WorldWideScience

Sample records for cell pefc stack

  1. Experimental 1 kW 20 cell PEFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F.N.; Marmy, C.A.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ruge, M. [Swiss Federal Inst. of Technology (ETH), Zuerich (Switzerland)

    1999-08-01

    A 20-cell PEFC stack was designed and built. Resin impregnated graphite was used as bipolar plate material. The air cooling of the stack was optimized by introducing high surface structures into the open space of the cooling plates. At {eta} (H{sub 2} LHV) = 0.5 a power of 880 W was obtained under conditions of low gas-pressures of 1.15 bar{sub a}. The auxiliary power for process air supply and cooling at 880 W power is less than 7% of the power output, indicating that the described system may be operated at a high efficiency. (author) 5 figs., 2 refs.

  2. Miniaturized polymer electrolyte fuel cell (PEFC) stack using micro structured bipolar plate

    Energy Technology Data Exchange (ETDEWEB)

    Veziridis, Z.; Scherer, G.G.; Marmy, Ch.; Glaus, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    In Polymer Electrolyte Fuel Cell (PEFC) technology the reducing of volume and mass of the fuel cell stack and the improvement of catalyst utilization are of great interest. These parameters affect applicability and system cost. In this work we present an alternative way for reducing the stack volume by combining gas distribution and catalytic active area in one plate. Micro machined glassy carbon electrodes serve as support material for the platinum catalyst, as well as gas distributor at the same time. A comparison of these electrodes with conventional platinum-black gas diffusion electrodes under fuel cell conditions shows that the new system is a promising electrode type for enhanced power density and catalyst utilization. (author) 3 figs., 5 refs.

  3. Endurance of Nafion-composite membranes in PEFCs operating at ...

    Indian Academy of Sciences (India)

    Reduced gas-crossover, fast fuel-cell-reaction kinetics and superior performance of the PEFCs with Nafion-SiO2 and Nafion-MZP composite membranes in relation to the PEFC with pristine Nafion-1135 membrane support the long-term operational usage of the former in PEFCs. An 8-cell PEFC stack employing Nafion-SiO2 ...

  4. From the components to the stack. Developing and designing 5kW HT-PEFC stacks; Von der Komponente zum Stack. Entwicklung und Auslegung von HT-PEFC-Stacks der 5 kW-Klasse

    Energy Technology Data Exchange (ETDEWEB)

    Bendzulla, Anne

    2010-12-22

    The aim of the present project is to develop a stack design for a 5-kW HTPEFC system. First, the state of the art of potential materials and process designs will be discussed for each component. Then, using this as a basis, three potential stack designs with typical attributes will be developed and assessed in terms of practicality with the aid of a specially derived evaluation method. Two stack designs classified as promising will be discussed in detail, constructed and then characterized using short stack tests. Comparing the stack designs reveals that both designs are fundamentally suitable for application in a HT-PEFC system with on-board supply. However, some of the performance data differ significantly for the two stack designs. The preferred stack design for application in a HT-PEFC system is characterized by robust operating behaviour and reproducible high-level performance data. Moreover, in compact constructions (120 W/l at 60 W/kg), the stack design allows flexible cooling with thermal oil or air, which can be adapted to suit specific applications. Furthermore, a defined temperature gradient can be set during operation, allowing the CO tolerance to be increased by up to 10 mV. The short stack design developed within the scope of the present work therefore represents an ideal basis for developing a 5-kW HT-PEFC system. Topics for further research activities include improving the performance by reducing weight and/or volume, as well as optimizing the heat management. The results achieved within the framework of this work clearly show that HTPEFC stacks have the potential to play a decisive role in increasing efficiency in the future, particularly when combined with an on-board supply system. (orig.) [German] Ziel der vorliegenden Arbeit ist die Entwicklung eines Stackkonzeptes fuer ein 5 kW-HT-PEFC System. Dazu wird zunaechst fuer jede Komponente der Stand der Technik moeglicher Materialien und Prozesskonzepte diskutiert. Darauf aufbauend werden drei

  5. Development of a dynamic CT system for neutron radiography and consecutive visualization of three-dimensional water behavior in a PEFC stack

    International Nuclear Information System (INIS)

    Murakawa, Hideki; Hashimoto, Michinori; Sugimoto, Katsumi; Asano, Hitoshi; Takenaka, Nobuyuki; Mochiki, Koh-ichi; Yasuda, Ryo

    2011-01-01

    A dynamic CT system was developed for visualization of consecutive three-dimensional water behavior in a PEFC stack for neutron radiography. The system is composed of a neutron image intensifier and a C-MOS high speed video camera. An operating stack with three cells based on the Japan Automobile Research Institute standard was visualized using the neutron radiography system at a research reactor JRR-3 in Japan Atomic Energy Agency. The dynamic water behavior in channels in the operating PEFC stack was clearly visualized every 15 seconds by using the system. The water amount in each cell was evaluated by the CT reconstructed images. It was shown that a cell voltage decreased gradually when the water increased and increased rapidly when the water was evacuated. It was estimated that the power generation stopped when the channel of a cell was partly filled with the water because the air supply was blocked to a cell in the stack. (author)

  6. Performance evaluation of 1 kw PEFC

    Energy Technology Data Exchange (ETDEWEB)

    Komaki, Hideaki [Ishikawajima-Harima Heavy Industries Co., Ltd. Tokyo (Japan); Tsuchiyama, Syozo [Shipbuilding Research Association, Minato-ky, Tokyo (Japan)

    1996-12-31

    This report covers part of a joint study on a PEFC propulsion system for surface ships, summarized in a presentation to this Seminar, entitled {open_quote}Study on a PEFC Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The aspect treated here concerns the effects brought on PEFC operating performance by conditions particular to shipboard operation. The performance characteristics were examined through tests performed on a 1 kw stack and on a single cell (Manufactured by Fuji Electric Co., Ltd.). The tests covered the items (1) to (4) cited in the headings of the sections that follow. Specifications of the stack and single cell are as given.

  7. On the materials issues for pefc applications

    Directory of Open Access Journals (Sweden)

    Savadogo Oumarou

    2004-01-01

    Full Text Available Current limitations related to the development of effective, durable and reliable MEA components for PEFC applications are addressed. Advancements made in the development of materials (catalysts, high temperature membranes, bipolar plates, etc. for PEFC are shown. The effect of the catalyst on PEFC performances based on cells fed by hydrogen, direct methanol, direct propane, or direct acetal fuels are presented. The progress in cell performance and cathode research are discussed. Perspectives related to CO tolerance anodes are indicated. The effect of the membranes on the cell performance are shown and parameters which may help the development of appropriate membranes depending on the fuel are suggested. Openings for the future in materials processing and development for PEFC mass production are discussed. The development of New Materials is the key factor to meet those requirements. The aim of this paper is to present challenges related to the development of new materials for PEFC applications and perspectives related to components cost issues are discussed.

  8. PEFC R&D technology at Toyota

    Energy Technology Data Exchange (ETDEWEB)

    Kawatsu, Shigeyuki; Aoyama, Satoshi; Iwase, Masayoshi [Toyota Motor Corp., Shizuoka (Japan)

    1996-12-31

    Fuel cells are being considered as notable new energy sources due to, not only their potential for obtaining high energy conversion efficiencies, but also their environmental sensitive features. These are especially important now that the problems relating to global environmental pollution are regarded as serious social issues. Polymer electrolyte fuel cells (PEFCs) in particular are being pursued due in part to the prospect of realizing timely enhancements to several key characteristics, including size and power. Encouraged by these anticipated improvements, PEFCs are being investigated as promising power generator candidates for hybrid electric vehicles. The substantial future potential of PEFCs has been noted by TOYOTA, and has motivated extensive R&D activities toward the practical application of PEFCs to hybrid electric vehicles. These R&D efforts include, not only activities on such key areas as performance enhancement, but also extensive attention to a broad range of related concerns, such as cost reduction, reformer development, system integration, durability, reliability and so on. From these diverse tasks, this paper focuses on the issues related to ensuring adequate PEFC performance when reformed fuel is utilized. Recent outcomes of R&D conducted at TOYOTA on this topic will be described.

  9. Dynamic simulator for PEFC propulsion plant

    Energy Technology Data Exchange (ETDEWEB)

    Hiraide, Masataka; Kaneda, Eiichi; Sato, Takao [Mitsui Engineering & Shipbuilding Co., Ltd., Tokyo (Japan)] [and others

    1996-12-31

    This report covers part of a joint study on a PEFC propulsion system for surface ships, summarized in a presentation to this Seminar, entitled {open_quote}Study on a Polymer Electrolyte Fuel Cell (PEFC) Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The work presented here focuses on a simulation study on PEFC propulsion plant performance, and particularly on the system response to changes in load. Using a dynamic simulator composed of system components including fuel cell, various simulations were executed, to examine the performance of the system as a whole and of the individual system components under quick and large load changes such as occasioned by maneuvering operations and by racing when the propeller emerges above water in heavy sea.

  10. New design of a PEFC cathode separator of for water management

    Science.gov (United States)

    Sugiura, K.; Takahashi, N.; Kamimura, T.

    2017-11-01

    Generally, polymer electrolyte fuel cells (PEFCs) need humidifiers to prevent the drying of the membrane, but this use of humidifiers creates water management issues, such as the flooding/plugging phenomena and decreased system efficiency because of an increase in the electric energy needed for auxiliary equipment. Although most researchers have developed high-temperature membranes that do not need humidifiers, a lot of time is necessary for the development of these membranes, and these membranes drive up costs. Therefore, we propose a new cathode separator design that can recycle water generated by power generation in the same cell and a stack structure that can redistribute water collected in the cathode outlet manifold to drying cells. Because the new cathode separator has a bypass channel from the gas outlet to the gas inlet to transport excess water, a dry part in the gas inlet is supplied with excess water in the gas outlet through the bypass channel even if the PEFC is operated under dry conditions. Excess water in the PEFC stack can be transported from the cell with excess water to the drying cell through the cathode outlet manifold with a porous wall. Therefore, we confirm the influence of the plugging phenomenon in the cathode gas outlet manifold on the cell performance of each cell in the stack. As a result, the cell performance of the new cathode separator design is better than that of the standard separator under the low humidity conditions. We confirm that the plugging phenomenon in the cathode outlet manifold affects the cell performance of each cell in the stack.

  11. Novel PEFC Application for Deuterium Isotope Separation

    Directory of Open Access Journals (Sweden)

    Hisayoshi Matsushima

    2017-03-01

    Full Text Available The use of a polymer electrolyte fuel cell (PEFC with a Nafion membrane for isotopic separation of deuterium (D was investigated. Mass analysis at the cathode side indicated that D diffused through the membrane and participated in an isotope exchange reaction. The exchange of D with protium (H in H2O was facilitated by a Pt catalyst. The anodic data showed that the separation efficiency was dependent on the D concentration in the source gas, whereby the water produced during the operation of the PEFC was more enriched in D as the D concentration of the source gas was increased.

  12. Lightweight Stacks of Direct Methanol Fuel Cells

    Science.gov (United States)

    Narayanan, Sekharipuram; Valdez, Thomas

    2004-01-01

    An improved design concept for direct methanol fuel cells makes it possible to construct fuel-cell stacks that can weigh as little as one-third as much as do conventional bipolar fuel-cell stacks of equal power. The structural-support components of the improved cells and stacks can be made of relatively inexpensive plastics. Moreover, in comparison with conventional bipolar fuel-cell stacks, the improved fuel-cell stacks can be assembled, disassembled, and diagnosed for malfunctions more easily. These improvements are expected to bring portable direct methanol fuel cells and stacks closer to commercialization. In a conventional bipolar fuel-cell stack, the cells are interspersed with bipolar plates (also called biplates), which are structural components that serve to interconnect the cells and distribute the reactants (methanol and air). The cells and biplates are sandwiched between metal end plates. Usually, the stack is held together under pressure by tie rods that clamp the end plates. The bipolar stack configuration offers the advantage of very low internal electrical resistance. However, when the power output of a stack is only a few watts, the very low internal resistance of a bipolar stack is not absolutely necessary for keeping the internal power loss acceptably low.

  13. Solid Oxide Fuel Cell Stack Diagnostics

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Barfod, Rasmus Gottrup

    . An operating stack is subject to compositional gradients in the gaseous reactant streams, and temperature gradients across each cell and across the stack, which complicates detailed analysis. Several experimental stacks from Topsoe Fuel Cell A/S were characterized using Electrochemical Impedance Spectroscopy...... (EIS). The stack measurement geometry was optimized for EIS by careful selection of the placement of current feeds and voltage probes in order to minimize measurement errors. It was demonstrated that with the improved placement of current feeds and voltage probes it is possible to separate the loss...... in the hydrogen fuel gas supplied to the stack. EIS was used to examine the long-term behavior and monitor the evolution of the impedance of each of the repeating units and the whole stack. The observed impedance was analyzed in detail for one of the repeating units and the whole stack and the losses reported...

  14. Power feature required for PEFC powered electric propulsion ship

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Isao [NKK Corp., Yokohama (Japan); Oka, Masaru [Mitsubishi Heavy Industries, Ltd., Nagasaki (Japan)

    1996-12-31

    This report covers part of a joint study on a PEFC system for ship propulsion, summarized in a presentation to this Seminar, entitled {open_quote}Study on a Polymer Electrolyte Fuel Cell (PEFC) Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The aspect treated here concerns an analysis of the load-following performance required and estimated of a PEFC system to power the envisaged ship. The analysis proved that difficulty should be expected of the fuel supply circuit in following with adequate rapidity the sharp changes of load on fuel cell under certain conditions. Further integrated experiments and simulation exercises are currently in progress to further analyze the response characteristics of the fuel supply circuit-particularly of the methanol reformer and gas reservoir-to determine the best measure to be adopted for overcoming the expected difficulty.

  15. Stability and performance improvement of a polymer electrolyte membrane fuel cell stack by laser perforation of gas diffusion layers

    Energy Technology Data Exchange (ETDEWEB)

    Gerteisen, Dietmar; Sadeler, Christian [Fraunhofer Institute for Solar Energy Systems ISE, Department of Energy Technology, Heidenhofstrasse 2, 79110 Freiburg (Germany)

    2010-08-15

    The performance and stability of a hydrogen-driven polymer electrolyte membrane fuel cell stack (6-cell PEFC stack) are investigated with regard to pore flooding within the gas diffusion layers (GDLs). Two short stacks with various GDLs (Toray TGP-H-060 untreated and laser-perforated) were characterized at different operating conditions by several characterization techniques such as constant current load, polarization curve, chronoamperometry and chronovoltammetry. The experimental results reveal that the perforation of the cathode GDLs improves the water transport in the porous media and thus the performance as well as the stability of the operating stack in medium and high current density range. A reduced pore flooding is verified when using the customized laser-perforated GDLs. The GDL perforation has a huge potential to balance the inhomogeneous in-plane saturation conditions between the inlet and outlet area of the cell and to compensate to a certain degree the effects of temperature distribution within a stack regarding the water management. (author)

  16. Stability and performance improvement of a polymer electrolyte membrane fuel cell stack by laser perforation of gas diffusion layers

    Science.gov (United States)

    Gerteisen, Dietmar; Sadeler, Christian

    The performance and stability of a hydrogen-driven polymer electrolyte membrane fuel cell stack (6-cell PEFC stack) are investigated with regard to pore flooding within the gas diffusion layers (GDLs). Two short stacks with various GDLs (Toray TGP-H-060 untreated and laser-perforated) were characterized at different operating conditions by several characterization techniques such as constant current load, polarization curve, chronoamperometry and chronovoltammetry. The experimental results reveal that the perforation of the cathode GDLs improves the water transport in the porous media and thus the performance as well as the stability of the operating stack in medium and high current density range. A reduced pore flooding is verified when using the customized laser-perforated GDLs. The GDL perforation has a huge potential to balance the inhomogeneous in-plane saturation conditions between the inlet and outlet area of the cell and to compensate to a certain degree the effects of temperature distribution within a stack regarding the water management.

  17. Development of PEFC for transportable applications

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Hideo; Fuklumoto, Hisatoshi; Mitsuda, Kenro [Mitsubishi Electric Corp., Hyogo (Japan)] [and others

    1996-12-31

    Since FY1992, we have been developing PEFC technologies under NEDO`s R&D program. High power density and rapid start-up are essential requirements for transportable applications. Also, if reformed gas is used as fuel, the prevention of CO poisoning and improvement of response to loading are essential. In this paper, methods to increase the effective surface area of a cell, start-up and endurance test results, the study of CO poisoning with a pulse electrolyzing method and the demonstration of a hydrogen recovery subsystem are presented.

  18. Wearable solar cells by stacking textile electrodes.

    Science.gov (United States)

    Pan, Shaowu; Yang, Zhibin; Chen, Peining; Deng, Jue; Li, Houpu; Peng, Huisheng

    2014-06-10

    A new and general method to produce flexible, wearable dye-sensitized solar cell (DSC) textiles by the stacking of two textile electrodes has been developed. A metal-textile electrode that was made from micrometer-sized metal wires was used as a working electrode, while the textile counter electrode was woven from highly aligned carbon nanotube fibers with high mechanical strengths and electrical conductivities. The resulting DSC textile exhibited a high energy conversion efficiency that was well maintained under bending. Compared with the woven DSC textiles that are based on wire-shaped devices, this stacked DSC textile unexpectedly exhibited a unique deformation from a rectangle to a parallelogram, which is highly desired in portable electronics. This lightweight and wearable stacked DSC textile is superior to conventional planar DSCs because the energy conversion efficiency of the stacked DSC textile was independent of the angle of incident light. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Annular feed air breathing fuel cell stack

    Science.gov (United States)

    Wilson, Mahlon S.

    1996-01-01

    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  20. Testing of Electrodes, Cells and Short Stacks

    DEFF Research Database (Denmark)

    Hauch, Anne; Mogensen, Mogens Bjerg

    2017-01-01

    The present contribution describes the electrochemical testing and characterization of electrodes, cells, and short stacks. To achieve the maximum insight and results from testing of electrodes and cells, it is obviously necessary to have a good understanding of the fundamental principles...

  1. Electrode structures of polymer-electrolyte fuel cells (PEFC). An electron microscopy approach to the characterization of the electrode structure of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Scheiba, Frieder

    2009-01-28

    Polymer electrolyte fuel cells (PEFC) have a complex electrode structure, which usually consists of a catalyst, a catalyst support, a polymer electrolyte and pores. The materials used are largely amorphous, have a strong defective structure or have particle diameter of only a few nanometers. In the electrode the materials form highly disordered aggregated structures. Both aspects complicate a systematic structural analysis significantly. However, thorough knowledge of the electrode structure, is needed for systematic advancement of fuel cell technology and to obtain a better understanding of mass and charge carrier transport processes in the electrode. Because of the complex structure of the electrode, an approach based on the examination of electrode thin-sections by electron microscopy was chosen in this work to depicting the electrode structure experimentally. The present work presents these studies of the electrode structure. Some fundamental issues as the influence of the polymer electrolyte concentration and the polarity of the solvent used in the electrode manufacturing process were addressed. During the analysis particular attention was payed to the distribution and structure of the polymer electrolyte. A major problem to the investigations, were the low contrast between the polymer electrolyte, the catalyst support material and the embedding resin. Therefore, dilerent techniques were investigated in terms of their ability to improve the contrast. In this context, a computer-assisted acquisition procedure for energy filtered transmission electron microscopy (EF-TEM) was developed. The acquisition procedure permits a significant extension of the imageable sample. At the same time, it was possible to substantially reduce beam damage of the specimen and to minimize drift of the sample considerably. This allowed unambiguous identification of the polymer electrolyte in the electrode. It could further be shown, that the polymer electrolyte not only coats the

  2. Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization

    OpenAIRE

    Wagner, N.

    2010-01-01

    Theory of impedance spectra measured at fuel cells with electrodes changing their state with time e.g. anode surface changing during CO poisoning of PEFC anodes and water flooding of the cathode during “dead end” operation mode of the PEFC are discussed in the presentation. Also first experimental results of locally resolved EIS measured simultaneously on 5 cells of a SOFC stack will be presented and discussed. For the evaluation of the measured impedance spectra a porous electrode model w...

  3. Annular feed air breathing fuel cell stack

    Science.gov (United States)

    Wilson, Mahlon S.; Neutzler, Jay K.

    1997-01-01

    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. The fuel distribution manifold is formed from a hydrophilic-like material to redistribute water produced by fuel and oxygen reacting at the cathode. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  4. Improved Direct Methanol Fuel Cell Stack

    Science.gov (United States)

    Wilson, Mahlon S.; Ramsey, John C.

    2005-03-08

    A stack of direct methanol fuel cells exhibiting a circular footprint. A cathode and anode manifold, tie-bolt penetrations and tie-bolts are located within the circular footprint. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet and outlet cathode manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold, where the serpentine channels of the anode are orthogonal to the serpentine channels of the cathode. Located between the two plates is the fuel cell active region.

  5. In-plane resolved in-situ measurements of the membrane resistance in PEFCs

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F.N.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The conductivity of the membrane is a limiting factor for the efficiency and power density of PEFCs. Because this conductivity is strongly dependent on the membrane hydration, water management is an important aspect of PEFC optimisation. Single cell model experiments were made in order to determine the in-plane hydration of a Nafion{sup R} membrane under fuel cell conditions as function of the gas humidities. (author) 4 fig., 3 refs.

  6. Possibility of hydrogen supply by shared residential fuel cell systems for fuel cell vehicles

    Directory of Open Access Journals (Sweden)

    Ono Yusuke

    2017-01-01

    Full Text Available Residential polymer electrolyte fuel cells cogeneration systems (residential PEFC systems produce hydrogen from city gas by internal gas-reformer, and generate electricity, the hot water at the same time. From the viewpoint of the operation, it is known that residential PEFC systems do not continuously work but stop for long time, because the systems generate enough hot water for short operation time. In other words, currently residential PEFC systems are dominated by the amount of hot water demand. This study focuses on the idle time of residential PEFC systems. Since their gas-reformers are free, the systems have potential to produce hydrogen during the partial load operations. The authors expect that residential PEFC systems can take a role to supply hydrogen for fuel cell vehicles (FCVs before hydrogen fueling stations are distributed enough. From this perspective, the objective of this study is to evaluate the hydrogen production potential of residential PEFC systems. A residential PEFC system was modeled by the mixed integer linear programming to optimize the operation including hydrogen supply for FCV. The objective function represents annual system cost to be minimized with the constraints of energy balance. It should be noted that the partial load characteristics of the gas-reformer and the fuel cell stack are taken into account to derive the optimal operation. The model was employed to estimate the possible amount of hydrogen supply by a residential PEFC system. The results indicated that the system could satisfy at least hydrogen demand for transportation of 8000 km which is as far as the average annual mileage of a passenger car in Japan. Furthermore, hydrogen production by sharing a residential PEFC system with two households is more effective to reduce primary energy consumption with hydrogen supply for FCV than the case of introducing PEFC in each household.

  7. High performance zinc air fuel cell stack

    Science.gov (United States)

    Pei, Pucheng; Ma, Ze; Wang, Keliang; Wang, Xizhong; Song, Mancun; Xu, Huachi

    2014-03-01

    A zinc air fuel cell (ZAFC) stack with inexpensive manganese dioxide (MnO2) as the catalyst is designed, in which the circulation flowing potassium hydroxide (KOH) electrolyte carries the reaction product away and acts as a coolant. Experiments are carried out to investigate the characteristics of polarization, constant current discharge and dynamic response, as well as the factors affecting the performance and uniformity of individual cells in the stack. The results reveal that the peak power density can be as high as 435 mW cm-2 according to the area of the air cathode sheet, and the influence factors on cell performance and uniformity are cell locations, filled state of zinc pellets, contact resistance, flow rates of electrolyte and air. It is also shown that the time needed for voltages to reach steady state and that for current step-up or current step-down are both in milliseconds, indicating the ZAFC can be excellently applied to vehicles with rapid dynamic response demands.

  8. Development of residential PEFC cogeneration systems at Osaka Gas

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Osamu; Echigo, Mitsuaki; Shinke, Norihisa; Tabata, Takeshi [Osaka Gas Ltd., Kyoto (Japan)

    2001-07-01

    The outline of residential PEFC cogeneration system development at Osaka Gas is described in this presentation. The developments of CO preferential oxidation catalyst, fuel processor, and the evaluation study of MEA are explained in detail. Osaka Gas has developed CO preferential oxidation catalyst, which can reduce the concentration of CO in the reformed gas below 1 ppm at the O{sub 2}/CO of 1.5. The durability of the catalyst for more than 10,000 hours has also been confirmed. A fuel processor in which desulfurization, steam reforming, CO shift conversion and CO removal reactors are integrated has also been developed. Catalysts, the durability of which have been verified for more than 50,000 hours, were employed in the reactors for desulfurization, steam reforming and CO shift conversion, and newly developed catalyst mentioned above was employed for the CO preferential oxidation reactor. The initial performance of the fuel processor has been established. The thermal efficiency of 77% has been accomplished under the condition of S/C: 2.5, O{sub 2}/CO: 1.5 and the utilization rate of fuel at the cell stack (Uf): 80%. And further, the durability for more than 1000 hours was confirmed. Durability of MEAs manufactured by Japan Gore-Tex and 3M have been evaluated. Small degradation rate of ca. 2 mV 11,000 h was found at the current density of 300 mAcm{sup -2}, Uf of 60% and the temperature of 70 {sup o}C. The tolerance of anode for CO has also been investigated, and had confirmed that the decline of cell performance could be negligible when the concentration of CO was less than 10 ppm. (author)

  9. Removal of CO from reformate for PEFC application.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. H. D.

    1998-09-14

    Polymer electrolyte fuel cells (PEFCs) are being actively developed worldwide for transportation applications. The fuel gas generated from reforming hydrocarbon fuels contains small amounts of CO (0.5-1 vol%), even after the water-gas shift reaction. Carbon monoxide is preferentially adsorbed on the platinum electrocatalyst in the PEFC, thus blocking the access of H{sub 2} to the surface of the catalyst and resulting in the degradation of the cell performance. Therefore, the CO concentration in the PBFC reformate must be reduced to a tolerable level of {le} 100 ppm (1). Catalytic preferential oxidation (2), anode air bleed (3), or a combination of the two can be used to reduce CO to trace levels, but their use in a dynamically varying system is problematic. We are developing a sorption process based on the reversible complex-forming and dissociation reactions of CO with Cu(I). These reactions are well documented in patent and literature (4,5).

  10. Use of impedance tagging to monitor fuel cell stack performance

    Science.gov (United States)

    Silva, Gregory

    Fuel cells are electrochemical device that are traditionally assembled in stacks to perform meaningful work. Monitoring the state of the stack is vitally important to ensure that it is operating efficiently and that constituent cells are not failing for one of a several common reasons including membrane dehydration, gas diffusion layer flooding, reactant starvation, and physical damage. Current state-of-the-art monitoring systems are costly and require at least one connection per cell on the stack, which introduces reliability concerns for stacks consisting of hundreds of cells. This thesis presents a novel approach for diagnosing problems in a fuel cell stack that attempts to reduce the cost and complexity of monitoring cells in a stack. The proposed solution modifies the electrochemical impedance spectroscopy (EIS) response of each cell in the stack by connecting an electrical tag in parallel with each cell. This approach allows the EIS response of the entire stack to identify and locate problems in the stack. Capacitors were chosen as tags because they do not interfere with normal stack operation and because they can generate distinct stack EIS responses. An experiment was performed in the Center for Automation Technologies an Systems (CATS) fuel cell laboratory at Rensselaer Polytechnic Institute (RPI) to perform EIS measurements on a single cell with and without capacitor tags to investigate the proposed solution. The EIS data collected from this experiment was used to create a fuel cell model to investigate the proposed solution under ideal conditions. This thesis found that, although the concept shows some promise in simulations, significant obstacles to implementing the proposed solution. Observed EIS response when the capacitor tags were connected did not match the expected EIS response. Constraints on the capacitor tags found by the model impose significant manufacturing challenges to the proposed solution. Further development of the proposed solution is

  11. Description of gasket failure in a 7 cell PEMFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Husar, Attila; Serra, Maria [Institut de Robotica i Informatica Industrial, Parc Tecnologic de Barcelona, Edifici U, C. Llorens i Artigas, 4-6, 2a Planta, 08028 Barcelona (Spain); Kunusch, Cristian [Laboratorio de Electronica Industrial Control e Instrumentacion, Facultad de Ingenieria, UNLP (Argentina)

    2007-06-10

    This article presents the data and the description of a fuel cell stack that failed due to gasket degradation. The fuel cell under study is a 7 cell stack. The unexpected change in several variables such as temperature, pressure and voltage indicated the possible failure of the stack. The stack was monitored over a 6 h period in which data was collected and consequently analyzed to conclude that the fuel cell stack failed due to a crossover leak on the anode inlet port located on the cathode side gasket of cell 2. This stack failure analysis revealed a series of indicators that could be used by a super visional controller in order to initiate a shutdown procedure. (author)

  12. Manifold seal structure for fuel cell stack

    Science.gov (United States)

    Collins, William P.

    1988-01-01

    The seal between the sides of a fuel cell stack and the gas manifolds is improved by adding a mechanical interlock between the adhesive sealing strip and the abutting surface of the manifolds. The adhesive is a material which can flow to some extent when under compression, and the mechanical interlock is formed providing small openings in the portion of the manifold which abuts the adhesive strip. When the manifolds are pressed against the adhesive strips, the latter will flow into and through the manifold openings to form buttons or ribs which mechanically interlock with the manifolds. These buttons or ribs increase the bond between the manifolds and adhesive, which previously relied solely on the adhesive nature of the adhesive.

  13. A novel design for solid oxide fuel cell stacks

    Energy Technology Data Exchange (ETDEWEB)

    Al-Qattan, A.M.; Chmielewski, D.J.; Al-Hallaj, S.; Selman, J.R. [Illinois Inst. of Technology, Chicago, IL (United States). Dept. of Chemical and Environmental Engineering

    2004-01-01

    Conventional fuel cell stack designs suffer from severe spatial nonuniformity in both temperature and current density. Such variations are known to create damaging thermal stresses within the stack and thus, impact overall lifespan. In this work, we propose a novel stack design aimed at reducing spatial variations at the source. We propose a mechanism of distributed fuel feed in which the heat generation profile can be influenced directly. Simulation results are presented to illustrate the potential of the proposed scheme. (author)

  14. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...... parts, where also the temperatures are measured. The heat balance of the system involves a fuel cell model to describe the heat added by the fuel cells when a current is drawn. Furthermore the model also predicts the temperatures, when heating the stack with external heating elements for start-up, heat...... the stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...

  15. Sampled-time control of a microbial fuel cell stack

    Science.gov (United States)

    Boghani, Hitesh C.; Dinsdale, Richard M.; Guwy, Alan J.; Premier, Giuliano C.

    2017-07-01

    Research into microbial fuel cells (MFCs) has reached the point where cubic metre-scale systems and stacks are being built and tested. Apart from performance enhancement through catalysis, materials and design, an important research area for industrial applicability is stack control, which can enhance MFCs stack power output. An MFC stack is controlled using a sampled-time digital control strategy, which has the advantage of intermittent operation with consequent power saving, and when used in a hybrid series stack connectivity, can avoid voltage reversals. A MFC stack comprising four tubular MFCs was operated hydraulically in series. Each MFC was connected to an independent controller and the stack was connected electrically in series, creating a hybrid-series connectivity. The voltage of each MFC in the stack was controlled such that the overall series stack voltage generated was the algebraic sum (1.26 V) of the individual MFC voltages (0.32, 0.32, 0.32 and 0.3). The controllers were able to control the individual voltages to the point where 2.52 mA was drawn from the stack at a load of 499.9 Ω (delivering 3.18 mW). The controllers were able to reject the disturbances and perturbations caused by electrical loading, temperature and substrate concentration.

  16. Efficiency of Polymer Electrolyte Membrane Fuel Cell Stack

    Directory of Open Access Journals (Sweden)

    Hans Bosma

    2011-08-01

    Full Text Available This paper applies a feedforward control of optimal oxygen excess ratio that maximize net power (improve efficiency of a NedStack P8.0-64 PEM fuel cell stack (FCS system. Net powers profile as a function of oxygen excess ratio for some points of operation are analyzed by using FCS model. The relationships between stack current and the corresponding control input voltage that gives an optimal oxygen excess ratio are used to design a feedforward control scheme. The results of this scheme are compared to the results of a feedforward control using a constant oxygen excess ratio. Simulation results show that optimal oxygen excess ratio improves fuel cell performance compared to the results of constant oxygen excess ratio. The same procedures are performed experimentally for the FCS system. The behaviour of the net power of the fuel cell stack with respect to the variation of oxygen excess ratio is analyzed to obtain optimal values. Data of stack current and the corresponding voltage input to the compressor that gives optimal values of oxygen excess ratio are used to develop a feedforward control. Feedforward control based on constant and optimal oxygen excess ratio control, are implemented in the NedStack P8.0-64 PEM fuel cell stack system by using LabVIEW. Implementation results shows that optimal oxygen excess ratio control improves the fuel cell performance compared to the constant oxygen excess ratio control.

  17. Hardware/Software Data Acquisition System for Real Time Cell Temperature Monitoring in Air-Cooled Polymer Electrolyte Fuel Cells

    Directory of Open Access Journals (Sweden)

    Francisca Segura

    2017-07-01

    Full Text Available This work presents a hardware/software data acquisition system developed for monitoring the temperature in real time of the cells in Air-Cooled Polymer Electrolyte Fuel Cells (AC-PEFC. These fuel cells are of great interest because they can carry out, in a single operation, the processes of oxidation and refrigeration. This allows reduction of weight, volume, cost and complexity of the control system in the AC-PEFC. In this type of PEFC (and in general in any PEFC, the reliable monitoring of temperature along the entire surface of the stack is fundamental, since a suitable temperature and a regular distribution thereof, are key for a better performance of the stack and a longer lifetime under the best operating conditions. The developed data acquisition (DAQ system can perform non-intrusive temperature measurements of each individual cell of an AC-PEFC stack of any power (from watts to kilowatts. The stack power is related to the temperature gradient; i.e., a higher power corresponds to a higher stack surface, and consequently higher temperature difference between the coldest and the hottest point. The developed DAQ system has been implemented with the low-cost open-source platform Arduino, and it is completed with a modular virtual instrument that has been developed using NI LabVIEW. Temperature vs time evolution of all the cells of an AC-PEFC both together and individually can be registered and supervised. The paper explains comprehensively the developed DAQ system together with experimental results that demonstrate the suitability of the system.

  18. Hardware/Software Data Acquisition System for Real Time Cell Temperature Monitoring in Air-Cooled Polymer Electrolyte Fuel Cells.

    Science.gov (United States)

    Segura, Francisca; Bartolucci, Veronica; Andújar, José Manuel

    2017-07-09

    This work presents a hardware/software data acquisition system developed for monitoring the temperature in real time of the cells in Air-Cooled Polymer Electrolyte Fuel Cells (AC-PEFC). These fuel cells are of great interest because they can carry out, in a single operation, the processes of oxidation and refrigeration. This allows reduction of weight, volume, cost and complexity of the control system in the AC-PEFC. In this type of PEFC (and in general in any PEFC), the reliable monitoring of temperature along the entire surface of the stack is fundamental, since a suitable temperature and a regular distribution thereof, are key for a better performance of the stack and a longer lifetime under the best operating conditions. The developed data acquisition (DAQ) system can perform non-intrusive temperature measurements of each individual cell of an AC-PEFC stack of any power (from watts to kilowatts). The stack power is related to the temperature gradient; i.e., a higher power corresponds to a higher stack surface, and consequently higher temperature difference between the coldest and the hottest point. The developed DAQ system has been implemented with the low-cost open-source platform Arduino, and it is completed with a modular virtual instrument that has been developed using NI LabVIEW. Temperature vs time evolution of all the cells of an AC-PEFC both together and individually can be registered and supervised. The paper explains comprehensively the developed DAQ system together with experimental results that demonstrate the suitability of the system.

  19. Digital volume imaging of the PEFC gas diffusion layer

    Energy Technology Data Exchange (ETDEWEB)

    Borup, Rodney L [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Mukherjee, Partha [ORNL; Shim, Eunkyoung [NC ST

    2010-01-01

    The gas diffusion layer (GDL) plays a key role in the overall performance/durability of a polymer electrolyte fuel cell (PEFC). Of profound importance, especially in the context of water management and flooding phenomena, is the influence of the underlying pore morphology and wetting characteristics Of the GDL microstructure. In this article, we present the digital volumetric imaging (DVI) technique in order to generate the 3-D carbon paper GDL microstructure. The internal pore structure and the local microstructural variations in terms of fiber alignment and fiber/binder distributions are investigated using the several 3-D thin sections of the sample obtained from DVI.

  20. Direct methanol fuel cell stack based on MEMS technology

    Science.gov (United States)

    Zhang, Yufeng; Tang, Xiaochuan; Yuan, Zhenyu; Liu, Xiaowei

    2008-10-01

    This paper presents a design configuration of silicon-based micro direct methanol fuel cell (DMFC) stack in a planar array. The integrated series connection is oriented in a "flip-flop" configuration with electrical interconnections made by thin-film metal layers that coat the flow channels etched in the silicon substrate. The configuration features small connection space and low contact resistance. The MEMS fabrication process was utilized to fabricate the silicon plates of DMFC stack. This DMFC stack with an active area of 64mm x 11mm was characterized at room temperature and normal atmosphere. Experimental results show that the prototype stack is able to generate an open-circuit voltage of 2.7V and a maximum power density of 2.2mW/cm2, which demonstrate the feasibility of this new DMFC stack configuration.

  1. AC impedance diagnosis of a 500 W PEM fuel cell stack . Part I: Stack impedance

    Science.gov (United States)

    Yuan, Xiaozi; Sun, Jian Colin; Blanco, Mauricio; Wang, Haijiang; Zhang, Jiujun; Wilkinson, David P.

    Diagnosis of stack performance is of importance to proton exchange membrane (PEM) fuel cell research. This paper presents the diagnostic testing results of a 500 W Ballard Mark V PEM fuel cell stack with an active area of 280 cm 2 by electrochemical impedance spectroscopy (EIS). The EIS was measured using a combination of a FuelCon test station, a TDI loadbank, and a Solartron 1260 Impedance/Gain-Phase Analyzer operating in the galvanostatic mode. The method described in this work can obtain the impedance spectra of fuel cells with a larger geometric surface area and power, which are normally difficult to measure due to the limitations on commercial load banks operating at high currents. By using this method, the effects of temperature, flow rate, and humidity on the stack impedance spectra were examined. The results of the electrochemical impedance analysis show that with increasing temperature, the charge transfer resistance decreases due to the slow oxygen reduction reaction (ORR) process at low temperature. If the stack is operated at a fixed air flow rate, a low frequency arc appears and grows with increasing current due to the shortage of air. The anode humidification cut-off does not affect the spectra compared to the cut-off for cathode humidification.

  2. Uniqueness of magnetotomography for fuel cells and fuel cell stacks

    International Nuclear Information System (INIS)

    Lustfeld, H; Hirschfeld, J; Reissel, M; Steffen, B

    2009-01-01

    The criterion for the applicability of any tomographic method is its ability to construct the desired inner structure of a system from external measurements, i.e. to solve the inverse problem. Magnetotomography applied to fuel cells and fuel cell stacks aims at determining the inner current densities from measurements of the external magnetic field. This is an interesting idea since in those systems the inner electric current densities are large, several hundred mA per cm 2 and therefore relatively high external magnetic fields can be expected. Still the question remains how uniquely the inverse problem can be solved. Here we present a proof that by exploiting Maxwell's equations extensively the inverse problem of magnetotomography becomes unique under rather mild assumptions and we show that these assumptions are fulfilled in fuel cells and fuel cell stacks. Moreover, our proof holds true for any other device fulfilling the assumptions listed here. Admittedly, our proof has one caveat: it does not contain an estimate of the precision requirements the measurements need to fulfil for enabling reconstruction of the inner current densities from external magnetic fields.

  3. Continued SOFC cell and stack technology and improved production methods

    Energy Technology Data Exchange (ETDEWEB)

    Wandel, M.; Brodersen, K.; Phair, J. (and others)

    2009-05-15

    Within this project significant results are obtained on a number of very diverse areas ranging from development of cell production, metallic creep in interconnect to assembling and test of stacks with foot print larger than 500 cm2. Out of 38 milestones 28 have been fulfilled and 10 have been partly fulfilled. This project has focused on three main areas: 1) The continued cell development and optimization of manufacturing processes aiming at production of large foot-print cells, improving cell performance and development environmentally more benign production methods. 2) Stack technology - especially stacks with large foot print and improving the stack design with respect to flow geometry and gas leakages. 3) Development of stack components with emphasis on sealing (for 2G as well as 3G), interconnect (coat, architecture and creep) and test development. Production of cells with a foot print larger than 500 cm2 is very difficult due to the brittleness of the cells and great effort has been put into this topic. Eight cells were successfully produced making it possible to assemble and test a real stack thereby giving valuable results on the prospects of stacks with large foot print. However, the yield rate is very low and a significant development to increase this yield lies ahead. Several lessons were learned on the stack level regarding 'large foot print' stacks. Modelling studies showed that the width of the cell primarily is limited by production and handling of the cell whereas the length (in the flow direction) is limited by e.g. pressure drop and necessary manifolding. The optimal cell size in the flow direction was calculated to be between approx20 cm and < 30 cm. From an economical point of view the production yield is crucial and stacks with large foot print cell area are only feasible if the cell production yield is significantly enhanced. Co-casting has been pursued as a production technique due to the possibilities in large scale production

  4. Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization: Polymer Electrolyte Fuel Cell (PEFC) and Oxygen Reduction Reaction in Alkaline Solution

    OpenAIRE

    Wagner, Norbert

    2012-01-01

    Separation of different electrochemical and ohmic contributions to the current/voltage U(i) characteristics requires additional experimental techniques like Electrochemical Impedance Spectroscopy (EIS). The application of EIS is an approach to determine parameters which have proved to be indispensable for the characterization and development of fuel cell electrodes and electrolyte electrode assemblies. By varying the operating conditions of the fuel cell and by simulation of the measured ...

  5. High specific power, direct methanol fuel cell stack

    Science.gov (United States)

    Ramsey, John C [Los Alamos, NM; Wilson, Mahlon S [Los Alamos, NM

    2007-05-08

    The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.

  6. Modeling of a PEFC generator

    OpenAIRE

    CHNANI, M; MAKER, H; PERA, MC; CANDUSSO, D; HISSEL, D

    2005-01-01

    Polymer electrolyte fuel cell is an alternative technology for powering electrical vehicles. As simulation is a binding milestone to develop efficient power train, a fuel cell generator model has been developed with this aim in view. The electrical response is considered as quasi-static state series, according to a semi-empirical approach. The hydraulic behaviour of the fluid line components is based on an electrical analogy. They are represented by RC circuits. Parameters of the model are id...

  7. Modelling and Evaluation of Heating Strategies for High Temperature Polymer Electrolyte Membrane Fuel Cell Stacks

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2008-01-01

    Experiments were conducted on two different cathode air cooled high temperature PEM (HTPEM) fuel cell stacks; a 30 cell 400W prototype stack using two bipolar plates per cell, and a 65 cell 1 kW commercial stack using one bipolar plate per cell. The work seeks to examine the use of different...

  8. Low hydrostatic head electrolyte addition to fuel cell stacks

    Science.gov (United States)

    Kothmann, Richard E.

    1983-01-01

    A fuel cell and system for supply electrolyte, as well as fuel and an oxidant to a fuel cell stack having at least two fuel cells, each of the cells having a pair of spaced electrodes and a matrix sandwiched therebetween, fuel and oxidant paths associated with a bipolar plate separating each pair of adjacent fuel cells and an electrolyte fill path for adding electrolyte to the cells and wetting said matrices. Electrolyte is flowed through the fuel cell stack in a back and forth fashion in a path in each cell substantially parallel to one face of opposite faces of the bipolar plate exposed to one of the electrodes and the matrices to produce an overall head uniformly between cells due to frictional pressure drop in the path for each cell free of a large hydrostatic head to thereby avoid flooding of the electrodes. The bipolar plate is provided with channels forming paths for the flow of the fuel and oxidant on opposite faces thereof, and the fuel and the oxidant are flowed along a first side of the bipolar plate and a second side of the bipolar plate through channels formed into the opposite faces of the bipolar plate, the fuel flowing through channels formed into one of the opposite faces and the oxidant flowing through channels formed into the other of the opposite faces.

  9. Investigation of Ruthenium Dissolution in Advanced Membrane Electrode Assemblies for Direct Methanol Based Fuel Cells Stacks

    Science.gov (United States)

    Valdez, T. I.; Firdosy, S.; Koel, B. E.; Narayanan, S. R.

    2005-01-01

    This viewgraph presentation gives a detailed review of the Direct Methanol Based Fuel Cell (DMFC) stack and investigates the Ruthenium that was found at the exit of the stack. The topics include: 1) Motivation; 2) Pathways for Cell Degradation; 3) Cell Duration Testing; 4) Duration Testing, MEA Analysis; and 5) Stack Degradation Analysis.

  10. High Temperature PEM Fuel Cell Stacks with Advent TPS Meas

    Directory of Open Access Journals (Sweden)

    Neophytides Stylianos

    2017-01-01

    Full Text Available High power/high energy applications are expected to greatly benefit from high temperature Polymer Electrolyte Membrane Fuel Cells (PEMFCs. In this work, a combinatorial approach is presented, in which separately developed and evaluated MEAs, design and engineering are employed to result in reliable and effective stacks operating above 180°C and having the characteristics well matched to applications including auxiliary power, micro combined heat and power, and telecommunication satellites.

  11. Parametric Sensitivity Tests- European PEM Fuel Cell Stack Test Procedures

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2014-01-01

    performed based on test procedures proposed by a European project, Stack-Test. The sensitivity of a Nafion-based low temperature PEMFC stack’s performance to parametric changes was the main objective of the tests. Four crucial parameters for fuel cell operation were chosen; relative humidity, temperature......, pressure, and stoichiometry at varying current density. Furthermore, procedures for polarization curve recording were also tested both in ascending and descending current directions....

  12. Pressurized Operation of a Planar Solid Oxide Cell Stack

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Sun, Xiufu; Ebbesen, Sune Dalgaard

    2016-01-01

    Solid oxide cells (SOCs) can be operated either as fuel cells (SOFC) to convert fuels to electricity or as electrolyzers (SOEC) to convert electricity to fuels such as hydrogen or methane. Pressurized operation of SOCs provide several benefits on both cell and system level. If successfully matured...... (electrode performance) increases for thermodynamic and kinetic reasons, respectively. Further, the summit frequency of the gas concentration impedance arc and the pressure difference across the stack and heat exchangers is seen to decrease with increasing pressure following a power-law expression. Finally...

  13. Solid Oxide Cell and Stack Testing, Safety and Quality Assurance (SOCTESQA)

    DEFF Research Database (Denmark)

    Auer, C.; Lang, M.; Couturier, K.

    2015-01-01

    In the EU-funded project “SOCTESQA” partners from Europe and Singapore are working together to develop uniform and industry wide test procedures and protocols for solid oxide cells and stacks SOC cell/stack assembly. New application fields which are based on the operation of the SOC cell/stack as......In the EU-funded project “SOCTESQA” partners from Europe and Singapore are working together to develop uniform and industry wide test procedures and protocols for solid oxide cells and stacks SOC cell/stack assembly. New application fields which are based on the operation of the SOC cell...

  14. Final Report - MEA and Stack Durability for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yandrasits, Michael A.

    2008-02-15

    Proton exchange membrane fuel cells are expected to change the landscape of power generation over the next ten years. For this to be realized one of the most significant challenges to be met for stationary systems is lifetime, where 40,000 hours of operation with less than 10% decay is desired. This project conducted fundamental studies on the durability of membrane electrode assemblies (MEAs) and fuel cell stack systems with the expectation that knowledge gained from this project will be applied toward the design and manufacture of MEAs and stack systems to meet DOE’s 2010 stationary fuel cell stack systems targets. The focus of this project was PEM fuel cell durability – understanding the issues that limit MEA and fuel cell system lifetime, developing mitigation strategies to address the lifetime issues and demonstration of the effectiveness of the mitigation strategies by system testing. To that end, several discoveries were made that contributed to the fundamental understanding of MEA degradation mechanisms. (1) The classically held belief that membrane degradation is solely due to end-group “unzipping” is incorrect; there are other functional groups present in the ionomer that are susceptible to chemical attack. (2) The rate of membrane degradation can be greatly slowed or possibly eliminated through the use of additives that scavenge peroxide or peroxyl radicals. (3) Characterization of GDL using dry gases is incorrect due to the fact that fuel cells operate utilizing humidified gases. The proper characterization method involves using wet gas streams and measuring capillary pressure as demonstrated in this project. (4) Not all Platinum on carbon catalysts are created equally – the major factor impacting catalyst durability is the type of carbon used as the support. (5) System operating conditions have a significant impact of lifetime – the lifetime was increased by an order of magnitude by changing the load profile while all other variables remain

  15. Solid oxide fuel cell generator with removable modular fuel cell stack configurations

    Science.gov (United States)

    Gillett, J.E.; Dederer, J.T.; Zafred, P.R.; Collie, J.C.

    1998-04-21

    A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack. 8 figs.

  16. Two-phase behavior and compression effects in the PEFC gas diffusion medium

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Kang, Qinjun [Los Alamos National Laboratory; Schulz, Volker P [APL-LANDAU GMBH; Wang, Chao - Yang [PENN STATE UNIV; Becker, Jurgen [NON LANL; Wiegmann, Andreas [NON LANL

    2009-01-01

    A key performance limitation in the polymer electrolyte fuel cell (PEFC), manifested in terms of mass transport loss, originates from liquid water transport and resulting flooding phenomena in the constituent components. A key contributor to the mass transport loss is the cathode gas diffusion layer (GDL) due to the blockage of available pore space by liquid water thus rendering hindered oxygen transport to the active reaction sites in the electrode. The GDL, therefore, plays an important role in the overall water management in the PEFC. The underlying pore-morphology and the wetting characteristics have significant influence on the flooding dynamics in the GDL. Another important factor is the role of cell compression on the GDL microstructural change and hence the underlying two-phase behavior. In this article, we present the development of a pore-scale modeling formalism coupled With realistic microstructural delineation and reduced order compression model to study the structure-wettability influence and the effect of compression on two-phase behavior in the PEFC GDL.

  17. Development of a Novel Home Cogeneration System using a Polymer Electrolyte Fuel Cell which Enabled Air Conditioning by Its Low-TemperatureWaste Heat

    Science.gov (United States)

    Nishimura, Nobuya; Honda, Kuniaki; Kawakami, Ryuichiro; Nishikawa, Toshimichi; Iyota, Hiroyuki; Nomura, Tomohiro

    Micro-scale distributed power generation system, which means a micro-cogeneration system in almost cases, has been paid a great attention from a standpoint of saving fossil fuels' consumption and preventing global warming. Especially, polymer electrolyte fuel cell (PEFC) is considered the most promising power generation system for small scale commercial use and residential use. In the PEFC cogeneration system, small amount of waste heat at low temperature from a cell stack is almost used to produce hot water. Therefore, in the paper, we proposed a new heat utilization method of the waste heat for air conditioning. In the proposed home cogeneration system, absorption refrigerator is introduced in order to produce chilled water. Thermal performances of the proposed system have been analyzed by a computer simulation which was developed for the prediction both of power generation characteristics of PEFC and absorption refrigerator's behavior.

  18. Fuel Cell Stack Testing and Durability in Support of Ion Tiger UAV

    Science.gov (United States)

    2010-06-02

    This report covers efforts by the Hawaii Natural Energy Institute (HNEI) of the University of Hawaii under the ONR-funded Ion Tiger UAV award that included testing of Ion Tiger fuel cell stacks in HNEI’s Hawaii Fuel Cell Test Facility located in Honolulu, Hawaii. Work was focused on steady-state stack characteristics of Protonex fuel cell stacks under various operating conditions. In addition, Hardware-in-the-Loop testing was performed to characterize dynamic

  19. Mechanically Stacked Four-Junction Concentrator Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Myles A.; Geisz, John F.; Ward, J. Scott; Garcia, Ivan; Friedman, Daniel J.; King, Richard R.; Chiu, Philip T.; France, Ryan M.; Duda, Anna; Olavarria, Waldo J.; Young, Michelle; Kurtz, Sarah R.

    2015-06-14

    Multijunction solar cells can be fabricated by bonding together component cells that are grown separately. Because the component cells are each grown lattice-matched to suitable substrates, this technique allows alloys of different lattice constants to be combined without the structural defects introduced when using metamorphic buffers. Here we present results on the fabrication and performance of four-junction mechanical stacks composed of GaInP/GaAs and GaInAsP/GaInAs tandems, grown on GaAs and InP substrates, respectively. The two tandems were bonded together with a low-index, transparent epoxy that acts as an omni-directional reflector to the GaAs bandedge luminescence, while simultaneously transmitting nearly all of the sub-bandgap light. As determined by electroluminescence measurements and optical modeling, the GaAs subcell demonstrates a higher internal radiative limit and thus higher subcell voltage, compared with GaAs subcells without enhanced internal optics; all four subcells exhibit excellent material quality. The device was fabricated with four contact terminals so that each tandem can be operated at its maximum power point, which raises the cumulative efficiency and decreases spectral sensitivity. Efficiencies exceeding 38% at one-sun have been demonstrated. Eliminating the series resistance is the key challenge for the concentrator cells. We will discuss the performance of one-sun and concentrator versions of the device, and compare the results to recently fabricated monolithic four-junction cells.

  20. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    DEFF Research Database (Denmark)

    Mogensen, David; Grunwaldt, Jan-Dierk; Hendriksen, Peter Vang

    2014-01-01

    The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC) have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were...

  1. Improved solid oxide fuel cell stacks: Power density, durability and modularity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lund Frandsen, H.; Kiebach, W.R.; Hoeegh, J. (Technical Univ. of Denmark. Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)) (and others)

    2010-10-15

    This report presents the work performed within the project PSO2009-1-10207 during the period from 01-04-2009 - 31-06-2010. The report is divided into three parts covering the three work packages: Stack components; Stacks and durability; and Large SOFC systems: modularity and scalability. The project contains 38 milestones and all milestones in the project have been either fully or partly fulfilled. Two major achievements within this project concern the robustness towards dynamic operations and implementation of cells with more active cathodes: Within this project tools to evaluate and test SOFC stacks with respect to robustness during dynamic operations has been developed. From stack tests performed under dynamic conditions it was observed that the effect on degradation and failure seemed to be very little. The thermo-mechanical models developed in this project in combination with the dynamic stack model was used in combination to understand why. The results clearly showed that the hardest stress field applied to the cells arises from the steady state operating point rather than from the dynamic conditions. This is a very promising result concerning the fact that especially small CHP units in a commercial system will experience dynamic conditions from load cycling and thermal cycling. A new type of cell with a more active cathode has been formulated and introduced into the TOFC stacks in this project. The aim was to improve the effect of the stack by 25 %. However, compared to a standard stack with the ''old'' cells, the stack effect was increased by 44% - from a cross flow stack with standard 2G cells to a cross flow stack with 2.5G cells. The new type of cells also show an excellent stability towards moisture in the cathode feed, and a stack with 2.5G cells has been tested for 12.000 hrs with a degradation rate of 30 mOMEGAcm2/1000 hr. (Author)

  2. The Design and Performance of a PEFC at a Temperature Below Freezing

    Science.gov (United States)

    Hishinuma, Yukio; Chikahisa, Takemi; Kagami, Fumio; Ogawa, Tomohiro

    At temperatures below freezing, air humidity becomes lower and produced water at the cathode freezes on the surface of catalyst, and it is difficult to start a PEFC (Polymer Electrolyte Fuel Cell) at a cold district. The object of the work is to study the performance of the fuel cell below the freezing point by experiments and simulation. To investigate the characteristics of the starting of a temperature below freezing the performance of a single cell was measured at temperatures from -3 to -25°C and pressures from 1 to 2 atm. The results of the experiments and simulation indicate that the performance of a PEFC decreases at higher current densities and pressures, and lower cell temperatures because of ice more produced on the reactive area of the cathode. To maintain the cell performance below freezing point, it is effective to adjust the current densities and gas flow rate to balance the produced and removed water. However at -5°C, heat generated in the fuel cell is effective to warm the cell and make self-starting possible. These results shows that it is necessary to heat the cell with an additional heat source in order to start the fuel cell below -5°C.

  3. Stacked microbial desalination cells to enhance water desalination efficiency.

    Science.gov (United States)

    Chen, Xi; Xia, Xue; Liang, Peng; Cao, Xiaoxin; Sun, Haotian; Huang, Xia

    2011-03-15

    Microbial desalination cell (MDC) is a new method to obtain clean water from brackish water using electricity generated from organic matters by exoelectrogenic bacteria. Anions and cations, derived from salt solution filled in the desalination chamber between the anode and cathode, move to the anode and cathode chambers under the force of electrical field, respectively. On the basis of the primitive single-desalination-chambered MDC, stacked microbial desalination cells (SMDCs) were developed in order to promote the desalination rate in the present study. The effects of desalination chamber number and external resistance were investigated. Results showed that a remarkable increase in the total desalination rate (TDR) could be obtained by means of increasing the desalination cell number and reducing the external resistance, which caused the charge transfer efficiency increased since the SMDCs enabled more pairs of ions separated while one electron passed through the external circuit. The maximum TDR of 0.0252 g/h was obtained using a two-desalination-chambered SMDC with an external resistance of 10 Ω, which was 1.4 times that of single-desalination-chambered MDC. SMDCs proved to be an effective approach to increase the total water desalination rate if provided a proper desalination chamber number and external resistance.

  4. Power sources involving ~ 300W PEMFC fuel cell stacks cooled by different media

    Directory of Open Access Journals (Sweden)

    Dudek Magdalena

    2017-01-01

    Full Text Available Two constructions of ~300W PEMFC stacks, cooled by different media, were analysed. An open-cathode ~300W PEMFC stack cooled by air (Horizon, Singapore and a PEMFC F-42 stack cooled by a liquid medium (Schunk, Germany were chosen for all of the investigations described in this paper. The potential for the design and construction of power sources involving fuel cells, as well as of a hybrid system (fuel cell-lithium battery for mobile and stationary applications, is presented and discussed. The impact of certain experimental parameters on PEMFC stack performance is analysed and discussed.

  5. Comparative Studies of Polymer Electrolyte Membrane Fuel Cell Stacks and Single Cells

    Science.gov (United States)

    2000-02-01

    in the Catalyst Layer and Effects of Both Perfluorosulfonate Ionomer and PTFE-Loaded Carbon on the Catalyst Layer of Polymer Electrolyte Fuel Cells ...financial support of this project. 12 References 1. T. F. Fuller, "Is a Fuel Cell in Your Future?" 77K Electrochemical Society Interface (Fall...ARMY RESEARCH LABORATORY mm^ n Comparative Studies of Polymer Electrolyte Membrane Fuel Cell Stacks and Single Cells Deryn Chu and Rongzhong

  6. A small mono-polar direct methanol fuel cell stack with passive operation

    Science.gov (United States)

    Chan, Y. H.; Zhao, T. S.; Chen, R.; Xu, C.

