WorldWideScience

Sample records for cell manufacturing technology

  1. Manufacturing technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  2. Manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, J.A.; Floyd, H.L.; Goetsch, B.; Doran, L. [eds.

    1993-08-01

    This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high- voltage varistors. Selective laser sintering automates wax casting pattern fabrication. Numerical modeling improves performance of photoresist stripper (simulation on Cray supercomputer reveals path to uniform plasma). And mathematical models help make dream of low- cost ceramic composites come true.

  3. Advanced Manufacturing Technologies (AMT): Additive Manufactured Hot Fire Planning and Testing in GRC Cell 32 Project

    Science.gov (United States)

    Fikes, John C.

    2014-01-01

    The objective of this project is to hot fire test an additively manufactured thrust chamber assembly TCA (injector and thrust chamber). GRC will install the additively manufactured Inconel 625 injector, two additively manufactured (SLM) water cooled Cu-Cr thrust chamber barrels and one additively manufactured (SLM) water cooled Cu-Cr thrust chamber nozzle on the test stand in Cell 32 and perform hot fire testing of the integrated TCA.

  4. Advanced Manufacturing Technologies

    Science.gov (United States)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  5. Tribology in Manufacturing Technology

    CERN Document Server

    2013-01-01

    The present book aims to provide research advances on tribology in manufacturing technology for modern industry. This book can be used as a research book for final undergraduate engineering course (for example, mechanical, manufacturing, materials, etc) or as a subject on manufacturing at the postgraduate level. Also, this book can serve as a useful reference for academics, manufacturing and tribology researchers, mechanical, mechanical, manufacturing and materials engineers, professionals in related industries with manufacturing and tribology.

  6. Life Cycle Assessment of Titania Perovskite Solar Cell Technology for Sustainable Design and Manufacturing.

    Science.gov (United States)

    Zhang, Jingyi; Gao, Xianfeng; Deng, Yelin; Li, Bingbing; Yuan, Chris

    2015-11-01

    Perovskite solar cells have attracted enormous attention in recent years due to their low cost and superior technical performance. However, the use of toxic metals, such as lead, in the perovskite dye and toxic chemicals in perovskite solar cell manufacturing causes grave concerns for its environmental performance. To understand and facilitate the sustainable development of perovskite solar cell technology from its design to manufacturing, a comprehensive environmental impact assessment has been conducted on titanium dioxide nanotube based perovskite solar cells by using an attributional life cycle assessment approach, from cradle to gate, with manufacturing data from our laboratory-scale experiments and upstream data collected from professional databases and the literature. The results indicate that the perovskite dye is the primary source of environmental impact, associated with 64.77% total embodied energy and 31.38% embodied materials consumption, contributing to more than 50% of the life cycle impact in almost all impact categories, although lead used in the perovskite dye only contributes to about 1.14% of the human toxicity potential. A comparison of perovskite solar cells with commercial silicon and cadmium-tellurium solar cells reveals that perovskite solar cells could be a promising alternative technology for future large-scale industrial applications. PMID:26489525

  7. Energetics Manufacturing Technology Center (EMTC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Manufacturing Technology Center (EMTC), established in 1994 by the Office of Naval Research (ONR) Manufacturing Technology (ManTech) Program, is Navy...

  8. Advanced manufacturing: Technology diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  9. Advanced Manufacturing Technologies (AMT): Manufacturing Initiative Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA supports the Advanced Manufacturing National Program Office (AMNPO). Hosted by the National Institute of Standards and Technology (NIST) the AMNPO is...

  10. Manufacturing technology development for CuInGaSe2 solar cell modules

    Science.gov (United States)

    Stanbery, B. J.

    1991-11-01

    The report describes research performed by Boeing Aerospace and Electronics under the Photovoltaic Manufacturing Technology project. We anticipate that implementing advanced semiconductor device fabrication techniques to the production of large area CuIn(1-x)Ga(x)Se2 (CIGS)/Cd(1-y)Zn(y)S/ZnO monolithically integrated thin film solar cell modules will enable 15 pct. median efficiencies to be achieved in high volume manufacturing. We do not believe that CuInSe2 (CIS) can achieve this efficiency in production without sufficient gallium to significantly increase the band gap, thereby matching it better to the solar spectrum (i.e., x greater than or = 0.2). Competing techniques for CIS film formation have not been successfully extended to CIGS devices with such high band gaps. The SERI-confirmed intrinsic stability of CIS-based photovoltaics renders them far superior to a-Si:H-based devices, making a 30 year module lifetime feasible. The minimal amounts of cadmium used in the structure we propose, compared to CdTe-based devices, makes them environmentally safer and more acceptable to both consumers and relevant regulatory agencies. Large area integrated thin film CIGS modules are the product most likely to supplant silicon modules by the end of this decade and enable the cost improvements which will lead to rapid market expansion.

  11. Manufacturing technology development for CuInGaSe sub 2 solar cell modules

    Energy Technology Data Exchange (ETDEWEB)

    Stanbery, B.J. (Boeing Aerospace and Electronics Co., Seattle, WA (United States))

    1991-11-01

    The report describes research performed by Boeing Aerospace and Electronics under the Photovoltaic Manufacturing Technology project. We anticipate that implementing advanced semiconductor device fabrication techniques to the production of large-area CuIn{sub 1-x}Ga{sub x}Se{sub 2} (CIGS)/Cd{sub 1-y}Zn{sub y}S/ZnO monolithically integrated thin-film solar cell modules will enable 15% median efficiencies to be achieved in high-volume manufacturing. We do not believe that CuInSe{sub 2} (CIS) can achieve this efficiency in production without sufficient gallium to significantly increase the band gap, thereby matching it better to the solar spectrum (i.e., x{ge}0.2). Competing techniques for CIS film formation have not been successfully extended to CIGS devices with such high band gaps. The SERI-confirmed intrinsic stability of CIS-based photovoltaics renders them far superior to a-Si:H-based devices, making a 30-year module lifetime feasible. The minimal amounts of cadmium used in the structure we propose, compared to CdTe-based devices, makes them environmentally safer and more acceptable to both consumers and relevant regulatory agencies. Large-area integrated thin-film CIGS modules are the product most likely to supplant silicon modules by the end of this decade and enable the cost improvements which will lead to rapid market expansion.

  12. Desktop Manufacturing Technologies.

    Science.gov (United States)

    Snyder, Mark

    1991-01-01

    Desktop manufacturing is the use of data from a computer-assisted design system to construct actual models of an object. Emerging processes are stereolithography, laser sintering, ballistic particle manufacturing, laminated object manufacturing, and photochemical machining. (SK)

  13. Training for New Manufacturing Technologies.

    Science.gov (United States)

    Jacobs, James

    1988-01-01

    Examines the effects of computer-based manufacturing technologies on employment opportunities and job skills. Describes the establishment of the Industrial Technology Institute in Michigan to develop and utilize advanced manufacturing technologies, and the institute's relationship to the state's community colleges. Reviews lessons learned from…

  14. Technology and Manufacturing Readiness of Early Market Motive and Non-Motive Hydrogen Storage Technologies for Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ronnebro, Ewa

    2012-06-16

    PNNL’s objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies’ maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNL’s Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.

  15. Nano Manufacturing - Products and Technologies

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Alting, Leo

    2004-01-01

    The use of micro and nano technologies in components and products not only sets new demands to the manufacturing technologies. Product concepts have to be rethought and redefined in order to implement the micro and nano technologies into functional systems. Both a technology driven and a product...... driven approach can be used in this process. A framework for the product driven approach in nano manufacturing is presented and discussed. The general discussion will be supported by case studies covering polymers and metals....

  16. Application of ICSVT technology in manufacturing thick-layer CdTe solar cells

    International Nuclear Information System (INIS)

    The production of solar cells has become the number one in modern implementations of thick-layer technology in optoelectronics. Through invented and developed in the second half of the current century yet, recently these devices have achieved the crossroad point in their evolution. There are two ways under consideration: the modification of the monocrystalline silicon cell - the non-incipient one that is well recognised and efficient, and the polycrystalline , heterojunction technology which is bloomed in the last few years. Its properties have been kept under intensive investigation still but it is obvious that this one may project their much lower final cost together with almost monocrystalline range of sunlight conversion efficiency. These features will certainly diminish production costs of one peak watt (one watt of electrical energy, obtained in optimal conversion conditions), what is essential for the competency of solar cells as an alternative energy source. CdTe-CdS type cells are heading in this wide researching, owing to their unique features connected with both optical and electrical properties of these materials' combination. When these cells are properly formed, one should expect the competitively high conversion efficiency together with possibility of some untypical, specific implementations (ex. on elastic foils) accompanied by a rather low material consumption. This communicate makes a report from our researches of the new, more efficient technology to form the layers of the type mentioned above, named: ICSVT (Isothermal Close-Space Vapour Transport), combined with some applications of the well known screen-printing technique. (author)

  17. Rhenium Rocket Manufacturing Technology

    Science.gov (United States)

    1997-01-01

    The NASA Lewis Research Center's On-Board Propulsion Branch has a research and technology program to develop high-temperature (2200 C), iridium-coated rhenium rocket chamber materials for radiation-cooled rockets in satellite propulsion systems. Although successful material demonstrations have gained much industry interest, acceptance of the technology has been hindered by a lack of demonstrated joining technologies and a sparse materials property data base. To alleviate these concerns, we fabricated rhenium to C-103 alloy joints by three methods: explosive bonding, diffusion bonding, and brazing. The joints were tested by simulating their incorporation into a structure by welding and by simulating high-temperature operation. Test results show that the shear strength of the joints degrades with welding and elevated temperature operation but that it is adequate for the application. Rhenium is known to form brittle intermetallics with a number of elements, and this phenomena is suspected to cause the strength degradation. Further bonding tests with a tantalum diffusion barrier between the rhenium and C-103 is planned to prevent the formation of brittle intermetallics.

  18. Contemporary design and manufacturing technology

    CERN Document Server

    Wang, Taiyong; Zuo, Dunwen

    2013-01-01

    The special topic volume communicates the latest progress and research results of new theory, new technology, method, equipment and so on in Engineering Technology, and to grasp the updated technological and research trends in internationally. The major topics covered by the special volumes include Advanced Materials and Manufacturing Technologies, Control, Automation and Detection Systems, Advanced Design Technology, Optimization and Modeling. In 80 invited and peer-reviewed papers, mechanical and other engineers describe their recent and current research and results in advanced materials and

  19. Photovoltaic Manufacturing Technology Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Stern, M.J. (Utility Power Group, Chatsworth, CA (United States))

    1991-11-01

    This report documents Utility Power Group's (UPG) contract under Phase 1 of the Photovoltaic Manufacturing Technology (PVMaT) project. Specifically, the report contains the results of a manufacturing technology cost analysis based on an existing PV module production facility. It also projects the cost analysis of a future production facility based on a larger module area, a larger production rate, and the elimination of several technical obstacles. With a coordinated 18-month engineering effort, the technical obstacles could be overcome. Therefore, if solutions to the financial obstacles concerning production expansion were found, UPG would be able to manufacture PV modules at a cost of under $1.25 per watt by 1994.

  20. Eco green flexible hybrid photovoltaic-thermoelectric solar cells with nanoimprint technology and roll-to-roll manufacturing

    Science.gov (United States)

    Varadan, Vijay K.; Choi, Sang H.

    2010-04-01

    This paper explores the technical and commercial feasibility of nanotechnology based, high-efficiency, photovoltaic-thermoelectric hybrid solar cells as an environmentally-friendly, renewable energy source for residential and commercial buildings. To convert as much as possible of the usable photovoltaic (58% of the Energy Density) and thermoelectric (42% of the Energy Density) solar spectrum into electricity, a hybrid multilayer system is presented which comprises of 1) carbon nanotube (CNT) embedded in conducting polymers such as P3HT (poly(3-hexylthiophene) or P3OT (poly3-octylthiophene), 2) 3D gold nanostructures exhibiting plasmonic resonances for energy conversion, 3) nanoantenna architecture to capture IR energy, 4) a composite of Bi2Te3, SiGe nanocrystals and Au nanoshells as thermoelectric energy conversion layer, 5) configuration of the above items engineered in the form of meta-material designs that by virtue of their 3D structures ensure that incident light is neither reflected nor transmitted, but is rather all absorbed, 6) a multilayer arrangement of the above layers in a fractal architecture to capture all the wavelengths from 200 to 3000 nm8 and the matching electronic interface for each layer. The roll-to-roll manufacturing method presented will enable economical large-scale production of solar panels. This potentially transformational technology has the ability to replace the Si solar cell technology by reducing costs from 0.18/KWh to 0.003/KWh while introducing a more environmentally-friendly manufacturing process.

  1. Introduction to semiconductor manufacturing technology

    CERN Document Server

    2012-01-01

    IC chip manufacturing processes, such as photolithography, etch, CVD, PVD, CMP, ion implantation, RTP, inspection, and metrology, are complex methods that draw upon many disciplines. [i]Introduction to Semiconductor Manufacturing Technologies, Second Edition[/i] thoroughly describes the complicated processes with minimal mathematics, chemistry, and physics; it covers advanced concepts while keeping the contents accessible to readers without advanced degrees. Designed as a textbook for college students, this book provides a realistic picture of the semiconductor industry and an in-depth discuss

  2. ON INTELLIGENTIZED TECHNOLOGIES FOR MODERN WELDING MANUFACTURING

    Institute of Scientific and Technical Information of China (English)

    Chen Shanben; Qiu Tao; Lin Tao; Wu Yixiong

    2003-01-01

    A short survey on researching and developing status of intelligent technologies in modem welding manufacturing is given. According to the developing trend of advanced manufacturing technology, a concept on intelligentized welding manufacturing engineering (IWME), is presented for systematization of researching and developing domains on welding automation, intelligentized welding,robotic and flexible welding and advanced welding manufacturing technologies. And key technologies of welding intelligent manufacturing and its developing trend in the future are investigated.

  3. Organic photovoltaics: technologies and manufacturing

    NARCIS (Netherlands)

    Galagan, Y.O.; Andriessen, H.A.J.M.

    2012-01-01

    It is assumed, that the organic electronics industries and organic solar cells in particular, are in the transition stage towards commercialization. The companies and R&D institutes in this area are moving now from research and development stage to manufacturing. The biggest challenges are how to sc

  4. Cloud manufacturing distributed computing technologies for global and sustainable manufacturing

    CERN Document Server

    Mehnen, Jörn

    2013-01-01

    Global networks, which are the primary pillars of the modern manufacturing industry and supply chains, can only cope with the new challenges, requirements and demands when supported by new computing and Internet-based technologies. Cloud Manufacturing: Distributed Computing Technologies for Global and Sustainable Manufacturing introduces a new paradigm for scalable service-oriented sustainable and globally distributed manufacturing systems.   The eleven chapters in this book provide an updated overview of the latest technological development and applications in relevant research areas.  Following an introduction to the essential features of Cloud Computing, chapters cover a range of methods and applications such as the factors that actually affect adoption of the Cloud Computing technology in manufacturing companies and new geometrical simplification method to stream 3-Dimensional design and manufacturing data via the Internet. This is further supported case studies and real life data for Waste Electrical ...

  5. Progress and Future of Manufacturing Technology

    Institute of Scientific and Technical Information of China (English)

    Lu Yongxiang

    2001-01-01

    This paper reviews the development of manufacturing technology and the progress that has so far been made in this field.It points out that manufacturing technology is not only the pillar of material civilization and the base of spiritual civilization of man,but also the foundation of a country's competitivendess.The paper also attempts to review the future of manufacturing technology through the description of the new pattern of manufacturing market,new features of manufactured products,new characteristics of technologies as well as the emerging trends of manufacturing enterprises and man-agement in the 21 st cetury.

  6. Quality cell therapy manufacturing by design.

    Science.gov (United States)

    Lipsitz, Yonatan Y; Timmins, Nicholas E; Zandstra, Peter W

    2016-04-01

    Transplantation of live cells as therapeutic agents is poised to offer new treatment options for a wide range of acute and chronic diseases. However, the biological complexity of cells has hampered the translation of laboratory-scale experiments into industrial processes for reliable, cost-effective manufacturing of cell-based therapies. We argue here that a solution to this challenge is to design cell manufacturing processes according to quality-by-design (QbD) principles. QbD integrates scientific knowledge and risk analysis into manufacturing process development and is already being adopted by the biopharmaceutical industry. Many opportunities to incorporate QbD into cell therapy manufacturing exist, although further technology development is required for full implementation. Linking measurable molecular and cellular characteristics of a cell population to final product quality through QbD is a crucial step in realizing the potential for cell therapies to transform healthcare.

  7. Handbook of manufacturing engineering and technology

    CERN Document Server

    2015-01-01

    The Springer Reference Work Handbook of Manufacturing Engineering and Technology provides overviews and in-depth and authoritative analyses on the basic and cutting-edge manufacturing technologies and sciences across a broad spectrum of areas. These topics are commonly encountered in industries as well as in academia. Manufacturing engineering curricula across universities are now essential topics covered in major universities worldwide.

  8. Challenges in teaching modern manufacturing technologies

    Science.gov (United States)

    Ngaile, Gracious; Wang, Jyhwen; Gau, Jenn-Terng

    2015-07-01

    Teaching of manufacturing courses for undergraduate engineering students has become a challenge due to industrial globalisation coupled with influx of new innovations, technologies, customer-driven products. This paper discusses development of a modern manufacturing course taught concurrently in three institutions where students collaborate in executing various projects. Lectures are developed to contain materials featuring advanced manufacturing technologies, R&D trends in manufacturing. Pre- and post-surveys were conducted by an external evaluator to assess the impact of the course on increase in student's knowledge of manufacturing; increase students' preparedness and confidence in effective communication and; increase students' interest in pursuing additional academic studies and/or a career path in manufacturing and high technology. The surveyed data indicate that the students perceived significant gains in manufacturing knowledge and preparedness in effective communication. The study also shows that implementation of a collaborative course within multiple institutions requires a robust and collective communication platform.

  9. An Assessment of Advanced Manufacturing Technologies Implementation in Manufacturing Enterprises

    Directory of Open Access Journals (Sweden)

    Ghulam Yasin Shaikh

    2011-04-01

    Full Text Available The implementation of AMTs (Advanced Manufacturing Technologies has always been the high interest and core issue for the manufacturing enterprises to get rapid production for global market place. The developed countries have achieved its competitive advantage by implementing this unique model of technologies with full range of systems. In developing countries, the implementation of such technologies is not much common due to so many reasons, (political, social, economical and technical but entrepreneurs of growing economies are contemplating to reshape long term strategy to adopt Computer systems oriented technologies in their manufacturing companies to meet the growing needs of their indigenous market on one hand and to make a place in the international market on the other. Although, very few manufacturing organization do meet the global market requirements. But there is still lot of efforts to be taken for world class competition. An attempt has been made in this paper to develop a conceptual model taking in to account the three parameters such as, Direct, Indirect and Administrative AMTs. This research work further attempts to present an empirical data analysis conducted in the manufacturing enterprises in province of Sindh, Pakistan. The overall indigenous progress of manufacturing enterprises as according to the data collected from 60 companies reveals that the AMTs systems are partially understood and practiced that is also one of the cause towards slow progress of national exchequer.

  10. Manufacturing and recycling of technology metals. Lectures

    International Nuclear Information System (INIS)

    This seminar volume contains 13 lectures concerning the geological availability, the trends of the technology, manufacturing and recycling process of technology metals such as Indium, Gallium, Selenium, Rhenium or the Rare Earths.

  11. PV Cz silicon manufacturing technology improvements

    Science.gov (United States)

    Jester, T.

