混合供电的100W应急供电系统.系统由质子膜燃料电池、燃料电池控制器、锂电池充电管理、锂聚合物电池和系统控制器组成.并实际制作了样机,测试系统各项数据和指标,均达到预期目标,取得了良好的社会效益和经济效益.%This paper designed a proton membrane fuel cell ( PEMFC) and lithium polymer battery hybrid power supply 100W emergency power supply system based on BQ24610. The system consists of a proton membrane fuel cell, fuel cell controller, lithium battery charge management, lithium polymer batteries, and system controller. And it makes prototype actually, the test data and indicators of the system achieve the desired goals, and good social and economic benefits.

  18. Development of nanobiomarkers for use in sickle cell anemia; Desenvolvimento de nanomarcadores para serem utilizados na marcacao de hemoglobinas S (anemia falciforme)

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Elen Goncalves dos

    2009-07-01

    Luminescent materials, such as the rare earth's complex, can be used as markers in cytology and immunology, being also used as luminescent bio markers, once the development of these nano materials create new possibilities to many fields, particularly in diagnostic medicine. Besides, it establishes one kind of fluorescent probes, for which there are no equivalent organic molecules. Due to its potential in market's application, the objective of this work was to develop luminescent materials, allowing the use of these super molecules of lanthanides as markers for the detection of Sickle Cell Disease (HbS). Six luminescent markers were developed and marked on rare's earth base. The main methodology used for the detection of HbS was fluoroimmunoassay, which is already used in investigation of enzymes, antibodies, cells, hormones, and so on. During this work, absorption's spectrum in the infrared by Fourier's Transform (FTIR) was also used to detect the HbS. The studied methods were applied for the diagnosis of this disease, which has genetic origin, very typical of the hemoglobin-pathology group and considered to be a public health problem in Brazil (ANVISA). When early diagnosed, Sickle Cell Disease (SCD) has a significant decrease in morbidity and mortality. Comparing the obtained results to the already known methodologies, it was possible to conclude that they are viable methods to detect HbS. Besides, when totally developed, these methods will contribute to the production of Sickle Cell Anemia's diagnostic, and they will have impact in Sao Paulo state's public measures, as well as in Brazil's ones. (author)

  19. Mass transport in a PEMFC fuel battery using combinations of monopolar plates and reaction-diffusion medium; Transporte de masa en una pila a combustible tipo PEMFC utilizando combinaciones de platos monopolares y medios de difusion de reactivos

    Energy Technology Data Exchange (ETDEWEB)

    Rosas Paleta, M. G. Araceli [Benemerita Universidad Autonoma de Puebla, Puebla, Puebla (Mexico); Bautista Rodriguez, C. Moises [Alter-Energias Puebla, Puebla (Mexico)] email: celso.bautista@thyssenkrupp.com; Rivera Marquez, J. Antonio; Tepale Ochoa, Nancy [Benemerita Universidad Autonoma de Puebla, Puebla, Puebla (Mexico)

    2009-09-15

    The efficiency of a PEMFC fuel battery is limited due to a variety of mass transport-related phenomena that take place while it is operating. The electromotive force of the PEM fuel battery is related to the generation of concentration gradients resulting from the distribution of the reactants on the active sites of the electrode. The reactant gases supplied to the PEMFC are distributed over the diffusion layer of the electrodes through the channels of the polar plates. They then spread toward the active layer where the semi-reactions take place. Another important aspect is the presence of water molecules, a product of the reaction. When they accumulate, they cover the porosity of the electrodes, involving the reduction in the flow of reactants, even at high current density values and, combined with the diffusion phenomena involved, cause the PEMFC to complete cease functioning. The critical parameters for the transport phenomena are porosity, the diameter of the pore in the diffusion layer and the characteristics of the distribution of the reactants. The present works includes an experimental design of two distribution media and two diffusion media of the reactant gases in a PEMFC, involving three case studies. The results show significantly notable interactions between the diameter of the pore, the type of diffusion layer applied and the type of distributor applied. The combination in the second case significantly reduces the ohmic resistance and moderately reduces the diffusion resistances. While the combination in case three notably increases the ohmic resistance, diffusion resistance is significantly reduced. [Spanish] La eficiencia de una pila a combustible tipo PEMFC es limitada por diversos fenomenos de transporte de masa presentes durante su funcionamiento. La fuerza electromotriz de la pila a combustible tipo PEM esta relacionada con la generacion de gradientes de concentracion los cuales se dan como resultado de la distribucion de los reactivos sobre los

  20. New hybrid model of proton exchange membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    WANG Rui-min; CAO Guang-yi; ZHU Xin-jian

    2007-01-01

    Model and simulation are good tools for design optimization of fuel cell systems. This paper proposes a new hybrid model of proton exchange membrane fuel cell (PEMFC). The hybrid model includes physical component and black-box component. The physical component represents the well-known part of PEMFC, while artificial neural network (ANN) component estimates the poorly known part of PEMFC. The ANN model can compensate the performance of the physical model. This hybrid model is implemented on Matlab/Simulink software. The hybrid model shows better accuracy than that of the physical model and ANN model. Simulation results suggest that the hybrid model can be used as a suitable and accurate model for PEMFC.

  1. High-performance hydrogen fuel cell using nitrate reduction reaction on a non-precious catalyst.

    Science.gov (United States)

    Han, Sang-Beom; Song, You-Jung; Lee, Young-Woo; Ko, A-Ra; Oh, Jae-Kyung; Park, Kyung-Won

    2011-03-28

    The H(2)-NO(3)(-) electrochemical cell using nitrate reduction on a non-precious cathode catalyst shows much improved efficiency despite ∼75% reduction of Pt metal loading as compared to typical PEMFCs using typical ORR on precious catalysts.

  2. Development of a 10 kW PEM fuel cell for stationary applications

    Energy Technology Data Exchange (ETDEWEB)

    Barthels, H.; Mergel, J.; Oetjen, H.F. [Institute fuer Energieverfahrenstechnik (IEV), Juelich (Germany)] [and others

    1996-12-31

    A 10 kW Proton Exchange Membrane Fuel Cell (PEMFC) is being developed as part of a long-term energy storage path for electricity in the photovoltaic demonstration plant called PHOEBUS at the Forschungszentrum Julich.

  3. Analyze of Impedance for Water Management in Proton Exchange Membrane Fuel Cells Using Factorial Design of (DoE Methodology

    Directory of Open Access Journals (Sweden)

    Khaled Mammar

    2014-12-01

    Full Text Available Electrochemical impedance spectroscopy (EIS is a very powerful tool for exploitation as a rich source of Proton Exchange Membrane Fuel Cell (PEMFC diagnostic information. A primary goal of this work is to develop a suitable PEMFC impedance model, which can be used to analyze flooding and drying of the fuel cell. For this one a novel optimization method based on Factorial Design methodology is used. It was applied to parametric analysis of electrochemical impedance Thus it is possible to evaluate the relative importance of each parameter to the simulation accuracy. Furthermore this work presents an analysis of the PEMFC impedance behavior in the case of flooding and drying.

  4. Modeling and off-design performance of a 1 kWe HT-PEMFC (high temperature-proton exchange membrane fuel cell)-based residential micro-CHP (combined-heat-and-power) system for Danish single-family households

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2011-01-01

    BOP (balance-of-plant) components, is modeled and coupled to the fuel cell stack subsystem. The micro-CHP system is simulated in LabVIEW environment to provide the ability of Data Acquisition of actual components and thereby more realistic design in the future. A part-load study has been conducted...

  5. Self: um conceito em desenvolvimento

    Directory of Open Access Journals (Sweden)

    Lídia Suzana Rocha de Macedo

    2012-08-01

    Full Text Available Diversas definições de self coexistem nas teorias e práticas psicológicas. Essa variedade é resultante de bases epistemológicas a partir das quais se adotam estratégias diferentes para abordar e demarcar os limites do objeto em questão e descrevê-lo. Este estudo teve como objetivo oferecer uma revisão dos conceitos de self e uma reflexão sobre como esse conceito se articula nas diferentes abordagens teóricas da psicologia. Destaca-se que dilemas centrais à psicologia do desenvolvimento atravessam o conceito de self. Por essa razão, apresenta-se a tese de que, ao analisar cada definição de self, deve-se buscar responder como cada teoria colocou-se diante das dicotomias estabilidade versus transformação, específico versus universal e mundo interno versus mundo externo.

  6. Improved Membrane Materials for PEM Fuel Cell Application

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth A. Mauritz; Robert B. Moore

    2008-06-30

    The overall goal of this project is to collect and integrate critical structure/property information in order to develop methods that lead to significant improvements in the durability and performance of polymer electrolyte membrane fuel cell (PEMFC) materials. This project is focused on the fundamental improvement of PEMFC membrane materials with respect to chemical, mechanical and morphological durability as well as the development of new inorganically-modified membranes.

  7. Development of perovskite cathodes for solid oxide fuel cells (SOFC); Desenvolvimento de catodos de perovskitas para celula a combustivel solido de eletrolito solido (SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica], e-mail: joelma@iq.unesp.br; Pereira, J.T.; Saeki, M.J. [UNESP, Bauru, SP (Brazil). Faculdade de Ciencias

    2006-07-01

    Solid Oxide Fuel Cells (SOFC) are energy conversion systems of great interest for industrial applications because they present a high efficiency for energy generation and several advantages for the environment. In this work, perovskite type oxides La{sub 085}Sr{sub 0,15}MnO{sub 3}, La{sub 0,7} Sr{sub 0,3}MnO{sub 3}, La{sub 0,6}Sr{sub 0,4}MnO{sub 3}, La{sub 0,85}Sr{sub 0,15}CoO{sub 3}, La{sub 0,7}Sr{sub 0,3}CoO{sub 3}, La{sub 0,6}Sr{sub 0,4}CoO{sub 3}, La{sub 0.6}Sr{sub 0,4}Fe{sub 0,8}Co{sub 0,2}O{sub 3} e La{sub 0.6}Sr{sub 0,4}Fe{sub 0,4}Co{sub 0,6}O{sub 3} were prepared by a polymeric method with the purpose of using them as cathodes in SOFCs. The electrochemical cell was mounted utilizing YSZ (ZrO{sub 2} - 8 mol%Y{sub 2}O{sub 3}) disks as electrolyte, where a paste containing Pt was calcined onto one face while the other one was covered with the oxide materials synthesized ('screen printing'). The oxide materials prepared were characterized by X-ray diffraction, transmission electronic microscopy and thermogravimetry. The oxygen reduction reaction was studied by taking polarization curves in oxygen and/or air (800 deg C a 950 deg C). The best performance was obtained for 15 {mu}m thickness electrodes La{sub 0.6}Sr{sub 0,4}MnO{sub 3} and La{sub 0.6}Sr{sub 0,4}MnO{sub 3} with addition of dispersed Pt. (author)

  8. On effective transport coefficients in PEM fuel cell electrodes: Anisotropy of the porous transport layers

    Science.gov (United States)

    Pharoah, J. G.; Karan, K.; Sun, W.

    This paper reviews the approach taken in the literature to model the effective transport coefficients - mass diffusivity, electrical conductivity, thermal conductivity and hydraulic permeability - of carbon-fibre based porous electrode of polymer electrolyte membrane fuel cells (PEMFCs). It is concluded that current PEMFC model do not account for the inherent anisotropic microstructure of the fibrous electrodes. Simulations using a 2-D PEMFC cathode model show that neglecting the anisotropic nature and associated transport coefficients of the porous electrodes significantly influences both the nature and the magnitude of the model predictions. This emphasizes the need to appropriately characterize the relevant anisotropic properties of the fibrous electrode.

  9. A Central Composite Face-Centered Design for Parameters Estimation of PEM Fuel Cell Electrochemical Model

    OpenAIRE

    Khaled MAMMAR; CHAKER, Abdelkader

    2013-01-01

    In this paper, a new approach based on Experimental of design methodology (DoE) is used to estimate the optimal of unknown model parameters proton exchange membrane fuel cell (PEMFC). This proposed approach combines the central composite face-centered (CCF) and numerical PEMFC electrochemical. Simulation results obtained using electrochemical model help to predict the cell voltage in terms of inlet partial pressures of hydrogen and oxygen, stack temperature, and operating current. The value o...

  10. SiC nanocrystals as Pt catalyst supports for fuel cell applications

    DEFF Research Database (Denmark)

    Dhiman, Rajnish; Morgen, Per; Skou, E.M.

    2013-01-01

    A robust catalyst support is pivotal to Proton Exchange Membrane Fuel Cells (PEMFCs) to overcome challenges such as catalyst support corrosion, low catalyst utilization and overall capital cost. SiC is a promising candidate material which could be applied as a catalyst support in PEMFCs. Si...... based catalysts (BASF & HISPEC). These promising results signal a new era of SiC based catalysts for fuel cell applications. © The Royal Society of Chemistry 2013....

  11. DESENVOLVIMENTO DE FOLÍCULOS PRÉ-ANTRAIS BOVINOS IN VITRO EM MONOCAMADA DE CÉLULAS OVARIANAS IN VITRO DEVELOPMENT OF BOVINE PREANTRAL FOLLICLES IN MONOLAYER OF OVARIAN CELLS

    Directory of Open Access Journals (Sweden)

    Luís Fabiano Santos da Costa

    2001-04-01

    Full Text Available O presente trabalho teve como objetivos determinar a influência de células ovarianas no desenvolvimento in vitro de folículos pré-antrais, avaliar a viabilidade das células ovarianas em monocamada e a influência do soro na manutenção de folículos pré-antrais in vitro. Folículos pré-antrais (FPs e células ovarianas foram isolados de ovários de fetos bovinos, com idade entre 6 e 8 meses de gestação, oriundos de matadouro. Células ovarianas em monocamada foram cultivadas em meio TCM-199, e a viabilidade celular, após o cultivo na presença ou ausência de FSH, foi determinada com o corante vital azul de tripan. FPs foram distribuidos em quatro tratamentos e cultivados em TCM-199 modificado, contendo soro de novilho castrado (SNC, SNC em monocamada de células ovarianas (MCO, MCO com FSH ou meio definido com álcool polivinílico (PVA como macromolécula. A viabilidade celular não foi afetada em conseqüência da presença ou ausência de FSH. No entanto, houve um incremento significativo no tamanho dos FPs cultivados na presença de SNC, MCO e FSH (PThe aim of the present work was to determine the influence of ovarian cells in the in vitro development of preantral follicles (PF. The viability of monolayer ovarian cells and the effect of the serum in the survive of in vitro PF was also investigated. Ovarian cells and PF were isolated from ovaries of bovine fetus between 6 and 8 months of pregnancy, obtained in a slaughterhouse. Monolayer of ovarian cells were cultured in a modified TCM-199 in the presence and absence of FSH and its viability after incubation was determined with Trypan Blue. PFs were divided in four different treatments, cultured in modified TCM-199, containing serum of castrated steer (SCS, SCS in monolayer of ovarian cells (MOC, MOC with FSH or a defined medium with polyvinyl alcohol (PVA as macromolecule. The cellular viability was not affected by the presence or absence of FSH. However, PFs had a significant

  12. Optimization of structural combinations on the performance of a PEMFC's MEA

    Energy Technology Data Exchange (ETDEWEB)

    Akyalcin, Levent; Kaytakoglu, Sueleyman [Department of Chemical Engineering, Anadolu University, iki Eyluel Campus, 26555 Eskisehir (Turkey)

    2008-06-01

    In this study, the Taguchi method was applied to determine optimum structural combination of a membrane electrode assembly (MEA) in obtaining maximum power density of a PEMFC. Performance measure analysis was also followed by performing a variance analysis, in order to determine the optimum levels and relative magnitude of the effect of combinations. The optimum structural combinations of MEA were found to be membrane, Nafion 112 with a thickness of 51 {mu}m, amount of platinum loaded by sputtering, 0.05 mg Pt cm{sup -2}, Nafion ionomer content, 0.05 mg cm{sup -2} and support material of gas diffusion layer (GDL), carbon paper. Under these conditions, the amount of maximum power density was predicted as 563.75 mW cm{sup -2} by using experimental results obtained according to Taguchi's orthogonal array (OA) L{sub 16}(2{sup 4} x 2{sup 2}). Verification experiment was done for the same optimum structural combination and maximum power density was observed as 566 mW cm{sup -2}. According to the results of this optimization, it was seen that amount of platinum loaded by sputtering and thickness of membrane were the effective parameters. (author)

  13. Effect of annealing on two different niobium-clad stainless steel PEMFC bipolar plate materials

    Institute of Scientific and Technical Information of China (English)

    Sung-Tae HONG; Dae-Wook KIM; Yong-Joo YOU; K.Scott WEIL

    2009-01-01

    Niobium (Nb)-clad stainless steels(SS) produced via roll bonding are being considered for use in the bipolar plates of polymer electrolyte membrane fuel celI(PEMFC) stacks. Because the roll bonding process induces substantial work hardening in the constituent materials, thermal annealing is used to restore ductility to the clad sheet so that it can be subsequently blanked, stamped and dimpled in forming the final plate component. Two roll bonded materials, niobium clad 340L stainless steel (Nb/340L SS) and niobium clad 434 stainless steel (Nb/434 SS) were annealed under optimized conditions prescribed by the cladding manufacturer. Comparative mechanical testing conducted on each material before and after annealing shows significant improvement in ductility in both cases. However, corresponding microstructural analyses indicate an obvious difference between the two heat treated materials. During annealing, an interlayer with thick less than 1 μm forms between the constituent layers in the Nb/340L SS, whereas no interlayer is found in the annealed Nb/434 SS material. Prior work suggests that internal defects potentially can be generated in such an interlayer during metal forming operations. Thus, Nb/434 SS may be the preferred candidate material for this application.

  14. A teoria do “desenvolvimento fragmentador”

    Directory of Open Access Journals (Sweden)

    Fred Scholz

    2010-04-01

    Full Text Available O pensamento desenvolvimentista do passado era dominado pela ideia de que o subdesenvolvimento do Terceiro Mundo poderia ser superado mediante ajuda técnica, financeira e pessoal dos países do Norte. A meta era alcançar o nível de desenvolvimento dos países ocidentais industrializados por meio de um desenvolvimento retardatário. Na base dessa ideia estava, por um lado, o consenso de valores ocidental-humanitários, que, o mais tardar desde a época do Esclarecimento, determinou o pensar e o devir social. Por outro lado, a ideia baseou-se na responsabilidade histórica (surgida das condições da Guerra Fria, aceita política e socialmente do "Ocidente" para com os chamados países em desenvolvimento, na sua maioria ex-colônias. Argumenta-se, neste artigo, que a ideia de um desenvolvimento retardatário deve, na era da globalização, ser substituída pelo fato de um desenvolvimento fragmentador.

  15. Development and scale-up of the production process of NovoCell fuel cells; Desenvolvimento e 'scale-up' do processo de producao de celulas a combustivel NovoCell

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Dayse Caldas de; Souza, Adler de; Ferreira, Valdemar Stelita [NovoCell Sistemas de Energia S.A., Santa Barbara D' Oeste, SP (Brazil)]. E-mail: dayse.azevedo@novocell.ind.br

    2008-07-01

    Fuel cells present the potentiality to substitute the engines of internal combustion in vehicles and to supply energy for stationary use. This potentiality, however, not yet reflected in its introduction in the market with regular lines of production, because of its high cost and lack of criteria that demonstrate its reliability and durability. These subjects are the main goals of the programs of development of fuel cells worldwide. NovoCell is a Brazilian company whose objective is to develop and to produce hydrogen/air fuel cells for stationary generation. All the project is guided by the use of technologies/processes and materials that allow production in large scale and to a competitive cost, giving support to a continuous program of innovation and development of the product. In this work the technological solutions developed by the company are presented. (author)

  16. Complicações neurológicas em anemia falciforme: avaliação neuropsicológica do desenvolvimento com o NEPSY Neurological complications in sickle cell anemia: a developmental neuropsychological assessment using NEPSY

    Directory of Open Access Journals (Sweden)

    Samantha Nunest

    2010-01-01

    Full Text Available Estudo de caso de duas crianças portadoras de anemia falciforme, com complicações neurológicas. Utilizou-se uma ampla bateria neuropsicológica - NEPSY. Uma criança apresentou acidente vascular cerebral com paresia de hemicorpo esquerdo, e a outra, ataque isquêmico transitório. As avaliações neuropsicológicas demonstraram que havia extenso prejuízo cognitivo no primeiro caso, em contraste com comprometimento leve no segundo. Baixas pontuações nas funções de atenção visual, memória operacional, linguagem, flexibilidade cognitiva, habilidades sensório-motora, visoespacial e viso-construtiva. Rebaixamento intelectual e no desempenho acadêmico foram encontrados no paciente que sofreu o acidente isquêmico. A criança que foi acometida por ataque isquêmico transitório apresentou dispraxia motora e oromotora, diminuição da atenção visual e memória verbal. Estes achados corroboram com os dados encontrados na literatura e reforçam a relevância de conhecer a tipologia destas alterações para intervir precocemente na deficiência cognitiva, minimizando as repercussões no desenvolvimento cognitivo, acadêmico e psicossocial.This is a case study of two children with sickle cell anemia and neurological complications. An extensive series of neuropsychological tests - NEPSY was used in the evaluation of the children. One child had suffered an ischemic stroke with left hemiparesis and the other, transient ischemic attack. The neuropsychological assessment showed extensive cognitive damage in the first case, in contrast to mild impairment in the second. Low scores were found for tasks of visual attention, operational memory, language, cognitive flexibility and for sensory-motor, visuospatial and visuoconstructive skills. Low intellectual and academic performance was found in the patient who suffered ischemic stroke. The child who suffered transient ischemic attack showed motor and oromotor dyspraxia, and decreased visual attention

  17. Electrochemical impedance spectroscopy and cyclic voltammetry studies of a proton exchange membrane fuel cell operated at low humidity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Malevich, D. [Fuel Cell Research Centre, Kingston, ON (Canada)

    2007-07-01

    This study investigated water balance issue in polymer electrolyte membrane fuel cells (PEMFCs) using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. Equivalent PEMFC circuits and microporous layers (MPL) were investigated. Bode and Nyquist plots were presented, and the effect of current density on EIS was explored. Membrane resistance, Warburg resistance, and electron transfer resistance was measured. The study also examined hydrogen underpotential deposition on platinum. Cyclic voltammetry was used to develop curves for electrochemically active surfaces and charge transfer resistance of the MPL. Polarization curves for the anode and cathode MPLs were presented along with impedance diagrams for the PEMFC operating at low humidity conditions. tabs., figs.

  18. Analyze of Impedance for Water Management in Proton Exchange Membrane Fuel Cells Using Factorial Design of (DoE) Methodology

    OpenAIRE

    Khaled Mammar; Abdelkader Chaker

    2014-01-01

    Electrochemical impedance spectroscopy (EIS) is a very powerful tool for exploitation as a rich source of Proton Exchange Membrane Fuel Cell (PEMFC) diagnostic information. A primary goal of this work is to develop a suitable PEMFC impedance model, which can be used to analyze flooding and drying of the fuel cell. For this one a novel optimization method based on Factorial Design methodology is used. It was applied to parametric analysis of electrochemical impedance Thus it is pos...

  19. Nanostructure-based proton exchange membrane for fuel cell applications at high temperature.

    Science.gov (United States)

    Li, Junsheng; Wang, Zhengbang; Li, Junrui; Pan, Mu; Tang, Haolin

    2014-02-01

    As a clean and highly efficient energy source, the proton exchange membrane fuel cell (PEMFC) has been considered an ideal alternative to traditional fossil energy sources. Great efforts have been devoted to realizing the commercialization of the PEMFC in the past decade. To eliminate some technical problems that are associated with the low-temperature operation (such as catalyst poisoning and poor water management), PEMFCs are usually operated at elevated temperatures (e.g., > 100 degrees C). However, traditional proton exchange membrane (PEM) shows poor performance at elevated temperature. To achieve a high-performance PEM for high temperature fuel cell applications, novel PEMs, which are based on nanostructures, have been developed recently. In this review, we discuss and summarize the methods for fabricating the nanostructure-based PEMs for PEMFC operated at elevated temperatures and the high temperature performance of these PEMs. We also give an outlook on the rational design and development of the nanostructure-based PEMs.

  20. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    Dimitrios C. Papageorgopoulos

    2012-12-01

    Full Text Available Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs and direct methanol fuel cells (DMFCs. Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC and that reduce methanol crossover (DMFC will be discussed.

  1. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications.

    Science.gov (United States)

    Houchins, Cassidy; Kleen, Greg J; Spendelow, Jacob S; Kopasz, John; Peterson, David; Garland, Nancy L; Ho, Donna Lee; Marcinkoski, Jason; Martin, Kathi Epping; Tyler, Reginald; Papageorgopoulos, Dimitrios C

    2012-12-18

    Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE) Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C) in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC) and that reduce methanol crossover (DMFC) will be discussed.

  2. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Li, Qingfeng

    Polymer electrolyte membrane fuel cell (PEMFC) technology based on Nafion membranes can operate at temperatures around 80°C. The new development in the field is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th......, and system integration of the high temperature PEMFC. The strategic developments of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer, afterburner...... and power management system, that are compatible with the HT-PEMFC; and (3) integration of the HT-PEMFC stack with these compatible subunits. The main goal of the project is a 2kWel HT-PEMFC stack operating in a temperature range of 120-220°C, with a single cell performance target of 0.7 A/cm² at a cell...

  3. A Review of Water Management in Polymer Electrolyte Membrane Fuel Cells

    OpenAIRE

    2009-01-01

    At present, despite the great advances in polymer electrolyte membrane fuel cell (PEMFC) technology over the past two decades through intensive research and development activities, their large-scale commercialization is still hampered by their higher materials cost and lower reliability and durability. In this review, water management is given special consideration. Water management is of vital importance to achieve maximum performance and durability from PEMFCs. On the one hand, to maintain ...

  4. Proton Exchange Membrane Fuel Cell Modeling Based on Seeker Optimization Algorithm

    Institute of Scientific and Technical Information of China (English)

    LI Qi; DAI Chao-hua; Chen Wei-rong; JIA Jun-bo; HAN Ming

    2008-01-01

    Seeker optimization algorithm (SOA) has applications in continuous space of swarm intelligence. In the fields of proton ex-change membrane fuel cell (PEMFC) modeling, SOA was proposed to research a set of optimized parameters in PEMFC polariza-tion curve model. Experimental result showed that the mean square error of the optimization modeling strategy was only 6.9 × 10-23. Hence, the optimization model could fit the experiment data with high precision.

  5. Extended Two Dimensional Nanotube and Nanowire Surfaces as Fuel Cell Catalysts

    OpenAIRE

    Alia, Shaun Michael

    2011-01-01

    Extended network nanomaterials of platinum (Pt), silver (Ag), palladium (Pd), and gold (Au) are synthesized and characterized as proton exchange membrane (PEMFC), hydroxide exchange membrane (HEMFC), and direct alcohol (DAFC) fuel cell catalysts.Porous Pt nanotubes (PPtNTs), 5 nm thick, are synthesized by the galvanic displacement of Ag nanowires (AgNWs) for PEMFCs and DAFCs. PPtNTs produce oxygen reduction (ORR) and durability characteristics significantly higher than supported Pt nanopartic...

  6. New electrocatalyst support for high temperature PEM fuel cells (HT-PEMFC)

    Energy Technology Data Exchange (ETDEWEB)

    Boaventura, M.; Brandao, L.; Mendes, A. [Porto Univ. (PT). Lab. de Engenharia de Processos, Ambiente e Energia (LEPAE)

    2010-07-01

    This work compares the performance of electrocatalysts based on platinum supported in single-wall carbon nanohorns (Pt-SWNH) and supported in carbon black (Pt-carbon black) during high temperature PEM fuel operation. MEAs made of phosphoric acid doped polybenzimidazole (PBI/H{sub 3}PO{sub 4}) were characterized by polarization curves, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), at 160 C. The Pt-SWNH electrocatalyst presented a higher electrochemical surface area (ESA) when compared to Pt-carbon black. However, electrochemical experiments showed a higher ohmic resistance of the Pt-SWNH electrode related to a higher hydrophobic character of the SWNH carbon. (orig.)

  7. 小功率PEMFC移动式电源的箱体结构和造型设计%Box Structure and Modeling Design of Transportation Power of Small Power PEMFC

    Institute of Scientific and Technical Information of China (English)

    贾秋红; 韩明; 邓斌; 张财志; 廖林清

    2011-01-01

    小功率质子交换膜燃料电池是目前质子交换膜燃料电池的研究热点之一,通过三维实体造型设计,使箱体结构设计达到灵活、实用、可靠和便捷等目的,以小功率自行车用燃料电池为主要应用目标,对采用高压氢气瓶、小型金属氢化物储气罐等不同氢气供气方式下的小功率质子交换膜燃料电池进行箱体结构和造型设计,使其既能在通用供气方式下作为一个独立的部件进行供电,也能快速安装金属氢化物储气罐箱体进行移动电源和便携式装置的供电,实现了使用的可靠性、灵活性和便捷性。%The research of small power PEMFC is one of research focus for PEMFC.By three dimensional solid modeling design of fuel cell box,it will make structure design more flexible,practical,reliable and portable,and help to its widely application in small electrical equipment and transportation etc fields.In this article,it takes the small power bike with fuel cells as the main application target.Based on different two hydrogen supply methods,high-pressure hydrogen cylinders and portable metal hydride hydrogen cylinders,the box structure and shape design of small power PEMFC is made.It cannot only provide power as a independent component using high-pressure hydrogen cylinders supply gas equipment,but also as transportation power or portable equipment by installing rapidly metal hydride hydrogen storage cylinders,which realized the use of reliability,flexibility and convenience.

  8. Application of a Coated Film Catalyst Layer Model to a High Temperature Polymer Electrolyte Membrane Fuel Cell with Low Catalyst Loading Produced by Reactive Spray Deposition Technology

    OpenAIRE

    Myles, Timothy D.; Siwon Kim; Radenka Maric; Mustain, William E.

    2015-01-01

    In this study, a semi-empirical model is presented that correlates to previously obtained experimental overpotential data for a high temperature polymer electrolyte membrane fuel cell (HT-PEMFC). The goal is to reinforce the understanding of the performance of the cell from a modeling perspective. The HT-PEMFC membrane electrode assemblies (MEAs) were constructed utilizing an 85 wt. % phosphoric acid doped Advent TPS® membranes for the electrolyte and gas diffusion electrodes (GDEs) manufactu...

  9. Estimation of equivalent internal-resistance of PEM fuel cell using artificial neural networks

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A practical method of estimation for the internal-resistance of polymer electrolyte membrane fuel cell (PEMFC) stack was adopted based on radial basis function (RBF) neural networks. In the training process, k-means clustering algorithm was applied to select the network centers of the input training data. Furthermore, an equivalent electrical-circuit model with this internal-resistance was developed for investigation on the stack. Finally using the neural networks model of the equivalent resistance in the PEMFC stack, the simulation results of the estimation of equivalent internal-resistance of PEMFC were presented. The results show that this electrical PEMFC model is effective and is suitable for the study of control scheme, fault detection and the engineering analysis of electrical circuits.

  10. Platinum Porous Electrodes for Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    Fuel cell energy bears the merits of renewability, cleanness and high efficiency. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising candidates as the power source in the near future. A fine management of different transports and electrochemical reactions in PEM fuel cells is...

  11. Development of Novel PEM Membrane and Multiphase CD Modeling of PEM Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    K. J. Berry; Susanta Das

    2009-12-30

    To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance. To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell

  12. Infância e desenvolvimento

    OpenAIRE

    2007-01-01

    p. 31-41 Infância e desenvolvimento tem como objectivo reflectir conceitos educacionais, especificamente a relação entre a criança e a educação. Não é nossa pretensão dissertar sobre a história das ideias àcerca da infância mas, centrarmo- nos na infância nos dias de hoje e (re)pensar, por um lado, o conceito de criança adequado à actualidade e, por outro, às práticas educativas e suas implicações no processo de desenvolvimento. Centrando-nos no período dos zero aos...

  13. Celso Furtado e o desenvolvimento regional

    Directory of Open Access Journals (Sweden)

    Clélio Campolina Diniz

    2011-01-01

    Full Text Available O presente texto visa analisar as contribuições de Celso Furtado para a interpretação dos determinantes das desigualdades regionais e para a formulação de políticas de desenvolvimento para as regiões menos desenvolvidas. Toma como pano de fundo os antecedentes teóricos e as principais experiências mundiais de políticas de desenvolvimento regional, que serviram de referência para Celso Furtado. Mostra a originalidade de Furtado ao articular as questões de desigualdades regionais à natureza das estruturas subdesenvolvidas. Mostra os fundamentos teóricos e empíricos na análise sobre a questão nordestina, as diretrizes para a atuação da futura SUDENE, as pressões políticas e as insuficiências na condução da política de desenvolvimento para o Nordeste. Por fim, mostra a atualidade de Furtado, seja nas formulações anteriores à criação da SUDENE como nos desenvolvimentos teóricos posteriores. Nesses, Furtado supera a noção de região e passa a tratar de estruturas espaciais; introduz o papel central dos nódulos urbanos, de suas hierarquias e articulações, ou seja ,o papel da rede urbana no comando e estruturação do território; do papel central da tecnologia e dos processos de inovação e; por fim, da necessidade de um esforço interdisciplinar, tanto para o entendimento dos problemas regionais quanto para a formulação de políticas e de sua implementação.

  14. High temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters...... of the book describe rationalization and illustration of approaches to high temperature PEM systems. Chapters 6 - 13 are devoted to fabrication, optimization and characterization of phosphoric acid-doped polybenzimidazole membranes, the very first electrolyte system that has demonstrated the concept...

  15. Characterization and experimental results in PEM fuel cell electrical behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Kunusch, Cristian; Puleston, Paul F.; More, Jeronimo J. [LEICI, Departamento de Electrotecnia, Universidad Nacional de La Plata, calle 48 y 116 s/n (CC 91), La Plata B1900TAG (Argentina); CONICET, Consejo de Investigaciones Cientificas y Tecnicas, Av. Rivadavia 1917, Buenos Aires C1033AAJ (Argentina); Mayosky, Miguel A. [LEICI, Departamento de Electrotecnia, Universidad Nacional de La Plata, calle 48 y 116 s/n (CC 91), La Plata B1900TAG (Argentina); CICpBA, Comision de Investigaciones Cientificas de la Provincia de Buenos Aires, Calle 526 entre 10 y 11, La Plata 1900 (Argentina)

    2010-06-15

    A control oriented electrochemical static model of a proton exchange membrane fuel cell (PEMFC) stack is developed in this paper. Even though its validation is performed on a specific 7-cell PEMFC stack fed by humidified air and pure hydrogen, the methodology and fit parameters can be applied to different fuel cell systems with minor changes. The fuel cell model was developed combining theoretical considerations and semi-empirical analysis based on the experimental data. The proposed model can be successfully included into a larger dynamic subsystem to complete the power generation system. (author)

  16. Evaluation and characterization of ceramic membranes based on Pdms/SiC containing phosphotungstic acid as electrolytes for PEM-FC; Avaliacao e caracterizacao de membranas ceramicas condutoras a base de PDMS/SiC contendo acido fosfotungstico como eletrolito para PEM-FC

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Marcelo de Oliveira; Guimaraes, Danilo Hansen; Boaventura Filho, Jaime Soares; Jose, Nadia Mamede [Universidade Federal da Bahia (IQ/UFBA), Salvador, BA (Brazil). Inst. de Quimica. Grupo de Energia e Ciencias dos Materiais; Barbosa, Diego Augusto Batista; Paschoal, Carlos William de Araujo [Universidade Federal do Maranhao (DF/UFMA), Sao Luis, MA (Brazil). Dept. de Fisica; Almeida, Rafael Mendonca; Tanaka, Auro Atsushi [Universidade Federal do Maranhao (DQ/UFMA), Sao Luis, MA (Brazil). Dept. de Quimica

    2009-07-01

    This work presents the development of membranes with potential use in Proton Exchange Fuel Cells (PEM-FC), consisting of hybrid materials based on poly(dimethylsiloxane), crosslinked with tetraethyl orthosilicate (TEOS), and reinforced with silicon carbide and phosphotungstic acid. The membrane series PDMS/TEOS/SiC/PWA were prepared by the reaction of PDMS and TEOS, 70/30% proportions in mass, catalyzed by dibutyltin dilaurate. SiC was incorporated in a 25% proportion, and PWA in varied proportions (5, 10, 15 and 20%), by weight. The membranes were characterized by Thermo-Gravimetric Analysis (TGA), X-ray Diffraction, Scanning Electron Microscopy and impedance spectroscopy. SiC and PWA addition to the membrane increased both structure organization and material crystallinity. The insertion of PWA provided an increase in the conductivity. However, maximum conductivity was obtained with concentration levels above 10%. The insertion of SiC associated with the PWA did not influence the conductivity for concentrations between 10 and 20%. (author)

  17. Direct observation of the dealloying process of a platinum–yttrium nanoparticle fuel cell cathode and its oxygenated species during the oxygen reduction reaction

    OpenAIRE

    Kaya, Sarp; Malacrida, Paolo; Casalongue, Hernan G. Sanchez; Masini, Federico; Hernandez-Fernandez, Patricia; Deiana, Davide; Ogasawara, Hirohito; Stephens, Ifan E. L.; Nilsson, Anders; Chorkendorff, Ib

    2015-01-01

    Size-selected 9 nm PtxY nanoparticles have recently shown an outstanding catalytic activity for the oxygen reduction reaction, representing a promising cathode catalyst for proton exchange membrane fuel cells (PEMFCs). Studying their electrochemical dealloying is a fundamental step towards the understanding of both their activity and stability. Herein, size-selected 9 nm PtxY nanoparticles have been deposited on the cathode side of a PEMFC specifically designed for in situ ambient pressure X-...

  18. Robust DC/DC converter control for polymer electrolyte membrane fuel cell application

    Science.gov (United States)

    Wang, Ya-Xiong; Yu, Duck-Hyun; Chen, Shi-An; Kim, Young-Bae

    2014-09-01

    This study investigates a robust controller in regulating the pulse width modulation (PWM) of a DC/DC converter for a polymer electrolyte membrane fuel cell (PEMFC) application. A significant variation in the output voltage of a PEMFC depends on the power requirement and prevents a PEMFC from directly connecting to a subsequent power bus. DC/DC converters are utilized to step-up or step-down voltage to match the subsequent power bus voltage. In this study, a full dynamic model, which includes a PEMFC and boost and buck DC/DC converters, is developed under MATLAB/Simulink environment for control. A robust PWM duty ratio control for the converters is designed using time delay control (TDC). This control enables state variables to accurately follow the dynamics of a reference model using time-delayed information of plant input and output information within a few sampling periods. To prove the superiority of the TDC performance, traditional proportional-integral control (PIC) and model predictive control (MPC) are designed and implemented, and the simulation results are compared. The efficacies of TDC for the PEMFC-fed PWM DC/DC converters are validated through experimental test results using a 100 W PEMFC as well as boost and buck DC/DC converters.

  19. Study of performance of PEMFC stack in different electrode positions%基于不同电极位置的PEMFC运行特性研究

    Institute of Scientific and Technical Information of China (English)

    欧阳旭; 贾俊波; 李奇

    2012-01-01

    Proton exchange membrane (PEM) fuel cell is an electrochemical generating device which has great potential of development, particularly suitable for a new generation of portable power and electric vehicle power source. Water is the key factor of affecting fuel cell performance. Water management plays an important role in PEM fuel cell for safe and steady operation. The stack uses an air fan in the edge of the cathode, combining high oxidant supply and stack cooling purposes. In this paper, the performance of a PEM fuel cell and mass transport was observed in different electrode relative position. The results show, the different electrode relative positions do not affect the performance of PEM fuel cell in low current density. When PEM fuel cell is placed anode-upward, gravity is advantageous to discharge the liquid water in PEM fuel cell cathode in high current density.%质子交换膜燃料电池(PEMFC)是一种有巨大发展潜力的发电装置,特别适合成为新一代便携式电源和电动汽车的动力源.水是影响燃料电池性能的关键因素,良好的水管理是使其安全稳定运行和提高其性能的必要条件.在PEM燃料电池的阴极侧安装风扇,向燃料电池提供氧化剂和降低电池温度,通过实验,观察到在电池堆方向发生变化的情况下,PEM燃料电池性能及其内部传质情况会发生明显变化.实验结果发现:当电流密度较小时,电极方向对PEM燃料电池的性能影响不明显;当电流密度较大时,阳极在上、阴极在下时燃料电池性能优于阴极在上、阳极在下的燃料电池性能.

  20. Desenvolvimento econômico, desigualdade e saúde

    Directory of Open Access Journals (Sweden)

    Pedro Reginaldo Prata

    1994-09-01

    Full Text Available O autor se refere a dimensão socioeconômica, individual e coletiva do fenômeno saúde-doença. Refere-se também ao fato das populações estarem sobre a influência desigual de fatores de risco e de proteção à saúde. Discute as desigualdades no desenvolvimento e a relação entre desenvolvimento, riqueza, saúde e justiça social. Questiona as teorias de desenvolvimento econômico, diferenciando desenvolvimento de crescimento. Cunha os conceitos de armadilha do desenvolvimento e refugiados sociais. Define uma comunidade saudável. Propõe a necessidade de mudança no modelo de desenvolvimento. Baliza o papel e as limitações do setor saúde no que diz respeito a iniqüidade social.

  1. Parametric analysis of proton exchange membrane fuel cell performance by using the Taguchi method and a neural network

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sheng-Ju; Shiah, Sheau-Wen [Department of Power Vehicle and Systems Engineering, Chung Cheng Institute of Technology, National Defense University, No. 190, Sanyuan 1st Street, Ta-Hsi, Taoyuan, Taiwan 335 (China); Yu, Wei-Lung [Graduate School of Defense Science, Chung Cheng Institute of Technology, National Defense University, No. 190, Sanyuan 1st Street, Ta-Hsi, Taoyuan, Taiwan 335 (China)

    2009-01-15

    This study proposes a novel parameter optimization method, capable of integrating the neural network and the Taguchi method for parametric analysis of proton exchange membrane fuel cell (PEMFC) performance. Numerous parameters affecting the PEMFC performance are analyzed, such as fuel cell operating temperatures, cathode and anode humidification temperatures, operating pressures, and reactant flow rate. In the traditional design of experiments, the Taguchi method has been popularly utilized in engineering. However, the parameter levels selected to form the orthogonal array in the Taguchi method are discrete, preventing the estimation of the real optimum. This study used the Taguchi method to acquire the primary optimums of the operating parameters in the PEMFC. Each row in the orthogonal array together with its relative responses was used to establish a set of training patterns (input/target pair) to the neural network. The neural network can then construct relationships between the control factors and responses in the PEMFC. The actual optimums of the operating parameters in the PEMFC were obtained by the trained neural network. Experimental results are presented for identifying the proposed approach, which is useful in improving performance for PEMFC and developing electrical system on advanced vehicles and ships. (author)

  2. Modeling and simulation of a 100 kWe HT-PEMFC subsystem integrated with an absorption chiller subsystem

    DEFF Research Database (Denmark)

    Arsalis, Alexandros

    2012-01-01

    A 100 kWe liquid-cooled HT-PEMFC subsystem is integrated with an absorption chiller subsystem to provide electricity and cooling. The system is designed, modeled and simulated to investigate the potential of this technology for future novel energy system applications. Liquid-cooling can provide...... better temperature control and is preferable for middle-scale transport applications, such as commercial vessels, because stack cooling can be achieved within smaller volumes. A commercial ship requiring cooling and electricity is taken as the case study for the application of the proposed system. All...... electrical power output of 100 kWe. The heat exhausted to the absorption chiller subsystem is 107 kW and can satisfy a cooling duty of up to 128 or 64.5 kW for a LiBr-water double-effect system or a water-NH3 single-effect system, respectively. Finally, the projected total cost is comparable to conventional...

  3. Opioid system manipulation during testicular development: results on sperm production and sertoli cells population = Manipulação do sistema opioidérgico durante o desenvolvimento testicular: consequência sobre a produção espermática e a população de células de sertoli

    Directory of Open Access Journals (Sweden)

    Fernanda Mafra Cajú

    2011-04-01

    Full Text Available The Sertoli cell has fundamental importance to the development andmaintenance of spermatogenesis, as well as it has a directly proportional numerical relationship to sperm production. The proliferative period of this cell in rats occurs between 13 days pre-natal and 21 days pos-natal, when is established the final population in adult animals. The Leydig cell can modulate the Sertoli cell proliferation during fetal and neonatal periodƒn throughƒnƒnƒÒ-endorphin. The manipulation of opioidergic system can promote changes in parameters related to development of nervous, endocrine andreproductive systems. By the way, the main purpose of this present work was to compare the effects of the blockade of opioid receptor blocking in Sertoli cells using naltrexone (50 mg kg-1 during fetal and neonatal period in Wistar rats. According to the results, themanipulation of opioidergic system during pre-natal period reduced the total length of seminiferous tubule and Sertoli cell population in adult rats, but sperm production was normal because this cell has had a compensatory response for spermatozoids support capacity.As celulas de Sertoli tem fundamental importancia para o desenvolvimento e manutencao da espermatogenese, bem como possuem uma relacao numerica diretamente proporcional com a producao espermatica. O periodo proliferativo destas celulas em ratos ocorre entre 13 dias pre-natal e 21 dias pos-natal, resultando na definicao da populacao decelulas de Sertoli nos animais adultos. As celulas de Leydig podem modular a proliferacao das celulas de Sertoli durante o periodo fetal e neonatal por meio da ƒÒ-endorfina. A manipulacao do sistema opioidergico durante esta fase pode promover alteracoes em parametros relacionados com o desenvolvimento dos sistemas nervoso, endocrino ereprodutivo. Em virtude disto, o objetivo do presente trabalho foi comparar os efeitos do bloqueio de receptores opioides nas celulas de Sertoli, utilizando o naltrexone (50 mg kg

  4. Hybrid Nano composite Membranes for PEMFC Applications; Conception et elaboration de membranes hybrides nanocomposites pour l'application pile a combustible PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Niepceron, F.

