WorldWideScience

Sample records for cell membrane proteins

  1. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    Science.gov (United States)

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  2. Membrane Protein Mobility and Orientation Preserved in Supported Bilayers Created Directly from Cell Plasma Membrane Blebs.

    Science.gov (United States)

    Richards, Mark J; Hsia, Chih-Yun; Singh, Rohit R; Haider, Huma; Kumpf, Julia; Kawate, Toshimitsu; Daniel, Susan

    2016-03-29

    Membrane protein interactions with lipids are crucial for their native biological behavior, yet traditional characterization methods are often carried out on purified protein in the absence of lipids. We present a simple method to transfer membrane proteins expressed in mammalian cells to an assay-friendly, cushioned, supported lipid bilayer platform using cell blebs as an intermediate. Cell blebs, expressing either GPI-linked yellow fluorescent proteins or neon-green fused transmembrane P2X2 receptors, were induced to rupture on glass surfaces using PEGylated lipid vesicles, which resulted in planar supported membranes with over 50% mobility for multipass transmembrane proteins and over 90% for GPI-linked proteins. Fluorescent proteins were tracked, and their diffusion in supported bilayers characterized, using single molecule tracking and moment scaling spectrum (MSS) analysis. Diffusion was characterized for individual proteins as either free or confined, revealing details of the local lipid membrane heterogeneity surrounding the protein. A particularly useful result of our bilayer formation process is the protein orientation in the supported planar bilayer. For both the GPI-linked and transmembrane proteins used here, an enzymatic assay revealed that protein orientation in the planar bilayer results in the extracellular domains facing toward the bulk, and that the dominant mode of bleb rupture is via the "parachute" mechanism. Mobility, orientation, and preservation of the native lipid environment of the proteins using cell blebs offers advantages over proteoliposome reconstitution or disrupted cell membrane preparations, which necessarily result in significant scrambling of protein orientation and typically immobilized membrane proteins in SLBs. The bleb-based bilayer platform presented here is an important step toward integrating membrane proteomic studies on chip, especially for future studies aimed at understanding fundamental effects of lipid interactions

  3. Membrane protein synthesis in cell-free systems: from bio-mimetic systems to bio-membranes.

    Science.gov (United States)

    Sachse, Rita; Dondapati, Srujan K; Fenz, Susanne F; Schmidt, Thomas; Kubick, Stefan

    2014-08-25

    When taking up the gauntlet of studying membrane protein functionality, scientists are provided with a plethora of advantages, which can be exploited for the synthesis of these difficult-to-express proteins by utilizing cell-free protein synthesis systems. Due to their hydrophobicity, membrane proteins have exceptional demands regarding their environment to ensure correct functionality. Thus, the challenge is to find the appropriate hydrophobic support that facilitates proper membrane protein folding. So far, various modes of membrane protein synthesis have been presented. Here, we summarize current state-of-the-art methodologies of membrane protein synthesis in biomimetic-supported systems. The correct folding and functionality of membrane proteins depend in many cases on their integration into a lipid bilayer and subsequent posttranslational modification. We highlight cell-free systems utilizing the advantages of biological membranes.

  4. Continuous monitoring of membrane protein micro-domain association during cell signaling

    CERN Document Server

    Huang, Heng

    2011-01-01

    Central to understanding membrane bound cell signaling is to quantify how the membrane ultra-structure consisting of transient spatial domains modulates signaling and how the signaling influences this ultra-structure. Yet, measuring the association of membrane proteins with domains in living, intact cells poses considerable challenges. Here, we describe a non-destructive method to quantify protein-lipid domain and protein cytoskeleton interactions in single, intact cells enabling continuous monitoring of the protein domains interaction over time during signaling.

  5. Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 18O labeling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haizhen; Brown, Roslyn N.; Qian, Weijun; Monroe, Matthew E.; Purvine, Samuel O.; Moore, Ronald J.; Gritsenko, Marina A.; Shi, Liang; Romine, Margaret F.; Fredrickson, Jim K.; Pasa-Tolic, Ljiljana; Smith, Richard D.; Lipton, Mary S.

    2010-05-03

    We report a mass spectrometry-based strategy for quantitative analysis of cell surface membrane proteome changes. The strategy includes enrichment of surface membrane proteins using a membrane-impermeable chemical probe followed by stable isotope 18O labeling and LC-MS analysis. We applied this strategy for enriching membrane proteins expressed by Shewanella oneidensis MR-1, a gram-negative bacterium with known metal-reduction capability via extracellular electron transfer between outer membrane proteins and environmental electron receptors. LC/MS/MS analysis resulted in the identification of about 79% membrane proteins among all proteins identified from the enriched sample. To illustrate the quantification of membrane proteome changes, enriched membrane protein samples from wild-type and mutant cells (generated from deletion of a type II secretion protein, GspD) were further labeled with 16O and 18O at the peptide level prior to LC-MS analysis. A chemical-probe-labeled pure protein has also been used as an internal standard for normalization purpose. The quantitative data revealed reduced abundances of many outer membrane proteins such as OmcA and MtrC in ΔgspD mutant cells, which agreed well with previously published studies.

  6. Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 18O labeling

    Science.gov (United States)

    Zhang, Haizhen; Brown, Roslyn N.; Qian, Wei-Jun; Monroe, Matthew E.; Purvine, Samuel O.; Moore, Ronald J.; Gritsenko, Marina A.; Shi, Liang; Romine, Margaret F; Fredrickson, James K.; Paša-Tolić, Ljiljana; Smith, Richard D.; Lipton, Mary S.

    2010-01-01

    We report a mass spectrometry-based strategy for quantitative analysis of cell surface membrane proteome changes. The strategy includes enrichment of surface membrane proteins using a membrane-impermeable chemical probe followed by stable isotope 18O labeling and LC-MS analysis. We applied this strategy for enriching membrane proteins expressed by Shewanella oneidensis MR-1, a gram-negative bacterium with known metal-reduction capability via extracellular electron transfer between outer membrane proteins and extracellular electron receptors. LC/MS/MS analysis resulted in the identification of about 400 proteins with 79% of them being predicted to be membrane localized. Quantitative aspects of the membrane enrichment were shown by peptide level 16O and 18O labeling of proteins from wild-type and mutant cells (generated from deletion of a type II secretion protein, GspD) prior to LC-MS analysis. Using a chemical probe labeled pure protein as an internal standard for normalization, the quantitative data revealed reduced abundances in ΔgspD mutant cells of many outer membrane proteins including the outer membrane c-cype cytochromes OmcA and MtrC, in agreement with previously investigation demonstrating that these proteins are substrates of the type II secretion system. PMID:20380418

  7. Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 18O labeling.

    Science.gov (United States)

    Zhang, Haizhen; Brown, Roslyn N; Qian, Wei-Jun; Monroe, Matthew E; Purvine, Samuel O; Moore, Ronald J; Gritsenko, Marina A; Shi, Liang; Romine, Margaret F; Fredrickson, James K; Pasa-Tolić, Ljiljana; Smith, Richard D; Lipton, Mary S

    2010-05-07

    We report a mass spectrometry-based strategy for quantitative analysis of cell surface membrane proteome changes. The strategy includes enrichment of surface membrane proteins using a membrane-impermeable chemical probe followed by stable isotope (18)O labeling and LC-MS analysis. We applied this strategy for enriching membrane proteins expressed by Shewanella oneidensis MR-1, a Gram-negative bacterium with known metal-reduction capability via extracellular electron transfer between outer membrane proteins and extracellular electron receptors. LC/MS/MS analysis resulted in the identification of about 400 proteins with 79% of them being predicted to be membrane localized. Quantitative aspects of the membrane enrichment were shown by peptide level (16)O and (18)O labeling of proteins from wild-type and mutant cells (generated from deletion of a type II secretion protein, GspD) prior to LC-MS analysis. Using a chemical probe labeled pure protein as an internal standard for normalization, the quantitative data revealed reduced abundances in Delta gspD mutant cells of many outer membrane proteins including the outer membrane c-type cytochromes OmcA and MtrC, in agreement with a previous report that these proteins are substrates of the type II secretion system.

  8. Cell-free synthesis of membrane proteins: tailored cell models out of microsomes.

    Science.gov (United States)

    Fenz, Susanne F; Sachse, Rita; Schmidt, Thomas; Kubick, Stefan

    2014-05-01

    Incorporation of proteins in biomimetic giant unilamellar vesicles (GUVs) is one of the hallmarks towards cell models in which we strive to obtain a better mechanistic understanding of the manifold cellular processes. The reconstruction of transmembrane proteins, like receptors or channels, into GUVs is a special challenge. This procedure is essential to make these proteins accessible to further functional investigation. Here we describe a strategy combining two approaches: cell-free eukaryotic protein expression for protein integration and GUV formation to prepare biomimetic cell models. The cell-free protein expression system in this study is based on insect lysates, which provide endoplasmic reticulum derived vesicles named microsomes. It enables signal-induced translocation and posttranslational modification of de novo synthesized membrane proteins. Combining these microsomes with synthetic lipids within the electroswelling process allowed for the rapid generation of giant proteo-liposomes of up to 50 μm in diameter. We incorporated various fluorescent protein-labeled membrane proteins into GUVs (the prenylated membrane anchor CAAX, the heparin-binding epithelial growth factor like factor Hb-EGF, the endothelin receptor ETB, the chemokine receptor CXCR4) and thus presented insect microsomes as functional modules for proteo-GUV formation. Single-molecule fluorescence microscopy was applied to detect and further characterize the proteins in the GUV membrane. To extend the options in the tailoring cell models toolbox, we synthesized two different membrane proteins sequentially in the same microsome. Additionally, we introduced biotinylated lipids to specifically immobilize proteo-GUVs on streptavidin-coated surfaces. We envision this achievement as an important first step toward systematic protein studies on technical surfaces.

  9. Dual Split Protein (DSP) Assay to Monitor Cell-Cell Membrane Fusion.

    Science.gov (United States)

    Nakane, Shuhei; Matsuda, Zene

    2015-01-01

    Fusion between viral and cellular membranes is the essential first step in infection of enveloped viruses. This step is mediated by viral envelope glycoproteins (Env) that recognize cellular receptors. The membrane fusion between the effector cells expressing viral Env and the target cells expressing its receptors can be monitored by several methods. We have recently developed a pair of chimeric reporter protein composed of split Renilla luciferase (RL) and split GFP. We named this reporter dual split protein (DSP), since it recovers both RL and GFP activities upon self reassociation. By using DSP, pore formation and content mixing between the effector and target cells can be monitored upon the recovery of RL and GFP activities after the membrane fusion. This quick assay provides quantitative as well as spatial information about membrane fusion mediated by viral Env.

  10. Rigid proteins and softening of biological membranes-with application to HIV-induced cell membrane softening.

    Science.gov (United States)

    Agrawal, Himani; Zelisko, Matthew; Liu, Liping; Sharma, Pradeep

    2016-05-06

    A key step in the HIV-infection process is the fusion of the virion membrane with the target cell membrane and the concomitant transfer of the viral RNA. Experimental evidence suggests that the fusion is preceded by considerable elastic softening of the cell membranes due to the insertion of fusion peptide in the membrane. What are the mechanisms underpinning the elastic softening of the membrane upon peptide insertion? A broader question may be posed: insertion of rigid proteins in soft membranes ought to stiffen the membranes not soften them. However, experimental observations perplexingly appear to show that rigid proteins may either soften or harden membranes even though conventional wisdom only suggests stiffening. In this work, we argue that regarding proteins as merely non-specific rigid inclusions is flawed, and each protein has a unique mechanical signature dictated by its specific interfacial coupling to the surrounding membrane. Predicated on this hypothesis, we have carried out atomistic simulations to investigate peptide-membrane interactions. Together with a continuum model, we reconcile contrasting experimental data in the literature including the case of HIV-fusion peptide induced softening. We conclude that the structural rearrangements of the lipids around the inclusions cause the softening or stiffening of the biological membranes.

  11. Lipid-protein interactions in plasma membranes of fiber cells isolated from the human eye lens.

    Science.gov (United States)

    Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K

    2014-03-01

    The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali, L., Raguz, M., O'Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed.

  12. Interaction of Protein and Cell with Different Chitosan Membranes

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Interaction between proteins, cells and biomaterial surfaces is commonly observed and often used to measure biocompatibility of biomaterials.In this investigation, three kinds of biomaterials derived from chitosan were prepared.The surface wettability of these polymers, interaction of protein with material surface, and their effects on cell adhesion and growth were studied.The results show that the surface contact angle and surface charge of biomaterials have a close bearing on protein adsorption as well as cell adhesion and growth, indicating that through different chemical modifications, chitosan can be made into different kinds of biomedical materials to satisfy various needs.

  13. In-Situ Observation of Membrane Protein Folding during Cell-Free Expression.

    Directory of Open Access Journals (Sweden)

    Axel Baumann

    Full Text Available Proper insertion, folding and assembly of functional proteins in biological membranes are key processes to warrant activity of a living cell. Here, we present a novel approach to trace folding and insertion of a nascent membrane protein leaving the ribosome and penetrating the bilayer. Surface Enhanced IR Absorption Spectroscopy selectively monitored insertion and folding of membrane proteins during cell-free expression in a label-free and non-invasive manner. Protein synthesis was performed in an optical cell containing a prism covered with a thin gold film with nanodiscs on top, providing an artificial lipid bilayer for folding. In a pilot experiment, the folding pathway of bacteriorhodopsin via various secondary and tertiary structures was visualized. Thus, a methodology is established with which the folding reaction of other more complex membrane proteins can be observed during protein biosynthesis (in situ and in operando at molecular resolution.

  14. Mapping membrane protein interactions in cell signaling systems.

    Energy Technology Data Exchange (ETDEWEB)

    Light, Yooli Kim; Hadi, Masood Z.; Lane, Pamela; Jacobsen, Richard B.; Hong, Joohee; Ayson, Marites J.; Wood, Nichole L.; Schoeniger, Joseph S.; Young, Malin M.

    2003-12-01

    We proposed to apply a chemical cross-linking, mass spectrometry and modeling method called MS3D to the structure determination of the rhodopsin-transducin membrane protein complex (RTC). Herein we describe experimental progress made to adapt the MS3D approach for characterizing membrane protein systems, and computational progress in experimental design, data analysis and protein structure modeling. Over the past three years, we have developed tailored experimental methods for all steps in the MS3D method for rhodopsin, including protein purification, a functional assay, cross-linking, proteolysis and mass spectrometry. In support of the experimental effort. we have out a data analysis pipeline in place that automatically selects the monoisotopic peaks in a mass spectrometric spectrum, assigns them and stores the results in a database. Theoretical calculations using 24 experimentally-derived distance constraints have resulted in a backbone-level model of the activated form of rhodopsin, which is a critical first step towards building a model of the RTC. Cross-linked rhodopsin-transducin complexes have been isolated via gel electrophoresis and further mass spectrometric characterization of the cross-links is underway.

  15. The novel role of peroxiredoxin-2 in red cell membrane protein homeostasis and senescence.

    Science.gov (United States)

    Matté, Alessandro; Pantaleo, Antonella; Ferru, Emanuela; Turrini, Franco; Bertoldi, Mariarita; Lupo, Francesca; Siciliano, Angela; Ho Zoon, Chae; De Franceschi, Lucia

    2014-11-01

    Peroxiredoxin-2 (Prx2), a typical two-cysteine peroxiredoxin, is the third most abundant protein in red cells. Although progress has been made in the functional characterization of Prx2, its role in red cell membrane protein homeostasis is still under investigation. Here, we studied Prx2(-/-) mouse red cells. The absence of Prx2 promotes (i) activation of the oxidative-induced Syk pathway; (ii) increased band 3 Tyr phosphorylation, with clustered band 3; and (iii) increased heat shock protein (HSP27 and HSP70) membrane translocation. This was associated with enhanced in vitro erythrophagocytosis of Prx2(-/-) red cells and reduced Prx2(-/-) red cell survival, indicating the possible role of Prx2 membrane recruitment in red cell aging and in the clearance of oxidized hemoglobin and damaged proteins through microparticles. Indeed, we observed an increased release of microparticles from Prx2(-/-) mouse red cells. The mass spectrometric analysis of erythroid microparticles found hemoglobin chains, membrane proteins, and HSPs. To test these findings, we treated Prx2(-/-) mice with antioxidants in vivo. We observed that N-acetylcysteine reduced (i) Syk activation, (ii) band 3 clusterization, (iii) HSP27 membrane association, and (iv) erythroid microparticle release, resulting in increased Prx2(-/-) mouse red cell survival. Thus, we propose that Prx2 may play a cytoprotective role in red cell membrane protein homeostasis and senescence.

  16. Isolation of a Kell-reactive protein from red cell membranes.

    Science.gov (United States)

    Wallas, C; Simon, R; Sharpe, M A; Byler, C

    1986-01-01

    A red cell membrane protein which exhibits Kell blood group antigen activity has been identified with a purified anti-Kell bound to a Protein-A agarose column and eluting with lithium diiodosalicylate (LIS). Although anti-Kell as well as the Kell-reactive membrane protein were eluted from the column, the eluate was capable of reducing the titer of added anti-Kell from 64 to 4. In addition, the eluate was shown to possess Kell reactivity by binding I125 Protein A after incubation with anti-Kell. Electrophoresis (SDS gel polyacrylamide 5-20% gradient) showed a band at approximately 90,000 daltons when solubilized membranes from Kell-positive red cells were used but not when membranes from dithiothreitol- and papain-treated Kell-positive red cells or Kell-negative red cells were used. A band isolated with unreduced conditions was capable of neutralizing anti-Kell.

  17. Dysferlin and other non-red cell proteins accumulate in the red cell membrane of Diamond-Blackfan Anemia patients.

    Directory of Open Access Journals (Sweden)

    Esther N Pesciotta

    Full Text Available Diamond Blackfan Anemia (DBA is a congenital anemia usually caused by diverse mutations in ribosomal proteins. Although the genetics of DBA are well characterized, the mechanisms that lead to macrocytic anemia remain unclear. We systematically analyzed the proteomes of red blood cell membranes from multiple DBA patients to determine whether abnormalities in protein translation or erythropoiesis contribute to the observed macrocytosis or alterations in the mature red blood cell membrane. In depth proteome analysis of red cell membranes enabled highly reproducible identification and quantitative comparisons of 1100 or more proteins. These comparisons revealed clear differences between red cell membrane proteomes in DBA patients and healthy controls that were consistent across DBA patients with different ribosomal gene mutations. Proteins exhibiting changes in abundance included those known to be increased in DBA such as fetal hemoglobin and a number of proteins not normally found in mature red cell membranes, including proteins involved in the major histocompatibility complex class I pathway. Most striking was the presence of dysferlin in the red blood cell membranes of DBA patients but absent in healthy controls. Immunoblot validation using red cell membranes isolated from additional DBA patients and healthy controls confirmed a distinct membrane protein signature specific to patients with DBA.

  18. Quantitative Fluorescence Studies in Living Cells: Extending Fluorescence Fluctuation Spectroscopy to Peripheral Membrane Proteins

    Science.gov (United States)

    Smith, Elizabeth Myhra

    The interactions of peripheral membrane proteins with both membrane lipids and proteins are vital for many cellular processes including membrane trafficking, cellular signaling, and cell growth/regulation. Building accurate biophysical models of these processes requires quantitative characterization of the behavior of peripheral membrane proteins, yet methods to quantify their interactions inside living cells are very limited. Because peripheral membrane proteins usually exist both in membrane-bound and cytoplasmic forms, the separation of these two populations is a key challenge. This thesis aims at addressing this challenge by extending fluorescence fluctuation spectroscopy (FFS) to simultaneously measure the oligomeric state of peripheral membrane proteins in the cytoplasm and at the plasma membrane. We developed a new method based on z-scan FFS that accounts for the fluorescence contributions from cytoplasmic and membrane layers by incorporating a fluorescence intensity z-scan through the cell. H-Ras-EGFP served as a model system to demonstrate the feasibility of the technique. The resolvability and stability of z-scanning was determined as well as the oligomeric state of H-Ras-EGFP at the plasma membrane and in the cytoplasm. Further, we successfully characterized the binding affinity of a variety of proteins to the plasma membrane by quantitative analysis of the z-scan fluorescence intensity profile. This analysis method, which we refer to as z-scan fluorescence profile deconvoution, was further used in combination with dual-color competition studies to determine the lipid specificity of protein binding. Finally, we applied z-scan FFS to provide insight into the early assembly steps of the HTLV-1 retrovirus.

  19. Homeostatic restitution of cell membranes. Nuclear membrane lipid biogenesis and transport of protein from cytosol to intranuclear spaces.

    Directory of Open Access Journals (Sweden)

    Amalia Slomiany, Maria Grabska, Bronislaw L. Slomiany

    2006-01-01

    Full Text Available Our studies on homeostatic restitution of cellular and subcellular membranes showed that vesicular intracellular transport is engaged in systematic and coordinated replacement of lipids and proteins in the membranes of the secretory, non-dividing epithelial cells (Slomiany et al., J. Physiol. Pharmacol. 2004; 55: 837-860. In this report, we present evidence on the homeostatic restitution of lipids in the biomembranes that constitute nuclear envelopes. We investigated nuclear membranes lipid synthesis by employing purified intact nuclei (IN, the outer nuclear membrane (ONM, the inner nuclear membrane (INM and the cell cytosol (CC. In contrast to Endoplasmic Reticulum (ER which in the presence of CC generates new biomembrane that forms ER vesicles transporting ER products to Golgi, the IN, ONM and INM are not producing transport vesicles. Instead, the newly synthesized lipids remain in the nuclear membranes. The membranes (INM, ONM of IN incubated with CC become enriched with newly synthesized phosphatidylcholine (PC, phosphatidylinositol (PI, phosphatidylinositol phosphates (PIPs and phosphatidic acid (PA. The incubation of separated ONM and INM with CC also enriched the membranes with IN specific lipids identified above. Moreover, the incubation of IN or its membranes with CC afforded retention of numerous CC proteins on the nuclear membrane. Here, we concentrated on 30kDa CC protein that displayed affinity to nuclear membrane PIP2. The 30kDa CC protein bound to PIP2 of IN, INM, and ONM. With IN, initially the PIP2-30kDa CC protein complex was detected on ONM, after 30-120 min of incubation, was found on INM and in nuclear contents. At the same time when the 30 kDa protein was released from INM and found in nuclear contents, the PIP2 of INM and ONM became undetectable, while the lipid extract from the membrane displaced from IN contained labeled PI only. Since ONM is an uninterrupted continuum of ER and INM, we speculate that the synthesis of

  20. Two Rab proteins, vesicle-associated membrane protein 2 (VAMP-2) and secretory carrier membrane proteins (SCAMPs), are present on immunoisolated parietal cell tubulovesicles.

    Science.gov (United States)

    Calhoun, B C; Goldenring, J R

    1997-01-01

    The tubulovesicles of gastric parietal cells sequester H+/K+-ATPase molecules within resting parietal cells. Stimulation of parietal cell secretion elicits delivery of intracellular H+/K+-ATPase to the apically oriented secretory canaliculus. Previous investigations have suggested that this process requires the regulated fusion of intracellular tubulovesicles with the canalicular target membrane. We have sought to investigate the presence of critical putative regulators of vesicle fusion on immunoisolated gastric parietal cell tubulovesicles. Highly purified tubulovesicles were prepared by gradient fractionation and immunoisolation on magnetic beads coated with monoclonal antibodies against the alpha subunit of H+/K+-ATPase. Western blot analysis revealed the presence of Rab11, Rab25, vesicle-associated membrane protein 2 (VAMP-2) and secretory carrier membrane proteins (SCAMPs) on immunoisolated vesicles. The same cohort of proteins was recovered on vesicles immunoisolated with monoclonal antibodies against SCAMPs and VAMP-2. In contrast, whereas immunoreactivities for syntaxin 1A/1B and synaptosome-associated protein (SNAP-25) were present in gradient-isolated vesicles, none of the immunoreactivity was associated with immunoisolated vesicles. The observation of VAMP-2 and two Rab proteins on immunoisolated H+/K+-ATPase-containing tubulovesicles supports the role for tubulovesicles in a regulated vesicle fusion process. In addition, the presence of SCAMPs along with Rab11 and Rab25 implicates the tubulovesicles as a critical apical recycling vesicle population. PMID:9230141

  1. Repair of Nerve Cell Membrane Damage by Calcium-Dependent, Membrane-Binding Proteins (Revised)

    Science.gov (United States)

    2012-09-01

    Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum , Proc Natl Acad Sci U S A...Calcium signaling and amyloid toxicity in Alzheimer disease, J Biol Chem 285 (2010) 12463-12468. [14] H.A. Lashuel, P.T. Lansbury, Are amyloid

  2. Unchanged binding of /sup 99/Molybdenum to red cell membrane proteins in hereditary spherocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Marik, T.; Kselikova, M.; Bibr, B.; Brabec, V.; Lener, J. (Ceskoslovenska Akademie Ved, Prague. Ustav Nuklearni Biologie a Radiochemie; Institut Hygieny a Epidemiologie, Prague (Czechoslovakia))

    1983-01-01

    The interaction of /sup 99/Mo with red cell membrane proteins was found specific for spectrin both in normal red cells and those of hereditary spherocytosis. In addition, no significant quantitative differences were observed in labelling patterns between these two types of red cells, thus indicating no major alterations in the spectrin molecules of hereditary spherocytosis.

  3. Bacillus thuringiensis Cyt2Aa2 toxin disrupts cell membranes by forming large protein aggregates

    Science.gov (United States)

    Tharad, Sudarat; Toca-Herrera, José L.; Promdonkoy, Boonhiang; Krittanai, Chartchai

    2016-01-01

    Bacillus thuringiensis (Bt) Cyt2Aa2 showed toxicity against Dipteran insect larvae and in vitro lysis activity on several cells. It has potential applications in the biological control of insect larvae. Although pore-forming and/or detergent-like mechanisms were proposed, the mechanism underlying cytolytic activity remains unclear. Analysis of the haemolytic activity of Cyt2Aa2 with osmotic stabilizers revealed partial toxin inhibition, suggesting a distinctive mechanism from the putative pore formation model. Membrane permeability was studied using fluorescent dye entrapped in large unilamellar vesicles (LUVs) at various protein/lipid molar ratios. Binding of Cyt2Aa2 monomer to the lipid membrane did not disturb membrane integrity until the critical protein/lipid molar ratio was reached, when Cyt2Aa2 complexes and cytolytic activity were detected. The complexes are large aggregates that appeared as a ladder when separated by agarose gel electrophoresis. Interaction of Cyt2Aa2 with Aedes albopictus cells was investigated by confocal microscopy and total internal reflection fluorescent microscopy (TIRF). The results showed that Cyt2Aa2 binds on the cell membrane at an early stage without cell membrane disruption. Protein aggregation on the cell membrane was detected later which coincided with cell swelling. Cyt2Aa2 aggregations on supported lipid bilayers (SLBs) were visualized by AFM. The AFM topographic images revealed Cyt2Aa2 aggregates on the lipid bilayer at low protein concentration and subsequently disrupts the lipid bilayer by forming a lesion as the protein concentration increased. These results supported the mechanism whereby Cyt2Aa2 binds and aggregates on the lipid membrane leading to the formation of non-specific hole and disruption of the cell membrane. PMID:27612497

  4. Communication Between the Cell Membrane and the Nucleus: Role of Protein Compartmentalization

    Energy Technology Data Exchange (ETDEWEB)

    Lelievre, Sophie A; Bissell, Mina J

    1998-10-21

    Understanding how the information is conveyed from outside to inside the cell is a critical challenge for all biologists involved in signal transduction. The flow of information initiated by cell-cell and cell-extracellular matrix contacts is mediated by the formation of adhesion complexes involving multiple proteins. Inside adhesion complexes, connective membrane skeleton (CMS) proteins are signal transducers that bind to adhesion molecules, organize the cytoskeleton, and initiate biochemical cascades. Adhesion complex-mediated signal transduction ultimately directs the formation of supramolecular structures in the cell nucleus, as illustrated by the establishment of multi complexes of DNA-bound transcription factors, and the redistribution of nuclear structural proteins to form nuclear subdomains. Recently, several CMS proteins have been observed to travel to the cell nucleus, suggesting a distinctive role for these proteins in signal transduction. This review focuses on the nuclear translocation of structural signal transducers of the membrane skeleton and also extends our analysis to possible translocation of resident nuclear proteins to the membrane skeleton. This leads us to envision the communication between spatially distant cellular compartments (i.e., membrane skeleton and cell nucleus) as a bidirectional flow of information (a dynamic reciprocity) based on subtle multilevel structural and biochemical equilibria. At one level, it is mediated by the interaction between structural signal transducers and their binding partners, at another level it may be mediated by the balance and integration of signal transducers in different cellular compartments.

  5. GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane

    Science.gov (United States)

    Sevcsik, Eva; Brameshuber, Mario; Fölser, Martin; Weghuber, Julian; Honigmann, Alf; Schütz, Gerhard J.

    2015-04-01

    The organization of proteins and lipids in the plasma membrane has been the subject of a long-lasting debate. Membrane rafts of higher lipid chain order were proposed to mediate protein interactions, but have thus far not been directly observed. Here we use protein micropatterning combined with single-molecule tracking to put current models to the test: we rearranged lipid-anchored raft proteins (glycosylphosphatidylinositol(GPI)-anchored-mGFP) directly in the live cell plasma membrane and measured the effect on the local membrane environment. Intriguingly, this treatment does neither nucleate the formation of an ordered membrane phase nor result in any enrichment of nanoscopic-ordered domains within the micropatterned regions. In contrast, we find that immobilized mGFP-GPIs behave as inert obstacles to the diffusion of other membrane constituents without influencing their membrane environment over distances beyond their physical size. Our results indicate that phase partitioning is not a fundamental element of protein organization in the plasma membrane.

  6. A Guide to Transient Expression of Membrane Proteins in HEK-293 Cells for Functional Characterization

    KAUST Repository

    Ooi, Amanda Siok Lee

    2016-07-19

    The human embryonic kidney 293 (HEK-293) cells are commonly used as host for the heterologous expression of membrane proteins not least because they have a high transfection efficiency and faithfully translate and process proteins. In addition, their cell size, morphology and division rate, and low expression of native channels are traits that are particularly attractive for current-voltage measurements. Nevertheless, the heterologous expression of complex membrane proteins such as receptors and ion channels for biological characterization and in particular for single-cell applications such as electrophysiology remains a challenge. Expression of functional proteins depends largely on careful step-by-step optimization that includes the design of expression vectors with suitable identification tags, as well as the selection of transfection methods and detection parameters appropriate for the application. Here, we use the heterologous expression of a plant potassium channel, the Arabidopsis thaliana guard cell outward-rectifying K+ channel, AtGORK (At5G37500) in HEK-293 cells as an example, to evaluate commonly used transfection reagents and fluorescent detection methods, and provide a detailed methodology for optimized transient transfection and expression of membrane proteins for in vivo studies in general and for single-cell applications in particular. This optimized protocol will facilitate the physiological and cellular characterization of complex membrane proteins.

  7. Extraction methods of red blood cell membrane proteins for Multidimensional Protein Identification Technology (MudPIT) analysis.

    Science.gov (United States)

    De Palma, Antonella; Roveri, Antonella; Zaccarin, Mattia; Benazzi, Louise; Daminelli, Simone; Pantano, Giorgia; Buttarello, Mauro; Ursini, Fulvio; Gion, Massimo; Mauri, Pier Luigi

    2010-08-13

    Since red blood cells (RBCs) lack nuclei and organelles, cell membrane is their main load-bearing component and, according to a dynamic interaction with the cytoskeleton compartment, plays a pivotal role in their functioning. Even if erythrocyte membranes are available in large quantities, the low abundance and the hydrophobic nature of cell membrane proteins complicate their purification and detection by conventional 2D gel-based proteomic approaches. So, in order to increase the efficiency of RBC membrane proteome identification, here we took advantage of a simple and reproducible membrane sub-fractionation method coupled to Multidimensional Protein Identification Technology (MudPIT). In addition, the adoption of a stringent RBC filtration strategy from the whole blood, permitted to remove exhaustively contaminants, such as platelets and white blood cells, and to identify a total of 275 proteins in the three RBC membrane fractions collected and analysed. Finally, by means of software for the elaboration of the great quantity of data obtained and programs for statistical analysis and protein classification, it was possible to determine the validity of the entire system workflow and to assign the proper sub-cellular localization and function for the greatest number of the identified proteins.

  8. Single-Molecule Imaging Reveals the Activation Dynamics of Intracellular Protein Smad3 on Cell Membrane

    Science.gov (United States)

    Li, Nan; Yang, Yong; He, Kangmin; Zhang, Fayun; Zhao, Libo; Zhou, Wei; Yuan, Jinghe; Liang, Wei; Fang, Xiaohong

    2016-09-01

    Smad3 is an intracellular protein that plays a key role in propagating transforming growth factor β (TGF-β) signals from cell membrane to nucleus. However whether the transient process of Smad3 activation occurs on cell membrane and how it is regulated remains elusive. Using advanced live-cell single-molecule fluorescence microscopy to image and track fluorescent protein-labeled Smad3, we observed and quantified, for the first time, the dynamics of individual Smad3 molecules docking to and activation on the cell membrane. It was found that Smad3 docked to cell membrane in both unstimulated and stimulated cells, but with different diffusion rates and dissociation kinetics. The change in its membrane docking dynamics can be used to study the activation of Smad3. Our results reveal that Smad3 binds with type I TGF-β receptor (TRI) even in unstimulated cells. Its activation is regulated by TRI phosphorylation but independent of receptor endocytosis. This study offers new information on TGF-β/Smad signaling, as well as a new approach to investigate the activation of intracellular signaling proteins for a better understanding of their functions in signal transduction.

  9. Arenavirus budding resulting from viral-protein-associated cell membrane curvature.

    Science.gov (United States)

    Schley, David; Whittaker, Robert J; Neuman, Benjamin W

    2013-09-06

    Viral replication occurs within cells, with release (and onward infection) primarily achieved through two alternative mechanisms: lysis, in which virions emerge as the infected cell dies and bursts open; or budding, in which virions emerge gradually from a still living cell by appropriating a small part of the cell membrane. Virus budding is a poorly understood process that challenges current models of vesicle formation. Here, a plausible mechanism for arenavirus budding is presented, building on recent evidence that viral proteins embed in the inner lipid layer of the cell membrane. Experimental results confirm that viral protein is associated with increased membrane curvature, whereas a mathematical model is used to show that localized increases in curvature alone are sufficient to generate viral buds. The magnitude of the protein-induced curvature is calculated from the size of the amphipathic region hypothetically removed from the inner membrane as a result of translation, with a change in membrane stiffness estimated from observed differences in virion deformation as a result of protein depletion. Numerical results are based on experimental data and estimates for three arenaviruses, but the mechanisms described are more broadly applicable. The hypothesized mechanism is shown to be sufficient to generate spontaneous budding that matches well both qualitatively and quantitatively with experimental observations.

  10. Forward transport of proteins in the plasma membrane of migrating cerebellar granule cells.

    Science.gov (United States)

    Wang, Dong; She, Liang; Sui, Ya-nan; Yuan, Xiao-bing; Wen, Yunqing; Poo, Mu-ming

    2012-12-18

    Directional flow of membrane components has been detected at the leading front of fibroblasts and the growth cone of neuronal processes, but whether there exists global directional flow of plasma membrane components over the entire migrating neuron remains largely unknown. By analyzing the trajectories of antibody-coated single quantum dots (QDs) bound to two membrane proteins, overexpressed myc-tagged synaptic vesicle-associated membrane protein VAMP2 and endogenous neurotrophin receptor TrkB, we found that these two proteins exhibited net forward transport, which is superimposed upon Brownian motion, in both leading and trailing processes of migrating cerebellar granule cells in culture. Furthermore, no net directional transport of membrane proteins was observed in nonmigrating cells with either growing or stalling leading processes. Analysis of the correlation of motion direction between two QDs on the same process in migrating neurons also showed a higher frequency of correlated forward than rearward movements. Such correlated QD movements were markedly reduced in the presence of myosin II inhibitor blebbistatin,suggesting the involvement of myosin II-dependent active transport processes. Thus, a net forward transport of plasma membrane proteins exists in the leading and trailing processes of migrating neurons, in line with the translocation of the soma.

  11. Cell-based analysis of Chikungunya virus E1 protein in membrane fusion

    Directory of Open Access Journals (Sweden)

    Kuo Szu-Cheng

    2012-04-01

    Full Text Available Abstract Background Chikungunya fever is a pandemic disease caused by the mosquito-borne Chikungunya virus (CHIKV. E1 glycoprotein mediation of viral membrane fusion during CHIKV infection is a crucial step in the release of viral genome into the host cytoplasm for replication. How the E1 structure determines membrane fusion and whether other CHIKV structural proteins participate in E1 fusion activity remain largely unexplored. Methods A bicistronic baculovirus expression system to produce recombinant baculoviruses for cell-based assay was used. Sf21 insect cells infected by recombinant baculoviruses bearing wild type or single-amino-acid substitution of CHIKV E1 and EGFP (enhanced green fluorescence protein were employed to investigate the roles of four E1 amino acid residues (G91, V178, A226, and H230 in membrane fusion activity. Results Western blot analysis revealed that the E1 expression level and surface features in wild type and mutant substituted cells were similar. However, cell fusion assay found that those cells infected by CHIKV E1-H230A mutant baculovirus showed little fusion activity, and those bearing CHIKV E1-G91D mutant completely lost the ability to induce cell-cell fusion. Cells infected by recombinant baculoviruses of CHIKV E1-A226V and E1-V178A mutants exhibited the same membrane fusion capability as wild type. Although the E1 expression level of cells bearing monomeric-E1-based constructs (expressing E1 only was greater than that of cells bearing 26S-based constructs (expressing all structural proteins, the sizes of syncytial cells induced by infection of baculoviruses containing 26S-based constructs were larger than those from infections having monomeric-E1 constructs, suggesting that other viral structure proteins participate or regulate E1 fusion activity. Furthermore, membrane fusion in cells infected by baculovirus bearing the A226V mutation constructs exhibited increased cholesterol-dependences and lower pH thresholds

  12. Proteomic analysis identifies interleukin 11 regulated plasma membrane proteins in human endometrial epithelial cells in vitro

    Directory of Open Access Journals (Sweden)

    Stanton Peter G

    2011-05-01

    Full Text Available Abstract Background During the peri-implantation period, the embryo adheres to an adequately prepared or receptive endometrial surface epithelium. Abnormal embryo adhesion to the endometrium results in embryo implantation failure and infertility. Endometrial epithelial cell plasma membrane proteins critical in regulating adhesion may potentially be infertility biomarkers or targets for treating infertility. Interleukin (IL 11 regulates human endometrial epithelial cells (hEEC adhesion. Its production is abnormal in women with infertility. The objective of the study was to identify IL11 regulated plasma membrane proteins in hEEC in vitro using a proteomic approach. Methods Using a 2D-differential in-gel electrophoresis (DIGE electrophoresis combined with LCMS/MS mass spectrometry approach, we identified 20 unique plasma membrane proteins differentially regulated by IL11 in ECC-1 cells, a hEEC derived cell line. Two IL11 regulated proteins with known roles in cell adhesion, annexin A2 (ANXA2 and flotillin-1 (FLOT1, were validated by Western blot and immunocytochemistry in hEEC lines (ECC-1 and an additional cell line, Ishikawa and primary hEEC. Flotilin-1 was further validated by immunohistochemistry in human endometrium throughout the menstrual cycle (n = 6-8/cycle. Results 2D-DIGE analysis identified 4 spots that were significantly different between control and IL11 treated group. Of these 4 spots, there were 20 proteins that were identified with LCMS/MS. Two proteins; ANXA2 and FLOT1 were chosen for further analyses and have found to be significantly up-regulated following IL11 treatment. Western blot analysis showed a 2-fold and a 2.5-fold increase of ANXA2 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. Similarly, a 1.8-fold and a 2.3/2.4-fold increase was also observed for FLOT1 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. In vitro, IL11 induced stronger ANXA2 expression on cell surface of primary h

  13. Characterization of Plasma Membrane Proteins from Ovarian Cancer Cells Using Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    David L. Springer

    2004-01-01

    Full Text Available To determine how the repertoire of plasma membrane proteins change with disease state, specifically related to cancer, several methods for preparation of plasma membrane proteins were evaluated. Cultured cells derived from stage IV ovarian tumors were grown to 90% confluence and harvested in buffer containing CHAPS detergent. This preparation was centrifuged at low speed to remove insoluble cellular debris resulting in a crude homogenate. Glycosylated proteins in the crude homogenate were selectively enriched using lectin affinity chromatography. The crude homogenate and the lectin purified sample were prepared for mass spectrometric evaluation. The general procedure for protein identification began with trypsin digestion of protein fractions followed by separation by reversed phase liquid chromatography that was coupled directly to a conventional tandem mass spectrometer (i.e. LCQ ion trap. Mass and fragmentation data for the peptides were searched against a human proteome data base using the informatics program SEQUEST. Using this procedure 398 proteins were identified with high confidence, including receptors, membrane-associated ligands, proteases, phosphatases, as well as structural and adhesion proteins. Results indicate that lectin chromatography provides a select subset of proteins and that the number and quality of the identifications improve as does the confidence of the protein identifications for this subset. These results represent the first step in development of methods to separate and successfully identify plasma membrane proteins from advanced ovarian cancer cells. Further characterization of plasma membrane proteins will contribute to our understanding of the mechanisms underlying progression of this deadly disease and may lead to new targeted interventions as well as new biomarkers for diagnosis.

  14. Protein corona mitigates the cytotoxicity of graphene oxide by reducing its physical interaction with cell membrane.

    Science.gov (United States)

    Duan, Guangxin; Kang, Seung-gu; Tian, Xin; Garate, Jose Antonio; Zhao, Lin; Ge, Cuicui; Zhou, Ruhong

    2015-10-07

    Many recent studies have shown that the way nanoparticles interact with cells and biological molecules can vary greatly in the serum-containing or serum-free culture medium. However, the underlying molecular mechanisms of how the so-called "protein corona" formed in serum medium affects nanoparticles' biological responses are still largely unresolved. Thus, it is critical to understand how absorbed proteins on the surfaces of nanoparticles alter their biological effects. In this work, we have demonstrated with both experimental and theoretical approaches that protein BSA coating can mitigate the cytotoxicity of graphene oxide (GO) by reducing its cell membrane penetration. Our cell viability and cellular uptake experiments showed that protein corona decreased cellular uptake of GO, thus significantly mitigating the potential cytotoxicity of GO. The electron microscopy images also confirmed that protein corona reduced the cellular morphological damage by limiting GO penetration into the cell membrane. Further molecular dynamics (MD) simulations validated the experimental results and revealed that the adsorbed BSA in effect weakened the interaction between the phospholipids and graphene surface due to a reduction of the available surface area plus an unfavorable steric effect, thus significantly reducing the graphene penetration and lipid bilayer damaging. These findings provide new insights into the underlying molecular mechanism of this important graphene protein corona interaction with cell membranes, and should have implications in future development of graphene-based biomedical applications.

  15. Restoration of proper trafficking to the cell surface for membrane proteins harboring cysteine mutations.

    Directory of Open Access Journals (Sweden)

    Angelica Lopez-Rodriguez

    Full Text Available A common phenotype for many genetic diseases is that the cell is unable to deliver full-length membrane proteins to the cell surface. For some forms of autism, hereditary spherocytosis and color blindness, the culprits are single point mutations to cysteine. We have studied two inheritable cysteine mutants of cyclic nucleotide-gated channels that produce achromatopsia, a common form of severe color blindness. By taking advantage of the reactivity of cysteine's sulfhydryl group, we modified these mutants with chemical reagents that attach moieties with similar chemistries to the wild-type amino acids' side chains. We show that these modifications restored proper delivery to the cell membrane. Once there, the channels exhibited normal functional properties. This strategy might provide a unique opportunity to assess the chemical nature of membrane protein traffic problems.

  16. Comparative transcriptional analysis of Bacillus subtilis cells overproducing either secreted proteins, lipoproteins or membrane proteins

    Directory of Open Access Journals (Sweden)

    Marciniak Bogumiła C

    2012-05-01

    Full Text Available Abstract Background Bacillus subtilis is a favorable host for the production of industrially relevant proteins because of its capacity of secreting proteins into the medium to high levels, its GRAS (Generally Recognized As Safe status, its genetic accessibility and its capacity to grow in large fermentations. However, production of heterologous proteins still faces limitations. Results This study aimed at the identification of bottlenecks in secretory protein production by analyzing the response of B. subtilis at the transcriptome level to overproduction of eight secretory proteins of endogenous and heterologous origin and with different subcellular or extracellular destination: secreted proteins (NprE and XynA of B. subtilis, Usp45 of Lactococcus lactis, TEM-1 β-lactamase of Escherichia coli, membrane proteins (LmrA of L. lactis and XylP of Lactobacillus pentosus and lipoproteins (MntA and YcdH of B. subtilis. Responses specific for proteins with a common localization as well as more general stress responses were observed. The latter include upregulation of genes encoding intracellular stress proteins (groES/EL, CtsR regulated genes. Specific responses include upregulation of the liaIHGFSR operon under Usp45 and TEM-1 β-lactamase overproduction; cssRS, htrA and htrB under all secreted proteins overproduction; sigW and SigW-regulated genes mainly under membrane proteins overproduction; and ykrL (encoding an HtpX homologue specifically under membrane proteins overproduction. Conclusions The results give better insights into B. subtilis responses to protein overproduction stress and provide potential targets for genetic engineering in order to further improve B. subtilis as a protein production host.

  17. Lectin receptor kinases participate in protein-protein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis.

    Science.gov (United States)

    Gouget, Anne; Senchou, Virginie; Govers, Francine; Sanson, Arnaud; Barre, Annick; Rougé, Pierre; Pont-Lezica, Rafael; Canut, Hervé

    2006-01-01

    Interactions between plant cell walls and plasma membranes are essential for cells to function properly, but the molecules that mediate the structural continuity between wall and membrane are unknown. Some of these interactions, which are visualized upon tissue plasmolysis in Arabidopsis (Arabidopsis thaliana), are disrupted by the RGD (arginine-glycine-aspartic acid) tripeptide sequence, a characteristic cell adhesion motif in mammals. In planta induced-O (IPI-O) is an RGD-containing protein from the plant pathogen Phytophthora infestans that can disrupt cell wall-plasma membrane adhesions through its RGD motif. To identify peptide sequences that specifically bind the RGD motif of the IPI-O protein and potentially play a role in receptor recognition, we screened a heptamer peptide library displayed in a filamentous phage and selected two peptides acting as inhibitors of the plasma membrane RGD-binding activity of Arabidopsis. Moreover, the two peptides also disrupted cell wall-plasma membrane adhesions. Sequence comparison of the RGD-binding peptides with the Arabidopsis proteome revealed 12 proteins containing amino acid sequences in their extracellular domains common with the two RGD-binding peptides. Eight belong to the receptor-like kinase family, four of which have a lectin-like extracellular domain. The lectin domain of one of these, At5g60300, recognized the RGD motif both in peptides and proteins. These results imply that lectin receptor kinases are involved in protein-protein interactions with RGD-containing proteins as potential ligands, and play a structural and signaling role at the plant cell surfaces.

  18. Lectin Receptor Kinases Participate in Protein-Protein Interactions to Mediate Plasma Membrane-Cell Wall Adhesions in Arabidopsis1

    Science.gov (United States)

    Gouget, Anne; Senchou, Virginie; Govers, Francine; Sanson, Arnaud; Barre, Annick; Rougé, Pierre; Pont-Lezica, Rafael; Canut, Hervé

    2006-01-01

    Interactions between plant cell walls and plasma membranes are essential for cells to function properly, but the molecules that mediate the structural continuity between wall and membrane are unknown. Some of these interactions, which are visualized upon tissue plasmolysis in Arabidopsis (Arabidopsis thaliana), are disrupted by the RGD (arginine-glycine-aspartic acid) tripeptide sequence, a characteristic cell adhesion motif in mammals. In planta induced-O (IPI-O) is an RGD-containing protein from the plant pathogen Phytophthora infestans that can disrupt cell wall-plasma membrane adhesions through its RGD motif. To identify peptide sequences that specifically bind the RGD motif of the IPI-O protein and potentially play a role in receptor recognition, we screened a heptamer peptide library displayed in a filamentous phage and selected two peptides acting as inhibitors of the plasma membrane RGD-binding activity of Arabidopsis. Moreover, the two peptides also disrupted cell wall-plasma membrane adhesions. Sequence comparison of the RGD-binding peptides with the Arabidopsis proteome revealed 12 proteins containing amino acid sequences in their extracellular domains common with the two RGD-binding peptides. Eight belong to the receptor-like kinase family, four of which have a lectin-like extracellular domain. The lectin domain of one of these, At5g60300, recognized the RGD motif both in peptides and proteins. These results imply that lectin receptor kinases are involved in protein-protein interactions with RGD-containing proteins as potential ligands, and play a structural and signaling role at the plant cell surfaces. PMID:16361528

  19. A dynamin-like protein involved in bacterial cell membrane surveillance under environmental stress.

    Science.gov (United States)

    Sawant, Prachi; Eissenberger, Kristina; Karier, Laurence; Mascher, Thorsten; Bramkamp, Marc

    2016-09-01

    In ever-changing natural environments, bacteria are continuously challenged with numerous biotic and abiotic stresses. Accordingly, they have evolved both specific and more general mechanisms to counteract stress-induced damage and ensure survival. In the soil habitat of Bacillus subtilis, peptide antibiotics and bacteriophages are among the primary stressors that affect the integrity of the cytoplasmic membrane. Dynamin-like proteins (DLPs) play a major role in eukaryotic membrane re-modelling processes, including antiviral activities, but the function of the corresponding bacterial homologues was so far poorly understood. Here, we report on the protective function of a bacterial DLP, DynA from B. subtilis. We provide evidence that DynA plays an important role in a membrane surveillance system that counteracts membrane pore formation provoked by antibiotics and phages. In unstressed cells, DynA is a highly dynamic membrane-associated protein. Upon membrane damage, DynA localizes into large and static assemblies, where DynA acts locally to counteract stress-induced pores, presumably by inducing lipid bilayer fusion and sealing membrane gaps. Thus, lack of DynA increases the sensitivity to antibiotic exposure and phage infection. Taken together, our work suggests that DynA, and potentially other bacterial DLPs, contribute to the innate immunity of bacteria against membrane stress.

  20. IRES-mediated translation of membrane proteins and glycoproteins in eukaryotic cell-free systems.

    Directory of Open Access Journals (Sweden)

    Andreas K Brödel

    Full Text Available Internal ribosome entry site (IRES elements found in the 5' untranslated region of mRNAs enable translation initiation in a cap-independent manner, thereby representing an alternative to cap-dependent translation in cell-free protein expression systems. However, IRES function is largely species-dependent so their utility in cell-free systems from different species is rather limited. A promising approach to overcome these limitations would be the use of IRESs that are able to recruit components of the translation initiation apparatus from diverse origins. Here, we present a solution to this technical problem and describe the ability of a number of viral IRESs to direct efficient protein expression in different eukaryotic cell-free expression systems. The IRES from the intergenic region (IGR of the Cricket paralysis virus (CrPV genome was shown to function efficiently in four different cell-free systems based on lysates derived from cultured Sf21, CHO and K562 cells as well as wheat germ. Our results suggest that the CrPV IGR IRES-based expression vector is universally applicable for a broad range of eukaryotic cell lysates. Sf21, CHO and K562 cell-free expression systems are particularly promising platforms for the production of glycoproteins and membrane proteins since they contain endogenous microsomes that facilitate the incorporation of membrane-spanning proteins and the formation of post-translational modifications. We demonstrate the use of the CrPV IGR IRES-based expression vector for the enhanced synthesis of various target proteins including the glycoprotein erythropoietin and the membrane proteins heparin-binding EGF-like growth factor receptor as well as epidermal growth factor receptor in the above mentioned eukaryotic cell-free systems. CrPV IGR IRES-mediated translation will facilitate the development of novel eukaryotic cell-free expression platforms as well as the high-yield synthesis of desired proteins in already established

  1. Insulin-induced glycosylphosphatidylinositol (GPI binding to red cell membrane proteins

    Directory of Open Access Journals (Sweden)

    NENAD TOMASEVIC

    2002-12-01

    Full Text Available In this work GPI binding to membrane proteins from erythrocytes of insulinoma patients for whom prolonged hyperinsulinism and hypoglycemia were characteristic, as well as from normal erythrocytes incubated with supraphysiological concentrations of insulin were analyzed. In the RBCs from insulinoma patients, covalent GPI binding to red cell membrane proteins in the spectrin/ankyrin region, band 4.1 and two proteins of molecular mass of 115 and 110 kD was demonstrated. In erythrocytes incubated with insulin label was associated with band 4.1 and two proteins of molecular mass of 115 and 110 kD. Extraction studies showed that the 100-kD proteins are unrelated to band 3 since they were found in Triton-prepared cytoskeleton. To our knowledge this is the first demonstration of such a modification of red cell skeletal proteins, and the first demonstration of post-translation GPI binding to red cell skeletal proteins in response to insulin. A mechanism proposed for GPI binding to red cell skeletal proteins as well as the relevance of these results for physiological disorders that are characterized by hyperinsulinism are briefly discussed.

  2. Plasma membrane protein trafficking in plant-microbe interactions: a plant cell point of view

    Directory of Open Access Journals (Sweden)

    Nathalie eLeborgne-Castel

    2014-12-01

    Full Text Available In order to ensure their physiological and cellular functions, plasma membrane (PM proteins must be properly conveyed from their site of synthesis, i.e. the endoplasmic reticulum, to their final destination, the PM, through the secretory pathway. PM protein homeostasis also relies on recycling and/or degradation, two processes that are initiated by endocytosis. Vesicular membrane trafficking events to and from the PM have been shown to be altered when plant cells are exposed to mutualistic or pathogenic microbes. In this review, we will describe the fine-tune regulation of such alterations, and their consequence in PM protein activity. We will consider the formation of intracellular perimicrobial compartments, the PM protein trafficking machinery of the host, and the delivery or retrieval of signaling and transport proteins such as pattern-recognition receptors, producers of reactive oxygen species, and sugar transporters.

  3. Interactions between mycoplasma lipid-associated membrane proteins and the host cells

    Institute of Scientific and Technical Information of China (English)

    YOU Xiao-xing; ZENG Yan-hua; WU Yi-mou

    2006-01-01

    Mycoplamas are a group of wall-less prokaryotes widely distributed in nature, some of which are pathogenic for humans and animals. There are many lipoproteins anchored on the outer face of the plasma membrane, called lipid-associated membrane proteins (LAMPs). LAMPs are highly antigenic and could undergo phase and size variation, and are recognized by the innate immune system through Toll-like receptors (TLR) 2 and 6. LAMPs can modulate the immune system, and could induce immune cells apoptosis or death. In addition, they may associate with malignant transformation of host cells and are also considered to be cofactors in the progression of AIDS.

  4. Heat Shock Protein translocation induced by membrane fluidization increases tumor-cell sensitivity to chemotherapeutic drugs.

    Science.gov (United States)

    Dempsey, Nina C; Ireland, H Elyse; Smith, Carly M; Hoyle, Christine F; Williams, John H H

    2010-10-28

    Treatment of chronic lymphocytic leukemia (CLL) remains a challenge due to the frequency of drug resistance amongst patients. Improving the delivery of chemotherapeutic agents while reducing the expression of anti-apoptotic Heat Shock Proteins (HSPs) within the cancer cells may facilitate in overcoming this drug resistance. We demonstrate for the first time that sub-lethal doses of chemotherapeutic agents can be combined with membrane fluidizing treatments to produce a significant increase in drug efficacy and apoptosis in vitro. We show that fluidizers result in a transient decrease in intracellular HSPs, resulting in increased tumor-cell sensitivity and a membrane-associated induction of HSP gene expression.

  5. Tracking membrane protein association in model membranes.

    Directory of Open Access Journals (Sweden)

    Myriam Reffay

    Full Text Available Membrane proteins are essential in the exchange processes of cells. In spite of great breakthrough in soluble proteins studies, membrane proteins structures, functions and interactions are still a challenge because of the difficulties related to their hydrophobic properties. Most of the experiments are performed with detergent-solubilized membrane proteins. However widely used micellar systems are far from the biological two-dimensions membrane. The development of new biomimetic membrane systems is fundamental to tackle this issue.We present an original approach that combines the Fluorescence Recovery After fringe Pattern Photobleaching technique and the use of a versatile sponge phase that makes it possible to extract crucial informations about interactions between membrane proteins embedded in the bilayers of a sponge phase. The clear advantage lies in the ability to adjust at will the spacing between two adjacent bilayers. When the membranes are far apart, the only possible interactions occur laterally between proteins embedded within the same bilayer, whereas when membranes get closer to each other, interactions between proteins embedded in facing membranes may occur as well.After validating our approach on the streptavidin-biotinylated peptide complex, we study the interactions between two membrane proteins, MexA and OprM, from a Pseudomonas aeruginosa efflux pump. The mode of interaction, the size of the protein complex and its potential stoichiometry are determined. In particular, we demonstrate that: MexA is effectively embedded in the bilayer; MexA and OprM do not interact laterally but can form a complex if they are embedded in opposite bilayers; the population of bound proteins is at its maximum for bilayers separated by a distance of about 200 A, which is the periplasmic thickness of Pseudomonas aeruginosa. We also show that the MexA-OprM association is enhanced when the position and orientation of the protein is restricted by the

  6. Evaluation of a multisubunit recombinant polymorphic membrane protein and major outer membrane protein T cell vaccine against Chlamydia muridarum genital infection in three strains of mice.

    Science.gov (United States)

    Yu, Hong; Karunakaran, Karuna P; Jiang, Xiaozhou; Brunham, Robert C

    2014-08-06

    An efficacious vaccine is needed to control Chlamydia trachomatis infection. In the murine model of Chlamydia muridarum genital infection, multifunctional mucosal CD4 T cells are the foundation for protective immunity, with antibody playing a secondary role. We previously identified four Chlamydia outer membrane proteins (PmpE, PmpF, PmpG and PmpH) as CD4 T cell vaccine candidates using a dendritic cell-based immunoproteomic approach. We also demonstrated that these four polymorphic membrane proteins (Pmps) individually conferred protection as measured by accelerated clearance of Chlamydia infection in the C57BL/6 murine genital tract model. The major outer membrane protein, MOMP is also a well-studied protective vaccine antigen in this system. In the current study, we tested immunogenicity and protection of a multisubunit recombinant protein vaccine consisting of the four Pmps (PmpEFGH) with or without the major outer membrane protein (MOMP) formulated with a Th1 polarizing adjuvant in C57BL/6, Balb/c and C3H mice. We found that C57BL/6 mice vaccinated with PmpEFGH+MOMP elicited more robust cellular immune responses than mice immunized with individual protein antigens. Pmps elicited more variable cellular immune responses than MOMP among the three strains of mice. The combination vaccine accelerated clearance in the three strains of mice although at different rates. We conclude that the recombinant outer membrane protein combination constitutes a promising first generation Chlamydia vaccine construct that should provide broad immunogenicity in an outbred population.

  7. Protein nanocoatings on synthetic polymeric nanofibrous membranes designed as carriers for skin cells

    Science.gov (United States)

    Bacakova, Marketa; Pajorova, Julia; Stranska, Denisa; Hadraba, Daniel; Lopot, Frantisek; Riedel, Tomas; Brynda, Eduard; Zaloudkova, Margit; Bacakova, Lucie

    2017-01-01

    Protein-coated resorbable synthetic polymeric nanofibrous membranes are promising for the fabrication of advanced skin substitutes. We fabricated electrospun polylactic acid and poly(lactide-co-glycolic acid) nanofibrous membranes and coated them with fibrin or collagen I. Fibronectin was attached to a fibrin or collagen nanocoating, in order further to enhance the cell adhesion and spreading. Fibrin regularly formed a coating around individual nanofibers in the membranes, and also formed a thin noncontinuous nanofibrous mesh on top of the membranes. Collagen also coated most of the fibers of the membrane and randomly created a soft gel on the membrane surface. Fibronectin predominantly adsorbed onto a thin fibrin mesh or a collagen gel, and formed a thin nanofibrous structure. Fibrin nanocoating greatly improved the attachment, spreading, and proliferation of human dermal fibroblasts, whereas collagen nanocoating had a positive influence on the behavior of human HaCaT keratinocytes. In addition, fibrin stimulated the fibroblasts to synthesize fibronectin and to deposit it as an extracellular matrix. Fibrin coating also showed a tendency to improve the ultimate tensile strength of the nanofibrous membranes. Fibronectin attached to fibrin or to a collagen coating further enhanced the adhesion, spreading, and proliferation of both cell types. PMID:28223803

  8. Nucleoid occlusion protein Noc recruits DNA to the bacterial cell membrane.

    Science.gov (United States)

    Adams, David William; Wu, Ling Juan; Errington, Jeff

    2015-02-12

    To proliferate efficiently, cells must co-ordinate division with chromosome segregation. In Bacillus subtilis, the nucleoid occlusion protein Noc binds to specific DNA sequences (NBSs) scattered around the chromosome and helps to protect genomic integrity by coupling the initiation of division to the progression of chromosome replication and segregation. However, how it inhibits division has remained unclear. Here, we demonstrate that Noc associates with the cell membrane via an N-terminal amphipathic helix, which is necessary for function. Importantly, the membrane-binding affinity of this helix is weak and requires the assembly of nucleoprotein complexes, thus establishing a mechanism for DNA-dependent activation of Noc. Furthermore, division inhibition by Noc requires recruitment of NBS DNA to the cell membrane and is dependent on its ability to bind DNA and membrane simultaneously. Indeed, Noc production in a heterologous system is sufficient for recruitment of chromosomal DNA to the membrane. Our results suggest a simple model in which the formation of large membrane-associated nucleoprotein complexes physically occludes assembly of the division machinery.

  9. Reconstitution of membrane protein complexes involved in pneumococcal septal cell wall assembly.

    Directory of Open Access Journals (Sweden)

    Marjolaine Noirclerc-Savoye

    Full Text Available The synthesis of peptidoglycan, the major component of the bacterial cell wall, is essential to cell survival, yet its mechanism remains poorly understood. In the present work, we have isolated several membrane protein complexes consisting of the late division proteins of Streptococcus pneumoniae: DivIB, DivIC, FtsL, PBP2x and FtsW, or subsets thereof. We have co-expressed membrane proteins from S. pneumoniae in Escherichia coli. By combining two successive affinity chromatography steps, we obtained membrane protein complexes with a very good purity. These complexes are functional, as indicated by the retained activity of PBP2x to bind a fluorescent derivative of penicillin and to hydrolyze the substrate analogue S2d. Moreover, we have evidenced the stabilizing role of protein-protein interactions within each complex. This work paves the way for a complete reconstitution of peptidoglycan synthesis in vitro, which will be critical to the elucidation of its intricate regulation mechanisms.

  10. Thermodynamic competition between membrane protein oligomeric states

    Science.gov (United States)

    Kahraman, Osman; Haselwandter, Christoph A.

    2016-10-01

    Self-assembly of protein monomers into distinct membrane protein oligomers provides a general mechanism for diversity in the molecular architectures, and resulting biological functions, of membrane proteins. We develop a general physical framework describing the thermodynamic competition between different oligomeric states of membrane proteins. Using the mechanosensitive channel of large conductance as a model system, we show how the dominant oligomeric states of membrane proteins emerge from the interplay of protein concentration in the cell membrane, protein-induced lipid bilayer deformations, and direct monomer-monomer interactions. Our results suggest general physical mechanisms and principles underlying regulation of protein function via control of membrane protein oligomeric state.

  11. Thermodynamic competition between membrane protein oligomeric states

    CERN Document Server

    Kahraman, Osman

    2016-01-01

    Self-assembly of protein monomers into distinct membrane protein oligomers provides a general mechanism for diversity in the molecular architectures, and resulting biological functions, of membrane proteins. We develop a general physical framework describing the thermodynamic competition between different oligomeric states of membrane proteins. Using the mechanosensitive channel of large conductance as a model system, we show how the dominant oligomeric states of membrane proteins emerge from the interplay of protein concentration in the cell membrane, protein-induced lipid bilayer deformations, and direct monomer-monomer interactions. Our results suggest general physical mechanisms and principles underlying regulation of protein function via control of membrane protein oligomeric state.

  12. A cell-free assay to determine the stoichiometry of plasma membrane proteins.

    Science.gov (United States)

    Trigo, Cesar; Vivar, Juan P; Gonzalez, Carlos B; Brauchi, Sebastian

    2013-04-01

    Plasma membrane receptors, transporters, and ion channel molecules are often found as oligomeric structures that participate in signaling cascades essential for cell survival. Different states of protein oligomerization may play a role in functional control and allosteric regulation. Stochastic GFP-photobleaching (SGP) has emerged as an affordable and simple method to determine the stoichiometry of proteins at the plasma membrane. This non-invasive optical approach can be useful for total internal reflection of fluorescence microscopy (TIRFM), where signal-to-noise ratio is very high at the plasma membrane. Here, we report an alternative methodology implemented on a standard laser scanning confocal microscope (LSCM). The simplicity of our method will allow for its implementation in any epifluorescence microscope of choice.

  13. Heterogeneity of Arabinogalactan-Proteins on the Plasma Membrane of Rose Cells.

    Science.gov (United States)

    Serpe, M. D.; Nothnagel, E. A.

    1996-11-01

    Arabinogalactan-proteins (AGPs) have been purified from the plasma membrane of suspension-cultured Paul's Scarlet rose (Rosa sp.) cells. The two most abundant and homogeneous plasma membrane AGP fractions were named plasma membrane AGP1 (PM-AGP1) and plasma membrane AGP2 (PM-AGP2) and had apparent molecular masses of 140 and 217 kD, respectively. Both PM-AGP1 and PM-AGP2 had [beta]-(1-3)-, [beta]-(1,6)-, and [beta]-(1,3,6)-galactopyranosyl residues, predominantly terminal [alpha]-arabinofuranosyl residues, and (1,4)- and terminal glucuronopyranosyl residues. The protein moieties of PM-AGP1 and PM-AGP2 were both rich in hydroxyproline, alanine, and serine, but differed in the abundance of hydroxyproline, which was 1.6 times higher in PM-AGP2 than in PM-AGP1. Another difference was the overall protein content, which was 3.7% (w/w) in PM-AGP1 and 15% in PM-AGP2. As judged by their behavior on reverse-phase chromatography, PM-AGP1 and PM-AGP2 were not more hydrophobic than AGPs from the cell wall or culture medium. In contrast, a minor plasma membrane AGP fraction eluted later on reverse-phase chromatography and was more negatively charged at pH 5 than either PM-AGP1 or PM-AGP2. The more negatively charged fraction contained molecules with a glycosyl composition characteristic of AGPs and included at least two different macromolecules. The results of this investigation indicate that Rosa plasma membrane contains at least four distinct AGPs or AGP-like molecules. These molecules differed from each other in size, charge, hydrophobicity, amino-acyl composition, and/or protein content.

  14. Fast spatiotemporal correlation spectroscopy to determine protein lateral diffusion laws in live cell membranes.

    Science.gov (United States)

    Di Rienzo, Carmine; Gratton, Enrico; Beltram, Fabio; Cardarelli, Francesco

    2013-07-23

    Spatial distribution and dynamics of plasma-membrane proteins are thought to be modulated by lipid composition and by the underlying cytoskeleton, which forms transient barriers to diffusion. So far this idea was probed by single-particle tracking of membrane components in which gold particles or antibodies were used to individually monitor the molecules of interest. Unfortunately, the relatively large particles needed for single-particle tracking can in principle alter the very dynamics under study. Here, we use a method that makes it possible to investigate plasma-membrane proteins by means of small molecular labels, specifically single GFP constructs. First, fast imaging of the region of interest on the membrane is performed. For each time delay in the resulting stack of images the average spatial correlation function is calculated. We show that by fitting the series of correlation functions, the actual protein "diffusion law" can be obtained directly from imaging, in the form of a mean-square displacement vs. time-delay plot, with no need for interpretative models. This approach is tested with several simulated 2D diffusion conditions and in live Chinese hamster ovary cells with a GFP-tagged transmembrane transferrin receptor, a well-known benchmark of membrane-skeleton-dependent transiently confined diffusion. This approach does not require extraction of the individual trajectories and can be used also with dim and dense molecules. We argue that it represents a powerful tool for the determination of kinetic and thermodynamic parameters over very wide spatial and temporal scales.