    1995-09-01

    This describes work done in the final phase of a 3-y, 3-phase contract to demonstrate cost reductions and improvements in manufacturing technology. The work focused on near-term projects in the SSI (Siemens Solar Industries) Czochralski (Cz) manufacturing facility in Camarillo, CA; the final phase was concentrated in areas of crystal growth, wafer technology, and environmental, safety, and health issues. During this period: (1) The crystal-growing operation improved with increased growth capacity; (2) Wafer processing with wire saws continued to progress; the wire saws yielded almost 50 percent more wafers per inch in production. The wire saws needs less etching, too; (3) Cell processing improvements focused on better handling and higher mechanical yield. The cell electrical distribution improved with a smaller standard deviation in the distribution; and (4) Module designs for lower material and labor costs continued, with focus on a new junction box, larger modules with larger cells, and less costly framing techniques. Two modules demonstrating these cost reductions were delivered during this phase.

  12. Technological Theory of Cloud Manufacturing

    OpenAIRE

    Kubler, Sylvain; Holmström, Jan; Främling, Kary; Turkama, Petra

    2015-01-01

    Over the past decade, a flourishing number of concepts and architectural shifts appeared such as the Internet of Things, Industry 4.0, Big Data, 3D printing, etc. Such concepts are reshaping traditional manufacturing models, which become increasingly network-, service- and intelligent manufacturing-oriented. It sometimes becomes difficult to have a clear vision of how all those concepts are interwoven and what benefits they bring to the global picture (either from a service or business perspe...

  13. Advanced manufacturing: Technology and international competitiveness

    Energy Technology Data Exchange (ETDEWEB)

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

  14. Metrology for Fuel Cell Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Stocker, Michael [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Stanfield, Eric [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  15. Isotope separation and advanced manufacturing technology

    Science.gov (United States)

    Carpenter, J.; Kan, T.

    This is the fourth issue of a semiannual report for the Isotope Separation and Advanced Materials Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives include: (1) the Uranium Atomic Vapor Laser Isotope Separation (UAVLIS) process, which is being developed and prepared for deployment as an advanced uranium enrichment capability; (2) Advanced manufacturing technologies, which include industrial laser and E-beam material processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. This report features progress in the ISAM Program from October 1993 through March 1994.

  16. Emerging technologies in arthroplasty: additive manufacturing.

    Science.gov (United States)

    Banerjee, Samik; Kulesha, Gene; Kester, Mark; Mont, Michael A

    2014-06-01

    Additive manufacturing is an industrial technology whereby three-dimensional visual computer models are fabricated into physical components by selectively curing, depositing, or consolidating various materials in consecutive layers. Although initially developed for production of simulated models, the technology has undergone vast improvements and is currently increasingly being used for the production of end-use components in various aerospace, automotive, and biomedical specialties. The ability of this technology to be used for the manufacture of solid-mesh-foam monolithic and coated components of complex geometries previously considered unmanufacturable has attracted the attention of implant manufacturers, bioengineers, and orthopedic surgeons. Currently, there is a paucity of reports describing this fabrication method in the orthopedic literature. Therefore, we aimed to briefly describe this technology, some of the applications in other orthopedic subspecialties, its present use in hip and knee arthroplasty, and concerns with the present form of the technology. As there are few reports of clinical trials presently available, the true benefits of this technology can only be realized when studies evaluating the clinical and radiographic outcomes of cementless implants manufactured with additive manufacturing report durable fixation, less stress shielding, and better implant survivorship. Nevertheless, the authors believe that this technology holds great promise and may potentially change the conventional methods of casting, machining, and tooling for implant manufacturing in the future. PMID:24764230

  17. Emerging technologies in arthroplasty: additive manufacturing.

    Science.gov (United States)

    Banerjee, Samik; Kulesha, Gene; Kester, Mark; Mont, Michael A

    2014-06-01

    Additive manufacturing is an industrial technology whereby three-dimensional visual computer models are fabricated into physical components by selectively curing, depositing, or consolidating various materials in consecutive layers. Although initially developed for production of simulated models, the technology has undergone vast improvements and is currently increasingly being used for the production of end-use components in various aerospace, automotive, and biomedical specialties. The ability of this technology to be used for the manufacture of solid-mesh-foam monolithic and coated components of complex geometries previously considered unmanufacturable has attracted the attention of implant manufacturers, bioengineers, and orthopedic surgeons. Currently, there is a paucity of reports describing this fabrication method in the orthopedic literature. Therefore, we aimed to briefly describe this technology, some of the applications in other orthopedic subspecialties, its present use in hip and knee arthroplasty, and concerns with the present form of the technology. As there are few reports of clinical trials presently available, the true benefits of this technology can only be realized when studies evaluating the clinical and radiographic outcomes of cementless implants manufactured with additive manufacturing report durable fixation, less stress shielding, and better implant survivorship. Nevertheless, the authors believe that this technology holds great promise and may potentially change the conventional methods of casting, machining, and tooling for implant manufacturing in the future.

  18. Additive Manufacturing Technology Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The 3D Printing In Zero-G (3D Print) technology demonstration project is a proof-of-concept test designed to assess the properties of melt deposition modeling...

  19. Selection of Technology in Global Manufacturing Industries

    DEFF Research Database (Denmark)

    Bruun, Peter

    1997-01-01

    not work well. The host country's business and cultural environment must be taken into account in designing a production system which requires attention to the management elements of technology transfer. This paper presents a model for transfer of manufacturing technology to a foreign site based...

  20. Advanced manufacturing technologies on color plasma displays

    Science.gov (United States)

    Betsui, Keiichi

    2000-06-01

    The mass production of the color plasma display started from 1996. However, since the price of the panel is still expensive, PDPs are not in widespread use at home. It is necessary to develop the new and low-cost manufacturing technologies to reduce the price of the panel. This paper describes some of the features of new fabrication technologies of PDPs.

  1. Commercialization of Fuel Cell Bipolar Plate Manufacturing by Electromagnetic Forming

    OpenAIRE

    Daehn, G. S.; Hatkevich, S.; Shang, J.; Wilkerson, L.

    2010-01-01

    The cost of manufacturing bipolar plates is a major component to the overall cost structure of a Proton Exchange Membrane (PEM) fuel cell stack. To achieve the commercialization of PEM fuel cells, a high volume and low cost manufacturing process for the bipolar plate must be developed. American Trim has identified high velocity electromagnetic forming as a suitable technology to manufacture metallic fuel cell bipolar plates, because of its low capital cost, flexible tooling and rapid prototyp...

  2. Environmental Impact of Fuel Cell Manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Hart, N.T.; Day, M.J. [Rolls-Royce Strategic Research Centre, PO Box 31, Derby, DE24 8BJ (United Kingdom); Brandon, N.P. [T.H.Huxley School of Environment, Earth Sciences and Engineering, Imperial College of Science Technology and Medicine, London, SW7 2BP (United Kingdom); Shemilt, J.E. [Dept. of Materials Engineering, Brunel University, Uxbridge, UB8 3PH (United Kingdom)

    2000-07-01

    Fuel Cells potentially offer environmental benefits when compared to conventional technology but it is important to consider the full environmental impact including the manufacturing and disposal steps. This paper describes a case study that compares the energy requirements for Solid Oxide Fuel Cell fabrication routes. The results show that that, when compared to the benefits during use, the associated environmental impact is relatively small. Therefore the choice of manufacturing routes will have little effect on the overall advantage of implementing Fuel Cell systems. The total environmental impact of fuel cell fabrication will also include the production of materials. This could contribute a large share of the total environmental burden, however it could be minimised by adopting a design that allows the materials to be recycled in an efficient manner. (author)

  3. Role of Information Technology in Manufacturing

    Institute of Scientific and Technical Information of China (English)

    Shankar; Singh; A; V; Muley

    2002-01-01

    Manufacturing of a product is constituted of the va ri ous attributes such as quality, cost, performance, and time to market. Manufactu ring can also be understood as the entire product realization process, from spec ification through design and production to marketing and distribution. The induc tion of Information Technology (IT) in manufacturing includes the hardware that computes and communicates, the software that provides data, knowledge, and infor mation while at the same time controlling the hardwa...

  4. A review of advanced manufacturing technology

    Science.gov (United States)

    Broughton, T.

    1981-03-01

    Joining techniques, hot forming technology, forging technology, investment casting, small cooling hole manufacturing, combustor technology, quality assurance, and chip forming machining of gas turbine engine components are discussed. Electron and laser beam welding; laser hard facing techniques; automatic TIG and plasma welding; diffusion brazing of titanium and nickel alloys; heated die forming: blow forming; superplastic forming; fan and compressor blade forging; and wheel and disk forging from powder superalloys are described.

  5. Advances in solid dosage form manufacturing technology.

    Science.gov (United States)

    Andrews, Gavin P

    2007-12-15

    Currently, the pharmaceutical and healthcare industries are moving through a period of unparalleled change. Major multinational pharmaceutical companies are restructuring, consolidating, merging and more importantly critically assessing their competitiveness to ensure constant growth in an ever-more demanding market where the cost of developing novel products is continuously increasing. The pharmaceutical manufacturing processes currently in existence for the production of solid oral dosage forms are associated with significant disadvantages and in many instances provide many processing problems. Therefore, it is well accepted that there is an increasing need for alternative processes to dramatically improve powder processing, and more importantly to ensure that acceptable, reproducible solid dosage forms can be manufactured. Consequently, pharmaceutical companies are beginning to invest in innovative processes capable of producing solid dosage forms that better meet the needs of the patient while providing efficient manufacturing operations. This article discusses two emerging solid dosage form manufacturing technologies, namely hot-melt extrusion and fluidized hot-melt granulation. PMID:17855217

  6. Fiscal 1994 New Sunshine Program achievement report. Development of photovoltaic power generation system practicalization technology - Research on practicalization of thin-film solar cell manufacturing technology (Technology for higher quality - Development of CuInSe{sub 2} solar cell manufacturing technology); 1994 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu (kohinshitsuka gijutsu (CuInSe{sub 2} taiyo denchi seizo no gijutsu kaihatsu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    The aim is to develop solar cells that exhibit conversion efficiency of 12% in a 10cm times 10cm-large minimodule. When a substrate made of soda lime glass with an SiO{sub 2} coating thereon is used, high reproducibility is achieved in the manufacture of CuInSe{sub 2} (CIS) thin-film solar cells. For the manufacture of a high-quality Cu(InGa)Se{sub 2}(CIGS) light absorbing thin-film layer, it is necessary to develop high-quality precursor film manufacturing and gas phase selenization technologies. A laminated precursor film formed by sputtering is selenized in a H{sub 2}Se gas atmosphere for the formation of CuInSe{sub 2} and CIGS light absorbing thin-film layers, and 16 ZnO/CdS/CIS-structured thin film solar cells built into a 10cm times 10cm-large substrate exhibit conversion efficiency of 11.6%. A CIGS cell using a sulfur-containing Zn compound buffer layer exhibits conversion efficiency of 12.1%. Conditions for the manufacture of a ZnO:Al transparent conductive film are studied. Dependence of CIS-based solar cell output characteristics on temperature and irradiation may be compensated for under the JIS (Japanese Industrial Standard) compensatory formula. The CIS-based thin-film solar cell suffers but a little reduction in output due to temperature rise, and may be therefore said to be excellent. (NEDO)

  7. Advanced Manufacturing Technologies (AMT): Advanced Near Net Shape Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop and mature manufacturing technology to enable fabrication of single-piece integrally-stiffened launch vehicle structures to replace expensive, heavy, and...

  8. Ubiquitous Robotic Technology for Smart Manufacturing System

    Science.gov (United States)

    Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods. PMID:27446206

  9. Ubiquitous Robotic Technology for Smart Manufacturing System

    Directory of Open Access Journals (Sweden)

    Wenshan Wang

    2016-01-01

    Full Text Available As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods.

  10. Ubiquitous Robotic Technology for Smart Manufacturing System.

    Science.gov (United States)

    Wang, Wenshan; Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods. PMID:27446206

  11. Development of Advanced Ceramic Manufacturing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pujari, V.K.

    2001-04-05

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration. A high-power diesel engine valve for the DDC Series 149 engine was chosen as the demonstration part for this program. This was determined to be an ideal component type to demonstrate cost-effective process enhancements, the beneficial impact of advanced ceramics on transportation systems, and near-term commercialization potential. The baseline valve material was NAC's NT451 SiAION. It was replaced, later in the program, by an alternate silicon nitride composition (NT551), which utilized a lower cost raw material and a simplified powder-processing approach. The material specifications were defined based on DDC's engine requirements, and the initial and final component design tasks were completed.

  12. Simulation Environment Synchronizing Real Equipment for Manufacturing Cell

    Science.gov (United States)

    Inukai, Toshihiro; Hibino, Hironori; Fukuda, Yoshiro

    Recently, manufacturing industries face various problems such as shorter product life cycle, more diversified customer needs. In this situation, it is very important to reduce lead-time of manufacturing system constructions. At the manufacturing system implementation stage, it is important to make and evaluate facility control programs for a manufacturing cell, such as ladder programs for programmable logical controllers (PLCs) rapidly. However, before the manufacturing systems are implemented, methods to evaluate the facility control programs for the equipment while mixing and synchronizing real equipment and virtual factory models on the computers have not been developed. This difficulty is caused by the complexity of the manufacturing system composed of a great variety of equipment, and stopped precise and rapid support of a manufacturing engineering process. In this paper, a manufacturing engineering environment (MEE) to support manufacturing engineering processes using simulation technologies is proposed. MEE consists of a manufacturing cell simulation environment (MCSE) and a distributed simulation environment (DSE). MCSE, which consists of a manufacturing cell simulator and a soft-wiring system, is emphatically proposed in detail. MCSE realizes making and evaluating facility control programs by using virtual factory models on computers before manufacturing systems are implemented.

  13. Manufacturing technology and process for BWR fuel

    International Nuclear Information System (INIS)

    Following recent advanced technologies, processes and requests of the design changes of BWR fuel, Nuclear Fuel Industries, Ltd. (NFI) has upgraded the manufacturing technology and honed its own skills to complete its brand-new automated facility in Tokai in the latter half of 1980's. The plant uses various forms of automation throughout the manufacturing process: the acceptance of uranium dioxide powder, pelletizing, fuel rod assembling, fuel bundle assembling and shipment. All processes are well computerized and linked together to establish the integrated control system with three levels of Production and Quality Control, Process Control and Process Automation. This multi-level system plays an important role in the quality assurance system which generates the highest quality of fuels and other benefits. (author)

  14. CVD-Enabled Graphene Manufacture and Technology

    OpenAIRE

    Hofmann, Stephan; Braeuninger-Weimer, Philipp; Weatherup, Robert S.

    2015-01-01

    [Image - see article] Integrated manufacturing is arguably the most challenging task in the development of technology based on graphene and other 2D materials, particularly with regard to the industrial demand for ?electronic-grade? large-area films. In order to control the structure and properties of these materials at the monolayer level, their nucleation, growth and interfacing needs to be understood to a level of unprecedented detail compared to existing thin film or bulk materials. Ch...

  15. Manufacturing technology development for CuInGaSe{sub 2} solar cell modules. Final subcontract report, 9 January 1991--14 April 1991

    Energy Technology Data Exchange (ETDEWEB)

    Stanbery, B.J. [Boeing Aerospace and Electronics Co., Seattle, WA (US)

    1991-11-01

    The report describes research performed by Boeing Aerospace and Electronics under the Photovoltaic Manufacturing Technology project. We anticipate that implementing advanced semiconductor device fabrication techniques to the production of large-area CuIn{sub 1-x}Ga{sub x}Se{sub 2} (CIGS)/Cd{sub 1-y}Zn{sub y}S/ZnO monolithically integrated thin-film solar cell modules will enable 15% median efficiencies to be achieved in high-volume manufacturing. We do not believe that CuInSe{sub 2} (CIS) can achieve this efficiency in production without sufficient gallium to significantly increase the band gap, thereby matching it better to the solar spectrum (i.e., x{>=}0.2). Competing techniques for CIS film formation have not been successfully extended to CIGS devices with such high band gaps. The SERI-confirmed intrinsic stability of CIS-based photovoltaics renders them far superior to a-Si:H-based devices, making a 30-year module lifetime feasible. The minimal amounts of cadmium used in the structure we propose, compared to CdTe-based devices, makes them environmentally safer and more acceptable to both consumers and relevant regulatory agencies. Large-area integrated thin-film CIGS modules are the product most likely to supplant silicon modules by the end of this decade and enable the cost improvements which will lead to rapid market expansion.

  16. Technology Sharing in Manufacturing Business Groups

    DEFF Research Database (Denmark)

    Sköld, Martin; Karlsson, Christer

    2012-01-01

    Technology represents the primordial force for companies and organizations in securing long-term competitiveness. In the intensive search to access new technology, organizations are more and more looking beyond the borders of the focal firm and becoming involved in various networks with suppliers...... in a clinical research setting. A prestudy identified key dimensions in classifying cases leading to four clusters of typified cases. Data were gathered from meetings with 24 managers from various research and development (R&D) units who met regularly every other week during seven months, in-depth interviews...... and those aimed at specific segments. The two dimensions together comprise four different types of technology-sharing alternatives. Each one of them can be used at the focal firm, and together, they are applicable from a business group perspective comprising technology-sharing portfolios of manufacturing...

  17. Additive manufacturing technologies of porous metal implants

    Institute of Scientific and Technical Information of China (English)

    Zhou Linxi; Yang Quanzhan; Zhang Guirong; Zhao Fangxin; Shen Gang; Yu Bo

    2014-01-01

    Biomedical metal materials with good corrosion resistance and mechanical properties are widely used in orthopedic surgery and dental implant materials, but they can easily cause stress shielding due to the signiifcant difference in elastic modulus between the implant and human bones. The elastic modulus of porous metals is lower than that of dense metals. Therefore, it is possible to adjust the pore parameters to make the elastic modulus of porous metals match or be comparable with that of the bone tissue. At the same time, the open porous metals with pores connected to each other could provide the structural condition for bone ingrowth, which is helpful in strengthening the biological combination of bone tissue with the implants. Therefore, the preparation technologies of porous metal implants and related research have been drawing more and more attention due to the excellent features of porous metals. Selective laser melting (SLM) and electron beam melting technology (EBM) are important research fields of additive manufacturing. They have the advantages of directly forming arbitrarily complex shaped metal parts which are suitable for the preparation of porous metal implants with complex shape and ifne structure. As new manufacturing technologies, the applications of SLM and EBM for porous metal implants have just begun. This paper aims to understand the technology status of SLM and EBM, the research progress of porous metal implants preparation by using SLM and EBM, and the biological compatibility of the materials, individual design and manufacturing requirements. The existing problems and future research directions for porous metal implants prepared by SLM and EBM methods are discussed in the last paragraph.

  18. Additive manufacturing technologies of porous metal implants

    Directory of Open Access Journals (Sweden)

    Yang Quanzhan

    2014-06-01

    Full Text Available Biomedical metal materials with good corrosion resistance and mechanical properties are widely used in orthopedic surgery and dental implant materials, but they can easily cause stress shielding due to the significant difference in elastic modulus between the implant and human bones. The elastic modulus of porous metals is lower than that of dense metals. Therefore, it is possible to adjust the pore parameters to make the elastic modulus of porous metals match or be comparable with that of the bone tissue. At the same time, the open porous metals with pores connected to each other could provide the structural condition for bone ingrowth, which is helpful in strengthening the biological combination of bone tissue with the implants. Therefore, the preparation technologies of porous metal implants and related research have been drawing more and more attention due to the excellent features of porous metals. Selective laser melting (SLM and electron beam melting technology (EBM are important research fields of additive manufacturing. They have the advantages of directly forming arbitrarily complex shaped metal parts which are suitable for the preparation of porous metal implants with complex shape and fine structure. As new manufacturing technologies, the applications of SLM and EBM for porous metal implants have just begun. This paper aims to understand the technology status of SLM and EBM, the research progress of porous metal implants preparation by using SLM and EBM, and the biological compatibility of the materials, individual design and manufacturing requirements. The existing problems and future research directions for porous metal implants prepared by SLM and EBM methods are discussed in the last paragraph.

  19. 48 CFR 235.006-70 - Manufacturing Technology Program.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Manufacturing Technology... CONTRACTING 235.006-70 Manufacturing Technology Program. In accordance with 10 U.S.C. 2521(d), for acquisitions under the Manufacturing Technology Program— (a) Award all contracts using competitive...