    2008-03-15

    This work aims at validating a new concept of hybrid materials for the realization of proton exchange membranes, an essential constituent of PEM fuel cells. The originality of this nano-composite hybrid concept corresponds to a separation of the membrane's properties. We investigated the preparation of composite materials based on an inert, relatively low cost, polymer matrix (PVDF-HFP) providing the mechanical stability embedding inorganic fillers providing the necessary properties o f proton-conduction and water retention. The first step of this work consisted in the modification of fumed silica to obtain a proton-conducting filler. An ionic exchange capacity (CEI) equal to 3 meq/g was obtained by the original grafting of sodium poly(styrene-sulfonate) chains from the surface of particles. Nano-composite hybrid membranes PVDF-HFP/functionalized silica were accomplished by a film casting process. The coupling of the morphological and physicochemical analyses validated the percolation of the inorganic phase for 30 wt.% of particles. Beyond 40 % of loading, measured protonic conductivity is higher than the reference membrane Nafion 112. Finally, these membranes presented high performances, above 0.8 W/cm{sup 2}, in single-cell fuel cell tests. A compromise is necessary according to the rate of loading between performances in fuel cell and mechanical properties of the membrane. 50 % appeared as best choice with, until 90 C, a remarkable thermal stability of the performances. (author)

  5. DESENVOLVIMENTO MORAL E INDISCIPLINA NA ESCOLA

    Directory of Open Access Journals (Sweden)

    Rita Melissa Lepre

    2009-12-01

    Full Text Available O presente artigo configura-se como uma reflexão acerca da indisciplina e suas possíveis causas. Para debater sobre o assunto apresentamos a teoria do desenvolvimento moral de Jean Piaget e articulamos suas descobertas com a questão da indisciplina na escola. São feitas, ainda, reflexões sobre o ambiente em que nossas crianças encontram-se inseridas por, pelo menos, cinco horas diárias.

  6. Diretrizes para o desenvolvimento de Ecovilas Urbanas

    OpenAIRE

    Flávio Januário José

    2014-01-01

    A pesquisa organizada em quatro partes a partir do sistema de planejamento denominado Dragon Dreaming teve como objetivo a elaboração de um modelo de diretrizes para o desenvolvimento de ecovilas urbanas que possam ser utilizadas como opção para a transformação de bairros existentes ou a criação de novos assentamentos urbanos sustentáveis. Para isso foram abordados aspectos teóricos, visitas técnicas e participação em eventos sobre o tema que, a partir de métodos colaborativos, fundamentaram ...

  7. o turismo e o desenvolvimento local inteligente

    OpenAIRE

    cupeto, carlos; figueiredo, mª joão; antunes, helena; Ribeiro, Paulo

    2013-01-01

    Este trabalho considera as ultimas tendências e conceitos de turismo e desenvolvimento sustentável e aponta o caminho.Tem muitos anos o discurso do turismo como uma grande oportunidade para Portugal. Tristemente, nem por isso, essa oportunidade se foi traduzindo em realidade, obviamente, como sempre no nosso país, salvo raras e honrosas exceções. Todavia o turismo é, provavelmente, a atividade económica mais transversal. A todos toca. São necessários: aeroporto, boas vias terrestres, combo...

  8. Equivalent Circuit Parameters Estimation for PEM Fuel Cell Using RBF Neural Network and Enhanced Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Wen-Yeau Chang

    2013-01-01

    Full Text Available This paper proposes an equivalent circuit parameters measurement and estimation method for proton exchange membrane fuel cell (PEMFC. The parameters measurement method is based on current loading technique; in current loading test a no load PEMFC is suddenly turned on to obtain the waveform of the transient terminal voltage. After the equivalent circuit parameters were measured, a hybrid method that combines a radial basis function (RBF neural network and enhanced particle swarm optimization (EPSO algorithm is further employed for the equivalent circuit parameters estimation. The RBF neural network is adopted such that the estimation problem can be effectively processed when the considered data have different features and ranges. In the hybrid method, EPSO algorithm is used to tune the connection weights, the centers, and the widths of RBF neural network. Together with the current loading technique, the proposed hybrid estimation method can effectively estimate the equivalent circuit parameters of PEMFC. To verify the proposed approach, experiments were conducted to demonstrate the equivalent circuit parameters estimation of PEMFC. A practical PEMFC stack was purposely created to produce the common current loading activities of PEMFC for the experiments. The practical results of the proposed method were studied in accordance with the conditions for different loading conditions.

  9. Novel Blend Membranes Based on Acid-Base Interactions for Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yongzhu Fu

    2012-10-01

    Full Text Available Fuel cells hold great promise for wide applications in portable, residential, and large-scale power supplies. For low temperature fuel cells, such as the proton exchange membrane fuel cells (PEMFCs and direct methanol fuel cells (DMFCs, proton-exchange membranes (PEMs are a key component determining the fuel cells performance. PEMs with high proton conductivity under anhydrous conditions can allow PEMFCs to be operated above 100 °C, enabling use of hydrogen fuels with high-CO contents and improving the electrocatalytic activity. PEMs with high proton conductivity and low methanol crossover are critical for lowering catalyst loadings at the cathode and improving the performance and long-term stability of DMFCs. This review provides a summary of a number of novel acid-base blend membranes consisting of an acidic polymer and a basic compound containing N-heterocycle groups, which are promising for PEMFCs and DMFCs.

  10. Rede de Protagonismo Local para o Desenvolvimento Global

    DEFF Research Database (Denmark)

    Weber, Ángela; Hermann, Roberto Rivas

    Este artigo pretende fazer uma reflexão sobre metodologia a ser desenvolvida e utilizada num projeto de desenvolvimento local, através das ações protagonizadas pela própria comunidade. Para isso parte de uma discussão sobre o conceito de desenvolvimento sustentável, e a seguir propõe a busca de...

  11. Caracterização física, físico-química, enzimática e de parede celular em diferentes estádios de desenvolvimento da fruta de figueira Physical, chemico-physical, enzymatic and cell wall charazterization during the different development stages of the fig tree fruits

    Directory of Open Access Journals (Sweden)

    Carlos Antonio A. Gonçalves

    2006-03-01

    diferentes estádios de desenvolvimento dos frutos. Com a maturação dos frutos, houve redução dos principais componentes dos polissacarídeos pécticos (galactose, arabinose e ramnose, enquanto os componentes da fração hemicelulósica (xilose, glucose e manose tenderam a aumentar. A solubilização da celulose e queda nos teores de hemicelulose se deu a partir dos 60 dias, quando o fruto, já na maturidade fisiológica, inicia o processo de amaciamento, em função da solubilização de pectinas, pela maior atividade das enzimas pectinametilesterase e poligalacturonase.With the objective of evaluating the physical, physical-chemical, enzymic and cell wall characterization during the different developmental stages of the fig tree fruits under irrigation in Northern Minas Gerais, the present work was developed during the 2001/2002 cropping cycle in the Unidade de Produção Frutícola da Escola Agrotécnica Federal de Salinas (Fruit Growing Unit of the Federal Agrotechnical School of Salinas (Eafsal, town of Salinas. Plants of two years and a half after transplanting and with twelve well developed primary branches (pernadas = the first strong branches of a tree and 2.5x1.5 m spacing were utilized in this experiment. The design applied was completely randomized with two replicates and a total of 40 marked plants. The data collected were concerning 2001/2002 cropping cycle for the June-pruned plants. Evaluated during the different developmental stages of fig tree fruits activity of the enzimes, chemical composition, physical evaluate, neutral sugars and cell wall components. As polyphenoloxidase and peroxidase activity was decreasing, polygalacturonase activity increased throughout the development of the fruits. The fruits reached harvest point for industry and in natura consumption at 30 and 75 days from the differentiation of the buds in syconium, respectively. A significant increase took place in the contents of total soluble solids, total soluble and reducing sugars

  12. Charles Darwin: um observador do desenvolvimento humano

    Directory of Open Access Journals (Sweden)

    Eloisa Helena Rubello Valler Celeri

    2010-12-01

    Full Text Available Os autores traduzem, pela primeira vez para o português, o artigo de Charles Darwin "A Biographical Sketch of an Infant", publicado no periódico Mind em julho de 1877. Utilizando anotações de observações do desenvolvimento de seus filhos, especialmente de seu filho mais velho William Erasmus (Doddy, Darwin descreve e estuda, a partir de seu enfoque naturalista, o filhote humano, narrando os primeiros indicativos comportamentais de emoções tais como raiva e medo, curiosidade e senso moral, o brincar e o prazer envolvido nesta atividade, a capacidade de imitação e os primeiros indícios daquilo que hoje conhecemos como "teoria da mente". Colocando-se questões sobre as capacidades do bebê, como eles aprendem e como se comunicam e levantando hipóteses sobre possíveis significados de certos comportamentos, questões ainda hoje fundamentais para o estudo do desenvolvimento humano, Darwin mostra-se também um pioneiro no estudo do bebê e da criança pequena, numa época na qual as capacidades dos bebês eram extremamente subestimadas e desconsideradas.

  13. Desenvolvimento puberal em meninas tratadas de LLA

    Directory of Open Access Journals (Sweden)

    Monteiro I.M.M.

    1998-01-01

    Full Text Available OBJETIVO: Com o objetivo de avaliar o desenvolvimento puberal após o tratamento de leucemia linfóide aguda (LLA na infância, foi realizado um estudo retrospectivo, em meninas tratadas de janeiro de 1980 a janeiro de 1991, no Centro de Investigações Hematológicas "Dr. Domingos A. Boldrini", em Campinas-SP. CASUÍSTICA E MÉTODO: Foram selecionadas 42 meninas, tratadas antes da puberdade com quimioterapia sistêmica e intratecal e radioterapia cranial, utilizando doses de 18 ou 24 Grays (Gy. RESULTADOS: As idades médias da telarca, pubarca e menarca foram inferiores às do grupo-controle, embora com significância estatística apenas para a idade da telarca. Não houve diferenças entre os grupos tratados com 18 ou 24Gy. As meninas tratadas antes dos cinco anos de idade apresentaram idade média da menarca estatisticamente inferior àquelas tratadas após cinco anos e em relação ao grupo-controle. CONCLUSÃO: Os resultados mostraram que o desenvolvimento puberal em meninas tratadas de LLA na infância foi mais precoce que o de meninas saudáveis.

  14. Desenvolvimento regional: a diversidade regional como potencialidade

    Directory of Open Access Journals (Sweden)

    Virginia Elisabeta Etges

    2013-03-01

    Full Text Available Ao longo da segunda metade do século XX o debate sobre desenvolvimento regional no Brasil recebeu atenção especial, principalmente, entre economistas e geógrafos. Dois enfoques principais se destacam no debate: um, que entende a promoção do desenvolvimento regional a partir da redução/eliminação das desigualdades regionais; outro, que propõe a compreensão da diversidade regional como potencialidade para o desenvolvimento de regiões. O primeiro foi e continua sendo hegemônico, evidenciado tanto em trabalhos científicos quanto em documentos norteadores das políticas públicas na área. Já o segundo evidencia-se mais claramente a partir da década de 1990, período em que o conceito de região é retomado sob um novo enfoque. Neste trabalho pretende-se explicitar o significado de cada uma dessas concepções, no intuito de contribuir para a qualificação da discussão sobre desenvolvimento regional.Palavras-chave | Desenvolvimento regional; diversidade regional; potencialidades; região.Código JEL | O18; R11; R58. REGIONAL DEVELOPMENT: REGIONAL DIVERSITY AS POTENTIALAbstractThroughout the second half of the twentieth century the debate on regional development in Brazil received special attention, especially among economists and geographers. Two main approaches stand out in the debate: one that understands the promotion of regional development from the reduction / elimination of regional inequalities, and the other proposes the understanding of regional diversity and potentiality for developing regions. The first was and still remains hegemonic, being evidenced both in scientific papers and in documents guiding public policies in the area. The latter is evidenced most clearly from the 1990s on, a period when the concept of region is resumed under a new approach. This paper aims to clarify the meaning of each of these concepts in order to contribute to the qualification of the discussion on regional development.Keywords | Regional

  15. Efeito do número da passagem e do gênero das células doadoras de núcleo no desenvolvimento de bovinos produzidos por transferência nuclear Effect of culture time and gender of nuclei donor cells on bovine development produced by nuclear transfer

    Directory of Open Access Journals (Sweden)

    Giovana Krempel Fonseca Merighe

    2010-10-01

    Full Text Available Objetivou-se com este trabalho avaliar o efeito do número da passagem e do sexo das células doadoras de núcleo no desenvolvimento embrionário e fetal após transferência nuclear. Para isso, oócitos bovinos foram maturados, enucleados e reconstruídos com células somáticas de animal adulto. Após a fusão e ativação química, os zigotos reconstituídos foram cultivados em Charles Rosenkranz 2 (CR2 com monocamada de células da granulosa a 38,8ºC em atmosfera umidificada a 5% de CO2 em ar, durante sete dias, e transferidos para receptoras sincronizadas. As taxas de clivagem e desenvolvimento a blastocisto de embriões reconstruídos com células cultivadas por tempo maior foram inferiores às obtidas com os demais tempos de cultivo. Além disso, os blastocistos produzidos não resultaram no desenvolvimento de uma gestação a termo. Embora a taxa de clivagem em embriões fêmeas tenha sido maior, o número de embriões que atingiram o estádio de blastocisto foi maior nos embriões machos. No período gestacional, fêmeas apresentaram maior taxa de aborto entre 90 e 120 dias de gestação. Esses resultados indicam que células doadoras de núcleos cultivados por longos períodos dificultam a produção de blastocistos e aumentam as chances de perdas durante a gestação. Embriões clonados machos têm maior competência para se desenvolver a blastocisto e resultam em menor taxa de perda gestacional.The objective of this study was to evaluate the effects of culture time and sex of nuclei donor cells on embryo and fetal development after nuclear transfer. Thus, bovine oocytes were matured, enucleated and reconstructed with somatic cells from an adult animal. After fusion and chemical activation, the reconstituted zygotes were cultured in Charles Rosenkranz 2 (CR2 on a granular monolayer cell at 38.8ºC in a humidified atmosphere 5% CO2 in air for seven days, and transferred to synchronized receptors. Cleavage rates and development to

  16. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf

    The new development in the field of polymer electrolyte membrane fuel cell (PEMFC) is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th framework programme. New challenges are encountered, bottlenecks for the new...... of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer and afterburner, that are compatible with the HT-PEMFC; and (3) integration of the HT-PEMFC stack...... with these compatible subunits. The main goal of the project is a 2kWel HT-PEMFC stack operating in a temperature range of 150-200°C, with a single cell performance target of 0.7 A/cm² at a cell voltage around 0.6 V. The target durability is more than 5,000 hours. A hydrocarbon reformer and a catalytic burner...

  17. Integration of autothermal diesel reformer for hydrogen production feeding a PEMFC; Integracion de reformador diesel con pilas de combustible tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, F. I.; Briceno, Y. B.; Navarro, R. M.; Alvarez, C.; Bordons, C.

    2004-07-01

    This paper presents carried out actions to design and construct an autothermal diesel reformer for hydrogen production feeding a PEMFC.These activities have been performed by INTA, AICIA, CIDAUT and ICP-CSIC trough a collaborative effort 50% funded by INTA and by partners as in kind contributions as a function of developed tasks.The paper presents activities carried out to date: selection of a catalyst, simulation of the process, design and construction of a 5 kW autothermal diesel reformer. Reformer will be characterized during the second half of 2004 and, finally, will be installed for a proper operation together with a 5 kW PEMFC at the promises of INTA located in Centro de Experimentacion de Arenosillo at Huelva. (Author)

  18. Experimental and numerical studies of micro PEM fuel cell

    Institute of Scientific and Technical Information of China (English)

    Rong-Gui Peng; Chen-Chung Chung; Chiun-Hsun Chen

    2011-01-01

    A single micro proton exchange membrane fuel cell (PEMFC) has been produced using Micro-electromechanical systems (MEMS) technology with the active area of 2.5 cm2 and channel depth of about 500μm.A theoretical analysis is performed in this study for a novel MEMS-based design of a micro PEMFC.The model consists of the conservation equations of mass,momentum,species and electric current in a fully integrated finite-volume solver using the CFD-ACE+ commercial code.The polarization curves of simulation are well correlated with experimental data.Three-dimensional simulations are carried out to treat prediction and analysis of micro PEMFC temperature,current density and water distributions in two different fuel flow rates (15 cm3/min and 40 cm3/min).Simulation results show that temperature distribution within the micro PEMFC is affected by water distribution in the membrane and indicate that low and uniform temperature distribution in the membrane at low fuel flow rates leads to increased membrane water distribution and obtains superior micro PEMFC current density distribution under 0.4 V operating voltage.Model predictions are well within those known for experimentalmechanism phenomena.

  19. Fault tolerance control for proton exchange membrane fuel cell systems

    Science.gov (United States)

    Wu, Xiaojuan; Zhou, Boyang

    2016-08-01

    Fault diagnosis and controller design are two important aspects to improve proton exchange membrane fuel cell (PEMFC) system durability. However, the two tasks are often separately performed. For example, many pressure and voltage controllers have been successfully built. However, these controllers are designed based on the normal operation of PEMFC. When PEMFC faces problems such as flooding or membrane drying, a controller with a specific design must be used. This paper proposes a unique scheme that simultaneously performs fault diagnosis and tolerance control for the PEMFC system. The proposed control strategy consists of a fault diagnosis, a reconfiguration mechanism and adjustable controllers. Using a back-propagation neural network, a model-based fault detection method is employed to detect the PEMFC current fault type (flooding, membrane drying or normal). According to the diagnosis results, the reconfiguration mechanism determines which backup controllers to be selected. Three nonlinear controllers based on feedback linearization approaches are respectively built to adjust the voltage and pressure difference in the case of normal, membrane drying and flooding conditions. The simulation results illustrate that the proposed fault tolerance control strategy can track the voltage and keep the pressure difference at desired levels in faulty conditions.

  20. Analysis Of The Effect Of Flow Channel Width On The Performance Of PEMFC

    OpenAIRE

    Elif Eker; İmdat Taymaz

    2013-01-01

    In this work, it was analysed the effect of different channel width on performance of PEM fuel cell. Current density were measured on the single cells of parallel flow fields that has 25 cm² active layer, using three different kinds of channel width. The cell width and the channel height remain constant.The results show that increasing the channel width while the cell width remains constant decreases the current density.

  1. Analysis Of The Effect Of Flow Channel Width On The Performance Of PEMFC

    OpenAIRE

    Eker, Elif; Taymaz, İmdat

    2013-01-01

    In this work, it was analysed the effect of different channel width on performance of PEM fuel cell. Current density were measured on the single cells of parallel flow fields that has 25 cm² active layer, using three different kinds of channel width. The cell width and the channel height remain constant. The results show that increasing the channel width while the cell width remains constant decreases the current density.

  2. Tetrazole substituted polymers for high temperature polymer electrolyte fuel cells

    DEFF Research Database (Denmark)

    Henkensmeier, Dirk; My Hanh Duong, Ngoc; Brela, Mateusz

    2015-01-01

    interesting for use in a high temperature fuel cell (HT PEMFC). Based on these findings, two polymers incorporating the proposed TZ groups were synthesised, formed into membranes, doped with PA and tested for fuel cell relevant properties. At room temperature, TZ-PEEN and commercial meta-PBI showed...

  3. Application of Proton Exchange Membrane Fuel Cell for Lift Trucks

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud

    2011-01-01

    In this study a general PEMFC (Proton Exchange Membrane Fuel Cell) model has been developed to take into account the effect of pressure losses, water crossovers, humidity aspects and voltage over potentials in the cells. The model is zero dimensional and it is assumed to be steady state. The effect...

  4. Intelligent uninterruptible power supply system with back-up fuel cell/battery hybrid power source

    Science.gov (United States)

    Zhan, Yuedong; Guo, Youguang; Zhu, Jianguo; Wang, Hua

    2008-05-01

    This paper presents the development of an intelligent uninterruptible power supply (UPS) system with a hybrid power source that comprises a proton-exchange membrane fuel cell (PEMFC) and a battery. Attention is focused on the architecture of the UPS hybrid system and the data acquisition and control of the PEMFC. Specifically, the hybrid UPS system consists of a low-cost 60-cell 300 W PEMFC stack, a 3-cell lead-acid battery, an active power factor correction ac-dc rectifier, a half-bridge dc-ac inverter, a dc-dc converter, an ac-dc charger and their control units based on a digital signal processor TMS320F240, other integrated circuit chips, and a simple network management protocol adapter. Experimental tests and theoretical studies are conducted. First, the major parameters of the PEMFC are experimentally obtained and evaluated. Then an intelligent control strategy for the PEMFC stack is proposed and implemented. Finally, the performance of the hybrid UPS system is measured and analyzed.

  5. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf

    The strategic developments of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer and afterburner, that are compatible with the HT-PEMFC; and (3......) integration of the HT-PEMFC stack with these compatible subunits. The main goal of the project is a 2kWel HT-PEMFC stack operating in a temperature range of 150-200°C, with a single cell performance target of 0.7 A/cm² at a cell voltage around 0.6 V. The target durability is more than 5,000 hours...

  6. Durable Catalysts for High Temperature Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Durability of proton exchange membrane fuel cells (PEMFCs) is recognized as one of the most important issues to be addressed before the commercialization. The failure mechanisms are not well understood, however, degradation of carbon supported noble metal catalysts is identified as a major failure...... corrosion, in turn, triggers the agglomeration of platinum particles resulting in reduction of the active surface area and catalytic activity. This is a major mechanism of the catalyst degradation and a key challenge to the PEMFC long-term durability. High temperature PEMFC, on the other hand, has attached...... significant attention in recent years because of its potential advantages such as high CO tolerance, easy cooling, better heat utilization and possible integration with fuel processing units. However, the high temperature obviously aggravates the carbon corrosion and catalyst degradation. Based on thermally...

  7. Routes to a commercially viable PEM fuel cell stack

    Energy Technology Data Exchange (ETDEWEB)

    Newton, J.; Foster, S.E.; Hodgson, D.; Marrett, A.

    2002-07-01

    This report describes the results of a project to design and build a 10 kW{sub e} proton exchange membrane fuel cell (PEMFC) stack, including membrane electrode assemblies (MEAs), bipolar plates and stack hardware. The aim was to prove the design concept and to demonstrate functionality by operating the stack at >1 kW{sub e}/L and 500 W/kg for 200 hours operation. The project was extended to include the assembly and testing of two additional 1 kW{sub e} PEMFC stacks based on coated metal components. Low equivalent weight perfluorinated ionomer ion exchange membranes were prepared and were found to give a superior electrochemical performance to commercial materials. A technique to etch various stainless steel grades and control processes was successfully developed and optimised. Coatings for stainless steel and titanium were successfully developed and met the required performance criteria. All PEMFC stack components were selected and designed to enable subsequent commercial manufacture.

  8. Fault Diagnosis for Fuel Cell Based on Naive Bayesian Classification

    Directory of Open Access Journals (Sweden)

    Liping Fan

    2013-07-01

    Full Text Available Many kinds of uncertain factors may exist in the process of fault diagnosis and affect diagnostic results. Bayesian network is one of the most effective theoretical models for uncertain knowledge expression and reasoning. The method of naive Bayesian classification is used in this paper in fault diagnosis of a proton exchange membrane fuel cell (PEMFC system. Based on the model of PEMFC, fault data are obtained through simulation experiment, learning and training of the naive Bayesian classification are finished, and some testing samples are selected to validate this method. Simulation results demonstrate that the method is feasible.    

  9. Two-dimensional modeling of electrochemical and transport phenomena in the porous structures of a PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Sahraoui, Melik [Institut Preparatoire aux Etudes d' Ingenieurs de Tunis (IPEIT) (Tunisia); Kharrat, Chafik; Halouani, Kamel [UR: Micro-Electro-Thermal Systems (METS-ENIS), Industrial Energy Systems Group, Institut Preparatoire aux Etudes d' Ingenieurs de Sfax (IPEIS), University of Sfax, B.P: 1172, 3018 Sfax (Tunisia)

    2009-04-15

    A two-dimensional CFD model of PEM fuel cell is developed by taking into account the electrochemical, mass and heat transfer phenomena occurring in all of its regions simultaneously. The catalyst layers and membrane are each considered as distinct regions with finite thickness and calculated properties such as permeability, local protonic conductivity, and local dissolved water diffusion. This finite thickness model enables to model accurately the protonic current in these regions with higher accuracy than using an infinitesimal interface. In addition, this model takes into account the effect of osmotic drag in the membrane and catalyst layers. General boundary conditions are implemented in a way taking into consideration any given species concentration at the fuel cell inlet, such as water vapor which is a very important parameter in determining the efficiency of fuel cells. Other operating parameters such as temperature, pressure and porosity of the porous structure are also investigated to characterize their effect on the fuel cell efficiency. (author)

  10. Integrated PEMFC Flow Field Design Concept for Gravity Independent Passive Water Removal Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary power systems for Space Shuttles and future space vehicles are based on fuel cells. Due to inherent fundamental performance, safety and reliability, NASA...

  11. 质子交换膜燃料电池系统引射器的数值分析%Numerical Analysis of Ejector Used in a PEMFC System

    Institute of Scientific and Technical Information of China (English)

    尹燕; 范明哲; 焦魁; 杜青

    2016-01-01

    基于CFD方法建立了应用于质子交换膜燃料电池(PEMFC)阳极氢气循环系统引射器的三维数值模型,研究了其结构参数,如混合管直径、等压混合管收敛角、等容混合管长度、扩散管长度和角度对引射器回流比的影响。结果表明:回流比主要受二次回流管与吸入腔之间的压差和混合管进口面积影响;存在最佳的等压混合管收敛角、等容混合管长度和扩散管角度;扩散管长度和混合管直径越大,回流效率越高。%In this study,a 3D numerical model of an ejector for the anode hydrogen recirculation in a proton ex-change membrane fuel cell(PEMFC)system was established based on the CFD procedures.The ejector performance represented by the recirculation ratio was simulated under multiple ejector geometric parameters,such as the diame-ter of mixing tube,convergence angle of constant-pressure mixing tube,length of constant-area mixing tube and diffuser length and angle.The results indicate that the ejector recirculation ratio is mainly affected by the pressure difference between the secondary flow tube and the suction chamber and the mixing tube inlet area.Optimal conver-gence angle of constant-pressure mixing tube,length of constant-area mixing tube and diffuser angle exist.The greater the diffuser length and the diameter of mixing tube,the higher the recirculation ratio.

  12. Polymer Materials for Fuel Cell Membranes :Sulfonated Poly(ether sulfone) for Universal Fuel Cell Operations

    Institute of Scientific and Technical Information of China (English)

    Hyoung-Juhn Kim

    2005-01-01

    @@ 1Introduction Polymer electrolyte fuel cells (PEFCs) have been spotlighted because they are clean and highly efficient power generation system. Proton exchange membrane fuel cells (PEMFCs), which use reformate gases or pure H2 for a fuel, have been employed for automotives and residential usages. Also, liquid-feed fuel cells such as direct methanol fuel cell (DMFC) and direct formic acid fuel cell (DFAFC) were studied for portable power generation.

  13. DESENVOLVIMENTO REGIONAL SOB O ENFOQUE PÓS-KEYNESIANO

    OpenAIRE

    Julia Elizabete Barden

    2007-01-01

    Este trabalho tem como objetivo fazer uma revisão bibliográfica acerca de estudosque analisam o desenvolvimento regional sob a perspectiva da teoria pós-keynesiana. Osresultados destes demonstram que o sistema financeiro, em especial os bancos,influenciam no grau de desenvolvimento das regiões, sobretudo, porque o comportamentodestes agentes segue um conceito importante utilizado pela teoria, a preferência pelaliquidez. Assim, a disponibilidade de crédito para investimento no sistema produtiv...

  14. Influence of Silica/Sulfonated Polyether-Ether Ketone as Polymer Electrolyte Membrane for Hydrogen Fueled Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Sri Handayani

    2011-12-01

    Full Text Available The operation of non-humidified condition of proton exchange membrane fuel cell (PEMFC using composite sPEEK-silica membrane is reported. Sulfonated membrane of PEEK is known as hydrocarbon polyelectrolyte membrane for PEMFC and direct methanol fuel cell (DMFC. The state of the art of fuel cells is based on the perluorosulfonic acid membrane (Nafion. Nafion has been the most used in both PEMFC and DMFC due to good performance although in low humidified condition showed poor current density. Here we reported the effect of silica in hydrocarbon sPEEK membrane that contributes for a better water management system inside the cell, and showed 0.16 W/cm2 of power density which is 78% higher than that of non-silica modified [Keywords: composite membrane, polyether-ether ketone, silica, proton exchange membrane fuel cell].

  15. Biotecnologia aplicada ao desenvolvimento de vacinas

    Directory of Open Access Journals (Sweden)

    Mariana de Oliveira Diniz

    2010-01-01

    Full Text Available As vacinas representam a estratégia de intervenção com a melhor relação custo-benefício até hoje aplicada em saúde pública. Avanços biotecnológicos em diversas áreas de pesquisa têm contribuído para o desenvolvimento de formulações mais seguras e eficazes. Além disso, a aplicação de ferramentas biotecnológicas no desenvolvimento de vacinas tem provocado mudanças na maneira como pensamos e produzimos esses reagentes tanto para uso em humanos como em animais. Essas tecnologias trazem perspectivas de que, em futuro próximo, vacinas para o controle de doenças infecciosas e degenerativas ainda não passíveis de prevenção possam estar disponíveis. Em particular, vacinas com efeitos terapêuticos, embora representem um enorme desafio a ser vencido, tornam-se cada vez próximas da realidade e, certamente, terão um impacto enorme no tratamento de diversas doenças, como em algumas formas de câncer.Vaccines represent the intervention strategy with the best cost-benefit ratio so far applied in public health. Biotechnological advances in various areas of vaccine research have contributed to the development of safer and more effective formulations. Moreover, application of biotechnology tools to vaccine development has caused changes in the way we think and produce these reagents both for use in humans and animals. Such technologies bring renewed perspectives that, in the near future, vaccines for the control of several non-preventable infectious and degenerative diseases will be available. In particular, the development of vaccines with therapeutic effects, although representing a huge challenge, are getting closer to reality and will have a tremendous impact in the treatment of several diseases such as some cancer forms.

  16. Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    2016-07-01

    Full Text Available Fuel cells are the most clean and efficient power source for vehicles. In particular, proton exchange membrane fuel cells (PEMFCs are the most promising candidate for automobile applications due to their rapid start-up and low-temperature operation. Through extensive global research efforts in the latest decade, the performance of PEMFCs, including energy efficiency, volumetric and mass power density, and low temperature startup ability, have achieved significant breakthroughs. In 2014, fuel cell powered vehicles were introduced into the market by several prominent vehicle companies. However, the low durability and high cost of PEMFC systems are still the main obstacles for large-scale industrialization of this technology. The key materials and components used in PEMFCs greatly affect their durability and cost. In this review, the technical progress of key materials and components for PEMFCs has been summarized and critically discussed, including topics such as the membrane, catalyst layer, gas diffusion layer, and bipolar plate. The development of high-durability processing technologies is also introduced. Finally, this review is concluded with personal perspectives on the future research directions of this area.

  17. PEMFC electrode preparation: Influence of the solvent composition and evaporation rate on the catalytic layer microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, R.; Daza, L. [Instituto de Catalisis y Petroleoquimica, CSIC, C/ Marie Curie, 2, 28049 Madrid (Spain); Ferreira-Aparicio, P. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense, 22, 28040 Madrid (Spain)

    2005-10-10

    A series of parameters affecting the catalytic layer microstructure in polymer exchange fuel cell electrodes have been evaluated. The deposition of the catalytic layer in the gas diffusion support is shown to depend not only on the ink deposition method but also on the characteristics of the solvent used to disperse both the catalyst and the Nafion ionomer. The solvent viscosity and its dielectric constant are two important factors to control for the catalytic ink preparation. In particular, the solvent dielectric constant is shown to be directly related to the electrode performance in single cell tests. (author)

  18. Biotecnologia e desenvolvimento sustentável

    Directory of Open Access Journals (Sweden)

    Ana Clara Guerrini Schenberg

    2010-01-01

    Full Text Available A biotecnologia pode desempenhar um papel importante para atingir as metas da sustentabilidade. No presente trabalho, são descritos diferentes exemplos bem-sucedidos de micro-organismos especialmente desenhados para otimizar a produção de etanol, a produção de plásticos biodegradáveis a partir de recursos renováveis e a biorremediação de metais tóxicos. Esses processos biotecnológicos contribuem significantemente para promover o desenvolvimento sustentável, embora possam, por enquanto, não ser ainda competitivos em relação às tecnologias convencionais.Biotechnology can play an important role to reach the goals of sustainability. In the present work, we describe successful examples of microorganisms especially designed for optimizing ethanol production, biodegradable plastics production from renewable resources, and toxic metals bioremediation. These biotechnological processes significantly contribute to promote sustainable development, although they may, at present, not be competitive with the conventional technologies.

  19. Poly(alkylene biguanides) as proton conductors for high-temperature PEMFCs

    Energy Technology Data Exchange (ETDEWEB)

    Britz, Jochen; Meyer, Wolfgang H.; Wegner, Gerhard [Max Planck Institute for Polymer Research, Mainz (Germany)

    2010-02-23

    Poly(alkylene biguanides) are novel high-temperature proton conductors. This long-known class of polymers is presented as surprisingly stable high-temperature proton-conducting materials in the form of water-free HCl conjugates. Proton conductivity is dominated by free volume relaxation. Application in the context of fuel-cell membranes is discussed. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  20. Development of a PEMFC Power System with Integrated Balance of Plant

    Science.gov (United States)

    Wynne, B.; Diffenderfer, C.; Ferguson, S.; Keyser, J.; Miller, M.; Sievers, B.; Ryan, A.; Vasquez, A.

    2012-01-01

    Autonomous Underwater Vehicles (AUV s) have received increasing attention in recent years as military and commercial users look for means to maintain a mobile and persistent presence in the undersea world. Compact, neutrally buoyant power systems are needed for both small and large vehicles. Batteries are usually employed in these applications, but the energy density and therefore the mission duration are limited with current battery technology. At a certain energy or mission duration requirement, other means to get long duration power become feasible. For example, above 10 kW-hrs liquid oxygen and hydrogen have better specific energy than batteries and are preferable for energy storage as long as a compact system of about 100 W/liter is achievable to convert the chemical energy in these reactants into power. Other reactant forms are possible, such as high pressure gas, chemical hydrides or oxygen carriers, but it is essential that the power system be small and light weight. Recent fuel cell work, primarily focused on NASA applications, has developed power systems that can meet this target power density. Passive flow-through systems, using ejector driven reactant (EDR) flow, integrated into a compact balance of plant have been developed. These systems are thermally and functionally integrated in much the same way as are automotive, air breathing fuel cell systems. These systems fit into the small volumes required for AUV and future NASA applications. Designs have been developed for both a 21" diameter and a larger diameter (LD) AUV. These fuel cell systems occupy a very small portion of the overall energy system, allowing most of the system volume to be used for the reactants. The fuel cell systems have been optimized to use reactants efficiently with high stack efficiency and low parasitic losses. The resulting compact, highly efficient fuel cell system provides exceptional reactant utilization and energy density. Key design variables and supporting test data are

  1. Development of HT-PEMFC components and stack for CHP unit

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Jens Oluf; Li, Q. (Technical Univ. of Denmark, Dept. of Chemistry, Kgs. Lyngby (Denmark)); Terkelsen, C.; Rudbech, H.C.; Steenberg, T. (Danish Power System Aps, Charlottenlund (Denmark)); Thibault de Rycke (IRD Fuel Cell A/S, Svendborg (Denmark))

    2009-10-15

    The aim of the project has been to further develop components for an all Danish high temperature PEM fuel cells stack for application in combined heat and power units (CHP units). The final product aimed at was a 1.5-2 kW stack for operation at 150-200 deg. C. The project follows the previous PSO project 4760, 'High Temperature PEM Fuel Cell'. The project has addressed the HT-PEM fuel cells form a components point of view and the materials here for. The main areas were polymer and membrane development, electrode and MEA development (MEA = membrane electrode assembly, i.e. the cells.) and stack development. The membrane development begins with the polymer. The polymerization technique was improved significantly in two ways. Better understanding of the process and the critical issues has led to more reproducible results with repeated high molecular weights. The molecular weight is decisive for the membrane strength and durability. The process was also scaled up to 100-200 g polymer pr. batch in a new polymerization facility build during the project. It is dimensioned for larger batches too, but this was not verified during the project. The polymer cannot be purchased in the right quality for fuel cell membranes and it is important that it manufacture is not a limiting factor at the present state. Experiments with other membrane casting techniques were also made. The traditional PBI doped with phosphoric acid is still the state of art membrane for the HT-PEM fuel cells, but progress was also made with modified membranes. Different variants of PBI were synthesized and tested. Electrodes have been manufactured by a spray technique in contrast to the previously applied tape casting. The hand held spray gun previously led to an improvement of the electrodes, but the reproducibility was limited. Subsequently the construction of a semi automated spray machine was started and results like of the best hand sprayed electrodes were obtained. A viable way of MEA rim

  2. A Comparison of Fick and Maxwell-Stefan Diffusion Formulations in PEMFC Cathode Gas Diffusion Layers

    CERN Document Server

    Lindstrom, Michael

    2013-01-01

    This paper explores the mathematical formulations of Fick and Maxwell-Stefan diffusion in the context of polymer electrolyte membrane fuel cell cathode gas diffusion layers. Formulations of diffusion combined with mass-averaged Darcy flow are considered for three component gases. Fick formulations can be considered as approximations of Maxwell-Stefan in a certain sense. For this application, the formulations can be compared computationally in a simple, one dimensional setting. We observe that the predictions of the formulations are very similar, despite their seemingly different structure. Analytic insight is given to the result. In addition, it is seen that for both formulations, diffusion laws are small perturbations from bulk flow. The work is also intended as a reference to multi-component gas diffusion formulations in the fuel cell setting.

  3. A comparison of Fick and Maxwell-Stefan diffusion formulations in PEMFC gas diffusion layers

    Science.gov (United States)

    Lindstrom, Michael; Wetton, Brian

    2017-01-01

    This paper explores the mathematical formulations of Fick and Maxwell-Stefan diffusion in the context of polymer electrolyte membrane fuel cell cathode gas diffusion layers. The simple Fick law with a diagonal diffusion matrix is an approximation of Maxwell-Stefan. Formulations of diffusion combined with mass-averaged Darcy flow are considered for three component gases. For this application, the formulations can be compared computationally in a simple, one dimensional setting. Despite the models' seemingly different structure, it is observed that the predictions of the formulations are very similar on the cathode when air is used as oxidant. The two formulations give quite different results when the Nitrogen in the air oxidant is replaced by helium (this is often done as a diagnostic for fuel cells designs). The two formulations also give quite different results for the anode with a dilute Hydrogen stream. These results give direction to when Maxwell-Stefan diffusion, which is more complicated to implement computationally in many codes, should be used in fuel cell simulations.

  4. Modeling and Analysis of Transport Processes and Efficiency of Combined SOFC and PEMFC Systems

    Directory of Open Access Journals (Sweden)

    Abid Rabbani

    2014-08-01

    Full Text Available A hybrid fuel cell system (~10 kWe for an average family house including heating is proposed. The investigated system comprises a Solid Oxide Fuel Cell (SOFC on top of a Polymer Electrolyte Fuel Cell (PEFC. Hydrogen produced from the off-gases of the SOFC can be fed directly to the PEFC. Simulations for the proposed system were conducted using different fuels. Here, results for natural gas (NG, dimethyl ether (DME and ethanol as a fuel are presented and analysed. Behaviour of the proposed system is further investigated by comparing the effects of key factors such as utilisation factor, operating conditions, oxygen-to-carbon (O/C ratios and fuel preheating effects on these fuels. The combined system improves the overall electrical conversion efficiency compared with standalone PEFC or SOFC systems. For the combined SOFC and PEFC system, the overall power production was increased by 8%–16% and the system efficiency with one of the fuels is found to be 12% higher than that of the standalone SOFC system.

  5. Electrode porosity and effective electrocatalyst activity in electrode-membrane-assemblies (MEAs) of PEMFCs

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, A.; Wendt, H. [Institut fuer Chemische Technologie, Darmstadt (Germany)

    1996-12-31

    New production technologies of membrane-electrode-assemblies for PEWCs which ensure almost complete catalyst utilization by {open_quotes}wetting{close_quotes} the internal catalyst surface with the ionomeric electrolyte, allow for a reduction of Pt-loadings from prior 4 mg cm{sup -2} to now less than 0.5 mg cm{sup -2}. Such electrodes are not thicker than from 5 to 10 {mu}m. Little has been published hitherto about the detailed micromorphology of such electrodes and the role of electrode porosity on electrode performance. It is well known, that the porosity of thicker fuel cell electrodes, e.g. of PAFC or AFC electrodes is decisive for their performance. Therefore the issue of this investigation is to measure and to modify the porosity of electrodes prepared by typical MEA production procedures and to investigate the influence of this porosity on the effective catalyst activity for cathodic reduction of oxygen from air in membrane cells. It may be anticipated that any mass transfer hindrance of gaseous reactants into porous electrodes would manifest itself rather in the conversion of dilute gases than in the conversion of pure gases (e.g. neat oxygen). Therefore in this investigation the performance of membrane cell cathodes with non pressurized air had been compared to that with neat oxygen at cathodes which had a relatively low Pt-loading of 0.15 mg cm{sup -2}.

  6. Durability Issues and Status of PBI-Based Fuel Cells

    DEFF Research Database (Denmark)

    Jakobsen, Mark Tonny Dalsgaard; Jensen, Jens Oluf; Cleemann, Lars Nilausen;

    2016-01-01

    This chapter briefly reviews durability and stability issues with key materials and components for HT-PEMFCs, including the polymer membrane, the doping acid, the electrocatalyst, the catalyst support and bipolar plates. Degradation mechanisms and their dependence on fuel cell operating conditions...

  7. Stimulated-healing of proton exchange membrane fuel cell catalyst

    NARCIS (Netherlands)

    Latsuzbaia, R.; Negro, E.; Koper, G.J.M.

    2013-01-01

    Platinum nanoparticles, which are used as catalysts in Proton Exchange Membrane Fuel Cells (PEMFC), tend to degrade after long-term operation. We discriminate the following mechanisms of the degradation: poisoning, migration and coalescence, dissolution, and electrochemical Ostwald ripening. There a

  8. Study of the aromatic hydrocarbons poisoning of platinum cathodes on proton exchange membrane fuel cell spatial performance using a segmented cell system

    Science.gov (United States)

    Reshetenko, Tatyana V.; St-Pierre, Jean

    2016-11-01

    Aromatic hydrocarbons are produced and used in many industrial processes, which makes them hazardous air pollutants. Currently, air is the most convenient oxidant for proton exchange membrane fuel cells (PEMFCs), and air quality is an important consideration because airborne contaminants can negatively affect fuel cell performance. The effects of exposing the cathode of PEMFCs to benzene and naphthalene were investigated using a segmented cell system. The introduction of 2 ppm C6H6 resulted in moderate performance loss of 40-45 mV at 0.2 A cm-2 and 100-110 mV at 1.0 A cm-2 due to benzene adsorption on Pt and its subsequent electrooxidation to CO2 under operating conditions and cell voltages of 0.5-0.8 V. In contrast, PEMFC poisoning by ∼2 ppm of naphthalene led to a decrease in cell performance from 0.66 to 0.13 V at 1.0 A cm-2, which was caused by the strong adsorption of C10H8 onto Pt at cell voltages of 0.2-1.0 V. Naphthalene desorption and hydrogenation only occurred at potentials below 0.2 V. The PEMFCs' performance loss due to each contaminant was recoverable, and the obtained results demonstrated that the fuel cells' exposure to benzene and naphthalene should be limited to concentrations less than 2 ppm.