  15. Polarized expression of the membrane ASP protein derived from HIV-1 antisense transcription in T cells

    Directory of Open Access Journals (Sweden)

    Gay Bernard

    2011-09-01

    Full Text Available Abstract Background Retroviral gene expression generally depends on a full-length transcript that initiates in the 5' LTR, which is either left unspliced or alternatively spliced. We and others have demonstrated the existence of antisense transcription initiating in the 3' LTR in human lymphotropic retroviruses, including HTLV-1, HTLV-2, and HIV-1. Such transcripts have been postulated to encode antisense proteins important for the establishment of viral infections. The antisense strand of the HIV-1 proviral DNA contains an ORF termed asp, coding for a highly hydrophobic protein. However, although anti-ASP antibodies have been described to be present in HIV-1-infected patients, its in vivo expression requires further support. The objective of this present study was to clearly demonstrate that ASP is effectively expressed in infected T cells and to provide a better characterization of its subcellular localization. Results We first investigated the subcellular localization of ASP by transfecting Jurkat T cells with vectors expressing ASP tagged with the Flag epitope to its N-terminus. Using immunofluorescence microscopy, we found that ASP localized to the plasma membrane in transfected Jurkat T cells, but with different staining patterns. In addition to an entire distribution to the plasma membrane, ASP showed an asymmetric localization and could also be detected in membrane connections between two cells. We then infected Jurkat T cells with NL4.3 virus coding for ASP tagged with the Flag epitope at its C-terminal end. By this approach, we were capable of showing that ASP is effectively expressed from the HIV-1 3' LTR in infected T cells, with an asymmetric localization of the viral protein at the plasma membrane. Conclusion These results demonstrate for the first time that ASP can be detected when expressed from full-length HIV-1 proviral DNA and that its localization is consistent with Jurkat T cells overexpressing ASP.

  16. The membrane fusion step of vaccinia virus entry is cooperatively mediated by multiple viral proteins and host cell components.

    Directory of Open Access Journals (Sweden)

    Jason P Laliberte

    2011-12-01

    Full Text Available For many viruses, one or two proteins allow cell attachment and entry, which occurs through the plasma membrane or following endocytosis at low pH. In contrast, vaccinia virus (VACV enters cells by both neutral and low pH routes; four proteins mediate cell attachment and twelve that are associated in a membrane complex and conserved in all poxviruses are dedicated to entry. The aim of the present study was to determine the roles of cellular and viral proteins in initial stages of entry, specifically fusion of the membranes of the mature virion and cell. For analysis of the role of cellular components, we used well characterized inhibitors and measured binding of a recombinant VACV virion containing Gaussia luciferase fused to a core protein; viral and cellular membrane lipid mixing with a self-quenching fluorescent probe in the virion membrane; and core entry with a recombinant VACV expressing firefly luciferase and electron microscopy. We determined that inhibitors of tyrosine protein kinases, dynamin GTPase and actin dynamics had little effect on binding of virions to cells but impaired membrane fusion, whereas partial cholesterol depletion and inhibitors of endosomal acidification and membrane blebbing had a severe effect at the later stage of core entry. To determine the role of viral proteins, virions lacking individual membrane components were purified from cells infected with members of a panel of ten conditional-lethal inducible mutants. Each of the entry protein-deficient virions had severely reduced infectivity and except for A28, L1 and L5 greatly impaired membrane fusion. In addition, a potent neutralizing L1 monoclonal antibody blocked entry at a post-membrane lipid-mixing step. Taken together, these results suggested a 2-step entry model and implicated an unprecedented number of viral proteins and cellular components involved in signaling and actin rearrangement for initiation of virus-cell membrane fusion during poxvirus entry.

  17. Preferential transfer of certain plasma membrane proteins onto T and B cells by trogocytosis.

    Directory of Open Access Journals (Sweden)

    Sandrine Daubeuf

    Full Text Available T and B cells capture antigens via membrane fragments of antigen presenting cells (APC in a process termed trogocytosis. Whether (and how a preferential transfer of some APC components occurs during trogocytosis is still largely unknown. We analyzed the transfer onto murine T and B cells of a large panel of fluorescent proteins with different intra-cellular localizations in the APC or various types of anchors in the plasma membrane (PM. Only the latter were transferred by trogocytosis, albeit with different efficiencies. Unexpectedly, proteins anchored to the PM's cytoplasmic face, or recruited to it via interaction with phosphinositides, were more efficiently transferred than those facing the outside of the cell. For proteins spanning the PM's whole width, transfer efficiency was found to vary quite substantially, with tetraspanins, CD4 and FcRgamma found among the most efficiently transferred proteins. We exploited our findings to set immunodiagnostic assays based on the capture of preferentially transferred components onto T or B cells. The preferential transfer documented here should prove useful in deciphering the cellular structures involved in trogocytosis.

  18. Membrane toxicity of abnormal prion protein in adrenal chromaffin cells of scrapie infected sheep.

    Science.gov (United States)

    McGovern, Gillian; Jeffrey, Martin

    2013-01-01

    Transmissible spongiform encephalopathies (TSEs) or prion diseases are associated with accumulations of disease specific PrP (PrP(d)) in the central nervous system (CNS) and often the lymphoreticular system (LRS). Accumulations have additionally been recorded in other tissues including the peripheral nervous system and adrenal gland. Here we investigate the effect of sheep scrapie on the morphology and the accumulation of PrP(d) in the adrenal medulla of scrapie affected sheep using light and electron microscopy. Using immunogold electron microscopy, non-fibrillar forms of PrP(d) were shown to accumulate mainly in association with chromaffin cells, occasional nerve endings and macrophages. PrP(d) accumulation was associated with distinctive membrane changes of chromaffin cells including increased electron density, abnormal linearity and invaginations. Internalisation of PrP(d) from the chromaffin cell plasma membrane occurred in association with granule recycling following hormone exocytosis. PrP(d) accumulation and internalisation from membranes is similarly associated with perturbations of membrane structure and trafficking in CNS neurons and tingible body macrophages of the LRS. These data suggest that a major toxic effect of PrP(d) is at the level of plasma membranes. However, the precise nature of PrP(d)-membrane toxicity is tissue and cell specific suggesting that the normal protein may act as a multi-functional scaffolding molecule. We further suggest that the co-localisation of PrP(d) with exocytic granules of the hormone trafficking system may provide an additional source of infectivity in blood.

  19. Membrane toxicity of abnormal prion protein in adrenal chromaffin cells of scrapie infected sheep.

    Directory of Open Access Journals (Sweden)

    Gillian McGovern

    Full Text Available Transmissible spongiform encephalopathies (TSEs or prion diseases are associated with accumulations of disease specific PrP (PrP(d in the central nervous system (CNS and often the lymphoreticular system (LRS. Accumulations have additionally been recorded in other tissues including the peripheral nervous system and adrenal gland. Here we investigate the effect of sheep scrapie on the morphology and the accumulation of PrP(d in the adrenal medulla of scrapie affected sheep using light and electron microscopy. Using immunogold electron microscopy, non-fibrillar forms of PrP(d were shown to accumulate mainly in association with chromaffin cells, occasional nerve endings and macrophages. PrP(d accumulation was associated with distinctive membrane changes of chromaffin cells including increased electron density, abnormal linearity and invaginations. Internalisation of PrP(d from the chromaffin cell plasma membrane occurred in association with granule recycling following hormone exocytosis. PrP(d accumulation and internalisation from membranes is similarly associated with perturbations of membrane structure and trafficking in CNS neurons and tingible body macrophages of the LRS. These data suggest that a major toxic effect of PrP(d is at the level of plasma membranes. However, the precise nature of PrP(d-membrane toxicity is tissue and cell specific suggesting that the normal protein may act as a multi-functional scaffolding molecule. We further suggest that the co-localisation of PrP(d with exocytic granules of the hormone trafficking system may provide an additional source of infectivity in blood.

  20. Expression and structural analysis of membrane proteins

    OpenAIRE

    Eifler, Nora

    2006-01-01

    1.1 Membrane Proteins Between one quarter and one third of all genes in eukaryotic and prokaryotic organisms code for integral membrane proteins (IMPs) (Essen, 2002). These proteins are essential parts of biological membranes and confer various functions, such as energy conversion, transport, biosynthesis of lipids, signal transduction, or cell recognition. The enormous economical potential of membrane proteins is highlighted by the family of G-protein-coupled receptors (GPC...

  1. Rigid proteins and softening of biological membranes—with application to HIV-induced cell membrane softening

    Science.gov (United States)

    Agrawal, Himani; Zelisko, Matthew; Liu, Liping; Sharma, Pradeep

    2016-05-01

    A key step in the HIV-infection process is the fusion of the virion membrane with the target cell membrane and the concomitant transfer of the viral RNA. Experimental evidence suggests that the fusion is preceded by considerable elastic softening of the cell membranes due to the insertion of fusion peptide in the membrane. What are the mechanisms underpinning the elastic softening of the membrane upon peptide insertion? A broader question may be posed: insertion of rigid proteins in soft membranes ought to stiffen the membranes not soften them. However, experimental observations perplexingly appear to show that rigid proteins may either soften or harden membranes even though conventional wisdom only suggests stiffening. In this work, we argue that regarding proteins as merely non-specific rigid inclusions is flawed, and each protein has a unique mechanical signature dictated by its specific interfacial coupling to the surrounding membrane. Predicated on this hypothesis, we have carried out atomistic simulations to investigate peptide-membrane interactions. Together with a continuum model, we reconcile contrasting experimental data in the literature including the case of HIV-fusion peptide induced softening. We conclude that the structural rearrangements of the lipids around the inclusions cause the softening or stiffening of the biological membranes.

  2. In silicio identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae.

    Science.gov (United States)

    Caro, L H; Tettelin, H; Vossen, J H; Ram, A F; van den Ende, H; Klis, F M

    1997-12-01

    Use of the Von Heijne algorithm allowed the identification of 686 open reading frames (ORFs) in the genome of Saccharomyces cerevisiae that encode proteins with a potential N-terminal signal sequence for entering the secretory pathway. On further analysis, 51 of these proteins contain a potential glycosyl-phosphatidylinositol (GPI)-attachment signal. Seven additional ORFs were found to belong to this group. Upon examination of the possible GPI-attachment sites, it was found that in yeast the most probable amino acids for GPI-attachment as asparagine and glycine. In yeast, GPI-proteins are found at the cell surface, either attached to the plasma-membrane or as an intrinsic part of the cell wall. It was noted that plasma-membrane GPI-proteins possess a dibasic residue motif just before their predicted GPI-attachment site. Based on this, and on homologies between proteins, families of plasma-membrane and cell wall proteins were assigned, revealing 20 potential plasma-membrane and 38 potential cell wall proteins. For members of three plasma-membrane protein families, a function has been described. On the other hand, most of the cell wall proteins seem to be structural components of the wall, responsive to different growth conditions. The GPI-attachment site of yeast slightly differs from mammalian cells. This might be of use in the development of anti-fungal drugs.

  3. Artificial membrane-binding proteins stimulate oxygenation of stem cells during engineering of large cartilage tissue

    Science.gov (United States)

    Armstrong, James P. K.; Shakur, Rameen; Horne, Joseph P.; Dickinson, Sally C.; Armstrong, Craig T.; Lau, Katherine; Kadiwala, Juned; Lowe, Robert; Seddon, Annela; Mann, Stephen; Anderson, J. L. Ross; Perriman, Adam W.; Hollander, Anthony P.

    2015-06-01

    Restricted oxygen diffusion can result in central cell necrosis in engineered tissue, a problem that is exacerbated when engineering large tissue constructs for clinical application. Here we show that pre-treating human mesenchymal stem cells (hMSCs) with synthetic membrane-active myoglobin-polymer-surfactant complexes can provide a reservoir of oxygen capable of alleviating necrosis at the centre of hyaline cartilage. This is achieved through the development of a new cell functionalization methodology based on polymer-surfactant conjugation, which allows the delivery of functional proteins to the hMSC membrane. This new approach circumvents the need for cell surface engineering using protein chimerization or genetic transfection, and we demonstrate that the surface-modified hMSCs retain their ability to proliferate and to undergo multilineage differentiation. The functionalization technology is facile, versatile and non-disruptive, and in addition to tissue oxygenation, it should have far-reaching application in a host of tissue engineering and cell-based therapies.

  4. 1,25(OH)2D3 increases membrane associated protein kinase C in MDBK cells.

    Science.gov (United States)

    Simboli-Campbell, M; Franks, D J; Welsh, J

    1992-01-01

    To determine whether 1,25-dihydroxycholecalciferol [1,25(OH)2D3] affects protein kinase C (PKC) activity in kidney, as has been demonstrated in HL-60 cells we measured 1,25(OH)2D3 binding, PKC activity and PKC immunoreactivity in Madin Darby bovine kidney (MDBK) cells, a normal renal epithelial cell line derived from bovine kidney. Our data demonstrate that MDBK cells exhibit specific high affinity binding for 1,25(OH)2D3, indicating the presence of the vitamin D receptor (VDR). Treatment of MDBK cells with 1,25(OH)2D3 for 24 h increased membrane PKC activity and immunoreactivity. The effect of 1,25(OH)2D3 was dose-dependent, with a peak effect observed at 10(-7)M 1,25(OH)2D3. The 1,25(OH)2D3 induced increase in membrane PKC was paralleled by a comparable decrease in cytosolic PKC activity and amount. Although time course studies were consistent with a VDR mediated effect of 1,25(OH)2D3 on PKC protein synthesis, total PKC activity was not increased by 1,25(OH)2D3, suggesting an effect on PKC translocation or localization. These results suggest that 1,25(OH)2D3 modulates PKC mediated events in kidney, a classic target for this steroid hormone.

  5. Interaction of S-layer proteins of Lactobacillus kefir with model membranes and cells.

    Science.gov (United States)

    Hollmann, Axel; Delfederico, Lucrecia; Santos, Nuno Correia; Disalvo, E Anibal; Semorile, Liliana

    2017-01-12

    In previous works, it was shown that S-layer proteins from Lactobacillus kefir were able to recrystallize and stabilize liposomes, this feature reveling a great potential for developing liposomal-based carriers. Despite previous studies on this subject are important milestones, a number of questions remain unanswered; In this context, the feasibility of S-layer proteins as a biomaterial for drug delivery was evaluated in this work. First, S-layer proteins were fully characterized by Electron microscopy, 2D-electrophoresis, and HPAEC-PAD. Afterward, interactions of S-layer proteins with model lipid membranes were evaluated, showing that proteins adsorb to the lipid surface following a non-fickean or anomalous diffusion, when positively charged lipid were employed, suggesting that electrostatic interaction is a key factor in the recrystallization process on these proteins. Finally, the interaction of S-layer coated liposomes with CACO-2 cell line was assessed, First cytotoxicity of formulations was tested showing noncytotoxic effects in S-layer coated vesicles. Second, by flow cytometry, it was observed an increased ability to transfer cargo molecules into CACO-2 cells from S-layer coated liposomes in comparison to control ones. All data put together, supporting the idea that a combination of adhesive properties of S-layer proteins concomitant with higher stability of S-layer coated liposomes represents an exciting starting point in the development of new drug carriers.

  6. High lipid order of Arabidopsis cell-plate membranes mediated by sterol and DYNAMIN-RELATED PROTEIN1A function.

    Science.gov (United States)

    Frescatada-Rosa, Márcia; Stanislas, Thomas; Backues, Steven K; Reichardt, Ilka; Men, Shuzhen; Boutté, Yohann; Jürgens, Gerd; Moritz, Thomas; Bednarek, Sebastian Y; Grebe, Markus

    2014-12-01

    Membranes of eukaryotic cells contain high lipid-order sterol-rich domains that are thought to mediate temporal and spatial organization of cellular processes. Sterols are crucial for execution of cytokinesis, the last stage of cell division, in diverse eukaryotes. The cell plate of higher-plant cells is the membrane structure that separates daughter cells during somatic cytokinesis. Cell-plate formation in Arabidopsis relies on sterol- and DYNAMIN-RELATED PROTEIN1A (DRP1A)-dependent endocytosis. However, functional relationships between lipid membrane order or lipid packing and endocytic machinery components during eukaryotic cytokinesis have not been elucidated. Using ratiometric live imaging of lipid order-sensitive fluorescent probes, we show that the cell plate of Arabidopsis thaliana represents a dynamic, high lipid-order membrane domain. The cell-plate lipid order was found to be sensitive to pharmacological and genetic alterations of sterol composition. Sterols co-localize with DRP1A at the cell plate, and DRP1A accumulates in detergent-resistant membrane fractions. Modifications of sterol concentration or composition reduce cell-plate membrane order and affect DRP1A localization. Strikingly, DRP1A function itself is essential for high lipid order at the cell plate. Our findings provide evidence that the cell plate represents a high lipid-order domain, and pave the way to explore potential feedback between lipid order and function of dynamin-related proteins during cytokinesis.

  7. Potent Dendritic Cell Vaccine Loaded with Latent Membrane Protein 2A(LMP2A)

    Institute of Scientific and Technical Information of China (English)

    Yun Chen; Kun Yao; Bing Wang; Jian Qing; Genyan Liu

    2008-01-01

    Epstein-Barr virus(EBV),a potential oncogenic herpesvirus,has been found to be associated with several malignancies.It's critical to elicit cellular immunity of the body to fight against EBV-associated tumor development.Using dendritic cells(DCs)loaded with latent membrane protein 2A(LMP2A)to elicit T cell response against tumor may be one of the most direct and safest immunotherapy approaches.The present study aimed to develop DCs-based cancer vaccine (DC loaded with LMP2A protein)and study its biological characteristics and immune functions.Purified LMP2A protein was extracted from a cell line L929/LMP2A stably expressing LMP2A.LMP2A could be loaded on DCs with no significant changes of the DC surface markers and cytomorphology.The percentage of DCs loaded with LMP2A was above 80%.LMP2A-loaded DCs markedly enhanced the proliferation of antigen-specific CD8+ T and CD4+ T cells by 3H-TdR incorporation assay.Besides, the specific cytotoxicity of the CTLs against LMP2A target cells was also significantly increased.These results indicated that DC-based vaccine loaded with virus antigen could elicit potent CTL response and provide a foundation for further study on the DC-based immunotherapy for nasopharygeal carcinoma and other EBV associated tumors.

  8. Characterization of inner membrane protein YciB in Escherichia coli: YciB interacts with cell elongation and division proteins.

    Science.gov (United States)

    Li, Gaochi; Badaluddin, Noor Afiza; Kitakawa, Madoka

    2015-11-01

    The function of inner membrane protein YciB in Escherichia coli has not been identified. In this study, the membrane topology of the protein that contains five transmembrane domains was clarified. YciB was found to interact with various proteins involved in cell elongation and cell division using a bacterial two-hybrid system. It was also found that the deletion mutant of yciB is susceptible to the low osmolarity. These observations together with previous reports indicate that YciB is involved in synthesis of the cell envelope by interacting with cell elongation and cell division complexes.

  9. Differential expression profiling of membrane proteins by quantitative proteomics in a human mesenchymal stem cell line undergoing osteoblast differentiation

    DEFF Research Database (Denmark)

    Foster, Leonard J; Zeemann, Patricia A; Li, Chen;

    2005-01-01

    One of the major limitations for understanding the biology of human mesenchymal stem cells (hMSCs) is the absence of prospective markers needed for distinguishing them from other cells and for monitoring lineage-specific differentiation. Mass spectrometry (MS)-based proteomics has proven extremely...... in a cell model of hMSCs established by overexpression of human telomerase reverse-transcriptase gene. We identified 463 unique proteins with extremely high confidence, including all known markers of hMSCs (e.g., SH3 [CD71], SH2 [CD105], CD166, CD44, Thy1, CD29, and HOP26 [CD63]) among 148 integral membrane...... or membrane-anchored proteins and 159 membrane-associated proteins. Twenty-nine integrins and cell adhesion molecules, 20 receptors, and 18 Ras-related small GTPases were also identified. Upon OB differentiation, the expression levels of 83 proteins increased by at least twofold whereas the levels of another...

  10. Identification of the gene encoding Brain Cell Membrane Protein 1 (BCMP1, a putative four-transmembrane protein distantly related to the Peripheral Myelin Protein 22 / Epithelial Membrane Proteins and the Claudins

    Directory of Open Access Journals (Sweden)

    Christophe Daniel

    2001-07-01

    Full Text Available Abstract Background A partial cDNA clone from dog thyroid presenting a very significant similarity with an uncharacterized mouse EST sequence was isolated fortuitously. We report here the identification of the complete mRNA and of the gene, the product of which was termed "brain cell membrane protein 1" (BCMP1. Results The 4 kb-long mRNA sequence exhibited an open-reading frame of only 543 b followed by a 3.2 kb-long 3' untranslated region containing several AUUUA instability motifs. Analysis of the encoded protein sequence identified the presence of four putative transmembrane domains. Similarity searches in protein domain databases identified partial sequence conservations with peripheral myelin protein 22 (PMP22/ epithelial membrane proteins (EMPs and Claudins, defining the encoded protein as representative of the existence of a novel subclass in this protein family. Northern-blot analysis of the expression of the corresponding mRNA in adult dog tissues revealed the presence of a huge amount of the 4 kb transcript in the brain. An EGFP-BCMP1 fusion protein expressed in transfected COS-7 cells exhibited a membranous localization as expected. The sequences encoding BCMP1 were assigned to chromosome X in dog, man and rat using radiation hybrid panels and were partly localized in the currently available human genome sequence. Conclusions We have identified the existence in several mammalian species of a gene encoding a putative four-transmembrane protein, BCMP1, wich defines a novel subclass in this family of proteins. In dog at least, the corresponding mRNA is highly present in brain cells. The chromosomal localization of the gene in man makes of it a likely candidate gene for X-linked mental retardation.

  11. Identification of macrophage external membrane proteins and their possible role in cell adhesion.

    Science.gov (United States)

    Pearlstein, E; Dienstman, S R; Defendi, V

    1978-10-01

    Starch-activated mouse peritoneal macrophages (STpMAC) plated on plastic demonstrate the adhesive properties typical for activated pMAC: attaching as round cells and, within 15 min, spreading out with marginal membrane ruffles. These attached STpMAC were labeled by lactoperoxidase-catalysed 125I surface iodination, sodium dodecyl-sulfate-lysed, and the lysates electrophoresed on polyacrylamide gels which were examined by autoradiography. The STpMAC morphological phenotype correlates with the labeling of a particular protein (195,000, estimated mol wt). Normal pMAC (NpMAC), from unstimulated mice, do not spread and do not display the 195,000 band. Both pMAC band patterns, including the 195,000 band, are relatively resistant to trypsin digestion, as is pMAC adhesion itself trypsin-resistant. Neither class of pMAC exhibits fibronectin (Cell Adhesion Factor, LETS protein) which is a component in the adhesive matrix of cells forming trypsin-sensitive monolayers. When pMAC are tested against antifibronectin antibody, these cells do not give immunofluorescent staining. In summary, two functions in pMAC adhesion, enzyme resistance and the ability to spread, appear related to molecular properties distinctive for pMAC surface protein.

  12. Shotgun proteomics and network analysis between plasma membrane and extracellular matrix proteins from rat olfactory ensheathing cells.

    Science.gov (United States)

    Liu, Yisong; Teng, Xiaohua; Yang, Xiaoxu; Song, Qing; Lu, Rong; Xiong, Jixian; Liu, Bo; Zeng, Nianju; Zeng, Yu; Long, Jia; Cao, Rui; Lin, Yong; He, Quanze; Chen, Ping; Lu, Ming; Liang, Songping

    2010-01-01

    Olfactory ensheathing cells (OECs) are a special type of glial cells that have characteristics of both astrocytes and Schwann cells. Evidence suggests that the regenerative capacity of OECs is induced by soluble, secreted factors that influence their microenvironment. These factors may regulate OECs self-renewal and/or induce their capacity to augment spinal cord regeneration. Profiling of plasma membrane and extracellular matrix through a high-throughput expression proteomics approach was undertaken to identify plasma membrane and extracellular matrix proteins of OECs under serum-free conditions. 1D-shotgun proteomics followed with gene ontology (GO) analysis was used to screen proteins from primary culture rat OECs. Four hundred and seventy nonredundant plasma membrane proteins and 168 extracellular matrix proteins were identified, the majority of which were never before reported to be produced by OECs. Furthermore, plasma membrane and extracellular proteins were classified based on their protein-protein interaction predicted by STRING quantitatively integrates interaction data. The proteomic profiling of the OECs plasma membrane proteins and their connection with the secretome in serum-free culture conditions provides new insights into the nature of their in vivo microenvironmental niche. Proteomic analysis for the discovery of clinical biomarkers of OECs mechanism warrants further study.

  13. Analysis of Protein-Membrane Interactions

    DEFF Research Database (Denmark)

    Kemmer, Gerdi Christine

    Cellular membranes are complex structures, consisting of hundreds of different lipids and proteins. These membranes act as barriers between distinct environments, constituting hot spots for many essential functions of the cell, including signaling, energy conversion, and transport. These functions...... are implemented by soluble proteins reversibly binding to, as well as by integral membrane proteins embedded in, cellular membranes. The activity and interaction of these proteins is furthermore modulated by the lipids of the membrane. Here, liposomes were used as model membrane systems to investigate...... interactions between proteins and lipids. First, interactions of soluble proteins with membranes and specific lipids were studied, using two proteins: Annexin V and Tma1. The protein was first subjected to a lipid/protein overlay assay to identify candidate interaction partners in a fast and efficient way...

  14. Characterization of Poly(A)-Protein Complexes Isolated from Free and Membrane-Bound Polyribosomes of Ehrlich Ascites Tumor Cells

    NARCIS (Netherlands)

    Janssen, Dick B.; Counotte-Potman, Anda D.; Venrooij, Walther J. van

    1976-01-01

    Proteins present in messenger ribonucleoprotein particles were labeled with [35S]-methionine in Ehrlich ascites tumor cells in which synthesis of new ribosomes was inhibited. Poly(A)-protein complexes were isolated from free and membrane-bound polyribosomes by sucrose gradient centrifugation and aff

  15. Imaging individual proteins and nanodomains on intact cell membranes with a probe-based optical antenna.

    Science.gov (United States)

    van Zanten, Thomas S; Lopez-Bosque, Maria J; Garcia-Parajo, Maria F

    2010-01-01

    Optical antennas that confine and enhance electromagnetic fields in a nanometric region hold great potential for nanobioimaging and biosensing. Probe-based monopole optical antennas are fabricated to enhance fields localized to <30 nm near the antenna apex in aqueous conditions. These probes are used under appropriate excitation antenna conditions to image individual antibodies with an unprecedented resolution of 26 +/- 4 nm and virtually no surrounding background. On intact cell membranes in physiological conditions, the obtained resolution is 30 +/- 6 nm. Importantly, the method allows individual proteins to be distinguished from nanodomains and the degree of clustering to be quantified by directly measuring physical size and intensity of individual fluorescent spots. Improved antenna geometries should lead to true live cell imaging below 10-nm resolution with position accuracy in the subnanometric range.

  16. Efficient Isolation and Quantitative Proteomic Analysis of Cancer Cell Plasma Membrane Proteins for Identification of Metastasis-Associated Cell Surface Markers

    DEFF Research Database (Denmark)

    Lund, Rikke; Leth-Larsen, Rikke; Jensen, Ole N

    2009-01-01

    proteins were isolated by centrifugation/ultracentrifugation steps, followed by membrane separation using a Percoll/sucrose density gradient. The gradient fractions containing the cell surface membrane proteins were identified by enzymatic assays. Stable isotope labeling of the proteome of the metastatic...... cell line by SILAC followed by mass spectrometry analysis enabled identification and quantification of proteins that were differentially expressed in the two cell lines. Dual stable isotopic labels ((13)C-arginine and (13)C-lysine) instead of a single label ((13)C-arginine) increased the percentage...... of proteins that could be quantified from 40 to 93%. Repeated LC-MS/MS analyses (3-4 times) of each sample increased the number of identified proteins by 60%. The use of Percoll/sucrose density separation allowed subfractionation of membranes leading to enrichment of membrane proteins (66%) and reduction from...

  17. Interaction of Clostridium perfringens epsilon-toxin with biological and model membranes: A putative protein receptor in cells.

    Science.gov (United States)

    Manni, Marco M; Sot, Jesús; Goñi, Félix M

    2015-03-01

    Epsilon-toxin (ETX) is a powerful toxin produced by some strains of Clostridium perfringens (classified as types B and D) that is responsible for enterotoxemia in animals. ETX forms pores through the plasma membrane of eukaryotic cells, consisting of a β-barrel of 14 amphipathic β-strands. ETX shows a high specificity for certain cell lines, of which Madin-Darby canine kidney (MDCK) is the first sensitive cell line identified and the most studied one. The aim of this study was to establish the role of lipids in the toxicity caused by ETX and the correlation of its activity in model and biological membranes. In MDCK cells, using cell counting and confocal microscopy, we have observed that the toxin causes cell death mediated by toxin binding to plasma membrane. Moreover, ETX binds and permeabilizes the membranes of giant plasma membrane vesicles (GPMV). However, little effect is observed on protein-free vesicles. The data suggest the essential role of a protein receptor for the toxin in cell membranes.

  18. Heme-binding plasma membrane proteins of K562 erythroleukemia cells: Adsorption to heme-microbeads, isolation with affinity chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Majuri, R. (Minerva Foundation Institute for Medical Research, Helsinki (Finland))

    1989-01-01

    Heme-microbeads attached themselves to the surface of viable K562 cells in a manner inhibitable by free hemin, indicating heme-recptor interaction. The microbeads were at first evenly distributed, but after prolonged incubation at 37 deg. C they formed a cap on one pole of the cells indicating clustering of the membrane heme receptors. Membrane proteins were labeled by culturing the cells in the presence of {sup 35}S-methionine and were then solubilized with Triton X-114. The hydrophobic proteins contained about 20% of the total bound label. The solubilized membrane proteins were subsequently adsorbed to a heme-Sepharose affinity gel. According to SDS-electrophorsis and subsequent autoradiography, the immobilized heme captures two proteins or a protein with two polypeptides of 20 000 and 32 000 daltons. The larger of these was only wekly labeled with {sup 35}S. The same two bands were observed if the cell surface proteins were labeled with {sup 125}I by the lactoperoxidase method and the subsequently solubilized membrane proteins were isolated with heme-Sepharose. (author).

  19. Cell wall accumulation of fluorescent proteins derived from a trans-Golgi cisternal membrane marker and paramural bodies in interdigitated Arabidopsis leaf epidermal cells.

    Science.gov (United States)

    Akita, Kae; Kobayashi, Megumi; Sato, Mayuko; Kutsuna, Natsumaro; Ueda, Takashi; Toyooka, Kiminori; Nagata, Noriko; Hasezawa, Seiichiro; Higaki, Takumi

    2017-01-01

    In most dicotyledonous plants, leaf epidermal pavement cells develop jigsaw puzzle-like shapes during cell expansion. The rapid growth and complicated cell shape of pavement cells is suggested to be achieved by targeted exocytosis that is coordinated with cytoskeletal rearrangement to provide plasma membrane and/or cell wall materials for lobe development during their morphogenesis. Therefore, visualization of membrane trafficking in leaf pavement cells should contribute an understanding of the mechanism of plant cell morphogenesis. To reveal membrane trafficking in pavement cells, we observed monomeric red fluorescent protein-tagged rat sialyl transferases, which are markers of trans-Golgi cisternal membranes, in the leaf epidermis of Arabidopsis thaliana. Quantitative fluorescence imaging techniques and immunoelectron microscopic observations revealed that accumulation of the red fluorescent protein occurred mostly in the curved regions of pavement cell borders and guard cell ends during leaf expansion. Transmission electron microscopy observations revealed that apoplastic vesicular membrane structures called paramural bodies were more frequent beneath the curved cell wall regions of interdigitated pavement cells and guard cell ends in young leaf epidermis. In addition, pharmacological studies showed that perturbations in membrane trafficking resulted in simple cell shapes. These results suggested possible heterogeneity of the curved regions of plasma membranes, implying a relationship with pavement cell morphogenesis.

  20. The Matrix protein M1 from influenza C virus induces tubular membrane invaginations in an in vitro cell membrane model

    Science.gov (United States)

    Saletti, David; Radzimanowski, Jens; Effantin, Gregory; Midtvedt, Daniel; Mangenot, Stéphanie; Weissenhorn, Winfried; Bassereau, Patricia; Bally, Marta

    2017-01-01

    Matrix proteins from enveloped viruses play an important role in budding and stabilizing virus particles. In order to assess the role of the matrix protein M1 from influenza C virus (M1-C) in plasma membrane deformation, we have combined structural and in vitro reconstitution experiments with model membranes. We present the crystal structure of the N-terminal domain of M1-C and show by Small Angle X-Ray Scattering analysis that full-length M1-C folds into an elongated structure that associates laterally into ring-like or filamentous polymers. Using negatively charged giant unilamellar vesicles (GUVs), we demonstrate that M1-C full-length binds to and induces inward budding of membrane tubules with diameters that resemble the diameter of viruses. Membrane tubule formation requires the C-terminal domain of M1-C, corroborating its essential role for M1-C polymerization. Our results indicate that M1-C assembly on membranes constitutes the driving force for budding and suggest that M1-C plays a key role in facilitating viral egress. PMID:28120862

  1. [The Role of Membrane-Bound Heat Shock Proteins Hsp90 in Migration of Tumor Cells in vitro and Involvement of Cell Surface Heparan Sulfate Proteoglycans in Protein Binding to Plasma Membrane].

    Science.gov (United States)

    Snigireva, A V; Vrublevskaya, V V; Skarga, Y Y; Morenkov, O S

    2016-01-01

    Heat shock protein Hsp90, detected in the extracellular space and on the membrane of cells, plays an important role in cell motility, migration, invasion and metastasis of tumor cells. At present, the functional role and molecular mechanisms of Hsp90 binding to plasma membrane are not elucidated. Using isoform-specific antibodies against Hsp90, Hsp9α and Hsp90β, we showed that membrane-bound Hsp90α and Hsp90β play a significant role in migration of human fibrosarcoma (HT1080) and glioblastoma (A-172) cells in vitro. Disorders of sulfonation of cell heparan sulfates, cleavage of cell heparan. sulfates by heparinase I/III as well as treatment of cells with heparin lead to an abrupt reduction in the expression level of Hsp90 isoforms. Furthermore, heparin significantly inhibits tumor cell migration. The results obtained demonstrate that two isoforms of membrane-bound Hsp90 are involved in migration of tumor cells in vitro and that cell surface heparan sulfate proteoglycans play a pivotal role in the "anchoring" of Hsp90α and Hsp90β to the plasma membrane.

  2. Lectin receptor kinases participate in protein-protein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis

    NARCIS (Netherlands)

    Gouget, A.; Senchou, V.; Govers, F.; Sanson, A.; Barre, A.; Rougé, P.; Pont-Lezica, R.; Canut, H.

    2006-01-01

    Interactions between plant cell walls and plasma membranes are essential for cells to function properly, but the molecules that mediate the structural continuity between wall and membrane are unknown. Some of these interactions, which are visualized upon tissue plasmolysis in Arabidopsis (Arabidopsi

  3. Eukaryotic membrane protein overproduction in Lactococcus lactis

    NARCIS (Netherlands)

    Kunji, Edmund R.S.; Chan, Ka Wai; Slotboom, Dirk Jan; Floyd, Suzanne; O’Connor, Rosemary; Monné, Magnus

    2005-01-01

    Eukaryotic membrane proteins play many vital roles in the cell and are important drug targets. Approximately 25% of all genes identified in the genome are known to encode membrane proteins, but the vast majority have no assigned function. Although the generation of structures of soluble proteins has

  4. ALTERATIONS OF PROPERTIES OF RED BLOOD CELLS MEMBRANES PROTEINS OF DIFFERENT AGE AND SEX VOLUNTEERS.

    Science.gov (United States)

    Pruidze, N; Khetsuriani, R; Sujashvili, R; Ioramashvili, I; Arabuli, M; Sanikidze, T

    2015-01-01

    Considering the age and sex-dependent trend in the manifestation of various diseases, as well as an important pathogenic role of circulatory disorders, we decided to study the age-dependent changes in the physical properties of RBCs membrane proteins (their electric charge and molecular weight) in healthy people of different sex (males and females) and age. Blood of 56 healthy volunteers (Tbilisi, Georgia) of different sex and gender was studied (the patients were divided in 8 groups (7 patients in each groups): 1 - 18-25 years old male, 2 - 18-25 years old female, 3 - 25-44 years old male, 4 - 25-44 years old female, 5 - 44-60 years old male, 6 - 44-60 years old female; 7 - 60-80 years old male, 8 - 70-80 years old female). In groups 6 and 8 were women in menopause was determined according 12 months of amenorrhea. Individuals often consume alcohol addicts, pregnant women and patients with chronic diseases were excluded from the study. The study protocol was approved by Ethical Committee of the Tbilisi State Medical University. RBCs membrane proteins have been extracted from human heparinized blood and their mobility was studied by electrophoretic method. The electrophoretic mobility of RBCs membrane proteins decreases with age of healthy volunteers, that indicates decrease of total charge of proteins, depending on the electrically charged amino acids content. In female patients the electrophoretic mobility of the RBCs membrane proteins especially intensively decreases in period of menopause. Increase of molecular weight of proteins (100-200 kDa) from RBCs' membranes of alder age group was manifested. Intensively decrease electrophoretic mobility of erythrocytes membrane proteins from female patients in period of menopause indicates on estrogen related mechanism of the regulation of membrane protein conformation and composition in females. Increased content of high molecular weight proteins in the RBCs membranes from patients of older age groups may be caused to

  5. Erythrocyte membrane proteins and membrane skeleton

    Institute of Scientific and Technical Information of China (English)

    LU Yiqin; LIU Junfan

    2007-01-01

    Considerable advances in the research field of erythrocyte membrane were achieved in the recent two decades.New findings in the structure-function correlation and interactions of erythrocyte membrane proteins have attracted extensive attention.Interesting progress was also made in the molecular pathogenesis of erythrocyte membrane disorders.Advances in the composition,function and interaction of erythrocyte membrane proteins,erythrocyte membrane skeleton,and relevant diseases are briefly described and summarized here on the basis of domestic and world literatures.

  6. DIFFERENT APPROACHES TO CRYSTALLIZATION OF MEMBRANE PROTEINS

    Directory of Open Access Journals (Sweden)

    Prakash G. Doiphode

    2012-01-01

    Full Text Available Crystallography is more like an art than science. Crystallizing membrane proteins are a big challenge; membrane proteins are present in the cell membrane and serve as cell support. The most important feature of membrane protein is that it contains both hydrophobic and hydrophilic regions on its surface. They are generally much more difficult to study than soluble proteins. The problem becomes more difficult when trying to obtain crystals to determine the high resolution structures of membrane proteins. We want to utilize this opportunity to briefly examine various approaches for crystallization of membrane proteins. The important factors for determining the success of crystallization experiments for membrane proteins lies in the purification, preparation of membrane samples, the environment in which the crystals are grown and the technique used to grow the crystals. All the X-ray structures of membrane protein are grown from preparations of detergents by different methods developed to crystallize. In this review different techniques for the crystallization of membrane proteins are being described. The cubic phase method also known as in meso method is discussed along with other methods to understand about the crystallization of membrane proteins, its general applicability, salt, detergent and screening effects on crystallization. Low volumes as nano-liter of samples can be used for crystallization. The effects of different detergents on the crystallization of membrane protein, as well as the use of surfactants like polyoxyethylene. Approach based on the detergent complexation to prove the ability of cyclodextrins to remove detergent from ternary mixtures in order to get 2D crystals. Crystallization of membrane proteins using non-ionic surfactants as well as Lipidic sponge phase and with swollen lipidic mesophases is discussed to better understand the crystallization of membrane proteins.

  7. Membrane translocation of t-SNARE protein syntaxin-4 abrogates ground-state pluripotency in mouse embryonic stem cells

    Science.gov (United States)

    Hagiwara-Chatani, Natsumi; Shirai, Kota; Kido, Takumi; Horigome, Tomoatsu; Yasue, Akihiro; Adachi, Naoki; Hirai, Yohei

    2017-01-01

    Embryonic stem (ES) and induced pluripotent stem (iPS) cells are attractive tools for regenerative medicine therapies. However, aberrant cell populations that display flattened morphology and lose ground-state pluripotency often appear spontaneously, unless glycogen synthase kinase 3β (GSK3β) and mitogen-activated protein kinase kinase (MEK1/2) are inactivated. Here, we show that membrane translocation of the t-SNARE protein syntaxin-4 possibly is involved in this phenomenon. We found that mouse ES cells cultured without GSK3β/MEK1/2 inhibitors (2i) spontaneously extrude syntaxin-4 at the cell surface and that artificial expression of cell surface syntaxin-4 induces appreciable morphological changes and mesodermal differentiation through dephosphorylation of Akt. Transcriptome analyses revealed several candidate elements responsible for this, specifically, an E-to P-cadherin switch and a marked downregulation of Zscan4 proteins, which are DNA-binding proteins essential for ES cell pluripotency. Embryonic carcinoma cell lines F9 and P19CL6, which maintain undifferentiated states independently of Zscan4 proteins, exhibited similar cellular behaviors upon stimulation with cell surface syntaxin-4. The functional ablation of E-cadherin and overexpression of P-cadherin reproduced syntaxin-4-induced cell morphology, demonstrating that the E- to P-cadherin switch executes morphological signals from cell surface syntaxin-4. Thus, spontaneous membrane translocation of syntaxin-4 emerged as a critical element for maintenance of the stem-cell niche. PMID:28057922

  8. Effect of integral proteins in the phase stability of a lipid bilayer: Application to raft formation in cell membranes

    Science.gov (United States)

    Gómez, Jordi; Sagués, Francesc; Reigada, Ramon

    2010-04-01

    The existence of lipid rafts is a controversial issue. The affinity of cholesterol for saturated lipids is manifested in macroscopic phase separation in model membranes, and is believed to be the thermodynamic driving force for raft formation. However, there is no clear reason to explain the small (nanometric) size of raft domains in cell membranes. In a recent paper Yethiraj and Weisshaar [Biophys. J. 93, 3113 (2007)] proposed that the effect of neutral integral membrane proteins may prevent from the formation of large lipid domains. In this paper we extend this approach by studying the effect of the protein size, as well as the lipid-protein interaction. Depending on these factors, two different mechanisms for nanodomain stabilization are shown to be possible for static proteins. The application of these results to a biological context is discussed.

  9. Vesicle-associated membrane protein 7 (VAMP-7) is essential for target cell killing in a natural killer cell line.

    Science.gov (United States)

    Marcet-Palacios, Marcelo; Odemuyiwa, Solomon O; Coughlin, Jason J; Garofoli, Daniella; Ewen, Catherine; Davidson, Courtney E; Ghaffari, Mazyar; Kane, Kevin P; Lacy, Paige; Logan, Michael R; Befus, A Dean; Bleackley, R Chris; Moqbel, Redwan

    2008-02-15

    Natural killer cells recognize and induce apoptosis in foreign, transformed or virus-infected cells through the release of perforin and granzymes from secretory lysosomes. Clinically, NK-cell mediated killing is a major limitation to successful allo- and xenotransplantation. The molecular mechanisms that regulate the fusion of granzyme B-containing secretory lysosomes to the plasma membrane in activated NK cells, prior to target cell killing, are not fully understood. Using the NK cell line YT-Indy as a model, we have investigated the expression of SNAP REceptors (SNAREs), both target (t-) and vesicular (v-) SNAREs, and their function in granzyme B-mediated target cell killing. Our data showed that YT-Indy cells express VAMP-7 and SNAP-23, but not VAMP-2. VAMP-7 was associated with granzyme B-containing lysosomal granules. Using VAMP-7 small interfering RNA (siRNA), we successfully knocked down the expression of VAMP-7 protein in YT-Indy to less than 10% of untreated cells in 24h. VAMP7-deficient YT-Indy cells activated via co-culture with Jurkat cells released <1ng/mL of granzyme B, compared to 1.5-2.5 microg/mL from controls. Using Jurkat cells as targets, we showed a 7-fold reduction in NK cell-mediated killing by VAMP-7 deficient YT-Indy cells. Our results show that VAMP-7 is a crucial component of granzyme B release and target cell killing in the NK cell line YT-Indy. Thus, targeting VAMP-7 expression specifically with siRNA, following transplantation, may be a viable strategy for preventing NK cell-mediated transplant rejection, in vivo.

  10. Comparative transcriptional analysis of Bacillus subtilis cells overproducing either secreted proteins, lipoproteins or membrane proteins

    NARCIS (Netherlands)

    Marciniak, Bogumila C.; Trip, Hein; van-der Veek, Patricia J.; Kuipers, Oscar P.; Marciniak, Bogumiła C.

    2012-01-01

    Background: Bacillus subtilis is a favorable host for the production of industrially relevant proteins because of its capacity of secreting proteins into the medium to high levels, its GRAS (Generally Recognized As Safe) status, its genetic accessibility and its capacity to grow in large fermentatio

  11. Tail-anchored membrane proteins: exploring the complex diversity of tail-anchored-protein targeting in plant cells.

    Science.gov (United States)

    Abell, Ben M; Mullen, Robert T

    2011-02-01

    Tail-anchored (TA) proteins are special class of integral membrane proteins that in recent years have received a considerable amount of attention due to their diverse cellular functions and unique targeting and insertion mechanisms. Defined by the presence of a single, hydrophobic membrane-spanning domain at or near their C terminus, TA proteins must be inserted into membranes post-translationally and are orientated such that their larger N-terminal domain (most often the functional domain) faces the cytosol, while their shorter C-terminal domain faces the interior of the organelle. The C-terminal domain of TA proteins also usually contains the information responsible for their selective targeting to the proper subcellular membrane, a process that, based primarily on studies with yeasts and mammals, appears to be highly complex due to the presence of multiple pathways. Within this context, we discuss here the biogenesis of plant TA proteins and the potential for hundreds of new TA proteins identified via bioinformatics screens to contribute to the already remarkable number of roles that this class of membrane proteins participates in throughout plant growth and development.

  12. The synthesis and characterization of cellular membrane affinity chromatography columns for the study of human multidrug resistant proteins MRP1, MRP2 and human breast cancer resistant protein BCRP using membranes obtained from Spodoptera frugiperda (Sf9) insect cells

    OpenAIRE

    Bhatia, Prateek A.; Moaddel, Ruin; Wainer, Irving W.

    2010-01-01

    CMAC (cellular membrane affinity chromatography columns) have been developed for the study of the human multidrug transporters MRP1, MRP2 and the breast cancer resistance protein (BCRP). The columns were constructed using the immobilized artificial membrane (IAM) stationary phase and cellular membrane fragments obtained from Spodopetra frugiperda (Sf9) cells that had been stably transfected with human Mrp1, Mrp2 or Bcrp c-DNA, using a baculovirus expression system. The resulting CMAC(Sf9MRP1)...

  13. [Physical arrangement of membrane lipids susceptible to being used in the process of cell sorting of proteins].

    Science.gov (United States)

    Wolf, C; Quinn, P; Koumanov, K; Chachaty, C; Tenchov, B

    1999-01-01

    Detection of immiscible lipid domains in biological membranes offers an alternative support to protein sorting. Liquid ordered domains ("rafts") comprising cholesterol and saturated sphingolipids incorporate saturated glycosyl-phosphatidylinositol (GPI)-anchored or acylated (palmitoyl- and myristoyl-) proteins or particular transmembrane protein sequences. These lipid domains can be isolated in the form of Detergent resistant membranes (DRM) from biological plasma membrane preparations. Caveolae appear to be a differentiated fraction of plasma membranes comprising such numerous cross-linked microdomains associated with caveolin in different cell types. While the biological relevance of such membrane domains is evidenced in vivo by co-patching of proteins sharing the identical affinity for sphingolipids and by the disruption of co-patching following cell cholesterol depletion, only a few physical studies confort the principle of membrane heterogeneity. Results are now presented where cholesterol addition in a tertiary lipid mixture forces outphase-separation, as a realistic model where the lipid segregation can promote protein sorting to the segregated Lo phase. A lipid mixture comprising phosphatidylserine, phosphatidylethanolamine and sphingomyelin of natural origin in the ratio (1/4/3: mole/mole) has been rendered neatly heterogeneous after the addition of cholesterol (27 mole%). Xray diffraction (Small angle Xray scattering) showed the splitting of two neatly resolved lamellar diffractions in the presence of cholesterol. Above 37 degrees C the heterogeneity was traceable by a broadened diffraction spot up to the complete get-to-liquid transition of sphingomyelin at temperatures > 40 degrees C where the spot became again symmetrical and narrow. The large temperature range where the immiscible lamellar phases are detected, the specific requirement for cholesterol association with sphingomyelin, the positive influence of calcium and the reversibility of domain

  14. Cdc42-dependent Modulation of Tight Junctions and Membrane Protein Traffic in Polarized Madin-Darby Canine Kidney Cells

    Science.gov (United States)

    Rojas, Raul; Ruiz, Wily G.; Leung, Som-Ming; Jou, Tzuu-Shuh; Apodaca, Gerard

    2001-01-01

    Polarized epithelial cells maintain the asymmetric composition of their apical and basolateral membrane domains by at least two different processes. These include the regulated trafficking of macromolecules from the biosynthetic and endocytic pathway to the appropriate membrane domain and the ability of the tight junction to prevent free mixing of membrane domain-specific proteins and lipids. Cdc42, a Rho family GTPase, is known to govern cellular polarity and membrane traffic in several cell types. We examined whether this protein regulated tight junction function in Madin-Darby canine kidney cells and pathways that direct proteins to the apical and basolateral surface of these cells. We used Madin-Darby canine kidney cells that expressed dominant-active or dominant-negative mutants of Cdc42 under the control of a tetracycline-repressible system. Here we report that expression of dominant-active Cdc42V12 or dominant-negative Cdc42N17 altered tight junction function. Expression of Cdc42V12 slowed endocytic and biosynthetic traffic, and expression of Cdc42N17 slowed apical endocytosis and basolateral to apical transcytosis but stimulated biosynthetic traffic. These results indicate that Cdc42 may modulate multiple cellular pathways required for the maintenance of epithelial cell polarity. PMID:11514615

  15. Membrane labeling of coral gastrodermal cells by biotinylation: the proteomic identification of surface proteins involving cnidaria-dinoflagellate endosymbiosis.

    Directory of Open Access Journals (Sweden)

    Hsing-Hui Li

    Full Text Available The cellular and molecular-scale processes underlying the stability of coral-Symbiodinium endosymbioses remain unclear despite decades of investigation. As the coral gastroderm is the only tissue layer characterized by this unique symbiotic association, the membranes of these symbiotic gastrodermal cells (SGCs may play important roles in the initiation and maintenance of the endosymbiosis. In order to elucidate the interactions between the endosymbiotic dinoflagellates and their coral hosts, a thorough characterization of SGC membranes is therefore required. Cell surface proteins of isolated SGCs were biotinylated herein by a cell impermeant agent, biotin-XX sulfosuccinimidyl ester. The in situ distribution of these biotinylated proteins was uncovered by both fluorescence and transmission electron microscopic imaging of proteins bound to Alexa Fluor® 488-conjugated streptavidin. The identity of these proteins was then determined by two-dimensional gel electrophoresis followed by liquid chromatography-tandem mass spectrometry. Nineteen (19 proteins were identified, and they are known to be involved in the molecular chaperone/stress response, cytoskeletal remodeling, and energy metabolism. These results not only reveal the molecular characters of the host SGC membrane, but also provide critical insight into understanding the possible role of host membranes in this ecologically important endosymbiotic association.

  16. Quantitative image analysis tool to study the plasma membrane localization of proteins and cortical actin in neuroendocrine cells.

    NARCIS (Netherlands)

    Kurps, J.; Broeke, J.H.; Cijsouw, T.; Kompatscher, A.; Weering, J.R. van; Wit, H. de

    2014-01-01

    BACKGROUND: Adrenal chromaffin cells are a widely used model system to study regulated exocytosis and other membrane-associated processes. Alterations in the amount and localization of the proteins involved in these processes can be visualized with fluorescent probes that report the effect of differ

  17. Metastasis-related plasma membrane proteins of human breast cancer cells identified by comparative quantitative mass spectrometry

    DEFF Research Database (Denmark)

    Leth-Larsen, Rikke; Lund, Rikke; Hansen, Helle V

    2009-01-01

    The spread of cancer cells from a primary tumor to form metastasis at distant sites is a complex multi-step process. The cancer cell proteins, and plasma membrane proteins in particular, involved in this process are poorly defined and a study of the very early events of the metastatic process using...... clinical samples or in vitro assays is not feasible. We have used a unique model system consisting of two isogenic human breast cancer cell lines that are equally tumorigenic in mice, but while one gives rise to metastasis, the other disseminates single cells that remain dormant at distant organs. Membrane...... by the two cell lines. The study demonstrates a quantitative and comparative proteomic strategy to identify clinically-relevant key molecules in the early events of metastasis, some of which may prove to be potential targets for cancer therapy....

  18. Regulation of B cell differentiation by intracellular membrane associated proteins and microRNAs: role in the antibody response

    Directory of Open Access Journals (Sweden)

    Zheng eLou

    2015-10-01

    Full Text Available B cells are central to adaptive immunity and their functions in antibody responses are exquisitely regulated. As suggested by recent findings, B cell differentiation is mediated by intracellular membrane structures (including endosomes, lysosomes and autophagosomes and protein factors specifically associated with these membranes, including Rab7, Atg5 and Atg7. These factors participate in vesicle formation/trafficking, signal transduction and induction of gene expression to promote antigen presentation, CSR/SHM, and generation/maintenance of plasma cells and memory B cells. Their expression is induced in B cells activated to differentiate and further fine-tuned by immune-modulating microRNAs, which coordinates CSR/SHM, plasma cell differentiation and memory B cell differentiation. These short non-coding RNAs would individually target multiple factors associated with the same intracellular membrane compartments and collaboratively target a single factor in addition to regulate AID and Blimp-1. These, together with regulation of microRNA biogenesis and activities by endosomes and autophagosomes, show that intracellular membranes and microRNAs, two broadly relevant cell constituents, play important roles in balancing gene expression to specify B cell differentiation processes for optimal antibody responses.

  19. Klebsiella pneumoniae outer membrane protein A is required to prevent the activation of airway epithelial cells.

    Science.gov (United States)

    March, Catalina; Moranta, David; Regueiro, Verónica; Llobet, Enrique; Tomás, Anna; Garmendia, Junkal; Bengoechea, José A

    2011-03-25

    Outer membrane protein A (OmpA) is a class of proteins highly conserved among the Enterobacteriaceae family and throughout evolution. Klebsiella pneumoniae is a capsulated gram-negative pathogen. It is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that K. pneumoniae infections are characterized by a lack of an early inflammatory response. Data from our laboratory indicate that K. pneumoniae CPS helps to suppress the host inflammatory response. However, it is unknown whether K. pneumoniae employs additional factors to modulate host inflammatory responses. Here, we report that K. pneumoniae OmpA is important for immune evasion in vitro and in vivo. Infection of A549 and normal human bronchial cells with 52OmpA2, an ompA mutant, increased the levels of IL-8. 52145-Δwca(K2)ompA, which does not express CPS and ompA, induced the highest levels of IL-8. Both mutants could be complemented. In vivo, 52OmpA2 induced higher levels of tnfα, kc, and il6 than the wild type. ompA mutants activated NF-κB, and the phosphorylation of p38, p44/42, and JNK MAPKs and IL-8 induction was via NF-κB-dependent and p38- and p44/42-dependent pathways. 52OmpA2 engaged TLR2 and -4 to activate NF-κB, whereas 52145-Δwca(K2)ompA activated not only TLR2 and TLR4 but also NOD1. Finally, we demonstrate that the ompA mutant is attenuated in the pneumonia mouse model. The results of this study indicate that K. pneumoniae OmpA contributes to attenuate airway cell responses. This may facilitate pathogen survival in the hostile environment of the lung.

  20. Proteins causing membrane fouling in membrane bioreactors.

    Science.gov (United States)

    Miyoshi, Taro; Nagai, Yuhei; Aizawa, Tomoyasu; Kimura, Katsuki; Watanabe, Yoshimasa

    2015-01-01

    In this study, the details of proteins causing membrane fouling in membrane bioreactors (MBRs) treating real municipal wastewater were investigated. Two separate pilot-scale MBRs were continuously operated under significantly different operating conditions; one MBR was a submerged type whereas the other was a side-stream type. The submerged and side-stream MBRs were operated for 20 and 10 days, respectively. At the end of continuous operation, the foulants were extracted from the fouled membranes. The proteins contained in the extracted foulants were enriched by using the combination of crude concentration with an ultrafiltration membrane and trichloroacetic acid precipitation, and then separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). The N-terminal amino acid sequencing analysis of the proteins which formed intensive spots on the 2D-PAGE gels allowed us to partially identify one protein (OmpA family protein originated from genus Brevundimonas or Riemerella anatipestifer) from the foulant obtained from the submerged MBR, and two proteins (OprD and OprF originated from genus Pseudomonas) from that obtained from the side-stream MBR. Despite the significant difference in operating conditions of the two MBRs, all proteins identified in this study belong to β-barrel protein. These findings strongly suggest the importance of β-barrel proteins in developing membrane fouling in MBRs.

  1. Repair of Nerve Cell Membrance Damage by Calcium-Dependent, Membrane-Binding Proteins

    Science.gov (United States)

    2013-09-01

    signaling and amyloid toxicity in Alzheimer disease, J Biol Chem 285 (2010) 12463-12468. [14] H.A. Lashuel, P.T. Lansbury, Are amyloid diseases caused by...protein aggregates that mimic bacterial pore-forming toxins?, Q Rev Biophys 39 (2006) 167-201. [15] N. Arispe, E. Rojas, H.B. Pollard, Alzheimer ...disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum , Proc Natl Acad Sci U S A 90 (1993) 567

  2. Phosphorylation-dependent Trafficking of Plasma Membrane Proteins in Animal and Plant Cells

    Institute of Scientific and Technical Information of China (English)

    Remko Offringa; and Fang Huang

    2013-01-01

    In both unicellular and multicellular organisms, transmembrane (TM) proteins are sorted to and retained at specific membrane domains by endomembrane trafficking mechanisms that recognize sorting signals in the these proteins. The trafficking and distribution of plasma membrane (PM)-localized TM proteins (PM proteins), especially of those PM proteins that show an asymmetric distribution over the PM, has received much attention, as their proper PM localization is crucial for elementary signaling and transport processes, and defects in their localization often lead to severe disease symptoms or developmental defects. The subcellular localization of PM proteins is dynamically regulated by post-translational modifications, such as phosphorylation and ubiquitination. These modificaitons mostly occur on sorting signals that are located in the larger cytosolic domains of the cargo proteins. Here we review the effects of phosphorylation of PM proteins on their trafficking, and present the key examples from the animal field that have been subject to studies for already several decades, such as that of aquaporin 2 and the epidermal growth factor receptor. Our knowledge on cargo trafficking in plants is largely based on studies of the family of PIN FORMED (PIN) carriers that mediate the efflux of the plant hormone auxin. We will review what is known on the subcellular distribution and trafficking of PIN proteins, with a focus on how this is modulated by phosphorylation, and identify and discuss analogies and differences in trafficking with the well-studied animal examples.

  3. Phosphorylation-dependent trafficking of plasma membrane proteins in animal and plant cells.

    Science.gov (United States)

    Offringa, Remko; Huang, Fang

    2013-09-01

    In both unicellular and multicellular organisms, transmembrane (TM) proteins are sorted to and retained at specific membrane domains by endomembrane trafficking mechanisms that recognize sorting signals in the these proteins. The trafficking and distribution of plasma membrane (PM)-localized TM proteins (PM proteins), especially of those PM proteins that show an asymmetric distribution over the PM, has received much attention, as their proper PM localization is crucial for elementary signaling and transport processes, and defects in their localization often lead to severe disease symptoms or developmental defects. The subcellular localization of PM proteins is dynamically regulated by post-translational modifications, such as phosphorylation and ubiquitination. These modificaitons mostly occur on sorting signals that are located in the larger cytosolic domains of the cargo proteins. Here we review the effects of phosphorylation of PM proteins on their trafficking, and present the key examples from the animal field that have been subject to studies for already several decades, such as that of aquaporin 2 and the epidermal growth factor receptor. Our knowledge on cargo trafficking in plants is largely based on studies of the family of PIN FORMED (PIN) carriers that mediate the efflux of the plant hormone auxin. We will review what is known on the subcellular distribution and trafficking of PIN proteins, with a focus on how this is modulated by phosphorylation, and identify and discuss analogies and differences in trafficking with the well-studied animal examples.

  4. Increased initiation and growth of tumor cell lines, cancer stem cells and biopsy material in mice using basement membrane matrix protein (Cultrex or Matrigel) co-injection.

    Science.gov (United States)

    Fridman, Rafael; Benton, Gabriel; Aranoutova, Irina; Kleinman, Hynda K; Bonfil, R Daniel

    2012-05-17

    This protocol requires 2-4 h and presents a method for injecting tumor cells, cancer stem cells or dispersed biopsy material into subcutaneous or orthotopic locations within recipient mice. The tumor cells or biopsy are mixed with basement membrane matrix proteins (CultrexBME or Matrigel) at 4 °C and then injected into recipient animals at preferred anatomical sites. Tumor cells can also be co-injected with additional cell types, such as fibroblasts, stromal cells, endothelial cells and so on. Details are given on appropriate cell numbers, handling and concentration of the basement membrane proteins, recipient animals, injection location and techniques. This procedure enables the growth of tumors from cells or biopsy material (tumor graft) with greater efficiency of take and growth, and with retention of the primary tumor phenotype based on histology. Co-injection with additional cell types provides more physiological models of human cancers for use in drug screening and studying cancer biology.

  5. Endoplasmic reticulum membrane-sorting protein of lymphocytes (BAP31) is highly expressed in neurons and discrete endocrine cells.

    Science.gov (United States)

    Manley, H A; Lennon, V A

    2001-10-01

    BAP31 is a transmembrane protein that associates with nascent membrane proteins in transit between endoplasmic reticulum (ER) and cis-Golgi. Its C-terminal dilysine (KKEE) motif, mediating return to the ER, is consistent with a role in early sorting of membrane proteins. An initiator caspase-binding site in the C-terminal domain of BAP31 is implicated in cytoplasmic membrane fragmentation events of apoptosis. Although BAP31 RNA is ubiquitous, the protein's anatomic localization has not been determined. To gain further insight into its possible functions, we localized BAP31 in primate tissues using monoclonal antibodies. Immunoreactivity was prominent in T- and B-lymphocytes in blood and in thymus, in cerebellar Purkinje neuron bodies and dendrites, in gonadotrophs of the anterior pituitary, ovarian thecal and follicular cells, active but not quiescent thyroid epithelium, adrenal cortex more than medulla, and proximal more than distal renal tubules. Blood vessels and skeletal muscle were nonreactive. The anatomic distribution of BAP31 and the nature of proteins identified thus far as its cargo exiting the ER, suggest an interaction with proteins assembling in macromolecular complexes en route to selected sites of exocytotic and signaling activities. Apoptotic associations in mature tissues could be physiological (lymphocytes, endocrine cells) or pathological (Purkinje neurons, renal tubules).

  6. LytM Proteins Play a Crucial Role in Cell Separation, Outer Membrane Composition, and Pathogenesis in Nontypeable Haemophilus influenzae

    Science.gov (United States)

    Ercoli, Giuseppe; Tani, Chiara; Pezzicoli, Alfredo; Vacca, Irene; Martinelli, Manuele; Pecetta, Simone; Petracca, Roberto; Rappuoli, Rino; Pizza, Mariagrazia; Soriani, Marco

    2015-01-01

    ABSTRACT LytM proteins belong to a family of bacterial metalloproteases. In Gram-negative bacteria, LytM factors are mainly reported to have a direct effect on cell division by influencing cleavage and remodeling of peptidoglycan. In this study, mining nontypeable Haemophilus influenzae (NTHI) genomes, three highly conserved open reading frames (ORFs) containing a LytM domain were identified, and the proteins encoded by the ORFs were named YebA, EnvC, and NlpD on the basis of their homology with the Escherichia coli proteins. Immunoblotting and confocal analysis showed that while NTHI NlpD is exposed on the bacterial surface, YebA and EnvC reside in the periplasm. NTHI ΔyebA and ΔnlpD deletion mutants revealed an aberrant division phenotype characterized by an altered cell architecture and extensive membrane blebbing. The morphology of the ΔenvC deletion mutant was identical to that of the wild-type strain, but it showed a drastic reduction of periplasmic proteins, including the chaperones HtrA, SurA, and Skp, and an accumulation of β-barrel-containing outer membrane proteins comprising the autotransporters Hap, IgA serine protease, and HMW2A, as observed by proteomic analysis. These data suggest that EnvC may influence the bacterial surface protein repertoire by facilitating the passage of the periplasmic chaperones through the peptidoglycan layer to the close vicinity of the inner face of the outer membrane. This hypothesis was further corroborated by the fact that an NTHI envC defective strain had an impaired capacity to adhere to epithelial cells and to form biofilm. Notably, this strain also showed a reduced serum resistance. These results suggest that LytM factors are not only important components of cell division but they may also influence NTHI physiology and pathogenesis by affecting membrane composition. PMID:25714719

  7. Membrane protein architects: the role of the BAM complex in outer membrane protein assembly.

    Science.gov (United States)

    Knowles, Timothy J; Scott-Tucker, Anthony; Overduin, Michael; Henderson, Ian R

    2009-03-01

    The folding of transmembrane proteins into the outer membrane presents formidable challenges to Gram-negative bacteria. These proteins must migrate from the cytoplasm, through the inner membrane and into the periplasm, before being recognized by the beta-barrel assembly machinery, which mediates efficient insertion of folded beta-barrels into the outer membrane. Recent discoveries of component structures and accessory interactions of this complex are yielding insights into how cells fold membrane proteins. Here, we discuss how these structures illuminate the mechanisms responsible for the biogenesis of outer membrane proteins.

  8. Detailed search for protein kinase(s) involved in plasma membrane H+-ATPase activity regulation of yeast cells.

    Science.gov (United States)

    Pereira, Renata R; Castanheira, Diogo; Teixeira, Janaina A; Bouillet, Leoneide E M; Ribeiro, Erica M C; Trópia, Maria M J; Alvarez, Florencia; Correa, Lygia F M; Mota, Bruno E F; Conceição, Luis Eduardo F R; Castro, Ieso M; Brandão, Rogelio L

    2015-03-01

    This study displays a screening using yeast strains deficient in protein kinases known to exist in Saccharomyces cerevisiae. From 95 viable single mutants, 20 mutants appear to be affected in the glucose-induced extracellular acidification. The mutants that are unaffected in calcium signaling were tested for their sensitivity to hygromycin B. Furthermore, we verified whether the remaining mutants produced enzymes that are appropriately incorporated at plasma membrane. Finally, we measure the kinetic properties of the enzyme in purified plasma membranes from glucose-starved as well as glucose-fermenting cells. We confirmed the kinase Ptk2 involvement in H(+)-ATPase regulation (increase of affinity for ATP). However, the identification of the kinase(s) responsible for phosphorylation that leads to an increase in Vmax appears to be more complex. Complementary experiments were performed to check how those protein kinases could be related to the control of the plasma membrane H(+)-ATPase and/or the potential membrane. In summary, our results did not permit us to identify the protein kinase(s) involved in regulating the catalytic efficiency of the plasma membrane H(+)-ATPase. Therefore, our results indicate that the current regulatory model based on the phosphorylation of two different sites located in the C-terminus tail of the enzyme could be inappropriate.