    A passive direct methanol fuel cell (DMFC) stack that consists of six unit cells was designed, fabricated, and tested. The stack was tested with different methanol concentrations under ambient conditions. It was found that the stack performance increased when the methanol concentration inside the fuel tank was increased from 2.0 to 6.0 M. The improved performance is primarily due to the increased cell temperature as a result of the exothermic reaction between the permeated methanol and oxygen on the cathode. Moreover, the increased cell temperature enhanced the water evaporation rate on the air-breathing cathode, which significantly reduced water flooding on the cathode and further improved the stack performance. This passive DMFC stack, providing 350 mW at 1.8 V, was successfully applied to power a seagull display kit. The seagull display kit can continuously run for about 4 h on a single charge of 25 cm 3 4.0-M methanol solution.

  7. Two stage bioethanol refining with multi litre stacked microbial fuel cell and microbial electrolysis cell.

    Science.gov (United States)

    Sugnaux, Marc; Happe, Manuel; Cachelin, Christian Pierre; Gloriod, Olivier; Huguenin, Gérald; Blatter, Maxime; Fischer, Fabian

    2016-12-01

    Ethanol, electricity, hydrogen and methane were produced in a two stage bioethanol refinery setup based on a 10L microbial fuel cell (MFC) and a 33L microbial electrolysis cell (MEC). The MFC was a triple stack for ethanol and electricity co-generation. The stack configuration produced more ethanol with faster glucose consumption the higher the stack potential. Under electrolytic conditions ethanol productivity outperformed standard conditions and reached 96.3% of the theoretically best case. At lower external loads currents and working potentials oscillated in a self-synchronized manner over all three MFC units in the stack. In the second refining stage, fermentation waste was converted into methane, using the scale up MEC stack. The bioelectric methanisation reached 91% efficiency at room temperature with an applied voltage of 1.5V using nickel cathodes. The two stage bioethanol refining process employing bioelectrochemical reactors produces more energy vectors than is possible with today's ethanol distilleries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Solid Oxide Cell and Stack Testing, Safety and Quality Assurance (SOCTESQA)

    DEFF Research Database (Denmark)

    Auer, C.; Lang, M.; Couturier, K.

    2015-01-01

    The market penetration of fuel and electrolysis cell energy systems in Europe requires the development of reliable assessment, testing and prediction of performance and durability of solid oxide cells and stacks (SOC). To advance in this field the EU-project “SOCTESQA” was launched in May 2014....... Partners from different countries in Europe and one external party from Singapore are working together to develop uniform and industry wide test procedures and protocols for SOC cell/stack assembly. In this project new application fields which are based on the operation of the SOC cell/stack assembly...

  9. Development Of A Solid Oxide Fuel Cell Stack By Delphi And Battelle

    Energy Technology Data Exchange (ETDEWEB)

    Mukerjee, Subhasish; Shaffer, Steven J.; Zizelman, James; Chick, Lawrence A.; Baskaran, Suresh; Chou, Y. S.; Coyle, Christopher A.; Deibler, John E.; Maupin, Gary D.; Meinhardt, Kerry D.; Paxton, Dean M.; Peters, Timothy J.; Sprenkle, Vince L.; Weil, K. Scott; Williford, Rick E.

    2003-01-20

    Delphi and Battelle are developing a Solid Oxide Fuel Cell (SOFC) stack for transportation and residential applications. This paper describes the status of development of the Generation 2 stack and key progress made in addressing some of the challenges in this technology.

  10. Study on component interface evolution of a solid oxide fuel cell stack after long term operation

    Science.gov (United States)

    Yang, Jiajun; Huang, Wei; Wang, Xiaochun; Li, Jun; Yan, Dong; Pu, Jian; Chi, Bo; Li, Jian

    2018-05-01

    A 5-cell solid oxide fuel cell (SOFC) stack with external manifold structure is assembled and underwent a durability test with an output of 250 W for nearly 4400 h when current density and operating temperature are 355 mA/cm2 and 750 °C. Cells used in the stack are anode-supported cells (ASC) with yttria-stabilized zirconia (YSZ) electrolytes, Ni/YSZ hydrogen electrodes, and YSZ based composite cathode. The dimension of the cell is 150 × 150 mm (active area: 130 × 130 mm). Ceramic-glass sealant is used in the stack to keep the gas tightness between cells, interconnects and manifolds. Pure hydrogen and dry air are used as fuel and oxidant respectively. The stack has a maximum output of 340 W at 562 mA/cm2 current density at 750 °C. The stack shows a degradation of 1.5% per 1000 h during the test with 2 thermal cycles to room temperature. After the test, the stack was dissembled and examined. The relationship between microstructure changes of interfaces and degradation in the stack are discussed. The microstructure evolution of interfaces between electrode, contact material and current collector are unveiled and their relationship with the degradation is discussed.

  11. Quality Assurance of Solid Oxide Fuel Cell (SOFC) and Electrolyser (SOEC) Stacks

    DEFF Research Database (Denmark)

    Lang, Michael; Auer, Corinna; Couturier, Karine

    2017-01-01

    In the EU-funded project “Solid oxide cell and stack testing and quality assurance” (SOCTESQA) standardized and industry wide test modules and programs for high temperature solid oxide cells and stacks are being developed. These test procedures can be applied for the fuel cell (SOFC......), the electrolysis (SOEC) and in the combined SOFC/SOEC mode. In order to optimize the test modules the project partners have tested identical SOC stacks with the same test programs in several testing campaigns. Altogether 10 pre-normative test modules were developed: Start-up, current-voltage characteristics...

  12. Quantitative review of degradation and lifetime of solid oxide cells and stacks

    DEFF Research Database (Denmark)

    Skafte, Theis Løye; Hjelm, Johan; Blennow, Peter

    2016-01-01

    A comprehensive review of degradation and lifetime for solid oxide cells and stacks hasbeen conducted. Based on more than 50 parameters from 150 publications and 1 000 000hours of accumulated testing, this paper presents a quantitative analysis of the currentinternational status of degradation...... updating by thecommunity is encouraged. Furthermore, the commonly reported test parameters anddegradation indicators are discussed. The difficulty in standardizing testing due tovariations in cell and stack design, materials and intended purpose of the system isacknowledged. A standardization of reporting...... of long-term single-cell- and stack-tests isproposed....

  13. Cfd Analysis of Heat Transfer in a Microtubular Solid Oxide Fuel Cell Stack

    Directory of Open Access Journals (Sweden)

    Pianko-Oprych Paulina

    2014-09-01

    Full Text Available The aim of this work was to achieve a deeper understanding of the heat transfer in a microtubular Solid Oxide Fuel Cell (mSOFC stack based on the results obtained by means of a Computational Fluid Dynamics tool. Stack performance predictions were based on simulations for a 16 anodesupported mSOFCs sub-stack, which was a component of the overall stack containing 64 fuel cells. The emphasis of the paper was put on steady-state modelling, which enabled identification of heat transfer between the fuel cells and air flow cooling the stack and estimation of the influence of stack heat losses. Analysis of processes for different heat losses and the impact of the mSOFC reaction heat flux profile on the temperature distribution in the mSOFC stack were carried out. Both radiative and convective heat transfer were taken into account in the analysis. Two different levels of the inlet air velocity and three different values of the heat losses were considered. Good agreement of the CFD model results with experimental data allowed to predict the operation trends, which will be a reliable tool for optimisation of the working setup and ensure sufficient cooling of the mSOFC stack.

  14. Characterisation of a 3 kW PEFC power system coupled with a metal hydride H 2 storage

    Science.gov (United States)

    Bossi, C.; Del Corno, A.; Scagliotti, M.; Valli, C.

    Fuel cells and hydrogen storages, eventually integrated in hybrid power systems with hydrogen production from renewables, represent an interesting option for small stationary applications such as power generation in remote sites beyond the grid or back up power for telecom stations. This paper deals with the CESI RICERCA experiences on a polymer electrolyte fuel cell (PEFC) power system fuelled with the hydrogen supplied by a metal hydride storage. The power system consists of three ReliOn Independence 1000 PEFC units, a battery bank and a 3.3 kWe DC-AC converter (inverter). The hydrogen storage is made of LaNi 5 type powders and can supply more than 6 Nm 3 of hydrogen per discharge cycle. The PEFC units, the inverter and the hydrogen storage performances were characterised. These subsystems were integrated into an automated power generation system and connected to a local grid including other power generators, power quality analysers, energy storage systems and electrical loads. The main features of the integrated system are analysed herein. In particular the overall system stability upon cycling, the heat transfer issues and the possibility of recovering the fuel cell waste heat to extract hydrogen from the metal hydrides are discussed. Finally, during grid-connected operations, the power quality indexes were measured and found in agreement with the EN 50160 standard.

  15. Performance of air-cathode stacked microbial fuel cells systems for wastewater treatment and electricity production.

    Science.gov (United States)

    Estrada-Arriaga, Edson Baltazar; Guillen-Alonso, Yvonne; Morales-Morales, Cornelio; García-Sánchez, Liliana; Bahena-Bahena, Erick Obed; Guadarrama-Pérez, Oscar; Loyola-Morales, Félix

    2017-07-01

    Two different air-cathode stacked microbial fuel cell (MFC) configurations were evaluated under continuous flow during the treatment of municipal wastewater and electricity production at a hydraulic retention time (HRT) of 3, 1, and 0.5 d. Stacked MFC 1 was formed by 20 individual air-cathode MFC units. The second stacked MFC (stacked MFC 2) consisted of 40 air-cathode MFC units placed in a shared reactor. The maximum voltages produced at closed circuit (1,000 Ω) were 170 mV for stacked MFC 1 and 94 mV for stacked MFC 2. Different power densities in each MFC unit were obtained due to a potential drop phenomenon and to a change in chemical oxygen demand (COD) concentrations inside reactors. The maximum power densities from individual MFC units were up to 1,107 mW/m 2 for stacked MFC 1 and up to 472 mW/m 2 for stacked MFC 2. The maximum power densities in stacked MFC 1 and MFC 2 connected in series were 79 mW/m 2 and 4 mW/m 2 , respectively. Electricity generation and COD removal efficiencies were reduced when the HRT was decreased. High removal efficiencies of 84% of COD, 47% of total nitrogen, and 30% of total phosphorus were obtained during municipal wastewater treatment.

  16. Series Assembly of Microbial Desalination Cells Containing Stacked Electrodialysis Cells for Partial or Complete Seawater Desalination

    KAUST Repository

    Kim, Younggy

    2011-07-01

    A microbial desalination cell (MDC) is a new approach for desalinating water based on using the electrical current generated by exoelectrogenic bacteria. Previously developed MDCs have used only one or two desalination chambers with substantial internal resistance, and used low salinity catholytes containing a buffered or acid solution. Here we show that substantially improved MDC performance can be obtained even with a nonbuffered, saline catholyte, by using an electrodialysis stack consisting of 5 pairs of desalting and concentrating cells. When 4 stacked MDCs were used in series (20 total pairs of desalination chambers), the salinity of 0.06 L of synthetic seawater (35 g/L NaCl) was reduced by 44% using 0.12 L of anode solution (2:1). The resistive loss in the electrodialysis stack was negligible due to minimization of the intermembrane distances, and therefore the power densities produced by the MDC were similar to those produced by single chamber microbial fuel cells (MFCs) lacking desalination chambers. The observed current efficiency was 86%, indicating separation of 4.3 pairs of sodium and chloride ions for every electron transferred through the circuit. With two additional stages (total of 3.8 L of anolyte), desalination was increased to 98% salt removal, producing 0.3 L of fresh water (12.6:1). These results demonstrate that stacked MDCs can be used for efficient desalination of seawater while at the same time achieving power densities comparable to those obtained in MFCs. © 2011 American Chemical Society.

  17. Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination.

    Science.gov (United States)

    Kim, Younggy; Logan, Bruce E

    2011-07-01

    A microbial desalination cell (MDC) is a new approach for desalinating water based on using the electrical current generated by exoelectrogenic bacteria. Previously developed MDCs have used only one or two desalination chambers with substantial internal resistance, and used low salinity catholytes containing a buffered or acid solution. Here we show that substantially improved MDC performance can be obtained even with a nonbuffered, saline catholyte, by using an electrodialysis stack consisting of 5 pairs of desalting and concentrating cells. When 4 stacked MDCs were used in series (20 total pairs of desalination chambers), the salinity of 0.06 L of synthetic seawater (35 g/L NaCl) was reduced by 44% using 0.12 L of anode solution (2:1). The resistive loss in the electrodialysis stack was negligible due to minimization of the intermembrane distances, and therefore the power densities produced by the MDC were similar to those produced by single chamber microbial fuel cells (MFCs) lacking desalination chambers. The observed current efficiency was 86%, indicating separation of 4.3 pairs of sodium and chloride ions for every electron transferred through the circuit. With two additional stages (total of 3.8 L of anolyte), desalination was increased to 98% salt removal, producing 0.3 L of fresh water (12.6:1). These results demonstrate that stacked MDCs can be used for efficient desalination of seawater while at the same time achieving power densities comparable to those obtained in MFCs.

  18. Investigation of Ruthenium Dissolution in Advanced Membrane Electrode Assemblies for Direct Methanol Based Fuel Cell Stacks

    Science.gov (United States)

    Valdez, Thomas I.; Firdosy, S.; Koel, B. E.; Narayanan, S. R.

    2005-01-01

    Dissolution of ruthenium was observed in the 80-cell stack. Duration testing was performed in single cell MEAs to determine the pathway of cell degradation. EDAX analysis on each of the single cell MEAs has shown that the Johnson Matthey commercial catalyst is stable in DMFC operation for 250 hours, no ruthenium dissolution was observed. Changes in the hydrophobicity of the cathode backing papers was minimum. Electrode polarization analysis revealed that the MEA performance loss is attributed to changes in the cathode catalyst layer. Ruthenium migration does not seem to occur during cell operation but can occur when methanol is absent from the anode compartment, the cathode compartment has access to air, and the cells in the stack are electrically connected to a load (Shunt Currents). The open-to-air cathode stack design allowed for: a) The MEAs to have continual access to oxygen; and b) The stack to sustain shunt currents. Ruthenium dissolution in a DMFC stack can be prevented by: a) Developing an internally manifolded stacks that seal reactant compartments when not in operation; b) Bringing the cell voltages to zero quickly when not in operation; and c) Limiting the total number of cells to 25 in an effort to limit shunt currents.

  19. Development of internal manifold heat exchanger (IMHEX reg-sign) molten carbonate fuel cell stacks

    International Nuclear Information System (INIS)

    Marianowski, L.G.; Ong, E.T.; Petri, R.J.; Remick, R.J.

    1991-01-01

    The Institute of Gas Technology (IGT) has been in the forefront of molten carbonate fuel cell (MCFC) development for over 25 years. Numerous cell designs have been tested and extensive tests have been performed on a variety of gas manifolding alternatives for cells and stacks. Based upon the results of these performance tests, IGT's development efforts started focusing on an internal gas manifolding concept. This work, initiated in 1988, is known today as the IMHEX reg-sign concept. MCP has developed a comprehensive commercialization program loading to the sale of commercial units in 1996. MCP's role is in the manufacture of stack components, stack assembly, MCFC subsystem testing, and the design, marketing and construction of MCFC power plants. Numerous subscale (1 ft 2 ) stacks have been operated containing between 3 and 70 cells. These tests verified and demonstrated the viability of internal manifolding from technical (no carbonate pumping), engineering (relaxed part dimensional tolerance requirements), and operational (good gas sealing) aspects. Simplified fabrication, ease of assembly, the elimination of external manifolds and all associated clamping requirements has significantly lowered anticipated stack costs. Ongoing 1 ft 2 stack testing is generating performance and endurance characteristics as a function of system specified operating conditions. Commercial-sized, full-area stacks (10 ft 2 ) are in the process of being assembled and will be tested in November. This paper will review the recent developments the MCFC scale-up and manufacture work of MCP, and the research and development efforts of IGT which support those efforts. 17 figs

  20. Fabrication of highly porous LSM/CGO cell stacks for electrochemical flue gas purification

    DEFF Research Database (Denmark)

    Andersen, Kjeld Bøhm; Bræstrup, Frantz Radzik; Kammer Hansen, Kent

    2013-01-01

    In this study porous cell stacks for electrochemical flue gas purification were fabricated using tape casting and lamination followed by sintering. Two different mixtures of pore formers were used; either a mixture of two types of graphite or a mixture of graphite with polymethyl methacrylate micro-particles....... It was shown that the porous cell stacks fabricated with polymethyl methacrylate had a higher porosity but a similar back pressure compared to the porous cell stacks fabricated with only graphite as a pore former. This was due to a high back pressure of the electrolyte layer. The porous cell stacks fabricated...... with polymethyl methacrylate as a pore former seem to be well suited for i.e. caption of soot particles. Furthermore, the back pressure of the electrode layer was significantly reduced when using polymethyl methacrylate pore formers. However, a better interconnectivity of the pores formed by the polymethyl...

  1. Pressurized reversible operation of a 30-cell solid oxide cell stack using carbonaceous gases

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Langnickel, Hendrik; Hintzen, N.

    2017-01-01

    Recent theoretical studies show that reversible electrochemical conversion of H2O and CO2 to CH4 inside pressurized solid oxide cells (SOCs) combined with subsurface storage of the produced gases can facilitate seasonal electricity storage with a round-trip efficiency reaching 70-80% and a storag...... in electrolysis mode. The degradation rates in both fuel cell and electrolysis mode were comparable to previously reported SOFCMAN stack degradation rates measured at ambient pressure operation with H2/H2O gas mixtures.......Recent theoretical studies show that reversible electrochemical conversion of H2O and CO2 to CH4 inside pressurized solid oxide cells (SOCs) combined with subsurface storage of the produced gases can facilitate seasonal electricity storage with a round-trip efficiency reaching 70-80% and a storage...... cost below 3 ¢/kWh. Here we show test results with a 30-cell SOFCMAN 301 stack operated with carbonaceous gases at 18.7 bar and 700 ˚C in both electrolysis and fuel cell mode. The CH4 content in the stack outlet gas increased from 0.22% at open circuit voltage (OCV) to 18% at -0.17 A cm-2...

  2. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    Directory of Open Access Journals (Sweden)

    D. Mogensen

    2014-01-01

    Full Text Available The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were performed in the temperature range 600–800°C and the partial pressures of all reactants and products were varied. The obtained rates could be well fitted with a power law expression (r ∝PCH40.7. A simple model is presented which is capable of predicting the methane conversion in a stack configuration from intrinsic kinetics of the anode support material. The predictions are compared with the stack measurements presented here, and good agreement is observed.

  3. Dynamic Model of the High Temperature Proton Exchange Membrane Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2009-01-01

    The present work involves the development of a model for predicting the dynamic temperature of a high temperature proton exchange membrane (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system....... The temperature is predicted in these three parts, where they also are measured. The heat balance of the system involves a fuel cell model to describe the heat added by the fuel cells when a current is drawn. Furthermore the model also predicts the temperatures when heating the stack with external heating...... elements for start-up, heat conduction through stack insulation, cathode air convection, and heating of the inlet gases in the manifold. Various measurements are presented to validate the model predictions of the stack temperatures....

  4. A high-performance aluminum-feed microfluidic fuel cell stack

    Science.gov (United States)

    Wang, Yifei; Leung, Dennis Y. C.

    2016-12-01

    In this paper, a six-cell microfluidic fuel cell (MFC) stack is demonstrated. Low-cost aluminum is fed directly to the stack, which produces hydrogen fuel on site, through the Al-H2O reaction. This design is not only cost-efficient, but also eliminates the need for hydrogen storage. Unlike the conventional MFC stacks which generally require complex electrolyte distribution and management, the present Al-feed MFC stack requires only a single electrolyte stream, flowing successively through individual cells, which is finally utilized for hydrogen generation. In this manner, the whole system is greatly simplified while the operational robustness is also improved. With 2 M sodium hydroxide solution as electrolyte and kitchen foil Al as fuel, the present six-cell stack (in series) exhibits an open circuit voltage of nearly 6 V and a peak power density of 180.6 mWcm-2 at room temperature. In addition, an energy density of 1 Whg-1(Al) is achieved, which is quite high and comparable with its proton exchange membrane-based counterparts. Finally, pumpless operation of the present stack, together with its practical applications are successfully demonstrated, including lightening LED lights, driving an electric fan, and cell phone charging.

  5. Polymer electrolyte fuel cell durability

    National Research Council Canada - National Science Library

    Büchi, Felix N; Inaba, Minoru; Schmidt, Thomas J

    2009-01-01

    ... fundamental performance stability requirements. The apparent answer is that testing of the power system under fully realistic operation conditions was one prerequisite for revealing the nature and extent of some key modes of PEFC stack failure. Such modes of failure were not exposed to a similar degree, or not at all, in earlier tests of PEFC stac...

  6. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    Science.gov (United States)

    Mukerjee, Subhasish [Pittsford, NY; Haltiner, Jr., Karl J; Weissman, Jeffrey G [West Henrietta, NY

    2012-03-06

    A system for adding sulfur to a fuel cell stack, having a reformer adapted to reform a hydrocarbon fuel stream containing sulfur contaminants, thereby providing a reformate stream having sulfur; a sulfur trap fluidly coupled downstream of the reformer for removing sulfur from the reformate stream, thereby providing a desulfurized reformate stream; and a metering device in fluid communication with the reformate stream upstream of the sulfur trap and with the desulfurized reformate stream downstream of the sulfur trap. The metering device is adapted to bypass a portion of the reformate stream to mix with the desulfurized reformate stream, thereby producing a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  7. A Novel Hybrid Actuator Driven Magnetically in the Bi-Cell PEM Fuel Cell Stack

    Directory of Open Access Journals (Sweden)

    Hsiaokang Ma

    2017-10-01

    Full Text Available This study develops an air breathing pump driven by a piezoelectric actuator for a proton exchange membrane fuel cell (PEMFC stack. Permanent magnets are combined with a piezoelectric actuator to drive three air breathing pumps using magnetic force. This design enables the pump to provide a sufficient amount of air simultaneously to six cathode flow field plates in a stack of three “bi-cell PZTmag–PEMFCs”. When both the PZTmag and the PDMSmag had a magnet with a 6-mm diameter and 1-mm thickness, a maximum amplitude of 87 μm was generated at 0.03 W of power under operating conditions of 70 Hz and 40 V. In computational fluid dynamics (CFD, when the nozzle and the diffuser of an air breathing pump have an aspect ratio of 13.13, air flow distributes uniformly inside the pump, thus allowing for uniform transmission of oxygen to the membrane electrode assembly. This aspect ratio was applied to the bi-cell PZTmag–PEMFC stack and yielded a maximum net power flux of 0.1925 W·cm−2, 20% higher than that reported in a previous study (Ma, 2013, with 68% and 76% less volume and weight, respectively.

  8. Interface Optoelectronics Engineering for Mechanically Stacked Tandem Solar Cells Based on Perovskite and Silicon.

    Science.gov (United States)

    Kanda, Hiroyuki; Uzum, Abdullah; Nishino, Hitoshi; Umeyama, Tomokazu; Imahori, Hiroshi; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo

    2016-12-14

    Engineering of photonics for antireflection and electronics for extraction of the hole using 2.5 nm of a thin Au layer have been performed for two- and four-terminal tandem solar cells using CH 3 NH 3 PbI 3 perovskite (top cell) and p-type single crystal silicon (c-Si) (bottom cell) by mechanically stacking. Highly transparent connection multilayers of evaporated-Au and sputtered-ITO films were fabricated at the interface to be a point-contact tunneling junction between the rough perovskite and flat silicon solar cells. The mechanically stacked tandem solar cell with an optimized tunneling junction structure was ⟨perovskite for the top cell/Au (2.5 nm)/ITO (154 nm) stacked-on ITO (108 nm)/c-Si for the bottom cell⟩. It was confirmed the best efficiency of 13.7% and 14.4% as two- and four-terminal devices, respectively.

  9. Characterisation of a Planar Solid Oxide Cell Stack Operated at Elevated Pressure

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Graves, Christopher R.; Chen, Ming

    2016-01-01

    be operated either as electrolysers (SOEC) to convert electricity to fuels such as hydrogen or methane, and as fuel cells (SOFC) to convert fuels to electricity. Both productivity and conversion efficiency can be improved if the SOC operation pressure can be increased from ambient pressure to 10-30 bar. Here...... we characterize an SOC stack operated at pressures from ambient pressure to 10 bar without fluctuations in the steam supply. The pressure dependency of stack temperature, cell area specific resistance (ASR), current-voltage (iV) curves, stack impedance spectra and pressure drop across the stack...... and heat exchangers is analyzed and the expected impact of pressurization on the hydrogen production cost is evaluated....

  10. Characterization of a Planar Solid Oxide Cell Stack Operated at Elevated Pressure

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Graves, Christopher R.; Chen, Ming

    2016-01-01

    be operated either as electrolyzers (SOEC) to convert electricity to fuels such as hydrogen or methane, and as fuel cells (SOFC) to convert fuels to electricity. Both productivity and conversion efficiency can be improved if the SOC operation pressure can be increased from ambient pressure to 10–30 bar....... In this paper we characterize an SOC stack operated at pressures from ambient pressure to 10 bar. The pressure dependency of stack temperature, cell area specific resistance (ASR), current-voltage (iV) curves, stack impedance spectra and pressure drop across the stack and heat exchangers is analyzed...... in this paper. Additionally, the expected impact on the hydrogen production efficiency and cost is discussed....

  11. Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Jespersen, Jesper Lebæk; Kær, Søren Knudsen

    2008-01-01

    This work presents the development of an equivalent circuit model of a 65 cell high temperature PEM (HTPEM) fuel cell stack using Electrochemical Impedance Spectroscopy (EIS). The HTPEM fuel cell membranes used are PBI-based and uses phosphoric acid as proton conductor. The operating temperature...

  12. Automated assembling of single fuel cell units for use in a fuel cell stack

    Science.gov (United States)

    Jalba, C. K.; Muminovic, A.; Barz, C.; Nasui, V.

    2017-05-01

    The manufacturing of PEMFC stacks (POLYMER ELEKTROLYT MEMBRAN Fuel Cell) is nowadays still done by hand. Over hundreds of identical single components have to be placed accurate together for the construction of a fuel cell stack. Beside logistic problems, higher total costs and disadvantages in weight the high number of components produce a higher statistic interference because of faulty erection or material defects and summation of manufacturing tolerances. The saving of costs is about 20 - 25 %. Furthermore, the total weight of the fuel cells will be reduced because of a new sealing technology. Overall a one minute cycle time has to be aimed per cell at the manufacturing of these single components. The change of the existing sealing concept to a bonded sealing is one of the important requisites to get an automated manufacturing of single cell units. One of the important steps for an automated gluing process is the checking of the glue application by using of an image processing system. After bonding the single fuel cell the sealing and electrical function can be checked, so that only functional and high qualitative cells can get into further manufacturing processes.

  13. Production and Reliability Oriented SOFC Cell and Stack Design

    DEFF Research Database (Denmark)

    Hauth, Martin; Lawlor, Vincent; Cartellieri, Peter

    2017-01-01

    established. The probabilistic models were related to the experimentally obtained properties of base materials to establish a statistical relationship between the material properties and the most relevant load effects. Software algorithms for meta models that allow the detection of relationships between input...... in production, material and operating parameters for the optimization phase. A methodology for 3D description of spatial distribution of material properties based on a random field models was developed and validated by experiments. Homogenized material models on multiple levels of the SOFC stack were...

  14. Numerical investigations on two-phase flow in polymer electrolyte fuel cells

    OpenAIRE

    Qin, C.Z.

    2012-01-01

    Numerical modeling plays an important role in understanding various transport processes in polymer electrolyte fuel cells (PEFCs). It can not only provide insights into the development of new PEFC architectures, but also optimize operating conditions for better cell performance. Water balance is critical to the operation of PEFCs, since the membrane needs to attain sufficient water for effective ionic conduction. On the other hand, too much water accumulating in PEFCs would result in mass tra...

  15. Device for equalizing molten electrolyte content in a fuel cell stack

    Science.gov (United States)

    Smith, J.L.

    1985-12-23

    A device for equalizing the molten electrolyte content throughout the height of a fuel cell stack is disclosed. The device includes a passageway for electrolyte return with electrolyte wettable wicking material in the opposite end portions of the passageway. One end portion is disposed near the upper, negative end of the stack where electrolyte flooding occurs. The second end portion is placed near the lower, positive end of the stack where electrolyte is depleted. Heating means are provided at the upper portion of the passageway to increase electrolyte vapor pressure in the upper wicking material. The vapor is condensed in the lower passageway portion and conducted as molten electrolyte in the lower wick to the positive end face of the stack. An inlet is provided to inject a modifying gas into the passageway and thereby control the rate of electrolyte return.

  16. PEDOT–PSSA as an alternative support for Pt electrodes in PEFCs

    Indian Academy of Sciences (India)

    Administrator

    -ion) conduction within the catalyst, ameliorating Pt utilization. The inherent proton conductivity of. PEDOT–PSSA composite also helps reducing Nafion content in PEFC electrodes. During prolonged operation of PEFCs, Pt electrodes supported onto PEDOT–PSSA composite exhibit lower corrosion in relation to Pt.

  17. Design and experimental characterization of a 350 W High Temperature PEM fuel cell stack

    Directory of Open Access Journals (Sweden)

    Nicola Zuliani

    2011-01-01

    Full Text Available High Temperature Proton Exchange Membrane (HT PEM fuel cell based on polybenzimidazole (PBI polymer and phosphoric acid, can be operated at temperature between 120 °C and 180 °C. Reactants humidification is not required and CO content up to 2% in the fuel can be tolerated, affecting only marginally performance. This is what makes HT PEM very attractive, as low quality reformed hydrogen can be used and water management problems are avoided. Till nowadays, from experimental point of view, only few studies relate to the development and characterization of high temperature stacks. The aim of this work is to present the main design features and the performance curves of a 25 cells HT PEM stack based on PBI and phosphoric acid membranes. Performance curves refer to the stack operating with two type of fuels: pure hydrogen and a gas mixture simulating a typical steam reformer output. The stack voltage distribution analysis and the stack temperature distribution analysis suggest that cathode air could be used as coolant leading to a better thermal management. This could simplify stack design and system BOP, thus increasing system performance.

  18. Reliability prediction of large fuel cell stack based on structure stress analysis

    Science.gov (United States)

    Liu, L. F.; Liu, B.; Wu, C. W.

    2017-09-01

    The aim of this paper is to improve the reliability of Proton Electrolyte Membrane Fuel Cell (PEMFC) stack by designing the clamping force and the thickness difference between the membrane electrode assembly (MEA) and the gasket. The stack reliability is directly determined by the component reliability, which is affected by the material property and contact stress. The component contact stress is a random variable because it is usually affected by many uncertain factors in the production and clamping process. We have investigated the influences of parameter variation coefficient on the probability distribution of contact stress using the equivalent stiffness model and the first-order second moment method. The optimal contact stress to make the component stay in the highest level reliability is obtained by the stress-strength interference model. To obtain the optimal contact stress between the contact components, the optimal thickness of the component and the stack clamping force are optimally designed. Finally, a detailed description is given how to design the MEA and gasket dimensions to obtain the highest stack reliability. This work can provide a valuable guidance in the design of stack structure for a high reliability of fuel cell stack.

  19. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfeld, S. [Los Alamos National Lab., NM (United States)

    1995-09-01

    The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. The low temperature, polymer electrolyte membrane fuel cell (PEMFC) has recently been identified as an attractive option for stationary power generation, based on the relatively simple and benign materials employed, the zero-emission character of the device, and the expected high power density, high reliability and low cost. However, a PEMFC stack fueled by hydrogen with the combined properties of low cost, high performance and high reliability has not yet been demonstrated. Demonstration of such a stack will remove a significant barrier to implementation of this advanced technology for electric power generation from hydrogen. Work done in the past at LANL on the development of components and materials, particularly on advanced membrane/electrode assemblies (MEAs), has contributed significantly to the capability to demonstrate in the foreseeable future a PEMFC stack with the combined characteristics described above. A joint effort between LANL and an industrial stack manufacturer will result in the demonstration of such a fuel cell stack for stationary power generation. The stack could operate on hydrogen fuel derived from either natural gas or from renewable sources. The technical plan includes collaboration with a stack manufacturer (CRADA). It stresses the special requirements from a PEMFC in stationary power generation, particularly maximization of the energy conversion efficiency, extension of useful life to the 10 hours time scale and tolerance to impurities from the reforming of natural gas.

  20. Development of internal manifold heat exchanger (IMHEX reg sign ) molten carbonate fuel cell stacks

    Energy Technology Data Exchange (ETDEWEB)

    Marianowski, L.G.; Ong, E.T.; Petri, R.J.; Remick, R.J.

    1991-01-01

    The Institute of Gas Technology (IGT) has been in the forefront of molten carbonate fuel cell (MCFC) development for over 25 years. Numerous cell designs have been tested and extensive tests have been performed on a variety of gas manifolding alternatives for cells and stacks. Based upon the results of these performance tests, IGT's development efforts started focusing on an internal gas manifolding concept. This work, initiated in 1988, is known today as the IMHEX{reg sign} concept. MCP has developed a comprehensive commercialization program loading to the sale of commercial units in 1996. MCP's role is in the manufacture of stack components, stack assembly, MCFC subsystem testing, and the design, marketing and construction of MCFC power plants. Numerous subscale (1 ft{sup 2}) stacks have been operated containing between 3 and 70 cells. These tests verified and demonstrated the viability of internal manifolding from technical (no carbonate pumping), engineering (relaxed part dimensional tolerance requirements), and operational (good gas sealing) aspects. Simplified fabrication, ease of assembly, the elimination of external manifolds and all associated clamping requirements has significantly lowered anticipated stack costs. Ongoing 1 ft{sup 2} stack testing is generating performance and endurance characteristics as a function of system specified operating conditions. Commercial-sized, full-area stacks (10 ft{sup 2}) are in the process of being assembled and will be tested in November. This paper will review the recent developments the MCFC scale-up and manufacture work of MCP, and the research and development efforts of IGT which support those efforts. 17 figs.

  1. Optimized scalable stack of fluorescent solar concentrator systems with bifacial silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Martínez Díez, Ana Luisa, E-mail: a.martinez@itma.es [Fundación ITMA, Parque Empresarial Principado de Asturias, C/Calafates, Parcela L-3.4, 33417 Avilés (Spain); Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Gutmann, Johannes; Posdziech, Janina; Rist, Tim; Goldschmidt, Jan Christoph [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Plaza, David Gómez [Fundación ITMA, Parque Empresarial Principado de Asturias, C/Calafates, Parcela L-3.4, 33417 Avilés (Spain)

    2014-10-21

    In this paper, we present a concentrator system based on a stack of fluorescent concentrators (FCs) and a bifacial solar cell. Coupling bifacial solar cells to a stack of FCs increases the performance of the system and preserves its efficiency when scaled. We used an approach to optimize a fluorescent solar concentrator system design based on a stack of multiple fluorescent concentrators (FC). Seven individual fluorescent collectors (20 mm×20 mm×2 mm) were realized by in-situ polymerization and optically characterized in regard to their ability to guide light to the edges. Then, an optimization procedure based on the experimental data of the individual FCs was carried out to determine the stack configuration that maximizes the total number of photons leaving edges. Finally, two fluorescent concentrator systems were realized by attaching bifacial silicon solar cells to the optimized FC stacks: a conventional system, where FC were attached to one side of the solar cell as a reference, and the proposed bifacial configuration. It was found that for the same overall FC area, the bifacial configuration increases the short-circuit current by a factor of 2.2, which is also in agreement with theoretical considerations.

  2. Characterisation and Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Jespersen, Jesper Lebæk; Schaltz, Erik

    2009-01-01

    temperature PEM (HTPEM) fuel cell stack. A Labview virtual instrument has been developed to perform the signal generation and data acquisition which is needed to perform EIS. The typical output of an EIS measurement on a fuel cell, is a Nyquist plot, which shows the imaginary and real part of the impedance...

  3. Fatigue Analysis of Proton Exchange Membrane Fuel Cell Stacks Based on Structural Stress Distribution

    Science.gov (United States)

    Wu, C. W.; Liu, B.; Wei, M. Y.; Liu, L. F.

    2017-05-01

    Proton exchange membrane fuel cell (PEMFC) stack usually undergoes various vibrations during packing, transportation and serving time, in particular for those used in the automobiles and portable equipment. Based on the Miner fatigue damage theory, the fatigue lives of the fuel cell components are first assessed. Then the component fatigue life contours of the stack are obtained under four working conditions, i.e. the three single-axial (in X-, Y- and Z-axis separately) and multi-axial random vibrations. Accordingly, the component damage under various vibrations is evaluated. The stress distribution on the gasket and PEM will greatly affect their fatigue lives. Finally, we compare the fatigue lives of 4-bolt- and 6-bolt-clamping stacks under the same total clamping force, and find that increasing the bolt number could improve the bolt fatigue lives.

  4. Fundamental stack and system issues in molten carbonate fuel cell development

    Science.gov (United States)

    Williams, M. C.; Parsons, E. L., Jr.; Mayfield, M. J.

    Stack research and system issues in molten carbonate fuel cell (MCFC) technology development and commercialization are discussed within context of status of MCFC development and commercialization in US. Status of MCFC development is addressed. Major known fundamental stack research issues remaining for the MCFC technology are identified and discussed. The cathode remains a focal point of performance improvement and cost reduction. The various aspects of MCFC power plant network and systems issues are also addressed and discussed. These include cost, heat loss management, startup and shutdown modes, dynamic response, footprint, packaging and integration, parasitic power losses, pressurization, and reforming. Potential of MCFC networks is discussed. With the initial demonstration of full-area, full-height 250-kW to 2-MW MCFC power plants, the spatial configuration of the MCFC stacks into networks in the fuel cell power plant takes on importance for the first time.

  5. Fuel cell program - Overview reports 2007; Programm Brennstoffzellen inkl. Wasserstoff - Ueberblicksberichte der BFE-Programmleiter 2007

    Energy Technology Data Exchange (ETDEWEB)

    Luzzi, A.; Spirig, M.

    2008-07-01

    This report for the Swiss Federal Office of Energy (SFOE) presents the overview reports made by SFOE Heads of Program on work done in 2007. Projects reported on in the natural gas-fired fuel cell area include the EU-project REAL-SFOC, the long-term testing of anode-supported SOFC stacks, intermediate-temperature fuel cells based on proton conducting electrolytes, the interdisciplinary ONEBAT project and lifetime-enhancement of SOFC stacks for CHP applications. In the polymer-electrolyte fuel cell (PEFC) area, projects concerning proton-conducting polymer membranes, factors limiting the lifetime of fuel cell membranes, a new highly active oxygen reduction electrode for PEM fuel cell and zinc/air battery applications, the enhancement of PEFC durability and reliability, model-based investigation of PEFC performance, and local gas analysis of PE fuel cells are briefly reported on. Long-term research activities in the hydrogen technology area reported on include those concerning the photo-chemical conversion and storage of solar energy and the storage of hydrogen in metallic and complex hydrides. Further projects reported on include those concerning the physical aspects of hydrides for system integration and safety and new, complex metal hydrides. Swiss national and international co-ordination is reviewed in the areas of fuel cell technology and hydrogen technology. Work done in several projects run within the framework of the IEA's Advanced Fuel Cells Program is reviewed. Several pilot and demonstration (P and D) projects are also reported on in the natural-gas SOFC and PEFC areas. Comments on the 2007 results and a review of work to be done in 2008, along with a list of R, D, P and D projects, complete the report.

  6. Modelling the impact of creep on the probability of failure of a solid oxidefuel cell stack

    DEFF Research Database (Denmark)

    Greco, Fabio; Frandsen, Henrik Lund; Nakajo, Arata

    2014-01-01

    In solid oxide fuel cell (SOFC) technology a major challenge lies in balancing thermal stresses from an inevitable thermal field. The cells are known to creep, changing over time the stress field. The main objective of this study was to assess the influence of creep on the failure probability...... of an SOFC stack. A finite element analysis on a single repeating unit of the stack was performed, in which the influence of the mechanical interactions,the temperature-dependent mechanical properties and creep of the SOFC materials are considered. Moreover, stresses from the thermo-mechanical simulation...... of sintering of the cells have been obtained and were implemented into the model of the single repeating unit. The significance of the relaxation of the stresses by creep in the cell components and its influence on the probability of cell survival was investigated. Finally, the influence of cell size...

  7. Structure for common access and support of fuel cell stacks

    Science.gov (United States)

    Walsh, Michael M.

    2000-01-01

    A structure provides common support and access to multiple fuel cells externally mounted thereto. The structure has openings leading to passages defined therein for providing the access. Various other fuel cell power system components are connected at the openings, such as reactant and coolant sources.

  8. Sizing stack and battery of a fuel cell hybrid distribution truck

    NARCIS (Netherlands)

    Bram Veenhuizen; P. van den Bosch; T. Hofman; Edwin Tazelaar; Y. Shen

    2012-01-01

    An existing fuel cell hybrid distribution truck, built for demonstration purposes, is used as a case study to investigate the effect of stack (kW) and battery (kW, kWh) sizes on the hydrogen consumption of the vehicle. Three driving cycles, the NEDC for Low Power vehicles, CSC and JE05 cycle, define

  9. A Development of 2 kW Molten Carbonate Fuel Cell Stack

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hee Chun [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Jung, Jong Soo [SAMSUNG HEAVY INDUSTRY (Korea, Republic of); Hong, Sung Ahn [Korea Institute of science and Technology, Seoul (Korea, Republic of)

    1997-12-31

    The molten carbonate fuel cell (MCFC) has been under intensive development during the last decade as the second generation fuel cell, since it has high efficiency at its operating temperature of 650 deg. C and coal gas can be utilized as the fuel. A 2 kW MCFC stack, consisted of 20 cells, was fabricated with 1,000 cm{sup 2}-area electrode and showed 16 volt at 150 A, producing stable power more than 2.4 kW. The test facility was constructed for the evaluation of the stack. The followings are included in this study : 1. Establishment of the scale-up technology of MCFC components. 2. Settling of the unit cell technology and its long term operation. 3. Manufacturing of a small scale stack and establishment of the stack operation. The feasibility study was carried out for the 100 kW class MCFC pilot plant system through the concept design. (author). 12 refs., figs. tabs.

  10. Accelerated testing of solid oxide fuel cell stacks for micro combined heat and power application

    DEFF Research Database (Denmark)

    Hagen, Anke; Høgh, Jens Valdemar Thorvald; Barfod, Rasmus

    2015-01-01

    of degradation, the profiles are executed faster than required for real applications. Operation with fast load cycling, both using hydrogen and methane/steam as fuels, does not accelerate degradation compared to constant operation, which demonstrates the maturity of SoA stacks and enables transferring knowledge...... from testing at constant conditions to dynamic operation. 7.5 times more cycles than required for 80,000 h lifetime as micro CHP are achieved on one-cell-stack level. The results also suggest that degradation mechanisms that proceed on a longer time-scale, such as creep, might have a more dominating...

  11. Transient deformational properties of high temperature alloys used in solid oxide fuel cell stacks

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Kwok, Kawai; Frandsen, Henrik Lund

    2017-01-01

    Stresses and probability of failure during operation of solid oxide fuel cells (SOFCs) is affected by the deformational properties of the different components of the SOFC stack. Though the overall stress relaxes with time during steady state operation, large stresses would normally appear through...... the transient behavior of Crofer 22 APU, a typical iron-chromium alloy used in SOFC stacks. The material parameters for the model are determined by measurements involving relaxation and constant strain rate experiments. The constitutive law is implemented into commercial finite element software using a user...

  12. Online estimation of internal stack temperatures in solid oxide fuel cell power generating units

    Science.gov (United States)

    Dolenc, B.; Vrečko, D.; Juričić, Ɖ.; Pohjoranta, A.; Pianese, C.

    2016-12-01

    Thermal stress is one of the main factors affecting the degradation rate of solid oxide fuel cell (SOFC) stacks. In order to mitigate the possibility of fatal thermal stress, stack temperatures and the corresponding thermal gradients need to be continuously controlled during operation. Due to the fact that in future commercial applications the use of temperature sensors embedded within the stack is impractical, the use of estimators appears to be a viable option. In this paper we present an efficient and consistent approach to data-driven design of the estimator for maximum and minimum stack temperatures intended (i) to be of high precision, (ii) to be simple to implement on conventional platforms like programmable logic controllers, and (iii) to maintain reliability in spite of degradation processes. By careful application of subspace identification, supported by physical arguments, we derive a simple estimator structure capable of producing estimates with 3% error irrespective of the evolving stack degradation. The degradation drift is handled without any explicit modelling. The approach is experimentally validated on a 10 kW SOFC system.

  13. A numerical investigation on multi-phase transport phenomena in a proton exchange membrane fuel cell stack

    Energy Technology Data Exchange (ETDEWEB)

    Le, Anh Dinh; Zhou, Biao [Department of Mechanical, Automotive and Materials Engineering, University of Windsor, 401 Sunset Ave., Windsor, ON (Canada)

    2010-08-15

    In this study, the simulation of a fuel cell stack is performed by applying a general numerical model with VOF method that has been successfully applied to single PEMFC model to investigate the fluid dynamics, mass transport, flooding phenomenon and the effects of liquid water on the stack performance. The performance of three single cells in series connection in the fuel cell stack is examined according to the presence of liquid water in different single cells. The distributions of fluid flow, species concentration and the current density are presented to illustrate the effects of liquid water on the performance of each single cell. The numerical results locate that the low distributions of species in the flooding cell certainly degrade the performance of this cell. Moreover, it can be seen that the performance of the flooding cell will significantly affect the whole stack performance since the values of average current density must be identical in all single cells. (author)

  14. On-line and real-time diagnosis method for proton membrane fuel cell (PEMFC) stack by the superposition principle

    Science.gov (United States)

    Lee, Young-Hyun; Kim, Jonghyeon; Yoo, Seungyeol

    2016-09-01

    The critical cell voltage drop in a stack can be followed by stack defect. A method of detecting defective cell is the cell voltage monitoring. The other methods are based on the nonlinear frequency response. In this paper, the superposition principle for the diagnosis of PEMFC stack is introduced. If critical cell voltage drops exist, the stack behaves as a nonlinear system. This nonlinearity can explicitly appear in the ohmic overpotential region of a voltage-current curve. To detect the critical cell voltage drop, a stack is excited by two input direct test-currents which have smaller amplitude than an operating stack current and have an equal distance value from the operating current. If the difference between one voltage excited by a test current and the voltage excited by a load current is not equal to the difference between the other voltage response and the voltage excited by the load current, the stack system acts as a nonlinear system. This means that there is a critical cell voltage drop. The deviation from the value zero of the difference reflects the grade of the system nonlinearity. A simulation model for the stack diagnosis is developed based on the SPP, and experimentally validated.

  15. Experimental study and comparison of various designs of gas flow fields to PEM fuel cells and cell stack performance

    Directory of Open Access Journals (Sweden)

    Hong eLiu

    2014-01-01

    Full Text Available In this study, a significant number of experimental tests to PEM fuel cells were conducted to investigate the effect of gas flow fields on fuel cell performance. Graphite plates with various flow field or flow channel designs, from literature survey and also novel designs by the authors, were used for the PEM fuel cell assembly. The fabricated fuel cells all have an effective membrane area of 23.5 cm2. The results showed that the serpentine flow channel design is still favorable, giving the best single fuel cell performance amongst all the studied flow channel designs. A novel symmetric serpentine flow field was proposed for relatively large size fuel cell application. Four fuel cell stacks each including four cells were assembled using different designs of serpentine flow channels. The output power performances of fuel cell stacks were compared and the novel symmetric serpentine flow field design is recommended for its very good performance.

  16. Hydrogen Production Performance of a 10-Cell Planar Solid-Oxide Electrolysis Stack

    International Nuclear Information System (INIS)

    James O'Brien; Carl Stoots; Steve Herring; J. Hartvigsen

    2005-01-01

    An experimental study is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900 C. Results presented in this paper were obtained from a ten-cell planar electrolysis stack, with an active area of 64 cm2 per cell. The electrolysis cells are electrolyte supported, with scandia-stabilized zirconia electrolytes (∼140 (micro)m thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1-0.6), gas flow rates (1000-4000 sccm), and current densities (0 to 0.38 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Hydrogen production rates up to 100 Normal liters per hour were demonstrated. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Stack performance is shown to be dependent on inlet steam flow rate

  17. Linear identification and model adjustment of a PEM fuel cell stack

    Energy Technology Data Exchange (ETDEWEB)

    Kunusch, C.; Puleston, P.F.; More, J.J. [LEICI, Departamento de Electrotecnia, Universidad Nacional de La Plata, calle 1 esq. 47 s/n, 1900 La Plata (Argentina); Consejo de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Husar, A. [Institut de Robotica i Informatica Industrial (CSIC-UPC), c/ Llorens i Artigas 4-6, 08028 Barcelona (Spain); Mayosky, M.A. [LEICI, Departamento de Electrotecnia, Universidad Nacional de La Plata, calle 1 esq. 47 s/n, 1900 La Plata (Argentina); Comision de Investigaciones Cientificas (CIC), Provincia de Buenos Aires (Argentina)

    2008-07-15

    In the context of fuel cell stack control a mayor challenge is modeling the interdependence of various complex subsystem dynamics. In many cases, the states interaction is usually modeled through several look-up tables, decision blocks and piecewise continuous functions. Many internal variables are inaccessible for measurement and cannot be used in control algorithms. To make significant contributions in this area, it is necessary to develop reliable models for control and design purposes. In this paper, a linear model based on experimental identification of a 7-cell stack was developed. The procedure followed to obtain a linear model of the system consisted in performing spectroscopy tests of four different single-input single-output subsystems. The considered inputs for the tests were the stack current and the cathode oxygen flow rate, while the measured outputs were the stack voltage and the cathode total pressure. The resulting model can be used either for model-based control design or for on-line analysis and errors detection. (author)

  18. Performance evaluation of an open-cathode PEM fuel cell stack under ambient conditions: Case study of United Arab Emirates

    International Nuclear Information System (INIS)

    Al-Zeyoudi, Hend; Sasmito, Agus P.; Shamim, Tariq

    2015-01-01

    Highlights: • Performance evaluation of open-cathode PEM fuel cell stacks with forced air-convection. • Stack performance can vary up to 40% from winter to summer. • Hot and arid condition leads to membrane drying and performance deterioration. • Anode humidification improves the stack performance up to 40% during summer. - Abstract: The open-cathode polymer electrolyte membrane (PEM) fuel cell stack has been a promising candidate as a sustainable energy conversion system for replacing fossil fuel-based energy conversion devices in portable and automotive applications. As the ambient air is directly used to provide both oxidant and cooling, the complex cooling loop can be avoided which reduces the complexity and cost. However, the stack performance is highly affected by ambient conditions, i.e., ambient temperature and humidity. In this study, the effect of monthly ambient air conditions (temperature and humidity) is evaluated with respect to the stack’s power production performance as well as thermal, water and gas management by employing a validated three-dimensional open-cathode PEM fuel cell stack model. The annual climate data from the hot and arid environment of Abu Dhabi, United Arab Emirates (UAE) are used as a case study. The objective is to develop a better fundamental understanding of the interactions of physical phenomena in a fuel cell stack, which can assist in improving the performance and operation of an open-cathode PEM fuel cell-powered vehicle. The results indicate that the stack performance can vary significantly (up to 40%) from winter to summer, especially at high operating currents, with significant changes in the stack temperature and the water content at the membrane. Moreover, the anode humidification results in a significant improvement in the stack performance (up to 40%) in hot and dry conditions. However, a careful balance has to be struck between the humidifier parasitic load and the stack power.

  19. Cost Analysis of Direct Methanol Fuel Cell Stacks for Mass Production

    Directory of Open Access Journals (Sweden)

    Mauro Francesco Sgroi

    2016-11-01

    Full Text Available Fuel cells are very promising technologies for efficient electrical energy generation. The development of enhanced system components and new engineering solutions is fundamental for the large-scale deployment of these devices. Besides automotive and stationary applications, fuel cells can be widely used as auxiliary power units (APUs. The concept of a direct methanol fuel cell (DMFC is based on the direct feed of a methanol solution to the fuel cell anode, thus simplifying safety, delivery, and fuel distribution issues typical of conventional hydrogen-fed polymer electrolyte fuel cells (PEMFCs. In order to evaluate the feasibility of concrete application of DMFC devices, a cost analysis study was carried out in the present work. A 200 W-prototype developed in the framework of a European Project (DURAMET was selected as the model system. The DMFC stack had a modular structure allowing for a detailed evaluation of cost characteristics related to the specific components. A scale-down approach, focusing on the model device and projected to a mass production, was used. The data used in this analysis were obtained both from research laboratories and industry suppliers specialising in the manufacturing/production of specific stack components. This study demonstrates that mass production can give a concrete perspective for the large-scale diffusion of DMFCs as APUs. The results show that the cost derived for the DMFC stack is relatively close to that of competing technologies and that the introduction of innovative approaches can result in further cost savings.

  20. Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Jespersen, Jesper Lebæk; Kær, Søren Knudsen

    2008-01-01

    This work presents the development of an equivalent circuit model of a 65 cell high temperature PEM (HTPEM) fuel cell stack using Electrochemical Impedance Spectroscopy (EIS). The HTPEM fuel cell membranes used are PBI-based and uses phosphoric acid as proton conductor. The operating temperature...... of the MEA's is 160-180oC, depending on the purity of the hydrogen used, the load pattern and the desired lifetime. The advantages of the HTPEM fuel cell technology include fast response to load changes and high tolerance to CO (1-3%)...

  1. Electricity generation and microbial community in response to short-term changes in stack connection of self-stacked submersible microbial fuel cell powered by glycerol.

    Science.gov (United States)

    Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng

    2017-02-01

    Stack connection (i.e., in series or parallel) of microbial fuel cell (MFC) is an efficient way to boost the power output for practical application. However, there is little information available on short-term changes in stack connection and its effect on the electricity generation and microbial community. In this study, a self-stacked submersible microbial fuel cell (SSMFC) powered by glycerol was tested to elucidate this important issue. In series connection, the maximum voltage output reached to 1.15 V, while maximum current density was 5.73 mA in parallel. In both connections, the maximum power density increased with the initial glycerol concentration. However, the glycerol degradation was even faster in parallel connection. When the SSMFC was shifted from series to parallel connection, the reactor reached to a stable power output without any lag phase. Meanwhile, the anodic microbial community compositions were nearly stable. Comparatively, after changing parallel to series connection, there was a lag period for the system to get stable again and the microbial community compositions became greatly different. This study is the first attempt to elucidate the influence of short-term changes in connection on the performance of MFC stack, and could provide insight to the practical utilization of MFC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment.

    Science.gov (United States)

    Zhuang, Li; Zheng, Yu; Zhou, Shungui; Yuan, Yong; Yuan, Haoran; Chen, Yong

    2012-02-01

    A tubular air-cathode microbial fuel cell (MFC) stack with high scalability and low material cost was constructed and the ability of simultaneous real wastewater treatment and bioelectricity generation was investigated under continuous flow mode. At the two organic loading rates (ORLs) tested (1.2 and 4.9kg COD/m(3)d), five non-Pt MFCs connected in series and parallel circuit modes treating swine wastewater can enable an increase of the voltage and the current. The parallel stack retained high power output and the series connection underwent energy loss due to the substrate cross-conduction effect. With continuous electricity production, the parallel stack achieved 83.8% of COD removal and 90.8% of NH(4)(+)-N removal at 1.2kg COD/m(3)d, and 77.1% COD removal and 80.7% NH(4)(+)-N removal at 4.9kg COD/m(3)d. The MFC stack system in this study was demonstrated to be able to treat real wastewater with the added benefit of harvesting electricity energy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Improved performance of the microbial electrolysis desalination and chemical-production cell using the stack structure.

    Science.gov (United States)

    Chen, Shanshan; Liu, Guangli; Zhang, Renduo; Qin, Bangyu; Luo, Yong; Hou, Yanping

    2012-07-01

    The microbial electrolysis desalination and chemical-production cell (MEDCC) is a device to desalinate seawater, and produce acid and alkali. The objective of this study was to enhance the desalination and chemical-production performance of the MEDCC using two types of stack structure. Experiments were conducted with different membrane spacings, numbers of desalination chambers and applied voltages. Results showed that the stack construction in the MEDCC enhanced the desalination and chemical-production rates. The maximal desalination rate of 0.58 ± 0.02 mmol/h, which was 43% higher than that in the MEDCC, was achieved in the four-desalination-chamber MEDCC with the AEM-CEM stack structure and the membrane spacing of 1.5mm. The maximal acid- and alkali-production rates of 0.079 ± 0.006 and 0.13 ± 0.02 mmol/h, which were 46% and 8% higher than that in the MEDCC, respectively, were achieved in the two-desalination-chamber MEDCC with the BPM-AEM-CEM stack structure and the membrane spacing of 3mm. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Identifying same-cell contours in image stacks: a key step in making 3D reconstructions.

    Science.gov (United States)

    Leung, Tony Kin Shun; Veldhuis, Jim H; Krens, S F Gabby; Heisenberg, C P; Brodland, G Wayne

    2011-02-01

    Identification of contours belonging to the same cell is a crucial step in the analysis of confocal stacks and other image sets in which cell outlines are visible, and it is central to the making of 3D cell reconstructions. When the cells are close packed, the contour grouping problem is more complex than that found in medical imaging, for example, because there are multiple regions of interest, the regions are not separable from each other by an identifiable background and regions cannot be distinguished by intensity differences. Here, we present an algorithm that uses three primary metrics-overlap of contour areas in adjacent images, co-linearity of the centroids of these areas across three images in a stack, and cell taper-to assign cells to groups. Decreasing thresholds are used to successively assign contours whose membership is less obvious. In a final step, remaining contours are assigned to existing groups by setting all thresholds to zero and groups having strong hour-glass shapes are partitioned. When applied to synthetic data from isotropic model aggregates, a curved model epithelium in which the long axes of the cells lie at all possible angles to the transection plane, and a confocal image stack, algorithm assignments were between 97 and 100% accurate in sets having at least four contours per cell. The algorithm is not particularly sensitive to the thresholds used, and a single set of parameters was used for all of the tests. The algorithm, which could be extended to time-lapse data, solves a key problem in the translation of image data into cell information.