  9. Development of a computational model applied to a unitary 144 CM{sup 2} proton exchange membrane fuel cell; Desenvolvimento de um modelo numerico computacional aplicado a uma celula a combustivel unitaria de 144 CM{sup 2} tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Robalinho, Eric

    2009-07-01

    This work presents the development of a numerical computer model and methodology to study and design polymeric exchange membrane fuel cell - PEM. For the validation of experimental results, a sequence of routines, appropriate to fit the data obtained in the laboratory, was described. At the computational implementation it was created a new strategy of coupling two 3-dimensional models to satisfy the requirements of the comprehensive model of the fuel cell, including its various geometries and materials, as well as the various physical and chemical processes simulated. To effective assessment of the real cell analogy with numerical model, numerical studies were carried out. Comparisons with values obtained in the literature, characterization of variables through laboratory experiments and estimates from models already tested in the literature were also performed. Regarding the experimental part, a prototype of a fuel cell unit of 144 cm{sup 2} of geometric area was designed, produced and operated at laboratory with the purpose of validating the numerical computer model proposed, with positive results. The results of simulations for the 2D and 3D geometries proposed are presented in the form of polarization curves, highlighting the catalytic layer model based on the geometry of agglomerates. Parametric and sensitivity studies are presented to illustrate the change in performance of the fuel cell studied. The final model is robust and useful as a tool for design and optimization of PEM type fuel cells in a wide range of operating conditions. (author)

  10. Development of a computational model applied to a unitary 144 cm{sup 2} proton exchange membrane fuel cell; Desenvolvimento de um modelo numerico computacional aplicado a uma celula a combustivel unitaria de 144 CM{sup 2} tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Robalinho, Eric

    2009-07-01

    This work presents the development of a numerical computer model and methodology to study and design polymeric exchange membrane fuel cell - PEM. For the validation of experimental results, a sequence of routines, appropriate to fit the data obtained in the laboratory, was described. At the computational implementation it was created a new strategy of coupling two 3-dimensional models to satisfy the requirements of the comprehensive model of the fuel cell, including its various geometries and materials, as well as the various physical and chemical processes simulated. To effective assessment of the real cell analogy with numerical model, numerical studies were carried out. Comparisons with values obtained in the literature, characterization of variables through laboratory experiments and estimates from models already tested in the literature were also performed. Regarding the experimental part, a prototype of a fuel cell unit of 144 cm of geometric area was designed, produced and operated at laboratory with the purpose of validating the numerical computer model proposed, with positive results. The results of simulations for the 2D and 3D geometries proposed are presented in the form of polarization curves, highlighting the catalytic layer model based on the geometry of agglomerates. Parametric and sensitivity studies are presented to illustrate the change in performance of the fuel cell studied. The final model is robust and useful as a tool for design and optimization of PEM type fuel cells in a wide range of operating conditions. (author)

  11. Carcinoma de células escamosas oral - contribuição de vírus oncogênicos e alguns marcadores moleculares no desenvolvimento e prognóstico da lesão: uma revisão Oral squamous cell carcinoma - contribution of oncogenic virus and some molecular markers in the development and prognosis of the lesion: a review

    Directory of Open Access Journals (Sweden)

    Beatriz da Rocha Miranda Venturi

    2004-06-01

    Full Text Available O carcinoma de células escamosas oral é um evento de muitas etapas, cuja incidência cresce continuamente, particularmente em jovens, numa amplitude que não pode ser completamente explicada pelo aumento da exposição a fatores de risco, como o tabaco e o álcool. Recentes investigações moleculares sugerem que existem múltiplos eventos genéticos, e vírus oncogênicos que são capazes de alterar as funções normais de oncogenes e genes de supressão tumoral. O objetivo deste artigo foi revisar o conhecimento atual sobre o papel do papilomavírus humano (HPV, Epstein-Barr vírus (EBV, P53 e telomerase no desenvolvimento e prognóstico do carcinoma de células escamosas oral.Oral squamous cell carcinoma is a multistep event that continues to increase in incidence, particularly in the young, and to an extent that cannot be fully explained by increased exposure to known risk factors, as tobacco or alcohol. Recent molecular investigations suggest that there are multiple genetic events, and oncogenic virus that are able to alter the normal functions of oncogenes and tumor suppressor genes. The aim of the present article was to review the current knowledge on the role of Human papillomavirus (HPV, Epstein-Barr virus (EBV, P53 and telomerase in the development and prognosis of the oral squamous cell carcinoma.

  12. CO tolerance by the PEMFC operational at temperatures up to 200°C

    DEFF Research Database (Denmark)

    Li, Qingfeng; He, Ronghuan; Gao, Ji-An;

    2003-01-01

    The CO poisoning effect on carbon-supported platinum catalysts in polymer electrolyte membrane fuel cells has been investigated in a temperature range from 125 to 200°C with the phosphoric acid-doped polybenzimidazole membranes as electrolyte. The effect is very temperature-dependent and can be s...... densities lower than 0.25 A/cm2. For comparison, the tolerance is only 0.0025 % CO (25 ppm) at 80°C at current densities up to 0.15 A/cm². The effect of CO2 in hydrogen was also studied. At 175°C, 25% CO2 in the fuel stream showed only the dilution effect.......The CO poisoning effect on carbon-supported platinum catalysts in polymer electrolyte membrane fuel cells has been investigated in a temperature range from 125 to 200°C with the phosphoric acid-doped polybenzimidazole membranes as electrolyte. The effect is very temperature-dependent and can...

  13. Performance improvement of a PEMFC system controlling the cathode outlet air flow

    Energy Technology Data Exchange (ETDEWEB)

    Feroldi, Diego; Serra, Maria; Riera, Jordi [Institut de Robotica i Informatica Industrial, Universitat Politecnica de Catalunya-Consejo Superior de Investigaciones Cientificas, C. Llorens i Artigas 4, 08028 Barcelona (Spain)

    2007-06-10

    This paper presents a stationary and dynamic study of the advantages of using a regulating valve for the cathode outlet flow in combination with the compressor motor voltage as manipulated variables in a fuel cell system. At a given load current, the cathode input and output flow rate determine the cathode pressure and stoichiometry, and consequently determine the oxygen partial pressure, the generated voltage and the compressor power consumption. In order to maintain a high efficiency during operation, the cathode output regulating valve has to be adjusted to the operating conditions, specially marked by the current drawn from the stack. Besides, the appropriate valve manipulation produces an improvement in the transient response of the system. The influence of this input variable is exploited by implementing a predictive control strategy based on dynamic matrix control (DMC), using the compressor voltage and the cathode output regulating valve as manipulated variables. The objectives of this control strategy are to regulate both the fuel cell voltage and oxygen excess ratio in the cathode, and thus, to improve the system performance. All the simulation results have been obtained using the MATLAB-Simulink environment. (author)

  14. Thermodynamic and chemical kinetic analysis of a 5 kw, compact steam reformer - PEMFC system

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo, Luis Evelio Garcia; Oliveira, Amir Antonio Martins [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica], e-mail: evelio@labcet.ufsc.br, e-mail: amirol@emc.ufsc.br

    2006-07-01

    Here we present a thermodynamic and chemical kinetic analysis of the methane steam reforming for production of 5 kw of electrical power in a PEM fuel cell. The equilibrium analysis is based on the method of element potentials to find the state of minimum Gibbs free energy for the system and provides the equilibrium concentration of the reforming products. The objective of this analysis is to obtain the range of reforming temperature, pressure and steam-methane molar ratio that results in maximum hydrogen production subjected to low carbon monoxide production and negligible coke formation. The thermal analysis provides the heat transfer rates associated with the individual processes of steam production, gas-phase superheating and reforming necessary to produce 5 kw of electrical power in a PEM fuel cell and allows for the calculation of thermal efficiencies. Then, the chemical reaction pathways for hydrogen production in steam reforming are discussed and the available chemical, adsorption and equilibrium constants are analyzed in terms of thermodynamic consistency. This analysis provides the framework for the reactor sizing and for establishing the adequate operation conditions. (author)

  15. Fuel cell catalyst degradation

    DEFF Research Database (Denmark)

    Arenz, Matthias; Zana, Alessandro

    2016-01-01

    Fuel cells are an important piece in our quest for a sustainable energy supply. Although there are several different types of fuel cells, the by far most popular is the proton exchange membrane fuel cell (PEMFC). Among its many favorable properties are a short start up time and a high power density...... increasing focus. Activity of the catalyst is important, but stability is essential. In the presented perspective paper, we review recent efforts to investigate fuel cell catalysts ex-situ in electrochemical half-cell measurements. Due to the amount of different studies, this review has no intention to give...

  16. DESENVOLVIMENTO RURAL: AFINAL, SOBRE O QUE ESTAMOS FALANDO?

    Directory of Open Access Journals (Sweden)

    Daniela Dias Kühn

    2015-07-01

    Full Text Available A expressão desenvolvimento vem sendo cada vez mais utilizada e está consolidada no estudo das realidades socioeconômicas. Entretanto, há, ainda, de se limitar o alcance da expressão, bem como a qualificação. O presente artigo discute o significado da expressão desenvolvimento rural, reunindo autores e buscando tematizar sobre os conceitos envolvidos na expressão. O objetivo principal deste trabalho é, a partir de uma revisão bibliográfica do conceito de desenvolvimento rural e de uma contextualização da Abordagem das Capacitações, indicar como a referida abordagem pode contribuir para a construção de um conceito de desenvolvimento rural mais adequado à diversidade inerente ao ambiente em análise. Para isso, foi realizada uma breve revisão daquilo que vem sendo discutido sobre processos de desenvolvimento e como esse processo se associa à expressão rural. O termo desenvolvimento é analisado a partir da construção de suas interpretações no processo de conceituação e desenvolvimento teórico. Foi possível reconhecer os principais adjetivos, bem como a evolução dessas discussões nos últimos 30 anos. Por fim, é identificado um conceito associado à Abordagem das Capacitações, apresentado pelo economista indiano Amartya Sen. A ideia de desenvolvimento rural, associada à Abordagem das Capacitações, leva a uma concepção que identifica o desenvolvimento rural como um aumento da possibilidade de escolha dos indivíduos que residem em ambientes constituídos por relações socioeconômicas, geográficas e culturais que evidenciam, por meio da paisagem, a utilização e (ou preservação de aspectos relacionados à Natureza cuja reprodução não é inteiramente dependente e (ou condicionada pela ação humana.

  17. Al2O3 Disk Supported Si3N4 Hydrogen Purification Membrane for Low Temperature Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Xiaoteng Liu

    2013-12-01

    Full Text Available Reformate gas, a commonly employed fuel for polymer electrolyte membrane fuel cells (PEMFCs, contains carbon monoxide, which poisons Pt-containing anodes in such devices. A novel, low-cost mesoporous Si3N4 selective gas separation material was tested as a hydrogen clean-up membrane to remove CO from simulated feed gas to single-cell PEMFC, employing Nafion as the polymer electrolyte membrane. Polarization and power density measurements and gas chromatography showed a clear effect of separating the CO from the gas mixture; the performance and durability of the fuel cell was thereby significantly improved.

  18. State-of-the-art in bipolar of proton exchange membrane fuel cell

    Science.gov (United States)

    Wang, Yun; Wang, Jingjing; Yin, Bi-feng; Xu, Zhen-ying; Ding, Sheng

    2010-10-01

    Proton exchange membrane fuel cell (PEMFC) has been the research focus because of the characteristics of compact structure, low-temperature starting, high specific energy density and power, environmental protection, prolonged service time. The bipolar plate in PEMFC has the function of isolating and uniformly distributing reactants, removing reaction products, collecting and inducing current, providing mechanical support for the cells in the stack collects, etc. The bipolar plate, which influences not only the cell stack performance but also the stack cost, is a vital component of PEMFC that is the choke point of industrialization. Compared with the conventional graphite bipolar plate, the metallic bipolar plate has the advantages of excellent electrical and thermal conductivity, high mechanical strength and power density, no leakage and good workability. Furthermore, the metal plate is especially suitable for production in mass. Therefore, metallic bipolar plate is considered to be a promising alternative for PEMFC bipolar. A review of the research work involves the material selection and processing of bipolar plate, flow-field type and the corresponding design, the forming methods of metallic bipolar plates. The materials of bipolar plate for PEMFC are focused on graphite, metal or alloy, and all kinds of composite materials. The disadvantages and advantages of these materials are compared. The flow channels of bipolar include dot-type, web-type, serpentine-type and the interdigital shape. Among them, serpentine-type flow channel plates are mentioned in detail. In this paper, we introduced the forming methods of metallic bipolar plates such as the electrochemical micro-fabrication, electroforming, thermoforming, micro-stamping and micro-milling. Finally, it points out that the prospective research about the PEMFC is minimization and industrialization.

  19. Pseudo-2D model of a cross-flow membrane humidifier for a PEM fuel cell under multiphase conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dalet, C.; Diny, M. [Peugeot Citroen Automobile, Carrieres sous Poissy (France). Fuel Cell Program; Maranzana, G.; Lottin, O.; Dillet, J. [Nancy Univ., Vanoeuvre les Nancy (France). Centre national de la recherche scientifique

    2009-07-01

    Membrane dehydration can reduce the performance of proton exchange membrane fuel cells (PEMFCs). However, excessive water at the inlet of the fuel cells can flood cathodes. An understanding of the coupled mass and heat transfer processes involved in membrane humidifiers is needed in order to successfully manage water in PEMFCs. This paper discussed a pseudo-2D model of a cross-flow membrane humidifier for PEMFCs. The model was used to test correlations of the water transport coefficient through a Nafion 115 membrane. The study showed that results obtained using the model differed from experimental results. The effects of inlet operating conditions, flow rates, and temperature on the performance of a planar membrane humidifier under both single- and multi-phase conditions were also investigated.

  20. Optimization by simulation and development of solar cells with aluminium paste rear emitter and diffusion in conveyor furnace; Otimizacao por simulacao e desenvolvimento de celulas solares com emissor posterior formado por pasta de aluminio e difusao em forno de esteira

    Energy Technology Data Exchange (ETDEWEB)

    Mallmann, Ana Paula

    2011-01-15

    Photovoltaic solar energy is the direct conversion of solar energy into electricity and it has low impact to the environment during electric energy production. The main device of this technology is the solar cell and silicon is the substrate most used. The solar cells are electrically connected and encapsulated in order to form the photovoltaic module. The aims of this thesis are to optimize, develop and to analyse n{sup +}np{sup +} solar cells processed in n type Si-PV-FZ and with aluminum rear emitter formed in belt furnace. The optimization of solar cells by simulation is an important step before the device development. The software PC-1D and another program developed using Visual Basic language were used. Considering a metal grid formed by evaporation technique in vacuum ambient an efficiency of 16.8 % may be achieved. With screen printed grid, 15.8 % efficient solar cells were obtained. From the simulation results it was found that the screen printing metallization may become more viable than evaporation technique because there is low difference in the efficiency and the screen printing is a simpler technique. The experimental optimization of silicon wafers texture process resulted in reflectance of 12 %. This value is typical for monocrystalline silicon with textured surface. Experimental optimization of phosphorus front surface field shows a sheet resistance of (36 {+-} 4) {omega}/ for this region. This region was formed in a thermal step in a conventional furnace with POCl{sub 3}. It was found that after the phosphorus diffusion occurred gettering to specific temperature and time. It was verified that the minority carrier lifetime in the final of processing is similar to the initial value. The influence of steps sequence of front silver paste firing and rear diffusion/firing aluminium paste, of surface passivation and the influence of dry air flow during the aluminium paste diffusion/firing, of aluminium paste diffusion/firing temperature and of belt speed

  1. Dynamic modeling and simulation of air-breathing proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yalcinoz, T. [Department of Electrical and Computer Engineering, University of South Alabama, Mobile, AL 36688 (United States); Nigde University, Department of Electrical and Electronic Engineering, Nigde 51245 (Turkey); Alam, M.S. [Department of Electrical and Computer Engineering, University of South Alabama, Mobile, AL 36688 (United States)

    2008-07-15

    Small fuel cells have shown excellent potential as alternative energy sources for portable applications. One of the most promising fuel cell technologies for portable applications is air-breathing fuel cells. In this paper, a dynamic model of an air-breathing PEM fuel cell (AB-PEMFC) system is presented. The analytical modeling and simulation of the air-breathing PEM fuel cell system are verified using Matlab, Simulink and SimPowerSystems Blockset. To show the effectiveness of the proposed AB-PEMFC model, two case studies are carried out using the Matlab software package. In the first case study, the dynamic behavior of the proposed AB-PEMFC system is compared with that of a planar air-breathing PEM fuel cell model. In the second case study, the validation of the air-breathing PEM fuel cell-based power source is carried out for the portable application. Test results show that the proposed AB-PEMFC system can be considered as a viable alternative energy sources for portable applications. (author)

  2. Portable power applications of fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Weston, M.; Matcham, J.

    2002-07-01

    This report describes the state-of-the-art of fuel cell technology for portable power applications. The study involved a comprehensive literature review. Proton exchange membrane fuel cells (PEMFCs) have attracted much more interest than either direct methanol fuel cells (DMFCs) or solid oxide fuel cells (SOFCs). However, issues relating to fuel choice and catalyst design remain with PEMFCs; DMFCs have excellent potential provided issues relating to the conducting membrane can be resolved but the current high temperature of operation and low power density currently makes SOFCs less applicable to portable applications. Available products are listed and the obstacles to market penetration are discussed. The main barriers are cost and the size/weight of fuel cells compared with batteries. Another key problem is the lack of a suitable fuel infrastructure.

  3. Control-oriented dynamic fuzzy model and predictive control for proton exchange membrane fuel cell stack

    Institute of Scientific and Technical Information of China (English)

    LI Xi; DENG Zhong-hua; CAO Guang-yi; ZHU Xin-jian; WEI Dong

    2006-01-01

    Proton exchange membrane fuel cell (PEMFC) stack temperature and cathode stoichiometric oxygen are very important control parameters. The performance and lifespan of PEMFC stack are greatly dependent on the parameters. So, in order to improve the performance index, tight control of two parameters within a given range and reducing their fluctuation are indispensable.However, control-oriented models and control strategies are very weak junctures in the PEMFC development. A predictive control algorithm was presented based on their model established by input-output data and operating experiences. It adjusts the operating temperature to 80 ℃. At the same time, the optimized region of stoichiometric oxygen is kept between 1.8-2.2. Furthermore, the control algorithm adjusts the variants quickly to the destination value and makes the fluctuation of the variants the least. According to the test results, compared with traditional fuzzy and PID controllers, the designed controller shows much better performance.

  4. Spatial proton exchange membrane fuel cell performance under bromomethane poisoning

    Science.gov (United States)

    Reshetenko, Tatyana V.; Artyushkova, Kateryna; St-Pierre, Jean

    2017-02-01

    The poisoning effects of 5 ppm CH3Br in the air on the spatial performance of a proton exchange membrane fuel cell (PEMFC) were studied using a segmented cell system. The presence of CH3Br caused performance loss from 0.650 to 0.335 V at 1 A cm-2 accompanied by local current density redistribution. The observed behavior was explained by possible bromomethane hydrolysis with the formation of Br-. Bromide and bromomethane negatively affected the oxygen reduction efficiency over a wide range of potentials because of their adsorption on Pt, which was confirmed by XPS. Moreover, the PEMFC exposure to CH3Br led to a decrease in the anode and cathode electrochemical surface area (∼52-57%) due to the growth of Pt particles through agglomeration and Ostwald ripening. The PEMFC did not restore its performance after stopping bromomethane introduction to the air stream. However, the H2/N2 purge of the anode/cathode and CV scans almost completely recovered the cell performance. The observed final loss of ∼50 mV was due to an increased activation overpotential. PEMFC exposure to CH3Br should be limited to concentrations much less than 5 ppm due to serious performance loss and lack of self-recovery.

  5. Synthesis and Development of Modified OMC-Supported Platinum Electrocatalyst for PEMFC

    Science.gov (United States)

    Muonagolu, Emeka Paul

    Ordered mesoporous carbon (OMC) has been considered as a promising Platinum catalyst support because of its large surface area, uniform ordered hexagonal mesopores, porous structure and high electrical conductivity. Graphitization of the walls of OMC is vital when the electrical conductivity of the catalyst is the main concern. The objective of this work was to improve the electrical conductivity of the ordered mesoporous carbon (OMC) support by utilizing transition metals such as Ni, Co and Fe to graphitize the pore walls of OMC via catalytic graphitization. Metal modified OMCs have been synthesized following two steps. First step is synthesizing metal modified SBA-15 as a template containing 10wt% transition metals (Ni, Co, Fe) and TEOS as a source of silica followed by calcination. The second step is introducing sucrose as the carbon source into the pores of the silica template followed by carbonization at 900°C and removal of the silica template using hydrofluoric acid. The synthesized Metal modified OMCs were characterized using Brunaeur Emmit Teller (BET) analysis, X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy. Surface area for the metal modified --OMC was found around 1300--1500m 2/g and pore sizes in the range of 3--4nm. The membrane electrode assembly (MEA) was prepared using the synthesized electrocatalyst and was used to evaluate the performance of the catalyst by testing it on the fuel cell test station. The results were compared to that of commercial catalyst.

  6. Thermal analysis of cylindrical natural-gas steam reformer for 5 kW PEMFC

    Science.gov (United States)

    Jo, Taehyun; Han, Junhee; Koo, Bonchan; Lee, Dohyung

    2016-01-01

    The thermal characteristics of a natural-gas based cylindrical steam reformer coupled with a combustor are investigated for the use with a 5 kW polymer electrolyte membrane fuel cell. A reactor unit equipped with nickel-based catalysts was designed to activate the steam reforming reaction without the inclusion of high-temperature shift and low-temperature shift processes. Reactor temperature distribution and its overall thermal efficiency depend on various inlet conditions such as the equivalence ratio, the steam to carbon ratio (SCR), and the fuel distribution ratio (FDR) into the reactor and the combustor components. These experiments attempted to analyze the reformer's thermal and chemical properties through quantitative evaluation of product composition and heat exchange between the combustor and the reactor. FDR is critical factor in determining the overall performance as unbalanced fuel injection into the reactor and the combustor deteriorates overall thermal efficiency. Local temperature distribution also influences greatly on the fuel conversion rate and thermal efficiency. For the experiments, the operation conditions were set as SCR was in range of 2.5-4.0 and FDR was in 0.4-0.7 along with equivalence ratio of 0.9-1.1; optimum results were observed for FDR of 0.63 and SCR of 3.0 in the cylindrical steam reformer.

  7. Thermal analysis of cylindrical natural-gas steam reformer for 5 kW PEMFC

    Science.gov (United States)

    Jo, Taehyun; Han, Junhee; Koo, Bonchan; Lee, Dohyung

    2016-11-01

    The thermal characteristics of a natural-gas based cylindrical steam reformer coupled with a combustor are investigated for the use with a 5 kW polymer electrolyte membrane fuel cell. A reactor unit equipped with nickel-based catalysts was designed to activate the steam reforming reaction without the inclusion of high-temperature shift and low-temperature shift processes. Reactor temperature distribution and its overall thermal efficiency depend on various inlet conditions such as the equivalence ratio, the steam to carbon ratio (SCR), and the fuel distribution ratio (FDR) into the reactor and the combustor components. These experiments attempted to analyze the reformer's thermal and chemical properties through quantitative evaluation of product composition and heat exchange between the combustor and the reactor. FDR is critical factor in determining the overall performance as unbalanced fuel injection into the reactor and the combustor deteriorates overall thermal efficiency. Local temperature distribution also influences greatly on the fuel conversion rate and thermal efficiency. For the experiments, the operation conditions were set as SCR was in range of 2.5-4.0 and FDR was in 0.4-0.7 along with equivalence ratio of 0.9-1.1; optimum results were observed for FDR of 0.63 and SCR of 3.0 in the cylindrical steam reformer.

  8. Kinetic insights over a PEMFC operating on stationary and oscillatory states.

    Science.gov (United States)

    Mota, Andressa; Gonzalez, Ernesto R; Eiswirth, Markus

    2011-12-01

    Kinetic investigations in the oscillatory state have been carried out in order to shed light on the interplay between the complex kinetics exhibited by a proton exchange membrane fuel cell fed with poisoned H(2) (108 ppm of CO) and the other in serie process. The apparent activation energy (E(a)) in the stationary state was investigated in order to clarify the E(a) observed in the oscillatory state. The apparent activation energy in the stationary state, under potentiostatic control, rendered (a) E(a) ≈ 50-60 kJ mol(-1) over 0.8 V proton conductivity in the membrane. The dependence of the period-one oscillations on the temperature yielded a genuine Arrhenius dependence with two E(a) values: (a) E(a) around 70 kJ mol(-1), at high temperatures, and (b) E(a) around 10-15 kJ mol(-1), at lower temperatures. The latter E(a) indicates the presence of protonic mass transport coupled to the essential oscillatory mechanism. These insights point in the right direction to predict spatial couplings between anode and cathode as having the highest strength as well as to speculate the most likely candidates to promote spatial inhomogeneities.

  9. Research of General Deduction Optimization on PEMFC Manufacturing with Fuzzy Linguistic Analysis

    Directory of Open Access Journals (Sweden)

    Tian-Syung Lan

    2014-01-01

    Full Text Available In control questions, multiquality parameters are the most suitable, as they are everlasting in highly complex misalignment relations; the relationship between the parameter and quality of mutual influence is complex, and often massive redundant operations must be achievable by the test installation. Because the most suitable multiquality parameter is difficult to achieve, this study designates the proton exchange membrane fuel cell as the topic, takes the inlet temperature, inlet pressure, and incoming flow speed as the controlling elements, uses conformity fuzzy meaning analysis and the ideal solution similar order by chance law (TOPSIS, and discusses the parameters to control the influences of the quality goal. As outlet temperature, outlet pressure, pressure drop do not operate after the experiment, this study uses the meaning deduction method and develops a set of the most suitable control mechanisms. The research results show that this study develops a quality decision scheme for a set of meanings by using the misalignment and a high order complexity question. It also penetrates the meaning method, which guarantees that the quality and experimental efficiency may elevate the competitive power of science and technological undertakings development, effectively economize costs, and provide a set of economies and perspectives. The multiqualities are the most suitable control plan which meets the demands of practice.

  10. Os eventos programados, como alternativo do desenvolvimento do turismo

    Directory of Open Access Journals (Sweden)

    Andrés Pinassi

    2014-10-01

    Full Text Available Turismo e lazer são vistos como uma alternativa para o desenvolvimento econômico, social e cultural de uma comunidade. Ambas práticas de lazer são consolidadas como processos sócio-espaciais que podem trazer muitos impactos benéficos para os moradores de uma determinada localidade. Assim, a dinâmica de eventos programados em aldeias visa proporcionar uma alternativa oportunidades de desenvolvimento local para comunidades carentes. Nesse contexto, a pesquisa desenvolvida, em seguida, analisa o desenvolvimento de um festival especial, realizada na Provincia de Buenos Aires (Argentina. Este festival, iniciado a partir da esfera pública municipal, mostrou benefícios económicos significativos e definir um entretenimento alternativa valiosa para a população local e da área de influência.

  11. Inclusão digital e desenvolvimento local

    Directory of Open Access Journals (Sweden)

    Caroline Queiroz Santos

    Full Text Available O artigo procura analisar a inclusão digital como elemento facilitador para o desenvolvimento local. Seu objetivo é analisar e avaliar os ganhos sociais propiciados pelo acesso à tecnologia da Internet por meio de telecentros comunitários, procurando identificar tendências de desenvolvimento local a partir da ampliação do uso das TICs, em uma região caracterizada por pobreza extrema. Descreve-se a experiência do projeto Cidadão NET, iniciativa governamental realizada no Estado de Minas Gerais, que tem a proposta de auxiliar o desenvolvimento humano por meio do acesso às tecnologias e do envolvimento comunitário.

  12. Preparando um ambiente de desenvolvimento para a plataforma android

    Directory of Open Access Journals (Sweden)

    Felipe Pires de Oliveira

    2015-11-01

    Full Text Available Este artigo descreve as etapas para a criação de um ambiente de desenvolvimento para a plataforma Android. O artigo foi dividido em quatro partes: Primeiro uma introdução sobre o assunto. Na segunda seção são mostrados os passos necessários para a configuração do ambiente de desenvolvimento. Na terceira seção, é demonstrado como criar uma aplicação para dispositivo Android que calculo Índice de Massa Corporal (IMC. A quarta seção apresenta as considerações finais. A solução abordada tem como base a IDE Eclipse e o SDK do Android, bem como o Kit de Desenvolvimento Java da Oracle (JDK.

  13. Preparando um ambiente de desenvolvimento para a plataforma android

    Directory of Open Access Journals (Sweden)

    Felipe Pires de Oliveira

    2015-12-01

    Full Text Available Este artigo descreve as etapas para a criação de um ambiente de desenvolvimento para a plataforma Android. O artigo foi dividido em quatro partes: Primeiro uma introdução sobre o assunto. Na segunda seção são mostrados os passos necessários para a configuração do ambiente de desenvolvimento. Na terceira seção, é demonstrado como criar uma aplicação para dispositivo Android que calculo Índice de Massa Corporal (IMC. A quarta seção apresenta as considerações finais. A solução abordada tem como base a IDE Eclipse e o SDK do Android, bem como o Kit de Desenvolvimento Java da Oracle (JDK.

  14. Study on Production of Hydrogen from Methane for Proton Exchange Membrane Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    宋正昶; 李传统

    2001-01-01

    The hydrogen production from methane for proton exchange membrane fuel cell (PEMFC) was studied experimentally. The conversion rate of methane under different steam-carbon ratios, the effect of the different excess air ratios on the constituents of the gas produced, the permeability of hydrogen under different pressure differences, and the effect of different system pressure on the reaction enthalpy of hydrogen were obtained. The results lay the basis for the production of hydrogen applicable to PEMFC, moreover, provide a new way for the comprehensive utilization of the coal bed methane.

  15. The effect of inhomogeneous compression on water transport in the cathode of a PEM fuel cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Berning, Torsten; Kær, Søren Knudsen

    2011-01-01

    A three-dimensional, multi-component, two-fluid model developed in the commercial CFD package CFX 13 (ANSYS inc.), is used to investigate the effect of porous media compression on transport phenomenon of a PEM Fuel cell (PEMFC). The PEMFC model only consist of the cathode channel, gas diffusion...... layer, micro-porous layer and catalyst layer, excluding the membrane and anode. In the porous media liquid water transport is described by the capillary pressure gradient, momentum loss via the Darcy-Forchheimer equation and mass transfer between phases by a non-equilibrium phase change model...

  16. Final report on LDRD project : elucidating performance of proton-exchange-membrane fuel cells via computational modeling with experimental discovery and validation.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao Yang (Pennsylvania State University, University Park, PA); Pasaogullari, Ugur (Pennsylvania State University, University Park, PA); Noble, David R.; Siegel, Nathan P.; Hickner, Michael A.; Chen, Ken Shuang

    2006-11-01

    In this report, we document the accomplishments in our Laboratory Directed Research and Development project in which we employed a technical approach of combining experiments with computational modeling and analyses to elucidate the performance of hydrogen-fed proton exchange membrane fuel cells (PEMFCs). In the first part of this report, we document our focused efforts on understanding water transport in and removal from a hydrogen-fed PEMFC. Using a transparent cell, we directly visualized the evolution and growth of liquid-water droplets at the gas diffusion layer (GDL)/gas flow channel (GFC) interface. We further carried out a detailed experimental study to observe, via direct visualization, the formation, growth, and instability of water droplets at the GDL/GFC interface using a specially-designed apparatus, which simulates the cathode operation of a PEMFC. We developed a simplified model, based on our experimental observation and data, for predicting the onset of water-droplet instability at the GDL/GFC interface. Using a state-of-the-art neutron imaging instrument available at NIST (National Institute of Standard and Technology), we probed liquid-water distribution inside an operating PEMFC under a variety of operating conditions and investigated effects of evaporation due to local heating by waste heat on water removal. Moreover, we developed computational models for analyzing the effects of micro-porous layer on net water transport across the membrane and GDL anisotropy on the temperature and water distributions in the cathode of a PEMFC. We further developed a two-phase model based on the multiphase mixture formulation for predicting the liquid saturation, pressure drop, and flow maldistribution across the PEMFC cathode channels. In the second part of this report, we document our efforts on modeling the electrochemical performance of PEMFCs. We developed a constitutive model for predicting proton conductivity in polymer electrolyte membranes and compared

  17. Graphene-Supported Platinum Catalyst-Based Membrane Electrode Assembly for PEM Fuel Cell

    Science.gov (United States)

    Devrim, Yilser; Albostan, Ayhan

    2016-08-01

    The aim of this study is the preparation and characterization of a graphene-supported platinum (Pt) catalyst for proton exchange membrane fuel cell (PEMFC) applications. The graphene-supported Pt catalysts were prepared by chemical reduction of graphene and chloroplatinic acid (H2PtCl6) in ethylene glycol. X-ray powder diffraction, thermogravimetric analysis (TGA) and scanning electron microscopy have been used to analyze structure and surface morphology of the graphene-supported catalyst. The TGA results showed that the Pt loading of the graphene-supported catalyst was 31%. The proof of the Pt particles on the support surfaces was also verified by energy-dispersive x-ray spectroscopy analysis. The commercial carbon-supported catalyst and prepared Pt/graphene catalysts were used as both anode and cathode electrodes for PEMFC at ambient pressure and 70°C. The maximum power density was obtained for the Pt/graphene-based membrane electrode assembly (MEA) with H2/O2 reactant gases as 0.925 W cm2. The maximum current density of the Pt/graphene-based MEA can reach 1.267 and 0.43 A/cm2 at 0.6 V with H2/O2 and H2/air, respectively. The MEA prepared by the Pt/graphene catalyst shows good stability in long-term PEMFC durability tests. The PEMFC cell voltage was maintained at 0.6 V without apparent voltage drop when operated at 0.43 A/cm2 constant current density and 70°C for 400 h. As a result, PEMFC performance was found to be superlative for the graphene-supported Pt catalyst compared with the Pt/C commercial catalyst. The results indicate the graphene-supported Pt catalyst could be utilized as the electrocatalyst for PEMFC applications.

  18. Aprendizagem e Desenvolvimento na Teoria de Jean Piaget

    OpenAIRE

    Maria Suzana de Stefano Menin

    2009-01-01

    Neste artigo são apresentadas, segundo indicay6es de Castorina (1988), e desenvolvidas três etapas em que a teoria Psicogenetica de Jean Piaget debruçou-se sobre as relações entre aprendizagem e desenvolvimento buscando esclarece-las. Na primeira etapa, a teoria buscou diferenciar-se das posi96es empiristas e aprioristas afirmando todo o desenvolvimento cognitivo como construção gradual de estruturas. Na segunda, negou-se a possibilidade de apressar a construção de operações 16gicas atraves d...

  19. Biblioterapia: uma prática para o desenvolvimento pessoal

    OpenAIRE

    Danielle Thiago Ferreira

    2003-01-01

    Este artigo tem por objetivo relatar investigações acerca da Biblioterapia, visando a interpretação da elaboração de Programas Biblioterápicos Básicos para o desenvolvimento pessoal. Assim, delimitou-se os aspectos principais de um Programa Biblioterápico, suas abordagens metodológicas, dando ênfase no papel dos profissionais envolvidos e suas interações, dentre eles, destacando a atuação do bibliotecário. Palavras-chave Biblioterapia; Desenvolvimento pessoal; Profissional da informação; ...

  20. Desenvolvimento de conjunto membrana-eletrodos para célula a combustível de metanol direto passiva Development of membrane electrode assembly for passive direct methanol fuel cell

    Directory of Open Access Journals (Sweden)

    Eli Carlos Lisboa Ferreira

    2010-01-01

    Full Text Available Direct methanol fuel cells (DMFCs without external pumps or other ancillary devices for fuel and oxidant supply are known as passive DMFCs and are potential candidates to replace lithium-ion batteries in powering portable electronic devices. This paper presents the results obtained from a membrane electrode assembly (MEA specifically designed for passive DMFCs. Appropriated electrocatalysts were prepared and the effect of their loadings was investigated. Two types of gas diffusion layers (GDL were also tested. The influence of the methanol concentration was analyzed in each case. The best MEA performance presented a maximum power density of 11.94 mW cm-2.

  1. High-performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Jeong, Gisu; Kim, MinJoong; Han, Junyoung

    2016-01-01

    Although high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) have a high carbon monoxide tolerance and allow for efficient water management, their practical applications are limited due to their lower performance than conventional low-temperature PEMFCs. Herein, we present a high...... in the electrodes and result in low performance. MEAs with PTFE content of 20 wt% have an optimal pore structure for the efficient formation of electrolyte/catalyst interfaces and gas channels, which leads to high cell performance of approximately 0.5 A cm-2 at 0.6 V.......-performance membrane-electrode assembly (MEA) with an optimal polytetrafluoroethylene (PTFE) content for HT-PEMFCs. Low or excess PTFE content in the electrode leads to an inefficient electrolyte distribution or severe catalyst agglomeration, respectively, which hinder the formation of triple phase boundaries...

  2. Anticorrosion Coating of Carbon Nanotube/Polytetrafluoroethylene Composite Film on the Stainless Steel Bipolar Plate for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Show

    2013-01-01

    Full Text Available Composite film of carbon nanotube (CNT and polytetrafluoroethylene (PTFE was formed from dispersion fluids of CNT and PTFE. The composite film showed high electrical conductivity in the range of 0.1–13 S/cm and hydrophobic nature. This composite film was applied to stainless steel (SS bipolar plates of the proton exchange membrane fuel cell (PEMFC as anticorrosion film. This coating decreased the contact resistance between the surface of the bipolar plate and the membrane electrode assembly (MEA of the PEMFC. The output power of the fuel cell is increased by 1.6 times because the decrease in the contact resistance decreases the series resistance of the PEMFC. Moreover, the coating of this composite film protects the bipolar plate from the surface corrosion.

  3. High-performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Jeong, Gisu; Kim, MinJoong; Han, Junyoung; Kim, Hyoung-Juhn; Shul, Yong-Gun; Cho, EunAe

    2016-08-01

    Although high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) have a high carbon monoxide tolerance and allow for efficient water management, their practical applications are limited due to their lower performance than conventional low-temperature PEMFCs. Herein, we present a high-performance membrane-electrode assembly (MEA) with an optimal polytetrafluoroethylene (PTFE) content for HT-PEMFCs. Low or excess PTFE content in the electrode leads to an inefficient electrolyte distribution or severe catalyst agglomeration, respectively, which hinder the formation of triple phase boundaries in the electrodes and result in low performance. MEAs with PTFE content of 20 wt% have an optimal pore structure for the efficient formation of electrolyte/catalyst interfaces and gas channels, which leads to high cell performance of approximately 0.5 A cm-2 at 0.6 V.

  4. Simulation of an air conditioning absorption refrigeration system in a co-generation process combining a proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Pilatowsky, I.; Gamboa, S.A.; Rivera, W. [Centro de Investigacion en Energia - UNAM, Temixco, Morelos (Mexico); Romero, R.J. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas - UAEM, Cuernavaca, Morelos (Mexico); Isaza, C.A. [Universidad Pontificia Bolivariana, Medellin (Colombia). Instituto de Energia y Termodinamica; Sebastian, P.J. [Centro de Investigacion en Energia - UNAM, Temixco, Morelos (Mexico); Cuerpo Academico de Energia y Sustentabilidad-UP Chiapas, Tuxtla Gutierrez, Chiapas (Mexico); Moreira, J. [Cuerpo Academico de Energia y Sustentabilidad-UP Chiapas, Tuxtla Gutierrez, Chiapas (Mexico)

    2007-10-15

    In this work, a computer simulation program was developed to determine the optimum operating conditions of an air conditioning system during the co-generation process. A 1 kW PEMFC was considered in this study with a chemical/electrical theoretical efficiency of 40% and a thermal efficiency of 30% applying an electrical load of 100%. A refrigeration-absorption cycle (RAC) operating with monomethylamine-water solutions (MMA-WS), with low vapor generation temperatures (up to 80 C) is proposed in this work. The computer simulation was based on the refrigeration production capacity at the maximum power capacity of the PEMFC. Heat losses between the fuel cell and the absorption air conditioning system at standard operating conditions were considered to be negligible. The results showed the feasibility of using PEMFC for cooling, increasing the total efficiency of the fuel cell system. (author)

  5. Development of solar cells with back surface field made by aluminum paste and belt furnace diffusion; Desenvolvimento de celulas solares com campo retrodifusor formado por pasta de aluminio e difusao em forno de esteira

    Energy Technology Data Exchange (ETDEWEB)

    Marcolino, Juliane Bernardes

    2011-01-15

    Photovoltaics is based on the direct conversion of solar energy into electricity and is a promising alternative to diversify the world's energy matrix. This work aims to develop and analyse the deposition of Al paste by screen printing and firing/diffusion in a belt furnace to produce a BSF region in monocrystalline Si wafers. The diffusion of Al into the substrate was implemented by two different processes. In the first process the diffusion/firing of the Al paste and the firing of the Ag paste was carried out in independent steps. In this case, solar cells with an average efficiency ({eta}{sub average}) of 11.5 % and a maximum of 12.0 % were produced, but with the formation Al clusters in the back surface of the devices. In the second process firing/diffusion of such pastes was done on the same step. In this case, the best results were obtained for a firing/diffusion temperature of 860 deg C and belt furnace speed (V{sub E}) of 150 cm/min and also for 890 deg C and 180 cm/min. For the former parameters, {eta}{sub average} was 12.4 % and the maximum was 12.8 %. For the later, {eta}{sub average} was 12.5 % and the maximum was 12.6 %. Considering a temperature of 900 deg C and V{sub E} of 190 cm/min, {eta}{sub average} was 12.4 %. It was observed that minority carriers diffusion lengths were smaller than the thickness of silicon wafers. Open circuit voltages were 30 mV lower than that from similar cells fabricated at NT-Solar by using high purity Al deposited by e-beam evaporation indicating that the developed process produced low quality BSF. (author)

  6. A review of the development of high temperature proton exchange membrane fuel cells

    Institute of Scientific and Technical Information of China (English)

    Suthida Authayanun; Karittha Im-orb; Amornchai Arpornwichanop

    2015-01-01

    Due to the need for clean energy, the development of an efficient fuel cell technology for electricity generation has received considerable attention. Much of the current research efforts have investi‐gated the materials for and process development of fuel cells, including the optimization and simpli‐fication of the fuel cell components, and the modeling of the fuel cell systems to reduce their cost and improve their performance, durability and reliability to enable them to compete with the con‐ventional combustion engine. A high temperature proton exchange membrane fuel cell (HT‐PEMFC) is an interesting alternative to conventional PEMFCs as it is able to mitigate CO poisoning and water management problems. Although the HT‐PEMFC has many attractive features, it also possesses many limitations and presents several challenges to its widespread commercialization. In this re‐view, the trends of HT‐PEMFC research and development with respect to electrochemistry, mem‐brane, modeling, fuel options, and system design were presented.

  7. Design and performance analysis of micro proton exchange membrane fuel cells%微型质子交换膜燃料电池设计与性能分析

    Institute of Scientific and Technical Information of China (English)

    钟振忠; 陈俊勋; 彭荣贵

    2009-01-01

    This study describes a novel micro proton exchange membrane fuel cell (PEMFC)(active area ,2.5cm2)The flow field plate is manufactured by applying micro-electromechanica systems(MEMS) technology to silicon substrates to etch flow channels without a gold-coating.Therefore,this investigation uesd MEMS technology for fabrication of a flow field plate and presents a novel fabrication procedure.Various operating parameters,such as fuel temperature and fuel stoichinmetric flow rate, are tested to optimixe micro PEMFC performance.A single micro PEMFC using MEMS technology reveals the ideal performance of the proposed fuel cell.The optimal power density approaches 232.75mW·cm-1 when the fuel cell is operated atambient condition with humidified, heated fuel.

  8. Enhancement of fuel cell performance with less-water dependent composite membranes having polyoxometalate anchored nanofibrous interlayer

    Science.gov (United States)

    Abouzari-lotf, Ebrahim; Jacob, Mohan V.; Ghassemi, Hossein; Ahmad, Arshad; Nasef, Mohamed Mahmoud; Zakeri, Masoumeh; Mehdipour-Ataei, Shahram

    2016-09-01

    Polyoxometalate immobilized nanofiber was used to fabricate low gas permeable layer for composite membranes designed for proton exchange membrane fuel cell (PEMFC) operating at low relative humidity (RH). The composite membranes revealed enhanced proton conductivity in dry conditions compared with state-of-the-art pristine membrane (Nafion 112, N112). This was coupled with a low fuel crossover inheriting the composite membranes about 100 mV higher OCV than N112 when tested in PEMFC at 60 °C and 40% RH. A maximum power density of up to 930 mW cm-2 was also achieved which is substantially higher than the N112 under similar conditions (577 mW cm-2). Such remarkable performance enhancement along with undetectable leaching of immobilized polyoxometalate, high dimensional stability and low water uptake of the composite membranes suggest a strong potential for PEMFC under low RH operation.