  20. Comparison of manufactured and modeled solar cell

    OpenAIRE

    Strachala, D.; Hylský, J.

    2015-01-01

    The aim of the work is to compare the model of monocrystalline silicon solar cell in PC1D with the real solar cell structure in terms of using a model in manufacture process. Real solar cell was firstly measured and analyzed to determine input parameters for a simulation and then realized in free available PC1D software. Degree of conformity of modeled and real solar cell was in the end established for basic prediction of solar cell parameters before manufacturing process.

  1. Theorizing about technological development of manufacturing companies

    DEFF Research Database (Denmark)

    Matthiesen, Rikke Vestergaard

    2012-01-01

    The aim of the paper is to apply metatriangulation and theory building to strengthen our theorizing on technological development of manufacturing firms. AMT literature is reviewed and by means of bracketing, the paper identifies a set of problematic assumptions embedded within traditional AMT res...... research. A case study is used to emphasize how a process perspective enriches the traditional structural perspective. Finally, through first attempts at theory building, a set of propositions is suggested in order to overcome long-standing problems found in AMT research....

  2. Digital manufacturing-the development direction of the manufacturing technology in the 21st century

    Institute of Scientific and Technical Information of China (English)

    XIONG You-lun; YIN Zhou-ping

    2006-01-01

    After introducing the concepts of digital manufacturing technology,the discipline framework of digital manufacturing is presented in the paper by discussing its basic concept,theory foundation,key technology and scientific problems in detail.As the core of the advanced manufacturing technology,digital manufacturing is gradually becoming the main manufacturing technology of the twenty-first century.Firstly,the main features of digital manufacturing are indicated and its key supporting technologies are investigated by grouping them into four levels related to product development, numerical control, production management,and enterprise collaboration,respectively.Moreover,the existing problems in the research on the multi-discipline theory foundation of digital manufacturing such as manufacturing informatics, computational manufacturing,and manufacturing intelligence,are also indicated.Then,the core scientific problems of digital manufacturing are discussed in depth,which focuses on digitization of manufacturing information,modeling of manufacturing constraints,high-speed and high-precision numerical control theory,and Internet-based collaboration and integration.Lastly, the development trends and application perspectives of digital manufacturing are concluded.

  3. Synthesis of Evolving Cells for Reconfigurable Manufacturing Systems

    Science.gov (United States)

    Padayachee, J.; Bright, G.

    2014-07-01

    The concept of Reconfigurable Manufacturing Systems (RMSs) was formulated due to the global necessity for production systems that are able to economically evolve according to changes in markets and products. Technologies and design methods are under development to enable RMSs to exhibit transformable system layouts, reconfigurable processes, cells and machines. Existing factory design methods and software have not yet advanced to include reconfigurable manufacturing concepts. This paper presents the underlying group technology framework for the design of manufacturing cells that are able to evolve according to a changing product mix by mechanisms of reconfiguration. The framework is based on a Norton- Bass forecast and time variant BOM models. An adaptation of legacy group technology methods is presented for the synthesis of evolving cells and two optimization problems are presented within this context.

  4. A model for manufacturing cell job redesign

    OpenAIRE

    Gassmann, Robert

    1997-01-01

    Cellular manufacturing is widely viewed as an exemplary form of manufacturing organisation for small batch size production. A UK survey states that over 75% of British engineering industry have introduced or are planning to introduce cellular manufacturing methods in an attempt to improve competitiveness through improved product quality, responsiveness and flexibility (Ingersoll Engineers, 1990). Cells are known to foster these improvements through a focus on the methods of ...

  5. CVD-Enabled Graphene Manufacture and Technology.

    Science.gov (United States)

    Hofmann, Stephan; Braeuninger-Weimer, Philipp; Weatherup, Robert S

    2015-07-16

    Integrated manufacturing is arguably the most challenging task in the development of technology based on graphene and other 2D materials, particularly with regard to the industrial demand for “electronic-grade” large-area films. In order to control the structure and properties of these materials at the monolayer level, their nucleation, growth and interfacing needs to be understood to a level of unprecedented detail compared to existing thin film or bulk materials. Chemical vapor deposition (CVD) has emerged as the most versatile and promising technique to develop graphene and 2D material films into industrial device materials and this Perspective outlines recent progress, trends, and emerging CVD processing pathways. A key focus is the emerging understanding of the underlying growth mechanisms, in particular on the role of the required catalytic growth substrate, which brings together the latest progress in the fields of heterogeneous catalysis and classic crystal/thin-film growth. PMID:26240694

  6. Achievement report for fiscal 1997. Technological development for practical application of a solar energy power generation system/development of technology to manufacture thin film solar cells (development of technology to manufacture applied type thin film solar cells with new construction) (development of technology to manufacture micro light collection type solar cells); 1997 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu, oyogata shinkozo usumaku taiyo denchi no seizo gijutsu kaihatsu (micro shukogata taiyo denchi no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    These technological developments are intended to demonstrate module efficiency of a micro light collection type solar cell of 15% by fiscal 2000, and obtain prospect on the module manufacturing cost of 140 yen per watt. Discussions given during fiscal 1997 are as follows: development has been performed on a design method to decide construction of a non-tracking micro light collection type module; in the state of cells being integrated on the module, the cells are arranged minutely and discretely, whereas, with discussions on a method to form them and assessment of the optical system as the main objective, single crystal silicon solar cells with a size smaller than 5 mm were fabricated on a trial basis; problems of forming micro cells by using the wafer cutting process were clarified; micro cells operating on light collection were fabricated trially to extract technological problems in light collecting operation and discuss technical problems in mass production; and development was performed on an evaluation method to analyze the cells' light collecting operation, and discussions were given on a method to estimate power generation amount from the light collection type modules. (NEDO)

  7. Risk calculations in the manufacturing technology selection process

    DEFF Research Database (Denmark)

    Farooq, S.; O'Brien, C.

    2010-01-01

    and supply chain environment. The evaluation of a manufacturing technology considering supply chain opportunities and threats provides a broader perspective to the technology evaluation process. The inclusion of supply chain dimension in technology selection process facilitates an organisation to select...... in the shape of opportunities and threats in different decision-making environments. Practical implications - The research quantifies the risk associated with different available manufacturing technology alternatives. This quantification of risk crystallises the process of technology selection decision making...

  8. Petri net based modeling and analysis for weldingflexible manufacturing cell

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Due to the development of advanced manufacturing technology and the introduction of Smart-Manufacturing notion in the field of modern industrial production, welding flexible manufacturing using robot technology has become the inevitable developing direction on welding automation. Based on a new intelligent arc-welding flexible manufacturing cell (WFMC), its system structure and control policies are studied in this paper. Aiming at the different information flows among every subsystem and central monitoring computer in this WFMC, Petri net theory is introduced into the process of welding manufacturing. A discrete control model of WFMC has been constructed, in which the system’s status is regarded as place and the control process is regarded as transition. Moreover, grounded on automation Petri net principle, the judging and utilizing of information obtained from welding sensors are imported into Petri net structure, which extends the traditional Petri net concepts. The control model and policies researched in this paper have established foundation for further intelligent real-time control on welding flexible manufacturing cell and system.

  9. Environmentally benign silicon solar cell manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S. [National Renewable Energy Lab., Golden, CO (United States); Gee, J.M. [Sandia National Labs., Albuquerque, NM (United States); Menna, P. [National Agency for New Technologies Energy and Environment, Portici (Italy); Strebkov, D.S.; Pinov, A.; Zadde, V. [Intersolarcenter, Moscow (Russian Federation)

    1998-09-01

    The manufacturing of silicon devices--from polysilicon production, crystal growth, ingot slicing, wafer cleaning, device processing, to encapsulation--requires many steps that are energy intensive and use large amounts of water and toxic chemicals. In the past two years, the silicon integrated-circuit (IC) industry has initiated several programs to promote environmentally benign manufacturing, i.e., manufacturing practices that recover, recycle, and reuse materials resources with a minimal consumption of energy. Crystalline-silicon solar photovoltaic (PV) modules, which accounted for 87% of the worldwide module shipments in 1997, are large-area devices with many manufacturing steps similar to those used in the IC industry. Obviously, there are significant opportunities for the PV industry to implement more environmentally benign manufacturing approaches. Such approaches often have the potential for significant cost reduction by reducing energy use and/or the purchase volume of new chemicals and by cutting the amount of used chemicals that must be discarded. This paper will review recent accomplishments of the IC industry initiatives and discuss new processes for environmentally benign silicon solar-cell manufacturing.

  10. IMHEX fuel cell repeat component manufacturing continuous improvement accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    Jakaitis, L.A.; Petraglia, V.J.; Bryson, E.S. [M-C Power Corp., Burr Ridge, IL (United States)] [and others

    1996-12-31

    M-C Power is taking a power generation technology that has been proven in the laboratory and is making it a commercially competitive product. There are many areas in which this technology required scale up and refinement to reach the market entry goals for the IMHEX{reg_sign} molten carbonate fuel cell power plant. One of the primary areas that needed to be addressed was the manufacturing of the fuel cell stack. Up to this point, the fuel cell stack and associated components were virtually hand made for each system to be tested. M-C Power has now continuously manufactured the repeat components for three 250 kW stacks. M-C Power`s manufacturing strategy integrated both evolutionary and revolutionary improvements into its comprehensive commercialization effort. M-C Power`s objectives were to analyze and continuously improve stack component manufacturing and assembly techniques consistent with established specifications and commercial scale production requirements. Evolutionary improvements are those which naturally occur as the production rates are increased and experience is gained. Examples of evolutionary (learning curve) improvements included reducing scrap rates and decreasing raw material costs by buying in large quantities. Revolutionary improvements result in significant design and process changes to meet cost and performance requirements of the market entry system. Revolutionary changes often involve identifying new methods and developing designs to accommodate the new process. Based upon our accomplishments, M-C Power was able to reduce the cost of continuously manufactured fuel cell repeat components from the first to third 250 kW stack by 63%. This paper documents the continuous improvement accomplishments realized by M-C Power during IMHEX{reg_sign} fuel cell repeat component manufacturing.

  11. Exploring the evolution of investment pattern on advanced manufacturing technology

    DEFF Research Database (Denmark)

    Yang, Cheng; Matthiesen, Rikke Vestergaard; Johansen, John

    2014-01-01

    This paper explores the evolution of investment pattern on advanced manufacturing technology in a manner that builds on a longitudinal perspective. Based on the data of investments in AMTs from 567 manufacturing companies this paper develops a longitudinal taxonomy defined by the evolution...

  12. Centers for manufacturing technology: Industrial Advisory Committee Review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    An advisory committee, composed of senior managers form industrial- sector companies and major manufacturing trade associations and representatives from appropriate educational institutions, meets semi-annually to review and advise the Oak Ridge Centers for Manufacturing Technology (ORCMT) on its economic security program. Individual papers have been indexed separately for the database.

  13. Integration of magnetorheological finishing (MRF) technology for ultraprecision optical manufacturing

    Science.gov (United States)

    Pun, Ashley M. H.; Chan, Norman S. W.; Louie, Derek C. H.; Li, Li-Man

    2003-05-01

    Magneto-rheological-finishing (MRF) technology is capable of substantially improving the surface figure of spherical lens to about 1/20 wavelength. Nonetheless, since MRF technology is an ultra-fine polishing process, in which only less than a few microns of material will be removed per cycle, time for making an aspheric surface from a best-fit sphere can be very significant. The situation can be worse if the surface profile is considerably deviated from its best-fit spherical surface. This is not desirable for actual production, and thus a manufacturing cell is proposed to enhance the efficiency of the high precision lens manufacturing process. On the other hand, MRF was suggested to be an alternative for lapping of surface of ceramic lens mould insert. Rather than using the abrasive particles in typical lapping process, the magnetized slurry in MRF is moved past the rotating surface of mould insert locally under the computer-control process so as to achieve the desired surface form accuracy.

  14. Additive manufacturing technologies 3D printing, rapid prototyping, and direct digital manufacturing

    CERN Document Server

    Gibson, Ian; Stucker, Brent

    2015-01-01

    This book covers in detail the various aspects of joining materials to form parts. A conceptual overview of rapid prototyping and layered manufacturing is given,  beginning with the fundamentals so that readers can get up to speed quickly. Unusual and emerging applications such as micro-scale manufacturing, medical applications, aerospace, and rapid manufacturing are also discussed. This book provides a comprehensive overview of rapid prototyping technologies as well as support technologies such as software systems, vacuum casting, investment casting, plating, infiltration and other systems. This book also: Reflects recent developments and trends and adheres to the ASTM, SI, and other standards Includes chapters on automotive technology, aerospace technology and low-cost AM technologies Provides a broad range of technical questions to ensure comprehensive understanding of the concepts covered  

  15. The Effect of the Implementation of Advanced Manufacturing Technologies on Training in the Manufacturing Sector

    Science.gov (United States)

    Castrillon, Isabel Dieguez; Cantorna, Ana I. Sinde

    2005-01-01

    Purpose: The aim of this article is to gain insight into some of the factors that determine personnel-training efforts in companies introducing advanced manufacturing technologies (AMTs). The study provides empirical evidence from a sector with high rates of technological modernisation. Design/methodology/approach: "Ad hoc" survey of 90 firms in…

  16. Impact of advanced manufacturing technology on prosthetic and orthotic practice.

    Science.gov (United States)

    Jones, D

    1988-04-01

    Radical changes in the technology applied to prosthetics and orthotics are being proposed. This paper attempts to define the scope and character of advanced manufacturing technology and examines the rehabilitation problems which are or could be tackled. Lower-limb prosthetics has been the major area under investigation so far, but orthopaedic footwear, spinal orthotics and custom seating for the disabled have also been investigated using similar technological approaches. The whole process of patient measurement, device design, and component manufacture is conceived as an integrated system relying upon shape or tissue property sensing, computer based device design and computer-numerically-controlled or robot manufacturing processes. The aim is to retain flexibility for custom design which is necessary to provide for individual patients, and yet improve the rapidity and precision of overall device manufacture and service delivery.

  17. Research on Digital Product Modeling Key Technologies of Digital Manufacturing

    Institute of Scientific and Technical Information of China (English)

    DING Guoping; ZHOU Zude; HU Yefa; ZHAO Liang

    2006-01-01

    With the globalization and diversification of the market and the rapid development of Information Technology (IT) and Artificial Intelligence (AI), the digital revolution of manufacturing is coming. One of the key technologies in digital manufacturing is product digital modeling. This paper firstly analyzes the information and features of the product digital model during each stage in the product whole lifecycle, then researches on the three critical technologies of digital modeling in digital manufacturing-product modeling, standard for the exchange of product model data and digital product data management. And the potential signification of the product digital model during the process of digital manufacturing is concluded-product digital model integrates primary features of each stage during the product whole lifecycle based on graphic features, applies STEP as data exchange mechanism, and establishes PDM system to manage the large amount, complicated and dynamic product data to implement the product digital model data exchange, sharing and integration.

  18. A new application for food customization with additive manufacturing technologies

    Science.gov (United States)

    Serenó, L.; Vallicrosa, G.; Delgado, J.; Ciurana, J.

    2012-04-01

    Additive Manufacturing (AM) technologies have emerged as a freeform approach capable of producing almost any complete three dimensional (3D) objects from computer-aided design (CAD) data by successively adding material layer by layer. Despite the broad range of possibilities, commercial AM technologies remain complex and expensive, making them suitable only for niche applications. The developments of the Fab@Home system as an open AM technology discovered a new range of possibilities of processing different materials such as edible products. The main objective of this work is to analyze and optimize the manufacturing capacity of this system when producing 3D edible objects. A new heated syringe deposition tool was developed and several process parameters were optimized to adapt this technology to consumers' needs. The results revealed in this study show the potential of this system to produce customized edible objects without qualified personnel knowledge, therefore saving manufacturing costs compared to traditional technologies.

  19. Improved technology for manufacture of carbon electrodes

    Indian Academy of Sciences (India)

    A Platon; A Dumbrava; N Iutes-Petrescu; Luzia Simionescu

    2000-02-01

    Current industrial carbon electrodes are typically manufactured by blending petroleum coke particles (the filler) with molten coal tar pitch (the binder) and extruding the resultant mix to form the `green electrode’. This is then baked under controlled conditions. In case of usage as anodes in steel electric furnaces (or as other carbon and graphite products), the electrodes could undergo further processing like pitch impregnation or graphitization. During heat treatment, some of the organics are destructively distilled, vaporized or decomposed, resulting in carbon deposition in the electrode. As the vaporized materials exit the body of the electrode they cause porosity in the walls, which results in reduction in density, current carrying capacity and flexural strength. The paper presents investigations to improve some physico-chemical characteristics of these electrodes (such as coefficient of thermal expansion, mechanical strengths, density, pore volume, porosity etc.), obtained in different manufacture steps, by addition of varieties of coal tar pitch. These include attempts to improve the chemical compatibility of the coke-pitch system in the mixture and establish the method and the point of introduction of additive, the concentration required and appropriate analytical control during the entire manufacture. Methods of analysis used include thermogravimetry and porosimetry. The microstructure of the electrodes is investigated through a wide range and the data obtained include pore size and pore volume distribution, surface area, porosity, particle size distribution and type of pores. The overall results clearly indicate better characteristics and performance for electrodes with additives as against electrodes without them, such as lower porosity, lower thermal expansion coefficients and greater mechanical strength. These data are analyzed with respect to the process step and electrode type.

  20. Hybrid Additive Manufacturing Technologies - An Analysis Regarding Potentials and Applications

    Science.gov (United States)

    Merklein, Marion; Junker, Daniel; Schaub, Adam; Neubauer, Franziska

    Imposing the trend of mass customization of lightweight construction in industry, conventional manufacturing processes like forming technology and chipping production are pushed to their limits for economical manufacturing. More flexible processes are needed which were developed by the additive manufacturing technology. This toolless production principle offers a high geometrical freedom and an optimized utilization of the used material. Thus load adjusted lightweight components can be produced in small lot sizes in an economical way. To compensate disadvantages like inadequate accuracy and surface roughness hybrid machines combining additive and subtractive manufacturing are developed. Within this paper the principles of mainly used additive manufacturing processes of metals and their possibility to be integrated into a hybrid production machine are summarized. It is pointed out that in particular the integration of deposition processes into a CNC milling center supposes high potential for manufacturing larger parts with high accuracy. Furthermore the combination of additive and subtractive manufacturing allows the production of ready to use products within one single machine. Additionally actual research for the integration of additive manufacturing processes into the production chain will be analyzed. For the long manufacturing time of additive production processes the combination with conventional manufacturing processes like sheet or bulk metal forming seems an effective solution. Especially large volumes can be produced by conventional processes. In an additional production step active elements can be applied by additive manufacturing. This principle is also investigated for tool production to reduce chipping of the high strength material used for forming tools. The aim is the addition of active elements onto a geometrical simple basis by using Laser Metal Deposition. That process allows the utilization of several powder materials during one process what

  1. Manufacturing Technology and Application Trends of Titanium Clad Steel Plates

    Institute of Scientific and Technical Information of China (English)

    Hang SU; Xiao-bing LUO; Feng CHAI; Jun-chang SHEN; Xin-jun SUN; Feng LU

    2015-01-01

    Some of the major manufacturing processes and corresponding mechanical properties of titanium clad steel plates were analyzed, and the consequences of research, manufacturing, and application of titanium clad steel plates in both markets of China and overseas were also summarized. As an economical and environmentally friendly technology, the roll bonding process is ex-pected to become the next-generation mainstream process for the manufacturing of titanium clad steel plate. Some of the crucial and most important technical problems of this particular process, including vacuum sealing technology, surface treatment process technology, application of a transition layer, and rolling process, were discussed along with the advantageous mechanical properties and life-cycle economy of these plates processed by this technology. Finally, the market needs, application trends, and requirements of titanium clad steel plate were also considered from industries of petrochemical, shipbuilding, marine, and electric power.