  9. Characterization of YmgF, a 72-residue inner membrane protein that associates with the Escherichia coli cell division machinery.

    Science.gov (United States)

    Karimova, Gouzel; Robichon, Carine; Ladant, Daniel

    2009-01-01

    Formation of the Escherichia coli division septum is catalyzed by a number of essential proteins (named Fts) that assemble into a ring-like structure at the future division site. Many of these Fts proteins are intrinsic transmembrane proteins whose functions are largely unknown. In the present study, we attempted to identify a novel putative component(s) of the E. coli cell division machinery by searching for proteins that could interact with known Fts proteins. To do that, we used a bacterial two-hybrid system based on interaction-mediated reconstitution of a cyclic AMP (cAMP) signaling cascade to perform a library screening in order to find putative partners of E. coli cell division protein FtsL. Here we report the characterization of YmgF, a 72-residue integral membrane protein of unknown function that was found to associate with many E. coli cell division proteins and to localize to the E. coli division septum in an FtsZ-, FtsA-, FtsQ-, and FtsN-dependent manner. Although YmgF was previously shown to be not essential for cell viability, we found that when overexpressed, YmgF was able to overcome the thermosensitive phenotype of the ftsQ1(Ts) mutation and restore its viability under low-osmolarity conditions. Our results suggest that YmgF might be a novel component of the E. coli cell division machinery.

  10. TRAIL protein localization in human primary T cells by 3D microscopy using 3D interactive surface plot: a new method to visualize plasma membrane.

    Science.gov (United States)

    Gras, Christophe; Smith, Nikaïa; Sengmanivong, Lucie; Gandini, Mariana; Kubelka, Claire Fernandes; Herbeuval, Jean-Philippe

    2013-01-31

    The apoptotic ligand TNF-related apoptosis ligand (TRAIL) is expressed on the membrane of immune cells during HIV infection. The intracellular stockade of TRAIL in human primary CD4(+) T cells is not known. Here we investigated whether primary CD4(+) T cells expressed TRAIL in their intracellular compartment and whether TRAIL is relocalized on the plasma membrane under HIV activation. We found that TRAIL protein was stocked in intracellular compartment in non activated CD4(+) T cells and that the total level of TRAIL protein was not increased under HIV-1 stimulation. However, TRAIL was massively relocalized on plasma membrane when cells were cultured with HIV. Using three dimensional (3D) microscopy we localized TRAIL protein in human T cells and developed a new method to visualize plasma membrane without the need of a membrane marker. This method used the 3D interactive surface plot and bright light acquired images.

  11. Generation, modulation and maintenance of the plasma membrane asymmetric phospholipid composition in yeast cells during growth: their relation to surface potential and membrane protein activity.

    Science.gov (United States)

    Cerbón, J; Calderón, V

    1995-04-12

    During growth a cyclic exposure of anionic phospholipids to the external surface of the plasma membrane was found. The surface charge density (sigma) increased gradually reaching a maximum in the first 5 h of growth and returned gradually to their initial value at the end of the logarithmic phase of growth (10-12 h). Phosphatidylinositol, that determines to a large extent the magnitude of the sigma, increased 83% in the yeast cells during the first 4 h of growth and returned gradually to their initial level at 10-12 h. During the stationary phase (12-24 h), both sigma and the anionic/zwitterionic phospholipid ratio, remained without any significant variation. The high-affinity H-linked glutamate transport system that behaves as a sensor of the changes in the membrane surface potential (phi) increased its activity in the first 5 h and then decreased it, following with great accuracy the sigma variations and remained without changes during the stationary phase of growth. The phosphatidylserine (PS) relative concentration in the cells (9.0%) did not significantly change during the whole growth curve, but their asymmetric distribution varied, contributing to the changes in sigma. PS facing the outer membrane surface increased 2.45-times during the first 5 h of growth and then returned to their original value at the end of the log phase (12 h). Phosphatidylcholine (PC) remained constant during the whole growth curve (50%), while phosphatidylethanolamine (PE) decreased 3-fold in the first 4 h and then increased to its original value at 10 h. Interestingly, PE at the outer membrane surface remained constant (3% of the total phospholipids) during the whole growth curve. During growth yeast cells change their phospholipid composition originating altered patterns of the plasma membrane phospholipid composition and IN-OUT distribution. This dynamic asymmetry is involved in the regulation of the surface potential and membrane protein activity.

  12. Kinetics of B cell responses to Plasmodium falciparum erythrocyte membrane protein 1 in Ghanaian women naturally exposed to malaria parasites

    DEFF Research Database (Denmark)

    Ampomah, Paulina; Stevenson, Liz; Ofori, Michael F;

    2014-01-01

    Naturally acquired protective immunity to Plasmodium falciparum malaria takes years to develop. It relies mainly on Abs, particularly IgG specific for Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) proteins on the infected erythrocyte surface. It is only partially understood why...... acquisition of clinical protection takes years to develop, but it probably involves a range of immune-evasive parasite features, not least of which are PfEMP1 polymorphism and clonal variation. Parasite-induced subversion of immunological memory and expansion of "atypical" memory B cells may also contribute....... In this first, to our knowledge, longitudinal study of its kind, we measured B cell subset composition, as well as PfEMP1-specific Ab levels and memory B cell frequencies, in Ghanaian women followed from early pregnancy up to 1 y after delivery. Cell phenotypes and Ag-specific B cell function were assessed...

  13. Human oligodendroglial cells express low levels of C1 inhibitor and membrane cofactor protein mRNAs

    Directory of Open Access Journals (Sweden)

    McGeer Patrick L

    2004-08-01

    Full Text Available Abstract Background Oligodendrocytes, neurons, astrocytes, microglia, and endothelial cells are capable of synthesizing complement inhibitor proteins. Oligodendrocytes are vulnerable to complement attack, which is particularly observed in multiple sclerosis. This vulnerability may be related to a deficiency in their ability to express complement regulatory proteins. Methods This study compared the expression level of complement inhibitor mRNAs by human oligodendrocytes, astrocytes and microglia using semi-quantitative RT-PCR. Results Semi-quantitative RT-PCR analysis showed that C1 inhibitor (C1-inh mRNA expression was dramatically lower in oligodendroglial cells compared with astrocytes and microglia. The mRNA expression level of membrane cofactor protein (MCP by oligodendrocytes was also significantly lower than for other cell types. Conclusion The lower mRNA expression of C1-inh and MCP by oligodendrocytes could contribute to their vulnerability in several neurodegenerative and inflammatory diseases of the central nervous system.

  14. Dynamics of glucose-induced membrane recruitment of protein kinase C beta II in living pancreatic islet beta-cells.

    Science.gov (United States)

    Pinton, Paolo; Tsuboi, Takashi; Ainscow, Edward K; Pozzan, Tullio; Rizzuto, Rosario; Rutter, Guy A

    2002-10-01

    The mechanisms by which glucose may affect protein kinase C (PKC) activity in the pancreatic islet beta-cell are presently unclear. By developing adenovirally expressed chimeras encoding fusion proteins between green fluorescent protein and conventional (betaII), novel (delta), or atypical (zeta) PKCs, we show that glucose selectively alters the subcellular localization of these enzymes dynamically in primary islet and MIN6 beta-cells. Examined by laser scanning confocal or total internal reflection fluorescence microscopy, elevated glucose concentrations induced oscillatory translocations of PKCbetaII to spatially confined regions of the plasma membrane. Suggesting that increases in free cytosolic Ca(2+) concentrations ([Ca(2+)](c)) were primarily responsible, prevention of [Ca(2+)](c) increases with EGTA or diazoxide completely eliminated membrane recruitment, whereas elevation of cytosolic [Ca(2+)](c) with KCl or tolbutamide was highly effective in redistributing PKCbetaII both to the plasma membrane and to the surface of dense core secretory vesicles. By contrast, the distribution of PKCdelta.EGFP, which binds diacylglycerol but not Ca(2+), was unaffected by glucose. Measurement of [Ca(2+)](c) immediately beneath the plasma membrane with a ratiometric "pericam," fused to synaptic vesicle-associated protein-25, revealed that depolarization induced significantly larger increases in [Ca(2+)](c) in this domain. These data demonstrate that nutrient stimulation of beta-cells causes spatially and temporally complex changes in the subcellular localization of PKCbetaII, possibly resulting from the generation of Ca(2+) microdomains. Localized changes in PKCbetaII activity may thus have a role in the spatial control of insulin exocytosis.

  15. Functional analysis of membrane-bound complement regulatory protein on T-cell immune response in ginbuna crucian carp.

    Science.gov (United States)

    Nur, Indriyani; Abdelkhalek, Nevien K; Motobe, Shiori; Nakamura, Ryota; Tsujikura, Masakazu; Somamoto, Tomonori; Nakao, Miki

    2016-02-01

    Complements have long been considered to be a pivotal component in innate immunity. Recent researches, however, highlight novel roles of complements in T-cell-mediated adaptive immunity. Membrane-bound complement regulatory protein CD46, a costimulatory protein for T cells, is a key molecule for T-cell immunomodulation. Teleost CD46-like molecule, termed Tecrem, has been newly identified in common carp and shown to function as a complement regulator. However, it remains unclear whether Tecrem is involved in T-cell immune response. We investigated Tecrem function related to T-cell responses in ginbuna crucian carp. Ginbuna Tecrem (gTecrem) proteins were detected by immunoprecipitation using anti-common carp Tecrem monoclonal antibody (mAb) and were ubiquitously expressed on blood cells including CD8α(+) and CD4(+) lymphocytes. gTecrem expression on leucocyte surface was enhanced after stimulation with the T-cell mitogen, phytohaemagglutinin (PHA). Coculture with the anti-Tecrem mAb significantly inhibited the proliferative activity of PHA-stimulated peripheral blood lymphocytes, suggesting that cross-linking of Tecrems on T-cells interferes with a signal transduction pathway for T-cell activation. These findings indicate that Tecrem may act as a T-cell moderator and imply that the complement system in teleost, as well as mammals, plays an important role for linking adaptive and innate immunity.

  16. Autocrine Signaling Underlies Fast Repetitive Plasma Membrane Translocation of Conventional and Novel Protein Kinase C Isoforms in β Cells.

    Science.gov (United States)

    Wuttke, Anne; Yu, Qian; Tengholm, Anders

    2016-07-15

    PKC signaling has been implicated in the regulation of many cell functions, including metabolism, cell death, proliferation, and secretion. Activation of conventional and novel PKC isoforms is associated with their Ca(2+)- and/or diacylglycerol (DAG)-dependent translocation to the plasma membrane. In β cells, exocytosis of insulin granules evokes brief (<10 s) local DAG elevations ("spiking") at the plasma membrane because of autocrine activation of P2Y1 purinoceptors by ATP co-released with insulin. Using total internal reflection microscopy, fluorescent protein-tagged PKCs, and signaling biosensors, we investigated whether DAG spiking causes membrane recruitment of PKCs and whether different classes of PKCs show characteristic responses. Glucose stimulation of MIN6 cells triggered DAG spiking with concomitant repetitive translocation of the novel isoforms PKCδ, PKCϵ, and PKCη. The conventional PKCα, PKCβI, and PKCβII isoforms showed a more complex pattern with both rapid and slow translocation. K(+) depolarization-induced PKCϵ translocation entirely mirrored DAG spiking, whereas PKCβI translocation showed a sustained component, reflecting the subplasma membrane Ca(2+) concentration ([Ca(2+)]pm), with additional effect during DAG spikes. Interference with DAG spiking by purinoceptor inhibition prevented intermittent translocation of PKCs and reduced insulin secretion but did not affect [Ca(2+)]pm elevation or sustained PKCβI translocation. The muscarinic agonist carbachol induced pronounced transient PKCβI translocation and sustained recruitment of PKCϵ. When rise of [Ca(2+)]pm was prevented, the carbachol-induced DAG and PKCϵ responses were somewhat reduced, but PKCβI translocation was completely abolished. We conclude that exocytosis-induced DAG spikes efficiently recruit both conventional and novel PKCs to the β cell plasma membrane. PKC signaling is thus implicated in autocrine regulation of β cell function.

  17. Autocrine Signaling Underlies Fast Repetitive Plasma Membrane Translocation of Conventional and Novel Protein Kinase C Isoforms in β Cells*

    Science.gov (United States)

    Wuttke, Anne; Yu, Qian; Tengholm, Anders

    2016-01-01

    PKC signaling has been implicated in the regulation of many cell functions, including metabolism, cell death, proliferation, and secretion. Activation of conventional and novel PKC isoforms is associated with their Ca2+- and/or diacylglycerol (DAG)-dependent translocation to the plasma membrane. In β cells, exocytosis of insulin granules evokes brief (<10 s) local DAG elevations (“spiking”) at the plasma membrane because of autocrine activation of P2Y1 purinoceptors by ATP co-released with insulin. Using total internal reflection microscopy, fluorescent protein-tagged PKCs, and signaling biosensors, we investigated whether DAG spiking causes membrane recruitment of PKCs and whether different classes of PKCs show characteristic responses. Glucose stimulation of MIN6 cells triggered DAG spiking with concomitant repetitive translocation of the novel isoforms PKCδ, PKCϵ, and PKCη. The conventional PKCα, PKCβI, and PKCβII isoforms showed a more complex pattern with both rapid and slow translocation. K+ depolarization-induced PKCϵ translocation entirely mirrored DAG spiking, whereas PKCβI translocation showed a sustained component, reflecting the subplasma membrane Ca2+ concentration ([Ca2+]pm), with additional effect during DAG spikes. Interference with DAG spiking by purinoceptor inhibition prevented intermittent translocation of PKCs and reduced insulin secretion but did not affect [Ca2+]pm elevation or sustained PKCβI translocation. The muscarinic agonist carbachol induced pronounced transient PKCβI translocation and sustained recruitment of PKCϵ. When rise of [Ca2+]pm was prevented, the carbachol-induced DAG and PKCϵ responses were somewhat reduced, but PKCβI translocation was completely abolished. We conclude that exocytosis-induced DAG spikes efficiently recruit both conventional and novel PKCs to the β cell plasma membrane. PKC signaling is thus implicated in autocrine regulation of β cell function. PMID:27226533

  18. Epitope Mapping of Antibodies Suggests the Novel Membrane Topology of B-Cell Receptor Associated Protein 31 on the Cell Surface of Embryonic Stem Cells: The Novel Membrane Topology of BAP31.

    Directory of Open Access Journals (Sweden)

    Won-Tae Kim

    Full Text Available When located in the endoplasmic reticulum (ER membrane, B-cell receptor associated protein 31 (BAP31 is involved in the export of secreted proteins from the ER to the plasma membrane. In a previous study, we generated two monoclonal antibodies (mAbs, 297-D4 and 144-A8, that bound to surface molecules on human embryonic stem cells (hESCs, but not to surface molecules on mouse embryonic stem cells (mESCs. Subsequent studies revealed that the mAbs recognized BAP31 on the surface of hESCs. To investigate the membrane topology of BAP31 on the cell surface, we first examined the epitope specificity of 297-D4 and 144-A8, as well as a polyclonal anti-BAP31 antibody (α-BAP31. We generated a series of GST-fused BAP31 mutant proteins in which BAP31 was serially deleted at the C- terminus. GST-fused BAP31 mutant proteins were then screened to identify the epitopes targeted by the antibodies. Both 297-D4 and 144-A8 recognized C-terminal residues 208-217, while α-BAP31 recognized C-terminal residues 165-246, of BAP31 on hESCs, suggesting that the C-terminal domain of BAP31 is exposed on the cell surface. The polyclonal antibody α-BAP31 bound to mESCs, which confirmed that the C-terminal domain of BAP31 is also exposed on the surface of these cells. Our results show for the first time the novel membrane topology of cell surface-expressed BAP31 as the extracellular exposure of the BAP31 C-terminal domain was not predicted from previous studies.

  19. Epitope Mapping of Antibodies Suggests the Novel Membrane Topology of B-Cell Receptor Associated Protein 31 on the Cell Surface of Embryonic Stem Cells: The Novel Membrane Topology of BAP31.

    Science.gov (United States)

    Kim, Won-Tae; Choi, Hong Seo; Hwang, Hyo Jeong; Jung, Han-Sung; Ryu, Chun Jeih

    2015-01-01

    When located in the endoplasmic reticulum (ER) membrane, B-cell receptor associated protein 31 (BAP31) is involved in the export of secreted proteins from the ER to the plasma membrane. In a previous study, we generated two monoclonal antibodies (mAbs), 297-D4 and 144-A8, that bound to surface molecules on human embryonic stem cells (hESCs), but not to surface molecules on mouse embryonic stem cells (mESCs). Subsequent studies revealed that the mAbs recognized BAP31 on the surface of hESCs. To investigate the membrane topology of BAP31 on the cell surface, we first examined the epitope specificity of 297-D4 and 144-A8, as well as a polyclonal anti-BAP31 antibody (α-BAP31). We generated a series of GST-fused BAP31 mutant proteins in which BAP31 was serially deleted at the C- terminus. GST-fused BAP31 mutant proteins were then screened to identify the epitopes targeted by the antibodies. Both 297-D4 and 144-A8 recognized C-terminal residues 208-217, while α-BAP31 recognized C-terminal residues 165-246, of BAP31 on hESCs, suggesting that the C-terminal domain of BAP31 is exposed on the cell surface. The polyclonal antibody α-BAP31 bound to mESCs, which confirmed that the C-terminal domain of BAP31 is also exposed on the surface of these cells. Our results show for the first time the novel membrane topology of cell surface-expressed BAP31 as the extracellular exposure of the BAP31 C-terminal domain was not predicted from previous studies.

  20. Modelling of proteins in membranes

    DEFF Research Database (Denmark)

    Sperotto, Maria Maddalena; May, S.; Baumgaertner, A.

    2006-01-01

    This review describes some recent theories and simulations of mesoscopic and microscopic models of lipid membranes with embedded or attached proteins. We summarize results supporting our understanding of phenomena for which the activities of proteins in membranes are expected to be significantly...

  1. Expression, stabilization and purification of membrane proteins via diverse protein synthesis systems and detergents involving cell-free associated with self-assembly peptide surfactants.

    Science.gov (United States)

    Zheng, Xuan; Dong, Shuangshuang; Zheng, Jie; Li, Duanhua; Li, Feng; Luo, Zhongli

    2014-01-01

    G-protein coupled receptors (GPCRs) are involved in regulating most of physiological actions and metabolism in the bodies, which have become most frequently addressed therapeutic targets for various disorders and diseases. Purified GPCR-based drug discoveries have become routine that approaches to structural study, novel biophysical and biochemical function analyses. However, several bottlenecks that GPCR-directed drugs need to conquer the problems including overexpression, solubilization, and purification as well as stabilization. The breakthroughs are to obtain efficient protein yield and stabilize their functional conformation which are both urgently requiring of effective protein synthesis system methods and optimal surfactants. Cell-free protein synthesis system is superior to the high yields and post-translation modifications, and early signs of self-assembly peptide detergents also emerged to superiority in purification of membrane proteins. We herein focus several predominant protein synthesis systems and surfactants involving the novel peptide detergents, and uncover the advantages of cell-free protein synthesis system with self-assembling peptide detergents in purification of functional GPCRs. This review is useful to further study in membrane proteins as well as the new drug exploration.

  2. NMR of Membrane Proteins: Beyond Crystals.

    Science.gov (United States)

    Rajesh, Sundaresan; Overduin, Michael; Bonev, Boyan B

    2016-01-01

    Membrane proteins are essential for the flow of signals, nutrients and energy between cells and between compartments of the cell. Their mechanisms can only be fully understood once the precise structures, dynamics and interactions involved are defined at atomic resolution. Through advances in solution and solid state NMR spectroscopy, this information is now available, as demonstrated by recent studies of stable peripheral and transmembrane proteins. Here we highlight recent cases of G-protein coupled receptors, outer membrane proteins, such as VDAC, phosphoinositide sensors, such as the FAPP-1 pleckstrin homology domain, and enzymes including the metalloproteinase MMP-12. The studies highlighted have resulted in the determination of the 3D structures, dynamical properties and interaction surfaces for membrane-associated proteins using advanced isotope labelling strategies, solubilisation systems and NMR experiments designed for very high field magnets. Solid state NMR offers further insights into the structure and multimeric assembly of membrane proteins in lipid bilayers, as well as into interactions with ligands and targets. Remaining challenges for wider application of NMR to membrane structural biology include the need for overexpression and purification systems for the production of isotope-labelled proteins with fragile folds, and the availability of only a few expensive perdeuterated detergents.Step changes that may transform the field include polymers, such as styrene maleic acid, which obviate the need for detergent altogether, and allow direct high yield purification from cells or membranes. Broader demand for NMR may be facilitated by MODA software, which instantly predicts membrane interactive residues that can subsequently be validated by NMR. In addition, recent developments in dynamic nuclear polarization NMR instrumentation offer a remarkable sensitivity enhancement from low molarity samples and cell surfaces. These advances illustrate the current

  3. Id1 interacts and stabilizes the Epstein-Barr virus latent membrane protein 1 (LMP1 in nasopharyngeal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Pok Man Hau

    Full Text Available The EBV-encoded latent membrane protein 1 (LMP1 functions as a constitutive active form of tumor necrosis factor receptor (TNFR and activates multiple downstream signaling pathways similar to CD40 signaling in a ligand-independent manner. LMP1 expression in EBV-infected cells has been postulated to play an important role in pathogenesis of nasopharyngeal carcinoma. However, variable levels of LMP1 expression were detected in nasopharyngeal carcinoma. At present, the regulation of LMP1 levels in nasopharyngeal carcinoma is poorly understood. Here we show that LMP1 mRNAs are transcribed in an EBV-positive nasopharyngeal carcinoma (NPC cell line (C666-1 and other EBV-negative nasopharyngeal carcinoma cells stably re-infected with EBV. The protein levels of LMP1 could readily be detected after incubation with proteasome inhibitor, MG132 suggesting that LMP1 protein is rapidly degraded via proteasome-mediated proteolysis. Interestingly, we observed that Id1 overexpression could stabilize LMP1 protein in EBV-infected cells. In contrary, Id1 knockdown significantly reduced LMP1 levels in cells. Co-immunoprecipitation studies revealed that Id1 interacts with LMP1 by binding to the CTAR1 domain of LMP1. N-terminal region of Id1 is required for the interaction with LMP1. Furthermore, binding of Id1 to LMP1 suppressed polyubiquitination of LMP1 and may be involved in stabilization of LMP1 in EBV-infected nasopharyngeal epithelial cells.

  4. Rice Hypersensitive Induced Reaction Protein 1 (OsHIR1 associates with plasma membrane and triggers hypersensitive cell death

    Directory of Open Access Journals (Sweden)

    Sun Sai-Ming

    2010-12-01

    Full Text Available Abstract Background In plants, HIR (Hypersensitive Induced Reaction proteins, members of the PID (Proliferation, Ion and Death superfamily, have been shown to play a part in the development of spontaneous hypersensitive response lesions in leaves, in reaction to pathogen attacks. The levels of HIR proteins were shown to correlate with localized host cell deaths and defense responses in maize and barley. However, not much was known about the HIR proteins in rice. Since rice is an important cereal crop consumed by more than 50% of the populations in Asia and Africa, it is crucial to understand the mechanisms of disease responses in this plant. We previously identified the rice HIR1 (OsHIR1 as an interacting partner of the OsLRR1 (rice Leucine-Rich Repeat protein 1. Here we show that OsHIR1 triggers hypersensitive cell death and its localization to the plasma membrane is enhanced by OsLRR1. Result Through electron microscopy studies using wild type rice plants, OsHIR1 was found to mainly localize to the plasma membrane, with a minor portion localized to the tonoplast. Moreover, the plasma membrane localization of OsHIR1 was enhanced in transgenic rice plants overexpressing its interacting protein partner, OsLRR1. Co-localization of OsHIR1 and OsLRR1 to the plasma membrane was confirmed by double-labeling electron microscopy. Pathogen inoculation studies using transgenic Arabidopsis thaliana expressing either OsHIR1 or OsLRR1 showed that both transgenic lines exhibited increased resistance toward the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. However, OsHIR1 transgenic plants produced more extensive spontaneous hypersensitive response lesions and contained lower titers of the invading pathogen, when compared to OsLRR1 transgenic plants. Conclusion The OsHIR1 protein is mainly localized to the plasma membrane, and its subcellular localization in that compartment is enhanced by OsLRR1. The expression of OsHIR1 may sensitize the plant

  5. Association of syntaxin 3 and vesicle-associated membrane protein (VAMP) with H+/K(+)-ATPase-containing tubulovesicles in gastric parietal cells.

    Science.gov (United States)

    Peng, X R; Yao, X; Chow, D C; Forte, J G; Bennett, M K

    1997-01-01

    H+/K(+)-ATPase is the proton pump in the gastric parietal cell that is responsible for gastric acid secretion. Stimulation of acid secretion is associated with a reorganization of the parietal cells resulting in the incorporation of H+/K(+)-ATPase from a cytoplasmic membrane pool, the tubulovesicle compartment, into the apical canalicular membrane. To better characterize the role of membrane trafficking events in the morphological and physiological changes associated with acid secretion from parietal cells, we have characterized the expression and localization of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) in these cells. Each of the six different SNARE proteins examined [syntaxins 1 through 4 of 25-kDa synaptosome-associated protein, and vesicle-associated membrane protein] were found to be expressed in parietal cells. Furthermore, two of these SNAREs, vesicle-associated membrane protein and syntaxin 3, were associated with H+/K(+)-ATPase-containing tubulovesicles while the remainder were excluded from this compartment. The expression of syntaxin 1 and synaptosome-associated protein of 25 kDa in parietal cells, two SNAREs previously thought to be restricted to neuroendocrine tissues, suggests that parietal cells may utilize membrane trafficking machinery that is similar to that utilized for regulated exocytosis in neurons. Furthermore, the localization of syntaxin 3, a putative target membrane SNARE, to the tubulovesicle compartment indicates that syntaxin 3 may have an alternative function. These observations support a role for intracellular membrane trafficking events in the regulated recruitment of H+/K(+)-ATPase to the plasma membrane after parietal cell stimulation. Images PMID:9188093

  6. Tooth Enamel Protein Amelogenin Binds to Ameloblast Cell Membrane-Mimicking Vesicles via its N-terminus

    Science.gov (United States)

    LOKAPPA, SOWMYA BEKSHE; CHANDRABABU, KARTHIK BALAKRISHNA; MORADIAN-OLDAK, JANET

    2015-01-01

    We have recently reported that the extracellular enamel protein amelogenin has affinity to interact with phospholipids and proposed that such interactions may play key roles in enamel biomineralization as well as reported amelogenin signaling activities. Here, in order to identify the liposome-interacting domains of amelogenin we designed four different amelogenin mutants containing only a single tryptophan at positions 25, 45, 112 and 161. Circular dichroism studies of the mutants confirmed that they are structurally similar to the wild-type amelogenin. Utilizing the intrinsic fluorescence of single tryptophan residues and fluorescence resonance energy transfer FRET, we analyzed the accessibility and strength of their binding with an ameloblast cell membrane-mimicking model membrane (ACML) and a negatively charged liposome used as a membrane model. We found that amelogenin has membrane-binding ability mainly via its N-terminal, close to residues W25 and W45. Significant blue shift was also observed in the fluorescence of a N-terminal peptide following addition of liposomes. We suggest that, among other mechanisms, enamel malformation in cases of Amelogenesis Imperfecta (AI) with mutations at the N-terminal may be the result of defective amelogenin-cell interactions. PMID:26188506

  7. Stochastic single-molecule dynamics of synaptic membrane protein domains

    CERN Document Server

    Kahraman, Osman; Haselwandter, Christoph A

    2016-01-01

    Motivated by single-molecule experiments on synaptic membrane protein domains, we use a stochastic lattice model to study protein reaction and diffusion processes in crowded membranes. We find that the stochastic reaction-diffusion dynamics of synaptic proteins provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the single-molecule trajectories observed for synaptic proteins, and spatially inhomogeneous protein lifetimes at the cell membrane. Our results suggest that central aspects of the single-molecule and collective dynamics observed for membrane protein domains can be understood in terms of stochastic reaction-diffusion processes at the cell membrane.

  8. Expression and Purification of the Major Outer Membrane Protein of Chlamydia Trachomatis in Prokaryotic Cell

    Institute of Scientific and Technical Information of China (English)

    李忠玉; 吴移谋; 陈超群; 万艳平; 朱翠明

    2004-01-01

    To clone and construct the recombinant plasmid containing the major outer membrane protein (MOMP) gene of Chlamydia trachomatis ( C.trachomatis ) and to express the fusion protein in E. coli BL21, the MOMP gene was amphfied by polymerase chain reaction (PCR) from genome of C. trachomatis serovar D. The fragment was cloned into the prokaryotic expression vector pET-22b( + ) after digestion with BamH Ⅰ and Not Ⅰ and transformed into E. coli XL1-Blue. Recombinants were selected by enzyme digestion and sequencing and the recombinant plasmid with MOMP gene was then transformed into E. coli BL21 with IPTG to express the target gene. The expression recombinant proteins were purified by Ni-NTA affinity chromatography, and identified by SDS-PAGE and Western blot. It was found that a 1.2 kb MOMP gene was isolated. The DNA sequence of MOMP was found to be just the same as the sequence published by GenBank. A recombinant plasmid containing MOMP gene was constructed to express the fusion proteins in E.coli. SDS-PAGE analysis showed that the relative molecular weight of the recombinant protein was about 47 kDa that was consistent with the theoretical predicted value, and the specificity of the expressed protein was conformed by Western blot. It concluded that the MOMP gene could be expressed in the prokaryotic system, by which it provided the foundation for the future studies on the biological activities of C. trachomatis and for the development of vaccine against this pathogen.

  9. Lipid-protein nanodiscs for cell-free production of integral membrane proteins in a soluble and folded state: comparison with detergent micelles, bicelles and liposomes.

    Science.gov (United States)

    Lyukmanova, E N; Shenkarev, Z O; Khabibullina, N F; Kopeina, G S; Shulepko, M A; Paramonov, A S; Mineev, K S; Tikhonov, R V; Shingarova, L N; Petrovskaya, L E; Dolgikh, D A; Arseniev, A S; Kirpichnikov, M P

    2012-03-01

    Production of integral membrane proteins (IMPs) in a folded state is a key prerequisite for their functional and structural studies. In cell-free (CF) expression systems membrane mimicking components could be added to the reaction mixture that promotes IMP production in a soluble form. Here lipid-protein nanodiscs (LPNs) of different lipid compositions (DMPC, DMPG, POPC, POPC/DOPG) have been compared with classical membrane mimicking media such as detergent micelles, lipid/detergent bicelles and liposomes by their ability to support CF synthesis of IMPs in a folded and soluble state. Three model membrane proteins of different topology were used: homodimeric transmembrane (TM) domain of human receptor tyrosine kinase ErbB3 (TM-ErbB3, 1TM); voltage-sensing domain of K(+) channel KvAP (VSD, 4TM); and bacteriorhodopsin from Exiguobacterium sibiricum (ESR, 7TM). Structural and/or functional properties of the synthesized proteins were analyzed. LPNs significantly enhanced synthesis of the IMPs in a soluble form regardless of the lipid composition. A partial disintegration of LPNs composed of unsaturated lipids was observed upon co-translational IMP incorporation. Contrary to detergents the nanodiscs resulted in the synthesis of ~80% active ESR and promoted correct folding of the TM-ErbB3. None of the tested membrane mimetics supported CF synthesis of correctly folded VSD, and the protocol of the domain refolding was developed. The use of LPNs appears to be the most promising approach to CF production of IMPs in a folded state. NMR analysis of (15)N-Ile-TM-ErbB3 co-translationally incorporated into LPNs shows the great prospects of this membrane mimetics for structural studies of IMPs produced by CF systems.

  10. Flagellar membrane fusion and protein exchange in trypanosomes; a new form of cell-cell communication? [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Simon Imhof

    2016-04-01

    Full Text Available Diverse structures facilitate direct exchange of proteins between cells, including plasmadesmata in plants and tunnelling nanotubes in bacteria and higher eukaryotes.  Here we describe a new mechanism of protein transfer, flagellar membrane fusion, in the unicellular parasite Trypanosoma brucei. When fluorescently tagged trypanosomes were co-cultured, a small proportion of double-positive cells were observed. The formation of double-positive cells was dependent on the presence of extracellular calcium and was enhanced by placing cells in medium supplemented with fresh bovine serum. Time-lapse microscopy revealed that double-positive cells arose by bidirectional protein exchange in the absence of nuclear transfer.  Furthermore, super-resolution microscopy showed that this process occurred in ≤1 minute, the limit of temporal resolution in these experiments. Both cytoplasmic and membrane proteins could be transferred provided they gained access to the flagellum. Intriguingly, a component of the RNAi machinery (Argonaute was able to move between cells, raising the possibility that small interfering RNAs are transported as cargo. Transmission electron microscopy showed that shared flagella contained two axonemes and two paraflagellar rods bounded by a single membrane. In some cases flagellar fusion was partial and interactions between cells were transient. In other cases fusion occurred along the entire length of the flagellum, was stable for several hours and might be irreversible. Fusion did not appear to be deleterious for cell function: paired cells were motile and could give rise to progeny while fused. The motile flagella of unicellular organisms are related to the sensory cilia of higher eukaryotes, raising the possibility that protein transfer between cells via cilia or flagella occurs more widely in nature.

  11. Marked increase in rat red blood cell membrane protein glycosylation by one-month treatment with a cafeteria diet.

    Science.gov (United States)

    Oliva, Laia; Baron, Cristian; Fernández-López, José-Antonio; Remesar, Xavier; Alemany, Marià

    2015-01-01

    Background and Objectives. Glucose, an aldose, spontaneously reacts with protein amino acids yielding glycosylated proteins. The compounds may reorganize to produce advanced glycosylation products, which regulatory importance is increasingly being recognized. Protein glycosylation is produced without the direct intervention of enzymes and results in the loss of function. Glycosylated plasma albumin, and glycosylated haemoglobin are currently used as index of mean plasma glucose levels, since higher glucose availability results in higher glycosylation rates. In this study we intended to detect the early changes in blood protein glycosylation elicited by an obesogenic diet. Experimental Design. Since albumin is in constant direct contact with plasma glucose, as are the red blood cell (RBC) membranes, we analyzed their degree or glycosylation in female and male rats, either fed a standard diet or subjected to a hyper-energetic self-selected cafeteria diet for 30 days. This model produces a small increase in basal glycaemia and a significant increase in body fat, leaving the animals in the initial stages of development of metabolic syndrome. We also measured the degree of glycosylation of hemoglobin, and the concentration of glucose in contact with this protein, that within the RBC. Glycosylation was measured by colorimetric estimation of the hydroxymethylfurfural liberated from glycosyl residues by incubation with oxalate. Results. Plasma glucose was higher in cafeteria diet and in male rats, both independent effects. However, there were no significant differences induced by sex or diet in either hemoglobin or plasma proteins. Purified RBC membranes showed a marked effect of diet: higher glycosylation in cafeteria rats, which was more marked in females (not in controls). In any case, the number of glycosyl residues per molecule were higher in hemoglobin than in plasma proteins (after correction for molecular weight). The detected levels of glucose in RBC were lower

  12. Marked increase in rat red blood cell membrane protein glycosylation by one-month treatment with a cafeteria diet

    Directory of Open Access Journals (Sweden)

    Laia Oliva

    2015-07-01

    Full Text Available Background and Objectives. Glucose, an aldose, spontaneously reacts with protein amino acids yielding glycosylated proteins. The compounds may reorganize to produce advanced glycosylation products, which regulatory importance is increasingly being recognized. Protein glycosylation is produced without the direct intervention of enzymes and results in the loss of function. Glycosylated plasma albumin, and glycosylated haemoglobin are currently used as index of mean plasma glucose levels, since higher glucose availability results in higher glycosylation rates. In this study we intended to detect the early changes in blood protein glycosylation elicited by an obesogenic diet.Experimental Design. Since albumin is in constant direct contact with plasma glucose, as are the red blood cell (RBC membranes, we analyzed their degree or glycosylation in female and male rats, either fed a standard diet or subjected to a hyper-energetic self-selected cafeteria diet for 30 days. This model produces a small increase in basal glycaemia and a significant increase in body fat, leaving the animals in the initial stages of development of metabolic syndrome. We also measured the degree of glycosylation of hemoglobin, and the concentration of glucose in contact with this protein, that within the RBC. Glycosylation was measured by colorimetric estimation of the hydroxymethylfurfural liberated from glycosyl residues by incubation with oxalate.Results. Plasma glucose was higher in cafeteria diet and in male rats, both independent effects. However, there were no significant differences induced by sex or diet in either hemoglobin or plasma proteins. Purified RBC membranes showed a marked effect of diet: higher glycosylation in cafeteria rats, which was more marked in females (not in controls. In any case, the number of glycosyl residues per molecule were higher in hemoglobin than in plasma proteins (after correction for molecular weight. The detected levels of glucose in

  13. Identification and characterization of novel B-cell epitopes within EBV latent membrane protein 2 (LMP2).

    Science.gov (United States)

    Xue, Xiangyang; Zhu, Shanli; Li, Wenshu; Chen, Jun; Ou, Qin; Zheng, Meixia; Gong, Wenci; Zhang, Lifang

    2011-06-01

    The purpose of this study was to screen and identify the linear B-cell epitopes of Epstein-Barr virus (EBV) latent membrane protein 2 (LMP2). The secondary structure and surface properties of EBV LMP2A protein were analyzed. In combination with hydrophilicity, accessibility, flexibility, and antigenicity analysis, and average antigenicity index (AI) of epitope peptide investigation, three peptides were selected as potential candidates of linear B-cell epitopes. The peptides were 199-209 (RIEDPPFNSLL), 318-322 (TLNLT), and 381-391 (KSLSSTEFIPN). The fragments encoding potential B-cell epitopes were cloned and overexpressed in an E. coli system. The immune sera of these fusion proteins were collected from BALB/c mice by subcutaneously immunizing them three times. Western blotting results showed that these epitope recombinant proteins could be recognized by the serum antibodies against the whole LMP2 from nasopharyngeal carcinoma (NPC). Indirect ELISA measuring individual sera from 196 NPC patients, 44 infectious mononucleosis (IM) patients, 253 healthy adults, and 61 healthy children, indicated that NPC patients had significantly higher reactivity to these epitope-fused proteins compared with IM and healthy individuals (p EBV prototype strain, B95-8 cells. IFA results confirmed that specific antibodies induced by epitope peptide-fused proteins recognized intracellular regions of LMP2A. These results demonstrated that these three predictive epitopes not only were immunodominant B-cell epitopes of LMP2A, but also may be potential targets for applications in the design of diagnostic tools.

  14. Proteopolymersomes: in vitro production of a membrane protein in polymersome membranes.

    Science.gov (United States)

    Nallani, Madhavan; Andreasson-Ochsner, Mirjam; Tan, Cherng-Wen Darren; Sinner, Eva-Kathrin; Wisantoso, Yudi; Geifman-Shochat, Susana; Hunziker, Walter

    2011-12-01

    Polymersomes are stable self-assembled architectures which mimic cell membranes. For characterization, membrane proteins can be incorporated into such bio-mimetic membranes by reconstitution methods, leading to so-called proteopolymersomes. In this work, we demonstrate the direct incorporation of a membrane protein into polymersome membranes by a cell-free expression system. Firstly, we demonstrate pore formation in the preformed polymersome membrane using α-hemolysin. Secondly, we use claudin-2, a protein involved in cell-cell interactions, to demonstrate the in vitro expression of a membrane protein into these polymersomes. Surface plasmon resonance (Biacore) binding studies with the claudin-2 proteopolymersomes and claudin-2 specific antibodies are performed to show the presence of the in vitro expressed protein in polymersome membranes.

  15. Transmembrane protein sorting driven by membrane curvature

    Science.gov (United States)

    Strahl, H.; Ronneau, S.; González, B. Solana; Klutsch, D.; Schaffner-Barbero, C.; Hamoen, L. W.

    2015-11-01

    The intricate structure of prokaryotic and eukaryotic cells depends on the ability to target proteins to specific cellular locations. In most cases, we have a poor understanding of the underlying mechanisms. A typical example is the assembly of bacterial chemoreceptors at cell poles. Here we show that the classical chemoreceptor TlpA of Bacillus subtilis does not localize according to the consensus stochastic nucleation mechanism but accumulates at strongly curved membrane areas generated during cell division. This preference was confirmed by accumulation at non-septal curved membranes. Localization appears to be an intrinsic property of the protein complex and does not rely on chemoreceptor clustering, as was previously shown for Escherichia coli. By constructing specific amino-acid substitutions, we demonstrate that the preference for strongly curved membranes arises from the curved shape of chemoreceptor trimer of dimers. These findings demonstrate that the intrinsic shape of transmembrane proteins can determine their cellular localization.

  16. Organization and Dynamics of Receptor Proteins in a Plasma Membrane.

    Science.gov (United States)

    Koldsø, Heidi; Sansom, Mark S P

    2015-11-25

    The interactions of membrane proteins are influenced by their lipid environment, with key lipid species able to regulate membrane protein function. Advances in high-resolution microscopy can reveal the organization and dynamics of proteins and lipids within living cells at resolutions membranes of in vivo-like complexity. We explore the dynamics of proteins and lipids in crowded and complex plasma membrane models, thereby closing the gap in length and complexity between computations and experiments. Our simulations provide insights into the mutual interplay between lipids and proteins in determining mesoscale (20-100 nm) fluctuations of the bilayer, and in enabling oligomerization and clustering of membrane proteins.

  17. Membrane Compartmentalization Reducing the Mobility of Lipids and Proteins within a Model Plasma Membrane.

    Science.gov (United States)

    Koldsø, Heidi; Reddy, Tyler; Fowler, Philip W; Duncan, Anna L; Sansom, Mark S P

    2016-09-01

    The cytoskeleton underlying cell membranes may influence the dynamic organization of proteins and lipids within the bilayer by immobilizing certain transmembrane (TM) proteins and forming corrals within the membrane. Here, we present coarse-grained resolution simulations of a biologically realistic membrane model of asymmetrically organized lipids and TM proteins. We determine the effects of a model of cytoskeletal immobilization of selected membrane proteins using long time scale coarse-grained molecular dynamics simulations. By introducing compartments with varying degrees of restraints within the membrane models, we are able to reveal how compartmentalization caused by cytoskeletal immobilization leads to reduced and anomalous diffusional mobility of both proteins and lipids. This in turn results in a reduced rate of protein dimerization within the membrane and of hopping of membrane proteins between compartments. These simulations provide a molecular realization of hierarchical models often invoked to explain single-molecule imaging studies of membrane proteins.

  18. Decidual-secreted factors alter invasive trophoblast membrane and secreted proteins implying a role for decidual cell regulation of placentation.

    Directory of Open Access Journals (Sweden)

    Ellen Melaleuca Menkhorst

    Full Text Available Inadequate or inappropriate implantation and placentation during the establishment of human pregnancy is thought to lead to first trimester miscarriage, placental insufficiency and other obstetric complications. To create the placental blood supply, specialized cells, the 'extravillous trophoblast' (EVT invade through the differentiated uterine endometrium (the decidua to engraft and remodel uterine spiral arteries. We hypothesized that decidual factors would regulate EVT function by altering the production of EVT membrane and secreted factors. We used a proteomics approach to identify EVT membrane and secreted proteins regulated by decidual cell factors. Human endometrial stromal cells were decidualized in vitro by treatment with estradiol (10(-8 M, medroxyprogesterone acetate (10(-7 M and cAMP (0.5 mM for 14 days. Conditioned media (CM was collected on day 2 (non-decidualized CM and 14 (decidualized CM of treatment. Isolated primary EVT cultured on Matrigel™ were treated with media control, non-decidualized or decidualized CM for 16 h. EVT CM was fractionated for proteins <30 kDa using size-exclusion affinity nanoparticles (SEAN before trypsin digestion and HPLC-MS/MS. 43 proteins produced by EVT were identified; 14 not previously known to be expressed in the placenta and 12 which had previously been associated with diseases of pregnancy including preeclampsia. Profilin 1, lysosome associated membrane glycoprotein 1 (LAMP1, dipeptidyl peptidase 1 (DPP1/cathepsin C and annexin A2 expression by interstitial EVT in vivo was validated by immunhistochemistry. Decidual CM regulation in vitro was validated by western blotting: decidualized CM upregulated profilin 1 in EVT CM and non-decidualized CM upregulated annexin A2 in EVT CM and pro-DPP1 in EVT cell lysate. Here, non-decidualized factors induced protease expression by EVT suggesting that non-decidualized factors may induce a pro-inflammatory cascade. Preeclampsia is a pro

  19. The structure and function of the urokinase receptor, a membrane protein governing plasminogen activation on the cell surface

    DEFF Research Database (Denmark)

    Behrendt, N; Rønne, E; Danø, K

    1995-01-01

    PA receptor, uPAR, is a cell-surface protein which plays an important role in the localization and regulation of these processes. In the present article a number of established conclusions concerning the structure and function of uPAR are presented, and in addition various models are discussed which might...... explain additional observations for which the mechanisms involved have not yet been clarified experimentally. uPAR is a highly glycosylated, 3-domain protein, anchored in the plasma membrane by a glycolipid moiety. The domain organization is important for efficient ligand-binding, and the NH2-terminal...... to an interplay between uPAR and other, unidentified components. In addition to the function in the regulation of proteolysis, uPAR seems to play a role in internalization processes and in cellular signal transduction and adhesion. A few reagents have been identified which are capable to inhibit the interaction...

  20. Membrane Cells for Brine Electrolysis.

    Science.gov (United States)

    Tingle, M.

    1982-01-01

    Membrane cells were developed as alternatives to mercury and diaphragm cells for the electrolysis of brine. Compares the three types of cells, focusing on the advantages and disadvantages of membrane cells. (JN)

  1. Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders.

    Science.gov (United States)

    Da Costa, Lydie; Galimand, Julie; Fenneteau, Odile; Mohandas, Narla

    2013-07-01

    Hereditary spherocytosis and elliptocytosis are the two most common inherited red cell membrane disorders resulting from mutations in genes encoding various red cell membrane and skeletal proteins. Red cell membrane, a composite structure composed of lipid bilayer linked to spectrin-based membrane skeleton is responsible for the unique features of flexibility and mechanical stability of the cell. Defects in various proteins involved in linking the lipid bilayer to membrane skeleton result in loss in membrane cohesion leading to surface area loss and hereditary spherocytosis while defects in proteins involved in lateral interactions of the spectrin-based skeleton lead to decreased mechanical stability, membrane fragmentation and hereditary elliptocytosis. The disease severity is primarily dependent on the extent of membrane surface area loss. Both these diseases can be readily diagnosed by various laboratory approaches that include red blood cell cytology, flow cytometry, ektacytometry, electrophoresis of the red cell membrane proteins, and mutational analysis of gene encoding red cell membrane proteins.

  2. Plasmodium falciparum Plasmodium helical interspersed subtelomeric proteins contribute to cytoadherence and anchor P. falciparum erythrocyte membrane protein 1 to the host cell cytoskeleton

    DEFF Research Database (Denmark)

    Oberli, Alexander; Zurbrügg, Laura; Rusch, Sebastian;

    2016-01-01

    Adherence of Plasmodium falciparum-infected erythrocytes to host endothelium is conferred through the parasite-derived virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1), the major contributor to malaria severity. PfEMP1 located at knob structures on the erythrocyte surface...... is anchored to the cytoskeleton, and the Plasmodium helical interspersed subtelomeric (PHIST) gene family plays a role in many host cell modifications including binding the intracellular domain of PfEMP1. Here, we show that conditional reduction of the PHIST protein PFE1605w strongly reduces adhesion...... of infected erythrocytes to the endothelial receptor CD36. Adhesion to other endothelial receptors was less affected or even unaltered by PFE1605w depletion, suggesting that PHIST proteins might be optimized for subsets of PfEMP1 variants. PFE1605w does not play a role in PfEMP1 transport, but it directly...

  3. Intrinsically disordered proteins drive membrane curvature

    Science.gov (United States)

    Busch, David J.; Houser, Justin R.; Hayden, Carl C.; Sherman, Michael B.; Lafer, Eileen M.; Stachowiak, Jeanne C.

    2015-07-01

    Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures.

  4. Expression, purification and characterization of the human membrane transporter protein OATP2B1 from Sf9 insect cells.

    Science.gov (United States)

    Tschantz, William R; Pfeifer, Nathan D; Meade, Caryl Lane; Wang, Leyu; Lanzetti, Anthony; Kamath, Ajith V; Berlioz-Seux, Francoise; Hashim, Muhammed F

    2008-02-01

    OATP2B1 is an important member of the organic anion transporting polypeptides (OATP) family and is implicated in the intestinal and hepatic disposition of endo- and xenobiotics. The purpose of this work was to produce a highly purified protein for use as a reference standard for quantification of OATP2B1 in human tissue and in vitro assay systems. Here, we report the successful expression, purification and characterization of OATP2B1 in a heterologous expression system. Protein expressed by the Sf9-baculovirus expression system is functionally active as demonstrated by saturable uptake kinetics with a K(m) of 5.9+/-0.76 microM for estrone-3-sulfate. OATP2B1 was extracted from Sf9-membranes with ABS-14-4 detergent and purified using a one-step FLAG-tag purification method. Yield of OATP2B1 from Sf9 cells was 1.1mg per liter of culture, for a final recovery of 1.8%. SDS-PAGE resolution and Western blot of purified protein displayed multiple banding of OATP2B1-specific protein, which was thoroughly investigated to confirm homogeneity of the sample. C-terminal FLAG-tag purification and immunoblot detection, together with N-terminal sequencing, confirmed the presence of only full-length protein. Treatment with endoglycosidases had little effect on the migration pattern in SDS-PAGE, suggesting that multiple banding was not due to different glycosylation states of the protein. Amino acid analysis further confirmed the homogeneity of the protein with a calculated extinction coefficient of 80,387 cm(-1) M(-1). Physical, biochemical and functional characterization show that purified human OATP2B1 is pure, homogeneous and appropriate for use as a standard to quantitate expression of OATP2B1 in in vitro systems and tissue samples.

  5. Lipid-associated membrane proteins of Mycoplasma penetrans induce production of proinflammatory cytokines in human monocytic cells

    Institute of Scientific and Technical Information of China (English)

    YAN HUA ZENG; YI MOU WU; MIN JUN YU; LI ZHI TAN; ZHONG LIANG DENG; XIAO XING YOU

    2006-01-01

    The aim of this study is to explore potential pathogenicity of Mycoplasma penetrans, and to investigate whether M. penetrans lipid-associated membrane proteins (LAMPs) could induce human monocytic cell line (THP-1) to produce some proinflammatory cytokines in vitro, including interleukin-1β (IL1β), tumor necrosis factor alpha (TNF-α), and IL-8. THP-1 was stimulated with different concentrations of M. penetrans LAMPs and at different time to analyze the production of human IL-1β, TNF-α and IL-8.The protein levels of human IL-1β, TNF-α and IL-8 were measured by enzyme-linked immunoadsorbent assay (ELISA) and the mRNA levels of these proinflammatory cytokines were detected by reverse transcriptase-PCR (RT-PCR). It was demonstrated in the present study that the production of IL-1β, TNF-αand IL-8 increased in dose- and time-dependent manner after stimulation with M. penetrans LAMPs in THP-1 cells. M.penetrans LAMPs also induced the expression of IL-1β, TNF-α and IL-8 mRNA. The production of IL-1β, TNF-α and IL-8 and the expression of mRNA were down-regulated by pyrrolidine dithiocarbamate (PDTC). This study demonstrated that M. penetrans LAMPs can induce the production of proinflammatory cytokines in human monocytic cells in vitro, thus suggesting that it may be an important etiological factor.

  6. Effect of membrane curvature on lateral distribution of membrane proteins

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Several membrane proteins exhibit interesting shapes that increases their preference for certain membrane curvatures. Both peripheral and transmembrane proteins are tested with respect to their affinity for a spectrum of high membrane curvatures. We generate high membrane curvatures by pulling...... membrane tubes out of Giant Unilamellar lipid Vesicles (GUVs). The tube diameter can be tuned by aspirating the GUV into a micropipette for controlling the membrane tension. By using fluorescently labled proteins we have shown that sorting of proteins like e.g. FBAR onto tubes is significantly increased...

  7. Major Intrinsic Proteins in Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus

    2010-01-01

    /separation technology, a unique class of membrane transport proteins is especially interesting the major intrinsic proteins (MIPs). Generally, MIPs conduct water molecules and selected solutes in and out of the cell while preventing the passage of other solutes, a property critical for the conservation of the cells...... internal pH and salt concentration. Also known as water channels or aquaporins they are highly efficient membrane pore proteins some of which are capable of transporting water at very high rates up to 109 molecules per second. Some MIPs transport other small, uncharged solutes, such as glycerol and other...... permeants such as carbon dioxide, nitric oxide, ammonia, hydrogen peroxide and the metalloids antimonite, arsenite, silicic and boric acid depending on the effective restriction mechanism of the protein. The flux properties of MIPs thus lead to the question if MIPs can be used in separation devices...

  8. SPAK and OSR1 Sensitive Cell Membrane Protein Abundance and Activity of KCNQ1/E1 K+ Channels

    Directory of Open Access Journals (Sweden)

    Bernat Elvira

    2015-11-01

    Full Text Available Background/Aims: KCNQ1/E1 channels are expressed in diverse tissues and serve a variety of functions including endolymph secretion in the inner ear, cardiac repolarization, epithelial transport and cell volume regulation. Kinases involved in regulation of epithelial transport and cell volume include SPAK (SPS1-related proline/alanine-rich kinase and OSR1 (oxidative stress-responsive kinase 1, which are under control of WNK (with-no-K[Lys] kinases. The present study explored whether KCNQ1/E1 channels are regulated by SPAK and/or OSR1. Methods: cRNA encoding KCNQ1/E1 was injected into Xenopus oocytes with or without additional injection of cRNA encoding wild-type SPAK, constitutively active T233ESPAK, WNK insensitive T233ASPAK, catalytically inactive D212ASPAK, wild-type OSR1, constitutively active T185EOSR1, WNK insensitive T185AOSR1 and catalytically inactive D164AOSR1. Voltage gated K+ channel activity was quantified utilizing dual electrode voltage clamp and KCNQ1/E1 channel protein abundance in the cell membrane utilizing chemiluminescence of KCNQ1/E1 containing an extracellular Flag tag epitope (KCNQ1-Flag/E1. Results: KCNQ1/E1 activity and KCNQ1-Flag/E1 protein abundance were significantly enhanced by wild-type SPAK and T233ESPAK, but not by T233ASPAK and D212ASPAK. Similarly, KCNQ1/E1 activity and KCNQ1-Flag/E1 protein abundance were significantly increased by wild-type OSR1 and T185EOSR1, but not by T185AOSR1 and D164AOSR1. Conclusions: SPAK and OSR1 participate in the regulation of KCNQ1/E1 protein abundance and activity.

  9. Structure Prediction of Membrane Proteins

    Institute of Scientific and Technical Information of China (English)

    Chunlong Zhou; Yao Zheng; Yan Zhou

    2004-01-01

    There is a large gap between the number of membrane protein (MP) sequences and that of their decoded 3D structures, especially high-resolution structures, due to difficulties in crystal preparation of MPs. However, detailed knowledge of the 3D structure is required for the fundamental understanding of the function of an MP and the interactions between the protein and its inhibitors or activators. In this paper, some computational approaches that have been used to predict MP structures are discussed and compared.

  10. The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration

    NARCIS (Netherlands)

    Huisman, I.H.; Prádanos, P.; Hernández, A.

    2000-01-01

    It was studied how protein-protein and protein-membrane interactions influence the filtration performance during the ultrafiltration of protein solutions over polymeric membranes. This was done by measuring flux, streaming potential, and protein transmission during filtration of bovine serum albumin

  11. Acylated simian virus 40-specific proteins in the plasma membrane of HeLa cells infected with adenovirus 2-simian virus 40 hybrid virus Ad2+ND2

    Energy Technology Data Exchange (ETDEWEB)

    Klockmann, U.; Deppert, W.

    1983-04-30

    HeLa cells infected with the adenovirus 2-simian virus 40 (Ad2+SV40) hybrid virus Ad2+ND2 were labeled with either (/sup 35/S)methionine or (/sup 3/H)palmitate and fractionated into cytoplasmic, nuclear, and plasma membrane fractions. Analysis of these fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the SV40-specific proteins in the plasma membrane fraction were specificially acylated.

  12. The response of Lactococcus lactis to membrane protein production

    NARCIS (Netherlands)

    Marreddy, Ravi K. R.; Coelho Pinto, Joao; Wolters, Justina C.; Geertsma, Eric R.; Fusetti, Fabrizia; Permentier, Hjalmar P.; Kuipers, Oscar P.; Kok, Jan; Poolman, Bert

    2011-01-01

    Background: The biogenesis of membrane proteins is more complex than that of water-soluble proteins, and recombinant expression of membrane proteins in functional form and in amounts high enough for structural and functional studies is often problematic. To better engineer cells towards efficient pr

  13. Bilayer-thickness-mediated interactions between integral membrane proteins

    CERN Document Server

    Kahraman, Osman; Klug, William S; Haselwandter, Christoph A

    2016-01-01

    Hydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-mediated interactions between integral membrane proteins, and large-scale organization of integral membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilayers for a given set of bilayer-protein boundary conditions. Here we develop a combined analytic and numerical methodology for the solution of the equilibrium elastic equations associated with protein-induced lipid bilayer deformations. Our methodology al...

  14. Size-dependent protein segregation at membrane interfaces

    Science.gov (United States)

    Schmid, Eva M.; Bakalar, Matthew H.; Choudhuri, Kaushik; Weichsel, Julian; Ann, Hyoung Sook; Geissler, Phillip L.; Dustin, Michael L.; Fletcher, Daniel A.

    2016-07-01

    Membrane interfaces formed at cell-cell junctions are associated with characteristic patterns of membrane proteins whose organization is critical for intracellular signalling. To isolate the role of membrane protein size in pattern formation, we reconstituted model membrane interfaces in vitro using giant unilamellar vesicles decorated with synthetic binding and non-binding proteins. We show that size differences between membrane proteins can drastically alter their organization at membrane interfaces, with as little as a ~5 nm increase in non-binding protein size driving its exclusion from the interface. Combining in vitro measurements with Monte Carlo simulations, we find that non-binding protein exclusion is also influenced by lateral crowding, binding protein affinity, and thermally driven membrane height fluctuations that transiently limit access to the interface. This sensitive and highly effective means of physically segregating proteins has implications for cell-cell contacts such as T-cell immunological synapses (for example, CD45 exclusion) and epithelial cell junctions (for example, E-cadherin enrichment), as well as for protein sorting at intracellular contact points between membrane-bound organelles.

  15. Apical Scaffolding Protein NHERF2 Modulates the Localization of Alternatively Spliced Plasma Membrane Ca2+ Pump 2B Variants in Polarized Epithelial Cells*

    OpenAIRE

    Padányi, Rita; Xiong, Yuning; Antalffy, Géza; Lór, Krisztina; Pászty, Katalin; STREHLER, EMANUEL E.; Enyedi, Ágnes

    2010-01-01

    The membrane localization of the plasma membrane Ca2+-ATPase isoform 2 (PMCA2) in polarized cells is determined by alternative splicing; the PMCA2w/b splice variant shows apical localization, whereas the PMCA2z/b and PMCA2x/b variants are mostly basolateral. We previously reported that PMCA2b interacts with the PDZ protein Na+/H+ exchanger regulatory factor 2 (NHERF2), but the role of this interaction for the specific membrane localization of PMCA2 is not known. Here we show that co-expressio...

  16. Ligand binding to G protein-coupled receptors in tethered cell membranes

    DEFF Research Database (Denmark)

    Martinez, Karen L.; Meyer, Bruno H.; Hovius, Ruud;

    2003-01-01

    G protein-coupled receptors (GPCRs) constitute a large class of seven transmembrane proteins, which bind selectively agonists or antagonists with important consequences for cellular signaling and function. Comprehension of the molecular details of ligand binding is important for the understanding...

  17. Structural Requirements for Membrane Assembly of Proteins Spanning the Membrane Several Times

    OpenAIRE

    Lipp, Joachim; Flint, Nicholas; Haeuptle, Marie-Theres; Dobberstein, Bernhard

    1989-01-01

    We have investigated the structural requirements for the biogenesis of proteins spanning the membrane several times. Proteins containing various combinations of topological signals (signal anchor and stop transfer sequences) were synthesized in a cell-free translation system and their membrane topology was determined. Proteins spanning the membrane twice were obtained when a signal anchor sequence was followed by either a stop transfer sequence or a second signal anchor sequence. Thus, a sig...

  18. Epithelial Cell Invasion and Adherence Directed by the Enterotoxigenic Escherichia coli tib Locus Is Associated with a 104-Kilodalton Outer Membrane Protein

    Science.gov (United States)

    1994-08-01

    copy EIEC (2 strains) - AFRIMS of the upstream region in cis or in trans restores invasion and production of the 104-kDa form of the TibA protein...antibodies ’ EIEC , enteroinvasive E. co/i; EHEC. entcrohemorrhagic E. cobi; EAggEC. against membrane localization and cell attachment epitopes of

  19. Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral Latent Membrane Protein 1 and the immunomodulatory protein galectin 9

    Directory of Open Access Journals (Sweden)

    Hirashima Mitsuomi

    2006-12-01

    Full Text Available Abstract Background Nasopharyngeal carcinomas (NPC are consistently associated with the Epstein-Barr virus (EBV. Their malignant epithelial cells contain the viral genome and express several antigenic viral proteins. However, the mechanisms of immune escape in NPCs are still poorly understood. EBV-transformed B-cells have been reported to release exosomes carrying the EBV-encoded latent membrane protein 1 (LMP1 which has T-cell inhibitory activity. Although this report suggested that NPC cells could also produce exosomes carrying immunosuppressive proteins, this hypothesis has remained so far untested. Methods Malignant epithelial cells derived from NPC xenografts – LMP1-positive (C15 or negative (C17 – were used to prepare conditioned culture medium. Various microparticles and vesicles released in the culture medium were collected and fractionated by differential centrifugation. Exosomes collected in the last centrifugation step were further purified by immunomagnetic capture on beads carrying antibody directed to HLA class II molecules. Purified exosomes were visualized by electron microscopy and analysed by western blotting. The T-cell inhibitory activities of recombinant LMP1 and galectin 9 were assessed on peripheral blood mononuclear cells activated by CD3/CD28 cross-linking. Results HLA-class II-positive exosomes purified from C15 and C17 cell supernatants were containing either LMP1 and galectin 9 (C15 or galectin 9 only (C17. Recombinant LMP1 induced a strong inhibition of T-cell proliferation (IC50 = 0.17 nM. In contrast recombinant galectin 9 had a weaker inhibitory effect (IC50 = 46 nM with no synergy with LMP1. Conclusion This study provides the proof of concept that NPC cells can release HLA class-II positive exosomes containing galectin 9 and/or LMP1. It confirms that the LMP1 molecule has intrinsic T-cell inhibitory activity. These findings will encourage investigations of tumor exosomes in the blood of NPC patients and

  20. The synthesis and characterization of cellular membrane affinity chromatography columns for the study of human multidrug resistant proteins MRP1, MRP2 and human breast cancer resistant protein BCRP using membranes obtained from Spodoptera frugiperda (Sf9) insect cells.

    Science.gov (United States)

    Bhatia, Prateek A; Moaddel, Ruin; Wainer, Irving W

    2010-06-15

    CMAC (cellular membrane affinity chromatography columns) have been developed for the study of the human multidrug transporters MRP1, MRP2 and the breast cancer resistance protein (BCRP). The columns were constructed using the immobilized artificial membrane (IAM) stationary phase and cellular membrane fragments obtained from Spodoptera frugiperda (Sf9) cells that had been stably transfected with human Mrp1, Mrp2 or Bcrp cDNA, using a baculovirus expression system. The resulting CMAC(Sf9(MRP1)), CMAC(Sf9(MRP2)) and CMAC(Sf9(BCRP)) columns and a control column produced using membrane fragments from non-transfected Sf9 cells, CMAC(Sf9), were characterized using frontal affinity chromatography using [(3)H]-etoposide as the marker ligand and etoposide, benzbromarone and MK571 as the displacers on the CMAC(Sf9(MRP1)) column, etoposide and furosemide on the CMAC(Sf9(MRP2)) column and etoposide and fumitremorgin C on the CMAC(Sf9(BCPR)) column. The binding affinities (K(i) values) obtained from the chromatographic studies were consistent with the data obtained using non-chromatographic techniques and the results indicate that the immobilized MRP1, MRP2 and BCRP transporters retained their ability to selectively bind known ligands. (S)-verapamil displaced [(3)H]-etoposide on the CMAC(Sf9(MRP1)) column to a greater extent than (R)-verapamil and the relative IC(50) values of the enantiomers were calculated using the changes in the retention times of the marker. The observed enantioselectivity and calculated IC(50) values were consistent with previously reported data. The results indicated that the CMAC(Sf9(MRP1)), CMAC(Sf9(MRP2)) and CMAC(Sf9(BCRP)) columns can be used for the study of binding to the MRP1, MRP2 and BCRP transporters and that membranes from the Sf9 cell line can be used to prepare CMAC columns. This is the first example of the use of membranes from a non-mammalian cell line in an affinity chromatographic system.

  1. Novel Tripod Amphiphiles for Membrane Protein Analysis

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Kruse, Andrew C; Gotfryd, Kamil

    2013-01-01

    Integral membrane proteins play central roles in controlling the flow of information and molecules across membranes. Our understanding of membrane protein structures and functions, however, is seriously limited, mainly due to difficulties in handling and analysing these proteins in aqueous solution...

  2. Computational modeling of membrane proteins.

    Science.gov (United States)

    Koehler Leman, Julia; Ulmschneider, Martin B; Gray, Jeffrey J

    2015-01-01

    The determination of membrane protein (MP) structures has always trailed that of soluble proteins due to difficulties in their overexpression, reconstitution into membrane mimetics, and subsequent structure determination. The percentage of MP structures in the protein databank (PDB) has been at a constant 1-2% for the last decade. In contrast, over half of all drugs target MPs, only highlighting how little we understand about drug-specific effects in the human body. To reduce this gap, researchers have attempted to predict structural features of MPs even before the first structure was experimentally elucidated. In this review, we present current computational methods to predict MP structure, starting with secondary structure prediction, prediction of trans-membrane spans, and topology. Even though these methods generate reliable predictions, challenges such as predicting kinks or precise beginnings and ends of secondary structure elements are still waiting to be addressed. We describe recent developments in the prediction of 3D structures of both α-helical MPs as well as β-barrels using comparative modeling techniques, de novo methods, and molecular dynamics (MD) simulations. The increase of MP structures has (1) facilitated comparative modeling due to availability of more and better templates, and (2) improved the statistics for knowledge-based scoring functions. Moreover, de novo methods have benefited from the use of correlated mutations as restraints. Finally, we outline current advances that will likely shape the field in the forthcoming decade.

  3. Expression, Solubilization, and Purification of Bacterial Membrane Proteins.

    Science.gov (United States)

    Jeffery, Constance J

    2016-02-02

    Bacterial integral membrane proteins play many important roles, including sensing changes in the environment, transporting molecules into and out of the cell, and in the case of commensal or pathogenic bacteria, interacting with the host organism. Working with membrane proteins in the lab can be more challenging than working with soluble proteins because of difficulties in their recombinant expression and purification. This protocol describes a standard method to express, solubilize, and purify bacterial integral membrane proteins. The recombinant protein of interest with a 6His affinity tag is expressed in E. coli. After harvesting the cultures and isolating cellular membranes, mild detergents are used to solubilize the membrane proteins. Protein-detergent complexes are then purified using IMAC column chromatography. Support protocols are included to help select a detergent for protein solubilization and for use of gel filtration chromatography for further purification.