  9. High temperature polymer electrolyte membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    K.Scott; M. Mamlouk

    2006-01-01

    One of the major issues limiting the introduction of polymer electrolyte membrane fuel cells (PEMFCs) is the low temperature of operation which makes platinum-based anode catalysts susceptible to poisoning by the trace amount of CO, inevitably present in reformed fuel. In order to alleviate the problem of CO poisoning and improve the power density of the cell, operating at temperature above 100 ℃ is preferred. Nafion(R) -type perfluorosulfonated polymers have been typically used for PEMFC. However, the conductivity of Nafion(R) -type polymers is not high enough to be used for fuel cell operations at higher temperature ( > 90 ℃) and atmospheric pressure because they dehydrate under these condition.An additional problem which faces the introduction of PEMFC technology is that of supplying or storing hydrogen for cell operation,especially for vehicular applications. Consequently the use of alternative fuels such as methanol and ethanol is of interest, especially if this can be used directly in the fuel cell, without reformation to hydrogen. A limitation of the direct use of alcohol is the lower activity of oxidation in comparison to hydrogen, which means that power densities are considerably lower. Hence to improve activity and power output higher temperatures of operation are preferable. To achieve this goal, requires a new polymer electrolyte membrane which exhibits stability and high conductivity in the absence of liquid water.Experimental data on a polybenzimidazole based PEMFC were presented. A simple steady-state isothermal model of the fuel cell is also used to aid in fuel cell performance optimisation. The governing equations involve the coupling of kinetic, ohmic and mass transport. This paper also considers the advances made in the performance of direct methanol and solid polymer electrolyte fuel cells and considers their limitations in relation to the source and type of fuels to be used.

  10. Em busca de novas estratégias de desenvolvimento

    Directory of Open Access Journals (Sweden)

    Ignacy Sachs

    1995-12-01

    Full Text Available Na véspera da Conferência sobre desenvolvimento social em Copenhague (1995, o autor defende novas estratégias condizentes com uma axiologia do desenvolvimento. Para ele, não há desenvolvimento sem crescimento equilibrado dentro de cada país e nas relações Norte-Sul. Por outro lado, não se pode prescindir da ecologia. Finalmente o objetivo do desenvolvimento é o homem, sua cultura própria, seus valores universais: o direito à inserção produtiva e à participação enquanto cidadão, o que supõe um Estado democrático, regulador de uma economia mista. No plano jurídico, o autor sugere a criação de um foro internacional independente.On the eve of the International Social Conference in Copenhagen (1995, the author defends new strategies, suitable for a development axiology. According to him, there is no development without a balanced growth within each country and in the North-South relations. On the other hand, one cannot ignore ecology. Finally, the target of development is man, his own culture, his universal values: the right to a productive insertion and to the participation as a citizen. This pressuposes a democratic State, regulator of a mixed economy. At the juridic level, the author suggests the creation of an independent international forum.

  11. Valores e Desenvolvimento Humano [Values and Human Development

    NARCIS (Netherlands)

    F. Comim; A. Macedo de Jesus (Anderson); R.C.B Oliveira; A. Davison; S. Galeno; A. Ribeiro

    2010-01-01

    markdownabstract__Abstract__ | 19 A primeira parte desse Relatório de Desenvolvimento Humano do Brasil 2009/2010 começa com a descrição de um amplo processo de consulta aberta à sociedade, denominada Brasil Ponto a Ponto, para a escolha do tema do relatório. A Campanha Brasil Ponto a Ponto teve por

  12. The Effect of Inhomogeneous Compression on Water Transport in the Cathode of a Proton Exchange Membrane Fuel Cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Berning, Torsten; Kær, Søren Knudsen

    2012-01-01

    A three-dimensional, multicomponent, two-fluid model developed in the commercial CFD package CFX 13 (ANSYS Inc.) is used to investigate the effect of porous media compression on water transport in a proton exchange membrane fuel cell (PEMFC). The PEMFC model only consist of the cathode channel, gas...... diffusion layer, microporous layer, and catalyst layer, excluding the membrane and anode. In the porous media liquid water transport is described by the capillary pressure gradient, momentum loss via the Darcy-Forchheimer equation, and mass transfer between phases by a nonequilibrium phase change model...

  13. The Effect of Nitrogen Cross-over on Proton Exchange Membrane Fuel Cell Water Balance Measurements Using Constant Temperature Anemometry

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Berning, Torsten; Kær, Søren Knudsen

    2016-01-01

    A novel method to obtain an ad-hoc and real time electrical signal of the PEMFC water balance by employing a constant temperature hot wire anemometry has been developed by our fuel cell research group. In this work, the effect of nitrogen-cross over on this method is experimentally demonstrated....... This is due to the effect of 1% nitrogen on power law constant’s “m” which can be used in determining the water balance as explained in previous work was extremely low. Thus, the hot wire technique for measuring the PEMFC water balance is still accurate with the nitrogen cross-over...

  14. Understanding on Interface Contribution to the Electrode Performance of Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Grahl-Madsen, L.

    2016-01-01

    The commercialization of proton exchange membrane fuel cells (PEMFCs) is closer to the reality than ever before. Electrode interface development can bring a boost to the last few steps. Here, we explore electrode properties from its interface structure, especially the ionomer phase. Electrodes...

  15. Estimation of membrane hydration status for standby proton exchange membrane fuel cell systems by impedance measurement

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Rugholt, Mark; Nielsen, Morten Busk;

    2014-01-01

    Fuel cells are getting growing interest in both backup systems and electric vehicles. Although these systems are characterized by long periods of inactivity, they must be able to start at any instant in the shortest time. However, the membrane of which PEMFCs are made tends to dry out when...

  16. Benchmarking Pt-based electrocatalysts for low temperature fuel cell reactions with the rotating disk electrode

    DEFF Research Database (Denmark)

    Pedersen, Christoffer Mølleskov; Escribano, Maria Escudero; Velazquez-Palenzuela, Amado Andres

    2015-01-01

    We present up-to-date benchmarking methods for testing electrocatalysts for polymer exchange membrane fuel cells (PEMFC), using the rotating disk electrode (RDE) method. We focus on the oxygen reduction reaction (ORR) and the hydrogen oxidation reaction (HOR) in the presence of CO. We have chosen...

  17. Synthesis and characterization of RUM catalysts (M=SE,MO,W,SN) applied in ORR for a PEMFC fuel battery; Sintesis y caracterizacion de catalizadores RUM (M=SE,MO,W,SN) aplicados en la RRO para una pila de combustible PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Ezeta-Mejia, A.; Arce Estrada, E.M. [Instituto Politecnico Nacional, Mexico, D.F. (Mexico)]. E-mail: araceli-ezeta@hotmail.com; earce@ipn.mx

    2009-09-15

    Proton exchange membrane fuel cells (PEMFC) have received a great deal of interest recently because of a variety of factors, such as low weight and volume, operating at low temperatures and offering a high combination of power density and high efficiency in the conversion of energy, making them adequate for portable applications. Nevertheless, oxygen reduction reaction (ORR) occurring in the cathode of the battery plays a determinant role as the limiting reaction. Therefore, more efficient electrocatalysts need to be used. The optimal electrocatalyst for this reaction is Pt, but because of its high cost, alternative low-cost electrocatalysts with high activity and stability have been sought. Many investigations have shown that the Pt-based binary catalysts, such as Pt-M (M= Co, Fe, etc.) present good electrocatalytic activity for ORR; other studies show that Ru-based catalysts (RuSe, RuSe,Mo, RuSeRh ) also have adequate activity for this reaction. This study reports on synthesis by mechanical alloying of RuPt{sub x}M (x=0, 0.6% and M=Se,Mo,W,Sn) electrocatalyst nanoparticles at different grinding durations (0, 20 and 40 h). The materials synthesized by mechanical alloying were characterized using sweep electron microscopy and x-ray diffraction, obtaining agglomerated and dispersed particles between 1 and 30 {mu}m. The electrocatalytic characterization was conducted using VC and EDR techniques in H{sub 2}SO{sub 4} 0.5 M solution at ambient temperatures. The systems present a reaction order of 1 with respect to ORR and an overall multi-electron transfer of 4e{sup -} for the formation of water. A comparison was made between the electrocatalytic activity in the presence and absence of Pt, showing that Pt increases the catalytic activity of the materials by at least 1 order of magnitude. [Spanish] Las pilas de combustible de Membrana de Intercambio Protonico (PEMFC) han recibido gran interes recientemente por diversos factores tales como su bajo peso y volumen, operan a

  18. Direct Carbon Fuel Cells: Converting Waste to Electricity

    Science.gov (United States)

    2007-09-01

    provide waste heat for hot water and energy to drive absorption chillers for cooling. If no attractive opportunities exist for energy savings as a result...07-32 2 Table 1. Operating characteristics of conventional fuel cells vs. DCFCs. PEMFC PAFC MCFC SOFC DCFC Electrolyte Polymer Phosphoric acid...consuming facilities. Currently, waste heat generated by 200–250 kW Phosphoric Acid Fuel Cell (PAFC) and Molten Carbonate Fuel Cell ( MCFC ) units

  19. Proton exchange membrane fuel cell model for aging predictions: Simulated equivalent active surface area loss and comparisons with durability tests

    Science.gov (United States)

    Robin, C.; Gérard, M.; Quinaud, M.; d'Arbigny, J.; Bultel, Y.

    2016-09-01

    The prediction of Proton Exchange Membrane Fuel Cell (PEMFC) lifetime is one of the major challenges to optimize both material properties and dynamic control of the fuel cell system. In this study, by a multiscale modeling approach, a mechanistic catalyst dissolution model is coupled to a dynamic PEMFC cell model to predict the performance loss of the PEMFC. Results are compared to two 2000-h experimental aging tests. More precisely, an original approach is introduced to estimate the loss of an equivalent active surface area during an aging test. Indeed, when the computed Electrochemical Catalyst Surface Area profile is fitted on the experimental measures from Cyclic Voltammetry, the computed performance loss of the PEMFC is underestimated. To be able to predict the performance loss measured by polarization curves during the aging test, an equivalent active surface area is obtained by a model inversion. This methodology enables to successfully find back the experimental cell voltage decay during time. The model parameters are fitted from the polarization curves so that they include the global degradation. Moreover, the model captures the aging heterogeneities along the surface of the cell observed experimentally. Finally, a second 2000-h durability test in dynamic operating conditions validates the approach.

  20. Influência do substrato e do tamanho da célula de bandejas de poliestireno expandido no desenvolvimento de mudas e produção de calêndula (Calendula officinalis L. Influence of substrate and cell size of expanded polystyrene tray on the development and production of marigold (Calendula officinalis L. seedlings

    Directory of Open Access Journals (Sweden)

    C.K.R Barbosa

    2010-03-01

    Full Text Available A calêndula (Calendula officinalis L. é uma planta medicinal anual de origem Mediterrânica que apresenta propriedades antiinflamatórias, antivirais, antigenotóxicas. A propagação desta planta normalmente é feita por sementes, sendo o uso de bandejas de poliestireno uma forma econômica de produção de mudas. Foram conduzidos dois experimentos com o objetivo de avaliar a interferência de dois tamanhos de célula em bandeja de poliestireno expandido (40 cm³ e 12 cm³ e de dois substratos (solo + esterco bovino curtido e substrato comercial tipo Plantmax para hortaliças® sobre a qualidade de mudas e a produção de calêndula. O delineamento estatístico nos dois experimentos foi em blocos casualizados, dispostos em arranjo fatorial 2 x 2 (dois substratos e dois tamanhos de células com seis repetições. Os tratamentos, referentes aos tamanhos das células foram bandeja com 128 células (40 cm³ de volume e, bandeja com 288 células (12 cm³ de volume. Os substratos utilizados foram solo de cerrado + esterco bovino curtido (1:1 e substrato comercial tipo "Plantmax para hortaliças®". Parte das mudas foi transplantada para avaliação da produção de capítulos. Houve diferenças significativas entre os substratos para as variáveis: matéria seca de parte aérea, matéria seca da raiz e matéria seca total. O uso do substrato formulado com solo de cerrado e esterco bovino proporcionou o melhor desenvolvimento das mudas de calêndula. Contudo, os diferentes tipos de substrato e bandejas de poliestireno não influenciaram significativamente a produção de capítulos das mudas transplantadas.Marigold Calendula (Calendula officinalis L. is an annual medicinal plant of Mediterranean origin which presents anti-inflammatory, antiviral and antigenotoxic properties. This species normally propagates through seeds, and the use of polystyrene trays is an economic way to produce its seedlings. Two experiments were carried out to evaluate the

  1. Effect of L-Arginine and L-NAME treatments on polymorphonuclear leukocytes and mononuclear cells influx during tumor growth Efeito dos tratamentos com L-Arginina e L-NAME sobre o influxo de leucócitos polimorfonucleares e células mononucleares durante o desenvolvimento tumoral

    Directory of Open Access Journals (Sweden)

    Olívia Teixeira Gomes Reis

    2009-04-01

    Full Text Available PURPOSE: Evaluate polymorphonuclear leukocytes (PMN's and mononuclear cells (MN's involvement in the Ehrlich´s solid tumor (ET growth. METHODS: 90 Swiss mice were inoculated with 10(7 tumor cells (sc, distributed in three groups and treated once a day, via intraperitoneal (ip, with 0.1ml of diluent, L-Arginine (20mg/Kg or L-NAME (20mg/Kg. After 7, 15 and 30 days of treatment, ten animals of each group were euthanized, the tumor mass was removed, processed and fixed for HE. Later, a morphometric analysis of the total area, parenchyma, necrosis, tumor stroma and PMN's leukocytes and MN's cells influx was performed. RESULTS: The L-Arginine treatment increased PMN's influx in the initial stage, whereas L-NAME reduced it. Our data suggests that NO effect on PMN's migration is dose-dependent. On the other hand, the MN´s cells influx was reduced by L-NAME treatment at all evaluated periods and at the same periods an increase in tumor growth was observed. CONCLUSION: At initial stages of tumor implantation, both PMN's leukocytes and MN's cells act together to control ET development.OBJETIVO: Avaliar o envolvimento de leucócitos polimorfonucleares (PMN's e células mononucleares (MN's no crescimento do Tumor Sólido de Ehrlich (TE. MÉTODOS: 90 camundongos Suíços foram inoculados com 10(7 células tumorais (sc, distribuídos em três grupos e tratados uma vez ao dia, via intraperitoneal (ip, com 0.1ml de diluente, L-Arginina (20mg/Kg ou L-NAME (20mg/Kg. Após 7, 15 e 30 dias, dez animais de cada grupo foram eutanasiados, a massa tumoral foi removida, processada e corada pela HE. Posteriormente, foi realizada análise morfométrica das áreas total, parênquima, necrose, estroma e influxo de leucócitos PMN's e células MN's. RESULTADOS: O tratamento com L-Arginina favoreceu o influxo de PMN's em períodos iniciais, enquanto o tratamento com L-NAME o reduziu. Nosso estudo sugere que o efeito do ON sobre a migração de PMN's é dose-dependente. Por

  2. A new state-observer of the inner PEM fuel cell pressures for enhanced system monitoring

    Science.gov (United States)

    Bethoux, Olivier; Godoy, Emmanuel; Roche, Ivan; Naccari, Bruno; Amira Taleb, Miassa; Koteiche, Mohamad; Nassif, Younane

    2014-06-01

    In embedded systems such as electric vehicles, Proton exchange membrane fuel cell (PEMFC) has been an attractive technology for many years especially in automotive applications. This paper deals with PEMFC operation monitoring which is a current target for improvement for attaining extended durability. In this paper, supervision of the PEMFC is done using knowledge-based models. Without extra sensors, it enables a clear insight of state variables of the gases in the membrane electrode assembly (MEA) which gives the PEMFC controller the ability to prevent abnormal operating conditions and associated irreversible degradations. First, a new state-observer oriented model of the PEM fuel cell is detailed. Based on this model, theoretical and practical observability issues are discussed. This analysis shows that convection phenomena can be considered negligible from the dynamic point of view; this leads to a reduced model. Finally a state-observer enables the estimation of the inner partial pressure of the cathode by using only the current and voltage measurements. This proposed model-based approach has been successfully tested on a PEM fuel cell simulator using a set of possible fault scenarios.

  3. High Temperature Polymers for use in Fuel Cells

    Science.gov (United States)

    Peplowski, Katherine M.

    2004-01-01

    NASA Glenn Research Center (GRC) is currently working on polymers for fuel cell and lithium battery applications. The desire for more efficient, higher power density, and a lower environmental impact power sources has led to interest in proton exchanges membrane fuels cells (PEMFC) and lithium batteries. A PEMFC has many advantages as a power source. The fuel cell uses oxygen and hydrogen as reactants. The resulting products are electricity, heat, and water. The PEMFC consists of electrodes with a catalyst, and an electrolyte. The electrolyte is an ion-conducting polymer that transports protons from the anode to the cathode. Typically, a PEMFC is operated at a temperature of about 80 C. There is intense interest in developing a fuel cell membrane that can operate at higher temperatures in the range of 80 C- 120 C. Operating the he1 cell at higher temperatures increases the kinetics of the fuel cell reaction as well as decreasing the susceptibility of the catalyst to be poisoned by impurities. Currently, Nafion made by Dupont is the most widely used polymer membrane in PEMFC. Nafion does not function well above 80 C due to a significant decrease in the conductivity of the membrane from a loss of hydration. In addition to the loss of conductivity at high temperatures, the long term stability and relatively high cost of Nafion have stimulated many researches to find a substitute for Nafion. Lithium ion batteries are popular for use in portable electronic devices, such as laptop computers and mobile phones. The high power density of lithium batteries makes them ideal for the high power demand of today s advanced electronics. NASA is developing a solid polymer electrolyte that can be used for lithium batteries. Solid polymer electrolytes have many advantages over the current gel or liquid based systems that are used currently. Among these advantages are the potential for increased power density and design flexibility. Automobiles, computers, and cell phones require

  4. 冷冻-解冻循环及气体吹扫对质子交换膜燃料电池的影响%Effects of Freeze/Thaw Cycles and Gas Purging Method on Polymer Electrolyte Membrane Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    张生生; 俞红梅; 朱红; 侯俊波; 衣宝廉; 明平文

    2006-01-01

    At subzero temperature, the startup capability and performance of polymer electrolyte membrane fuel cell (PEMFC) deteriorates markedly. The object of this work is to study the degradation mechanism of key components of PEMFC-membrane-electrode assembly (MEA) and seek feasible measures to avoid degradation. The effect of freeze/thaw cycles on the structure of MEA is investigated based on porosity and SEM measurement. The performance of a single cell was also tested before and after repetitious freeze/thaw cycles. The experimental results indicated that the performance of a PEMFC decreased along with the total operating time as well as the pore size distribution shifting and micro configuration changing. However, when the redundant water had been removed by gas purging, the performance of the PEMFC stack was almost resumed when it experienced again the same subzero temperature test. These results show that it is necessary to remove the water in PEMFCs to maintain stable performance under subzero temperature and gas purging is proved to be the effective operation.

  5. Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes

    DEFF Research Database (Denmark)

    Fernandez, Santiago Martin; Li, Qingfeng; Jensen, Jens Oluf

    2015-01-01

    Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer...

  6. Effect of chloride impurities on the performance and durability of polybenzimidazole-based high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Ali, Syed Talat; Li, Qingfeng; Pan, Chao;

    2011-01-01

    The effect of chloride as an air impurity and as a catalyst contaminant on the performance and durability of polybenzimidazole (PBI)-based high temperature proton exchange membrane fuel cell (HT-PEMFC) was studied. The ion chromatographic analysis reveals the existence of chloride contaminations...

  7. Importance of Electrode Hot-Pressing Conditions for the Catalyst Performance of Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Dhiman, Rajnish; Larsen, Mikkel Juul;

    2015-01-01

    The catalyst performance in a proton exchange membrane fuel cell (PEMFC) depends on not only the choice of materials, but also on the electrode structure and in particular on the interface between the components. In this work, we demonstrate that the hot-pressing conditions used during electrode...

  8. O local como estratégia de desenvolvimento

    Directory of Open Access Journals (Sweden)

    Jonas Anderson Simões das Neves

    2012-01-01

    Full Text Available O presente artigo é resultado de atividades desenvolvidas pelo autor junto à graduação como requisito para o recebimento de uma bolsa de estudos da modalidade REUNI-CAPES e destina-se a discussão da temática do desenvolvimento local, trazendo uma síntese dos principais elementos envolvidos neste debate, bem com as críticas por ele recebidas.

  9. Fuel cell engineering

    CERN Document Server

    Sundmacher

    2012-01-01

    Fuel cells are attractive electrochemical energy converters featuring potentially very high thermodynamic efficiency factors. The focus of this volume of Advances in Chemical Engineering is on quantitative approaches, particularly based on chemical engineering principles, to analyze, control and optimize the steady state and dynamic behavior of low and high temperature fuel cells (PEMFC, DMFC, SOFC) to be applied in mobile and stationary systems. * Updates and informs the reader on the latest research findings using original reviews * Written by leading industry experts and scholars * Review

  10. O desenvolvimento do talento em uma perspectiva feminina

    Directory of Open Access Journals (Sweden)

    Renata Muniz Prado

    Full Text Available Diversos estudos enfatizam as dificuldades enfrentadas pela mulher que se destaca pelo seu potencial superior, ressaltando a influência das forças sociais e culturais no desenvolvimento e na expressão dos seus talentos. Conciliar os múltiplos papéis desempenhados pela mulher constitui um dos principais fatores inibidores da promoção do talento feminino. Sendo assim, este ensaio busca contribuir para maior compreensão do desenvolvimento do talento em mulheres e, com base em recentes investigações, discutir os fatores que facilitam e dificultam uma performance feminina de destaque. As informações apresentadas neste trabalho poderão suscitar o desenvolvimento de outros estudos sobre o talento feminino e auxiliar a elaboração e a implementação de programas e serviços de atendimento a crianças e adolescentes talentosas bem como de políticas públicas dirigidas a mulheres que trabalham.

  11. Aprendizagem e Desenvolvimento na Teoria de Jean Piaget

    Directory of Open Access Journals (Sweden)

    Maria Suzana De Stefano Menin

    2009-12-01

    Full Text Available Neste artigo são apresentadas, segundo indicay6es de Castorina (1988, e desenvolvidas três etapas em que a teoria Psicogenetica de Jean Piaget debruçou-se sobre as relações entre aprendizagem e desenvolvimento buscando esclarece-las. Na primeira etapa, a teoria buscou diferenciar-se das posi96es empiristas e aprioristas afirmando todo o desenvolvimento cognitivo como construção gradual de estruturas. Na segunda, negou-se a possibilidade de apressar a construção de operações 16gicas atraves de treinos baseados em aprendizagens estritas, por associação e reforço, de respostas corretas. Na terceira etapa a teoria Psicogenetica buscou responder às indagações sobre as possibilidades de se promover o desenvolvimento através da apresentação de situações de desequilíbriocognitivo.

  12. Desenvolvimento humano: contribuições da psicologia moral

    Directory of Open Access Journals (Sweden)

    Yves de La Taille

    2007-03-01

    Full Text Available Procuramos avaliar as contribuições do conhecimento acumulado pela Psicologia Moral para a compreensão do desenvolvimento humano, para sustentar a tese segundo a qual a fonte energética do dever moral precisa ser procurada não só em sentimentos exclusivamente morais, mas também em sentimentos que desempenham um papel para o próprio desenvolvimento humano no seu conjunto. Três são os passos da análise deste artigo. Em primeiro lugar, verifi car se há possibilidade de articulação entre teorias psicológicas que enfatizam a dimensão afetiva da moralidade (Freud e Durkheim e outras que enfatizam a dimensão intelectual (Piaget e Kohlberg. Em segundo lugar, uma vez constatada a impossibilidade dessa articulação, sustentar que o sentimento de vergonha, presente na moralidade mas também em outras dimensões do desenvolvimento humano, é condição necessária ao sentimento de obrigatoriedade. Finalmente, analisar se tal sentimento é passível de ser evocado como fonte energética essencial nas abordagens que enfatizam a dimensão intelectual da moralidade.

  13. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, A. P., E-mail: aph@mcmaster.ca; Lee, V.; Wu, J.; Cooper, G. [Chemistry & Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1 (Canada); West, M. M.; Berejnov, V. [Faculty of Health Sciences Electron Microscopy, McMaster University, Hamilton, ON L8N 3Z5 (Canada); Soboleva, T.; Susac, D.; Stumper, J. [Automotive Fuel Cell Cooperation Corp., Burnaby BC V5J 5J8 (Canada)

    2016-01-28

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.

  14. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    Science.gov (United States)

    Hitchcock, A. P.; Lee, V.; Wu, J.; West, M. M.; Cooper, G.; Berejnov, V.; Soboleva, T.; Susac, D.; Stumper, J.

    2016-01-01

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.

  15. Sliding-Mode Control of PEM Fuel Cells

    CERN Document Server

    Kunusch, Cristian; Mayosky, Miguel

    2012-01-01

    Recent advances in catalysis technologies and new materials make fuel cells an economically appealing and clean energy source with massive market potential in portable devices, home power generation and the automotive industry. Among the more promising fuel-cell technologies are proton exchange membrane fuel cells (PEMFCs). Sliding-Mode Control of PEM Fuel Cells demonstrates the application of higher-order sliding-mode control to PEMFC dynamics. Fuel-cell dynamics are often highly nonlinear and the text shows the advantages of sliding modes in terms of robustness to external disturbance, modelling error and system-parametric disturbance using higher-order control to reduce chattering. Divided into two parts, the book first introduces the theory of fuel cells and sliding-mode control. It begins by contextualising PEMFCs both in terms of their development and within the hydrogen economy and today’s energy production situation as a whole. The reader is then guided through a discussion of fuel-cell operation pr...

  16. Molten Carbonate Fuel Cell Operation With Dual Fuel Flexibility

    Science.gov (United States)

    2007-10-01

    oxygen PAFC Phosphoric Acid Fuel Cell PEMFC Polymer Electrolyte Membrane Fuel Cell PDS Propane Desulfurization System ppm parts per million psig...range of power outputs. In addition , instantaneous and on-load fuel switching from natural gas to propane and back was demonstrated without loss of...issues that required additional investigation included identifying the number and volume of propane tanks needed and a vaporization sys- tem to

  17. Numerical simulation of transport phenomena in PEMFC with multi-channel serpentine flow fields%多通道蛇形流场PEMFC内传递现象的数值模拟

    Institute of Scientific and Technical Information of China (English)

    胡桂林; 樊建人

    2009-01-01

    The flow field structure in the bipolar plates has an important effect on the flow characteristics and cell efficiency. In order to investigate spatial distribution of local gas flow field, species concentration and local current density in the PEMFC (proton exchange membrane fuel cell) with multi-channel serpentine flow field, a steady three-dimensional mathematical CFD based model presented in the author's previous paper was applied to conduct numerical study on a small-scaled single proton exchange membrane fuel cell (the electrode active area 5.9 cm × 6.1 cm) in this paper. The flow characteristics and transport mechanism were discussed and analyzed. It indicates that current density is uniform, the pressure loss in the cathode is much higher than that of anode, and the mass fraction of anode hydrogen increases from inlet towards outlet.%电极板上的流场构型对质子交换膜燃料电池的流动特性和电池效率有重要的影响.为研究多通道蛇形流场设计质子交换膜燃料电池的局部流场、电流密度和组分浓度等的空间分布,应用作者前期发展的基于计算流体力学的三维稳态数学模型,对一个小型电池单体(电极面积大小为5.9 cm×6.1 cm)进行了详细的数值模拟,讨论和分析了该设计的流动特性和传输机理.结果表明:电池的电流密度分布比较均匀,阴极的压力损失要比阳极大得多,阳极氢的质量分数从流动入口到出口基本呈现增大趋势.

  18. Effects of passive films on corrosion resistance of uncoated SS316L bipolar plates for proton exchange membrane fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying, E-mail: yingyang@nwu.edu.cn [Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Institute of Analytical Science, Northwest University, Xi’an, Shaanxi 710069 (China); International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Ning, Xiaohui; Tang, Hongsheng [Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Institute of Analytical Science, Northwest University, Xi’an, Shaanxi 710069 (China); Guo, Liejin [International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Liu, Hongtan [Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL 33124 (United States)

    2014-11-30

    Highlights: • The passive film formed at PEMFC anode side shows a single layer structure. • The passive film formed at PEMFC cathode side shows a bi-layer structure. • The Cr/Fe atomic ratios in passive films formed at different side are different. • The passive films behave as n-type semiconductor at both anode and cathode sides. • The anode/cathode potential is positive than the flatband potential of passive film. - Abstract: The effects of passive films on the corrosion behaviors of uncoated SS316L in anode and cathode environments of proton exchange membrane fuel cells (PEMFCs) are studied. Potentiodynamic and potentiostatic polarizations are employed to study the corrosion behavior; Mott-Schottky measurements are used to characterize the semiconductor properties of passive films; X-ray photoelectron spectroscopy (XPS) analyses are used to identify the compositions and the depth profiles of passive films. The passive films formed in the PEMFC anode and cathode environments under corresponding conditions both behave as n-type semiconductor. The passive film formed in the anode environment has a single-layer structure, Cr is the major element (Cr/Fe atomic ratio > 1), and the Cr/Fe atomic ratio decreases from the surface to the bulk; while the passive film formed in the PEMFC cathode environment has a bi-layer structure, Fe is the major element (Cr/Fe atomic ratio < 0.5), and in the external layer of the bi-layer structure Fe content increases rapidly and gradually in the internal layer. SS316L shows better corrosion resistance owing to both the high content of Cr oxide in the passive film and low band bending in normal PEMFC anode environments.

  19. DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin Ilias

    2003-04-24

    Fuel cells are electrochemical devices that convert the available chemical free energy directly into electrical energy, without going through heat exchange process. Of all different types of fuel cells, the Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising power sources for stand-alone utility and electric vehicle applications. Platinum (Pt) Catalyst is used for both fuel and air electrodes in PEMFCs. However, carbon monoxide (CO) contamination of H{sub 2} greatly affects electro catalysts used at the anode of PEMFCs and decreases cell performance. The irreversible poisoning of the anode can occur even in CO concentrations as low as few parts per million (ppm). In this work, we have synthesized several novel elctrocatalysts (Pt/C, Pt/Ru/C, Pt/Mo/C, Pt/Ir and Pt/Ru/Mo) for PEMFCs. These catalysts have been tested for CO tolerance in the H{sub 2}/air fuel cell, using CO concentrations in the H{sub 2} fuel that varies from 10 to 100 ppm. The performance of the electrodes was evaluated by determining the cell potential against current density. The effects of catalyst composition and electrode film preparation method on the performance of PEM fuel cell were also studied. It was found that at 70 C and 3.5 atm pressure at the cathode, Pt-alloy catalyst (10 wt% Pt/Ru/C, 20 wt% Pt/Mo/C) were more CO tolerant than the 20 wt% Pt/C catalyst alone. It was also observed that spraying method was better than the brushing technique for the preparation of electrode film.

  20. Thin film thermocouples for in situ membrane electrode assembly temperature measurements in a polybenzimidazole-based high temperature proton exchange membrane unit cell

    DEFF Research Database (Denmark)

    Ali, Syed Talat; Lebæk, Jesper; Nielsen, Lars Pleth

    2010-01-01

    This paper presents Type-T thin film thermocouples (TFTCs) fabricated on Kapton (polyimide) substrate for measuring the internal temperature of PBI(polybenzimidazole)-based high temperature proton exchange membrane fuel cell (HT-PEMFC). Magnetron sputtering technique was employed to deposit a 2 mu...

  1. Direct observation of the dealloying process of a platinum–yttrium nanoparticle fuel cell cathode and its oxygenated species during the oxygen reduction reaction

    DEFF Research Database (Denmark)

    Malacrida, Paolo; Sanchez Casalongue, Hernan G.; Masini, Federico

    2015-01-01

    Size-selected 9 nm PtxY nanoparticles have recently shown an outstanding catalytic activity for the oxygen reduction reaction, representing a promising cathode catalyst for proton exchange membrane fuel cells (PEMFCs). Studying their electrochemical dealloying is a fundamental step towards the nd...

  2. Modelling and essay or the polarization curve of a polymeric membrane fuel cell; Modelagem e ensaio da curva de polarizacao de uma celula a combustivel de membrana polimerica

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Silvio Carlos Anibal de; Xavier, Bruno Domont; Gatti, George Cassani; Ribeiro, Rodrigo Minguita [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Mecanica]. E-mails: silvioa@gmail.com; brunodomont@gmail.com; gatti_ufrj@yahoo.com.br; rminguita@yahoo.com.br; Furtado, Jose Geraldo de Melo [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil). Dept. de Tecnologias Especiais]. E-mail: furtado@cepel.br

    2006-07-01

    This paper describes the essays performed with a polymeric membrane fuel cell (PEMFC) at the test laboratories of the ELETROBRAS Electric Energy Research Center (CEPEL/ELETROBRAS) manufactured by the Eletrocell, which allows to study the influence of some functional parameters (voltage, current, mass and pressure fluxes)

  3. The Effect of Nitrogen Cross-Over on Water Balance Measurements in Proton Exchange Membrane Fuel Cell Using Constant Temperature Anemometry

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Berning, Torsten; Kær, Søren Knudsen

    2016-01-01

    A novel method to obtain an ad-hoc and real time electrical signal of the PEMFC water balance by employing a constant temperature hot wire anemometry has been developed by our fuel cell research group. In this work, the effect of nitrogen-cross over on this method is experimentally demonstrated b...

  4. Crescimento económico versus desenvolvimento do sistema financeiro: o caso de Angola

    OpenAIRE

    Augusto, Luzia das Graças Sassi

    2010-01-01

    A relação entre o crescimento económico e desenvolvimento do sistema financeiro tem recebido muita atenção na literatura económica nos últimos anos. Apesar da relação ser controversa, em geral, a maior parte da literatura considera que o desenvolvimento do sistema financeiro tem um efeito positivo sobre o crescimento económico. Para os países em desenvolvimento, estudos empíricos têm fornecido resultados mistos, enquanto que nos países desenvolvidos o efeito do desenvolvimento do sistema fina...

  5. Récupération du platine contenu dans les piles à combustible basse température par voie hydrométallurgique Platinum Recovery from used PEMFC by hydrometallurgy

    Directory of Open Access Journals (Sweden)

    Vincent Denis

    2013-11-01

    Full Text Available La récupération du platine contenu dans la couche catalytique des piles à combustible est nécessaire pour viabiliser cette technologie vers le secteur industriel. Dans cette étude la voie purement hydrométallurgique a été privilégiée au procédé de récupération pyrométallurgique, évitant la destruction des autres constituants de la pile (membrane, … et limitant la formation de gaz toxique. Le procédé mise en œuvre est constitué d'une étape de lixiviation à partir d'un mélange HCl/HNO3, suivie par la précipitation d'un sel de platine (NH42PtCl6 pouvant soit servir à la synthèse d'un nouveau catalyseur soit à l'obtention de platine métallique. Sur l'ensemble de la chaîne un rendement de récupération de plus de 80 % a pu être obtenu mettant en avant le potentiel de cette stratégie. The recovery of platinum in the catalyst layers of PEMFCs (proton exchange membrane fuel cells is required to allow a transfer in industry. In this study, hydrometallurgical route was preferred to pyrometallurgical process, reducing both the destruction of the other components of the cell (membrane, … and the formation of hazardous gas. In this work, the process includes a leaching step from a diluted aqua regia solution, followed by a precipitation step of platinum under the (NH42PtCl6 form. This salt can be used either for the synthesis of a new catalyst or to obtain a metallic platinum. Considering these steps the recovery efficiency has been found to be over 80 %, which bring out the potential of this strategy.

  6. On active disturbance rejection in temperature regulation of the proton exchange membrane fuel cells

    Science.gov (United States)

    Li, Dazi; Li, Chong; Gao, Zhiqiang; Jin, Qibing

    2015-06-01

    Operating a Proton Exchange Membrane fuel cell (PEMFC) system to maintain the stack temperature stable is one of the key issues in PEMFC's normal electrochemical reaction process. Its temperature characteristic is easily affected by inlet gas humidity, external disturbances, and electrical load changes and so on. Because of the complexity and nonlinearity of the reaction process, it is hard to build a model totally consistent with the real characteristic of the process. If model uncertainty, external disturbances, parameters changes can be regarded as "total disturbance", which is then estimated and compensated, the accurate model is no longer required and the control design can be greatly simplified to meet the practical needs. Based on this idea, an active disturbance rejection control (ADRC) with a switching law is proposed for the problem of precise temperature regulation in PEMFC. Results of the work show that the proposed control system allows the PEMFC to operate successfully at the temperature of 343 K point in the presence of two different disturbances.

  7. Nonlinear predictive control for durability enhancement and efficiency improvement in a fuel cell power system

    Science.gov (United States)

    Luna, Julio; Jemei, Samir; Yousfi-Steiner, Nadia; Husar, Attila; Serra, Maria; Hissel, Daniel

    2016-10-01

    In this work, a nonlinear model predictive control (NMPC) strategy is proposed to improve the efficiency and enhance the durability of a proton exchange membrane fuel cell (PEMFC) power system. The PEMFC controller is based on a distributed parameters model that describes the nonlinear dynamics of the system, considering spatial variations along the gas channels. Parasitic power from different system auxiliaries is considered, including the main parasitic losses which are those of the compressor. A nonlinear observer is implemented, based on the discretised model of the PEMFC, to estimate the internal states. This information is included in the cost function of the controller to enhance the durability of the system by means of avoiding local starvation and inappropriate water vapour concentrations. Simulation results are presented to show the performance of the proposed controller over a given case study in an automotive application (New European Driving Cycle). With the aim of representing the most relevant phenomena that affects the PEMFC voltage, the simulation model includes a two-phase water model and the effects of liquid water on the catalyst active area. The control model is a simplified version that does not consider two-phase water dynamics.

  8. Experimental study on the optimal purge duration of a proton exchange membrane fuel cell with a dead-ended anode

    Science.gov (United States)

    Lin, Yu-Fen; Chen, Yong-Song

    2017-02-01

    When a proton exchange membrane fuel cell (PEMFC) is operated with a dead-ended anode, impurities gradually accumulate within the anode, resulting in a performance drop. An anode purge is thereby ultimately required to remove impurities within the anode. A purge strategy comprises purge interval (valve closed) and purge duration (valve is open). A short purge interval causes frequent and unnecessary activation of the valve, whereas a long purge interval leads to excessive impurity accumulation. A short purge duration causes an incomplete performance recovery, whereas a long purge duration results in low hydrogen utilization. In this study, a series of experimental trials was conducted to simultaneously measure the hydrogen supply rate and power generation of a PEMFC at a frequency of 50 Hz for various operating current density levels and purge durations. The effect of purge duration on the cell's energy efficiency was subsequently analyzed and discussed. The results showed that the optimal purge duration for the PEMFC was approximately 0.2 s. Based on the results of this study, a methodical process for determining optimal purge durations was ultimately proposed for widespread application. Purging approximately one-fourth of anode gas can obtain optimal energy efficiency for a PEMFC with a dead-ended anode.

  9. Experimental Investigation and Discussion on the Mechanical Endurance Limit of Nafion Membrane Used in Proton Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Yang Xiao

    2014-10-01

    Full Text Available As a solution of high efficiency and clean energy, fuel cell technologies, especially proton exchange membrane fuel cell (PEMFC, have caught extensive attention. However, after decades of development, the performances of PEMFCs are far from achieving the target from the Department of Energy (DOE. Thus, further understanding of the degradation mechanism is needed to overcome this obstacle. Due to the importance of proton exchange membrane in a PEMFC, the degradation of the membrane, such as hygrothermal aging effect on its properties, are particularly necessary. In this work, a thick membrane (Nafion N117, which is always used as an ionic polymer for the PEMFCs, has been analyzed. Experimental investigation is performed for understanding the mechanical endurance of the bare membranes under different loading conditions. Tensile tests are conducted to compare the mechanical property evolution of two kinds of bare-membrane specimens including the dog-bone and the deeply double edge notched (DDEN types. Both dog-bone and DDEN specimens were subjected to a series of degradation tests with different cycling times and wide humidity ranges. The tensile tests are repeated for both kinds of specimens to assess the strain-stress relations. Furthermore, Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD and Scanning electron microscope (SEM observation and water absorption measurement were conducted to speculate the cause of this variation. The initial cracks along with the increasing of bound water content were speculated as the primary cause.

  10. Experimental analysis of dynamic characteristics on the PEM fuel cell stack by using Taguchi approach with neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei-Lung [Department of Vehicle Engineering, Army Academy, No. 113, Sec.4, Chun-San E. Rd., Chun-Li 320 (China); Wu, Sheng-Ju; Shiah, Sheau-Wen [Department of Power Vehicle and Systems Engineering, Chung Cheng Institute of Technology, National Defense University, No. 190, Sanyuan 1st St., Tashi, Taoyuan 335 (China)

    2010-10-15

    This study determines the optimum operating parameters for a proton exchange membrane fuel cell (PEMFC) stack to obtain small variation and maximum electric power output using a robust parameter design (RPD). The operating parameters examined experimentally are operating temperatures, operating pressures, anode/cathode humidification temperatures, and reactant flow rates. First, the dynamic Taguchi method is used to obtain the maximum and stable power density against the different current densities, which are regarded as the systemic inputs considered a signal factor. The relationship between control factors and responses in the PEMFC stack is determined using a neural network. The discrete parameter levels in the dynamic Taguchi method can be divided into desired levels to acquire real optimum operating parameters. Based on these investigations, the PEMFC stack is operated at the current densities of 0.4-0.8 A/cm{sup 2}. Since the voltage shift is quite small (roughly 0.73-0.83 V for each single cell), the efficiency would be higher. In the range of operation, the operating pressure, the cathode humidification temperature and the interactions between operating temperature and operating pressure significantly impact PEMFC stack performance. As the operating pressure increasing, the increments of the electric power decrease, and power stability is enhanced because the variation in responses is reduced. (author)

  11. Eliminating micro-porous layer from gas diffusion electrode for use in high temperature polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Su, Huaneng; Xu, Qian; Chong, Junjie; Li, Huaming; Sita, Cordellia; Pasupathi, Sivakumar

    2017-02-01

    In this work, we report a simple strategy to improve the performance of high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) by eliminating the micro-porous layer (MPL) from its gas diffusion electrodes (GDEs). Due to the absence of liquid water and the general use of high amount of catalyst, the MPL in a HT-PEMFC system works limitedly. Contrarily, the elimination of the MPL leads to an interlaced micropore/macropore composited structure in the catalyst layer (CL), which favors gas transport and catalyst utilization, resulting in a greatly improved single cell performance. At the normal working voltage (0.6 V), the current density of the GDE eliminated MPL reaches 0.29 A cm-2, and a maximum power density of 0.54 W cm-2 at 0.36 V is obtained, which are comparable to the best results yet reported for the HT-PEMFCs with similar Pt loading and operated using air. Furthermore, the MPL-free GDE maintains an excellent durability during a preliminary 1400 h HT-PEMFC operation, owing to its structure advantages, indicating the feasibility of this electrode for practical applications.

  12. 燃料电池及其相关材料新进展(三)%Novel Advances in Fuel Cells and Their Relevant Materials

    Institute of Scientific and Technical Information of China (English)

    杨遇春

    1999-01-01

    Fuel cells as a high efficient, non-polluting electricity generation system are already at a near-commercial or sub-commercial stage. To meet the need for the revolution of electricity industry based fuel cells within the next few years, principal types of fuel cell systems (phosphoric acid fuel cell - PAFC, proton exchange membrane fuel cell - PEMFC, Molten carbonate fuel cell - MCFC, Solid oxide fuel cell - SOFC), their development status and economic significance were introduced. Materials and their performance requirements in fuel cell development and current status and problems in material technologies were described also. It is suggested that the domestic development goal concerning fuel cells is direct at the development of SOFC and PEMFC incorporating the superionrity of our mineral resources.

  13. Polybenzimidazoles based on high temperature polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Linares Leon, Jose Joaquin; Camargo, Ana Paula M.; Ashino, Natalia M.; Morgado, Daniella L.; Frollini, Elisabeth; Paganin, Valdecir A.; Gonzalez, Ernesto Rafael [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil); Bajo, Justo Lobato [University of Castilla-La Mancha, Ciudad Real (Spain). Dept. of Chemical Engineering

    2010-07-01

    This work presents an interesting approach in order to enhance the performance of Polymer Electrolyte Membrane Fuel Cells (PEMFC) by means of an increase in the operational temperature. For this, two polymeric materials, Poly(2,5-bibenzimidazole) (ABPBI) and Poly[2,2'-(m-phenyl en)-5,5' bib enzimidazol] (PBI), impregnated with phosphoric acid have been utilized. These have shown excellent properties, such as thermal stability above 500 deg C, reasonably high conductivity when impregnated with H{sub 3}PO{sub 4} and a low permeability to alcohols compared to Nafion. Preliminary fuel cells measurements on hydrogen based Polymer Electrolyte Membrane Fuel Cell (PEMFC) displayed an interestingly reasonable good fuel cell performance, a quite reduced loss when the hydrogen stream was polluted with carbon monoxide, and finally, when the system was tested with an ethanol/water (E/W) fuel, it displayed quite promising results that allows placing this system as an attractive option in order to increase the cell performance and deal with the typical limitations of low temperature Nafion-based PEMFC. (author)

  14. Biotecnologia e desenvolvimento: o papel da propriedade intelectual

    OpenAIRE

    ZANINI, Luciana Olivares

    2011-01-01

    As dificuldades na adoção de uma cultura de propriedade intelectual nos setores acadêmico e tecnológico limitam o desenvolvimento do país. A pouca iniciativa em utilizar ativamente os recursos legais disponíveis para transformar conhecimento em investimento, com o objetivo de conquistar ganhos comuns, apresenta-se como um fator preocupante. Uma das soluções para superar essas dificuldades é o estabelecimento de uma cultura de propriedade intelectual. A combinação de objetivo...