  2. Productization and Manufacturing Scaling of High-Efficiency Solar Cell and Module Products Based on a Disruptive Low-Cost, Mono-Crystalline Technology: Final Technical Progress Report, April 1, 2009 - December 30, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Fatemi, H.

    2012-07-01

    Final report for PV incubator subcontract with Solexel, Inc. The purpose of this project was to develop Solexel's Unique IP, productize it, and transfer it to manufacturing. Silicon constitutes a significant fraction of the total solar cell cost, resulting in an industry-wide drive to lower silicon usage. Solexel's disruptive Solar cell structure got around these challenges and promised superior light trapping, efficiency and mechanical strength, despite being significantly thinner than commercially available cells. Solexel's successful participation in this incubator project became evident as the company is now moving into commercial production and position itself to be competitive for the next Technology Pathway Partnerships (TPP) funding opportunity.

  3. Virtual Tryout Technologies for Preparing Automotive Manufacturing

    OpenAIRE

    Takahashi, Susumu

    2012-01-01

    It is important to reduce the weight of the automotive and to shorten the development period for reduction of CO2 discharge. For these purpose, virtual tryout technologies have been introduced automotive industry. Every process from stamping to assembly for car development has introduced CAD design and numerical simulation such as forming simulation, dimensional accuracy simulation such as forming simulation, dimensional accuracy simulation and so on. In this paper, sheet metal forming simula...

  4. DUPIC nuclear fuel manufacturing and process technology development at KAERI

    International Nuclear Information System (INIS)

    DUPIC fuel cycle development project in KAERI of Korea was initiated in 1991 and has advanced in relevant technologies for last 10 years. The project includes five different topics such as nuclear fuel manufacturing, compatibility evaluation, performance evaluation, manufacturing facility management, and safeguards. The contents and results of DUPIC R and D up to now are as follow: - the basic foundation was established for the critically required pelletizing technology and powder treatment technology for DUPIC. - development of DUPIC process line and deployment of 20 each process equipment and examination instruments in DFDF. - powder and pellet characterization study was done at PIEF based on the simfuel study results, and 30 DUPIC pellets were successfully produced. - the manufactured pellets were used for sample fuel rods irradiated in July,2000 in HANARO research reactor in KAERI and has been under post irradiation examination. (Hong, J. S.)

  5. Organic Production Systems: What the Biological Cell Can Teach Us About Manufacturing

    OpenAIRE

    Lieven Demeester; Knut Eichler; Christoph H. Loch

    2004-01-01

    Biological cells run complicated and sophisticated production systems. The study of the cell's production technology provides us with insights that are potentially useful in industrial manufacturing. When comparing cell metabolism with manufacturing techniques in industry, we find some striking commonalities, but also some important differences. Like today's well-run factories, the cell operates a very lean production system, assures quality at the source, and uses component commonality to si...

  6. The application of welding technology in power plant manufacture

    International Nuclear Information System (INIS)

    A strategy is presented for the application of welding technology in the manufacture of power plant. A flow chart description is adopted in the present paper to provide a general framework outlining the sequence of activities leading to manufacture. The broad chronological order of events is treated under the three headings, Component Design, Welding Development, and Implementation. Important factors that have to be considered at each of these stages are shown in subsidiary flow charts together with short notes to provide context and an aide memoire for those involved in welding technology. (author)

  7. Additive manufacturing technology in spare parts supply chain

    DEFF Research Database (Denmark)

    Li, Yao; Jia, Guozhu; Yang, Cheng;

    2016-01-01

    Additive Manufacturing (AM) technology has the potential to significantly improve supply chain dynamics. The purpose of this paper is to investigate the impact of AM on spare parts supply chain. Three supply chain scenarios are investigated in this paper, namely conventional supply chain, central......Additive Manufacturing (AM) technology has the potential to significantly improve supply chain dynamics. The purpose of this paper is to investigate the impact of AM on spare parts supply chain. Three supply chain scenarios are investigated in this paper, namely conventional supply chain...

  8. Nondestructive cell evaluation techniques in SOFC stack manufacturing

    Science.gov (United States)

    Wunderlich, C.

    2016-04-01

    Independent from the specifics of the application, a cost efficient manufacturing of solid oxide fuel cells (SOFC), its electrolyte membranes and other stack components, leading to reliable long-life stacks is the key for the commercial viability of this fuel cell technology. Tensile and shear stresses are most critical for ceramic components and especially for thin electrolyte membranes as used in SOFC cells. Although stack developers try to reduce tensile stresses acting on the electrolyte by either matching CTE of interconnects and electrolytes or by putting SOFC cells under some pressure - at least during transient operation of SOFC stacks ceramic cells will experience some tensile stresses. Electrolytes are required to have a high Weibull characteristic fracture strength. Practical experiences in stack manufacturing have shown that statistical fracture strength data generated by tests of electrolyte samples give limited information on electrolyte or cell quality. In addition, the cutting process of SOFC electrolytes has a major influence on crack initiation. Typically, any single crack in one the 30 to 80 cells in series connection will lead to a premature stack failure drastically reducing stack service life. Thus, for statistical reasons only 100% defect free SOFC cells must be assembled in stacks. This underlines the need for an automated inspection. So far, only manual processes of visual or mechanical electrolyte inspection are established. Fraunhofer IKTS has qualified the method of optical coherence tomography for an automated high throughput inspection. Alternatives like laser speckle photometry and acoustical methods are still under investigation.

  9. DUPIC nuclear fuel manufacturing and process technology development

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Park, J. J.; Lee, J. W. [and others

    2000-05-01

    In this study, DUPIC fuel fabrication technology and the active fuel laboratory were developed for the study of spent nuclear fuel. A new nuclear fuel using highly radioactive nuclear materials can be studied at the active fuel laboratory. Detailed DUPIC fuel fabrication process flow was developed considering the manufacturing flow, quality control process and material accountability. The equipment layout of about twenty DUPIC equipment at IMEF M6 hot cell was established for the minimization of the contamination during DUPIC processes. The characteristics of the SIMFUEL powder and pellets was studied in terms of milling conditions. The characteristics of DUPIC powder and pellet was studied by using 1 kg of spent PWR fuel at PIEF nr.9405 hot cell. The results were used as reference process conditions for following DUPIC fuel fabrication at IMEF M6. Based on the reference fabrication process conditions, the main DUPIC pellet fabrication campaign has been started at IMEF M6 using 2 kg of spent PWR fuel since 2000 January. As of March 2000, about thirty DUPIC pellets were successfully fabricated.

  10. Using Innovative Technologies for Manufacturing and Evaluating Rocket Engine Hardware

    Science.gov (United States)

    Betts, Erin M.; Hardin, Andy

    2011-01-01

    Many of the manufacturing and evaluation techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As we enter into a new space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt new and innovative techniques for manufacturing and evaluating hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, manufacturing techniques such as Direct Metal Laser Sintering (DMLS) and white light scanning are being adopted and evaluated for their use on J-2X, with hopes of employing both technologies on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powdered metal manufacturing process in order to produce complex part geometries. The white light technique is a non-invasive method that can be used to inspect for geometric feature alignment. Both the DMLS manufacturing method and the white light scanning technique have proven to be viable options for manufacturing and evaluating rocket engine hardware, and further development and use of these techniques is recommended.

  11. Research on Cloud Manufacturing Resource-Aware and Access Technology Using RFID

    Institute of Scientific and Technical Information of China (English)

    Min Lv; ChuanXia Zhou; JiShuai Shi; Lei Liu

    2014-01-01

    With the continuous development of cloud manufacturing technology, in order to solve more complex manufacturing problem and conduct large-scale networked manufacturing, combining with the characteristic of discrete manufacturing enterprise ’ s demands and RFID ( Radio Frequency Identification ) , a kind of RFID-based cloud manufacturing resource-aware and access technology is proposed. Firstly, the architecture of the cloud manufacturing system and RFID system is briefly introduced. Then, the key technologies of manufacturing resource-aware and access technology are analyzed, including anti-collision technology, reader management technology and so on. Finally, taking the manufacturing of the key components in discrete manufacturing enterprise as an example, the practicality and feasibility of the technology is verified. The results show that the application of this technology provides a strong guarantee for the sharing and collaboration of manufacturing resources and capacity in the discrete manufacturing industry.

  12. The photovoltaic manufacturing technology project: A government/industry partnership

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R.L.; Witt, C.E.; Mooney, G.D.

    1991-12-01

    The Photovoltaic Manufacturing Technology (PVMaT) project is a government/industry photovoltaic manufacturing research and development (R D) project composed of partnerships between the federal government (through the US Department of Energy) and members of the US photovoltaic (PV) industry. It is designed to assist the US PV industry in improving manufacturing processes, accelerating manufacturing cost reductions for PV modules, increasing commercial product performance, and generally laying the groundwork for a substantial scale-up of US-based PV manufacturing plant capabilities. The project is being carried out in three separate phases, each focused on a specific approach to solving the problems identified by the industrial participants. These participants are selected through competitive procurements. Furthermore, the PVMaT project has been specifically structured to ensure that these PV manufacturing R D subcontract awards are selected with no intention of either directing funding toward specific PV technologies (e.g., amorphous silicon, polycrystalline thin films, etc.), or spreading the awards among a number of technologies (e.g., one subcontract in each area). Each associated subcontract under any phase of this project is, and will continue to be, selected for funding on its own technical and cost merits. Phase 1, the problem identification phase, was completed early in 1991. Phase 2 is now under way. This is the solution phase of the project and addresses problems of specific manufacturers. The envisioned subcontracts under Phase 2 may be up to three years in duration and will be highly cost-shared between the US government and US industrial participants. Phase 3, is also under way. General issues related to PV module development will be studied through various teaming arrangements. 25 refs.

  13. The photovoltaic manufacturing technology project: A government/industry partnership

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R.L.; Witt, C.E.; Mooney, G.D.

    1991-12-01

    The Photovoltaic Manufacturing Technology (PVMaT) project is a government/industry photovoltaic manufacturing research and development (R&D) project composed of partnerships between the federal government (through the US Department of Energy) and members of the US photovoltaic (PV) industry. It is designed to assist the US PV industry in improving manufacturing processes, accelerating manufacturing cost reductions for PV modules, increasing commercial product performance, and generally laying the groundwork for a substantial scale-up of US-based PV manufacturing plant capabilities. The project is being carried out in three separate phases, each focused on a specific approach to solving the problems identified by the industrial participants. These participants are selected through competitive procurements. Furthermore, the PVMaT project has been specifically structured to ensure that these PV manufacturing R&D subcontract awards are selected with no intention of either directing funding toward specific PV technologies (e.g., amorphous silicon, polycrystalline thin films, etc.), or spreading the awards among a number of technologies (e.g., one subcontract in each area). Each associated subcontract under any phase of this project is, and will continue to be, selected for funding on its own technical and cost merits. Phase 1, the problem identification phase, was completed early in 1991. Phase 2 is now under way. This is the solution phase of the project and addresses problems of specific manufacturers. The envisioned subcontracts under Phase 2 may be up to three years in duration and will be highly cost-shared between the US government and US industrial participants. Phase 3, is also under way. General issues related to PV module development will be studied through various teaming arrangements. 25 refs.

  14. Development of technology of the practical use of the photovoltaic power generation system. ; Studies on the practical use of new type solar cells (studies on the manufacturing technology of layer built solar cells (manufacturing technology of amorphous/compound layer cells)). Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. ; Shingata taiyo denchi no jitsuyoka kenkyu (sekisogata taiyo denchi seizo gijutsu no jitsuyoka kenkyu (amorphous/kagobutsu sekiso cell seizo gijutsu))

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    To develop the layer built solar cell combined the amorphous silicon with the compound semi-conductor of which conversion efficiency is over 13%, its structure and the techniques to paint the large area are studied. In the a-Si pseudo-cell integrated patterning, the bottom cell power is higher when it is placed parallel. The reliability test of the module of CdS/CdTe cell is done, result of this test shows that the performance does not change after 2400 h. By raising CdTe firing temperature and thinning porous layer, the conversion efficiency is 11.3% in 1.07 cm{sup 2} CdS/CdTe cell. By examining the screen printing in 10 cm{sup 2} substrate, the conversion efficiency is 6.7% when the optimum CdS width is 2.95mm. The forming experiment by the painting machine is done. As the result of this, CdS film is smoother than by screen printing and the conversion efficiency does not change. As the cell becomes largeer the firing case is improved to reduce the temperature difference in the substrate to 31 centigrade. The sub module which is 30*40cm{sup 2}is designed and manufactured, its conversion efficiency is 6.2%. 7 figs., 1 tabs.

  15. Using Innovative Technologies for Manufacturing Rocket Engine Hardware

    Science.gov (United States)

    Betts, E. M.; Eddleman, D. E.; Reynolds, D. C.; Hardin, N. A.

    2011-01-01

    Many of the manufacturing techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As the United States enters into the next space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt innovative techniques for manufacturing hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, rapid manufacturing techniques such as Direct Metal Laser Sintering (DMLS) are being adopted and evaluated for their use on NASA s Space Launch System (SLS) upper stage engine, J-2X, with hopes of employing this technology on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powder metal manufacturing process in order to produce complex part geometries. Marshall Space Flight Center (MSFC) has recently hot-fire tested a J-2X gas generator (GG) discharge duct that was manufactured using DMLS. The duct was inspected and proof tested prior to the hot-fire test. Using a workhorse gas generator (WHGG) test fixture at MSFC's East Test Area, the duct was subjected to extreme J-2X hot gas environments during 7 tests for a total of 537 seconds of hot-fire time. The duct underwent extensive post-test evaluation and showed no signs of degradation. DMLS manufacturing has proven to be a viable option for manufacturing rocket engine hardware, and further development and use of this manufacturing method is recommended.

  16. Stem Cell Separation Technologies

    OpenAIRE

    Zhu, Beili; Murthy, Shashi K

    2013-01-01

    Stem cell therapy and translational stem cell research require large-scale supply of stem cells at high purity and viability, thus leading to the development of stem cell separation technologies. This review covers key technologies being applied to stem cell separation, and also highlights exciting new approaches in this field. First, we will cover conventional separation methods that are commercially available and have been widely adapted. These methods include Fluorescence-activated cell so...

  17. Analysis of Technology Effectiveness of Lean Manufacturing Using System Dynamics

    OpenAIRE

    Hasan Hosseini-Nasab; Mohammad Dehghani; Amin Hosseini-Nasab

    2013-01-01

    In today’s competitive environment, organizations are seeking to improve their position in the market. Lean manufacturing is an effective tool for elevating the competitiveness of organizations based on the fact that each can find its own way of improvement. Technology improvement is considered to be one of lean manufacturing’s dimensions. Technology is defined as the usage and knowledge of tools, techniques, crafts, systems, or methods of organization, with the aim of solving a problem or cr...

  18. Agent Technology in Agile Multiparallel Manufacturing and Product Support

    NARCIS (Netherlands)

    van Moergestel, L.J.M.

    2014-01-01

    The thesis describes the application of agent technology in product manufacturing and product support. Important issues in the requirements of modern production are short time to market, requirement-driven production and low cost small quantity production. To meet these requirements special low cost

  19. Agile manufacturing and technology transfer to industrialising countries

    NARCIS (Netherlands)

    Steenhuis, Harm-Jan; Boer, de Sirp

    2003-01-01

    One of the requirements of agile manufacturing, the necessity to gain flexibility, can be reached by using a supplier network. A possible way to develop a supplier network is by subcontracting to parties in industrialising countries. In most cases, it is necessary to transfer technology. The aircraf

  20. A feasibility study for a manufacturing technology deployment center

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-31

    The Automation & Robotics Research Institute (ARRI) and the Texas Engineering Extension Service (TEEX) were funded by the U.S. Department of Energy to determine the feasibility of a regional industrial technology institute to be located at the Superconducting Super Collider (SSC) Central Facility in Waxahachie, Texas. In response to this opportunity, ARRI and TEEX teamed with the DOE Kansas City Plant (managed by Allied Signal, Inc.), Los Alamos National Laboratory (managed by the University of California), Vought Aircraft Company, National Center for Manufacturing Sciences (NCMS), SSC Laboratory, KPMG Peat Marwick, Dallas County Community College, Navarro Community College, Texas Department of Commerce (TDOC), Texas Manufacturing Assistance Center (TMAC), Oklahoma Center for the Advancement of Science and Technology, Arkansas Science and Technology Authority, Louisiana Productivity Center, and the NASA Mid-Continent Technology Transfer Center (MCTTC) to develop a series of options, perform the feasibility analysis and secure industrial reviews of the selected concepts. The final report for this study is presented in three sections: Executive Summary, Business Plan, and Technical Plan. The results from the analysis of the proposed concept support the recommendation of creating a regional technology alliance formed by the states of Texas, New Mexico, Oklahoma, Arkansas and Louisiana through the conversion of the SSC Central facility into a Manufacturing Technology Deployment Center (MTDC).

  1. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    Science.gov (United States)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  2. Benefits from the U.S. photovoltaic manufacturing technology project

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R.L.; Witt, C.E.; Thomas, H.P. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    This paper examines the goals of the Photovoltaic Manufacturing Technology (PVMaT) project and its achievements in recapturing the investment by the photovoltaic (PV) industry and the public in this research. The PVMaT project was initiated in 1990 with the goal of enhancing the world-wide competitiveness of the U.S. PV industry. Based on the authors analysis, PVMaT has contributed to PV module manufacturing process improvements, increased product value, and reductions in the price of today`s PV products. An evaluation of success in this project was conducted using data collected from 10 of the PVMaT industrial participants in late fiscal year (FY) 1995. These data indicate a reduction of 56% in the weighted average module manufacturing costs from 1992 to 1996. During this same period, U.S. module manufacturing capacity has increased by more than a factor of 6. Finally, the analysis indicates that both the public and the manufacturers will recapture the funds expended in R&D manufacturing improvements well before the year 2000.

  3. Plasma Jet Imaging by CCD Technology in Rapid Mold Manufacturing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Plasma spraying is an important enabling technology i n near-net-shaped process as well as many high-performance coating applicatio ns. Recently, it is being applied to rapid mould manufacturing to reduce develop ment time and manufacturing cost. In this process, inputted powders are heated a nd accelerated by plasma jet, and impinge on master pattern or prototype to form ing a thick coating. Mould will be fabricated after backed-up with consolidated material and other post-treatments. Amongst numerous fa...

  4. Manufacturing technology development for vacuum vessel and plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, Arttu [Metso Powdermet, P.O. Box 237, FIN 33101 Tampere (Finland)]. E-mail: arttu.laitinen@metso.com; Liimatainen, Jari [Metso Powdermet, P.O. Box 237, FIN 33101 Tampere (Finland); Hallila, Pentti [Metso Powdermet, P.O. Box 237, FIN 33101 Tampere (Finland)

    2005-11-15

    Vacuum vessel and plasma facing components of the ITER construction including shield modules and primary first wall panels have great impact on the production costs and reliability of the installation. From the manufacturing technology point of view, accuracy of shape, properties of the various austenitic stainless steel/austenitic stainless steel interfaces or CuCrZr/austenitic stainless steel interfaces as well as those of the base materials are crucial for technical reliability of the construction. The current approach in plasma facing components has been utilisation of solid-HIP technology and solid-powder-HIP technology. Due to the large size of especially shield modules shape, control of the internal cavities and cooling channels is extremely demanding. This requires strict control of the raw materials and manufacturing parameters.

  5. Advanced Cell Technology, Inc.

    Science.gov (United States)

    Caldwell, William M

    2007-03-01

    Advanced Cell Technology, Inc. (OTCBB: ACTC) is a biotechnology company applying novel human embryonic stem cell technologies in the emerging field of regenerative medicine. We believe that regenerative medicine has the potential to revolutionize the field by enabling scientists to produce human cells of any kind for use in a wide array of therapies.