  5. Development and characterization of a novel air-breathing micro direct methanol fuel cell stack for portable applications

    International Nuclear Information System (INIS)

    Liu, Xiaowei; Zhang, Bo; Zhang, Yufeng; He, Hong; Li, Jianmin; Wang, Shibo; Yuan, Zhenyu; Deng, Huichao

    2010-01-01

    An air-breathing 10-cell micro direct methanol fuel cell (µDMFC) stack with four anode feeding patterns is designed, fabricated and tested. For a better understanding of the operational characteristics of both the single cell and the stack, a two-dimensional numerical model is established and calculated. Employing micro-stamping technology, the current collectors of each single cell are microfabricated on the stainless steel plate with a thickness of 300 µm. The single µDMFC is first tested under various operating parameters. On the basis of the simulation and experimental observation of the single cell performance, the µDMFC stack performance is thoroughly analyzed with different anode feeding patterns. The results indicate that the µDMFC stack with pattern B can ensure the uniform performance of each single cell and generate the highest power output. With pattern B, further experiments are carried out to investigate the influence of the anode flow rate on the stack performance. As a result, the µDMFC stack achieves the best performance with the maximum power density of about 24.75 mW cm −2 at 5.0 ml min −1 . Finally, the stack is successfully applied to two electronic devices of different rated power

  6. Development and characterization of a novel air-breathing micro direct methanol fuel cell stack for portable applications

    Science.gov (United States)

    Liu, Xiaowei; Zhang, Bo; Zhang, Yufeng; He, Hong; Li, Jianmin; Wang, Shibo; Yuan, Zhenyu; Deng, Huichao

    2010-10-01

    An air-breathing 10-cell micro direct methanol fuel cell (µDMFC) stack with four anode feeding patterns is designed, fabricated and tested. For a better understanding of the operational characteristics of both the single cell and the stack, a two-dimensional numerical model is established and calculated. Employing micro-stamping technology, the current collectors of each single cell are microfabricated on the stainless steel plate with a thickness of 300 µm. The single µDMFC is first tested under various operating parameters. On the basis of the simulation and experimental observation of the single cell performance, the µDMFC stack performance is thoroughly analyzed with different anode feeding patterns. The results indicate that the µDMFC stack with pattern B can ensure the uniform performance of each single cell and generate the highest power output. With pattern B, further experiments are carried out to investigate the influence of the anode flow rate on the stack performance. As a result, the µDMFC stack achieves the best performance with the maximum power density of about 24.75 mW cm-2 at 5.0 ml min-1. Finally, the stack is successfully applied to two electronic devices of different rated power.

  7. Corrosion-resistant, electrically-conductive plate for use in a fuel cell stack

    Science.gov (United States)

    Carter, J David [Bolingbrook, IL; Mawdsley, Jennifer R [Woodridge, IL; Niyogi, Suhas [Woodridge, IL; Wang, Xiaoping [Naperville, IL; Cruse, Terry [Lisle, IL; Santos, Lilia [Lombard, IL

    2010-04-20

    A corrosion resistant, electrically-conductive, durable plate at least partially coated with an anchor coating and a corrosion resistant coating. The corrosion resistant coating made of at least a polymer and a plurality of corrosion resistant particles each having a surface area between about 1-20 m.sup.2/g and a diameter less than about 10 microns. Preferably, the plate is used as a bipolar plate in a proton exchange membrane (PEMFC) fuel cell stack.

  8. Parametric Sensitivity Tests—European Polymer Electrolyte Membrane Fuel Cell Stack Test Procedures

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2014-01-01

    performed based on test procedures proposed by a European project, Stack-Test. The sensitivity of a Nafion-based low temperature PEMFC stack’s performance to parametric changes was the main objective of the tests. Four crucial parameters for fuel cell operation were chosen; relative humidity, temperature......, pressure, and stoichiometry at varying current density. Furthermore, procedures for polarization curve recording were also tested both in ascending and descending current directions....

  9. Controlling for peak power extraction from microbial fuel cells can increase stack voltage and avoid cell reversal

    Science.gov (United States)

    Boghani, Hitesh C.; Papaharalabos, George; Michie, Iain; Fradler, Katrin R.; Dinsdale, Richard M.; Guwy, Alan J.; Ieropoulos, Ioannis; Greenman, John; Premier, Giuliano C.

    2014-12-01

    Microbial fuel cells (MFCs) are bioelectrochemical systems which can degrade organic materials and are increasingly seen as potential contributors to low carbon technologies, particularly in energy recovery from and treatment of wastewaters. The theoretical maximum open circuit voltage from MFCs lies in the region of 1.1 V, but is reduced substantially by overvoltage losses. Practical use of the power requires stacking or other means to increase voltage. Series stacking of MFCs with typically encountered variability in operating conditions and performance raises the risk of cell reversal, which diminishes overall power performance. A novel strategy of MFC subsystem series connectivity along with maximum power point tracking (MPPT) generates increased power from individual MFCs whilst eliminating cell reversal. MFCs fed with lower concentrations of substrate experienced voltage reversal when connected in normal series connection with one common load, but when MFCs and loads together were connected in series, the underperforming cell is effectively bypassed and maximum power is made available. It is concluded that stack voltage may be increased and cell reversal avoided using the hybrid connectivity along with MPPT. This approach may be suitable for stacked MFC operations in the event that large scale arrays/modules are deployed in treating real wastewaters.

  10. Efficiency Enhancement of InGaN-Based Solar Cells via Stacking Layers of Light-Harvesting Nanospheres

    KAUST Repository

    Alamri, Amal M.

    2016-06-24

    An effective light-harvesting scheme for InGaN-based multiple quantum well solar cells is demonstrated using stacking layers of polystyrene nanospheres. Light-harvesting efficiencies on the solar cells covered with varied stacks of nanospheres are evaluated through numerical and experimental methods. The numerical simulation reveals that nanospheres with 3 stacking layers exhibit the most improved optical absorption and haze ratio as compared to those obtained by monolayer nanospheres. The experimental demonstration, agreeing with the theoretical analyses, shows that the application of 3-layer nanospheres improves the conversion efficiency of the solar cell by ~31%.

  11. Design, fabrication and performance of a mixed-reactant membraneless micro direct methanol fuel cell stack

    Science.gov (United States)

    Abrego-Martínez, J. C.; Moreno-Zuria, A.; Cuevas-Muñiz, F. M.; Arriaga, L. G.; Sun, Shuhui; Mohamedi, Mohamed

    2017-12-01

    In the present work, we report the design, fabrication and evaluation of a membraneless mixed-reactant and air-breathing microfluidic direct methanol fuel cell (ML-μDMFC) stack operated in passive mode. The operation under mixed-reactant conditions was achieved by using a highly methanol-tolerant Ag/Pt/CP cathode with ultra-low Pt loading in alkaline medium. Prior to the fabrication of the stack, a flow simulation was made in order to study the behavior of the reactants stream in the microchannel through the 2 cells. Subsequently, the device was tested in passive mode using a mixture of 5 M MeOH +0.5 M KOH. The results showed that by connecting the 2 cells in series, it is possible to effectively double the voltage of a single ML-μDMFC, as well as increasing the absolute power by 75% with practically no cost increase. The stack was capable of operate continuously for more than 2 h with a single charge of 40 μL, producing an OCV of 0.89 V and a maximum power density of 3.33 mW mgPt-1. Additionally, the device exhibited good stability throughout a 10 h test.

  12. Experimental study and modelling of degradation phenomena in HTPEM fuel cell stacks for use in CHP systems

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl

    2009-01-01

    Degradation phenomena in HTPEM fuel cells for use in CHP systems were investigated experimentally and by modelling. It was found that the two main degradation mechanisms in HTPEM fuel cells are carbon corrosion and Pt agglomeration. On basis of this conclusion a mechanistic model, describing...... the degradation caused by these phenomena, is suggested. Using the proposed model, information about optimum operational temperatures is derived. To investigate how the degradation propagates on stack level, a simplified stack model is developed. The model is 1-dimensional, non-isothermal, and semi......-transient (considering degradation with time). The model shows that the degradation in a stack will not progress uniformly, but occurs faster in the hot end of the stack. Furthermore, the model shows that the degradation is very dependent on stack temperature control scheme. Two experiments were conducted; a 500 hours...

  13. Evaluation of a cathode gas channel with a water absorption layer/waste channel in a PEFC by using visualization technique

    Energy Technology Data Exchange (ETDEWEB)

    Sugiura, Kimihiko; Nakata, Motoki; Yodo, Tadakatsu; Nishiguchi, Yusuke; Yamauchi, Makoto [Osaka Prefectural College of Technology, 26-12 Saiwai, Neyagawa, Osaka 572-8572 (Japan); Itoh, Yasuhiko [SANYO Electric Co., Ltd., 1-1-1 Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596 (Japan)

    2005-08-18

    The polymer electrolyte fuel cell (PEFC) cathode is a performance-limiting component due to the slower oxygen reduction kinetics and mass transport limitations imposed by water generated in an electrochemical reaction. This water assists the performance of the PEFC by preventing drying of the polymer electrolyte. Conversely, the water hinders the transport of the reactant species by blocking the pores in the gas diffusion layer. Moreover, the effective electrode area is decreased, causing the cathode channel to become clogged with supersaturated water from the gas diffusion layer. This problem is overcome by separating the gas channel and the waste channel, and installing a water absorption layer (WAL). The new 'WAL type' gas channel has an installed WAL in which the designed waste channel is compared with the gas flow characteristics of a conventional cathode gas channel by using the visualization technique. Gas flowing into the WAL type separator is barely blocked before the WAL absorbs water condensed in the cathode gas channel. Therefore, the WAL type separator effectively improves the PEFC performance. (author)

  14. Novel composite Zr/PBI-O-PhT membranes for HT-PEFC applications

    Directory of Open Access Journals (Sweden)

    Mikhail S. Kondratenko

    2013-08-01

    Full Text Available Novel composite membranes for high temperature polymer-electrolyte fuel cells (HT-PEFC based on a poly[oxy-3,3-bis(4′-benzimidazol-2″-ylphenylphtalide-5″(6″-diyl] (PBI-O-PhT polymer with small amounts of added Zr were prepared. It was shown in a model reaction between zirconium acetylacetonate (Zr(acac4 and benzimidazole (BI that Zr-atoms are capable to form chemical bonds with BI. Thus, Zr may be used as a crosslinking agent for PBI membranes. The obtained Zr/PBI-O-PhT composite membranes were examined by means of SAXS, thermomechanical analysis (TMA, and were tested in operating fuel cells by means of stationary voltammetry and impedance spectroscopy. The new membranes showed excellent stability in a 2000-hour fuel cell (FC durability test. The modification of the PBI-O-PhT films with Zr facilitated an increase of the phosphoric acid (PA uptake by the membranes, which resulted in an up to 2.5 times increased proton conductivity. The existence of an optimal amount of Zr content in the modified PBI-O-PhT film was shown. Larger amounts of Zr lead to a lower PA doping level and a reduced conductivity due to an excessively high degree of crosslinking.

  15. Novel composite Zr/PBI-O-PhT membranes for HT-PEFC applications.

    Science.gov (United States)

    Kondratenko, Mikhail S; Ponomarev, Igor I; Gallyamov, Marat O; Razorenov, Dmitry Yu; Volkova, Yulia A; Kharitonova, Elena P; Khokhlov, Alexei R

    2013-01-01

    Novel composite membranes for high temperature polymer-electrolyte fuel cells (HT-PEFC) based on a poly[oxy-3,3-bis(4'-benzimidazol-2″-ylphenyl)phtalide-5″(6″)-diyl] (PBI-O-PhT) polymer with small amounts of added Zr were prepared. It was shown in a model reaction between zirconium acetylacetonate (Zr(acac)4) and benzimidazole (BI) that Zr-atoms are capable to form chemical bonds with BI. Thus, Zr may be used as a crosslinking agent for PBI membranes. The obtained Zr/PBI-O-PhT composite membranes were examined by means of SAXS, thermomechanical analysis (TMA), and were tested in operating fuel cells by means of stationary voltammetry and impedance spectroscopy. The new membranes showed excellent stability in a 2000-hour fuel cell (FC) durability test. The modification of the PBI-O-PhT films with Zr facilitated an increase of the phosphoric acid (PA) uptake by the membranes, which resulted in an up to 2.5 times increased proton conductivity. The existence of an optimal amount of Zr content in the modified PBI-O-PhT film was shown. Larger amounts of Zr lead to a lower PA doping level and a reduced conductivity due to an excessively high degree of crosslinking.

  16. Enhanced water desalination efficiency in an air-cathode stacked microbial electrodeionization cell (SMEDIC)

    KAUST Repository

    Chehab, Noura A.

    2014-11-01

    A microbial desalination cell was developed that contained a stack of membranes packed with ion exchange resins between the membranes to reduce ohmic resistances and improve performance. This new configuration, called a stacked microbial electro-deionization cell (SMEDIC), was compared to a control reactor (SMDC) lacking the resins. The SMEDIC+S reactors contained both a spacer and 1.4±0.2. mL of ion exchange resin (IER) per membrane channel, while the spacer was omitted in the SMEDIC-S reactors and so a larger volume of resin (2.4±0.2. mL) was used. The overall extent of desalination using the SMEDIC with a moderate (brackish water) salt concentration (13. g/L) was 90-94%, compared to only 60% for the SMDC after 7 fed-batch cycles of the anode. At a higher (seawater) salt concentration of 35. g/L, the extent of desalination reached 61-72% (after 10 cycles) for the SMEDIC, compared to 43% for the SMDC. The improved performance was shown to be due to the reduction in ohmic resistances, which were 130. Ω (SMEDIC-S) and 180. Ω (SMEDIC+S) at the high salt concentration, compared to 210. Ω without resin (SMDC). These results show that IERs can improve performance of stacked membranes for both moderate and high initial salt concentrations. © 2014 Elsevier B.V.

  17. Development and characterisation of a portable direct methanol fuel cell stack

    Energy Technology Data Exchange (ETDEWEB)

    Oedegaard, A.

    2005-11-21

    This thesis deals with the development and characterisation of a portable direct methanol fuel cell stack. In addition, calculations of the transport of methanol and water in the membrane are compared with experimentally determined values. It also includes investigations of the behaviour of single-cells and some of its components, as the anode gas diffusion layer and the anode flow-field. For the addition of methanol to the anode feed loop, a passive concept based on a permeable tube was developed and verified by both experiments and simulations. (orig.)

  18. Nonlinear modelling of polymer electrolyte membrane fuel cell stack using nonlinear cancellation technique

    International Nuclear Information System (INIS)

    Barus, R. P. P.; Tjokronegoro, H. A.; Leksono, E.; Ismunandar

    2014-01-01

    Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range

  19. An air-breathing micro direct methanol fuel cell stack employing a single shared anode using silicon microfabrication technologies

    Science.gov (United States)

    Wang, Xiaohong; Zhou, Yan'an; Zhang, Qian; Zhu, Yiming; Liu, Litian

    2009-09-01

    This paper presents a silicon-based air-breathing micro direct methanol fuel cell (μDMFC) stack with a shared anode plate and two air-breathing cathode plates. Three kinds of anode plates featured by different methanol transport methods are designed and simulated. Microfabrication technologies, including double-side lithography and bulk-micromachining, are used to fabricate both anode and cathode silicon plates on the same wafer simultaneously. Three μDMFC stacks with different kinds of anodes are assembled, and characterized with a single cell together. Simulation and experimental results show that the μDMFC stack with fuel transport in a shared model has the best performance, and this stack achieves a power of 2.52 mW which is almost double that of a single cell of 1.28 mW.

  20. Dynamic modeling and experimental investigation of a high temperature PEM fuel cell stack

    DEFF Research Database (Denmark)

    Nguyen, Gia; Sahlin, Simon Lennart; Andreasen, Søren Juhl

    2016-01-01

    . This article presents the development of a dynamic model and the comparison with experimental data from a high temperature proton exchange membrane fuel cell stack operating on hydrogen with carbon monoxide concentrations up to 0.8%, and temperatures from 155 to 175◦C. The dynamic response of the fuel cell......High temperature polymer fuel cells operating at 100 to 200◦C require simple fuel processing and produce high quality heat that can integrate well with domestic heating systems. Because the transportation of hydrogen is challenging, an alternative option is to reform natural gas on site...... is investigated with simulated reformate gas. The dynamic response of the fuel cell stack was compared with a step change in current from 0.09 to 0.18 and back to 0.09 A/cm2 . This article shows that the dynamic model calculates the voltage at steady state well. The dynamic response for a change in current shows...

  1. Monopolar fuel cell stack coupled together without use of top or bottom cover plates or tie rods

    Science.gov (United States)

    Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor)

    2009-01-01

    A monopolar fuel cell stack comprises a plurality of sealed unit cells coupled together. Each unit cell comprises two outer cathodes adjacent to corresponding membrane electrode assemblies and a center anode plate. An inlet and outlet manifold are coupled to the anode plate and communicate with a channel therein. Fuel flows from the inlet manifold through the channel in contact with the anode plate and flows out through the outlet manifold. The inlet and outlet manifolds are arranged to couple to the inlet and outlet manifolds respectively of an adjacent one of the plurality of unit cells to permit fuel flow in common into all of the inlet manifolds of the plurality of the unit cells when coupled together in a stack and out of all of the outlet manifolds of the plurality of unit cells when coupled together in a stack.

  2. Evaluation of single and stack membraneless enzymatic fuel cells based on ethanol in simulated body fluids.

    Science.gov (United States)

    Galindo-de-la-Rosa, J; Arjona, N; Moreno-Zuria, A; Ortiz-Ortega, E; Guerra-Balcázar, M; Ledesma-García, J; Arriaga, L G

    2017-06-15

    The purpose of this work is to evaluate single and double-cell membraneless microfluidic fuel cells (MMFCs) that operate in the presence of simulated body fluids SBF, human serum and blood enriched with ethanol as fuels. The study was performed using the alcohol dehydrogenase enzyme immobilised by covalent binding through an array composed of carbon Toray paper as support and a layer of poly(methylene blue)/tetrabutylammonium bromide/Nafion and glutaraldehyde (3D bioanode electrode). The single MMFC was tested in a hybrid microfluidic fuel cell using Pt/C as the cathode. A cell voltage of 1.035V and power density of 3.154mWcm -2 were observed, which is the highest performance reported to date. The stability and durability were tested through chronoamperometry and polarisation/performance curves obtained at different days, which demonstrated a slow decrease in the power density on day 10 (14%) and day 20 (26%). Additionally, the cell was tested for ethanol oxidation in simulated body fluid (SBF) with ionic composition similar to human blood plasma. Those tests resulted in 0.93V of cell voltage and a power density close to 1.237mWcm -2 . The double cell MMFC (Stack) was tested using serum and human blood enriched with ethanol. The stack operated with blood in a serial connection showed an excellent cell performance (0.716mWcm -2 ), demonstrating the feasibility of employing human blood as energy source. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Long-term operation of a solid oxide cell stack for coelectrolysis of steam and CO2

    DEFF Research Database (Denmark)

    Agersted, Karsten; Chen, Ming; Blennow, Peter

    2016-01-01

    High temperature electrolysis based on solid oxide electrolysis cells (SOECs) is a promising technology for production of synthetic fuels. The SOEC units can be used for co-electrolysis of steam and CO2 to produce synthesis gas (syngas, CO+H2), which can be further processed to a variety...... consists of Ni/YSZ electrode supported SOEC cells with a footprint of 12X12 cm2. The co-electrolysis operation was carried out by supplying a mixture of 45 % CO2 + 45 % H2O + 10 % H2 to the stack operating with a fixed conversion of 39 % for steam and CO2. The stack was operated at different conditions...... of synthetic fuels such as methane, methanol or DME. Previously we have reported electrolysis operation of solid oxide cell stacks for periods up to about 1000 hours. In this work, operation of a Haldor Topsoe 8-cell stack (stack design of 2014) in co-electrolysis mode for 6000 hours is reported. The stack...

  4. Analysis of early ageing of PEM fuel cell stacks in a SAM light electric vehicle; Analyse der vorzeitigen Alterung des PEM-Stacks im LEV SAM - Jahresbericht/Schlussbericht 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hoeckel, M.; Ruge, M.

    2006-12-15

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) presents and discusses the results of investigations concerning a PEM fuel cell stack made at the University of Applied Sciences in Bienne, Switzerland. The six-kilowatt stack showed considerable loss of power over a two-year period. The reasons behind these losses are discussed, including those caused by insufficient sealing and long periods of standstill. The measurements made on the fuel cell stack are presented and discussed. The causes of the loss of power are discussed and resulting modifications made to the stack are described. Recommendations concerning the regular use of the fuel cell stack are made in order to ensure correct operation in the future.

  5. Experiment and numerical simulation on the performance of a kw-scale molten carbonate fuel cell stack

    Directory of Open Access Journals (Sweden)

    L. J. Yu

    2007-12-01

    Full Text Available A high-temperature molten carbonate fuel cell stack was studied experimentally and computationally. Experimental data for fuel cell temperature was obtained when the stack was running under given operational conditions. A 3-D CFD numerical model was set up and used to simulate the central fuel cell in the stack. It includes the mass, momentum and energy conservation equations, the ideal gas law and an empirical equation for cell voltage. The model was used to simulate the transient behavior of the fuel cell under the same operational conditions as those of the experiment. Simulation results show that the transient temperature and current and power densities reach their maximal values at the channel outlet. A comparison of the modeling results and the experimental data shows the good agreement.

  6. Numerical Simulation of a Mechanically Stacked GaAs/Ge Solar Cell

    Directory of Open Access Journals (Sweden)

    S. Enayat Taghavi Moghaddam

    2017-06-01

    Full Text Available In this paper, GaAs and Ge solar cells have been studied and simulated separately and the inner characteristics of each have been calculated including the energy band structure, the internal field, carrier density distribution in the equilibrium condition (dark condition and the voltage-current curve in the sun exposure with the output power of each one. Finally, the output power of these two mechanically stacked cells is achieved. Drift-diffusion model have been used for simulation that solved with numerically method and Gummel algorithm. In this simulation, the final cells exposed to sun light in a standard AM 1.5 G conditions and temperatures are 300° K. The efficiency of the proposed structure is 9.47%. The analytical results are compared with results of numerical simulations and the accuracy of the method used is shown.

  7. Reactivating the Ni-YSZ electrode in solid oxide cells and stacks by infiltration

    Science.gov (United States)

    Skafte, Theis Løye; Hjelm, Johan; Blennow, Peter; Graves, Christopher

    2018-02-01

    The solid oxide cell (SOC) could play a vital role in energy storage when the share of intermittent electricity production is high. However, large-scale commercialization of the technology is still hindered by the limited lifetime. Here, we address this issue by examining the potential for repairing various failure and degradation mechanisms occurring in the fuel electrode, thereby extending the potential lifetime of a SOC system. We successfully infiltrated the nickel and yttria-stabilized zirconia cermet electrode in commercial cells with Gd-doped ceria after operation. By this method we fully reactivated the fuel electrode after simulated reactant starvation and after carbon formation. Furthermore, by infiltrating after 900 h of operation, the degradation of the fuel electrode was reduced by a factor of two over the course of 2300 h. Lastly, the scalability of the concept is demonstrated by reactivating an 8-cell stack based on a commercial design.

  8. Monitoring the degradation of a solid oxide fuel cell stack during 10,000 h via electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Comminges, C.; Fu, Q.X.; Zahid, M.; Steiner, N. Yousfi; Bucheli, O.

    2012-01-01

    Highlights: ► Short SOFC stack tested during 10,000 h (simulated reformate gas, fuel utilization 73%). ► In situ electrochemical impedance spectroscopy (EIS) used for diagnosis. ► Stack degradation is mainly attributed to the increased ohmic resistance. ► Incidents happened with the setup accelerated the stack degradation. - Abstract: A 5-cell solid oxide fuel cell stack was tested during 10,000 h of continuous operation with simulated reformate gas as fuel (71 vol.% H 2 , 20.7 vol.% CO 2 and 8.3 vol.% steam) under high fuel utilization (73%) and constant current load (0.5 A cm −2 or 25 A) at 750 °C. In situ electrochemical impedance spectroscopy was used to monitor the evolution of ohmic and polarisation resistances of individual cells in the stack without interrupting the current load. Impedance spectra were recorded on each cell periodically (every 1000 h) or after uncontrolled incidents happened with the test setup. It has been found that the stack degradation is mainly attributed to the increased ohmic resistance, pointing to possible causes such as interconnect corrosion and reduced effective contact areas between cells and interconnects. The degradation rate during the first 5000 h was about 1% kh −1 , but increased afterwards up to 1.5% kh −1 due to the impact of incidents. Both types of incidents (fuel supply fluctuations and overloading failure of the electronic load) were complicated by inhomogeneous fuel distribution among cells, leading to most probably partial re-oxidation of the anode, accelerating the stack degradation.

  9. A new stack effluent monitoring system at the Risoe Hot Cell plant

    International Nuclear Information System (INIS)

    Boetter-Jensen, L.; Hedemann Jensen, P.; Lauridsen, B.

    1984-06-01

    This report describes a new stack effluent monitoring system that has been installed at the Hot Cell facility. It is an integrating iodine/particulate system consisting of a γ-shielded flow house in which a continous air sample from the ventilation channel ia sucked through coal and glass filter papers. Activity is accumulated on the filter papers and a thin plastic scintillator detects the β-radiation from the trapped iodine or particulate activity. The stack effluent monitoring system has a two-step regulating function as applied to the ventilation system, first switching it to a recirculating mode, and finally to building-seal after given releases of 131 I. The collection efficiency for iodine in form of elementary iodine (I 2 ) and methyliodide (CH 3 I) has been determined experimentally. The unwanted response from a noble gas release has also been determined from experiments. The noble gas response was determined from puff releases of the nuclide 41 Ar in the concrete cells. It is concluded that the iodine/particulate system is extremely sensitive and that it can easily detect iodine or particulate releases as low as a few MBq. A gamma monitor placed in connection with the iodine/particulate system detects Xe/Kr-releases as low as a few tens of MBq per second. (author)

  10. Manufacturing of cells and stacks for SOFC development, test and demonstration projects and SOFC hotbox design development

    Energy Technology Data Exchange (ETDEWEB)

    2008-09-15

    The purpose of this project is to support the continued SOFC development through manufacturing process optimization and manufacturing of SOFC cells and stacks. These cells and stacks will serve as a necessary base for the development activities and for the establishment of a number of test and demonstration activities. The manufacture will also help provide operating experience and reduce manufacturing cost. Another main focus of the manufacturing is to assure technical improvements and reliability. It is imperative to the eventual success of the technology that test and demonstration is carried out in the pre-market conditions that will exist for the next years in the three market segments targeted by TOFC (Distributed generation, micro CHP and APU incl. marine APU). Finally, the project also includes development activities focusing on the stack-system interface (hotbox design development) and on dealing with transients and start up and shut down times, which is of particular importance for APU and micro CHP applications. Three topics are addressed:1) Cell manufacture, including production development, capacity lift and manuf. of cells for test and demonstration; 2) Stack manufacture and test, including a test facility, stack manuf. and test of stacks in a system at HCV; 3) Hotbox design development, including design, prototype construction and testing. The progress of this project is documented. Major achievements are successful manufacture of adequate amounts of cells and stacks according to the application. Furthermore significant over-performance in design, construction and test of a methanol based hotbox prototype as well as publication of this. (au)

  11. Planar air-breathing micro-direct methanol fuel cell stacks based on micro-electronic-mechanical-system technology

    Science.gov (United States)

    Cao, Jianyu; Zou, Zhiqing; Huang, Qinghong; Yuan, Ting; Li, Zhilin; Xia, Baojia; Yang, Hui

    To meet the demands for high power micro-electronic devices, two silicon-based micro-direct methanol fuel cell (μDMFC) stacks consisting of six individual cells with two different anode flow fields were designed, fabricated and evaluated. Micro-electronic-mechanical-system (MEMS) technology was used to fabricate both flow field plate and fuel distribution plate on the silicon wafer. Experimental results show that either an individual cell or a stack with double serpentine-type flow fields presents better cell performance than those with pin-type flow fields. A μDMFC stack with double serpentine-type flow fields generates a peak output power of ca. 151 mW at a working voltage of 1.5 V, corresponding to an average power density of ca. 17.5 mW cm -2, which is ca. 20.7% higher than that with pin-type flow fields. The volume and weight of the stacks are only 5.3 cm 3 and 10.7 g, respectively. Such small stacks could be used as power sources for micro-electronic devices.

  12. Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions

    KAUST Repository

    Luo, Xi

    2013-07-01

    Waste heat can be captured as electrical energy to drive hydrogen evolution in microbial reverse-electrodialysis electrolysis cells (MRECs) by using thermolytic solutions such as ammonium bicarbonate. To determine the optimal membrane stack configuration for efficient hydrogen production in MRECs using ammonium bicarbonate solutions, different numbers of cell pairs and stack arrangements were tested. The optimum number of cell pairs was determined to be five based on MREC performance and a desire to minimize capital costs. The stack arrangement was altered by placing an extra low concentration chamber adjacent to anode chamber to reduce ammonia crossover. This additional chamber decreased ammonia nitrogen losses into anolyte by 60%, increased the coulombic efficiency to 83%, and improved the hydrogen yield to a maximum of 3.5mol H2/mol acetate, with an overall energy efficiency of 27%. These results improve the MREC process, making it a more efficient method for renewable hydrogen gas production. © 2013 Elsevier Ltd.

  13. Stacking of aligned cell sheets for layer-by-layer control of complex tissue structure.

    Science.gov (United States)

    Williams, Corin; Xie, Angela W; Yamato, Masayuki; Okano, Teruo; Wong, Joyce Y

    2011-08-01

    Children suffering from congenital heart defects (CHD) often require vascular reconstruction. Pediatric patients would greatly benefit from a cell-based tissue engineered vascular patch (TEVP) that has potential for growth. As artery structure and function are intimately linked, mimicking native tissue organization is an important design consideration. In this study, we cultured human mesenchymal stem cell on patterned thermo-responsive substrates. Cell alignment improved over time up to 2 wk in culture when sheets were ready for harvest. We then used cell sheets as "functional units" to build complex tissue structures that mimic native vascular smooth muscle cell organization in the medial layer of the artery. Cell sheets could be stacked using a gelatin stamp such that individual sheets in the construct were well aligned with each other (mimic of circumferential orientation) or at angles with respect to each other (mimic of herringbone structure). Controlling tissue organization layer-by-layer will be a powerful approach to building tissues with well defined and complex structure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Compact Design of 10 kW Proton Exchange Membrane Fuel Cell Stack Systems with Microcontroller Units

    Directory of Open Access Journals (Sweden)

    Hsiaokang Ma

    2014-04-01

    Full Text Available In this study, fuel, oxidant supply and cooling systems with microcontroller units (MCU are developed in a compact design to fit two 5 kW proton exchange membrane fuel cell (PEMFC stacks. At the initial stage, the testing facility of the system has a large volume (2.0 m × 2.0 m × 1.5 m with a longer pipeline and excessive control sensors for safe testing. After recognizing the performance and stability of stack, the system is redesigned to fit in a limited space (0.4 m × 0.5 m × 0.8 m. Furthermore, the stack performance is studied under different hydrogen recycling modes. Then, two similar 5 kW stacks are directly coupled with diodes to obtain a higher power output and safe operation. The result shows that the efficiency of the 5 kW stack is 43.46% with a purge period of 2 min with hydrogen recycling and that the hydrogen utilization rate µf is 66.31%. In addition, the maximum power output of the twin-coupled module (a power module with two stacks in electrical cascade/parallel arrangement is 9.52 kW.

  15. Modeling and simulation of high-temperature polymer electrolyte fuel cells; Modellierung und Simulation von Hochtemperatur-Polymerelektrolyt-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Kvesic, Mirko

    2012-07-01

    Fuel cells are electrochemical energy converters that convert chemical energy of constantly fed reactants directly into electricity. The most commonly used fuel gas in this respect is hydrogen, which is either produced in pure form by electrolysis, for example, or as a hydrogen-rich gas mixture (reformate gas), produced by reforming diesel or kerosene e.g. However, a disadvantage of reformate gas is that it contains additional carbon monoxide (CO), which leads to catalyst poisoning in the fuel cell. Since higher operating temperatures also lead to a higher CO tolerance, the use of high-temperature Polymer-Electrolyte-Fuel-Cells (HT-PEFCs) is particularly suitable for reformate operation. The aim of the presented work is the modeling and CFD-simulation of HT-PEFC stacks with the intention of gaining a better understanding of multi-physical processes in the stack operation as well as the optimization and analysis of existing stack designs. The geometric modeling used is based on the Porous Volume Model, which significantly reduces the required number of computing elements. Furthermore, the electrochemical models for hydrogen / air and reformate / air operation, which were taking the CO poisoning effects into account, are developed in this work and implemented in the software ANSYS / Fluent. The resulting simulations indicated the optimal flow configuration for the stack operation in terms of the homogeneous current density distribution, which has a positive effect on the stack aging. Thus, the current densities showed a strong homogeneity regarding the stack configuration anode / cathode in counter-flow and anode / cooling in co-flow. The influence of cooling strategies was examined for the stack performance in a similar way. In the following, the local temperature distribution as well as temperature peaks within the stack could be predicted and validated with experimental measurements. Further on, the model scalability and thus the general validity of the developed

  16. Long term performance degradation analysis and optimization of anode supported solid oxide fuel cell stacks

    International Nuclear Information System (INIS)

    Parhizkar, Tarannom; Roshandel, Ramin

    2017-01-01

    Highlights: • A degradation based optimization framework is developed. • The cost of electricity based on degradation of solid oxide fuel cells is minimized. • The effects of operating conditions on degradation mechanisms are investigated. • Results show 7.12% lower cost of electricity in comparison with base case. • Degradation based optimization is a beneficial concept for long term analysis. - Abstract: The main objective of this work is minimizing the cost of electricity of solid oxide fuel cell stacks by decelerating degradation mechanisms rate in long term operation for stationary power generation applications. The degradation mechanisms in solid oxide fuel cells are caused by microstructural changes, reactions between lanthanum strontium manganite and electrolyte, poisoning by chromium, carburization on nickel particles, formation of nickel sulfide, nickel coarsening, nickel oxidation, loss of conductivity and crack formation in the electrolyte. The rate of degradation mechanisms depends on the cell operating conditions (cell voltage and fuel utilization). In this study, the degradation based optimization framework is developed which determines optimum operating conditions to achieve a minimum cost of electricity. To show the effectiveness of the developed framework, optimization results are compared with the case that system operates at its design point. Results illustrate optimum operating conditions decrease the cost of electricity by 7.12%. The performed study indicates that degradation based optimization is a beneficial concept for long term performance degradation analysis of energy conversion systems.

  17. Maximizing power production in a stack of microbial fuel cells using multiunit optimization method.

    Science.gov (United States)

    Woodward, Lyne; Perrier, Michel; Srinivasan, Bala; Tartakovsky, Boris

    2009-01-01

    This study demonstrates real-time maximization of power production in a stack of two continuous flow microbial fuel cells (MFCs). To maximize power output, external resistances of two air-cathode membraneless MFCs were controlled by a multiunit optimization algorithm. Multiunit optimization is a recently proposed method that uses multiple similar units to optimize process performance. The experiment demonstrated fast convergence toward optimal external resistance and algorithm stability during external perturbations (e.g., temperature variations). Rate of the algorithm convergence was much faster than in traditional maximum power point tracking algorithms (MPPT), which are based on temporal perturbations. A power output of 81-84 mW/L(A) (A = anode volume) was achieved in each MFC. 2009 American Institute of Chemical Engineers

  18. A NOVEL INTEGRATED STACK APPROACH FOR REALIZING MECHANICALLY ROBUST SOLID OXIDE FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Scott A. Barnett; Tammy Lai; Jiang Liu

    2001-11-01

    SOFCs are a very promising energy conversion technology for utilization of fossil fuels. The proposed project is to improve the viability of SOFCs by introducing a novel stacking geometry. The geometry involved has all active SOFC components and the interconnect deposited as thin layers on an electrically insulating support. This allows the choice of a support material that provides optimal mechanical toughness and thermal shock resistance. The supports are in the form of flattened tubes, providing relatively high strength, high packing densities, and minimizing the number of seals required. The integration of SOFCs and interconnects on the same support has several other advantages including the reduction of electrical resistances associated with pressure contacts between the cells and interconnects, relaxation of fabrication tolerances required for pressure contacts, reduction of ohmic losses, and reduction of interconnect conductivity requirements. In this report, we describe the processing methodologies that have been developed for fabricating the integrated solid oxide fuel cell (ISOFC), along with results on characterization of the component materials: support, electrolyte, anode, cathode, and interconnect. Screen printing was the primary processing method developed. A centrifugal casting technique was also developed for depositing thin 8 mol % yttrium stabilized zirconia (YSZ) electrolyte layers on porous NiO-YSZ anode substrates. Dense pinhole-free YSZ coatings were obtained by co-sintering the bi-layers at 1400 C. After depositing La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSM)-YSZ cathodes, single SOFCs produced near-theoretical open-circuit voltages and power densities of 0.55 W/cm{sup 2} at 800 C. Initial stack operation results are also described.

  19. Assembly and Stacking of Flow-through Enzymatic Bioelectrodes for High Power Glucose Fuel Cells.

    Science.gov (United States)

    Abreu, Caroline; Nedellec, Yannig; Gross, Andrew J; Ondel, Olivier; Buret, Francois; Goff, Alan Le; Holzinger, Michael; Cosnier, Serge

    2017-07-19

    Bioelectrocatalytic carbon nanotube based pellets comprising redox enzymes were directly integrated in a newly conceived flow-through fuel cell. Porous electrodes and a separating cellulose membrane were housed in a glucose/oxygen biofuel cell design with inlets and outlets allowing the flow of electrolyte through the entire fuel cell. Different flow setups were tested and the optimized single cell setup, exploiting only 5 mmol L -1 glucose, showed an open circuit voltage (OCV) of 0.663 V and provided 1.03 ± 0.05 mW at 0.34 V. Furthermore, different charge/discharge cycles at 500 Ω and 3 kΩ were applied to optimize long-term stability leading to 3.6 J (1 mW h) of produced electrical energy after 48 h. Under continuous discharge at 6 kΩ, about 0.7 mW h could be produced after a 24 h period. The biofuel cell design further allows a convenient assembly of several glucose biofuel cells in reduced volumes and their connection in parallel or in series. The configuration of two biofuel cells connected in series showed an OCV of 1.35 V and provided 1.82 ± 0.09 mW at 0.675 V, and when connected in parallel, showed an OCV of 0.669 V and provided 1.75 ± 0.09 mW at 0.381 V. The presented design is conceived to stack an unlimited amount of biofuel cells to reach the necessary voltage and power for portable electronic devices without the need for step-up converters or energy managing systems.

  20. Electrodeposited ultrafine TaOx/CB catalysts for PEFC cathode application: Their oxygen reduction reaction kinetics

    KAUST Repository

    Seo, Jeongsuk

    2014-12-01

    Ultrafine TaOx nanoparticles were electrodeposited on carbon black (CB) powder in a nonaqueous Ta complex solution at room temperature, and the resultant TaOx/CB catalysts were assessed as oxygen reduction reaction (ORR) electrocatalysts for polymer electrolyte fuel cell (PEFC) cathodes. The Ta electrodeposition process was scaled up using a newly designed working electrode containing a CB dense layer, without introducing any binder such as the ionomer Nafion in the electrode for electrodeposition. The electrodeposited TaOx/CB powders were removed from the deposition electrode and subsequent H2 treatment at varying temperatures between 523 and 1073 K was attempted to increase the ORR performance. The TaOx/CB samples were characterized by SEM, STEM, XPS, and EELS measurements. XPS and EELS results indicated the reduced nature of the Ta species caused by the high-temperature treatment in H2, while STEM images clearly revealed that the TaOx particles aggregated as the treatment temperature increased. When the TaOx/CB catalyst, which was treated at 873 K for 2 h, was deposited on a glassy carbon substrate with Nafion ionomer, it resulted in the highest activity among the samples investigated, giving an onset potential of 0.95 VRHE at -2 μA cm-2 in a 0.1 M H2SO4 solution. Moreover, the long-term stability test with 10,000 cycles of the voltammetry only led to a 6% loss in the ORR currents, demonstrating the high stability of the TaOx/CB catalysts. Kinetic analysis by R(R)DE indicated that the four-electron transfer pathway in the ORR process was dominant for this TaOx/CB catalyst, and Tafel plots showed a slope corresponding to a one-electron reaction for the rate-determining step.

  1. Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells.

    Science.gov (United States)

    Hsu, Chang-Lung; Lin, Cheng-Te; Huang, Jen-Hsien; Chu, Chih-Wei; Wei, Kung-Hwa; Li, Lain-Jong

    2012-06-26

    Large-area graphene grown by chemical vapor deposition (CVD) is a promising candidate for transparent conducting electrode applications in flexible optoelectronic devices such as light-emitting diodes or organic solar cells. However, the power conversion efficiency (PCE) of the polymer photovoltaic devices using a pristine CVD graphene anode is still not appealing due to its much lower conductivity than that of conventional indium tin oxide. We report a layer-by-layer molecular doping process on graphene for forming sandwiched graphene/tetracyanoquinodimethane (TCNQ)/graphene stacked films for polymer solar cell anodes, where the TCNQ molecules (as p-dopants) were securely embedded between two graphene layers. Poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester (P3HT/PCBM) bulk heterojunction polymer solar cells based on these multilayered graphene/TCNQ anodes are fabricated and characterized. The P3HT/PCBM device with an anode structure composed of two TCNQ layers sandwiched by three CVD graphene layers shows optimum PCE (∼2.58%), which makes the proposed anode film quite attractive for next-generation flexible devices demanding high conductivity and transparency.

  2. STEM Tomography Imaging of Hypertrophied Golgi Stacks in Mucilage-Secreting Cells.

    Science.gov (United States)

    Kang, Byung-Ho

    2016-01-01

    Because of the weak penetrating power of electrons, the signal-to-noise ratio of a transmission electron micrograph (TEM) worsens as section thickness increases. This problem is alleviated by the use of the scanning transmission electron microscopy (STEM). Tomography analyses using STEM of thick sections from yeast and mammalian cells are of higher quality than are bright-field (BF) images. In this study, we compared regular BF tomograms and STEM tomograms from 500-nm thick sections from hypertrophied Golgi stacks of alfalfa root cap cells. Due to their thickness and intense heavy metal staining, BF tomograms of the thick sections suffer from poor contrast and high noise levels. We were able to mitigate these drawbacks by using STEM tomography. When we performed STEM tomography of densely stained chloroplasts of Arabidopsis cotyledon, we observed similar improvements relative to BF tomograms. A longer time is required to collect a STEM tilt series than similar BF TEM images, and dynamic autofocusing required for STEM imaging often fails at high tilt angles. Despite these limitations, STEM tomography is a powerful method for analyzing structures of large or dense organelles of plant cells.

  3. Evaluation of performance enhancement by condensing the anode moisture in a proton exchange membrane fuel cell stack

    International Nuclear Information System (INIS)

    Zhang, Shouzhen; Chen, Ben; Shu, Peng; Luo, Maji; Xie, Changjun; Quan, Shuhai; Tu, Zhengkai; Yu, Yi

    2017-01-01

    Highlights: • Anode Moisture condensing is introduced into a PEMFC stack. • Performance improves at high current density and high stack temperature after AMC. • MEA is dehydrated and poor performance occurs at low current density during AMC. - Abstract: Water management is an important issue for proton exchange membrane fuel cells. Back-diffusion of water from cathode to anode often occurs due to the differences in concentration and pressure during operation of fuel cell, resulting in the flooding and severe carbon corrosion in the cathode. Herein, we report a novel method of anode moisture condensing (AMC) in which a condenser is set at the outlet of the anode to cool down the anode moisture. With the help of AMC, liquid water is condensed from the moisture due to the variation of the saturated pressure of water vapor, which can accelerate the evaporating of the liquid water inside the anode and mitigate the probability of water flooding. A ten-cell stack with a condenser at the outlet of the anode is fabricated to systematically investigate the effects of the stack temperature and flow rate on the stack performance. The result shows that the PEMFC performance can be greatly improved at high current density and high operation temperature under the condition of AMC. The stack exhibits very similar performance before and after application of AMC below 500 mA cm −2 , whereas the output power increases from 405 W to 436 W at 600 mA cm −2 at 65 °C. With further increase in operation temperature to 80 °C, the average voltage increases from 0.598 V to 0.641 V even at 500 mA cm −2 . Moreover, the application of AMC can speed up the water evaporation, leading to the dehydration of the membrane and thus poor performance of PEMFC at low current density.

  4. Experimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Nielsen, Mads Pagh

    2008-01-01

    and automotive applications. Using a liquid hydrocarbon as e.g. methanol as the hydrogen carrier and reforming it to a hydrogen rich gas can solve some of these storage issues. The work presented here examines the use of a heat exchanger methanol reformer for use with a HTPEM fuel cell stack. Initial...

  5. Technology update: Nickel-hydrogen Common Pressure Vessel (CPV) 2.5V twin stack cell designs

    Science.gov (United States)

    Harvey, Tim; Miller, Lee

    1992-01-01

    Information is given in viewgraph form on the nickel hydrogen common pressure vessel (CPV) 2.5V twin stack cell designs. Information given includes an energy analysis, a CPV design comparison, a summary of CPV characterization testing, a comparison of discharge voltage among designs, and life test performance summaries.

  6. Novel variable structure control for the temperature of PEM fuel cell stack based on the dynamic thermal affine model

    International Nuclear Information System (INIS)

    Li Xi; Deng Zhonghua; Wei Dong; Xu Chunshan; Cao Guangyi

    2011-01-01

    Highlights: → The affine state space control-oriented model is designed and realized for the variant structure control (VSC) strategy. → The VSC with rapid-smooth reaching law and rapid-convergent sliding mode is presented for the PEMFC stack temperature. → Numerical results show that the method can control the operating temperature to reach the target value satisfactorily. - Abstract: Dynamic thermal management of proton exchange membrane fuel cell stack (PEMFC) is a very important aspect, which plays an important role on electro-reaction. Its variation also has a significant influence on the performance and lifespan of PEMFC stack. The temperature of stack should be controlled efficiently, which has great impacts on the performance of PEMFC due to the thermal variation. Based on the control-oriented dynamic thermal affine model identified by optimization algorithm, a novel variable structures control (VSC) with rapid-smooth reaching law (RSRL) and rapid-convergent sliding mode (FCSM) is presented for the temperature control system of PEMFC stack. Numerical test results show that the method can control the operating temperature to reach the target value satisfactorily, which proves the effectiveness and robustness of the algorithm.

  7. The performance of a grid-tied microgrid with hydrogen storage and a hydrogen fuel cell stack

    International Nuclear Information System (INIS)

    Zhang, Linfeng; Xiang, Jing

    2014-01-01

    Highlights: • Two microgrids with different structure are simulated. • Their performance are comprehensively evaluated and compared. • The one with DES and a FC stack has high environmental and quality indexes. - Abstract: In a heat-power system, the use of distributed energy generation and storage not only improves system’s efficiency and reliability but also reduce the emission. This paper is focused on the comprehensive performance evaluation of a grid-tied microgrid, which consists of a PV system, a hydrogen fuel cell stack, a PEM electrolyzer, and a hydrogen tank. Electricity and heat are generated in this system, to meet the local electric and heat demands. The surplus electricity can be stored as hydrogen, which is supplied to the fuel cell stack to generate heat and power as needed. The performance of the microgrid is comprehensively evaluated and is compared with another microgrid without a fuel cell stack. As a result, the emission and the service quality in the first system are higher than those in the second one. But they both have the same overall performance

  8. Experimental investigation on a turbine compressor for air supply system of a fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Masayasu [Sumitomo Heavy Industries, Ltd., Yokosuka (Japan); Tsuchiyama, Syozo [Shipbuilding Research Association, Minato-ku, Tokyo (Japan)

    1996-12-31

    This report covers part of a joint study on a PEFC propulsion system for surface ships, summarized in a presentation to this Seminar, entitled {open_quotes}Study on a Polymer Electrolyte Fuel Cell (PEFC) Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The aspect treated here concerns a study on the air supply system for the PEFC, with particular reference to system components.

  9. Analysis of energy and water management in terms of fuel-cell electricity generation

    Science.gov (United States)

    Menzer, R.; Höhlein, B.

    Hydrogen-powered low-temperature fuel cells (PEFCs) are the energy conversion units in vehicles with methanol as the energy carrier and a power train consisting of the following main units: methanol reformer (H2 production) including catalytic converter, gas treatment, PEFC with peripheral units, electric motor with electric controllers and gearbox. The process engineering analysis is based on a simulation model and describes the energy and water management as a function of different assumptions as well as operating and ambient conditions for net electricity generation in a PEFC-powered power train. In particular, it presents an approach for balancing both water recovery (PEFC) and the use of water for the methanol reforming process as well as for the humidification of the PEFC. The overall balances present an optimised energy management including peripheral air compression for the PEFC.

  10. Development and testing of a hybrid system with a sub-kW open-cathode type PEM (proton exchange membrane) fuel cell stack

    International Nuclear Information System (INIS)

    Huang, Zhen-Ming; Su, Ay; Liu, Ying-Chieh

    2014-01-01

    In this study, the performance of a polymer electrolyte membrane fuel cell stack has been evaluated for a hybrid power system test platform. To simulate vehicle acceleration, the stack was operated under dynamic-loading, and to demonstrate the exchange of power flow between two power sources the hybrid power system was tested under three different modes. A unit cell was fabricated for high stack performance and the stack was constructed with 18 open-cathode type fuel cells. Air which acts as a coolant as well as an oxidant for electrochemical reactions is provided by a pair of fans. The capabilities of the stack for hybrid power system test platform were validated by successful dynamic-loading tests. The performance of the stack for various air fan voltage was evaluated and an optimal value was concluded. The conditions like inlet temperature of H 2 and the stack current were established for maximum power. It was also found that humidification of hydrogen at anode inlet degrades the stack performance and stability due to flooding. Evidence shows that for the higher overall performance, the fuel cell acts continuously on constant current output. The study contributes to the design of mobility hybrid system to get better performance and reliability. - Highlights: • An open-cathode type PEMFC (polymer electrolyte membrane fuel cell) stack (rated output 300 W) was fabricated. • The open-cathode configuration simplifies the design of a stack system. • Assess the feasibility of combining a fuel cell stack in a hybrid system. • The study contributes to the design of mobility hybrid system to get better performance and reliability

  11. Bilayer Phosphorene: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells.

    Science.gov (United States)

    Dai, Jun; Zeng, Xiao Cheng

    2014-04-03

    Phosphorene, a monolayer of black phosphorus, is promising for nanoelectronic applications not only because it is a natural p-type semiconductor but also because it possesses a layer-number-dependent direct bandgap (in the range of 0.3 to 1.5 eV). On basis of the density functional theory calculations, we investigate electronic properties of the bilayer phosphorene with different stacking orders. We find that the direct bandgap of the bilayers can vary from 0.78 to 1.04 eV with three different stacking orders. In addition, a vertical electric field can further reduce the bandgap to 0.56 eV (at the field strength 0.5 V/Å). More importantly, we find that when a monolayer of MoS2 is superimposed with the p-type AA- or AB-stacked bilayer phosphorene, the combined trilayer can be an effective solar-cell material with type-II heterojunction alignment. The power conversion efficiency is predicted to be ∼18 or 16% with AA- or AB-stacked bilayer phosphorene, higher than reported efficiencies of the state-of-the-art trilayer graphene/transition metal dichalcogenide solar cells.

  12. Directly connected series coupled HTPEM fuel cell stacks to a Li-ion battery DC bus for a fuel cell electrical vehicle

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Ashworth, Leanne; Remón, Ian Natanael

    2008-01-01

    The work presented in this paper examines the use of pure hydrogen fuelled high temperature polymer electrolyte membrane (HTPEM) fuel cell stacks in an electrical car, charging a Li-ion battery pack. The car is equipped with two branches of two series coupled 1 kW fuel cell stacks which...... are connected directly parallel to the battery pack during operation. This enables efficient charging of the batteries for increased driving range. With no power electronics used, the fuel cell stacks follow the battery pack voltage, and charge the batteries passively. This saves the electrical and economical...... losses related to these components and their added system complexity. The new car battery pack consists of 23 Li-ion battery cells and the charging and discharging are monitored by a battery management system (BMS) which ensures safe operating conditions for the batteries. The direct connection...

  13. All-solution-processed inverted organic solar cell with a stacked hole-transporting layer

    Science.gov (United States)

    Lin, Wen-Kai; Su, Shui-Hsiang; Liu, Che-Chun; Yokoyama, Meiso

    2014-11-01

    In this study, inverted organic solar cells (IOSCs) have been fabricated and characterized. A sol-gel zinc oxide (ZnO) film is used as a hole-blocking layer (HBL). Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and copper phthalocyanine (CuPc) are used as a hole-transporting layer (HTL). The HBL, active layer, and HTL films are fabricated by spin-coating technique. The anode is fabricated from Ag nanoparticles by drop titration using a Pasteur burette. Experimental results show that the PEDOT:PSS/CuPc stacked HTL provides a stepwise hole-transporting energy diagram configuration, which subsequently increases the charge carrier transporting capability and extracts holes from the active layer to the anode. The characteristics of the IOSCs were optimized and exhibited an open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and power conversion efficiency (PCE) of 0.53 V, 6.13 mA/cm2, 37.53%, and 1.24%, respectively, under simulated AM1.5G illumination of 100 mW/cm2. Hence, a solution process is feasible for fabricating low-cost and large-area solar energy devices.

  14. Application of current steps and design of experiments methodology to the detection of water management faults in a proton exchange membrane fuel cell stack

    Science.gov (United States)

    Moçotéguy, Philippe; Ludwig, Bastian; Yousfi Steiner, Nadia

    2016-01-01

    We apply a 25-1 fractional factorial Design of Experiments (DoE) test plan in order to discriminate the direct effects and interactions of five factors on the water management of a 500 We PEMFC stack. The stack is submitted to current steps between different operating levels and several responses are extracted for the DoE analysis. A strong ageing effect on stack and cell performances is observed. Therefore, in order to perform the DoE analysis, responses which values are too strongly affected by ageing are ;corrected; prior to the analysis. A ;virtual; stack, considered as ;healthy;, is also ;reconstructed; by ;putting in series; the cells exhibiting very low performance drop. The results show that stacks and cells' resistivities are mostly impacted by direct effects of both temperature and cathodic inlet relative humidity and by compensating interaction between temperature and anodic overstoichiometric ratio. It also appears that two responses are able to distinguish a ;healthy; stack from a degraded stack: heterogeneities in cell voltages and cell resistivities distributions. They are differently impacted by considered effects and interactions. Thus, a customised water management strategy could be developed, depending on the stack's state of health to maintain it in the best possible operating conditions.

  15. Oxidation behavior of metallic interconnect in solid oxide fuel cell stack

    Science.gov (United States)

    Li, Jun; Zhang, Wenying; Yang, Jiajun; Yan, Dong; Pu, Jian; Chi, Bo; Jian, Li

    2017-06-01

    Oxidation behavior of integrated interconnect with bipolar plate and corrugated sheet made by ferrite steel SUS430 is investigated and compared in simulated environment and in a realistic stack. Electrical current is found to have a direction-related impact on the thickness of the Cr2O3/MnCr2O4 composite oxide scale. Oxide scale of the interconnect aged in the stack exhibits a dual-layered structure of a complex Mn-Cr oxide layer covered by iron oxide. The oxidation rates vary greatly depending on its local environment, with different thermal, electrical density, as well as gas composition conditions. By analyzing the thickness distribution of oxide scale and comparing them with the simulated test result, the oxidation behavior of interconnect in stack is described in high definition. ASR distribution is also conducted by calculation, which could help further understanding the behavior of stack degradation.

  16. Toughness of membranes applied in polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, J.; Brack, H.P.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Since several years we apply the radiation-grafting technique to prepare polymeric membranes for application in polymer electrolyte fuel cells (PEFCs). Our investigations presented here focus on changes in toughness of these materials after the various synthesis steps and the importance of membrane toughness for their application in PEFCs. (author) 2 figs., 4 refs.

  17. Parametric exergy analysis of a tubular Solid Oxide Fuel Cell (SOFC) stack through finite-volume model

    International Nuclear Information System (INIS)

    Calise, F.; Ferruzzi, G.; Vanoli, L.

    2009-01-01

    This paper presents a very detailed local exergy analysis of a tubular Solid Oxide Fuel Cell (SOFC) stack. In particular, a complete parametric analysis has been carried out, in order to assess the effects of the synthesis/design parameters on the local irreversibilities in the components of the stack. A finite-volume axial-symmetric model of the tubular internal reforming Solid Oxide Fuel Cell stack under investigation has been used. The stack consists of: SOFC tubes, tube-in-tube pre-reformer and tube and shell catalytic burner. The model takes into account the effects of heat/mass transfer and chemical/electrochemical reactions. The model allows one to predict the performance of a SOFC stack once a series of design and operative parameters are fixed, but also to investigate the source and localization of inefficiency. To this scope, an exergy analysis was implemented. The SOFC tube, the pre-reformer and the catalytic burner are discretized along their longitudinal axes. Detailed models of the kinetics of the reforming, catalytic combustion and electrochemical reactions are implemented. Pressure drops, convection heat transfer and overvoltages are calculated on the basis of the work previously developed by the authors. The heat transfer model includes the contribution of thermal radiation, so improving the models previously used by the authors. Radiative heat transfer is calculated on the basis of the slice-to-slice configuration factors and corresponding radiosities. On the basis of this thermochemical model, an exergy analysis has been carried out, in order to localize the sources and the magnitude of irreversibilities along the components of the stack. In addition, the main synthesis/design variables were varied in order to assess their effect on the exergy destruction within the component to which the parameter directly refers ('endogenous' contribution) and on the exergy destruction of all remaining components ('exogenous' contribution). Then, this analysis

  18. Numerical investigations on two-phase flow in polymer electrolyte fuel cells

    NARCIS (Netherlands)

    Qin, C.Z.

    2012-01-01

    Numerical modeling plays an important role in understanding various transport processes in polymer electrolyte fuel cells (PEFCs). It can not only provide insights into the development of new PEFC architectures, but also optimize operating conditions for better cell performance. Water balance is

  19. Simulation of a tubular solid oxide fuel cell stack using AspenPlusTM unit operation models

    International Nuclear Information System (INIS)

    Zhang, W.; Croiset, E.; Douglas, P.L.; Fowler, M.W.; Entchev, E.