  4. Imaging of membrane proteins using antenna-based optical microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hoeppener, Christiane; Novotny, Lukas [Institute of Optics and Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627 (United States)], E-mail: novotny@optics.rochester.edu

    2008-09-24

    The localization and identification of individual proteins is of key importance for the understanding of biological processes on the molecular scale. Here, we demonstrate near-field fluorescence imaging of single proteins in their native cell membrane. Incident laser radiation is localized and enhanced with an optical antenna in the form of a spherical gold particle attached to a pointed dielectric tip. Individual proteins can be identified with a diffraction-unlimited spatial resolution of {approx}50 nm. Besides determining the concentration and distribution of specific membrane proteins, this approach makes it possible to study the colocalization of different membrane proteins. Moreover, it enables a simultaneous recording of the membrane topology. Protein distributions can be correlated with the local membrane topology, thereby providing important information on the chemical and structural organization of cellular membranes.

  5. Nonionic homopolymeric amphipols: application to membrane protein folding, cell-free synthesis, and solution nuclear magnetic resonance.

    Science.gov (United States)

    Bazzacco, Paola; Billon-Denis, Emmanuelle; Sharma, K Shivaji; Catoire, Laurent J; Mary, Sophie; Le Bon, Christel; Point, Elodie; Banères, Jean-Louis; Durand, Grégory; Zito, Francesca; Pucci, Bernard; Popot, Jean-Luc

    2012-02-21

    Nonionic amphipols (NAPols) synthesized by homotelomerization of an amphiphatic monomer are able to keep membrane proteins (MPs) stable and functional in the absence of detergent. Some of their biochemical and biophysical properties and applications have been examined, with particular attention being paid to their complementarity with the classical polyacrylate-based amphipol A8-35. Bacteriorhodopsin (BR) from Halobacterium salinarum and the cytochrome b(6)f complex from Chlamydomonas reinhardtii were found to be in their native state and highly stable following complexation with NAPols. NAPol-trapped BR was shown to undergo its complete photocycle. Because of the pH insensitivity of NAPols, solution nuclear magnetic resonance (NMR) two-dimensional (1)H-(15)N heteronuclear single-quantum coherence spectra of NAPol-trapped outer MP X from Escherichia coli (OmpX) could be recorded at pH 6.8. They present a resolution similar to that of the spectra of OmpX/A8-35 complexes recorded at pH 8.0 and give access to signals from solvent-exposed rapidy exchanging amide protons. Like A8-35, NAPols can be used to fold MPs to their native state as demonstrated here with BR and with the ghrelin G protein-coupled receptor GHS-R1a, thus extending the range of accessible folding conditions. Following NAPol-assisted folding, GHS-R1a bound four of its specific ligands, recruited arrestin-2, and activated binding of GTPγS by the G(αq) protein. Finally, cell-free synthesis of MPs, which is inhibited by A8-35 and sulfonated amphipols, was found to be very efficient in the presence of NAPols. These results open broad new perspectives on the use of amphipols for MP studies.

  6. Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and nonmetastatic bladder cancer cells reveal differential expression of EMT factors.

    Science.gov (United States)

    Jeppesen, Dennis Kjølhede; Nawrocki, Arkadiusz; Jensen, Steffen Grann; Thorsen, Kasper; Whitehead, Bradley; Howard, Kenneth A; Dyrskjøt, Lars; Ørntoft, Torben Falck; Larsen, Martin R; Ostenfeld, Marie Stampe

    2014-03-01

    Cancer cells secrete soluble factors and various extracellular vesicles, including exosomes, into their tissue microenvironment. The secretion of exosomes is speculated to facilitate local invasion and metastatic spread. Here, we used an in vivo metastasis model of human bladder carcinoma cell line T24 without metastatic capacity and its two isogenic derivate cell lines SLT4 and FL3, which form metastases in the lungs and liver of mice, respectively. Cultivation in CLAD1000 bioreactors rather than conventional culture flasks resulted in a 13- to 16-fold increased exosome yield and facilitated quantitative proteomics of fractionated exosomes. Exosomes from T24, SLT4, and FL3 cells were partitioned into membrane and luminal fractions and changes in protein abundance related to the gain of metastatic capacity were identified by quantitative iTRAQ proteomics. We identified several proteins linked to epithelial-mesenchymal transition, including increased abundance of vimentin and hepatoma-derived growth factor in the membrane, and casein kinase II α and annexin A2 in the lumen of exosomes, respectively, from metastatic cells. The change in exosome protein abundance correlated little, although significant for FL3 versus T24, with changes in cellular mRNA expression. Our proteomic approach may help identification of proteins in the membrane and lumen of exosomes potentially involved in the metastatic process.

  7. The rice dynamin-related protein DRP2B mediates membrane trafficking, and thereby plays a critical role in secondary cell wall cellulose biosynthesis.

    Science.gov (United States)

    Xiong, Guangyan; Li, Rui; Qian, Qian; Song, Xueqin; Liu, Xiangling; Yu, Yanchun; Zeng, Dali; Wan, Jianmin; Li, Jiayang; Zhou, Yihua

    2010-10-01

    Membrane trafficking between the plasma membrane (PM) and intracellular compartments is an important process that regulates the deposition and metabolism of cell wall polysaccharides. Dynamin-related proteins (DRPs), which function in membrane tubulation and vesiculation are closely associated with cell wall biogenesis. However, the molecular mechanisms by which DRPs participate in cell wall formation are poorly understood. Here, we report the functional characterization of Brittle Culm3 (BC3), a gene encoding OsDRP2B. Consistent with the expression of BC3 in mechanical tissues, the bc3 mutation reduces mechanical strength, which results from decreased cellulose content and altered secondary wall structure. OsDRP2B, one of three members of the DRP2 subfamily in rice (Oryza sativa L.), was identified as an authentic membrane-associated dynamin via in vitro biochemical analyses. Subcellular localization of fluorescence-tagged OsDRP2B and several compartment markers in protoplast cells showed that this protein not only lies at the PM and the clathrin-mediated vesicles, but also is targeted to the trans-Golgi network (TGN). An FM4-64 uptake assay in transgenic plants that express green fluorescent protein-tagged OsDRP2B verified its involvement in an endocytic pathway. BC3 mutation and overexpression altered the abundance of cellulose synthase catalytic subunit 4 (OsCESA4) in the PM and in the endomembrane systems. All of these findings lead us to conclude that OsDRP2B participates in the endocytic pathway, probably as well as in post-Golgi membrane trafficking. Mutation of OsDRP2B disturbs the membrane trafficking that is essential for normal cellulose biosynthesis of the secondary cell wall, thereby leading to inferior mechanical properties in rice plants.

  8. Mapping the energy and diffusion landscapes of membrane proteins at the cell surface using high-density single-molecule imaging and Bayesian inference: application to the multi-scale dynamics of glycine receptors in the neuronal membrane

    CERN Document Server

    Masson, Jean-Baptiste; Salvatico, Charlotte; Renner, Marianne; Specht, Christian G; Triller, Antoine; Dahan, Maxime

    2015-01-01

    Protein mobility is conventionally analyzed in terms of an effective diffusion. Yet, this description often fails to properly distinguish and evaluate the physical parameters (such as the membrane friction) and the biochemical interactions governing the motion. Here, we present a method combining high-density single-molecule imaging and statistical inference to separately map the diffusion and energy landscapes of membrane proteins across the cell surface at ~100 nm resolution (with acquisition of a few minutes). When applying these analytical tools to glycine neurotransmitter receptors (GlyRs) at inhibitory synapses, we find that gephyrin scaffolds act as shallow energy traps (~3 kBT) for GlyRs, with a depth modulated by the biochemical properties of the receptor-gephyrin interaction loop. In turn, the inferred maps can be used to simulate the dynamics of proteins in the membrane, from the level of individual receptors to that of the population, and thereby, to model the stochastic fluctuations of physiologi...

  9. Challenges in the Development of Functional Assays of Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Sophie Demarche

    2012-11-01

    Full Text Available Lipid bilayers are natural barriers of biological cells and cellular compartments. Membrane proteins integrated in biological membranes enable vital cell functions such as signal transduction and the transport of ions or small molecules. In order to determine the activity of a protein of interest at defined conditions, the membrane protein has to be integrated into artificial lipid bilayers immobilized on a surface. For the fabrication of such biosensors expertise is required in material science, surface and analytical chemistry, molecular biology and biotechnology. Specifically, techniques are needed for structuring surfaces in the micro- and nanometer scale, chemical modification and analysis, lipid bilayer formation, protein expression, purification and solubilization, and most importantly, protein integration into engineered lipid bilayers. Electrochemical and optical methods are suitable to detect membrane activity-related signals. The importance of structural knowledge to understand membrane protein function is obvious. Presently only a few structures of membrane proteins are solved at atomic resolution. Functional assays together with known structures of individual membrane proteins will contribute to a better understanding of vital biological processes occurring at biological membranes. Such assays will be utilized in the discovery of drugs, since membrane proteins are major drug targets.

  10. Proteomic analysis of glycosylphosphatidylinositol-anchored membrane proteins

    DEFF Research Database (Denmark)

    Elortza, Felix; Nühse, Thomas S; Foster, Leonard J

    2003-01-01

    Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are a functionally and structurally diverse family of post-translationally modified membrane proteins found mostly in the outer leaflet of the plasma membrane in a variety of eukaryotic cells. Although the general role of GPI-APs remains un...

  11. Biological Fuel Cells and Membranes.

    Science.gov (United States)

    Ghassemi, Zahra; Slaughter, Gymama

    2017-01-17

    Biofuel cells have been widely used to generate bioelectricity. Early biofuel cells employ a semi-permeable membrane to separate the anodic and cathodic compartments. The impact of different membrane materials and compositions has also been explored. Some membrane materials are employed strictly as membrane separators, while some have gained significant attention in the immobilization of enzymes or microorganisms within or behind the membrane at the electrode surface. The membrane material affects the transfer rate of the chemical species (e.g., fuel, oxygen molecules, and products) involved in the chemical reaction, which in turn has an impact on the performance of the biofuel cell. For enzymatic biofuel cells, Nafion, modified Nafion, and chitosan membranes have been used widely and continue to hold great promise in the long-term stability of enzymes and microorganisms encapsulated within them. This article provides a review of the most widely used membrane materials in the development of enzymatic and microbial biofuel cells.

  12. The Origin and Early Evolution of Membrane Proteins

    Science.gov (United States)

    Pohorille, Andrew; Schweighofer, Karl; Wilson, Michael A.

    2005-01-01

    Membrane proteins mediate functions that are essential to all cells. These functions include transport of ions, nutrients and waste products across cell walls, capture of energy and its transduction into the form usable in chemical reactions, transmission of environmental signals to the interior of the cell, cellular growth and cell volume regulation. In the absence of membrane proteins, ancestors of cell (protocells), would have had only very limited capabilities to communicate with their environment. Thus, it is not surprising that membrane proteins are quite common even in simplest prokaryotic cells. Considering that contemporary membrane channels are large and complex, both structurally and functionally, a question arises how their presumably much simpler ancestors could have emerged, perform functions and diversify in early protobiological evolution. Remarkably, despite their overall complexity, structural motifs in membrane proteins are quite simple, with a-helices being most common. This suggests that these proteins might have evolved from simple building blocks. To explain how these blocks could have organized into functional structures, we performed large-scale, accurate computer simulations of folding peptides at a water-membrane interface, their insertion into the membrane, self-assembly into higher-order structures and function. The results of these simulations, combined with analysis of structural and functional experimental data led to the first integrated view of the origin and early evolution of membrane proteins.

  13. Expression of vesicle-associated membrane protein 2 (VAMP-2)/synaptobrevin II and cellubrevin in rat skeletal muscle and in a muscle cell line.

    Science.gov (United States)

    Volchuk, A; Mitsumoto, Y; He, L; Liu, Z; Habermann, E; Trimble, W; Klip, A

    1994-01-01

    Molecular studies have identified a family of synaptic vesicle-associated membrane proteins (VAMPs, also known as synaptobrevins) which have been implicated in synaptic vesicle docking and/or fusion with plasma membrane proteins. Here we demonstrate the expression of two members of this family, VAMP-2/synaptobrevin II and cellubrevin, in skeletal muscle, a tissue with both constitutive and regulated membrane traffic. The 18 kDa VAMP-2 polypeptide was detected in purified membrane fractions from adult skeletal muscle and from L6 myotubes in culture, demonstrating that the presence of this protein in the isolated muscle membrane fractions is not the result of contamination by ancillary tissues such as peripheral nerve. Furthermore, skeletal muscle and the muscle cell line also expressed cellubrevin, a VAMP-2 homologue of 17 kDa; which is much less abundant in brain cells. Both VAMP-2 and cellubrevin were preferentially isolated in membrane fractions rich in plasma membranes, and were less concentrated in light microsomes and other internal membrane fractions of mature muscle or muscle cells in culture. Interestingly, both VAMP-2 and cellubrevin were much more abundant in the differentiated L6 myotubes than in their precursor myoblasts, suggesting that they are required for functions of differentiated muscle cells. The identity of both polypeptides was further confirmed by their susceptibility to proteolysis by Clostridium tetanus toxin. Expression of these products was further established by the presence of mRNA transcripts of VAMP-2 and cellubrevin, but not of VAMP-1, in both skeletal muscle and L6 myotubes. In contrast, other synaptic vesicle and docking/fusion components were undetectable, such as VAMP-1, SNAP25 and syntaxin 1A/1B, as were synaptophysin and synapsin Ia/Ib, proteins which are believed to be involved in sensing the signal for neuronal exocytosis. It is concluded that VAMP-2 and cellubrevin are expressed in skeletal muscle cells and may each

  14. Senescence marker protein 30 (SMP30 expression in eukaryotic cells: existence of multiple species and membrane localization.

    Directory of Open Access Journals (Sweden)

    Peethambaran Arun

    Full Text Available Senescence marker protein (SMP30, also known as regucalcin, is a 34 kDa cytosolic marker protein of aging which plays an important role in intracellular Ca(2+ homeostasis, ascorbic acid biosynthesis, oxidative stress, and detoxification of chemical warfare nerve agents. In our goal to investigate the activity of SMP30 for the detoxification of nerve agents, we have produced a recombinant adenovirus expressing human SMP30 as a fusion protein with a hemaglutinin tag (Ad-SMP30-HA. Ad-SMP30-HA transduced the expression of SMP30-HA and two additional forms of SMP30 with molecular sizes ∼28 kDa and 24 kDa in HEK-293A and C3A liver cells in a dose and time-dependent manner. Intravenous administration of Ad-SMP30-HA in mice results in the expression of all the three forms of SMP30 in the liver and diaphragm. LC-MS/MS results confirmed that the lower molecular weight 28 kDa and 24 kDa proteins are related to the 34 kDa SMP30. The 28 kDa and 24 kDa SMP30 forms were also detected in normal rat liver and mice injected with Ad-SMP30-HA suggesting that SMP30 does exist in multiple forms under physiological conditions. Time course experiments in both cell lines suggest that the 28 kDa and 24 kDa SMP30 forms are likely generated from the 34 kDa SMP30. Interestingly, the 28 kDa and 24 kDa SMP30 forms appeared initially in the cytosol and shifted to the particulate fraction. Studies using small molecule inhibitors of proteolytic pathways revealed the potential involvement of β and γ-secretases but not calpains, lysosomal proteases, proteasome and caspases. This is the first report describing the existence of multiple forms of SMP30, their preferential distribution to membranes and their generation through proteolysis possibly mediated by secretase enzymes.

  15. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  16. Over-expression and localization of a host protein on the membrane of Cryptosporidium parvum infected epithelial cells.

    Science.gov (United States)

    Yang, Yi-Lin; Serrano, Myrna G; Sheoran, Abhineet S; Manque, Patricio A; Buck, Gregory A; Widmer, Giovanni

    2009-11-01

    The genus Cryptosporidium includes several species of intestinal protozoan parasites which multiply in intestinal epithelial cells. The impact of this infection on the transcriptome of cultured host cells was investigated using DNA microarray hybridizations. The expression of 14 genes found to be consistently up- or down-regulated in infected cell monolayers was validated with RT PCR. Using immunofluorescence we examined the expression of Protease Activated Receptor-2, which is encoded by one of the up-regulated genes. In infected cells this receptor localized to the host cell membrane which covers the intracellular trophozoites and meronts. This observation indicates that the composition of the host cell membrane is affected by the developing trophozoite, a phenomenon which has not been described previously.

  17. A framework for protein and membrane interactions

    CERN Document Server

    Bacci, Giorgio; Miculan, Marino; 10.4204/EPTCS.11.2

    2009-01-01

    We introduce the BioBeta Framework, a meta-model for both protein-level and membrane-level interactions of living cells. This formalism aims to provide a formal setting where to encode, compare and merge models at different abstraction levels; in particular, higher-level (e.g. membrane) activities can be given a formal biological justification in terms of low-level (i.e., protein) interactions. A BioBeta specification provides a protein signature together a set of protein reactions, in the spirit of the kappa-calculus. Moreover, the specification describes when a protein configuration triggers one of the only two membrane interaction allowed, that is "pinch" and "fuse". In this paper we define the syntax and semantics of BioBeta, analyse its properties, give it an interpretation as biobigraphical reactive systems, and discuss its expressivity by comparing with kappa-calculus and modelling significant examples. Notably, BioBeta has been designed after a bigraphical metamodel for the same purposes. Hence, each ...

  18. Purification of the major outer membrane protein of Azospirillum brasilense, its affinity to plant roots, and its involvement in cell aggregation.

    Science.gov (United States)

    Burdman, S; Dulguerova, G; Okon, Y; Jurkevitch, E

    2001-04-01

    The major outer membrane protein (MOMP) of the nitrogen-fixing rhizobacterium Azospirillum brasilense strain Cd was purified and isolated by gel filtration, and antiserum against this protein was obtained. A screening of the binding of outer membrane proteins (OMPs) of A. brasilense to membrane-immobilized root extracts of various plant species revealed different affinities for the MOMP, with a stronger adhesion to extracts of cereals in comparison with legumes and tomatoes. Moreover, this protein was shown to bind to roots of different cereal seedlings in an in vitro adhesion assay. Incubation of A. brasilense cells with MOMP-antiserum led to fast agglutination, indicating that the MOMP is a surface-exposed protein. Cells incubated with Fab fragments obtained from purified MOMP-antiserum immunoglobulin G exhibited significant inhibition of bacterial aggregation as compared with controls. Bacteria preincubated with Fab fragments showed weaker adhesion to corn roots in comparison to controls without Fab fragments. These findings suggest that the A. brasilense MOMP acts as an adhesin involved in root adsorption and cell aggregation of this bacterium.

  19. Cell Membrane Softening in Cancer Cells

    Science.gov (United States)

    Schmidt, Sebastian; Händel, Chris; Käs, Josef

    Biomechanical properties are useful characteristics and regulators of the cell's state. Current research connects mechanical properties of the cytoskeleton to many cellular processes but does not investigate the biomechanics of the plasma membrane. We evaluated thermal fluctuations of giant plasma membrane vesicles, directly derived from the plasma membranes of primary breast and cervical cells and observed a lowered rigidity in the plasma membrane of malignant cells compared to non-malignant cells. To investigate the specific role of membrane rigidity changes, we treated two cell lines with the Acetyl-CoA carboxylase inhibitor Soraphen A. It changed the lipidome of cells and drastically increased membrane stiffness by up regulating short chained membrane lipids. These altered cells had a decreased motility in Boyden chamber assays. Our results indicate that the thermal fluctuations of the membrane, which are much smaller than the fluctuations driven by the cytoskeleton, can be modulated by the cell and have an impact on adhesion and motility.

  20. Subdiffusion of proteins and oligomers on membranes

    Science.gov (United States)

    Lepzelter, David; Zaman, Muhammad

    2012-11-01

    Diffusion of proteins on lipid membranes plays a central role in cell signaling processes. From a mathematical perspective, most membrane diffusion processes are explained by the Saffman-Delbrück theory. However, recent studies have suggested a major limitation in the theoretical framework, the lack of complexity in the modeled lipid membrane. Lipid domains (sometimes termed membrane rafts) are known to slow protein diffusion, but there have been no quantitative theoretical examinations of how much diffusion is slowed in a general case. We provide an overall theoretical framework for confined-domain ("corralled") diffusion. Further, there have been multiple apparent contradictions of the basic conclusions of Saffman and Delbrück, each involving cases in which a single protein or an oligomer has multiple transmembrane regions passing through a lipid phase barrier. We present a set of corrections to the Saffman-Delbrück theory to account for these experimental observations. Our corrections are able to provide a quantitative explanation of numerous cellular signaling processes that have been considered beyond the scope of the Saffman-Delbrück theory, and may be extendable to other forms of subdiffusion.

  1. Molecular dynamics of leucine and dopamine transporter proteins in a model cell membrane lipid bilayer.

    Science.gov (United States)

    Gedeon, Patrick C; Indarte, Martín; Surratt, Christopher K; Madura, Jeffry D

    2010-03-01

    The dopamine transporter (DAT) operates via facilitated diffusion, harnessing an inward Na(+) gradient to drive dopamine from the extracellular synaptic cleft to the neuron interior. The DAT is relevant to central nervous system disorders such as Parkinson disease and attention-deficit hyperactivity disorder and is the primary site of action for the abused psychostimulants cocaine and amphetamines. Crystallization of a DAT homolog, the bacterial leucine transporter LeuT, provided the first reliable 3-D DAT template. Here, the LeuT crystal structure and the DAT molecular model have been combined with their respective substrates, leucine and dopamine, in lipid bilayer molecular dynamics simulations toward tracking substrate movement along the protein's substrate/ion permeation pathway. Specifically, movement of residue pairs that comprise the "external gate" was followed as a function of substrate presence. The transmembrane (TM) 1 arginine-TM 10 aspartate strut formed less readily in DAT compared with LeuT, with or without substrate present. For LeuT but not DAT, the addition of substrate enhanced the chances of forming the TM 1-10 bridge. Also, movement of the fourth extracellular loop EL-4 in the presence of substrate was more pronounced for DAT, the EL-4 unwinding to a degree. The overall similarity between the LeuT and DAT molecular dynamics simulations indicated that LeuT was a legitimate model to guide DAT structure-function predictions. There were, nevertheless, differences significant enough to allow for DAT-unique insights, which may include how cocaine, methylphenidate (Ritalin, NIDA Drug Supply, Rockville, MD), and other DAT blockers are not recognized as substrates even though they can access the primary substrate binding pocket. Proteins 2010. (c) 2009 Wiley-Liss, Inc.

  2. Neutrons describe ectoine effects on water H-bonding and hydration around a soluble protein and a cell membrane

    Science.gov (United States)

    Zaccai, Giuseppe; Bagyan, Irina; Combet, Jérôme; Cuello, Gabriel J.; Demé, Bruno; Fichou, Yann; Gallat, François-Xavier; Galvan Josa, Victor M.; von Gronau, Susanne; Haertlein, Michael; Martel, Anne; Moulin, Martine; Neumann, Markus; Weik, Martin; Oesterhelt, Dieter

    2016-08-01

    Understanding adaptation to extreme environments remains a challenge of high biotechnological potential for fundamental molecular biology. The cytosol of many microorganisms, isolated from saline environments, reversibly accumulates molar concentrations of the osmolyte ectoine to counterbalance fluctuating external salt concentrations. Although they have been studied extensively by thermodynamic and spectroscopic methods, direct experimental structural data have, so far, been lacking on ectoine-water-protein interactions. In this paper, in vivo deuterium labeling, small angle neutron scattering, neutron membrane diffraction and inelastic scattering are combined with neutron liquids diffraction to characterize the extreme ectoine-containing solvent and its effects on purple membrane of H. salinarum and E. coli maltose binding protein. The data reveal that ectoine is excluded from the hydration layer at the membrane surface and does not affect membrane molecular dynamics, and prove a previous hypothesis that ectoine is excluded from a monolayer of dense hydration water around the soluble protein. Neutron liquids diffraction to atomic resolution shows how ectoine enhances the remarkable properties of H-bonds in water—properties that are essential for the proper organization, stabilization and dynamics of biological structures.

  3. Nonlinear electromagnetic responses of active membrane protein complexes in live cells and organelles

    Science.gov (United States)

    Nawarathna, Dharmakirthi

    The response of biological cells to an applied oscillating electric field contains both linear and nonlinear components (eg. induced harmonics). Such noninvasive measurements can be used to study active processes taking place inside the cells. The measurement of induced harmonics is the tool used for the study described here. A highly sensitive superconducting quantum interference device (SQUID) is used to detect the response at low frequencies, which greatly reduces electrode polarization effects. At high frequencies, a four- probe method is used. At low frequencies, harmonic generation by budding yeast cells in response to a sinusoidal electric field is reported, which is seen to be minimal when the field amplitude is less than a threshold value. Surprisingly, sodium metavanadate, an inhibitor of P-type ATPases and glucose, a substrate of P-type ATPase responsible for nonlinear response in yeast, reduces the threshold field amplitude, increasing harmonic generation at low amplitudes while reducing it at large amplitudes. We have thus proposed a model that explicitly introduces a threshold field, similar to those observed in density waves, where fields above threshold drive charge transport through an energy landscape with multiple wells, and in Coulomb blockade tunnel junctions, recently exploited to define the current standard. At high frequencies, the induced harmonics exhibit pronounced features that depend on the specific organism. Budding yeast (S. cerevisiae ) cells produce numerous harmonics. When the second or third harmonic amplitude is plotted vs. applied frequency, we observe two peaks, around 3 kHz and 12 kHz, which are suppressed by the respiratory inhibitor potassium cyanide. We then measured the response to oscillatory electric fields of intact bovine heart mitochondria, a reproducible second harmonic (at ˜3-4 kHz applied frequency) was detected. Further, with coupled mouse mitochondria, an ADP sensitive peak (˜ 12-15 kHz applied frequency) was

  4. Proteins and Peptides in Biomimetic Polymeric Membranes

    DEFF Research Database (Denmark)

    Perez, Alfredo Gonzalez

    2013-01-01

    This chapter discusses recent advances and the main advantages of block copolymers for functional membrane protein reconstitution in biomimetic polymeric membranes. A rational approach to the reconstitution of membrane proteins in a functional form can be addressed by a more holistic view by usin...

  5. Bilayer-thickness-mediated interactions between integral membrane proteins.

    Science.gov (United States)

    Kahraman, Osman; Koch, Peter D; Klug, William S; Haselwandter, Christoph A

    2016-04-01

    Hydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-mediated interactions between integral membrane proteins, and large-scale organization of integral membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilayers for a given set of bilayer-protein boundary conditions. Here we develop a combined analytic and numerical methodology for the solution of the equilibrium elastic equations associated with protein-induced lipid bilayer deformations. Our methodology allows accurate prediction of thickness-mediated protein interactions for arbitrary protein symmetries at arbitrary protein separations and relative orientations. We provide exact analytic solutions for cylindrical integral membrane proteins with constant and varying hydrophobic thickness, and develop perturbative analytic solutions for noncylindrical protein shapes. We complement these analytic solutions, and assess their accuracy, by developing both finite element and finite difference numerical solution schemes. We provide error estimates of our numerical solution schemes and systematically assess their convergence properties. Taken together, the work presented here puts into place an analytic and numerical framework which allows calculation of bilayer-mediated elastic interactions between integral membrane proteins for the complicated protein shapes suggested by structural biology and at the small protein separations most relevant for the crowded membrane

  6. Recombinant Dengue virus protein NS2B alters membrane permeability in different membrane models

    OpenAIRE

    León-Juárez, Moisés; Martínez-Castillo, Macario; Shrivastava, Gaurav; García-Cordero, Julio; Villegas-Sepulveda, Nicolás; Mondragón-Castelán, Mónica; Mondragón-Flores, Ricardo; Cedillo-Barrón, Leticia

    2016-01-01

    Background One of the main phenomena occurring in cellular membranes during virus infection is a change in membrane permeability. It has been observed that numerous viral proteins can oligomerize and form structures known as viroporins that alter the permeability of membranes. Previous findings have identified such proteins in cells infected with Japanese encephalitis virus (JEV), a member of the same family that Dengue virus (DENV) belongs to (Flaviviridae). In the present work, we investiga...

  7. The cell-free integration of a polytopic mitochondrial membrane protein into liposomes occurs cotranslationally and in a lipid-dependent manner.

    Directory of Open Access Journals (Sweden)

    Ashley R Long

    Full Text Available The ADP/ATP Carrier (AAC is the most abundant transporter of the mitochondrial inner membrane. The central role that this transporter plays in cellular energy production highlights the importance of understanding its structure, function, and the basis of its pathologies. As a means of preparing proteoliposomes for the study of membrane proteins, several groups have explored the use of cell-free translation systems to facilitate membrane protein integration directly into preformed unilamellar vesicles without the use of surfactants. Using AAC as a model, we report for the first time the detergent-free reconstitution of a mitochondrial inner membrane protein into liposomes using a wheat germ-based in vitro translation system. Using a host of independent approaches, we demonstrate the efficient integration of AAC into vesicles with an inner membrane-mimetic lipid composition and, more importantly, that the integrated AAC is functionally active in transport. By adding liposomes at different stages of the translation reaction, we show that this direct integration is obligatorily cotranslational, and by synthesizing stable ribosome-bound nascent chain intermediates, we show that the nascent AAC polypeptide interacts with lipid vesicles while ribosome-bound. Finally, we show that the presence of the phospholipid cardiolipin in the liposomes specifically enhances AAC translation rate as well as the efficiency of vesicle association and integration. In light of these results, the possible mechanisms of liposome-assisted membrane protein integration during cell-free translation are discussed with respect to the mode of integration and the role of specific lipids.

  8. A unique HEAT repeat-containing protein SHOOT GRAVITROPISM6 is involved in vacuolar membrane dynamics in gravity-sensing cells of Arabidopsis inflorescence stem.

    Science.gov (United States)

    Hashiguchi, Yasuko; Yano, Daisuke; Nagafusa, Kiyoshi; Kato, Takehide; Saito, Chieko; Uemura, Tomohiro; Ueda, Takashi; Nakano, Akihiko; Tasaka, Masao; Terao Morita, Miyo

    2014-04-01

    Plant vacuoles play critical roles in development, growth and stress responses. In mature cells, vacuolar membranes (VMs) display several types of structures, which are formed by invagination and folding of VMs into the lumenal side and can gradually move and change shape. Although such VM structures are observed in a broad range of tissue types and plant species, the molecular mechanism underlying their formation and maintenance remains unclear. Here, we report that a novel HEAT-repeat protein, SHOOT GRAVITROPISM6 (SGR6), of Arabidopsis is involved in the control of morphological changes and dynamics of VM structures in endodermal cells, which are the gravity-sensing cells in shoots. SGR6 is a membrane-associated protein that is mainly localized to the VM in stem endodermal cells. The sgr6 mutant stem exhibits a reduced gravitropic response. Higher plants utilize amyloplast sedimentation as a means to sense gravity direction. Amyloplasts are surrounded by VMs in Arabidopsis endodermal cells, and the flexible and dynamic structure of VMs is important for amyloplast sedimentation. We demonstrated that such dynamic features of VMs are gradually lost in sgr6 endodermal cells during a 30 min observation period. Histological analysis revealed that amyloplast sedimentation was impaired in sgr6. Detailed live-cell imaging analyses revealed that the VM structures in sgr6 had severe defects in morphological changes and dynamics. Our results suggest that SGR6 is a novel protein involved in the formation and/or maintenance of invaginated VM structures in gravity-sensing cells.

  9. Assembly of outer-membrane proteins in bacteria and mitochondria.

    Science.gov (United States)

    Tommassen, Jan

    2010-09-01

    The cell envelope of Gram-negative bacteria consists of two membranes separated by the periplasm. In contrast with most integral membrane proteins, which span the membrane in the form of hydrophobic alpha-helices, integral outer-membrane proteins (OMPs) form beta-barrels. Similar beta-barrel proteins are found in the outer membranes of mitochondria and chloroplasts, probably reflecting the endosymbiont origin of these eukaryotic cell organelles. How these beta-barrel proteins are assembled into the outer membrane has remained enigmatic for a long time. In recent years, much progress has been reached in this field by the identification of the components of the OMP assembly machinery. The central component of this machinery, called Omp85 or BamA, is an essential and highly conserved bacterial protein that recognizes a signature sequence at the C terminus of its substrate OMPs. A homologue of this protein is also found in mitochondria, where it is required for the assembly of beta-barrel proteins into the outer membrane as well. Although accessory components of the machineries are different between bacteria and mitochondria, a mitochondrial beta-barrel OMP can be assembled into the bacterial outer membrane and, vice versa, bacterial OMPs expressed in yeast are assembled into the mitochondrial outer membrane. These observations indicate that the basic mechanism of OMP assembly is evolutionarily highly conserved.

  10. Protein receptor-independent plasma membrane remodeling by HAMLET

    DEFF Research Database (Denmark)

    Nadeem, Aftab; Sanborn, Jeremy; Gettel, Douglas L.

    2015-01-01

    in signal transduction. Here, we propose that membrane perturbation may serve as an alternative mechanism to activate a conserved cell-death program in cancer cells. This view emerges from the extraordinary manner in which HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills a wide range...... of tumor cells in vitro and demonstrates therapeutic efficacy and selectivity in cancer models and clinical studies. We identify a "receptor independent" transformation of vesicular motifs in model membranes, which is paralleled by gross remodeling of tumor cell membranes. Furthermore, we find that HAMLET...... accumulates within these de novo membrane conformations and define membrane blebs as cellular compartments for direct interactions of HAMLET with essential target proteins such as the Ras family of GTPases. Finally, we demonstrate lower sensitivity of healthy cell membranes to HAMLET challenge. These features...

  11. Interaction Network among Escherichia coli Membrane Proteins Involved in Cell Division as Revealed by Bacterial Two-Hybrid Analysis

    OpenAIRE

    Karimova, Gouzel; Dautin, Nathalie; Ladant, Daniel

    2005-01-01

    Formation of the Escherichia coli division septum is catalyzed by a number of essential proteins (named Fts) that assemble into a ring-like structure at the future division site. Several of these Fts proteins are intrinsic transmembrane proteins whose functions are largely unknown. Although these proteins appear to be recruited to the division site in a hierarchical order, the molecular interactions underlying the assembly of the cell division machinery remain mostly unspecified. In the prese...

  12. Construction of a novel cell-surface display system for heterologous gene expression in Escherichia coli by using an outer membrane protein of Zymomonas mobilis as anchor motif.

    Science.gov (United States)

    He, Ming-Xiong; Feng, Hong; Zhang, Yi-Zheng

    2008-12-01

    A novel bacterial cell-surface display system was developed in Escherichia coli using omp1, a hypothetical outer membrane protein of Zymomonas mobilis. By using this system, we successfully expressed beta-amylase gene of sweet potato in E. coli. The display of enzyme on the membrane surface was also confirmed. The recombinant beta-amylase showed to significantly increase hydrolytic activity toward soluble starch. Our results provide a basis for constructing an engineered Z. mobilis strain directly fermenting raw starch to produce ethanol.

  13. Kinetics and Thermodynamics of Membrane Protein Folding

    Directory of Open Access Journals (Sweden)

    Ernesto A. Roman

    2014-03-01

    Full Text Available Understanding protein folding has been one of the great challenges in biochemistry and molecular biophysics. Over the past 50 years, many thermodynamic and kinetic studies have been performed addressing the stability of globular proteins. In comparison, advances in the membrane protein folding field lag far behind. Although membrane proteins constitute about a third of the proteins encoded in known genomes, stability studies on membrane proteins have been impaired due to experimental limitations. Furthermore, no systematic experimental strategies are available for folding these biomolecules in vitro. Common denaturing agents such as chaotropes usually do not work on helical membrane proteins, and ionic detergents have been successful denaturants only in few cases. Refolding a membrane protein seems to be a craftsman work, which is relatively straightforward for transmembrane β-barrel proteins but challenging for α-helical membrane proteins. Additional complexities emerge in multidomain membrane proteins, data interpretation being one of the most critical. In this review, we will describe some recent efforts in understanding the folding mechanism of membrane proteins that have been reversibly refolded allowing both thermodynamic and kinetic analysis. This information will be discussed in the context of current paradigms in the protein folding field.

  14. Site-directed fluorescence labeling reveals a revised N-terminal membrane topology and functional periplasmic residues in the Escherichia coli cell division protein FtsK.

    Science.gov (United States)

    Berezuk, Alison M; Goodyear, Mara; Khursigara, Cezar M

    2014-08-22

    In Escherichia coli, FtsK is a large integral membrane protein that coordinates chromosome segregation and cell division. The N-terminal domain of FtsK (FtsKN) is essential for division, and the C terminus (FtsKC) is a well characterized DNA translocase. Although the function of FtsKN is unknown, it is suggested that FtsK acts as a checkpoint to ensure DNA is properly segregated before septation. This may occur through modulation of protein interactions between FtsKN and other division proteins in both the periplasm and cytoplasm; thus, a clear understanding of how FtsKN is positioned in the membrane is required to characterize these interactions. The membrane topology of FtsKN was initially determined using site-directed reporter fusions; however, questions regarding this topology persist. Here, we report a revised membrane topology generated by site-directed fluorescence labeling. The revised topology confirms the presence of four transmembrane segments and reveals a newly identified periplasmic loop between the third and fourth transmembrane domains. Within this loop, four residues were identified that, when mutated, resulted in the appearance of cellular voids. High resolution transmission electron microscopy of these voids showed asymmetric division of the cytoplasm in the absence of outer membrane invagination or visible cell wall ingrowth. This uncoupling reveals a novel role for FtsK in linking cell envelope septation events and yields further evidence for FtsK as a critical checkpoint of cell division. The revised topology of FtsKN also provides an important platform for future studies on essential interactions required for this process.

  15. Vesicle associated membrane protein (VAMP)-7 and VAMP-8, but not VAMP-2 or VAMP-3, are required for activation-induced degranulation of mature human mast cells.

    Science.gov (United States)

    Sander, Leif E; Frank, Simon P C; Bolat, Seza; Blank, Ulrich; Galli, Thierry; Bigalke, Hans; Bischoff, Stephan C; Lorentz, Axel

    2008-03-01

    Mediator release from mast cells (MC) is a crucial step in allergic and non-allergic inflammatory disorders. However, the final events in response to activation leading to membrane fusion and thereby facilitating degranulation have hitherto not been analyzed in human MC. Soluble N-ethyl-maleimide-sensitive factor attachment protein receptors (SNARE) represent a highly conserved family of proteins that have been shown to mediate intracellular membrane fusion events. Here, we show that mature MC isolated from human intestinal tissue express soluble N-ethylmaleide sensitive factor attachment protein (SNAP)-23, Syntaxin (STX)-1B, STX-2, STX-3, STX-4, and STX-6 but not SNAP-25. Furthermore, we found that primary human MC express substantial amounts of vesicle associated membrane protein (VAMP)-3, VAMP-7 and VAMP-8 and, in contrast to previous reports about rodent MC, only low levels of VAMP-2. Furthermore, VAMP-7 and VAMP-8 were found to translocate to the plasma membrane and interact with SNAP-23 and STX-4 upon activation. Inhibition of SNAP-23, STX-4, VAMP-7 or VAMP-8, but not VAMP-2 or VAMP-3, resulted in a markedly reduced high-affinity IgE receptor-mediated histamine release. In summary, our data show that mature human MC express a specific pattern of SNARE and that VAMP-7 and VAMP-8, but not VAMP-2, are required for rapid degranulation.

  16. A protein G fragment from the salmonid viral hemorrhagic septicemia rhabdovirus induces cell-to-cell fusion and membrane phosphatidylserine translocation at low pH.

    Science.gov (United States)

    Estepa, A M; Rocha, A I; Mas, V; Pérez, L; Encinar, J A; Nuñez, E; Fernandez, A; Gonzalez Ros, J M; Gavilanes, F; Coll, J M

    2001-12-07

    The fusion-related properties of segments p9, p3, p4, and p9 + p2 surrounding the p2 phospholipid-binding domain of the protein G (pG) of the salmonid rhabdovirus of viral hemorrhagic septicemia (VHS) (Nuñez, E., Fernandez, A. M., Estepa, A., Gonzalez-Ros, J. M., Gavilanes, F., and Coll, J. M. (1998) Virology 243, 322-330; Estepa, A., and Coll, J. M. (1996) Virology 216, 60-70), have been studied at neutral and fusion (low) pH values by using its derived peptides. Cell-to-cell fusion, translocation of phosphatidylserine, and inhibition of fusion of pG-transfected cells defined the p9 + p2 (fragment 11, sequence 56-110) as a fragment with higher specific activity for anionic phospholipid aggregation than the previously reported p2. While fragment 11, p2, and p3 showed interactions with anionic phospholipids, p9 and p4 showed no interactions with any phospholipids. When added to a cell monolayer model at low pH, fragment 11 induced pH-dependent cell-to-cell fusion and translocated phosphatidylserine from the inner to the outer leaflet of the membrane. At low pH and in the presence of anionic phospholipids, fragment 11 showed more than 80% beta-sheet conformation (IR and CD spectroscopies). Finally, anti-fragment 11 antibodies inhibited low pH-dependent pG-transfected cell-to-cell fusion. All of the data support the conclusion that fragment 11 is a primary determinant of some of the viral cell fusion events in VHSV.

  17. Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion.

    Directory of Open Access Journals (Sweden)

    Sébastien Besteiro

    2009-02-01

    Full Text Available One of the most conserved features of the invasion process in Apicomplexa parasites is the formation of a moving junction (MJ between the apex of the parasite and the host cell membrane that moves along the parasite and serves as support to propel it inside the host cell. The MJ was, up to a recent period, completely unknown at the molecular level. Recently, proteins originated from two distinct post-Golgi specialised secretory organelles, the micronemes (for AMA1 and the neck of the rhoptries (for RON2/RON4/RON5 proteins, have been shown to form a complex. AMA1 and RON4 in particular, have been localised to the MJ during invasion. Using biochemical approaches, we have identified RON8 as an additional member of the complex. We also demonstrated that all RON proteins are present at the MJ during invasion. Using metabolic labelling and immunoprecipitation, we showed that RON2 and AMA1 were able to interact in the absence of the other members. We also discovered that all MJ proteins are subjected to proteolytic maturation during trafficking to their respective organelles and that they could associate as non-mature forms in vitro. Finally, whereas AMA1 has previously been shown to be inserted into the parasite membrane upon secretion, we demonstrated, using differential permeabilization and loading of RON-specific antibodies into the host cell, that the RON complex is targeted to the host cell membrane, where RON4/5/8 remain associated with the cytoplasmic face. Globally, these results point toward a model of MJ organization where the parasite would be secreting and inserting interacting components on either side of the MJ, both at the host and at its own plasma membranes.

  18. Membrane-Protein Crystallography and Potentiality for Drug Design

    Science.gov (United States)

    Yamashita, Atsuko

    Structure-based drug design for membrane proteins is far behind that for soluble proteins due to difficulty in crystallographic structure determination, despite the fact that about 60% of FDA-approved drugs target membrane proteins located at the cell surface. Stable homologs for a membrane protein of interest, such as prokaryotic neurotransmitter transporter homolog LeuT, might enable cooperative analyses by crystallography and functional assays, provide useful information for functional mechanisms, and thus serve as important probes for drug design based on mechanisms as well as structures.

  19. The β-lactam resistance protein Blr, a small membrane polypeptide, is a component of the Escherichia coli cell division machinery.

    Science.gov (United States)

    Karimova, Gouzel; Davi, Marilyne; Ladant, Daniel

    2012-10-01

    In Escherichia coli, cell division is performed by a multimolecular machinery called the divisome, made of 10 essential proteins and more than 20 accessory proteins. Through a bacterial two-hybrid library screen, we identified the E. coli β-lactam resistance protein Blr, a short membrane polypeptide of 41 residues, as an interacting partner of the essential cell division protein FtsL. In addition to FtsL, Blr was found to associate with several other divisomal proteins, including FtsI, FtsK, FtsN, FtsQ, FtsW, and YmgF. Using fluorescently tagged Blr, we showed that this peptide localizes to the division septum and that its colocalization requires the presence of the late division protein FtsN. Although Blr is not essential, previous studies have shown that the inactivation of the blr gene increased the sensitivity of bacteria to β-lactam antibiotics or their resistance to cell envelope stress. Here, we found that Blr, when overproduced, restores the viability of E. coli ftsQ1(Ts) cells, carrying a thermosensitive allele of the ftsQ gene, during growth under low-osmotic-strength conditions (e.g., in synthetic media or in Luria-Bertani broth without NaCl). In contrast, the inactivation of blr increases the osmosensitivity of ftsQ1(Ts) cells, and blr ftsQ1 double mutants exhibit filamentous growth in LB broth even at a moderate salt concentration (0.5% NaCl) compared to parental ftsQ1(Ts) cells. Altogether, our results suggest that the small membrane polypeptide Blr is a novel component of the E. coli cell division apparatus involved in the stabilization of the divisome under certain stress conditions.

  20. Plasmodium falciparum Plasmodium helical interspersed subtelomeric proteins contribute to cytoadherence and anchor P. falciparum erythrocyte membrane protein 1 to the host cell cytoskeleton

    DEFF Research Database (Denmark)

    Oberli, Alexander; Zurbrügg, Laura; Rusch, Sebastian;

    2016-01-01

    Adherence of Plasmodium falciparum-infected erythrocytes to host endothelium is conferred through the parasite-derived virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1), the major contributor to malaria severity. PfEMP1 located at knob structures on the erythrocyte surface is...

  1. Efficient activation of human T cells of both CD4 and CD8 subsets by urease-deficient recombinant Mycobacterium bovis BCG that produced a heat shock protein 70-M. tuberculosis-derived major membrane protein II fusion protein.

    Science.gov (United States)

    Mukai, Tetsu; Tsukamoto, Yumiko; Maeda, Yumi; Tamura, Toshiki; Makino, Masahiko

    2014-01-01

    For the purpose of obtaining Mycobacterium bovis bacillus Calmette-Guérin (BCG) capable of activating human naive T cells, urease-deficient BCG expressing a fusion protein composed of Mycobacterium tuberculosis-derived major membrane protein II (MMP-II) and heat shock protein 70 (HSP70) of BCG (BCG-DHTM) was produced. BCG-DHTM secreted the HSP70-MMP-II fusion protein and effectively activated human monocyte-derived dendritic cells (DCs) by inducing phenotypic changes and enhanced cytokine production. BCG-DHTM-infected DCs activated naive T cells of both CD4 and naive CD8 subsets, in an antigen (Ag)-dependent manner. The T cell activation induced by BCG-DHTM was inhibited by the pretreatment of DCs with chloroquine. The naive CD8(+) T cell activation was mediated by the transporter associated with antigen presentation (TAP) and the proteosome-dependent cytosolic cross-priming pathway. Memory CD8(+) T cells and perforin-producing effector CD8(+) T cells were efficiently produced from the naive T cell population by BCG-DHTM stimulation. Single primary infection with BCG-DHTM in C57BL/6 mice efficiently produced T cells responsive to in vitro secondary stimulation with HSP70, MMP-II, and M. tuberculosis-derived cytosolic protein and inhibited the multiplication of subsequently aerosol-challenged M. tuberculosis more efficiently than did vector control BCG. These results indicate that the introduction of MMP-II and HSP70 into urease-deficient BCG may be useful for improving BCG for control of tuberculosis.

  2. Evaluation of Epstein-Barr Virus Latent Membrane Protein 2 Specific T-Cell Receptors Driven by T-Cell Specific Promoters Using Lentiviral Vector

    Directory of Open Access Journals (Sweden)

    Dongchang Yang

    2011-01-01

    Full Text Available Transduction of latent membrane protein 2 (LMP2-specific T-cell receptors into activated T lymphocytes may provide a universal, MHC-restricted mean to treat EBV-associated tumors in adoptive immunotherapy. We compared TCR-specific promoters of distinct origin in lentiviral vectors, that is, Vβ6.7, delta, luria, and Vβ5.1 to evaluate TCR gene expression in human primary peripheral blood monocytes and T cell line HSB2. Vectors containing Vβ 6.7 promoter were found to be optimal for expression in PBMCs, and they maintained expression of the transduced TCRs for up to 7 weeks. These cells had the potential to recognize subdominant EBV latency antigens as measured by cytotoxicity and IFN-γ secretion. The nude mice also exhibited significant resistance to the HLA-A2 and LMP2-positive CNE tumor cell challenge after being infused with lentiviral transduced CTLs. In conclusion, LMP2-specific CTLs by lentiviral transduction have the potential use for treatment of EBV-related tumors.

  3. Designing mimics of membrane active proteins.

    Science.gov (United States)

    Sgolastra, Federica; Deronde, Brittany M; Sarapas, Joel M; Som, Abhigyan; Tew, Gregory N

    2013-12-17

    As a semipermeable barrier that controls the flux of biomolecules in and out the cell, the plasma membrane is critical in cell function and survival. Many proteins interact with the plasma membrane and modulate its physiology. Within this large landscape of membrane-active molecules, researchers have focused significant attention on two specific classes of peptides, antimicrobial peptides (AMPs) and cell penetrating peptides (CPPs), because of their unique properties. In this Account, we describe our efforts over the last decade to build and understand synthetic mimics of antimicrobial peptides (SMAMPs). These endeavors represent one specific example of a much larger effort to understand how synthetic molecules interact with and manipulate the plasma membrane. Using both defined molecular weight oligomers and easier to produce, but heterogeneous, polymers, we have generated scaffolds with biological potency exceeding that of the natural analogues. One of these compounds has progressed through a phase II clinical trial for pan-staph infections. Modern biophysical assays have highlighted the interplay between the synthetic scaffold and lipid composition: a negative Gaussian curvature is required both for pore formation and for the initiation of endosome creation. Although work remains to better resolve the complexity of this interplay between lipids, other bilayer components, and the scaffolds, significant new insights have been discovered. These results point to the importance of considering the various aspects of permeation and how these are related to "pore formation". More recently, our efforts have expanded toward protein transduction domains, or mimics of cell penetrating peptides. Using a combination of unique molecular scaffolds and guanidinium-rich side chains, we have produced an array of polymers with robust membrane (and delivery) activity. In this new area, researchers are just beginning to understand the fundamental interactions between these new

  4. Model cell membranes

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Nylander, Tommy; Cardenas Gomez, Marite

    2014-01-01

    The high complexity of biological membranes has motivated the development and application of a wide range of model membrane systems to study biochemical and biophysical aspects of membranes in situ under well defined conditions. The aim is to provide fundamental understanding of processes control...

  5. Proteomic identification of VEGF-dependent protein enrichment to membrane caveolar-raft microdomains in endothelial progenitor cells.

    Science.gov (United States)

    Chillà, Anastasia; Magherini, Francesca; Margheri, Francesca; Laurenzana, Anna; Gamberi, Tania; Bini, Luca; Bianchi, Laura; Danza, Giovanna; Mazzanti, Benedetta; Serratì, Simona; Modesti, Alessandra; Del Rosso, Mario; Fibbi, Gabriella

    2013-07-01

    Endothelial cell caveolar-rafts are considered functional platforms that recruit several pro-angiogenic molecules to realize an efficient angiogenic program. Here we studied the differential caveolar-raft protein composition of endothelial colony-forming cells following stimulation with VEGF, which localizes in caveolae on interaction with its type-2 receptor. Endothelial colony-forming cells are a cell population identified in human umbilical blood that show all the properties of an endothelial progenitor cell and a high proliferative rate. Two-dimensional gel electrophoresis analysis was coupled with mass spectrometry to identify candidate proteins. The twenty-eight differentially expressed protein spots were grouped according to their function using Gene Ontology classification. In particular, functional categories relative to cell death inhibition and hydrogen peroxide metabolic processes resulted enriched. In these categories, Peroxiredoxin-2 and 6, that control hydrogen peroxide metabolic processes, are the main enriched molecules together with the anti-apoptotic 78 kDa glucose regulated protein. Some of the proteins we identified had never before identified as caveolar-raft components. Other identified proteins include calpain small subunit-1, known to mediates angiogenic response to VEGF, gelsolin, which regulates stress fiber assembly, and annexin A3, an angiogenic mediator that induces VEGF production. We validated the functional activity of the above proteins, showing that the siRNA silencing of these resulted in the inhibition of capillary morphogenesis. Overall, our data show that VEGF stimulation triggers the caveolar-raft recruitment of proteins that warrant a physiological amount of reactive oxygen species to maintain a proper angiogenic function of endothelial colony-forming cells and preserve the integrity of the actin cytoskeleton.

  6. Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and nonmetastatic bladder cancer cells reveal differential expression of EMT factors

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Nawrocki, Arkadiusz; Jensen, Steffen Grann

    2014-01-01

    Cancer cells secrete soluble factors and various extracellular vesicles, including exosomes, into their tissue microenvironment. The secretion of exosomes is speculated to facilitate local invasion and metastatic spread. Here, we used an in vivo metastasis model of human bladder carcinoma cell line...... T24 without metastatic capacity and its two isogenic derivate cell lines SLT4 and FL3, which form metastases in the lungs and liver of mice, respectively. Cultivation in CLAD1000 bioreactors rather than conventional culture flasks resulted in a 13-16-fold increased exosome yield and facilitated...... quantitative proteomics of fractionated exosomes. Exosomes from T24, SLT4, and FL3 cells were partitioned into membrane and luminal fractions and changes in protein abundance related to the gain of metastatic capacity were identified by quantitative iTRAQ- proteomics. We identified several proteins linked...

  7. Isomeric Detergent Comparison for Membrane Protein Stability

    DEFF Research Database (Denmark)

    Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S.;

    2016-01-01

    Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope...... and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta...... and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C12 alkyl chain was most effective at maintaining solubility/stability...

  8. Kinetics of B Cell Responses to Plasmodium falciparum Erythrocyte Membrane Protein 1 in Ghanaian Women Naturally Exposed to Malaria Parasites

    DEFF Research Database (Denmark)

    Ampomah, Paulina; Stevenson, Liz; Ofori, Michael F;

    2014-01-01

    three times during and after pregnancy. Levels of IgG specific for pregnancy-restricted, VAR2CSA-type PfEMP1 increased markedly during pregnancy and declined after delivery, whereas IgG levels specific for two PfEMP1 proteins not restricted to pregnancy did not. Changes in VAR2CSA-specific memory B cell...... frequencies showed typical primary memory induction among primigravidae and recall expansion among multigravidae, followed by contraction postpartum in all. No systematic changes in the frequencies of memory B cells specific for the two other PfEMP1 proteins were identified. The B cell subset analysis...

  9. Membrane alterations in irreversibly sickled cells: hemoglobin--membrane interaction.

    Science.gov (United States)

    Lessin, L S; Kurantsin-Mills, J; Wallas, C; Weems, H

    1978-01-01

    Irreversibly sickled cells (ISCs) are sickle erythrocytes which retain bipolar elongated shapes despite reoxygenation and owe their biophysical abnormalities to acquired membrane alterations. Freeze-etched membranes both of ISCs produced in vitro and ISCs isolated in vivo reveal microbodies fixed to the internal (PS) surface which obscure spectrin filaments. Intramembranous particles (IMPs) on the intramembrane (PF) surface aggregate over regions of subsurface microbodies. Electron microscopy of diaminobenzidine-treated of ISC ghosts show the microbodies to contain hemoglobin and/or hemoglobin derivatives. Scanning electron microscopy and freeze-etching demonstrate that membrane--hemoglobin S interaction in ISCs enhances the membrane loss by microspherulation. Membrane-bound hemoglobin is five times greater in in vivo ISCs than non-ISCs, and increases during ISC production, parallelling depletion of adenosine triphosphate. Polyacrylamide gel electrophoresis of ISC membranes shows the presence of high-molecular-weight heteropolymers in the pre--band 1 region, a decrease in band 4.1 and an increase in bands 7, 8, and globin. The role of cross-linked membrane protein polymers in the generation of ISCs is discussed and is synthesized in terms of a unified concept for the determinants of the genesis of ISCs.

  10. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes...... electrolyte membrane by hot-press. The fuel cell can operate at temperatures up to at least 200 °C with hydrogen-rich fuel containing high ratios of carbon monoxide such as 3 vol% carbon monoxide or more, compared to the carbon monoxide tolerance of 10-20 ppm level for Nafion$m(3)-based polymer electrolyte...

  11. Membrane topology of transmembrane proteins: determinants and experimental tools.

    Science.gov (United States)

    Lee, Hunsang; Kim, Hyun

    2014-10-17

    Membrane topology refers to the two-dimensional structural information of a membrane protein that indicates the number of transmembrane (TM) segments and the orientation of soluble domains relative to the plane of the membrane. Since membrane proteins are co-translationally translocated across and inserted into the membrane, the TM segments orient themselves properly in an early stage of membrane protein biogenesis. Each membrane protein must contain some topogenic signals, but the translocation components and the membrane environment also influence the membrane topology of proteins. We discuss the factors that affect membrane protein orientation and have listed available experimental tools that can be used in determining membrane protein topology.

  12. SNAP23, Syntaxin4, and vesicle-associated membrane protein 7 (VAMP7) mediate trafficking of membrane type 1-matrix metalloproteinase (MT1-MMP) during invadopodium formation and tumor cell invasion.

    Science.gov (United States)

    Williams, Karla C; McNeilly, Rachael E; Coppolino, Marc G

    2014-07-01

    Movement through the extracellular matrix (ECM) requires cells to degrade ECM components, primarily through the action of matrix metalloproteinases (MMPs). Membrane type 1-matrix metalloproteinase (MT1-MMP) has an essential role in matrix degradation and cell invasion and localizes to subcellular degradative structures termed invadopodia. Trafficking of MT1-MMP to invadopodia is required for the function of these structures, and here we examine the role of N-ethylmaleimide-sensitive factor-activating protein receptor (SNARE)-mediated membrane traffic in the transport of MT1-MMP to invadopodia. During invadopodium formation in MDA-MB-231 human breast cancer cells, increased association of SNAP23, Syntaxin4, and vesicle-associated membrane protein 7 (VAMP7) is detected by coimmunoprecipitation. Blocking the function of these SNAREs perturbs invadopodium-based ECM degradation and cell invasion. Increased level of SNAP23-Syntaxin4-VAMP7 interaction correlates with decreased Syntaxin4 phosphorylation. These results reveal an important role for SNARE-regulated trafficking of MT1-MMP to invadopodia during cellular invasion of ECM.

  13. Contribution of aquaporin 9 and multidrug resistance-associated protein 2 to differential sensitivity to arsenite between primary cultured chorion and amnion cells prepared from human fetal membranes.

    Science.gov (United States)

    Yoshino, Yuta; Yuan, Bo; Kaise, Toshikazu; Takeichi, Makoto; Tanaka, Sachiko; Hirano, Toshihiko; Kroetz, Deanna L; Toyoda, Hiroo

    2011-12-01

    Arsenic trioxide (arsenite, As(III)) has shown a remarkable clinical efficacy, whereas its side effects are still a serious concern. Therefore, it is critical to understand the effects of As(III) on human-derived normal cells for revealing the mechanisms underlying these side effects. We examined the effects of As(III) on primary cultured chorion (C) and amnion (A) cells prepared from human fetal membranes. A significant dose-dependent As(III)-mediated cytotoxicity was observed in the C-cells accompanied with an increase of lactate dehydrogenase (LDH) release. Higher concentrations of As(III) were required for the A-cells to show cytotoxicity and LDH release, suggesting that the C-cells were more sensitive to As(III) than the A-cells. The expression levels of aquaporin 9 (AQP9) were approximately 2 times higher in the C-cells than those in the A-cells. Both intracellular arsenic accumulation and its cytotoxicity in the C-cells were significantly abrogated by sorbitol, a competitive AQP9 inhibitor, in a dose-dependent manner. The protein expression levels of multidrug resistance-associated protein (MRP) 2 were downregulated by As(III) in the C-cells, but not in the A-cells. No significant differences in the expression levels of MRP1 were observed between C- and A-cells. The protein expression of P-glycoprotein (P-gp) was hardly detected in both cells, although a detectable amount of its mRNA was observed. Cyclosporine A, a broad-spectrum inhibitor for ABC transporters, and MK571, a MRP inhibitor, but not PGP-4008, a P-gp specific inhibitor, potently sensitized both cells to As(III)-mediated cytotoxicity. These results suggest that AQP9 and MRP2 are involved in controlling arsenic accumulation in these normal cells, which then contribute to differential sensitivity to As(III) cytotoxicity between these cells.

  14. Tandem Facial Amphiphiles for Membrane Protein Stabilization

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Gotfryd, Kamil; Pacyna, Jennifer;

    2010-01-01

    We describe a new type of synthetic amphiphile that is intended to support biochemical characterization of intrinsic membrane proteins. Members of this new family displayed favorable behavior with four of five membrane proteins tested, and these amphiphiles formed relatively small micelles....

  15. Regulation of Survivin and CDK4 by Epstein-Barr virus encoded latent membrane protein 1 in nasopharyngeal carcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Mi Dan AI; Li Li LI; Xiao Rong ZHAO; Yong WU; Jian Ping GONG; Ya CAO

    2005-01-01

    Latent membrane protein 1 (LMP1), an important protein encoded by Epstein Barr virus (EBV), has been implied to link with the pathogenesis of nasopharyngeal carcinoma (NPC). Its dual effects of increasing cell proliferation and inhibiting cell apoptosis have been confirmed. In this study, we showed that the expression of Survivin and CDK4 protein in CNE-LMP1, a LMP1 positive NPC epithelial cell line, is higher than in LMP1 negative NPC epithelial cell line CNE1, and the expression is LMP1 dosage-dependent. Although it was reported that Survivin specifically expressed in cell cycle G2/M phase, our studies suggested that LMP1 could promote the expression of Survivin in G0/G1, S and G2/M phase. It also showed that Survivin and CDK4 could be accumulated more in the nuclei triggered by LMP1. More interestingly, Survivin and CDK4 could form a protein complex in the nuclei of CNE-LMP1 rather than in that of CNE1, which demonstrated that the interaction between these two proteins could be promoted by LMP1. These results strongly suggested that the role of LMP1 in the regulation of Survivin and CDK4 may also shed some light on the mechanism research of LMP1 in NPC.

  16. APPL proteins FRET at the BAR: direct observation of APPL1 and APPL2 BAR domain-mediated interactions on cell membranes using FRET microscopy.

    Directory of Open Access Journals (Sweden)

    Heidi J Chial

    Full Text Available BACKGROUND: Human APPL1 and APPL2 are homologous RAB5 effectors whose binding partners include a diverse set of transmembrane receptors, signaling proteins, and phosphoinositides. APPL proteins associate dynamically with endosomal membranes and are proposed to function in endosome-mediated signaling pathways linking the cell surface to the cell nucleus. APPL proteins contain an N-terminal Bin/Amphiphysin/Rvs (BAR domain, a central pleckstrin homology (PH domain, and a C-terminal phosphotyrosine binding (PTB domain. Previous structural and biochemical studies have shown that the APPL BAR domains mediate homotypic and heterotypic APPL-APPL interactions and that the APPL1 BAR domain forms crescent-shaped dimers. Although previous studies have shown that APPL minimal BAR domains associate with curved cell membranes, direct interaction between APPL BAR domains on cell membranes in vivo has not been reported. METHODOLOGY: Herein, we used a laser-scanning confocal microscope equipped with a spectral detector to carry out fluorescence resonance energy transfer (FRET experiments with cyan fluorescent protein/yellow fluorescent protein (CFP/YFP FRET donor/acceptor pairs to examine interactions between APPL minimal BAR domains at the subcellular level. This comprehensive approach enabled us to evaluate FRET levels in a single cell using three methods: sensitized emission, standard acceptor photobleaching, and sequential acceptor photobleaching. We also analyzed emission spectra to address an outstanding controversy regarding the use of CFP donor/YFP acceptor pairs in FRET acceptor photobleaching experiments, based on reports that photobleaching of YFP converts it into a CFP-like species. CONCLUSIONS: All three methods consistently showed significant FRET between APPL minimal BAR domain FRET pairs, indicating that they interact directly in a homotypic (i.e., APPL1-APPL1 and APPL2-APPL2 and heterotypic (i.e., APPL1-APPL2 manner on curved cell membranes

  17. Investigation of free fatty acid associated recombinant membrane receptor protein expression in HEK293 cells using Raman spectroscopy, calcium imaging, and atomic force microscopy.

    Science.gov (United States)

    Lin, Juqiang; Xu, Han; Wu, Yangzhe; Tang, Mingjie; McEwen, Gerald D; Liu, Pin; Hansen, Dane R; Gilbertson, Timothy A; Zhou, Anhong

    2013-02-05

    G-protein-coupled receptor 120 (GPR120) is a previously orphaned G-protein-coupled receptor that apparently functions as a sensor for dietary fat in the gustatory and digestive systems. In this study, a cDNA sequence encoding a doxycycline (Dox)-inducible mature peptide of GPR120 was inserted into an expression vector and transfected in HEK293 cells. We measured Raman spectra of single HEK293 cells as well as GPR120-expressing HEK293-GPR120 cells at a 48 h period following the additions of Dox at several concentrations. We found that the spectral intensity of HEK293-GPR120 cells is dependent upon the dose of Dox, which correlates with the accumulation of GPR120 protein in the cells. However, the amount of the fatty acid activated changes in intracellular calcium (Ca(2+)) as measured by ratiometric calcium imaging was not correlated with Dox concentration. Principal components analysis (PCA) of Raman spectra reveals that the spectra from different treatments of HEK293-GPR120 cells form distinct, completely separated clusters with the receiver operating characteristic (ROC) area of 1, while those spectra for the HEK293 cells form small overlap clusters with the ROC area of 0.836. It was also found that expression of GPR120 altered the physiochemical and biomechanical properties of the parental cell membrane surface, which was quantitated by atomic force microscopy (AFM). These findings demonstrate that the combination of Raman spectroscopy, calcium imaging, and AFM may provide new tools in noninvasive and quantitative monitoring of membrane receptor expression induced alterations in the biophysical and signaling properties of single living cells.

  18. High cell density and latent membrane protein 1 expression induce cleavage of the mixed lineage leukemia gene at 11q23 in nasopharyngeal carcinoma cell line

    Directory of Open Access Journals (Sweden)

    Sim Sai-Peng

    2010-09-01

    Full Text Available Abstract Background Nasopharyngeal carcinoma (NPC is commonly found in Southern China and South East Asia. Epstein-Barr virus (EBV infection is well associated with NPC and has been implicated in its pathogenesis. Moreover, various chromosome rearrangements were reported in NPC. However, the underlying mechanism of chromosome rearrangement remains unclear. Furthermore, the relationship between EBV and chromosome rearrangement with respect to the pathogenesis of NPC has not been established. We hypothesize that during virus- or stress-induced apoptosis, chromosomes are initially cleaved at the base of the chromatin loop domain structure. Upon DNA repair, cell may survive with rearranged chromosomes. Methods In this study, cells were seeded at various densities to induce apoptosis. Genomic DNA extracted was processed for Southern hybridization. In order to investigate the role of EBV, especially the latent membrane protein 1 (LMP1, LMP1 gene was overexpressed in NPC cells and chromosome breaks were analyzed by inverse polymerase chain (IPCR reaction. Results Southern analysis revealed that high cell density resulted in cleavage of the mixed lineage leukemia (MLL gene within the breakpoint cluster region (bcr. This high cell density-induced cleavage was significantly reduced by caspase inhibitor, Z-DEVD-FMK. Similarly, IPCR analysis showed that LMP1 expression enhanced cleavage of the MLL bcr. Breakpoint analysis revealed that these breaks occurred within the matrix attachment region/scaffold attachment region (MAR/SAR. Conclusions Since MLL locates at 11q23, a common deletion site in NPC, our results suggest a possibility of stress- or virus-induced apoptosis in the initiation of chromosome rearrangements at 11q23. The breakpoint analysis results also support the role of chromatin structure in defining the site of chromosome rearrangement.