  15. Desenvolvimento de filmes de quitosana com atividade antioxidante

    OpenAIRE

    Cunha, Ângela Maria Martins Vieira da

    2011-01-01

    Os filmes obtidos a partir de polímeros naturais e renováveis têm criado grande interesse na indústria alimentar. A quitosana é um polímero, com propriedades funcionais importantes na área alimentar, tais como biocompatibilidade, atividade antimicrobiana e antioxidante, não-toxicidade, e a capacidade de formar filmes. No entanto, os filmes de quitosana apresentam alta solubilidade em soluções aquosas ácidas. O objetivo principal deste trabalho foi o desenvolvimento de filmes...

  16. O cuidado que influencia o ser em desenvolvimento

    OpenAIRE

    2000-01-01

    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências da Saúde. Este estudo tem como referencial teórico às teorias humanistas de Jean Watson e Carl Rogers que serviram de base para o desenvolvimento e análise do processo de cuidar de enfermagem, focalizando o relacionamento da equipe de enfermagem com a criança e a família no cotidiano da sala de vacinas. Considera a criança um sujeito que é capaz de vivenciar suas próprias experiências e a partir delas capa...

  17. An non-uniformity voltage model for proton exchange membrane fuel cell

    Science.gov (United States)

    Li, Kelei; Li, Yankun; Liu, Jiawei; Guo, Ai

    2017-01-01

    The fuel cell used in transportation has environmental protection, high efficiency and no line traction power system which can greatly reduce line construction investment. That makes it a huge potential. The voltage uniformity is one of the most important factors affecting the operation life of proton exchange membrane fuel cell (PEMFC). On the basis of principle and classical model of the PEMFC, single cell voltage is calculated and the location coefficients are introduced so as to establish a non-uniformity voltage model. These coefficients are estimated with the experimental datum at stack current 50 A. The model is validated respectively with datum at 60 A and 100 A. The results show that the model reflects the basic characteristics of voltage non-uniformity and provides the beneficial reference for fuel cell control and single cell voltage detection.

  18. R&D on an Ultra-Thin Composite Membrane for High-Temperature Operation in PEMFC. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.-Y.

    2003-10-06

    FuelCell Energy developed a novel high-temperature proton exchange membrane for PEM fuel cells for building applications. The laboratory PEM fuel cell successfully operated at 100-400{supdegree}C and low relative humidity to improve CO tolerance, mitigate water and thermal management challenges, and reduce membrane cost. The developed high-temperature membrane has successfully completed 500h 120C endurance testing.

  19. A combined capillary cooling system for cooling fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Paula; Pelizza, Pablo Rodrigo; Galante, Renan Manozzo; Bazzo, Edson [Universidade Federal de Santa Catarina (LabCET/UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], Emails: ana@labcet.ufsc.br, pablo@labcet.ufsc.br, renan@labcet.ufsc.br, ebazzo@emc.ufsc.br

    2010-07-01

    The operation temperature control has an important influence over the PEMFC (Proton Exchange Membrane Fuel Cell) performance. A two-phase heat transfer system is proposed as an alternative for cooling and thermal control of PEMFC. The proposed system consists of a CPL (Capillary Pumped Loop) connected to a set of constant conductance heat pipes. In this work ceramic wick and stainless mesh wicks have been used as capillary structure of the CPL and heat pipes, respectively. Acetone has been used as the working fluid for CPL and deionized water for the heat pipes. Experimental results of three 1/4 inch stainless steel outlet diameter heats pipes and one CPL have been carried out and presented in this paper. Further experiments are planned coupling the proposed cooling system to a module which simulates the fuel cell. (author)

  20. Estado Nacional e desenvolvimento: construindo um sistema financeiro a serviço do projeto de desenvolvimento nacional

    Directory of Open Access Journals (Sweden)

    Matheus Felipe de Castro

    2009-09-01

    Full Text Available O presente artigo avalia a capacidade financeira do Estado brasileiro, como nação dependente e subdesenvolvida e propõe medidas de política econômica destinadas a subordinar os sistemas tributário e financeiro à realização de um projeto político de desenvolvimento nacional, fundado no pleno emprego e na justiça social, cujas linhas gerais estão traçadas na própria Constituição da República Federativa do Brasil, de 1988.

  1. Identification of critical parameters for PEMFC stack performance characterization and control strategies for reliable and comparable stack benchmarking

    DEFF Research Database (Denmark)

    Mitzel, Jens; Gülzow, Erich; Kabza, Alexander;

    2016-01-01

    in an average cell voltage deviation of 21 mV. Test parameters simulating different stack applications are summarized. The stack demonstrated comparable average cell voltage of 0.63 V for stationary and portable conditions. For automotive conditions, the voltage increased to 0.69 V, mainly caused by higher...

  2. Desenvolvimento desigual: evidências para o Brasil

    Directory of Open Access Journals (Sweden)

    Flávia Chein

    2007-09-01

    Full Text Available O artigo descreve o processo de desenvolvimento da economia brasileira, ocorrido no período de 1970 a 2000, a partir dos dados dos Censos Demográficos, buscando identificar sinais de convergência ou agravamento das desigualdades regionais. Os resultados apontam para a existência de um processo de desenvolvimento desigual que é preservado ao longo das três décadas e vai além das divisões administrativas das Unidades da Federação ou da partição do país entre Norte, Nordeste, Centro-Oeste, Sul e Sudeste.This paper presents the Brazilian process of economic development over the 1970-2000 period, analyzing whether there is convergence or not across municipalities. Based on data from the Demographic Census, the results point out to an unequal development process among regions. There is no evidence of convergence in the three decades analyzed, and the spatial heterogeneity goes beyond the geographical administrative divisions of the States or the macro regions North, Northeast, Central-West, Southeast and South.

  3. Improved Performance of Sulfonated Polyarylene Ethers for Proton Exchange Membrane Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    D. Xing; J. Kerres; F. Sch(o)nberger

    2005-01-01

    @@ 1Introduction The proton exchange membrane (PEM) is one of key components in fuel cell system. Its properties are very important in determining PEMFC performance. The membranes presently used in fuel cell are perfluorosulfonic polymers, such as Nafion(R) from Dupont. Although they have high proton conductivity and excellent chemical stability, their too high production cast and methanol permeability lead to failure of fuel cell application. Therefore, various partially fluorinated and non-fluorinated polymer electrolytes are under development for PEMFC application since one decade. In the middle of non-fluorinated polymer electrolytes, sulfonated poly(arylene ether)s display high thermal stability, good mechanical properties and exceptional resistance to oxidation and acid catalyzed hydrolysis. They have been regarded as well-suited proton exchange membrane candidates for fuel cells.

  4. A comprehensive review of PBI-based high temperature PEM fuel cells

    DEFF Research Database (Denmark)

    Simon Araya, Samuel; Zhou, Fan; Liso, Vincenzo;

    2016-01-01

    The current status on the understanding of the various operational aspects of high temperature proton exchange membrane fuel cells (HT-PEMFC) has been summarized. The paper focuses on phosphoric acid-doped polybenzimidazole (PBI)-based HT-PEMFCs and an overview of the common practices...... are outlined. Catalyst degradation and electrolyte loss take place at higher rates in the beginning of life of the fuel cell. This is due to the smaller size of Pt particles and the presence of excess phosphoric acid in the beginning of life that favor the respective degradation. Therefore, the redistribution...... of phosphoric acid in the membrane and the electrodes is crucial for the proper activation of the fuel cell, and a startup procedure should take this into account in order to avoid beginning of life degradation. On-line monitoring of the fuel cell system's state of health using diagnostic tools can help detect...

  5. A review on the performance and modelling of proton exchange membrane fuel cells

    Science.gov (United States)

    Boucetta, A.; Ghodbane, H.; Ayad, M. Y.; Bahri, M.

    2016-07-01

    Proton Exchange Membrane Fuel Cells (PEMFC), are energy efficient and environmentally friendly alternative to conventional energy conversion for various applications in stationary power plants, portable power device and transportation. PEM fuel cells provide low operating temperature and high-energy efficiency with near zero emission. A PEM fuel cell is a multiple distinct parts device and a series of mass, energy, transport through gas channels, electric current transport through membrane electrode assembly and electrochemical reactions at the triple-phase boundaries. These processes play a decisive role in determining the performance of the Fuel cell, so that studies on the phenomena of gas flows and the performance modelling are made deeply. This paper gives a comprehensive overview of the state of the art on the Study of the phenomena of gas flow and performance modelling of PEMFC.

  6. Performance enhancement of air-breathing proton exchange membrane fuel cell through utilization of an effective self-humidifying platinum-carbon catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Poh, Chee Kok; Lin, Jianyi [Institute of Chemical Engineering and Sciences, 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Tian, Zhiqun; Lim, San Hua [Institute of Chemical Engineering and Sciences, 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Bussayajarn, Narissara [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Tang, Zhe; Chua, Daniel [Department of Materials Science and Engineering, National University of Singapore, Singapore (Singapore); Su, Fabing [State Key Laboratory of Multi-phase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Feng, Yuan Ping [Department of Physics, National University of Singapore, Singapore 117542 (Singapore)

    2010-12-15

    One issue with air-breathing proton exchange membrane fuel cells (AB-PEMFCs) is that the reactants are not externally humidified, and thus the membrane or the catalyst layers might dry out due to electro-osmotic drag, diffusion and evaporation at the opening cathode. This results in a drop in internal ionic conductivity and thus in cell performance. Here, the preparation and characterization of self-humidifying carbon-supported Pt catalyst using citric acid modified carbon black (CA-CB) as the catalyst support are reported. Pt/CA-CB is highly hydrophilic due to the functional groups attached on the carbon support, which endows the ability to retain water in the membrane electrolyte assembly (MEA) and thereby help to improve the performance of AB-PEMFCs. A maximum power density of 204 mW cm{sup -2} can be achieved in an air-breathing PEMFC stack using Pt/CA-CB, a thick polymer membrane (NRE212) and a circular opening cathode. A 23.4% enhancement in the output power density is obtained by using Pt/CA-CB in place of a commercial catalyst when oblique slit cathodes are employed. This self-humidifying catalyst is particularly suitable for portable PEMFC applications. (author)

  7. Designing, building, testing and racing a low-cost fuel cell range extender for a motorsport application

    Science.gov (United States)

    Cordner, M.; Matian, M.; Offer, G. J.; Hanten, T.; Spofforth-Jones, E.; Tippetts, S.; Agrawal, A.; Bannar-Martin, L.; Harito, L.; Johnson, A.; Clague, R.; Marquis, F.; Heyes, A.; Hardalupas, Y.; Brandon, N. P.

    Imperial Racing Green is an undergraduate teaching project at Imperial College London. Undergraduate engineers have designed, built and raced hydrogen fuel cell hybrid vehicles in the Formula Zero and Formula Student race series. Imperial Racing Green has collaborated with its fuel cell partners to develop a 13 kW automotive polymer electrolyte membrane fuel cell (PEMFC) system. A team of undergraduate engineers were given a relatively modest budget and less than 8 months to design and assemble an operational high-power PEMFC system. The fuel cell system was designed to provide the average power required by the team's 2011 Formula Student entry. This paper presents the team's experience of developing and testing an automotive fuel cell system for a race application and plans for its future development and integration onto the vehicle.

  8. Water management in proton exchange membrane fuel cells using integrated electroosmotic pumping

    Science.gov (United States)

    Buie, Cullen R.; Posner, Jonathan D.; Fabian, Tibor; Cha, Suk-Won; Kim, Daejoong; Prinz, Fritz B.; Eaton, John K.; Santiago, Juan G.

    Recent experimental and numerical investigations on proton exchange membrane fuel cells (PEMFCs) emphasize water management as a critical factor in the design of robust, high efficiency systems. Although various water management strategies have been proposed, water is still typically removed by pumping air into cathode channels at flow rates significantly higher than required by fuel cell stoichiometry. Such methods are thermodynamically unfavorable and constrain cathode flow channel design. We have developed proton exchange membrane fuel cells (PEMFCs) with integrated planar electroosmotic (EO) pumping structures that actively remove liquid water from cathode flow channels. EO pumps can relieve cathode design barriers and facilitate efficient water management in fuel cells. EO pumps have no moving parts, scale appropriately with fuel cells, operate across a wide range of conditions, and consume a small fraction of fuel cell power. We demonstrate and quantify the efficacy of EO water pumping using controlled experiments in a single channel cathode flow structure. Our results show that, under certain operating conditions, removing water from the cathode using integrated EO pumping structures improves fuel cell performance and stability. The application of EO pumps for liquid water removal from PEMFC cathodes extends their operational range and reduces air flow rates.

  9. Water management in proton exchange membrane fuel cells using integrated electroosmotic pumping

    Energy Technology Data Exchange (ETDEWEB)

    Buie, Cullen R.; Posner, Jonathan D.; Fabian, Tibor; Cha, Suk-Won; Kim, Daejoong; Prinz, Fritz B.; Eaton, John K.; Santiago, Juan G. [Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States)

    2006-10-20

    Recent experimental and numerical investigations on proton exchange membrane fuel cells (PEMFCs) emphasize water management as a critical factor in the design of robust, high efficiency systems. Although various water management strategies have been proposed, water is still typically removed by pumping air into cathode channels at flow rates significantly higher than required by fuel cell stoichiometry. Such methods are thermodynamically unfavorable and constrain cathode flow channel design. We have developed proton exchange membrane fuel cells (PEMFCs) with integrated planar electroosmotic (EO) pumping structures that actively remove liquid water from cathode flow channels. EO pumps can relieve cathode design barriers and facilitate efficient water management in fuel cells. EO pumps have no moving parts, scale appropriately with fuel cells, operate across a wide range of conditions, and consume a small fraction of fuel cell power. We demonstrate and quantify the efficacy of EO water pumping using controlled experiments in a single channel cathode flow structure. Our results show that, under certain operating conditions, removing water from the cathode using integrated EO pumping structures improves fuel cell performance and stability. The application of EO pumps for liquid water removal from PEMFC cathodes extends their operational range and reduces air flow rates. (author)

  10. Characterization of transport phenomena in small polymer electrolyte membrane fuel cells

    OpenAIRE

    2008-01-01

    In small fuel cell systems, energy consumption and size of auxiliary devices should be minimized. One option is to use passive controlling methods that rely on material and structural solutions. Therefore it is important to understand transport phenomena occurring in the cells. In this thesis, charge, mass, and heat transport phenomena related to small PEMFCs were studied experimentally and by modeling. A new method was developed for the characterization of water transport properties of p...

  11. Alkaline polymer electrolyte fuel cells: Principle, challenges, and recent progress

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Polymer electrolyte membrane fuel cells (PEMFC) have been recognized as a significant power source in future energy systems based on hydrogen. The current PEMFC technology features the employment of acidic polymer electrolytes which, albeit superior to electrolyte solutions, have intrinsically limited the catalysts to noble metals, fundamentally preventing PEMFC from widespread deployment. An effective solution to this problem is to develop fuel cells based on alkaline polymer electrolytes (APEFC), which not only enable the use of non-precious metal catalysts but also avoid the carbonate-precipitate issue which has been troubling the conventional alkaline fuel cells (AFC). This feature article introduces the principle of APEFC, the challenges, and our research progress, and focuses on strategies for developing key materials, including high-performance alkaline polyelectrolytes and stable non-precious metal catalysts. For alkaline polymer electrolytes, high ionic conductivity and satisfactory mechanical property are difficult to be balanced, therefore polymer cross-linking is an ultimate strategy. For non-precious metal catalysts, it is urgent to improve the catalytic activity and stability. New materials, such as transition-metal complexes, nitrogen-doped carbon nanotubes, and metal carbides, would become applicable in APEFC.

  12. Identification of critical parameters for PEMFC stack performance characterization and control strategies for reliable and comparable stack benchmarking

    DEFF Research Database (Denmark)

    Mitzel, Jens; Gülzow, Erich; Kabza, Alexander;

    2016-01-01

    for the control strategy are summarized. This ensures result comparability as well as stable test conditions. E.g., the stack temperature fluctuation is minimized to about 1 °C. The experiments demonstrate that reactants pressures differ up to 12 kPa if pressure control positions are varied, resulting...... in an average cell voltage deviation of 21 mV. Test parameters simulating different stack applications are summarized. The stack demonstrated comparable average cell voltage of 0.63 V for stationary and portable conditions. For automotive conditions, the voltage increased to 0.69 V, mainly caused by higher...

  13. Desenvolvimento neuropsicomotor de lactentes desnutridos Neuropsychomotor development of malnourished babies

    Directory of Open Access Journals (Sweden)

    SS Mansur

    2006-01-01

    Full Text Available OBJETIVOS: O objetivo deste estudo foi analisar o desenvolvimento neuropsicomotor de lactentes com desnutrição leve e caracterizar seu perfil nutricional. MÉTODOS: A pesquisa foi do tipo transversal, numa população de 374 lactentes e amostra de 31 desnutridos leve, entre 7 e 24 meses de idade, matriculados em creches municipais. O estado nutricional foi identificado pelo critério de Gómez e caracterizado por um questionário. Para a avaliação neuropsicomotora utilizou-se a Escala de Desenvolvimento Psicomotor da Primeira Infância de Brunet e Lézine. RESULTADOS: Os principais resultados do questionário mostraram: infecções respiratórias (48,4%; diarréias (71,0%; pais em união estável (61,3%; pais com ensino fundamental incompleto (74,2% das mães, 83,8% dos pais; renda familiar de 1 a 3 salários-mínimos (80,6%; aleitamento materno satisfatório (67,7%; reação adversa a algum alimento (41,9%. Entre os dados neuropsicomotores, as médias das Idades de Desenvolvimento da Linguagem (14,45 meses e da Sociabilidade (14,74 meses foram as que obtiveram os valores mais abaixo da média da Idade Cronológica (16,41 meses. Todas as áreas avaliadas obtiveram Quocientes de Desenvolvimento dentro da normalidade, porém, as áreas da Linguagem e da Sociabilidade foram classificadas em nível "normal baixo" e as outras em nível "normal médio". CONCLUSÕES: A avaliação neuropsicomotora é instrumento fundamental na assistência ao lactente desnutrido, que tende a apresentar deficiências nas áreas da Linguagem e Sociabilidade, fornecendo subsídios para observar sua atuação exploratória, efeito de seu pensamento, e planejar o trabalho intervencionista.OBJECTIVE: The purpose of this study was to analyze the neuropsychomotor development of babies with slight malnutrition and to characterize their nutritional profile. METHOD: This was a cross-sectional survey on a population of 374 babies and a sample of 31 babies with slight

  14. Desenvolvimento sustentável e a OMC

    OpenAIRE

    2010-01-01

    O longo curso da história nos faz reconhecer que o debate sobre equidade social, crescimento econômico e desenvolvimento sustentável mal começou. Durante muitos séculos, o problema de se era necessário estabelecer uma conexão entre assuntos tão distintos sequer foi colocado. Foi preciso chegar à industrialização crescente, ao crescimento desordenado da população mundial, à carência na produção de alimentos e à utilização exaustiva de recursos naturais para que a humanidade passasse a se in...

  15. Desenvolvimento da Tanatologia: estudos sobre a morte e o morrer

    Directory of Open Access Journals (Sweden)

    Maria Julia Kovács

    2008-12-01

    Full Text Available Este artigo discute os principais temas e pesquisas na área da Tanatologia, estudos sobre a morte e o morrer. São apresentados os autores pioneiros que escreveram as primeiras obras de sistematização da Tanatologia entre os quais: Herman Feifel, Robert Kastenbaum e Elizabeth Kübler-Ross, e os principais temas de estudo: luto, violência e guerra, a morte e a TV, cuidados a pacientes gravemente enfermos, além da formação de profissionais da área de saúde e educação para lidar com pessoas vivendo situações de perdas e morte. São feitas propostas de estudos para o futuro desenvolvimento da Tanatologia em nosso país.

  16. Biblioterapia: uma prática para o desenvolvimento pessoal

    Directory of Open Access Journals (Sweden)

    Danielle Thiago Ferreira

    2003-01-01

    Full Text Available Este artigo tem por objetivo relatar investigações acerca da Biblioterapia, visando a interpretação da elaboração de Programas Biblioterápicos Básicos para o desenvolvimento pessoal. Assim, delimitou-se os aspectos principais de um Programa Biblioterápico, suas abordagens metodológicas, dando ênfase no papel dos profissionais envolvidos e suas interações, dentre eles, destacando a atuação do bibliotecário. This article has for objective tell to inquiries concerning the Bibliotherapy, aiming at the interpretation of the elaboration of Basic Bibliotherapics Programs for the personal development. Then, delimited the main aspects of a Bibliotherapic Program, its metodologicals boardings, giving to emphasis in the paper of the involved professionals and its interactions, amongst them, detaching the performance of the librarian.

  17. A força-tarefa da psiquiatria do desenvolvimento

    OpenAIRE

    Lima, Ana Cristina Costa; Caponi,Sandra Noemi Cucurullo de

    2011-01-01

    O presente trabalho é uma análise do vídeo institucional do projeto do Instituto Nacional de Ciência e Tecnologia de Psiquiatria do Desenvolvimento para a Infância e Adolescência (INPD - Brasil). O objetivo do artigo é ampliar o debate sobre a verdade científica e os métodos de prevenção de doença mental na infância e adolescência, por meio da análise do material midiático de divulgação do projeto. O trabalho para prevenir as doenças mentais e diagnosticar precocemente as psicopatologias já f...

  18. Electrochemical characterization of IrO{sub 2}-Pt and RuO{sub 2}-Pt mixtures as bifunctional electrodes for unitized regenerative fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Escalante-Garcia, I.L.; Duron-Torres, S.M. [Univ. Autonoma de Zacatecas, Zacatecas (Mexico). Unidad Academica de Ciencias Quimicas; Cruz, J.C.; Arriaga-Hurtado, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Pedro Escobedo (Mexico)

    2010-07-15

    A unitized regenerative fuel cell (URFC) is a single electrochemical cell that has the potential to meet the required features of an idealized energy cycle whereby hydrogen can be produced from renewable energy sources. A URFC is a system which can operate as a polymer electrolyte water electrolyzer (PEMWE) or as a polymer electrolyte fuel cell (PEMFC). In the PEMWE mode, water is converted into hydrogen and oxygen by using electricity from solar or wind energy. In the PEMFC mode, the stored hydrogen and oxygen are supplied to generate electricity and water. Combining PEMWEs and PEMFCs remains a great challenge because several practical and structural features must be considered. The limiting reaction steps at the oxygen electrode for PEMFC or PEMWE are the oxygen reduction reaction (ORR) and the water oxidation reaction (OER), respectively. The high-efficiency therefore depends on the type of electrocatalysts and the capability of the oxygen electrode to operate under PEMFC or PEMWE conditions. As such, much research has gone into the development of a new oxygen electrode design for URFCs. Several bifunctional electrodes for OER and ORR were designed in this study using platinum (Pt) and iridium oxide (IrO{sub 2}) electrocatalysts or Pt and ruthenium oxide (RuO{sub 2}) supported electrocatalysts on Ebonex{sup R}. According to electrochemical characterization by CV, LV and EIS in aqueous 0.5 M H{sub 2}SO{sub 4}, IrO{sub 2}-Pt and RuO{sub 2}-Pt supported on Ebonex have high electrocatalytic properties for ORR and OER, indicating potential use in URFCs. IrO{sub 2} based electrodes were more stable than RuO{sub 2} based electrodes. 31 refs., 2 tabs., 6 figs.

  19. TURISMO E DESENVOLVIMENTO SOCIAL NO CARIBE: O LUGAR DO OUTRO

    Directory of Open Access Journals (Sweden)

    Lívia Maria Bastos Vivas

    2013-02-01

    Full Text Available As ilhas caribenhas são caracterizadas por um longo processo de colonização e de independência tardia, aspectos que lhes causaram retrocesso ao nível econômico, político e social. Experimentam, através do turismo, a exploração neocolonial designada pela ação das potências emergentes, a partir do século XIX, situação que lhes impõe maior dependência, desencadeada por sistemas de exploração mais estáveis e aparentes. Por outro lado, o turismo é um dos setores que mais cresce em todo o mundo e sua rápida expansão tem sido, ou pelo menos deveria ser considerada, uma possibilidade de desenvolvimento sustentável aos países caribenhos. Esse artigo contextualizará a condição periférica sob a qual ocorre o desenvolvimento do turismo no Caribe, enquanto atividade econômica central, sinalizando as suas particularidades, as estratégias de exploração impostas pelos núcleos dominantes desde o período colonial, a relação entre turistas e nativos, o posicionamento do comércio turístico local e, finalmente, a circunstância em se encontra o Outro, enquanto grupo responsável pela exequibilidade de uma atividade que demanda, nomeadamente, serviço.

  20. Small proton exchange membrane fuel cell power station by using bio-hydrogen

    Institute of Scientific and Technical Information of China (English)

    刘志祥; 毛宗强; 王诚; 任南琪

    2006-01-01

    In fermentative organic waste water treatment process, there was hydrogen as a by-product. After some purification,there was about 50% ~ 70% hydrogen in the bio-gas, which could be utilized for electricity generation with fuel cell. Half a year ago, joint experiments between biological hydrogen production in Harbin Institute of Technology (HIT) and proton exchange membrane fuel cell (PEMFC) power station in Tsinghua University were conducted for electricity generation with bio-hydrogen from the pilot plant in HIT. The results proved the feasibility of the bio-hydrogen as a by-product utilization with PEMFC power station and revealed some problems of fuel cell power station for this application.

  1. Platinum redispersion on metal oxides in low temperature fuel cells

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Cerri, Isotta; Nagami, Tetsuo

    2013-01-01

    We have analyzed the aptitude of several metal oxide supports (TiO2, SnO2, NbO2, ZrO2, SiO2, Ta2O5 and Nb2O5) to redisperse platinum under electrochemical conditions pertinent to the Proton Exchange Membrane Fuel Cell (PEMFC) cathode. The redispersion on oxide supports in air has been studied...... in detail; however, due to different operating conditions it is not straightforward to link the chemical and the electrochemical environment. The largest differences reflect in (1) the oxidation state of the surface (the oxygen species coverage), (2) temperature and (3) the possibility of platinum...... be a good support for platinum redispersion at PEMFC cathodes....

  2. Segmented polymer electrolyte membrane fuel cells - A review

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Luis C.; Brandao, Lucia; Mendes, Adelio [LEPAE, Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Roberto Frias, 4200-465 Porto (Portugal); Sousa, Jose M. [LEPAE, Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Roberto Frias, 4200-465 Porto (Portugal); Chemistry Department, University of Tras-os-Montes e Alto Douro, Apartado 202, 5001-911 Vila-Real Codex (Portugal)

    2011-01-15

    A complex interaction of many design, assembling and operating parameters as well as the properties of the materials used in the construction of polymer electrolyte membrane fuel cells (PEMFC) result in an uneven electrochemical performance over the MEA active area. For more than one decade, segmented PEMFC (SFC) have been used to study the factors responsible for that uneven performance. This paper reviews relevant literature related to SFC published since 1998 focusing on the three most important SFC design techniques: (1) printed circuit board, (2) resistors network and (3) Hall effect sensors. First, the three techniques are described and fundamental considerations for its design, construction and electrochemical characterization are provided. After that, the effect of most important parameters on the current density distribution is highlighted. Finally, representative results combining current density distribution measurements with other analytical techniques for distributed analysis are presented. (author)

  3. Proton Exchange Membranes for Fuel Cells Challenges and Recent Developments

    Institute of Scientific and Technical Information of China (English)

    Qingfeng Li; Jens Oluf Jensen; Pernille P. Noyé; Chao Pan; Niels J. Bjerrum

    2005-01-01

    @@ 1Introduction The current technology of proton exchange membrane fuel cells (PEMFC) is based on perfluorosulfonic acid (PFSA) membranes (e. g. Nafion(R)) as electrolyte. It operates on pure hydrogen and oxygen/air at typically 80℃ with high power density and long-term durability. For the membranes to be conductive, a minimum threshold of absorbed water molecules is about 6 to 7 mole per sulfonic site. The highest conductivity is only obtained under fully hydrated conductions, i.e. 21 - 22 mole water per sulfonic acid site. In other words, the proton conductivity is achieved by the locally liquid-like hydrophilic domain of the nanostructure.This strong dependence of conductivity on the water content in membranes limits the operational temperatureof PEMFC below 100℃.

  4. High power fuel cell simulator based on artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Chavez-Ramirez, Abraham U.; Munoz-Guerrero, Roberto [Departamento de Ingenieria Electrica, CINVESTAV-IPN. Av. Instituto Politecnico Nacional No. 2508, D.F. CP 07360 (Mexico); Duron-Torres, S.M. [Unidad Academica de Ciencias Quimicas, Universidad Autonoma de Zacatecas, Campus Siglo XXI, Edif. 6 (Mexico); Ferraro, M.; Brunaccini, G.; Sergi, F.; Antonucci, V. [CNR-ITAE, Via Salita S. Lucia sopra Contesse 5-98126 Messina (Italy); Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., Parque Tecnologico Queretaro, Sanfandila, Pedro Escobedo, Queretaro (Mexico)

    2010-11-15

    Artificial Neural Network (ANN) has become a powerful modeling tool for predicting the performance of complex systems with no well-known variable relationships due to the inherent properties. A commercial Polymeric Electrolyte Membrane fuel cell (PEMFC) stack (5 kW) was modeled successfully using this tool, increasing the number of test into the 7 inputs - 2 outputs-dimensional spaces in the shortest time, acquiring only a small amount of experimental data. Some parameters could not be measured easily on the real system in experimental tests; however, by receiving the data from PEMFC, the ANN could be trained to learn the internal relationships that govern this system, and predict its behavior without any physical equations. Confident accuracy was achieved in this work making possible to import this tool to complex systems and applications. (author)

  5. Improvement of low-humidity performance of PEMFC by addition of hydrophilic SiO 2 particles to catalyst layer

    Science.gov (United States)

    Jung, Un Ho; Park, Ki Tae; Park, Eun Hee; Kim, Sung Hyun

    Hydrophilic SiO 2 particles are added to the catalyst layer of a fuel cell membrane-electrode assembly (MEA) to improve wettability and performance at low-humidity conditions. The SiO 2 added MEAs are prepared by spraying technique and the contact angle is measured by the sessile drop method. The effects of SiO 2 additions of 0, 20, 40 and 60 wt.% (based on Pt/C) are investigated for various relative humidity levels in the anode and the cathode. The increased wettability of the cathode catalyst layer exerts an adverse effect on cell performance by causing flooding; this result demonstrates the hydrophilicity of SiO 2. With 40 wt.% addition of SiO 2 to the anode catalyst layer, the current density at 0.6 V and 0% relative humidity of the anode is 93% of that at 100% relative humidity. By comparison, the performance of a cell using a MEA with no added SiO 2 is only 85% of that at 0% relative humidity. A MEA with SiO 2 addition in the anode gives a higher performance at 60% relative humidity of the cathode than one with an undoped MEA. Increased wettability of the anode catalyst layer caused by SiO 2 addition renders it easy to absorb water from back diffusion.

  6. Performance enhancement of polymer electrolyte membrane fuel cells by dual-layered membrane electrode assembly structures with carbon nanotubes.

    Science.gov (United States)

    Jung, Dong-Won; Kim, Jun-Ho; Kim, Se-Hoon; Kim, Jun-Bom; Oh, Eun-Suok

    2013-05-01

    The effect of dual-layered membrane electrode assemblies (d-MEAs) on the performance of a polymer electrolyte membrane fuel cell (PEMFC) was investigated using the following characterization techniques: single cell performance test, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). It has been shown that the PEMFC with d-MEAs has better cell performance than that with typical mono-layered MEAs (m-MEAs). In particular, the d-MEA whose inner layer is composed of multi-walled carbon nanotubes (MWCNTs) showed the best fuel cell performance. This is due to the fact that the d-MEAs with MWCNTs have the highest electrochemical surface area and the lowest activation polarization, as observed from the CV and EIS test.

  7. Transferências de Renda para o Desenvolvimento Humano a Longo Prazo

    OpenAIRE

    Armando Barrientos

    2013-01-01

    Com a notável expansão dos programas de transferência de renda no combate à pobreza em países em desenvolvimento na última década, os programas de transferência de renda para o desenvolvimento humano, popularmente conhecidos como transferências condicionadas de renda, vêm desempenhado um papel notável. Sua característica principal combina as transferências de renda às famílias pobres com medidas para facilitar o investimento no desenvolvimento humano, especialmente para as crianças. Desde sua...

  8. Desenvolvimento infantil na fenilcetonúria: atuação fonoaudiológica

    OpenAIRE

    LAMÔNICA, Dionísia Aparecida Cusin; GEJÃO, Mariana Germano; FERREIRA, Amanda Tragueta; SILVA, Greyce Kelly da; ANASTÁCIO-PESSAN, Fernanda da Luz

    2010-01-01

    TEMA: a fenilcetonúria é manifestada por deficiência parcial ou total da enzima hepática fenilalanina hidroxilase que, em excesso, tem efeito tóxico para as funções do sistema nervoso central, refletindo no desenvolvimento global do indivíduo. OBJETIVO: apresentar as alterações no desenvolvimento verificadas em estudos científicos com indivíduos portadores de fenilcetonúria e refletir sobre as habilidades relacionadas ao desenvolvimento da linguagem. CONCLUSÃO: indivíduos com fenilcetonúria s...

  9. Interfaces entre plano regional de desenvolvimento e planos plurianuais municipais: o caso do Corede Noroeste Colonial

    OpenAIRE

    Alves, Caroline Maria Toebe

    2015-01-01

    Este trabalho apresenta o estudo de como ocorre o processo de planejamento governa-mental municipal de médio prazo e quais as interfaces do plano de desenvolvimento regional com os planos plurianuais dos municípios do Corede Noroeste Colonial. Para tanto, buscou-se na literatura os conceitos de Desenvolvimento e Planejamento Regional e a importância estra-tégica de um Plano de Desenvolvimento Regional e da Participação. Depois foram elucidados os Instrumentos de Gestão no Setor Público: PPA, ...

  10. Evaluating focused ion beam and ultramicrotome sample preparation for analytical microscopies of the cathode layer of a polymer electrolyte membrane fuel cell

    Science.gov (United States)

    de A. Melo, Lis G.; Hitchcock, Adam P.; Berejnov, Viatcheslav; Susac, Darija; Stumper, Juergen; Botton, Gianluigi A.

    2016-04-01

    Optimizing the structure of the porous electrodes of polymer electrolyte membrane fuel cells (PEM-FC) can improve device power and durability. Analytical microscopy techniques are important tools for measuring the electrode structure, thereby providing guidance for structural optimization. Transmission Electron Microscopy (TEM), with either Energy Dispersive X-Ray (EDX) or Electron Energy Loss Spectroscopy (EELS) analysis, and Scanning Transmission X-Ray Microscopy (STXM) are complementary methods which, together, provide a powerful approach for PEM-FC electrode analysis. Both TEM and STXM require thin (50-200 nm) samples, which can be prepared either by Focused Ion Beam (FIB) milling or by embedding and ultramicrotomy. Here we compare TEM and STXM spectromicroscopy analysis of FIB and ultramicrotomy sample preparations of the same PEM-FC sample, with focus on how sample preparation affects the derived chemical composition and spatial distributions of carbon support and ionomer. The FIB lamella method, while avoiding pore-filling by embedding media, had significant problems. In particular, in the FIB sample the carbon support was extensively amorphized and the ionomer component suffered mass loss and structural damage. Although each sample preparation technique has a role to play in PEM-FC optimization studies, it is important to be aware of the limitations of each method.

  11. Studies on PEM Fuel Cell Noble Metal Catalyst Dissolution

    DEFF Research Database (Denmark)

    Ma, Shuang; Skou, Eivind Morten

    . Membrane Electrode Assembly (MEA) is commonly considered as the heart of cell system [2]. Degradation of the noble metal catalysts in MEAs especially Three-Phase-Boundary (TPB) is a key factor directly influencing fuel cell durability. In this work, electrochemical degradation of Pt and Pt/Ru alloy were......Incredibly vast advance has been achieved in fuel cell technology regarding to catalyst efficiency, improvement of electrolyte conductivity and optimization of cell system. With breathtakingly accelerating progress, Proton Exchange Membrane Fuel Cells (PEMFC) is the most promising and most widely...

  12. Protonic conductors for proton exchange membrane fuel cells: An overview

    Directory of Open Access Journals (Sweden)

    Jurado Ramon Jose

    2002-01-01

    Full Text Available At present, Nation, which is a perfluorinated polymer, is one of the few materials that deliver the set of chemical and mechanical properties required to perform as a good electrolyte in proton exchange membrane fuel cells (PEMFCs. However, Nation presents some disadvantages, such as limiting the operational temperature of the fuel system (So°C, because of its inability to retain water at higher temperatures and also suffers chemical crossover. In addition to these restrictions, Nation membranes are very expensive. Reducing costs and using environmentally friendly materials are good reasons to make a research effort in this field in order to achieve similar or even better fuel-cell performances. Glass materials of the ternary system SiO2-ZrO2-P2O5, hybrid materials based on Nation, and nanopore ceramic membranes based on SiO2 TiO2, Al2O3, etc. are considered at present, as promising candidates to replace Nation as the electrolyte in PEMFCs. These types of materials are generally prepared by sol-gel processes in order to tailor their channel-porous structure and pore size. In this communication, the possible candidates in the near future as electrolytes (including other polymers different than Nation in PEMFCs are briefly reviewed. Their preparation methods, their electrical transport properties and conduction mechanisms are considered. The advantages and disadvantages of these materials with respect to Nation are also discussed.

  13. The Role of Non-Conventional Supports for Single-Atom Platinum-Based Catalysts in Fuel-Cell Technology: A Theoretical Surface Science Approach

    Science.gov (United States)

    2013-02-05

    on the thermodynamic stability of platinized TiN. 15. SUBJECT TERMS fuel cells , Theoretical modeling , electrodes 16. SECURITY CLASSIFICATION OF...system are reported for various surface coverages of Pt. We find that atomic Pt does not bind preferably to the clean TiN surface, but under typical PEM ...could be a promising catalyst for PEM fuel cells. Introduction: Proton exchange membrane fuel cells (PEMFCs) have found wide potential

  14. Optimization of a High Temperature PEMFC micro-CHP System by Formulation and Application of a Process Integration Methodology

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2013-01-01

    . It consists of a fuel cell stack, a fuel processing subsystem, heat exchangers, and balance-of-plant components. The optimization methodology involves system optimization attempting to maximize the net electrical efficiency, and then by use of a mixed integer nonlinear programming (MINLP) problem formulation......, the heat exchange network (HEN) annual cost is minimized. The results show the high potential of the proposed model since high efficiencies are accomplished. The net electrical efficiency and total system efficiency, based on lower heating value (LHV), are 35.2% and 91.1%, respectively. The minimized total...

  15. DOE Award No. DE-FC36-03GO13108 NOVEL NON-PRECIOUS METAL CATALYSTS FOR PEMFC: CATALYST SELECTION THROUGH MOLECULAR MODELING AND DURABILITY STUDIES Final Report (September 2003 – October 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Branko N. Popov

    2009-02-20

    The objective of this project is to develop novel non-precious metal electrocatalysts for oxygen reduction reaction (ORR), and demonstrate the potential of the catalysts to perform at least as good as conventional Pt catalysts currently in use in polymer electrolyte membrane fuel cell (PEMFC) with a cost at least 50 % less than a target of 0.2 g (Pt loading)/peak kW and with durability > 2,000 h operation with less than 10 % power degradation. A novel nitrogen-modified carbon-based catalyst was obtained by modifying carbon black with nitrogen-containing organic precursor in the absence of transition metal precursor. The catalyst shows the onset potential of approximately 0.76 V (NHE) for ORR and the amount of H2O2 of approximately 3% at 0.5 V (NHE). Furthermore, a carbon composite catalyst was achieved through the high-temperature pyrolysis of the precursors of transition metal (Co and Fe) and nitrogen supported on the nitrogen-modified carbon-based catalyst, followed by chemical post-treatment. This catalyst showed an onset potential for ORR as high as 0.87 V (NHE), and generated less than 1 % of H2O2. The PEM fuel cell exhibited a current density of 2.3 A cm-2 at 0.2 V for a catalyst loading of 6.0 mg cm-2. No significant performance degradation was observed for 480 h continuous operation. The characterization studies indicated that the metal-nitrogen chelate complexes decompose at the temperatures above 800 oC. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface modified with nitrogen is active for ORR. In order to elucidate the role of transition metal precursor played in the formation of active sites in the non-precious metal catalysts, a novel ruthenium-based chelate (RuNx) catalyst was synthesized by using RuCl3 and propylene diammine as the Ru and N precursors, respectively, followed by high-temperature pyrolysis. This catalyst exhibited comparable

  16. DOE Award No. DE-FC36-03GO13108 NOVEL NON-PRECIOUS METAL CATALYSTS FOR PEMFC: CATALYST SELECTION THROUGH MOLECULAR MODELING AND DURABILITY STUDIES Final Report (September 2003 – October 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Branko N. Popov

    2009-03-03

    The objective of this project is to develop novel non-precious metal electrocatalysts for oxygen reduction reaction (ORR), and demonstrate the potential of the catalysts to perform at least as good as conventional Pt catalysts currently in use in polymer electrolyte membrane fuel cell (PEMFC) with a cost at least 50 % less than a target of 0.2 g (Pt loading)/peak kW and with durability > 2,000 h operation with less than 10 % power degradation. A novel nitrogen-modified carbon-based catalyst was obtained by modifying carbon black with nitrogen-containing organic precursor in the absence of transition metal precursor. The catalyst shows the onset potential of approximately 0.76 V (NHE) for ORR and the amount of H2O2 of approximately 3% at 0.5 V (NHE). Furthermore, a carbon composite catalyst was achieved through the high-temperature pyrolysis of the precursors of transition metal (Co and Fe) and nitrogen supported on the nitrogen-modified carbon-based catalyst, followed by chemical post-treatment. This catalyst showed an onset potential for ORR as high as 0.87 V (NHE), and generated less than 1 % of H2O2. The PEM fuel cell exhibited a current density of 2.3 A cm-2 at 0.2 V for a catalyst loading of 6.0 mg cm-2. No significant performance degradation was observed for 480 h continuous operation. The characterization studies indicated that the metal-nitrogen chelate complexes decompose at the temperatures above 800 oC. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface modified with nitrogen is active for ORR. In order to elucidate the role of transition metal precursor played in the formation of active sites in the non-precious metal catalysts, a novel ruthenium-based chelate (RuNx) catalyst was synthesized by using RuCl3 and propylene diammine as the Ru and N precursors, respectively, followed by high-temperature pyrolysis. This catalyst exhibited comparable

  17. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells.

    Science.gov (United States)

    Setzler, Brian P; Zhuang, Zhongbin; Wittkopf, Jarrid A; Yan, Yushan

    2016-12-06

    Fuel cells are the zero-emission automotive power source that best preserves the advantages of gasoline automobiles: low upfront cost, long driving range and fast refuelling. To make fuel-cell cars a reality, the US Department of Energy has set a fuel cell system cost target of US$30 kW(-1) in the long-term, which equates to US$2,400 per vehicle, excluding several major powertrain components (in comparison, a basic, but complete, internal combustion engine system costs approximately US$3,000). To date, most research for automotive applications has focused on proton exchange membrane fuel cells (PEMFCs), because these systems have demonstrated the highest power density. Recently, however, an alternative technology, hydroxide exchange membrane fuel cells (HEMFCs), has gained significant attention, because of the possibility to use stable platinum-group-metal-free catalysts, with inherent, long-term cost advantages. In this Perspective, we discuss the cost profile of PEMFCs and the advantages offered by HEMFCs. In particular, we discuss catalyst development needs for HEMFCs and set catalyst activity targets to achieve performance parity with state-of-the-art automotive PEMFCs. Meeting these targets requires careful optimization of nanostructures to pack high surface areas into a small volume, while maintaining high area-specific activity and favourable pore-transport properties.

  18. Gas phase recovery of hydrogen sulfide contaminated polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Kakati, Biraj Kumar; Kucernak, Anthony R. J.