    2005-01-01

    The design of a fuel cell system involves both optimization of the fuel cell stack and the balance of plant with respect to efficiency and economics. Many commercially available process simulators, such as AspenPlus TM , can facilitate the analysis of a solid oxide fuel cell (SOFC) system. A SOFC system may include fuel pre-processors, heat exchangers, turbines, bottoming cycles, etc., all of which can be very effectively modelled in process simulation software. The current challenge is that AspenPlus TM or any other commercial process simulators do not have a model of a basic SOFC stack. Therefore, to enable performing SOFC system simulation using one of these simulators, one must construct an SOFC stack model that can be implemented in them. The most common approach is to develop a complete SOFC model in a programming language, such as Fortran, Visual Basic or C++, first and then link it to a commercial process simulator as a user defined model or subroutine. This paper introduces a different approach to the development of a SOFC model by utilizing existing AspenPlus TM functions and existing unit operation modules. The developed ''AspenPlus TM SOFC'' model is able to provide detailed thermodynamic and parametric analyses of the SOFC operation and can easily be extended to study the entire power plant consisting of the SOFC and the balance of plant without the requirement for linking with other software. Validation of this model is performed by comparison to a Siemens-Westinghouse 100 kW class tubular SOFC stack. Sensitivity analyses of major operating parameters, such as utilization factor (U f ), current density (I c ) and steam-carbon ratio (S/C), were performed using the developed model, and the results are discussed in this paper

  20. Three-dimensional computational fluid dynamics modelling and experimental validation of the Jülich Mark-F solid oxide fuel cell stack

    Science.gov (United States)

    Nishida, R. T.; Beale, S. B.; Pharoah, J. G.; de Haart, L. G. J.; Blum, L.

    2018-01-01

    This work is among the first where the results of an extensive experimental research programme are compared to performance calculations of a comprehensive computational fluid dynamics model for a solid oxide fuel cell stack. The model, which combines electrochemical reactions with momentum, heat, and mass transport, is used to obtain results for an established industrial-scale fuel cell stack design with complex manifolds. To validate the model, comparisons with experimentally gathered voltage and temperature data are made for the Jülich Mark-F, 18-cell stack operating in a test furnace. Good agreement is obtained between the model and experiment results for cell voltages and temperature distributions, confirming the validity of the computational methodology for stack design. The transient effects during ramp up of current in the experiment may explain a lower average voltage than model predictions for the power curve.

  1. Algebraic stacks

    Indian Academy of Sciences (India)

    generally, any fiber product) is not uniquely defined: it is only defined up to unique isomorphism. ..... Fiber product. Given two morphisms f1 : F1 ! G, f2 : F2 ! G, we define a new stack. F1 آG F2 (with projections to F1 and F2) as follows. The objects are triples ًX1; X2; ق ..... In fact, any Artin stack F can be defined in this fashion.

  2. Cooling Performance Characteristics of the Stack Thermal Management System for Fuel Cell Electric Vehicles under Actual Driving Conditions

    Directory of Open Access Journals (Sweden)

    Ho-Seong Lee

    2016-04-01

    Full Text Available The cooling performance of the stack radiator of a fuel cell electric vehicle was evaluated under various actual road driving conditions, such as highway and uphill travel. The thermal stability was then optimized, thereby ensuring stable operation of the stack thermal management system. The coolant inlet temperature of the radiator in the highway mode was lower than that associated with the uphill mode because the corresponding frontal air velocity was higher than obtained in the uphill mode. In both the highway and uphill modes, the coolant temperatures of the radiator, operated under actual road driving conditions, were lower than the allowable limit (80 °C; this is the maximum temperature at which stable operation of the stack thermal management system of the fuel cell electric vehicle could be maintained. Furthermore, under actual road driving conditions in uphill mode, the initial temperature difference (ITD between the coolant temperature and air temperature of the system was higher than that associated with the highway mode; this higher ITD occurred even though the thermal load of the system in uphill mode was greater than that corresponding to the highway mode. Since the coolant inlet temperature is expected to exceed the allowable limit (80 °C in uphill mode under higher ambient temperature with air conditioning system operation, the FEM design layout should be modified to improve the heat capacity. In addition, the overall volume of the stack cooling radiator is 52.2% higher than that of the present model and the coolant inlet temperature of the improved radiator is 22.7% lower than that of the present model.

  3. Precise stacking of decellularized extracellular matrix based 3D cell-laden constructs by a 3D cell printing system equipped with heating modules.

    Science.gov (United States)

    Ahn, Geunseon; Min, Kyung-Hyun; Kim, Changhwan; Lee, Jeong-Seok; Kang, Donggu; Won, Joo-Yun; Cho, Dong-Woo; Kim, Jun-Young; Jin, Songwan; Yun, Won-Soo; Shim, Jin-Hyung

    2017-08-17

    Three-dimensional (3D) cell printing systems allow the controlled and precise deposition of multiple cells in 3D constructs. Hydrogel materials have been used extensively as printable bioinks owing to their ability to safely encapsulate living cells. However, hydrogel-based bioinks have drawbacks for cell printing, e.g. inappropriate crosslinking and liquid-like rheological properties, which hinder precise 3D shaping. Therefore, in this study, we investigated the influence of various factors (e.g. bioink concentration, viscosity, and extent of crosslinking) on cell printing and established a new 3D cell printing system equipped with heating modules for the precise stacking of decellularized extracellular matrix (dECM)-based 3D cell-laden constructs. Because the pH-adjusted bioink isolated from native tissue is safely gelled at 37 °C, our heating system facilitated the precise stacking of dECM bioinks by enabling simultaneous gelation during printing. We observed greater printability compared with that of a non-heating system. These results were confirmed by mechanical testing and 3D construct stacking analyses. We also confirmed that our heating system did not elicit negative effects, such as cell death, in the printed cells. Conclusively, these results hold promise for the application of 3D bioprinting to tissue engineering and drug development.

  4. A review of cell-scale multiphase flow modeling, including water management, in polymer electrolyte fuel cells

    International Nuclear Information System (INIS)

    Andersson, M.; Beale, S.B.; Espinoza, M.; Wu, Z.; Lehnert, W.

    2016-01-01

    on the transport processes inside the porous GDL are extensively discussed. The selection of a computational approach, for the two-phase flow within a GDL or GC, for example, should be based on the computational resources available, concerns about time and scale (microscale, cell scale, stack scale or system scale), as well as accuracy requirements. One important feature, included in some computational approaches, is the possibility to track the front between the liquid and the gas phases. To build a PEFC model, one must make a large number of assumptions. Some assumptions have a negligible effect on the results and reliability of the model. However, other assumptions may significantly affect the result. It is strongly recommended in any modeling paper to clearly state the assumptions being implemented, for others to be able to judge the work. It is important to note that a large fraction of the expressions that presently are used to describe the transport processes inside PEFC GDLs were originally developed to describe significantly different systems, such as sand or rocks. Moreover, the flow pattern maps and pressure drop correlations of two phase flow in micro channels may not be applicable for GCs due to one side wall being porous, with the resulting interaction between the GDL and GC.

  5. Bipolar stacked quasi-all-solid-state lithium secondary batteries with output cell potentials of over 6 V.

    Science.gov (United States)

    Matsuo, Takahiro; Gambe, Yoshiyuki; Sun, Yan; Honma, Itaru

    2014-08-15

    Designing a lithium ion battery (LIB) with a three-dimensional device structure is crucial for increasing the practical energy storage density by avoiding unnecessary supporting parts of the cell modules. Here, we describe the superior secondary battery performance of the bulk all-solid-state LIB cell and a multilayered stacked bipolar cell with doubled cell potential of 6.5 V, for the first time. The bipolar-type solid LIB cell runs its charge/discharge cycle over 200 times in a range of 0.1-1.0 C with negligible capacity decrease despite their doubled output cell potentials. This extremely high performance of the bipolar cell is a result of the superior battery performance of the single cell; the bulk all-solid-state cell has a charge/discharge cycle capability of over 1500 although metallic lithium and LiFePO₄ are employed as anodes and cathodes, respectively. The use of a quasi-solid electrolyte consisting of ionic liquid and Al₂O₃ nanoparticles is considered to be responsible for the high ionic conductivity and electrochemical stability at the interface between the electrodes and the electrolyte. This paper presents the effective applications of SiO₂, Al₂O₃, and CeO₂ nanoparticles and various Li(+) conducting ionic liquids for the quasi-solid electrolytes and reports the best ever known cycle performances. Moreover, the results of this study show that the bipolar stacked three-dimensional device structure would be a smart choice for future LIBs with higher cell energy density and output potential. In addition, our report presents the advantages of adopting a three-dimensional cell design based on the solid-state electrolytes, which is of particular interest in energy-device engineering for mobile applications.

  6. Bipolar stacked quasi-all-solid-state lithium secondary batteries with output cell potentials of over 6 V

    Science.gov (United States)

    Matsuo, Takahiro; Gambe, Yoshiyuki; Sun, Yan; Honma, Itaru

    2014-01-01

    Designing a lithium ion battery (LIB) with a three-dimensional device structure is crucial for increasing the practical energy storage density by avoiding unnecessary supporting parts of the cell modules. Here, we describe the superior secondary battery performance of the bulk all-solid-state LIB cell and a multilayered stacked bipolar cell with doubled cell potential of 6.5 V, for the first time. The bipolar-type solid LIB cell runs its charge/discharge cycle over 200 times in a range of 0.1–1.0 C with negligible capacity decrease despite their doubled output cell potentials. This extremely high performance of the bipolar cell is a result of the superior battery performance of the single cell; the bulk all-solid-state cell has a charge/discharge cycle capability of over 1500 although metallic lithium and LiFePO4 are employed as anodes and cathodes, respectively. The use of a quasi-solid electrolyte consisting of ionic liquid and Al2O3 nanoparticles is considered to be responsible for the high ionic conductivity and electrochemical stability at the interface between the electrodes and the electrolyte. This paper presents the effective applications of SiO2, Al2O3, and CeO2 nanoparticles and various Li+ conducting ionic liquids for the quasi-solid electrolytes and reports the best ever known cycle performances. Moreover, the results of this study show that the bipolar stacked three-dimensional device structure would be a smart choice for future LIBs with higher cell energy density and output potential. In addition, our report presents the advantages of adopting a three-dimensional cell design based on the solid-state electrolytes, which is of particular interest in energy-device engineering for mobile applications. PMID:25124398

  7. Transients of Water Distribution and Transport in PEFCs

    KAUST Repository

    Hussaini, Irfan

    2008-01-01

    Response of PEM fuel cells to a step-change in load is investigated experimentally in this work. Voltage undershoot, a characteristic feature of such transient response, is shown to be due to transients of water distribution in membrane phase occurring at sub-second time scales. Use of humidified reactants as a means to control magnitude of voltage undershoot has been demonstrated. Constant stoichiometry operation under certain current-step conditions is found to result in reactant starvation, potentially leading to cell shut down. Further, response under step decrease in current density has been explored to determine existence of hysteresis. Under sufficiently humidified conditions, response under forward and reverse step changes are found to be symmetric, but under low RH conditions, voltage undershoot is found to be twice as large as the overshoot. © The Electrochemical Society.

  8. Employing Hot Wire Anemometry to Directly Measure the Water Balance of a Commercial Proton Exchange Membrane Fuel Cell Stack

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Berning, Torsten

    2016-01-01

    Proton exchange membrane fuel cells (PEMFC’s) are currently being commercialized for various applications ranging from automotive (e.g. the Toyota Mirai) to stationary such as powering telecom backup units. In PEMFC’s, oxygen from air is internally combined with hydrogen to form water and produce...... and increased degradation rates. Clearly, a fundamental understanding of all aspects of water management in PEMFC is imperative. This includes the fuel cell water balance, i.e. which fraction of the product water leaves the fuel cell via the anode channels versus the cathode channel. Our research group...... is currently developing a novel technique to obtain an ad-hoc and real time electrical signal of the fuel cell water balance by employing hot wire anemometry. In this work, the hot wire sensor is placed in the anode outlet of a commercial air-cooled fuel cell stack by Ballard Power Systems, and the voltage...

  9. Electrochemical Impedance Spectroscopy on Industrially-Relevant Solid Oxide Electrolyzer Cell Stacks: A Powerful Tool for in-Situ Investigations of Degradation Mechanisms

    DEFF Research Database (Denmark)

    Zielke, Philipp; Høgh, Jens Valdemar Thorvald; Chen, Ming

    2016-01-01

    .g. transportation, or at high demands converted back to electricity by either conventional power plants or fuel cells. One of today’s biggest hurdles for a successful commercialization of solid oxide electrolyzers is the stack’s lifetime with current industry targets in the order of five to ten years. To identify...... that energy services can be covered in a stable and affordable manner. One promising solution is the synthetic fuel production by solid oxide electrolyzers. Electricity can be stored in a power-to-gas process during times of excess electricity production and then further converted to liquid fuels for e...... stack (Delta design) specifically optimized for EIS measurements, while the other stack was an 8-cell stack (TSP-1 design), where impedance measurements were carried out without major modifications to the stack. The individual cell voltages were monitored simultaneously by EIS during up to 2000 hours...

  10. Numerical studies on liquid water flooding in gas channels used inpolymer electrolyte fuel cells

    NARCIS (Netherlands)

    Qin, CZ.; Hassanizadeh, S.M.; Rensink, D.

    2012-01-01

    Water management plays an important role in the development of low-temperature polymer electrolyte fuel cells (PEFCs). The lack of a macroscopic gas channel (GC) flooding model constrains the current predictions of PEFC modeling under severe flooding situations. In this work, we have extended our

  11. Optimization of manifold design for 1 kW-class flat-tubular solid oxide fuel cell stack operating on reformed natural gas

    Science.gov (United States)

    Rashid, Kashif; Dong, Sang Keun; Khan, Rashid Ali; Park, Seung Hwan

    2016-09-01

    This study focuses on optimizing the manifold design for a 1 kW-class flat-tubular solid oxide fuel cell stack by performing extensive three-dimensional numerical simulations on numerous manifold designs. The stack flow uniformity and the standard flow deviation indexes are implemented to characterize the flow distributions in the stack and among the channels of FT-SOFC's, respectively. The results of the CFD calculations demonstrate that the remodeled manifold without diffuser inlets and 6 mm diffuser front is the best among investigated designs with uniformity index of 0.996 and maximum standard flow deviation of 0.423%. To understand the effect of manifold design on the performance of stack, both generic and developed manifold designs are investigated by applying electrochemical and internal reforming reactions modeling. The simulation results of the stack with generic manifold are validated using experimental data and then validated models are adopted to simulate the stack with the developed manifold design. The results reveal that the stack with developed manifold design achieves more uniform distribution of species, temperature, and current density with comparatively lower system pressure drop. In addition, the results also showed ∼8% increase in the maximum output power due to the implementation of uniform fuel velocity distributions in the cells.

  12. Post-test characterization of a solid oxide fuel cell stack operated for more than 30,000 hours: The cell

    Science.gov (United States)

    Menzler, Norbert H.; Sebold, Doris; Guillon, Olivier

    2018-01-01

    A four-layer solid oxide fuel cell stack with planar anode-supported cells was operated galvanostatically at 700 °C and 0.5Acm-2 for nearly 35,000 h. One of the four planes started to degrade more rapidly after ∼28,000 h and finally more progressively after ∼33,000 h. The stack was then shut down and a post-test analysis was carefully performed. The cell was characterized with respect to cathodic impurities and clarification of the reason(s) for failure. Wet chemical analysis revealed very low chromium incorporation into the cathode. However, SEM and TEM observations on polished and fractured surfaces showed catastrophic failure in the degraded layer. The cathode-barrier-electrolyte cell layer system delaminated from the entire cell over large areas. The source of delamination was the formation of a porous, sponge-like secondary phase consisting of zirconia, yttria and manganese (oxide). Large secondary phase islands grew from the electrolyte-anode interface towards the anode and cracked the bonding between both layers. The manganese originated from the contact or protection layers used on the air side. This stack result shows that volatile species - in this case manganese - should be avoided, especially when long-term applications are envisaged.

  13. Heat balance of a molten carbonate fuel cell production hydrogen for a polymer electrolyte fuel cell-CoCell; Waermehaushalt einer Karbonat-Brennstoffzelle zur Wasserstoffherstellung fuer eine Polymerelektrolyt-Brennstoffzelle

    Energy Technology Data Exchange (ETDEWEB)

    Adamek, L.

    2006-10-17

    Molten carbonate fuel cells (MCFC) are being used in decentralised power plants, as they can reform hydrocarbon bound fuels internally, e.g. natural gas with a energy density of 10 kWh/m{sup 3} at standard conditions, and the efficiency of this mode of operation is around 50 %. However in comparison to other fuel cell systems the power density is only 5 kW/m{sup 3}. The power density of a polymerelectrolyte fuel cell (PEFC) is much higher (50 kW/m{sup 3}). These systems can be run with an efficiency of 50 %, too. Therefore they need hydrogen as a fuel, with an energy density of 2,9 kWh/m{sup 3} at standard conditions. Efficiency decreases to 35 to 40% using Methane as fuel, because of the reforming losses. The power density than is 6 kW/m3 and therefore as high as for a MCFC-system. Acombination of MCFC and PEFC, the so called CoCell, offers the following advantages: - A highly energetic, hydrocarbon based fuel can be used, e.g. Methane. - A high electrical efficiency is achieved. - The power density of this system is higher than for a fuel cell with reformer. In the CoCell the MCFC is working as electricity producing reformer for the PEFC. The off heat of the MCFC is used for reforming, whereby hydrogen is available, being utilised further in the power dense PEFC. The reforming capacity of the MCFC is limited by the internal heat balance. If the endothermic reforming consumes more heat than supplied by the material streams and the fuel cell waste heat, the stack cools down. The performance of such a combined fuel cell system has been evaluated in this thesis using the thermodynamic simulation software Aspen. Calculations reducing the utilisation in the MCFC by various heating techniques showed, that additional heat is supplied most efficiently by increasing the current density of the MCFC. Thereby the stack is heated electrically and the power density of the system is increased by the improved power density of the MCFC. The reduction of the utilisation is achieved

  14. Electrochemical Impedance Spectroscopy (EIS) Characterization of Reformate-operated High Temperature PEM Fuel Cell Stack

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart; Simon Araya, Samuel; Andreasen, Søren Juhl

    2017-01-01

    their effects on a reformate-operated stack. Polarization curves were also recorded to complement the impedance analysis of the researched phenomena. An equivalent circuit model was used to estimate the different resistances at varying parameters. It showed a significantly higher low frequency resistance......, λanode= 1.6 for reformate operation and λcathode= 4.The work also compared dry hydrogen, steam reforming and autothermal reforming gas feeds at160 ◦Cand showed appreciably lower performance in the case of autothermal reforming at the same stoichiometry, mainly attributable to mass transport related...

  15. Operating state distinction and operation control methods of the fuel cell stack; Nenryo denchi sutakku no unten jotai hanbetsu hoho oyobi unten seigyo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, M.; Nakajima, H.; Shiraishi, K. [Equosu Resarch Co. Ltd., Tokyo (Japan)

    1997-09-19

    In the operation of the fuel cell stack, output decrease is caused by surplus or deficient water content in part or whole of the fuel cell stack. The purpose of the invention is to provide operating state distinction and operation control methods, whereby the output abnormality is discovered in the early stage, and is quickly adjusted to the normal state. In accordance with the invention, time course voltage patterns of the cell block, composed of one or plural unit cells in the fuel cell stack that has solid oxide films as electrolytes, are classified by various operation conditions of the fuel cell, and stored in the memory in advance. Time course voltage patterns are measured by one unit cell or by the cell block; operation conditions are judged, compared and calculated while the measured time course voltage patterns and the patterns in the memory are compared; proper setting of operation conditions is selected; and command for adjusting to the setting is delivered to the unit cell or cell block in the fuel cell stack. 6 figs.

  16. The Direct FuelCell™ stack engineering

    Science.gov (United States)

    Doyon, J.; Farooque, M.; Maru, H.

    FuelCell Energy (FCE) has developed power plants in the size range of 300 kW to 3 MW for distributed power generation. Field-testing of the sub-megawatt plants is underway. The FCE power plants are based on its Direct FuelCell™ (DFC) technology. This is so named because of its ability to generate electricity directly from a hydrocarbon fuel, such as natural gas, by reforming it inside the fuel cell stack itself. All FCE products use identical 8000 cm 2 cell design, approximately 350-400 cells per stack, external gas manifolds, and similar stack compression systems. The difference lies in the packaging of the stacks inside the stack module. The sub-megawatt system stack module contains a single horizontal stack whereas the MW-class stack module houses four identical vertical stacks. The commonality of the design, internal reforming features, and atmospheric operation simplify the system design, reduce cost, improve efficiency, increase reliability and maintainability. The product building-block stack design has been advanced through three full-size stack operations at company's headquarters in Danbury, CT. The initial proof-of-concept of the full-size stack design was verified in 1999, followed by a 1.5 year of endurance verification in 2000-2001, and currently a value-engineered stack version is in operation. This paper discusses the design features, important engineering solutions implemented, and test results of FCE's full-size DFC stacks.

  17. Solid oxide fuel cell short stack performance testing - Part A: Experimental analysis and μ-combined heat and power unit comparison

    Science.gov (United States)

    Mastropasqua, L.; Campanari, S.; Brouwer, J.

    2017-12-01

    The need to experimentally understand the detailed performance of SOFC stacks under operating conditions typical of commercial SOFC systems has prompted this two-part study. The steady state performance of a 6-cell short stack of yttria (Y2O3) stabilised zirconia (YSZ) with Ni/YSZ anodes and composite Sr-doped lanthanum manganite (LaMnO3, LSM)/YSZ cathodes is experimentally evaluated. In Part A, the stack characterisation is carried out by means of sensitivity analyses on the fuel utilisation factor and the steam-to-carbon ratio. Electrical and environmental performances are assessed and the results are compared with a commercial full-scale micro-CHP system, which comprises the same cells. The results show that the measured temperature dynamics of the short stack in a test stand environment are on the order of many minutes; therefore, one cannot neglect temperature dynamics for a precise measurement of the steady state polarisation behaviour. The overall polarisation performance is comparable to that of the full stack employed in the micro-CHP system, confirming the good representation that short-stack analyses can give of the entire SOFC module. The environmental performance is measured verifying the negligible values of NO emissions (<10 ppb) across the whole polarisation curve.

  18. Channeling of electron transport to improve collection efficiency in mesoporous titanium dioxide dye sensitized solar cell stacks

    Energy Technology Data Exchange (ETDEWEB)

    Fakharuddin, Azhar; Ahmed, Irfan; Yusoff, Mashitah M.; Jose, Rajan, E-mail: rjose@ump.edu.my, E-mail: joserajan@gmail.com [Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300 Pahang (Malaysia); Khalidin, Zulkeflee [Faculty of Electrical and Electronics Engineering, Universiti Malaysia Pahang, 26300 Pahang (Malaysia)

    2014-02-03

    Dye-sensitized solar cell (DSC) modules are generally made by interconnecting large photoelectrode strips with optimized thickness (∼14 μm) and show lower current density (J{sub SC}) compared with their single cells. We found out that the key to achieving higher J{sub SC} in large area devices is optimized photoelectrode volume (V{sub D}), viz., thickness and area which facilitate the electron channeling towards working electrode. By imposing constraints on electronic path in a DSC stack, we achieved >50% increased J{sub SC} and ∼60% increment in photoelectric conversion efficiency in photoelectrodes of similar V{sub D} (∼3.36 × 10{sup −4} cm{sup 3}) without using any metallic grid or a special interconnections.

  19. Performance of a 1 kW Class Nafion-PTFE Composite Membrane Fuel Cell Stack

    Directory of Open Access Journals (Sweden)

    Pattabiraman Krishnamurthy

    2012-01-01

    Full Text Available Composite membranes have been prepared by impregnation of Nafion into the expanded polytetrafluoroethylene (EPTFE matrix. Nafion loading in the composite membranes was kept constant at 2 mg/cm2. The lower amount of electrolyte per unit area in the composite membranes offers cost advantages compared to conventional membrane of 50 μm thickness with an electrolyte loading of ~9 mg/cm2. Composite membranes (30 μm thickness were found to have higher thermal stability and mechanical strength compared to the conventional membranes (50 μm thickness. The performance of the membrane electrode assembly made with these composite membranes was comparable to that of the conventional membranes. Single cells fabricated from these MEAs were tested for their performance and durability before scaling them up for large area. The performance of a 20-cell stack of active area 330 cm2 fabricated using these membranes is reported.

  20. Algebraic stacks

    Indian Academy of Sciences (India)

    truct the 'moduli stack', that captures all the information that we would like in a fine moduli space. ..... the fine moduli space), it has the property that for any family W of vector bundles (i.e. W is a vector bundle over B ...... the etale topology is finer: V is a 'small enough open subset' because the square root can be defined on it.

  1. Process analysis of a liquid-feed direct methanol fuel cell system

    Science.gov (United States)

    Andrian, Stefanie v.; Meusinger, Josefin

    Recently, a greatly increasing interest in solid polymer electrolyte fuel cells (PEFC) for a range of applications has been observed. The direct methanol fuel cell (DMFC) based on a PEFC uses methanol directly for electric power generation and promises technical advantages, for example, for power trains. This study analyses the interaction between a DMFC stack fed with a liquid aqueous methanol solution and the peripheral system equipment. A simulation model of a DMFC system for mobile applications (from methanol to net electricity) is presented to calculate system efficiencies on the basis of thermodynamic engineering calculations. Based on the simulation calculations, useful operating requirements can be specified. To optimise the performance of DMFC systems, it is necessary to consider the operational characteristics of all the components required in the system. There are worldwide activities to improve the performance of a DMFC stack, which depends on numerous operating parameters. But it is not sufficient to optimise only the current/potential curves of the fuel cell without taking all the consequences for the system into consideration. The results of the computer simulation presented here emphasise the difficulties in improving fuel cell performance without decreasing system efficiency and describes the consequences for the system's operation conditions. Priorities are additionally set concerning the heat management of the fuel cell stack. In the case of liquid fuel supply, the water crossover through the membrane and the ensuing vapourisation at the cathode side impairs the thermal balance. Key operating parameters, which influence these effects, are pressure, temperature, air flow and methanol permeation rate.

  2. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... and Nafion-MZP composite membranes in relation to the PEFC with pristine Nafion-1135 membrane support the long-term operational usage of the former in PEFCs. An 8-cell PEFC stack employing Nafion-SiO2 composite membrane is also assembled and successfully operated at 60°C without external humidification.

  3. Development and durability of SOFC stacks

    Energy Technology Data Exchange (ETDEWEB)

    Beeaff, D.; Dinesen, A.R.; Mikkelsen, Lars; Nielsen, Karsten A.; Solvang, M.; Hendriksen, Peter V.

    2004-12-01

    The present project is a part of the Danish SOFC programme, which has the overall aim of establishing a Danish production of SOFC - cells, stacks and systems for economical and environmentally friendly power production. The aim of the present project was to develop and demonstrate (on a small scale, few cells, few thousand hours) a durable, thermally cyclable stack with high performance at 750 deg. C. Good progress towards this target has been made and demonstrated at the level of stack-elements (one cell between two interconnects) or small stacks (3 5 cells). Three different stacks or stack-elements have been operated for periods exceeding 3000 hr. The work has covered development of stack-components (seals, interconnects, coatings, contact layers), establishment of procedures for stack assembly and initiation, and detailed electrical characterisation with the aims of identifying performance limiting factors as well as long term durability. Further, post test investigations have been carried out to identify possible degradation mechanisms. (BA)

  4. A ten liter stacked microbial desalination cell packed with mixed ion-exchange resins for secondary effluent desalination.

    Science.gov (United States)

    Zuo, Kuichang; Cai, Jiaxiang; Liang, Shuai; Wu, Shijia; Zhang, Changyong; Liang, Peng; Huang, Xia

    2014-08-19

    The architecture and performance of microbial desalination cell (MDC) have been significantly improved in the past few years. However, the application of MDC is still limited in a scope of small-scale (milliliter) reactors and high-salinity-water desalination. In this study, a large-scale (>10 L) stacked MDC packed with mixed ion-exchange resins was fabricated and operated in the batch mode with a salt concentration of 0.5 g/L NaCl, a typical level of domestic wastewater. With circulation flow rate of 80 mL/min, the stacked resin-packed MDC (SR-MDC) achieved a desalination efficiency of 95.8% and a final effluent concentration of 0.02 g/L in 12 h, which is comparable with the effluent quality of reverse osmosis in terms of salinity. Moreover, the SR-MDC kept a stable desalination performance (>93%) when concentrate volume decreased from 2.4 to 0.1 L (diluate/concentrate volume ratio increased from 1:1 to 1:0.04), where only 0.875 L of nonfresh water was consumed to desalinate 1 L of saline water. In addition, the SR-MDC achieved a considerable desalination rate (95.4 mg/h), suggesting a promising application for secondary effluent desalination through deriving biochemical electricity from wastewater.

  5. Domestic wastewater treatment and power generation in continuous flow air-cathode stacked microbial fuel cell: Effect of series and parallel configuration.

    Science.gov (United States)

    Estrada-Arriaga, Edson Baltazar; Hernández-Romano, Jesús; García-Sánchez, Liliana; Guillén Garcés, Rosa Angélica; Bahena-Bahena, Erick Obed; Guadarrama-Pérez, Oscar; Moeller Chavez, Gabriela Eleonora

    2018-05-15

    In this study, a continuous flow stack consisting of 40 individual air-cathode MFC units was used to determine the performance of stacked MFC during domestic wastewater treatment operated with unconnected individual MFC and in series and parallel configuration. The voltages obtained from individual MFC units were of 0.08-1.1 V at open circuit voltage, while in series connection, the maximum power and current density were 2500 mW/m 2 and 500 mA/m 2 (4.9 V), respectively. In parallel connection, the maximum power and current density was 5.8 mW/m 2 and 24 mA/m 2 , respectively. When the cells were not connected to each other MFC unit, the main bacterial species found in the anode biofilms were Bacillus and Lysinibacillus. After switching from unconnected to series and parallel connections, the most abundant species in the stacked MFC were Pseudomonas aeruginosa, followed by different Bacilli classes. This study demonstrated that when the stacked MFC was switched from unconnected to series and parallel connections, the pollutants removal, performance electricity and microbial community changed significantly. Voltages drops were observed in the stacked MFC, which was mainly limited by the cathodes. These voltages loss indicated high resistances within the stacked MFC, generating a parasitic cross current. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. A semi-empirical voltage degradation model for a low-pressure proton exchange membrane fuel cell stack under bus city driving cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Languang; Ouyang, Minggao; Huang, Haiyan; Pei, Pucheng; Yang, Fuyuan [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2007-01-10

    A voltage degradation model for the low-pressure proton exchange membrane fuel cell (PEMFC) stack used in a fuel cell bus is presented: (1) the oxygen concentration term was derived from the PEMFC output voltage equation, and the concept of oxygen concentration resistance coefficient was introduced; (2) a 5kW low-pressure PEMFC stack was used in this study. Two similar tests were carried out before and after the stack operating in the driving cycle for 640h. First, the ohmic losses under different temperatures were measured using the current interrupt method and formulized with linear fitting method. Then, the oxygen concentration term was studied by the experiments with different air stoichiometric ratios while keeping the other operating parameters unchanged. The oxygen concentration resistance coefficient was obtained from the difference of voltages for the PEMFC stack in different air stoichiometric ratios using the genetic optimization algorithm. Then, the activation loss was obtained based on the PEMFC output voltage, the ohmic loss, and the concentration loss. The degradation model of the stack was built finally by comparing the two test results; (3) the correlation of the model to the actual experimental data is good; (4) the overvoltage of the stack with aging was analyzed using this model. The analysis showed that the activation overvoltage dominated the stack loss with about 80% of the total losses, followed by the ohmic loss. The concentration loss almost does not change with aging in the driving cycle condition; (5) the comparison of the simulation with the actual data from the PEMFC bus running for 30,000km indicated that after 36,000km the rated power of the PEMFC bus must be reduced. (author)

  7. Cold Start of Polymer Electrolyte Fuel Cells

    Science.gov (United States)

    Tajiri, Kazuya; Wang, Chao-Yang

    The ability of polymer electrolyte fuel cells (PEFCs) to startup and operate under subzero temperatures has been an issue for the commercialization of the fuel cell vehicle (FCV). It is widely believed that during PEFC operation in a subzero temperature environment a portion of water produced from the oxygen reduction reaction (ORR) forms ice in the catalyst layer (CL) that hinders the oxygen transport to the reaction sites, until the PEFC eventually stops operation due to oxygen starvation. For the automotive application, successful cold start is defined as PEFC temperature increase above 0°C with self-heating before the cell shutdown due to oxygen starvation. Several automakers have already claimed capability of FCV startup from a subzero temperature environment. However, the underlying physics has only begun to emerge in the most recent literature.

  8. Stabilized efficiency of stacked a-Si solar cell; Sekisogata a-Si taiyo denchi no anteika koritsu

    Energy Technology Data Exchange (ETDEWEB)

    Takahisa, K.; Kojima, T.; Nakamura, K.; Koyanagi, T.; Yanagisawa, T. [Electrotechnical Laboratory, Tsukuba (Japan)

    1997-11-25

    Different types of tests combining light and temperature were carried out in a laboratory on predicting long-term performance of stacked amorphous silicon solar cells. Cell terminals were left open, xenon was used as an irradiation light source, and cell temperature was controlled within {+-} 2 degC of the setting. The result of the experiment may be summarized as follows: with regard to the deterioration characteristics, the speed in which the efficiency changes reached a maximum within 10 hours, and thereafter the change has slowed down gradually in the case of temperature at 50 degC; in the case of 25 degC, the maximization is reached between 500 and 1000 hours; the stabilization efficiency turns out to be a pessimistic value according to the saturated value derived from an experimental expression, hence the value would have to be expressed by specifying cell temperatures, light intensities and elapsed time; the minimum value of seasonal variation may be estimated at about 85% as a pessimistic value; for recovery characteristics, the saturated value for the recovery tends to become lower as the lower the value immediately before the recovery; and if the light intensity is varied, the deterioration characteristic shifts to that at an individual light intensity. 4 refs., 11 figs., 2 tabs.

  9. Post-test analysis of 20kW molten carbonate fuel cell stack operated on coal gas. Final report, August 1993--February 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    A 20kW carbonate fuel cell stack was operated with coal gas for the first time in the world. The stack was tested for a total of 4,000 hours, of which 3,900 hours of testing was conducted at the Louisiana Gasification Technology Incorporated, Plaquemine, Louisiana outdoor site. The operation was on either natural gas or coal gas and switched several times without any effects, demonstrating duel fuel capabilities. This test was conducted with 9142 kJ/m{sup 3} (245 Btu/cft) coal gas provided by a slipstream from Destec`s entrained flow, slagging, slurry-fed gasifier equipped with a cold gas cleanup subsystem. The stack generated up to 21 kW with this coal gas. Following completion of this test, the stack was brought to Energy Research Corporation (ERC) and a detailed post-test analysis was conducted to identify any effects of coal gas on cell components. This investigation has shown that the direct fuel cell (DFC) can be operated with properly cleaned and humidified coal-as, providing stable performance. The basic C direct fuel cell component materials are stable and display normal stability in presence of the coal gas. No effects of the coal-borne contaminants are apparent. Further cell testing at ERC 1 17, confirmed these findings.

  10. Method of operating a molten carbonate fuel cell, a fuel cell, a fuel cell stack and an apparatus provided therewith

    NARCIS (Netherlands)

    Hemmes, K.; Dijkema, G.P.J.

    1998-01-01

    A method of operating a molten carbonate fuel cell having an anode and a cathode and in between a matrix comprising molten carbonate. Carbon dioxide is introduced into the matrix at a distance from the cathode. This greatly reduces the cathode's deterioration and in the system design increases the

  11. Simulation of Mass Transfer Process for Polymer Electrolyte Membrane Fuel Cell Stack

    Science.gov (United States)

    2000-02-01

    Ionomer and PTFE-Loaded Carbon on the Catalyst Layer of Polymer Electrolyte Fuel Cells ," /. Electrochem. Soc. 142 (1995), p 4143. 9. F...References 1. T. F. Fuller, "Is a Fuel Cell in Your Future?" The Electrochemical Society Interface (Fall 1997), p 26. 2. E. A. Ticianelli, C. R. Derouin...and S. Srinivasan, "Localization of Plati- num in Low Catalyst Loading Electrodes to Attain High Power Density in SPE Fuel Cells ," /.

  12. Estimation of Membrane Hydration Status for Standby Proton Exchange Membrane Fuel Cell Systems by Impedance Measurement: First Results on Variable Temperature Stack Characterization

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Kær, Søren Knudsen

    2013-01-01

    Fuel cells are getting growing interest in both backup systems and electric vehicles. Although these systems are characterized by periods of standby, they must be able to start at any instant in the shortest possible time. However, the membranes of which proton exchange membrane fuel cells are made...... way for estimating the hydration status and the temperature of its membrane before the system is started up. A summarizing table with the complete characterization of the fuel cell stack is included in this article....

  13. PEM fuel stack dynamics, constraining supervisory control for propulsion systems in fuel cell busses

    NARCIS (Netherlands)

    Edwin Tazelaar; E. Middelman; P. van den Bosch; Bram Veenhuizen

    2013-01-01

    The last decade several prototypes of fuel cell busses have been presented [1, 2]. A closer observation of these prototypes shows remarkable differences in both sizing and control of the system components. Some busses are essentially electric vehicles with a relative low power fuel cell system used

  14. Experimental study on the 300W class planar type solid oxide fuel cell stack: Investigation for appropriate fuel provision control and the transient capability of the cell performance

    International Nuclear Information System (INIS)

    Komatsu, Y; Brus, G; Szmyd, J S; Kimijima, S

    2012-01-01

    The present paper reports the experimental study on the dynamic behavior of a solid oxide fuel cell (SOFC). The cell stack consists of planar type cells with standard power output 300W. A Major subject of the present study is characterization of the transient response to the electric current change, assuming load-following operation. The present studies particularly focus on fuel provision control to the load change. Optimized fuel provision improves power generation efficiency. However, the capability of SOFC must be restricted by a few operative parameters. Fuel utilization factor, which is defined as the ratio of the consumed fuel to the supplied fuel is adopted for a reference in the control scheme. The fuel flow rate was regulated to keep the fuel utilization at 50%, 60% and 70% during the current ramping. Lower voltage was observed with the higher fuel utilization, but achieved efficiency was higher. The appropriate mass flow control is required not to violate the voltage transient behavior. Appropriate fuel flow manipulation can contribute to moderate the overshoot on the voltage that may appear to the current change. The overshoot on the voltage response resulted from the gradual temperature behavior in the SOFC stack module.

  15. Self-stacked submersible microbial fuel cell (SSMFC) for improved remote power generation from lake sediments

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2012-01-01

    . The SSMFC successfully produced a maximum power density of 294 mW/m2 and had an open circuit voltage (OCV) of 1.12 V. However, voltage reversal was observed in one cell at high current density. Investigation on the cause for voltage reversal revealed that voltage reversal was occurring only when low...... external resistance (≤400 Ω in this study) was applied. In addition, the internal resistance and OCV were the most important parameters for predicting which cell unit had the highest probability to undergo voltage reversal. Use of a capacitor was found to be an effective way to prevent voltage reversal...

  16. Modeling and experimental validation of water mass balance in a PEM fuel cell stack

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Araya, Samuel Simon; Olesen, Anders Christian

    2016-01-01

    incorporates all the essential fundamental physical and electrochemical processes occurring in the membrane electrolyte and considers the water adsorption/desorption phenomena in the membrane. The effect of diffusivity model, surface roughness and water content driving force is considered. The model...... transport when membrane absorption/ desorption is considered in the model. The model becomes useful in system modelling when studying fuel cells in dynamic conditions....

  17. Fuel cell plates with skewed process channels for uniform distribution of stack compression load

    Science.gov (United States)

    Granata, Jr., Samuel J.; Woodle, Boyd M.

    1989-01-01

    An electrochemical fuel cell includes an anode electrode, a cathode electrode, an electrolyte matrix sandwiched between electrodes, and a pair of plates above and below the electrodes. The plate above the electrodes has a lower surface with a first group of process gas flow channels formed thereon and the plate below the electrodes has an upper surface with a second group of process gas flow channels formed thereon. The channels of each group extend generally parallel to one another. The improvement comprises the process gas flow channels on the lower surface of the plate above the anode electrode and the process gas flow channels on the upper surface of the plate below the cathode electrode being skewed in opposite directions such that contact areas of the surfaces of the plates through the electrodes are formed in crisscross arrangements. Also, the plates have at least one groove in areas of the surfaces thereof where the channels are absent for holding process gas and increasing electrochemical activity of the fuel cell. The groove in each plate surface intersects with the process channels therein. Also, the opposite surfaces of a bipolar plate for a fuel cell contain first and second arrangements of process gas flow channels in the respective surfaces which are skewed the same amount in opposite directions relative to the longitudinal centerline of the plate.

  18. Benchmarking the expected stack manufacturing cost of next generation, intermediate-temperature protonic ceramic fuel cells with solid oxide fuel cell technology

    Science.gov (United States)

    Dubois, Alexis; Ricote, Sandrine; Braun, Robert J.

    2017-11-01

    Recent progress in the performance of intermediate temperature (500-600 °C) protonic ceramic fuel cells (PCFCs) has demonstrated both fuel flexibility and increasing power density that approach commercial application requirements. These developments may eventually position the technology as a viable alternative to solid oxide fuel cells (SOFCs) and molten carbonate fuel cells (MCFCs). The PCFCs investigated in this work are based on a BaZr0.8Y0.2O3-δ (BZY20) thin electrolyte supported by BZY20/Ni porous anodes, and a triple conducting cathode material comprised of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY0.1). These cells are prepared using a low-cost solid-state reactive sintering (SSRS) process, and are capable of power densities of 0.156 W cm-2 at 500 °C operating directly from methane fuel. We develop a manufacturing cost model to estimate the Nth generation production costs of PCFC stack technology using high volume manufacturing processes and compare them to the state-of-the-art in SOFC technology. The low-cost cell manufacturing enabled by the SSRS technique compensates for the lower PCFC power density and the trade-off between operating temperature and efficiency enables the use of lower-cost stainless steel materials. PCFC stack production cost estimates are found to be as much as 27-37% lower at 550 °C than SOFCs operating at 800 °C.

  19. Cell and stack design alternatives. Final report, August 1, 1978-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, Jr., D. Q.; King, Robert B.

    1980-02-01

    The work described comprised the first phase of a planned six phase program to develop commercially viable phosphoric acid fuel cell (PAFC) driven on-site integrated energy systems (OS/IES). The Phase I effort was organized as three major technical tasks; (1) study of system design alternatives; (2) fuel cell design alternatives; and (3) methane conditioner study. It was decided that comprehensive modeling of one application would most effectively utilize the resources available for the study of systems design alternatives. A 48 unit apartment complex located in Albany, New York and built to HUD minimum standards was selected as being typical of the applications that will be served by the systems. The time varying space conditioning (HVAC) and electrical requirements including the effects of varying weather conditions, living habits and occupancy patterns were modeled. These requirements formed the basis for comparing the performance and cost of the alternative configurations with each other and with a conventional system. Five basic alternative OS/IES configurations plus four variations were selected from a preliminary list of 13 basic configurations for detailed performance nd cost evaluations. Study procedures and results are presented in detail. (WHK)

  20. Multi-stacked GaSb/GaAs type-II quantum nanostructures for application to intermediate band solar cells

    Science.gov (United States)

    Shoji, Yasushi; Tamaki, Ryo; Okada, Yoshitaka

    2017-06-01

    We have investigated the performance of 10-layer stacked GaSb/GaAs quantum dot (QD) and quantum ring (QR) solar cells (SCs) having a type-II band alignment. For both SCs, the external quantum efficiency (EQE) increased in the longer wavelength region beyond GaAs bandedge wavelength of λ > 870 nm due to an additive contribution from GaSb/GaAs QD or QR layers inserted in the intrinsic region of p-i-n SC structure. The EQE of GaSb/GaAs QRSC was higher than that of QDSC at room temperature and the photoluminescence intensity from GaSb/GaAs QRs was stronger compared with GaSb/GaAs QDs. These results indicate that crystal quality of GaSb/GaAs QRs is superior to that of GaSb/GaAs QDs. Furthermore, a photocurrent production due to two-step photo-absorption via GaSb/GaAs QD states or QR states, ΔEQE was measured at low temperature and the ratio of two-step absorption to total carrier extraction defined as ΔEQE / (ΔEQE + EQE), was higher for GaSb/GaAs QRSC than that of QDSC. The ratio of GaSb/GaAs QRSC exceeds 80% over the wavelength region of λ = 950 - 1250 nm. This suggests that two-step absorption process is more dominant for carrier extraction from GaSb/GaAs QR structure.

  1. Determination of optimal parameters for dual-layer cathode of polymer electrolyte fuel cell using computational intelligence-aided design.

    Science.gov (United States)

    Chen, Yi; Huang, Weina; Peng, Bei

    2014-01-01

    Because of the demands for sustainable and renewable energy, fuel cells have become increasingly popular, particularly the polymer electrolyte fuel cell (PEFC). Among the various components, the cathode plays a key role in the operation of a PEFC. In this study, a quantitative dual-layer cathode model was proposed for determining the optimal parameters that minimize the over-potential difference η and improve the efficiency using a newly developed bat swarm algorithm with a variable population embedded in the computational intelligence-aided design. The simulation results were in agreement with previously reported results, suggesting that the proposed technique has potential applications for automating and optimizing the design of PEFCs.

  2. Computational fluid dynamics simulations of single-phase flow in a filter-press flow reactor having a stack of three cells

    International Nuclear Information System (INIS)

    Sandoval, Miguel A.; Fuentes, Rosalba; Walsh, Frank C.; Nava, José L.; Ponce de León, Carlos

    2016-01-01

    Highlights: • Computational fluid dynamic simulations in a filter-press stack of three cells. • The fluid velocity was different in each cell due to local turbulence. • The upper cell link pipe of the filter press cell acts as a fluid mixer. • The fluid behaviour tends towards a continuous mixing flow pattern. • Close agreement between simulations and experimental data was achieved. - Abstract: Computational fluid dynamics (CFD) simulations were carried out for single-phase flow in a pre-pilot filter press flow reactor with a stack of three cells. Velocity profiles and streamlines were obtained by solving the Reynolds-Averaged Navier-Stokes (RANS) equations with a standard k − ε turbulence model. The flow behaviour shows the appearance of jet flow at the entrance to each cell. At lengths from 12 to 15 cm along the cells channels, a plug flow pattern is developed at all mean linear flow rates studied here, 1.2 ≤ u ≤ 2.1 cm s −1 . The magnitude of the velocity profiles in each cell was different, due to the turbulence generated by the change of flow direction in the last fluid manifold. Residence time distribution (RTD) simulations indicated that the fluid behaviour tends towards a continuous mixing flow pattern, owing to flow at the output of each cell across the upper cell link pipe, which acts as a mixer. Close agreement between simulations and experimental RTD was obtained.

  3. In situ diagnostic of two-phase flow phenomena in polymer electrolyte fuel cells by neutron imaging

    International Nuclear Information System (INIS)

    Kramer, Denis; Zhang, Jianbo; Shimoi, Ryoichi; Lehmann, Eberhard; Wokaun, Alexander; Shinohara, Kazuhiko; Scherer, Guenther G.

    2005-01-01

    Neutron radiographical measurements have been performed on operating hydrogen-fueled polymer electrolyte fuel cells (PEFC). With the successful detection of liquid accumulation in flow field and gas diffusion layer (GDL) under various operating conditions a unique experimental approach for the investigation of two-phase flow phenomena in technical PEFC has been realized. The experimental setup will be described in detail. Algorithms for an enhanced quantitative evaluation of the obtained images are presented and successful application to the data demonstrated. Finally, results from PEFC investigations will be given. Different flow field geometries and their implications for liquid accumulation inside flow field and GDL are discussed

  4. Mass and charge transfer on various relevant scales in polymer electrolyte fuel cells[Dissertation 16991

    Energy Technology Data Exchange (ETDEWEB)

    Freunberger, S. A.

    2007-07-01

    This dissertation is concerned with the development, experimental diagnostics and mathematical modelling and simulation of polymer electrolyte fuel cells (PEFC). The central themes throughout this thesis are the closely interlinked phenomena of mass and charge transfer. In the face of developing a PEFC system for vehicle propulsion these phenomena are scrutinized on a broad range of relevant scales. Starting from the material related level of the membrane and the gas diffusion layer (GDL) we turn to length scales, where structural features of the cell additionally come into play. These are the scale of flow channels and ribs, the single cell and the cell stack followed by the cell, stack, and system development for an automotive power train. In Chapter 3 selected fundamental material models and properties, respectively, are explored that are crucial for the mathematical modelling and simulation of PEFC, as needed in some succeeding parts of this work. First, established mathematical models for mass and charge transfer in the membrane are compared within the framework of the membrane electrode assembly (MEA), which represents the electrochemical unit. Second, reliable values for effective diffusivities in the GDLs which are vital for the simulation of gaseous mass transport are measured. Therefore, a method is developed that allows measuring this quantity both as a function of compression and direction as this is a prerequisite of sophisticated more-dimensional numerical PEFC-models. Besides the cross section of the catalyst layer (CL) mass transfer under channels and ribs is considered as a major source of losses in particular under high load operation. As up to now there have been solely non-validated theoretical investigations, in Chapter 4 an experimental method is developed that is for the first time capable of resolving the current density distribution on the this scale. For this, the electron conductors in the cell are considered as 2-dimensional shunt

  5. Numerical evaluation of various gas and coolant channel designs for high performance liquid-cooled proton exchange membrane fuel cell stacks

    International Nuclear Information System (INIS)

    Sasmito, Agus P.; Kurnia, Jundika C.; Mujumdar, Arun S.

    2012-01-01

    A careful design of gas and coolant channel is essential to ensure high performance and durability of proton exchange membrane (PEM) fuel cell stack. The channel design should allow for good thermal, water and gas management whilst keeping low pressure drop. This study evaluates numerically the performance of various gas and coolant channel designs simultaneously, e.g. parallel, serpentine, oblique-fins, coiled, parallel-serpentine and a novel hybrid parallel-serpentine-oblique-fins designs. The stack performance and local distributions of key parameters are investigated with regards to the thermal, water and gas management. The results indicate that the novel hybrid channel design yields the best performance as it constitutes to a lower pumping power and good thermal, water and gas management as compared to conventional channels. Advantages and limitation of the designs are discussed in the light of present numerical results. Finally, potential application and further improvement of the design are highlighted. -- Highlights: ► We evaluate various gas and coolant channel designs in liquid-cooled PEM fuel cell stack. ► The model considers coupled electrochemistry, channel design and cooling effect simultaneously. ► We propose a novel hybrid channel design. ► The novel hybrid channel design yields the best thermal, water and gas management which is beneficial for long term durability. ► The novel hybrid channel design exhibits the best performance.

  6. Operando 3D Visualization of Migration and Degradation of a Platinum Cathode Catalyst in a Polymer Electrolyte Fuel Cell

    OpenAIRE

    Hirosuke, Matsui; Nozomu, Ishiguro; Tomoya, Uruga; Oki, Sekizawa; Kotaro, Higashi; Naoyuki, Maejima; Mizuki, Tada

    2017-01-01

    The three-dimensional (3D) distribution and oxidation state of a Pt cathode catalyst in a practical membrane electrode assembly (MEA) were visualized in a practical polymer electrolyte fuel cell (PEFC) under fuel-cell operating conditions. Operando 3D computed-tomography imaging with X-ray absorption near edge structure (XANES) spectroscopy (CT-XANES) clearly revealed the heterogeneous migration and degradation of Pt cathode catalyst in an MEA during accelerated degradation test (ADT) of PEFC...

  7. Comprehensive Analysis of Trends and Emerging Technologies in All Types of Fuel Cells Based on a Computational Method

    Directory of Open Access Journals (Sweden)

    Takaya Ogawa

    2018-02-01

    Full Text Available Fuel cells have been attracting significant attention recently as highly efficient and eco-friendly energy generators. Here, we have comprehensively reviewed all types of fuel cells using computational analysis based on a citation network that detects emerging technologies objectively and provides interdisciplinary data to compare trends. This comparison shows that the technologies of solid oxide fuel cells (SOFCs and electrolytes in polymer electrolyte fuel cells (PEFCs are at the mature stage, whereas those of biofuel cells (BFCs and catalysts in PEFCs are currently garnering attention. It does not mean, however, that the challenges of SOFCs and PEFC electrolytes have been overcome. SOFCs need to be operated at lower temperatures, approximately 500 °C. Electrolytes in PEFCs still suffer from a severe decrease in proton conductivity at low relative humidity and from their high cost. Catalysts in PEFCs are becoming attractive as means to reduce the platinum catalyst cost. The emerging technologies in PEFC catalysts are mainly heteroatom-doped graphene/carbon nanotubes for metal-free catalysts and supports for iron- or cobalt-based catalysts. BFCs have also received attention for wastewater treatment and as miniaturized energy sources. Of particular interest in BFCs are membrane reactors in microbial fuel cells and membrane-less enzymatic biofuel cells.

  8. Mechanically Stacked Dual-Junction and Triple-Junction III-V/Si-IBC Cells with Efficiencies Exceeding 31.5% and 35.4%: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, Manuel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tamboli, Adele C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Warren, Emily L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schulte-Huxel, Henning [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Klein, Talysa [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Hest, Marinus F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Geisz, John F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Stradins, Paul [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Steiner, Myles A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rienaecker, Michael [Institute for Solar Energy Research Hamelin (ISFH); Merkle, Agnes [Institute for Solar Energy Research Hamelin (ISFH); Kajari-Schroeder, S. [Institute for Solar Energy Research Hamelin (ISFH); Niepelt, Raphael [Institute for Solar Energy Research Hamelin (ISFH); Schmidt, Jan [Institute for Solar Energy Research Hamelin (ISFH); Leibniz Universitat Hannover; Brendel, Rolf [Institute for Solar Energy Research Hamelin (ISFH); Leibniz Universitat Hannover; Peibst, Robby [Institute for Solar Energy Research Hamelin (ISFH); Leibniz Universitat Hannover

    2017-10-02

    Despite steady advancements in the efficiency of crystalline Silicon (c-Si) photovoltaics (PV) within the last decades, the theoretical efficiency limit of 29.4 percent depicts an insurmountable barrier for silicon-based single-junction solar cells. Combining the Si cell with a second absorber material on top in a dual junction tandem or triple junction solar cell is an attractive option to surpass this limit significantly. We demonstrate a mechanically stacked GaInP/Si dual-junction cell with an in-house measured efficiency of 31.5 percent and a GaInP/GaAs/Si triple-junction cell with a certified efficiency of 35.4 percent.

  9. Embedded LTPS flash cells with oxide-nitride-oxynitride stack structure for realization of multi-function mobile flat panel displays

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sungwook; Kim, Jaehong; Son, Hyukjoo; Jang, Kyungsoo; Cho, Jaehyun; Kim, Kyunghae; Choi, Byoungdeog; Yi, Junsin [School of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of)], E-mail: yi@yurim.skku.ac.kr

    2008-09-07

    In this paper, embedded flash (eFlash) cells were fabricated for realization of multi-functions, such as systems on panels (SOPs) and threshold voltage (V{sub TH}) stabilization of flat panel displays (FPDs). Fabrication was via low temperature polycrystalline silicon (LTPS) thin film transistor (TFT) technology and an oxide-nitride-oxynitride (ONOn) stack structure on glass. Poly-silicon (poly-Si) on glass, which was annealed via an excimer laser, has a very rough surface. To fabricate LTPS eFlash cells on glass with a very rough poly-Si surface, plasma-assisted oxynitridation was performed; nitrous oxide (N{sub 2}O) served as a reactive gas. LTPS eFlash cells have excellent TFT electrical properties, such as V{sub TH}, a high On/Off current ratio and a low sub-threshold swing (S). The results demonstrate that eFlash cells fabricated on glass with a rough silicon surface, via an ONOn stack structure, have switching characteristics suitable for data storage, such as a low operating voltage (<{+-}10 V) suitable for mobile FPDs, a threshold voltage window, {delta}V{sub TH}, which exceeds 2.3 V, between the programming and erasing (P/E) states, over a period of 10 years, and the capacity to retain the initial {delta}V{sub TH} over a period of 10{sup 5} P/E operations. (fast track communication)

  10. Experimental investigation of dynamic performance and transient responses of a kW-class PEM fuel cell stack under various load changes

    International Nuclear Information System (INIS)

    Tang Yong; Yuan Wei; Pan Minqiang; Li Zongtao; Chen Guoqing; Li Yong

    2010-01-01

    The dynamic performance is a very important evaluation index of proton exchange membrane (PEM) fuel cells used for real application, which is mostly related with water, heat and gas management. A commercial PEM fuel cell system of Nexa module is employed to experimentally investigate the dynamic behavior and transient response of a PEM fuel cell stack and reveal involved influential factors. Five groups of dynamic tests are conducted and divided into different stage such as start-up, shut-down, step-up load, regular load variation and irregular load variation. It is observed that the external load changes the current output proportionally and reverses stack voltage accordingly. The purge operation benefits performance recovery and enhancement during a constant load and its time strongly depends on the operational current level. Overshoot and undershoot behaviors are observed during transience. But the current undershoot does not appear due to charge double-layer effect. Additionally, magnitudes of the peaks of the voltage overshoot and undershoot vary at different current levels. The operating temperature responds fast to current load but changes slowly showing an arc-like profile without any overshoot and undershoot events. The air flow rate changes directly following the dynamic load demand. But the increased amount of air flow rate during different step-change is not identical, which depends on the requirement of internal reaction and flooding intensity. The results can be utilized for validation of dynamic fuel cell models, and regarded as reference for effective control and management strategies.

  11. Open stack thermal battery tests

    Energy Technology Data Exchange (ETDEWEB)

    Long, Kevin N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Christine C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grillet, Anne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Headley, Alexander J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fenton, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wong, Dennis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ingersoll, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-04-17

    We present selected results from a series of Open Stack thermal battery tests performed in FY14 and FY15 and discuss our findings. These tests were meant to provide validation data for the comprehensive thermal battery simulation tools currently under development in Sierra/Aria under known conditions compared with as-manufactured batteries. We are able to satisfy this original objective in the present study for some test conditions. Measurements from each test include: nominal stack pressure (axial stress) vs. time in the cold state and during battery ignition, battery voltage vs. time against a prescribed current draw with periodic pulses, and images transverse to the battery axis from which cell displacements are computed. Six battery configurations were evaluated: 3, 5, and 10 cell stacks sandwiched between 4 layers of the materials used for axial thermal insulation, either Fiberfrax Board or MinK. In addition to the results from 3, 5, and 10 cell stacks with either in-line Fiberfrax Board or MinK insulation, a series of cell-free “control” tests were performed that show the inherent settling and stress relaxation based on the interaction between the insulation and heat pellets alone.

  12. Estimation of Membrane Hydration Status for Standby Proton Exchange Membrane Fuel Cell Systems by Impedance Measurement: First Results on Stack Characterization

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Kær, Søren Knudsen

    Fuel cells have started replacing traditional lead-acid battery banks in backup systems. Although these systems are characterized by long periods of standby, they must be able to start at any instant in the shortest time. In the case of low temperature proton exchange membrane fuel cell systems...... fed with air whose temperature and relative humidity were controlled, and its complex impedance was measured at different frequencies and for different values of relative humidity. After showing that the experiment was repeatable, the fuel cell stack was characterized, a power regression model...... was applied, and the relationship between module of impedance and relative humidity was found. The results showed that measuring the impedance of a fuel cell during standby can be a viable way for estimating the hydration status of its membrane....