  19. A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins

    DEFF Research Database (Denmark)

    Bhatia, Vikram Kjøller; Hatzakis, Nikos; Stamou, Dimitrios

    2010-01-01

    unrelated motifs: BAR domains, amphipathic helices and membrane-anchored proteins. We discuss the conclusion that the curvature of the BAR dimer is not responsible for sensing and that the sensing properties of all three motifs can be rationalized by the physicochemical properties of the curved membrane......The discovery of proteins that recognize membrane curvature created a paradigm shift by suggesting that membrane shape may act as a cue for protein localization that is independent of lipid or protein composition. Here we review recent data on membrane curvature sensing by three structurally...... itself. We thus anticipate that membrane curvature will promote the redistribution of proteins that are anchored in membranes through any type of hydrophobic moiety, a thesis that broadens tremendously the implications of membrane curvature for protein sorting, trafficking and signaling in cell biology....

  20. Protein receptor-independent plasma membrane remodeling by HAMLET

    DEFF Research Database (Denmark)

    Nadeem, Aftab; Sanborn, Jeremy; Gettel, Douglas L.;

    2015-01-01

    A central tenet of signal transduction in eukaryotic cells is that extra-cellular ligands activate specific cell surface receptors, which orchestrate downstream responses. This "protein-centric" view is increasingly challenged by evidence for the involvement of specialized membrane domains...... in signal transduction. Here, we propose that membrane perturbation may serve as an alternative mechanism to activate a conserved cell-death program in cancer cells. This view emerges from the extraordinary manner in which HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills a wide range...... of tumor cells in vitro and demonstrates therapeutic efficacy and selectivity in cancer models and clinical studies. We identify a "receptor independent" transformation of vesicular motifs in model membranes, which is paralleled by gross remodeling of tumor cell membranes. Furthermore, we find that HAMLET...

  1. Preferential binding of positive nanoparticles on cell membranes is due to electrostatic interactions: A too simplistic explanation that does not take into account the nanoparticle protein corona.

    Science.gov (United States)

    Forest, Valérie; Pourchez, Jérémie

    2017-01-01

    The internalization of nanoparticles by cells (and more broadly the nanoparticle/cell interaction) is a crucial issue both for biomedical applications (for the design of nanocarriers with enhanced cellular uptake to reach their intracellular therapeutic targets) and in a nanosafety context (as the internalized dose is one of the key factors in cytotoxicity). Many parameters can influence the nanoparticle/cell interaction, among them, the nanoparticle physico-chemical features, and especially the surface charge. It is generally admitted that positive nanoparticles are more uptaken by cells than neutral or negative nanoparticles. It is supposedly due to favorable electrostatic interactions with negatively charged cell membrane. However, this theory seems too simplistic as it does not consider a fundamental element: the nanoparticle protein corona. Indeed, once introduced in a biological medium nanoparticles adsorb proteins at their surface, forming a new interface defining the nanoparticle "biological identity". This adds a new level of complexity in the interactions with biological systems that cannot be any more limited to electrostatic binding. These interactions will then influence cell behavior. Based on a literature review and on an example of our own experience the parameters involved in the nanoparticle protein corona formation as well as in the nanoparticle/cell interactions are discussed.

  2. Activity assay of membrane transport proteins

    Institute of Scientific and Technical Information of China (English)

    Hao Xie

    2008-01-01

    Membrane transport proteins are integral membrane proteins and considered as potential drug targets. Activity assay of transport proteins is essential for developing drugs to target these proteins. Major issues related to activity assessment of transport proteins include availability of transporters,transport activity of transporters, and interactions between ligands and transporters. Researchers need to consider the physiological status of proteins (bound in lipid membranes or purified), availability and specificity of substrates, and the purpose of the activity assay (screening, identifying, or comparing substrates and inhibitors) before choosing appropriate assay strategies and techniques. Transport proteins bound in vesicular membranes can be assayed for transporting substrate across membranes by means of uptake assay or entrance counterflow assay. Alternatively, transport proteins can be assayed for interactions with ligands by using techniques such as isothermal titration calorimetry, nuclear magnetic resonance spectroscopy, or surface plasmon resonance. Other methods and techniques such as fluorometry, scintillation proximity assay, electrophysiological assay, or stopped-flow assay could also be used for activity assay of transport proteins. In this paper the major strategies and techniques for activity assessment of membrane transport proteins are reviewed.

  3. GPR30, the non-classical membrane G protein related estrogen receptor, is overexpressed in human seminoma and promotes seminoma cell proliferation.

    Directory of Open Access Journals (Sweden)

    Nicolas Chevalier

    Full Text Available BACKGROUND: Testicular germ cell tumours are the most frequent cancer of young men with an increasing incidence all over the world. Pathogenesis and reasons of this increase remain unknown but epidemiological and clinical data have suggested that fetal exposure to environmental endocrine disruptors (EEDs with estrogenic effects, could participate to testicular germ cell carcinogenesis. However, these EEDs (like bisphenol A are often weak ligands for classical nuclear estrogen receptors. Several research groups recently showed that the non classical membrane G-protein coupled estrogen receptor (GPER/GPR30 mediates the effects of estrogens and several xenoestrogens through rapid non genomic activation of signal transduction pathways in various human estrogen dependent cancer cells (breast, ovary, endometrium. The aim of this study was to demonstrate that GPER was overexpressed in testicular tumours and was able to trigger JKT-1 seminoma cell proliferation. RESULTS: We report here for the first time a complete morphological and functional characterization of GPER in normal and malignant human testicular germ cells. In normal adult human testes, GPER was expressed by somatic (Sertoli cells and germ cells (spermatogonia and spermatocytes. GPER was exclusively overexpressed in seminomas, the most frequent testicular germ cell cancer, localized at the cell membrane and triggered a proliferative effect on JKT-1 cells in vitro, which was completely abolished by G15 (a GPER selective antagonist and by siRNA invalidation. CONCLUSION: These results demonstrate that GPER is expressed by human normal adult testicular germ cells, specifically overexpressed in seminoma tumours and able to trigger seminoma cell proliferation in vitro. It should therefore be considered rather than classical ERs when xeno-estrogens or other endocrine disruptors are assessed in testicular germ cell cancers. It may also represent a prognosis marker and/or a therapeutic target for

  4. Human tetraspanin transmembrane 4 superfamily member 4 or intestinal and liver tetraspan membrane protein is overexpressed in hepatocellular carcinoma and accelerates tumor cell growth

    Institute of Scientific and Technical Information of China (English)

    Ying Li; Leiming Wang; Jie Qiu; Liang Da; Pierre Tiollais; Zaiping Li; Mujun Zhao

    2012-01-01

    The human transmembrane 4 superfamily member 4 or intestinal and liver tetraspan membrane protein (TM4SF4/il-TMP) was originally cloned as an intestinal and liver tetraspan membrane protein and mediates density-dependent cell proliferation.The rat homolog of TM4SF4 was found to be up-regulated in regenerating liver after two-thirds hepatectomy and overexpression of TM4SF4 could enhance liver injury induced by CCl4.However,the expression and significance of TM4SF4/il-TMP in liver cancer remain unknown.Here,we report that TM4SF4/il-TMP is frequently and significantly overexpressed in hepatocellular carcinoma (HCC).Real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) and western blot analysis showed that TM4SF4/il-TMP mRNA and protein levels were upregulated in ~80% of HCC tissues,Immunohistochemical analysis of a 75 paired HCC tissue microarray revealed that TM4SF4/il-TMP was significantly overexpressed in HCC tissues (P < 0.001),and high immunointensity of TM4SF4/iI-TMP tended to be in well-to-moderately differentiated HCC compared with poorly differentiated tumors.Functional studies showed that overexpression of TM4SF4/il-TMP in QGY-7701 and BEL-7404 HCC cell lines through stable transfection of TM4SF4 expression plasmid significantly promoted both cell growth and colony formation of HCC cells.Reduction of TM4SF4/il-TMP expression in QGY-7701 and BEL-7404 cells by stably transfecting TM4SF4 antisense plasmid caused great inhibition of cell proliferation.Our findings suggest that TM4SF4/il-TMP has the potential to be biomarker in HCC and plays a crucial role in promotion of cancer cell proliferation.

  5. Lateral proton transfer between the membrane and a membrane protein.

    Science.gov (United States)

    Ojemyr, Linda; Sandén, Tor; Widengren, Jerker; Brzezinski, Peter

    2009-03-17

    Proton transport across biological membranes is a key step of the energy conservation machinery in living organisms, and it has been proposed that the membrane itself plays an important role in this process. In the present study we have investigated the effect of incorporation of a proton transporter, cytochrome c oxidase, into a membrane on the protonation kinetics of a fluorescent pH-sensitive probe attached at the surface of the protein. The results show that proton transfer to the probe was slightly accelerated upon attachment at the protein surface (approximately 7 x 1010 s(-1) M(-1), compared to the expected value of (1-2) x 10(10) s(-1) M(-1)), which is presumably due to the presence of acidic/His groups in the vicinity. Upon incorporation of the protein into small unilamellar phospholipid vesicles the rate increased by more than a factor of 400 to approximately 3 x 10(13) s(-1) M(-1), which indicates that the protein-attached probe is in rapid protonic contact with the membrane surface. The results indicate that the membrane acts to accelerate proton uptake by the membrane-bound proton transporter.

  6. A computational analysis of non-genomic plasma membrane progestin binding proteins: signaling through ion channel-linked cell surface receptors.

    Science.gov (United States)

    Morrill, Gene A; Kostellow, Adele B; Gupta, Raj K

    2013-12-11

    A number of plasma membrane progestin receptors linked to non-genomic events have been identified. These include: (1) α1-subunit of the Na(+)/K(+)-ATPase (ATP1A1), (2) progestin binding PAQR proteins, (3) membrane progestin receptor alpha (mPRα), (4) progesterone receptor MAPR proteins and (5) the association of nuclear receptor (PRB) with the plasma membrane. This study compares: the pore-lining regions (ion channels), transmembrane (TM) helices, caveolin binding (CB) motifs and leucine-rich repeats (LRRs) of putative progesterone receptors. ATP1A1 contains 10 TM helices (TM-2, 4, 5, 6 and 8 are pores) and 4 CB motifs; whereas PAQR5, PAQR6, PAQR7, PAQRB8 and fish mPRα each contain 8 TM helices (TM-3 is a pore) and 2-4 CB motifs. MAPR proteins contain a single TM helix but lack pore-lining regions and CB motifs. PRB contains one or more TM helices in the steroid binding region, one of which is a pore. ATP1A1, PAQR5/7/8, mPRα, and MAPR-1 contain highly conserved leucine-rich repeats (LRR, common to plant membrane proteins) that are ligand binding sites for ouabain-like steroids associated with LRR kinases. LRR domains are within or overlap TM helices predicted to be ion channels (pore-lining regions), with the variable LRR sequence either at the C-terminus (PAQR and MAPR-1) or within an external loop (ATP1A1). Since ouabain-like steroids are produced by animal cells, our findings suggest that ATP1A1, PAQR5/7/8 and mPRα represent ion channel-linked receptors that respond physiologically to ouabain-like steroids (not progestin) similar to those known to regulate developmental and defense-related processes in plants.

  7. Cell envelope of Bordetella pertussis: immunological and biochemical analyses and characterization of a major outer membrane porin protein

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, S.K.

    1986-01-01

    Surface molecules of Bordetella pertussis which may be important in metabolism, pathogenesis, and immunity to whooping cough were examined using cell fractionation and /sup 125/I cell surface labeling. Antigenic envelope proteins were examined by immunofluorescence microscopy and Western blotting procedures using monoclonal antibodies and convalescent sera. A surface protein with a high M/sub r/, missing in a mutant lacking the filamentous hemagglutinin, was identified in virulent Bordetella pertussis but was absent in virulent B. pertussis strains. At least three envelope proteins were found only in virulent B. pertussis strains and were absent or diminished in avirulent and most phenotypically modulated strains. Transposon-induced mutants unable to produce hemolysin, dermonecrotic toxin, pertussis toxin, and filamentous hemagglutinin also lacked these three envelope proteins, confirming that virulence-associated envelope proteins were genetically regulated with other virulence-associated traits. Two dimensional gel electrophoresis revealed at least five heat modifiable proteins which migrated as higher or lower M/sub r/ moieties if solubilized at 25/sup 0/C instead of 100/sup 0/C.

  8. Geometry and Topology of Cell Membranes

    Science.gov (United States)

    Bouligand, Y.

    Cells are limited by a membrane which is a fluid bilayer of phospholipids to which are associated numerous components, such as cholesterol, polysaccharides, proteins and, among them, many enzymes. organelles within cells are made for a large part of similar bilayers including phospholipids and various molecules. The cell membrane forms architectures closely related to those observed in liquid crystalline phases given by water-lipid systems (purified amphiphilic molecules in presence of water and oily components). The cell is divided into a series of compartments with definite topological relations, which are rehandled more or less profoundly in diverse circumstances as endocytosis, exocytosis, mitosis etc. There are several geometric arrangements of membrane sets : parallel membranes, hexagonal packing of tubes, cubic systems made of tubes joining either three by three, or four by four, or six by six. There are other arrangements less directly related to liquid crysyalline structures (annulate lamellae, tubes and lamellae with nematic symmetries, randomly joining tubes). Comparisons of structures in cellular membranes and in water-lipid systems reveal important differences. If geometries are often similar, water percentage and scales are distinct and bilayers observed in vitro present a symmetry which is broken in cell membrane bilayers. The curvature effects observed in water-lipid systems mainly come from a density difference between polar heads and corresponding paraffinic chains within a monolayer, whereas, in biological membranes, the asymmetry lies between the two monolayers and their associated molecules. Both systems produce saddle-shaped bilayers arranging into cubic lattices separating two aqueous compartments. In water-lipid systems, the coupling at an interface of two different areas seems to predominate, whereas in biological membranes, mechanisms are different and probably originate from geometric properties of proteins included within bilayers.

  9. Dense core secretory vesicles revealed as a dynamic Ca2+ store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera

    Science.gov (United States)

    Mitchell, Kathryn J.; Pinton, Paolo; Varadi, Aniko; Tacchetti, Carlo; Ainscow, Edward K.; Pozzan, Tullio; Rizzuto, Rosario; Rutter, Guy A.

    2001-01-01

    The role of dense core secretory vesicles in the control of cytosolic-free Ca2+ concentrations ([Ca2+]c) in neuronal and neuroendocrine cells is enigmatic. By constructing a vesicle-associated membrane protein 2–synaptobrevin.aequorin chimera, we show that in clonal pancreatic islet β-cells: (a) increases in [Ca2+]c cause a prompt increase in intravesicular-free Ca2+ concentration ([Ca2+]SV), which is mediated by a P-type Ca2+-ATPase distinct from the sarco(endo) plasmic reticulum Ca2+-ATPase, but which may be related to the PMR1/ATP2C1 family of Ca2+ pumps; (b) steady state Ca2+ concentrations are 3–5-fold lower in secretory vesicles than in the endoplasmic reticulum (ER) or Golgi apparatus, suggesting the existence of tightly bound and more rapidly exchanging pools of Ca2+; (c) inositol (1,4,5) trisphosphate has no impact on [Ca2+]SV in intact or permeabilized cells; and (d) ryanodine receptor (RyR) activation with caffeine or 4-chloro-3-ethylphenol in intact cells, or cyclic ADPribose in permeabilized cells, causes a dramatic fall in [Ca2+]SV. Thus, secretory vesicles represent a dynamic Ca2+ store in neuroendocrine cells, whose characteristics are in part distinct from the ER/Golgi apparatus. The presence of RyRs on secretory vesicles suggests that local Ca2+-induced Ca2+ release from vesicles docked at the plasma membrane could participate in triggering exocytosis. PMID:11571310

  10. Dense core secretory vesicles revealed as a dynamic Ca(2+) store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera.

    Science.gov (United States)

    Mitchell, K J; Pinton, P; Varadi, A; Tacchetti, C; Ainscow, E K; Pozzan, T; Rizzuto, R; Rutter, G A

    2001-10-01

    The role of dense core secretory vesicles in the control of cytosolic-free Ca(2+) concentrations ([Ca(2+)](c)) in neuronal and neuroendocrine cells is enigmatic. By constructing a vesicle-associated membrane protein 2-synaptobrevin.aequorin chimera, we show that in clonal pancreatic islet beta-cells: (a) increases in [Ca(2+)](c) cause a prompt increase in intravesicular-free Ca(2+) concentration ([Ca(2+)]SV), which is mediated by a P-type Ca(2+)-ATPase distinct from the sarco(endo) plasmic reticulum Ca(2+)-ATPase, but which may be related to the PMR1/ATP2C1 family of Ca(2+) pumps; (b) steady state Ca(2+) concentrations are 3-5-fold lower in secretory vesicles than in the endoplasmic reticulum (ER) or Golgi apparatus, suggesting the existence of tightly bound and more rapidly exchanging pools of Ca(2+); (c) inositol (1,4,5) trisphosphate has no impact on [Ca(2+)](SV) in intact or permeabilized cells; and (d) ryanodine receptor (RyR) activation with caffeine or 4-chloro-3-ethylphenol in intact cells, or cyclic ADPribose in permeabilized cells, causes a dramatic fall in [Ca(2+)](SV). Thus, secretory vesicles represent a dynamic Ca(2+) store in neuroendocrine cells, whose characteristics are in part distinct from the ER/Golgi apparatus. The presence of RyRs on secretory vesicles suggests that local Ca(2+)-induced Ca(2+) release from vesicles docked at the plasma membrane could participate in triggering exocytosis.

  11. Thermostabilisation of membrane proteins for structural studies

    Science.gov (United States)

    Magnani, Francesca; Serrano-Vega, Maria J.; Shibata, Yoko; Abdul-Hussein, Saba; Lebon, Guillaume; Miller-Gallacher, Jennifer; Singhal, Ankita; Strege, Annette; Thomas, Jennifer A.; Tate, Christopher G.

    2017-01-01

    The thermostability of an integral membrane protein in detergent solution is a key parameter that dictates the likelihood of obtaining well-diffracting crystals suitable for structure determination. However, many mammalian membrane proteins are too unstable for crystallisation. We developed a thermostabilisation strategy based on systematic mutagenesis coupled to a radioligand-binding thermostability assay that can be applied to receptors, ion channels and transporters. It takes approximately 6-12 months to thermostabilise a G protein-coupled receptor (GPCR) containing 300 amino acid residues. The resulting thermostabilised membrane proteins are more easily crystallised and result in high-quality structures. This methodology has facilitated structure-based drug design applied to GPCRs, because it is possible to determine multiple structures of the thermostabilised receptors bound to low affinity ligands. Protocols and advice are given on how to develop thermostability assays for membrane proteins and how to combine mutations to make an optimally stable mutant suitable for structural studies. PMID:27466713

  12. Serum Concentrations of Antibodies against Outer Membrane Protein P6, Protein D, and T- and B-Cell Combined Antigenic Epitopes of Nontypeable Haemophilus influenzae in Children and Adults of Different Ages.

    Science.gov (United States)

    Hua, Chun-Zhen; Hu, Wei-Lin; Shang, Shi-Qiang; Li, Jian-Ping; Hong, Li-Quan; Yan, Jie

    2015-12-16

    Nontypeable Haemophilus influenzae (NTHi) is one of the most common etiologies of acute otitis media, rhinosinusitis, and pneumonia. Outer membrane proteins (OMPs) are the main focus in new vaccine development against NTHi, as the H. influenzae type b (Hib) vaccine does not cover noncapsulated NTHi. The OMPs P6 and protein D are the most promising candidate antigens for an NTHi vaccine, and low antibody levels against them in serum may be correlated with infection caused by NTHi. In the current study, we measured the antibody titers against P6, protein D, and their T- and B-cell combined peptide epitopes in healthy individuals of different ages. We found that children influenzae.

  13. Simulation and analysis of FRET in the study of membrane proteins

    NARCIS (Netherlands)

    Nazarov, P.V.

    2006-01-01

    Membrane proteins play an important role in almost all cell activities. However, the characterization of the structure of membrane proteins in lipid bilayers is still at the frontier of structural biology. While 30-40% of all proteins are situated at or in membranes, yet less than 1% of the known pr

  14. The Molecules of the Cell Membrane.

    Science.gov (United States)

    Bretscher, Mark S.

    1985-01-01

    Cell membrane molecules form a simple, two-dimensional liquid controlling what enters and leaves the cell. Discusses cell membrane molecular architecture, plasma membranes, epithelial cells, cycles of endocytosis and exocytosis, and other topics. Indicates that some cells internalize, then recycle, membrane area equivalent to their entire surface…

  15. Focus on membrane differentiation and membrane domains in the prokaryotic cell.

    Science.gov (United States)

    Boekema, Egbert J; Scheffers, Dirk-Jan; van Bezouwen, Laura S; Bolhuis, Henk; Folea, I Mihaela

    2013-01-01

    A summary is presented of membrane differentiation in the prokaryotic cell, with an emphasis on the organization of proteins in the plasma/cell membrane. Many species belonging to the Eubacteria and Archaea have special membrane domains and/or membrane proliferation, which are vital for different cellular processes. Typical membrane domains are found in bacteria where a specific membrane protein is abundantly expressed. Lipid rafts form another example. Despite the rareness of conventional organelles as found in eukaryotes, some bacteria are known to have an intricate internal cell membrane organization. Membrane proliferation can be divided into curvature and invaginations which can lead to internal compartmentalization. This study discusses some of the clearest examples of bacteria with such domains and internal membranes. The need for membrane specialization is highest among the heterogeneous group of bacteria which harvest light energy, such as photosynthetic bacteria and halophilic archaea. Most of the highly specialized membranes and domains, such as the purple membrane, chromatophore and chlorosome, are found in these autotrophic organisms. Otherwise the need for membrane differentiation is lower and variable, except for those structures involved in cell division. Microscopy techniques have given essential insight into bacterial membrane morphology. As microscopy will further contribute to the unraveling of membrane organization in the years to come, past and present technology in electron microscopy and light microscopy is discussed. Electron microscopy was the first to unravel bacterial morphology because it can directly visualize membranes with inserted proteins, which no other technique can do. Electron microscopy techniques developed in the 1950s and perfected in the following decades involve the thin sectioning and freeze fractioning of cells. Several studies from the golden age of these techniques show amazing examples of cell membrane morphology

  16. Flagellar membrane proteins in kinetoplastid parasites.

    Science.gov (United States)

    Landfear, Scott M; Tran, Khoa D; Sanchez, Marco A

    2015-09-01

    All kinetoplastid parasites, including protozoa such as Leishmania species, Trypanosoma brucei, and Trypanosoma cruzi that cause devastating diseases in humans and animals, are flagellated throughout their life cycles. Although flagella were originally thought of primarily as motility organelles, flagellar functions in other critical processes, especially in sensing and signal transduction, have become more fully appreciated in the recent past. The flagellar membrane is a highly specialized subdomain of the surface membrane, and flagellar membrane proteins are likely to be critical components for all the biologically important roles of flagella. In this review, we summarize recent discoveries relevant to flagellar membrane proteins in these parasites, including the identification of such proteins, investigation of their biological functions, and mechanisms of selective trafficking to the flagellar membrane. Prospects for future investigations and current unsolved problems are highlighted.

  17. Organization and dynamics of SNARE proteins in the presynaptic membrane

    Directory of Open Access Journals (Sweden)

    Dragomir eMilovanovic

    2015-03-01

    Full Text Available Our view of the lateral organization of lipids and proteins in the plasma membrane has evolved substantially in the last few decades. It is widely accepted that many, if not all, plasma membrane proteins and lipids are organized in specific domains. These domains vary widely in size, composition, and stability, and they represent platforms governing diverse cell functions. The presynaptic plasma membrane is a well-studied example of a membrane which undergoes rearrangements, especially during exo- and endocytosis. Many proteins and lipids involved in presynaptic function are known, and major efforts have been made to understand their spatial organization and dynamics. Here, we focus on the mechanisms underlying the organization of SNAREs, the key proteins of the fusion machinery, in distinct domains, and we discuss the functional significance of these clusters.

  18. Architecture and Function of Mechanosensitive Membrane Protein Lattices

    CERN Document Server

    Kahraman, Osman; Klug, William S; Haselwandter, Christoph A

    2016-01-01

    Experiments have revealed that membrane proteins can form two-dimensional clusters with regular translational and orientational protein arrangements, which may allow cells to modulate protein function. However, the physical mechanisms yielding supramolecular organization and collective function of membrane proteins remain largely unknown. Here we show that bilayer-mediated elastic interactions between membrane proteins can yield regular and distinctive lattice architectures of protein clusters, and may provide a link between lattice architecture and lattice function. Using the mechanosensitive channel of large conductance (MscL) as a model system, we obtain relations between the shape of MscL and the supramolecular architecture of MscL lattices. We predict that the tetrameric and pentameric MscL symmetries observed in previous structural studies yield distinct lattice architectures of MscL clusters and that, in turn, these distinct MscL lattice architectures yield distinct lattice activation barriers. Our res...

  19. SGLT1 protein expression in plasma membrane of acinar cells correlates with the sympathetic outflow to salivary glands in diabetic and hypertensive rats.

    Science.gov (United States)

    Sabino-Silva, Robinson; Alves-Wagner, Ana B T; Burgi, Katia; Okamoto, Maristela M; Alves, Adilson S; Lima, Guilherme A; Freitas, Helayne S; Antunes, Vagner R; Machado, Ubiratan F

    2010-12-01

    Salivary gland dysfunction is a feature in diabetes and hypertension. We hypothesized that sodium-glucose cotransporter 1 (SGLT1) participates in salivary dysfunctions through a sympathetic- and protein kinase A (PKA)-mediated pathway. In Wistar-Kyoto (WKY), diabetic WKY (WKY-D), spontaneously hypertensive (SHR), and diabetic SHR (SHR-D) rats, PKA/SGLT1 proteins were analyzed in parotid and submandibular glands, and the sympathetic nerve activity (SNA) to the glands was monitored. Basal SNA was threefold higher in SHR (P acinar cells were regulated in parallel to the SNA. Electrical stimulation of the sympathetic branch to salivary glands increased (∼30%, P acinar cells. Taken together, our results show highly coordinated regulation of sympathetic activity upon PKA activity and plasma membrane SGLT1 content in salivary glands. Furthermore, the present findings show that diabetic- and/or hypertensive-induced changes in the sympathetic activity correlate with changes in SGLT1 expression in basolateral membrane of acinar cells, which can participate in the salivary glands dysfunctions reported by patients with these pathologies.

  20. Members of the synaptobrevin/vesicle-associated membrane protein (VAMP) family in Drosophila are functionally interchangeable in vivo for neurotransmitter release and cell viability.

    Science.gov (United States)

    Bhattacharya, Sharmila; Stewart, Bryan A; Niemeyer, Barbara A; Burgess, Robert W; McCabe, Brian D; Lin, Peter; Boulianne, Gabrielle; O'Kane, Cahir J; Schwarz, Thomas L

    2002-10-15

    Synaptobrevins or VAMPs are vesicle-associated membrane proteins, often called v-SNARES, that are important for vesicle transport and fusion at the plasma membrane. Drosophila has two characterized members of this gene family: synaptobrevin (syb) and neuronal synaptobrevin (n-syb). Mutant phenotypes and gene-expression patterns indicate that n-Syb is exclusively neuronal and required only for synaptic vesicle secretion, whereas Syb is ubiquitous and, as shown here, essential for cell viability. When the eye precursor cells were made homozygous for syb(-), the eye failed to develop. In contrast, n-syb(-) eye clones developed appropriately but failed to activate downstream neurons. To determine whether the two proteins are structurally specialized to accomplish these distinct in vivo functions, we have driven the expression of each gene in the absence of the other to look for phenotypic rescue. We find that expression of n-syb during eye development can rescue the cell lethality of the syb mutations, as can rat VAMP2 and cellubrevin. Expression of syb can restore synaptic transmission to n-syb mutants as assayed both by electroretinogram and recordings of excitatory junctional currents at the neuromuscular junction. Therefore, we find that Syb, which usually is not involved in synaptic function, can mediate Ca(2+)-triggered synaptic activity and that no particular specialization of the v-SNARE is required to differentiate synaptic exocytosis from other forms.

  1. Ionic protein-lipid interaction at the plasma membrane: what can the charge do?

    Science.gov (United States)

    Li, Lunyi; Shi, Xiaoshan; Guo, Xingdong; Li, Hua; Xu, Chenqi

    2014-03-01

    Phospholipids are the major components of cell membranes, but they have functional roles beyond forming lipid bilayers. In particular, acidic phospholipids form microdomains in the plasma membrane and can ionically interact with proteins via polybasic sequences, which can have functional consequences for the protein. The list of proteins regulated by ionic protein-lipid interaction has been quickly expanding, and now includes membrane proteins, cytoplasmic soluble proteins, and viral proteins. Here we review how acidic phospholipids in the plasma membrane regulate protein structure and function via ionic interactions, and how Ca(2+) regulates ionic protein-lipid interactions via direct and indirect mechanisms.

  2. Protein profiles of hatchery egg shell membrane

    Science.gov (United States)

    Background: Eggshells, which consist largely of calcareous outer shell and shell membranes, constitute a significant part of poultry hatchery waste. The shell membranes (ESM) not only contain proteins that originate from egg whites but also from the developing embryos and different contaminants of m...

  3. Contribution of aquaporin 9 and multidrug resistance-associated protein 2 to differential sensitivity to arsenite between primary cultured chorion and amnion cells prepared from human fetal membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Yuta [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Yuan, Bo, E-mail: yuanbo@toyaku.ac.jp [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th St, RH584E Box 2911 San Francisco, CA 94158-2911 (United States); Kaise, Toshikazu [Laboratory of Environmental Chemodynamics, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Takeichi, Makoto [Yoneyama Maternity Hospital, 2-12 Shin-machi, Hachioji, Tokyo 192-0065 (Japan); Tanaka, Sachiko; Hirano, Toshihiko [Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Kroetz, Deanna L. [Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th St, RH584E Box 2911 San Francisco, CA 94158-2911 (United States); Toyoda, Hiroo [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan)

    2011-12-15

    Arsenic trioxide (arsenite, As{sup III}) has shown a remarkable clinical efficacy, whereas its side effects are still a serious concern. Therefore, it is critical to understand the effects of As{sup III} on human-derived normal cells for revealing the mechanisms underlying these side effects. We examined the effects of As{sup III} on primary cultured chorion (C) and amnion (A) cells prepared from human fetal membranes. A significant dose-dependent As{sup III}-mediated cytotoxicity was observed in the C-cells accompanied with an increase of lactate dehydrogenase (LDH) release. Higher concentrations of As{sup III} were required for the A-cells to show cytotoxicity and LDH release, suggesting that the C-cells were more sensitive to As{sup III} than the A-cells. The expression levels of aquaporin 9 (AQP9) were approximately 2 times higher in the C-cells than those in the A-cells. Both intracellular arsenic accumulation and its cytotoxicity in the C-cells were significantly abrogated by sorbitol, a competitive AQP9 inhibitor, in a dose-dependent manner. The protein expression levels of multidrug resistance-associated protein (MRP) 2 were downregulated by As{sup III} in the C-cells, but not in the A-cells. No significant differences in the expression levels of MRP1 were observed between C- and A-cells. The protein expression of P-glycoprotein (P-gp) was hardly detected in both cells, although a detectable amount of its mRNA was observed. Cyclosporine A, a broad-spectrum inhibitor for ABC transporters, and MK571, a MRP inhibitor, but not PGP-4008, a P-gp specific inhibitor, potently sensitized both cells to As{sup III}-mediated cytotoxicity. These results suggest that AQP9 and MRP2 are involved in controlling arsenic accumulation in these normal cells, which then contribute to differential sensitivity to As{sup III} cytotoxicity between these cells. -- Highlights: Black-Right-Pointing-Pointer Examination of effect of As{sup III} on primary cultured chorion (C) and amnion

  4. Vaccinia virus virion membrane biogenesis protein A11 associates with viral membranes in a manner that requires the expression of another membrane biogenesis protein, A6.

    Science.gov (United States)

    Wu, Xiang; Meng, Xiangzhi; Yan, Bo; Rose, Lloyd; Deng, Junpeng; Xiang, Yan

    2012-10-01

    A group of vaccinia virus (VACV) proteins, including A11, L2, and A6, are required for biogenesis of the primary envelope of VACV, specifically, for the acquisition of viral membrane precursors. However, the interconnection among these proteins is unknown and, with the exception of L2, the connection of these proteins with membranes is also unknown. In this study, prompted by the findings that A6 coprecipitated A11 and that the cellular distribution of A11 was dramatically altered by repression of A6 expression, we studied the localization of A11 in cells by using immunofluorescence and cell fractionation analysis. A11 was found to associate with membranes and colocalize with virion membrane proteins in viral replication factories during normal VACV replication. A11 partitioned almost equally between the detergent and aqueous phases upon Triton X-114 phase separation, demonstrating an intrinsic affinity with lipids. However, in the absence of infection or VACV late protein synthesis, A11 did not associate with cellular membranes. Furthermore, when A6 expression was repressed, A11 did not colocalize with any viral membrane proteins or associate with membranes. In contrast, when virion envelope formation was blocked at a later step by repression of A14 expression or by rifampin treatment, A11 colocalized with virion membrane proteins in the factories. Altogether, our data showed that A11 associates with viral membranes during VACV replication, and this association requires A6 expression. This study provides a physical connection between A11 and viral membranes and suggests that A6 regulates A11 membrane association.

  5. The Multifaceted Role of SNARE Proteins in Membrane Fusion.

    Science.gov (United States)

    Han, Jing; Pluhackova, Kristyna; Böckmann, Rainer A

    2017-01-01

    Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined.

  6. Cell membrane modification for rapid display of proteins as a novel means of immunomodulation: FasL-decorated cells prevent islet graft rejection.

    Science.gov (United States)

    Yolcu, Esma S; Askenasy, Nadir; Singh, Narendra P; Cherradi, Salah-Eddine Lamhamedi; Shirwan, Haval

    2002-12-01

    Long-term display of exogenous proteins on the cell surface may have important research and therapeutic implications. We report a novel method for the cell-surface display of proteins that involves generation of a chimeric protein with core streptavidin, biotinylation of cells, and "decoration" with the protein. A chimeric protein with the extracellular portions of FasL (SA-FasL) was efficiently displayed on the cell surface within 2 hr without detectable cellular toxicity. Biotin and SA-FasL persisted on the cell surface for weeks in vitro and in vivo. Immunomodulation with SA-FasL-decorated splenocytes effectively blocked alloreactive responses in naive and presensitized rodents and prevented the rejection of allogeneic pancreatic islets. This approach may serve as an alternative to gene transfer-based expression with broad research and therapeutic applications.

  7. Analysis of protein interactions at native chloroplast membranes by ellipsometry.

    Directory of Open Access Journals (Sweden)

    Verena Kriechbaumer

    Full Text Available Membrane bound receptors play vital roles in cell signaling, and are the target for many drugs, yet their interactions with ligands are difficult to study by conventional techniques due to the technical difficulty of monitoring these interactions in lipid environments. In particular, the ability to analyse the behaviour of membrane proteins in their native membrane environment is limited. Here, we have developed a quantitative approach to detect specific interactions between low-abundance chaperone receptors within native chloroplast membranes and their soluble chaperone partners. Langmuir-Schaefer film deposition was used to deposit native chloroplasts onto gold-coated glass slides, and interactions between the molecular chaperones Hsp70 and Hsp90 and their receptors in the chloroplast membranes were detected and quantified by total internal reflection ellipsometry (TIRE. We show that native chloroplast membranes deposited on gold-coated glass slides using Langmuir-Schaefer films retain functional receptors capable of binding chaperones with high specificity and affinity. Taking into account the low chaperone receptor abundance in native membranes, these binding properties are consistent with data generated using soluble forms of the chloroplast chaperone receptors, OEP61 and Toc64. Therefore, we conclude that chloroplasts have the capacity to selectively bind chaperones, consistent with the notion that chaperones play an important role in protein targeting to chloroplasts. Importantly, this method of monitoring by TIRE does not require any protein labelling. This novel combination of techniques should be applicable to a wide variety of membranes and membrane protein receptors, thus presenting the opportunity to quantify protein interactions involved in fundamental cellular processes, and to screen for drugs that target membrane proteins.

  8. Protein receptor-independent plasma membrane remodeling by HAMLET: a tumoricidal protein-lipid complex.

    Science.gov (United States)

    Nadeem, Aftab; Sanborn, Jeremy; Gettel, Douglas L; James, Ho C S; Rydström, Anna; Ngassam, Viviane N; Klausen, Thomas Kjær; Pedersen, Stine Falsig; Lam, Matti; Parikh, Atul N; Svanborg, Catharina

    2015-11-12

    A central tenet of signal transduction in eukaryotic cells is that extra-cellular ligands activate specific cell surface receptors, which orchestrate downstream responses. This ''protein-centric" view is increasingly challenged by evidence for the involvement of specialized membrane domains in signal transduction. Here, we propose that membrane perturbation may serve as an alternative mechanism to activate a conserved cell-death program in cancer cells. This view emerges from the extraordinary manner in which HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills a wide range of tumor cells in vitro and demonstrates therapeutic efficacy and selectivity in cancer models and clinical studies. We identify a ''receptor independent" transformation of vesicular motifs in model membranes, which is paralleled by gross remodeling of tumor cell membranes. Furthermore, we find that HAMLET accumulates within these de novo membrane conformations and define membrane blebs as cellular compartments for direct interactions of HAMLET with essential target proteins such as the Ras family of GTPases. Finally, we demonstrate lower sensitivity of healthy cell membranes to HAMLET challenge. These features suggest that HAMLET-induced curvature-dependent membrane conformations serve as surrogate receptors for initiating signal transduction cascades, ultimately leading to cell death.

  9. The cellular prion protein interacts with the tissue non-specific alkaline phosphatase in membrane microdomains of bioaminergic neuronal cells.

    Directory of Open Access Journals (Sweden)

    Myriam Ermonval

    Full Text Available BACKGROUND: The cellular prion protein, PrP(C, is GPI anchored and abundant in lipid rafts. The absolute requirement of PrP(C in neurodegeneration associated to prion diseases is well established. However, the function of this ubiquitous protein is still puzzling. Our previous work using the 1C11 neuronal model, provided evidence that PrP(C acts as a cell surface receptor. Besides a ubiquitous signaling function of PrP(C, we have described a neuronal specificity pointing to a role of PrP(C in neuronal homeostasis. 1C11 cells, upon appropriate induction, engage into neuronal differentiation programs, giving rise either to serotonergic (1C11(5-HT or noradrenergic (1C11(NE derivatives. METHODOLOGY/PRINCIPAL FINDINGS: The neuronal specificity of PrP(C signaling prompted us to search for PrP(C partners in 1C11-derived bioaminergic neuronal cells. We show here by immunoprecipitation an association of PrP(C with an 80 kDa protein identified by mass spectrometry as the tissue non-specific alkaline phosphatase (TNAP. This interaction occurs in lipid rafts and is restricted to 1C11-derived neuronal progenies. Our data indicate that TNAP is implemented during the differentiation programs of 1C11(5-HT and 1C11(NE cells and is active at their cell surface. Noteworthy, TNAP may contribute to the regulation of serotonin or catecholamine synthesis in 1C11(5-HT and 1C11(NE bioaminergic cells by controlling pyridoxal phosphate levels. Finally, TNAP activity is shown to modulate the phosphorylation status of laminin and thereby its interaction with PrP. CONCLUSION/SIGNIFICANCE: The identification of a novel PrP(C partner in lipid rafts of neuronal cells favors the idea of a role of PrP in multiple functions. Because PrP(C and laminin functionally interact to support neuronal differentiation and memory consolidation, our findings introduce TNAP as a functional protagonist in the PrP(C-laminin interplay. The partnership between TNAP and PrP(C in neuronal cells may

  10. Studying the Nucleated Mammalian Cell Membrane by Single Molecule Approaches

    Science.gov (United States)

    Wang, Feng; Wu, Jiazhen; Gao, Jing; Liu, Shuheng; Jiang, Junguang; Jiang, Shibo; Wang, Hongda

    2014-01-01

    The cell membrane plays a key role in compartmentalization, nutrient transportation and signal transduction, while the pattern of protein distribution at both cytoplasmic and ectoplasmic sides of the cell membrane remains elusive. Using a combination of single-molecule techniques, including atomic force microscopy (AFM), single molecule force spectroscopy (SMFS) and stochastic optical reconstruction microscopy (STORM), to study the structure of nucleated cell membranes, we found that (1) proteins at the ectoplasmic side of the cell membrane form a dense protein layer (4 nm) on top of a lipid bilayer; (2) proteins aggregate to form islands evenly dispersed at the cytoplasmic side of the cell membrane with a height of about 10–12 nm; (3) cholesterol-enriched domains exist within the cell membrane; (4) carbohydrates stay in microdomains at the ectoplasmic side; and (5) exposed amino groups are asymmetrically distributed on both sides. Based on these observations, we proposed a Protein Layer-Lipid-Protein Island (PLLPI) model, to provide a better understanding of cell membrane structure, membrane trafficking and viral fusion mechanisms. PMID:24806512

  11. Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Roehrig, John T., E-mail: jtr1@cdc.gov [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States); Butrapet, Siritorn; Liss, Nathan M. [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States); Bennett, Susan L. [Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523 (United States); Luy, Betty E.; Childers, Thomas; Boroughs, Karen L.; Stovall, Janae L.; Calvert, Amanda E. [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States); Blair, Carol D. [Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523 (United States); Huang, Claire Y.-H. [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States)

    2013-07-05

    Using an infectious cDNA clone we engineered seven mutations in the putative heparan sulfate- and receptor-binding motifs of the envelope protein of dengue virus serotype 2, strain 16681. Four mutant viruses, KK122/123EE, E202K, G304K, and KKK305/307/310EEE, were recovered following transfection of C6/36 cells. A fifth mutant, KK291/295EE, was recovered from C6/36 cells with a compensatory E295V mutation. All mutants grew in and mediated fusion of virus-infected C6/36 cells, but three of the mutants, KK122/123EE, E202K, G304K, did not grow in Vero cells without further modification. Two Vero cell lethal mutants, KK291/295EV and KKK307/307/310EEE, failed to replicate in DC-SIGN-transformed Raji cells and did not react with monoclonal antibodies known to block DENV attachment to Vero cells. Additionally, both mutants were unable to initiate negative-strand vRNA synthesis in Vero cells by 72 h post-infection, suggesting that the replication block occurred prior to virus-mediated membrane fusion. - Highlights: • Heparan sulfate- and receptor-binding motifs of DENV2 envelope protein were mutated. • Four mutant viruses were isolated—all could fuse C6/36 cells. • Two of these mutants were lethal in Vero cells without further modification. • Lethal mutations were KK291/295EV and KKK305/307/310EEE. • Cell attachment was implicated as the replication block for both mutants.

  12. Glycan Moieties as Bait to Fish Plasma Membrane Proteins.

    Science.gov (United States)

    Fang, Fei; Zhao, Qun; Sui, Zhigang; Liang, Yu; Jiang, Hao; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2016-05-17

    Plasma membrane proteome analysis is of significance for screening candidate biomarkers and drug targets. However, due to their low abundance and lack of specific groups that can enable their capture, the plasma membrane proteins (PMPs) are under-represented. On the basis of the fact that PMPs are embedded in or anchored to the phospholipid bilayer of the plasma membrane and the glycan moieties of proteins and lipids located on the plasma membrane are exposed outside of the cell surface, we proposed a strategy to capture PMPs, termed as glycan moieties-directed PMPs enrichment (GMDPE). With the glycan moieties exposed outside of the cells as bait to ensure the selectivity and the phospholipid bilayer as raft to provide the sensitivity, we applied this strategy into the plasma membrane proteome analysis of HeLa cells, and in total, 772 PMPs were identified, increased by 4.5 times compared to those identified by the reported cell surface biotinylation method. Notably, among them, 86 CD antigens and 16 ion channel proteins were confidently identified. All these results demonstrated that our proposed approach has great potential in the large scale plasma membrane proteome profiling.

  13. Helix-packing motifs in membrane proteins.

    Science.gov (United States)

    Walters, R F S; DeGrado, W F

    2006-09-12

    The fold of a helical membrane protein is largely determined by interactions between membrane-imbedded helices. To elucidate recurring helix-helix interaction motifs, we dissected the crystallographic structures of membrane proteins into a library of interacting helical pairs. The pairs were clustered according to their three-dimensional similarity (rmsd universe of common transmembrane helix-pairing motifs is relatively simple. The largest cluster, which comprises 29% of the library members, consists of an antiparallel motif with left-handed packing angles, and it is frequently stabilized by packing of small side chains occurring every seven residues in the sequence. Right-handed parallel and antiparallel structures show a similar tendency to segregate small residues to the helix-helix interface but spaced at four-residue intervals. Position-specific sequence propensities were derived for the most populated motifs. These structural and sequential motifs should be quite useful for the design and structural prediction of membrane proteins.

  14. Affinity Capillary Electrophoresis:Study of the Binding of HIV-1 gp41 with a Membrane Protein (P45) on the Human B Cell Line,Raji

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Affinity capillary electrophoresis has been used to study the interaction between a membrane protein (P45) isolated from the Human B cell line, Raji, and rsgp41. P45, rsgp41 and the complexes were well resolved. The entire separation was achieved in less than 3min. Formations of two kinds of stable P45-rsgp41 complexes were confirmed based on migration time comparison; the binding equilibrium was achieved as soon as two proteins were mixed. The results indicate that the interaction between P45 and rsgp41 is strong with a fast association rate and a slow dissociation rate, and there are at least two kinds of binding sites with different binding constants between P45 and rsgp41.

  15. Computational Prediction and Identification of Epstein-Barr Virus Latent Membrane Protein 2A Antigen-Specific CD8+ T-Cell Epitopes

    Institute of Scientific and Technical Information of China (English)

    Bing Wang; Kun Yao; Genyan Liu; Fangyi Xie; Feng Zhou; Yun Chen

    2009-01-01

    Epstein-Barr virus (EBV) associated nasopharyngeal carcinoma (NPC) is a high incidence tumor in Southeast Asia. Among EBV encoded proteins, latent membrane protein 2A (LMP2A) is an important antigen for T cell therapy of EBV. In this study, we predicted six HLA-A2 restricted CTL candidate epitopes of LMP2A by SYFPEITHI, NetMHC and MHCPred methods combined with the polynomial method. Subsequently, biological functions of these peptides were tested by experiments in vitro. In ELISPOT assay, the positive response of the LMP2A specific CTL stimulated by three (LMP2A264-272, LMP2A426-434 and LMP2A356-364) of six peptides respectively showed that the numbers of spots forming cells (SFC) ranged from 55.7 to 80.6 SFC/5 × 104 CD8+ T cells and the responding index (RI) ranged from 5.4 to 7. These three epitope-specific CTLs could effectively kill specific HLA-A2-expressing target cells. As a result, LMP2A264-272 (QLSPLLGAV), LMP2A426-434 (CLGGLLTMV) and LMP2A356-364 (FLYALALLL) were identified as LMP2A-specific CD8+ T-cell epitopes. It would be useful to clarify immune response toward EBV and to develop a vaccine against EBV-correlative NPC. Cellular & Molecular Immunology.

  16. Heat shock protein 70 inhibits shrinkage-induced programmed cell death via mechanisms independent of effects on cell volume-regulatory membrane transport proteins

    DEFF Research Database (Denmark)

    Nylandsted, J; Jäättelä, M; Hoffmann, E K;

    2004-01-01

    (+),K(+),2Cl(-)-cotransporter (NKCC1) to RVI. Hypertonic stress induced caspase-3 activity in WEHI cells and iMEFs, an effect potentiated by Hsp70 in WEHI cells but inhibited by Hsp70 in iMEFs. Osmotic shrinkage-induced PCD was associated with Hsp70-inhibitable cysteine cathepsin release in i......MEFs and attenuated by caspase and cathepsin inhibitors in WEHI cells. Treatment with TNF-alpha or the NHE1 inhibitor 5'-(N-ethyl-N-isopropyl)amiloride (EIPA) reduced the viability of WEHI cells further under isotonic and mildly, but not severely, hypertonic conditions. Thus, it is concluded that shrinkage...

  17. Quantitative measurement of cell membrane receptor internalization by the nanoluciferase reporter: Using the G protein-coupled receptor RXFP3 as a model.

    Science.gov (United States)

    Liu, Yu; Song, Ge; Shao, Xiao-Xia; Liu, Ya-Li; Guo, Zhan-Yun

    2015-02-01

    Nanoluciferase (NanoLuc) is a newly developed small luciferase reporter with the brightest bioluminescence to date. In the present work, we developed NanoLuc as a sensitive bioluminescent reporter to measure quantitatively the internalization of cell membrane receptors, based on the pH dependence of the reporter activity. The G protein-coupled receptor RXFP3, the cognate receptor of relaxin-3/INSL7, was used as a model receptor. We first generated stable HEK293T cells that inducibly coexpressed a C-terminally NanoLuc-tagged human RXFP3 and a C-terminally enhanced green fluorescent protein (EGFP)-tagged human RXFP3. The C-terminal EGFP-tag and NanoLuc-tag had no detrimental effects on the ligand-binding potency and intracellular trafficking of RXFP3. Based on the fluorescence of the tagged EGFP reporter, the ligand-induced RXFP3 internalization was visualized directly under a fluorescence microscope. Based on the bioluminescence of the tagged NanoLuc reporter, the ligand-induced RXFP3 internalization was measured quantitatively by a convenient bioluminescent assay. Coexpression of an EGFP-tagged inactive [E141R]RXFP3 had no detrimental effect on the ligand-binding potency and ligand-induced internalization of the NanoLuc-tagged wild-type RXFP3, suggesting that the mutant RXFP3 and wild-type RXFP3 worked independently. The present bioluminescent internalization assay could be extended to other G protein-coupled receptors and other cell membrane receptors to study ligand-receptor and receptor-receptor interactions.

  18. Dielectric breakdown of cell membranes.

    Science.gov (United States)

    Zimmermann, U; Pilwat, G; Riemann, F

    1974-11-01

    With human and bovine red blood cells and Escherichia coli B, dielectric breakdown of cell membranes could be demonstrated using a Coulter Counter (AEG-Telefunken, Ulm, West Germany) with a hydrodynamic focusing orifice. In making measurements of the size distributions of red blood cells and bacteria versus increasing electric field strength and plotting the pulse heights versus the electric field strength, a sharp bend in the otherwise linear curve is observed due to the dielectric breakdown of the membranes. Solution of Laplace's equation for the electric field generated yields a value of about 1.6 V for the membrane potential at which dielectric breakdown occurs with modal volumes of red blood cells and bacteria. The same value is also calculated for red blood cells by applying the capacitor spring model of Crowley (1973. Biophys. J. 13:711). The corresponding electric field strength generated in the membrane at breakdown is of the order of 4 . 10(6) V/cm and, therefore, comparable with the breakdown voltages for bilayers of most oils. The critical detector voltage for breakdown depends on the volume of the cells. The volume-dependence predicted by Laplace theory with the assumption that the potential generated across the membrane is independent of volume, could be verified experimentally. Due to dielectric breakdown the red blood cells lose hemoglobin completely. This phenomenon was used to study dielectric breakdown of red blood cells in a homogeneous electric field between two flat platinum electrodes. The electric field was applied by discharging a high voltage storage capacitor via a spark gap. The calculated value of the membrane potential generated to produce dielectric breakdown in the homogeneous field is of the same order as found by means of the Coulter Counter. This indicates that mechanical rupture of the red blood cells by the hydrodynamic forces in the orifice of the Coulter Counter could also be excluded as a hemolysing mechanism. The detector

  19. The odyssey of Hsp60 from tumor cells to other destinations includes plasma membrane-associated stages and Golgi and exosomal protein-trafficking modalities.

    Directory of Open Access Journals (Sweden)

    Claudia Campanella

    Full Text Available BACKGROUND: In a previous work we showed for the first time that human tumor cells secrete Hsp60 via exosomes, which are considered immunologically active microvesicles involved in tumor progression. This finding raised questions concerning the route followed by Hsp60 to reach the exosomes, its location in them, and whether Hsp60 can be secreted also via other mechanisms, e.g., by the Golgi. We addressed these issues in the work presented here. PRINCIPAL FINDINGS: We found that Hsp60 localizes in the tumor cell plasma membrane, is associated with lipid rafts, and ends up in the exosomal membrane. We also found evidence that Hsp60 localizes in the Golgi apparatus and its secretion is prevented by an inhibitor of this organelle. CONCLUSIONS/SIGNIFICANCE: We propose a multistage process for the translocation of Hsp60 from the inside to the outside of the cell that includes a combination of protein traffic pathways and, ultimately, presence of the chaperonin in the circulating blood. The new information presented should help in designing future strategies for research and for developing diagnostic-monitoring means useful in clinical oncology.

  20. Membrane proteins PmpG and PmpH are major constituents of Chlamydia trachomatis L2 outer membrane complex

    DEFF Research Database (Denmark)

    Mygind, Per H; Christiansen, Gunna; Roepstorff, P;

    2000-01-01

    The outer membrane complex of Chlamydia is involved in the initial adherence and ingestion of Chlamydia by the host cell. In order to identify novel proteins in the outer membrane of Chlamydia trachomatis L2, proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis....... By silver staining of the protein profile, a major protein doublet of 100-110 kDa was detected. In-gel tryptic digestion and matrix-assisted laser desorption/ionization mass spectrometry identified these proteins as the putative outer membrane proteins PmpG and PmpH....

  1. Lipid Directed Intrinsic Membrane Protein Segregation

    DEFF Research Database (Denmark)

    Hansen, Jesper S.; Thompson, James R.; Helix Nielsen, Claus;

    2013-01-01

    We demonstrate a new approach for direct reconstitution of membrane proteins during giant vesicle formation. We show that it is straightforward to create a tissue-like giant vesicle film swelled with membrane protein using aquaporin SoPIP2;1 as an illustration. These vesicles can also be easily h...... harvested for individual study. By controlling the lipid composition we are able to direct the aquaporin into specific immiscible liquid domains in giant vesicles. The oligomeric α-helical protein cosegregates with the cholesterol-poor domains in phase separating ternary mixtures....

  2. An overview of membrane transport proteins in Saccharomyces cerevisiae.

    Science.gov (United States)

    Andre, B

    1995-12-01

    All eukaryotic cells contain a wide variety of proteins embedded in the plasma and internal membranes, which ensure transmembrane solute transport. It is now established that a large proportion of these transport proteins can be grouped into families apparently conserved throughout organisms. This article presents the data of an in silicio analysis aimed at establishing a preliminary classification of membrane transport proteins in Saccharomyces cerevisiae. This analysis was conducted at a time when about 65% of all yeast genes were available in public databases. In addition to approximately 60 transport proteins whose function was at least partially known, approximately 100 deduced protein sequences of unknown function display significant sequence similarity to membrane transport proteins characterized in yeast and/or other organisms. While some protein families have been well characterized by classical genetic experimental approaches, others have largely if not totally escaped characterization. The proteins revealed by this in silicio analysis also include a putative K+ channel, proteins similar to aquaporins of plant and animal origin, proteins similar to Na+-solute symporters, a protein very similar to electroneural cation-chloride cotransporters, and a putative Na+-H+ antiporter. A new research area is anticipated: the functional analysis of many transport proteins whose existence was revealed by genome sequencing.

  3. Recombinant Vaccinia Virus is an Effective and Non-perturbing Vector for Human Dendritic Cells Transfected with Epstein-Barr Virus Latent Membrane Protein 2A

    Institute of Scientific and Technical Information of China (English)

    许继军; 姚堃; 彭光勇; 谢芳艺; 丁传林; 朱建中; 秦健

    2002-01-01

    ObjectiveTo study the effects of dendritic cells (DC) transfected with recombinant vaccinia virus encoding Epstein-Barr virus (EBV) latent membrane protein 2A(LMP2A) gene,and to provide evidence for further investigation on the therapeutic vaccines against EBV-associated malignancies.MethodsMature DC were transfected with EBV-LMP2A recombinant vaccinia virus (rVV-LMP2A).Before and after the transfection,the expression of surface antigens on mature DC including CD1a,CD83,CD40,CD80,HLA-DR was measured by fluorescence activated cell sorter (FACS) and the function of DC to stimulate allogeneic T cells proliferation was measured by mixed leukocyte reactions (MLR).ResultsLMP2A protein was highly expressed (66.1%) in DC after the transfection of rVV-LMP2A.No significant changes in the primary surface antigens expression and in the MLR were detected during the transfection.Transfected DC still had strong potential in stimulating the proliferation of allogeneic T cells.ConclusionRecombinant vaccinia virus was an effective and non-perturbing vector to mediate the transfection of LMP2A into DC.The functions of mature DC were not affected significantly by the transfection of Vac-LMP2A.This study could provide evidence for the further immunotherapy of EBV-associated malignancies,e.g.nasopharyngeal carcinoma (NPC).``

  4. Recombinant Vaccinia Virus is an Effective and Non—perturbing Vector for Human Dendritic Cells Transfected with Epstein—Barr Virus Latent Membrane Protein 2A

    Institute of Scientific and Technical Information of China (English)

    许继军; 姚Kun; 等

    2002-01-01

    Objective To study the effects of dendritic cells(DC) transfected with recombinant vaccinia virus encoding Epstein-Barr virus(EBV) latent membrane protein 2A(LMP2A) gene,and to provide evidence for further investigation on the therapeutic uaccines against EBV-associated malignancies.Methods Mature DC were transfected with EVB-LMP2A recombinant vaccinia virus(rVV-LMP2A).Before and after the transfection,the expression of surface antigens on mature DC including CD1a,CD83,CD40,CD80,HLA-DR was measured by fluorescence activated cell sorter(FACS) and the function of DC to stimulate allogeneic T cells proliferation was measured by mixed leukocyte reactions(MLR).Results LMP2A protein was highly expressed (66.1%) in DC after the transfection of rVV-LMP2A.No significant changes in the primary surface antigens expression and in the MLR were detected during the transfection.Transfected DC still had strong potential in stimulating the proliferation of allogeneic T cells.Conclusion Recombinant vaccinia virus was an effective and non-perturbing vector to mediate the transfection of LMP2A into DC.The functions of mature DC were not affected significantly by the transfection of Vac-LMP2A.This study could provide evidence for the further immunotherapy of EBV-associated malignancies,e.g.nasopharyngeal carcinoma(NPC).

  5. Crystallization of Membrane Proteins by Vapor Diffusion

    Science.gov (United States)

    Delmar, Jared A.; Bolla, Jani Reddy; Su, Chih-Chia; Yu, Edward W.

    2016-01-01

    X-ray crystallography remains the most robust method to determine protein structure at the atomic level. However, the bottlenecks of protein expression and purification often discourage further study. In this chapter, we address the most common problems encountered at these stages. Based on our experiences in expressing and purifying antimicrobial efflux proteins, we explain how a pure and homogenous protein sample can be successfully crystallized by the vapor diffusion method. We present our current protocols and methodologies for this technique. Case studies show step-by-step how we have overcome problems related to expression and diffraction, eventually producing high quality membrane protein crystals for structural determinations. It is our hope that a rational approach can be made of the often anecdotal process of membrane protein crystallization. PMID:25950974

  6. Protective immunity against Rickettsia heilongjiangensis in a C3H/HeN mouse model mediated by outer membrane protein B-pulsed dendritic cells.

    Science.gov (United States)

    Meng, YanFen; Xiong, XiaoLu; Qi, Yong; Duan, ChangSong; Gong, WenPing; Jiao, Jun; Wen, BoHai

    2015-03-01

    Rickettsia heilongjiangensis is an obligate intracellular bacterium that causes Far-Eastern tick-borne spotted fever. Outer membrane protein B (OmpB) is an important surface protein antigen of rickettsiae. In the present study, the ompB gene of R. heilongjiangensis was divided into four fragments, resulting in four recombinant proteins (OmpB-p1, OmpB-p2, OmpB-p3, and OmpB-p4). Each OmpB was used in vitro to stimulate murine bone marrow-derived dendritic cells (BMDCs) of C3H/HeN mice, and the OmpB-pulsed BMDCs were transferred to naïve C3H/HeN mice. On day 14 post-transfer of BMDCs, the mice were challenged with R. heilongjiangensis and the rickettsial loads in the mice were quantitatively determined on day 7 post-challenge. Mice receiving BMDCs pulsed with OmpB-p2, OmpB-p3, or OmpB-p4 exhibited significantly lower bacterial load compared with mice receiving OmpB-p1-pulsed BMDCs. CD4(+) and CD8(+) T cells isolated from the spleen of C3H/HeN mice receiving BMDCs pulsed with each OmpB were co-cultured with BMDCs pulsed with the respective cognate protein. In flow cytometric analysis, the expression level of CD69 on CD4(+) or CD8(+) T cells from mice receiving BMDCs pulsed with OmpB-p2, OmpB-p3, or OmpB-p4 was higher than that on cells from mice receiving OmpB-p1-pulsed BMDCs, while the expression level of tumor necrosis factor (TNF)-α on CD8(+) T cells and interferon (IFN)-γ on the CD4(+) and CD8(+) T cells from mice receiving OmpB-p2, -p3, or -p4 was significantly higher than on cells from mice receiving OmpB-p1-pulsed BMDCs. Our results suggest that the protective OmpBs could activate CD4(+) and CD8(+) T cells and drive their differentiation toward CD4(+) Th1 and CD8(+) Tcl cells, respectively, which produce greater amounts of TNF-α and, in particular, IFN-γ, to enhance rickettsicidal activity of host cells.

  7. Latent membrane protein 1 of Epstein-Barr virus sensitizes cancer cells to cisplatin by enhancing NF-κB p50 homodimer formation and downregulating NAPA expression.

    Science.gov (United States)

    Wu, Zchong-Zcho; Chow, Kai-Ping N; Kuo, Tzu-Ching; Chang, Yu-Sun; Chao, Chuck C-K

    2011-12-15

    Expression of the oncogenic latent membrane protein 1 (LMP1) of Epstein-Barr virus is involved in the pathogenesis of nasopharyngeal carcinoma (NPC) and lymphoma. In previous studies, we found that expression of LMP1 was sufficient to transform BALB/c-3T3 cells. In contrast, other studies have shown that LMP1 induces apoptosis in a NF-κB-dependent manner and also inhibits the growth of tumors in mice, thereby indicating that LMP1 may produce various biological effects depending on the biological and cellular context. Still, the mechanism underlying the pro-apoptotic activity of LMP1 remains unclear. In the present study, we found that LMP1 inhibits the expression of NAPA, an endoplasmic reticulum SNARE protein that possesses anti-apoptotic properties against the DNA-damaging drug cisplatin. Accordingly, LMP1-transformed BALB/c-3T3 cells were sensitized to cisplatin-induced apoptosis, whereas no sensitization effect was noted following treatment with the mitotic spindle-damaging drugs vincristine and taxol. Knockdown of LMP1 with antisense oligonucleotides restored NAPA protein level and rendered the cells resistant to cisplatin. Similarly, overexpression of NAPA reduced the effect of LMP1 and induced resistance to cisplatin. LMP1 was shown to upregulate the NF-κB subunit p50, leading to formation of p50 homodimers on the NAPA promoter. These findings suggest that the viral protein LMP1 may sensitize cancer cells to cisplatin chemotherapy by downregulating NAPA and by enhancing the formation of p50 homodimers which in turn inhibit the expression of NF-κB regulated anti-apoptotic genes. These findings provide an explanatory mechanism for the pro-apoptotic activity of LMP1 as well as new therapeutic targets to control tumor growth.

  8. Corrugated Membrane Fuel Cell Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grot, Stephen [President, Ion Power Inc.

    2013-09-30

    One of the most challenging aspects of traditional PEM fuel cell stacks is the difficulty achieving the platinum catalyst utilization target of 0.2 gPt/kWe set forth by the DOE. Good catalyst utilization can be achieved with state-of-the-art catalyst coated membranes (CCM) when low catalyst loadings (<0.3 mg/cm2) are used at a low current. However, when low platinum loadings are used, the peak power density is lower than conventional loadings, requiring a larger total active area and a larger bipolar plate. This results in a lower overall stack power density not meeting the DOE target. By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

  9. The MUC4 membrane-bound mucin regulates esophageal cancer cell proliferation and migration properties: Implication for S100A4 protein

    Energy Technology Data Exchange (ETDEWEB)

    Bruyere, Emilie; Jonckheere, Nicolas; Frenois, Frederic [Inserm, UMR837, Jean-Pierre Aubert Research Center, Team 5 ' Mucins, Epithelial Differentiation and Carcinogenesis' , rue Polonovski, 59045 Lille Cedex (France); Universite Lille-Nord de France, 1 place de Verdun, 59045 Lille Cedex (France); Mariette, Christophe [Inserm, UMR837, Jean-Pierre Aubert Research Center, Team 5 ' Mucins, Epithelial Differentiation and Carcinogenesis' , rue Polonovski, 59045 Lille Cedex (France); Universite Lille-Nord de France, 1 place de Verdun, 59045 Lille Cedex (France); Department of Digestive and Oncological Surgery, University Hospital Claude Huriez, 1 place de Verdun, 59045 Lille Cedex (France); Van Seuningen, Isabelle, E-mail: isabelle.vanseuningen@inserm.fr [Inserm, UMR837, Jean-Pierre Aubert Research Center, Team 5 ' Mucins, Epithelial Differentiation and Carcinogenesis' , rue Polonovski, 59045 Lille Cedex (France); Universite Lille-Nord de France, 1 place de Verdun, 59045 Lille Cedex (France)

    2011-09-23

    Highlights: {yields} Loss of MUC4 reduces proliferation of esophageal cancer cells. {yields} MUC4 inhibition impairs migration of esophageal cancer cells but not their invasion. {yields} Loss of MUC4 significantly reduces in vivo tumor growth. {yields} Decrease of S100A4 induced by MUC4 inhibition impairs proliferation and migration. -- Abstract: MUC4 is a membrane-bound mucin known to participate in tumor progression. It has been shown that MUC4 pattern of expression is modified during esophageal carcinogenesis, with a progressive increase from metaplastic lesions to adenocarcinoma. The principal cause of development of esophageal adenocarcinoma is the gastro-esophageal reflux, and MUC4 was previously shown to be upregulated by several bile acids present in reflux. In this report, our aim was thus to determine whether MUC4 plays a role in biological properties of human esophageal cancer cells. For that stable MUC4-deficient cancer cell lines (shMUC4 cells) were established using a shRNA approach. In vitro (proliferation, migration and invasion) and in vivo (tumor growth following subcutaneous xenografts in SCID mice) biological properties of shMUC4 cells were analyzed. Our results show that shMUC4 cells were less proliferative, had decreased migration properties and did not express S100A4 protein when compared with MUC4 expressing cells. Absence of MUC4 did not impair shMUC4 invasiveness. Subcutaneous xenografts showed a significant decrease in tumor size when cells did not express MUC4. Altogether, these data indicate that MUC4 plays a key role in proliferative and migrating properties of esophageal cancer cells as well as is a tumor growth promoter. MUC4 mucin appears thus as a good therapeutic target to slow-down esophageal tumor progression.