  6. Solar cell circuit and method for manufacturing solar cells

    Science.gov (United States)

    Mardesich, Nick (Inventor)

    2010-01-01

    The invention is a novel manufacturing method for making multi-junction solar cell circuits that addresses current problems associated with such circuits by allowing the formation of integral diodes in the cells and allows for a large number of circuits to readily be placed on a single silicon wafer substrate. The standard Ge wafer used as the base for multi-junction solar cells is replaced with a thinner layer of Ge or a II-V semiconductor material on a silicon/silicon dioxide substrate. This allows high-voltage cells with multiple multi-junction circuits to be manufactured on a single wafer, resulting in less array assembly mass and simplified power management.

  7. Locally manufactured wind power technology for sustainable rural electrification

    International Nuclear Information System (INIS)

    To date, the use of wind power for rural electrification has been limited. However the fact that micro-wind turbines can be manufactured using only basic workshop tools, techniques and materials, and therefore can be produced locally is often overlooked. Local manufacture has the potential to boost the local economy, build local capacity, reduce costs and produce resilient and flexible energy systems. However, locally manufactured technology must be seen as socially embedded due to the variety of local knowledge, skills, equipment and materials needed to construct and maintain such systems, as well as the organisational structures needed to ensure their long term sustainability. Evidence from successful initiatives suggests that stable institutional support from intermediaries such as the local/national government or NGOs is necessary to foster the development of a wind power industry based on local manufacture. The roles of these intermediaries include identifying and targeting windy areas with favourable environmental conditions, conducting research and development, collecting feedback from end users, creating supply chains for new parts and materials and developing relevant knowledge and skills. In this paper, three case studies of specific initiatives are analysed to draw out the social, economic and technical factors that could facilitate wider adoption of the technology. - Highlights: ► Local manufacture of wind turbines often overlooked for rural electrification. ► Flexible to adapt to local context and benefits local economy, capacity and supply chain. ► Development of technology discussed and 3 case studies of dissemination analysed. ► Critical factors: institutional support, system level planning, continuity of supply. ► Dissemination successful in Inner Mongolia; work continues elsewhere.

  8. Composites Materials and Manufacturing Technologies for Space Applications

    Science.gov (United States)

    Vickers, J. H.; Tate, L. C.; Gaddis, S. W.; Neal, R. E.

    2016-01-01

    Composite materials offer significant advantages in space applications. Weight reduction is imperative for deep space systems. However, the pathway to deployment of composites alternatives is problematic. Improvements in the materials and processes are needed, and extensive testing is required to validate the performance, qualify the materials and processes, and certify components. Addressing these challenges could lead to the confident adoption of composites in space applications and provide spin-off technical capabilities for the aerospace and other industries. To address the issues associated with composites applications in space systems, NASA sponsored a Technical Interchange Meeting (TIM) entitled, "Composites Materials and Manufacturing Technologies for Space Applications," the proceedings of which are summarized in this Conference Publication. The NASA Space Technology Mission Directorate and the Game Changing Program chartered the meeting. The meeting was hosted by the National Center for Advanced Manufacturing (NCAM)-a public/private partnership between NASA, the State of Louisiana, Louisiana State University, industry, and academia, in association with the American Composites Manufacturers Association. The Louisiana Center for Manufacturing Sciences served as the coordinator for the TIM.

  9. Design for manufacturability of a VDSM standard cell library

    Institute of Scientific and Technical Information of China (English)

    周宠; 陈岚; 曾健平; 尹明会; 赵劫

    2012-01-01

    This paper presents a method of designing a 65 nm DFM standard cell library.By reducing the amount of the library largely,the process of optical proximity correction (OPC) becomes more efficient and the need for large storage is reduced.This library is more manufacture-friendly as each cell has been optimized according to the DFM rule and optical simulation.The area penalty is minor compared with traditional library,and the timing,as well as power has a good performance.Furthermore,this library has passed the test from the Technology Design Department of Foundry.The result shows this DFM standard cell library has advantages that improve the yield.

  10. Evaluating the barriers for enhacing the utilization level of advanced manufacturing technologies (AMTs in manufacturing industry

    Directory of Open Access Journals (Sweden)

    Preetam singh sankhla

    2014-10-01

    Full Text Available This research has been out within the field of the barriers of advanced manufacturing technology. It has been goal to investigate the barriers affecting the implementation of AMT in the organisation. the work with this paper has been carried out in cooperation with machine well with the goal to create recommendation for the company in how they could implement AMT successfully in the company in order to answer the question what should a small industry focus on to implement the AMT concept successfully, an investigation in the two middle size industries in the Rajasthan (India were visited. One interview was carried out with managers at both the two companies and a questionnaire was handed out to workers. The aim was to see if there were any large differences in the barriers of AMT which is applying in the company. The interview and questionnaire did show that a company should know about barriers of AMT & their inter relationship if they wanted to accomplish more in the organisation with tea work and get more busy from the employees. It is important that all workers know the vision and goal why a company is implementing AMT. Advanced manufacturing technology (AMT has been viewed strategic weapon to gain competitive advantages by manufacturing organisation . The small and medium scale industries (SMISs are under increasing pressure to adopt advanced manufacturing technology to be competitive or simply to survive. The successful implementation of AMT will requires the companies to have a workforce with higher level of skills, a flexible organizational structure and include a new culture in managing and training a workforce in the manufacturing industries. The ability of the workers to run multiple machines, stopping production when problem occur, communication of organizational goals and participation in idea generation and decision making are important in achieving a higher benefits of AMT. The SMIs have to increase the educational and supervision

  11. Development of Self-Luminous Glass Tube (SLGT) Manufacturing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Sin; Kim, Kyeong Sook; Chung, Eun Su; Song, Kyu Min; Lee, Sook Kyung; Son, Soon Hwan [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    Tritium produced from the Wolsong Tritium Removal Facility (WTRF) will be a radioactive waste when it is stored in the vault inside the WTRF, which requires maintenance cost and is a troublesome waste such that it cannot be sent to the radioactive waste disposal facility. However, when tritium is utilized it can be valuable resource for many applications. As a starting point to utilize tritium we tried to domesticate the selfluminous glass tube (SLGT) manufacturing technology. As a hydrogen isotope, tritium has similar chemical properties to hydrogen but slightly different physical properties. Due to its unstable nature, tritium emits beta rays, which are streams of electrons, with 0{approx}18.6 keV (5.7 keV in average) energies and 12.323 years of a half-life. The energy level of tritium is relatively low and the biological effects of tritium to the human body are not significant, which makes tritium a popular radioactive isotope for use in industries. The electrons in a beta ray collide with phosphor to produce light so that tritium sealed in phosphor coated glass tubes can make the tubes glow without an external supply of energy. To manufacture these SLGTs, 4 core technologies are needed: coating technology, tritium injection technology, laser sealing/cutting technology and tritium handling technology.

  12. Handbook on advanced design and manufacturing technologies for biomedical devices

    CERN Document Server

    2013-01-01

    The last decades have seen remarkable advances in computer-aided design, engineering and manufacturing technologies, multi-variable simulation tools, medical imaging, biomimetic design, rapid prototyping, micro and nanomanufacturing methods and information management resources, all of which provide new horizons for the Biomedical Engineering fields and the Medical Device Industry. Handbook on Advanced Design and Manufacturing Technologies for Biomedical Devices covers such topics in depth, with an applied perspective and providing several case studies that help to analyze and understand the key factors of the different stages linked to the development of a novel biomedical device, from the conceptual and design steps, to the prototyping and industrialization phases. Main research challenges and future potentials are also discussed, taking into account relevant social demands and a growing market already exceeding billions of dollars. In time, advanced biomedical devices will decisively change methods and resu...

  13. New development on additive manufacturing technology and its applications

    Institute of Scientific and Technical Information of China (English)

    Tian Xiaoyong; Li Dichen; Zhang Anfeng; Lu Zhongliang; Lu Bingheng

    2013-01-01

    Additive manufacturing technology has been developed in Xi' an Jiaotong University for almost 20 years.Up to now,it is still attracting the attentions of the researchers or manufacturers all over the world.Some innovative processes and frontier application research are all being conducted here to catch up with the new development of this technology.In the paper,newly developed processes,such as ultraviolet-light emitting diode (UVLED) stereolithography,ceramic stereolithography,and direct metal forming,were described.Some results of the frontier application researches,such as indirect fabrication of ceramic casting mould,wind-tunnel-testing models,photonic crystals and metamaterials,were also briefly reviewed.

  14. Agent Technology in Agile Multiparallel Manufacturing and Product Support

    OpenAIRE

    van Moergestel, L.J.M.

    2014-01-01

    The thesis describes the application of agent technology in product manufacturing and product support. Important issues in the requirements of modern production are short time to market, requirement-driven production and low cost small quantity production. To meet these requirements special low cost production platforms have been developed in our research. These reconfigurable platforms are called equiplets. A grid of these equiplets connected by a fast network is capable of producing a varie...

  15. Advanced manufacturing technologies for the BeCOAT telescope

    Science.gov (United States)

    Sweeney, Michael N.; Rajic, Slobodan; Seals, Roland D.

    1994-02-01

    The beryllium cryogenic off-axis telescope (BeCOAT) uses a two-mirror, non re-imaging, off- axis, Ritchey Chretian design with all-beryllium optics, structures and baffles. The purpose of this telescope is the system level demonstration of advanced manufacturing technologies for optics, optical benches, and baffle assemblies. The key issues that are addressed are single point diamond turning of beryllium optics, survivable fastening techniques, minimum beryllium utilization, and technologies leading to self-aligning, all-beryllium optical systems.

  16. The new technology for manufacturing polymer Nanopowder. Part 2

    Directory of Open Access Journals (Sweden)

    GRYAZNOV Igor Vasilevich

    2016-01-01

    Full Text Available The authors studied the problem of pollution by waste polymers. The research is dedicated to the methods of recycling of polymers, in particular PTFE. It was shown that the most environmentally friendly disposal methods with the lowest cost are the methods based on stepwise mechanical dispersion. Technologies and devices based on the principles of abrasive vortex dispersion polymers have been developed and tested. To protect the intellectual property of the author the staff of LLC TARK (Ukraine and the Science and Technology Center Polymate (Israel registered patent «Method and apparatus for manufacturing submicron polymer powder» USA No. 12 / 981.202 of 29.12.2010.

  17. The new technology for manufacturing polymer Nanopowder. Part 1

    Directory of Open Access Journals (Sweden)

    GRYAZNOV Igor Vasilevich

    2015-10-01

    Full Text Available The authors studied the problem of pollution by waste polymers. The research is dedicated to the methods of recycling of polymers, in particular PTFE. It was shown that the most environmentally friendly disposal methods with the lowest cost are the methods based on stepwise mechanical dispersion. Technologies and devices based on the principles of abrasive vortex dispersion polymers have been developed and tested. To protect the intellectual property of the author the staff of LLC TARK (Ukraine and the Science and Technology Center Polymate (Israel registered patent «Method and apparatus for manufacturing submicron polymer powder» USA No. 12 / 981.202 of 29.12.2010.

  18. Development of High Temperature Capacitor Technology and Manufacturing Capability

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-05-15

    The goal of the Development of High Temperature Capacitor Technology and Manufacturing Capability program was to mature a production-ready supply chain for reliable 250°C FPE (fluorinated polyester) film capacitors by 2011. These high-temperature film capacitors enable both the down hole drilling and aerospace industries by enabling a variety of benefits including: - Deeper oil exploration in higher temperature and pressure environments - Enabling power electronic and control equipment to operate in higher temperature environments - Enabling reduced cooling requirements of electronics - Increasing reliability and life of capacitors operating below rated temperature - Enabling capacitors to handle higher electrical losses without overheating. The key challenges to bringing the FPE film capacitors to market have been manufacturing challenges including: - FPE Film is difficult to handle and wind, resulting in poor yields - Voltage breakdown strength decreases when the film is wound into capacitors (~70% decrease) - Encapsulation technologies must be improved to enable higher perature operation - Manufacturing and test cycle time is very long As a direct result of this program most of the manufacturing challenges have been met. The FPE film production metalization and winding yield has increased to over 82% from 70%, and the voltage breakdown strength of the wound capacitors has increased 270% to 189 V/μm. The high temperature packaging concepts are showing significant progress including promising results for lead attachments and hermetic packages at 200°C and non-hermetic packages at 250°C. Manufacturing and test cycle time will decrease as the market for FPE capacitors develops.

  19. Advanced excimer laser technologies enable green semiconductor manufacturing

    Science.gov (United States)

    Fukuda, Hitomi; Yoo, Youngsun; Minegishi, Yuji; Hisanaga, Naoto; Enami, Tatsuo

    2014-03-01

    "Green" has fast become an important and pervasive topic throughout many industries worldwide. Many companies, especially in the manufacturing industries, have taken steps to integrate green initiatives into their high-level corporate strategies. Governments have also been active in implementing various initiatives designed to increase corporate responsibility and accountability towards environmental issues. In the semiconductor manufacturing industry, there are growing concerns over future environmental impact as enormous fabs expand and new generation of equipments become larger and more powerful. To address these concerns, Gigaphoton has implemented various green initiatives for many years under the EcoPhoton™ program. The objective of this program is to drive innovations in technology and services that enable manufacturers to significantly reduce both the financial and environmental "green cost" of laser operations in high-volume manufacturing environment (HVM) - primarily focusing on electricity, gas and heat management costs. One example of such innovation is Gigaphoton's Injection-Lock system, which reduces electricity and gas utilization costs of the laser by up to 50%. Furthermore, to support the industry's transition from 300mm to the next generation 450mm wafers, technologies are being developed to create lasers that offer double the output power from 60W to 120W, but reducing electricity and gas consumption by another 50%. This means that the efficiency of lasers can be improve by up to 4 times in 450mm wafer production environments. Other future innovations include the introduction of totally Heliumfree Excimer lasers that utilize Nitrogen gas as its replacement for optical module purging. This paper discusses these and other innovations by Gigaphoton to enable green manufacturing.

  20. Cloud service-oriented dashboard for work cell management in RFID-enabled ubiquitous manufacturing

    OpenAIRE

    Luo, H.; Cheng, M.; Li, Y.; Lan, S.; Huang, GQ; Zhong, RY

    2013-01-01

    This article aims at developing a service-oriented dashboard for operators and supervisors of manufacturing shopfloor work-cells to realize information visibility and traceability effectively with cloud and RFID (radio frequency identification) technologies. The work is based on a case of an illustrative assembly line consisting of a number of work cells. The dashboard is deployed for facilitating assembly operations in ubiquitous manufacturing environment. The utilization of the system leads...

  1. Organic photovoltaic cells: from performance improvement to manufacturing processes.

    Science.gov (United States)

    Youn, Hongseok; Park, Hui Joon; Guo, L Jay

    2015-05-20

    Organic photovoltaics (OPVs) have been pursued as a next generation power source due to their light weight, thin, flexible, and simple fabrication advantages. Improvements in OPV efficiency have attracted great attention in the past decade. Because the functional layers in OPVs can be dissolved in common solvents, they can be manufactured by eco-friendly and scalable printing or coating technologies. In this review article, the focus is on recent efforts to control nanomorphologies of photoactive layer and discussion of various solution-processed charge transport and extraction materials, to maximize the performance of OPV cells. Next, recent works on printing and coating technologies for OPVs to realize solution processing are reviewed. The review concludes with a discussion of recent advances in the development of non-traditional lamination and transfer method towards highly efficient and fully solution-processed OPV.

  2. New Sunshine Program for fiscal 2000. Development of photovoltaic system commercialization technology - Development of thin-film solar cell manufacturing technology - Development of low-cost/large area module manufacturing technology (Development of high-reliability CdTe solar cell module manufacturing technology); 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu, Hakumaku taiyodenchi no seizo gijutsu kaihatsu, Tei cost dai menseki mojuru seizo gijutsu kaihatsu (Koshinraisei CdTe taiyo denchi mojuru no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Research and development was conducted for reliable CdTe solar cell modules, large in area and high in efficiency. In the study of large-area CdS thin film fabrication, a conversion efficiency of 12.5-14.2% was achieved in a cell in a large-area substrate using a mist method-aided process of continuous CdS film fabrication. In the study of large-area CdTe thin film fabrication, the optimization was studied of the base-forming CdS film fabrication conditions and of the CdTe film fabrication conditions in a method using a CdTe powder processed by dry kneading, and a conversion efficiency peak was found to exist when the CdS film thickness was in the range of 700-900 angstrom. In the fabrication of large-area submodules, a large-area substrate was taken up, and TCO (transparent conducting oxide) film was fabricated by the mist method, CdTe film by the normal pressure CSS method, electrodes by the screen printing method, and CdTe film patterns by the blast method. As the result, a conversion efficiency of 11.0% was achieved. In a cost estimation for large-area CdTe solar cell modules, 140 yen/Wp (conversion efficiency: 11.0%, annual production: 100 MW) was obtained. (NEDO)

  3. A relativity concept in mesenchymal stromal cell manufacturing.

    Science.gov (United States)

    Martin, Ivan; De Boer, Jan; Sensebe, Luc

    2016-05-01

    Mesenchymal stromal cells (MSCs) are being experimentally tested in several biological systems and clinical settings with the aim of verifying possible therapeutic effects for a variety of indications. MSCs are also known to be heterogeneous populations, with phenotypic and functional features that depend heavily on the individual donor, the harvest site, and the culture conditions. In the context of this multidimensional complexity, a recurrent question is whether it is feasible to produce MSC batches as "standard" therapeutics, possibly within scalable manufacturing systems. Here, we provide a short overview of the literature on different culture methods for MSCs, including those employing innovative technologies, and of some typically assessed functional features (e.g., growth, senescence, genomic stability, clonogenicity, etc.). We then offer our perspective of a roadmap on how to identify and refine manufacturing systems for MSCs intended for specific clinical indications. We submit that the vision of producing MSCs according to a unique standard, although commercially attractive, cannot yet be scientifically substantiated. Instead, efforts should be concentrated on standardizing methods for characterization of MSCs generated by different groups, possibly covering a vast gamut of functionalities. Such assessments, combined with hypotheses on the therapeutic mode of action and associated clinical data, should ultimately allow definition of in-process controls and measurable release criteria for MSC manufacturing. These will have to be validated as predictive of potency in suitable pre-clinical models and of therapeutic efficacy in patients. PMID:27059199

  4. A relativity concept in mesenchymal stromal cell manufacturing.

    Science.gov (United States)

    Martin, Ivan; De Boer, Jan; Sensebe, Luc

    2016-05-01

    Mesenchymal stromal cells (MSCs) are being experimentally tested in several biological systems and clinical settings with the aim of verifying possible therapeutic effects for a variety of indications. MSCs are also known to be heterogeneous populations, with phenotypic and functional features that depend heavily on the individual donor, the harvest site, and the culture conditions. In the context of this multidimensional complexity, a recurrent question is whether it is feasible to produce MSC batches as "standard" therapeutics, possibly within scalable manufacturing systems. Here, we provide a short overview of the literature on different culture methods for MSCs, including those employing innovative technologies, and of some typically assessed functional features (e.g., growth, senescence, genomic stability, clonogenicity, etc.). We then offer our perspective of a roadmap on how to identify and refine manufacturing systems for MSCs intended for specific clinical indications. We submit that the vision of producing MSCs according to a unique standard, although commercially attractive, cannot yet be scientifically substantiated. Instead, efforts should be concentrated on standardizing methods for characterization of MSCs generated by different groups, possibly covering a vast gamut of functionalities. Such assessments, combined with hypotheses on the therapeutic mode of action and associated clinical data, should ultimately allow definition of in-process controls and measurable release criteria for MSC manufacturing. These will have to be validated as predictive of potency in suitable pre-clinical models and of therapeutic efficacy in patients.

  5. Implementing the South African additive manufacturing technology roadmap - the role of an additive manufacturing centre of competence

    OpenAIRE

    Du Preez, Willie Bouwer; De Beer, Deon J.