  13. Vector Fields and Flows on Differentiable Stacks

    DEFF Research Database (Denmark)

    A. Hepworth, Richard

    2009-01-01

    This paper introduces the notions of vector field and flow on a general differentiable stack. Our main theorem states that the flow of a vector field on a compact proper differentiable stack exists and is unique up to a uniquely determined 2-cell. This extends the usual result on the existence...... of vector fields....

  14. CZTS absorber layer for thin film solar cells from electrodeposited metallic stacked precursors (Zn/Cu-Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, M.I., E-mail: mdibrahim.khalil@polimi.it [Dipartimento di Chimica, Materiali e Ing. Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano (Italy); Atici, O. [Dipartimento di Chimica, Materiali e Ing. Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano (Italy); Lucotti, A. [Dipartimento di Chimica, Materiali e Ing. Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Binetti, S.; Le Donne, A. [Department of Materials Science and Solar Energy Research Centre (MIB-SOLAR), University of Milano- Bicocca, Via Cozzi 53, 20125 Milano (Italy); Magagnin, L., E-mail: luca.magagnin@polimi.it [Dipartimento di Chimica, Materiali e Ing. Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano (Italy)

    2016-08-30

    Highlights: • CZTS absorber layer was fabricated by electrodeposition—annealing route from stacked bilayer precursor (Zn/Cu-Sn). • Different characterization techniques have ensured the well formed Kesterite CZTS along the film thickness also. • Two different excitation wavelengths of laser lines (514.5 and 785 nm) have been used for the Raman characterization of the films. • No significant Sn loss is observed in CZTS films after the sulfurization of the stacked bilayer precursors. • Photoluminescence spectroscopy reveals the PL peak of CZTS at 1.15 eV at low temperature (15 K). - Abstract: In the present work, Kesterite-Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films were successfully synthesized from stacked bilayer precursor (Zn/Cu-Sn) through electrodeposition-annealing route. Adherent and homogeneous Cu-poor, Zn-rich stacked metal Cu-Zn-Sn precursors with different compositions were sequentially electrodeposited, in the order of Zn/Cu-Sn onto Mo foil substrates. Subsequently, stacked layers were soft annealed at 350 °C for 20 min in flowing N{sub 2} atmosphere in order to improve intermixing of the elements. Then, sulfurization was completed at 585 °C for 15 min in elemental sulfur environment in a quartz tube furnace with N{sub 2} atmosphere. Morphological, compositional and structural properties of the films were investigated using SEM, EDS and XRD methods. Raman spectroscopy with two different excitation lines (514.5 and 785 nm), has been carried out on the sulfurized films in order to fully characterize the CZTS phase. Higher excitation wavelength showed more secondary phases, but with low intensities. Glow discharge optical emission spectroscopy (GDOES) has also been performed on films showing well formed Kesterite CZTS along the film thickness as compositions of the elements do not change along the thickness. In order to investigate the electronic structure of the CZTS, Photoluminescence (PL) spectroscopy has been carried out on the films, whose

  15. Development of the morphology during functional stack build-up of P3HT:PCBM bulk heterojunction solar cells with inverted geometry.

    Science.gov (United States)

    Wang, Weijia; Pröller, Stephan; Niedermeier, Martin A; Körstgens, Volker; Philipp, Martine; Su, Bo; Moseguí González, Daniel; Yu, Shun; Roth, Stephan V; Müller-Buschbaum, Peter

    2015-01-14

    Highly efficient poly(3-hexylthiophene-2,5-diyl) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojunction solar cells are achieved by using an inverted geometry. The development of the morphology is investigated as a function of the multilayer stack assembling during the inverted solar cell preparation. Atomic force microscopy is used to reveal the surface morphology of each stack, and the inner structure is probed with grazing incidence small-angle X-ray scattering. It is found that the smallest domain size of P3HT is introduced by replicating the fluorine-doped tin oxide structure underneath. The structure sizes of the P3HT:PCBM active layer are further optimized after thermal annealing. Compared to devices with standard geometry, the P3HT:PCBM layer in the inverted solar cells shows smaller domain sizes, which are much closer to the exciton diffusion length in the polymer. The decrease in domain sizes is identified as the main reason for the improvement of the device performance.

  16. Flexible conductive-bridging random-access-memory cell vertically stacked with top Ag electrode, PEO, PVK, and bottom Pt electrode

    Science.gov (United States)

    Seung, Hyun-Min; Kwon, Kyoung-Cheol; Lee, Gon-Sub; Park, Jea-Gun

    2014-10-01

    Flexible conductive-bridging random-access-memory (RAM) cells were fabricated with a cross-bar memory cell stacked with a top Ag electrode, conductive polymer (poly(n-vinylcarbazole): PVK), electrolyte (polyethylene oxide: PEO), bottom Pt electrode, and flexible substrate (polyethersulfone: PES), exhibiting the bipolar switching behavior of resistive random access memory (ReRAM). The cell also exhibited bending-fatigue-free nonvolatile memory characteristics: i.e., a set voltage of 1.0 V, a reset voltage of -1.6 V, retention time of >1 × 105 s with a memory margin of 9.2 × 105, program/erase endurance cycles of >102 with a memory margin of 8.4 × 105, and bending-fatigue-free cycles of ˜1 × 103 with a memory margin (Ion/Ioff) of 3.3 × 105.

  17. Status of MCFC stack technology at IHI

    Energy Technology Data Exchange (ETDEWEB)

    Hosaka, M.; Morita, T.; Matsuyama, T.; Otsubo, M. [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan)

    1996-12-31

    The molten carbonate fuel cell (MCFC) is a promising option for highly efficient power generation possible to enlarge. IHI has been studying parallel flow MCFC stacks with internal manifolds that have a large electrode area of 1m{sup 2}. IHI will make two 250 kW stacks for MW plant, and has begun to make cell components for the plant. To improve the stability of stack, soft corrugated plate used in the separator has been developed, and a way of gathering current from stacks has been studied. The DC output potential of the plant being very high, the design of electric insulation will be very important. A 20 kW short stack test was conducted in 1995 FY to certificate some of the improvements and components of the MW plant. These activities are presented below.

  18. The role of Golgi reassembly and stacking protein 65 phosphorylation in H2O2-induced cell death and Golgi morphological changes.

    Science.gov (United States)

    Ji, Guang; Zhang, Weiwei; Quan, Moyuan; Chen, Yang; Qu, Hui; Hu, Zhiping

    2016-12-01

    This study aimed to investigate the effects of H 2 O 2 -induced oxidative stress on cell viability and survival, as well as changes in the distribution of Golgi apparatus and in the level of Golgi reassembly and stacking protein 65 (GRASP65). Cell viability of cultured N2a cells treated with H 2 O 2 was measured by the MTT assay. Apoptosis was measured by flow cytometry analyses. Cells labeled by indirect immunofluorescence were observed under confocal microscope to detect any Golgi morphological alterations; electron microscopy of Golgi apparatus was also done. Expression of GRASP65 and phospho-GRASP65 was examined by immunoblotting. H 2 O 2 treatment reduced the cell viability and raised the cell mortality of N2a cells in a time-dependent manner. Notable changes were only observed in the distribution and morphology of Golgi apparatus at 6 h after H 2 O 2 treatment. The expression of GRASP65 showed no significant changes at different time points; the phosphorylated GRASP65 level was significantly increased after H 2 O 2 treatment, peaked at 3 h, and finally dropped at 6 h. Taken together, GRASP65 phosphorylation may have a critical role in inducing cell death at the early stage after H 2 O 2 treatment, while its role in H 2 O 2 -induced Golgi morphological changes may be complex.

  19. Water recovery and air humidification by condensing the moisture in the outlet gas of a proton exchange membrane fuel cell stack

    International Nuclear Information System (INIS)

    Wan, Z.M.; Wan, J.H.; Liu, J.; Tu, Z.K.; Pan, M.; Liu, Z.C.; Liu, W.

    2012-01-01

    Humidification is one of the most important factors for the operation of proton exchange membrane fuel cell (PEMFC). To maintain the membrane at hydrated state, plenty of water is needed for the state-of-the-art of PEMFC technology, especially in large power applications or long time operation. A condenser is introduced to separate liquid water from the air outlet for air self-sufficient in water of the stack in this study. The condensed temperature at the outlet of the condenser and water recovered amount for air self-sufficient in water are investigated theoretically and experimentally. It is shown that the condensed temperature for air self-sufficient in water is irrelevant with the working current of the stack. When the condenser outlet temperature was above the theoretical line, recovery water was not sufficient for the air humidification. On the contrary, it is sufficient while the temperature was below the theoretical line. It is also shown that when the moisture is sufficiently cooled, large amount water can be separated from the outlet gas, and it increased almost linearly with the time. With the introduction of the condenser, the recovered amount of water can easily satisfy the air self-sufficient in water by condensing the outlet gas to a proper temperature. - Highlights: ► We introduce a condenser to separate liquid water from the air outlet in the stack. ► The mechanism of air self-sufficient in water by condensing gas is presented. ► The condensed temperature and water recovered amount are investigated. ► An experiment is present to validate simplicity and feasibility of the criterion. ► The criterion for air humidification is used for choosing the condenser.

  20. Deploying OpenStack

    CERN Document Server

    Pepple, Ken

    2011-01-01

    OpenStack was created with the audacious goal of being the ubiquitous software choice for building public and private cloud infrastructures. In just over a year, it's become the most talked-about project in open source. This concise book introduces OpenStack's general design and primary software components in detail, and shows you how to start using it to build cloud infrastructures. If you're a developer, technologist, or system administrator familiar with cloud offerings such as Rackspace Cloud or Amazon Web Services, Deploying OpenStack shows you how to obtain and deploy OpenStack softwar

  1. Sizing Stack and Battery of a Fuel Cell Hybrid Distribution Truck Dimensionnement pile et batterie d’un camion hybride à pile à combustible de distribution

    Directory of Open Access Journals (Sweden)

    Tazelaar E.

    2012-08-01

    Full Text Available An existing fuel cell hybrid distribution truck, built for demonstration purposes, is used as a case study to investigate the effect of stack (kW and battery (kW, kWh sizes on the hydrogen consumption of the vehicle. Three driving cycles, the NEDC for Low Power vehicles, CSC and JE05 cycle, define the driving requirements for the vehicle. The Equivalent Consumption Minimization Strategy (ECMS is used for determining the control setpoint for the fuel cell and battery system. It closely approximates the global minimum in fuel consumption, set by Dynamic Programming (DP. Using DP the sizing problem can be solved but ECMS can also be implemented real-time. For the considered vehicle and hardware, all three driving cycles result in optimal sizes for the fuel cell stack of approximately three times the average drive power demand. This demonstrates that sizing the fuel cell stack the average or maximum power demand is not necessarily optimal with respect to a minimum fuel consumption. The battery is sized to deliver the difference between specified stack power and the peak power in the total power demand. The sizing of the battery is dominated by its power handling capabilities. Therefore, a higher maximum C-rate leads to a lower battery weight which in turn leads to a lower hydrogen consumption. The energy storage capacity of the battery only becomes an issue for C-rates over 30. Compared to a Range Extender (RE configuration, where the stack size is comparable to the average power demand and the stack is operated on a constant power level, optimal stack and battery sizes with ECMS as EnergyManagement Strategy significantly reduce the fuel consumption. Compared to a RE strategy, ECMS makes much better use of the combined power available from the fuel cell stack and the battery, resulting in a lower fuel consumption but also enabling a lower battery weight which consequently leads to improved payload capabilities. Un camion hybride, utilisant une pile

  2. A High-Gain Three-Port Power Converter with Fuel Cell, Battery Sources and Stacked Output for Hybrid Electric Vehicles and DC-Microgrids

    Directory of Open Access Journals (Sweden)

    Ching-Ming Lai

    2016-03-01

    Full Text Available This paper proposes a novel high-gain three-port power converter with fuel cell (FC, battery sources and stacked output for a hybrid electric vehicle (HEV connected to a dc-microgrid. In the proposed power converter, the load power can be flexibly distributed between the input sources. Moreover, the charging or discharging of the battery storage device can be controlled effectively using the FC source. The proposed converter has several outputs in series to achieve a high-voltage output, which makes it suitable for interfacing with the HEV and dc-microgrid. On the basis of the charging and discharging states of the battery storage device, two power operation modes are defined. The proposed power converter comprises only one boost inductor integrated with a flyback transformer; the boost and flyback circuit output terminals are stacked to increase the output voltage gain and reduce the voltage stress on the power devices. This paper presents the circuit configuration, operating principle, and steady-state analysis of the proposed converter, and experiments conducted on a laboratory prototype are presented to verify its effectiveness.

  3. Research and development of molten carbonate fuel cell power generation systems. ; Development of stacks and peripheral systems. Yoyu tansan'engata nenryo denchi hatsuden system no kenkyu kaihatsu. ; Sutakku oyobi shuhen system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This paper reports research and development of molten carbonate fuel cell power generation systems of composite large-capacity type, variation large-capacity type, and internal reforming type. Development works on the composite large-capacity type stacks included trial fabrication of basic modules and composite large-capacity cells, development of high-performance long-life electrodes, electrolyte plates, and high corrosion resistant cell constitutive materials, heat resistant cycling tests and life tests, and development of a technology to use higher pressures in fuel cells, and a technology to cool and seal laminar cells. Development works on the variation large-capacity stacks have performed studies on electrode life extension, pressurized operation technologies, tightening methods, fabrication of thin plate processed separators, electrodes, and electrolyte plates, power generation tests on large-area cells, and cooling characteristics analysis. In order to establish an internal reforming fuel cell technology, elucidation has been given on deactivation mechanisms in internal reforming catalysts, as well as discussions on structures of internal reforming fuel cells. As stack operational researches, evaluation tests have been given on 10-kW and 100-kW class stacks. Discussions have been given on heat exchange type and two-step catalyst combustion type reformers as peripheral devices. 26 figs., 6 tabs.

  4. Adding large EM stack support

    KAUST Repository

    Holst, Glendon

    2016-12-01

    Serial section electron microscopy (SSEM) image stacks generated using high throughput microscopy techniques are an integral tool for investigating brain connectivity and cell morphology. FIB or 3View scanning electron microscopes easily generate gigabytes of data. In order to produce analyzable 3D dataset from the imaged volumes, efficient and reliable image segmentation is crucial. Classical manual approaches to segmentation are time consuming and labour intensive. Semiautomatic seeded watershed segmentation algorithms, such as those implemented by ilastik image processing software, are a very powerful alternative, substantially speeding up segmentation times. We have used ilastik effectively for small EM stacks – on a laptop, no less; however, ilastik was unable to carve the large EM stacks we needed to segment because its memory requirements grew too large – even for the biggest workstations we had available. For this reason, we refactored the carving module of ilastik to scale it up to large EM stacks on large workstations, and tested its efficiency. We modified the carving module, building on existing blockwise processing functionality to process data in manageable chunks that can fit within RAM (main memory). We review this refactoring work, highlighting the software architecture, design choices, modifications, and issues encountered.

  5. 2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.; Ulsh, M.

    2012-08-01

    In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

  6. OpenStack essentials

    CERN Document Server

    Radez, Dan

    2015-01-01

    If you need to get started with OpenStack or want to learn more, then this book is your perfect companion. If you're comfortable with the Linux command line, you'll gain confidence in using OpenStack.

  7. Mastering OpenStack

    CERN Document Server

    Khedher, Omar

    2015-01-01

    This book is intended for system administrators, cloud engineers, and system architects who want to deploy a cloud based on OpenStack in a mid- to large-sized IT infrastructure. If you have a fundamental understanding of cloud computing and OpenStack and want to expand your knowledge, then this book is an excellent checkpoint to move forward.

  8. Studies on the polycrystalline silicon/SiO2 stack as front surface field for IBC solar cells by two-dimensional simulations

    International Nuclear Information System (INIS)

    Jiang Shuai; Jia Rui; Tao Ke; Hou Caixia; Sun Hengchao; Li Yongtao; Yu Zhiyong

    2017-01-01

    Interdigitated back contact (IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrystalline silicon/SiO 2 stack structure as front surface field to passivate the front surface of IBC solar cells is proposed. The passivation quality of this structure is investigated by two dimensional simulations. Polycrystalline silicon layer and SiO 2 layer are optimized to get the best passivation quality of the IBC solar cell. Simulation results indicate that the doping level of polycrystalline silicon should be high enough to allow a very thin polycrystalline silicon layer to ensure an effective passivation and small optical losses at the same time. The thickness of SiO 2 should be neither too thin nor too thick, and the optimal thickness is 1.2 nm. Furthermore, the lateral transport properties of electrons are investigated, and the simulation results indicate that a high doping level and conductivity of polycrystalline silicon can improve the lateral transportation of electrons and then the cell performance. (paper)

  9. Three-Dimensional Human Cardiac Tissue Engineered by Centrifugation of Stacked Cell Sheets and Cross-Sectional Observation of Its Synchronous Beatings by Optical Coherence Tomography.

    Science.gov (United States)

    Haraguchi, Yuji; Hasegawa, Akiyuki; Matsuura, Katsuhisa; Kobayashi, Mari; Iwana, Shin-Ichi; Kabetani, Yasuhiro; Shimizu, Tatsuya

    2017-01-01

    Three-dimensional (3D) tissues are engineered by stacking cell sheets, and these tissues have been applied in clinical regenerative therapies. The optimal fabrication technique of 3D human tissues and the real-time observation system for these tissues are important in tissue engineering, regenerative medicine, cardiac physiology, and the safety testing of candidate chemicals. In this study, for aiming the clinical application, 3D human cardiac tissues were rapidly fabricated by human induced pluripotent stem (iPS) cell-derived cardiac cell sheets with centrifugation, and the structures and beatings in the cardiac tissues were observed cross-sectionally and noninvasively by two optical coherence tomography (OCT) systems. The fabrication time was reduced to approximately one-quarter by centrifugation. The cross-sectional observation showed that multilayered cardiac cell sheets adhered tightly just after centrifugation. Additionally, the cross-sectional transmissions of beatings within multilayered human cardiac tissues were clearly detected by OCT. The observation showed the synchronous beatings of the thicker 3D human cardiac tissues, which were fabricated rapidly by cell sheet technology and centrifugation. The rapid tissue-fabrication technique and OCT technology will show a powerful potential in cardiac tissue engineering, regenerative medicine, and drug discovery research.

  10. High-fidelity stack and system modeling for tubular solid oxide fuel cell system design and thermal management

    Science.gov (United States)

    Kattke, K. J.; Braun, R. J.; Colclasure, A. M.; Goldin, G.

    Effective thermal integration of system components is critical to the performance of small-scale (design and simulation tool for a highly-integrated tubular SOFC system. The SOFC is modeled using a high fidelity, one-dimensional tube model coupled to a three-dimensional computational fluid dynamics (CFD) model. Recuperative heat exchange between SOFC tail-gas and inlet cathode air and reformer air/fuel preheat processes are captured within the CFD model. Quasi one-dimensional thermal resistance models of the tail-gas combustor (TGC) and catalytic partial oxidation (CPOx) complete the balance of plant (BoP) and SOFC coupling. The simulation tool is demonstrated on a prototype 66-tube SOFC system with 650 W of nominal gross power. Stack cooling predominately occurs at the external surface of the tubes where radiation accounts for 66-92% of heat transfer. A strong relationship develops between the power output of a tube and its view factor to the relatively cold cylinder wall surrounding the bundle. The bundle geometry yields seven view factor groupings which correspond to seven power groupings with tube powers ranging from 7.6-10.8 W. Furthermore, the low effectiveness of the co-flow recuperator contributes to lower tube powers at the bundle outer periphery.

  11. Development of the electric utility dispersed use PAFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, Hiroshi; Kotani, Ikuo [Mitsubishi Electric Co., Kobe (Japan); Morotomi, Isamu [Kansai Electric Power Co., Hyogo (Japan)] [and others

    1996-12-31

    Kansai Electric Power Co. and Mitsubishi Electric Co. have been developing the electric utility dispersed use PAFC stack operated under the ambient pressure. The new cell design have been developed, so that the large scale cell (1 m{sup 2} size) was adopted for the stack. To confirm the performance and the stability of the 1 m{sup 2} scale cell design, the short stack study had been performed.

  12. Forced Air-Breathing PEMFC Stacks

    Directory of Open Access Journals (Sweden)

    K. S. Dhathathreyan

    2012-01-01

    Full Text Available Air-breathing fuel cells have a great potential as power sources for various electronic devices. They differ from conventional fuel cells in which the cells take up oxygen from ambient air by active or passive methods. The air flow occurs through the channels due to concentration and temperature gradient between the cell and the ambient conditions. However developing a stack is very difficult as the individual cell performance may not be uniform. In order to make such a system more realistic, an open-cathode forced air-breathing stacks were developed by making appropriate channel dimensions for the air flow for uniform performance in a stack. At CFCT-ARCI (Centre for Fuel Cell Technology-ARC International we have developed forced air-breathing fuel cell stacks with varying capacity ranging from 50 watts to 1500 watts. The performance of the stack was analysed based on the air flow, humidity, stability, and so forth, The major advantage of the system is the reduced number of bipolar plates and thereby reduction in volume and weight. However, the thermal management is a challenge due to the non-availability of sufficient air flow to remove the heat from the system during continuous operation. These results will be discussed in this paper.

  13. Detailed Electrochemical Characterisation of Large SOFC Stacks

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Hjelm, Johan; Barfod, R.

    2012-01-01

    As solid oxide fuel cell (SOFC) technology is moving closer to a commercial break through, lifetime limiting factors, determination of the limits of safe operation and methods to measure the “state-of-health” of operating cells and stacks are becoming of increasing interest. This requires applica...... out at a range of ac perturbation amplitudes in order to investigate linearity of the response and the signal-to-noise ratio. Separation of the measured impedance into series and polarisation resistances was possible....... to analyse in detail. Today one is forced to use mathematical modelling to extract information about existing gradients and cell resistances in operating stacks, as mature techniques for local probing are not available. This type of spatially resolved information is essential for model refinement...... and validation, and helps to further the technological stack development. Further, more detailed information obtained from operating stacks is essential for developing appropriate process monitoring and control protocols for stack and system developers. An experimental stack with low ohmic resistance from Topsoe...

  14. An EIS alternative for impedance measurement of a high temperature PEM fuel cell stack based on current pulse injection

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart

    2017-01-01

    In this paper a method for estimating the fuel cell impedance is presented, namely the current pulse injection (CPI) method, which is well suited for online implementation. This method estimates the fuel cell impedance and unlike electrochemical impedance spectroscopy (EIS), it is simple to imple...

  15. Experimental study and modeling of degradation phenomena in HTPEM fuel cell stacks for use in CHP systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Andreasen, Søren Juhl; Rasmussen, Peder Lund

    2009-01-01

    Degradation phenomena in HTPEM fuel cells for use in CHP systems were investigated experimentally and by modeling. It was found that the two main degradation mechanisms in HTPEM fuel cells are carbon corrosion and Pt agglomeration. On basis of this conclusion a mechanistic model, describing the d...

  16. Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks (aka AURORA: Areal Use and Reactant Optimization at Rated Amperage)

    Energy Technology Data Exchange (ETDEWEB)

    Conti, Amedeo [Nuvera Fuel Cells, Inc., Billerica, MA (United States); Dross, Robert [Nuvera Fuel Cells, Inc., Billerica, MA (United States)

    2013-12-06

    Hydrogen fuel cells are recognized as one of the most viable solutions for mobility in the 21st century; however, there are technical challenges that must be addressed before the technology can become available for mass production. One of the most demanding aspects is the costs of present-day fuel cells which are prohibitively high for the majority of envisioned markets. The fuel cell community recognizes two major drivers to an effective cost reduction: (1) decreasing the noble metals content, and (2) increasing the power density in order to reduce the number of cells needed to achieve a specified power level. To date, the majority of development work aimed at increasing the value metric (i.e. W/mg-Pt) has focused on the reduction of precious metal loadings, and this important work continues. Efforts to increase power density have been limited by two main factors: (1) performance limitations associated with mass transport barriers, and (2) the historical prioritization of efficiency over cost. This program is driven by commercialization imperatives, and challenges both of these factors. The premise of this Program, supported by proprietary cost modeling by Nuvera, is that DOE 2015 cost targets can be met by simultaneously exceeding DOE 2015 targets for Platinum loadings (using materials with less than 0.2 mg-Pt/cm2) and MEA power density (operating at higher than 1.0 Watt/cm2). The approach of this program is to combine Nuvera’s stack technology, which has demonstrated the ability to operate stably at high current densities (> 1.5 A/cm2), with low Platinum loading MEAs developed by Johnson Matthey in order to maximize Pt specific power density and reduce stack cost. A predictive performance model developed by PSU/UTK is central to the program allowing the team to study the physics and optimize materials/conditions specific to low Pt loading electrodes and ultra-high current density and operation.

  17. Multistage Force Amplification of Piezoelectric Stacks

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Siochi, Emilie J. (Inventor); Zuo, Lei (Inventor); Jiang, Xiaoning (Inventor); Kang, Jin Ho (Inventor)

    2015-01-01

    Embodiments of the disclosure include an apparatus and methods for using a piezoelectric device, that includes an outer flextensional casing, a first cell and a last cell serially coupled to each other and coupled to the outer flextensional casing such that each cell having a flextensional cell structure and each cell receives an input force and provides an output force that is amplified based on the input force. The apparatus further includes a piezoelectric stack coupled to each cell such that the piezoelectric stack of each cell provides piezoelectric energy based on the output force for each cell. Further, the last cell receives an input force that is the output force from the first cell and the last cell provides an output apparatus force In addition, the piezoelectric energy harvested is based on the output apparatus force. Moreover, the apparatus provides displacement based on the output apparatus force.

  18. NMR measurement system including two synchronized ring buffers, with 128 rf coils for in situ water monitoring in a polymer electrolyte fuel cell

    Science.gov (United States)

    Ogawa, Kuniyasu; Haishi, Tomoyuki; Aoki, Masaru; Hasegawa, Hiroshi; Morisaka, Shinichi; Hashimoto, Seitaro

    2017-01-01

    A small radio-frequency (rf) coil inserted into a polymer electrolyte fuel cell (PEFC) can be used to acquire nuclear magnetic resonance (NMR) signals from the water in a membrane electrode assembly (MEA) or in oxygen gas channels in the PEFC. Measuring the spatial distribution of the water in a large PEFC requires using many rf probes, so an NMR measurement system which acquires NMR signals from 128 rf probes at intervals of 0.5 s was manufactured. The system has eight rf transceiver units with a field-programmable gate array (FPGA) for modulation of the excitation pulse and quadrature phase detection of the NMR signal, and one control unit with two ring buffers for data control. The sequence data required for the NMR measurement were written into one ring buffer. The acquired NMR signal data were then written temporarily into the other ring buffer and then were transmitted to a personal computer (PC). A total of 98 rf probes were inserted into the PEFC that had an electrical generation area of 16 cm × 14 cm, and the water generated in the PEFC was measured when the PEFC operated at 100 A. As a result, time-dependent changes in the spatial distribution of the water content in the MEA and the water in the oxygen gas channels were obtained.

  19. Modeling Cold Start in a Polymer-Electrolyte Fuel Cell

    OpenAIRE

    Balliet, Ryan

    2010-01-01

    Polymer-electrolyte fuel cells (PEFCs) are electrochemical devices that create electricity by consuming hydrogen and oxygen, forming water and heat as byproducts. PEFCs have been proposed for use in applications that may require start-up in environments with temperatures below 0 degrees C. Doing so requires that the cell heat up, and when its own waste heat is used to do so, the process is referred to here as ``cold start.'' However, at low temperatures the cell's product water freezes, and i...

  20. Experimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack

    OpenAIRE

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Nielsen, Mads Pagh

    2008-01-01

    Fuel cell systems running on pure hydrogen can efficiently produce electricity and heat for various applications, stationary and mobile. Storage volume can be problematic for stationary fuel cell systems with high run-time demands, but it is especially a challenge when dealing with mobile and automotive applications. Using a liquid hydrocarbon as e.g. methanol as the hydrogen carrier and reforming it to a hydrogen rich gas can solve some of these storage issues. The work presented here examin...

  1. Progress of MCFC stack technology at Toshiba

    Energy Technology Data Exchange (ETDEWEB)

    Hori, M.; Hayashi, T.; Shimizu, Y. [Toshiba Corp., Tokyo (Japan)

    1996-12-31

    Toshiba is working on the development of MCFC stack technology; improvement of cell characteristics, and establishment of separator technology. For the cell technology, Toshiba has concentrated on both the restraints of NiO cathode dissolution and electrolyte loss from cells, which are the critical issues to extend cell life in MCFC, and great progress has been made. On the other hand, recognizing that the separator is one of key elements in accomplishing reliable and cost-competitive MCFC stacks, Toshiba has been accelerating the technology establishment and verification of an advanced type separator. A sub-scale stack with such a separator was provided for an electric generating test, and has been operated for more than 10,000 hours. This paper presents several topics obtained through the technical activities in the MCFC field at Toshiba.

  2. A critical assessment of fuel cell technology

    International Nuclear Information System (INIS)

    Lindstroem, O.

    1994-01-01

    Cold combustion is a promised technology to mankind since the middle of the last century. The fuel cell may at last become the energy machine of the one to come after a long journey on a road bordered with expectations, successes and disappointments. Ten billion people will need the cell for their well-being. The progress and the state-of-art is assessed by means of figures of merit for performance, normalized to standard conditions, life and variability. State-of-art current densities for multi-kW stacks operating on atmospheric pressure air at 0.74 V cell voltage (50% efficiency, HHV) are estimated to be 150 mA/cm 2 for MCFC, 160 mA/cm 2 for AFC, 239 mA/cm 2 for PEFC and 270 mA/cm 2 for SOFC. PAFC gives 260 mA/cm 2 at 0.66 V and DMFC 100 mA/cm 2 at 0.37 V. Decay rates are about 1%/1000 h for PEFC, PAFC and SOFC compared to 2%/1000 h for AFC and 3%/1000 h for MCFC. Coefficients of variation for cell voltages amount to about 1% for all options, except for MCFC with 3-4%. Improvement of cell performance after 1975 is nil to moderate, except for SOFC with a consistent annual improvement of about 10%. There is room for further development of terrestrial AFCs towards 300-400 mA/cm 2 considering the figure 800 mA/cm 2 for oxygen AFCs. Life and cost will decide the future of the fuel cell. Prospects are not as good as they could be. The fuel cell community lacks understanding of the basics of fuel processing, as demonstrated by the widespread misbelief ('the CO 2 syndrome') that CO 2 cannot be removed cost effectively from a hydrogen feed (which is practiced in every NH 3 plant around the world). The competition, read the gas turbine, has to be taken very seriously. Emphasis has to be shifted from premature demonstrations to R and D on fundamental problems, which have been around too long. 34 refs

  3. Pt–Au/C cathode with enhanced oxygen-reduction activity in PEFCs

    Indian Academy of Sciences (India)

    reduction reaction. 1. Introduction. Polymer electrolyte fuel cells ... in recent years due to their attractive stability and activity towards ORR in fuel cells (Li et al .... required amount of Pt/C or. Pt–Au/C was suspended in isopropyl alcohol. The mixture.

  4. Application of CFD in Bioprocessing: Separation of mammalian cells using disc stack centrifuge during production of biotherapeutics.

    Science.gov (United States)

    Shekhawat, Lalita Kanwar; Sarkar, Jayati; Gupta, Rachit; Hadpe, Sandeep; Rathore, Anurag S

    2018-02-10

    Centrifugation continues to be one of the most commonly used unit operations for achieving efficient harvest of the product from the mammalian cell culture broth during production of therapeutic monoclonal antibodies (mAbs). Since the mammalian cells are known to be shear sensitive, optimal performance of the centrifuge requires a balance between productivity and shear. In this study, Computational Fluid Dynamics (CFD) has been successfully used as a tool to facilitate efficient optimization. Multiphase Eulerian-Eulerian model coupled with Gidaspow drag model along with Eulerian-Eulerian k-ε mixture turbulence model have been used to quantify the complex hydrodynamics of the centrifuge and thus evaluate the turbulent stresses generated by the centrifugal forces. An empirical model has been developed by statistical analysis of experimentally observed cell lysis data as a function of turbulent stresses. An operating window that offers the optimal balance between high productivity, high separation efficiency, and low cell damage has been identified by use of CFD modeling. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Impedance characterization of high temperature proton exchange membrane fuel cell stack under the influence of carbon monoxide and methanol vapor

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Polverino, Pierpaolo; Andreasen, Søren Juhl

    2017-01-01

    This work presents a comprehensive mapping of electrochemical impedance measurements under the influence of CO and methanol vapor contamination of the anode gas in a high temperature proton exchange membrane fuel cell, at varying load current. Electrical equivalent circuit model parameters based ...

  6. Stack filter classifiers

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Hush, Don [Los Alamos National Laboratory

    2009-01-01

    Just as linear models generalize the sample mean and weighted average, weighted order statistic models generalize the sample median and weighted median. This analogy can be continued informally to generalized additive modeels in the case of the mean, and Stack Filters in the case of the median. Both of these model classes have been extensively studied for signal and image processing but it is surprising to find that for pattern classification, their treatment has been significantly one sided. Generalized additive models are now a major tool in pattern classification and many different learning algorithms have been developed to fit model parameters to finite data. However Stack Filters remain largely confined to signal and image processing and learning algorithms for classification are yet to be seen. This paper is a step towards Stack Filter Classifiers and it shows that the approach is interesting from both a theoretical and a practical perspective.

  7. Homogeneous-oxide stack in IGZO thin-film transistors for multi-level-cell NAND memory application

    Science.gov (United States)

    Ji, Hao; Wei, Yehui; Zhang, Xinlei; Jiang, Ran

    2017-11-01

    A nonvolatile charge-trap-flash memory that is based on amorphous indium-gallium-zinc-oxide thin film transistors was fabricated with a homogeneous-oxide structure for a multi-level-cell application. All oxide layers, i.e., tunneling layer, charge trapping layer, and blocking layer, were fabricated with Al2O3 films. The fabrication condition (including temperature and deposition method) of the charge trapping layer was different from those of the other oxide layers. This device demonstrated a considerable large memory window of 4 V between the states fully erased and programmed with the operation voltage less than 14 V. This kind of device shows a good prospect for multi-level-cell memory applications.

  8. On Stack Reconstruction Problem

    Directory of Open Access Journals (Sweden)

    V. D. Аkeliev

    2009-01-01

    Full Text Available The paper describes analytical investigations that study relation of fuel combustion regimes with concentration values of sulphur anhydride in flue gases and acid dew point. Coefficients of convective heat transfer at internal and external surfaces of stacks have been determined in the paper. The paper reveals the possibility to reconstruct stacks while using gas discharging channel made of composite material on the basis of glass-reinforced plastic which permits to reduce thermo-stressed actions on reinforced concrete and increase volume of released gases due to practically two-fold reduction of gas-dynamic pressure losses along the pipe length.

  9. Laser pulse stacking method

    Science.gov (United States)

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  10. Fault detection and isolation of high temperature proton exchange membrane fuel cell stack under the influence of degradation

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart

    2017-01-01

    This study proposes a data-drive impedance-based methodology for fault detection and isolation of low and high cathode stoichiometry, high CO concentration in the anode gas, high methanol vapour concentrations in the anode gas and low anode stoichiometry, for high temperature PEM fuel cells...... methanol vapour concentration in the anode gas fault, which was found to be difficult to distinguish from a normal operational data. The achieved accuracy for faults related to CO pollution, anode- and cathode stoichiometry is 100% success rate. Overall global accuracy on the test data is 94.6%....

  11. Optimized hydrogen generation in a semicontinuous sodium borohydride hydrolysis reactor for a 60 W-scale fuel cell stack

    Science.gov (United States)

    Arzac, G. M.; Fernández, A.; Justo, A.; Sarmiento, B.; Jiménez, M. A.; Jiménez, M. M.

    Catalyzed hydrolysis of sodium borohydride (SBH) is a promising method for the hydrogen supply of fuel cells. In this study a system for controlled production of hydrogen from aqueous sodium borohydride (SBH) solutions has been designed and built. This simple and low cost system operates under controlled addition of stabilized SBH solutions (fuel solutions) to a supported CoB catalyst. The system works at constant temperature delivering hydrogen at 1 L min -1 constant rate to match a 60-W polymer electrolyte membrane fuel cell (PEMFC). For optimization of the system, several experimental conditions were changed and their effect was investigated. A simple model based only on thermodynamic considerations was proposed to optimize system parameters at constant temperature and hydrogen evolution rate. It was found that, for a given SBH concentration, the use of the adequate fuel addition rate can maximize the total conversion and therefore the gravimetric storage capacity. The hydrogen storage capacity was as high as 3.5 wt% for 19 wt% SBH solution at 90% fuel conversion and an operation temperature of 60 °C. It has been demonstrated that these optimized values can also be achieved for a wide range of hydrogen generation rates. Studies on the durability of the catalyst showed that a regeneration step is needed to restore the catalytic activity before reusing.

  12. Stacked Cu1.8S nanoplatelets as Counter Electrode for Quantum Dot-Sensitized Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    Savariraj, Dennyson A.; Rajendrakumar, G.; Selvam, Samayanan; Karthick, S. N.; Balamuralitharan, B.; Kim, Hee-Je; Viswanathan, Kodakkal K.; Vijayakumar, M.; Prabakar, Kandasamy

    2015-11-09

    It is found that electrocatalytic activity of Cu2-xS thin films used in quantum dots sensitized solar cells (QDSSC) as countner electrode (CE) for the reduction of polysulfide electrolyte depends on the the surface active sulfur species and defficiency of Cu. The preferential bonding between Cu2+ and S2- leading to the selective formation of Cu1.8S stacked platelets like morphology is determined by Cetyl Trimethyl Ammonium Bromide surfactant with temperature and crab like Cu-S coordination bond formed dictates the surface area to volume ratio of the Cu1.8S thin films and the electrocatalytic activity. The Cu deficiency enhances the conductivity of the Cu1.8S thin films and exhibits near- infrared localized surface plasmon resonanc due to free carrier intraband absorption and UV-VIS absorption spectra shows excitonic effect due to quantum size effect. When these Cu1.8S thin films were employed as CE in QDSSC, robust photoconversion efficiency of 5.2 % is yielded by the film deposited at 60°C by a sinlge step chemical bath deposition method.

  13. Commercial alkaline earth boroaluminosilicate glasses for sealing solid oxide cell stacks. Part I: Development of glass-ceramic microstructure and thermomechanical properties

    DEFF Research Database (Denmark)

    Agersted, Karsten; Balic-Zunic, Tonci

    2017-01-01

    was developed over ~1000 hours at 800°C, depends mainly on the formation of cristobalite and quartz as well as the presence of a residual glass phase. The glass ceramic sealant appears relatively stable over time, except for a slow transition of cristobalite to quartz, and can possibly show self......Sealing performance in solid oxide cell (SOC) stacks and the devitrification process of commercially available alkaline earth boroaluminosilicate glasses containing 48‐61 mol% SiO2, 18‐28 mol% CaO, 1‐7 mol% MgO, 7‐10 mol% Al2O3, 1‐11 mol% B2O3 plus minor amounts of Na2O, K2O, FeO, and TiO2 were...... investigated and quantified through analysis of phase assemblages as function of heat treatments above the glass transition temperatures using the electron microprobe and powder X‐ray diffraction. For two of these glasses devitrification behavior was compared to the devitrification behavior of similar glasses...

  14. Pt–Au/C cathode with enhanced oxygen-reduction activity in PEFCs

    Indian Academy of Sciences (India)

    HAuCl4, were dissolved in a solution containing water and. 2-propanol, and pH of the solution was adjusted to .... Pt–Au/C was suspended in isopropyl alcohol. The mixture was agitated in an ultrasonic water bath, ... using a conventional 25 cm2 fuel-cell fixture with parallel serpentine-flow-field machined on graphite plates ...

  15. Ion-induced stacking of photosensitizer molecules can remarkably affect the luminescence detection of singlet oxygen in Candida albicans cells

    Science.gov (United States)

    Felgenträger, Ariane; Gonzales, Fernanda Pereira; Maisch, Tim; Bäumler, Wolfgang

    2013-04-01

    Singlet oxygen (O21) is an important reactive intermediate in photodynamic reactions, particularly in antimicrobial PDT (aPDT). The detection of O21 luminescence is frequently used to elucidate the role of O21 in various environments, particularly in microorganisms and human cells. When incubating the fungus, Candida albicans, with porphyrins XF73 (5,15-bis-[4-(3-Trimethylammonio-propyloxy)-phenyl]-porphyrin) or TMPyP (5,10,15,20-Tetrakis(1-methyl-4-pyridinio)-porphyrin tetra(p-toluenesulfonate)), the O21 luminescence signals were excellent for TMPyP. In case of XF73, the signals showed strange rise and decay times. Thus, O21 generation of XF73 was investigated and compared with TMPyP. Absorption spectroscopy of XF73 showed a change in absorption cross section when there was a change in the concentration from 1×10-6 M to 1×10-3 M indicating an aggregation process. The addition of phosphate buffered saline (PBS) substantially changed O21 luminescence in XF73 solution. Detailed experiments provided evidence that the PBS constituents NaCl and KCl caused the change of O21 luminescence. The results also indicate that Cl- ions may cause aggregation of XF73 molecules, which in turn enhances self-quenching of O21 via photosensitizer molecules. These results show that some ions, e.g., those present in cells in vitro or added by PBS, can considerably affect the detection and the interpretation of time-resolved luminescence signals of O21, particularly in in vitro and in vivo. These effects should be considered for any other photosensitizer used in photodynamic processes.

  16. po_stack_movie

    DEFF Research Database (Denmark)

    2009-01-01

    po_stack® er et reolsystem, hvis enkle elementer giver stor flexibilitet, variation og skulpturel virkning. Elementerne stables og forskydes frit, så reolens rum kan vendes til begge sider, være åbne eller lukkede og farvekombineres ubegrænset. Reolen kan let ombygges, udvides eller opdeles, når ...

  17. Learning SaltStack

    CERN Document Server

    Myers, Colton

    2015-01-01

    If you are a system administrator who manages multiple servers, then you know how difficult it is to keep your infrastructure in line. If you've been searching for an easier way, this book is for you. No prior experience with SaltStack is required.

  18. PEM - fuel cell system for residential applications

    Energy Technology Data Exchange (ETDEWEB)

    Britz, P. [Viessmann Werke GmbH and Co KG, 35107 Allendorf (Germany); Zartenar, N.

    2004-12-01

    Viessmann is developing a PEM fuel cell system for residential applications. The uncharged PEM fuel cell system has a 2 kW electrical and 3 kW thermal power output. The Viessmann Fuel Processor is characterized by a steam-reformer/burner combination in which the burner supplies the required heat to the steam reformer unit and the burner exhaust gas is used to heat water. Natural gas is used as fuel, which is fed into the reforming reactor after passing an integrated desulphurisation unit. The low temperature (600 C) fuel processor is designed on the basis of steam reforming technology. For carbon monoxide removal, a single shift reactor and selective methanisation is used with noble metal catalysts on monoliths. In the shift reactor, carbon monoxide is converted into hydrogen by the water gas shift reaction. The low level of carbon monoxide at the outlet of the shift reactor is further reduced, to approximately 20 ppm, downstream in the methanisation reactor, to meet PEM fuel cell requirements. Since both catalysts work at the same temperature (240 C), there is no requirement for an additional heat exchanger in the fuel processor. Start up time is less than 30 min. In addition, Viessmann has developed a 2 kW class PEFC stack, without humidification. Reformate and dry air are fed straight to the stack. Due to the dry operation, water produced by the cell reaction rapidly diffuses through the electrolyte membrane. This was achieved by optimising the MEA, the gas flow pattern and the operating conditions. The cathode is operated by an air blower. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  19. Fault detection and isolation of high temperature proton exchange membrane fuel cell stack under the influence of degradation

    Science.gov (United States)

    Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart; Thomas, Sobi; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2017-08-01

    This study proposes a data-drive impedance-based methodology for fault detection and isolation of low and high cathode stoichiometry, high CO concentration in the anode gas, high methanol vapour concentrations in the anode gas and low anode stoichiometry, for high temperature PEM fuel cells. The fault detection and isolation algorithm is based on an artificial neural network classifier, which uses three extracted features as input. Two of the proposed features are based on angles in the impedance spectrum, and are therefore relative to specific points, and shown to be independent of degradation, contrary to other available feature extraction methods in the literature. The experimental data is based on a 35 day experiment, where 2010 unique electrochemical impedance spectroscopy measurements were recorded. The test of the algorithm resulted in a good detectability of the faults, except for high methanol vapour concentration in the anode gas fault, which was found to be difficult to distinguish from a normal operational data. The achieved accuracy for faults related to CO pollution, anode- and cathode stoichiometry is 100% success rate. Overall global accuracy on the test data is 94.6%.

  20. Durability study of transition metal based non-precious cathode in PEFC

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Gang [Los Alamos National Laboratory; Zelenay, Piotr [Los Alamos National Laboratory

    2009-01-01

    This paper focuses on performance durability of newly developed polyaniline (PANI)-derived non-precious cathode catalyst, whose high oxygen-reduction activity was verified in electrochemical and fuel cell testing, exhibiting onset and half-wave potential (E{sup 1/2}) of oxygen reduction at 0.90 V and 0.77 V, respectively, as well as an insignificant H{sub 2}O{sub 2} yields below 1%. It was found catalyst durability in fuel cell life tests is greatly dependent on the catalyst synthesis including nitrogen precursors, employed transition metals, and supporting materials. Importantly, the working voltages in fuel cell testing have a profound impact on the stability, which much more stable performance can be observed at lower voltage such as 0.4 V when compared with higher voltage, 0.6 V. Preliminary physical and electrochemical characterization present to provide insight into the origin of the possible degradation mechanism for the non-precious active sites.

  1. Structural color-tunable mesoporous bragg stack layers based on graft copolymer self-assembly for high-efficiency solid-state dye-sensitized solar cells

    Science.gov (United States)

    Lee, Chang Soo; Park, Jung Tae; Kim, Jong Hak

    2016-08-01

    We present a facile fabrication route for structural color-tunable mesoporous Bragg stack (BS) layers based on the self-assembly of a cost-effective graft copolymer. The mesoporous BS layers are prepared through the alternating deposition of organized mesoporous-TiO2 (OM-TiO2) and -SiO2 (OM-SiO2) films on the non-conducting side of the counter electrode in dye-sensitized solar cells (DSSCs). The OM layers with controlled porosity, pore size, and refractive index are templated with amphiphilic graft copolymers consisting of poly(vinyl chloride) backbones and poly(oxyethylene methacrylate) side chains, i.e., PVC-g-POEM. The morphology and properties of the structural color-tunable mesoporous BS-functionalized electrodes are characterized using energy filtered transmission electron microscopy (EF-TEM), field emission-scanning electron microscopy (FE-SEM), spectroscopic ellipsometry, and reflectance spectroscopy. The solid-state DSSCs (ssDSSCs) based on a structural color-tunable mesoporous BS counter electrode with a single-component solid electrolyte show an energy conversion efficiency (η) of 7.1%, which is much greater than that of conventional nanocrystalline TiO2-based cells and one of the highest values for N719 dye-based ssDSSCs. The enhancement of η is due to the enhancement of current density (Jsc), attributed to the improved light harvesting properties without considerable decrease in fill factor (FF) or open-circuit voltage (Voc), as confirmed by incident photon-to-electron conversion efficiency (IPCE) and electrochemical impedance spectroscopy (EIS).

  2. Time-resolved photoluminescence for evaluating laser-induced damage during dielectric stack ablation in silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Parola, Stéphanie [Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR5270, CNRS, INSA Lyon, Villeurbanne, F-69621 (France); Blanc-Pélissier, Danièle, E-mail: daniele.blanc@insa-lyon.fr [Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR5270, CNRS, INSA Lyon, Villeurbanne, F-69621 (France); Barbos, Corina; Le Coz, Marine [Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR5270, CNRS, INSA Lyon, Villeurbanne, F-69621 (France); Poulain, Gilles [TOTAL MS—New Energies, R& D Division, La Défense (France); Lemiti, Mustapha [Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR5270, CNRS, INSA Lyon, Villeurbanne, F-69621 (France)

    2016-06-30

    Highlights: • Ablation of Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}/SiN{sub x} on Si substrates was performed with a nanosecond UV laser. • Ablation thresholds were found in good agreement with COMSOL simulation, around 0.85 and 0.95 J cm{sup −2} for Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}/SiN{sub X}, respectively. • Laser-induced damage was evaluated at room temperature by time-resolved photoluminescence decay with a single photon counting detector. • Minority carrier lifetime in silicon as a function of the ablation fluence was derived from the photoluminescence decay and related to the thickness of the heat affected zone. • Quantitative measurements of laser-induced damage can be used to evaluate laser ablation of dielectrics in photovoltaics. - Abstract: Selective laser ablation of dielectric layers on crystalline silicon wafers was investigated for solar cell fabrication. Laser processing was performed on Al{sub 2}O{sub 3}, and bi-layers Al{sub 2}O{sub 3}/SiN{sub X}:H with a nanosecond UV laser at various energy densities ranging from 0.4 to 2 J cm{sup −2}. Ablation threshold was correlated to the simulated temperature at the interface between the dielectric coatings and the silicon substrate. Laser-induced damage to the silicon substrate was evaluated by time-resolved photoluminescence. The minority carrier lifetime deduced from time-resolved photoluminescence was related to the depth of the heat affected zone in the substrate.

  3. Description and modelling of the solar-hydrogen-biogas-fuel cell system in GlashusEtt

    Science.gov (United States)

    Hedström, L.; Wallmark, C.; Alvfors, P.; Rissanen, M.; Stridh, B.; Ekman, J.

    The need to reduce pollutant emissions and utilise the world's available energy resources more efficiently has led to increased attention towards e.g. fuel cells, but also to other alternative energy solutions. In order to further understand and evaluate the prerequisites for sustainable and energy-saving systems, ABB and Fortum have equipped an environmental information centre, located in Hammarby Sjöstad, Stockholm, Sweden, with an alternative energy system. The system is being used to demonstrate and evaluate how a system based on fuel cells and solar cells can function as a complement to existing electricity and heat production. The stationary energy system is situated on the top level of a three-floor glass building and is open to the public. The alternative energy system consists of a fuel cell system, a photovoltaic (PV) cell array, an electrolyser, hydrogen storage tanks, a biogas burner, dc/ac inverters, heat exchangers and an accumulator tank. The fuel cell system includes a reformer and a polymer electrolyte fuel cell (PEFC) with a maximum rated electrical output of 4 kW el and a maximum thermal output of 6.5 kW th. The fuel cell stack can be operated with reformed biogas, or directly using hydrogen produced by the electrolyser. The cell stack in the electrolyser consists of proton exchange membrane (PEM) cells. To evaluate different automatic control strategies for the system, a simplified dynamic model has been developed in MATLAB Simulink. The model based on measurement data taken from the actual system. The evaluation is based on demand curves, investment costs, electricity prices and irradiation. Evaluation criteria included in the model are electrical and total efficiencies as well as economic parameters.

  4. Performance comparison of protonic and sodium phosphomolybdovanadate polyoxoanion catholytes within a chemically regenerative redox cathode polymer electrolyte fuel cell

    Science.gov (United States)

    Ward, David B.; Gunn, Natasha L. O.; Uwigena, Nadine; Davies, Trevor J.

    2018-01-01

    The direct reduction of oxygen in conventional polymer electrolyte fuel cells (PEFCs) is seen by many researchers as a key challenge in PEFC development. Chemically regenerative redox cathode (CRRC) polymer electrolyte fuel cells offer an alternative approach via the indirect reduction of oxygen, improving durability and reducing cost. These systems substitute gaseous oxygen for a liquid catalyst that is reduced at the cathode then oxidised in a regeneration vessel via air bubbling. A key component of a CRRC system is the liquid catalyst or catholyte. To date, phosphomolybdovanadium polyoxometalates with empirical formula H3+nPVnMo12-nO40 have shown the most promise for CRRC PEFC systems. In this work, four catholyte formulations are studied and compared against each other. The catholytes vary in vanadium content, pH and counter ion, with empirical formulas H6PV3Mo9O40, H7PV4Mo8O40, Na3H3PV3Mo9O40 and Na4H3PV4Mo8O40. Thermodynamic properties, cell performance and regeneration rates are measured, generating new insights into how formulation chemistry affects the components of a CRRC system. The results include the best CRRC PEFC performance reported to date, with noticeable advantages over conventional PEFCs. The optimum catholyte formulation is then determined via steady state tests, the results of which will guide further optimization of the catholyte formulation.

  5. A novel configuration for direct internal reforming stacks

    Science.gov (United States)

    Fellows, Richard

    This paper presents a stack concept that can be applied to both molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) internal reforming stacks. It employs anode recycle and allows the design of very simple system configurations, while giving enhanced efficiencies and high specific power densities. The recycle of anode exit gas to the anode inlet has previously been proposed as a means of preventing carbon deposition in direct internal reforming (DIR) stacks. When applied to a normal stack this reduces the Nernst voltages because the recycle stream is relatively depleted in hydrogen. In the concept proposed here, known as the `Smarter' stack, there are two anode exit streams, one of which is depleted, while the other is relatively undepleted. The depleted stream passes directly to the burner, and the undepleted stream is recycled to the stack inlet. By this means high Nernst voltages are achieved in the stack. The concept has been simulated and assessed for parallel-flow and cross-flow MCFC and SOFC stacks and graphs are presented showing temperature distributions. The `Smarter' stacks employ a high recycle rate resulting in a reduced natural gas concentration at the stack inlet, and this reduces or eliminates the unfavourable temperature dip. Catalyst grading can further improve the temperature distribution. The concept allows simple system configurations in which the need for fuel pre-heat is eliminated. Efficiencies are up to 10 percentage points higher than for conventional stacks with the same cell area and maximum stack temperature. The concept presented here was devised in a project part-funded by the EU, and has been adopted by the European Advanced DIR-MCFC development programme led by BCN.

  6. On direct and indirect methanol fuel cells for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfield, S.

    1996-04-01

    Research on direct oxidation methanol fuel cells (DMFCs) and polymer electrolyte fuel cells (PEFCs) is discussed. Systems considered for transportation applications are addressed. The use of platinum/ruthenium anode electrocatalysts and platinum cathode electrocatalysts in polymer electrolyte DMFCs has resulted in significant performance enhancements.

  7. Energy Expenditure of Sport Stacking

    Science.gov (United States)

    Murray, Steven R.; Udermann, Brian E.; Reineke, David M.; Battista, Rebecca A.

    2009-01-01

    Sport stacking is an activity taught in many physical education programs. The activity, although very popular, has been studied minimally, and the energy expenditure for sport stacking is unknown. Therefore, the purposes of this study were to determine the energy expenditure of sport stacking in elementary school children and to compare that value…

  8. OpenStack cloud security

    CERN Document Server

    Locati, Fabio Alessandro

    2015-01-01

    If you are an OpenStack administrator or developer, or wish to build solutions to protect your OpenStack environment, then this book is for you. Experience of Linux administration and familiarity with different OpenStack components is assumed.

  9. California dreaming?[PEM stacks

    Energy Technology Data Exchange (ETDEWEB)

    Crosse, J.

    2002-06-01

    Hyundai's Santa Fe FCEV will be on sale by the end of 2002. Hyundai uses PEM stacks that are manufactured by International Fuel Cells (IFC), a division of United Technologies. Santa Fe is equipped with a 65 kW electric powertrain of Enova systems and Shell's new gasoline reformer called Hydrogen Source. Eugene Jang, Senior Engineer - Fuel Cell and Materials at Hyundai stated that the compressor related losses on IFC system are below 3%. The maximum speed offered by the vehicle is estimated as 123km/hr while the petrol equivalent fuel consumption is quoted between 5.6L/100 km and 4.8L/100 km. Santa Fe is a compact vehicle offering better steering response and a pleasant drive. (author)

  10. Development of on-site PAFC stacks

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, K.; Matsumoto, Y. [Kansai Electric Power Co., Amagasaki (Japan); Horiuchi, H.; Ohtani, T. [Mitsubishi Electric Corp., Kobe (Japan)

    1996-12-31

    PAFC (Phosphoric Acid Fuel Cell) has been researched for commercial use and demonstration plants have been installed in various sites. However, PAFC don`t have a enough stability yet, so more research and development must be required in the future. Especially, cell stack needs a proper state of three phases (liquid, gas and solid) interface. It is very difficult technology to keep this condition for a long time. In the small size cell with the electrode area of 100 cm{sup 2}, gas flow and temperature distributions show uniformity. But in the large size cell with the electrode area of 4000 cm{sup 2}, the temperature distributions show non-uniformity. These distributions would cause to be shorten the cell life. Because these distributions make hot-spot and gas poverty in limited parts. So we inserted thermocouples in short-stack for measuring three-dimensional temperature distributions and observed effects of current density and gas utilization on temperature.

  11. Pseudo one-dimensional analysis of polymer electrolyte fuel cell cold-start

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Wang, Yun [NON LANL; Mishlera, Jeff [NON LANL

    2009-01-01

    This paper investigates the electrochemical kinetics, oxygen transport, and solid water formation in polymer electrolyte fuel cell (PEFC) during cold start. Following [Yo Wang, J. Electrochem. Soc., 154 (2007) B1041-B1048], we develop a pseudo one-dimensional analysis, which enables the evaluation of the impact of ice volume fraction and temperature variations on cell performance during cold-start. The oxygen profile, starvation ice volume fraction, and relevant overpotentials are obtained. This study is valuable for studying the characteristics of PEFC cold-start.

  12. Stack Caching Using Split Data Caches

    DEFF Research Database (Denmark)

    Nielsen, Carsten; Schoeberl, Martin

    2015-01-01

    In most embedded and general purpose architectures, stack data and non-stack data is cached together, meaning that writing to or loading from the stack may expel non-stack data from the data cache. Manipulation of the stack has a different memory access pattern than that of non-stack data, showing...... higher temporal and spatial locality. We propose caching stack and non-stack data separately and develop four different stack caches that allow this separation without requiring compiler support. These are the simple, window, and prefilling with and without tag stack caches. The performance of the stack...