  10. Model-building codes for membrane proteins.

    Energy Technology Data Exchange (ETDEWEB)

    Shirley, David Noyes; Hunt, Thomas W.; Brown, W. Michael; Schoeniger, Joseph S. (Sandia National Laboratories, Livermore, CA); Slepoy, Alexander; Sale, Kenneth L. (Sandia National Laboratories, Livermore, CA); Young, Malin M. (Sandia National Laboratories, Livermore, CA); Faulon, Jean-Loup Michel; Gray, Genetha Anne (Sandia National Laboratories, Livermore, CA)

    2005-01-01

    We have developed a novel approach to modeling the transmembrane spanning helical bundles of integral membrane proteins using only a sparse set of distance constraints, such as those derived from MS3-D, dipolar-EPR and FRET experiments. Algorithms have been written for searching the conformational space of membrane protein folds matching the set of distance constraints, which provides initial structures for local conformational searches. Local conformation search is achieved by optimizing these candidates against a custom penalty function that incorporates both measures derived from statistical analysis of solved membrane protein structures and distance constraints obtained from experiments. This results in refined helical bundles to which the interhelical loops and amino acid side-chains are added. Using a set of only 27 distance constraints extracted from the literature, our methods successfully recover the structure of dark-adapted rhodopsin to within 3.2 {angstrom} of the crystal structure.

  11. Cholesterol-Dependent Energy Transfer between Fluorescent Proteins—Insights into Protein Proximity of APP and BACE1 in Different Membranes in Niemann-Pick Type C Disease Cells

    Directory of Open Access Journals (Sweden)

    Bjoern von Einem

    2012-11-01

    Full Text Available Förster resonance energy transfer (FRET -based techniques have recently been applied to study the interactions between β-site APP-cleaving enzyme-GFP (BACE1-GFP and amyloid precursor protein-mRFP (APP-mRFP in U373 glioblastoma cells. In this context, the role of APP-BACE1 proximity in Alzheimer’s disease (AD pathogenesis has been discussed. FRET was found to depend on intracellular cholesterol levels and associated alterations in membrane stiffness. Here, NPC1 null cells (CHO-NPC1−/−, exhibiting increased cholesterol levels and disturbed cholesterol transport similar to that observed in Niemann-Pick type C disease (NPC, were used to analyze the influence of altered cholesterol levels on APP-BACE1 proximity. Fluorescence lifetime measurements of whole CHO-wild type (WT and CHO-NPC1−/− cells (EPI-illumination microscopy, as well as their plasma membranes (total internal reflection fluorescence microscopy, TIRFM, were performed. Additionally, generalized polarization (GP measurements of CHO-WT and CHO-NPC1−/− cells incubated with the fluorescence marker laurdan were performed to determine membrane stiffness of plasma- and intracellular-membranes. CHO-NPC1−/− cells showed higher membrane stiffness at intracellular- but not plasma-membranes, equivalent to cholesterol accumulation in late endosomes/lysosomes. Along with higher membrane stiffness, the FRET efficiency between BACE1-GFP and APP-mRFP was reduced at intracellular membranes, but not within the plasma membrane of CHO-NPC1−/−. Our data show that FRET combined with TIRF is a powerful technique to determine protein proximity and membrane fluidity in cellular models of neurodegenerative diseases.

  12. Structural investigation of membrane proteins by electron microscopy

    NARCIS (Netherlands)

    Moscicka, Katarzyna Beata

    2009-01-01

    Biological membranes are vital components of all living systems, forming the boundaries of cells and their organelles. They consist of a lipid bilayer and embedded proteins, which are nanomachines that fulfill key functions such as energy conversion, solute transport, secretion, and signal transduct

  13. Proteomics characterization of abundant Golgi membrane proteins.

    Science.gov (United States)

    Bell, A W; Ward, M A; Blackstock, W P; Freeman, H N; Choudhary, J S; Lewis, A P; Chotai, D; Fazel, A; Gushue, J N; Paiement, J; Palcy, S; Chevet, E; Lafrenière-Roula, M; Solari, R; Thomas, D Y; Rowley, A; Bergeron, J J

    2001-02-16

    A mass spectrometric analysis of proteins partitioning into Triton X-114 from purified hepatic Golgi apparatus (84% purity by morphometry, 122-fold enrichment over the homogenate for the Golgi marker galactosyl transferase) led to the unambiguous identification of 81 proteins including a novel Golgi-associated protein of 34 kDa (GPP34). The membrane protein complement was resolved by SDS-polyacrylamide gel electrophoresis and subjected to a hierarchical approach using delayed extraction matrix-assisted laser desorption ionization mass spectrometry characterization by peptide mass fingerprinting, tandem mass spectrometry to generate sequence tags, and Edman sequencing of proteins. Major membrane proteins corresponded to known Golgi residents, a Golgi lectin, anterograde cargo, and an abundance of trafficking proteins including KDEL receptors, p24 family members, SNAREs, Rabs, a single ARF-guanine nucleotide exchange factor, and two SCAMPs. Analytical fractionation and gold immunolabeling of proteins in the purified Golgi fraction were used to assess the intra-Golgi and total cellular distribution of GPP34, two SNAREs, SCAMPs, and the trafficking proteins GBF1, BAP31, and alpha(2)P24 identified by the proteomics approach as well as the endoplasmic reticulum contaminant calnexin. Although GPP34 has never previously been identified as a protein, the localization of GPP34 to the Golgi complex, the conservation of GPP34 from yeast to humans, and the cytosolically exposed location of GPP34 predict a role for a novel coat protein in Golgi trafficking.

  14. Pathogen receptor discovery with a microfluidic human membrane protein array

    Science.gov (United States)

    Glick, Yair; Ben-Ari, Ya’ara; Drayman, Nir; Pellach, Michal; Neveu, Gregory; Boonyaratanakornkit, Jim; Avrahami, Dorit; Einav, Shirit; Oppenheim, Ariella

    2016-01-01

    The discovery of how a pathogen invades a cell requires one to determine which host cell receptors are exploited. This determination is a challenging problem because the receptor is invariably a membrane protein, which represents an Achilles heel in proteomics. We have developed a universal platform for high-throughput expression and interaction studies of membrane proteins by creating a microfluidic-based comprehensive human membrane protein array (MPA). The MPA is, to our knowledge, the first of its kind and offers a powerful alternative to conventional proteomics by enabling the simultaneous study of 2,100 membrane proteins. We characterized direct interactions of a whole nonenveloped virus (simian virus 40), as well as those of the hepatitis delta enveloped virus large form antigen, with candidate host receptors expressed on the MPA. Selected newly discovered membrane protein–pathogen interactions were validated by conventional methods, demonstrating that the MPA is an important tool for cellular receptor discovery and for understanding pathogen tropism. PMID:27044079

  15. Src kinase and Syk activation initiate PI3K signaling by a chimeric latent membrane protein 1 in Epstein-Barr virus (EBV)+ B cell lymphomas.

    Science.gov (United States)

    Hatton, Olivia; Lambert, Stacie L; Krams, Sheri M; Martinez, Olivia M

    2012-01-01

    The B lymphotrophic γ-herpesvirus EBV is associated with a variety of lymphoid- and epithelial-derived malignancies, including B cell lymphomas in immunocompromised and immunosuppressed individuals. The primary oncogene of EBV, latent membrane protein 1 (LMP1), activates the PI3K/Akt pathway to induce the autocrine growth factor, IL-10, in EBV-infected B cells, but the mechanisms underlying PI3K activation remain incompletely understood. Using small molecule inhibition and siRNA strategies in human B cell lines expressing a chimeric, signaling-inducible LMP1 protein, nerve growth factor receptor (NGFR)-LMP1, we show that NGFR-LMP1 utilizes Syk to activate PI3K/Akt signaling and induce IL-10 production. NGFR-LMP1 signaling induces phosphorylation of BLNK, a marker of Syk activation. Whereas Src kinases are often required for Syk activation, we show here that PI3K/Akt activation and autocrine IL-10 production by NGFR-LMP1 involves the Src family kinase Fyn. Finally, we demonstrate that NGFR-LMP1 induces phosphorylation of c-Cbl in a Syk- and Fyn-dependent fashion. Our results indicate that the EBV protein LMP1, which lacks the canonical ITAM required for Syk activation, can nevertheless activate Syk, and the Src kinase Fyn, resulting in downstream c-Cbl and PI3K/Akt activation. Fyn, Syk, and PI3K/Akt antagonists thus may present potential new therapeutic strategies that target the oncogene LMP1 for treatment of EBV+ B cell lymphomas.

  16. Src kinase and Syk activation initiate PI3K signaling by a chimeric latent membrane protein 1 in Epstein-Barr virus (EBV+ B cell lymphomas.

    Directory of Open Access Journals (Sweden)

    Olivia Hatton

    Full Text Available The B lymphotrophic γ-herpesvirus EBV is associated with a variety of lymphoid- and epithelial-derived malignancies, including B cell lymphomas in immunocompromised and immunosuppressed individuals. The primary oncogene of EBV, latent membrane protein 1 (LMP1, activates the PI3K/Akt pathway to induce the autocrine growth factor, IL-10, in EBV-infected B cells, but the mechanisms underlying PI3K activation remain incompletely understood. Using small molecule inhibition and siRNA strategies in human B cell lines expressing a chimeric, signaling-inducible LMP1 protein, nerve growth factor receptor (NGFR-LMP1, we show that NGFR-LMP1 utilizes Syk to activate PI3K/Akt signaling and induce IL-10 production. NGFR-LMP1 signaling induces phosphorylation of BLNK, a marker of Syk activation. Whereas Src kinases are often required for Syk activation, we show here that PI3K/Akt activation and autocrine IL-10 production by NGFR-LMP1 involves the Src family kinase Fyn. Finally, we demonstrate that NGFR-LMP1 induces phosphorylation of c-Cbl in a Syk- and Fyn-dependent fashion. Our results indicate that the EBV protein LMP1, which lacks the canonical ITAM required for Syk activation, can nevertheless activate Syk, and the Src kinase Fyn, resulting in downstream c-Cbl and PI3K/Akt activation. Fyn, Syk, and PI3K/Akt antagonists thus may present potential new therapeutic strategies that target the oncogene LMP1 for treatment of EBV+ B cell lymphomas.

  17. Proteomic analysis of GPI-anchored membrane proteins

    DEFF Research Database (Denmark)

    Jung, Hye Ryung; Jensen, Ole Nørregaard

    2006-01-01

    Glycosyl-phosphatidyl-inositol-anchored proteins (GPI-APs) represent a subset of post-translationally modified proteins that are tethered to the outer leaflet of the plasma membrane via a C-terminal GPI anchor. GPI-APs are found in a variety of eukaryote species, from pathogenic microorganisms...... to humans. GPI-APs confer important cellular functions as receptors, enzymes and scaffolding molecules. Specific enzymes and detergent extraction methods combined with separation technologies and mass spectrometry permit proteomic analysis of GPI-APs from plasma membrane preparations to reveal cell...

  18. The glucose transporter (GLUT-4) and vesicle-associated membrane protein-2 (VAMP-2) are segregated from recycling endosomes in insulin- sensitive cells

    Science.gov (United States)

    1996-01-01

    Insulin stimulates glucose transport in adipocytes by translocation of the glucose transporter (GLUT-4) from an intracellular site to the cell surface. We have characterized different synaptobrevin/vesicle- associated membrane protein (VAMP) homologues in adipocytes and studied their intracellular distribution with respect to GLUT-4. VAMP-1, VAMP- 2, and cellubrevin cDNAs were isolated from a 3T3-L1 adipocyte expression library. VAMP-2 and cellubrevin were: (a) the most abundant isoforms in adipocytes, (b) detectable in all insulin responsive tissues, (c) translocated to the cell surface in response to insulin, and (d) found in immunoadsorbed GLUT-4 vesicles. To further define their intracellular distribution, 3T3-L1 adipocytes were incubated with a transferrin/HRP conjugate (Tf/HRP) and endosomes ablated following addition of DAB and H2O2. While this resulted in ablation of > 90% of the transferrin receptor (TfR) and cellubrevin found in intracellular membranes, 60% of GLUT-4 and 90% of VAMP-2 was not ablated. Immuno-EM on intracellular vesicles from adipocytes revealed that VAMP-2 was colocalized with GLUT-4, whereas only partial colocalization was observed between GLUT-4 and cellubrevin. These studies show that two different v-SNAREs, cellubrevin and VAMP-2, are partially segregated in different intracellular compartments in adipocytes, implying that they may define separate classes of secretory vesicles in these cells. We conclude that a proportion of GLUT-4 is found in recycling endosomes in nonstimulated adipocytes together with cellubrevin and the transferrin receptor. In addition, GLUT-4 and VAMP-2 are selectively enriched in a postendocytic compartment. Further study is required to elucidate the function of this latter compartment in insulin-responsive cells. PMID:8707843

  19. Electrophoretic separation method for membrane pore-forming proteins in multilayer lipid membranes.

    Science.gov (United States)

    Okamoto, Yukihiro; Tsujimoto, Yusuke; Umakoshi, Hiroshi

    2016-03-01

    In this paper, we report on a novel electrophoretic separation and analysis method for membrane pore-forming proteins in multilayer lipid membranes (MLMs) in order to overcome the problems related to current separation and analysis methods of membrane proteins, and to obtain a high-performance separation method on the basis of specific properties of the lipid membranes. We constructed MLMs, and subsequently characterized membrane pore-forming protein behavior in MLMs. Through the use of these MLMs, we were able to successfully separate and analyze membrane pore-forming proteins in MLMs. To the best of our knowledge, this research is the first example of membrane pore-forming protein separation in lipid membranes. Our method can be expected to be applied for the separation and analysis of other membrane proteins including intrinsic membrane proteins and to result in high-performance by utilizing the specific properties of lipid membranes.

  20. Protein permeation through an electrically tunable membrane

    Science.gov (United States)

    Jou, Ining A.; Melnikov, Dmitriy V.; Gracheva, Maria E.

    2016-05-01

    Protein filtration is important in many fields of science and technology such as medicine, biology, chemistry, and engineering. Recently, protein separation and filtering with nanoporous membranes has attracted interest due to the possibility of fast separation and high throughput volume. This, however, requires understanding of the protein’s dynamics inside and in the vicinity of the nanopore. In this work, we utilize a Brownian dynamics approach to study the motion of the model protein insulin in the membrane-electrolyte electrostatic potential. We compare the results of the atomic model of the protein with the results of a coarse-grained and a single-bead model, and find that the coarse-grained representation of protein strikes the best balance between the accuracy of the results and the computational effort required. Contrary to common belief, we find that to adequately describe the protein, a single-bead model cannot be utilized without a significant effort to tabulate the simulation parameters. Similar to results for nanoparticle dynamics, our findings also indicate that the electric field and the electro-osmotic flow due to the applied membrane and electrolyte biases affect the capture and translocation of the biomolecule by either attracting or repelling it to or from the nanopore. Our computational model can also be applied to other types of proteins and separation conditions.

  1. The Single-Molecule Approach to Membrane Protein Stoichiometry.

    Science.gov (United States)

    Nichols, Michael G; Hallworth, Richard

    2016-01-01

    The advent of techniques for imaging solitary fluorescent molecules has made possible many new kinds of biological experiments. Here, we describe the application of single-molecule imaging to the problem of subunit stoichiometry in membrane proteins. A membrane protein of unknown stoichiometry, prestin, is coupled to the fluorescent enhanced green fluorescent protein (eGFP) and synthesized in the human embryonic kidney (HEK) cell line. We prepare adherent membrane fragments containing prestin-eGFP by osmotic lysis. The molecules are then exposed to continuous low-level excitation until their fluorescence reaches background levels. Their fluorescence decreases in discrete equal-amplitude steps, consistent with the photobleaching of single fluorophores. We count the number of steps required to photobleach each molecule. The molecular stoichiometry is then deduced using a binomial model.

  2. Assembly of β-barrel proteins into bacterial outer membranes.

    Science.gov (United States)

    Selkrig, Joel; Leyton, Denisse L; Webb, Chaille T; Lithgow, Trevor

    2014-08-01

    Membrane proteins with a β-barrel topology are found in the outer membranes of Gram-negative bacteria and in the plastids and mitochondria of eukaryotic cells. The assembly of these membrane proteins depends on a protein folding reaction (to create the barrel) and an insertion reaction (to integrate the barrel within the outer membrane). Experimental approaches using biophysics and biochemistry are detailing the steps in the assembly pathway, while genetics and bioinformatics have revealed a sophisticated production line of cellular components that catalyze the assembly pathway in vivo. This includes the modular BAM complex, several molecular chaperones and the translocation and assembly module (the TAM). Recent screens also suggest that further components of the pathway might remain to be discovered. We review what is known about the process of β-barrel protein assembly into membranes, and the components of the β-barrel assembly machinery. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.

  3. Epstein-Barr virus-encoded latent membrane protein 1 impairs G2 checkpoint in human nasopharyngeal epithelial cells through defective Chk1 activation.

    Directory of Open Access Journals (Sweden)

    Wen Deng

    Full Text Available Nasopharyngeal carcinoma (NPC is a common cancer in Southeast Asia, particularly in southern regions of China. EBV infection is closely associated with NPC and has long been postulated to play an etiological role in the development of NPC. However, the role of EBV in malignant transformation of nasopharyngeal epithelial cells remains enigmatic. The current hypothesis of NPC development is that premalignant nasopharyngeal epithelial cells harboring genetic alterations support EBV infection and expression of EBV genes induces further genomic instability to facilitate the development of NPC. The latent membrane protein 1 (LMP1 is a well-documented EBV-encoded oncogene. The involvement of LMP1 in human epithelial malignancies has been implicated, but the mechanisms of oncogenic actions of LMP1, particularly in nasopharyngeal cells, are unclear. Here we observed that LMP1 expression in nasopharyngeal epithelial cells impaired G2 checkpoint, leading to formation of unrepaired chromatid breaks in metaphases after γ-ray irradiation. We further found that defective Chk1 activation was involved in the induction of G2 checkpoint defect in LMP1-expressing nasopharyngeal epithelial cells. Impairment of G2 checkpoint could result in loss of the acentrically broken chromatids and propagation of broken centric chromatids in daughter cells exiting mitosis, which facilitates chromosome instability. Our findings suggest that LMP1 expression facilitates genomic instability in cells under genotoxic stress. Elucidation of the mechanisms involved in LMP1-induced genomic instability in nasopharyngeal epithelial cells will shed lights on the understanding of role of EBV infection in NPC development.

  4. Comparison of membrane electroporation and protein denature in response to pulsed electric field with different durations.

    Science.gov (United States)

    Huang, Feiran; Fang, Zhihui; Mast, Jason; Chen, Wei

    2013-05-01

    In this paper, we compared the minimum potential differences in the electroporation of membrane lipid bilayers and the denaturation of membrane proteins in response to an intensive pulsed electric field with various pulse durations. Single skeletal muscle fibers were exposed to a pulsed external electric field. The field-induced changes in the membrane integrity (leakage current) and the Na channel currents were monitored to identify the minimum electric field needed to damage the membrane lipid bilayer and the membrane proteins, respectively. We found that in response to a relatively long pulsed electric shock (longer than the membrane intrinsic time constant), a lower membrane potential was needed to electroporate the cell membrane than for denaturing the membrane proteins, while for a short pulse a higher membrane potential was needed. In other words, phospholipid bilayers are more sensitive to the electric field than the membrane proteins for a long pulsed shock, while for a short pulse the proteins become more vulnerable. We can predict that for a short or ultrashort pulsed electric shock, the minimum membrane potential required to start to denature the protein functions in the cell plasma membrane is lower than that which starts to reduce the membrane integrity.

  5. Immunohistochemical study of the membrane skeletal protein, membrane protein palmitoylated 6 (MPP6), in the mouse small intestine.

    Science.gov (United States)

    Kamijo, Akio; Saitoh, Yurika; Ohno, Nobuhiko; Ohno, Shinichi; Terada, Nobuo

    2016-01-01

    The membrane protein palmitoylated (MPP) family belongs to the membrane-associated guanylate kinase (MAGUK) family. MPP1 interacts with the protein 4.1 family member, 4.1R, as a membrane skeletal protein complex in erythrocytes. We previously described the interaction of another MPP family, MPP6, with 4.1G in the mouse peripheral nervous system. In the present study, the immunolocalization of MPP6 in the mouse small intestine was examined and compared with that of E-cadherin, zonula occludens (ZO)-1, and 4.1B, which we previously investigated in intestinal epithelial cells. The immunolocalization of MPP6 was also assessed in the small intestines of 4.1B-deficient (-/-) mice. In the small intestine, Western blotting revealed that the molecular weight of MPP6 was approximately 55-kDa, and MPP6 was immunostained under the cell membranes in the basolateral portions of almost all epithelial cells from the crypts to the villi. The immunostaining pattern of MPP6 in epithelial cells was similar to that of E-cadherin, but differed from that of ZO-1. In intestinal epithelial cells, the immunostained area of MPP6 was slightly different from that of 4.1B, which was restricted to the intestinal villi. The immunolocalization of MPP6 in small intestinal epithelial cells was similar between 4.1B(-/-) mice and 4.1B(+/+) mice. In the immunoprecipitation study, another MAGUK family protein, calcium/calmodulin-dependent serine protein kinase (CASK), was shown to molecularly interact with MPP6. Thus, we herein showed the immunolocalization and interaction proteins of MPP6 in the mouse small intestine, and also that 4.1B in epithelial cells was not essential for the sorting of MPP6.

  6. Decrease in membrane phospholipid unsaturation induces unfolded protein response.

    Science.gov (United States)

    Ariyama, Hiroyuki; Kono, Nozomu; Matsuda, Shinji; Inoue, Takao; Arai, Hiroyuki

    2010-07-16

    Various kinds of fatty acids are distributed in membrane phospholipids in mammalian cells and tissues. The degree of fatty acid unsaturation in membrane phospholipids affects many membrane-associated functions and can be influenced by diet and by altered activities of lipid-metabolizing enzymes such as fatty acid desaturases. However, little is known about how mammalian cells respond to changes in phospholipid fatty acid composition. In this study we showed that stearoyl-CoA desaturase 1 (SCD1) knockdown increased the amount of saturated fatty acids and decreased that of monounsaturated fatty acids in phospholipids without affecting the amount or the composition of free fatty acid and induced unfolded protein response (UPR), evidenced by increased expression of C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78) mRNAs and splicing of Xbox-binding protein 1 (XBP1) mRNA. SCD1 knockdown-induced UPR was rescued by various unsaturated fatty acids and was enhanced by saturated fatty acid. Lysophosphatidylcholine acyltransferase 3 (LPCAT3), which incorporates preferentially polyunsaturated fatty acids into phosphatidylcholine, was up-regulated in SCD1 knockdown cells. Knockdown of LPCAT3 synergistically enhanced UPR with SCD1 knockdown. Finally we showed that palmitic acid-induced UPR was significantly enhanced by LPCAT3 knockdown as well as SCD1 knockdown. These results suggest that a decrease in membrane phospholipid unsaturation induces UPR.

  7. Synthetic Biology Tools for the Membrane – Targeted Localisation and Elucidation of Protein Interactions

    DEFF Research Database (Denmark)

    Wendel, Sofie; Seppala, Susanna; Nørholm, Morten

    2014-01-01

    (SMA) for isolation of membrane proteins. SMA is a polymer which spontaneously digs into a lipid membrane and carves out a disc containing protein and native lipids (2). By elucidating protein interactions we will be able to tune and optimise heterologous pathway expression in our E. coli cell...

  8. Nanoscale cell membrane organization : a near-field optical view

    NARCIS (Netherlands)

    Koopman, Marjolein

    2006-01-01

    The cell plasma membrane of eukaryotic cells is a lipid bi-layer that separates the cell cytosol from the extracellular environment. The composition and organization of proteins and lipids within this bi-layer have a direct impact on many cellular processes, since they form the senses of the cell. T

  9. Cell polarity proteins and spermatogenesis.

    Science.gov (United States)

    Gao, Ying; Xiao, Xiang; Lui, Wing-Yee; Lee, Will M; Mruk, Dolores; Cheng, C Yan

    2016-11-01

    When the cross-section of a seminiferous tubule from an adult rat testes is examined microscopically, Sertoli cells and germ cells in the seminiferous epithelium are notably polarized cells. For instance, Sertoli cell nuclei are found near the basement membrane. On the other hand, tight junction (TJ), basal ectoplasmic specialization (basal ES, a testis-specific actin-rich anchoring junction), gap junction (GJ) and desmosome that constitute the blood-testis barrier (BTB) are also located near the basement membrane. The BTB, in turn, divides the epithelium into the basal and the adluminal (apical) compartments. Within the epithelium, undifferentiated spermatogonia and preleptotene spermatocytes restrictively reside in the basal compartment whereas spermatocytes and post-meiotic spermatids reside in the adluminal compartment. Furthermore, the heads of elongating/elongated spermatids point toward the basement membrane with their elongating tails toward the tubule lumen. However, the involvement of polarity proteins in this unique cellular organization, in particular the underlying molecular mechanism(s) by which polarity proteins confer cellular polarity in the seminiferous epithelium is virtually unknown until recent years. Herein, we discuss latest findings regarding the role of different polarity protein complexes or modules and how these protein complexes are working in concert to modulate Sertoli cell and spermatid polarity. These findings also illustrate polarity proteins exert their effects through the actin-based cytoskeleton mediated by actin binding and regulatory proteins, which in turn modulate adhesion protein complexes at the cell-cell interface since TJ, basal ES and GJ utilize F-actin for attachment. We also propose a hypothetical model which illustrates the antagonistic effects of these polarity proteins. This in turn provides a unique mechanism to modulate junction remodeling in the testis to support germ cell transport across the epithelium in

  10. Membrane actions of 1α,25(OH)2D3 are mediated by Ca(2+)/calmodulin-dependent protein kinase II in bone and cartilage cells.

    Science.gov (United States)

    Doroudi, Maryam; Plaisance, Marc C; Boyan, Barbara D; Schwartz, Zvi

    2015-01-01

    1α,25(OH)2D3 regulates osteoblasts and chondrocytes via its membrane-associated receptor, protein disulfide isomerase A3 (Pdia3) in caveolae. 1α,25(OH)2D3 binding to Pdia3 leads to phospholipase-A2 (PLA2)-activating protein (PLAA) activation, stimulating cytosolic PLA2 and resulting in prostaglandin E2 (PGE2) release and PKCα activation, subsequently stimulating differentiation. However, how PLAA transmits the signal to cPLA2 is unknown. Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) activation is required for PLA2 activation in vascular smooth muscle cells, suggesting a similar role in 1α,25(OH)2D3-dependent signaling. The aim of the present study is to evaluate the roles of CaM and CaMKII as mediators of 1α,25(OH)2D3-stimulated PLAA-dependent activation of cPLA2 and PKCα, and downstream biological effects. The results indicated that 1α,25(OH)2D3 and PLAA-peptide increased CaMKII activity within 9 min. Silencing Cav-1, Pdia3 or Plaa in osteoblasts suppressed this effect. Similarly, antibodies against Plaa or Pdia3 blocked 1α,25(OH)2D3-dependent CaMKII. Caveolae disruption abolished activation of CaMKII by 1α,25(OH)2D3 or PLAA. CaMKII-specific and CaM-specific inhibitors reduced cPLA2 and PKC activities, PGE2 release and osteoblast maturation markers in response to 1α,25(OH)2D3. Camk2a-silenced but not Camk2b-silenced osteoblasts showed comparable effects. Immunoprecipitation showed increased interaction of CaM and PLAA in response to 1α,25(OH)2D3. The results indicate that membrane actions of 1α,25(OH)2D3 via Pdia3 triggered the interaction between PLAA and CaM, leading to dissociation of CaM from caveolae, activation of CaMKII, and downstream PLA2 activation, and suggest that CaMKII plays a major role in membrane-mediated actions of 1α,25(OH)2D3.

  11. Feeder-free monolayer cultures of human embryonic stem cells express an epithelial plasma membrane protein profile.

    NARCIS (Netherlands)

    van Hoof, D.; Braam, S.R.; Dormeyer, W.; Ward-van Oostwaard, D.; Heck, A.; Krijgsveld, J.; Mummery, C.L.

    2008-01-01

    Human embryonic stem cells (hESCs) are often cocultured on mitotically inactive fibroblast feeder cells to maintain their undifferentiated state. Under these growth conditions, hESCs form multilayered colonies of morphologically heterogeneous cells surrounded by flattened mesenchymal cells. In contr

  12. Towards understanding of Nipah virus attachment protein assembly and the role of protein affinity and crowding for membrane curvature events.

    Energy Technology Data Exchange (ETDEWEB)

    Stachowiak, Jeanne C.; Hayden, Carl C.; Negrete, Oscar.; Davis, Ryan Wesley; Sasaki, Darryl Y

    2013-10-01

    Pathogenic viruses are a primary threat to our national security and to the health and economy of our world. Effective defense strategies to combat viral infection and spread require the development of understanding of the mechanisms that these pathogens use to invade the host cell. We present in this report results of our research into viral particle recognition and fusion to cell membranes and the role that protein affinity and confinement in lipid domains plays in membrane curvature in cellular fusion and fission events. Herein, we describe 1) the assembly of the G attachment protein of Nipah virus using point mutation studies to define its role in viral particle fusion to the cell membrane, 2) how lateral pressure of membrane bound proteins induce curvature in model membrane systems, and 3) the role of membrane curvature in the selective partitioning of molecular receptors and specific affinity of associated proteins.

  13. Combinatorial method for overexpression of membrane proteins in Escherichia coli.

    Science.gov (United States)

    Leviatan, Shani; Sawada, Keisuke; Moriyama, Yoshinori; Nelson, Nathan

    2010-07-30

    Membrane proteins constitute 20-30% of all proteins encoded by the genome of various organisms. Large amounts of purified proteins are required for activity and crystallization attempts. Thus, there is an unmet need for a heterologous membrane protein overexpression system for purification, crystallization, and activity determination. We developed a combinatorial method for overexpressing and purifying membrane proteins using Escherichia coli. This method utilizes short hydrophilic bacterial proteins, YaiN and YbeL, fused to the ends of the membrane proteins to serve as facilitating factors for expression and purification. Fourteen prokaryotic and mammalian membrane proteins were expressed using this system. Moderate to high expression was obtained for most proteins, and detergent solubilization combined with a short purification process produced stable, monodispersed membrane proteins. Five of the mammalian membrane proteins, overexpressed using our system, were reconstituted into liposomes and exhibited transport activity comparable with the native transporters.

  14. Combinatorial Method for Overexpression of Membrane Proteins in Escherichia coli*

    Science.gov (United States)

    Leviatan, Shani; Sawada, Keisuke; Moriyama, Yoshinori; Nelson, Nathan

    2010-01-01

    Membrane proteins constitute 20–30% of all proteins encoded by the genome of various organisms. Large amounts of purified proteins are required for activity and crystallization attempts. Thus, there is an unmet need for a heterologous membrane protein overexpression system for purification, crystallization, and activity determination. We developed a combinatorial method for overexpressing and purifying membrane proteins using Escherichia coli. This method utilizes short hydrophilic bacterial proteins, YaiN and YbeL, fused to the ends of the membrane proteins to serve as facilitating factors for expression and purification. Fourteen prokaryotic and mammalian membrane proteins were expressed using this system. Moderate to high expression was obtained for most proteins, and detergent solubilization combined with a short purification process produced stable, monodispersed membrane proteins. Five of the mammalian membrane proteins, overexpressed using our system, were reconstituted into liposomes and exhibited transport activity comparable with the native transporters. PMID:20525689

  15. Correlation between membrane fluidity cellular development and stem cell differentiation

    KAUST Repository

    Noutsi, Pakiza

    2016-12-01

    Cell membranes are made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as neuronal differentiation, cell membranes undergo dramatic structural changes induced by proteins such as ARC and Cofilin among others in the case of synaptic modification. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. As expected, NIH3T3 cells have more rigid membrane at earlier stages of their development. On the other hand neurons tend to have the highest membrane fluidity early in their development emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  16. Polyclonal activation of naïve T cells by urease deficient-recombinant BCG that produced protein complex composed of heat shock protein 70, CysO and major membrane protein-II

    OpenAIRE

    Tsukamoto, Yumiko; Maeda, Yumi; Tamura, Toshiki; Mukai, Tetsu; Makino, Masahiko

    2014-01-01

    Background Mycobacterium bovis bacillus Calmette-Guérin (BCG) is known to be only partially effective in inhibiting M. tuberculosis (MTB) multiplication in human. A new recombinant (r) urease-deficient BCG (BCG-dHCM) that secretes protein composed of heat shock protein (HSP)70, MTB-derived CysO and major membrane protein (MMP)-II was produced for the efficient production of interferon gamma (IFN-γ) which is an essential element for mycobacteriocidal action and inhibition of neutrophil accumul...

  17. Role of outer-membrane proteins and lipopolysaccharide in conjugation between Neisseria gonorrhoeae and Neisseria cinerea.

    Science.gov (United States)

    Genco, C A; Clark, V L

    1988-12-01

    Little is known concerning the mechanism involved in cell contact between the donor and recipient during conjugation in Neisseria gonorrhoeae. The formation of stable mating pairs during conjugation in Escherichia coli appears to require a specific protein as well as LPS in the outer membrane of the recipient cell. To attempt to identify the cell surface components necessary for conjugation in the neisseriae, we began a comparison of the outer membrane of Neisseria cinerea strains that can (Con+) and cannot (Con-) serve as recipients in conjugation with N. gonorrhoeae. There were no differences in outer-membrane protein profiles on SDS-polyacrylamide gel electrophoresis between Con+ and Con- strains that could be correlated with the ability to conjugate. However, whole outer membrane isolated from Con+ strains specifically inhibited conjugation while those from Con- strains did not. Proteolytic cleavage of outer-membrane proteins by trypsin, pronase or alpha-chymotrypsin abolished the inhibitory effect of Con+ outer membranes, suggesting that these outer membranes contained a protease-sensitive protein(s) involved in conjugation. Although periodate oxidation of Con+ outer-membrane carbohydrates did not abolish the inhibitory action of these membranes, purified LPS from both Con+ and Con- strains inhibited conjugation when added at low concentrations. These results suggest that conjugation requires the presence of a specific conjugal receptor that consists of both LPS and one or more outer-membrane proteins. Both Con+ and Con- strains contain the necessary LPS, but only Con+ strains contain the required protein(s).

  18. A role for the membrane Golgi protein Ema in autophagy.

    Science.gov (United States)

    Kim, Sungsu; DiAntonio, Aaron

    2012-08-01

    Autophagy is a cellular homeostatic response that involves degradation of self-components by the double-membraned autophagosome. The biogenesis of autophagosomes has been well described, but the ensuing processes after autophagosome formation are not clear. In our recent study, we proposed a model in which the Golgi complex contributes to the growth of autophagic structures, and that the Drosophila melanogaster membrane protein Ema promotes this process. In fat body cells of the D. melanogaster ema mutant, the recruitment of the Golgi complex protein Lava lamp (Lva) to autophagic structures is impaired and autophagic structures are very small. In addition, in the ema mutant autophagic turnover of SQSTM1/p62 and mitophagy are impaired. Our study not only identifies a role for Ema in autophagy, but also supports the hypothesis that the Golgi complex may be a potential membrane source for the biogenesis and development of autophagic structures.

  19. An auxin-binding protein is localized to the plasma membrane of maize coleoptile cells: Identification by photoaffinity labeling and purification of a 23-kDa polypeptide

    Energy Technology Data Exchange (ETDEWEB)

    Feldwisch, J.; Zettl, R.; Hesse, F.; Schell, J.; Palme, K. (Max-Planck-Inst. fuer Zuechtungsforschung, Koeln (West Germany))

    1992-01-15

    Plasma membrane vesicles were isolated from maize (Zea mays L.) coleoptile tissue by aqueous two-phase partitioning and assayed for homogeneity by the use of membrane-specific enzymatic assays. Using 5-azido-(7-{sup 3}H)indole-3-acetic acid (({sup 3}H)N{sub 3}IAA), the authors identified several IAA-binding proteins with the molecular masses of 60 kDa (pm60), 58 kDa (pm58), and 23 kDa (pm23). Using Triton X-114, they were able to selectively extract pm23 from the plasma membrane. They show that auxins and functional analogues compete with ({sup 3}H)N{sub 3}IAA for binding to pm23. They found that PAB130, a polyclonal antibody raised against auxin-binding protein 1 (ABP-1), recognized ABP-1 as well as pm23. This suggests that pm23 shares common epitopes with ABP-1. In addition, they identified an auxin-binding protein with a molecular mass of 24 kDa (pm24), which was detected in microsomal but not in plasma membrane vesicle preparations. Like pm23 this protein was extracted from membrane vesicles with Triton X-114. They designed a purification scheme allowing simultaneous purification of pm23 and pm24. Homogeneous pm23 and pm24 were obtained from coleoptile extracts after 7,000-fold purification.

  20. Homotypic fusion of endoplasmic reticulum membranes in plant cells

    Directory of Open Access Journals (Sweden)

    Junjie eHu

    2013-12-01

    Full Text Available The endoplasmic reticulum (ER is a membrane-bounded organelle whose membrane comprises a network of tubules and sheets. The formation of these characteristic shapes and maintenance of their continuity through homotypic membrane fusion appears to be critical for the proper functioning of the ER. The atlastins (ATLs, a family of ER-localized dynamin-like GTPases, have been identified as fusogens of the ER membranes in metazoans. Mutations of the ATL proteins in mammalian cells cause morphological defects in the ER, and purified Drosophila ATL mediates membrane fusion in vitro. Plant cells do not possess ATL, but a family of similar GTPases, named root hair defective 3 (RHD3, are likely the functional orthologs of ATLs. In this review, we summarize recent advances in our understanding of how RHD3 proteins play a role in homotypic ER fusion. We also discuss the possible physiological significance of forming a tubular ER network in plant cells.

  1. The Flocculating Cationic Polypetide from Moringa oleifera Seeds Damages Bacterial Cell Membranes by Causing Membrane Fusion.

    Science.gov (United States)

    Shebek, Kevin; Schantz, Allen B; Sines, Ian; Lauser, Kathleen; Velegol, Stephanie; Kumar, Manish

    2015-04-21

    A cationic protein isolated from the seeds of the Moringa oleifera tree has been extensively studied for use in water treatment in developing countries and has been proposed for use in antimicrobial and therapeutic applications. However, the molecular basis for the antimicrobial action of this peptide, Moringa oleifera cationic protein (MOCP), has not been previously elucidated. We demonstrate here that a dominant mechanism of MOCP antimicrobial activity is membrane fusion. We used a combination of cryogenic electron microscopy (cryo-EM) and fluorescence assays to observe and study the kinetics of fusion of membranes in liposomes representing model microbial cells. We also conducted cryo-EM experiments on E. coli cells where MOCP was seen to fuse the inner and outer membranes. Coarse-grained molecular dynamics simulations of membrane vesicles with MOCP molecules were used to elucidate steps in peptide adsorption, stalk formation, and fusion between membranes.

  2. Direct Capture of Functional Proteins from Mammalian Plasma Membranes into Nanodiscs.

    Science.gov (United States)

    Roy, Jahnabi; Pondenis, Holly; Fan, Timothy M; Das, Aditi

    2015-10-20

    Mammalian plasma membrane proteins make up the largest class of drug targets yet are difficult to study in a cell free system because of their intransigent nature. Herein, we perform direct encapsulation of plasma membrane proteins derived from mammalian cells into a functional nanodisc library. Peptide fingerprinting was used to analyze the proteome of the incorporated proteins in nanodiscs and to further demonstrate that the lipid composition of the nanodiscs directly affects the class of protein that is incorporated. Furthermore, the functionality of the incorporated membrane proteome was evaluated by measuring the activity of membrane proteins: Na(+)/K(+)-ATPase and receptor tyrosine kinases. This work is the first report of the successful establishment and characterization of a cell free functional library of mammalian membrane proteins into nanodiscs.

  3. Membrane topology and insertion of membrane proteins : Search for topogenic signals

    NARCIS (Netherlands)

    Geest, Marleen van; Lolkema, Juke S.

    2000-01-01

    Integral membrane proteins are found in all cellular membranes and carry out many of the functions that are essential to life. The membrane-embedded domains of integral membrane proteins are structurally quite simple, allowing the use of various prediction methods and biochemical methods to obtain s

  4. Synthesis and deposition of basement membrane proteins by primary brain capillary endothelial cells in a murine model of the blood-brain barrier

    DEFF Research Database (Denmark)

    Thomsen, Maj Schneider; Birkelund, Svend; Burkhart, Annette;

    2017-01-01

    basement membrane proteins such as laminin-411, laminin-511, collagen IV [α1(IV)2 α2(IV)], agrin, perlecan, and nidogen 1 and 2 in vitro. Increased expression of the laminin α5 subunit correlated to the addition of BBB inducing factors (hydrocortisone, Ro 20-1724, and pCPT-cAMP), whereas increased...... expression of collagen IV α1 primarily correlated to increased levels of cAMP. In conclusion, BCECs cultured in vitro coherently form a BBB and express basement membrane proteins as a feature of maturation. This article is protected by copyright. All rights reserved....

  5. Detecting protein-protein interactions in living cells

    DEFF Research Database (Denmark)

    Gottschalk, Marie; Bach, Anders; Hansen, Jakob Lerche

    2009-01-01

    to the endogenous C-terminal peptide of the NMDA receptor, as evaluated by a cell-free protein-protein interaction assay. However, it is important to address both membrane permeability and effect in living cells. Therefore a bioluminescence resonance energy transfer (BRET) assay was established, where the C...

  6. Intramembrane particles and the organization of lymphocyte membrane proteins.

    Science.gov (United States)

    Kuby, J M; Wofsy, L

    1981-03-01

    An experimental system was developed in which the majority of all lymphocyte cell-surface proteins, regardless of antigenic specificity, could be cross-linked and redistributed in the membrane to determine whether this would induce a corresponding redistribution of intramembrane particles (IMP). Mouse spleen cells were treated with P-diazoniumphenyl- beta-D-lactoside (lac) to modify all exposed cell-surface proteins. Extensive azo- coupling was achieved without significantly reducing cell viability or compromising cellular function in mitogen- or antigen-stimulated cultures. When the lac-modified cell- surface proteins were capped with a sandwich of rabbit antilactoside antibody and fluorescein-goat anti-rabbit Ig, freeze-fracture preparations obtained from these cells revealed no obvious redistribution of IMP on the majority of fracture faces. However, detailed analysis showed a statistically significant 35 percent decrease (P less than 0.01) in average IMP density in the E face of the lac-capped spleen cells compared with control cells, whereas a few E-face micrographs showed intense IMP aggregation. In contrast, there was no significant alteration of P-face IMP densities or distribution. Apparently, the majority of E-face IMP and virtually all P-face IMP densities or distribution. Apparently, the majority of E-face IMP and virtually all P-face IMP do not present accessible antigenic sites on the lymphocyte surface and do not associate in a stable manner with surface protein antigens. This finding suggests that IMP, as observed in freeze-fracture analysis, may not comprise a representative reflection of lymphocyte transmembrane protein molecules and complexes because other evidence establishes: (a) that at least some common lymphocyte surface antigens are indeed exposed portions of transmembrane proteins and (b) that the aggregation of molecules of any surface antigen results in altered organization of contractile proteins at the cytoplasmic face of the membrane.

  7. Suppressing membrane height fluctuations leads to a membrane-mediated interaction among proteins

    Science.gov (United States)

    Sapp, Kayla; Maibaum, Lutz

    2016-11-01

    Membrane-induced interactions can play a significant role in the spatial distribution of membrane-bound proteins. We develop a model that combines a continuum description of lipid bilayers with a discrete particle model of proteins to probe the emerging structure of the combined membrane-protein system. Our model takes into account the membrane's elastic behavior, the steric repulsion between proteins, and the quenching of membrane shape fluctuations due to the presence of the proteins. We employ coupled Langevin equations to describe the dynamics of the system. We show that coupling to the membrane induces an attractive interaction among proteins, which may contribute to the clustering of proteins in biological membranes. We investigate the lateral protein diffusion and find that it is reduced due to transient fluctuations in membrane shape.

  8. Integral Membrane Protein Expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Boswell-Casteel, Rebba C; Johnson, Jennifer M; Stroud, Robert M; Hays, Franklin A

    2016-01-01

    Eukaryotic integral membrane proteins are challenging targets for crystallography or functional characterization in a purified state. Since expression is often a limiting factor when studying this difficult class of biological macromolecules, the intent of this chapter is to focus on the expression of eukaryotic integral membrane proteins (IMPs) using the model organism Saccharomyces cerevisiae. S. cerevisiae is a prime candidate for the expression of eukaryotic IMPs because it offers the convenience of using episomal expression plasmids, selection of positive transformants, posttranslational modifications, and it can properly fold and target IMPs. Here we present a generalized protocol and insights based on our collective knowledge as an aid to overcoming the challenges faced when expressing eukaryotic IMPs in S. cerevisiae.

  9. Pattern Formation by Electrostatic Self-Organization of Membrane Proteins

    Science.gov (United States)

    Boedec, G.; Jaeger, M.; Homble, F.; Leonetti, M.

    2012-07-01

    The electric activity of biological cells and organs such as heart for example is at the origin of various phenomena of pattern formation. The electric membrane potential appears as the order parameter to characterize these spatiotemporal dynamics. A kind of patterns is characterized by a stationary spatial modulation of membrane potential along the cell, breaking a symmetry of the system. They are associated to transcellular currents. A mechanism proposed in literature is based on the coupling of the electric current produced by membrane proteins and their electrophoretic mobilities. Beyond its classical linear stability analysis, the numerical and theoretical analysis of this model offers a variety of spatiotemporal dynamics. Firstly, the background in the modelization of electric phenomena is recalled. Secondly, the analysis is focused on two nonlinear dynamics.

  10. Protein and DNA technologies for functional expression of membrane-associated cytochromes P450 in bacterial cell factories

    DEFF Research Database (Denmark)

    Vazquez Albacete, Dario

    The heavy dependence and massive consumption of fossil fuels by humans is changing our environment very rapidly. Some of the side effects of industrial activity include the pollution of the natural resources we rely on, and the reduction of biodiversity. Some chemicals found in nature exhibit great...... potential as medicines, fuels or food for humans. Plants conquered different environments thereby developing adaptation strategies based on the biosynthesis of a myriad of compounds. Unfortunately they are present in small amounts in plants and are too complex and to produce by organic chemical synthesis....... In most of biosynthetic pathways leading to these chemicals the cytochrome P450 enzyme family (P450s) is responsible for their final functionalization. However, the membrane-bound nature of P450s, makes their expression in microbial hosts a challenge. In order to meet the global demand for these natural...

  11. Randomly organized lipids and marginally stable proteins: a coupling of weak interactions to optimize membrane signaling.

    Science.gov (United States)

    Rice, Anne M; Mahling, Ryan; Fealey, Michael E; Rannikko, Anika; Dunleavy, Katie; Hendrickson, Troy; Lohese, K Jean; Kruggel, Spencer; Heiling, Hillary; Harren, Daniel; Sutton, R Bryan; Pastor, John; Hinderliter, Anne

    2014-09-01

    Eukaryotic lipids in a bilayer are dominated by weak cooperative interactions. These interactions impart highly dynamic and pliable properties to the membrane. C2 domain-containing proteins in the membrane also interact weakly and cooperatively giving rise to a high degree of conformational plasticity. We propose that this feature of weak energetics and plasticity shared by lipids and C2 domain-containing proteins enhance a cell's ability to transduce information across the membrane. We explored this hypothesis using information theory to assess the information storage capacity of model and mast cell membranes, as well as differential scanning calorimetry, carboxyfluorescein release assays, and tryptophan fluorescence to assess protein and membrane stability. The distribution of lipids in mast cell membranes encoded 5.6-5.8bits of information. More information resided in the acyl chains than the head groups and in the inner leaflet of the plasma membrane than the outer leaflet. When the lipid composition and information content of model membranes were varied, the associated C2 domains underwent large changes in stability and denaturation profile. The C2 domain-containing proteins are therefore acutely sensitive to the composition and information content of their associated lipids. Together, these findings suggest that the maximum flow of signaling information through the membrane and into the cell is optimized by the cooperation of near-random distributions of membrane lipids and proteins. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.

  12. Therapeutic design of peptide modulators of protein-protein interactions in membranes.

    Science.gov (United States)

    Stone, Tracy A; Deber, Charles M

    2017-04-01

    Membrane proteins play the central roles in a variety of cellular processes, ranging from nutrient uptake and signalling, to cell-cell communication. Their biological functions are directly related to how they fold and assemble; defects often lead to disease. Protein-protein interactions (PPIs) within the membrane are therefore of great interest as therapeutic targets. Here we review the progress in the application of membrane-insertable peptides for the disruption or stabilization of membrane-based PPIs. We describe the design and preparation of transmembrane peptide mimics; and of several categories of peptidomimetics used for study, including d-enantiomers, non-natural amino acids, peptoids, and β-peptides. Further aspects of the review describe modifications to membrane-insertable peptides, including lipidation and cyclization via hydrocarbon stapling. These approaches provide a pathway toward the development of metabolically stable, non-toxic, and efficacious peptide modulators of membrane-based PPIs. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.

  13. Outer membrane protein A (OmpA of Shigella flexneri 2a induces TLR2-mediated activation of B cells: involvement of protein tyrosine kinase, ERK and NF-κB.

    Directory of Open Access Journals (Sweden)

    Rajsekhar Bhowmick

    Full Text Available B cells are critically important in combating bacterial infections and their differentiation into plasma cells and memory cells aids bacterial clearance and long-lasting immunity conferred by essentially all vaccines. Outer membrane protein A (OmpA of Shigella flexneri 2a has been demonstrated to induce the production of IgG and IgA in vivo following immunization of mice through intranasal route, but the direct involvement of B cells in OmpA-mediated immune regulation was not determined. Consequently, we investigated whether OmpA can modulate B cell functions and identified the molecular events involved in OmpA-induced B cell immune response in vitro. We show that OmpA of S. flexneri 2a activates B cells to produce protective cytokines, IL-6 and IL-10 as well as facilitates their differentiation into antibody secreting cells (ASCs. The immunostimulatory properties of OmpA are attributed to the increased surface expression of MHCII and CD86 on B cells. We also report here that B cell activation by OmpA is mediated strictly through recognition by TLR2, resulting in initiation of cascades of signal transduction events, involving increased phosphorylation of protein tyrosine kinases (PTKs, ERK and IκBα, leading to nuclear translocation of NF-κB. Importantly, a TLR2 antibody diminishes OmpA-induced upregulation of MHCII and CD86 on B cell surface as well as significantly inhibits B cell differentiation and cytokine secretion. Furthermore, we illustrate that B cell differentiation into ASCs and induction of cytokine secretion by OmpA are dependent on PTKs activity. Moreover, we identify that OmpA-induced B cell differentiation is entirely dependent on ERK pathway, whereas both NF-κB and ERK are essential for cytokine secretion by B cells. Overall, our data demonstrate that OmpA of S. flexneri 2a amplifies TLR signaling in B cells and triggers B cell immune response, which is critical for the development of an effective adaptive immunity to an

  14. Isolation of plant cell wall proteins

    OpenAIRE

    Jamet, Elisabeth; Boudart, Georges; Borderies, Gisèle; Charmont, Stéphane; Lafitte, Claude; Rossignol, Michel; Canut, Hervé; Pont-Lezica, Rafael F

    2007-01-01

    The quality of a proteomic analysis of a cell compartment strongly depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific drawbacks: (i) the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP) during the isolation procedure; (ii) polysaccharide networks of cellulose, hemicelluloses and pectins form potential traps for contaminants such as intracellular proteins; (iii) the presence of proteins ...

  15. Isolation and Characterization of Two Campylobacter Glycine-Extracted Proteins That Bind to HeLa Cell Membranes

    Science.gov (United States)

    1993-08-01

    step of with migration on sodium dodecyl sulfate (SDS)- polyacryl - bacterium-intestinal cell interaction. Several investigators amide gel...HeLa cell Inhibition of CBF adherence by detergents . To learn whether monolayers with C. jejuni organisms treated with nonim- hydrophobic interactions...linkages. The effects of detergents on CBF binding suggest that hydrophobic interactions are involved in CBF adherence, especially in CBF2 adherence

  16. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Yoong-Kee [National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba (Japan); Henson, Neil J.; Kim, Yu Seung [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2015-12-31

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

  17. Heterologous expression of membrane proteins: choosing the appropriate host.

    Directory of Open Access Journals (Sweden)

    Florent Bernaudat

    Full Text Available BACKGROUND: Membrane proteins are the targets of 50% of drugs, although they only represent 1% of total cellular proteins. The first major bottleneck on the route to their functional and structural characterisation is their overexpression; and simply choosing the right system can involve many months of trial and error. This work is intended as a guide to where to start when faced with heterologous expression of a membrane protein. METHODOLOGY/PRINCIPAL FINDINGS: The expression of 20 membrane proteins, both peripheral and integral, in three prokaryotic (E. coli, L. lactis, R. sphaeroides and three eukaryotic (A. thaliana, N. benthamiana, Sf9 insect cells hosts was tested. The proteins tested were of various origins (bacteria, plants and mammals, functions (transporters, receptors, enzymes and topologies (between 0 and 13 transmembrane segments. The Gateway system was used to clone all 20 genes into appropriate vectors for the hosts to be tested. Culture conditions were optimised for each host, and specific strategies were tested, such as the use of Mistic fusions in E. coli. 17 of the 20 proteins were produced at adequate yields for functional and, in some cases, structural studies. We have formulated general recommendations to assist with choosing an appropriate system based on our observations of protein behaviour in the different hosts. CONCLUSIONS/SIGNIFICANCE: Most of the methods presented here can be quite easily implemented in other laboratories. The results highlight certain factors that should be considered when selecting an expression host. The decision aide provided should help both newcomers and old-hands to select the best system for their favourite membrane protein.

  18. A Peptidomimetic Antibiotic Targets Outer Membrane Proteins and Disrupts Selectively the Outer Membrane in Escherichia coli.

    Science.gov (United States)

    Urfer, Matthias; Bogdanovic, Jasmina; Lo Monte, Fabio; Moehle, Kerstin; Zerbe, Katja; Omasits, Ulrich; Ahrens, Christian H; Pessi, Gabriella; Eberl, Leo; Robinson, John A

    2016-01-22

    Increasing antibacterial resistance presents a major challenge in antibiotic discovery. One attractive target in Gram-negative bacteria is the unique asymmetric outer membrane (OM), which acts as a permeability barrier that protects the cell from external stresses, such as the presence of antibiotics. We describe a novel β-hairpin macrocyclic peptide JB-95 with potent antimicrobial activity against Escherichia coli. This peptide exhibits no cellular lytic activity, but electron microscopy and fluorescence studies reveal an ability to selectively disrupt the OM but not the inner membrane of E. coli. The selective targeting of the OM probably occurs through interactions of JB-95 with selected β-barrel OM proteins, including BamA and LptD as shown by photolabeling experiments. Membrane proteomic studies reveal rapid depletion of many β-barrel OM proteins from JB-95-treated E. coli, consistent with induction of a membrane stress response and/or direct inhibition of the Bam folding machine. The results suggest that lethal disruption of the OM by JB-95 occurs through a novel mechanism of action at key interaction sites within clusters of β-barrel proteins in the OM. These findings open new avenues for developing antibiotics that specifically target β-barrel proteins and the integrity of the Gram-negative OM.

  19. In-membrane micro fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Omosebi, Ayokunle; Besser, Ronald

    2016-09-06

    An in-membrane micro fuel cell comprises an electrically-insulating membrane that is permissive to the flow of cations, such as protons, and a pair of electrodes deposited on channels formed in the membrane. The channels are arranged as conduits for fluids, and define a membrane ridge between the channels. The electrodes are porous and include catalysts for promoting the liberation of a proton and an electron from a chemical species and/or or the recombination of a proton and an electron with a chemical specie. The fuel cell may be provided a biosensor, an electrochemical sensor, a microfluidic device, or other microscale devices fabricated in the fuel cell membrane.

  20. Characterization of lysosomal membrane proteins of Dictyostelium discoideum. A complex population of acidic integral membrane glycoproteins, Rab GTP-binding proteins and vacuolar ATPase subunits.

    Science.gov (United States)

    Temesvari, L; Rodriguez-Paris, J; Bush, J; Steck, T L; Cardelli, J

    1994-10-14

    Highly purified lysosomes, prepared by magnetic fractionation of homogenates from Dictyostelium discoideum cells fed colloidal iron, were lysed under hypoosmotic conditions, and the membrane-associated proteins were subjected to gel electrophoresis. Thirteen major membrane polypeptides, ranging in molecular weight from 25,000 to 100,000 were identified. The isoelectric points of these proteins ranged from below 3.8 to greater than 7.0. Most of these proteins were stripped from membranes exposed to a chaotropic agent, 3,5-diodo-2-hydroxybenzoic acid lithium salt, and were therefore classified as peripheral membrane proteins. Twenty five glycoprotein species were detected by lectin blot analysis; 19 were classified as integral membrane proteins, and were, in general, larger than 45 kDa and negatively charged due in part to the presence of mannose 6-sulfate. Western blot analysis also demonstrated that a Rab 4-like GTPase, a Rab 7-like GTPase, and at least three subunits of the vacuolar ATPase were associated with the lysosomal membrane; the ATPase subunits appeared to be major proteins in lysosomal membranes. Finally, based on N-terminal sequence analysis of a major 41-kDa lysosome-associated membrane protein, we cloned a cDNA that encodes a protein (DVA41) highly homologous to a yeast and a bovine vacuolar ATPase subunit of approximately 41 kDa. The D. discoideum DVA41 gene was apparently a single copy gene, expressed at constant levels during growth and development.

  1. Punching Holes in Membranes: How Oligomeric Pore-Forming Proteins and Lipids Cooperate to Form Aqueous Channels in Membranes

    Science.gov (United States)

    Fradin, Cécile; Satsoura, Dmitri; Andrews, David W.

    Many important biological processes are carried out by a small number of proteins working together as a team to accomplish a specific task. Cooperation between the different proteins is often accomplished through the formation of a supramolecular complex, comprised of either identical or different subunits. Although the formation of protein assemblies is a favored mechanism throughout the cell, it becomes especially important in lipid membranes, as evidenced by the numerous cellular events that are either triggered by or result in the formation of protein complexes in membranes. However, due to the difficulties associated with the study of membrane proteins, the formation of oligomers in lipid membranes is perhaps one of the least understood cellular processes. In this chapter we focus our attention on a subset of membrane complexes — namely, those formed by proteins that are able to pass from a water-soluble to a transmembrane form in order to create a water-filled channel through the lipid membrane. These pore-forming proteins (PFPs) are found in many organisms throughout different kingdoms of life, from bacteria to human. They are often involved in cell death mechanisms through their capacity to break membrane permeability barriers, which can lead to dissipation of the membrane potential as well as introduction or leakage of enzymatic proteins. In fact, a large subset of the PFPs are toxins, and referred to in the literature as pore-forming toxins (PFTs). The association of several monomers into an oligomer is almost always an important aspect of the modus operandi of these proteins. Oligomerization can be useful in several ways: it results in structures large enough to delineate nanometer-size water-filled channels in lipid bilayers, it ensures the presence of large hydrophobic surfaces that can support insertion in the membrane, and it permits cooperative formation and insertion mechanisms.

  2. The distal short consensus repeats 1 and 2 of the membrane cofactor protein CD46 and their distance from the cell membrane determine productive entry of species B adenovirus serotype 35.

    Science.gov (United States)

    Fleischli, Christoph; Verhaagh, Sandra; Havenga, Menzo; Sirena, Dominique; Schaffner, Walter; Cattaneo, Roberto; Greber, Urs F; Hemmi, Silvio

    2005-08-01

    The human regulator of complement activation membrane cofactor protein (CD46) has recently been identified as an attachment receptor for most species B adenoviruses (Ads), including Ad type 3 (Ad3), Ad11, and Ad35, as well as species D Ad37. To characterize the interaction between Ad35 and CD46, hybrid receptors composed of different CD46 short consensus repeat (SCR) domains fused to immunoglobulin-like domains of CD4 and a set of 36 CD46 mutants containing semiconservative changes of single amino acids within SCR domains I and II were tested in binding and in Ad35-mediated luciferase transduction assays. In addition, anti-CD46 antibodies and soluble polypeptides constituting various CD46 domains were used in binding inhibition studies. Our data indicate that (i) CD46 SCR I or SCR II alone confers low but significant Ad35 binding; (ii) the presence of SCR I and II is required for optimal binding and transgene expression; (iii) transduction efficiencies equivalent to that of full-length CD46 are obtained if SCR I and II are at an appropriate distance from the cell membrane; (iv) ablation of the N-glycan attached to SCR I has no influence on receptor function, whereas ablation of the SCR II N-glycan results in about a two- to threefold reduction of binding and transgene expression; (v) most putative Ad35 binding residues are located on the same solvent-exposed face of the SCR I or SCR II domain, which are twisted by about 90 degrees ; and (vi) the putative Ad35 binding sites partly overlap with the measles virus binding surface.

  3. Membrane curvature in cell biology: An integration of molecular mechanisms.

    Science.gov (United States)

    Jarsch, Iris K; Daste, Frederic; Gallop, Jennifer L

    2016-08-15

    Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists.

  4. Reconstitution of the membrane protein OmpF into biomimetic block copolymer–phospholipid hybrid membranes

    Science.gov (United States)

    Bieligmeyer, Matthias; Artukovic, Franjo; Hirth, Thomas; Schiestel, Thomas

    2016-01-01

    Summary Structure and function of many transmembrane proteins are affected by their environment. In this respect, reconstitution of a membrane protein into a biomimetic polymer membrane can alter its function. To overcome this problem we used membranes formed by poly(1,4-isoprene-block-ethylene oxide) block copolymers blended with 1,2-diphytanoyl-sn-glycero-3-phosphocholine. By reconstituting the outer membrane protein OmpF from Escherichia coli into these membranes, we demonstrate functionality of this protein in biomimetic lipopolymer membranes, independent of the molecular weight of the block copolymers. At low voltages, the channel conductance of OmpF in 1 M KCl was around 2.3 nS. In line with these experiments, integration of OmpF was also revealed by impedance spectroscopy. Our results indicate that blending synthetic polymer membranes with phospholipids allows for the reconstitution of transmembrane proteins under preservation of protein function, independent of the membrane thickness. PMID:27547605

  5. 不同型魏氏梭菌菌体蛋白和膜蛋白SDS-PAGE电泳图谱分析%SDS-PAGE analysis of cell proteins and membrane proteins of Clostridium perfringens

    Institute of Scientific and Technical Information of China (English)

    杨明凡; 田永军; 崔保安; 王学斌; 苗舜尧

    2000-01-01

    The cell proteins of different types of Cl.perfringens produce reproducible electrophoretic patterns. In the electrophoretic patterns of cell proteins Cl. perfringens type A didn't have the 54.9 KD band; type C didn't have the 107.8 KD and 36.2 KD bands and type D didn't have the 107.8 KD and 66.6 KD bands. So the electrophoretic patterns of cell proteins in polyacrylamide gel were used for the rapid identification and classification of Cl. perfringens. And the electrophoretic patterns of membrane proteins of the different Cl. perfringens were specific. In the electrophoretic patterns of membrane proteins only type B had the 94.7 KD band but didn't have the 51 KD band; type C didn't have the 74.2 KD band; only type D had the 24.3 KD band but didn't have the 31 KD band and the 38.1 KD band was faint. This method may also be used for the identification of Cl. perfringens.%运用SDS-PAGE技术分别对A、B、C、D四个型魏氏梭菌的菌体蛋白和细菌膜蛋白进行分析。结果在菌体蛋白图谱中A型缺少54.9 KD蛋白条带,C型缺少107.8 KD和36.1 KD蛋白条带,D型缺少107.8 KD和66.6 KD蛋白条带。在膜蛋白图谱中仅B型有94.7 KD蛋白条带但缺少51KD蛋白条带,C型缺少74.2 KD蛋白条带,D型缺少31 KD蛋白条带,但比其它3个型多1个24.3KD蛋白条带,且38.1 KD蛋白条带极弱,几乎看不到。由此可以利用SDS-PAGE蛋白图谱上存在的可重复性差异,对魏氏梭菌进行分型鉴定。

  6. Expression of basement membrane antigens in spindle cell melanoma.

    Science.gov (United States)

    Prieto, V G; Woodruff, J M

    1998-07-01

    Spindle cell melanoma (SCM) is an uncommon form of melanoma that may be confused histologically with other tumors, including malignant peripheral nerve sheath tumors (MPNST). Tumors with neural differentiation and melanocytic nevi may both show basement membrane immunohistochemically and at the ultrastructural level. However, most ultrastructural studies of melanoma have failed to demonstrate well formed basement membrane around tumor cells. The presence of basement membrane has been used by some authors as evidence favoring MPNST, as opposed to SCM. To evaluate this distinction immunohistochemically, 22 primary and metastatic cutaneous melanomas having a spindle cell component (SCM) were studied using monoclonal antibodies against laminin and Type IV collagen. S100 protein and HMB45 antigen expression were also studied. All but one of the SCM were reactive for S100 protein in at least 25% of the cells. Thirteen of 20 tumors (65%) were focally reactive with HMB45. Laminin was expressed in 42% of the tumors (only membranous pattern in 3; cytoplasmic and membranous in 5). Seventeen tumors (77%) expressed type IV collagen (only membranous pattern in 7; cytoplasmic and membranous pattern in 10). Laminin and type IV collagen, known components of basement membrane, are often found in SCM. Therefore, their detection cannot be used to distinguish SCM from MPNST.

  7. Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains

    Science.gov (United States)

    Milovanovic, Dragomir; Honigmann, Alf; Koike, Seiichi; Göttfert, Fabian; Pähler, Gesa; Junius, Meike; Müllar, Stefan; Diederichsen, Ulf; Janshoff, Andreas; Grubmüller, Helmut; Risselada, Herre J.; Eggeling, Christian; Hell, Stefan W.; van den Bogaart, Geert; Jahn, Reinhard

    2015-01-01

    The clustering of proteins and lipids in distinct microdomains is emerging as an important principle for the spatial patterning of biological membranes. Such domain formation can be the result of hydrophobic and ionic interactions with membrane lipids as well as of specific protein-protein interactions. Here using plasma membrane-resident SNARE proteins as model, we show that hydrophobic mismatch between the length of transmembrane domains (TMDs) and the thickness of the lipid membrane suffices to induce clustering of proteins. Even when the TMDs differ in length by only a single residue, hydrophobic mismatch can segregate structurally closely homologous membrane proteins in distinct membrane domains. Domain formation is further fine-tuned by interactions with polyanionic phosphoinositides and homo and heterotypic protein interactions. Our findings demonstrate that hydrophobic mismatch contributes to the structural organization of membranes.

  8. An Efficient Single-Molecule Resolution Method for Simulating Spatio-Temporal Dynamics of Protein Interaction Networks that Involve the Cell Membranes

    Science.gov (United States)

    Yogurtcu, Osman N.; Johnson, Margaret E.

    A significant number of the cellular protein interaction networks, such as the receptor mediated signaling and vesicle trafficking pathways, includes membranes as a molecular assembly platform. Computer simulations can provide insight into the dynamics of complex formation and help identify the principles that govern recruitment and assembly on the membranes. Here, we introduce the Free-Propagator Re-weighting (FPR) algorithm, a recently developed method that efficiently simulates the spatio-temporal dynamics of multiprotein complex formation both in the solution and on the membranes. In the FPR, the position of each protein is propagated using the Brownian motion and the reactions between pairs of proteins can occur upon collisions. Depending on the dimensionality of the interaction, the association probabilities are determined by solving the Smoluchowski diffusion equations in 2D or 3D and trajectory reweighting allows us to obtain the exact association rates for all the reactive pairs. Using the FPR, in this presentation, we investigate the interaction dynamics of the receptor mediated endocytic network as a case study and discuss the possible effects of membrane binding and molecular crowding on the formation of complexes. Supported by the NIGMS/NIH under R00GM098371.