    2015-01-01

    The Rapid Product Development Association of South Africa (RAPDASA) expressed the need for a national Additive Manufacturing Roadmap. Consequentially, the South African Department of Science and Technology commissioned the development of a South African Additive Manufacturing Technology Roadmap. This was intended to guide role-players in identifying business opportunities, addressing technology gaps, focusing development programmes, and informing investment decisions that would enable local c...

  6. Digital Aircraft Sheet Metal Part Manufacturing System and Its Key Technology

    Institute of Scientific and Technical Information of China (English)

    Wang; Junbiao; Liu; Chuang

    2007-01-01

    The architecture of digital sheet metal manufacturing system is proposed based on the classification of sheet metal manufacturing information.The essence of digital manufacturing is the definition,management and transfer of information,and the key technologies are brought forward and described.It is pointed out that knowledge-based manufacturing elements design is necessary to make digital technology efficient.The management of all kinds of sheet metal manufacturing element information is to build single source of manufacturing data.Multi-state model-based digital transfer and coordination method is designed to provide a foundation for digital manufacturing of aircraft sheet metal part.The application of digital sheet metal manufacturing is exemplified with an aircraft sheet metal part.The application result is compared to that of the traditional analog transfer technology.It is shown that the developed technology can improve part quality,shorten manufacturing time and lower manufacturing cost.

  7. A state of the Art report on Manufacturing technology of high burn-up fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyeong Ho; Nam, Cheol; Baek, Jong Hyuk; Choi, Byung Kwon; Park, Sang Yoon; Lee, Myung Ho; Jeong, Yong Hwan

    1999-09-01

    In order to manufacturing the prototype fuel cladding, overall manufacturing processes and technologies should be thoroughly understood on the manufacturing processes and technologies of foreign cladding tubes. Generally, the important technology related to fuel cladding tube manufacturing processes for PWRs/PHWRs is divided into three stages. The first stage is to produce the zirconium sponge from zirconium sand, the second stage is to produce the zircaloy shell or TREX from zirconium sponge ingot and finally, cladding is produced from TREX or zircaloy shell. Therefore, the manufacturing processes including the first and second stages are described in brief in this technology report in order to understand the whole fuel cladding manufacturing processes. (author)

  8. Reliability Modeling and Analysis of Flexible Manufacturing Cells

    OpenAIRE

    Savsar, Mehmet

    2010-01-01

    The demand for customized products has been continuously increasing in recent years and a great deal of attention has been given to automation of manufacturing, specifically to flexible manufacturing systems (FMS) and flexible manufacturing cells (FMC). FMC are less costly, smaller, and less complex systems than FMS. In order to get full benefit from these systems, they have to be analyzed in detail before implementation as well as during their operations. While modeling and analysis of tradi...

  9. Study on the Architecture of Control System for Manufacturing Cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The depiction of the agile manufacturing cell includes a synopsis of some of the change proficiencies obtained by the configuration. To achieve agile configuration, the cell control system for agile manufacturing must be rapidly and efficiently generated or modified. In this paper, the object-oriented architecture is defined that supports design and implementation of highly reconfigurable control systems for agile manufacturing cells, which is composed of database objects, control objects, and resource objects, so as to reduce costs and to increase the control system's agility with respect to changing environment.

  10. Crossword Puzzle Makes It Fun: Introduce Green Manufacturing in Wood Technology Courses

    Science.gov (United States)

    Iley, John L.; Hague, Doug

    2012-01-01

    Sustainable, or "green," manufacturing and its practices are becoming more and more a part of today's industry, including wood product manufacturing. This article provides introductory information on green manufacturing in wood technology and a crossword puzzle based on green manufacturing terms. The authors use the puzzle at the college level to…

  11. Optimization Manufacture of Virus- and Tumor-Specific T Cells

    Directory of Open Access Journals (Sweden)

    Natalia Lapteva

    2011-01-01

    Full Text Available Although ex vivo expanded T cells are currently widely used in pre-clinical and clinical trials, the complexity of manufacture remains a major impediment for broader application. In this review we discuss current protocols for the ex vivo expansion of virus- and tumor-specific T cells and describe our experience in manufacture optimization using a gas-permeable static culture flask (G-Rex. This innovative device has revolutionized the manufacture process by allowing us to increase cell yields while decreasing the frequency of cell manipulation and in vitro culture time. It is now being used in good manufacturing practice (GMP facilities for clinical cell production in our institution as well as many others in the US and worldwide.

  12. DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

    2004-06-12

    This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

  13. Advanced manufacturing technologies and strategically flexible production. A review and outlook

    DEFF Research Database (Denmark)

    Boer, Harry

    2016-01-01

    During the 1980s, Western manufacturers were attracted by the potential of computer technology to increase productivity through the improvement of quality and the reduction of costs and lead times. However, most investments aimed at exploiting the benefits of Computer Integrated Manufacturing (CI...... of Advanced Manufacturing Technologies (AMT) and the adoption of new managerial and organizational principles....

  14. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Science.gov (United States)

    2010-01-01

    ... Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle Manufacturing Facility Award Program, 10 CFR part 611, subpart C, awards for eligible projects. ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced Technology Vehicle Manufacturing Facility...

  15. Electron Beam Melting Manufacturing Technology for Individually Manufactured Jaw Prosthesis: A Case Report.

    Science.gov (United States)

    Suska, Felicia; Kjeller, Göran; Tarnow, Peter; Hryha, Eduard; Nyborg, Lars; Snis, Anders; Palmquist, Anders

    2016-08-01

    In the field of maxillofacial reconstruction, additive manufacturing technologies, specifically electron beam melting (EBM), offer clinicians the potential for patient-customized design of jaw prostheses, which match both load-bearing and esthetic demands. The technique allows an innovative, functional design, combining integrated porous regions for bone ingrowth and secondary biological fixation with solid load-bearing regions ensuring the biomechanical performance. A patient-specific mandibular prosthesis manufactured using EBM was successfully used to reconstruct a patient's mandibular defect after en bloc resection. Over a 9-month follow-up period, the patient had no complications. A short operating time, good esthetic outcome, and high level of patient satisfaction as measured by quality-of-life questionnaires-the European Organisation for Research and Treatment of Cancer QLQ-C30 (30-item quality-of-life core questionnaire) and H&N35 (head and neck cancer module)-were reported for this case. Individually planned and designed EBM-produced prostheses may be suggested as a possible future alternative to fibular grafts or other reconstructive methods. However, the role of porosity, the role of geometry, and the optimal combination of solid and porous parts, as well as surface properties in relation to soft tissues, should be carefully evaluated in long-term clinical trials. PMID:27178123

  16. MANUFACTURE OF PHOTOVOLTAIC SOLAR CELL USING PLANT CHLOROPHYLL

    Science.gov (United States)

    To date, we have successfully manufactured working chlorophyll sensitized solar cells using chlorophyll (and b mixture) from spinach leaves. We have evaluated the electronic characteristics (voltage, current, and power outputs using different loading resistors) of this solar c...

  17. Experience Scaling Up Manufacturing of Emerging Photovoltaic Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Braun, G. W.; Skinner, D. E.

    2007-01-01

    This report examines two important generic photovoltaic technologies at particularly revealing stages of development, i.e., the stages between R&D and stable commercial production and profitable sales. Based on two historical cases, it attempts to shed light on the difference between: (1) costs and schedules validated by actual manufacturing and market experience, and (2) estimated costs and schedules that rely on technology forecasts and engineering estimates. The amorphous Silicon case also identifies some of the costs that are incurred in meeting specific market requirements, while the Cadmium Telluride case identifies many of the operational challenges involved in transferring R&D results to production. The transition between R&D and commercial success takes a great deal of time and money for emerging energy conversion technologies in general. The experience reported here can be instructive to those managing comparable efforts, and to their investors. It can also be instructive to R&D managers responsible for positioning such new technologies for commercial success.

  18. Manufacturing of CSS CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, D. [ANTEC Solar GmbH, Rudisleben (Germany)

    2000-02-21

    Due to its basic physical and chemical properties CdTe has become a favoured base material for thin film solar cells, using robust, high-throughput manufacturing procedures. The technology shows significant potential for attaining cost levels of <0.5 Euro/W{sub p}. Close-spaced sublimation (CSS) is the fastest and simplest deposition process for both semiconductors used, CdTe and CdS, permitting in-line production at a high linear speed of about 1 m/min. The individual manufacturing steps for integrated modules are explained in view of their incorporation into the production line. ANTEC solar GmbH is engaged to enter the production of CdTe thin film modules on a scale of 10 MW{sub p} (100000 m{sup 2}) per annum, using CSS as the deposition procedure for the semiconductor films, and high-rate in-line sputtering for transparent and opaque contacts. Standard module size will be 60 x 120 cm{sup 2}. The production line is presently under construction. (orig.)

  19. Clinical manufacturing of CAR T cells: foundation of a promising therapy.

    Science.gov (United States)

    Wang, Xiuyan; Rivière, Isabelle

    2016-01-01

    The treatment of cancer patients with autologous T cells expressing a chimeric antigen receptor (CAR) is one of the most promising adoptive cellular therapy approaches. Reproducible manufacturing of high-quality, clinical-grade CAR-T cell products is a prerequisite for the wide application of this technology. Product quality needs to be built-in within every step of the manufacturing process. We summarize herein the requirements and logistics to be considered, as well as the state of the art manufacturing platforms available. CAR-T cell therapy may be on the verge of becoming standard of care for a few clinical indications. Yet, many challenges pertaining to manufacturing standardization and product characterization remain to be overcome in order to achieve broad usage and eventual commercialization of this therapeutic modality. PMID:27347557

  20. Implementing the South African additive manufacturing technology roadmap - the role of an additive manufacturing centre of competence

    Directory of Open Access Journals (Sweden)

    Du Preez, Willie Bouwer

    2015-08-01

    Full Text Available The Rapid Product Development Association of South Africa (RAPDASA expressed the need for a national Additive Manufacturing Roadmap. Consequentially, the South African Department of Science and Technology commissioned the development of a South African Additive Manufacturing Technology Roadmap. This was intended to guide role-players in identifying business opportunities, addressing technology gaps, focusing development programmes, and informing investment decisions that would enable local companies and industry sectors to become global leaders in selected areas of additive manufacturing. The challenge remains now for South Africa to decide on an implementation approach that will maximize the impact in the shortest possible time. This article introduces the concept of a national Additive Manufacturing Centre of Competence (AMCoC as a primary implementation vehicle for the roadmap. The support of the current leading players in additive manufacturing in South Africa for such a centre of competence is shared and their key roles are indicated. A summary of the investments that the leading players have already made in the focus areas of the AMCoC over the past two decades is given as confirmation of their commitment towards the advancement of the additive manufacturing technology. An exposition is given of how the AMCoC could indeed become the primary initiative for achieving the agreed national goals on additive manufacturing. The conclusion is that investment by public and private institutions in an AMCoC would be the next step towards ensuring South Africa’s continued progress in the field.

  1. Dispersion of Heat Flux Sensors Manufactured in Silicon Technology

    Science.gov (United States)

    Ziouche, Katir; Lejeune, Pascale; Bougrioua, Zahia; Leclercq, Didier

    2016-01-01

    In this paper, we focus on the dispersion performances related to the manufacturing process of heat flux sensors realized in CMOS (Complementary metal oxide semi-conductor) compatible 3-in technology. In particular, we have studied the performance dispersion of our sensors and linked these to the physical characteristics of dispersion of the materials used. This information is mandatory to ensure low-cost manufacturing and especially to reduce production rejects during the fabrication process. The results obtained show that the measured sensitivity of the sensors is in the range 3.15 to 6.56 μV/(W/m2), associated with measured resistances ranging from 485 to 675 kΩ. The dispersions correspond to a Gaussian-type distribution with more than 90% determined around average sensitivity Se¯ = 4.5 µV/(W/m2) and electrical resistance R¯ = 573.5 kΩ within the interval between the average and, more or less, twice the relative standard deviation. PMID:27294929

  2. Accelerating Industrial Adoption of Metal Additive Manufacturing Technology

    Science.gov (United States)

    Vartanian, Kenneth; McDonald, Tom

    2016-03-01

    While metal additive manufacturing (AM) technology has clear benefits, there are still factors preventing its adoption by industry. These factors include the high cost of metal AM systems, the difficulty for machinists to learn and operate metal AM machines, the long approval process for part qualification/certification, and the need for better process controls; however, the high AM system cost is the main barrier deterring adoption. In this paper, we will discuss an America Makes-funded program to reduce AM system cost by combining metal AM technology with conventional computerized numerical controlled (CNC) machine tools. Information will be provided on how an Optomec-led team retrofitted a legacy CNC vertical mill with laser engineered net shaping (LENS®—LENS is a registered trademark of Sandia National Labs) AM technology, dramatically lowering deployment cost. The upgraded system, dubbed LENS Hybrid Vertical Mill, enables metal additive and subtractive operations to be performed on the same machine tool and even on the same part. Information on the LENS Hybrid system architecture, learnings from initial system deployment and continuing development work will also be provided to help guide further development activities within the materials community.

  3. After-sales service to manufactured goods on technological basis

    Directory of Open Access Journals (Sweden)

    Miriam Borchardt

    2008-07-01

    Full Text Available This theoretical and exploratory paper aims to build a critical analysis on after-sales services, mainly regarded to manufactured goods on technological basis. The purpose of the research is to achieve some better understanding about the essential elements that are to be taken into account in conceiving such a service, after different approaches. After-sales service is a member of the service package and it can influence customer satisfaction. The studied issues can integrate policies to guiding firms in designing after-sales services. They are: definition of the service itself; strategic issues; the facilities and premises; and the operation management. We aim this theoretical research to be a pre-requisite to launch further empirical researches, mainly in the field of inter-organizational relationships. Key-words: service management; after-sales service; service operations; goods associated to services; inter-organizational relationships.

  4. The establishment of a production-ready manufacturing process utilizing thin silicon substrates for solar cells

    Science.gov (United States)

    Pryor, R. A.

    1980-01-01

    Three inch diameter Czochralski silicon substrates sliced directly to 5 mil, 8 mil, and 27 mil thicknesses with wire saw techniques were procured. Processing sequences incorporating either diffusion or ion implantation technologies were employed to produce n+p or n+pp+ solar cell structures. These cells were evaluated for performance, ease of fabrication, and cost effectiveness. It was determined that the use of 7 mil or even 4 mil wafers would provide near term cost reductions for solar cell manufacturers.

  5. Solar Cell Panel and the Method for Manufacturing the Same

    Science.gov (United States)

    Richards, Benjamin C. (Inventor); Sarver, Charles F. (Inventor); Naidenkova, Maria (Inventor)

    2016-01-01

    According to an aspect of an embodiment of the present disclosure, there is provided a solar cell panel and a method for manufacturing the same. The solar cell panel comprises: a solar cell for generating electric power from sunlight; a coverglass for covering the solar cell; transparent shims, which are disposed between the solar cell and the coverglass at the points where the distance between the solar cell and the coverglass needs to be controlled, and form a space between the solar cell and the coverglass; and adhesive layer, which fills the space between the solar cell and the coverglass and has the thickness the same as that of the transparent shims.

  6. Using CORBA to integrate manufacturing cells to a virtual enterprise

    Science.gov (United States)

    Pancerella, Carmen M.; Whiteside, Robert A.

    1997-01-01

    It is critical in today's enterprises that manufacturing facilities are not isolated from design, planning, and other business activities and that information flows easily and bidirectionally between these activities. It is also important and cost-effective that COTS software, databases, and corporate legacy codes are well integrated in the information architecture. Further, much of the information generated during manufacturing must be dynamically accessible to engineering and business operations both in a restricted corporate intranet and on the internet. The software integration strategy in the Sandia Agile Manufacturing Testbed supports these enterprise requirements. We are developing a CORBA-based distributed object software system for manufacturing. Each physical machining device is a CORBA object and exports a common IDL interface to allow for rapid and dynamic insertion, deletion, and upgrading within the manufacturing cell. Cell management CORBA components access manufacturing devices without knowledge of any device-specific implementation. To support information flow from design to planning data is accessible to machinists on the shop floor. CORBA allows manufacturing components to be easily accessible to the enterprise. Dynamic clients can be created using web browsers and portable Java GUI's. A CORBA-OLE adapter allows integration to PC desktop applications. Other commercial software can access CORBA network objects in the information architecture through vendor API's.

  7. Technology Reinvestment Project Manufacturing Education and Training. Volume 1

    Science.gov (United States)

    Schroer, Bernard J.; Bond, Arthur J.

    1997-01-01

    The manufacturing education program is a joint program between the University of Alabama in Huntsville's (UAH) College of Engineering and Alabama A&M University's (AAMLJ) School of Engineering and Technology. The objective of the program is to provide more hands-on experiences to undergraduate engineering and engineering technology students. The scope of work consisted of. Year 1, Task 1: Review courses at Alabama Industrial Development Training (AIDT); Task 2: Review courses at UAH and AAMU; Task 3: Develop new lab manuals; Task 4: Field test manuals; Task 5: Prepare annual report. Year 2, Task 1: Incorporate feedback into lab manuals; Task 2 : Introduce lab manuals into classes; Task 3: Field test manuals; Task 4: Prepare annual report. Year 3, Task 1: Incorporate feedback into lab manuals; Task 2: Introduce lab manuals into remaining classes; Task 3: Conduct evaluation with assistance of industry; Task 4: Prepare final report. This report only summarizes the activities of the University of Alabama in Huntsville. The activities of Alabama A&M University are contained in a separate report.

  8. Rare resource supply crisis and solution technology for semiconductor manufacturing

    Science.gov (United States)

    Fukuda, Hitomi; Hu, Sophia; Yoo, Youngsun; Takahisa, Kenji; Enami, Tatsuo

    2016-03-01

    There are growing concerns over future environmental impact and earth resource shortage throughout the world and in many industries. Our semiconductor industry is not excluded. "Green" has become an important topic as production volume become larger and more powerful. Especially, the rare gases are widely used in semiconductor manufacturing because of its inertness and extreme chemical stability. One major component of an Excimer laser system is Neon. It is used as a buffer gas for Argon (Ar) and Krypton (Kr) gases used in deep ultraviolet (DUV) lithography laser systems. Since Neon gas accounting for more than 96% of the laser gas mixture, a fairly large amount of neon gas is consumed to run these DUV lasers. However, due to country's instability both in politics and economics in Ukraine, the main producer of neon gas today, supply reduction has become an issue and is causing increasing concern. This concern is not only based on price increases, but has escalated to the point of supply shortages in 2015. This poses a critical situation for the semiconductor industry, which represents the leading consumer of neon gas in the world. Helium is another noble gas used for Excimer laser operation. It is used as a purge gas for optical component modules to prevent from being damaged by active gases and impurities. Helium has been used in various industries, including for medical equipment, linear motor cars, and semiconductors, and is indispensable for modern life. But consumption of helium in manufacturing has been increased dramatically, and its unstable supply and price rise has been a serious issue today. In this article, recent global supply issue of rare resources, especially Neon gas and Helium gas, and its solution technology to support semiconductor industry will be discussed.

  9. Developing novel 3D antennas using advanced additive manufacturing technology

    Science.gov (United States)

    Mirzaee, Milad

    In today's world of wireless communication systems, antenna engineering is rapidly advancing as the wireless services continue to expand in support of emerging commercial applications. Antennas play a key role in the performance of advanced transceiver systems where they serve to convert electric power to electromagnetic waves and vice versa. Researchers have held significant interest in developing this crucial component for wireless communication systems by employing a variety of design techniques. In the past few years, demands for electrically small antennas continues to increase, particularly among portable and mobile wireless devices, medical electronics and aerospace systems. This trend toward smaller electronic devices makes the three dimensional (3D) antennas very appealing, since they can be designed in a way to use every available space inside the devise. Additive Manufacturing (AM) method could help to find great solutions for the antennas design for next generation of wireless communication systems. In this thesis, the design and fabrication of 3D printed antennas using AM technology is studied. To demonstrate this application of AM, different types of antennas structures have been designed and fabricated using various manufacturing processes. This thesis studies, for the first time, embedded conductive 3D printed antennas using PolyLactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for substrate parts and high temperature carbon paste for conductive parts which can be a good candidate to overcome the limitations of direct printing on 3D surfaces that is the most popular method to fabricate conductive parts of the antennas. This thesis also studies, for the first time, the fabrication of antennas with 3D printed conductive parts which can contribute to the new generation of 3D printed antennas.