  13. Passive stack ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, J.; Parkins, L.; Shaw, P.; Watkins, R. [Databuild, Birmingham (United Kingdom)

    1994-12-31

    The adequate ventilation of houses is essential for both the occupants and the building fabric. As air-tightness standards increase, background infiltration levels decrease and extra ventilation has to be designed into the building. Passive stack ventilation has many advantages - particularly when employed in low cost housing schemes -but it is essential that it performs satisfactorily. This paper give the results from monitoring two passive stack ventilation schemes. One scheme was a retrofit into refurbished local authority houses in which a package of energy efficiency measures had been taken and condensation had been a problem. The other series of tests were conducted on a new installation in a Housing Association development. Nine houses were monitored each of which had at least two passive vents. The results show air flow rates by the passive ducts equivalent to approximately 1 room air change per hour. The air flow in the ducts was influenced by both, internal to external temperature difference and wind speed and direction. (author)

  14. Asymmetric Flexible Supercapacitor Stack

    Directory of Open Access Journals (Sweden)

    Leela Mohana Reddy A

    2008-01-01

    Full Text Available AbstractElectrical double layer supercapacitor is very significant in the field of electrical energy storage which can be the solution for the current revolution in the electronic devices like mobile phones, camera flashes which needs flexible and miniaturized energy storage device with all non-aqueous components. The multiwalled carbon nanotubes (MWNTs have been synthesized by catalytic chemical vapor deposition technique over hydrogen decrepitated Mischmetal (Mm based AB3alloy hydride. The polymer dispersed MWNTs have been obtained by insitu polymerization and the metal oxide/MWNTs were synthesized by sol-gel method. Morphological characterizations of polymer dispersed MWNTs have been carried out using scanning electron microscopy (SEM, transmission electron microscopy (TEM and HRTEM. An assymetric double supercapacitor stack has been fabricated using polymer/MWNTs and metal oxide/MWNTs coated over flexible carbon fabric as electrodes and nafion®membrane as a solid electrolyte. Electrochemical performance of the supercapacitor stack has been investigated using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy.

  15. Influence of Ionomer/Carbon Ratio on the Performance of a Polymer Electrolyte Fuel Cell

    Directory of Open Access Journals (Sweden)

    Toshihiro Ando

    2012-11-01

    Full Text Available We have used fibrous carbon materials as polymer electrolyte fuel cell (PEFC electrodes. We have examined the influence of the ionomer/carbon ratio on the performance of the PEFCs. The Marimo carbon is a kind of carbon with a spherical shape, and consists of carbon nanofilaments. Fibrous carbon materials have large specific surface areas without fine pores. The reactant gases and generated water can easily diffuse among the nanofilaments. The ionomer plays two roles; one is a proton transfer activity, and the other is binding the catalyst electrodes. An excess ionomer interferes with the diffusion of gases. The ionomer/carbon ratio should affect the performance of the PEFC, especially at a high current density.

  16. Instant BlueStacks

    CERN Document Server

    Judge, Gary

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A fast-paced, example-based approach guide for learning BlueStacks.This book is for anyone with a Mac or PC who wants to run Android apps on their computer. Whether you want to play games that are freely available for Android but not your computer, or you want to try apps before you install them on a physical device or use it as a development tool, this book will show you how. No previous experience is needed as this is written in plain English

  17. Optimization of a fuel cell system based on empirical data of a PEM fuel cell stack and the generalized electrochemical model. Paper no. IGEC-1-126

    International Nuclear Information System (INIS)

    Wishart, J.; Secanell, M.; Dong, Z.; Wang, G.

    2005-01-01

    A fuel cell system model is implemented in MATLAB in order to optimize the system operating conditions. The implemented fuel cell model is a modified version of the semi-empirical model introduced by researchers at the Royal Military College of Canada. In addition, in order to model the whole fuel cell system, heat transfer and gas flow considerations and the associated Balance of Plant (BOP) components are incorporated into the model. System design optimizations are carried out using three different methods, including the sequential quadratic programming (SQP) local optimization algorithm and simulated annealing (SA) and genetic algorithm (GA) global optimization algorithms. Using the operating conditions of the fuel cell system as the design variables, the net output power of the system is optimized. The three methods are used in order to gain some insight into the nature of the objective function and the performance of the different algorithms. The optimization results show a good agreement and provide useful information on the design optimization problem. This study prepares us for more complex modeling and system optimization research. (author)

  18. Optimization of a fuel cell system based on empirical data of a PEM fuel cell stack and the generalized electrochemical model. Paper no. IGEC-1-126

    Energy Technology Data Exchange (ETDEWEB)

    Wishart, J.; Secanell, M.; Dong, Z. [Univ. of Victoria, Dept. of Mechanical Engineering and Institute for Integrated Energy Systems (IESVic), Victoria, British Columbia (Canada)]. E-mail: zdong@me.uvic.ca; Wang, G. [Jilin Univ., School of Mechanical Science and Engineering, Changchun (China)

    2005-07-01

    A fuel cell system model is implemented in MATLAB in order to optimize the system operating conditions. The implemented fuel cell model is a modified version of the semi-empirical model introduced by researchers at the Royal Military College of Canada. In addition, in order to model the whole fuel cell system, heat transfer and gas flow considerations and the associated Balance of Plant (BOP) components are incorporated into the model. System design optimizations are carried out using three different methods, including the sequential quadratic programming (SQP) local optimization algorithm and simulated annealing (SA) and genetic algorithm (GA) global optimization algorithms. Using the operating conditions of the fuel cell system as the design variables, the net output power of the system is optimized. The three methods are used in order to gain some insight into the nature of the objective function and the performance of the different algorithms. The optimization results show a good agreement and provide useful information on the design optimization problem. This study prepares us for more complex modeling and system optimization research. (author)

  19. Assessing Elementary Algebra with STACK

    Science.gov (United States)

    Sangwin, Christopher J.

    2007-01-01

    This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…

  20. HPC Software Stack Testing Framework

    Energy Technology Data Exchange (ETDEWEB)

    2017-07-27

    The HPC Software stack testing framework (hpcswtest) is used in the INL Scientific Computing Department to test the basic sanity and integrity of the HPC Software stack (Compilers, MPI, Numerical libraries and Applications) and to quickly discover hard failures, and as a by-product it will indirectly check the HPC infrastructure (network, PBS and licensing servers).

  1. Fuel flow distribution in SOFC stacks revealed by impedance spectroscopy

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Hjelm, Johan; Barfod, Rasmus

    2014-01-01

    . An operating stack is subject to compositional gradients in the gaseous reactant streams, and temperature gradients across each cell and across the stack, which complicates detailed analysis. An experimental stack with low ohmic resistance from Topsoe Fuel Cell A/S was characterized using Electrochemical...... Impedance Spectroscopy (EIS). The stack measurement geometry was optimized for EIS by careful selection of the placement of current feeds and voltage probes in order to minimize measurement errors. It was demonstrated that with the improved placement of current feeds and voltage probes it is possible...... to separate the loss contributions in an ohmic and a polarization part and that the low frequency response is useful in detecting mass transfer limitations. This methodology can be used to detect possible minor changes in the supply of gas to the individual cells, which is important when going to high fuel...

  2. Investigation of a chemically regenerative redox cathode polymer electrolyte fuel cell using a phosphomolybdovanadate polyoxoanion catholyte

    Science.gov (United States)

    Gunn, Natasha L. O.; Ward, David B.; Menelaou, Constantinos; Herbert, Matthew A.; Davies, Trevor J.

    2017-04-01

    Chemically regenerative redox cathode (CRRC) polymer electrolyte fuel cells (PEFCs), where the direct reduction of oxygen is replaced by an in-direct mechanism occurring outside of the cell, are attractive to study as they offer a solution to the cost and durability problems faced by conventional PEFCs. This study reports the first detailed characterization of a high performance complete CRRC PEFC system, where catholyte is circulated between the cathode side of the cell and an air-liquid oxidation reactor called the "regenerator". The catholyte is an aqueous solution of phosphomolybdovanadate polyoxoanion and is assessed in terms of its performance within both a small single cell and corresponding regenerator over a range of redox states. Two methods for determining regeneration rate are proposed and explored. Expressing the regeneration rate as a "chemical" current is suggested as a useful means of measuring re-oxidation rate with respect to the cell. The analysis highlights the present limitations to the technology and provides an indication of the maximum power density achievable, which is highly competitive with conventional PEFC systems.

  3. Evaluation and application of PEMFC fuel cell's technologies developed at IPEN applied to a 500 W{sub e} fuel cell stack; Avaliacao e aplicacao de tecnologias de celulas a combustivel tipo PEMFC desenvolvida no IPEN em um modulo de 500 W{sub e} de potencia nominal

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Edgar Ferrari da

    2009-07-01

    This work is part of a research project on PEMFC technologies carried out in IPEN to develop and optimize a 500 W{sub e} fuel cell stack. The MEAs scaling up from 25 cm{sup 2} to 144 cm{sup 2} produced by the method of sieve printing; computational fluid dynamics by computer simulation of gas flow channels in bipolar plates using COMSOL{sup R} program and the use of Pt/C electrodes developed by alcohol reduction method in single cells were used to build a stack of 500 W{sub e} nominal power for possible commercial applications, produced with national technology and industrial support. A 100 hours fuel cell's test was carried out in a 144 cm{sup 2} single cell to study the stability of the MEA fabricated by sieve printing method. This single cell showed good stability within this period of time. The developed stack has reached the maximum power of 574 W{sub e} at 100 A (694.4 mA cm{sup -2}). The operating power of 500 W{sub e} was obtained at 77.7 A (540.1 mA cm{sup -2}) and potential of 6.43 V, with efficiency of 43.3%. In terms of cogeneration, the thermal power or generated heat by the stack was 652 W{sub t}. The initial estimated cost for the 500 W{sub e} stack was about R$ 4,500.00, considering only the used materials for its construction. (author)

  4. Environmental assessment of phosphogypsum stacks

    International Nuclear Information System (INIS)

    Odat, M.; Al-Attar, L.; Raja, G.; Abdul Ghany, B.

    2008-03-01

    Phosphogypsum is one of the most important by-products of phosphate fertilizer industry. It is kept in large stacks to the west of Homs city. Storing Phosphogypsum as open stacks exposed to various environmental effects, wind and rain, may cause pollution of the surrounding ecosystem (soil, plant, water and air). This study was carried out in order to assess the environmental impact of Phosphogypsum stacks on the surrounding ecosystem. The obtained results show that Phosphogypsum stacks did not increase the concentration of radionuclides, i.e. Radon-222 and Radium-226, the external exposed dose of gamma rays, as well as the concentration of heavy metals in the components of the ecosystem, soil, plant, water and air, as their concentrations did not exceed the permissible limits. However, the concentration of fluorine in the upper layer of soil, located to the east of the Phosphogypsum stacks, increased sufficiently, especially in the dry period of the year. Also, the concentration of fluoride in plants growing up near-by the Phosphogypsum stacks was too high, exceeded the permissible levels. This was reflected in poising plants and animals, feeding on the plants. Consequently, increasing the concentration of fluoride in soil and plants is the main impact of Phosphogypsum stacks on the surrounding ecosystem. Minimising this effect could be achieved by establishing a 50 meter wide protection zone surrounding the Phosphogypsum stacks, which has to be planted with non palatable trees, such as pine and cypress, forming wind barriers. Increasing the concentrations of heavy metals and fluoride in infiltrated water around the stacks was high; hence cautions must be taken to prevent its usage in any application or disposal in adjacent rivers and leaks.(author)

  5. Stranski-Krastanov InAs/GaAsSb quantum dots coupled with sub-monolayer quantum dot stacks as a promising absorber for intermediate band solar cells

    Science.gov (United States)

    Kim, Yeongho; Cho, Il-Wook; Ryu, Mee-Yi; Kim, Jun Oh; Lee, Sang Jun; Ban, Keun-Yong; Honsberg, Christiana B.

    2017-08-01

    The optical properties of the Stranski-Krastanov (S-K) grown InAs/GaAsSb quantum dots (QDs) coupled to sub-monolayer (SML) InAs QD stacks are investigated using photoluminescence (PL) spectroscopy. The PL emission peak of the S-K QDs shifts to shorter wavelengths with increasing the number of SML stacks (NSML) due to the increasing strain fields from the SML QDs. The PL peak energy is linearly increased with increasing the cube root of excitation power, with a different ratio of the absorption coefficient to radiative recombination rate for all the QD samples. The total carrier lifetime for the S-K QDs is increased with increasing NSML, most probably caused by the increase in the ground-state transition energy of the S-K QDs. The nonmonotonic behavior of the thermal activation energy of electrons in the S-K QDs is observed due to the NSML-dependent variation of the strain and Coulombic interaction within the QDs.

  6. PieceStack: Toward Better Understanding of Stacked Graphs.

    Science.gov (United States)

    Wu, Tongshuang; Wu, Yingcai; Shi, Conglei; Qu, Huamin; Cui, Weiwei

    2016-02-24

    Stacked graphs have been widely adopted in various fields, because they are capable of hierarchically visualizing a set of temporal sequences as well as their aggregation. However, because of visual illusion issues, connections between overly-detailed individual layers and overly-generalized aggregation are intercepted. Consequently, information in this area has yet to be fully excavated. Thus, we present PieceStack in this paper, to reveal the relevance of stacked graphs in understanding intrinsic details of their displayed shapes. This new visual analytic design interprets the ways through which aggregations are generated with individual layers by interactively splitting and re-constructing the stacked graphs. A clustering algorithm is designed to partition stacked graphs into sub-aggregated pieces based on trend similarities of layers. We then visualize the pieces with augmented encoding to help analysts decompose and explore the graphs with respect to their interests. Case studies and a user study are conducted to demonstrate the usefulness of our technique in understanding the formation of stacked graphs.

  7. NOx-conversion on Porous LSF15-CGO10 Cell Stacks with KNO3 or K2O Impregnation

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund; Bræstrup, Frantz Radzik; Kammer Hansen, Kent

    2012-01-01

    , the cells were characterized by electrochemical impedance spectroscopy, and the NO conversion was measured during polarization at −3 V for 2 h. The concentration of NO and NO2 was monitored by a chemiluminescence detector, while the concentration of O2, N2, and N2O was detected on a mass spectrometer...... electrodes and CGO10 electrolyte. The KNO3 was added to the electrodes by impregnation and kept either as KNO3 in the electrode or thermally decomposed into K2O before testing. The cell stacks were tested in the temperature range 300–500 °C in 1,000 ppm NO, 10% O2, and 1,000 ppm NO+10% O2. During testing...

  8. Montagem e caracterização elétrica de pilhas a combustível de óxido sólido (PaCOS Assembly and electrical characterization of solid oxide fuel cell stacks

    Directory of Open Access Journals (Sweden)

    Hosane Aparecida Tarôco

    2009-01-01

    Full Text Available This paper is focused on a review of the design features and the electrochemistry characterization of anode-supported planar SOFC. Studies and results of metallic alloy interconnectors and recovery for protection against corrosion and for contact layer are showed. Moreover a discussion of examples of measurements of impedance spectrometry, according to the literature and our experimental results are made. For the anode supported fuel cells the power density varies from 0.1 to 0.5 Wcm², according to results in the literature (showed in this paper. For electrolyte supported fuel cell the power density can be 10 Wcm-2 for high temperatures. An English-Portuguese glossary of most used terms in SOFC stack is given for greater clarity and to introduce new terms to the reader.

  9. Planar SOFC technology: stack design and development for lower cost and manufacturability

    Energy Technology Data Exchange (ETDEWEB)

    Pyke, S.H.; Howard, P.J.; Leah, R.T.

    2002-07-01

    This report summarises the results of a project to examine the performance of an externally manifolded solid oxide fuel cell (SOFC) stack based on a planar, anode-supported cells geometry, and to develop sealing materials and a design for a SOFC stack for potential low cost manufacture. The testing of short stacks, the development of innovative glass-ceramic sealing materials, and the development of an SOFC model to assess cell performance are described along with the development of a new stack geometry based on an internally manifolded geometry.

  10. Water transport in the gas diffusion layer of a polymer electrolyte fuel cell : Dynamic Pore-Network Modeling

    NARCIS (Netherlands)

    Qin, C.

    2015-01-01

    The pore-scale modeling is a powerful tool for increasing our understanding of water transport in the fibrous gas diffusion layer (GDL) of a polymer electrolyte fuel cell (PEFC). In this work, a new dynamic pore-network model for air-water flow in the GDL is developed. It incorporates water vapor

  11. Metal/ceria water-gas shift catalysts for automotive polymer electrolyte fuel cell system

    International Nuclear Information System (INIS)

    Myers, D. J.; Krebs, J. F.; Carter, J. D.; Kumar, R.; Krumpelt, M.

    2002-01-01

    Polymer electrolyte fuel cell (PEFC) systems are a leading candidate for replacing the internal combustion engine in light duty vehicles. One method of generating the hydrogen necessary for the PEFC is reforming a liquid fuel, such as methanol or gasoline, via partial oxidation, steam reforming, or autothermal reforming (a combination of partial oxidation and steam reforming). The H(sub 2)-rich reformate can contain as much as 10% carbon monoxide. Carbon monoxide has been shown to poison the platinum-based anode catalyst at concentrations as low as 10 ppm,1 necessitating removal of CO to this level before passing the reformate to the fuel cell stack. The water-gas shift (WGS) reaction, CO+ H(sub 2)O(rightleftharpoons) CO(sub 2)+ H(sub 2), is used to convert the bulk of the reformate CO to CO(sub 2). Industrially, the WGS reaction is conducted over two catalysts, which operate in different temperature regimes. One catalyst is a FeCr mixed oxide, which operates at 350-450 C and is termed the high-temperature shift (HTS) catalyst. The second catalyst is a CuZn mixed oxide, which operates at 200-250 C and is termed the low-temperature shift (LTS) catalyst. Although these two catalysts are used industrially in the production of H(sub 2) for ammonia synthesis, they have major drawbacks that make them unsuitable for transportation applications. Both the LTS and the HTS catalysts must first be ''activated'' before being used. For example, the copper in the copper oxide/zinc oxide LTS catalyst must first be reduced to elemental copper in situ before it becomes active for the WGS reaction. This reduction reaction is exothermic and must be carried out under well- controlled conditions using a dilute hydrogen stream (1 vol% H(sub 2)) to prevent high catalyst temperatures, which can result in sintering (agglomeration) of the copper particles and loss of active surface area for the WGS reaction. Also, once the catalyst has been activated by reduction, it must be protected from

  12. Multiphysics modeling of fuel cells

    Science.gov (United States)

    Serincan, Mustafa Fazil

    Fuel cells are expected to resist permanent changes in performance over time, to tolerate unexpected changes in the ambient conditions for a stable operation, and to sustain a structural integrity under different operating conditions. However, during the operation, both solid oxide fuel cells (SOFC) and polymer electrolyte fuel cells (PEFC) are prone to many hazards that may cause degradation of the performance even to the extent of complete failure of these devices. In this study performance and degradation of SOFCs and PEFCs is studied. A computational modeling framework has been established to investigate the transport phenomena and the electrochemical performance as well as the mechanical behavior of SOFCs and PEFCs. The electrochemical performance of the SOFC is investigated both in steady-state and transient operations while elucidating the transport phenomena related to the fuel cell operation. The proposed computational framework for the SOFC comprises two separate models for the test furnace and the single cell in order to more accurately model the actual test system while decreasing the computational cost. The fuel cell performance in transient operation is also studied. The performance of the SOFC is investigated in case of a failure in the fuel supply system. Mechanical behavior of the SOFC is also considered to help assessing the durability of the cells. The same modeling framework is utilized for the PEFCs to investigate electrochemical and mechanical degradation during the fuel cell operation. To assess the performance degradation as a result of gas contamination, a cation transport model is presented. It is found that the effect of fuel side contamination of cationic species is much more significant than the air side contamination while there still is a significant performance degradation associated with the latter. Further, the stresses induced during the PEFC operation due to the swelling and shrinkage of the membrane with hydration changes are

  13. Air-Cooled Stack Freeze Tolerance Freeze Failure Modes and Freeze Tolerance Strategies for GenDriveTM Material Handling Application Systems and Stacks Final Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, David, W.

    2012-02-14

    Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology for air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.

  14. Time-predictable Stack Caching

    DEFF Research Database (Denmark)

    Abbaspourseyedi, Sahar

    completely. Thus, in systems with hard deadlines the worst-case execution time (WCET) of the real-time software running on them needs to be bounded. Modern architectures use features such as pipelining and caches for improving the average performance. These features, however, make the WCET analysis more...... addresses, provides an opportunity to predict and tighten the WCET of accesses to data in caches. In this thesis, we introduce the time-predictable stack cache design and implementation within a time-predictable processor. We introduce several optimizations to our design for tightening the WCET while...... keeping the timepredictability of the design intact. Moreover, we provide a solution for reducing the cost of context switching in a system using the stack cache. In design of these caches, we use custom hardware and compiler support for delivering time-predictable stack data accesses. Furthermore...

  15. Glassy carbon based supercapacitor stacks

    Energy Technology Data Exchange (ETDEWEB)

    Baertsch, M.; Braun, A.; Koetz, R.; Haas, O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Considerable effort is being made to develop electrochemical double layer capacitors (EDLC) that store relatively large quantities of electrical energy and possess at the same time a high power density. Our previous work has shown that glassy carbon is suitable as a material for capacitor electrodes concerning low resistance and high capacity requirements. We present the development of bipolar electrochemical glassy carbon capacitor stacks of up to 3 V. Bipolar stacks are an efficient way to meet the high voltage and high power density requirements for traction applications. Impedance and cyclic voltammogram measurements are reported here and show the frequency response of a 1, 2, and 3 V stack. (author) 3 figs., 1 ref..

  16. Multiple Segmentation of Image Stacks

    DEFF Research Database (Denmark)

    Smets, Jonathan; Jaeger, Manfred

    2014-01-01

    We propose a method for the simultaneous construction of multiple image segmentations by combining a recently proposed “convolution of mixtures of Gaussians” model with a multi-layer hidden Markov random field structure. The resulting method constructs for a single image several, alternative...... segmentations that capture different structural elements of the image. We also apply the method to collections of images with identical pixel dimensions, which we call image stacks. Here it turns out that the method is able to both identify groups of similar images in the stack, and to provide segmentations...

  17. Simulating Small-Scale Object Stacking Using Stack Stability

    DEFF Research Database (Denmark)

    Kronborg Thomsen, Kasper; Kraus, Martin

    2015-01-01

    This paper presents an extension system to a closed-source, real-time physics engine for improving structured stacking behavior with small-scale objects such as wooden toy bricks. The proposed system was implemented and evaluated. The tests showed that the system is able to simulate several common...

  18. Pore-Network Modeling of Water and Vapor Transport in the Micro Porous Layer and Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell

    NARCIS (Netherlands)

    Qin, C.; Hassanizadeh, S.M.; van Oosterhout, L.M.

    2016-01-01

    In the cathode side of a polymer electrolyte fuel cell (PEFC), a micro porous layer (MPL) added between the catalyst layer (CL) and the gas diffusion layer (GDL) plays an important role in water management. In this work, by using both quasi-static and dynamic pore-network models, water and vapor

  19. Pressurized electrolysis stack with thermal expansion capability

    Science.gov (United States)

    Bourgeois, Richard Scott

    2015-07-14

    The present techniques provide systems and methods for mounting an electrolyzer stack in an outer shell so as to allow for differential thermal expansion of the electrolyzer stack and shell. Generally, an electrolyzer stack may be formed from a material with a high coefficient of thermal expansion, while the shell may be formed from a material having a lower coefficient of thermal expansion. The differences between the coefficients of thermal expansion may lead to damage to the electrolyzer stack as the shell may restrain the thermal expansion of the electrolyzer stack. To allow for the differences in thermal expansion, the electrolyzer stack may be mounted within the shell leaving a space between the electrolyzer stack and shell. The space between the electrolyzer stack and the shell may be filled with a non-conductive fluid to further equalize pressure inside and outside of the electrolyzer stack.

  20. Stack semantics of type theory

    DEFF Research Database (Denmark)

    Coquand, Thierry; Mannaa, Bassel; Ruch, Fabian

    2017-01-01

    We give a model of dependent type theory with one univalent universe and propositional truncation interpreting a type as a stack, generalizing the groupoid model of type theory. As an application, we show that countable choice cannot be proved in dependent type theory with one univalent universe...

  1. Multilayer Piezoelectric Stack Actuator Characterization

    Science.gov (United States)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  2. Fuel cell power trains for road traffic

    Science.gov (United States)

    Höhlein, Bernd; Biedermann, Peter; Grube, Thomas; Menzer, Reinhard

    Legal regulations, especially the low emission vehicle (LEV) laws in California, are the driving forces for more intensive technological developments with respect to a global automobile market. In the future, high efficient vehicles at very low emission levels will include low temperature fuel cell systems (e.g., polymer electrolyte fuel cell (PEFC)) as units of hydrogen-, methanol- or gasoline-based electric power trains. In the case of methanol or gasoline/diesel, hydrogen has to be produced on-board using heated steam or partial oxidation reformers as well as catalytic burners and gas cleaning units. Methanol could also be used for direct electricity generation inside the fuel cell (direct methanol fuel cell (DMFC)). The development potentials and the results achieved so far for these concepts differ extremely. Based on the experience gained so far, the goals for the next few years include cost and weight reductions as well as optimizations in terms of the energy management of power trains with PEFC systems. At the same time, questions of fuel specification, fuel cycle management, materials balances and environmental assessment will have to be discussed more intensively. On the basis of process engineering analyses for net electricity generation in PEFC-powered power trains as well as on assumptions for both electric power trains and vehicle configurations, overall balances have been carried out. They will lead not only to specific energy demand data and specific emission levels (CO 2, CO, VOC, NO x) for the vehicle but will also present data of its full fuel cycle (FFC) in comparison to those of FFCs including internal combustion engines (ICE) after the year 2005. Depending on the development status (today or in 2010) and the FFC benchmark results, the advantages of balances results of FFC with PEFC vehicles are small in terms of specific energy demand and CO 2 emissions, but very high with respect to local emission levels.

  3. Spectrally tunable linear polarization rotation using stacked metallic metamaterials

    Science.gov (United States)

    Romain, Xavier; Baida, Fadi I.; Boyer, Philippe

    2017-08-01

    We make a theoretical study of the transmission properties of a stack of metallic metamaterials and show that is able to achieve a perfect transmission selectively exhibiting broadband (Q {10}5) polarization rotation. We especially highlight how the arrangement of the stacked structure, as well as the metamaterial unit cell geometry, has a large influence on transmission in the spectral domain. For this purpose, we use an extended analytical Jones formalism that allows us to obtain a rigorous and analytical expression of the transmission. Such versatile structures could find potential applications in polarimetry or in the control of light polarization for THz waves.

  4. Durable SOC stacks for production of hydrogen and synthesis gas by high temperature electrolysis

    DEFF Research Database (Denmark)

    Ebbesen, Sune Dalgaard; Høgh, Jens Valdemar Thorvald; Nielsen, Karsten Agersted

    2011-01-01

    Electrolysis of steam and co-electrolysis of steam and carbon dioxide was studied in Solid Oxide Electrolysis Cell (SOEC) stacks composed of Ni/YSZ electrode supported SOECs. The results of this study show that long-term electrolysis is feasible without notable degradation in these SOEC stacks...

  5. Electric toy vehicle powered by a PEMFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Beneito, Ruben; Vilaplana, Joaquin; Gisbert, Santiago [Technological Institute for Toy (AIJU), 03440 Ibi (Spain)

    2007-07-15

    The article describes the design and development of an electric toy vehicle powered by a fuel cell stack. The system consisted of a 150 W PEMFC stack powered by hydrogen/air, a tank of metal hydrides of AB (TiFe) alloy type with a capacity of 300 standard litres, for storing hydrogen, and an electronic power device based on electrolytic capacitors, to supply peak power demands during acceleration and start up of the vehicle. The air supply was provided by a fan preceded by a filter, and in a similar manner the stack was cooled by an air ventilation system. An electrovalve was used to supply H{sub 2} in dead-ended mode. All the components were integrated in the vehicle, and the prototype was tested in real working conditions, in a test bench and by children. (author)

  6. Electrically Conductive and Protective Coating for Planar SOFC Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung-Pyung; Stevenson, Jeffry W.

    2017-12-04

    Ferritic stainless steels are preferred interconnect materials for intermediate temperature SOFCs because of their resistance to oxidation, high formability and low cost. However, their protective oxide layer produces Cr-containing volatile species at SOFC operating temperatures and conditions, which can cause cathode poisoning. Electrically conducting spinel coatings have been developed to prevent cathode poisoning and to maintain an electrically conductive pathway through SOFC stacks. However, this coating is not compatible with the formation of stable, hermetic seals between the interconnect frame component and the ceramic cell. Thus, a new aluminizing process has been developed by PNNL to enable durable sealing, prevent Cr evaporation, and maintain electrical insulation between stack repeat units. Hence, two different types of coating need to have stable operation of SOFC stacks. This paper will focus on the electrically conductive coating process. Moreover, an advanced coating process, compatible with a non-electrically conductive coating will be

  7. High Temperature Co‐Electrolysis of Steam and CO2 in an SOC Stack: Performance and Durability

    DEFF Research Database (Denmark)

    Chen, Ming; Høgh, Jens Valdemar Thorvald; Nielsen, J. U.

    2013-01-01

    In this work, co‐electrolysis of steam and carbon dioxide was studied in a Topsoe Fuel Cell (TOFC®) 10‐cell stack, containing three different types of Ni/yttria stabilized zirconia (YSZ) electrode supported solid oxide electrolysis cells with a footprint of 12 × 12 cm. The stack was operated at 800...

  8. Manufacturing and characterisation of electrode membrane assemblies for low temperature fuel cells; Herstellung und Charakterisierung von Membran-Elektroden-Einheiten fuer Niedertemperatur Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Kaz, Till

    2008-08-22

    The high cost for a Polymer electrolyte Fuel Cell (PEFC) System is still a barrier for commercial breakthrough, which cannot be compensated by the advantages of being pollution free, or nearly noiseless. The most effective way of saving costs is to reduce expensive materials, because the material costs only for the Membrane Electrode Assemblies (MEAs) is more than 70% of the total costs of a PEFC Stack. Within the MEA a main part of the costs is due to the catalyst. It is one of the main goals to decrease the catalyst loading by simultaneously increasing the performance or keeping it at least constant. Because in most electrodes only 20-50% of the catalyst in the electrodes is used, enlarging the electrochemical active area is one of the key problems of the PEFC. For being electrochemical active, the catalyst must be reachable for the gases, he must have a good ionic conductivity to the membrane and he must be attached to the Gas Diffusion Layer (GDL) by electron conductivity. In literature often an inferior ionic contact of the catalyst to the membrane is responsible for the low catalyst utilization. In the first part of the work, model electrodes with different kinds of catalysts and different amounts of electrolyte in the electrodes were investigated to explore the interrelationship between platinum and electrolyte content. Three different catalysts, unsupported Pt- black, 60 wt.% Pt carbon-supported and 20 wt.% Pt carbon-supported with an addition of Nafion powder of 0%, 20%, 40%, 60 wt.%, and 80 wt.% were used. The electrodes were prepared by spraying the electrode material with the DLR dry spray technique directly onto the membrane and then rolling them while hot. Because material solutions were not used, the structure of the electrodes are determinable and predictable. Numerous different in- and ex-situ characterization methods like impedance spectroscopy, U-i characteristic, cyclic voltammetry, proton conductivity measurements, half-cell measurements and

  9. Hydrodynamic Modelling and Experimental Analysis of FE-DMFC Stacks

    Science.gov (United States)

    Kablou, Yashar

    Direct methanol fuel cells (DMFCs) present some unique features such as having liquid fuel, quick refueling process, compact design and high energy density. These characteristics make them incredibly suitable as a promising power source for portable electronic applications, such as cell phones or laptop computers. Despite of these positive aspects, the commercial development of DMFCs has nevertheless been hindered by some important issues such as, carbon dioxide formation at the anode compartment and, methanol crossover through the membrane. Many researchers have tried to model the two-phase flow behavior inside the DMFC anode compartment using the "homogenous flow modelling" approach, which has proven to be inaccurate specially when dealing with DMFC stacks. On the other hand, several strategies to prevent methanol crossover have been suggested in the literature, including the use of a flowing electrolyte between the DMFC anode and cathode compartments. Preliminary tests on flowing electrolyte direct methanol fuel cells (FE-DMFCs) have shown promising results; however, further investigation should be carried out on the stack level. In the first part of this study, a quasi two-dimensional numerical model was developed, to predict the two-phase flow behavior within the DMFC anode compartment, both in single cell and stack levels. Various types of flow modelling approaches and void fraction correlations were utilized to estimate the pressure drop across the anode compartment. It was found that the "separated flow modelling" approach, as well as CISE correlation for void fraction (developed at the CISE labs in Milan), yield the best results. In the second part, a five-cell FE-DMFC stack unit with a parallel serpentine flow bed design and U-type manifold configuration, was developed and tested at various operating conditions. It was found that, the flowing electrolyte effectively reduced methanol crossover and, improved the stack performance.

  10. Electrocatalytic Activity and Stability of M-Fe Catalysts Synthesized by Polymer Complex Method for PEFC Cathode

    KAUST Repository

    Ou, Yiwei

    2011-11-01

    The polymerized complex (PC) method was used to synthesize highly dispersed iron-based catalysts for the oxygen reduction reaction (ORR). The catalysts were prepared with an addition of 1,10-phenanthroline (Phen) and transition metals (M), such as Ta, Ti, and W, in an attempt to enhance the ORR activity and durability of the catalysts. The composition and properties of the catalysts were characterized by thermogravimetric analysis, X-ray diffraction, and X-ray photoelectron spectroscopy. The catalyst components, after extensive dissolution in a strong acid solution, were characterized by inductively coupled plasma mass spectroscopy and ultraviolet-visible spectroscopy. It was found that the Ti-Fe catalyst showed improved ORR performance, and the Ta-Fe catalyst showed enhanced stability towards ORR in acidic solution. The catalytic activity and stability for ORR was observed by adding Ti or Ta into the catalyst formulation, suggesting that the interaction between added hetero-ions (Ti and Ta) and ionic Fe active sites was beneficial for the ORR. A single-cell test with the synthesized catalyst in the cathode initially generated a high power density, but the low stability remains an issue to be solved.

  11. Simultaneous multilayer formation of the polymer solar cell stack using roll-to-roll double slot-die coating from water

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Andreasen, Birgitta; Andersen, Thomas Rieks

    2012-01-01

    Double slot-die coating using aqueous inks was employed for the simultaneous coating of the active layer and the hole transport layer (HTL) in fully roll-to-roll (R2R) processed polymer solar cells. The double layer film was coated directly onto an electron transport layer (ETL) comprising doped...... zinc oxide that was processed by single slot-die coating from water. The active layer comprised poly-3-hexylthiophene:Phenyl-C61-butyric acid methyl ester (P3HT:PCBM) as a dispersion of nanoparticles with a radius of 46 nm in water characterized using small-angle X-ray scattering (SAXS), transmission...... electron microscopy (TEM), and atomic force microscopy (AFM). The HTL was a dispersion of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) in water. The films were analyzed using time-of-flight secondary ion mass spectrometry (TOF-SIMS) as chemical probe and X-ray reflectometry...

  12. Mass transport aspects of polymer electrolyte fuel cells under two-phase flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, D.

    2007-03-15

    This well-illustrated, comprehensive dissertation by Dr. Ing. Denis Kramer takes an in-depth look at polymer electrolyte fuel cells (PEFC) and the possibilities for their application. First of all, the operating principles of polymer electrolyte fuel cells are described and discussed, whereby thermodynamics aspects and loss mechanisms are examined. The mass transport diagnostics made with respect to the function of the cells are discussed. Field flow geometry, gas diffusion layers and, amongst other things, liquid distribution, the influence of flow direction and the low-frequency behaviour of air-fed PEFCs are discussed. Direct methanol fuel cells are examined, as are the materials chosen. The documentation includes comprehensive mathematical and graphical representations of the mechanisms involved.

  13. Stack monitor for the Proof-of-Breeding Project

    International Nuclear Information System (INIS)

    Fergus, R.W.

    1985-01-01

    This stack monitor system is a coordinated arrangement of hardware and software to monitor four hot cells (8 stacks) during the fuel dissection for the Proof-of-Breeding Project. The cell monitors, which are located in fan lofts, contain a microprocessor, radiation detectors, air flow sensors, and air flow control equipment. Design criteria included maximizing microprocessor control while minimizing the hardware complexity. The monitors have been programmed to produce concentration and total activity release data based on several detector measurements and flow rates. Although each monitor can function independently, a microcomputer can also be used to control each cell monitor including reprogramming if necessary. All programming is software, as opposed to firmware, with machine language for compactness in the cell monitors and Basic language for adaptability in the microcomputer controller

  14. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells.

    OpenAIRE

    Mansor, N.; Jorge, A. B.; Corà, F.; Gibbs, C.; Jervis, R.; McMillan, P. F.; Wang, X.; Brett, D. J.

    2014-01-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li(+)Cl(-)), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion...

  15. Vertically stacked nanocellulose tactile sensor.

    Science.gov (United States)

    Jung, Minhyun; Kim, Kyungkwan; Kim, Bumjin; Lee, Kwang-Jae; Kang, Jae-Wook; Jeon, Sanghun

    2017-11-16

    Paper-based electronic devices are attracting considerable attention, because the paper platform has unique attributes such as flexibility and eco-friendliness. Here we report on what is claimed to be the firstly fully integrated vertically-stacked nanocellulose-based tactile sensor, which is capable of simultaneously sensing temperature and pressure. The pressure and temperature sensors are operated using different principles and are stacked vertically, thereby minimizing the interference effect. For the pressure sensor, which utilizes the piezoresistance principle under pressure, the conducting electrode was inkjet printed on the TEMPO-oxidized-nanocellulose patterned with micro-sized pyramids, and the counter electrode was placed on the nanocellulose film. The pressure sensor has a high sensitivity over a wide range (500 Pa-3 kPa) and a high durability of 10 4 loading/unloading cycles. The temperature sensor combines various materials such as poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), silver nanoparticles (AgNPs) and carbon nanotubes (CNTs) to form a thermocouple on the upper nanocellulose layer. The thermoelectric-based temperature sensors generate a thermoelectric voltage output of 1.7 mV for a temperature difference of 125 K. Our 5 × 5 tactile sensor arrays show a fast response, negligible interference, and durable sensing performance.

  16. Modeling Water Management in Polymer-Electrolyte Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Department of Chemical Engineering, University of California, Berkeley; Weber, Adam; Weber, Adam Z.; Balliet, Ryan; Gunterman, Haluna P.; Newman, John

    2007-09-07

    Fuel cells may become the energy-delivery devices of the 21st century with realization of a carbon-neutral energy economy. Although there are many types of fuel cells, polymerelectrolyte fuel cells (PEFCs) are receiving the most attention for automotive and small stationary applications. In a PEFC, hydrogen and oxygen are combined electrochemically to produce water, electricity, and waste heat. During the operation of a PEFC, many interrelated and complex phenomena occur. These processes include mass and heat transfer, electrochemical reactions, and ionic and electronic transport. Most of these processes occur in the through-plane direction in what we term the PEFC sandwich as shown in Figure 1. This sandwich comprises multiple layers including diffusion media that can be composite structures containing a macroporous gas-diffusion layer (GDL) and microporous layer (MPL), catalyst layers (CLs), flow fields or bipolar plates, and a membrane. During operation fuel is fed into the anode flow field, moves through the diffusion medium, and reacts electrochemically at the anode CL to form hydrogen ions and electrons. The oxidant, usually oxygen in air, is fed into the cathode flow field, moves through the diffusion medium, and is electrochemically reduced at the cathode CL by combination with the generated protons and electrons. The water, either liquid or vapor, produced by the reduction of oxygen at the cathode exits the PEFC through either the cathode or anode flow field. The electrons generated at the anode pass through an external circuit and may be used to perform work before they are consumed at the cathode. The performance of a PEFC is most often reported in the form of a polarization curve, as shown in Figure 2. Roughly speaking, the polarization curve can be broken down into various regions. First, it should be noted that the equilibrium potential differs from the open-circuit voltage due mainly to hydrogen crossover through the membrane (i.e., a mixed potential

  17. Generalized data stacking programming model with applications

    Directory of Open Access Journals (Sweden)

    Hala Samir Elhadidy

    2016-09-01

    Full Text Available Recent researches have shown that, everywhere in various sciences the systems are following stacked-based stored change behavior when subjected to events or varying environments “on and above” their normal situations. This paper presents a generalized data stack programming (GDSP model which is developed to describe the system changes under varying environment. These changes which are captured with different ways such as sensor reading are stored in matrices. Extraction algorithm and identification technique are proposed to extract the different layers between images and identify the stack class the object follows; respectively. The general multi-stacking network is presented including the interaction between various stack-based layering of some applications. The experiments prove that the concept of stack matrix gives average accuracy of 99.45%.

  18. Fuel quality issues in stationary fuel cell systems.

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, D.; Ahmed, S.; Kumar, R. (Chemical Sciences and Engineering Division)

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough

  19. Flexural characteristics of a stack leg

    International Nuclear Information System (INIS)

    Cook, J.

    1979-06-01

    A 30 MV tandem Van de Graaff accelerator is at present under construction at Daresbury Laboratory. The insulating stack of the machine is of modular construction, each module being 860 mm in length. Each live section stack module contains 8 insulating legs mounted between bulkhead rings. The design, fabrication (from glass discs bonded to stainless steel discs using an epoxy film adhesive) and testing of the stack legs is described. (U.K.)

  20. Hydrogen Embrittlement And Stacking-Fault Energies

    Science.gov (United States)

    Parr, R. A.; Johnson, M. H.; Davis, J. H.; Oh, T. K.

    1988-01-01

    Embrittlement in Ni/Cu alloys appears related to stacking-fault porbabilities. Report describes attempt to show a correlation between stacking-fault energy of different Ni/Cu alloys and susceptibility to hydrogen embrittlement. Correlation could lead to more fundamental understanding and method of predicting susceptibility of given Ni/Cu alloy form stacking-fault energies calculated from X-ray diffraction measurements.

  1. Neutron Computed Tomography of Freeze/thaw Phenomena in Polymer Electrolyte Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Matthew M. Mech; Jack Brenizer; Kenan Unlu; A.K. Heller

    2008-12-12

    This report summarizes the final year's progress of the three-year NEER program. The overall objectives of this program were to 1) design and construct a sophisticated hight-resolution neutron computed tomography (NCT) facility, 2) develop novel and sophisticated liquid water and ice quantification analysis software for computed tomography, and 3) apply the advanced software and NCT capability to study liquid and ice distribution in polymer electrolyte fuel cells (PEFCs) under cold-start conditions. These objectives have been accomplished by the research team, enabling a new capability for advanced 3D image quantification with neutron imaging for fuel cell and other applications. The NCT water quantification methodology and software will greatly add to the capabilities of the neutron imaging community, and the quantified liquid water and ice distribution provided by its application to PEFCs will enhance understanding and guide design in the fuel cell community.

  2. Detailed experimental characterization of a reformate fuelled PEM stack

    DEFF Research Database (Denmark)

    Korsgaard, Anders; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2006-01-01

    Increasing attention is given to fuel cells for micro combined heat and power systems for local households. Currently, mainly three different types of fuel cells are commercially competitive: SOFC, low- and high-temperature PEM fuel cells. In the present paper the Low Temperature PEM technology...... is in focus. To be able to design highly efficient micro CHP systems, it is critical to have a reliable performance map of not only the stack performance in the nominal operating point but also at system part load.  Issues like parasitic power consumption of the balance of plant components, dynamic...... with electric power output from 1-3-kW. All process inputs for the stack can be altered to provide realistic performance analyses, corresponding to those encountered in field applications. These include cathode/anode dew point control, cathode flow rate, cooling water temperature control as well as synthesis...

  3. Methodological study of aging effects on fuel cells using X-ray synchrotron radiography and tomography; Methodische Untersuchung von Alterungseffekten an Brennstoffzellen mittels Synchrotronradiografie und -tomografie

    Energy Technology Data Exchange (ETDEWEB)

    Arlt, Tobias

    2012-04-05

    In the present work, new and advanced methods for the investigation of methanol and hydrogen powered fuel cells were analyzed. Synchrotron radiography and tomography were applied to investigate materials and transport processes in operating fuel cells ''in-situ'' and non-destructively. The corrosion of ruthenium is a key issue during aging of direct methanol fuel cells (DMFC). Therefore the influence of different aging processes on the distribution of ruthenium is of great interesting. An imaging method based on X-ray absorption spectroscopy (XAS) was applied to investigate the changes in the distribution of fuel cell catalysts three-dimensionally. Using monoenergetic synchrotron radiation it was shown that the distribution of ruthenium (Ru) in the anode catalyst changes after application of an accelerated aging procedure. A strong influence on the flowfield and the gas diffusion layer structures on the Ru distribution were found in the gas diffusion electrode at the anode side. Additionally some ruthenium moves through the membrane from the anode to the cathode. The redistribution caused by the accelerated aging procedure strongly differs from that obtained after aging under realistic stack operation (here over 1700 h) of a fuel cell in a pallet transporter. For the tomographic investigations samples were taken out from a stack operation in aged membrane electrode assembly (MEA) and were analyzed ex-situ. It was shown that the Ru redistribution can be attributed to mass transport processes (CO{sub 2} and H{sub 2}O) in the gas diffusion layer (GDL). Other high energy resolved measurements showed that the strength of the oxidation of ruthenium and platinum depends on the spatial distribution of the ruthenium. Last mentioned - also for the platinum catalyst - could be given quantitatively by means of this newly developed method. In the second part of this work high temperature polymer electrolyte fuel cells (HT-PEFC) were investigated. No liquid

  4. Stacks of SPS Dipole Magnets

    CERN Multimedia

    1974-01-01

    Stacks of SPS Dipole Magnets ready for installation in the tunnel. The SPS uses a separated function lattice with dipoles for bending and quadrupoles for focusing. The 6.2 m long normal conducting dipoles are of H-type with coils that are bent-up at the ends. There are two types, B1 (total of 360) and B2 (384). Both are for a maximum field of 1.8 Tesla and have the same outer dimensions (450x800 mm2 vxh) but with different gaps (B1: 39x129 mm2, B2: 52x92 mm2) tailored to the beam size. The yoke, made of 1.5 mm thick laminations, consists of an upper and a lower half joined together in the median plane once the coils have been inserted.

  5. Electrochemical Characterization and Degradation Analysis of Large SOFC Stacks by Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Hjelm, Johan; Barfod, R.

    2013-01-01

    As solid oxide fuel cell (SOFC) technology is moving closer to a commercial break through, lifetime limiting factors, and methods to measure the “state-of-health” of operating cells and stacks are becoming of increasing interest. This requires application of advanced methods for detailed electroc......As solid oxide fuel cell (SOFC) technology is moving closer to a commercial break through, lifetime limiting factors, and methods to measure the “state-of-health” of operating cells and stacks are becoming of increasing interest. This requires application of advanced methods for detailed...... electrochemical characterization during operation. An experimental stack with low ohmic resistance from Topsoe Fuel Cell A/S was characterized in detail using electrochemical impedance spectroscopy (EIS). An investigation of the optimal geometrical placement of the current feeds and voltage probes was carried out...... in order to minimize measurement errors caused by stray impedances. Three different stack geometries were investigated by impedance spectroscopy and the stack geometry with the minimum effect of stray impedances was selected. A 13-cell experimental SOFC stack was tested during 2,500 h of operation...

  6. Stacking technology for a space constrained microsystem

    DEFF Research Database (Denmark)

    Heschel, Matthias; Kuhmann, Jochen Friedrich; Bouwstra, Siebe

    1998-01-01

    In this paper we present a stacking technology for an integrated packaging of an intelligent transducer which is formed by a micromachined silicon transducer and an integrated circuit chip. Transducer and circuitry are stacked on top of each other with an intermediate chip in between. The bonding...

  7. 40 CFR 61.44 - Stack sampling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Stack sampling. 61.44 Section 61.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... Firing § 61.44 Stack sampling. (a) Sources subject to § 61.42(b) shall be continuously sampled, during...

  8. Learning OpenStack networking (Neutron)

    CERN Document Server

    Denton, James

    2014-01-01

    If you are an OpenStack-based cloud operator with experience in OpenStack Compute and nova-network but are new to Neutron networking, then this book is for you. Some networking experience is recommended, and a physical network infrastructure is required to provide connectivity to instances and other network resources configured in the book.

  9. Project W-420 stack monitoring system upgrades

    International Nuclear Information System (INIS)

    CARPENTER, K.E.

    1999-01-01

    This project will execute the design, procurement, construction, startup, and turnover activities for upgrades to the stack monitoring system on selected Tank Waste Remediation System (TWRS) ventilation systems. In this plan, the technical, schedule, and cost baselines are identified, and the roles and responsibilities of project participants are defined for managing the Stack Monitoring System Upgrades, Project W-420

  10. On the "stacking fault" in copper

    NARCIS (Netherlands)

    Fransens, J.R.; Pleiter, F

    2003-01-01

    The results of a perturbed gamma-gamma angular correlations experiment on In-111 implanted into a properly cut single crystal of copper show that the defect known in the literature as "stacking fault" is not a planar faulted loop but a stacking fault tetrahedron with a size of 10-50 Angstrom.

  11. Simulation and Optimization of Air-Cooled PEMFC Stack for Lightweight Hybrid Vehicle Application

    Directory of Open Access Journals (Sweden)

    Jingming Liang

    2015-01-01

    Full Text Available A model of 2 kW air-cooled proton exchange membrane fuel cell (PEMFC stack has been built based upon the application of lightweight hybrid vehicle after analyzing the characteristics of heat transfer of the air-cooled stack. Different dissipating models of the air-cooled stack have been simulated and an optimal simulation model for air-cooled stack called convection heat transfer (CHT model has been figured out by applying the computational fluid dynamics (CFD software, based on which, the structure of the air-cooled stack has been optimized by adding irregular cooling fins at the end of the stack. According to the simulation result, the temperature of the stack has been equally distributed, reducing the cooling density and saving energy. Finally, the 2 kW hydrogen-air air-cooled PEMFC stack is manufactured and tested by comparing the simulation data which is to find out its operating regulations in order to further optimize its structure.

  12. Operational experience with the fuel processing system for fuel cell drives

    Science.gov (United States)

    Emonts, B.; Bøgild Hansen, J.; Grube, T.; Höhlein, B.; Peters, R.; Schmidt, H.; Stolten, D.; Tschauder, A.

    Electric motor vehicle drive systems with polymer electrolyte fuel cells (PEFCs) for the conversion of chemical into electrical energy offer great advantages over internal combustion engines with respect to the emission of hydrocarbons, carbon monoxide and nitrogen oxides. Since the storage systems available for hydrogen, the "fuel" of the fuel cell, are insufficient, it is meaningful to produce the hydrogen on board the vehicle from a liquid energy carrier, such as methanol. At the Research Center Jülich such a drive system has been developed, which produces a hydrogen-rich gas from methanol and water, cleans this gas and converts it into electricity in a PEFC. This system and the operational experience on the basis of simulated and experimental results are presented here.

  13. The impact of stack geometry and mean pressure on cold end temperature of stack in thermoacoustic refrigeration systems

    Science.gov (United States)

    Wantha, Channarong

    2018-02-01

    This paper reports on the experimental and simulation studies of the influence of stack geometries and different mean pressures on the cold end temperature of the stack in the thermoacoustic refrigeration system. The stack geometry was tested, including spiral stack, circular pore stack and pin array stack. The results of this study show that the mean pressure of the gas in the system has a significant impact on the cold end temperature of the stack. The mean pressure of the gas in the system corresponds to thermal penetration depth, which results in a better cold end temperature of the stack. The results also show that the cold end temperature of the pin array stack decreases more than that of the spiral stack and circular pore stack geometry by approximately 63% and 70%, respectively. In addition, the thermal area and viscous area of the stack are analyzed to explain the results of such temperatures of thermoacoustic stacks.

  14. Identification of critical parameters for PEMFC stack performance characterization and control strategies for reliable and comparable stack benchmarking

    DEFF Research Database (Denmark)

    Mitzel, Jens; Gülzow, Erich; Kabza, Alexander

    2016-01-01

    This paper is focused on the identification of critical parameters and on the development of reliable methodologies to achieve comparable benchmark results. Possibilities for control sensor positioning and for parameter variation in sensitivity tests are discussed and recommended options for the ......This paper is focused on the identification of critical parameters and on the development of reliable methodologies to achieve comparable benchmark results. Possibilities for control sensor positioning and for parameter variation in sensitivity tests are discussed and recommended options...... in an average cell voltage deviation of 21 mV. Test parameters simulating different stack applications are summarized. The stack demonstrated comparable average cell voltage of 0.63 V for stationary and portable conditions. For automotive conditions, the voltage increased to 0.69 V, mainly caused by higher...

  15. Refinement of numerical models and parametric study of SOFC stack performance

    Science.gov (United States)

    Burt, Andrew C.

    The presence of multiple air and fuel channels per fuel cell and the need to combine many cells in series result in complex steady-state temperature distributions within Solid Oxide Fuel Cell (SOFC) stacks. Flow distribution in these channels, when non-uniform, has a significant effect on cell and stack performance. Large SOFC stacks are very difficult to model using full 3-D CFD codes because of the resource requirements needed to solve for the many scales involved. Studies have shown that implementations based on Reduced Order Methods (ROM), if calibrated appropriately, can provide simulations of stacks consisting of more than 20 cells with reasonable computational effort. A pseudo 2-D SOFC stack model capable of studying co-flow and counter-flow cell geometries was developed by solving multiple 1-D SOFC single cell models in parallel on a Beowulf cluster. In order to study cross-flow geometries a novel Multi-Component Multi-Physics (MCMP) scheme was instantiated to produce a Reduced Order 3-D Fuel Cell Model. A C++ implementation of the MCMP scheme developed in this study utilized geometry, control volume, component, and model structures allowing each physical model to be solved only for those components for which it is relevant. Channel flow dynamics were solved using a 1-D flow model to reduce computational effort. A parametric study was conducted to study the influence of mass flow distribution, radiation, and stack size on fuel cell stack performance. Using the pseudo 2-D planar SOFC stack model with stacks of various sizes from 2 to 40 cells it was shown that, with adiabatic wall conditions, the asymmetry of the individual cell can produce a temperature distribution where high and low temperatures are found in the top and bottom cells, respectively. Heat transfer mechanisms such as radiation were found to affect the reduction of the temperature gradient near the top and bottom cell. Results from the reduced order 3-D fuel cell model showed that greater

  16. Density of oxidation-induced stacking faults in damaged silicon

    NARCIS (Netherlands)

    Kuper, F.G.; Hosson, J.Th.M. De; Verwey, J.F.

    1986-01-01

    A model for the relation between density and length of oxidation-induced stacking faults on damaged silicon surfaces is proposed, based on interactions of stacking faults with dislocations and neighboring stacking faults. The model agrees with experiments.

  17. Analyses of Large Coal-Based SOFCs for High Power Stack Block Development

    Energy Technology Data Exchange (ETDEWEB)

    Recknagle, Kurtis P; Koeppel, Brian J

    2010-10-01

    This report summarizes the numerical modeling and analytical efforts for SOFC stack development performed for the coal-based SOFC program. The stack modeling activities began in 2004, but this report focuses on the most relevant results obtained since August 2008. This includes the latter half of Phase-I and all of Phase-II activities under technical guidance of VPS and FCE. The models developed to predict the thermal-flow-electrochemical behaviors and thermal-mechanical responses of generic planar stacks and towers are described. The effects of cell geometry, fuel gas composition, on-cell reforming, operating conditions, cell performance, seal leak, voltage degradation, boundary conditions, and stack height are studied. The modeling activities to evaluate and achieve technical targets for large stack blocks are described, and results from the latest thermal-fluid-electrochemical and structural models are summarized. Modeling results for stack modifications such as scale-up and component thickness reduction to realize cost reduction are presented. Supporting modeling activities in the areas of cell fabrication and loss of contact are also described.

  18. Tunable electro-optic filter stack

    Energy Technology Data Exchange (ETDEWEB)

    Fontecchio, Adam K.; Shriyan, Sameet K.; Bellingham, Alyssa

    2017-09-05

    A holographic polymer dispersed liquid crystal (HPDLC) tunable filter exhibits switching times of no more than 20 microseconds. The HPDLC tunable filter can be utilized in a variety of applications. An HPDLC tunable filter stack can be utilized in a hyperspectral imaging system capable of spectrally multiplexing hyperspectral imaging data acquired while the hyperspectral imaging system is airborne. HPDLC tunable filter stacks can be utilized in high speed switchable optical shielding systems, for example as a coating for a visor or an aircraft canopy. These HPDLC tunable filter stacks can be fabricated using a spin coating apparatus and associated fabrication methods.

  19. Dynamical stability of slip-stacking particles

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey; Zwaska, Robert

    2014-09-01

    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.

  20. Investigation of degradation effects in polymer electrolyte fuel cells under automotive-related operating conditions

    Science.gov (United States)

    Enz, S.; Dao, T. A.; Messerschmidt, M.; Scholta, J.

    2015-01-01

    The influence of artificial starvation effects during automotive-related operating conditions is investigated within a polymer electrolyte fuel cell (PEFC) using non-dispersive infrared sensors and a current scan shunt. Driving cycles (DC) and single load change experiments are performed with specific fuel and oxidant starvation conditions. Within the DC experiments, a maximal CO2 amount of 4.67 μmol per cycle is detected in the cathode and 0.97 μmol per cycle in the anode exhaust without reaching fuel starvation conditions during the DC. Massive cell reversal conditions occur within the single load change experiments as a result of anodic fuel starvation. As soon as a fuel starvation appears, the emitted CO2 increases exponentially in the anode and cathode exhaust. A maximal CO2 amount of 143.8 μmol CO2 on the anode side and 5.8 μmol CO2 on the cathode side is detected in the exhaust gases. The critical cell reversal conditions only occur by using hydrogen reformate as anode reactant. The influence of the starvation effects on the PEFC performance is investigated via polarization curves, cyclic and linear sweep voltammetry as well as electrochemical impedance spectroscopy. The PEFC performance is reduced by 47% as a consequence of the dynamic operation.

  1. Effects of the operational conditions on the membrane and electrode properties of a polymer electrolyte fuel cell

    Directory of Open Access Journals (Sweden)

    Passos Raimundo R.

    2002-01-01

    Full Text Available The effects of the operational conditions on the membrane and electrode properties on a polymer electrolyte fuel cell (PEFC were investigated as a function of the cell and the gas humidifiers temperatures, the thickness of the membrane, the impregnation with phosphotungstic acid (PWA, and the variation of the Nafion and Teflon contents in the gas diffusion electrodes. An increase of the membrane resistance was observed when the PEFC is operated at temperatures equal or higher than those of the gas humidifiers, and this is more apparent for thicker electrolyte films. In the presence of PWA, the physicochemical properties of the membrane do not appreciably change with temperature. However, in this case, a lower humidification temperature affects the electrode performance. Changes on the Nafion loading in the electrodes do not lead to any significant effect in the electrode and membrane properties. For high Teflon contents there is a small lowering of the membrane conductivity.

  2. Operando 3D Visualization of Migration and Degradation of a Platinum Cathode Catalyst in a Polymer Electrolyte Fuel Cell.