  9. Influence of nonequilibrium lipid transport, membrane compartmentalization, and membrane proteins on the lateral organization of the plasma membrane

    Science.gov (United States)

    Fan, Jun; Sammalkorpi, Maria; Haataja, Mikko

    2010-01-01

    Compositional lipid domains (lipid rafts) in plasma membranes are believed to be important components of many cellular processes. The mechanisms by which cells regulate the sizes, lifetimes, and spatial localization of these domains are rather poorly understood at the moment. We propose a robust mechanism for the formation of finite-sized lipid raft domains in plasma membranes, the competition between phase separation in an immiscible lipid system and active cellular lipid transport processes naturally leads to the formation of such domains. Simulations of a continuum model reveal that the raft size distribution is broad and the average raft size is strongly dependent on the rates of cellular and interlayer lipid transport processes. We demonstrate that spatiotemporal variations in the recycling may enable the cell to localize larger raft aggregates at specific parts along the membrane. Moreover, we show that membrane compartmentalization may further facilitate spatial localization of the raft domains. Finally, we demonstrate that local interactions with immobile membrane proteins can spatially localize the rafts and lead to further clustering.

  10. BIOCHEMICAL AND HEMATOLOGICAL ALTERATIONS IN MICE INOCULATED WITH OUTER MEMBRANE PROTEIN, LIPOPOLYSACCHARIDES AND WHOLE CELLS OF PASTEURELLA MULTOCIDA TYPE B: 2

    Directory of Open Access Journals (Sweden)

    Faez Firdaus Jesse Abdullah

    2013-01-01

    Full Text Available Haemorrhagic septicaemia in cattle and buffaloes is an economically important livestock disease in Asia including Malaysia. Therefore, the aim of this study was to investigate the biochemical and hematological alterations in mice model inoculated with outer membrane protein, lipopolysaccharides and whole cells of Pasteurella multocida type B: 2. Two hundred healthy male mice of eight to ten weeks old were used in this study. The mice were divided into four equal groups of 50 mice each. Mice of group 1 were inoculated intra-peritoneal with 1.0 mL sterile Phosphate Buffered Saline (PBS pH7, group 2 were inoculated with 1.0 mL of 109 colony forming unit (cfu of P. multocida B: 2. Mice of groups 3 and 4 were inoculated intra-peritoneal with 1.0 mL of LPS and 1.0 mL of OMP, respectively. Blood samples were collected from the moribund animals and the biochemical and hematological parameters were assessed using ANOVA and Tukey-Kramer test. In the hematology, significant decreases were observed in the treatment groups compared to the control group. Increases were only observed in band neutrophils, eosinophils and plasma proteins in the treatment groups compared to the control group. In the serum biochemistry, significant increases were observed in the treatment groups compared to the control group. Decreases were only observed in AP and albumin: globulin ratio. In electrolytes, significant increases were observed in chloride and calcium in the treatment groups compared to the control. In conclusion, all the immunogen group of mice showed changes in complete blood count and biochemistry profiles with some differences between the groups.

  11. Transmembrane protein sorting driven by membrane curvature

    NARCIS (Netherlands)

    Strahl, H.; Ronneau, S.; Solana González, B.; Klutsch, D.; Schaffner-Barbero, C.; Hamoen, L.W.

    2015-01-01

    The intricate structure of prokaryotic and eukaryotic cells depends on the ability to target proteins to specific cellular locations. In most cases, we have a poor understanding of the underlying mechanisms. A typical example is the assembly of bacterial chemoreceptors at cell poles. Here we show th

  12. Super-resolution microscopy reveals compartmentalization of peroxisomal membrane proteins

    DEFF Research Database (Denmark)

    Galiani, Silvia; Waithe, Dominic; Reglinski, Katharina

    2016-01-01

    Membrane-associated events during peroxisomal protein import processes play an essential role in peroxisome functionality. Many details of these processes are not known due to missing spatial resolution of technologies capable of investigating peroxisomes directly in the cell. Here, we present...... the use of super-resolution optical stimulated emission depletion microscopy to investigate with sub-60-nm resolution the heterogeneous spatial organization of the peroxisomal proteins PEX5, PEX14, and PEX11 around actively importing peroxisomes, showing distinct differences between these peroxins....... Moreover, imported protein sterol carrier protein 2 (SCP2) occupies only a subregion of larger peroxisomes, highlighting the heterogeneous distribution of proteins even within the peroxisome. Finally, our data reveal subpopulations of peroxisomes showing only weak colocalization between PEX14 and PEX5...

  13. Cell membrane fluid-mosaic structure and cancer metastasis.

    Science.gov (United States)

    Nicolson, Garth L

    2015-04-01

    Cancer cells are surrounded by a fluid-mosaic membrane that provides a highly dynamic structural barrier with the microenvironment, communication filter and transport, receptor and enzyme platform. This structure forms because of the physical properties of its constituents, which can move laterally and selectively within the membrane plane and associate with similar or different constituents, forming specific, functional domains. Over the years, data have accumulated on the amounts, structures, and mobilities of membrane constituents after transformation and during progression and metastasis. More recent information has shown the importance of specialized membrane domains, such as lipid rafts, protein-lipid complexes, receptor complexes, invadopodia, and other cellular structures in the malignant process. In describing the macrostructure and dynamics of plasma membranes, membrane-associated cytoskeletal structures and extracellular matrix are also important, constraining the motion of membrane components and acting as traction points for cell motility. These associations may be altered in malignant cells, and probably also in surrounding normal cells, promoting invasion and metastatic colonization. In addition, components can be released from cells as secretory molecules, enzymes, receptors, large macromolecular complexes, membrane vesicles, and exosomes that can modify the microenvironment, provide specific cross-talk, and facilitate invasion, survival, and growth of malignant cells.

  14. Small cationic antimicrobial peptides delocalize peripheral membrane proteins.

    Science.gov (United States)

    Wenzel, Michaela; Chiriac, Alina Iulia; Otto, Andreas; Zweytick, Dagmar; May, Caroline; Schumacher, Catherine; Gust, Ronald; Albada, H Bauke; Penkova, Maya; Krämer, Ute; Erdmann, Ralf; Metzler-Nolte, Nils; Straus, Suzana K; Bremer, Erhard; Becher, Dörte; Brötz-Oesterhelt, Heike; Sahl, Hans-Georg; Bandow, Julia Elisabeth

    2014-04-08

    Short antimicrobial peptides rich in arginine (R) and tryptophan (W) interact with membranes. To learn how this interaction leads to bacterial death, we characterized the effects of the minimal pharmacophore RWRWRW-NH2. A ruthenium-substituted derivative of this peptide localized to the membrane in vivo, and the peptide also integrated readily into mixed phospholipid bilayers that resemble Gram-positive membranes. Proteome and Western blot analyses showed that integration of the peptide caused delocalization of peripheral membrane proteins essential for respiration and cell-wall biosynthesis, limiting cellular energy and undermining cell-wall integrity. This delocalization phenomenon also was observed with the cyclic peptide gramicidin S, indicating the generality of the mechanism. Exogenous glutamate increases tolerance to the peptide, indicating that osmotic destabilization also contributes to antibacterial efficacy. Bacillus subtilis responds to peptide stress by releasing osmoprotective amino acids, in part via mechanosensitive channels. This response is triggered by membrane-targeting bacteriolytic peptides of different structural classes as well as by hypoosmotic conditions.

  15. Chicken Egg Shell Membrane Associated Proteins and Peptides.

    Science.gov (United States)

    Makkar, Sarbjeet; Liyanage, Rohana; Kannan, Lakshmi; Packialakshmi, Balamurugan; Lay, Jack O; Rath, Narayan C

    2015-11-11

    Egg shells are poultry industry byproducts with potential for use in various biological and agricultural applications. We have been interested in the membranes underlying the calcareous shell as a feed supplement, which showed potential to improve immunity and performance of post hatch poultry. Therefore, to determine their protein and peptide profiles, we extracted the egg shell membranes (ESM) from fresh unfertilized eggs with methanol and guanidine hydrochloride (GdHCl) to obtain soluble proteins for analysis by mass spectrometry. The methanol extract was subjected to matrix-assisted laser desorption ionization (MALDI), electrospray ionization (ESI), high-performance reverse phase liquid chromatographic separation (HPLC), and tandem mass spectrometry (MS/MS) to determine its peptide and protein profiles. The GdHCl extract was subjected to ESI-HPLC-MS/MS following trypsin digestion of reduced/alkylated proteins. Nine proteins from the methanol extract and >275 proteins from the GdHCl extract were tentatively identified. The results suggested the presence of several abundant proteins from egg whites, such as ovoalbumin, ovotransferrin, and lysozyme as well as many others associated with antimicrobial, biomechanical, cytoskeletal organizational, cell signaling, and enzyme activities. Collagens, keratin, agrin, and laminin were some of the structural proteins present in the ESM. The methanol-soluble fraction contained several clusterin peptides and defensins, particularly, two isoforms of gallin. The ratios of the two isoforms of gallin differed between the membranes obtained from brown and white eggs. The high abundance of several antimicrobial, immunomodulatory, and other bioactive proteins in the ESM along with its potential to entrap various microbes and antigens may make it a suitable vehicle for oral immunization of post hatch poultry and improve their disease resistance.

  16. Hypotonicity causes actin reorganization and recruitment of the actin-binding ERM protein moesin in membrane protrusions in collecting duct principal cells

    NARCIS (Netherlands)

    Tamma, G.; Procino, G.; Svelto, M.; Valenti, G.

    2007-01-01

    Hypotonicity-induced cell swelling is characterized by a modification in cell architecture associated with actin cytoskeleton remodeling. The ezrin/radixin/moesin (ERM) family proteins are important signal transducers during actin reorganization regulated by the monomeric G proteins of the Rho famil

  17. Klebsiella pneumoniae O antigen loss alters the outer membrane protein composition and the selective packaging of proteins into secreted outer membrane vesicles.

    Science.gov (United States)

    Cahill, Bethaney K; Seeley, Kent W; Gutel, Dedra; Ellis, Terri N

    2015-11-01

    Klebsiella pneumoniae is a nosocomial pathogen which naturally secretes lipopolysaccharide (LPS) and cell envelope associated proteins into the environment through the production of outer membrane vesicles (OMVs). The loss of the LPS O antigen has been demonstrated in other bacterial species to significantly alter the composition of OMVs. Therefore, this study aimed to comprehensively analyze the impact of O antigen loss on the sub-proteomes of both the outer membrane and secreted OMVs from K. pneumoniae. As determined by LC-MS/MS, OMVs were highly enriched with outer membrane proteins involved in cell wall, membrane, and envelope biogenesis as compared to the source cellular outer membrane. Deletion of wbbO, the enzyme responsible for O antigen attachment to LPS, decreased but did not eliminate this enrichment effect. Additionally, loss of O antigen resulted in OMVs with increased numbers of proteins involved in post-translational modification, protein turnover, and chaperones as compared to secreted vesicles from the wild type. This alteration of OMV composition may be a compensatory mechanism to deal with envelope stress. This comprehensive analysis confirms the highly distinct protein composition of OMVs as compared to their source membrane, and provides evidence for a selective sorting mechanism that involves LPS polysaccharides. These data support the hypothesis that modifications to LPS alters both the mechanics of protein sorting and the contents of secreted OMVs and significantly impacts the protein composition of the outer membrane.

  18. Interaction between La(III) and proteins on the plasma membrane of horseradish

    Science.gov (United States)

    Yang, Guang-Mei; Chu, Yun-Xia; Lv, Xiao-Fen; Zhou, Qing; Huang, Xiao-Hua

    2012-06-01

    Lanthanum (La) is an important rare earth element in the ecological environment of plant. The proteins on the plasma membrane control the transport of molecules into and out of cell. It is very important to investigate the effect of La(III) on the proteins on the plasma membrane in the plant cell. In the present work, the interaction between La(III) and proteins on the plasma membrane of horseradish was investigated using optimization of the fluorescence microscopy and fluorescence spectroscopy. It is found that the fluorescence of the complex system of protoplasts and 1-aniline Kenai-8-sulfonic acid in horseradish treated with the low concentration of La(III) is increased compared with that of the control horseradish. The opposite effect is observed in horseradish treated with the high concentration of La(III). These results indicated that the low concentration of La(III) can interact with the proteins on the plasma membrane of horseradish, causing the improvement in the structure of proteins on the plasma membrane. The high concentration of La(III) can also interact with the proteins on the plasma membrane of horseradish, leading to the destruction of the structure of proteins on the plasma membrane. We demonstrate that the proteins on the plasma membrane are the targets of La(III) action on plant cell.

  19. [Germ cell membrane lipids in spermatogenesis].

    Science.gov (United States)

    Wang, Ting; Shi, Xiao; Quan, Song

    2016-05-01

    Spermatogenesis is a complex developmental process in which a diploid progenitor germ cell transforms into highly specialized spermatozoa. During spermatogenesis, membrane remodeling takes place, and cell membrane permeability and liquidity undergo phase-specific changes, which are all associated with the alteration of membrane lipids. Lipids are important components of the germ cell membrane, whose volume and ratio fluctuate in different phases of spermatogenesis. Abnormal lipid metabolism can cause spermatogenic dysfunction and consequently male infertility. Germ cell membrane lipids are mainly composed of cholesterol, phospholipids and glycolipids, which play critical roles in cell adhesion and signal transduction during spermatogenesis. An insight into the correlation of membrane lipids with spermatogenesis helps us to better understand the mechanisms of spermatogenesis and provide new approaches to the diagnosis and treatment of male infertility.

  20. Polymer electrolyte membrane assembly for fuel cells

    Science.gov (United States)

    Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)

    2002-01-01

    An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.

  1. Membrane shape instabilities induced by BAR domain proteins

    Science.gov (United States)

    Baumgart, Tobias

    2014-03-01

    Membrane curvature has developed into a forefront of membrane biophysics. Numerous proteins involved in membrane curvature sensing and membrane curvature generation have recently been discovered, including proteins containing the crescent-shaped BAR domain as membrane binding and shaping module. Accordingly, the structure determination of these proteins and their multimeric complexes is increasingly well-understood. Substantially less understood, however, are thermodynamic and kinetic aspects and the detailed mechanisms of how these proteins interact with membranes in a curvature-dependent manner. New experimental approaches need to be combined with established techniques to be able to fill in these missing details. Here we use model membrane systems in combination with a variety of biophysical techniques to characterize mechanistic aspects of BAR domain protein function. This includes a characterization of membrane curvature sensing and membrane generation. We also establish kinetic and thermodynamic aspects of BAR protein dimerization in solution, and investigate kinetic aspects of membrane binding. We present two new approaches to investigate membrane shape instabilities and demonstrate that membrane shape instabilities can be controlled by protein binding and lateral membrane tension. This work is supported through NIH grant GM-097552 and NSF grant CBET-1053857.

  2. Research progress on Helicobacter pyloriouter membrane protein

    Institute of Scientific and Technical Information of China (English)

    Shi-He Shao; Hua Wang; Shun-Gen Chai; Li-Mei Liu

    2005-01-01

    Helicobacter pylori (H pylori), one of the most common bacterial pathogens on human beings, colonizes the gastric mucosa. In its 95 paralogous gene families, there is a large outer membrane protein (OMP) family. It includes 32 members. These OMP are important for the diagnosis, protective immunity, pathogenicity of H pylori and so on. They are significantly associated with high H pylori density,the damage of gastric mucosa, high mucosal IL-8 levels and severe neutrophil infiltration. We introduce their research progress on pathogenicity.

  3. Advanced composite polymer electrolyte fuel cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M.S.; Zawodzinski, T.A.; Gottesfeld, S.; Kolde, J.A.; Bahar, B.

    1995-09-01

    A new type of reinforced composite perfluorinated polymer electrolyte membrane, GORE-SELECT{trademark} (W.L. Gore & Assoc.), is characterized and tested for fuel cell applications. Very thin membranes (5-20 {mu}m thick) are available. The combination of reinforcement and thinness provides high membrane, conductances (80 S/cm{sup 2} for a 12 {mu}m thick membrane at 25{degrees}C) and improved water distribution in the operating fuel cell without sacrificing longevity or durability. In contrast to nonreinforced perfluorinated membranes, the x-y dimensions of the GORE-SELECT membranes are relatively unaffected by the hydration state. This feature may be important from the viewpoints of membrane/electrode interface stability and fuel cell manufacturability.

  4. Defining the Free-Energy Landscape of Curvature-Inducing Proteins on Membrane Bilayers

    CERN Document Server

    Tourdot, Richard W; Radhakrishnan, Ravi

    2015-01-01

    Curvature-sensing and curvature-remodeling proteins are known to reshape cell membranes, and this remodeling event is essential for key biophysical processes such as tubulation, exocytosis, and endocytosis. Curvature-inducing proteins can act as curvature sensors as well as induce curvature in cell membranes to stabilize emergent high curvature, non-spherical, structures such as tubules, discs, and caveolae. A definitive understanding of the interplay between protein recruitment and migration, the evolution of membrane curvature, and membrane morphological transitions is emerging but remains incomplete. Here, within a continuum framework and using the machinery of Monte Carlo simulations, we introduce and compare three free-energy methods to delineate the free-energy landscape of curvature-inducing proteins on bilayer membranes. We demonstrate the utility of the Widom test-particle/field insertion methodology in computing the excess chemical potentials associated with curvature-inducing proteins on the membra...

  5. Durable vesicles for reconstitution of membrane proteins in biotechnology

    Science.gov (United States)

    Khan, Sanobar; Muench, Stephen P.; Jeuken, Lars J.C.

    2017-01-01

    The application of membrane proteins in biotechnology requires robust, durable reconstitution systems that enhance their stability and support their functionality in a range of working environments. Vesicular architectures are highly desirable to provide the compartmentalisation to utilise the functional transmembrane transport and signalling properties of membrane proteins. Proteoliposomes provide a native-like membrane environment to support membrane protein function, but can lack the required chemical and physical stability. Amphiphilic block copolymers can also self-assemble into polymersomes: tough vesicles with improved stability compared with liposomes. This review discusses the reconstitution of membrane proteins into polymersomes and the more recent development of hybrid vesicles, which blend the robust nature of block copolymers with the biofunctionality of lipids. These novel synthetic vesicles hold great promise for enabling membrane proteins within biotechnologies by supporting their enhanced in vitro performance and could also contribute to fundamental biochemical and biophysical research by improving the stability of membrane proteins that are challenging to work with. PMID:28202656

  6. Biogenesis of inner membrane proteins in Escherichia coli.

    Science.gov (United States)

    Luirink, Joen; Yu, Zhong; Wagner, Samuel; de Gier, Jan-Willem

    2012-06-01

    The inner membrane proteome of the model organism Escherichia coli is composed of inner membrane proteins, lipoproteins and peripherally attached soluble proteins. Our knowledge of the biogenesis of inner membrane proteins is rapidly increasing. This is in particular true for the early steps of biogenesis - protein targeting to and insertion into the membrane. However, our knowledge of inner membrane protein folding and quality control is still fragmentary. Furthering our knowledge in these areas will bring us closer to understand the biogenesis of individual inner membrane proteins in the context of the biogenesis of the inner membrane proteome of Escherichia coli as a whole. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.

  7. Fuel cell and membrane therefore

    Energy Technology Data Exchange (ETDEWEB)

    Aindow, Tai-Tsui

    2016-08-09

    A fuel cell includes first and second flow field plates, and an anode electrode and a cathode electrode between the flow field plates. A polymer electrolyte membrane (PEM) is arranged between the electrodes. At least one of the flow field plates influences, at least in part, an in-plane anisotropic physical condition of the PEM that varies in magnitude between a high value direction and a low value direction. The PEM has an in-plane physical property that varies in magnitude between a high value direction and a low value direction. The PEM is oriented with its high value direction substantially aligned with the high value direction of the flow field plate.

  8. Membrane Recruitment of the Non-receptor Protein GIV/Girdin (Gα-interacting, Vesicle-associated Protein/Girdin) Is Sufficient for Activating Heterotrimeric G Protein Signaling.

    Science.gov (United States)

    Parag-Sharma, Kshitij; Leyme, Anthony; DiGiacomo, Vincent; Marivin, Arthur; Broselid, Stefan; Garcia-Marcos, Mikel

    2016-12-30

    GIV (aka Girdin) is a guanine nucleotide exchange factor that activates heterotrimeric G protein signaling downstream of RTKs and integrins, thereby serving as a platform for signaling cascade cross-talk. GIV is recruited to the cytoplasmic tail of receptors upon stimulation, but the mechanism of activation of its G protein regulatory function is not well understood. Here we used assays in humanized yeast models and G protein activity biosensors in mammalian cells to investigate the role of GIV subcellular compartmentalization in regulating its ability to promote G protein signaling. We found that in unstimulated cells GIV does not co-fractionate with its substrate G protein Gαi3 on cell membranes and that constitutive membrane anchoring of GIV in yeast cells or rapid membrane translocation in mammalian cells via chemically induced dimerization leads to robust G protein activation. We show that membrane recruitment of the GIV "Gα binding and activating" motif alone is sufficient for G protein activation and that it does not require phosphomodification. Furthermore, we engineered a synthetic protein to show that recruitment of the GIV "Gα binding and activating" motif to membranes via association with active RTKs, instead of via chemically induced dimerization, is also sufficient for G protein activation. These results reveal that recruitment of GIV to membranes in close proximity to its substrate G protein is a major mechanism responsible for the activation of its G protein regulatory function.

  9. Extracellular heme uptake and the challenges of bacterial cell membranes.

    Science.gov (United States)

    Smith, Aaron D; Wilks, Angela

    2012-01-01

    In bacteria, the fine balance of maintaining adequate iron levels while preventing the deleterious effects of excess iron has led to the evolution of sophisticated cellular mechanisms to obtain, store, and regulate iron. Iron uptake provides a significant challenge given its limited bioavailability and need to be transported across the bacterial cell wall and membranes. Pathogenic bacteria have circumvented the iron-availability issue by utilizing the hosts' heme-containing proteins as a source of iron. Once internalized, iron is liberated from the porphyrin enzymatically for cellular processes within the bacterial cell. Heme, a lipophilic and toxic molecule, poses a significant challenge in terms of transport given its chemical reactivity. As such, pathogenic bacteria have evolved sophisticated membrane transporters to coordinate, sequester, and transport heme. Recent advances in the biochemical and structural characterization of the membrane-bound heme transport proteins are discussed in the context of ligand coordination, protein-protein interaction, and heme transfer.

  10. Allelic diversity of the Plasmodium falciparum erythrocyte membrane protein 1 entails variant-specific red cell surface epitopes.

    Directory of Open Access Journals (Sweden)

    Inès Vigan-Womas

    Full Text Available The clonally variant Plasmodium falciparum PfEMP1 adhesin is a virulence factor and a prime target of humoral immunity. It is encoded by a repertoire of functionally differentiated var genes, which display architectural diversity and allelic polymorphism. Their serological relationship is key to understanding the evolutionary constraints on this gene family and rational vaccine design. Here, we investigated the Palo Alto/VarO and IT4/R29 and 3D7/PF13_003 parasites lines. VarO and R29 form rosettes with uninfected erythrocytes, a phenotype associated with severe malaria. They express an allelic Cys2/group A NTS-DBL1α(1 PfEMP1 domain implicated in rosetting, whose 3D7 ortholog is encoded by PF13_0003. Using these three recombinant NTS-DBL1α(1 domains, we elicited antibodies in mice that were used to develop monovariant cultures by panning selection. The 3D7/PF13_0003 parasites formed rosettes, revealing a correlation between sequence identity and virulence phenotype. The antibodies cross-reacted with the allelic domains in ELISA but only minimally with the Cys4/group B/C PFL1955w NTS-DBL1α. By contrast, they were variant-specific in surface seroreactivity of the monovariant-infected red cells by FACS analysis and in rosette-disruption assays. Thus, while ELISA can differentiate serogroups, surface reactivity assays define the more restrictive serotypes. Irrespective of cumulated exposure to infection, antibodies acquired by humans living in a malaria-endemic area also displayed a variant-specific surface reactivity. Although seroprevalence exceeded 90% for each rosetting line, the kinetics of acquisition of surface-reactive antibodies differed in the younger age groups. These data indicate that humans acquire an antibody repertoire to non-overlapping serotypes within a serogroup, consistent with an antibody-driven diversification pressure at the population level. In addition, the data provide important information for vaccine design, as

  11. Syntaxin 7 complexes with mouse Vps10p tail interactor 1b, syntaxin 6, vesicle-associated membrane protein (VAMP)8, and VAMP7 in b16 melanoma cells.

    Science.gov (United States)

    Wade, N; Bryant, N J; Connolly, L M; Simpson, R J; Luzio, J P; Piper, R C; James, D E

    2001-06-01

    Syntaxin 7 is a mammalian target soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) involved in membrane transport between late endosomes and lysosomes. The aim of the present study was to use immunoaffinity techniques to identify proteins that interact with Syntaxin 7. We reasoned that this would be facilitated by the use of cells producing high levels of Syntaxin 7. Screening of a large number of tissues and cell lines revealed that Syntaxin 7 is expressed at very high levels in B16 melanoma cells. Moreover, the expression of Syntaxin 7 increased in these cells as they underwent melanogenesis. From a large scale Syntaxin 7 immunoprecipitation, we have identified six polypeptides using a combination of electrospray mass spectrometry and immunoblotting. These polypeptides corresponded to Syntaxin 7, Syntaxin 6, mouse Vps10p tail interactor 1b (mVti1b), alpha-synaptosome-associated protein (SNAP), vesicle-associated membrane protein (VAMP)8, VAMP7, and the protein phosphatase 1M regulatory subunit. We also observed partial colocalization between Syntaxin 6 and Syntaxin 7, between Syntaxin 6 and mVti1b, but not between Syntaxin 6 and the early endosomal t-SNARE Syntaxin 13. Based on these and data reported previously, we propose that Syntaxin 7/mVti1b/Syntaxin 6 may form discrete SNARE complexes with either VAMP7 or VAMP8 to regulate fusion events within the late endosomal pathway and that these events may play a critical role in melanogenesis.

  12. Plasma membranes from insect midgut cells

    Directory of Open Access Journals (Sweden)

    Walter R. Terra

    2006-06-01

    Full Text Available Plasma membranes from insect midgut cells are separated into apical and basolateral domains. The apical domain is usually modified into microvilli with a molecular structure similar to other animals. Nevertheless, the microvillar structure should differ in some insects to permit the traffic inside them of secretory vesicles that may budd laterally or pinch-off from the tips of microvilli. Other microvillar modifications are associated with proton-pumping or with the interplay with an ensheathing lipid membrane (the perimicrovilllar membrane observed in the midgut cells of hemipterans (aphids and bugs. The perimicrovillar membranes are thought to be involved in amino acid absorption from diluted diets. The microvillar and perimicrovillar membranes have densities (and protein content that depend on the insect taxon. The role played by the microvillar and perimicrovillar proteins in insect midgut physiology is reviewed here trying to provide a coherent picture of data and highlighting further research areas.As membranas plasmáticas das células intestinais dos insetos apresentam um domínio apical e outro basal. O domínio apical é geralmente modificado em microvilosidades com organização molecular similar a de outros animais, embora possam diferir naqueles insetos que apresentam vesículas secretoras em trânsito que brotam lateralmente ou destacam-se das extremidades das microvilosidades. Outras modificações microvilares estão associadas a bombeamento de prótons ou a interrelações com uma membrana lipídica (a membrana perimicrovilar que reveste as microvilosidades de células intestinais de hemípteros (pulgões e percevejos. Admite-se que as membranas perimicrovilares estejam envolvidas na absorção de aminoácidos a partir de dietas diluídas. As membranas microvilares e perimicrovilares tem densidades distintas (e conteúdo protéico que dependem do táxon do inseto. O papel desempenhado pelas proteínas microvilares e

  13. Interactions of mefloquine with ABC proteins, MRP1 (ABCC1) and MRP4 (ABCC4), that are present in human red cell membranes

    OpenAIRE

    Wu, Chung-Pu; Klokouzas, Antonios; Hladky, Stephen B.; Ambudkar, Suresh V.; Barrand, Margery A.

    2005-01-01

    Human erythrocyte membranes express the multidrug resistance-associated proteins, MRP1, MRP4 and MRP5, that collectively can efflux oxidised glutathione, glutathione conjugates and cyclic nucleotides. It is already known that the quinoline derivative, MK-571, is a potent inhibitor of MRP-mediated transport. We here examine whether the quinoline-based antimalarial drugs, amodiaquine, chloroquine, mefloquine, primaquine, quinidine and quinine, also interact with erythrocyte MRPs with consequenc...

  14. Determination of membrane protein glycation in diabetic tissue

    OpenAIRE

    Zhang, Eric Y.; Swaan, Peter W.

    1999-01-01

    Diabetes-associated hyperglycemia causes glycation of proteins at reactive amino groups, which can adversely affect protein function Although the effects of glycation on soluble proteins are well characterized, there is no information regarding membrane-associated proteins, mainly because of the lack of reproducible methods to determine protein glycation in vivo. The current study was conducted to establish such a method and to compare the glycation levels of membrane-associated proteins deri...

  15. Deoxygenation affects tyrosine phosphoproteome of red cell membrane from patients with sickle cell disease.

    Science.gov (United States)

    Siciliano, Angela; Turrini, Franco; Bertoldi, Mariarita; Matte, Alessandro; Pantaleo, Antonella; Olivieri, Oliviero; De Franceschi, Lucia

    2010-04-15

    Sickle cell disease (SCD) is a worldwide distributed hereditary red cell disorder related to the production of a defective form of hemoglobin, hemoglobin S (HbS). One of the hallmarks of SCD is the presence of dense, dehydrate highly adhesive sickle red blood cells (RBCs) that result from persistent membrane damage associated with HbS polymerization, abnormal activation of membrane cation transports and generation of distorted and rigid red cells with membrane perturbation and cytoskeleton dysfunction. Although modulation of phosphorylation state of the proteins from membrane and cytoskeleton networks has been proposed to participate in red cell homeostasis, much still remains to be investigated in normal and diseased red cells. Here, we report that tyrosine (Tyr-) phosphoproteome of sickle red cells was different from normal controls and was affected by deoxygenation. We found proteins, p55 and band 4.1, from the junctional complex, differently Tyr-phosphorylated in SCD RBCs compared to normal RBCs under normoxia and modulated by deoxygenation, while band 4.2 was similarly Tyr-phosphorylated in both conditions. In SCD RBCs we identified the phosphopeptides for protein 4.1R located in the protein FERM domain (Tyr-13) and for alpha-spectrin located near or in a linker region (Tyr-422 and Tyr-1498) involving protein areas crucial for their functions in the context of red cell membrane properties, suggesting that Tyr-phosphorylation may be part of the events involved in maintaining membrane mechanical stability in SCD red cells.

  16. BLM Experimentation and opto-electrical characterization in microchips, towards an integrated platform for drug screening on membrane proteins

    NARCIS (Netherlands)

    Stimberg, V.C.; Uitert, van I.; Le Gac, S.; Berg, van den A.; Verpoorte, S; Andersson-Svahn, S.M.H.; Emneus, J.; Pamme, N

    2010-01-01

    Experimentation on cell membranes and on membrane proteins commonly makes use of planar and simplified membrane models, or bilayer lipid membranes (BLMs). Although these models are extensively employed, the experimentation is tedious and time-consuming, and mostly limited to electrical measurements.

  17. Pinkbar is an epithelial-specific BAR domain protein that generates planar membrane structures

    Energy Technology Data Exchange (ETDEWEB)

    Pykäläinen, Anette; Boczkowska, Malgorzata; Zhao, Hongxia; Saarikangas, Juha; Rebowski, Grzegorz; Jansen, Maurice; Hakanen, Janne; Koskela, Essi V.; Peränen, Johan; Vihinen, Helena; Jokitalo, Eija; Salminen, Marjo; Ikonen, Elina; Dominguez, Roberto; Lappalainen, Pekka (Helsinki); (Penn)

    2013-05-29

    Bin/amphipysin/Rvs (BAR)-domain proteins sculpt cellular membranes and have key roles in processes such as endocytosis, cell motility and morphogenesis. BAR domains are divided into three subfamilies: BAR- and F-BAR-domain proteins generate positive membrane curvature and stabilize cellular invaginations, whereas I-BAR-domain proteins induce negative curvature and stabilize protrusions. We show that a previously uncharacterized member of the I-BAR subfamily, Pinkbar, is specifically expressed in intestinal epithelial cells, where it localizes to Rab13-positive vesicles and to the plasma membrane at intercellular junctions. Notably, the BAR domain of Pinkbar does not induce membrane tubulation but promotes the formation of planar membrane sheets. Structural and mutagenesis analyses reveal that the BAR domain of Pinkbar has a relatively flat lipid-binding interface and that it assembles into sheet-like oligomers in crystals and in solution, which may explain its unique membrane-deforming activity.

  18. Interaction of Defensins with Model Cell Membranes

    Science.gov (United States)

    Sanders, Lori K.; Schmidt, Nathan W.; Yang, Lihua; Mishra, Abhijit; Gordon, Vernita D.; Selsted, Michael E.; Wong, Gerard C. L.

    2009-03-01

    Antimicrobial peptides (AMPs) comprise a key component of innate immunity for a wide range of multicellular organisms. For many AMPs, activity comes from their ability to selectively disrupt and lyse bacterial cell membranes. There are a number of proposed models for this action, but the detailed molecular mechanism of selective membrane permeation remains unclear. Theta defensins are circularized peptides with a high degree of selectivity. We investigate the interaction of model bacterial and eukaryotic cell membranes with theta defensins RTD-1, BTD-7, and compare them to protegrin PG-1, a prototypical AMP, using synchrotron small angle x-ray scattering (SAXS). The relationship between membrane composition and peptide induced changes in membrane curvature and topology is examined. By comparing the membrane phase behavior induced by these different peptides we will discuss the importance of amino acid composition and placement on membrane rearrangement.

  19. Anion permselective membrane. [For redox fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, S.S.; Hodgdon, R.B.

    1978-01-01

    Experimental anion permeselective membranes were improved and characterized for use as separators in a chemical redox, power storage cell being developed at the NASA Lewis Research Center. The goal of minimal Fe/sup +3/ ion transfer was achieved for each candidate membrane system. Minimal membrane resistivity was demonstrated by reduction of film thickness using synthetic backing materials but usefulness of thin membranes was limited by the scarcity of compatible fabrics. The most durable and useful backing fabrics were modacrylics. One membrane, a copolymer of 4 vinylpyridine and vinyl benzylchloride was outstanding in overall electrochemical and physical properties. Long term (1000 hrs) membrane chemical and thermal durability in redox environment was shown by three candidate polymers and two membranes. The remainder had good durability at ambient temperature. Manufacturing capability was demonstrated for large scale production of membrane sheets 5.5 ft/sup 2/ in area for two candidate systems.

  20. The membrane bound LRR lipoprotein Slr, and the cell wall-anchored M1 protein from Streptococcus pyogenes both interact with type I collagen.

    Directory of Open Access Journals (Sweden)

    Marta Bober

    Full Text Available Streptococcus pyogenes is an important human pathogen and surface structures allow it to adhere to, colonize and invade the human host. Proteins containing leucine rich repeats (LRR have been identified in mammals, viruses, archaea and several bacterial species. The LRRs are often involved in protein-protein interaction, are typically 20-30 amino acids long and the defining feature of the LRR motif is an 11-residue sequence LxxLxLxxNxL (x being any amino acid. The streptococcal leucine rich (Slr protein is a hypothetical lipoprotein that has been shown to be involved in virulence, but at present no ligands for Slr have been identified. We could establish that Slr is a membrane attached horseshoe shaped lipoprotein by homology modeling, signal peptidase II inhibition, electron microscopy (of bacteria and purified protein and immunoblotting. Based on our previous knowledge of LRR proteins we hypothesized that Slr could mediate binding to collagen. We could show by surface plasmon resonance that recombinant Slr and purified M1 protein bind with high affinity to collagen I. Isogenic slr mutant strain (MB1 and emm1 mutant strain (MC25 had reduced binding to collagen type I as shown by slot blot and surface plasmon resonance. Electron microscopy using gold labeled Slr showed multiple binding sites to collagen I, both to the monomeric and the fibrillar structure, and most binding occurred in the overlap region of the collagen I fibril. In conclusion, we show that Slr is an abundant membrane bound lipoprotein that is co-expressed on the surface with M1, and that both these proteins are involved in recruiting collagen type I to the bacterial surface. This underlines the importance of S. pyogenes interaction with extracellular matrix molecules, especially since both Slr and M1 have been shown to be virulence factors.

  1. Zein synthesis and processing on zein protein body membranes. [Maize proteins

    Energy Technology Data Exchange (ETDEWEB)

    Burr, F A

    1978-01-01

    The storage protein of maize, zein, is translated from messenger RNA on ribosomes bound to the outer membrane of the zein protein bodies. No other proteins appear to be made on this membrane. Before zein is transported through the protein body membrane it undergoes at least two post-translational modifications, which are discussed.

  2. Roles of the outer membrane protein AsmA of Salmonella enterica in the control of marRAB expression and invasion of epithelial cells.

    Science.gov (United States)

    Prieto, Ana I; Hernández, Sara B; Cota, Ignacio; Pucciarelli, M Graciela; Orlov, Yuri; Ramos-Morales, Francisco; García-del Portillo, Francisco; Casadesús, Josep

    2009-06-01

    A genetic screen for suppressors of bile sensitivity in DNA adenine methylase (dam) mutants of Salmonella enterica serovar Typhimurium yielded insertions in an uncharacterized locus homologous to the Escherichia coli asmA gene. Disruption of asmA suppressed bile sensitivity also in phoP and wec mutants of S. enterica and increased the MIC of sodium deoxycholate for the parental strain ATCC 14028. Increased levels of marA mRNA were found in asmA, asmA dam, asmA phoP, and asmA wec strains of S. enterica, suggesting that lack of AsmA activates expression of the marRAB operon. Hence, asmA mutations may enhance bile resistance by inducing gene expression changes in the marRAB-controlled Mar regulon. In silico analysis of AsmA structure predicted the existence of one transmembrane domain. Biochemical analysis of subcellular fractions revealed that the asmA gene of S. enterica encodes a protein of approximately 70 kDa located in the outer membrane. Because AsmA is unrelated to known transport and/or efflux systems, we propose that activation of marRAB in asmA mutants may be a consequence of envelope reorganization. Competitive infection of BALB/c mice with asmA(+) and asmA isogenic strains indicated that lack of AsmA attenuates Salmonella virulence by the oral route but not by the intraperitoneal route. Furthermore, asmA mutants showed a reduced ability to invade epithelial cells in vitro.

  3. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins

    CERN Document Server

    Ramakrishnan, N; Radhakrishnan, Ravi

    2015-01-01

    Biological membranes constitute boundaries of cells and cell organelles. Physico-chemical mechanisms at the atomic scale are dictated by protein-lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across the various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. The suite of methods discussed here can be tailored to applicatio...

  4. Pearling instability of membrane tubes driven by curved proteins and actin polymerization

    CERN Document Server

    Jelerčič, Urška

    2014-01-01

    Membrane deformation inside living cells is crucial for the proper shaping of various intracellular organelles and is necessary during the fission/fusion processes that allow membrane recycling and transport (e.g. endocytosis). Proteins that induce membrane curvature play a key role in such processes, mostly by adsorbing to the membrane and forming a scaffold that deforms the membrane according to the curvature of the proteins. In this paper we explore the possibility of membrane tube destabilisation through a pearling mechanism enabled by the combined effects of the adsorbed curved proteins and the actin polymerization they may recruit. The pearling instability can furthermore serve as the initiation for fission of the tube into vesicles. We find that adsorbed proteins are more likely to stabilise the tubes, while the actin polymerization can provide the additional constrictive force needed for the robust instability. We discuss the relevance of the theoretical results to in-vivo and in-vitro experiments.

  5. Heat Shock Protein 90 Inhibitors Repress Latent Membrane Protein 1 (LMP1) Expression and Proliferation of Epstein-Barr Virus-Positive Natural Killer Cell Lymphoma

    Science.gov (United States)

    Siddiquey, Mohammed Nure Alam; Kanazawa, Tetsuhiro; Goshima, Fumi; Kawashima, Daisuke; Kimura, Hiroshi; Tsurumi, Tatsuya

    2013-01-01

    Epstein-Barr virus (EBV) LMP1 is a major oncoprotein expressed in latent infection. It functions as a TNFR family member and constitutively activates cellular signals, such as NFκB, MAPK, JAK/STAT and AKT. We here screened small molecule inhibitors and isolated HSP90 inhibitors, Radicicol and 17-AAG, as candidates that suppress LMP1 expression and cell proliferation not only in EBV-positive SNK6 Natural Killer (NK) cell lymphoma cells, but also in B and T cells. Tumor formation in immuno-defficient NOD/Shi-scid/IL-2Rγnull (NOG) mice was also retarded. These results suggest that HSP90 inhibitors can be alternative treatments for patients with EBV-positive malignancies. PMID:23658841

  6. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  7. Studying Membrane Protein Structure and Function Using Nanodiscs

    DEFF Research Database (Denmark)

    Huda, Pie

    The structure and dynamic of membrane proteins can provide valuable information about general functions, diseases and effects of various drugs. Studying membrane proteins are a challenge as an amphiphilic environment is necessary to stabilise the protein in a functionally and structurally relevan...

  8. Self-assembling peptides form nanodiscs that stabilize membrane proteins

    DEFF Research Database (Denmark)

    Midtgaard, Søren Roi; Pedersen, Martin Cramer; Kirkensgaard, Jacob Judas Kain;

    2014-01-01

    New methods to handle membrane bound proteins, e.g. G-protein coupled receptors (GPCRs), are highly desirable. Recently, apoliprotein A1 (ApoA1) based lipoprotein particles have emerged as a new platform for studying membrane proteins, and it has been shown that they can self-assemble in combinat...

  9. Highly Branched Pentasaccharide-Bearing Amphiphiles for Membrane Protein Studies

    DEFF Research Database (Denmark)

    Ehsan, Muhammad; Du, Yang; Scull, Nicola J

    2016-01-01

    Detergents are essential tools for membrane protein manipulation. Micelles formed by detergent molecules have the ability to encapsulate the hydrophobic domains of membrane proteins. The resulting protein-detergent complexes (PDCs) are compatible with the polar environments of aqueous media, making...

  10. NMR-based screening of membrane protein ligands

    NARCIS (Netherlands)

    Yanamala, Naveena; Dutta, Arpana; Beck, Barbara; Van Fleet, Bart; Hay, Kelly; Yazbak, Ahmad; Ishima, Rieko; Doemling, Alexander; Klein-Seetharaman, Judith

    2010-01-01

    Membrane proteins pose problems for the application of NMR-based ligand-screening methods because of the need to maintain the proteins in a membrane mimetic environment such as detergent micelles: they add to the molecular weight of the protein, increase the viscosity of the solution, interact with

  11. Membrane-mediated interaction between strongly anisotropic protein scaffolds.

    Directory of Open Access Journals (Sweden)

    Yonatan Schweitzer

    2015-02-01

    Full Text Available Specialized proteins serve as scaffolds sculpting strongly curved membranes of intracellular organelles. Effective membrane shaping requires segregation of these proteins into domains and is, therefore, critically dependent on the protein-protein interaction. Interactions mediated by membrane elastic deformations have been extensively analyzed within approximations of large inter-protein distances, small extents of the protein-mediated membrane bending and small deviations of the protein shapes from isotropic spherical segments. At the same time, important classes of the realistic membrane-shaping proteins have strongly elongated shapes with large and highly anisotropic curvature. Here we investigated, computationally, the membrane mediated interaction between proteins or protein oligomers representing membrane scaffolds with strongly anisotropic curvature, and addressed, quantitatively, a specific case of the scaffold geometrical parameters characterizing BAR domains, which are crucial for membrane shaping in endocytosis. In addition to the previously analyzed contributions to the interaction, we considered a repulsive force stemming from the entropy of the scaffold orientation. We computed this interaction to be of the same order of magnitude as the well-known attractive force related to the entropy of membrane undulations. We demonstrated the scaffold shape anisotropy to cause a mutual aligning of the scaffolds and to generate a strong attractive interaction bringing the scaffolds close to each other to equilibrium distances much smaller than the scaffold size. We computed the energy of interaction between scaffolds of a realistic geometry to constitute tens of kBT, which guarantees a robust segregation of the scaffolds into domains.

  12. A novel lipoprotein nanoparticle system for membrane proteins

    Science.gov (United States)

    Frauenfeld, Jens; Löving, Robin; Armache, Jean-Paul; Sonnen, Andreas; Guettou, Fatma; Moberg, Per; Zhu, Lin; Jegerschöld, Caroline; Flayhan, Ali; Briggs, John A.G.; Garoff, Henrik; Löw, Christian; Cheng, Yifan; Nordlund, Pär

    2016-01-01

    Membrane proteins are of outstanding importance in biology, drug discovery and vaccination. A common limiting factor in research and applications involving membrane proteins is the ability to solubilize and stabilize membrane proteins. Although detergents represent the major means for solubilizing membrane proteins, they are often associated with protein instability and poor applicability in structural and biophysical studies. Here, we present a novel lipoprotein nanoparticle system that allows for the reconstitution of membrane proteins into a lipid environment that is stabilized by a scaffold of Saposin proteins. We showcase the applicability of the method on two purified membrane protein complexes as well as the direct solubilization and nanoparticle-incorporation of a viral membrane protein complex from the virus membrane. We also demonstrate that this lipid nanoparticle methodology facilitates high-resolution structural studies of membrane proteins in a lipid environment by single-particle electron cryo-microscopy (cryo-EM) and allows for the stabilization of the HIV-envelope glycoprotein in a functional state. PMID:26950744

  13. Nanodomain stabilization dynamics in plasma membranes of biological cells

    Science.gov (United States)

    Das, Tamal; Maiti, Tapas K.; Chakraborty, Suman

    2011-02-01

    We discover that a synergistically amplifying role of stabilizing membrane proteins and continuous lipid recycling can explain the physics governing the stability, polydispersity, and dynamics of lipid raft domains in plasma membranes of biological cells. We establish the conjecture using a generalized order parameter based on theoretical formalism, endorsed by detailed scaling arguments and domain mapping. Quantitative agreements with morphological distributions of raft complexes, as obtained from Förster resonance energy transfer based visualization, support the present theoretical conjecture.

  14. Proline-serine-threonine phosphatase-interacting protein 2 (PSTPIP2), a host membrane-deforming protein, is critical for membranous web formation in hepatitis C virus replication.

    Science.gov (United States)

    Chao, Ti-Chun; Su, Wen-Chi; Huang, Jing-Ying; Chen, Yung-Chia; Jeng, King-Song; Wang, Horng-Dar; Lai, Michael M C

    2012-02-01

    Hepatitis C virus (HCV) reorganizes intracellular membranes to establish sites of replication. How viral and cellular proteins target, bind, and rearrange specific membranes into the replication factory remains a mystery. We used a lentivirus-based RNA interference (RNAi) screening approach to identify the potential cellular factors that are involved in HCV replication. A protein with membrane-deforming activity, proline-serine-threonine phosphatase-interacting protein 2 (PSTPIP2), was identified as a potential factor. Knockdown of PSTPIP2 in HCV subgenomic replicon-harboring and HCV-infected cells was associated with the reduction of HCV protein and RNA expression. PSTPIP2 was localized predominantly in detergent-resistant membranes (DRMs), which contain the RNA replication complex. PSTPIP2 knockdown caused a significant reduction of the formation of HCV- and NS4B-induced membranous webs. A PSTPIP2 mutant defective in inducing membrane curvature failed to support HCV replication, confirming that the membrane-deforming ability of PSTPIP2 is essential for HCV replication. Taking these results together, we suggest that PSTPIP2 facilitates membrane alterations and is a key player in the formation of the membranous web, which is the site of the HCV replication complex.

  15. The Escherichia coli O157:H7 cattle immunoproteome includes outer membrane protein A (OmpA), a modulator of adherence to bovine rectoanal junction squamous epithelial (RSE) cells.

    Science.gov (United States)

    Kudva, Indira T; Krastins, Bryan; Torres, Alfredo G; Griffin, Robert W; Sheng, Haiqing; Sarracino, David A; Hovde, Carolyn J; Calderwood, Stephen B; John, Manohar

    2015-06-01

    Building on previous studies, we defined the repertoire of proteins comprising the immunoproteome (IP) of Escherichia coli O157:H7 (O157) cultured in DMEM supplemented with norepinephrine (O157 IP), a β-adrenergic hormone that regulates E. coli O157 gene expression in the gastrointestinal tract, using a variation of a novel proteomics-based platform proteome mining tool for antigen discovery, called "proteomics-based expression library screening" (PELS; Kudva et al., 2006). The E. coli O157 IP (O157-IP) comprised 91 proteins, and included those identified previously using proteomics-based expression library screening, and also proteins comprising DMEM and bovine rumen fluid proteomes. Outer membrane protein A (OmpA), a common component of the above proteomes, and reportedly a contributor to E. coli O157 adherence to cultured HEp-2 epithelial cells, was interestingly found to be a modulator rather than a contributor to E. coli O157 adherence to bovine rectoanal junction squamous epithelial cells. Our results point to a role for yet to be identified members of the O157-IP in E. coli O157 adherence to rectoanal junction squamous epithelial cells, and additionally implicate a possible role for the outer membrane protein A regulator, TdcA, in the expression of such adhesins. Our observations have implications for the development of efficacious vaccines for preventing E. coli O157 colonization of the bovine gastrointestinal tract.

  16. BAR domains, amphipathic helices and membrane-anchored proteins use the same mechanism to sense membrane curvature

    DEFF Research Database (Denmark)

    Madsen, Kenneth Lindegaard; Bhatia, V K; Gether, U;

    2010-01-01

    The internal membranes of eukaryotic cells are all twists and bends characterized by high curvature. During recent years it has become clear that specific proteins sustain these curvatures while others simply recognize membrane shape and use it as "molecular information" to organize cellular...... processes in space and time. Here we discuss this new important recognition process termed membrane curvature sensing (MCS). First, we review a new fluorescence-based experimental method that allows characterization of MCS using measurements on single vesicles and compare it to sensing assays that use bulk...... on curved membranes instead of higher affinity as assumed so far. Finally, we integrate these new insights into the debate about which motifs are involved in sensing versus induction of membrane curvature and what role MCS proteins may play in biology....

  17. Extraction and identification of membrane proteins from black widow spider eggs.

    Science.gov (United States)

    Fu, Si-Ling; Li, Jiang-Lin; Chen, Jia; Wang, Qiu-Ting; Li, Jian-Jun; Wang, Xian-Chun

    2015-07-18

    The eggs of oviparous animals are storehouses of maternal proteins required for embryonic development. Identification and molecular characterization of such proteins will provide much insight into the regulation of embryonic development. We previously analyzed soluble proteins in the eggs of the black widow spider (Latrodectus tredecimguttatus), and report here on the extraction and mass spectrometric identification of the egg membrane proteins. Comparison of different lysis solutions indicated that the highest extraction of the membrane proteins was achieved with 3%-4% sodium laurate in 40 mmol/L Tris-HCl buffer containing 4% CHAPS and 2% DTT (pH 7.4). SDS-PAGE combined with nLC-MS/MS identified 39 proteins with membrane-localization annotation, including those with structural, catalytic, and regulatory activities. Nearly half of the identified membrane proteins were metabolic enzymes involved in various cellular processes, particularly energy metabolism and biosynthesis, suggesting that relevant metabolic processes were active during the embryonic development of the eggs. Several identified cell membrane proteins were involved in the special structure formation and function of the egg cell membranes. The present proteomic analysis of the egg membrane proteins provides new insight into the molecular mechanisms of spider embryonic development.

  18. Ultrastructural analysis and identification of membrane proteins in the free-living amoeba Difflugia corona.

    Science.gov (United States)

    Silva-Briano, Marcelo; Martínez-Hernández, Sandra Luz; Adabache-Ortíz, Araceli; Ventura-Juárez, Javier; Salinas, Eva; Quintanar, J Luis

    2007-08-01

    Syntaxin-1 and 25-kDa Synaptosome-associated Protein (SNAP-25) are present in the plasma membrane of several different secretory cell types and are involved in the exocytosis process. In this work, the free-living amoeba Difflugia corona was studied in relation to ultrastructure, structural membrane proteins, and proteins such as Syntaxin-1 and SNAP-25. Our results obtained by scanning electron microscopy in the amoeba without its theca, showed many membrane projections and several pore-like structures. Using immunocytochemistry, we found structural proteins Syntaxin-1 and SNAP-25.

  19. Chitosan-based membrane chromatography for protein adsorption and separation.

    Science.gov (United States)

    Liu, Yezhuo; Feng, Zhicheng; Shao, Zhengzhong; Chen, Xin

    2012-08-01

    A chitosan-based membrane chromatography was set up by using natural chitosan/carboxymethylchitosan (CS/CMCS) blend membrane as the matrix. The dynamic adsorption property for protein (lysozyme as model protein) was detailed discussed with the change in pore size of the membrane, the flow rate and the initial concentration of the feed solution, and the layer of membrane in membrane stack. The best dynamic adsorption capacity of lysozyme on the CS/CMCS membrane chromatography was found to be 15.3mg/mL under the optimal flow conditions. Moreover, the CS/CMCS membrane chromatography exhibited good repeatability and reusability with the desorption efficiency of ~90%. As an application, lysozyme and ovalbumin were successfully separated from their binary mixture through the CS/CMCS membrane chromatography. This implies that such a natural chitosan-based membrane chromatography may have great potential on the bioseparation field in the future.

  20. IL-4 and IL-13 induce protection from complement and melittin in endothelial cells despite initial loss of cytoplasmic proteins: membrane resealing impairs quantifying cytotoxicity with the lactate dehydrogenase permeability assay.

    Science.gov (United States)

    Benson, Barbara A; Vercellotti, Gregory M; Dalmasso, Agustin P

    2015-01-01

    Endothelial cell activation and injury by the terminal pathway of complement is important in various pathobiological processes, including xenograft rejection. Protection against injury by human complement can be induced in porcine endothelial cells (ECs) with IL-4 and IL-13 through metabolic activation. However, despite this resistance, the complement-treated ECs were found to lose membrane permeability control assessed with the small molecule calcein. Therefore, to define the apparent discrepancy of permeability changes vis-à-vis the protection from killing, we now investigated whether IL-4 and IL-13 influence the release of the large cytoplasmic protein lactate dehydrogenase (LDH) in ECs incubated with complement or the pore-forming protein melittin. Primary cultures of ECs were pre-treated with IL-4 or IL-13 and then incubated with human serum as source of antibody and complement or melittin. Cell death was assessed using neutral red. Membrane permeability was quantitated measuring LDH release. We found that IL-4-/IL-13-induced protection of ECs from killing by complement or melittin despite loss of LDH in amounts similar to control ECs. However, the cytokine-treated ECs that were protected from killing rapidly regained effective control of membrane permeability. Moreover, the viability of the protected ECs was maintained for at least 2 days. We conclude that the protection induced by IL-4/IL-13 in ECs against lethal attack by complement or melittin is effective and durable despite severe initial impairment of membrane permeability. The metabolic changes responsible for protection allow the cells to repair the membrane injury caused by complement or melittin.

  1. An Integrated Framework Advancing Membrane Protein Modeling and Design.

    Directory of Open Access Journals (Sweden)

    Rebecca F Alford

    2015-09-01

    Full Text Available Membrane proteins are critical functional molecules in the human body, constituting more than 30% of open reading frames in the human genome. Unfortunately, a myriad of difficulties in overexpression and reconstitution into membrane mimetics severely limit our ability to determine their structures. Computational tools are therefore instrumental to membrane protein structure prediction, consequently increasing our understanding of membrane protein function and their role in disease. Here, we describe a general framework facilitating membrane protein modeling and design that combines the scientific principles for membrane protein modeling with the flexible software architecture of Rosetta3. This new framework, called RosettaMP, provides a general membrane representation that interfaces with scoring, conformational sampling, and mutation routines that can be easily combined to create new protocols. To demonstrate the capabilities of this implementation, we developed four proof-of-concept applications for (1 prediction of free energy changes upon mutation; (2 high-resolution structural refinement; (3 protein-protein docking; and (4 assembly of symmetric protein complexes, all in the membrane environment. Preliminary data show that these algorithms can produce meaningful scores and structures. The data also suggest needed improvements to both sampling routines and score functions. Importantly, the applications collectively demonstrate the potential of combining the flexible nature of RosettaMP with the power of Rosetta algorithms to facilitate membrane protein modeling and design.

  2. Identification of salt-tolerant Sinorhizobium sp. strain BL3 membrane proteins based on proteomics

    DEFF Research Database (Denmark)

    Tanthanuch, Waraporn; Tittabutr, Panlada; Mohammed, Shabaz;

    2010-01-01

    Sinorhizobium sp. BL3 is a salt-tolerant strain that can fix atmospheric nitrogen in symbiosis with leguminous host plants under salt-stress conditions. Since cell membranes are the first barrier to environmental change, it is interesting to explore the membrane proteins within this protective......-line SCX fractionation coupled to nanoLC-MS/MS. These techniques would be useful for further comparative analysis of membrane proteins that function in the response to environmental stress....... barrier under salt stress. The protein contents of membrane-enriched fractions obtained from BL3 were analyzed by nanoflow liquid chromatography interfaced with electrospray ionization tandem mass spectrometry. A total of 105 membrane proteins were identified. These proteins could be classified into 17...

  3. Practical aspects in expression and purification of membrane proteins for structural analysis.

    Science.gov (United States)

    Vinothkumar, Kutti R; Edwards, Patricia C; Standfuss, Joerg

    2013-01-01

    A surge of membrane protein structures in the last few years can be attributed to advances in technologies starting at the level of genomes, to highly efficient expression systems, stabilizing conformational flexibility, automation of crystallization and data collection for screening large numbers of crystals and the microfocus beam lines at synchrotrons. The substantial medical importance of many membrane proteins provides a strong incentive to understand them at the molecular level. It is becoming obvious that the major bottleneck in many of the membrane projects is obtaining sufficient amount of stable functional proteins in a detergent micelle for structural studies. Naturally, large effort has been spent on optimizing and advancing multiple expression systems and purification strategies that have started to yield sufficient protein and structures. We describe in this chapter protocols to refold membrane proteins from inclusion bodies, purification from inner membranes of Escherichia coli and from mammalian cell lines.

  4. Membrane interacting regions of Dengue virus NS2A protein.

    Science.gov (United States)

    Nemésio, Henrique; Villalaín, José

    2014-08-28

    The Dengue virus (DENV) NS2A protein, essential for viral replication, is a poorly characterized membrane protein. NS2A displays both protein/protein and membrane/protein interactions, yet neither its functions in the viral cycle nor its active regions are known with certainty. To highlight the different membrane-active regions of NS2A, we characterized the effects of peptides derived from a peptide library encompassing this protein's full length on different membranes by measuring their membrane leakage induction and modulation of lipid phase behavior. Following this initial screening, one region, peptide dens25, had interesting effects on membranes; therefore, we sought to thoroughly characterize this region's interaction with membranes. This peptide presents an interfacial/hydrophobic pattern characteristic of a membrane-proximal segment. We show that dens25 strongly interacts with membranes that contain a large proportion of lipid molecules with a formal negative charge, and that this effect has a major electrostatic contribution. Considering its membrane modulating capabilities, this region might be involved in membrane rearrangements and thus be important for the viral cycle.

  5. Arabidopsis group le formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression

    NARCIS (Netherlands)

    Deeks, M.J.; Cvrcková, F.; Machesky, L.M.; Mikitová, V.; Ketelaar, T.; Zársky, V.; Davies, B.; Hussey, P.J.

    2005-01-01

    ¿ The closely related proteins AtFH4 and AtFH8 represent the group Ie clade of Arabidopsis formin homologues. The subcellular localization of these proteins and their ability to affect the actin cytoskeleton were examined. ¿ AtFH4 protein activity was identified using fluorimetric techniques. Intera

  6. Study of the effect of membrane thickness on microcapsule strength, permeability, and cell proliferation.

    Science.gov (United States)

    Ma, Ying; Zhang, Ying; Wang, Yu; Wang, Qiuyan; Tan, Mingqian; Liu, Yang; Chen, Li; Li, Na; Yu, Weiting; Ma, Xiaojun

    2013-04-01

    Cell microencapsulation is one of the promising strategies for in vitro production of proteins or in vivo delivery of therapeutic products. Membrane thickness controls microcapsule strength and permeability, which may in return affect cell growth and metabolism. In this study, the strength, permeability, and encapsulated Chinese hamster ovary cell proliferation and metabolism of four groups of microcapsules with different membrane thicknesses were investigated. It was found that increasing membrane thickness increases microcapsule strength, whereas decreases membrane permeability. During the first 6 days, cells within microcapsules with 10 μm thickness membrane proliferated fast and could reach a cell density of 1.9 × 10(7) cells/mL microcapsule with 92% cell density. A cell density of 5.5 × 10(7) cells/mL microcapsule with >85% cell density was achieved within microcapsules with 15 μm membrane thickness and these microcapsules kept over 88% integrity ratio after 11 days, which was much higher than that of microcapsules with 10 μm membrane thickness. Membrane with more than 20 μm thickness was not suited for encapsulated cell culture owing to low-protein diffusion rate. These results indicated that cells survived shortly within the thinnest membrane thickness. There was a specific membrane thickness more suitable for cell growth for a long-time culture. These findings will be useful for preparing microcapsules with the desired membrane thickness for microencapsulated cell culture dependent on various purposes.

  7. Budding of peste des petits ruminants virus-like particles from insect cell membrane based on intracellular co-expression of peste des petits ruminants virus M, H and N proteins by recombinant baculoviruses.

    Science.gov (United States)

    Liu, Fuxiao; Wu, Xiaodong; Zhao, Yonggang; Li, Lin; Wang, Zhiliang

    2014-10-01

    Peste des petits ruminants virus (PPRV), an etiological agent of peste des petits ruminants (PPR), is classified into the genus Morbillivirus in the family Paramyxovirida. In this study, two full-length open reading frames (ORF) corresponding to the PPRV matrix (M) and haemagglutinin (H) genes underwent a codon-optimization based on insect cells, respectively. Two codon-optimized ORFs along with one native nucleocapsid (N) ORF were used to construct recombinant baculoviruses co-expressing the PPRV M, H and N proteins in insect cells. Analysis of Western blot, immunofluorescence, confocal microscopy and flow cytometry demonstrated co-expression of the three proteins but at different levels in insect cells, and PPR virus-like particles (VLPs) budded further from cell membrane based on self-assembly of the three proteins by viewing of ultrathin section with a transmission electron microscope (TEM). Subsequently, a small number of VLPs were purified by sucrose density gradient centrifugation for TEM viewing. The PPR VLPs, either purified by sucrose density gradient centrifugation or budding from insect cell membrane on ultrathin section, morphologically resembled authentic PPRVs but were smaller in diameter by the TEM examination.

  8. Detergent-Specific Membrane Protein Crystallization Screens

    Science.gov (United States)

    Wiener, Michael

    2007-01-01

    A suite of reagents has been developed for three-dimensional crystallization of integral membranes present in solution as protein-detergent complexes (PDCs). The compositions of these reagents have been determined in part by proximity to the phase boundaries (lower consolute boundaries) of the detergents present in the PDCs. The acquisition of some of the requisite phase-boundary data and the preliminary design of several of the detergent- specific screens was supported by a NASA contract. At the time of expiration of the contract, a partial set of preliminary screens had been developed. This work has since been extended under non-NASA sponsorship, leading to near completion of a set of 20 to 30 different and unique detergent- specific 96-condition screens.

  9. INTERACTION OF ALDEHYDES DERIVED FROM LIPID PEROXIDATION AND MEMBRANE PROTEINS.

    Directory of Open Access Journals (Sweden)

    Stefania ePizzimenti

    2013-09-01

    Full Text Available A great variety of compounds are formed during lipid peroxidation of polyunsaturated fatty acids of membrane phospholipids. Among them, bioactive aldehydes, such as 4-hydroxyalkenals, malondialdehyde (MDA and acrolein, have received particular attention since they have been considered as toxic messengers that can propagate and amplify oxidative injury. In the 4-hydroxyalkenal class, 4-hydroxy-2-nonenal (HNE is the most intensively studied aldehyde, in relation not only to its toxic function, but also to its physiological role. Indeed, HNE can be found at low concentrations in human tissues and plasma and participates in the control of biological processes, such as signal transduction, cell proliferation and differentiation. Moreover, at low doses, HNE exerts an anti-cancer effect, by inhibiting cell proliferation, angiogenesis, cell adhesion and by inducing differentiation and/or apoptosis in various tumor cell lines. It is very likely that a substantial fraction of the effects observed in cellular responses, induced by HNE and related aldehydes, be mediated by their interaction with proteins, resulting in the formation of covalent adducts or in the modulation of their expression and/or activity. In this review we focus on membrane proteins affected by lipid peroxidation-derived aldehydes, under physiological and pathological conditions.

  10. A simple detection method for low-affinity membrane protein interactions by baculoviral display.

    Directory of Open Access Journals (Sweden)

    Toshiko Sakihama

    Full Text Available BACKGROUND: Membrane protein interactions play an important role in cell-to-cell recognition in various biological activities such as in the immune or neural system. Nevertheless, there has remained the major obstacle of expression of the membrane proteins in their active form. Recently, we and other investigators found that functional membrane proteins express on baculovirus particles (budded virus, BV. In this study, we applied this BV display system to detect interaction between membrane proteins important for cell-to-cell interaction in immune system. METHODOLOGY/PRINCIPAL FINDINGS: We infected Sf9 cells with recombinant baculovirus encoding the T cell membrane protein CD2 or its ligand CD58 and recovered the BV. We detected specific interaction between CD2-displaying BV and CD58-displaying BV by an enzyme-linked immunosorbent assay (ELISA. Using this system, we also detected specific interaction between two other membrane receptor-ligand pairs, CD40-CD40 ligand (CD40L, and glucocorticoid-induced TNFR family-related protein (GITR-GITR ligand (GITRL. Furthermore, we observed specific binding of BV displaying CD58, CD40L, or GITRL to cells naturally expressing their respective receptors by flowcytometric analysis using anti-baculoviral gp64 antibody. Finally we isolated CD2 cDNA from a cDNA expression library by magnetic separation using CD58-displaying BV and anti-gp64 antibody. CONCLUSIONS: We found the BV display system worked effectively in the detection of the interaction of membrane proteins. Since various membrane proteins and their oligomeric complexes can be displayed on BV in the native form, this BV display system should prove highly useful in the search for natural ligands or to develop screening systems for therapeutic antibodies and/or compounds.

  11. Comparison of a production process in a membrane-aerated stirred tank and up to 1000-L airlift bioreactors using BHK-21 cells and chemically defined protein-free medium.