  10. Design of virtual manufacturing cells : a mathematical programming approach

    NARCIS (Netherlands)

    Slomp, J.; Chowdary, B.V.; Suresh, N.

    2005-01-01

    In this paper, a new type of virtual cellular manufacturing (CM) system is considered, and a multi-objective design procedure is developed for designing such cells in real time. Retaining the functional layout, virtual cells are addressed as temporary groupings of machines, jobs and workers to reali

  11. Manufacturing Resource Planning Technology Based on Genetic Programming Simulation

    Institute of Scientific and Technical Information of China (English)

    GAO Shiwen; LIAO Wenhe; GUO Yu; LIU Jinshan; SU Yan

    2009-01-01

    Network-based manufacturing is a kind of distributed system, which enables manufacturers to finish production tasks as well as to grasp the opportunities in the market, even if manufacturing resources are insufficient. One of the main problems in network-based manufacturing is the allocation of resources and the assignment of tasks rationally, according to flexible resource distribution. The mapping rules and relations between production techniques and resources are proposed, followed by the definition of the resource unit. Ultimately, the genetic programming method for the optimization of the manufacturing system is put forward. A set of software for the optimization system of simulation process using genetic programming techniques has been developed, and the problems of manufacturing resource planning in network-based manufacturing are solved with the simulation of optimizing methods by genetic programming. The optimum proposal of hardware planning, selection of company and scheduling will be obtained in theory to help company managers in scientific decision-making.

  12. Design, development, manufacture, testing, and delivery of devices for connection of solar cell panel circuitry to flat conductor cable solar cell array harness

    Science.gov (United States)

    Dillard, P. A.; Waddington, D.

    1971-01-01

    The technology status and problem areas which exist for the application of flat conductor cabling to solar cell arrays are summarized. Details covering the design, connector manufacture, and prototype test results are also summarized.

  13. TAPE CALENDERING MANUFACTURING PROCESS FOR MULTILAYER THIN-FILM SOLID OXIDE FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh; Kurt Montgomery

    2004-10-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the Phases I and II under Contract DE-AC26-00NT40705 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Tape Calendering Manufacturing Process For Multilayer Thin-Film Solid Oxide Fuel Cells''. The main objective of this project was to develop the manufacturing process based on tape calendering for multilayer solid oxide fuel cells (SOFC's) using the unitized cell design concept and to demonstrate cell performance under specified operating conditions. Summarized in this report is the development and improvements to multilayer SOFC cells and the unitized cell design. Improvements to the multilayer SOFC cell were made in electrochemical performance, in both the anode and cathode, with cells demonstrating power densities of nearly 0.9 W/cm{sup 2} for 650 C operation and other cell configurations showing greater than 1.0 W/cm{sup 2} at 75% fuel utilization and 800 C. The unitized cell design was matured through design, analysis and development testing to a point that cell operation at greater than 70% fuel utilization was demonstrated at 800 C. The manufacturing process for both the multilayer cell and unitized cell design were assessed and refined, process maps were developed, forming approaches explored, and nondestructive evaluation (NDE) techniques examined.

  14. Experiences and Trends of Manufacturing Technology of Advanced Nuclear Fuels

    International Nuclear Information System (INIS)

    The 'Atoms for Peace' mission initiated in the mid-1950s paved the way for the development and deployment of nuclear fission reactors as a source of heat energy for electricity generation in nuclear power reactors and as a source of neutrons in non-power reactors for research, materials irradiation, and testing and production of radioisotopes. The fuels for nuclear reactors are manufactured from natural uranium (∼99.3% 238U + ∼0.7% 235U) and natural thorium (∼100% 232Th) resources. Currently, most power and research reactors use 235U, the only fissile isotope found in nature, as fuel. The fertile isotopes 238U and 232Th are transmuted in the reactor to human-made 239Pu and 233U fissile isotopes, respectively. Likewise, minor actinides (MA) (Np, Am and Cm) and other plutonium isotopes are also formed by a series of neutron capture reactions with 238U and 235U. Long term sustainability of nuclear power will depend to a great extent on the efficient, safe and secure utilization of fissile and fertile materials. Light water reactors (LWRs) account for more than 82% of the operating reactors, followed by pressurized heavy water reactors (PHWRs), which constitute ∼10% of reactors. LWRs will continue to dominate the nuclear power market for several decades, as long as economically viable natural uranium resources are available. Currently, the plutonium obtained from spent nuclear fuel is subjected to mono recycling in LWRs as uranium-plutonium mixed oxide (MOX), containing up to 12% PuO2, in a very limited way. The reprocessed uranium (RepU) is also re-enriched and recycled in LWRs in a few countries. Unfortunately, the utilization of natural uranium resources in thermal neutron reactors is 2 and MOX fuel technology has matured during the past five decades. These fuels are now being manufactured, used and reprocessed on an industrial scale. Mixed uranium- plutonium monocarbide (MC), mononitride (MN) and U-Pu-Zr alloys are recognized as advanced fuels for sodium

  15. CELL FORMATION IN GROUP TECHNOLOGY: A SIMILARITY ORDER CLUSTERING APPROACH

    Directory of Open Access Journals (Sweden)

    Godfrey C. Onwubolu

    2012-01-01

    Full Text Available Grouping parts into families which can be produced by a cluster of machine cells is the cornerstone of cellular manufacturing, which in turn is the building block for flexible manufacturing systems. Cellular manufacturing is a group technology (GT concept that has recently attracted the attention of manufacturing firms operating under jobshop environment to consider redesigning their manufacturing systems so as to take advantage of increased throughput, reduction in work-in-progress, set-up time, and lead times; leading to product quality and customer satisfaction. The paper presents a generalised approach for machine cell formation from a jobshop using similarity order clustering technique for preliminary cell grouping and considering machine utilisation for the design of nonintergrouping material handling using the single-pass heuristic. The work addresses the shortcomings of cellular manufacturing systems design and implementations which ignore machine utilisations, group sizes and intergroup moves.

  16. Computer vision challenges and technologies for agile manufacturing

    Science.gov (United States)

    Molley, Perry A.

    1996-02-01

    Sandia National Laboratories, a Department of Energy laboratory, is responsible for maintaining the safety, security, reliability, and availability of the nuclear weapons stockpile for the United States. Because of the changing national and global political climates and inevitable budget cuts, Sandia is changing the methods and processes it has traditionally used in the product realization cycle for weapon components. Because of the increasing age of the nuclear stockpile, it is certain that the reliability of these weapons will degrade with time unless eventual action is taken to repair, requalify, or renew them. Furthermore, due to the downsizing of the DOE weapons production sites and loss of technical personnel, the new product realization process is being focused on developing and deploying advanced automation technologies in order to maintain the capability for producing new components. The goal of Sandia's technology development program is to create a product realization environment that is cost effective, has improved quality and reduced cycle time for small lot sizes. The new environment will rely less on the expertise of humans and more on intelligent systems and automation to perform the production processes. The systems will be robust in order to provide maximum flexibility and responsiveness for rapidly changing component or product mixes. An integrated enterprise will allow ready access to and use of information for effective and efficient product and process design. Concurrent engineering methods will allow a speedup of the product realization cycle, reduce costs, and dramatically lessen the dependency on creating and testing physical prototypes. Virtual manufacturing will allow production processes to be designed, integrated, and programed off-line before a piece of hardware ever moves. The overriding goal is to be able to build a large variety of new weapons parts on short notice. Many of these technologies that are being developed are also

  17. Solar cell and its manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Hisashi; Komatsu, Yasumitsu.

    1989-01-20

    The solar cell with a structure of the Cds sintered film/CdTe sintered film is excellent at mass productivity because of usage of screen printing, but its conversion efficiency is insufficient in comparison with that of the single crystal silicon solar cell. Since the CdS/CdTe solar cell is a heterojunction solar cell, it is necessary that lattice constants of two materials are close each other in order to improve its performance. However, the mismatching of the lattices of CdS and CdTe is as fairly big as 11%. In order to ameliorate this mismatching, this invention substitutes the CdTe sintered film with the CdS-CdTe mixed crystal sintered film. Besides, the CdS-CdTe mixed crystal phase has its narrow forbidden bandwidth at or below 50 mol % of its CdS content, hence with it, a solar cell can be obtained which is highly sensitive to the light of long wave lengths. 2 tabs.

  18. Advanced Manufacturing Technology Implementation Process in SME: Critical Success Factors

    Directory of Open Access Journals (Sweden)

    Jani Rahardjo

    2010-01-01

    Full Text Available The aim of this paper is to present critical factors that constitute a successful implementation of the Advanced Manufacturing Technologies (AMT in Small Medium Enterprise (SME. Many large companies have applied AMT and the applications have shown significant results in this global market era. Conveniently, these phenomenons are also engaged to Small Medium Enterprises (SME that of high demands on performing high quality product, fast delivery, reliable and more flexible. The implementation of AMT follow several processes namely pre installation, installation, improvement and mature. In order to guarantee the succesfull of running these processes, one should consider the Critical Success Factors (CSF. We conducted a survey to 125 SMEs that have implemented AMT, and found that the CSF for each process are moderately different. Good leadership is the main critical success factor for preparing and installation of the AMT. Once the AMT started or installed and arrived at growth stage, the financial availability factor turns into a critical success factor in the AMT implementation. In, mature stage, the support and commitment of top management becomes an important factor for gaining successful implementation. By means of factor analysis, we could point out that strategic factors are the main factors in pre-installation and installation stage. Finally, in the growth stage and mature stage, both tactical and strategic factors are the important factors in the successful of AMT implementation

  19. Research on Manufacturing Technology Based on Machine Vision

    Institute of Scientific and Technical Information of China (English)

    HU Zhanqi; ZHENG Kuijing

    2006-01-01

    The concept of machine vision based manufacturing technology is proposed first, and the key algorithms used in two-dimensional and three-dimensional machining are discussed in detail. Machining information can be derived from the binary images and gray picture after processing and transforming the picture. Contour and the parallel cutting method about two-dimensional machining are proposed. Polygon approximating algorithm is used to cutting the profile of the workpiece. Fill Scanning algorithm used to machining inner part of a pocket. The improved Shape From Shading method with adaptive pre-processing is adopted to reconstruct the three-dimensional model. Layer cutting method is adopted for three-dimensional machining. The tool path is then gotten from the model, and NC code is formed subsequently. The model can be machined conveniently by the lathe, milling machine or engraver. Some examples are given to demonstrate the results of ImageCAM system, which is developed by the author to implement the algorithms previously mentioned.

  20. Metal-Matrix Composites Prepared by Paper-Manufacturing Technology

    Science.gov (United States)

    Wenzel, Claudia; Aneziris, Christos G.; Pranke, Katja

    2016-01-01

    In this work, metal-matrix composites were prepared via paper-manufacturing technology using metastable austenitic steel powder of type 16-7-3 (Cr-Mn-Ni in wt pct) and magnesia partially stabilized zirconia reinforcing particles. The influence of the process parameters on the paper web formation and the resulting properties of the MMCs were studied and solids retention of >90 wt pct was achieved. During filtration of the aqueous fiber-filler suspension, the steel particles were incorporated in the fiber network, and steel clusters were formed. Calendering had a positive influence on the porosity, bulk density, and tensile strength of the green paper sheets. Within this contribution, the debinding process for the metal-matrix paper sheets was in focus. A debinding rate of 0.5 K/min to 733 K (460 °C) with a dwell time of 90 minutes was sufficient to completely remove cellulose fibers. The sintered composites attained a tensile strength of up to 177 N/mm2 at a total porosity of 66 pct.

  1. Integrated Manufacturing of Aerospace Components by Superplastic Forming Technology

    Directory of Open Access Journals (Sweden)

    Ju Min Kyung

    2015-01-01

    Full Text Available Aerospace vehicle requires lightweight structures to obtain weight saving and fuel efficiency. It is known that superplastic characteristics of some materials provide significant opportunity for forming complicated, lightweight components of aerospace structure. One of the most important advantages of using superplastic forming process is its simplicity to form integral parts and economy in tooling[1]. For instance, it can be applied to blow-forming, in which a metal sheet is deformed due to the pressure difference of hydrostatic gas on both sides of the sheet. Since the loading medium is gas pressure difference, this forming is different from conventional sheet metal forming technique in that this is stress-controlled rather than strain and strain rate controlled. This method is especially advantageous when several sheet metals are formed into complex shapes. In this study, it is demonstrated that superplastic forming process with titanium and steel alloy can be applied to manufacturing lightweight integral structures of aerospace structural parts and rocket propulsion components. The result shows that the technology to design and develop the forming process of superplastic forming can be applied for near net shape forming of a complex contour of a thrust chamber and a toroidal fuel tank.

  2. Additive technology as a way to implement the concept of lean manufacturing

    OpenAIRE

    Anton Shehovcov; Natalya Karpova

    2015-01-01

    The article examines the additive technology, their types, methods of use, advantages and disadvantages. The possibility of application of additive technologies as a way of implementing the concept of lean manufacturing.

  3. Advanced Manufacturing Technologies (AMT): Composites Integrated Modeling Element

    Data.gov (United States)

    National Aeronautics and Space Administration — CIM encompassed computational methods, tools and processes that go into the materials, design, manufacturing and qualification of composite aerospace structures....

  4. Solder technology in the manufacturing of electronic products

    Energy Technology Data Exchange (ETDEWEB)

    Vianco, P.T.

    1993-08-01

    The electronics industry has relied heavily upon the use of soldering for both package construction and circuit assembly. The solder attachment of devices onto printed circuit boards and ceramic microcircuits has supported the high volume manufacturing processes responsible for low cost, high quality consumer products and military hardware. Defects incurred during the manufacturing process are minimized by the proper selection of solder alloys, substrate materials and process parameters. Prototyping efforts are then used to evaluate the manufacturability of the chosen material systems. Once manufacturing feasibility has been established, service reliability of the final product is evaluated through accelerated testing procedures.

  5. Adoption and diffusion of renewable energy technologies: Influence of the policy mix in the manufacturing industry

    OpenAIRE

    Mattes, Katharina; Müller, Simon; Jäger, Angela; Weidner, Nadezda; Weißfloch, Ute

    2014-01-01

    Rising energy prices and political goals which address climate change, such as the reduction of greenhouse gas emissions, increase the importance of using renewable energies and technologies for generating these. Since the manufac-turing industry is one of the major energy consumers in Germany, this paper focuses on the diffusion of renewable energy technologies to generate power in the manufacturing industry. Using data from the German Manufacturing Survey 2012 for 1,594 firms, we analyse th...

  6. Advantage Management Strategy in Competition via Technological Race Perspective: Empirical Evidence from the Taiwanese Manufacturing Industry

    OpenAIRE

    2014-01-01

    This study investigated the advantage management strategies of a firm regarding the technological race in the manufacturing sector. This is to reveal whether firms adopt a catch-up or leapfrogging strategy in the competition for innovation. The results show that competition is fierce in the Taiwanese manufacturing industry. Taiwanese manufacturing firms (mostly SMEs) tend to adopt the “catch-up” strategy to keep up with their competitors in order to remain in the technological race. The resu...

  7. A glance of technology efforts for design-for-manufacturing in nano-scale CMOS processes

    Institute of Scientific and Technical Information of China (English)

    CHENG YuHua

    2008-01-01

    This paper overviews design for manufacturing (DFM) for IC design in nano-CMOS technologies. Process/device issues relevant to the manufacturability of ICs in advanced CMOS technologies will be presented first before an exploration on process/device modeling for DFM is done. The discussion also covers a brief in-troduction of DFM-aware of design flow and EDA efforts to better handle the design-manufacturing interface in very large scale IC design environment.

  8. Cartilage Tissue Engineering with Silk Fibroin Scaffolds Fabricated by Indirect Additive Manufacturing Technology

    Directory of Open Access Journals (Sweden)

    Chih-Hao Chen

    2014-03-01

    Full Text Available Advanced tissue engineering (TE technology based on additive manufacturing (AM can fabricate scaffolds with a three-dimensional (3D environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF. From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis of the cartilage-specific extracellular matrix component (collagen Type II was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining.

  9. A Technology Selection Framework for Integrating Manufacturing within a Supply Chain

    DEFF Research Database (Denmark)

    Farooq, Sami; O' Brien, Chris

    2012-01-01

    This paper describes a structured analytical approach for selecting a manufacturing technology. A framework consisting of six integrated steps is proposed by considering the growing importance of supply chains in manufacturing organisations. The framework makes use of Analytical Hierarchy (AHP......-organisational perspective in their organisational technology selection decision making process....

  10. Manufacturing technology in the Danish pig slaughter industry.

    Science.gov (United States)

    Hinrichsen, Lars

    2010-02-01

    The Danish pig meat industry is very export oriented. Ninety per cent of the production of the big cooperative slaughterhouses is exported to more than 100 countries all over the world. This poses a requirement for the industry to be globally competitive in the sense of quality, product safety and--of course--price. A big challenge for the industry is therefore to maintain sufficient low unit costs in spite of the high factor costs of Denmark. In particular the high labour costs must be accompanied by correspondingly high labour productivity. And, it should be emphasized, this high labour productivity must be achieved without compromising the concern for good working conditions of the employees in the manufacturing. Technology is one of the means to achieve this combination of good working conditions and high labour productivity. One of the most important benefits from automation is the improved working environment. Pig slaughtering, cutting and boning is traditionally very labour intensive and requires hard and repetitive work. For many people a job in a slaughterhouse is therefore not their first choice. This situation can be changed by automation, which will not only reduce arduous and repetitive work but in addition will introduce more motivating jobs in terms of planning, supervision and control of the new technology. Automation will also improve the hygiene and thereby the food safety. This applies in particular to the clean slaughter line where cross contamination between carcasses is reduced because of less manual handling and because the tools in the machines can be sterilised more effectively between each carcass. Automated processes are more accurate and repeatable than manual work. For some processes, in particular in cutting and boning, this will enhance the product yield. New technology can also improve the animal welfare. The group-stunning system and mechanised lairage systems are examples of that. Improved animal welfare has an ethical value in

  11. Carbon black dispersion pre-plating technology for printed wire board manufacturing. Final technology evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    Folsom, D.W.; Gavaskar, A.R.; Jones, J.A.; Olfenbuttel, R.F.

    1993-10-01

    The project compared chemical use, waste generation, cost, and product quality between electroless copper and carbon-black-based preplating technologies at the printed wire board (PWB) manufacturing facility of McCurdy Circuits in Orange, CA. The carbon-black based preplating technology evaluated is used as an alternative process for electroless copper (EC) plating of through-holes before electrolytic copper plating. The specific process used at McCurdy is the BlackHole (BH) technology process, which uses a dispersion of carbon black in an aqueous solution to provide a conductive surface for subsequent electrolytic copper plating. The carbon-black dispersion technology provided effective waste reduction and long-term cost savings. The economic analysis determined that the new process was cost efficient because chemical use was reduced and the process proved more efficient; the payback period was less than 4 yrs.

  12. Automated Manufacturing/Robotics Technology: Certificate and Associate Degree Programs.

    Science.gov (United States)

    McQuay, Paul L.