    2014-04-01

    The effect of hydrogen sulfide (H2S) on the anode of a polymer electrolyte membrane fuel cell (PEMFC) and the gas phase recovery of the contaminated PEMFC using ozone (O3) were studied. Experiments were performed on fuel cell electrodes both in an aqueous electrolyte and within an operating fuel cell. The ex-situ analyses of a fresh electrode; a H2S contaminated electrode (23 μmolH2S cm-2); and the contaminated electrode cleaned with O3 shows that all sulfide can be removed within 900 s at room temperature. Online gas analysis of the recovery process confirms the recovery time required as around 720 s. Similarly, performance studies of an H2S contaminated PEMFC shows that complete rejuvenation occurs following 600-900 s O3 treatment at room temperature. The cleaning process involves both electrochemical oxidation (facilitated by the high equilibrium potential of the O3 reduction process) and direct chemical oxidation of the contaminant. The O3 cleaning process is more efficient than the external polarization of the single cell at 1.6 V. Application of O3 at room temperature limits the amount of carbon corrosion. Room temperature O3 treatment of poisoned fuel cell stacks may offer an efficient and quick remediation method to recover otherwise inoperable systems.

  19. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells

    Science.gov (United States)

    Setzler, Brian P.; Zhuang, Zhongbin; Wittkopf, Jarrid A.; Yan, Yushan

    2016-12-01

    Fuel cells are the zero-emission automotive power source that best preserves the advantages of gasoline automobiles: low upfront cost, long driving range and fast refuelling. To make fuel-cell cars a reality, the US Department of Energy has set a fuel cell system cost target of US$30 kW-1 in the long-term, which equates to US$2,400 per vehicle, excluding several major powertrain components (in comparison, a basic, but complete, internal combustion engine system costs approximately US$3,000). To date, most research for automotive applications has focused on proton exchange membrane fuel cells (PEMFCs), because these systems have demonstrated the highest power density. Recently, however, an alternative technology, hydroxide exchange membrane fuel cells (HEMFCs), has gained significant attention, because of the possibility to use stable platinum-group-metal-free catalysts, with inherent, long-term cost advantages. In this Perspective, we discuss the cost profile of PEMFCs and the advantages offered by HEMFCs. In particular, we discuss catalyst development needs for HEMFCs and set catalyst activity targets to achieve performance parity with state-of-the-art automotive PEMFCs. Meeting these targets requires careful optimization of nanostructures to pack high surface areas into a small volume, while maintaining high area-specific activity and favourable pore-transport properties.

  20. HIGH TEMPERATURE POLYMER FUEL CELLS

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...... temperature allows for utilization of the excess heat for fuel processing. Moreover, it provides an excellent CO tolerance of several percent, and the system needs no purification of hydrogen from a reformer. Continuous service for over 6 months at 150°C has been demonstrated....

  1. 从专利角度分析质子交换膜燃料电池的动态特性%Analysis of transient characteristics of PEMFC from patent view

    Institute of Scientific and Technical Information of China (English)

    申强; 范丽

    2014-01-01

    从专利角度分析质子交换膜燃料电池(PEMFC)动态特性的研究进展,对国内外相关专利进行检索,分析全球范围的申请趋势、申请人分布、专利技术的类型分布及技术热点,为PEMFC动态特性的研究和中国申请人专利布局的实施提供参考.

  2. Apontamentos sobre as bases empíricas do desenvolvimento

    Directory of Open Access Journals (Sweden)

    Dieter Rugard Siedenberg

    2013-03-01

    Full Text Available Neste artigo se procura compreender as bases empíricas sobre as quais se fundamentam as teorias do crescimento e do desenvolvimento socioeconômico. Parte-se do pressuposto de que a concepção contemporânea de desenvolvimento, no contexto das ciências sociais (especialmente, das aplicadas, tem raízes que se alimentaram de, pelo menos, três importantes fontes: as contribuições filosóficas da Grécia Antiga, as práticas políticas vigentes na República e no Império Romano e, por fim, as influências exercidas pela Igreja sobre o modo de produção vigente na sociedade medieval. De forma que a proposta deste artigo é abordar, sucintamente, um conjunto de aspectos considerados significativos que, herdados de cada um desses diferentes contextos históricos, contribuíram para a constituição da concepção de desenvolvimento atualmente vigente. O artigo resulta de apontamentos de leituras e percepções decorrentes de tais leituras, tendo em vista a recuperação de um passado remoto que, de um modo geral, influenciou a história recente da humanidade e, de maneira especial, as teorias econômicas que informam a concepção de desenvolvimento hoje dominante.Palavras-chave | Ciências sociais; crescimento econômico; desenvolvimento; história.Código JEL | B15; O10; P16. NOTES ON THE EMPIRICAL BASIS OF DEVELOPMENTAbstractThis paper seeks to understand the empirical basis on which the theories of growth and socioeconomic development are based. The starting point is the assumption that the contemporary concept of development, in the context of the social sciences (especially of the applied ones, has roots that fed on at least three major sources: the philosophical contributions of ancient Greece, the prevailing political practices in the Republic and the Roman Empire, and finally, the influences exerted by the Church on the production mode prevailing in medieval society. So the purpose of this article is to briefly discuss a number of

  3. Transient computation fluid dynamics modeling of a single proton exchange membrane fuel cell with serpentine channel

    Science.gov (United States)

    Hu, Guilin; Fan, Jianren

    The proton exchange membrane fuel cell (PEMFC) has become a promising candidate for the power source of electrical vehicles because of its low pollution, low noise and especially fast startup and transient responses at low temperatures. A transient, three-dimensional, non-isothermal and single-phase mathematical model based on computation fluid dynamics has been developed to describe the transient process and the dynamic characteristics of a PEMFC with a serpentine fluid channel. The effects of water phase change and heat transfer, as well as electrochemical kinetics and multicomponent transport on the cell performance are taken into account simultaneously in this comprehensive model. The developed model was employed to simulate a single laboratory-scale PEMFC with an electrode area about 20 cm 2. The dynamic behavior of the characteristic parameters such as reactant concentration, pressure loss, temperature on the membrane surface of cathode side and current density during start-up process were computed and are discussed in detail. Furthermore, transient responses of the fuel cell characteristics during step changes and sinusoidal changes in the stoichiometric flow ratio of the cathode inlet stream, cathode inlet stream humidity and cell voltage are also studied and analyzed and interesting undershoot/overshoot behavior of some variables was found. It was also found that the startup and transient response time of a PEM fuel cell is of the order of a second, which is similar to the simulation results predicted by most models. The result is an important guide for the optimization of PEMFC designs and dynamic operation.

  4. Desenvolvimento de aplicações educacionais na medicina com realidade aumentada

    OpenAIRE

    2015-01-01

    Este artigo discute os principais conceitos relacionados com a Realidade Virtual e descreve o desenvolvimento de aplicações educacionais na medicina utilizando a tecnologia de Realidade Aumentada com uso da biblioteca gráfica ARToolKit.

  5. Habilidades do desenvolvimento de prematuros Development abilities in preterm

    Directory of Open Access Journals (Sweden)

    Dionísia Aparecida Cusin Lamônica

    2009-01-01

    Full Text Available OBJETIVO: verificar o desempenho de habilidades do desenvolvimento linguístico, cognitivo, motor, de autocuidados e socialização em crianças prematuras. MÉTODOS: participaram 30 crianças nascidas prematuras, de ambos os sexos de seis a 24 meses. Os procedimentos de avaliação constaram de uma entrevista de anamnese e da aplicação do Inventário Portage Operacionalizado (IPO (Wilhiams & Aiello, 2001. As crianças foram divididas em dois grupos, conforme a faixa etária, para análise estatística dos dados, considerando as idades de seis a 11 meses e de 12 a 24 meses. A análise dos dados foi realizada por meio da aplicação do teste Manny-Whitney comparando os valores obtidos no grupo de crianças prematuras com escores previstos para crianças típicas. RESULTADOS: os resultados indicam que a área mais defasada do grupo na faixa etária de seis a 12 meses foi à linguística e autocuidados e na faixa etária de 12 a 24 meses as áreas mais defasadas foram linguística, cognitiva e de autocuidados. CONCLUSÃO: ressalta-se a necessidade de um acompanhamento rigoroso de recém-nascidos prematuros, por meio do desenvolvimento de programas de acompanhamento e por uma equipe multidisciplinar para promover a detecção e intervenção precoce, minimizando assim o impacto de problemas no desenvolvimento global destas crianças.PURPOSE: to check the performance of the linguistic, cognitive, motor, self-care and socialization development abilities in premature children. METHODS: 30 premature children participated, of both genders, from 6 to 24 months. The evaluation procedures consisted of an anamnesis interview and Operating Portage Inventory (OPI (Wilhiams & Aiello, 2001 application. The children were divided in two groups, according to age group, for statistical data analysis, considering the age groups from 6 to 11 months and from 12 to 24 months. Data analysis was accomplished through Manny-Whitney test application, comparing the values

  6. DESENVOLVIMENTO DA EDUCAÇÃO AMBIENTAL NO CONTEXTO ESCOLAR

    Directory of Open Access Journals (Sweden)

    FILGUEIRA, Ana Maria Falcão

    2014-10-01

    Full Text Available Science and education are of great importance for the full understanding of a society facing environmental problems. Schools have a fundamental role in this relationship, since they contribute to the formation of individuals and also to the formation and development of values that provide students with the search for the search for knowledge and conducts them to the preservation of the environment. In this context, the purpose of this study was to acknowledge the Environmental Education as part of the school universe, not as a specific subject, but present through the interdisciplinarity. This present study brought forward some topics about its importance to the school context, the need of teachers’ enablement and the importance of developing environmental practices in the classroom. There was also a sequence of three activities with the students. The first activity consisted of a game about the ecosystem in the schoolyard. The second one involved researches in the computer room. The third one involved making posters about environmental awareness. After these activities, the data were analyzed in a qualitative way, besides observation and follow-up during the development of the activities. Working the environmental theme in the school context is fundamental to the formation of individuals, because it promotes a harmonious relationship with the environment and, thus, the schools must look for some means of developing different activities. However, they lack structural and pedagogical requirements. But these problems cannot still be the excuses for not doing them. A ciência e a educação são de grande importância para a compreensão da sociedade diante os problemas ambientais enfrentados. Nesse sentido, a escola tem papel fundamental, pois contribui para a formação do indivíduo e também para o desenvolvimento de valores que propiciem aos alunos a busca por novos conhecimentos e que os conduza para a preservação do meio ambiente. Dentro

  7. An Equivalent Electrical Circuit Model of Proton Exchange Membrane Fuel Cells Based on Mathematical Modelling

    Directory of Open Access Journals (Sweden)

    Dinh An Nguyen

    2012-07-01

    Full Text Available Many of the Proton Exchange Membrane Fuel Cell (PEMFC models proposed in the literature consist of mathematical equations. However, they are not adequately practical for simulating power systems. The proposed model takes into account phenomena such as activation polarization, ohmic polarization, double layer capacitance and mass transport effects present in a PEM fuel cell. Using electrical analogies and a mathematical modeling of PEMFC, the circuit model is established. To evaluate the effectiveness of the circuit model, its static and dynamic performances under load step changes are simulated and compared to the numerical results obtained by solving the mathematical model. Finally, the applicability of our model is demonstrated by simulating a practical system.

  8. High surface area graphite as alternative support for proton exchange membrane fuel cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira-Aparicio, P.; Folgado, M.A. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, E-28040 Madrid (Spain); Daza, L. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, E-28040 Madrid (Spain); Instituto de Catalisis y Petroleoquimica (CSIC), C/Marie Curie, 2 Campus de Cantoblanco, E-28049 Madrid (Spain)

    2009-07-01

    The suitability of a high surface area graphite (HSAG) as proton exchange membrane fuel cell (PEMFC) catalyst support has been evaluated and compared with that of the most popular carbon black: the Vulcan XC72. It has been observed that Pt is arranged on the graphite surface resulting in different structures which depend on the catalysts synthesis conditions. The influence that the metal particle size and the metal-support interaction exert on the catalysts degradation rate is analyzed. Temperature programmed oxidation (TPO) under oxygen containing streams has been shown to be a useful method to assess the resistance of PEMFC catalysts to carbon corrosion. The synthesized Pt/HSAG catalysts have been evaluated in single cell tests in the cathode catalytic layer. The obtained results show that HSAG can be a promising alternative to the traditionally used Vulcan XC72 carbon black when suitable catalysts synthesis conditions are used. (author)

  9. A Central Composite Face-Centered Design for Parameters Estimation of PEM Fuel Cell Electrochemical Model

    Directory of Open Access Journals (Sweden)

    Khaled MAMMAR

    2013-11-01

    Full Text Available In this paper, a new approach based on Experimental of design methodology (DoE is used to estimate the optimal of unknown model parameters proton exchange membrane fuel cell (PEMFC. This proposed approach combines the central composite face-centered (CCF and numerical PEMFC electrochemical. Simulation results obtained using electrochemical model help to predict the cell voltage in terms of inlet partial pressures of hydrogen and oxygen, stack temperature, and operating current. The value of the previous model and (CCF design methodology is used for parametric analysis of electrochemical model. Thus it is possible to evaluate the relative importance of each parameter to the simulation accuracy. However this methodology is able to define the exact values of the parameters from the manufacture data. It was tested for the BCS 500-W stack PEM Generator, a stack rated at 500 W, manufactured by American Company BCS Technologies FC.

  10. Acid-doped Polybenzimidazole Membranes as Electrolyte for Fuel Cells Operating Above 100°C

    DEFF Research Database (Denmark)

    Qingfeng, Li; Jensen, Jens Oluf; He, Ronhuan

    2003-01-01

    The technical achievement and challenges for the PEMFC technology based on perfluorosulfonic acid (PFSA) polymer membranes (e.g. Nafion®) are briefly discussed. The newest development in the field is alternative polymer electrolytes for operation above 100°C. As one of the successful approaches...... to high operational temperatures, the development and evaluation of acid doped PBI membranes are reviewed, covering polymer synthesis, membrane casting, acid doping, physiochemical characterization and fuel cell tests. A high temperature PEMFC system operational at up to 200°C is demonstrated with no gas...... humidification and high CO-tolerance up to 10 vol%. This high CO tolerance allows for a direct use of reformed hydrogen without further CO removal, which opens the possibility for an integrated reformer-fuel cell system. The content of this review is to a large extent based on research performed by the authors...

  11. Numerical analysis on effect of diffusion layer characteristics on water flooding in PEMFC cathode%PEMFC阴极扩散层结构特性对水淹影响的数值分析

    Institute of Scientific and Technical Information of China (English)

    李英; 周勤文; 周晓慧

    2013-01-01

    GDL (gas diffusion layer) is one of the critical components of a fuel cell and its basic functions are to provide channels for diffusion of gas from fluid to catalyst layer and for drain of liquid water from catalyst layer to fluid. In order to meet service conditions, the understanding for structure-performance of GDL is very essential, such as key parameters structure, porosity, hydrophobicity, hydrophilicity, gas permeability, transport properties, water management and their roles. A mathematics model of ID and two-phase was built for GDL in cathode of proton exchange membrane fuel cell (PEMFC). A direct numerical procedure was applied for combined equations of the model and Leverett's and Fick's laws to analyze the profiles of liquid water saturation and oxygen concentration across the gas diffusion layer. The effect of GDL characteristics, such as porosity, thickness, contact angle and absolute permeability was discussed. The results show that its hydrophobicity is helpful for removal of liquid water. The effect of contact tangle on liquid water saturation and oxygen mass transfer becomes less and GDL porosity and thickness has little effect on liquid water saturation at the hydrophobic condition, but porosity and thickness of GDL play an important role in oxygen transfer. For practical use, both GDL porosity and thickness increase, there is no significant difference for limiting current density. Tafel slope and limiting current density predicted by the model agree well with the experimental observation from literatures.%建立质子交换膜燃料电池一维两相传递模型,通过达西定律和菲克定律的联立求解得到扩散层中的液体饱和度和氧气浓度分布.考察扩散层特性参数孔隙率、厚度、接触角、渗透率对阴极水淹的影响,结果表明扩散层表面憎水将有助于液态水移出,但当达到憎水条件后,增大接触角对液态水传输和氧气传质的影响逐渐变小.憎水条件下孔隙率和

  12. 键合图理论在PEMFC建模的应用%Application of Bond Graph Theory in PEMFC Modeling

    Institute of Scientific and Technical Information of China (English)

    黎润东; 宋珂; 章桐

    2011-01-01

    According to the real-time requirements of the vehicle control system,the arithmetic operation must be simple enough as well as ensuring the accuracy.Proton exchange membrane fuel cell(PEMFC) as the most promising fuel cell using in vehicles,the study to%基于汽车控制系统的实时性要求,控制模型必须在保证准确性的同时具有运算简单的特点.质子交换膜燃料电池(PEMFC)被誉为最有前途的车用燃料电池,对其模型的研究是不可或缺的.本文根据车用实时控制的要求结合PEMFC工作原理,利用键合图方法和20-sim软件,建立PEMFC的稳态模型.通过比较仿真结果与实验结果,验证了模型的正确性.

  13. Probing Formability Improvement of Ultra-thin Ferritic Stainless Steel Bipolar Plate of PEMFC in Non-conventional Forming Process

    Science.gov (United States)

    Bong, Hyuk Jong; Barlat, Frédéric; Lee, Myoung-Gyu

    2016-08-01

    Formability increase in non-conventional forming profiles programmed in the servo-press was investigated using finite element analysis. As an application, forming experiment on a 0.15-mm-thick ferritic stainless steel sheet for a bipolar plate, a primary component of a proton exchange membrane fuel cell, was conducted. Four different forming profiles were considered to investigate the effects of forming profiles on formability and shape accuracy. The four motions included conventional V motion, holding motion, W motion, and oscillating motion. Among the four motions, the holding motion, in which the slide was held for a certain period at the bottom dead point, led to the best formability. Finite element simulations were conducted to validate the experimental results and to probe the formability improvement in the non-conventional forming profiles. A creep model to address stress relaxation effect along with tool elastic recovery was implemented using a user-material subroutine, CREEP in ABAQUS finite element software. The stress relaxation and variable contact conditions during the holding and oscillating profiles were found to be the main mechanism of formability improvement.

  14. A Study of the Influence of Gas Channel Parameters on HT-PEM Fuel Cell Performance Using FEM Analysis

    Directory of Open Access Journals (Sweden)

    Ionescu Viorel

    2016-01-01

    Full Text Available Proton Exchange Membrane Fuel Cells (PEMFC are highly efficient power generators, achieving up to 50–60% conversion efficiency, even in sizes of a few kilowatts. Comsol Multiphysics, a commercial solver based on the Finite Element Method (FEM was used for developing a three dimensional model of a high temperature PEMFC that can deal with both anode and cathode flow field for examining the micro flow channel with electrochemical reaction. Cathode gas flow velocity influence on the cell performance was investigated at first. Polarization curves for three different channel widths (0.8, 1.6 and 2.4 mm and three different channel depths (1, 2 and 3 mm were computed at a cathode inlet flow velocity of 0.06 m/s. Oxygen molar concentration at cathode catalyst layer-GDL channel interface and local current density variation along the cell length were also studied for specific gas channel geometries.

  15. Numerical simulation of three-dimensional gas/liquid two-phase flow in a proton exchange membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    ZHUGE Weilin; ZHANG Yangjun; MING Pingwen; LAO Xingsheng; CHEN Xiao

    2007-01-01

    Investigation into the formation and transport of liquid water in proton exchange membrane fuel cells (PEMFCs) is the key to fuel cell water management.A threedimensional gas/liquid two-phase flow and heat transfer model is developed based on the multiphase mixture theory.The reactant gas flow,diffusion,and chemical reaction as well as the liquid water transport and phase change process are modeled.Numerical simulations on liquid water distribution and its effects on the performance of a PEMFC are conducted.Results show that liquid water distributes mostly in the cathode,and predicted cell performance decreases quickly at high current density due to the obstruction of liquid water to oxygen diffusion.The simulation results agree well with experimental data.

  16. Amorphous metallic alloys for oxygen reduction reaction in a polymer electrolyte membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Huerta, R.; Guerra-Martinez, I.; Lopez, J.S. [Inst. Politecnico Nacional, ESIQIE, Mexico City (Mexico). Lab. de Electroquimica; Pierna, A.R. [Basque Country Univ., San Sebastian (Spain). Dept. of Chemical Engineering and Environment; Solorza-Feria, O. [Inst. Politenico Nacional, Centro de Investigacion y de Estudios Avanzados, Mexico City (Mexico). Dept. de Quimica

    2010-07-15

    Direct methanol fuel cells (DMFC) and polymer electrolyte membrane fuel cells (PEMFC) represent an important, environmentally clean energy source. This has motivated extensive research on the synthesis, characterization and evaluation of novel and stable oxygen reduction electrocatalysts for the direct four-electron transfer process to water formation. Studies have shown that amorphous alloyed compounds can be used as electrode materials in electrochemical energy conversion devices. Their use in PEMFCs can optimize the electrocatalyst loading in the membrane electrode assembly (MEA). In this study, amorphous metallic PtSn, PtRu and PtRuSn alloys were synthesized by mechanical milling and used as cathodes for the oxygen reduction reaction (ORR) in sulphuric acid and in a single PEM fuel cell. Two different powder morphologies were observed before and after the chemical activation in a hydrofluoric acid (HF) solution at 25 degrees C. The kinetics of the ORR on the amorphous catalysts were investigated. The study showed that the amorphous metallic PtSn electrocatalyst was the most active of the 3 electrodes for the cathodic reaction. Fuel cell experiments were conducted at various temperatures at 30 psi for hydrogen (H{sub 2}) and at 34 psi for oxygen (O{sub 2}). MEAs made of Nafion 115 and amorphous metallic PtSn dispersed on carbon powder in a PEMFC had a power density of 156 mW per cm{sup 2} at 0.43V and 80 degrees C. 12 refs., 1 tab., 5 figs.

  17. Current Density Distribution Mapping in PEM Fuel Cells as An Instrument for Operational Measurements

    Directory of Open Access Journals (Sweden)

    Martin Geske

    2010-04-01

    Full Text Available A newly developed measurement system for current density distribution mapping has enabled a new approach for operational measurements in proton exchange membrane fuel cells (PEMFC. Taking into account previously constructed measurement systems, a method based on a multi layer printed circuit board was chosen for the development of the new system. This type of system consists of a sensor, a special electronic device and the control and visualization PC. For the acquisition of the current density distribution values, a sensor device was designed and installed within a multilayer printed circuit board with integrated shunt resistors. Varying shunt values can be taken into consideration with a newly developed and evaluated calibration method. The sensor device was integrated in a PEM fuel cell stack to prove the functionality of the whole measurement system. A software application was implemented to visualize and save the measurement values. Its functionality was verified by operational measurements within a PEMFC system. Measurement accuracy and possible negative reactions of the sensor device during PEMFC operation are discussed in detail in this paper. The developed system enables operational measurements for different operating phases of PEM fuel cells. Additionally, this can be seen as a basis for new opportunities of optimization for fuel cell design and operation modes.

  18. Desenvolvimento de Jogos Utilizando XNA: um Exemplo com o Jogo SpaceX

    Directory of Open Access Journals (Sweden)

    Joni Pereira de Pinho Rodrigues da Silva

    2015-07-01

    Full Text Available A área de jogos eletrônicos tem crescido cada vez mais. Podese, nos dias atuais, encontrar jogos em diversos dispositivos: computadores pessoais, consoles domésticos e dispositivos móveis. O desenvolvimento de um jogo não é uma tarefa fácil, pois envolve diversas áreas de conhecimento e também diversas subáreas da computação. A área de desenvolvimento de jogos desperta muita curiosidade e interesse em muitos programadores, entretanto a maioria das instituições de ensino superior com cursos na área de computação não apresentam o foco ou disciplinas específicas para o desenvolvimento de jogos, principalmente em Curso de Sistemas de Informação. Esta foi uma das motivações para o desenvolvimento deste trabalho. Este artigo apresenta o framework XNA e as suas principais funcionalidades para desenvolvimento de jogos eletrônicos interativos. Como resultado e exemplificação o artigo também apresenta o desenvolvimento de um jogo 2D, chamado SpaceX.

  19. Fuel cells: a real option for Unmanned Aerial Vehicles propulsion.

    Science.gov (United States)

    González-Espasandín, Óscar; Leo, Teresa J; Navarro-Arévalo, Emilio

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored.

  20. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    Directory of Open Access Journals (Sweden)

    Óscar González-Espasandín

    2014-01-01

    Full Text Available The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC and Direct Methanol Fuel Cells (DMFC, their fuels (hydrogen and methanol, and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored.

  1. Estimation of membrane hydration status for active proton exchange membrane fuel cell systems by impedance measurement

    DEFF Research Database (Denmark)

    Török, Lajos; Sahlin, Simon Lennart; Kær, Søren Knudsen;

    2016-01-01

    , the membrane of which PEMFCs are made of tends to dry out when not in use. This increases the time interval required to start the system up and could lead to the destruction of the fuel cell. In this article a start-up time measurement setup is presented, which is part of a larger project, the membrane...... in this paper a correlation between the start-up time and relative humidity of the membrane can be derived....

  2. Corrosion-resistant, electrically-conductive plate for use in a fuel cell stack

    Science.gov (United States)

    Carter, J. David; Mawdsley, Jennifer R.; Niyogi, Suhas; Wang, Xiaoping; Cruse, Terry; Santos, Lilia

    2010-04-20

    A corrosion resistant, electrically-conductive, durable plate at least partially coated with an anchor coating and a corrosion resistant coating. The corrosion resistant coating made of at least a polymer and a plurality of corrosion resistant particles each having a surface area between about 1-20 m.sup.2/g and a diameter less than about 10 microns. Preferably, the plate is used as a bipolar plate in a proton exchange membrane (PEMFC) fuel cell stack.

  3. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfeld, S. [Los Alamos National Lab., NM (United States)

    1995-09-01

    The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. The low temperature, polymer electrolyte membrane fuel cell (PEMFC) has recently been identified as an attractive option for stationary power generation, based on the relatively simple and benign materials employed, the zero-emission character of the device, and the expected high power density, high reliability and low cost. However, a PEMFC stack fueled by hydrogen with the combined properties of low cost, high performance and high reliability has not yet been demonstrated. Demonstration of such a stack will remove a significant barrier to implementation of this advanced technology for electric power generation from hydrogen. Work done in the past at LANL on the development of components and materials, particularly on advanced membrane/electrode assemblies (MEAs), has contributed significantly to the capability to demonstrate in the foreseeable future a PEMFC stack with the combined characteristics described above. A joint effort between LANL and an industrial stack manufacturer will result in the demonstration of such a fuel cell stack for stationary power generation. The stack could operate on hydrogen fuel derived from either natural gas or from renewable sources. The technical plan includes collaboration with a stack manufacturer (CRADA). It stresses the special requirements from a PEMFC in stationary power generation, particularly maximization of the energy conversion efficiency, extension of useful life to the 10 hours time scale and tolerance to impurities from the reforming of natural gas.

  4. O sujeito em contextos de uso e desenvolvimento de softwares

    Directory of Open Access Journals (Sweden)

    Luciano Meira

    Full Text Available Este artigo discute a questão do sujeito em psicologia, tomando como cenário as práticas contemporâneas de uso de artefatos digitais, e o contexto menos observado dos ambientes de desenvolvimento de softwares. Discutimos como as ações de desenvolvedores e usuários regulam um ao outro enquanto sujeitos das relações humano-computador. Propomos uma perspectiva de sujeito que se articula pela interlocução da escola de Vygotsky, o Círculo de Bakhtin, e a linguística de Benveniste. Nessa perspectiva, desenvolvedores e usuários são, ambos, autores, e as interfaces computacionais que eles criam, frequentemente tomadas como código apenas, são entendidas como enunciados que disparam uma dinâmica dialógica. Evidenciamos, neste estudo, um sujeito marcado pelas relações estabelecidas com outros sujeitos e outros discursos, cujas vozes encontram-se, muitas vezes, encapsuladas em imagens e palavras das interfaces computacionais.

  5. Structural dynamics and activity of nanocatalysts inside fuel cells by in operando atomic pair distribution studies

    Science.gov (United States)

    Petkov, Valeri; Prasai, Binay; Shan, Shiyao; Ren, Yang; Wu, Jinfang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian

    2016-05-01

    Here we present the results from a study aimed at clarifying the relationship between the atomic structure and activity of nanocatalysts for chemical reactions driving fuel cells, such as the oxygen reduction reaction (ORR). In particular, using in operando high-energy X-ray diffraction (HE-XRD) we tracked the evolution of the atomic structure and activity of noble metal-transition metal (NM-TM) nanocatalysts for ORR as they function at the cathode of a fully operational proton exchange membrane fuel cell (PEMFC). Experimental HE-XRD data were analysed in terms of atomic pair distribution functions (PDFs) and compared to the current output of the PEMFC, which was also recorded during the experiments. The comparison revealed that under actual operating conditions, NM-TM nanocatalysts can undergo structural changes that differ significantly in both length-scale and dynamics and so can suffer losses in their ORR activity that differ significantly in both character and magnitude. Therefore we argue that strategies for reducing ORR activity losses should implement steps for achieving control not only over the length but also over the time-scale of the structural changes of NM-TM NPs that indeed occur during PEMFC operation. Moreover, we demonstrate how such a control can be achieved and thereby the performance of PEMFCs improved considerably. Last but not least, we argue that the unique capabilities of in operando HE-XRD coupled to atomic PDF analysis to characterize active nanocatalysts inside operating fuel cells both in a time-resolved manner and with atomic level resolution, i.e. in 4D, can serve well the ongoing search for nanocatalysts that deliver more with less platinum.Here we present the results from a study aimed at clarifying the relationship between the atomic structure and activity of nanocatalysts for chemical reactions driving fuel cells, such as the oxygen reduction reaction (ORR). In particular, using in operando high-energy X-ray diffraction (HE

  6. Determinantes do desenvolvimento do setor agropecuário nos municípios

    Directory of Open Access Journals (Sweden)

    Caio César de Medeiros Costa

    2013-06-01

    Full Text Available Dada a importância do setor agropecuário para a economia brasileira, é fundamental conhecer os fatores determinantes do desenvolvimento agropecuário em seus municípios. Sob a luz de referencial teórico que aborda questões relacionadas aos fatores determinantes do desenvolvimento agropecuário e do desenvolvimento econômico local, neste estudo fez-se uso das metodologias de análise multivariada conhecidas como análise fatorial e análise de cluster. Utilizou-se o estado de Minas Gerais como recorte analítico. Foram selecionadas 22 variáveis para cada município, representando diferentes dimensões do desenvolvimento, visando verificar quais os fatores determinantes do desenvolvimento agropecuário. Após a análise fatorial, optou-se pela extração de seis fatores com raiz característica maior do que um e que respondem, em conjunto, por 62,25% da variância total dos dados: desenvolvimento econômico, investimento público, qualidade de vida, condições da atividade agropecuária, condições de meio ambiente e consumo, e condições de financiamento. Pela análise de cluster, foram criados cinco grupos, de acordo com o desempenho dos membros nos fatores. Os resultados corroboram os apontamentos literários em quase sua totalidade e, além disso, destaca-se e discute-se a existência de um ciclo positivo gerado pelo incremento dos fatores determinantes do desenvolvimento agropecuário e pelas vantagens competitivas. Neste estudo, aponta-se a importância do investimento público na promoção do desenvolvimento, reforçando o proposto por trabalhos anteriores de que o Estado desempenha papel fundamental para garantir condições que propiciem o desenvolvimento do setor agropecuário. Outra constatação factível é a de que fatores isolados, tais como as boas condições da agricultura e do meio ambiente, não são capazes de propiciar desenvolvimento para o setor nos municípios mineiros.

  7. Fuel processors for fuel cell APU applications

    Science.gov (United States)

    Aicher, T.; Lenz, B.; Gschnell, F.; Groos, U.; Federici, F.; Caprile, L.; Parodi, L.

    The conversion of liquid hydrocarbons to a hydrogen rich product gas is a central process step in fuel processors for auxiliary power units (APUs) for vehicles of all kinds. The selection of the reforming process depends on the fuel and the type of the fuel cell. For vehicle power trains, liquid hydrocarbons like gasoline, kerosene, and diesel are utilized and, therefore, they will also be the fuel for the respective APU systems. The fuel cells commonly envisioned for mobile APU applications are molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and proton exchange membrane fuel cells (PEMFC). Since high-temperature fuel cells, e.g. MCFCs or SOFCs, can be supplied with a feed gas that contains carbon monoxide (CO) their fuel processor does not require reactors for CO reduction and removal. For PEMFCs on the other hand, CO concentrations in the feed gas must not exceed 50 ppm, better 20 ppm, which requires additional reactors downstream of the reforming reactor. This paper gives an overview of the current state of the fuel processor development for APU applications and APU system developments. Furthermore, it will present the latest developments at Fraunhofer ISE regarding fuel processors for high-temperature fuel cell APU systems on board of ships and aircrafts.

  8. Application of a Decomposition Strategy to the Optimal Synthesis/Design and Operation of a Fuel Cell Based Total Energy System

    OpenAIRE

    2002-01-01

    A decomposition methodology based on the concept of â thermoeconomic isolationâ applied to the synthesis/design and operational optimization of a stationary cogeneration proton exchange membrane fuel cell (PEMFC) based total energy system (TES) for residential/commercial applications is the focus of this work. A number of different configurations for the fuel cell based TES were considered. The most promising set based on an energy integration analysis of candidate configurations was devel...

  9. Elaboration, physical and electrochemical characterizations of CO tolerant PEMFC anode materials. Study of platinum-molybdenum and platinum-tungsten alloys and composites; Elaborations et caracterisations electrochimiques et physiques de materiaux d'anode de PEMFC peu sensibles a l'empoisonnement par CO: etude d'alliages et de composites a base de platine-molybdene et de platine-tungstene

    Energy Technology Data Exchange (ETDEWEB)

    Peyrelade, E.

    2005-06-15

    PEMFC development is hindered by the CO poisoning ability of the anode platinum catalyst. It has been previously shown that the oxidation potential of carbon monoxide adsorbed on the platinum atoms can be lowered using specific Pt based catalysts, either metallic alloys or composites. The objective is then to realize a catalyst for which the CO oxidation is compatible with the working potential of a PEMFC anode. In our approach, to enhance the CO tolerance of platinum based catalyst supported on carbon, we studied platinum-tungsten and platinum-molybdenum alloys and platinum-metal oxide materials (Pt-WO{sub x} and Pt-MoO{sub x}). The platinum based alloys demonstrate a small effect of the second metal towards the oxidation of carbon monoxide. The platinum composites show a better tolerance to carbon monoxide. Electrochemical studies on both Pt-MoO{sub x} and Pt-WO{sub x} demonstrate the ability of the metal-oxides to promote the ability of Pt to oxidize CO at low potentials. However, chrono-amperometric tests reveal a bigger influence of the tungsten oxide. Complex chemistry reactions on the molybdenum oxide surface make it more difficult to observe. (author)

  10. A review of water management in polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ji, M.; Wei, Z. [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044 (China)

    2009-07-01

    At present, despite the great advances in polymer electrolyte membrane fuel cell (PEMFC) technology over the past two decades through intensive research and development activities, their large-scale commercialization is still hampered by their higher materials cost and lower reliability and durability. In this review, water management is given special consideration. Water management is of vital importance to achieve maximum performance and durability from PEMFCs. On the one hand, to maintain good proton conductivity, the relative humidity of inlet gases is typically held at a large value to ensure that the membrane remains fully hydrated. On the other hand, the pores of the catalyst layer and the gas diffusion layer are frequently flooded by excessive liquid water, resulting in a higher mass transport resistance. Thus, a subtle equilibrium has to be maintained between membrane drying and liquid water flooding to prevent fuel cell degradation and guarantee a high performance level, which is the essential problem of water management. This paper presents a comprehensive review of the state-of-the-art studies of water management, including the experimental methods and modeling and simulation for the characterization of water management and the water management strategies. As one important aspect of water management, water flooding has been extensively studied during the last two decades. Herein, the causes, detection, effects on cell performance and mitigation strategies of water flooding are overviewed in detail. In the end of the paper the emphasis is given to: (i) the delicate equilibrium of membrane drying vs. water flooding in water management; (ii) determining which phenomenon is principally responsible for the deterioration of the PEMFC performance, the flooding of the porous electrode or the gas channels in the bipolar plate, and (iii) what measures should be taken to prevent water flooding from happening in PEMFCs. (author)

  11. A Review of Water Management in Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Zidong Wei

    2009-11-01

    Full Text Available At present, despite the great advances in polymer electrolyte membrane fuel cell (PEMFC technology over the past two decades through intensive research and development activities, their large-scale commercialization is still hampered by their higher materials cost and lower reliability and durability. In this review, water management is given special consideration. Water management is of vital importance to achieve maximum performance and durability from PEMFCs. On the one hand, to maintain good proton conductivity, the relative humidity of inlet gases is typically held at a large value to ensure that the membrane remains fully hydrated. On the other hand, the pores of the catalyst layer (CL and the gas diffusion layer (GDL are frequently flooded by excessive liquid water, resulting in a higher mass transport resistance. Thus, a subtle equilibrium has to be maintained between membrane drying and liquid water flooding to prevent fuel cell degradation and guarantee a high performance level, which is the essential problem of water management. This paper presents a comprehensive review of the state-of-the-art studies of water management, including the experimental methods and modeling and simulation for the characterization of water management and the water management strategies. As one important aspect of water management, water flooding has been extensively studied during the last two decades. Herein, the causes, detection, effects on cell performance and mitigation strategies of water flooding are overviewed in detail. In the end of the paper the emphasis is given to: (i the delicate equilibrium of membrane drying vs. water flooding in water management; (ii determining which phenomenon is principally responsible for the deterioration of the PEMFC performance, the flooding of the porous electrode or the gas channels in the bipolar plate, and (iii what measures should be taken to prevent water flooding from happening in PEMFCs.

  12. Structural dynamics and activity of nanocatalysts inside fuel cells by in operando atomic pair distribution studies.

    Science.gov (United States)

    Petkov, Valeri; Prasai, Binay; Shan, Shiyao; Ren, Yang; Wu, Jinfang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian

    2016-05-19

    Here we present the results from a study aimed at clarifying the relationship between the atomic structure and activity of nanocatalysts for chemical reactions driving fuel cells, such as the oxygen reduction reaction (ORR). In particular, using in operando high-energy X-ray diffraction (HE-XRD) we tracked the evolution of the atomic structure and activity of noble metal-transition metal (NM-TM) nanocatalysts for ORR as they function at the cathode of a fully operational proton exchange membrane fuel cell (PEMFC). Experimental HE-XRD data were analysed in terms of atomic pair distribution functions (PDFs) and compared to the current output of the PEMFC, which was also recorded during the experiments. The comparison revealed that under actual operating conditions, NM-TM nanocatalysts can undergo structural changes that differ significantly in both length-scale and dynamics and so can suffer losses in their ORR activity that differ significantly in both character and magnitude. Therefore we argue that strategies for reducing ORR activity losses should implement steps for achieving control not only over the length but also over the time-scale of the structural changes of NM-TM NPs that indeed occur during PEMFC operation. Moreover, we demonstrate how such a control can be achieved and thereby the performance of PEMFCs improved considerably. Last but not least, we argue that the unique capabilities of in operando HE-XRD coupled to atomic PDF analysis to characterize active nanocatalysts inside operating fuel cells both in a time-resolved manner and with atomic level resolution, i.e. in 4D, can serve well the ongoing search for nanocatalysts that deliver more with less platinum.

  13. Desenvolvimento e Gestão Pública: das ideias às práticas

    Directory of Open Access Journals (Sweden)

    Jackeline Amantino de Andrade

    2010-11-01

    Full Text Available Este artigo tem como objetivo tratar dos modelos de desenvolvimento no contexto brasileiro e introduzir uma discussão sobre políticas de desenvolvimento e sua gestão. Para tanto, faz-se necessário resgatar a discussão sobre desenvolvimento tanto em suas bases desenvolvimentistas como a atual proposição de desenvolvimento endógeno. Entende-se que o desenvolvimento depende de uma capacidade organizacional na articulação de vários fatores, tangíveis e intangíveis, quantitativos e qualitativos e envolve várias dimensões: econômica, social, cultural, ambiental e físico-territorial, político-institucional e científico-tecnológica e é construído através de estratégias processuais potencializadas por coletivos. A primeira parte apresenta uma discussão conceitual sobre o desenvolvimento e os processos de organizacionais e de gestão neles implicados. A segunda parte apresenta um estudo empírico de caráter exploratório de modo a ampliar a discussão sobre modelos de desenvolvimento a partir da relação entre teoria e prática. Finalmente, são tecidas algumas considerações sobre o por vir, principalmente, quando se considera que nesses tempos de globalização e de acirramento das desigualdades urge encontrar alternativas justas e solidárias para as sociedades.

  14. Development of alternative low-cost and durable metallic bipolar plates for polymer electrolyte membrane (PEM) fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Okafor, A.C.; Kilicay, O. [Missouri Univ. of Science and Technology, Rolla (United States). Dept. of Mechanical and Aerospace Engineering

    2009-07-01

    Bipolar plates account for significant portion of the cost of proton exchange membrane fuel cells (PEMFCs). This study discussed the design of a high corrosion-resistance metallic bipolar plate as an alternative to the porous graphite bipolar plates currently used in PEMFCs. A literature review of bipolar plate materials and flow field design configurations was conducted. Metallic candidate materials and flow field configurations were identified. Computer-aided design (CAD) models were then development in order to design the software programs used to machine the bipolar plates in 3 different materials. The machined bipolar plates are now being integrated with state-of-the-art membrane electrode assemblies (MEAs) and sealants into single- and 3-cell stacks. The results of some performance, durability, and degradation mechanism analyses were presented.

  15. Approaches and Recent Development of Polymer Electrolyte Membranes For Fuel Cells Operational Above 100°C

    DEFF Research Database (Denmark)

    Li, Qingfeng; He, Ronghuan; Jensen, Jens Oluf

    2003-01-01

    The state-of-the-art of polymer electrolyte membrane fuel cell (PEMFC) technology is based on perfluorosulfonic acid (PFSA) polymer membranes operating at a typical temperature of 80 °C. Some of the key issues and shortcomings of the PFSA-based PEMFC technology are briefly discussed. These include...... water management, CO poisoning, hydrogen, reformate and methanol as fuels, cooling, and heat recovery. As a means to solve these shortcomings, hightemperature polymer electrolyte membranes for operation above 100 °C are under active development. This treatise is devoted to a review of the area...... encompassing modified PFSA membranes, alternative sulfonated polymer and their composite membranes, and acidbase complex membranes. PFSA membranes have been modified by swelling with nonvolatile solvents and preparing composites with hydrophilic oxides and solid proton conductors. DMFC and H2/O2(air) cells...

  16. O capital humano e o desenvolvimento econômico

    Directory of Open Access Journals (Sweden)

    Beatriz Maria Witkowski

    2007-07-01

    Full Text Available Um ambiente competitivo de negócios é decorrência cada vez maior de uma administração eficaz do capital humano. Estrutura, tecnologia, recursos financeiros e materiais são aspectos meramente físicos e inertes que precisam ser administrados inteligentemente por meio das pessoas que constituem a organização. A Teoria do Capital Humano é uma derivação da Teoria Econômica Neoclássica e, ao mesmo tempo, uma atualização, do axioma liberal do indivíduo livre, soberano e racional. Ressurgiu com a crise do modelo tayloris ta-fordis ta, associada à redefinição das relações de trabalho na empresa e do papel do sistema educacional. A qualidade dos funcionários de uma organização, seus conhecimentos e habilidades, entusiasmo e satisfação com seus cargos, seu senso de iniciativa para gerar riqueza, tudo isso tem forte impacto na produtividade da organização, no nível de serviço ao cliente, na reputação e na competitividade. Para qualquer que seja a área empresarial escolhida, o futuro administrador necessita ter uma visão sobre como lidar com assuntos relacionados com pessoas para alcançar o seu sucesso profissional e levar a sua organização rumo à excelência e à competitividade. Em seu conjunto, as pessoas constituem o capital humano da organização. Esse capital pode valer mais ou valer menos, na medida em que contenha talentos capazes de agregar valor à organização e torná-la mais ágil e competitiva. Portanto, esse capital vale mais na medida em que consiga influenciar as ações e os destinos da organização. A era da informação torna o trabalho menos físico e mais mental, pois as pessoas deixaram de ser fornecedoras de mão-de-obra para serem alçadas à categoria de fornecedoras de conhecimento e de competências. Do mesmo modo que o capital humano é relevante para a sociedade e para as organizações, observa-se que o desenvolvimento econômico também possui um papel de suma importância. Define

  17. Dossiê: “Políticas públicas de desenvolvimento territorial na América Latina”

    OpenAIRE

    2013-01-01

    O dossiê deste número é dedicado às “Políticas públicas de desenvolvimento territorial em América Latina”. Artigos sobre políticas públicas de desenvolvimento rural ou sobre desenvolvimento territorial e ambiental já foram publicados na revista SeD; no entanto, aqui as duas temáticas foram cruzadas. Esse dossiê foi preparado pelos coordenadores de uma nova rede de pesquisa atuante em escala latinoamericana, a “Rede Políticas públicas e Desenvolvimento Rural na América Latina”....