    Science.gov (United States)

    Hesse, Friedemann; Ebel, Maria; Konisch, Nadine; Sterlinski, Reinhard; Kessler, Wolfgang; Wagner, Roland

    2003-01-01

    The applicability of a protein-free medium for the production of recombinant human interleukin-2 with baby hamster kidney cells in airlift bioreactors was investigated. For this purpose, a BHK-21 cell line, adapted to grow and produce in protein-free SMIF7 medium without forming spheroids in membrane-aerated bubble-free bioreactors, was used as the producer cell line. First, cultivation of the cells was established at a 20-L scale using an internal loop airlift bioreactor system. During the culturing process the medium formulation was optimized according to the specific requirements associated with cultivation of mammalian cells under protein-free conditions in a bubble-aerated system. The effects of the addition of an antifoam agent on growth, viability, productivity, metabolic rates, and release of lactate dehydrogenase were investigated. Although it was possible to establish cultivation and production at a 20-L scale without the use of antifoaming substances, the addition of 0.002% silicon-oil-based antifoaming reagent improved the cultivation system by completely preventing foam formation. This reduced the release of lactate dehydrogenase activity to the level found in bubble-free aerated stirred tank membrane bioreactors and led to a reduction in generation doubling times by about 5 h (17%). Using the optimized medium formulation, cells were cultivated at a 1000-L scale, resulting in a culture performance comparable to the 20-L airlift bioreactor. For comparison, cultivations with protein-containing SMIF7 medium were carried out at 20- and 1000-L scales. The application of protein supplements did not lead to a significant improvement in the cultivation conditions. The results were also compared with experiments performed in a bubble-free aerated stirred tank membrane bioreactor to evaluate the influence of bubbles on the investigated culture parameters. The data implied a higher metabolic activity of the cells in airlift bioreactors with a 150% higher glucose

  12. Discriminating lysosomal membrane protein types using dynamic neural network.

    Science.gov (United States)

    Tripathi, Vijay; Gupta, Dwijendra Kumar

    2014-01-01

    This work presents a dynamic artificial neural network methodology, which classifies the proteins into their classes from their sequences alone: the lysosomal membrane protein classes and the various other membranes protein classes. In this paper, neural networks-based lysosomal-associated membrane protein type prediction system is proposed. Different protein sequence representations are fused to extract the features of a protein sequence, which includes seven feature sets; amino acid (AA) composition, sequence length, hydrophobic group, electronic group, sum of hydrophobicity, R-group, and dipeptide composition. To reduce the dimensionality of the large feature vector, we applied the principal component analysis. The probabilistic neural network, generalized regression neural network, and Elman regression neural network (RNN) are used as classifiers and compared with layer recurrent network (LRN), a dynamic network. The dynamic networks have memory, i.e. its output depends not only on the input but the previous outputs also. Thus, the accuracy of LRN classifier among all other artificial neural networks comes out to be the highest. The overall accuracy of jackknife cross-validation is 93.2% for the data-set. These predicted results suggest that the method can be effectively applied to discriminate lysosomal associated membrane proteins from other membrane proteins (Type-I, Outer membrane proteins, GPI-Anchored) and Globular proteins, and it also indicates that the protein sequence representation can better reflect the core feature of membrane proteins than the classical AA composition.

  13. Protective effect of black tea on integral membrane proteins in rat liver.

    Science.gov (United States)

    Szachowicz-Petelska, Barbara; Skrzydlewska, Elżbieta; Figaszewski, Zbigniew

    2013-01-01

    Ethanol intoxication is accompanied by oxidative stress formation. Consequently, it leads to disturbances in cellular metabolism that can alter the structure and function of cell membrane components. Black tea displays antioxidant properties, protects membrane phospholipids and may protect integral membrane proteins. In the present study, we examined whether black tea induces changes in the liver integral membrane proteins of 12-months old rats chronically intoxicated with ethanol. To estimate qualitatively and quantitatively the levels of the liver integral membrane proteins, the proteins were selectively hydrolyzed by trypsin, the obtained peptides were resolved by HPLC and the levels of specific amino acids within the individual peptides were determined. All of the obtained peptides contained phenylalanine (Phe), cysteine (Cys) and lysine (Lys). Compared to the control group, rats in the ethanol intoxication group showed decreased liver levels of integral membrane proteins as well as fewer trypsin-hydrolyzed peptides and amino acids in the hydrolyzed peptides. Administration of black tea to ethanol-intoxicated rats partially protected proteins against the structural changes caused by ethanol. Black tea prevented decreases in the levels of cysteine (in about 90% of cases), lysine (in about 60% of cases), phenylalanine (in about 70% of cases) and examined peptides (in about 60% of cases). The liver protein level was higher (by about 18%) in rats who received black tea and ethanol than in those who received ethanol alone. In conclusion, black tea partially protects the composition and level of rat liver cell integral membrane proteins against changes caused by ethanol intoxication.

  14. Comparison of different methods for extracting plasma membrane protein of liver cell%不同方法提取肝细胞质膜蛋白效率的比较

    Institute of Scientific and Technical Information of China (English)

    宋孟锜; 由法平; 杨炼; 陈立波

    2011-01-01

    Objective To compare two extraction methods in extracting membrane protein of liver cell for improving membrane protein extraction efficiency.Methods Resected tissue from 47 cases of hepatocellular carcinoma (HCC) and 43 cases of normal liver were used to extract protein with extraction kit(A) and improved extraction method(B) ,protein quantitation was evaluated with BCA method,Na+/K+ -ATPase and GAPDH were detected between cytoplasmic protein sample and membrane protein sample to display the mixing level between them which was also the extraction specific of membrane protein.Results Liver cell plasma membrane protein extracted in group B was significantly higher than in group A [normal liver:( 1367.30 ±486.37) mg/L vs (345.58 ± 117.89) mg/L,HCC:( 1059.80 ± 226.29 ) mg/L vs (486.24 ± 154.96) mg/L,P<0.05 respectively).Content of GAPDH in membrane protein extracted by improved extraction method was significantly less than that extracted by extraction kit ( P<0.05 ).Conclusion The abundance and specificity of hepatocellular membrane protein extracted with improved extraction method was higher than with extraction kit respectively,which may improve the efficiency of membrane protein research.%目的 比较两种提取方法对肝细胞质膜蛋白提取效率的差异,以提高肝细胞质膜蛋白的提取效率.方法 取用手术切取的47例肝细胞癌和43例正常肝组织,分别利用试剂盒和改良法提取肝细胞质蛋白和膜蛋白;BCA法进行蛋白定量后,通过Western blot检测提取出的质蛋白和膜蛋白样品中Na+/K+-ATPase和GAPDH相对含量,比较膜蛋白提取特异性.结果 利用改良提取法(B组)对正常肝细胞和肝癌细胞质膜蛋白的提取量分别为(1367.30±486.37)mg/L和(1059.80±226.29)mg/L,均明显高于试剂盒提取量(345.58±117.89)mg/L和(486.24±154.96)mg/L,P<0.05);改良提取法提取蛋白中反映质蛋白的指标GAPDH含量显著低于试剂盒提取法(P<0.05).结论 通过改良提

  15. Heterogeneous interactome between Litopenaeus vannamei plasma proteins and Vibrio parahaemolyticus outer membrane proteins.

    Science.gov (United States)

    Liu, Xiang; She, Xin-Tao; Zhu, Qing-Feng; Li, Hui; Peng, Xuan-Xian

    2013-01-01

    A great loss has been suffered by microbial infectious diseases under intensive shrimp farming in recent years. In this background, the understanding of shrimp innate immunity becomes an importantly scientific issue, but little is known about the heterogeneous protein-protein interaction between pathogenic cells and hosts, which is a key step for the invading microbes to infect internet organs through bloodstream. In the present study, bacterial outer membrane (OM) protein array and pull-down approaches are used to isolate both Vibrio parahaemolyticus OM proteins that bind to shrimp serum proteins and the shrimp serum proteins that interact with bacterial cells, respectively. Three interacting shrimp serum proteins, hemocyanin, β-1,3-glucan binding protein and LV_HP_RA36F08r and thirty interacting OM proteins were determined. They form 63 heterogeneous protein-protein interactions. Nine out of the 30 OM proteins were randomly demonstrated to be up-regulated or down-regulated when bacterial cells were cultured with shrimp sera, indicating the biological significance of the network. The interesting findings uncover the complexity of struggle between host immunity and bacterial infection. Compared with our previous report on heterogeneous interactome between fish grill and bacterial OM proteins, the present study further extends the investigation from lower vertebrates to invertebrates and develops a bacterial OM protein array to identify the OM proteins bound with shrimp serum proteins, which elevates the frequencies of the bound OM proteins. Our results highlight the way to determine and understand the heterogeneous interaction between hosts and microbes.

  16. Engineering Escherichia coli for Functional Expression of Membrane Proteins

    NARCIS (Netherlands)

    Ho, Franz Y; Poolman, Bert

    2015-01-01

    A major bottleneck in the characterization of membrane proteins is low yield of functional protein in recombinant expression. Microorganisms are widely used for recombinant protein production, because of ease of cultivation and high protein yield. However, the target proteins do not always obtain th

  17. One-step isolation of plasma membrane proteins using magnetic beads with immobilized concanavalin A

    DEFF Research Database (Denmark)

    Lee, Yu-Chen; Block, Gregory; Chen, Huiwen;

    2008-01-01

    We have developed a simple method for isolating and purifying plasma membrane proteins from various cell types. This one-step affinity-chromatography method uses the property of the lectin concanavalin A (ConA) and the technique of magnetic bead separation to obtain highly purified plasma membran...

  18. Membrane interaction of retroviral Gag proteins

    Directory of Open Access Journals (Sweden)

    Robert Alfred Dick

    2014-04-01

    Full Text Available Assembly of an infectious retroviral particle relies on multimerization of the Gag polyprotein at the inner leaflet of the plasma membrane. The three domains of Gag common to all retroviruses-- MA, CA, and NC-- provide the signals for membrane binding, assembly, and viral RNA packaging, respectively. These signals do not function independently of one another. For example, Gag multimerization enhances membrane binding and is more efficient when NC is interacting with RNA. MA binding to the plasma membrane is governed by several principles, including electrostatics, recognition of specific lipid head groups, hydrophobic interactions, and membrane order. HIV-1 uses many of these principles while Rous sarcoma virus (RSV appears to use fewer. This review describes the principles that govern Gag interactions with membranes, focusing on RSV and HIV-1 Gag. The review also defines lipid and membrane behavior, and discusses the complexities in determining how lipid and membrane behavior impact Gag membrane binding.

  19. Membrane cholesterol access into a G-protein-coupled receptor

    Science.gov (United States)

    Guixà-González, Ramon; Albasanz, José L.; Rodriguez-Espigares, Ismael; Pastor, Manuel; Sanz, Ferran; Martí-Solano, Maria; Manna, Moutusi; Martinez-Seara, Hector; Hildebrand, Peter W.; Martín, Mairena; Selent, Jana

    2017-02-01

    Cholesterol is a key component of cell membranes with a proven modulatory role on the function and ligand-binding properties of G-protein-coupled receptors (GPCRs). Crystal structures of prototypical GPCRs such as the adenosine A2A receptor (A2AR) have confirmed that cholesterol finds stable binding sites at the receptor surface suggesting an allosteric role of this lipid. Here we combine experimental and computational approaches to show that cholesterol can spontaneously enter the A2AR-binding pocket from the membrane milieu using the same portal gate previously suggested for opsin ligands. We confirm the presence of cholesterol inside the receptor by chemical modification of the A2AR interior in a biotinylation assay. Overall, we show that cholesterol's impact on A2AR-binding affinity goes beyond pure allosteric modulation and unveils a new interaction mode between cholesterol and the A2AR that could potentially apply to other GPCRs.

  20. Membrane cholesterol access into a G-protein-coupled receptor

    Science.gov (United States)

    Guixà-González, Ramon; Albasanz, José L.; Rodriguez-Espigares, Ismael; Pastor, Manuel; Sanz, Ferran; Martí-Solano, Maria; Manna, Moutusi; Martinez-Seara, Hector; Hildebrand, Peter W.; Martín, Mairena; Selent, Jana

    2017-01-01

    Cholesterol is a key component of cell membranes with a proven modulatory role on the function and ligand-binding properties of G-protein-coupled receptors (GPCRs). Crystal structures of prototypical GPCRs such as the adenosine A2A receptor (A2AR) have confirmed that cholesterol finds stable binding sites at the receptor surface suggesting an allosteric role of this lipid. Here we combine experimental and computational approaches to show that cholesterol can spontaneously enter the A2AR-binding pocket from the membrane milieu using the same portal gate previously suggested for opsin ligands. We confirm the presence of cholesterol inside the receptor by chemical modification of the A2AR interior in a biotinylation assay. Overall, we show that cholesterol's impact on A2AR-binding affinity goes beyond pure allosteric modulation and unveils a new interaction mode between cholesterol and the A2AR that could potentially apply to other GPCRs. PMID:28220900

  1. Anomalous diffusion of proteins in sheared lipid membranes

    CERN Document Server

    Khoshnood, Atefeh

    2013-01-01

    We use coarse grained molecular dynamics simulations to investigate diffusion properties of sheared lipid membranes with embedded transmembrane proteins. In membranes without proteins, we find normal in-plane diffusion of lipids in all flow conditions. Protein embedded membranes behave quite differently: by imposing a simple shear flow and sliding the monolayers of the membrane over each other, the motion of protein clusters becomes strongly superdiffusive in the shear direction. In such a circumstance, subdiffusion regime is predominant perpendicular to the flow. We show that superdiffusion is a result of accelerated chaotic motions of protein--lipid complexes within the membrane voids, which are generated by hydrophobic mismatch or the transport of lipids by proteins.

  2. Cucumber metal tolerance protein CsMTP9 is a plasma membrane H⁺-coupled antiporter involved in the Mn²⁺ and Cd²⁺ efflux from root cells.

    Science.gov (United States)

    Migocka, Magdalena; Papierniak, Anna; Kosieradzka, Anna; Posyniak, Ewelina; Maciaszczyk-Dziubinska, Ewa; Biskup, Robert; Garbiec, Arnold; Marchewka, Tadeusz

    2015-12-01

    Members of the plant metal tolerance protein (MTP) family have been classified into three major groups - Zn-CDF, Mn-CDF and Zn/Fe-CDF - however, the selectivity of most of the MTPs has not been confirmed yet. Cucumber gene CsMTP9 encoding a putative CDF transporter homologous to members of the Mn-CDF cluster is expressed exclusively in roots. The relative abundance of CsMTP9 transcript and protein in roots is significantly increased under Mn excess and Cd. Immunolocalization with specific antibodies revealed that CsMTP9 is a plasma membrane transporter that localizes to the inner PM domain of root endodermal cells. The plasma membrane localization of CsMTP9 was confirmed by the expression of the fusion proteins of GFP (green fluorescent protein) and CsMTP9 in yeast and protoplasts prepared from Arabidopsis cells. In yeast, CsMTP9 transports Mn(2+) and Cd(2+) via a proton-antiport mechanism with an apparent Km values of approximately 10 μm and 2.5 μm for Mn(2+) and Cd(2+) , respectively. In addition, CsMTP9 expression in yeast rescues the Mn- and Cd-hypersensitive phenotypes through the enhanced efflux of Mn(2+) and Cd(2+) from yeast cells. Similarly, the overexpression of CsMTP9 in A. thaliana confers increased resistance of plants to Mn excess and Cd but not to other heavy metals and leads to the enhanced translocation of manganese and cadmium from roots to shoots. These findings indicate that CsMTP9 is a plasma membrane H(+) -coupled Mn(2+) and Cd(2+) antiporter involved in the efflux of manganese and cadmium from cucumber root cells by the transport of both metals from endodermis into vascular cylinder.

  3. Membrane protein crystallization in lipidic mesophases: detergent effects.

    OpenAIRE

    Ai, X.; Caffrey, M.

    2000-01-01

    The "cubic phase method" for growing crystals of membrane proteins uses a complex mixture of water, lipid, protein, and other components. The current view is that the cubic phase is integral to the process. Thus additives from whatever source introduce the possibility of destabilizing the phase, thereby compromising the crystallization process. Detergents are used to solubilize membrane proteins and are likely to be ported into the cubic medium with the target protein. Depending on the identi...

  4. Activated changes of platelet ultra microstructure and plasma granule membrane protein 140 in patients with non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    ZHUGE Yi; ZHOU Jian-ying; YANG Guang-die; ZU De-ling; XU Xiao-liang; TIAN Ming-qing; LU Guo-hua

    2009-01-01

    Background Non-small cell lung cancer (NSCLC) is the leading cause of cancer mortality worldwide. Platelet activation may play an important role in pathologic progress in lung cancer. In this study, we aimed to clarify the influence of activated platelets on lung cancer generation and growth, and the relationship among these functional and ultrastructural changes of platelets and the severity of pathogenetic condition in these patients with NSCLC.Methods One hundred and thirty-six cases of patients with pathologically confirmed NSCLC were included in this study. Fifty-four healthy people were enrolled as controls. The change of ultra microstructure and activity of blood platelets were observed under the transmission and scanning electron microscope. Simultaneous determination of plasma granule membrane protein 140 (GMP-140) was made.Results Transmission electron microscopy showed remarkable changes of ultra microstructure of platelets in patients with NSCLC, including swelling, increase of o-granules, vesicles, and glycogenosome. Scanning electron microscopy showed many more surface processes and wrinkles on platelets in patients with NSCLC. The reference plasma levels of GMP-140 of healthy controls were (18.2±2.7) μg/L. The plasma levels of GMP-140 in patients with NSCLC were (47.8±12.3) μg/L, which were much higher than those of the controls. There was a medium positive correlation between plasma levels of GMP-140 and amount of o-granules (r=0.514, P<0.01) and a high positive correlation between plasma levels of GMP-140 and area of platelet (r=0.84, P<0.01) in patients with NSCLC. The Kaplan-Meier survival curve analysis showed significant shift to the left in patients with NSCLC whose α-granules per platelet were 19 or more compared to those 18 or less (Log rank statistic, X2=17.38, P <0.01).Conclusions There are significant activated changes of ultra microstructure and increased activity of blood platelets in patients with NSCLC. These activated platelets

  5. Drosophila Golgi membrane protein Ema promotes autophagosomal growth and function.

    Science.gov (United States)

    Kim, Sungsu; Naylor, Sarah A; DiAntonio, Aaron

    2012-05-01

    Autophagy is a self-degradative process in which cellular material is enclosed within autophagosomes and trafficked to lysosomes for degradation. Autophagosomal biogenesis is well described; however mechanisms controlling the growth and ultimate size of autophagosomes are unclear. Here we demonstrate that the Drosophila membrane protein Ema is required for the growth of autophagosomes. In an ema mutant, autophagosomes form in response to starvation and developmental cues, and these autophagosomes can mature into autolysosomes; however the autophagosomes are very small, and autophagy is impaired. In fat body cells, Ema localizes to the Golgi complex and is recruited to the membrane of autophagosomes in response to starvation. The Drosophila Golgi protein Lva also is recruited to the periphery of autophagosomes in response to starvation, and this recruitment requires ema. Therefore, we propose that Golgi is a membrane source for autophagosomal growth and that Ema facilitates this process. Clec16A, the human ortholog of Ema, is a candidate autoimmune susceptibility locus. Expression of Clec16A can rescue the autophagosome size defect in the ema mutant, suggesting that regulation of autophagosome morphogenesis may be a fundamental function of this gene family.

  6. Independent mobility of proteins and lipids in the plasma membrane of Escherichia coli.

    Science.gov (United States)

    Nenninger, Anja; Mastroianni, Giulia; Robson, Alexander; Lenn, Tchern; Xue, Quan; Leake, Mark C; Mullineaux, Conrad W

    2014-06-01

    Fluidity is essential for many biological membrane functions. The basis for understanding membrane structure remains the classic Singer-Nicolson model, in which proteins are embedded within a fluid lipid bilayer and able to diffuse laterally within a sea of lipid. Here we report lipid and protein diffusion in the plasma membrane of live cells of the bacterium Escherichia coli, using Fluorescence Recovery after Photobleaching (FRAP) and Total Internal Reflection Fluorescence (TIRF) microscopy to measure lateral diffusion coefficients. Lipid and protein mobility within the membrane were probed by visualizing an artificial fluorescent lipid and a simple model membrane protein consisting of a single membrane-spanning alpha-helix with a Green Fluorescent Protein (GFP) tag on the cytoplasmic side. The effective viscosity of the lipid bilayer is strongly temperature-dependent, as indicated by changes in the lipid diffusion coefficient. Surprisingly, the mobility of the model protein was unaffected by changes in the effective viscosity of the bulk lipid, and TIRF microscopy indicates that it clusters in segregated, mobile domains. We suggest that this segregation profoundly influences the physical behaviour of the protein in the membrane, with strong implications for bacterial membrane function and bacterial physiology.

  7. Mitotic Golgi partitioning is driven by the membrane-fissioning protein CtBP3/BARS.

    Science.gov (United States)

    Hidalgo Carcedo, Cristina; Bonazzi, Matteo; Spanò, Stefania; Turacchio, Gabriele; Colanzi, Antonino; Luini, Alberto; Corda, Daniela

    2004-07-02

    Organelle inheritance is an essential feature of all eukaryotic cells. As with other organelles, the Golgi complex partitions between daughter cells through the fission of its membranes into numerous tubulovesicular fragments. We found that the protein CtBP3/BARS (BARS) was responsible for driving the fission of Golgi membranes during mitosis in vivo. Moreover, by in vitro analysis, we identified two stages of this Golgi fragmentation process: disassembly of the Golgi stacks into a tubular network, and BARS-dependent fission of these tubules. Finally, this BARS-induced fission of Golgi membranes controlled the G2-to-prophase transition of the cell cycle, and hence cell division.

  8. Scaffolding proteins in membrane trafficking : the role of ELKS

    NARCIS (Netherlands)

    Yu, K.L.

    2015-01-01

    Intracellular membrane trafficking is an essential cellular process that involves cooperation of many factors such as scaffolding proteins, GTPases and SNAREs. These proteins work together to ensure proper delivery of different membrane-enclosed cargoes to specific cellular destinations. In this the

  9. Study and prediction of secondary structure for membrane proteins

    NARCIS (Netherlands)

    Amirova, Svetlana R.; Milchevsky, Juri V.; Filatov, Ivan V.; Esipova, Natalia G.; Tumanyan, Vladimir G.

    2007-01-01

    In this paper we present a novel approach to membrane protein secondary structure prediction based on the statistical stepwise discriminant analysis method. A new aspect of our approach is the possibility to derive physical -chemical properties that may affect the formation of membrane protein secon

  10. Optimization of membrane protein overexpression and purification using GFP fusions

    NARCIS (Netherlands)

    Drew, David; Lerch, Mirjam; Kunji, Edmund; Slotboom, Dirk-Jan; de Gier, Jan-Willem

    2006-01-01

    Optimizing conditions for the overexpression and purification of membrane proteins for functional and structural studies is usually a Laborious and time-consuming process. This process can be accelerated using membrane protein-GFP fusions(1-3), which allows direct monitoring and visualization of mem

  11. Transposition of domains between the M2 and HN viral membrane proteins results in polypeptides which can adopt more than one membrane orientation.

    Science.gov (United States)

    Parks, G D; Hull, J D; Lamb, R A

    1989-11-01

    The influenza A virus M2 polypeptide is a small integral membrane protein that does not contain a cleaved signal sequence, but is unusual in that it assumes the membrane orientation of a class I integral membrane protein with an NH2-terminal ectodomain and a COOH-terminal cytoplasmic tail. To determine the domains of M2 involved in specifying membrane orientation, hybrid genes were constructed and expressed in which regions of the M2 protein were linked to portions of the paramyxovirus HN and SH proteins, two class II integral membrane proteins that adopt the opposite orientation in membranes from M2. A hybrid protein (MgMH) consisting of the M2 NH2-terminal and membrane-spanning domains linked precisely to the HN COOH-terminal ectodomain was found in cells in two forms: integrated into membranes in the M2 topology or completely translocated across the endoplasmic reticulum membrane and ultimately secreted from the cell. The finding of a soluble form suggested that in this hybrid protein the anchor function of the M2 signal/anchor domain can be overridden. A second hybrid which contained the M2 NH2 terminus linked to the HN signal anchor and ectodomain (MgHH) was found in both the M2 and the HN orientation, suggesting that the M2 NH2 terminus was capable of reversing the topology of a class II membrane protein. The exchange of the M2 signal/anchor domain with that of SH resulted in a hybrid protein which assumed only the M2 topology. Thus, all these data suggest that the NH2-terminal 24 residues to M2 are important for directing the unusual membrane topology of the M2 protein. These data are discussed in relationship to the loop model for insertion of proteins into membranes and the role of charged residues as a factor in determining orientation.

  12. Membrane Mechanics of Endocytosis in Cells with Turgor

    CERN Document Server

    Dmitrieff, Serge

    2015-01-01

    Endocytosis is an essential process by which cells internalize a piece of plasma membrane and material from the outside. In cells with turgor, pressure opposes membrane defor- mations, and increases the amount of force that has to be generated by the endocytic machinery. To determine this force, and calculate the shape of the membrane, we used physical theory to model an elastic surface under pressure. Accurate fits of experimental profiles are obtained assuming that the coated membrane is highly rigid and preferentially curved at the endocytic site. The forces required from the actin machinery peaks at the onset of deformation, indicating that once invagination has been initiated, endocytosis is unlikely to stall before completion. Coat proteins do not lower the initiation force but may affect the process by the curvature they induce. In the presence of isotropic curvature inducers, pulling the tip of the invagination can trigger the formation of a neck at the base of the invagination. Hence direct neck cons...

  13. Advanced membrane electrode assemblies for fuel cells

    Science.gov (United States)

    Kim, Yu Seung; Pivovar, Bryan S

    2014-02-25

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  14. Cell-penetrating peptides for drug delivery across membrane barriers

    DEFF Research Database (Denmark)

    Foged, Camilla; Nielsen, Hanne Moerck

    2008-01-01

    During the last decade, cell-penetrating peptides have been investigated for their ability to overcome the plasma membrane barrier of mammalian cells for the intracellular or transcellular delivery of cargoes as diverse as low molecular weight drugs, imaging agents, oligonucleotides, peptides......-penetrating peptides as transmembrane drug delivery agents, according to the recent literature, and discusses critical issues and future challenges in relation to fully understanding the fundamental principles of the cell-penetrating peptide-mediated membrane translocation of cargoes and the exploitation......, proteins and colloidal carriers such as liposomes and polymeric nanoparticles. Their ability to cross biological membranes in a non-disruptive way without apparent toxicity is highly desired for increasing drug bioavailability. This review provides an overview of the application of cell...

  15. Super-Resolution Imaging and Quantitative Analysis of Membrane Protein/Lipid Raft Clustering Mediated by Cell-Surface Self-Assembly of Hybrid Nanoconjugates.

    Science.gov (United States)

    Hartley, Jonathan M; Chu, Te-Wei; Peterson, Eric M; Zhang, Rui; Yang, Jiyuan; Harris, Joel; Kopeček, Jindřich

    2015-08-17

    Super-resolution imaging was used to quantify organizational changes in the plasma membrane after treatment with hybrid nanoconjugates. The nanoconjugates crosslinked CD20 on the surface of malignant B cells, thereby inducing apoptosis. Super-resolution images were analyzed by using pair-correlation analysis to determine cluster size and to count the average number of molecules in the clusters. The role of lipid rafts was investigated by pre-treating cells with a cholesterol chelator and actin destabilizer to prevent lipid raft formation. Lipid raft cluster size correlated with apoptosis induction after treatment with the nanoconjugates. Lipid raft clusters had radii of ∼ 200 nm in cells treated with the hybrid nanoconjugates. Super-resolution images provided precise molecule location coordinates that could be used to determine density of bound conjugates, cluster size, and number of molecules per cluster.

  16. Alternative membranes for polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, A.K.; Pitchumani, S.; Sridhar, P.; Shukla, A.K. [Central Electrochemical Research Inst., Karaikudi (India)

    2009-07-01

    Nafion, a perfluoro-sulfonated membrane, is utilized as a membrane electrolyte in polymer electrolyte fuel cells (PEFCs). However, to realize optimum PEFC performance, the Nafion membrane needs to be fully humidified, making the system quite costly. Therefore, in order to solve this problem, alternative membrane electrolytes that could operate under low humidity conditions are needed. This paper reported on composite Nafion membranes with ceramic/inorganic fillers such as silica and mesoporous zirconium phosphate (MZP). Silica was impregnated to the Nafion matrix by a unique water hydrolysis sol-gel route and casted as a composite membrane while MZP, a solid-super-acid-proton-conducting medium as well as water absorbing material was synthesized by a co-assembly technique and impregnated to the Nafion matrix to form a composite membrane. The performance of the PEFCs with Nafion membrane and composite membranes was tested with hydrogen/oxygen gas and hydrogen/air feeds at varying relative humidity (RH) values under ambient conditions. It was concluded that under RH value as low as 18 per cent, the PEFC with Nafion membrane delivers a peak-power density of only 130 mW/square centimeter.

  17. Perspectives in enzymology of membrane proteins by solid-state NMR.

    Science.gov (United States)

    Ullrich, Sandra J; Glaubitz, Clemens

    2013-09-17

    Membrane proteins catalyze reactions at the cell membrane and facilitate thetransport of molecules or signals across the membrane. Recently researchers have made great progress in understanding the structural biology of membrane proteins, mainly based on X-ray crystallography. In addition, the application of complementary spectroscopic techniques has allowed researchers to develop a functional understanding of these proteins. Solid-state NMR has become an indispensable tool for the structure-function analysis of insoluble proteins and protein complexes. It offers the possibility of investigating membrane proteins directly in their environment, which provides essential information about the intrinsic coupling of protein structure and functional dynamics within the lipid bilayer. However, to date, researchers have hardly explored the enzymology of mem-brane proteins. In this Account, we review the perspectives for investigating membrane-bound enzymes by solid-state NMR. Understanding enzyme mechanisms requires access to kinetic parameters, structural analysis of the catalytic center, knowledge of the 3D structure and methods to follow the structural dynamics of the enzyme during the catalytic cycle. In principle, solid-state NMR can address all of these issues. Researchers can characterize the enzyme kinetics by observing substrate turnover within the membrane or at the membrane interphase in a time-resolved fashion as shown for diacylglycerol kinase. Solid-state NMR has also provided a mechanistic understanding of soluble enzymes including triosephosphate isomerase (TIM) and different metal-binding proteins, which demonstrates a promising perspective also for membrane proteins. The increasing availability of high magnetic fields and the development of new experimental schemes and computational protocols have made it easier to determine 3D structure using solid-state NMR. Dynamic nuclear polarization, a key technique to boost sensitivity of solid-state NMR at low

  18. Immunogenic membrane-associated proteins of Mycobacterium tuberculosis revealed by proteomics.

    Science.gov (United States)

    Sinha, Sudhir; Kosalai, K; Arora, Shalini; Namane, Abdelkader; Sharma, Pawan; Gaikwad, Anil N; Brodin, Priscille; Cole, Stewart T

    2005-07-01

    Membrane-associated proteins of Mycobacterium tuberculosis offer a challenge, as well as an opportunity, in the quest for better therapeutic and prophylactic interventions against tuberculosis. The authors have previously reported that extraction with the detergent Triton X-114 (TX-114) is a useful step in proteomic analysis of mycobacterial cell membranes, and detergent-soluble membrane proteins of mycobacteria are potent stimulators of human T cells. In this study 1-D and 2-D gel electrophoresis-based protocols were used for the analysis of proteins in the TX-114 extract of M. tuberculosis membranes. Peptide mass mapping (using MALDI-TOF-MS, matrix assisted laser desorption/ionization time of flight mass spectrometry) of 116 samples led to the identification of 105 proteins, 9 of which were new to the M. tuberculosis proteome. Functional orthologues of 73 of these proteins were also present in Mycobacterium leprae, suggesting their relative importance. Bioinformatics predicted that as many as 73% of the proteins had a hydrophobic disposition. 1-D gel electrophoresis revealed more hydrophobic/transmembrane and basic proteins than 2-D gel electrophoresis. Identified proteins fell into the following major categories: protein synthesis, cell wall biogenesis/architecture and conserved hypotheticals/unknowns. To identify immunodominant proteins of the detergent phase (DP), 14 low-molecular-mass fractions prepared by continuous-elution gel electrophoresis were subjected to T cell activation assays using blood samples from BCG-vaccinated healthy donors from a tuberculosis endemic area. Analysis of the responses (cell proliferation and IFN-gamma production) showed that the immunodominance of certain DP fractions was most probably due to ribosomal proteins, which is consistent with both their specificity for mycobacteria and their abundance. Other membrane-associated proteins, including transmembrane proteins/lipoproteins and ESAT-6, did not appear to contribute

  19. A novel bioactive membrane by cell electrospinning.

    Science.gov (United States)

    Chen, Haiping; Liu, Yuanyuan; Hu, Qingxi

    2015-11-01

    Electrospinning permits fabrication of biodegradable matrices that can resemble the both scale and mechanical behavior of the native extracellular matrix. However, achieving high-cellular density and infiltration of cells within matrices with traditional technique remain challenging and time consuming. The cell electrospinning technique presented in this paper can mitigate the problems associated with these limitations. Cells encapsulated by the material in the cell electrospinning technique survived well and distributed homogenously within the nanofibrous membrane, and their vitality was improved to 133% after being cultured for 28 days. The electrospun nanofibrous membrane has a certain degradation property and favorable cell-membrane interaction that supports the active biocompatibility of the membrane. Its properties are helpful for supporting cell attachment and growth, maintaining phenotypic shape, and secreting an ample amount of extracellular matrix (ECM). This novel membrane may be a potential application within the field of tissue engineering. The ability of cell electrospinning to microintegrate cells into a biodegradable fibrous matrix embodies a novel tissue engineering approach that could be applied to fabricate a high cell density elastic tissue mimetic.

  20. Genetically Encoded Spy Peptide Fusion System to Detect Plasma Membrane-Localized Proteins In Vivo.

    Science.gov (United States)

    Bedbrook, Claire N; Kato, Mihoko; Ravindra Kumar, Sripriya; Lakshmanan, Anupama; Nath, Ravi D; Sun, Fei; Sternberg, Paul W; Arnold, Frances H; Gradinaru, Viviana

    2015-08-20

    Membrane proteins are the main gatekeepers of cellular state, especially in neurons, serving either to maintain homeostasis or instruct response to synaptic input or other external signals. Visualization of membrane protein localization and trafficking in live cells facilitates understanding the molecular basis of cellular dynamics. We describe here a method for specifically labeling the plasma membrane-localized fraction of heterologous membrane protein expression using channelrhodopsins as a case study. We show that the genetically encoded, covalent binding SpyTag and SpyCatcher pair from the Streptococcus pyogenes fibronectin-binding protein FbaB can selectively label membrane-localized proteins in living cells in culture and in vivo in Caenorhabditis elegans. The SpyTag/SpyCatcher covalent labeling method is highly specific, modular, and stable in living cells. We have used the binding pair to develop a channelrhodopsin membrane localization assay that is amenable to high-throughput screening for opsin discovery and engineering.

  1. Capillary high-performance liquid chromatography/mass spectrometric analysis of proteins from affinity-purified plasma membrane.

    Science.gov (United States)

    Zhao, Yingxin; Zhang, Wei; White, Michael A; Zhao, Yingming

    2003-08-01

    Proteomics analysis of plasma membranes is a potentially powerful strategy for the discovery of proteins involved in membrane remodeling under diverse cellular environments and identification of disease-specific membrane markers. A key factor for successful analysis is the preparation of plasma membrane fractions with low contamination from subcellular organelles. Here we report the characterization of plasma membrane prepared by an affinity-purification method, which involves biotinylation of cell-surface proteins and subsequent affinity enrichment with strepavidin beads. Western blotting analysis showed this method was able to achieve a 1600-fold relative enrichment of plasma membrane versus mitochondria and a 400-fold relative enrichment versus endoplasmic reticulum, two major contaminants in plasma membrane fractions prepared by conventional ultracentrifugation methods. Capillary-HPLC/MS analysis of 30 microg of affinity-purified plasma membrane proteins led to the identification of 918 unique proteins, which include 16.4% integral plasma membrane proteins and 45.5% cytosol proteins (including 8.6% membrane-associated proteins). Notable among the identified membrane proteins include 30 members of ras superfamily, receptors (e.g., EGF receptor, integrins), and signaling molecules. The low number of endoplasmic reticulum and mitochondria proteins (approximately 3.3% of the total) suggests the plasma membrane preparation has minimum contamination from these organelles. Given the importance of integral membrane proteins for drug design and membrane-associated proteins in the regulation cellular behaviors, the described approach will help expedite the characterization of plasma membrane subproteomes, identify signaling molecules, and discover therapeutic membrane-protein targets in diseases.

  2. Artificial cell membranes for diagnostics and therapeutics

    Energy Technology Data Exchange (ETDEWEB)

    Charych, D.; Nagy, J.O. [Lawrence Berkeley National Lab., CA (United States)

    1996-09-01

    Receptors on the membrane can recognize and bind extracellular molecules and convert that event into signals that elicit molecular changes within the cell. These two properties alone--molecular recognition and signal transduction--make the cell membrane an attractive model for designing novel biosensors or therapeutics. Natural cell membranes, however, are highly complex; mimicking the intricate choreography of the cell`s daily activities would be a daunting task. Instead, the authors turn to simpler, synthetic versions of the cell, where they can build in the components that give rise to specific activities and functions, one at a time. The process of forming artificial membranes is identical to that of forming natural membranes and is sometimes referred to as molecular self-assembly. From a practical point of view, the process is simple, because no external intervention is required--the molecules organize themselves into useful structures. The molecules that constitute the membranes are amphiphilic and therefore will spontaneously form lipid aggregates when mixed with water.

  3. Sterion membranes in Direct Methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Linares, J. J.; Lobato, J.; Canizares, P.; Rodrigo, M. A.; Fernandez, A.

    2005-07-01

    Direct Methanol Fuel Cells (DMFCs) has been postulated as an alternative to traditional hydrogen fed Polymer Electrolyte Membrane Fuel Cells (H2-PEMFCs). Among their advantages, it can be pointed out the low cost of the fuel, simplicity of design, large availability, easy handling and distribution. However, there are still some challenges in this field, such as the development of electrocatalysts which can enhance the electrokinetics of methanol oxidation, the discovery of an electrolyte membrane with high conductivity and low methanol crossover at the same time and the production of methanol-tolerant electrocatalysts with high activity for oxygen reduction. So far, Nafion 117 has been the polymer membrane most widely used in DMFCs. Yet, it is well known that Nafion (Du Pont Inc.) membranes are not good barrier for methanol, so that the coulombic efficiency of Nafion-based DMFCs is significantly reduced by the chemical oxidation of methanol in the cathode. Recently, a new perfluorinated polymer with sulphonic acid groups (PFSA) has been developed, under the commercial name of Sterion (David Fuel Cell Components). As a difference as opposed to Nafion, this membrane is cast by the solution casting method, which provides a different sulphonic cluster configuration as compared to the extrusion cast Nafion membranes, which may give rise to different methanol crossover behaviour. In this work, it has been studied and analysed the suitability of Sterion in the DMFCs field. For that, it has been measured the methanol permeability of this membrane at different solute concentration and temperature, and its performance in an actual fuel cell at different operational conditions, such as methanol concentration, temperature and back pressure. Tests have been made using both oxygen and air in the cathode and half-cell potentials have been evaluated in some measurements in order to discriminate the contribution of both semi-reactions to the overall cell overvoltage. A lifetime

  4. The effect of MEP pathway and other inhibitors on the intracellular localization of a plasma membrane-targeted, isoprenylable GFP reporter protein in tobacco BY-2 cells [v1; ref status: indexed, http://f1000r.es/yx

    Directory of Open Access Journals (Sweden)

    Michael Hartmann

    2013-08-01

    Full Text Available We have established an in vivo visualization system for the geranylgeranylation of proteins in a stably transformed tobacco BY-2 cell line, based on the expression of a dexamethasone-inducible GFP fused to the carboxy-terminal basic domain of the rice calmodulin CaM61, which naturally bears a CaaL geranylgeranylation motif (GFP-BD-CVIL. By using pathway-specific inhibitors it was demonstrated that inhibition of the methylerythritol phosphate (MEP pathway with known inhibitors like oxoclomazone and fosmidomycin, as well as inhibition of the protein geranylgeranyltransferase type 1 (PGGT-1, shifted the localization of the GFP-BD-CVIL protein from the membrane to the nucleus. In contrast, the inhibition of the mevalonate (MVA pathway with mevinolin did not affect the localization. During the present work, this test system has been used to examine the effect of newly designed inhibitors of the MEP pathway and inhibitors of sterol biosynthesis such as squalestatin, terbinafine and Ro48-8071. In addition, we also studied the impact of different post-prenylation inhibitors or those suspected to affect the transport of proteins to the plasma membrane on the localization of the geranylgeranylable fusion protein GFP-BD-CVIL.

  5. Super-resolution Microscopy Reveals Compartmentalization of Peroxisomal Membrane Proteins.

    Science.gov (United States)

    Galiani, Silvia; Waithe, Dominic; Reglinski, Katharina; Cruz-Zaragoza, Luis Daniel; Garcia, Esther; Clausen, Mathias P; Schliebs, Wolfgang; Erdmann, Ralf; Eggeling, Christian

    2016-08-12

    Membrane-associated events during peroxisomal protein import processes play an essential role in peroxisome functionality. Many details of these processes are not known due to missing spatial resolution of technologies capable of investigating peroxisomes directly in the cell. Here, we present the use of super-resolution optical stimulated emission depletion microscopy to investigate with sub-60-nm resolution the heterogeneous spatial organization of the peroxisomal proteins PEX5, PEX14, and PEX11 around actively importing peroxisomes, showing distinct differences between these peroxins. Moreover, imported protein sterol carrier protein 2 (SCP2) occupies only a subregion of larger peroxisomes, highlighting the heterogeneous distribution of proteins even within the peroxisome. Finally, our data reveal subpopulations of peroxisomes showing only weak colocalization between PEX14 and PEX5 or PEX11 but at the same time a clear compartmentalized organization. This compartmentalization, which was less evident in cases of strong colocalization, indicates dynamic protein reorganization linked to changes occurring in the peroxisomes. Through the use of multicolor stimulated emission depletion microscopy, we have been able to characterize peroxisomes and their constituents to a yet unseen level of detail while maintaining a highly statistical approach, paving the way for equally complex biological studies in the future.

  6. Present and future of membrane protein structure determination by electron crystallography.

    Science.gov (United States)

    Ubarretxena-Belandia, Iban; Stokes, David L

    2010-01-01

    Membrane proteins are critical to cell physiology, playing roles in signaling, trafficking, transport, adhesion, and recognition. Despite their relative abundance in the proteome and their prevalence as targets of therapeutic drugs, structural information about membrane proteins is in short supply. This chapter describes the use of electron crystallography as a tool for determining membrane protein structures. Electron crystallography offers distinct advantages relative to the alternatives of X-ray crystallography and NMR spectroscopy. Namely, membrane proteins are placed in their native membranous environment, which is likely to favor a native conformation and allow changes in conformation in response to physiological ligands. Nevertheless, there are significant logistical challenges in finding appropriate conditions for inducing membrane proteins to form two-dimensional arrays within the membrane and in using electron cryo-microscopy to collect the data required for structure determination. A number of developments are described for high-throughput screening of crystallization trials and for automated imaging of crystals with the electron microscope. These tools are critical for exploring the necessary range of factors governing the crystallization process. There have also been recent software developments to facilitate the process of structure determination. However, further innovations in the algorithms used for processing images and electron diffraction are necessary to improve throughput and to make electron crystallography truly viable as a method for determining atomic structures of membrane proteins.

  7. TOF-SIMS imaging of protein adsorption on dialysis membrane

    Science.gov (United States)

    Aoyagi, Satoka; Hayama, Msayo; Hasegawa, Urara; Sakai, Kiyotaka; Hoshi, Takahiro; Kudo, Masahiro

    2004-06-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is capable of chemical imaging of proteins on insulated samples such as hollow-fiber dialysis membranes. Albumin loss and a lowering of diffusive permeability caused by protein adsorption on dialysis membranes should be reduced in order to enhance dialysis adequacy of the patients. Bovine serum albumin (BSA)-adsorbed hollow-fiber dialysis membranes were tested in the present study. TOF-SIMS images and spectra of both native membranes and BSA-adsorbed membranes were compared in order to identify secondary ions related to BSA and membranes. Peaks of secondary ions related to BSA and each membrane were selected by means of information theory, and they are characterized by principal component analysis (PCA). Chemical images of BSA adsorption on both native and treated membranes were obtained to find that BSA permeability and interaction between the membranes and BSA definitely depend on the properties of a membrane. TOF-SIMS imaging obtained with information theory is a powerful tool to estimate protein adsorption on the dialysis membranes.

  8. α-actinin2增加SK2通道在HEK293膜蛋白的表达%α-Actinin 2 increases membrane protein expression of SK2 channel in HEK293 cell

    Institute of Scientific and Technical Information of China (English)

    李涛; 陈桂兰; 黄文俊; 毛亮; 李畅; 杨艳; 曾晓荣

    2014-01-01

    目的:证实α-Actinin 2与小电导钙激活钾通道(Small Conductance Ca2+-activated K+Channels, SK)的共同表达增加SK2在HEK293细胞膜上的表达。方法:HEK293细胞用RPMI 1640培养基培养。将HEK293细胞分为两组,对照组细胞转染pIRES-SK2质粒,实验组细胞共转染pIRES-SK2和pcDNA3-α-actinin2质粒。免疫荧光共聚焦显微镜和蛋白印迹技术检测SK2通道蛋白在HEK293细胞膜上的表达。结果:免疫荧光共聚焦显微镜检测到转染pIRES-SK2质粒的HEK293细胞膜上有SK2通道蛋白的表达。蛋白印迹技术显示实验组蛋白条带亮度明显高于对照组。结论:α-Actinin 2能增加SK2在HEK293细胞膜上的表达。%Objective:To confirm whether the protein expression of SK2 channel in HEK293 cell membrane is increased by the co-expression of α-Actinin2. Methods:HEK293 cells were cultured and randomly divided into control group, transfected with plasmid pIRES-SK2,and experimental group,transfected with plasmid pIRES-SK2 plus pcDNA3-α-Actinin2. Immunofluorescence confocal microscopy and western-blotting were used to test the membrane protein expression of SK2 channel in HEK293 cell. Results: SK2 channel protein was detected in the membrane of HEK293 by immunofluorescence confocal microscopy ,and he protein expression level in the experimental group was much higher than that in the control group. Conclusion:α-Actinin2 can increase SK2 channel membrane protein expression in HEK293 cell.

  9. Sch proteins are localized on endoplasmic reticulum membranes and are redistributed after tyrosine kinase receptor activation

    DEFF Research Database (Denmark)

    Lotti, L V; Lanfrancone, L; Migliaccio, E;

    1996-01-01

    area of the cell and mostly associated with the cytosolic side of rough endoplasmic reticulum membranes. Upon epidermal growth factor treatment and receptor tyrosine kinase activation, the immunolabeling became peripheral and was found to be associated with the cytosolic surface of the plasma membrane......The intracellular localization of Shc proteins was analyzed by immunofluorescence and immunoelectron microscopy in normal cells and cells expressing the epidermal growth factor receptor or the EGFR/erbB2 chimera. In unstimulated cells, the immunolabeling was localized in the central perinuclear....... The rough endoplasmic reticulum localization of Shc proteins in unstimulated cells and their massive recruitment to the plasma membrane, endocytic structures, and peripheral cytosol following receptor tyrosine kinase activation could account for multiple putative functions of the adaptor protein....

  10. Hereditary red cell membrane disorders and laboratory diagnostic testing.

    Science.gov (United States)

    King, M-J; Zanella, A

    2013-06-01

    This overview describes two groups of nonimmune hereditary hemolytic anemias caused by defects in membrane proteins located in distinct layers of the red cell membrane. Hereditary spherocytosis (HS), hereditary elliptocytosis (HE), and hereditary pyropoikilocytosis (HPP) represent disorders of the red cell cytoskeleton. Hereditary stomatocytoses represents disorders of cation permeability in the red cell membrane. The current laboratory screening tests for HS are the osmotic fragility test, acid glycerol lysis time test (AGLT), cryohemolysis test, and eosin-5'-maleimide (EMA)-binding test. For atypical HS, SDS-polyacrylamide gel electrophoresis of erythrocyte membrane proteins is carried out to confirm the diagnosis. The diagnosis of HE/HPP is based on abnormal red cell morphology and the detection of protein 4.1R deficiency or spectrin variants using gel electrophoresis. None of screening tests can detect all HS cases. Some testing centers (a survey of 25 laboratories) use a combination of tests (e.g., AGLT and EMA). No specific screening test for hereditary stomatocytoses is available. The preliminary diagnosis is based on presenting a compensated hemolytic anemia, macrocytosis, and a temperature or time dependent pseudohyperkalemia in some patients. Both the EMA-binding test and the osmotic fragility test may help in differential diagnosis of HS and hereditary stomatocytosis.

  11. Lipids, membrane proteins and natural membranes studied by neutron scattering and diffraction: A review

    Science.gov (United States)

    Zaccai, Giuseppe

    1986-02-01

    Diffraction first observed from myelin 50 years ago was correctly attributed to a fluid crystal of lipids, because similar patterns were observed from extracted lipid preparations. Following on more recent X-ray work which characterized a variety of lipid-water structures, neutron diffraction experiments have provided detailed descriptions of the molecular conformations in lipid bilayers. For a long time, however, the molecular structure of membrane proteins remained elusive and the development of detergents for the extraction of active membrane proteins, and the discovery of naturally crystalline purple membrane were important breakthroughs in this field. Structural parameters of membrane proteins solubilised in detergent have been measured by neutron scattering with contrast variation techniques. Purple membrane has been studied extensively by neutron diffraction. It is an excellent illustration of the use of deuterium labeling by different approaches to address specific questions of molecular structure. These studies are reviewed with a special emphasis on aspects which are applicable to membranes in general.

  12. Isolation of plant cell wall proteins.

    Science.gov (United States)

    Jamet, Elisabeth; Boudart, Georges; Borderies, Giséle; Charmont, Stephane; Lafitte, Claude; Rossignol, Michel; Canut, Herve; Pont-Lezica, Rafael

    2008-01-01

    The quality of a proteomic analysis of a cell compartment strongly depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific drawbacks: (1) the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP) during the isolation procedure; (2) polysaccharide networks of cellulose, hemicelluloses, and pectins form potential traps for contaminants such as intracellular proteins; (3) the presence of proteins interacting in many different ways with the polysaccharide matrix require different procedures to elute them from the cell wall. Three categories of CWP are distinguished: labile proteins that have little or no interactions with cell wall components, weakly bound proteins extractable with salts, and strongly bound proteins. Two alternative protocols are decribed for cell wall proteomics: (1) nondestructive techniques allowing the extraction of labile or weakly bound CWP without damaging the plasma membrane; (2) destructive techniques to isolate cell walls from which weakly or strongly bound CWP can be extracted. These protocols give very low levels of contamination by intracellular proteins. Their application should lead to a realistic view of the cell wall proteome at least for labile and weakly bound CWP extractable by salts.

  13. Gene cloning and prokaryotic expression of recombinant outer membrane protein from Vibrio parahaemolyticus

    Science.gov (United States)

    Yuan, Ye; Wang, Xiuli; Guo, Sheping; Qiu, Xuemei

    2011-06-01

    Gram-negative Vibrio parahaemolyticus is a common pathogen in humans and marine animals. The outer membrane protein of bacteria plays an important role in the infection and pathogenicity to the host. Thus, the outer membrane proteins are an ideal target for vaccines. We amplified a complete outer membrane protein gene (ompW) from V. parahaemolyticus ATCC 17802. We then cloned and expressed the gene into Escherichia coli BL21 (DE3) cells. The gene coded for a protein that was 42.78 kDa. We purified the protein using Ni-NTA affinity chromatography and Anti-His antibody Western blotting, respectively. Our results provide a basis for future application of the OmpW protein as a vaccine candidate against infection by V. parahaemolyticus. In addition, the purified OmpW protein can be used for further functional and structural studies.

  14. Gene cloning and prokaryotic expression of recombinant outer membrane protein from Vibrio parahaemolyticus

    Institute of Scientific and Technical Information of China (English)

    YUAN Ye; WANG Xiuli; GUO Sheping; QIU xuemei

    2011-01-01

    Gram-negative vibrio parahaemolyticus is a common pathogen in humans and marine animals.The outer membrane protein of bacteria plays an important role in the infection and pathogenicity to the host.Thus,the outer membrane proteins are an ideal target for vaccines.We amplified a complete outer membrane protein gene (ompW) from V.parahaemolyticus ATCC 17802.We then cloned and expressed the gene into Escherichia coli BL21 (DE3) cells.The gene coded for a protein that was 42.78 kDa.We purified the protein using Ni-NTA affinity chromatography and Anti-His antibody Western blotting,respectively.Our results provide a basis for future application of the OmpW protein as a vaccine candidate against infection by V.parahaemolyticus.In addition,the purified OmpW protein can be used for further functional and structural studies.

  15. Stretching micropatterned cells on a PDMS membrane.

    Science.gov (United States)

    Carpi, Nicolas; Piel, Matthieu

    2014-01-22

    Mechanical forces exerted on cells and/or tissues play a major role in numerous processes. We have developed a device to stretch cells plated on a PolyDiMethylSiloxane (PDMS) membrane, compatible with imaging. This technique is reproducible and versatile. The PDMS membrane can be micropatterned in order to confine cells or tissues to a specific geometry. The first step is to print micropatterns onto the PDMS membrane with a deep UV technique. The PDMS membrane is then mounted on a mechanical stretcher. A chamber is bound on top of the membrane with biocompatible grease to allow gliding during the stretch. The cells are seeded and allowed to spread for several hours on the micropatterns. The sample can be stretched and unstretched multiple times with the use of a micrometric screw. It takes less than a minute to apply the stretch to its full extent (around 30%). The technique presented here does not include a motorized device, which is necessary for applying repeated stretch cycles quickly and/or computer controlled stretching, but this can be implemented. Stretching of cells or tissue can be of interest for questions related to cell forces, cell response to mechanical stress or tissue morphogenesis. This video presentation will show how to avoid typical problems that might arise when doing this type of seemingly simple experiment.

  16. Polyclonal Antibody Production for Membrane Proteins via Genetic Immunization.

    Science.gov (United States)

    Hansen, Debra T; Robida, Mark D; Craciunescu, Felicia M; Loskutov, Andrey V; Dörner, Katerina; Rodenberry, John-Charles; Wang, Xiao; Olson, Tien L; Patel, Hetal; Fromme, Petra; Sykes, Kathryn F

    2016-02-24

    Antibodies are essential for structural determinations and functional studies of membrane proteins, but antibody generation is limited by the availability of properly-folded and purified antigen. We describe the first application of genetic immunization to a structurally diverse set of membrane proteins to show that immunization of mice with DNA alone produced antibodies against 71% (n = 17) of the bacterial and viral targets. Antibody production correlated with prior reports of target immunogenicity in host organisms, underscoring the efficiency of this DNA-gold micronanoplex approach. To generate each antigen for antibody characterization, we also developed a simple in vitro membrane protein expression and capture method. Antibody specificity was demonstrated upon identifying, for the first time, membrane-directed heterologous expression of the native sequences of the FopA and FTT1525 virulence determinants from the select agent Francisella tularensis SCHU S4. These approaches will accelerate future structural and functional investigations of therapeutically-relevant membrane proteins.

  17. Protein adsorption and separation on amphoteric chitosan/carboxymethylcellulose membranes.

    Science.gov (United States)

    Feng, Zhicheng; Shao, Zhengzhong; Yao, Jinrong; Chen, Xin

    2008-09-01

    This article reported the preparation of an amphoteric natural polymeric membrane-macroporous chitosan (CS)/carboxymethylcellulose (CMC) blend membrane and the utilization of such a membrane on the membrane chromatography for bioseparation. The membranes were prepared by solution blending of CS and CMC solution, and using silica particles as porogen. Both glutaraldehyde and epichlorohydrin were used as crosslinking agent to increase its chemical stability in aqueous solution. Such a natural polymeric membrane can be served as an amphoteric membrane because of the amino group on CS and the carboxymethyl group on CMC, in which the surface charge can be changed with the environmental pH. Ovalbumin (pI = 4.6) and lysozyme (pI = 11) were selected as model proteins. These two proteins adsorption on different CS/CMC blend membranes with different initial protein concentrations at different pH values were investigated in batch systems. The results indicated that the maximum adsorption for lysozyme and ovalbumin was at pH 9.2 and 4.8 respectively, and the adsorption capacity on the membrane both increased with the increase of initial protein concentration. Though the adsorption mechanism of lysozyme and ovalbumin was found not the same, the maximum adsorption capacity of two proteins on the membranes was quite similar (about 250 mg/g). Moreover, the desorption ratio of both proteins was found to be more than 90% that implied CS/CMC blend membrane could separate proteins by adsorption-desorption process. Finally, both lysozyme and ovalbumin were successfully separated from their binary mixture only by adjusting the pH of the feed and the desorption solution.

  18. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography.

    Science.gov (United States)

    Weierstall, Uwe; James, Daniel; Wang, Chong; White, Thomas A; Wang, Dingjie; Liu, Wei; Spence, John C H; Bruce Doak, R; Nelson, Garrett; Fromme, Petra; Fromme, Raimund; Grotjohann, Ingo; Kupitz, Christopher; Zatsepin, Nadia A; Liu, Haiguang; Basu, Shibom; Wacker, Daniel; Han, Gye Won; Katritch, Vsevolod; Boutet, Sébastien; Messerschmidt, Marc; Williams, Garth J; Koglin, Jason E; Marvin Seibert, M; Klinker, Markus; Gati, Cornelius; Shoeman, Robert L; Barty, Anton; Chapman, Henry N; Kirian, Richard A; Beyerlein, Kenneth R; Stevens, Raymond C; Li, Dianfan; Shah, Syed T A; Howe, Nicole; Caffrey, Martin; Cherezov, Vadim

    2014-01-01

    Lipidic cubic phase (LCP) crystallization has proven successful for high-resolution structure determination of challenging membrane proteins. Here we present a technique for extruding gel-like LCP with embedded membrane protein microcrystals, providing a continuously renewed source of material for serial femtosecond crystallography. Data collected from sub-10-μm-sized crystals produced with less than 0.5 mg of purified protein yield structural insights regarding cyclopamine binding to the Smoothened receptor.

  19. SURVEY REGARDING THE ULTRAFILTRATION OF PROTEINES THROUGH MEMBRANE BASED PROCEDURES

    Directory of Open Access Journals (Sweden)

    CAMELIA HODOSAN

    2013-12-01

    Full Text Available This work is based on examples that emphasize the complexity of the proteins ultrafiltration process, pointing out the first 10-15 minutes of ultrafiltration. The knowledgement of the factors that influence the separation through ultrafiltration of proteins will allow to choose the right type of membrane, the frequent use of the same membrane and the operation in mechanical and chemical conditions adequate to the ultrafiltration system, when it is separated a protein with certain molecular weight.

  20. Surface expression, single-channel analysis and membrane topology of recombinant Chlamydia trachomatis Major Outer Membrane Protein

    Directory of Open Access Journals (Sweden)

    McClafferty Heather

    2005-01-01

    Full Text Available Abstract Background Chlamydial bacteria are obligate intracellular pathogens containing a cysteine-rich porin (Major Outer Membrane Protein, MOMP with important structural and, in many species, immunity-related roles. MOMP forms extensive disulphide bonds with other chlamydial proteins, and is difficult to purify. Leaderless, recombinant MOMPs expressed in E. coli have yet to be refolded from inclusion bodies, and although leadered MOMP can be expressed in E. coli cells, it often misfolds and aggregates. We aimed to improve the surface expression of correctly folded MOMP to investigate the membrane topology of the protein, and provide a system to display native and modified MOMP epitopes. Results C. trachomatis MOMP was expressed on the surface of E. coli cells (including "porin knockout" cells after optimizing leader sequence, temperature and medium composition, and the protein was functionally reconstituted at the single-channel level to confirm it was folded correctly. Recombinant MOMP formed oligomers even in the absence of its 9 cysteine residues, and the unmodified protein also formed inter- and intra-subunit disulphide bonds. Its topology was modeled as a (16-stranded β-barrel, and specific structural predictions were tested by removing each of the four putative surface-exposed loops corresponding to highly immunogenic variable sequence (VS domains, and one or two of the putative transmembrane strands. The deletion of predicted external loops did not prevent folding and incorporation of MOMP into the E. coli outer membrane, in contrast to the removal of predicted transmembrane strands. Conclusions C. trachomatis MOMP was functionally expressed on the surface of E. coli cells under newly optimized conditions. Tests of its predicted membrane topology were consistent with β-barrel oligomers in which major immunogenic regions are displayed on surface-exposed loops. Functional surface expression, coupled with improved understanding of MOMP

  1. Assessing the Outer Membrane Insertion and Folding of Multimeric Transmembrane β-Barrel Proteins.

    Science.gov (United States)

    Leo, Jack C; Oberhettinger, Philipp; Linke, Dirk

    2015-01-01

    In addition to the cytoplasmic membrane, Gram-negative bacteria have a second lipid bilayer, the outer membrane, which is the de facto barrier between the cell and the extracellular milieu. Virtually all integral proteins of the outer membrane form β-barrels, which are inserted into the outer membrane by the BAM complex. Some outer membrane proteins, like the porins and trimeric autotransporter adhesins, are multimeric. In the former case, the porin trimer consists of three individual β-barrels, whereas in the latter, the single autotransporter β-barrel domain is formed by three separate polypeptides. This chapter reviews methods to investigate the folding and membrane insertion of multimeric OMPs and further explains the use of a BamA depletion strain to study the effects of the BAM complex on multimeric OMPs in E. coli.

  2. Quenching of fluorescence in membrane protein by hypocrellin B

    Institute of Scientific and Technical Information of China (English)

    乐加昌; 庞素珍

    1997-01-01

    The hypocrellin B (HB) was used as a fluorescence quencher to study the basic physical characteris-tics of HB in membrane systems, including the diffusion speed of quencher from aqueous phase into membrane phase, the partition coefficient (P) of quencher between membrane and water, and the fluorescence quenching constant of protein (Ksv; Kq). The experimental results show that the quenching of fluorescence in membrane protein by HB can be determined by the principle of dynamic quenching. The experimental process of fluorescence quenching was ob-served in detail by using the ESR technique. The signal of HB" was found to arise from an electron transfer from ex-cited trytophan to HB.

  3. Mast cell synapses and exosomes: membrane contacts for information exchange

    Directory of Open Access Journals (Sweden)

    Amanda eCarroll-Portillo

    2012-03-01

    Full Text Available In addition to their central role in allergy, mast cells are involved in a wide variety of cellular interactions during homeostasis and disease. In this review, we discuss the ability of mast cells to extend their mechanisms for intercellular communication beyond the release of soluble mediators. These include formation of mast cell synapses on antigen presenting surfaces, as well as cell-cell contacts with dendritic cells and T cells. Release of membrane-bound exosomes also provide for the transfer of antigen, mast cell proteins and RNA to other leukocytes. With the recognition of the extended role mast cells have during immune modulation, further investigation of the processes in which mast cells are involved is necessary. This reopens mast cell research to exciting possibilities, demonstrating it to be an immunological frontier.

  4. 3D pressure field in lipid membranes and membrane-protein complexes

    DEFF Research Database (Denmark)

    Ollila, O H Samuli; Risselada, H Jelger; Louhivuori, Martti;

    2009-01-01

    We calculate full 3D pressure fields for inhomogeneous nanoscale systems using molecular dynamics simulation data. The fields represent systems with increasing level of complexity, ranging from semivesicles and vesicles to membranes characterized by coexistence of two phases, including also...... a protein-membrane complex. We show that the 3D pressure field is distinctly different for curved and planar bilayers, the pressure field depends strongly on the phase of the membrane, and that an integral protein modulates the tension and elastic properties of the membrane....

  5. The major myelin-resident protein PLP is transported to myelin membranes via a transcytotic mechanism : involvement of sulfatide

    NARCIS (Netherlands)

    Baron, Wia; Ozgen, Hande; Klunder, Bert; de Jonge, Jenny C; Nomden, Anita; Plat, Annechien; Trifilieff, Elisabeth; de Vries, Hans; Hoekstra, Dick

    2015-01-01

    Myelin membranes are sheet-like extensions of oligodendrocytes that can be considered as membrane domains distinct from the cell's plasma membrane. Consistent with the polarized nature of oligodendrocytes we demonstrate that transcytotic transport of the major myelin-resident protein, PLP, is a key

  6. Electropermeabilization mediates a stable insertion of glycophorin A with Chinese hamster ovary cell membranes.

    Science.gov (United States)

    el Ouagari, K; Benoist, H; Sixou, S; Teissie, J

    1994-02-01

    Electropulsation allowed us to incorporate glycophorin A, an integral membrane protein, into mammalian nucleated cell membranes (Chinese hamster ovary cells). The induction of stable protein association is effective only when the field intensity is higher than its threshold value, creating membrane permeabilization to small molecules. Under controlled conditions, cell viability was only slightly altered by this treatment. Pulse number and duration controlled both the number of modified cells and incorporated molecules. The phenomena was temperature dependent. An average of 5 x 10(4) molecules/cell was bound. About 80% of cells in the pulsed population were observed to incorporate glycophorin. The protein incorporation was shown to be stable 48 h after electroassociation. Electrically bound proteins were shared between the cells after each division. As enhanced binding is detected if glycophorin is added after the pulses, it is the long-lived alteration of the membrane mediated by the pulses which supports the association.

  7. Endocytosis and membrane receptor internalization: implication of F-BAR protein Carom.

    Science.gov (United States)

    Xu, Yanjie; Xia, Jixiang; Liu, Suxuan; Stein, Sam; Ramon, Cueto; Xi, Hang; Wang, Luqiao; Xiong, Xinyu; Zhang, Lixiao; He, Dingwen; Yang, William; Zhao, Xianxian; Cheng, Xiaoshu; Yang, Xiaofeng; Wang, Hong

    2017-03-01

    Endocytosis is a cellular process mostly responsible for membrane receptor internalization. Cell membrane receptors bind to their ligands and form a complex which can be internalized. We previously proposed that F-BAR protein initiates membrane curvature and mediates endocytosis via its binding partners. However, F-BAR protein partners involved in membrane receptor endocytosis and the regulatory mechanism remain unknown. In this study, we established database mining strategies to explore mechanisms underlying receptor-related endocytosis. We identified 34 endocytic membrane receptors and 10 regulating proteins in clathrin-dependent endocytosis (CDE), a major process of membrane receptor internalization. We found that F-BAR protein FCHSD2 (Carom) may facilitate endocytosis via 9 endocytic partners. Carom is highly expressed, along with highly expressed endocytic membrane receptors and partners, in endothelial cells and macrophages. We established 3 models of Carom-receptor complexes and their intracellular trafficking based on protein interaction and subcellular localization. We conclude that Carom may mediate receptor endocytosis and transport endocytic receptors to the cytoplasm for receptor signaling and lysosome/proteasome degradation, or to the nucleus for RNA processing, gene transcription and DNA repair.

  8. Cell membrane softening in human breast and cervical cancer cells

    Science.gov (United States)

    Händel, Chris; Schmidt, B. U. Sebastian; Schiller, Jürgen; Dietrich, Undine; Möhn, Till; Kießling, Tobias R.; Pawlizak, Steve; Fritsch, Anatol W.; Horn, Lars-Christian; Briest, Susanne; Höckel, Michael; Zink, Mareike; Käs, Josef A.

    2015-08-01

    Biomechanical properties are key to many cellular functions such as cell division and cell motility and thus are crucial in the development and understanding of several diseases, for instance cancer. The mechanics of the cellular cytoskeleton have been extensively characterized in cells and artificial systems. The rigidity of the plasma membrane, with the exception of red blood cells, is unknown and membrane rigidity measurements only exist for vesicles composed of a few synthetic lipids. In this study, thermal fluctuations of giant plasma membrane vesicles (GPMVs) directly derived from the plasma membranes of primary breast and cervical cells, as well as breast cell lines, are analyzed. Cell blebs or GPMVs were studied via thermal membrane fluctuations and mass spectrometry. It will be shown that cancer cell membranes are significantly softer than their non-malignant counterparts. This can be attributed to a loss of fluid raft forming lipids in malignant cells. These results indicate that the reduction of membrane rigidity promotes aggressive blebbing motion in invasive cancer cells.

  9. Metric dynamics for membrane transformation through regulated cell proliferation

    OpenAIRE

    Ito, Hiroshi C.

    2016-01-01

    This study develops an equation for describing three-dimensional membrane transformation through proliferation of its component cells regulated by morphogen density distributions on the membrane. The equation is developed in a two-dimensional coordinate system mapped on the membrane, referred to as the membrane coordinates. When the membrane expands, the membrane coordinates expand in the same manner so that the membrane is invariant in the coordinates. In the membrane coordinate system, the ...

  10. Shedding of cell membrane-bound proteoglycans.

    Science.gov (United States)

    Nam, Eon Jeong; Park, Pyong Woo

    2012-01-01

    Membrane-bo