    Science.gov (United States)

    Matsui, Hirosuke; Ishiguro, Nozomu; Uruga, Tomoya; Sekizawa, Oki; Higashi, Kotaro; Maejima, Naoyuki; Tada, Mizuki

    2017-08-01

    The three-dimensional (3D) distribution and oxidation state of a Pt cathode catalyst in a practical membrane electrode assembly (MEA) were visualized in a practical polymer electrolyte fuel cell (PEFC) under fuel-cell operating conditions. Operando 3D computed-tomography imaging with X-ray absorption near edge structure (XANES) spectroscopy (CT-XANES) clearly revealed the heterogeneous migration and degradation of Pt cathode catalyst in an MEA during accelerated degradation test (ADT) of PEFC. The degradative Pt migration proceeded over the entire cathode catalyst layer and spread to MEA depth direction into the Nafion membrane. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Nanographene synthesized in triple-phase plasmas as a highly durable support of catalysts for polymer electrolyte fuel cells

    Science.gov (United States)

    Amano, Tomoki; Kondo, Hiroki; Takeda, Keigo; Ishikawa, Kenji; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru

    2018-04-01

    Nanographene was synthesized in triple-phase plasmas comprising a gaseous phase, a gas-liquid boundary layer, and an in-liquid phase using a setup in which one electrode was placed in the gaseous phase while the other was immersed in the liquid phase. The triple-phase plasmas were generated using a pure alcohol, such as ethanol, 1-propanol, or 1-butanol, by applying a high voltage to a pair of electrodes made of copper or graphite. The nanographene synthesized using ethanol had high durability and thus could serve as a catalyst support in polymer electrolyte fuel cells (PEFCs). The PEFCs exhibited low degradation rates in the high-potential cycle test of a half-cell, as a result of which, a loss of only 10% was observed in the effective electrochemical surface area of Pt, even after 10,000 cycles.

  4. STACKING FAULT ENERGY IN HIGH MANGANESE ALLOYS

    Directory of Open Access Journals (Sweden)

    Eva Mazancová

    2009-04-01

    Full Text Available Stacking fault energy of high manganese alloys (marked as TWIP and TRIPLEX is an important parameter determining deformation mechanism type realized in above mentioned alloys. Stacking fault energy level can be asserted with a gliding of partial and/or full dislocations, b gliding mechanism and twinning deformation process in connection with increasing of fracture deformation level (deformation elongation and with increasing of simultaneously realized work hardening proces., c gliding mechanism and deformation induced e-martensite formation. In contribution calculated stacking fault energies are presented for various chemical compositions of high manganese alloys. Stacking fault energy dependences on manganese, carbon, iron and alluminium contents are presented. Results are confronted with some accessible papers.The aim of work is to deepen knowledge of presented data. The TWIP and TRIPLEX alloys can be held for promissing new automotive materials.

  5. Stack-Based Typed Assembly Language

    National Research Council Canada - National Science Library

    Morrisett, Greg

    1998-01-01

    .... This paper also formalizes the typing connection between CPS based compilation and stack based compilation and illustrates how STAL can formally model calling conventions by specifying them as formal translations of source function types to STAL types.

  6. Characterization of Piezoelectric Stacks for Space Applications

    Science.gov (United States)

    Sherrit, Stewart; Jones, Christopher; Aldrich, Jack; Blodget, Chad; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to actuate mechanisms to precision levels in the nanometer range and below. Co-fired multilayer piezoelectric stacks offer the required actuation precision that is needed for such mechanisms. To obtain performance statistics and determine reliability for extended use, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and high temperatures and voltages. In order to study the lifetime performance of these stacks, five actuators were driven sinusoidally for up to ten billion cycles. An automated data acquisition system was developed and implemented to monitor each stack's electrical current and voltage waveforms over the life of the test. As part of the monitoring tests, the displacement, impedance, capacitance and leakage current were measured to assess the operation degradation. This paper presents some of the results of this effort.

  7. The stack on software and sovereignty

    CERN Document Server

    Bratton, Benjamin H

    2016-01-01

    A comprehensive political and design theory of planetary-scale computation proposing that The Stack -- an accidental megastructure -- is both a technological apparatus and a model for a new geopolitical architecture.

  8. Stacking for Cosmic Magnetism with SKA Surveys

    OpenAIRE

    Stil, J. M.; Keller, B. W.

    2015-01-01

    Stacking polarized radio emission in SKA surveys provides statistical information on large samples that is not accessible otherwise due to limitations in sensitivity, source statistics in small fields, and averaging over frequency (including Faraday synthesis). Polarization is a special case because one obvious source of stacking targets is the Stokes I source catalog, possibly in combination with external catalogs, for example an SKA HI survey or a non-radio survey. We point out the signific...

  9. Environmental Modeling Framework using Stacked Gaussian Processes

    OpenAIRE

    Abdelfatah, Kareem; Bao, Junshu; Terejanu, Gabriel

    2016-01-01

    A network of independently trained Gaussian processes (StackedGP) is introduced to obtain predictions of quantities of interest with quantified uncertainties. The main applications of the StackedGP framework are to integrate different datasets through model composition, enhance predictions of quantities of interest through a cascade of intermediate predictions, and to propagate uncertainties through emulated dynamical systems driven by uncertain forcing variables. By using analytical first an...

  10. Generalized data stacking programming model with applications

    OpenAIRE

    Hala Samir Elhadidy; Rawya Yehia Rizk; Hassen Taher Dorrah

    2016-01-01

    Recent researches have shown that, everywhere in various sciences the systems are following stacked-based stored change behavior when subjected to events or varying environments “on and above” their normal situations. This paper presents a generalized data stack programming (GDSP) model which is developed to describe the system changes under varying environment. These changes which are captured with different ways such as sensor reading are stored in matrices. Extraction algorithm and identif...

  11. Representations of stack triangulations in the plane

    OpenAIRE

    Selig, Thomas

    2013-01-01

    Stack triangulations appear as natural objects when defining an increasing family of triangulations by successive additions of vertices. We consider two different probability distributions for such objects. We represent, or "draw" these random stack triangulations in the plane $\\R^2$ and study the asymptotic properties of these drawings, viewed as random compact metric spaces. We also look at the occupation measure of the vertices, and show that for these two distributions it converges to som...

  12. A Time-predictable Stack Cache

    DEFF Research Database (Denmark)

    Abbaspour, Sahar; Brandner, Florian; Schoeberl, Martin

    2013-01-01

    Real-time systems need time-predictable architectures to support static worst-case execution time (WCET) analysis. One architectural feature, the data cache, is hard to analyze when different data areas (e.g., heap allocated and stack allocated data) share the same cache. This sharing leads to le...... of a cache for stack allocated data. Our port of the LLVM C++ compiler supports the management of the stack cache. The combination of stack cache instructions and the hardware implementation of the stack cache is a further step towards timepredictable architectures.......Real-time systems need time-predictable architectures to support static worst-case execution time (WCET) analysis. One architectural feature, the data cache, is hard to analyze when different data areas (e.g., heap allocated and stack allocated data) share the same cache. This sharing leads to less...... precise results of the cache analysis part of the WCET analysis. Splitting the data cache for different data areas enables composable data cache analysis. The WCET analysis tool can analyze the accesses to these different data areas independently. In this paper we present the design and implementation...

  13. From Multi to Single Stack Automata

    Science.gov (United States)

    Atig, Mohamed Faouzi

    We investigate the issue of reducing the verification problem of multi-stack machines to the one for single-stack machines. For instance, elegant (and practically efficient) algorithms for bounded-context switch analysis of multi-pushdown systems have been recently defined based on reductions to the reachability problem of (single-stack) pushdown systems [10,18]. In this paper, we extend this view to both bounded-phase visibly pushdown automata (BVMPA) [16] and ordered multi-pushdown automata (OMPA) [1] by showing that each of their emptiness problem can be reduced to the one for a class of single-stack machines. For these reductions, we introduce effective generalized pushdown automata (EGPA) where operations on stacks are (1) pop the top symbol of the stack, and (2) push a word in some (effectively) given set of words L over the stack alphabet, assuming that L is in some class of languages for which checking whether L intersects regular languages is decidable. We show that the automata-based saturation procedure for computing the set of predecessors in standard pushdown automata can be extended to prove that for EGPA too the set of all predecessors of a regular set of configurations is an effectively constructible regular set. Our reductions from OMPA and BVMPA to EGPA, together with the reachability analysis procedure for EGPA, allow to provide conceptually simple algorithms for checking the emptiness problem for each of these models, and to significantly simplify the proofs for their 2ETIME upper bounds (matching their lower-bounds).

  14. Start-Stop Test Procedures on the PEMFC Stack Level

    DEFF Research Database (Denmark)

    Mitzel, Jens; Nygaard, Frederik; Veltzé, Sune

    The test is addressed to investigate the influence on stack durability of a long stop followed by a restart of a stack. Long stop should be defined as a stop in which the anodic compartment is fully filled by air due to stack leakages. In systems, leakage level of the stack is low and time to fil...

  15. The coherent interlayer resistance of a single, rotated interface between two stacks of AB graphite

    Energy Technology Data Exchange (ETDEWEB)

    Habib, K. M. Masum, E-mail: khabib@ee.ucr.edu; Sylvia, Somaia S.; Neupane, Mahesh; Lake, Roger K., E-mail: rlake@ee.ucr.edu [Department of Electrical Engineering, University of California, Riverside, California 92521-0204 (United States); Ge, Supeng [Department of Physics and Astronomy, University of California, Riverside, California 92521-0204 (United States)

    2013-12-09

    The coherent, interlayer resistance of a misoriented, rotated interface between two stacks of AB graphite is determined for a variety of misorientation angles. The quantum-resistance of the ideal AB stack is on the order of 1 to 10 mΩ μm{sup 2}. For small rotation angles, the coherent interlayer resistance exponentially approaches the ideal quantum resistance at energies away from the charge neutrality point. Over a range of intermediate angles, the resistance increases exponentially with cell size for minimum size unit cells. Larger cell sizes, of similar angles, may not follow this trend. The energy dependence of the interlayer transmission is described.

  16. The coherent interlayer resistance of a single, rotated interface between two stacks of AB graphite

    International Nuclear Information System (INIS)

    Habib, K. M. Masum; Sylvia, Somaia S.; Neupane, Mahesh; Lake, Roger K.; Ge, Supeng

    2013-01-01

    The coherent, interlayer resistance of a misoriented, rotated interface between two stacks of AB graphite is determined for a variety of misorientation angles. The quantum-resistance of the ideal AB stack is on the order of 1 to 10 mΩ μm 2 . For small rotation angles, the coherent interlayer resistance exponentially approaches the ideal quantum resistance at energies away from the charge neutrality point. Over a range of intermediate angles, the resistance increases exponentially with cell size for minimum size unit cells. Larger cell sizes, of similar angles, may not follow this trend. The energy dependence of the interlayer transmission is described

  17. EmuStack: An OpenStack-Based DTN Network Emulation Platform (Extended Version

    Directory of Open Access Journals (Sweden)

    Haifeng Li

    2016-01-01

    Full Text Available With the advancement of computing and network virtualization technology, the networking research community shows great interest in network emulation. Compared with network simulation, network emulation can provide more relevant and comprehensive details. In this paper, EmuStack, a large-scale real-time emulation platform for Delay Tolerant Network (DTN, is proposed. EmuStack aims at empowering network emulation to become as simple as network simulation. Based on OpenStack, distributed synchronous emulation modules are developed to enable EmuStack to implement synchronous and dynamic, precise, and real-time network emulation. Meanwhile, the lightweight approach of using Docker container technology and network namespaces allows EmuStack to support a (up to hundreds of nodes large-scale topology with only several physical nodes. In addition, EmuStack integrates the Linux Traffic Control (TC tools with OpenStack for managing and emulating the virtual link characteristics which include variable bandwidth, delay, loss, jitter, reordering, and duplication. Finally, experiences with our initial implementation suggest the ability to run and debug experimental network protocol in real time. EmuStack environment would bring qualitative change in network research works.

  18. Levitation characteristics of HTS tape stacks

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovskiy, S. V.; Ermolaev, Y. S.; Rudnev, I. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-03-15

    Due to the considerable development of the technology of second generation high-temperature superconductors and a significant improvement in their mechanical and transport properties in the last few years it is possible to use HTS tapes in the magnetic levitation systems. The advantages of tapes on a metal substrate as compared with bulk YBCO material primarily in the strength, and the possibility of optimizing the convenience of manufacturing elements of levitation systems. In the present report presents the results of the magnetic levitation force measurements between the stack of HTS tapes containing of tapes and NdFeB permanent magnet in the FC and ZFC regimes. It was found a non- linear dependence of the levitation force from the height of the array of stack in both modes: linear growth at small thickness gives way to flattening and constant at large number of tapes in the stack. Established that the levitation force of stacks comparable to that of bulk samples. The numerical calculations using finite element method showed that without the screening of the applied field the levitation force of the bulk superconductor and the layered superconductor stack with a critical current of tapes increased by the filling factor is exactly the same, and taking into account the screening force slightly different.

  19. Contemporary sample stacking in analytical electrophoresis.

    Science.gov (United States)

    Malá, Zdena; Šlampová, Andrea; Křivánková, Ludmila; Gebauer, Petr; Boček, Petr

    2015-01-01

    This contribution is a methodological review of the publications about the topic from the last 2 years. Therefore, it is primarily organized according to the methods and procedures used in surveyed papers and the origin and type of sample and specification of analytes form the secondary structure. The introductory part about navigation in the architecture of stacking brings a brief characterization of the various stacking methods, with the description of mutual links to each other and important differences among them. The main body of the article brings a survey of publications organized according to main principles of stacking and then according to the origin and type of the sample. Provided that the paper cited gave explicitly the relevant data, information about the BGE(s) used, procedure, detector employed, and reached LOD and/or concentration effect is given. The papers where the procedure used is a combination of diverse fragments and parts of various stacking techniques are mentioned in a special section on combined techniques. The concluding remarks in the final part of the review evaluate present state of art and the trends of sample stacking in CE. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Enhanced dynamical stability with harmonic slip stacking

    Directory of Open Access Journals (Sweden)

    Jeffrey Eldred

    2016-10-01

    Full Text Available We develop a configuration of radio-frequency (rf cavities to dramatically improve the performance of slip stacking. Slip stacking is an accumulation technique used at Fermilab to nearly double proton intensity by maintaining two beams of different momenta in the same storage ring. The two particle beams are longitudinally focused in the Recycler by two 53 MHz 100 kV rf cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV rf cavity with a frequency at the double the average of the upper and lower main rf frequencies. We show the harmonic rf cavity cancels out the resonances generated between the two main rf cavities and we derive the relationship between the harmonic rf voltage and the main rf voltage. We find the area factors that can be used to calculate the available phase space area for any set of beam parameters without individual simulation. We establish Booster beam quality requirements to achieve 99% slip stacking efficiency. We measure the longitudinal distribution of the Booster beam and use it to generate a realistic beam model for slip stacking simulation. We demonstrate that the harmonic rf cavity can not only reduce particle loss during slip stacking, but also reduce the final longitudinal emittance.

  1. Fuel cells, electrolyzers, and microalgae photobioreactors: technologies for long-duration missions in human spaceflight

    Science.gov (United States)

    Belz, Stefan; Bretschneider, Jens; Nathanson, Emil; Buchert, Melanie

    Long-duration and far-distant missions in human spaceflight have higher requirements on life support systems (LSS) technologies than for missions into low Earth orbit (LEO). LSS technologies have to ensure that humans can survive, live, and work in space. Enhancements of existing technologies, new technological developments and synergetic components integration help to close the oxygen, water and carbon loops. For these reasons, the approach of a synergetic integration of Polymer Electrolyte Membrane Fuel Cells (PEFC), Polymer Electrolyte Membrane Electrolyzers (PEL) and Photobioreactors (PBR) for microalgae cultivation into the LSS is investigated. It is demonstrated in which mission scenarii the application of PEFC, PEL, and PBR are useful in terms of mass, reliability, and cycle closures. The paper represents the current status of research at the Institute of Space Systems (IRS) of University of Stuttgart on PEFC, PEL, and PBR development. A final configuration of a prototype of a PEFC system includes the gas, water, and thermal management. The PEL is a state-of-the-art technology for space application, but the specific requirements by a synergetic integration are focused. A prototype configuration of a PBR system, which was tested under microgravity conditions in a parabolic experiment, consists of a highly sophisticated cultivation chamber, adapted sensorics, pumps, nutrients supply and harvesting unit. Additionally, the latest results of the cultivation of the microalgae species Chlorella vulgaris and Scenedesmus obliquus in the laboratories of the IRS are represented. Both species are robust, nutrient-rich for human diet. An outlook of the next steps is given for in-orbit verification.

  2. Development of cost innovative BPs for a PEMFC stack for a 1 kW-class residential power generator (RPG) system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gil-yong; Jung, Min-kyung; Ryoo, Sung-nam; Ha, Sam-chul [Digital Appliance R and D, LG Electronics, Seoul 153-801 (Korea, Republic of); Park, Myung-seok [LG Solar Energy, Seoul 150-721 (Korea, Republic of); Kim, Sunhoe [Department of New Energy and Resource Engineering, Sangji University, Wonju, Gangwon 220-702 (Korea, Republic of)

    2010-12-15

    In order to satisfy the demands of customers, cost innovation of fuel cell systems is required for the commercialization of the fuel cell. Since the stack is one of the most expensive parts in a fuel cell system, cost reduction of stack is required for fuel cell commercialization. For this effort stainless steel 304 sheets were etched for the flow field and then coated for corrosion resistance. This enables the development of highly cost-effective bipolar plates (BPs) for a Proton Exchange Membrane Fuel Cell (PEMFC) stack of a 1 kW-class for Residential Power Generator (RPG). LG Electronics (LGE) developed a metal stack of 64 cells with the developed BPs and achieved a performance rating of 0.75 V/cell at 200 mA/cm{sup 2}. LGE also achieved a stack volume reduction of 20% compared to a stack of the same specifications consisting of graphite material BPs. The volume decrease can be represented as a cost reduction. LGE achieved the very low cost innovation to 1 USD per cell with cells developed from etched metal BPs. LGE also achieved 500 h of operation with LGE's RPG system; this test is still ongoing. The degradation rate of the stack was 27 {mu}V/hr. The end of life of the stack was estimated at approximately 17,000 h. (author)

  3. A Comprehensive Physical Impedance Model of Polymer Electrolyte Fuel Cell Cathodes in Oxygen-free Atmosphere.

    Science.gov (United States)

    Obermaier, Michael; Bandarenka, Aliaksandr S; Lohri-Tymozhynsky, Cyrill

    2018-03-21

    Electrochemical impedance spectroscopy (EIS) is an indispensable tool for non-destructive operando characterization of Polymer Electrolyte Fuel Cells (PEFCs). However, in order to interpret the PEFC's impedance response and understand the phenomena revealed by EIS, numerous semi-empirical or purely empirical models are used. In this work, a relatively simple model for PEFC cathode catalyst layers in absence of oxygen has been developed, where all the equivalent circuit parameters have an entire physical meaning. It is based on: (i) experimental quantification of the catalyst layer pore radii, (ii) application of De Levie's analytical formula to calculate the response of a single pore, (iii) approximating the ionomer distribution within every pore, (iv) accounting for the specific adsorption of sulfonate groups and (v) accounting for a small H 2 crossover through ~15 μm ionomer membranes. The derived model has effectively only 6 independent fitting parameters and each of them has clear physical meaning. It was used to investigate the cathode catalyst layer and the double layer capacitance at the interface between the ionomer/membrane and Pt-electrocatalyst. The model has demonstrated excellent results in fitting and interpretation of the impedance data under different relative humidities. A simple script enabling fitting of impedance data is provided as supporting information.

  4. Pocket concept provides more degrees of freedom. Modular stacks with exchangeable wear parts; Taschenkonzept schafft neue Freiheitsgrade. Modulare Stacks mit austauschbaren Verschleissteilen

    Energy Technology Data Exchange (ETDEWEB)

    Brodmann, Michael; Greda, Martin [Westfaelische Hochschule, Gelsenkirchen (Germany)

    2012-04-15

    In view of the central role of fuel cell systems in future power supply, scientists are working hard on improvements. One big step towards simplification is the pocket concept developed at Westfaelische Hochschule university at Gelsenkirchen. This concept divides up fuel cell stacks into individual modules whose wear components can be exchanged easily and safely without impairing the functionality of the fuel cell. This will make facilitate servicing and maintenance. (orig.)

  5. Design Handbook for a Stack Foundation

    OpenAIRE

    Tuominen, Vilma

    2011-01-01

    This thesis was made for Citec Engineering Oy Ab as a handbook and as a design tool for concrete structure designers. Handbook is about the Wärtsilä Power Plant stack structure, which is a base for about 40 meters high stack pipe. The purpose is to make a calculation base to support the design work, which helps the designer to check the right dimensions of the structure. Thesis is about to be for the concrete designers and also other designers and authorities. As an example I have used an...

  6. Simple model of stacking-fault energies

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Jacobsen, Lærke Wedel

    1993-01-01

    A simple model for the energetics of stacking faults in fcc metals is constructed. The model contains third-nearest-neighbor pairwise interactions and a term involving the fourth moment of the electronic density of states. The model is in excellent agreement with recently published local-density ......A simple model for the energetics of stacking faults in fcc metals is constructed. The model contains third-nearest-neighbor pairwise interactions and a term involving the fourth moment of the electronic density of states. The model is in excellent agreement with recently published local...

  7. Graphene controlled H- and J-stacking of perylene dyes into highly stable supramolecular nanostructures for enhanced photocurrent generation

    DEFF Research Database (Denmark)

    Gan, Shiyu; Zhong, Lijie; Engelbrekt, Christian

    2014-01-01

    We report a new method for controlling H- and J-stacking in supramolecular self-assembly. Graphene nanosheets act as structure inducers to direct the self-assembly of a versatile organic dye, perylene into two distinct types of functional nanostructures, i.e. one-dimensional nanotubes via J-stack......-junction solar cells.......We report a new method for controlling H- and J-stacking in supramolecular self-assembly. Graphene nanosheets act as structure inducers to direct the self-assembly of a versatile organic dye, perylene into two distinct types of functional nanostructures, i.e. one-dimensional nanotubes via J......-stacking and two-dimensional branched nanobuds through H-stacking. Graphene integrated supramolecular nanocomposites are highly stable and show significant enhancement of photocurrent generation in these two configurations of photosensing devices, i.e. solid-state optoelectronic constructs and liquid...

  8. Development of Robust Metal-Supported SOFCs and Stack Components in EU METSAPP Consortium

    DEFF Research Database (Denmark)

    Sudireddy, Bhaskar Reddy; Nielsen, Jimmi; Persson, Åsa Helen

    2017-01-01

    -SOFCs to enhance their robustness. In addition, the manufacturing of metal-supported cells with different geometries, scalability of the manufacturing process was demonstrated and more than 200 cells with an area of ∼150 cm2 were produced. The electrochemical performance of different cell generations was evaluated...... in 90% reduction in Cr evaporation, three times lower Cr2O3 scale thickness and increased lifetime. The possibility of assembling these cells into two radically different stack designs was demonstrated....

  9. Fuel cells as renewable energy sources

    International Nuclear Information System (INIS)

    Cacciola, G.; Passalacqua, E.

    2001-01-01

    The technology level achieved in fuel cell (FC) systems in the last years has significantly increased the interest of various manufacturing industries engaged in energy production and distribution even under the perspectives that this technology could provide. Today, the fuel cells (FCs) can supply both electrical and thermal energy without using moving parts and with a high level of affordability with respect to the conventional systems. FCs can utilise every kind of fuel such as hydrocarbons, hydrogen available from the water through renewable sources (wind, solar energy), alcohol etc. Thus, they may find application in many field ranging from energy production in large or small plants to the cogeneration systems for specific needs such as for residential applications, hospitals, industries, electric vehicles and portable power sources. Low temperature polymer electrolyte fuel cells (PEFC, DMFC) are preferred for application in the field of transportation and portable systems. The CNR-ITAE research activity in this field concerns the development of technologies, materials and components for the entire system: electrocatalysts, conducting supports, electrolytes, manufacturing technologies for the electrodes-electrolyte assemblies and the attainment of fuel cells with high power densities. Furthermore, some activities have been devoted to the design and realisation of PEFC fuel cell prototypes with rated power lower than I kW for stationary and mobile applications [it

  10. Contemporary sample stacking in analytical electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Šlampová, Andrea; Malá, Zdeňka; Pantůčková, Pavla; Gebauer, Petr; Boček, Petr

    2013-01-01

    Roč. 34, č. 1 (2013), s. 3-18 ISSN 0173-0835 R&D Projects: GA ČR GAP206/10/1219 Institutional support: RVO:68081715 Keywords : biological samples * stacking * trace analysis * zone electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.161, year: 2013

  11. SRS reactor stack plume marking tests

    International Nuclear Information System (INIS)

    Petry, S.F.

    1992-03-01

    Tests performed in 105-K in 1987 and 1988 demonstrated that the stack plume can successfully be made visible (i.e., marked) by introducing smoke into the stack breech. The ultimate objective of these tests is to provide a means during an emergency evacuation so that an evacuee can readily identify the stack plume and evacuate in the opposite direction, thus minimizing the potential of severe radiation exposure. The EPA has also requested DOE to arrange for more tests to settle a technical question involving the correct calculation of stack downwash. New test canisters were received in 1988 designed to produce more smoke per unit time; however, these canisters have not been evaluated, because normal ventilation conditions have not been reestablished in K Area. Meanwhile, both the authorization and procedure to conduct the tests have expired. The tests can be performed during normal reactor operation. It is recommended that appropriate authorization and procedure approval be obtained to resume testing after K Area restart

  12. Stack Gas Scrubber Makes the Grade

    Science.gov (United States)

    Chemical and Engineering News, 1975

    1975-01-01

    Describes a year long test of successful sulfur dioxide removal from stack gas with a calcium oxide slurry. Sludge disposal problems are discussed. Cost is estimated at 0.6 mill per kwh not including sludge removal. A flow diagram and equations are included. (GH)

  13. OpenStack Object Storage (Swift) essentials

    CERN Document Server

    Kapadia, Amar; Varma, Sreedhar

    2015-01-01

    If you are an IT administrator and you want to enter the world of cloud storage using OpenStack Swift, then this book is ideal for you. Basic knowledge of Linux and server technology is beneficial to get the most out of the book.

  14. Stacked spheres and lower bound theorem

    Indian Academy of Sciences (India)

    BASUDEB DATTA

    2011-11-20

    Nov 20, 2011 ... Preliminaries. Lower bound theorem. On going work. Definitions. An n-simplex is a convex hull of n + 1 affinely independent points. (called vertices) in some Euclidean space R. N . Stacked spheres and lower bound theorem. Basudeb Datta. Indian Institute of Science. 2 / 27 ...

  15. Contemporary sample stacking in analytical electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Malá, Zdeňka; Šlampová, Andrea; Křivánková, Ludmila; Gebauer, Petr; Boček, Petr

    2015-01-01

    Roč. 36, č. 1 (2015), s. 15-35 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA13-05762S Institutional support: RVO:68081715 Keywords : biological samples * stacking * trace analysis * zone electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.482, year: 2015

  16. The data type variety of stack algebras

    NARCIS (Netherlands)

    Bergstra, J.A.; Tucker, J.V.

    1995-01-01

    We define and study the class of all stack algebras as the class of all minimal algebras in a variety defined by an infinite recursively enumerable set of equations. Among a number of results, we show that the initial model of the variety is computable, that its equational theory is decidable,

  17. Photoswitchable Intramolecular H-Stacking of Perylenebisimide

    NARCIS (Netherlands)

    Wang, Jiaobing; Kulago, Artem; Browne, Wesley R.; Feringa, Ben L.

    2010-01-01

    Dynamic control over the formation of H- or J-type aggregates of chromophores is of fundamental importance for developing responsive organic optoelectronic materials. In this study, the first example of photoswitching between a nonstacked and an intramolecularly H-stacked arrangement of

  18. 40 CFR 61.53 - Stack sampling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Stack sampling. 61.53 Section 61.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... sampling. (a) Mercury ore processing facility. (1) Unless a waiver of emission testing is obtained under...

  19. 40 CFR 61.33 - Stack sampling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Stack sampling. 61.33 Section 61.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... sampling. (a) Unless a waiver of emission testing is obtained under § 61.13, each owner or operator...

  20. OpenStack cloud computing cookbook

    CERN Document Server

    Jackson, Kevin

    2013-01-01

    A Cookbook full of practical and applicable recipes that will enable you to use the full capabilities of OpenStack like never before.This book is aimed at system administrators and technical architects moving from a virtualized environment to cloud environments with familiarity of cloud computing platforms. Knowledge of virtualization and managing linux environments is expected.

  1. Birnessite-type MnO2 nanosheets with layered structures under high pressure: elimination of crystalline stacking faults and oriented laminar assembly.

    Science.gov (United States)

    Sun, Yugang; Wang, Lin; Liu, Yuzi; Ren, Yang

    2015-01-21

    Squeezing out crystalline stacking faults: Birnessite-type δ-phase MnO2 microflowers containing interconnected ultrathin nanosheets are synthesized through a microwave-assisted hydrothermal process and exhibit a layered crystalline structure with significant stacking faults. Compressing these MnO2 nanosheets in a diamond anvil cell with high pressure up to tens of GPa effectively eliminates the crystalline stacking faults. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Stacking faults in a layered cobalt tellurium phosphate oxochloride

    Science.gov (United States)

    Zimmermann, Iwan; Johnsson, Mats

    2015-02-01

    The new compound Co2Te3(PO4)O6Cl was synthesized by chemical reactions in a sealed and evacuated silica tube. The crystal structure was solved from single crystal diffraction data and is made up by charge neutral layers. Within the layers two types of chains are made up by edge sharing [CoO6] and [CoO5Cl] polyhedra respectively. The chains are separated by tellurium oxide and phosphate building blocks. There are only weak Van der Waals interactions in between the layers and severe diffuse scattering is observed due to faulted stacking of the layers. Structure solutions in a P-1 triclinic cell and a larger monoclinic cell in P21/c are discussed and compared to a computer generated model. The reasons for the stacking faults may be due to that there are two positions available for each layer that results in similar connectivity to the next layer in addition to the relatively wide channels in between the layers that reduce the Van der Waals interactions in between them.

  3. Project W-420 Stack Monitoring system upgrades conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    TUCK, J.A.

    1998-11-06

    This document describes the scope, justification, conceptual design, and performance of Project W-420 stack monitoring system upgrades on six NESHAP-designated, Hanford Tank Farms ventilation exhaust stacks.

  4. Heuristic Solution Approaches to the Double TSP with Multiple Stacks

    DEFF Research Database (Denmark)

    Petersen, Hanne Løhmann

    This paper introduces the Double Travelling Salesman Problem with Multiple Stacks and presents a three different metaheuristic approaches to its solution. The Double Travelling Salesman Problem with Multiple Stacks is concerned with finding the shortest route performing pickups and deliveries...

  5. Heuristic Solution Approaches to the Double TSP with Multiple Stacks

    DEFF Research Database (Denmark)

    Petersen, Hanne Løhmann

    2006-01-01

    This paper introduces the Double Travelling Salesman Problem with Multiple Stacks and presents a three different metaheuristic approaches to its solution. The Double Travelling Salesman Problem with Multiple Stacks is concerned with finding the shortest route performing pickups and deliveries...

  6. DEVS Models of Palletized Ground Stacking in Storeyed Grain Warehouse

    Directory of Open Access Journals (Sweden)

    Hou Shu-Yi

    2016-01-01

    Full Text Available Processed grain stored in storeyed warehouse is generally stacked on the ground without pallets. However, in order to improve the storing way, we developed a new stacking method, palletized ground stacking. Simulation should be used to present this new storing way. DEVS provides a formalized way to describe the system model. In this paper, DEVS models of palletized ground stacking in storeyed grain warehouse are given and a simulation model is developed by AutoMod.

  7. Sport stacking motor intervention programme for children with ...

    African Journals Online (AJOL)

    The purpose of this study was to explore sport stacking as an alternative intervention approach with typically developing children and in addition to improve DCD. Sport stacking consists of participants stacking and unstacking 12 specially designed plastic cups in predetermined sequences in as little time as possible.

  8. Notes on G-theory of Deligne-Mumford stacks

    OpenAIRE

    Toen, B.

    1999-01-01

    Based on the methods used by the author to prove the Riemann-Roch formula for algebraic stacks, this paper contains a description of the rationnal G-theory of Deligne-Mumford stacks over general bases. We will use these results to study equivariant K-theory, and also to define new filtrations on K-theory of algebraic stacks.

  9. Learning algorithms for stack filter classifiers

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Hush, Don [Los Alamos National Laboratory; Zimmer, Beate G [TEXAS A& M

    2009-01-01

    Stack Filters define a large class of increasing filter that is used widely in image and signal processing. The motivations for using an increasing filter instead of an unconstrained filter have been described as: (1) fast and efficient implementation, (2) the relationship to mathematical morphology and (3) more precise estimation with finite sample data. This last motivation is related to methods developed in machine learning and the relationship was explored in an earlier paper. In this paper we investigate this relationship by applying Stack Filters directly to classification problems. This provides a new perspective on how monotonicity constraints can help control estimation and approximation errors, and also suggests several new learning algorithms for Boolean function classifiers when they are applied to real-valued inputs.

  10. Industrial stacks design; Diseno de chimeneas industriales

    Energy Technology Data Exchange (ETDEWEB)

    Cacheux, Luis [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1986-12-31

    The Instituto de Investigaciones Electricas (IIE) though its Civil Works Department, develops, under contract with CFE`s Gerencia de Proyectos Termoelectricos (Management of Fossil Power Plant Projects), a series of methods for the design of stacks, which pretends to solve the a present day problem: the stack design of the fossil power plants that will go into operation during the next coming years in the country. [Espanol] El Instituto de Investigaciones Electricas (IIE), a traves del Departamento de Ingenieria Civil, desarrolla, bajo contrato con la Gerencia de Proyectos Termoelectricos, de la Comision Federal de Electricidad (CFE), un conjunto de metodos para el diseno de chimeneas, con el que se pretende resolver un problema inmediato: el diseno de las chimeneas de las centrales termoelectricas que entraran en operacion durante los proximos anos, en el pais.

  11. System for inspection of stacked cargo containers

    Science.gov (United States)

    Derenzo, Stephen [Pinole, CA

    2011-08-16

    The present invention relates to a system for inspection of stacked cargo containers. One embodiment of the invention generally comprises a plurality of stacked cargo containers arranged in rows or tiers, each container having a top, a bottom a first side, a second side, a front end, and a back end; a plurality of spacers arranged in rows or tiers; one or more mobile inspection devices for inspecting the cargo containers, wherein the one or more inspection devices are removeably disposed within the spacers, the inspection means configured to move through the spacers to detect radiation within the containers. The invented system can also be configured to inspect the cargo containers for a variety of other potentially hazardous materials including but not limited to explosive and chemical threats.

  12. Radiation-Tolerant Intelligent Memory Stack - RTIMS

    Science.gov (United States)

    Ng, Tak-kwong; Herath, Jeffrey A.

    2011-01-01

    This innovation provides reconfigurable circuitry and 2-Gb of error-corrected or 1-Gb of triple-redundant digital memory in a small package. RTIMS uses circuit stacking of heterogeneous components and radiation shielding technologies. A reprogrammable field-programmable gate array (FPGA), six synchronous dynamic random access memories, linear regulator, and the radiation mitigation circuits are stacked into a module of 42.7 42.7 13 mm. Triple module redundancy, current limiting, configuration scrubbing, and single- event function interrupt detection are employed to mitigate radiation effects. The novel self-scrubbing and single event functional interrupt (SEFI) detection allows a relatively soft FPGA to become radiation tolerant without external scrubbing and monitoring hardware

  13. Absorption spectra of AA-stacked graphite

    International Nuclear Information System (INIS)

    Chiu, C W; Lee, S H; Chen, S C; Lin, M F; Shyu, F L

    2010-01-01

    AA-stacked graphite shows strong anisotropy in geometric structures and velocity matrix elements. However, the absorption spectra are isotropic for the polarization vector on the graphene plane. The spectra exhibit one prominent plateau at middle energy and one shoulder structure at lower energy. These structures directly reflect the unique geometric and band structures and provide sufficient information for experimental fitting of the intralayer and interlayer atomic interactions. On the other hand, monolayer graphene shows a sharp absorption peak but no shoulder structure; AA-stacked bilayer graphene has two absorption peaks at middle energy and abruptly vanishes at lower energy. Furthermore, the isotropic features are expected to exist in other graphene-related systems. The calculated results and the predicted atomic interactions could be verified by optical measurements.

  14. Critical assessment of power trains with fuel-cell systems and different fuels

    Science.gov (United States)

    Höhlein, B.; von Andrian, S.; Grube, Th; Menzer, R.

    Legal regulations (USA, EU) are a major driving force for intensifying technological developments with respect to the global automobile market. In the future, highly efficient vehicles with very low emission levels will include low-temperature fuel-cell systems (PEFC) as units of electric power trains. With alcohols, ether or hydrocarbons used as fuels for these new electric power trains, hydrogen as PEFC fuel has to be produced on board. These concepts including the direct use of methanol in fuel-cell systems, differ considerably in terms of both their development prospects and the results achieved so far. Based on process engineering analyses for net electricity generation in PEFC-powered power trains, as well as on assumptions for electric power trains and vehicle configurations, different fuel-cell performances and fuel processing units for octane, diesel, methanol, ethanol, propane and dimethylether have been evaluated as fuels. The possible benefits and key challenges for different solutions of power trains with fuel-cell systems/on-board hydrogen production and with direct methanol fuel-cell (DMFC) systems have been assessed. Locally, fuel-cell power trains are almost emission-free and, unlike battery-powered vehicles, their range is comparable to conventional vehicles. Therefore, they have application advantages cases of particularly stringent emission standards requiring zero emission. In comparison to internal combustion engines, using fuel-cell power trains can lead to clear reductions in primary energy demand and global, climate-relevant emissions providing the advantage of the efficiency of the hydrogen/air reaction in the fuel cell is not too drastically reduced by additional conversion steps of on-board hydrogen production, or by losses due to fuel supply provision.

  15. CAM and stack air sampler design guide

    International Nuclear Information System (INIS)

    Phillips, T.D.

    1994-01-01

    About 128 air samplers and CAMs presently in service to detect and document potential radioactive release from 'H' and 'F' area tank farm ventilation stacks are scheduled for replacement and/or upgrade by Projects S-5764, S-2081, S-3603, and S-4516. The seven CAMs scheduled to be upgraded by Project S-4516 during 1995 are expected to provide valuable experience for the three remaining projects. The attached document provides design guidance for the standardized High Level Waste air sampling system

  16. Contemporary sample stacking in analytical electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Malá, Zdeňka; Gebauer, Petr; Boček, Petr

    2011-01-01

    Roč. 32, č. 1 (2011), s. 116-126 ISSN 0173-0835 R&D Projects: GA ČR GA203/08/1536; GA ČR GAP206/10/1219; GA AV ČR IAA400310703 Institutional research plan: CEZ:AV0Z40310501 Keywords : biological samples * stacking * trace analysis * zone electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.303, year: 2011

  17. Stacked Switched Capacitor Energy Buffer Architecture

    OpenAIRE

    Chen, Minjie; Perreault, David J.; Afridi, Khurram

    2012-01-01

    Electrolytic capacitors are often used for energy buffering applications, including buffering between single-phase ac and dc. While these capacitors have high energy density compared to film and ceramic capacitors, their life is limited. This paper presents a stacked switched capacitor (SSC) energy buffer architecture and some of its topological embodiments, which when used with longer life film capacitors overcome this limitation while achieving effective energy densities comparable to elect...

  18. When is stacking confusing? The impact of confusion on stacking in deep H I galaxy surveys

    Science.gov (United States)

    Jones, Michael G.; Haynes, Martha P.; Giovanelli, Riccardo; Papastergis, Emmanouil

    2016-01-01

    We present an analytic model to predict the H I mass contributed by confused sources to a stacked spectrum in a generic H I survey. Based on the ALFALFA (Arecibo Legacy Fast ALFA) correlation function, this model is in agreement with the estimates of confusion present in stacked Parkes telescope data, and was used to predict how confusion will limit stacking in the deepest Square Kilometre Array precursor H I surveys. Stacking with LADUMA (Looking At the Distant Universe with MeerKAT) and DINGO UDEEP (Deep Investigation of Neutral Gas Origins - Ultra Deep) data will only be mildly impacted by confusion if their target synthesized beam size of 10 arcsec can be achieved. Any beam size significantly above this will result in stacks that contain a mass in confused sources that is comparable to (or greater than) that which is detectable via stacking, at all redshifts. CHILES (COSMOS H I Large Extragalactic Survey) 5 arcsec resolution is more than adequate to prevent confusion influencing stacking of its data, throughout its bandpass range. FAST (Five hundred metre Aperture Spherical Telescope) will be the most impeded by confusion, with H I surveys likely becoming heavily confused much beyond z = 0.1. The largest uncertainties in our model are the redshift evolution of the H I density of the Universe and the H I correlation function. However, we argue that the two idealized cases we adopt should bracket the true evolution, and the qualitative conclusions are unchanged regardless of the model choice. The profile shape of the signal due to confusion (in the absence of any detection) was also modelled, revealing that it can take the form of a double Gaussian with a narrow and wide component.

  19. Thyristor stack for pulsed inductive plasma generation.

    Science.gov (United States)

    Teske, C; Jacoby, J; Schweizer, W; Wiechula, J

    2009-03-01

    A thyristor stack for pulsed inductive plasma generation has been developed and tested. The stack design includes a free wheeling diode assembly for current reversal. Triggering of the device is achieved by a high side biased, self supplied gate driver unit using gating energy derived from a local snubber network. The structure guarantees a hard firing gate pulse for the required high dI/dt application. A single fiber optic command is needed to achieve a simultaneous turn on of the thyristors. The stack assembly is used for switching a series resonant circuit with a ringing frequency of 30 kHz. In the prototype pulsed power system described here an inductive discharge has been generated with a pulse duration of 120 micros and a pulse energy of 50 J. A maximum power transfer efficiency of 84% and a peak power of 480 kW inside the discharge were achieved. System tests were performed with a purely inductive load and an inductively generated plasma acting as a load through transformer action at a voltage level of 4.1 kV, a peak current of 5 kA, and a current switching rate of 1 kA/micros.

  20. Electrochemical Detection in Stacked Paper Networks.

    Science.gov (United States)

    Liu, Xiyuan; Lillehoj, Peter B

    2015-08-01

    Paper-based electrochemical biosensors are a promising technology that enables rapid, quantitative measurements on an inexpensive platform. However, the control of liquids in paper networks is generally limited to a single sample delivery step. Here, we propose a simple method to automate the loading and delivery of liquid samples to sensing electrodes on paper networks by stacking multiple layers of paper. Using these stacked paper devices (SPDs), we demonstrate a unique strategy to fully immerse planar electrodes by aqueous liquids via capillary flow. Amperometric measurements of xanthine oxidase revealed that electrochemical sensors on four-layer SPDs generated detection signals up to 75% higher compared with those on single-layer paper devices. Furthermore, measurements could be performed with minimal user involvement and completed within 30 min. Due to its simplicity, enhanced automation, and capability for quantitative measurements, stacked paper electrochemical biosensors can be useful tools for point-of-care testing in resource-limited settings. © 2015 Society for Laboratory Automation and Screening.

  1. A sensor-less methanol concentration control system based on feedback from the stack temperature

    International Nuclear Information System (INIS)

    An, Myung-Gi; Mehmood, Asad; Ha, Heung Yong

    2014-01-01

    Highlights: • A new sensor-less methanol control algorithm based on feedback from the stack temperature is developed. • Feasibility of the algorithm is tested using a DMFC system with a recirculating fuel loop. • The algorithm precisely controls the methanol concentration without the use of methanol sensors. • The sensor-less controller shortens the time that the DMFC system requires to go from start-up to steady-state. • This controller is effective in handling unexpected changes in the methanol concentration and stack temperature. - Abstract: A sensor-less methanol concentration control system based on feedback from the stack temperature (SLCCF) has been developed. The SLCCF algorithm is embedded into an in-house LabVIEW program that has been developed to control the methanol concentration in the feed of direct methanol fuel cells (DMFCs). This control method utilizes the close correlation between the stack temperature and the methanol concentration in the feed. Basically, the amounts of methanol to be supplied to the re-circulating feed stream are determined by estimating the methanol consumption rates under given operating conditions, which are then adjusted by a proportional–integral controller and supplied into the feed stream to maintain the stack temperature at a set value. The algorithm is designed to control the methanol concentration and the stack temperature for both start-up and normal operation processes. Feasibility tests with a 200 W-class DMFC system under various operating conditions confirm that the algorithm successfully maintains the methanol concentration in the feed as well as the stack temperature at set values, and the start-up time required for the DMFC system to reach steady-state operating conditions is reduced significantly compared with conventional sensor-less methods

  2. Development and Characterization of an Electrically Rechargeable Zinc-Air Battery Stack

    Directory of Open Access Journals (Sweden)

    Hongyun Ma

    2014-10-01

    Full Text Available An electrically rechargeable zinc-air battery stack consisting of three single cells in series was designed using a novel structured bipolar plate with air-breathing holes. Alpha-MnO2 and LaNiO3 severed as the catalysts for the oxygen reduction reaction (ORR and oxygen evolution reaction (OER. The anodic and cathodic polarization and individual cell voltages were measured at constant charge-discharge (C-D current densities indicating a uniform voltage profile for each single cell. One hundred C-D cycles were carried out for the stack. The results showed that, over the initial 10 cycles, the average C-D voltage gap was about 0.94 V and the average energy efficiency reached 89.28% with current density charging at 15 mA·cm−2 and discharging at 25 mA·cm−2. The total increase in charging voltage over the 100 C-D cycles was ~1.56% demonstrating excellent stability performance. The stack performance degradation was analyzed by galvanostatic electrochemical impedance spectroscopy. The charge transfer resistance of ORR increased from 1.57 to 2.21 Ω and that of Zn/Zn2+ reaction increased from 0.21 to 0.34 Ω after 100 C-D cycles. The quantitative analysis guided the potential for the optimization of both positive and negative electrodes to improve the cycle life of the cell stack.

  3. Guanine base stacking in G-quadruplex nucleic acids

    Science.gov (United States)

    Lech, Christopher Jacques; Heddi, Brahim; Phan, Anh Tuân

    2013-01-01

    G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5′–5′ manner based on different accessible tetrad stacking modes at the stacking interfaces of 5′–5′ and 3′–3′ stacked G-quadruplexes. PMID:23268444

  4. Graphite-based photovoltaic cells

    Science.gov (United States)

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  5. Complete intrinsic coincident polarimetry using stacked organic photovoltaics

    Science.gov (United States)

    Gupta Roy, S.; Awartani, O. M.; Sen, P.; O'Connor, B. T.; Kudenov, M. W.

    2015-09-01

    Measuring the 2 dimensional Stokes vector, to determine the polarization state of light, finds application in multiple areas, including the characterization of aerosol size distributions, target identification, quality control by evaluating the distribution of stress birefringence, resolving data channels in telecommunications, and for evaluating biological tissues in medical imaging. Conventional methods, such as channeled and division of focal plane polarimeters, usually limit spatial resolution, while others, like division of aperture or division of amplitude polarimeters, have higher complexity and less compactness. To help solve these issues, we have developed a system that uses semitransparent organic photovoltaics (OPVs) as photodetectors. The active area of the devices consist of biaxially oriented polymer films, which enables the device to preferentially absorb certain polarized states of incident light, depending on the orientation of the polymer chains. Taking advantage of the cells' transparency and ease of processing, compared to inorganic materials, enables multiple devices to be "stacked" along the optical axis. Presently, experiments have been conducted to detect linear polarization states of light. We use three stacked OPVs, where each device can measure one of the first three Stokes parameters simultaneously, thereby ensuring high spatial and temporal resolution with inherent spatial registration. In this paper, the fabrication of the OPVs and the design and calibration technique is documented, along with experimental data, supporting the hypothesis.

  6. NSF tandem stack support structure deflection characteristics

    International Nuclear Information System (INIS)

    Cook, J.

    1979-12-01

    Results are reported of load tests carried out on the glass legs of the insulating stack of the 30 MV tandem Van de Graaff accelerator now under construction at Daresbury Laboratory. The tests to investigate the vulnerability of the legs when subjected to tensile stresses were designed to; establish the angle of rotation of the pads from which the stresses in the glass legs may be calculated, proof-test the structure and at the same time reveal any asymmetry in pad rotations or deflections, and to confirm the validity of the computer design analysis. (UK)

  7. Compliant Glass Seals for SOFC Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Yeong -Shyung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Choi, Jung-Pyung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephens, Elizabeth V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Koeppel, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stevenson, Jeffry W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lara-Curzio, Edgar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-04-30

    This report summarizes results from experimental and modeling studies performed by participants in the Solid-State Energy Conversion Alliance (SECA) Core Technology Program, which indicate that compliant glass-based seals offer a number of potential advantages over conventional seals based on de-vitrifying glasses, including reduced stresses during stack operation and thermal cycling, and the ability to heal micro-damage induced during thermal cycling. The properties and composition of glasses developed and/or investigated in these studies are reported, along with results from long-term (up to 5,800h) evaluations of seals based on a compliant glass containing ceramic particles or ceramic fibers.

  8. Effects of combustible stacking in large compartments

    DEFF Research Database (Denmark)

    Gentili, Filippo; Giuliani, Luisa; Bontempi, Franco

    2013-01-01

    This paper focuses on the modelling of fire in case of various distributions of combustible materials in a large compartment. Large compartments often represent a challenge for structural fire safety, because of lack of prescriptive rules to follow and difficulties of taking into account the effect...... to different stacking configurations of the pallets with the avail of a CFD code. The results in term of temperatures of the hot gasses and of the steel elements composing the structural system are compared with simplified analytical model of localized and post-flashover fires, with the aim of highlighting...

  9. Displacive phase transformations and generalized stacking faults

    Czech Academy of Sciences Publication Activity Database

    Paidar, Václav; Ostapovets, Andriy; Duparc, O. H.; Khalfallah, O.

    2012-01-01

    Roč. 122, č. 3 (2012), s. 490-492 ISSN 0587-4246. [International Symposium on Physics of Materials, ISPMA /12./. Praha, 04.09.2011-08.09.2011] R&D Projects: GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520 Keywords : ab-initio calculations * close-packed structures * generalized stacking faults * homogeneous deformation * lattice deformation * many-body potentials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.531, year: 2012

  10. Ab initio engineering of materials with stacked hexagonal tin frameworks

    Science.gov (United States)

    Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.

    2016-07-01

    The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator.

  11. Mathematical Modeling of Transport Phenomena in Polymer Electrolyte and Direct Methanol Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Birgersson, Erik

    2004-02-01

    This thesis deals with modeling of two types of fuel cells: the polymer electrolyte fuel cell (PEFC) and the direct methanol fuel cell (DMFC), for which we address four major issues: a) mass transport limitations; b) water management (PEFC); c) gas management (DMFC); d) thermal management. Four models have been derived and studied for the PEFC, focusing on the cathode. The first exploits the slenderness of the cathode for a two-dimensional geometry, leading to a reduced model, where several non dimensional parameters capture the behavior of the cathode. The model was extended to three dimensions, where four different flow distributors were studied for the cathode. A quantitative comparison shows that the interdigitated channels can sustain the highest current densities. These two models, comprising isothermal gas phase flow, limit the studies to (a). Returning to a two-dimensional geometry of the PEFC, the liquid phase was introduced via a separate flow model approach for the cathode. In addition to conservation of mass, momentum and species, the model was extended to consider simultaneous charge and heat transfer for the whole cell. Different thermal, flow fields, and hydrodynamic conditions were studied, addressing (a), (b) and (d). A scale analysis allowed for predictions of the cell performance prior to any computations. Good agreement between experiments with a segmented cell and the model was obtained. A liquid-phase model, comprising conservation of mass, momentum and species, was derived and analyzed for the anode of the DMFC. The impact of hydrodynamic, electrochemical and geometrical features on the fuel cell performance were studied, mainly focusing on (a). The slenderness of the anode allows the use of a narrow-gap approximation, leading to a reduced model, with benefits such as reduced computational cost and understanding of the physical trends prior to any numerical computations. Adding the gas-phase via a multiphase mixture approach, the gas

  12. Fuel cell technology for cogeneration systems. Symposium. Proceedings; Brennstoffzellen - Technologie fuer Blockheizkraftwerke. Symposium. Dokumentation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This proceedings volume contains 11 papers on the following subject: Competence network 'Fuel Cells' in Nordrhein-Westfalen (D. Stolten, Juelich Research Center); Fuel cells in stationary applications (B. Hoehlein, Juelich Research Center); Functional principles of energy conversion in fuel cells (W. Schnurnberger, DLR); Low-temperature fuel cells AFC, PEMFC, PAFC (M. Waidhas, Siemens); High-temperature fuel cells - SOFC, MCFC (D. Stolten); Power plant options - natural gas, hydrogen, etc. (R. Wurster, Ludwig-Boelkow-Systemtechnik); Fuel cell supply (A. Heizel, ISE); Hydrogen-fuelled cogeneration units (G. Gummert Hamburg Gas Consult); SOFC high-temperature fuel cells for domestic power supply (R. Diethelm, Sulzer-Hexis); PEFC low-temperature fuel cells for domestic power supply (K. Klinder, Vaillant); Fuel cells, a chance for local utilities (B. Vogel, WINGAS). [German] Dieser Tagungsband enthaelt 11 Beitraege zu folgenden Themen: Kompetenznetzwerk Brennstoffzelle in NRW (D. Stolten, Forschungszentrum Juelich); Brennstoffzellen in der stationaeren Anwendung (B. Hoehlein, Forschungszentrum Juelich); Funktionsprinzipien der Energieumwandlung in Brennstoffzellen (W. Schnurnberger, DLR); Niedertemperaturbrennstoffzellen - AFC, PEMFC, PAFC (M. Waidhas, Siemens); Hochtemperaturbrennstoffzellen - SOFC, MCFC (D. Stolten); Kraftstoffoptionen- Erdgas, Wasserstoff u.a. (R. Wurster, Ludwig-Boelkow-Systemtechnik); Brennstoffbereitstellung (A. Heinzel, ISE); Wasserstoffbetriebene BHKW (G. Gummert Hamburg Gas Consult); Hochtemperaturbrennstoffzelle SOFC fuer die Hausenergieversorgung (R. Diethelm, Sulzer-Hexis); Niedertemperaturbrennstoffzelle PEFC fuer die Hausenergieversorgung (K. Klinder, Vaillant); Brennstoffzelle als Chance fuer lokale EVUs (B. Vogel, WINGAS).

  13. Graphene controlled H- and J-stacking of perylene dyes into highly stable supramolecular nanostructures for enhanced photocurrent generation

    Science.gov (United States)

    Gan, Shiyu; Zhong, Lijie; Engelbrekt, Christian; Zhang, Jingdong; Han, Dongxue; Ulstrup, Jens; Chi, Qijin; Niu, Li

    2014-08-01

    We report a new method for controlling H- and J-stacking in supramolecular self-assembly. Graphene nanosheets act as structure inducers to direct the self-assembly of a versatile organic dye, perylene into two distinct types of functional nanostructures, i.e. one-dimensional nanotubes via J-stacking and two-dimensional branched nanobuds through H-stacking. Graphene integrated supramolecular nanocomposites are highly stable and show significant enhancement of photocurrent generation in these two configurations of photosensing devices, i.e. solid-state optoelectronic constructs and liquid-junction solar cells.We report a new method for controlling H- and J-stacking in supramolecular self-assembly. Graphene nanosheets act as structure inducers to direct the self-assembly of a versatile organic dye, perylene into two distinct types of functional nanostructures, i.e. one-dimensional nanotubes via J-stacking and two-dimensional branched nanobuds through H-stacking. Graphene integrated supramolecular nanocomposites are highly stable and show significant enhancement of photocurrent generation in these two configurations of photosensing devices, i.e. solid-state optoelectronic constructs and liquid-junction solar cells. Electronic supplementary information (ESI) available: Material and methods, spectroscopic data, AFM and TEM images, materials functional tests and supplementary discussions. See DOI: 10.1039/c4nr02308k

  14. Stray field interaction of stacked amorphous tapes

    International Nuclear Information System (INIS)

    Guenther, Wulf; Flohrer, Sybille

    2008-01-01

    In this study, magnetic cores made of amorphous rectangular tape layers are investigated. The quality factor Q of the tape material decreases rapidly, however, when stacking at least two tape layers. The hysteresis loop becomes non-linear, and the coercivity increases. These effects are principally independent of the frequency and occur whether tape layers are insulated or not. The Kerr-microscopy was used to monitor local hysteresis loops by varying the distance of two tape layers. The magnetization direction of each magnetic domain is influenced by the anisotropy axis, the external magnetic field and the stray field of magnetic domains of the neighboring tape layers. We found that crossed easy axes (as the extreme case for inclined axes) of congruent domains retain the remagnetization and induce a plateau of the local loop. Summarizing local loops leads to the observed increase of coercivity and non-linearity of the inductively measured loop. A high Q-factor can be preserved if the easy axes of stacked tape layers are identical within the interaction range in the order of mm

  15. Stacking Analysis of Binary Systems with HAWC

    Science.gov (United States)

    Brisbois, Chad; HAWC Collaboration

    2017-01-01

    Detecting binary systems at TeV energies is an important problem because only a handful of such systems are currently known. The nature of such systems is typically thought to be composed of a compact object and a massive star. The TeV emission from these systems does not obviously correspond to emission in GeV or X-ray, where many binary systems have previously been found. This study focuses on a stacking method to detect TeV emission from LS 5039, a known TeV binary, to test its efficacy in HAWC data. Stacking is a widely employed method for increasing signal to noise ratio in optical astronomy, but has never been attempted previously with HAWC. HAWC is an ideal instrument to search for TeV binaries, because of its wide field of view and high uptime. Applying this method to the entire sky may allow HAWC to detect binary sources of very short or very long periods not sensitive to current analyses. NSF, DOE, Los Alamos, Michigan Tech, CONACyt, UNAM, BUAP.

  16. Generalized stacking fault energies of alloys.

    Science.gov (United States)

    Li, Wei; Lu, Song; Hu, Qing-Miao; Kwon, Se Kyun; Johansson, Börje; Vitos, Levente

    2014-07-02

    The generalized stacking fault energy (γ surface) provides fundamental physics for understanding the plastic deformation mechanisms. Using the ab initio exact muffin-tin orbitals method in combination with the coherent potential approximation, we calculate the γ surface for the disordered Cu-Al, Cu-Zn, Cu-Ga, Cu-Ni, Pd-Ag and Pd-Au alloys. Studying the effect of segregation of the solute to the stacking fault planes shows that only the local chemical composition affects the γ surface. The calculated alloying trends are discussed using the electronic band structure of the base and distorted alloys.Based on our γ surface results, we demonstrate that the previous revealed 'universal scaling law' between the intrinsic energy barriers (IEBs) is well obeyed in random solid solutions. This greatly simplifies the calculations of the twinning measure parameters or the critical twinning stress. Adopting two twinnability measure parameters derived from the IEBs, we find that in binary Cu alloys, Al, Zn and Ga increase the twinnability, while Ni decreases it. Aluminum and gallium yield similar effects on the twinnability.