  18. The effects of hydrogen sulfide on the polymer electrolyte membrane fuel cell anode catalyst: H2S-Pt/C interaction products

    Science.gov (United States)

    Lopes, Thiago; Paganin, Valdecir A.; Gonzalez, Ernesto R.

    2011-08-01

    The performance of a polymer electrolyte membrane fuel cell (PEMFC) operating on a simulated hydrocarbon reformate is described. The anode feed stream consisted of 80% H2, ∼20% N2, and 8 ppm hydrogen sulfide (H2S). Cell performance losses are calculated by evaluating cell potential reduction due to H2S contamination through lifetime tests. It is found that potential, or power, loss under this condition is a result of platinum surface contamination with elemental sulfur. Electrochemical mass spectroscopy (EMS) and electrochemical techniques are employed, in order to show that elemental sulfur is adsorbed onto platinum, and that sulfur dioxide is one of the oxidation products. Moreover, it is demonstrated that a possible approach for mitigating H2S poisoning on the PEMFC anode catalyst is to inject low levels of air into the H2S-contaminated anode feeding stream.

  19. Relatório brasileiro sobre desenvolvimento social

    Directory of Open Access Journals (Sweden)

    Luiz Felipe Lampreia

    1995-08-01

    Full Text Available O relatório nacional brasileiro, elaborado como parte do processo de preparação da participação brasileira na Cúpula Mundial para o Desenvolvimento Social, busca traçar um quadro da situação do Brasil em relação aos três temas centrais do evento: alívio e redução da pobreza, expansão do emprego produtivo e integração social. Com o objetivo de qualificar a peculiaridade dos desafios sociais com os quais o Brasil se defronta, a primeira parte consiste de um quadro abrangente, onde estão expostos os dados gerais mais relevantes. A segunda parte, de caráter conceituai, explora a relação à dicotomia desenvolvimento econômico/desenvolvimento social, políticas econômicas/políticas sociais. Passa-se, então, à parte do relatório mais diretamente ligada aos temas centrais da Cúpula. O capítulo sobre pobreza busca sistematizar algumas das principais características desse fenômeno no Brasil; em "Emprego e mercado de trabalho" examinam-se questões como a baixa taxa de desemprego aberto do mercado brasileiro e sua relação com a má qualidade dos postos de trabalho existentes; finalmente, "Integração social e políticas sociais" salienta a necessidade de novas formas de solidariedade social, o que implicaria a reformulação da lógica de financiamento das políticas sociais e sua integração num conjunto coeso, ao lado de novas parcerias do Estado com a sociedade e do setor público com o setor privado. À guisa de conclusão, alinham-se as principais diretrizes do Governo Federal para o período 1995-1999. Depois de enfatizar a necessidade de que quatro condições prévias - fortalecimento da democracia, manutenção da estabilidade econômica, recuperação do crescimento sustentado e reforma do Estado - sejam alcançadas, identificam-se cinco metas prioritárias na área social: agricultura, educação, emprego, saúde e segurança. O relatório termina com breve esboço da estrutura do Programa Comunidade Solid

  20. Characterising of solid state electrochemical cells under operation

    DEFF Research Database (Denmark)

    Holtappels, Peter

    2014-01-01

    Compared to significant progress in PEMFC especially regarding the utilization of complex fuels such as methanol significant progress has been made by applying spectroscopic / differential IR and spectrometric techniques to working fuel cells, the processes in solid state high temperature...... electrochemical cells are still a "black box". In order to identify local reaction sites, surface coverage and potential/current introduced materials and surface modifications, in situ techniques are needed to gain a better understanding of the elementary and performance limiting steps for these cells...

  1. Performance and endurance of a high temperature PEM fuel cell operated on methanol reformate

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Grigoras, Ionela; Zhou, Fan

    2014-01-01

    This paper analyzes the effects of methanol and water vapor on the performance of a high temperature proton exchange membrane fuel cell (HT-PEMFC) at varying temperatures, ranging from 140 °C to 180 °C. For the study, a H3PO4 – doped polybenzimidazole (PBI) – based membrane electrode assembly (MEA......) of 45 cm2 active surface area from BASF was employed. The study showed overall negligible effects of methanol-water vapor mixture slips on performance, even at relatively low simulated steam methanol reforming conversion of 90%, which corresponds to 3% methanol vapor by volume in the anode gas feed....... Temperature on the other hand has significant impact on the performance of an HT-PEMFC. To assess the effects of methanol-water vapor mixture alone, CO2 and CO are not considered in these tests. The analysis is based on polarization curves and impedance spectra registered for all the test points. After...

  2. Neural network modeling and control of proton exchange membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    CHEN Yue-hua; CAO Guang-yi; ZHU Xin-jian

    2007-01-01

    A neural network model and fuzzy neural network controller was designed to control the inner impedance of a proton exchange membrane fuel cell(PEMFC)stack. A radial basis function(RBF)neural network model was trained by the input-output data of impedance. A fuzzy neural network controller Was designed to control the impedance response.The RBF neural network model was used to test the fuzzy neural network controller.The results show that the RBF model output Can imitate actual output well, themaximal errorisnotbeyond 20 mΩ, thetrainingtime is about 1 s by using 20 neurons, and the mean squared errors is 141.9 mΩ2.The impedance of the PEMFC stack is controlled within the optimum range when the load changes, and the adjustive time is ahnllt 3 rain.

  3. Carbon film coating on gas diffusion layer for proton exchange membrane fuel cells

    Science.gov (United States)

    Lin, Jui-Hsiang; Chen, Wei-Hung; Su, Shih-Hsuan; Liao, Yuan-Kai; Ko, Tse-Hao

    This study discusses a novel process to increase the performance of proton exchange membrane fuel cells (PEMFC). In order to improve the electrical conductivity and reduce the surface indentation of the carbon fibers, we modified the carbon fibers with pitch-based carbon materials (mesophase pitch and coal tar pitch). Compared with the gas diffusion backing (GDB), GDB-A240 and GDB-MP have 32% and 33% higher current densities at 0.5 V, respectively. Self-made carbon paper with the addition of a micro-porous layer (MPL) (GDL-A240 and GDL-MP) show improved performance compared with GDB-A240 and GDB-MP. The current densities of GDL-A240 and GDL-MP at 0.5 V increased by 37% and 31% compared with GDL, respectively. This study combines these two effects (carbon film and MPL coating) to promote high current density in a PEMFC.

  4. Adaptive inverse control of air supply flow for proton exchange membrane fuel cell systems

    Institute of Scientific and Technical Information of China (English)

    LI Chun-hua; ZHU Xin-jian; SUI Sheng; HU Wan-qi; HU Ming-ruo

    2009-01-01

    To prevent the oxygen starvation and improve the system output performance, an adaptive inverse control (AIC) strategy is developed to regulate the air supply flow of a proton exchange membrane fuel cell (PEMFC) system in this paper.The PEMFC stack and the air supply system including a compressor and a supply manifold are modeled for the purpose of performance analysis and controller design. A recurrent fuzzy neural network (RFNN) is utilized to identify the inverse model of the controlled system and generates a suitable control input during the abrupt step change of external disturbances.Compared with the PI controller, numerical simulations are performed to validate the effectiveness and advantages of the proposed AIC strategy.

  5. Improvement of carbon corrosion resistance through heat-treatment in polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Y.J.; Oh, H.S.; Kim, H. [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical and Biomolecular Engineering

    2010-07-01

    Electrochemical corrosion of carbon in the catalyst layer of polymer electrolyte membrane fuel cells (PEMFCs) is a critical factor in limiting their durability. The corrosion rate increases during the iterative abnormal operating conditions known as reverse current phenomenon. The corrosion causes a decrease of the active surface of the platinum (Pt) catalyst. The graphitization of carbon increases corrosion resistance, and the hydrophobicity of the carbon surface can also play an important role in decreasing carbon corrosion. This study investigated the effect of heat-treating carbon nanofibers (CNFs) for use in PEMFC applications. The aim of the study was to determine if heat treatments modified the carbon surface by eliminating the oxygen functional group and increasing hydrophobicity. The electrochemical carbon corrosion of CNFs were compared after heat treatments at various temperatures. Mass spectrometry was used to measure electrochemical carbon corrosion by monitoring the amounts of carbon dioxide (CO{sub 2}) produced during the electrochemical oxidation process. 2 refs.

  6. Performance of plasma sputtered fuel cell electrodes with ultra-low Pt loadings

    Energy Technology Data Exchange (ETDEWEB)

    Cavarroc, M.; Ennadjaoui, A. [MID Dreux Innovation, CAdD, 4 Rue Albert Caquot-28500 Vernouillet (France); Mougenot, M.; Brault, P.; Escalier, R.; Tessier, Y. [Groupe de Recherches sur l' Energetique des Milieux Ionises, CNRS Universite d' Orleans, BP6744, 14 rue d' Issoudun, 45067 Orleans (France); Durand, J.; Roualdes, S. [Institut Europeen des Membranes, ENSCM, UM2, CNRS, Universite Montpellier 2, CC047, Place Eugene Bataillon, 34095 Montpellier cedex 5 (France); Sauvage, T. [Conditions Extremes et Materiaux, Haute Temperature et Irradiation, UPR3079 CNRS, Site Cyclotron, 3A rue de la Ferollerie, 45071 Orleans Cedex 2 (France); Coutanceau, C. [Laboratoire de Catalyse en Chimie Organique, UMR6503 Universite de Poitiers, CNRS, 86022, Poitiers (France)

    2009-04-15

    Ultra-low Pt content PEMFC electrodes have been manufactured using magnetron co-sputtering of carbon and platinum on a commercial E-Tek {sup registered} uncatalyzed gas diffusion layer in plasma fuel cell deposition devices. Pt loadings of 0.16 and 0.01 mg cm{sup -2} have been realized. The Pt catalyst is dispersed as small clusters with size less than 2 nm over a depth of 500 nm. PEMFC test with symmetric electrodes loaded with 10 {mu}g cm{sup -2} led to maximum reproducible power densities as high as 0.4 and 0.17 W cm{sup -2} with Nafion {sup registered} 212 and Nafion {sup registered} 115 membranes, respectively. (author)

  7. Three-Dimensional Transport Modeling for Proton Exchange Membrane(PEM) Fuel Cell with Micro Parallel Flow Field

    OpenAIRE

    Sang Soon Hwang; Sang Seok Han; Pil Hyong Lee

    2008-01-01

    Modeling and simulation for heat and mass transport in micro channel are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this study, we used a single-phase, fully three dimensional simulation model for PEMFC that can deal with both anode and cathode flow field for examining the micro flow channel with electrochemical reaction....

  8. Three-Dimensional Transport Modeling for Proton Exchange Membrane(PEM) Fuel Cell with Micro Parallel Flow Field

    OpenAIRE

    Lee, Pil Hyong; Han, Sang Seok; Hwang, Sang Soon

    2008-01-01

    Modeling and simulation for heat and mass transport in micro channel are beingused extensively in researches and industrial applications to gain better understanding of thefundamental processes and to optimize fuel cell designs before building a prototype forengineering application. In this study, we used a single-phase, fully three dimensionalsimulation model for PEMFC that can deal with both anode and cathode flow field forexamining the micro flow channel with electrochemical reaction. The ...

  9. Two-dimensional modeling of a polymer electrolyte membrane fuel cell with long flow channel. Part I. Model development

    OpenAIRE

    2015-01-01

    A two-dimensional single-phase model is developed for the steady-state and transient analysis of polymer electrolyte membrane fuel cells (PEMFC). Based on diluted and concentrated solution theories, viscous flow is introduced into a phenomenological multi-component modeling framework in the membrane. Characteristic variables related to the water uptake are discussed. A ButlereVolmer formulation of the current-overpotential relationship is developed based on an elementary mechanism of elect...

  10. New Polymer Electrolyte Membranes Based on Acid Doped PBI For Fuel Cells Operating above 100°C

    DEFF Research Database (Denmark)

    Li, Qingfeng

    2003-01-01

    The technical achievement and challenges for the PEMFC technology based on perfluorosulfonic acid (PFSA) polymer membranes (e.g. Nafion®) are briefly discussed. The newest development for alternative polymer electrolytes for operation above 100°C. As one of the successful approaches to high...... operational temperatures, the development and evaluation of acid doped PBI membranes are reviewed, covering polymer synthesis, membrane casting, acid doping, physiochemical characterization and fuel cell tests....

  11. Optimization of fuel cell membrane electrode assemblies for transition metal ion-chelating ordered mesoporous carbon cathode catalysts

    OpenAIRE

    Johanna K. Dombrovskis; Cathrin Prestel; Anders E. C. Palmqvist

    2014-01-01

    Transition metal ion-chelating ordered mesoporous carbon (TM-OMC) materials were recently shown to be efficient polymer electrolyte membrane fuel cell (PEMFC) catalysts. The structure and properties of these catalysts are largely different from conventional catalyst materials, thus rendering membrane electrode assembly (MEA) preparation parameters developed for conventional catalysts not useful for applications of TM-OMC catalysts. This necessitates development of a methodology to incorporate...

  12. A família e a escola como contextos de desenvolvimento humano

    Directory of Open Access Journals (Sweden)

    Maria Auxiliadora Dessen

    2007-04-01

    Full Text Available Escola e família constituem dois contextos de desenvolvimento fundamentais para a trajetória de vida das pessoas. Neste artigo, são destacadas as contribuições destes contextos para a promoção do desenvolvimento humano, enfatizando suas implicações nos processos evolutivos. Questões sobre configurações, vínculos familiares e a importância da rede social de apoio para o desenvolvimento da família são discutidas. Focalizam-se as funções da escola, considerando sua influência nas pessoas em desenvolvimento. Apontam-se algumas considerações sobre a necessidade de compreender as inter-relações entre escola e família, visando facilitar a aprendizagem e desenvolvimento humano. A integração entre esses dois contextos é destacada como desafio para a prática profissional e pesquisa empírica.

  13. 质子交换膜燃料电池改性铂基催化剂研究进展%Research Progress in Modified Pt-based Catalysts for Proton Exchange Membrane Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    杨金富; 毕向光; 王火印; 刘锋; 李权; 卢峰; 赵云昆

    2016-01-01

    质子交换膜燃料电池(PEMFC)由于其工作效率高、启动速度快、环境友好等优点而倍受青睐。所用催化剂中的核心组分(金属铂)的成本和催化性能是制约其实现商业化的关键因素之一。目前有关改性铂基催化剂应用于质子膜燃料电池的研究工作主要集中在2个方面:一是通过改性催化剂的结构降低铂用柎;二是改性载体材料制备活性组分高度分散的高性能催化剂。综述柚近年来质子膜交换燃料电池改性铂基催化剂的研究进展,并对PEMFC催化剂的发展做柚展望。%The proton exchange membrane fuel cell (PEMFC) is acclaimed with the advantages of high working efficiency, starting quickly and environmental friendliness. The cost and catalytic efficiency of platinum-based catalysts, as a core component of PEMFC, are always one of the key factors limiting its large-scale commercial application. The research progress of PEMFC in recent year on modified platinum- based catalysts and the use of more superior support material, for these are two effective approaches to improve catalytic efficiency and reduce the amount of platinum used, were reviewed. The development of new catalysts for PEMFC is also prospected.

  14. Functionalization of Aligned Carbon Nanotubes to Enhance the Performance of Fuel Cell

    Directory of Open Access Journals (Sweden)

    Jingbo Liu

    2013-12-01

    Full Text Available The focus of this research lies on fundamental research to provide guidelines for the design of new nanocatalyst toward improvement of the performance of proton exchange membrane fuel cells (PEMFCs. To achieve this overarching goal, several specific steps were taken with aims to: (1 provide guidelines for the design of new catalysts; (2 promote nanocatalyst applications towards alternative energy applications; and (3 integrate advanced instrumentation into nanocharacterization and fuel cell (FC electrochemical behavior. In tandem with these goals, the cathode catalysts were extensively refined to improve the performance of PEMFCs and minimize noble metal usage. In this study, the major accomplishment was producing aligned carbon nanotubes (ACNTs, which were then modified by platinum (Pt nanoparticles via a post-functionalization colloidal chemistry approach. The Pt-ACNTs demonstrated improved cathodic catalycity, by building better device endurance and decreased Pt loading. It was also determined that surface mechanical properties, such as elastic modulus and hardness were increased. Collectively, these enhancements provided an improved FC device. The electrochemical analyses indicated that the power density of the PEMFCs was increased to 900 mW/cm2 and current density to 3000 mA/cm2, respectively. The Pt loading was controlled at lower than 0.2 mg/cm2 to decrease the manufacturing expenses.

  15. Desenvolvimento sustentável: a norma jurídica ambiental e o desenvolvimento econômico

    Directory of Open Access Journals (Sweden)

    Ana Claudia Duarte Pinheiro

    2004-12-01

    Full Text Available Since the middle of the XX century, mankind has become aware of all problems decurrent of environmental injuries caused by the excess of men themselves, who have already become conscious of their harmful acts against the environment, but actually, they haven’t changed their acts. There are many interests involved and many questions related to this subject, besides the juridical, for instance: Economy, Sociology, Philosophy, etc., yet the vital aspect concerns to the Environmental Juridical Norm, demanding Legislative ripening of each and every State of the country and their commitment with the Sustainable Development. The question implies transnationality of interests, often divergent, and culminates on the necessity of Legislative harmonization, in which the regional blocks, especially MERCOSUL, should concentrate themselves in a well-balanced way on the objectives proposed when they were created.A humanidade vem, a partir da segunda metade do século XX; tomando conhecimento de todos os problemas decorrentes dos prejuízos ambientais causados pelos desmandos do próprio homem que já se conscientizou de seus atos maléficos, mas não mudou efetivamente suas ações Há muitos interesses em jogo e são muitas as questões pertinentes à matéria, além da jurídica, como a economia, a sociologia, a filosofia etc. Aspecto, porém, de vital importância dizem respeito à norma jurídica ambiental e que exigem amadurecimento legislativo de cada um dos Estados e deles enquanto protagonistas do desenvolvimento sustentável. A questão implica em transnacionalidade de interesses muitas vezes divergentes e culmina com a necessidade de harmonização legislativa de tal forma que os blocos regionais, em especial o MERCOSUL, se concentrem de forma equilibrada nos objetivos propostos quando de sua criação.

  16. Analysis on Assembly of 3-stage Galvanic Pile of PEMFC Fuel Cell%PEMFC燃料电池三级电堆的装配分析

    Institute of Scientific and Technical Information of China (English)

    汪洋锋; 陈涛; 艾有俊; 杜斌

    2015-01-01

    以提高PEMFC燃料电池电堆性能为目的,研究了电堆组装过程中加载方式和载荷对电堆接触电阻及电堆性能的影响.利用有限元分析软件ANSYS Workbench对三级电堆的装配过程进行有限元分析.分析了几种不同大小的载荷及不同的加载方式的装配对电堆性能的影响,对比了这几种情况下燃料电池堆的核心部件膜电极(MEA)组件的变形情况及应力分布情况,得出电堆的最佳装配载荷.该结果可为燃料电池电堆的装配提供较好的参考依据.

  17. Interfacial Modification and Dispersion of Short Carbon Fiber and the Properties of Composite Papers as Gas Diffusion Layer for Proton Exchange Membrane Fuel Cell (PEMFC

    Directory of Open Access Journals (Sweden)

    Zhijun Hu

    2014-11-01

    Full Text Available Short carbon fibers (SCF were modified with oxidation and coupling treatment to improve their water-wettability and bonding properties. Four types of dispersants were studied and discussed. Short carbon fibers/plant fiber (PF composite papers were prepared by papermaking techniques. Scanning electron microscopy (SEM and tests to determine zeta potential, absorbance, tensile index, and conductivity were carried out to investigate the modified effect of SCF and the interfacial properties. Modification experimental results showed that the surface grooves were deepened and new superficial grooves were generated by the liquid acid oxidation. The reaction with the silane coupling agent provided higher density and more uniform distribution on the SCF surface than that of organic titanate, and it obviously increased the roughness and the absolute value of zeta potential. After modification, the hydrophilic properties and dispersion in aqueous solutions were improved, the SCFs could form a good mechanical grip with plant fibers, and the conductivity and physical strength of SCF/PF composite papers were enhanced. It was shown that there was obvious adhesive binding at the fiber overlap nodes by the SEM analysis. It was confirmed that the improvement of physical properties of composite paper can be ascribed to the interfacial enhancement.

  18. O DESENVOLVIMENTO DO TURISMO: A Rota Colonial Baumschneis em Dois Irmãos/RS

    Directory of Open Access Journals (Sweden)

    Mary Sandra Guerra Ashton

    2011-11-01

    Full Text Available Resumo: Esse trabalho analisa a Rota Colonial Baumschneis, localizada em Dois Irmãos/RS, com o objetivo de investigar a sua contribuição para o desenvolvimento do turismo no município. Pretende revelar a importância da Rota e seu papel no desenvolvimento do turismo municipal. O método utilizado foi o exploratório, com revisão bibliográfica e pesquisa de campo na Rota Colonial. Os resultados mostram o perfil dos proprietários e traçam o histórico do projeto. Palavras-chave: Turismo. Desenvolvimento do Turismo. Rota Colonial Baumschneis. Dois Irmãos/RS

  19. O desenvolvimento de crianças cegas e de crianças videntes

    OpenAIRE

    França-Freitas,Maria Luiza Pontes de; Gil, Maria Stella Coutinho de Alcântara

    2012-01-01

    o objetivo do presente estudo foi apresentar o desenvolvimento geral e o desenvolvimento em áreas específicas (cognição, linguagem, desenvolvimento motor, autocuidados e socialização) de uma criança cega que recebeu estimulação constante e especializada de outra criança cega que recebeu apenas estimulação assistemática e de crianças cegas com crianças videntes. Participaram deste estudo duas crianças cegas e duas crianças videntes do sexo masculino com até seis anos de idade, matriculadas em ...

  20. O conceito histórico de desenvolvimento econômico

    OpenAIRE

    Pereira, Luiz C. Bresser

    2006-01-01

    Uma Análise do Conceito de Desenvolvimento Econômico. o Crescimento Econômico, ou Desenvolvimento Econômico, é Visto como um Fenômeno Histórico como Resultado da Revolução Capitalista, E, Consequentemente, da Revolução Comercial, da Industrial E, no Meio Delas, da Revolução Nacional. Assim, é Necessário um Conceito Histórico de Crescimento Econômico, e não um Conceito Normativo. Visto sob este Aspecto, o Desenvolvimento Econômico é Intrinsecamente Relacionado ao Surgimento do Estado-Nação M...

  1. DESENVOLVIMENTO DE BALAS MASTIGÁVEIS ADICIONADAS DE INULINA

    Directory of Open Access Journals (Sweden)

    ALEX AUGUSTO GONÇALVES

    2010-03-01

    Full Text Available

    O segmento de confeitos em geral, onde se destacam as balas, está muito presente no cenário brasileiro e mundial. As indústrias vêm constantemente aprimorando seus produtos com a incorporação de novos ingredientes e tecnologias, para atender principalmente as necessidades exigidas pelos consumidores, que estão cada vez mais exigentes em relação à qualidade do produto a ser consumido. Com base nesta premissa e vislumbrando atender esta nova tendência de mercado a proposta deste trabalho foi o desenvolvimento de uma bala mastigável adicionada de inulina. A inulina é um carboidrato (frutano que não é digerido no trato gastro-intestinal superior do ser humano, e exerce efeito bifidogênico, estimulando o crescimento e/ou a atividade das bactérias benéficas do cólon, ajudando na manutenção da fl ora intestinal e prevenção do câncer (prebiótico. Foram desenvolvidas duas formulações de balas mastigáveis, com e sem inulina na composição. Realizaram- se análises microbiológicas, físico-químicas e análise sensorial. As amostras analisadas adequaram-se à legislação brasileira nos parâmetros físico-químicos e microbiológicos avaliados e, quanto à análise sensorial, observou-se boa aceitação do produto. A adição de inulina à formulação trouxe uma variação significativa no atributo textura, tendo um aumento na maciez do produto final.

  2. Promessa e desafios do desenvolvimento Promises and challenges of development

    Directory of Open Access Journals (Sweden)

    Gary Gereffi

    2007-06-01

    Full Text Available A economia global tem mudado rapidamente. China, Índia e México representam casos particularmente interessantes por seus distintos modelos de desenvolvimento. O processo de consolidação global ampliou-se na década passada na esteira do rápido crescimento da China nos setores de manufatura para exportação e da entrada em cena da Índia na exportação de serviços no ramo da tecnologia de informação. A indústria do vestuário também ilustra tal tendência à consolidação, dadas as mudanças na regulação internacional com a gradual retração, a partir de 2005, do sistema de quotas estabelecido pelo Acordo Multifibras. As trajetórias de aprimoramento industrial manifestadas pela China e México são comparadas neste texto; com base em dados do comércio internacional, faz-se uma análise mais detida da composição das suas exportações destinadas ao mercado norte-americano no que respeita a ramos e produtos-chave. A experiência chinesa das chamadas "cidades-cadeias-de-suprimento" é também analisada; trata-se de uma nova forma de organização econômica, voltada a integrar geograficamente a produção para exportação e outros segmentos de alto valor agregado das cadeias globais de valor.The global economy is changing rapidly, and China, India, and Mexico represent particularly interesting cases because of their divergent development models. Global consolidation is increasing in the past decade because of the rapid growth of China in manufacturing export industries, and India's surge in the offshoring of information technology services. The apparel industry also illustrates the consolidation trend because of a shift in international regulation with the phase out in 2005 of the quotas associated with the Multi-Fiber Arrangement. Industrial upgrading trajectories in China and Mexico are compared, using international trade data to look closely at export profiles in key industries and products destined for the U.S. market. China

  3. Preparation of Pt nanowires as cathode catalyst for PEMFC and its application in stack%PEMFC用Pt纳米线阴极催化剂的制备及在电堆中的应用

    Institute of Scientific and Technical Information of China (English)

    常丰瑞; 黄俭标; 马建新; 杨代军; 李冰; 严泽宇; 顾荣鑫

    2014-01-01

    Carbon supported platinum nanowires (Pt NWs/C), acting as cathode catalyst for proton exchange membrane fuel cell (PEMFC), were synthesized by reducing H2PtCl6 with HCOOH at room temperature without assistance of template. The catalyst microstructure and morphology were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The Pt NWs/C had an average cross-sectional diameter of (4.0±0.2) nm and a length of 15-25 nm. Good electrocatalytic performance and oxygen reduction reaction (ORR) of the as-prepared catalyst was characterized by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). Two membrane electrode assemblies (MEAs) were fabricated, with Pt NWs/C and Pt/C as cathode catalyst respectively, and tested for comparison. The maximum power densities of Pt NWs/C and Pt/C, respectively were 705.6 mW·cm-2 and 674.4 mW·cm-2. Afterwards, an 18-cell stack with Pt NWs/C as cathode catalyst and a 20-cell stack with Pt/C as cathode catalyst were built for testing. Maximum power densities were 409.2 mW·cm-2 and 702.7 mW·cm-2, and coefficients of variation (Cv) of individual cell were 16.1% and 4.36% at the maximum power density, respectively. Data analysis indicated that Pt NWs/C for the cathode in a MEA exhibited good catalytic activity at a scale-up level, however, as compared with the commercial Pt/C catalyst, CV performance and uniformity should be improved. This work not only sheds light on the scale-up possibility of Pt NWs/C catalyst, but also provides a possibility for further durability test before its application in a fuel cell vehicle.%采用无模板法制备了用于质子交换膜燃料电池(PEMFC)的碳载铂纳米线(Pt NWs/C)阴极催化剂,使用透射电镜(TEM)和X射线衍射图谱技术(XRD)对催化剂的微观结构和形貌进行了表征。研究结果表明,制备的铂催化剂具有纳米线的结构,平均截面直径为(4.0±0.2)nm,线长为15~25 nm。利用循环伏

  4. Desenvolvimento econômico, desigualdade e saúde Economic development, inequality, and health

    Directory of Open Access Journals (Sweden)

    Pedro Reginaldo Prata

    1994-09-01

    Full Text Available O autor se refere a dimensão socioeconômica, individual e coletiva do fenômeno saúde-doença. Refere-se também ao fato das populações estarem sobre a influência desigual de fatores de risco e de proteção à saúde. Discute as desigualdades no desenvolvimento e a relação entre desenvolvimento, riqueza, saúde e justiça social. Questiona as teorias de desenvolvimento econômico, diferenciando desenvolvimento de crescimento. Cunha os conceitos de armadilha do desenvolvimento e refugiados sociais. Define uma comunidade saudável. Propõe a necessidade de mudança no modelo de desenvolvimento. Baliza o papel e as limitações do setor saúde no que diz respeito a iniqüidade social.The author refers to the social, economic, individual, and collective dimensions of the relationship between health and disease. He considers that individuals and populations are not equally exposed to protective and risk factors. He highlights the uneven development between nations and Brazilian regions, and communities, as well as discussing the relationship between development, wealth, health, and social justice. The article analyzes development theories and makes a distinction between economic development and growth. The concepts of development trap and social refugees are coined. The author defines a healthy community, points to the need for a shift in the current development model, and delineates the health sector's role and limitations in dealing with social inequality.

  5. Application of a Coated Film Catalyst Layer Model to a High Temperature Polymer Electrolyte Membrane Fuel Cell with Low Catalyst Loading Produced by Reactive Spray Deposition Technology

    Directory of Open Access Journals (Sweden)

    Timothy D. Myles

    2015-10-01

    Full Text Available In this study, a semi-empirical model is presented that correlates to previously obtained experimental overpotential data for a high temperature polymer electrolyte membrane fuel cell (HT-PEMFC. The goal is to reinforce the understanding of the performance of the cell from a modeling perspective. The HT-PEMFC membrane electrode assemblies (MEAs were constructed utilizing an 85 wt. % phosphoric acid doped Advent TPS® membranes for the electrolyte and gas diffusion electrodes (GDEs manufactured by Reactive Spray Deposition Technology (RSDT. MEAs with varying ratios of PTFE binder to carbon support material (I/C ratio were manufactured and their performance at various operating temperatures was recorded. The semi-empirical model derivation was based on the coated film catalyst layer approach and was calibrated to the experimental data by a least squares method. The behavior of important physical parameters as a function of I/C ratio and operating temperature were explored.

  6. Habilidades do desenvolvimento infantil e linguagem de crianças com fissura labiopalatina

    OpenAIRE

    2016-01-01

    A Fissura Labiopalatina (FLP) é uma das malformações mais comuns da infância, apontada por alguns estudos como um risco para o desenvolvimento global, de fala e linguagem. O objetivo desse estudo foi caracterizar as habilidades do desenvolvimento infantil, enfocando a linguagem de crianças de 3 ano a 3 anos e 11 meses com fissura labiopalatina. A amostra foi dividida em grupo amostral (GA) com 30 crianças entre 3 anos a 3 anos e 11 meses com FLP e o grupo comparativo (GC) com 30 crianças sem ...

  7. Desenvolvimento da brincadeira e linguagem em bebês de 20 meses

    OpenAIRE

    2004-01-01

    Este estudo objetivou analisar a relação entre brincadeira e linguagem no desenvolvimento inicial. Participaram 30 díades mãe-bebê, das classes baixa e média da cidade do Rio de Janeiro, com bebês de 20 meses de idade. A brincadeira dos bebês (sozinhos e com a mãe) foi observada, registrada em vídeo e classificada segundo seu caráter funcional/simbólico. Sua capacidade de produção de linguagem foi medida pelo instrumento MacArthur (Inventário do Desenvolvimento de Habilidades Comunicativas - ...

  8. Estudo e desenvolvimento de mecanismos dosadores de precisão de maquinas semeadoras

    OpenAIRE

    Ogliari, Andre

    1990-01-01

    Dissertação (mestrado) - Universidade Federal de Santa Catarina. Centro Tecnologico O presente trabalho trata do desenvolvimento, construção e testes do protótipo de um mecanismo dosador de precisão para dosagem de milho, feijão e soja, destinado a máquinas semeadoras. O trabalho apresenta, na parte inicial, uma análise das funções e parâmetros de projeto de mecanismos dosadores de precisão. Esses dados foram usados como base para o desenvolvimento de uma concepção apropriada que atendesse...

  9. POLÍTICAS PÚBLICAS E CAPITAL HUMANO PARA O DESENVOLVIMENTO LOCAL DA PESCA ARTESANAL

    OpenAIRE

    João Henrique de Melo Ferraz; Fellipe Neri de Oliveira Arrais

    2014-01-01

    Este trabalho identifica e analisa as políticas públicas de extensão pesqueira para o desenvolvimento local do Município de Porto de Pedras, Alagoas, entre 2003 e 2009, por meio dos projetos estabelecidos pelo governo. Especificamente, se analisa o capital humano da colônia de pescadores Z-25, frente aos projetos tecnológicos ligados à pesca artesanal. A metodologia utilizada neste trabalho foi a identificação das políticas públicas para o desenvolvimento da pesca artesanal, além de aplicação...

  10. Competências empreendedoras: modelos mentais como fatores determinantes de seu desenvolvimento

    OpenAIRE

    Djair Picchiai; Pedro Gilberto Arnaut

    2016-01-01

    O objetivo deste artigo é investigar a influência dos modelos mentais no desenvolvimento das competências empreendedoras. Desde que McClelland (1973) começou seus estudos sobre as competências, buscando entender qual a melhor forma de predizer o sucesso de uma pessoa na vida ou no trabalho, o trinômio Conhecimentos, Habilidades e Atitudes (CHA) passou a ser visto como objeto de avaliação e base para o desenvolvimento das pessoas. Também se destaca a contribuição dos franceses como Zarafian (2...

  11. The development and treatment of impulsivity = O desenvolvimento e tratamento da impulsividade

    Directory of Open Access Journals (Sweden)

    Amorim Neto, Roque do Carmo

    2011-01-01

    Full Text Available Impulsividade é um fator presente em várias desordens psicológicas, incluindo ADHD, drogadição, comportamentos agressivos e automutiladores, e obesidade infantil. Impulsividade também é um fator de risco para o abandono de tratamento. Este artigo tem por objetivo apresentar as raízes da impulsividade do ponto de vista biológico, sociológico e do desenvolvimento humano, bem como as formas de tratamento mais comuns para pessoas com extrema impulsividade. Aqui também se inclui pesquisas das áreas de desenvolvimento neuronal e regulação emocional

  12. Desenvolvimento de conceitos: novas direções para a pesquisa em tanatologia e enfermagem

    OpenAIRE

    Bousso,Regina Szylit; POLES, Kátia; Rossato,Lisabelle Mariano

    2009-01-01

    O artigo tem como objetivo apresentar a importância do desenvolvimento de conceitos para a construção do corpo de conhecimentos em Tanatologia e Enfermagem. Aborda as etapas do Modelo Híbrido de Desenvolvimento de Conceitos e sua aplicação em uma pesquisa que busca desenvolver o conceito de morte digna na UTI pediátrica. A elucidação dos antecedentes, atributos e consequências do conceito de morte digna na UTI pediátrica na fase de campo permitiu mover o conceito de um vago domínio teórico pa...

  13. Hackers e sua relação com o surgimento e desenvolvimento da chipmusic

    Directory of Open Access Journals (Sweden)

    Camila Schäfer

    2015-07-01

    Full Text Available O presente artigo tem como objetivo relacionar as características da microcultura hacker com o surgimento e desenvolvimento da cena musical chipmusic. Para isso, utilizam-se dados divulgados amplamente sobre a cena chipmusic internacional, além de entrevistas com um grupo de músicos brasileiros. Por fim, conclui-se que, tanto a microcultura hacker, como o desenvolvimento da tecnocultura atual, têm criado nas pessoas um desejo de explorar os limites de hardwares e softwares, que, por sua vez, acaba dando origem a cenas como a chipmusic, objeto deste trabalho. 

  14. Significações sobre desenvolvimento humano e adolescência em um projeto socioeducativo

    OpenAIRE

    2010-01-01

    Este artigo se baseia em uma pesquisa que teve por objetivo analisar concepções sobre adolescência e desenvolvimento humano que medeiam as intervenções socioeducativas no contexto de um circo social. Participantes: adolescentes, corpo técnico, estagiários e o próprio pesquisador. Os resultados foram gerados considerando os seguintes núcleos de significação: (a) a potencialidade da arte circense como instrumento na promoção de desenvolvimento humano; (b) a evolução no uso de instrumentos circe...

  15. Optimization of fuel cell membrane electrode assemblies for transition metal ion-chelating ordered mesoporous carbon cathode catalysts

    Directory of Open Access Journals (Sweden)

    Johanna K. Dombrovskis

    2014-12-01

    Full Text Available Transition metal ion-chelating ordered mesoporous carbon (TM-OMC materials were recently shown to be efficient polymer electrolyte membrane fuel cell (PEMFC catalysts. The structure and properties of these catalysts are largely different from conventional catalyst materials, thus rendering membrane electrode assembly (MEA preparation parameters developed for conventional catalysts not useful for applications of TM-OMC catalysts. This necessitates development of a methodology to incorporate TM-OMC catalysts in the MEA. Here, an efficient method for MEA preparation using TM-OMC catalyst materials for PEMFC is developed including effects of catalyst/ionomer loading and catalyst/ionomer-mixing and application procedures. An optimized protocol for MEA preparation using TM-OMC catalysts is described.

  16. Parametric Sensitivity Tests- European PEM Fuel Cell Stack Test Procedures

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2014-01-01

    As fuel cells are increasingly commercialized for various applications, harmonized and industry-relevant test procedures are necessary to benchmark tests and to ensure comparability of stack performance results from different parties. This paper reports the results of parametric sensitivity tests...... performed based on test procedures proposed by a European project, Stack-Test. The sensitivity of a Nafion-based low temperature PEMFC stack’s performance to parametric changes was the main objective of the tests. Four crucial parameters for fuel cell operation were chosen; relative humidity, temperature...

  17. Modeling and control of a small solar fuel cell hybrid energy system

    Institute of Scientific and Technical Information of China (English)

    LI Wei; ZHU Xin-jian; CAO Guang-yi

    2007-01-01

    This paper describes a solar photovoltaic fuel cell (PVEC) hybrid generation system consisting of a photovoltaic (PV) generator, a proton exchange membrane fuel cell (PEMFC), an electrolyser, a supercapacitor, a storage gas tank and power conditioning unit (PCU). The load is supplied from the PV generator with a fuel cell working in parallel. Excess PV energy when available is converted to hydrogen using an electrolyser for later use in the fuel cell. The individual mathematical model for each component is presented. Control strategy for the system is described. MATLAB/Simulink is used for the simulation of this highly nonlinear hybrid energy system. The simulation results are shown in the paper.

  18. INVESTIGATION OF PEM FUEL CELL FOR AUTOMOTIVE USE

    Directory of Open Access Journals (Sweden)

    A. K. M. Mohiuddin

    2015-11-01

    Full Text Available This paper provides a brief investigation on suitability of Proton-exchange  membrane fuel cells (PEMFCs as the source of power for transportation purposes. Hydrogen is an attractive alternative transportation fuel. It is the least polluting fuel that can be used in an internal combustion engine (ICE and it is widely available. If hydrogen is used in a fuel cell which converts the chemical energy of hydrogen into electricity, (NOx emissions are eliminated. The investigation was carried out on a  fuel cell car model by implementing polymer electrolyte membrane (PEM types of fuel cell as the source of power to propel the prototype car. This PEMFC has capability to propel the electric motor by converting chemical energy stored in hydrogen gas into useful electrical energy. PEM fuel cell alone is used as the power source for the electric motor without the aid of any other power source such as battery associated with it. Experimental investigations were carried out to investigate the characteristics of fuel cell used and the performance of the fuel cell car. Investigated papameters are the power it develops, voltage, current and speed it produces under different load conditions. KEYWORDS: fuel cell; automotive; proton exchange membrane; polymer electrolyte membrane; internal combustion engine

  19. Desenvolvimento humano: uma aproximação entre os direitos humanos e a noção de desenvolvimento

    Directory of Open Access Journals (Sweden)

    Alexandre Citolin

    2012-03-01

    Full Text Available A noção de desenvolvimento adquiriu a partir do pós-guerra uma característica multidimensional pela inserção de novos valores além dos meramente econômicos, em especial os pertinentes a dimensão humana, resultado da aproximação com os direitos humanos. Nesta esteira, as preocupações com o desenvolvimento humano tomam conta da Organização das Nações Unidas, alocando o crescimento econômico como meio para se obter o fim maior, que é a expansão das capacidades humanas e com essas uma vida desejada ou valorizada. O desenvolvimento na perspectiva humana, muito mais do que o atendimento das necessidades básicas, busca capacitar as pessoas para contribuir para melhoria da sua condição pessoal e, efeito reflexo, do seu próprio país.

  20. Enhanced stability of multilayer graphene-supported catalysts for polymer electrolyte membrane fuel cell cathodes

    Science.gov (United States)

    Marinkas, A.; Hempelmann, R.; Heinzel, A.; Peinecke, V.; Radev, I.; Natter, H.

    2015-11-01

    One of the biggest challenges in the field of polymer electrolyte membrane fuel cells (PEMFC) is to enhance the lifetime and the long-term stability of PEMFC electrodes, especially of cathodes, furthermore, to reduce their platinum loading, which could lead to a cost reduction for efficient PEMFCs. These demands could be achieved with a new catalyst support architecture consisting of a composite of carbon structures with significant different morphologies. A highly porous cathode catalyst support layer is prepared by addition of various carbon types (carbon black particles, multi-walled carbon nanotubes (MWCNT)) to multilayer graphene (MLG). The reported optimized cathodes shows extremely high durability and similar performance to commercial standard cathodes but with 89% lower Pt loading. The accelerated aging protocol (AAP) on the membrane electrode assemblies (MEA) shows that the presence of MLG increases drastically the durability and the Pt-extended electrochemical surface area (ECSA). In fact, after the AAP slightly enhanced performance can be observed for the MLG-containing cathodes instead of a performance loss, which is typical for the commercial carbon-based cathodes. Furthermore, the presence of MLG drastically decreases the ECSA loss rate. The MLG-containing cathodes show up to 6.8 times higher mass-normalized Pt-extended ECSA compared to the commercial standard systems.

  1. Electrochemical stability of carbon nanofibers in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Garbine [Energy Department, CIDETEC-IK4, Po Miramon, 196, 20009 San Sebastian (Spain); Alcaide, Francisco, E-mail: falcaide@cidetec.es [Energy Department, CIDETEC-IK4, Po Miramon, 196, 20009 San Sebastian (Spain); Miguel, Oscar [Energy Department, CIDETEC-IK4, Po Miramon, 196, 20009 San Sebastian (Spain); Cabot, Pere L. [Laboratori d' Electroquimica de Materials i del Medi Ambient, Dept. Quimica Fisica, Universitat de Barcelona, Marti i Franques, 1-11, 08028 Barcelona (Spain); Martinez-Huerta, M.V.; Fierro, J.L.G. [Instituto de Catalisis y Petroleoquimica (CSIC), Marie Curie 2, Cantoblanco, 28049 Madrid (Spain)

    2011-10-30

    This fundamental study deals with the electrochemical stability of several non-conventional carbon based catalyst supports, intended for low temperature proton exchange membrane fuel cell (PEMFC) cathodes. Electrochemical surface oxidation of raw and functionalized carbon nanofibers, and carbon black for comparison, was studied following a potential step treatment at 25.0 deg. C in acid electrolyte, which mimics the operating conditions of low temperature PEMFCs. Surface oxidation was characterized using cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and contact angle measurements. Cyclic voltammograms clearly showed the presence of the hydroquinone/quinone couple. Furthermore, identification of carbonyl, ether, hydroxyl and carboxyl surface functional groups were made by deconvolution of the XPS spectra. The relative increase in surface oxides on carbon nanofibers during the electrochemical oxidation treatment is significantly smaller than that on carbon black. This suggests that carbon nanofibers are more resistant to the electrochemical corrosion than carbon black under the experimental conditions used in this work. This behaviour could be attributed to the differences found in the microstructure of both kinds of carbons. According to these results, carbon nanofibers possess a high potential as catalyst support to increase the durability of catalysts used in low temperature PEMFC applications.

  2. Experimental dissection of oxygen transport resistance in the components of a polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Oh, Hwanyeong; Lee, Yoo il; Lee, Guesang; Min, Kyoungdoug; Yi, Jung S.