  17. Computerized plutonium laboratory-stack monitoring system

    International Nuclear Information System (INIS)

    Stafford, R.G.; DeVore, R.K.

    1977-01-01

    The Los Alamos Scientific Laboratory has recently designed and constructed a Plutonium Research and Development Facility to meet design criteria imposed by the United States Energy Research and Development Administration. A primary objective of the design criteria is to assure environmental protection and to reliably monitor plutonium effluent via the ventilation exhaust systems. A state-of-the-art facility exhaust air monitoring system is described which establishes near ideal conditions for evaluating plutonium activity in the stack effluent. Total and static pressure sensing manifolds are incorporated to measure average velocity and integrated total discharge air volume. These data are logged at a computer which receives instrument data through a multiplex scanning system. A multipoint isokinetic sampling assembly with associated instrumentation is described. Continuous air monitors have been designed to sample from the isokinetic sampling assembly and transmit both instantaneous and integrated stack effluent concentration data to the computer and various cathode ray tube displays. The continuous air monitors also serve as room air monitors in the plutonium facility with the primary objective of timely evacuation of personnel if an above tolerance airborne plutonium concentration is detected. Several continuous air monitors are incorporated in the ventilation system to assist in identification of release problem areas

  18. Swiss fuel cell passenger and pleasure boats

    Energy Technology Data Exchange (ETDEWEB)

    Affolter, J.-F.

    2000-07-01

    This paper published by the University of Applied Science in Yverdon-les-Bains, Switzerland, looks at the development of electrically driven small boats that are powered by fuel cells. The various implementations of the test boats are described. Starting with a 100-watt PEM fuel cell built by the Paul Scherrer Institute (PSI) and the University of Applied Science in Solothurn, Switzerland, for educational purposes, a small pedal-boat was electrified. The paper describes the development of four further prototypes and introduces a new project for a 6-passenger leisure boat powered by a 2 kW PEFC fuel cell. Apart from the fuel cells, various other components such as propellers and control electronics are discussed as are the remaining problems still to be solved before the cells and boats can be marketed. Since they were carried out at a technical university, these projects are said to have provided an excellent way of teaching new technologies to students.

  19. Flow and Pressure Distribution in Fuel Cell Manifolds

    DEFF Research Database (Denmark)

    Lebæk, Jesper; Bang, Mads; Kær, Søren Knudsen

    2010-01-01

    The manifold is an essential part of the fuel cell stack. Evidently, evenly distributed reactants are a prerequisite for an efficient fuel cell stack. In this study, the cathode manifold ability to distribute air to the cells of a 70 cell stack is investigated experimentally. By means of 20...

  20. Elucidating the degradation mechanism of the cathode catalyst of PEFCs by a combination of electrochemical methods and X-ray fluorescence spectroscopy.

    Science.gov (United States)

    Monzó, J; van der Vliet, D F; Yanson, A; Rodriguez, P

    2016-08-10

    In this study, we report a methodology which enables the determination of the degradation mechanisms responsible for catalyst deterioration under different accelerated stress protocols (ASPs) by combining measurements of the electrochemical surface area (ECSA) and Pt content (by X-ray fluorescence). The validation of this method was assessed on high surface area unsupported Pt nanoparticles (Pt-NPs), Pt nanoparticles supported on TaC (Pt/TaC) and Pt nanoparticles supported on Vulcan carbon (Pt/Vulcan). In the load cycle protocol, the degradation of Pt-NPs and Pt/Vulcan follows associative processes (e.g. agglomeration) in the first 2000 cycles, however, in successive cycles the degradation goes through dissociative processes such as Pt dissolution, as is evident from a similar decay of ECSA and Pt content. In contrast, the degradation mechanism for Pt nanoparticles dispersed on TaC occurs continuously through the dissociative processes (e.g. Pt dissolution or particle detachment), with similar decay rates of both Pt content and ECSA. In the start-up/shut-down protocol, high surface area Pt-NPs follow associative processes (e.g. Ostwald ripening) in the first 4000 cycles, after which the degradation continues through dissociative processes. On the other hand, dissociative mechanisms always govern the degradation of Pt/TaC under start-up/shut-down protocol conditions. Finally, we report that Pt nanoparticles supported on TaC exhibit the highest catalytic activity and long term durability of the three nanoparticle systems tested. This makes Pt/TaC a potentially valuable catalyst system for application in polymer electrolyte fuel cell cathodes.

  1. Quadratic forms and Clifford algebras on derived stacks

    OpenAIRE

    Vezzosi, Gabriele

    2013-01-01

    In this paper we present an approach to quadratic structures in derived algebraic geometry. We define derived n-shifted quadratic complexes, over derived affine stacks and over general derived stacks, and give several examples of those. We define the associated notion of derived Clifford algebra, in all these contexts, and compare it with its classical version, when they both apply. Finally, we prove three main existence results for derived shifted quadratic forms over derived stacks, define ...

  2. Stacked Heterogeneous Neural Networks for Time Series Forecasting

    Directory of Open Access Journals (Sweden)

    Florin Leon

    2010-01-01

    Full Text Available A hybrid model for time series forecasting is proposed. It is a stacked neural network, containing one normal multilayer perceptron with bipolar sigmoid activation functions, and the other with an exponential activation function in the output layer. As shown by the case studies, the proposed stacked hybrid neural model performs well on a variety of benchmark time series. The combination of weights of the two stack components that leads to optimal performance is also studied.

  3. Status of Slip Stacking at Fermilab Main Injector

    CERN Document Server

    Seiya, Kiyomi; Chase, Brian; Dey, Joseph; Kourbanis, Ioanis; MacLachlan, James A; Meisner, Keith G; Pasquinelli, Ralph J; Reid, John; Rivetta, Claudio H; Steimel, Jim

    2005-01-01

    In order to increase proton intensity on anti proton production cycle of the Main Injector we are going to use the technique of 'slip stacking' and doing machine studies. In slip stacking, one bunch train is injected at slightly lower energy and second train is at slightly higher energy. Afterwards they are aligned longitudinally and captured with one rf bucket. This longitudinal stacking process is expected to double the bunch intensity. The required intensity for anti proton production is 8·1012

  4. Gene stacking of multiple traits for high yield of fermentable sugars in plant biomass

    DEFF Research Database (Denmark)

    Aznar, Aude; Chalvin, Camille; Shih, Patrick M.

    2018-01-01

    the ratio of C6 to C5 sugars in the cell wall and decreasing the lignin content are two important targets in engineering of plants that are more suitable for downstream processing for second-generation biofuel production.Results: We have studied the basic mechanisms of cell wall biosynthesis and identified...... genes involved in biosynthesis of pectic galactan, including the GALS1 galactan synthase and the UDP-galactose/UDP-rhamnose transporter URGT1. We have engineered plants with a more suitable biomass composition by applying these findings, in conjunction with synthetic biology and gene stacking tools...... to vessels where this polysaccharide is essential. Finally, the high galactan and low xylan traits were stacked with the low lignin trait obtained by expressing the QsuB gene encoding dehydroshikimate dehydratase in lignifying cells.Conclusion: The results show that approaches to increasing C6 sugar content...

  5. Method for monitoring stack gases for uranium activity

    International Nuclear Information System (INIS)

    Beverly, C.R.; Ernstberger, H.G.

    1988-01-01

    A method for sampling stack gases emanating from the purge cascade of a gaseous diffusion cascade system utilized to enrich uranium for determining the presence and extent of uranium in the stack gases in the form of gaseous uranium hexafluoride, is described comprising the steps of removing a side stream of gases from the stack gases, contacting the side stream of the stack gases with a stream of air sufficiently saturated with moisture for reacting with and converting any gaseous uranium hexafluroide contracted thereby in the side stream of stack gases to particulate uranyl fluoride. Thereafter contacting the side stream of stack gases containing the particulate uranyl fluoride with moving filter means for continuously intercepting and conveying the intercepted particulate uranyl fluoride away from the side stream of stack gases, and continually scanning the moving filter means with radiation monitoring means for sensing the presence and extent of particulate uranyl fluoride on the moving filter means which is indicative of the extent of particulate uranyl fluoride in the side stream of stack gases which in turn is indicative of the presence and extent of uranium hexafluoride in the stack gases

  6. Design and development of an automated uranium pellet stacking system

    International Nuclear Information System (INIS)

    Reiss, B.S.; Nokleby, S.B.

    2010-01-01

    A novel design for an automated uranium pellet stacking system is presented. This system is designed as a drop-in solution to the current production line to enhance the fuel pellet stacking process. The three main goals of this system are to reduce worker exposure to radiation to as low as reasonable achievable (ALARA), improve product quality, and increase productivity. The proposed system will reduce the potential for human error. This single automated system will replace the two existing pellet stacking stations while increasing the total output, eliminating pellet stacking as a bottleneck in the fuel bundle assembly process. (author)

  7. Highly Efficient, Durable Regenerative Solid Oxide Stack, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision Combustion, Inc. (PCI) proposes to develop a highly efficient regenerative solid oxide stack design. Novel structural elements allow direct internal...

  8. Directive Stacked Patch Antenna for UWB Applications

    Directory of Open Access Journals (Sweden)

    Sharif I. Mitu Sheikh

    2013-01-01

    Full Text Available Directional ultrawideband (UWB antennas are popular in wireless signal-tracking and body-area networks. This paper presents a stacked microstrip antenna with an ultrawide impedance bandwidth of 114%, implemented by introducing defects on the radiating patches and the ground plane. The compact (20×34 mm antenna exhibits a directive radiation patterns for all frequencies of the 3–10.6 GHz band. The optimized reflection response and the radiation pattern are experimentally verified. The designed UWB antenna is used to maximize the received power of a software-defined radio (SDR platform. For an ultrawideband impulse radio system, this class of antennas is essential to improve the performance of the communication channels.

  9. ATLAS software stack on ARM64

    Science.gov (United States)

    Smith, Joshua Wyatt; Stewart, Graeme A.; Seuster, Rolf; Quadt, Arnulf; ATLAS Collaboration

    2017-10-01

    This paper reports on the port of the ATLAS software stack onto new prototype ARM64 servers. This included building the “external” packages that the ATLAS software relies on. Patches were needed to introduce this new architecture into the build as well as patches that correct for platform specific code that caused failures on non-x86 architectures. These patches were applied such that porting to further platforms will need no or only very little adjustments. A few additional modifications were needed to account for the different operating system, Ubuntu instead of Scientific Linux 6 / CentOS7. Selected results from the validation of the physics outputs on these ARM 64-bit servers will be shown. CPU, memory and IO intensive benchmarks using ATLAS specific environment and infrastructure have been performed, with a particular emphasis on the performance vs. energy consumption.

  10. ATLAS software stack on ARM64

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00529764; The ATLAS collaboration; Stewart, Graeme; Seuster, Rolf; Quadt, Arnulf

    2017-01-01

    This paper reports on the port of the ATLAS software stack onto new prototype ARM64 servers. This included building the “external” packages that the ATLAS software relies on. Patches were needed to introduce this new architecture into the build as well as patches that correct for platform specific code that caused failures on non-x86 architectures. These patches were applied such that porting to further platforms will need no or only very little adjustments. A few additional modifications were needed to account for the different operating system, Ubuntu instead of Scientific Linux 6 / CentOS7. Selected results from the validation of the physics outputs on these ARM 64-bit servers will be shown. CPU, memory and IO intensive benchmarks using ATLAS specific environment and infrastructure have been performed, with a particular emphasis on the performance vs. energy consumption.

  11. Stacked generalization: an introduction to super learning.

    Science.gov (United States)

    Naimi, Ashley I; Balzer, Laura B

    2018-04-10

    Stacked generalization is an ensemble method that allows researchers to combine several different prediction algorithms into one. Since its introduction in the early 1990s, the method has evolved several times into a host of methods among which is the "Super Learner". Super Learner uses V-fold cross-validation to build the optimal weighted combination of predictions from a library of candidate algorithms. Optimality is defined by a user-specified objective function, such as minimizing mean squared error or maximizing the area under the receiver operating characteristic curve. Although relatively simple in nature, use of Super Learner by epidemiologists has been hampered by limitations in understanding conceptual and technical details. We work step-by-step through two examples to illustrate concepts and address common concerns.

  12. Actuators Using Piezoelectric Stacks and Displacement Enhancers

    Science.gov (United States)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Lee, Hyeong Jae; Walkenmeyer, Phillip; Lih, Shyh-Shiuh

    2015-01-01

    Actuators are used to drive all active mechanisms including machines, robots, and manipulators to name a few. The actuators are responsible for moving, manipulating, displacing, pushing and executing any action that is needed by the mechanism. There are many types and principles of actuation that are responsible for these movements ranging from electromagnetic, electroactive, thermo-mechanic, piezoelectric, electrostrictive etc. Actuators are readily available from commercial producers but there is a great need for reducing their size, increasing their efficiency and reducing their weight. Studies at JPL’s Non Destructive Evaluation and Advanced Actuators (NDEAA) Laboratory have been focused on the use of piezoelectric stacks and novel designs taking advantage of piezoelectric’s potential to provide high torque/force density actuation and high electromechanical conversion efficiency. The actuators/motors that have been developed and reviewed in this paper are operated by various horn configurations as well as the use of pre-stress flexures that make them thermally stable and increases their coupling efficiency. The use of monolithic designs that pre-stress the piezoelectric stack eliminates the use of compression stress bolt. These designs enable the embedding of developed solid-state motors/actuators in any structure with the only macroscopically moving parts are the rotor or the linear translator. Finite element modeling and design tools were used to determine the requirements and operation parameters and the results were used to simulate, design and fabricate novel actuators/motors. The developed actuators and performance will be described and discussed in this paper.

  13. Comparison of 2-compartment, 3-compartment and stack designs for electrodialytic removal of heavy metals from harbour sediments

    DEFF Research Database (Denmark)

    Pedersen, Kristine B.; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2015-01-01

    Comparisons of cell and stack designs for the electrodialytic removal of heavy metals from two harbour sediments, were made. Multivariate modelling showed that sediment properties and experimental set-ups had the highest influence on the heavy metal removal indicating that they should be modelled...... and analysed separately. Clean-up levels of Cu, Pb and Zn were significantly higher for the cell designs, implying that longer time and relatively more electric charge and energy would be necessary to achieve similar clean-up levels in the stack design experiments.In the studied experimental domain...

  14. An industrial FT-IR process gas analyzer for stack gas cems analysis

    Energy Technology Data Exchange (ETDEWEB)

    Welch, G.M. [American instruments, Anacortes, WA (United States); Herman, B.E. [Applied Automation/Hartmann & Braun, Bartlesville, OK (United States)

    1995-12-31

    This paper describes utilizing Fourier Transform Infrared (FT-IR) technology to meet and exceed EPA requirements to Continuously Monitor Carbon Monoxide (CO) and Sulfur Dioxide (SO){sub 2} in an oil refinery. The application consists of Continuous Emission Monitoring (CEMS) of two stacks from a Fluid Catalytic Cracking unit (FCCU). The discussion will follow the project from initial specifications, installation, start-up, certification results (RATA, 7 day drift), Cylinder Gas Audit (CGA) and the required maintenance. FT-IR is a powerful analytical tool suitable for measurement of stack component gases required to meet CEMS regulations, and allows simultaneous multi-component analysis of complex stack gas streams with a continuous sample stream flow through the measurement cell. The Michelson Interferometer in a unique {open_quotes}Wishbone{close_quotes} design and with a special alignment control enables standardized configuration of the analyzer for flue gas analysis. Normal stack gas pollutants: NO{sub x}, SO{sub 2}, and CO; as well as water soluble pollutants such as NH{sub 3} and HCI may be accurately determined and reported even in the presence of 0-31 Vol % water vapor concentrations (hot and wet). This FT-IR analyzer has been operating with EPA Certification in an oil refinery environment since September 1994.

  15. Simultaneous stack-gas scrubbing and waste water treatment

    Science.gov (United States)

    Poradek, J. C.; Collins, D. D.

    1980-01-01

    Simultaneous treatment of wastewater and S02-laden stack gas make both treatments more efficient and economical. According to results of preliminary tests, solution generated by stack gas scrubbing cycle reduces bacterial content of wastewater. Both processess benefit by sharing concentrations of iron.

  16. A Software Managed Stack Cache for Real-Time Systems

    DEFF Research Database (Denmark)

    Jordan, Alexander; Abbaspourseyedi, Sahar; Schoeberl, Martin

    2016-01-01

    In a real-time system, the use of a scratchpad memory can mitigate the difficulties related to analyzing data caches, whose behavior is inherently hard to predict. We propose to use a scratchpad memory for stack allocated data. While statically allocating stack frames for individual functions to ...

  17. Calculation of AC losses in large HTS stacks and coils

    DEFF Research Database (Denmark)

    Zermeno, Victor; Abrahamsen, Asger Bech; Mijatovic, Nenad

    2012-01-01

    In this work, we present a homogenization method to model a stack of HTS tapes under AC applied transport current or magnetic field. The idea is to find an anisotropic bulk equivalent for the stack of tapes, where the internal alternating structures of insulating, metallic, superconducting and su...

  18. Efficient Context Switching for the Stack Cache: Implementation and Analysis

    DEFF Research Database (Denmark)

    Abbaspourseyedi, Sahar; Brandner, Florian; Naji, Amine

    2015-01-01

    , the analysis of the stack cache was limited to individual tasks, ignoring aspects related to multitasking. A major drawback of the original stack cache design is that, due to its simplicity, it cannot hold the data of multiple tasks at the same time. Consequently, the entire cache content needs to be saved...

  19. 291-B-1 stack monitoring and sampling system annual system assessment report

    International Nuclear Information System (INIS)

    Ridge, T.M.

    1994-01-01

    The B Plant 291-B-1 main stack exhausts gaseous effluents to the atmosphere from the 221-B Building canyon and cells, the No. 1 Vessel Ventilation System (VVS1), the 212-B Cask Station cell ventilation system, and, to a limited capacity, the 224-B Building. VVS1 collects offgases from various process tanks in 221-B Building, while the 224-B system maintains a negative pressure in out-of-service, sealed process tanks. B Plant Administration Manual, WHC-CM-7-5, Section 5.30 requires an annual system assessment to evaluate and report the present condition of the sampling and monitoring system associated with Stack 291-B-1 (System Number B977A) at B Plant. The system is functional and performing satisfactorily

  20. On-Demand Micro-Power Generation from an Origami-Inspired Paper Biobattery Stack

    Directory of Open Access Journals (Sweden)

    Maedeh Mohammadifar

    2018-03-01

    Full Text Available We use origami to create a compact, scalable three-dimensional (3-D biobattery stack that delivers on-demand energy to the portable biosensors. Folding allows a two-dimensional (2-D paper sheet possessing predefined functional components to form nine 3-D microbial fuel cells (MFCs, and connect them serially within a small and single unit (5.6 cm × 5.6 cm. We load the biocatalyst Pseudomonas aeruginosa PAO1 in predefined areas that form the MFCs, and freeze-dry them for long-term storage. The biobattery stack generates a maximum power and current of 20 μW and 25 μA, respectively, via microbial metabolism when the freeze-dried cells are rehydrated with readily available wastewater. This work establishes an innovative strategy to revolutionize the fabrication, storage, operation, and application of paper-based MFCs, which could potentially make energy available even in resource-limited settings.

  1. The behaviour of stacking fault energy upon interstitial alloying.

    Science.gov (United States)

    Lee, Jee-Yong; Koo, Yang Mo; Lu, Song; Vitos, Levente; Kwon, Se Kyun

    2017-09-11

    Stacking fault energy is one of key parameters for understanding the mechanical properties of face-centered cubic materials. It is well known that the plastic deformation mechanism is closely related to the size of stacking fault energy. Although alloying is a conventional method to modify the physical parameter, the underlying microscopic mechanisms are not yet clearly established. Here, we propose a simple model for determining the effect of interstitial alloying on the stacking fault energy. We derive a volumetric behaviour of stacking fault energy from the harmonic approximation to the energy-lattice curve and relate it to the contents of interstitials. The stacking fault energy is found to change linearly with the interstitial content in the usual low concentration domain. This is in good agreement with previously reported experimental and theoretical data.

  2. Deformation Induced Microtwins and Stacking Faults in Aluminum Single Crystal

    Science.gov (United States)

    Han, W. Z.; Cheng, G. M.; Li, S. X.; Wu, S. D.; Zhang, Z. F.

    2008-09-01

    Microtwins and stacking faults in plastically deformed aluminum single crystal were successfully observed by high-resolution transmission electron microscope. The occurrence of these microtwins and stacking faults is directly related to the specially designed crystallographic orientation, because they were not observed in pure aluminum single crystal or polycrystal before. Based on the new finding above, we propose a universal dislocation-based model to judge the preference or not for the nucleation of deformation twins and stacking faults in various face-centered-cubic metals in terms of the critical stress for dislocation glide or twinning by considering the intrinsic factors, such as stacking fault energy, crystallographic orientation, and grain size. The new finding of deformation induced microtwins and stacking faults in aluminum single crystal and the proposed model should be of interest to a broad community.

  3. Physical Sciences Laboratory 1 Rooftop Stack Mixing Study

    Energy Technology Data Exchange (ETDEWEB)

    Flaherty, Julia E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Antonio, Ernest J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-30

    To address concerns about worker exposures on the Physical Science Laboratory (PSL) rooftop, a tracer study was conducted to measure gaseous tracer concentrations downwind of six stacks on the southern half of the PSL building (PSL-1). These concerns were raised, in part, due to the non-standard configuration of the stacks on this building. Five of the six stacks were only about 8 feet tall, with one shorter stack that was essentially level with the roof deck. These stacks were reconfigured in August 2016, and these exhaust points on PSL-1 are now 18 feet tall. This report describes the objectives of the tracer tests performed on PSL-1, provides an overview of how the tests were executed, and presents results of the tests. The tests on the PSL rooftop were a follow-on project from a similar study performed on the LSL-II ventilation exhaust (Flaherty and Antonio, 2016).

  4. Micro-electroforming metallic bipolar electrodes for mini-DMFC stacks

    OpenAIRE

    Shyu, R. F.; Yang, H.; Lee, J. -H.

    2008-01-01

    Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838); International audience; This paper describes the development of metallic bipolar plate fabrication using micro-electroforming process for mini-DMFC (direct methanol fuel cell) stacks. Ultraviolet (UV) lithography was used to define micro-fluidic channels using a photomask and exposure process. Micro-fluidic channels mold with 300 μm thick and 500 μm wide were firstly fabricated in a negative photore...

  5. A visualization study on relationship between water-droplet behavior and cell voltage appeared in straight, parallel and serpentine channel pattern cells

    Science.gov (United States)

    Masuda, Hiromitsu; Yamamoto, Atsushi; Sasaki, Kazunari; Lee, Sangkun; Ito, Kohei

    It is a critical issue to understand the relationship between water-droplet behavior and cell voltage for the establishment of PEFC water management. We fabricated three cells, whose channel pattern is different: straight one channel, parallel three channels and serpentine one channel. We operated these different channel-pattern cells and visualized water droplets in cathode channel, with systematically changing operation condition to quantitatively compare the performance and water droplet behavior between the cells. Successive process of water behavior, named as flooding, plugging and flushing, emerged in every channel-pattern cell. However, the each channel pattern cell also has inherent water behavior, showing particular cell voltage variation. Within our experimental condition, the serpentine one channel cell showed a superior tolerance to flooding and the highest performance among the three cells.

  6. Reflector imaging by diffraction stacking with stacking velocity analysis; Jugo sokudo kaiseki wo tomonau sanran jugoho ni yoru hanshamen imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, J.; Rokugawa, S.; Kato, Y. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Yokota, T. [Japan National Oil Corp., Tokyo (Japan); Miyazaki, T. [Geological Survey of Japan, Tsukuba (Japan)

    1997-10-22

    Concerning seismic reflection survey for geometrical arrangement between pits, the scattering stacking method with stacking velocity analysis is compared with the CDP (common depth point horizontal stacking method). The advantages of the CDP supposedly include the following. Since it presumes an average velocity field, it can determine velocities having stacking effects. The method presumes stratification and, since such enables the division of huge quantities of observed data into smaller groups, more data can be calculated in a shorter time period. The method has disadvantages, attributable to its presuming an average velocity field, that accuracy in processing is lower when the velocity field contrast is higher, that accuracy in processing is low unless stratification is employed, and that velocities obtained from stacking velocity analysis are affected by dipped structures. Such shortcomings may be remedied in the scattering stacking method with stacking velocity analysis. Possibilities are that, as far as the horizontal reflection plane is concerned, it may yield stack records higher in S/N ratio than the CDP. Findings relative to dipped reflection planes will be introduced at the presentation. 6 refs., 12 figs.

  7. Black Hole Spectroscopy with Coherent Mode Stacking.

    Science.gov (United States)

    Yang, Huan; Yagi, Kent; Blackman, Jonathan; Lehner, Luis; Paschalidis, Vasileios; Pretorius, Frans; Yunes, Nicolás

    2017-04-21

    The measurement of multiple ringdown modes in gravitational waves from binary black hole mergers will allow for testing the fundamental properties of black holes in general relativity and to constrain modified theories of gravity. To enhance the ability of Advanced LIGO/Virgo to perform such tasks, we propose a coherent mode stacking method to search for a chosen target mode within a collection of multiple merger events. We first rescale each signal so that the target mode in each of them has the same frequency and then sum the waveforms constructively. A crucial element to realize this coherent superposition is to make use of a priori information extracted from the inspiral-merger phase of each event. To illustrate the method, we perform a study with simulated events targeting the ℓ=m=3 ringdown mode of the remnant black holes. We show that this method can significantly boost the signal-to-noise ratio of the collective target mode compared to that of the single loudest event. Using current estimates of merger rates, we show that it is likely that advanced-era detectors can measure this collective ringdown mode with one year of coincident data gathered at design sensitivity.

  8. Stacking faults in austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Hermida, J.D. [CNEA, San Martin (Argentina). Dept. de Materiales

    1996-06-01

    During last decade, Austempered Ductile Iron (ADI) has been successfully used as an acceptable replacement material for steel in many applications, due to the relatively high strength and reasonable ductility obtained. These properties are the result of the special microstructure exhibited by this material at the end of the upper bainite reaction: ferrite platelets surrounded by high carbon stabilized austenite. However, at the beginning of the austempering treatment, the existence of interdendritic low carbon austenite is revealed by its transformation to martensite when cooling the sample or during subsequent deformation. The completion of the upper bainite reaction is of decisive importance to mechanical properties because the remaining martensite reduces ductility. It was observed that the rate of the upper bainite reaction is governed by the carbon content difference between the low and high carbon austenites. The carbon content is obtained by the lattice parameter measurement, because there exists a known expression that relates both magnitudes. Several works have used X-ray diffraction to measure the lattice parameter and phase concentrations as a function of austempering time. In these works, the lattice parameters were obtained directly from the {l_brace}220{r_brace} and {l_brace}311{r_brace} peaks position. The purpose of this work is to show more precise lattice parameters measurement and, very closely related to this, the existence of stacking faults in austenite, even at times within the processing window.

  9. ATLAS software stack on ARM64

    CERN Document Server

    Smith, Joshua Wyatt; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment explores new hardware and software platforms that, in the future, may be more suited to its data intensive workloads. One such alternative hardware platform is the ARM architecture, which is designed to be extremely power efficient and is found in most smartphones and tablets. CERN openlab recently installed a small cluster of ARM 64-bit evaluation prototype servers. Each server is based on a single-socket ARM 64-bit system on a chip, with 32 Cortex-A57 cores. In total, each server has 128 GB RAM connected with four fast memory channels. This paper reports on the port of the ATLAS software stack onto these new prototype ARM64 servers. This included building the "external" packages that the ATLAS software relies on. Patches were needed to introduce this new architecture into the build as well as patches that correct for platform specific code that caused failures on non-x86 architectures. These patches were applied such that porting to further platforms will need no or only very little adj...

  10. Long Duration Balloon Charge Controller Stack Integration

    Science.gov (United States)

    Clifford, Kyle

    NASA and the Columbia Scientific Balloon Facility are interested in updating the design of the charge controller on their long duration balloon (LDB) in order to enable the charge controllers to be directly interfaced via RS232 serial communication by a ground testing computers and the balloon's flight computer without the need to have an external electronics stack. The design involves creating a board that will interface with the existing boards in the charge controller in order to receive telemetry from and send commands to those boards, and interface with a computer through serial communication. The inputs to the board are digital status inputs indicating things like whether the photovoltaic panels are connected or disconnected; and analog inputs with information such as the battery voltage and temperature. The outputs of the board are 100ms duration command pulses that will switch relays that do things like connect the photovoltaic panels. The main component of this design is a PIC microcontroller which translates the outputs of the existing charge controller into serial data when interrogated by a ground testing or flight computer. Other components involved in the design are an AD7888 12-bit analog to digital converter, a MAX3232 serial transceiver, various other ICs, capacitors, resistors, and connectors.

  11. Lithiation-induced shuffling of atomic stacks

    KAUST Repository

    Nie, Anmin

    2014-09-10

    In rechargeable lithium-ion batteries, understanding the atomic-scale mechanism of Li-induced structural evolution occurring at the host electrode materials provides essential knowledge for design of new high performance electrodes. Here, we report a new crystalline-crystalline phase transition mechanism in single-crystal Zn-Sb intermetallic nanowires upon lithiation. Using in situ transmission electron microscopy, we observed that stacks of atomic planes in an intermediate hexagonal (h-)LiZnSb phase are "shuffled" to accommodate the geometrical confinement stress arising from lamellar nanodomains intercalated by lithium ions. Such atomic rearrangement arises from the anisotropic lithium diffusion and is accompanied by appearance of partial dislocations. This transient structure mediates further phase transition from h-LiZnSb to cubic (c-)Li2ZnSb, which is associated with a nearly "zero-strain" coherent interface viewed along the [001]h/[111]c directions. This study provides new mechanistic insights into complex electrochemically driven crystalline-crystalline phase transitions in lithium-ion battery electrodes and represents a noble example of atomic-level structural and interfacial rearrangements.

  12. Weyl magnons in noncoplanar stacked kagome antiferromagnets

    Science.gov (United States)

    Owerre, S. A.

    2018-03-01

    Weyl nodes have been experimentally realized in photonic, electronic, and phononic crystals. However, magnonic Weyl nodes are yet to be seen experimentally. In this paper, we propose Weyl magnon nodes in noncoplanar stacked frustrated kagome antiferromagnets, naturally available in various real materials. Most crucially, the Weyl nodes in the current system occur at the lowest excitation and possess a topological thermal Hall effect, therefore they are experimentally accessible at low temperatures due to the population effect of bosonic quasiparticles. In stark contrast to other magnetic systems, the current Weyl nodes do not rely on time-reversal symmetry breaking by the magnetic order. Rather, they result from explicit macroscopically broken time reversal symmetry by the scalar spin chirality of noncoplanar spin textures and can be generalized to chiral spin liquid states. Moreover, the scalar spin chirality gives a real space Berry curvature which is not available in previously studied magnetic Weyl systems. We show the existence of magnon arc surface states connecting projected Weyl magnon nodes on the surface Brillouin zone. We also uncover the first realization of triply-degenerate nodal magnon point in the noncollinear regime with zero scalar spin chirality.

  13. Consolidity: Stack-based systems change pathway theory elaborated

    Directory of Open Access Journals (Sweden)

    Hassen Taher Dorrah

    2014-06-01

    Full Text Available This paper presents an elaborated analysis for investigating the stack-based layering processes during the systems change pathway. The system change pathway is defined as the path resulting from the combinations of all successive changes induced on the system when subjected to varying environments, activities, events, or any excessive internal or external influences and happenings “on and above” its normal stands, situations or set-points during its course of life. The analysis is essentially based on the important overall system paradigm of “Time driven-event driven-parameters change”. Based on this paradigm, it is considered that any affected activity, event or varying environment is intelligently self-recorded inside the system through an incremental consolidity-scaled change in system parameters of the stack-based layering types. Various joint stack-based mathematical and graphical approaches supported by representable case studies are suggested for the identification, extraction, and processing of various stack-based systems changes layering of different classifications and categorizations. Moreover, some selected real life illustrative applications are provided to demonstrate the (infinite stack-based identification and recognition of the change pathway process in the areas of geology, archeology, life sciences, ecology, environmental science, engineering, materials, medicine, biology, sociology, humanities, and other important fields. These case studies and selected applications revealed that there are general similarities of the stack-based layering structures and formations among all the various research fields. Such general similarities clearly demonstrate the global concept of the “fractals-general stacking behavior” of real life systems during their change pathways. Therefore, it is recommended that concentrated efforts should be expedited toward building generic modular stack-based systems or blocks for the mathematical

  14. Loop Entropy Assists Tertiary Order: Loopy Stabilization of Stacking Motifs

    Directory of Open Access Journals (Sweden)

    Daniel P. Aalberts

    2011-11-01

    Full Text Available The free energy of an RNA fold is a combination of favorable base pairing and stacking interactions competing with entropic costs of forming loops. Here we show how loop entropy, surprisingly, can promote tertiary order. A general formula for the free energy of forming multibranch and other RNA loops is derived with a polymer-physics based theory. We also derive a formula for the free energy of coaxial stacking in the context of a loop. Simulations support the analytic formulas. The effects of stacking of unpaired bases are also studied with simulations.

  15. Mixed Mechanism of Lubrication by Lipid Bilayer Stacks.

    Science.gov (United States)

    Boţan, Alexandru; Joly, Laurent; Fillot, Nicolas; Loison, Claire

    2015-11-10

    Although the key role of lipid bilayer stacks in biological lubrication is generally accepted, the mechanisms underlying their extreme efficiency remain elusive. In this article, we report molecular dynamics simulations of lipid bilayer stacks undergoing load and shear. When the hydration level is reduced, the velocity accommodation mechanism changes from viscous shear in hydration water to interlayer sliding in the bilayers. This enables stacks of hydrated lipid bilayers to act as efficient boundary lubricants for various hydration conditions, structures, and mechanical loads. We also propose an estimation for the friction coefficient; thanks to the strong hydration forces between lipid bilayers, the high local viscosity is not in contradiction with low friction coefficients.

  16. On $k$-stellated and $k$-stacked spheres

    OpenAIRE

    Bagchi, Bhaskar; Datta, Basudeb

    2012-01-01

    We introduce the class $\\Sigma_k(d)$ of $k$-stellated (combinatorial) spheres of dimension $d$ ($0 \\leq k \\leq d + 1$) and compare and contrast it with the class ${\\cal S}_k(d)$ ($0 \\leq k \\leq d$) of $k$-stacked homology $d$-spheres. We have $\\Sigma_1(d) = {\\cal S}_1(d)$, and $\\Sigma_k(d) \\subseteq {\\cal S}_k(d)$ for $d \\geq 2k - 1$. However, for each $k \\geq 2$ there are $k$-stacked spheres which are not $k$-stellated. The existence of $k$-stellated spheres which are not $k$-stacked remains...

  17. Stacking by electroinjection with discontinuous buffers in capillary zone electrophoresis.

    Science.gov (United States)

    Shihabi, Zak K

    2002-08-01

    The work presented here demonstrates that electroinjection can be performed using discontinuous buffers, which can result in better stacking than that obtained by hydrodynamic injection. The sample can be concentrated at the tip of the capillary leaving practically the whole capillary for sample separation. This results in several advantages, such as better sample concentration, higher plate number and shorter time of stacking. However, sample introduction by electromigration is suited for samples free or low in salt content. Samples, which are high in salt content, are better introduced by the hydrodynamic injection for stacking by the discontinuous buffers. Different simple methods to introduce the discontinuity in the buffer for electroinjection are discussed.

  18. Optimized stacked RADFETs for milli-rad dose measurement

    International Nuclear Information System (INIS)

    O'Connell, B.; Lane, B.; Mohammadzadeh, A.

    1999-01-01

    This paper details the improvements in the design of stacked RADFETs for increased radiation sensitivity. The issues of high read-out voltage has been shown to be a draw-back. It is the body (bulk)effect factor that is responsible for the increased overall stack Threshold voltage (V T ), which is greater than the sum of the individual devices V T . From extensive process and device simulation and resultant circuit simulation, modified stack structures have been proposed and designed. New and exciting result of lower initial (pre-irradiation) output voltage as well as increased radiation sensitivity will be presented. (author)

  19. Atomistic Modeling in Study of Polymer Electrolyte Fuel Cells - A Review

    Science.gov (United States)

    Zhou, Xiangyang; Zhou, Juanjuan; Yin, Yijin

    Polymer electrolyte fuel cell (PEFC) is considered as one of the most promising power sources for futurist's hydrogen economy. As shown in Fig. 1, operation of a Nafion-based PEFC is dictated by transport processes and electrochemical reactions at catalyst/polymer electrolyte interfaces and transport processes in the polymer electrolyte membrane (PEM), in the catalyst layers consisting of precious metal (Pt or Ru) catalysts on porous carbon support and polymer electrolyte clusters, in gas diffusion layers (GDLs), and in flow channels. Specifically, oxidants, fuel, and reaction products flow in channels of millimeter scale and diffuse in GDL with a structure of micrometer scale. Nafion, a sulfonic acid tetrafluorethylene copolymer and the most commonly used polymer electrolyte, consists of nanoscale hydrophobic domains and proton conducting hydrophilic domains with a scale of 2-5 nm. The diffusivities of the reactants (O2, H2, and methanol) and reaction products (water and CO2) in Nafion and proton conductivity of Nafion strongly depend on the nanostructures and their responses to the presence of water. Polymer electrolyte clusters in the catalyst layers also play a critical role in the catalysis of the nano-sized Pt catalysts. Electrochemical reactions occur at the interfaces between catalysts (Pt or Pt/Ru) and Nafion. The catalytic activity of the Pt catalysts is believed to be dictated by transport processes, adsorption/desorption, and charge transfer in the interfacial area. While transport processes may occur in an area of a few nanometers, adsorption/desorption and charge transfer occur within a region of a few angstroms from the surface of a nano-particulate catalyst. Thus, modeling or simulation of PEFC is a multiscale problem.

  20. Microstructural Characterization of Ni/YSZ Electrodes in a Solid Oxide Electrolysis Stack Tested for 9000 Hours

    DEFF Research Database (Denmark)

    Trini, Martina; Jørgensen, Peter Stanley; Hauch, Anne

    2017-01-01

    The effects of long-term operation in electrolysis mode on the microstructure of Ni/YSZ electrodes were investigated. The electrode structures were investigated in “as reduced” state and after 9000 h of operation in a 25 cell stack. Microstructural data were obtained by scanning electron microscopy...

  1. Infiltration of SOFC Stacks: Evaluation of the Electrochemical Performance Enhancement and the Underlying Changes in the Microstructure

    DEFF Research Database (Denmark)

    Kiebach, Wolff-Ragnar; Zielke, Philipp; Høgh, Jens Valdemar Thorvald

    2016-01-01

    Experimental SOFC stacks with 10 SOFCs (LSM-YSZ/YSZ/Ni-YSZ) were infiltrated with CGO and Ni-CGO on the air and fuel side, respectively in an attempt to counter degradation and improve the output. The electrochemical performance of each cell was characterized (i) before infiltration, (ii) after i...

  2. Validating and improving a zero-dimensional stack voltage model of the Vanadium Redox Flow Battery

    Science.gov (United States)

    König, S.; Suriyah, M. R.; Leibfried, T.

    2018-02-01

    Simple, computationally efficient battery models can contribute significantly to the development of flow batteries. However, validation studies for these models on an industrial-scale stack level are rarely published. We first extensively present a simple stack voltage model for the Vanadium Redox Flow Battery. For modeling the concentration overpotential, we derive mass transfer coefficients from experimental results presented in the 1990s. The calculated mass transfer coefficient of the positive half-cell is 63% larger than of the negative half-cell, which is not considered in models published to date. Further, we advance the concentration overpotential model by introducing an apparent electrochemically active electrode surface which differs from the geometric electrode area. We use the apparent surface as fitting parameter for adapting the model to experimental results of a flow battery manufacturer. For adapting the model, we propose a method for determining the agreement between model and reality quantitatively. To protect the manufacturer's intellectual property, we introduce a normalization method for presenting the results. For the studied stack, the apparent electrochemically active surface of the electrode is 41% larger than its geometrical area. Hence, the current density in the diffusion layer is 29% smaller than previously reported for a zero-dimensional model.

  3. 3D Segmentations of Neuronal Nuclei from Confocal Microscope Image Stacks

    Directory of Open Access Journals (Sweden)

    Antonio eLaTorre

    2013-12-01

    Full Text Available In this paper, we present an algorithm to create 3D segmentations of neuronal cells from stacks of previously segmented 2D images. The idea behind this proposal is to provide a general method to reconstruct 3D structures from 2D stacks, regardless of how these 2D stacks have been obtained. The algorithm not only reuses the information obtained in the 2D segmentation, but also attempts to correct some typical mistakes made by the 2D segmentation algorithms (for example, under segmentation of tightly-coupled clusters of cells. We have tested our algorithm in a real scenario --- the segmentation of the neuronal nuclei in different layers of the rat cerebral cortex. Several representative images from different layers of the cerebral cortex have been considered and several 2D segmentation algorithms have been compared. Furthermore, the algorithm has also been compared with the traditional 3D Watershed algorithm and the results obtained here show better performance in terms of correctly identified neuronal nuclei.

  4. Scaling of Engineered Vascular Grafts Using 3D Printed Guides and the Ring Stacking Method.

    Science.gov (United States)

    Pinnock, Cameron B; Xu, Zhengfan; Lam, Mai T

    2017-03-27

    Coronary artery disease remains a leading cause of death, affecting millions of Americans. With the lack of autologous vascular grafts available, engineered grafts offer great potential for patient treatment. However, engineered vascular grafts are generally not easily scalable, requiring manufacture of custom molds or polymer tubes in order to customize to different sizes, constituting a time-consuming and costly practice. Human arteries range in lumen diameter from about 2.0-38 mm and in wall thickness from about 0.5-2.5 mm. We have created a method, termed the "Ring Stacking Method," in which variable size rings of tissue of the desired cell type, demonstrated here with vascular smooth muscle cells (SMCs), can be created using guides of center posts to control lumen diameter and outer shells to dictate vessel wall thickness. These tissue rings are then stacked to create a tubular construct, mimicking the natural form of a blood vessel. The vessel length can be tailored by simply stacking the number of rings required to constitute the length needed. With our technique, tissues of tubular forms, similar to a blood vessel, can be readily manufactured in a variety of dimensions and lengths to meet the needs of the clinic and patient.

  5. 75 GHz InP DHBT power amplifier based on two-stacked transistors

    DEFF Research Database (Denmark)

    Squartecchia, Michele; Midili, Virginio; Johansen, Tom Keinicke

    2017-01-01

    In this paper we present the design and measurements of a two-stage 75-GHz InP Double Heterojunction Bipolar Transistor (DHBT) power amplifier (PA). An optimized two-stacked transistor power cell has been designed, which represents the building block in the power stage as well as in the driver...... stage of the power amplifier. Besides the series voltage addition of the stacked structure, parallel power combining techniques were adopted to increase the output power of the MMIC amplifier, with four-way and eight-way corporate power combiners at the driver and power stages, respectively. At 75 GHz......, the power amplifier exhibits a small signal gain of G = 12.6 dB, output power at 1-dB compression of Pout, 1dB = 18.6 dBm and a saturated output power of Psat > 21.4 dBm....

  6. Vectors and submicron precision: redundancy and 3D stacking in silicon pixel detectors

    International Nuclear Information System (INIS)

    Heijne, E H M; Ballabriga, R; Campbell, M; Llopart, X; Tlustos, L; Plackett, R; Wong, W; Boltje, D; Vermeulen, J; Visschers, J; Visser, J; Idarraga, J; Leroy, C; Jakubek, J; PospIsil, S; Turecek, D; Vykydal, Z

    2010-01-01

    Measurements are shown of GeV pions and muons in two 300μm thick, Si Medipix pixel detector assemblies that are stacked on top of each other, with a 25μm thick brass foil in between. In such a radiation imaging semiconductor matrix with a large number of pixels along the particle trail, one can determine local space vectors for the particle trajectory instead of points. This improves pattern recognition and track reconstruction, especially in a crowded environment. Stacking of sensor planes is essential for resolving directional ambiguities. Signal charge sharing can be employed for measuring positions with submicron precision. In the measurements one notices accompanying 'delta' electrons that emerge outside the particle trail, far beyond the boundaries of the 55μm pixel cells. The frequency of such corrupted position measurements is ∼ one per 2.5mm of traversed Si.

  7. Investigation of a Superscalar Operand Stack Using FO4 and ASIC Wire-Delay Metrics

    Directory of Open Access Journals (Sweden)

    Christopher Bailey

    2014-01-01

    Full Text Available Complexity in processor microarchitecture and the related issues of power density, hot spots and wire delay, are seen to be a major concern for design migration into low nanometer technologies of the future. This paper evaluates the hardware cost of an alternative to register-file organization, the superscalar stack issue array (SSIA. We believe this is the first such reported study using discrete stack elements. Several possible implementations are evaluated, using a 90 nm standard cell library as a reference model, yielding delay data and FO4 metrics. The evaluation, including reference to ASIC layout, RC extraction, and timing simulation, suggests a 4-wide issue rate of at least four Giga-ops/sec at 90 nm and opportunities for twofold future improvement by using more advanced design approaches.

  8. Vectors and submicron precision: redundancy and 3D stacking in silicon pixel detectors

    CERN Document Server

    Heijne, E H M; Wong, W; Idarraga, J; Visser, J; Jakubek, J; Leroy, C; Turecek, D; Visschers, J; Pospisil, S; Ballabriga, R; Vykydal, Z; Vermeulen, J; Plackett, R; Heijne, E H M; Llopart, X; Boltje, D; Campbell, M

    2010-01-01

    Measurements are shown of GeV pions and muons in two 300 mu m thick, Si Medipix pixel detector assemblies that are stacked on top of each other, with a 25 mu m thick brass foil in between. In such a radiation imaging semiconductor matrix with a large number of pixels along the particle trail, one can determine local space vectors for the particle trajectory instead of points. This improves pattern recognition and track reconstruction, especially in a crowded environment. Stacking of sensor planes is essential for resolving directional ambiguities. Signal charge sharing can be employed for measuring positions with submicron precision. In the measurements one notices accompanying `delta' electrons that emerge outside the particle trail, far beyond the boundaries of the 55 mu m pixel cells. The frequency of such corrupted position measurements is similar to one per 2.5mm of traversed Si.

  9. Planar array stack design aided by rapid prototyping in development of air-breathing PEMFC

    Science.gov (United States)

    Chen, Chen-Yu; Lai, Wei-Hsiang; Weng, Biing-Jyh; Chuang, Huey-Jan; Hsieh, Ching-Yuan; Kung, Chien-Chih

    The polymer electrolyte membrane fuel cell (PEMFC) is one of the most important research topics in the new and clean energy area. The middle or high power PEMFCs can be applied to the transportation or the distributed power system. But for the small power application, it is needed to match the power requirement of the product generally. On the other hand, the direct methanol fuel cell (DMFC) is one of the most common type that researchers are interested in, but recently the miniature or the micro-PEMFCs attract more attention due to their advantages of high open circuit voltage and high power density. The objective of this study is to develop a new air-breathing planar array fuel cell stacked from 10 cells made by rapid prototyping technology which has potential for fast commercial design, low cost manufacturing, and even without converters/inverters for the system. In this paper, the main material of flow field plates is acrylonitrile-butadiene-styrene (ABS) which allows the fuel cell be mass-manufactured by plastic injection molding technology. The rapid prototyping technology is applied to construct the prototype and verify the practicability of the proposed stack design. A 10-cell air-breathing miniature PEMFC stack with a volume of 6 cm × 6 cm × 0.9 cm is developed and tested. Its segmented membrane electrode assembly (MEA) is designed with the active surface area of 1.3 cm × 1.3 cm in each individual MEA. The platinum loading at anode and cathode are 0.2 mg cm -2 and 0.4 mg cm -2, respectively. Results show that the peak power densities of the parallel connected and serial connected stack are 99 mW cm -2 at 0.425 V and 92 mW cm -2 at 4.25 V, respectively under the conditions of 70 °C relative saturated humidity (i.e., dew point temperature), ambient temperature and free convection air. Besides, the stack performance is increased under forced convection. If the cell surface air is blown by an electric fan, the peak power densities of parallel connected and

  10. Planar array stack design aided by rapid prototyping in development of air-breathing PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen-Yu.; Lai, Wei-Hsiang [Institute of Aeronautics and Astronautics, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 701 (China); Weng, Biing-Jyh; Chuang, Huey-Jan; Hsieh, Ching-Yuan; Kung, Chien-Chih [Chung-Shan Institute of Science and Technology, Materials and Electro-Optics Research Division, P.O. Box No. 90008-8-3 Lung-Tan, Tao-Yuan 325 (China)

    2008-04-15

    The polymer electrolyte membrane fuel cell (PEMFC) is one of the most important research topics in the new and clean energy area. The middle or high power PEMFCs can be applied to the transportation or the distributed power system. But for the small power application, it is needed to match the power requirement of the product generally. On the other hand, the direct methanol fuel cell (DMFC) is one of the most common type that researchers are interested in, but recently the miniature or the micro-PEMFCs attract more attention due to their advantages of high open circuit voltage and high power density. The objective of this study is to develop a new air-breathing planar array fuel cell stacked from 10 cells made by rapid prototyping technology which has potential for fast commercial design, low cost manufacturing, and even without converters/inverters for the system. In this paper, the main material of flow field plates is acrylonitrile-butadiene-styrene (ABS) which allows the fuel cell be mass-manufactured by plastic injection molding technology. The rapid prototyping technology is applied to construct the prototype and verify the practicability of the proposed stack design. A 10-cell air-breathing miniature PEMFC stack with a volume of 6 cm x 6 cm x 0.9 cm is developed and tested. Its segmented membrane electrode assembly (MEA) is designed with the active surface area of 1.3 cm x 1.3 cm in each individual MEA. The platinum loading at anode and cathode are 0.2 mg cm{sup -2} and 0.4 mg cm{sup -2}, respectively. Results show that the peak power densities of the parallel connected and serial connected stack are 99 mW cm{sup -2} at 0.425 V and 92 mW cm{sup -2} at 4.25 V, respectively under the conditions of 70 C relative saturated humidity (i.e., dew point temperature), ambient temperature and free convection air. Besides, the stack performance is increased under forced convection. If the cell surface air is blown by an electric fan, the peak power densities of

  11. Simulation of magnetization and levitation characteristics of HTS tape stacks

    Science.gov (United States)

    Anischenko, I. V.; Pokrovskii, S. V.; Mineev, N. A.

    2017-12-01

    In this work it is presented a computational model of a magnetic levitation system based on stacks of high-temperature second generation superconducting tapes (HTS) GdBa2Cu3O7-x. Calculated magnetic field and the current distributions in the system for different stacks geometries in the zero-field cooling mode are also presented. The magnetization curves of the stacks in the external field of a permanent NdFeB magnet and the levitation force dependence on the gap between the magnet and the HTS tapes stack were obtained. A model of the magnetic system, oriented to levitation application, is given. Results of modeling were compared with the experimental data.

  12. Fast principal component analysis for stacking seismic data

    Science.gov (United States)

    Wu, Juan; Bai, Min

    2018-04-01

    Stacking seismic data plays an indispensable role in many steps of the seismic data processing and imaging workflow. Optimal stacking of seismic data can help mitigate seismic noise and enhance the principal components to a great extent. Traditional average-based seismic stacking methods cannot obtain optimal performance when the ambient noise is extremely strong. We propose a principal component analysis (PCA) algorithm for stacking seismic data without being sensitive to noise level. Considering the computational bottleneck of the classic PCA algorithm in processing massive seismic data, we propose an efficient PCA algorithm to make the proposed method readily applicable for industrial applications. Two numerically designed examples and one real seismic data are used to demonstrate the performance of the presented method.

  13. Static analysis of worst-case stack cache behavior

    DEFF Research Database (Denmark)

    Jordan, Alexander; Brandner, Florian; Schoeberl, Martin

    2013-01-01

    Utilizing a stack cache in a real-time system can aid predictability by avoiding interference that heap memory traffic causes on the data cache. While loads and stores are guaranteed cache hits, explicit operations are responsible for managing the stack cache. The behavior of these operations can......-graph, the worst-case bounds can be efficiently yet precisely determined. Our evaluation using the MiBench benchmark suite shows that only 37% and 21% of potential stack cache operations actually store to and load from memory, respectively. Analysis times are modest, on average running between 0.46s and 1.30s per...... be analyzed statically. We present algorithms that derive worst-case bounds on the latency-inducing operations of the stack cache. Their results can be used by a static WCET tool. By breaking the analysis down into subproblems that solve intra-procedural data-flow analysis and path searches on the call...

  14. A Stack Cache for Real-Time Systems

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Nielsen, Carsten

    2016-01-01

    Real-time systems need time-predictable computing platforms to allowfor static analysis of the worst-case execution time. Caches are important for good performance, but data caches arehard to analyze for the worst-case execution time. Stack allocated data has different properties related to local......Real-time systems need time-predictable computing platforms to allowfor static analysis of the worst-case execution time. Caches are important for good performance, but data caches arehard to analyze for the worst-case execution time. Stack allocated data has different properties related...... to locality, lifetime, and static analyzability of access addresses comparedto static or heap allocated data. Therefore, caching of stack allocateddata benefits from having its own cache. In this paper we present a cache architecture optimized for stack allocateddata. This cache is additional to the normal...

  15. DBaaS with OpenStack Trove

    CERN Document Server

    Giardini, Andrea

    2013-01-01

    The purpose of the project was to evaluate the Trove component for OpenStack, understand if it can be used with the CERN infrastructure and report the benefits and disadvantages of this software. Currently, databases for CERN projects are provided by a DbaaS software developed inside the IT-DB group. This solution works well with the actual infrastructure but it is not easy to maintain. With the migration of the CERN infrastructure to OpenStack the Database group started to evaluate the Trove component. Instead of mantaining an own DbaaS service it can be interesting to migrate everything to OpenStack and replace the actual DbaaS software with Trove. This way both virtual machines and databases will be managed by OpenStack itself.

  16. Stacking dependence of carrier transport properties in multilayered black phosphorous.

    Science.gov (United States)

    Sengupta, A; Audiffred, M; Heine, T; Niehaus, T A

    2016-02-24

    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green's function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.

  17. SEE on Different Layers of Stacked-SRAMs

    CERN Document Server

    Gupta, V; Tsiligiannis, G; Rousselet, M; Mohammadzadeh, A; Javanainen, A; Virtanen, A; Puchner, H; Saigné, F; Wrobel, F; Dilillo, L

    2015-01-01

    This paper presents heavy-ion and proton radiation test results of a 90 nm COTS SRAM with stacked structure. Radiation tests were made using high penetration heavy-ion cocktails at the HIF (Belgium) and at RADEF (Finland) as well as low energy protons at RADEF. The heavy-ion SEU cross-section showed an unusual profile with a peak at the lowest LET (heavy-ion with the highest penetration range). The discrepancy is due to the fact that the SRAM is constituted of two vertically stacked dice. The impact of proton testing on the response of both stacked dice is presented. The results are discussed and the SEU cross-sections of the upper and lower layers are compared. The impact of the stacked structure on the proton SEE rate is investigated.

  18. TiO2-nanowire/MWCNT composite with enhanced performance and durability for polymer electrolyte fuel cells

    Science.gov (United States)

    Selvaganesh, S. Vinod; Dhanasekaran, P.; Bhat, Santoshkumar D.

    2017-12-01

    Durability is a major issue and has been the growing focus of research for the commercialization of polymer electrolyte fuel cells (PEFCs). Corrosion of carbon support is a key parameter as it triggers the Pt catalyst degradation and affects cell performance, which in turn affects the longevity of the cells. Herein, we describe a hybrid composite support of TiO2-nanowires and Multiwalled carbon nanotubes (MWCNTs) that offers resistance to corrosion under stressful operating conditions. Titania nanowireswhich have been shown to be more efficient and catalytically active than spherically shaped TiO2. TiO2-MWCNT composites are prepared through a hydrothermal method, followed by Pt deposition using a polyol method. Crystal structure, morphology, and oxidation state are examined through various characterization techniques. Electrochemical performance of TiO2-nanowire/MWCNT composite-supported Pt at various ratios of TiO2/MWCNT is assessed in PEFCs. Pt on support with optimum composition of TiO2-nanowires to MWCNTs exhibits fuel cell performance superior to Pt onMWCNTs. Accelerated stress testing (AST) between 1 and 1.5 V reveals that the designed catalyst on nanocomposite support possesses superior electrochemical activity and shows only 16% loss in catalytic activity in relation to 35% for Pt/MWCNTs even after 6000 potential cycles. Subsequently, the samples were characterized after AST to correlate the loss in fuel cell performance

  19. Application of Derrick Corporation's stack sizer technology for slimes reduction in 6 inch clean coal hydrocyclone circuits

    Energy Technology Data Exchange (ETDEWEB)

    Brodzik, P.

    2009-04-15

    The article discusses the successful introduction of Derrick Corporation's Stack Sizer technology for removing minus 200 mesh slimes from 6-inch coal hydrocyclone underflow prior to froth flotation or dewatering by screen bowl centrifuges. In 2006, the James River Coal Company selected the Stack Sizer fitted with Derrick 150 micron and 100 micron urethane screen panels for removal of the minus 100 mesh high ash clay fraction from the clean coal spiral product circuits. After this application proved successful, Derrick Corporation introduced new 75 micron urethane screen panels for use on the Stack Sizer. Evaluation of feed slurry to flotation cells and screen bowl centrifuges showed significant amounts of minus 75 micron that could potentially be removed by efficient screening technology. Removal of the minus 75 micron fraction was sought to reduce ash and moisture content of the final clean coal product. Full-scale lab tests confirmed that the Stack Sizer fitted with Derrick 75 micron urethane screen panels consistently reduced the minus 75 micron percentage in coal slurry from 6-inch clean coal hydrocyclone underflow that is approximately 15 to 20% solid by-weight and 30 to 60% minus 75 micron to a clean coal fraction that is approximately 13 to 16% minus 75 micron. As a result total ash is reduced from approximately 36 to 38% in the hydrocyclone underflow to 14 to 16% in the oversize product fraction form the Stack Sizers. 1 fig., 2 tabs., 5 photos.

  20. Modeling of a Stacked Power Module for Parasitic Inductance Extraction

    Science.gov (United States)

    2017-09-15

    ARL-TR-8138 ● SEP 2017 US Army Research Laboratory Modeling of a Stacked Power Module for Parasitic Inductance Extraction by...not return it to the originator. ARL-TR-8138 ● SEP 2017 US Army Research Laboratory Modeling of a Stacked Power Module for...aware that notwithstanding any other provision of law , no person shall be subject to any penalty for failing to comply with a collection of information if