    2017-03-01

    Oxygen transport resistance is a major obstacle for obtaining high performance in a polymer electrolyte membrane fuel cell (PEMFC). To distinguish the major components that inhibit oxygen transport, an experimental method is established to dissect the oxygen transport resistance of the components of the PEMFC, such as the substrate, micro-porous layer (MPL), catalyst layer, and ionomer film. The Knudsen numbers are calculated to determine the types of diffusion mechanisms at each layer by measuring the pore sizes with either mercury porosimetry or BET analysis. At the under-saturated condition where condensation is mostly absent, the molecular diffusion resistance is dissected by changing the type of inert gas, and ionomer film permeation is separated by varying the inlet gas humidity. Moreover, the presence of the MPL and the variability of the substrate thickness allow the oxygen transport resistance at each component of a PEMFC to be dissected. At a low relative humidity of 50% and lower, an ionomer film had the largest resistance, while the contribution of the MPL was largest for the other humidification conditions.

  3. Study of the two-phase dummy load shut-down strategy for proton exchange membrane fuel cells

    Science.gov (United States)

    Zhang, Q.; Lin, R.; Cui, X.; Xia, S. X.; Yang, Z.; Chang, Y. T.

    2017-02-01

    This paper presents a new system strategy designed to alleviate the performance decay caused by start-up/shut-down (SU/SD) conditions in proton exchange membrane fuel cells (PEMFCs). The innovative method was tested using a two-phase dummy load composed of a linearly declined main load and a fixed small auxiliary load. The initial value of the main load must be controlled within a proper range, and a closed-ended air exhaust is necessary. According to the analysis of in-situ current density distribution during SD processes, the two-phase dummy load can continuously fit the process of oxygen reduction in the cathode, whereas the conventional dummy load leads to local air starvation. Polarization curves and cyclic voltammetry (CV) were employed to evaluate the performance decay during SU/SD repetition. After tests of 900 cycles, the highest voltage degradation rate of the PEMFC was 3.33 μV cycle-1 (800 mA cm-2), and the electrochemical surface area (ECSA) loss was 0.0046 m2 g-1 cycle-1 with the two-phase dummy load strategy. After comparing results with similar work on a single PEMFC, the authors confirmed the preeminent effectiveness of this strategy. This strategy will also improve fuel cell stack performance due to controllable SD duration and comparatively low performance decay rates.

  4. A Transient Model for Fuel Cell Cathode-Water Propagation Behavior inside a Cathode after a Step Potential

    Directory of Open Access Journals (Sweden)

    Der-Sheng Chan

    2010-04-01

    Full Text Available Most of the voltage losses of proton exchange membrane fuel cells (PEMFC are due to the sluggish kinetics of oxygen reduction on the cathode and the low oxygen diffusion rate inside the flooded cathode. To simulate the transient flooding in the cathode of a PEMFC, a transient model was developed. This model includes the material conservation of oxygen, vapor, water inside the gas diffusion layer (GDL and micro-porous layer (MPL, and the electrode kinetics in the cathode catalyst layer (CL. The variation of hydrophobicity of each layer generated a wicking effect that moves water from one layer to the other. Since the GDL, MPL, and CL are made of composite materials with different hydrophilic and hydrophobic properties, a linear function of saturation was used to calculate the wetting contact angle of these composite materials. The balance among capillary force, gas/liquid pressure, and velocity of water in each layer was considered. Therefore, the dynamic behavior of PEMFC, with saturation transportation taken into account, was obtained in this study. A step change of the cell voltage was used to illustrate the transient phenomena of output current, water movement, and diffusion of oxygen and water vapor across the entire cathode.

  5. Research on proton exchange membrane fuel cell%质子交换膜燃料电池研究

    Institute of Scientific and Technical Information of China (English)

    章晖

    2015-01-01

    Proton exchange membrane fuel cell(PEMFC) has an extensive application respective in EV, portable electronic device, stationary power plant and special power with the advantages of high energy conversion efficiency and quick startup at ambient temperature. The technology and mechanism of PEMFC was researched, and its structure defects were analyzed. It is concluded that to research novel catalysts with high activity and excellent stability is very important for the future fuel cell.%质子交换膜燃料电池(PEMFC)因无电解质腐蚀问题,能量转换效率高,可室温快速启动,在电动车、便携式电子设备、固定电站和军用特种电源等方面都有广阔的应用前景。研究了质子交换膜燃料电池实用化的技术及机理,对其结构缺陷进行了分析,认为开拓新的催化剂体系,合成出活性更高、稳定性更好的催化剂对于燃料电池来说意义重大。

  6. Oportunidades do ambiente domiciliar para o desenvolvimento motor

    Directory of Open Access Journals (Sweden)

    Érica Cesário Defilipo

    2012-08-01

    Full Text Available OBJETIVO: Avaliar as oportunidades presentes no ambiente domiciliar para o desenvolvimento motor de lactentes. MÉTODOS: Estudo epidemiológico de base populacional, transversal, realizado com 239 lactentes com idade entre três e 18 meses, residentes no município de Juiz de Fora, MG, em 2010. Os participantes foram selecionados por amostragem aleatória estratificada, conglomerada, em múltiplos estágios. Para avaliar a qualidade e quantidade de estímulo motor no ambiente domiciliar foi utilizado o instrumento Affordance in the Home Environment for Motor Development - Infant Scale. Procedeu-se a análise bivariada com aplicação do teste qui-quadrado, seguida de regressão logística multinomial para verificar a associação entre as oportunidades presentes no domicílio e fatores biológicos, comportamentais, demográficos e socioeconômicos. RESULTADOS: As oportunidades de estimulação ambiental foram relativamente baixas. Na análise bivariada, para a faixa etária de três a nove meses, foi encontrada associação com os fatores: ordem de nascimento (p = 0,06, classificação socioeconômica (p = 0,08, renda mensal (p = 0,06 e renda per capita (p = 0,03. No modelo de regressão, prevaleceu a classificação socioeconômica (RC = 7,46; p = 0,03. Para a faixa etária de dez a 18 meses, os fatores associados, na análise bivariada, foram: estado civil materno (p < 0,01, convívio da criança com o pai (p = 0,08, chefe da família (p = 0,04, número de pessoas no domicílio (p = 0,05, escolaridade materna (p < 0,01 e paterna (p < 0,01, classificação socioeconômica (p < 0,01 e renda per capita (p = 0,03. No modelo de regressão, o estado civil materno (RC = 4,83; p = 0,02, escolaridade materna (RC = 0,29; p = 0,03 e paterna (RC = 0,33; p = 0,04 permaneceram associados às oportunidades de estimulação ambiental. CONCLUSÕES: A união estável dos pais, maior escolaridade materna e paterna e maior nível econômico foram os fatores

  7. Regulação do desenvolvimento de micorrizas arbusculares Regulation of arbuscular mycorrhizae development

    Directory of Open Access Journals (Sweden)

    Soraya Gabriela Kiriachek

    2009-02-01

    Full Text Available As micorrizas arbusculares (MAs são associações simbióticas mutualistas entre fungos do filo Glomeromycota e a maioria das plantas terrestres. A formação e o funcionamento das MAs depende de um complexo processo de troca de sinais, que resulta em mudanças no metabolismo dos simbiontes e na diferenciação de uma interface simbiótica no interior das células das raízes. Os mecanismos que regulam a formação das MAs são pouco conhecidos, mas sabe-se que a concentração de fosfato (P na planta é um fator determinante para o desenvolvimento da simbiose. A disponibilidade de P na planta pode afetar o balanço de açúcares e de fitormônios (FHs, além da expressão de genes de defesa vegetal. Com o advento da genômica e proteômica, vários genes essenciais para o desenvolvimento das MAs já foram identificados e seus mecanismos de regulação estão sendo estudados. Até o presente, sabe-se que as plantas secretam substâncias que estimulam a germinação de esporos e o crescimento de fungos micorrízicos arbusculares (FMAs. Há evidências também de que os FMAs sintetizam moléculas sinalizadoras, que são reconhecidas pelas plantas hospedeiras. Pelo menos três genes são essenciais para o reconhecimento dessa molécula e a transdução do sinal molecular. Discutem-se os papéis desses genes e os possíveis mecanismos que regulam sua expressão, bem como os papéis dos FHs na regulação de MAs são discutidos.Arbuscular mycorrhizae (AM are mutualistic symbiotic associations between fungi of the phylum Glomeromycota and most terrestrial plants. The formation and functioning of AM depend on a complex signal exchange process, which ultimately results in shifts in the metabolism of the symbionts and differentiation of a symbiotic interface in cortical root cells. The mechanisms regulating AM development are not well understood, but it is known that phosphate (P concentration in plants plays a key role in this process. Plant P

  8. High temperature PEM fuel cell. Final report. Public part

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Jens Oluf (DTU (DK)); Yde Andersen, S.; Rycke, T. de (IRD Fuel Cells A/S (DK)); Nilsson, M. (Danish Power Systems ApS (DK)); Christensen, Torkild, (DONG Energy (DK))

    2006-07-01

    The main outcome of the project is the development of stacking technology for high temperature PEMFC stacks based on phosphoric acid doped polybenzimidazole membranes (PBI-membranes) and a study of the potential of a possible accommodation of HT-PEMFC in the national energy system. Stacks of different lengths (up to 40 cells) have been built using two different approaches in terms of plate materials and sealing. The stacks still need maturing and further testing to prove satisfactory reliability, and a steady reduction of production cost is also desired (as in general for fuel cells). However, during the project the process has come a long way. The survey of HT-PEM fuel cells and their regulatory power in the utility system concludes that fuel cells will most likely not be the dominating technique for regulation, but as no other technique has that potential alone, fuel cells are well suited to play a role in the system provided that the establishment of a communication system is not too complicated. In order to maintain an efficient power system with high reliability in a distributed generation scenario, it is important that communication between TSO (Transmission System Operator) and fuel cells is included in the fuel cell system design at an early stage. (au)

  9. Planos diretores: o caminho para o desenvolvimento sustentável das cidades

    Directory of Open Access Journals (Sweden)

    Alexsandro da Miranda

    2013-11-01

    Full Text Available Os Planos Diretores efetivam a existência de uma legislação geral estabelecendo as normas necessárias à implementação de políticas urbanas, previstas na Constituição Federal e no Estatuto da Cidade (Lei Federal 10.257/2001 e que em seu foco principal está o desenvolvimento e a expansão urbana.  Assim, o presente artigo aborda uma breve discussão teórica do tema, suas problemáticas e contextualizações na perspectiva de fundamentá-las à luz das teorias existentes. Três principais diretrizes devem ser destacadas: o desenvolvimento sustentável, a gestão democrática da cidade e o planejamento do desenvolvimento das cidades, onde os municípios, devem, portanto, utilizar as diretrizes e instrumentos do Estatuto da Cidade com o objetivo de estabelecer as regras que propiciem o pleno desenvolvimento econômico, social, ambiental e sustentável, com vistas a garantir o direito à cidade para todos os que nela vivem.

  10. As NICSPs e a Contabilidade Governamental de Países em Desenvolvimento

    Directory of Open Access Journals (Sweden)

    James L. Chan

    2010-04-01

    Full Text Available Com o objetivo de alcançarem metas socioeconômicas ambiciosas, países em desenvolvimento precisam desenvolver capacidade institucional no setor público para estabelecer e implementar políticas públicas, as quais, por sua vez, prescindem de uma reforma na sua contabilidade governamental. O valor social da reforma na contabilidade governamental repousa, portanto, na sua contribuição para as metas de desenvolvimento, inclusive de redução da pobreza. Essa fundamentação tem conduzido os doadores e os financiadores internacionais e multilaterais a endossar as Normas Internacionais de Contabilidade para o Setor Público (NICSPs e a sua adoção em países em desenvolvimento. A ênfase em assegurar a integridade financeira e a mudança para o regime de competência pode tornar as NICSPs mais úteis na reforma da contabilidade pública em países em desenvolvimento.

  11. Estímulo ao desenvolvimento infantil: produção do conhecimento em enfermagem

    Directory of Open Access Journals (Sweden)

    Bruna Cristine Peres Falbo

    2012-02-01

    Full Text Available Este estudo teve como objetivo identificar as ações de enfermagem para estímulo ao desenvolvimento infantil, em periódicos nacionais e internacionais, no período de 2000 a 2009. Revisão integrativa da literatura, nas bases de dados Medline e Lilacs, com análise de quinze artigos. Os resultados apontam o lúdico como essencial ao desenvolvimento infantil, devendo ser explorado pela enfermagem por meio da arte, música, brinquedos e teatro. Amenizar o estresse da hospitalização com adequação ambiental reduz o seu impacto sobre o desenvolvimento infantil. Orientar e intervir nos inter-relacionamentos são ações de enfermagem para o desenvolvimento social e comportamental infantil. Os temas abordados na literatura são fundamentais para uma prática de enfermagem no cuidado integral à saúde da criança.

  12. Avaliação do crescimento e desenvolvimento de crianças institucionalizadas

    Directory of Open Access Journals (Sweden)

    Caroline Magna Pessoa Chaves

    2013-10-01

    Full Text Available O estudo objetivou avaliar o crescimento e desenvolvimento de crianças de 0 a 6 anos institucionalizadas. Abordagem descritiva, transversal e de natureza quantitativa. Foi realizado em um abrigo da Secretaria do Trabalho e Desenvolvimento Social do Governo do Estado do Ceará, nos meses de março e abril de 2011. A amostra foi composta por 44 crianças. Prevaleceram crianças de sexo masculino (59,1%; faixa etária entre 24 a 72 meses (56,8%, e tempo de abrigamento superior a um ano (72,7%. Verificou-se que as crianças estavam na faixa de normalidade nutricional. Porém, 65,9% das crianças não alcançaram pelo menos um dos marcos do desenvolvimento propostos pelo Ministério da Saúde. O estudo possibilitou uma reflexão sobre como as crianças residentes em abrigos estão sendo assistidas pela equipe de saúde, tornando-se necessário realizar o acompanhamento de seu crescimento e desenvolvimento, a fim de intervir sobre as alterações encontradas.

  13. A aplicação do QFD no desenvolvimento de software: um estudo de caso

    Directory of Open Access Journals (Sweden)

    Fernando Antônio Sonda

    2000-06-01

    Full Text Available Este trabalho tem como objetivo apresentar a aplicação do QFD como ferramenta de suporte para o planejamento e desenvolvimento de um software de custos, visando um melhor atendimento das características demandadas pelo cliente, bem como a determinação de indicadores para controlar o processo de desenvolvimento do produto. O trabalho foi desenvolvido a partir de uma pesquisa de mercado realizada com usuários de softwares de custos e demais pessoas envolvidas com o gerenciamento de custos. Com a aplicação do QFD, observou-se que a definição antecipada das características principais do sistema é fundamental para o desenvolvimento de um software. O QFD vem se somar as demais ferramentas de análise de sistemas proporcionando, simultaneamente, um desenvolvimento mais rápido e mais qualificado.This paper presents an application of QFD for planning and development of a cost software. The QFD was chosen aiming a better assessment of the user desires as well as the indication of the parameters for process control. The work was initiated from a market survey conducted on users of cost software and other people involved in cost management. The use of the QFD shows that the early definition of the key characteristics of the system is essential in software development. The QFD complements the use of other system analysis techniques and contributes for a faster and more qualified software development.

  14. Biopolítica e Desenvolvimento? Foucault e Agamben sobre Estado, Governo e Violência

    Directory of Open Access Journals (Sweden)

    Guilherme F. W. Radomsky

    2015-06-01

    Full Text Available Este artigo analisa as relações entre biopolítica e desenvolvimento sob o ângulo das noções de Estado, governo e violência. O objetivo consiste em examinar elementos analíticos que gravitam em torno de perspectivas críticas do desenvolvimento buscando um eixo interpretativo sobre a ambivalência das ações do Estado a partir de duas possibilidades teóricas que convergem no pensamento de Giorgio Agamben: a análise do biopoder e do governo em Foucault e as articulações entre violência e lei que remetem a Walter Benjamin. A reflexão sobre os argumentos teóricos é realizada examinando-se dados oriundos de pesquisa de abordagem qualitativa sobre políticas para a agricultura ecológica no sul do Brasil. As conclusões mostram que o desenvolvimento e seus benefícios podem ser problematizados pelo olhar do biopoder e da violência, que reconfiguram o que seja desenvolvimento, menos como expansão do bem-estar e mais como impulso modernizante de mudança que se ampara em administrar a vida.

  15. Development of a lightweight fuel cell vehicle

    Science.gov (United States)

    Hwang, J. J.; Wang, D. Y.; Shih, N. C.

    This paper described the development of a fuel cell system and its integration into the lightweight vehicle known as the Mingdao hydrogen vehicle (MHV). The fuel cell system consists of a 5-kW proton exchange membrane fuel cell (PEMFC), a microcontroller and other supported components like a compressed hydrogen cylinder, blower, solenoid valve, pressure regulator, water pump, heat exchanger and sensors. The fuel cell not only propels the vehicle but also powers the supporting components. The MHV performs satisfactorily over a hundred-kilometer drive thus validating the concept of a fuel cell powered zero-emission vehicle. Measurements further show that the fuel cell system has an efficiency of over 30% at the power consumption for vehicle cruise, which is higher than that of a typical internal combustion engine. Tests to improve performance such as speed enhancement, acceleration and fuel efficiency will be conducted in the future work. Such tests will consist of hybridizing with a battery pack.

  16. Speeding the transition: Designing a fuel-cell hypercar

    Energy Technology Data Exchange (ETDEWEB)

    Williams, B.D.; Moore, T.C.; Lovins, A.B. [Rocky Mountain Inst., Snowmass, CO (United States). Hypercar Center

    1997-12-31

    A rapid transformation now underway in automotive technology could accelerate the transition to transportation powered by fuel cells. Ultralight, advanced-composite, low-drag, hybrid-electric hypercars--using combustion engines--could be three- to fourfold more efficient and one or two orders of magnitude cleaner than today`s cars, yet equally safe, sporty, desirable, and (probably) affordable. Further, important manufacturing advantages--including low tooling and equipment costs, greater mechanical simplicity, autobody parts consolidation, shorter product cycles, and reduced assembly effort and space--permit a free-market commercialization strategy. This paper discusses a conceptual hypercar powered by a proton-exchange-membrane fuel cell (PEMFC). It outlines the implications of platform physics and component selection for the vehicle`s mass budget and performance. The high fuel-to-traction conversion efficiency of the hypercar platform could help automakers overcome the Achilles` heel of hydrogen-powered vehicles: onboard storage. Moreover, because hypercars would require significantly less tractive power, and even less fuel-cell power, they could adopt fuel cells earlier, before fuel cells` specific cost, mass, and volume have fully matured. In the meantime, commercialization in buildings can help prepare fuel cells for hypercars. The promising performance of hydrogen-fueled PEMFC hypercars suggests important opportunities in infrastructure development for direct-hydrogen vehicles.

  17. Modeling and Design of Hybrid PEM Fuel Cell Systems for Lift Trucks

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham

    . The most common type of fuel cell used for automotive applications is the PEM fuel cell. They are known for their high efficiency, low emissions and high reliability. However, the biggest obstacles to introducing fuel cell vehicles are the lack of a hydrogen infrastructure, cost and durability of the stack....... This model can be used as a guideline for optimal PEMFC operation with respect to electrical efficiency and net power production. In addition to the optimal operation, investigation of different coolants and operating conditions provides some recommendations for water and thermal management of the system...

  18. Constant Power Control of a Proton Exchange Membrane Fuel Cell through Adaptive Fuzzy Sliding Mode

    Directory of Open Access Journals (Sweden)

    Minxiu Yan

    2013-05-01

    Full Text Available Fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent. The paper describes a mathematical model of proton exchange membrane fuel cells by analyzing the working mechanism of the proton exchange membrane fuel cell. Furthermore, an adaptive fuzzy sliding mode controller is designed for the constant power output of PEMFC system. Simulation results prove that adaptive fuzzy sliding mode control has better control effect than conventional fuzzy sliding mode control.

  19. Synthesis of a new electrolyte by co-poly-esters doped with sodium dodecyl sulfate for application on PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, J.R.A.; Boaventura, F.J.S.; Jose, N.M.; Bresciani, D. [Univ. Federal da Bahia, Salvador (Brazil). Dept. of Physical Chemistry

    2009-07-01

    Proton exchange membrane fuel cells (PEMFCs) use polymer membranes as electrolytes and protons as conductors. This paper reported on a study in which co-polyesters were doped with sodium dodecyl sulfate. The co-polymers were synthesized by a copolymerization process that used terephthalic and adipic acids with glycerol. A reactor was used to process the material, which was then hot-pressed to produce homogenous and flexible plates. X-ray diffraction (XRD) scanning electron microscopy (SEM), thermogravimetric, direct scanning calorimetry (DSC) and Fourier Transform Infrared (FTIR) analyses were conducted. Results of the analyses demonstrated that the composite material was stable up to a temperature of 250 degrees C. A micrographics study showed that MDS was homogeneously dispersed in the polymeric matrix. It was concluded that with an electrical conductivity between 10-7 to 10-1 S per cm, the copolymers were suitable for use in PEMFC applications.

  20. 聚合物电解质膜燃料电池电催化剂的进展%Progress in electrocatalyst for polymer electrolyte membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    宗军; 黄成德; 王宇新

    2011-01-01

    The progress in electrocatalyst for polymer electrolyte membrane fuel cell(PEMFC) was reviewed. It included many aspects, such as core/shell structure, hollow structure and shape-control Pt-based catalysts, no-precious metal catalysts and new type supports-graphene, ordered mesoporous carbons. The development prospects of the electrocatalyst were prospected.%评述了近年来聚合物电解质膜燃料电池(PEMFC)电催化剂的进展,其中包括核/壳结构、中空结构等结构及形状可控的Pt基催化剂、非贵金属催化剂及石墨烯、有序介孔碳等新型载体,并对发展前景进行了展望.

  1. Research of platinum catalysts used in PEM fuel cell%质子交换膜燃料电池含Pt催化剂的研究

    Institute of Scientific and Technical Information of China (English)

    雷一杰; 李彤; 顾军; 于涛; 邹志刚

    2011-01-01

    作为质子交换膜燃料电池的主要用催化剂,Pt的研究对质子交换膜燃料电池运用和普及起着至关重要的作用.为此,近年来一系列大量的基于Pt催化剂的不同形貌、不同成分、不同载体的研究大大地推进了Pt催化剂技术的发展.%As the main catalyst used in proton exchange membrane fuel cell(PEMFC), the platinum research plays a vital role on the application and popularization of PEMFC. In this respect, a great deal of effort has been put into the morphologies, ingredients, supporters based on the platinum catalysts in recent years, which has promoted the catalyst technology.

  2. Desenvolvimento da memória na criança: o que muda com a idade?

    OpenAIRE

    Carneiro,Maria Paula

    2008-01-01

    Neste artigo é apresentada uma revisão da literatura sobre o desenvolvimento da memória, organizada de acordo com a divisão dos diferentes armazenamentos ou sistemas existentes. O desenvolvimento das memórias sensorial, de trabalho, explícita e implícita é analisado desde o período pré-escolar. Embora ocorram mudanças significativas na memória de trabalho e explícita, parece não existir evolução da memória implícita perceptiva ao longo do desenvolvimento.

  3. PRODUÇÃO DE ALIMENTOS TRADICIONAIS Contribuindo para o desenvolvimento local/regional e dos pequenos produtores rurais

    OpenAIRE

    Zuin, Luís Fernando Soares; Zuin, Poliana Bruno

    2008-01-01

    Esse artigo tem como finalidade apresentar uma proposta de produção para o desenvolvimento de alimentos tradicionais, baseada no modelo de Processo e Desenvolvimentos de Produtos Rurais (PDP-rural), proposto por Zuin e Alliprandini (2006). Essa proposta objetiva contribuir com os pequenos produtores rurais e com o desenvolvimento local e regional, por meio da agregação de valor aos produtos do tipo commodities. Mas o que são os alimentos tradicionais? São os alimentos chamados, também, de pro...

  4. Desenvolvimento do maracujá doce em Viçosa, Minas Gerais Fruit development of sweet passion fruit in Viçosa, Minas Gerais

    Directory of Open Access Journals (Sweden)

    Robson Ribeiro Alves

    2013-02-01

    Full Text Available Foram avaliadas as mudanças físicas, químicas e fisiológicas ocorridas durante o desenvolvimento do maracujá doce, da antese até o completo amadurecimento na planta. Os frutos apresentaram formato ligeiramente oblongo, padrão de desenvolvimento sigmoidal simples e padrão climatérico para a respiração. O desenvolvimento do fruto foi dividido em três fases: divisão celular até 4,70 dias após a antese (daa, expansão celular de 4,70 daa até 28,94 daa e maturação, de 28,94 daa a 91 daa. Na primeira fase, há pouco incremento nas dimensões do fruto, altas taxas respiratórias, crescimento acelerado da espessura do pericarpo e coloração do pericarpo verde-claro. Na fase seguinte, há intenso desenvolvimento das dimensões do fruto, ganho acelerado de massa da matéria fresca e coloração do pericarpo verde-intenso. Na terceira fase, há tendência à estabilização das dimensões, desenvolvimento de polpa acentuado, o teor de sólidos solúveis aumenta, os teores de vitamina C e acidez titulável diminuem. O pico do climatério foi registrado aos 63 daa. No último dia de avaliação, aos 91 daa, a polpa (suco + sementes representava 24,46% da massa da matéria fresca total do fruto, o pericarpo respondia por 74,10% e as sementes isoladas, por 3,14%.The physical, chemical and physiological changes during the development of sweet passion fruit, from anthesis to ripening in the plant, were evaluated. Fruits had a slightly oblong shape, a simple sigmoidal pattern of development and climacteric pattern for respiration. Fruit development was divided into three phases: cell division up to 4.70 days after anthesis (daa; cell expansion from 4.70 daa to 28.94 daa and maturation from 28.94 to 91 daa. In the cell division phase, there is little increase in fruit size, high respiratory rates, rapid growth of the pericarp thickness, and pericarp of clear green color. In the cell expansion phase, there is intense development of the fruit

  5. Electrolytes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey W. [Auburn University, Materials Research and Education Center, 275 Wilmore Laboratories, Auburn, AL 36849 (United States)

    2006-11-08

    The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed. (author)

  6. In-Situ Measurement of High-Temperature Proton Exchange Membrane Fuel Cell Stack Using Flexible Five-in-One Micro-Sensor.

    Science.gov (United States)

    Lee, Chi-Yuan; Weng, Fang-Bor; Kuo, Yzu-Wei; Tsai, Chao-Hsuan; Cheng, Yen-Ting; Cheng, Chih-Kai; Lin, Jyun-Ting

    2016-10-18

    In the chemical reaction that proceeds in a high-temperature proton exchange membrane fuel cell stack (HT-PEMFC stack), the internal local temperature, voltage, pressure, flow and current nonuniformity may cause poor membrane material durability and nonuniform fuel distribution, thus influencing the performance and lifetime of the fuel cell stack. In this paper micro-electro-mechanical systems (MEMS) are utilized to develop a high-temperature electrochemical environment-resistant five-in-one micro-sensor embedded in the cathode channel plate of an HT-PEMFC stack, and materials and process parameters are appropriately selected to protect the micro-sensor against failure or destruction during long-term operation. In-situ measurement of the local temperature, voltage, pressure, flow and current distributions in the HT-PEMFC stack is carried out. This integrated micro-sensor has five functions, and is favorably characterized by small size, good acid resistance and temperature resistance, quick response, real-time measurement, and the goal is being able to be put in any place for measurement without affecting the performance of the battery.

  7. Design and Implementation of 8051 Single-Chip Microcontroller for Stationary 1.0 kW PEM Fuel Cell System

    Directory of Open Access Journals (Sweden)

    Pei-Hsing Huang

    2014-01-01

    Full Text Available Proton exchange membrane fuel cells (PEMFCs have attracted significant interest as a potential green energy source. However, if the performance of such systems is to be enhanced, appropriate control strategies must be applied. Accordingly, the present study proposes a sophisticated control system for a 1.0 kW PEMFC system comprising a fuel cell stack, an auxiliary power supply, a DC-DC buck converter, and a DC-AC inverter. The control system is implemented using an 8051 single-chip microcontroller and is designed to optimize the system performance and safety in both the startup phase and the long-term operation phase. The major features of the proposed control system are described and the circuit diagrams required for its implementation introduced. In addition, the touch-sensitive, intuitive human-machine interface is introduced and typical screens are presented. Finally, the electrical characteristics of the PEMFC system are briefly examined. Overall, the results confirm that the single-chip microcontroller presented in this study has significant potential for commercialization in the near future.

  8. In-Situ Measurement of High-Temperature Proton Exchange Membrane Fuel Cell Stack Using Flexible Five-in-One Micro-Sensor

    Directory of Open Access Journals (Sweden)

    Chi-Yuan Lee

    2016-10-01

    Full Text Available In the chemical reaction that proceeds in a high-temperature proton exchange membrane fuel cell stack (HT-PEMFC stack, the internal local temperature, voltage, pressure, flow and current nonuniformity may cause poor membrane material durability and nonuniform fuel distribution, thus influencing the performance and lifetime of the fuel cell stack. In this paper micro-electro-mechanical systems (MEMS are utilized to develop a high-temperature electrochemical environment-resistant five-in-one micro-sensor embedded in the cathode channel plate of an HT-PEMFC stack, and materials and process parameters are appropriately selected to protect the micro-sensor against failure or destruction during long-term operation. In-situ measurement of the local temperature, voltage, pressure, flow and current distributions in the HT-PEMFC stack is carried out. This integrated micro-sensor has five functions, and is favorably characterized by small size, good acid resistance and temperature resistance, quick response, real-time measurement, and the goal is being able to be put in any place for measurement without affecting the performance of the battery.

  9. Electrochemical behavior of nanocrystalline Ta/TaN multilayer on 316L stainless steel: Novel bipolar plates for proton exchange membrane fuel-cells

    Science.gov (United States)

    Alishahi, M.; Mahboubi, F.; Mousavi Khoie, S. M.; Aparicio, M.; Hübner, R.; Soldera, F.; Gago, R.

    2016-08-01

    Insufficient corrosion resistance and surface conductivity are two main issues that plague large-scale application of stainless steel (SS) bipolar plates in proton exchange membrane fuel cells (PEMFCs). This study explores the use of nanocrystalline Ta/TaN multilayer coatings to improve the electrical and electrochemical performance of polished 316L SS bipolar plates. The multilayer coatings have been deposited by (reactive) magnetron sputtering and characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. The electrochemical behavior of bare and coated substrates has been evaluated in simulated PEMFC working environments by potentiodynamic and potentiostatic polarization tests at ambient temperature and 80 °C. The results show that the Ta/TaN multilayer coating increases the polarization resistance of 316L SS by about 30 and 104 times at ambient and elevated temperatures, respectively. The interfacial contact resistance (ICR) shows a low value of 12 mΩ × cm2 before the potentiostatic test. This ICR is significantly lower than for the bare substrate and remains mostly unchanged after potentiostatic polarization for 14 h. In addition, the high contact angle (92°) with water for coated substrates indicates a hydrophobic character, which can improve the water management within the cell in PEMFC stacks.

  10. A Web 2.0 no ensino da psicologia do desenvolvimento : desenvolvimento de competências em técnicos de educação

    OpenAIRE

    Costa, Angelina; Mocho, Helena; Morgado, Lina

    2011-01-01

    As TIC e as ferramentas Web 2.0 são especialmente indicadas para incorporar nos currículos do ensino superior e poderem ser usadas quer para ensinar quer para aprender. Este processo implica uma nova abordagem da parte dos professores e dos estudantes. Este artigo apresenta a experiência desenvolvida numa unidade curricular de psicologia do desenvolvimento dirigida à formação de técnicos de educação no ensino superior. A finalidade é, através dos modelos e perspectivas da psicologia do desenv...

  11. Advances in PEM fuel cells with CFD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Robalinho, Eric; Cunha, Edgar Ferrari da; Zararya, Ahmed; Linardi, Marcelo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], Email: eric@ipen.br; Cekinski, Efrain [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)

    2010-07-01

    This paper presents some applications of computational fluid dynamics techniques in the optimization of Proton Exchange Membrane Fuel Cell (PEMFC) designs. The results concern: modeling of gas distribution channels, the study for both porous anode and cathode and the three-dimensional modeling of a partial geometry layer containing catalytic Gas Diffusion Layers (GDL) and membrane. Numerical results of the simulations of graphite plates flow channels, using ethanol as fuel, are also presented. Some experimental results are compared to the corresponding numerical ones for several cases, demonstrating the importance and usefulness of this computational tool. (author)

  12. Towards Extrusion of Ionomers to Process Fuel Cell Membranes

    Directory of Open Access Journals (Sweden)

    Jean-Yves Sanchez

    2011-07-01

    Full Text Available While Proton Exchange Membrane Fuel Cell (PEMFC membranes are currently prepared by film casting, this paper demonstrates the feasibility of extrusion, a solvent-free alternative process. Thanks to water-soluble process-aid plasticizers, duly selected, it was possible to extrude acidic and alkaline polysulfone ionomers. Additionally, the feasibility to extrude composites was demonstrated. The impact of the plasticizers on the melt viscosity was investigated. Following the extrusion, the plasticizers were fully removed in water. The extrusion was found to impact neither on the ionomer chains, nor on the performances of the membrane. This environmentally friendly process was successfully validated for a variety of high performance ionomers.

  13. Desenvolvimento de inibidores do fator VIII na hemofilia A Development of factor VIII inhibitors in hemophilia A

    Directory of Open Access Journals (Sweden)

    Daniel G. Chaves

    2009-01-01

    Full Text Available A hemofilia A é uma coagulopatia genética com herança recessiva ligada ao cromossomo X que afeta 1-2 a cada 10 mil indivíduos do sexo masculino nascidos vivos. Estes indivíduos têm baixas concentrações ou ausência do fator VIII (FVIII da coagulação no plasma e apresentam quadros hemorrágicos leves, moderados e graves, dependendo da atividade de FVIII circulante. Estes pacientes necessitam de constante reposição proteica e aproximadamente 30% deles desenvolvem aloanticorpos contra a proteína exógena. A síntese dos anticorpos anti-FVIII é iniciada quando o FVIII exógeno é endocitado por células apresentadoras de antígeno, degradado e apresentado às células T CD4+ na forma de peptídeos ligados a moléculas do complexo maior de histocompatibilidade (MHC de classe II. Alguns fatores de risco (paciente/tratamento podem ser relacionados ao desenvolvimento desta resposta imune. Neste contexto, as mutações no gene do FVIII e polimorfismos em genes envolvidos na resposta imune são candidatos moleculares como determinantes imunogenéticos na predisposição para o desenvolvimento de inibidores. Por não ser completamente entendido e controlado, o desenvolvimento desta resposta imune contra o FVIII constitui o maior problema decorrente do tratamento de indivíduos portadores de hemofilia A e faz-se necessária busca de opções que visem minimizar suas ações deletérias. Algumas alternativas de tratamento têm se mostrado eficazes no tratamento (anti-CD20, plasmaférese, concentrado de complexo protrombínico (PCCs, concentrado de complexo protrombínico ativado (APCCs, fator VII humano ativado, mas a retirada ou neutralização específica dos inibidores de FVIII ainda não foram alcançadas.Hemophilia A, which affects 1-2:10,000 live-born male neonates, is a genetic coagulopathy with recessive inheritance linked to the X chromosome. These individuals have low concentrations or no coagulation factor VIII (FVIII in the plasma

  14. Produção de membranas híbridas zirconizadas de SPEEK/Copolissilsesquioxano para aplicação em células a combustível do tipo PEM Production of Zirconized SPEEK/Copolysilsesquioxane hybrid membranes for application in Proton Exchange Membrane fuel cells

    Directory of Open Access Journals (Sweden)

    Kelen R. Aguiar

    2012-01-01

    Full Text Available Membranas baseadas em poli(aril éter cetona sulfonada mostraram ser bastante promissoras para aplicação em células a combustível com membrana trocadora de prótons (PEMFC. O poli(éter-éter-cetona sulfonado (SPEEK, com elevado grau de sulfonação (GS, apresenta alta condutividade de prótons, mas sofre perda de funcionalidade e condutividade em temperaturas altas e umidades baixas. O desenvolvimento de membranas híbridas é uma das possibilidades para melhorar o desempenho destes materiais. Neste trabalho foram preparadas membranas híbridas zirconizadas de SPEEK/copolissilsesquioxano fosfonado (CF por casting, a partir de SPEEK com GS entre 60% e 70% e soluções de cloreto de zirconila (ZrOCl2 1, 5, ou 10% (m/m. As membranas foram caracterizadas por espectroscopia na região do infravermelho (FTIR, difratometria de raios-X (DRX, análise termogravimétrica (TG, calorimetria exploratória diferencial (DSC, condutividade de prótons (σ e microscopia eletrônica de varredura (MEV. A análise por energia dispersiva (EDS confirmou a presença de Zr em domínios esféricos dispersos homogeneamente pelas membranas, enquanto análises de DRX mostraram que os produtos da zirconização são amorfos. Ensaios de impedância eletroquímica indicam aumento da condutividade protônica com a adição de CF e 1 ou 5% de ZrOCl2.Membranes based on sulfonated poly(aryl ether ketone are known to be very promising materials for Proton Exchange Membrane Fuel Cells (PEMFC. Sulfonated poly(ether-ether-ketone (SPEEK, with high sulfonation degrees (SD, present high proton conductivity. However, they lose functionality and conductivity at high temperatures and low humidity. To enhance the performance of these materials, hybrid membranes have gained considerable attention. In this work, zirconized SPEEK/phosphonated copolysilsesquioxane (CF hybrid membranes were prepared by casting, from SPEEK (60% < SD < 70% and 1, 5, or 10 wt. (% zirconyl chloride solutions

  15. A periodização do desenvolvimento psicológico individual na perspectiva de Leontiev, Elkonin e Vigostski

    Directory of Open Access Journals (Sweden)

    Marilda Gonçalves Dias Facci

    Full Text Available Este estudo se propõe a analisar algumas contribuições da psicologia de Leontiev, Elkonin e Vigotski no campo da psicologia do desenvolvimento, mais especificamente a questão da periodização da ontogênese humana. Leontiev e Elkonin, seguindo a linha sócio-histórica ou histórico-cultural iniciada por Vigotski, desenvolveram as bases de uma psicologia do desenvolvimento que superasse o enfoque naturalizante tão forte nesse campo. Segundo eles cada período do desenvolvimento individual humano é caracterizado por uma atividade principal, ou atividade dominante, a partir da qual se estruturam as relações do indivíduo com a realidade social. São analisados também os períodos que Leontiev e Elkonin detectaram no desenvolvimento dos indivíduos nas condições sociais da USSR.

  16. Resiliência e Justiça Organizacional como Antecedentes da Percepção de Desenvolvimento Profissional

    Directory of Open Access Journals (Sweden)

    Ana Claudia Monteiro

    Full Text Available RESUMO O mercado competitivo da atualidade tem exigido mais qualificação dos trabalhadores, o que aumenta a relevância do construto desenvolvimento profissional. O objetivo deste estudo foi testar um modelo de predição da percepção do desenvolvimento profissional. Participaram da pesquisa 320 trabalhadores de diferentes categorias profissionais de organizações públicas e privadas. O questionário continha três escalas, todas com bons indicadores psicométricos. Os resultados apontados a partir da regressão múltipla confirmaram que percepção de justiça organizacional e resiliência predizem positivamente a percepção de desenvolvimento profissional, sendo que esta demonstra maior poder preditivo. Os resultados foram discutidos de acordo com a teoria do desenvolvimento profissional.

  17. Fuel cell technology for cogeneration systems. Symposium. Proceedings; Brennstoffzellen - Technologie fuer Blockheizkraftwerke. Symposium. Dokumentation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This proceedings volume contains 11 papers on the following subject: Competence network 'Fuel Cells' in Nordrhein-Westfalen (D. Stolten, Juelich Research Center); Fuel cells in stationary applications (B. Hoehlein, Juelich Research Center); Functional principles of energy conversion in fuel cells (W. Schnurnberger, DLR); Low-temperature fuel cells AFC, PEMFC, PAFC (M. Waidhas, Siemens); High-temperature fuel cells - SOFC, MCFC (D. Stolten); Power plant options - natural gas, hydrogen, etc. (R. Wurster, Ludwig-Boelkow-Systemtechnik); Fuel cell supply (A. Heizel, ISE); Hydrogen-fuelled cogeneration units (G. Gummert Hamburg Gas Consult); SOFC high-temperature fuel cells for domestic power supply (R. Diethelm, Sulzer-Hexis); PEFC low-temperature fuel cells for domestic power supply (K. Klinder, Vaillant); Fuel cells, a chance for local utilities (B. Vogel, WINGAS). [German] Dieser Tagungsband enthaelt 11 Beitraege zu folgenden Themen: Kompetenznetzwerk Brennstoffzelle in NRW (D. Stolten, Forschungszentrum Juelich); Brennstoffzellen in der stationaeren Anwendung (B. Hoehlein, Forschungszentrum Juelich); Funktionsprinzipien der Energieumwandlung in Brennstoffzellen (W. Schnurnberger, DLR); Niedertemperaturbrennstoffzellen - AFC, PEMFC, PAFC (M. Waidhas, Siemens); Hochtemperaturbrennstoffzellen - SOFC, MCFC (D. Stolten); Kraftstoffoptionen- Erdgas, Wasserstoff u.a. (R. Wurster, Ludwig-Boelkow-Systemtechnik); Brennstoffbereitstellung (A. Heinzel, ISE); Wasserstoffbetriebene BHKW (G. Gummert Hamburg Gas Consult); Hochtemperaturbrennstoffzelle SOFC fuer die Hausenergieversorgung (R. Diethelm, Sulzer-Hexis); Niedertemperaturbrennstoffzelle PEFC fuer die Hausenergieversorgung (K. Klinder, Vaillant); Brennstoffzelle als Chance fuer lokale EVUs (B. Vogel, WINGAS).

  18. Robust Platinum-Based Electrocatalysts for Fuel Cell Applications

    Science.gov (United States)

    Coleman, Eric James

    Polymer electrolyte fuel cells (PEMFCs) are energy conversion devices that exploit the energetics of the reaction between hydrogen fuel and O 2 to generate electricity with water as the only byproduct. PEMFCs have attracted substantial attention due to their high conversion efficiency, high energy density, and low carbon footprint. However, PEMFC performance is hindered by the high activation barrier and slow reaction rates at the cathode where O2 undergoes an overall 4-electron reduction to water. The most efficient oxygen reduction reaction (ORR) catalyst materials to date are Pt group metals due to their high catalytic activity and stability in a wide range of operating conditions. Before fuel cells can become economically viable, efforts must be taken to decrease Pt content while maintaining a high level of ORR activity. This work describes the design and synthesis of a Pt-Cu electrocatalyst with ORR activity exceeding that of polycrystalline Pt. Production of this novel catalyst is quite simple and begins with synthesis of a porous Cu substrate, formed by etching Al from a Cu-Al alloy. The porous Cu substrate is then coated with a Pt layer via a spontaneous electrochemical process known as galvanic replacement. The Pt layer enhances the ORR activity (as measured by a rotating ring-disk electrode (RRDE)) and acts as a barrier towards corrosion of the Cu understructure. Growth of the Pt layer can be manipulated by time, temperature, concentration of Pt precursor, and convection rate during galvanic replacement. Data from analytical and electrochemical techniques confirm multiple Pt loadings have been achieved via the galvanic replacement process. The boost in ORR activity for the PtCu catalyst was determined to be a result of its lower affinity towards (site-blocking) OH adsorption. A unique catalyst degradation study explains the mechanism of initial catalyst ORR deactivation for both monometallic and bimetallic Pt-based catalysts. Finally, a rigorous and

  19. Perfil de adolescentes talentosos e estratégias para o seu desenvolvimento

    Directory of Open Access Journals (Sweden)

    Jane Farias Chagas

    Full Text Available O objetivo dessa pesquisa foi examinar características cognitivas, acadêmicas, afetivas e sociais de adolescentes talentosos e identificar fatores que favorecem ou dificultam o desenvolvimento de suas habilidades, a partir da percepção dos indivíduos talentosos, de seus familiares e professores. Participaram do estudo quatro adolescentes talentosos, 12 familiares e cinco professoras. A entrevista semiestruturada foi utilizada como instrumento. Os resultados indicaram que as características cognitivas e acadêmicas mais reconhecidas foram: autodidatismo, facilidade para aprender e dedicação aos estudos. Entre as características afetivas e sociais, destacaram-se: determinação, timidez e preferência pelo isolamento social. Os fatores promotores do desenvolvimento do talento mais frequentes foram: suporte familiar e atendimento em sala de recursos. A principal barreira identificada foi o acesso a serviços especializados.

  20. DESENVOLVIMENTO SUSTENTÁVEL À LUZ DA TEORIA DA JUSTIÇA COMO EQUIDADE

    OpenAIRE

    Vargas Neto, Sebastião Domingues

    2009-01-01

    Esta dissertação dedica-se ao exame teórico do desenvolvimento sustentável à luz da teoria da justiça como equidade, de John Rawls. O problema de pesquisa tem caráter teórico e reside na análise do desenvolvimento sustentável (precipuamente resultante do Relatório Brundtland), destacado em seu aspecto social e implicações político-jurídicas e jusfilosóficas, à luz da teoria da justiça como equidade, investigando-se, em eixo que relaciona teoria da justiça, justiça social e l...