    A description is provided of the Automated Manufacturing/Robotics program to be offered at Delaware County Community College beginning in September 1984. Section I provides information on the use of reprogramable industrial robots in manufacturing and the rapid changes in production that can be effected through the application of automated…

  13. Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing

    International Nuclear Information System (INIS)

    Highlights: ► Finite element (FE) models were used to predict the mechanical properties of porous biomaterials. ► Porous materials were produced using additive manufacturing techniques. ► Manufacturing irregularities need to be implemented in FE models. ► FE models are more accurate than analytical models in predicting mechanical properties. - Abstract: An important practical problem in application of open-cell porous biomaterials is the prediction of the mechanical properties of the material given its micro-architecture and the properties of its matrix material. Although analytical methods can be used for this purpose, these models are often based on several simplifying assumptions with respect to the complex architecture and cannot provide accurate prediction results. The aim of the current study is to present finite element (FE) models that can predict the mechanical properties of porous titanium produced using selective laser melting or selective electron beam melting. The irregularities caused by the manufacturing process including structural variations of the architecture are implemented in the FE models using statistical models. The predictions of FE models are compared with those of analytical models and are tested against experimental data. It is shown that, as opposed to analytical models, the predictions of FE models are in agreement with experimental observations. It is concluded that manufacturing irregularities significantly affect the mechanical properties of porous biomaterials

  14. Technology transfer and scale-up of the Flublok recombinant hemagglutinin (HA) influenza vaccine manufacturing process.

    Science.gov (United States)

    Buckland, Barry; Boulanger, Robert; Fino, Mireli; Srivastava, Indresh; Holtz, Kathy; Khramtsov, Nikolai; McPherson, Clifton; Meghrous, Jamal; Kubera, Paul; Cox, Manon M J

    2014-09-22

    Multiple different hemagglutinin (HA) protein antigens have been reproducibly manufactured at the 650L scale by Protein Sciences Corporation (PSC) based on an insect cell culture with baculovirus infection. Significantly, these HA protein antigens were produced by the same Universal Manufacturing process as described in the biological license application (BLA) for the first recombinant influenza vaccine approved by the FDA (Flublok). The technology is uniquely designed so that a change in vaccine composition can be readily accommodated from one HA protein antigen to another one. Here we present a vaccine candidate to combat the recently emerged H7N9 virus as an example starting with the genetic sequence for the required HA, creation of the baculovirus and ending with purified protein antigen (or vaccine component) at the 10L scale accomplished within 38 days under GMP conditions. The same process performance is being achieved at the 2L, 10L, 100L, 650L and 2500L scale. An illustration is given of how the technology was transferred from the benchmark 650L scale facility to a retrofitted microbial facility at the 2500L scale within 100 days which includes the time for facility engineering changes. The successful development, technology transfer and scale-up of the Flublok process has major implications for being ready to make vaccine rapidly on a worldwide scale as a defense against pandemic influenza. The technology described does not have the same vulnerability to mutations in the egg adapted strain, and resulting loss in vaccine efficacy, faced by egg based manufacture.

  15. Good Operations Practice Supervisor Profiles in Cell-Centric Manufacturing

    OpenAIRE

    Tiwari, Ashutosh; Sackett, P.; Rehman, Shahwar; Linton, Howard

    2008-01-01

    Abstract The selection and implementation of good operations practice cannot be undertaken in isolation; it must consider the enterprise context. The aim of this paper is to describe a robust process for the development of specific environment good operations practice role profiles for supervisors, and illustrate this through a case study within a complex cell-centric manufacturing environment. The approach identifies the activities undertaken by a cell leader and team leader in ...

  16. Manufacturing Concepts of the Future – Upcoming Technologies Solving Upcoming Challenges

    DEFF Research Database (Denmark)

    Hadar, Ronen; Bilberg, Arne

    concepts and technologies that are being developed today which may be used to solve manufacturing challenges in the future, such as: (self) reconfigurable manufacturing systems, (focused) flexible manufacturing systems, and AI inspired manufacturing. The paper will try to offer a critical point of view......This paper presents an examination of Western European manufacturers’ future challenges as can be predicted today. Some of the challenges analyzed in the paper are: globalization, individualism and customization and agility challenges. Hereafter, the paper presents a broad analysis on manufacturing...

  17. Progress of the Photovoltaic Technology Incubator Project Towards an Enhanced U.S. Manufacturing Base: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ullal, H.; Mitchell, R.; Keyes, B.; VanSant, K.; von Roedern, B.; Symko-Davies, M.; Kane, V.

    2011-07-01

    In this paper, we report on the major accomplishments of the U.S. Department of Energy's (DOE) Solar Energy Technologies Program (SETP) Photovoltaic (PV) Technology Incubator project. The Incubator project facilitates a company's transition from developing a solar cell or PV module prototype to pilot- and large-scale U.S. manufacturing. The project targets small businesses that have demonstrated proof-of-concept devices or processes in the laboratory. Their success supports U.S. Secretary of Energy Steven Chu's SunShot Initiative, which seeks to achieve PV technologies that are cost-competitive without subsidies at large scale with fossil-based energy sources by the end of this decade. The Incubator Project has enhanced U.S. PV manufacturing capacity and created more than 1200 clean energy jobs, resulting in an increase in American economic competitiveness. The investment raised to date by these PV Incubator companies as a result of DOE's $ 59 million investment totals nearly $ 1.3 billion.

  18. Advantage management strategy in competition via technological race perspective: empirical evidence from the Taiwanese manufacturing industry.

    Science.gov (United States)

    Hung, Tsu-Yi; Hsiao, Yu-Ju; Wu, Shih-Wei

    2014-01-01

    This study investigated the advantage management strategies of a firm regarding the technological race in the manufacturing sector. This is to reveal whether firms adopt a catch-up or leapfrogging strategy in the competition for innovation. The results show that competition is fierce in the Taiwanese manufacturing industry. Taiwanese manufacturing firms (mostly SMEs) tend to adopt the "catch-up" strategy to keep up with their competitors in order to remain in the technological race. The result indicates that, under financial constraints, Taiwanese manufacturing firms attempt to invest in R&D to catch up with their rivals or to avoid being eliminated from the race. PMID:25295307

  19. Advantage Management Strategy in Competition via Technological Race Perspective: Empirical Evidence from the Taiwanese Manufacturing Industry

    Directory of Open Access Journals (Sweden)

    Tsu-Yi Hung

    2014-01-01

    Full Text Available This study investigated the advantage management strategies of a firm regarding the technological race in the manufacturing sector. This is to reveal whether firms adopt a catch-up or leapfrogging strategy in the competition for innovation. The results show that competition is fierce in the Taiwanese manufacturing industry. Taiwanese manufacturing firms (mostly SMEs tend to adopt the “catch-up” strategy to keep up with their competitors in order to remain in the technological race. The result indicates that, under financial constraints, Taiwanese manufacturing firms attempt to invest in R&D to catch up with their rivals or to avoid being eliminated from the race.

  20. Advantage management strategy in competition via technological race perspective: empirical evidence from the Taiwanese manufacturing industry.

    Science.gov (United States)

    Hung, Tsu-Yi; Hsiao, Yu-Ju; Wu, Shih-Wei

    2014-01-01

    This study investigated the advantage management strategies of a firm regarding the technological race in the manufacturing sector. This is to reveal whether firms adopt a catch-up or leapfrogging strategy in the competition for innovation. The results show that competition is fierce in the Taiwanese manufacturing industry. Taiwanese manufacturing firms (mostly SMEs) tend to adopt the "catch-up" strategy to keep up with their competitors in order to remain in the technological race. The result indicates that, under financial constraints, Taiwanese manufacturing firms attempt to invest in R&D to catch up with their rivals or to avoid being eliminated from the race.

  1. Emerging technology: A key enabler for modernizing pharmaceutical manufacturing and advancing product quality.

    Science.gov (United States)

    O'Connor, Thomas F; Yu, Lawrence X; Lee, Sau L

    2016-07-25

    Issues in product quality have produced recalls and caused drug shortages in United States (U.S.) in the past few years. These quality issues were often due to outdated manufacturing technologies and equipment as well as lack of an effective quality management system. To ensure consistent supply of safe, effective and high-quality drug products available to the patients, the U.S. Food and Drug Administration (FDA) supports modernizing pharmaceutical manufacturing for improvements in product quality. Specifically, five new initiatives are proposed here to achieve this goal. They include: (i) advancing regulatory science for pharmaceutical manufacturing; (ii) establishing a public-private institute for pharmaceutical manufacturing innovation; (iii) creating incentives for investment in the technological upgrade of manufacturing processes and facilities; (iv) leveraging external expertise for regulatory quality assessment of emerging technologies; and (v) promoting the international harmonization of approaches for expediting the global adoption of emerging technologies. PMID:27260134

  2. Emerging technology: A key enabler for modernizing pharmaceutical manufacturing and advancing product quality.

    Science.gov (United States)

    O'Connor, Thomas F; Yu, Lawrence X; Lee, Sau L

    2016-07-25

    Issues in product quality have produced recalls and caused drug shortages in United States (U.S.) in the past few years. These quality issues were often due to outdated manufacturing technologies and equipment as well as lack of an effective quality management system. To ensure consistent supply of safe, effective and high-quality drug products available to the patients, the U.S. Food and Drug Administration (FDA) supports modernizing pharmaceutical manufacturing for improvements in product quality. Specifically, five new initiatives are proposed here to achieve this goal. They include: (i) advancing regulatory science for pharmaceutical manufacturing; (ii) establishing a public-private institute for pharmaceutical manufacturing innovation; (iii) creating incentives for investment in the technological upgrade of manufacturing processes and facilities; (iv) leveraging external expertise for regulatory quality assessment of emerging technologies; and (v) promoting the international harmonization of approaches for expediting the global adoption of emerging technologies.

  3. Technology Solutions for New Manufactured Homes: Idaho, Oregon, and Washington Manufactured Home Builders (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

  4. Evaluation and Modeling of the Digestion and Absorption of Novel Manufacturing Technology in Food Enterprises

    OpenAIRE

    Kerong Zhang; Wuyi Liu

    2015-01-01

    The food industry is more and more in need of importing and absorption new technologies. Focusing on all the possible issues of contradiction and difficulty to improve the digestion and absorption of novel manufacturing technology, a set of customized dynamic quantitative evaluation models were put forward that made it easy to model and supervise the usages, digestion and absorption of novel manufacturing technology in food enterprises. According to the proposed set of evaluation models, anyo...

  5. Laser texturization in technology of multicrystalline silicon solar cells

    OpenAIRE

    L.A. Dobrzański; A. Drygała

    2008-01-01

    Purpose: This paper presents technology of multicrystalline silicon solar cells with laser texturization step. The texturing of polycrystalline silicon surface using Nd:YAG laser makes it possible to increase absorption of the incident solar radiation. Moreover, the additional technological operation consisting in etching in 20% KOH solution at temperature of 80ºC introduced into technology of the photovoltaic cells manufactured from laser textured wafers allows for significant improvement in...

  6. Blood cell manufacture: current methods and future challenges.

    Science.gov (United States)

    Timmins, Nicholas E; Nielsen, Lars K

    2009-07-01

    Blood transfusion depends on availability of donor material, and concerns over supply and safety have spurred development of methods to manufacture blood from stem cells. Current methods could theoretically yield therapeutic doses of red blood cells (RBCs) and platelets. However, due to the very large number of cells required to have any impact on supply (currently 10(19) RBC/year in the US), realization of routine manufacture faces significant challenges. Current yields are orders of magnitude too low for production of meaningful quantities, and the physical scale of the problem is a challenge in itself. We discuss these challenges in relation to current methods and how it might be possible to realize limited 'blood pharming' of neutrophils in the near future. PMID:19500866

  7. Blood cell manufacture: current methods and future challenges.

    Science.gov (United States)

    Timmins, Nicholas E; Nielsen, Lars K

    2009-07-01

    Blood transfusion depends on availability of donor material, and concerns over supply and safety have spurred development of methods to manufacture blood from stem cells. Current methods could theoretically yield therapeutic doses of red blood cells (RBCs) and platelets. However, due to the very large number of cells required to have any impact on supply (currently 10(19) RBC/year in the US), realization of routine manufacture faces significant challenges. Current yields are orders of magnitude too low for production of meaningful quantities, and the physical scale of the problem is a challenge in itself. We discuss these challenges in relation to current methods and how it might be possible to realize limited 'blood pharming' of neutrophils in the near future.

  8. Texas Manufacturing Technology Center feasibility study for the Inland Regional Industrial Technology Institute

    International Nuclear Information System (INIS)

    This document presents the Texas Manufacturing Technology Center (TMTC) Business Plan to convert the Central Facility of the Superconducting Super Collider project to alternate uses. The plan is divided into six sections: (1) Executive Summary, (2) Market and Benefit Analysis, (3) Marketing Strategy, (4) Services, (5) Organization and Operations Overview, and (6) Financial Plan. Each area is supported by separate documents that address individual opportunities and challenges associated with transitioning the facility, and its asset base to new uses for benefit of the locality, state, region and nation

  9. Virtual manufacturing cells : A taxonomy of past research and identification of future research issues

    NARCIS (Netherlands)

    Nomden, G; Slomp, J; Suresh, NC

    2005-01-01

    This paper reviews prior research in the area of virtual manufacturing cells. A virtual manufacturing cell (VMC) is a group of resources that is dedicated to the manufacturing of a part family, though this grouping is not reflected in the physical structure of the manufacturing system. Distinguishin

  10. Scalable microcarrier-based manufacturing of mesenchymal stem/stromal cells.

    Science.gov (United States)

    de Soure, António M; Fernandes-Platzgummer, Ana; da Silva, Cláudia L; Cabral, Joaquim M S

    2016-10-20

    Due to their unique features, mesenchymal stem/stromal cells (MSC) have been exploited in clinical settings as therapeutic candidates for the treatment of a variety of diseases. However, the success in obtaining clinically-relevant MSC numbers for cell-based therapies is dependent on efficient isolation and ex vivo expansion protocols, able to comply with good manufacturing practices (GMP). In this context, the 2-dimensional static culture systems typically used for the expansion of these cells present several limitations that may lead to reduced cell numbers and compromise cell functions. Furthermore, many studies in the literature report the expansion of MSC using fetal bovine serum (FBS)-supplemented medium, which has been critically rated by regulatory agencies. Alternative platforms for the scalable manufacturing of MSC have been developed, namely using microcarriers in bioreactors, with also a considerable number of studies now reporting the production of MSC using xenogeneic/serum-free medium formulations. In this review we provide a comprehensive overview on the scalable manufacturing of human mesenchymal stem/stromal cells, depicting the various steps involved in the process from cell isolation to ex vivo expansion, using different cell tissue sources and culture medium formulations and exploiting bioprocess engineering tools namely microcarrier technology and bioreactors.

  11. UNRELIABLE FLEXIBLE MANUFACTURING CELL WITH COMMON CAUSE FAILURE

    OpenAIRE

    SUPRIYA MAHESHWARI; PANKAJ SHARMA,; MADHU JAIN

    2010-01-01

    A mathematical model is developed for unreliable flexible manufacturing cell (FMC) which operates under stochastic environment and produces a variety of parts by utilizing computer controlled machines, a robot and an automated pallet system. FMC is served by the pallet system which delivers blanks into the cell and moves finished parts out of the cell. The robot acts as a mediator between pallet system and the machines i.e. it takes the blanks from the pallet to load them on the machines and ...

  12. Technological Considerations and Constraints in the Manufacture of High Precision Ball and Roller Bearings

    Directory of Open Access Journals (Sweden)

    Prof.S.Rajendiran,

    2015-12-01

    Full Text Available Rolling element bearings for application in Aircraft systems are to be manufactured to higher accuracy levels. Various technology details like raw material, processing stages and facilities such as machining, heat treatment, grinding, super finishing, assembly and inspection are to be considered for manufacture. However the facilities available presently in India are inadequate to produce high precision bearings. This paper deals with the prototype manufacture of bearings for some typical applications.

  13. An Introduction to Intelligent Processing Programs Developed by the Air Force Manufacturing Technology Directorate

    Science.gov (United States)

    Sampson, Paul G.; Sny, Linda C.

    1992-01-01

    The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).

  14. Research on Technological Process Control Model of Reverse Logistics in Manufacturing System

    Institute of Scientific and Technical Information of China (English)

    CHANG Jiane; LIU Chao

    2006-01-01

    This paper has found out some important input factors of reverse logistics in manufacturing system throuth analysis and summary, and established four kinds of technological process control models of reverse logistics in manufacturing system according to different processing methods. These models embed each other that form a cubic control system of reverse logistics.

  15. Good manufacturing practices production of mesenchymal stem/stromal cells.

    Science.gov (United States)

    Sensebé, Luc; Bourin, Philippe; Tarte, Karin

    2011-01-01

    Because of their multi/pluripotency and immunosuppressive properties mesenchymal stem/stromal cells (MSCs) are important tools for treating immune disorders and for tissue repair. The increasing use of MSCs has led to production processes that need to be in accordance with Good Manufacturing Practice (GMP). In cellular therapy, safety remains one of the main concerns and refers to donor validation, choice of starting material, processes, and the controls used, not only at the batch release level but also during the development of processes. The culture processes should be reproducible, robust, and efficient. Moreover, they should be adapted to closed systems that are easy to use. Implementing controls during the manufacturing of clinical-grade MSCs is essential. The controls should ensure microbiological safety but also avoid potential side effects linked to genomic instability driving transformation and senescence or decrease of cell functions (immunoregulation, differentiation potential). In this rapidly evolving field, a new approach to controls is needed.

  16. Recent Advances in Precision Machinery and Manufacturing Technology

    DEFF Research Database (Denmark)

    Liu, Chien-Hung; Hsieh, Wen-Hsiang; Chang, Zong-Yu;

    2014-01-01

    the latest advancements of relevant fundamental and applied research works of high quality to the inter- national community. The topics of the accepted articles in the special issue include precision manufacturing pro- cesses, measurements and control, robotics and automation, machine tools, advanced...

  17. Making technology work in intelligent manufacturing by participative simulation

    NARCIS (Netherlands)

    Vink, P.; Eijnatten, F. van; Goossenaerts, J.; Grote, G.; Stahre, J.; Berg, R. van der

    2000-01-01

    Nowadays it is essential to anticipate on fast changes in production due to turbulent and demanding markets. The manufacturing workforce, e.g. specialized staff, management and production personnel, plays a crucial role in this process. Therefore, the EU-project 'PSIM' is started. PSIM is Participat

  18. Manufacture of biopharmaceutical proteins by mammalian cell culture systems.

    Science.gov (United States)

    Tolbert, W R

    1990-01-01

    In the last several years, dramatic advances have been in the development of new biopharmaceuticals including monoclonal antibodies for diagnosis and treatment and such genetically engineered proteins as tPA, Factor VIIIc, erythropoietin and soluble CD4, an anti-AIDS protein. Currently, there are several hundred such candidate drugs in human clinical trials. In most cases, these protein-based drugs will require manufacture by mammalian cell culture due to the inability of lower organisms to properly glycosylate, fold, make correct disulfide bonds and secrete active biomolecular forms. The need for large scale production from cell culture will greatly increase as more of the products in clinical trials are approved for commercial production. This will require significant reduction in manufacturing costs per gram, concomitant with increased capacity to hundreds or perhaps even thousands of kilograms annually. As an example, Invitron's multi-reactor manufacturing facility has operated at greater than one-half million liters per year and has experience with more than 250 mammalian cell lines for producing protein drug products.

  19. Advanced Manufacturing Technologies (AMT): Low Cost Upper Stage-Class Propulsion Development Element

    Data.gov (United States)

    National Aeronautics and Space Administration — As manufacturing technologies have matured, it now appears possible to build all the major components and subsystems of an upper stage-class rocket engine for...

  20. 5th International and 26th All India Manufacturing Technology, Design and Research Conference

    CERN Document Server

    Dixit, Uday

    2015-01-01

    This book presents selected research papers of the AIMTDR 2014 conference on application of laser technology for various manufacturing processes such as cutting, forming, welding, sintering, cladding and micro-machining. State-of-the-art of these technologies in terms of numerical modeling, experimental studies and industrial case studies are presented. This book will enrich the knowledge of budding technocrats, graduate students of mechanical and manufacturing engineering, and researchers working in this area.  

  1. Tests for manufacturing technology of disposal canisters for nuclear spent fuel; Loppusijoituskapselin valmistustekniset kokeet

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, H. [VTT Energy (Finland); Salonen, T. [Outokumpu Poricopper Oy (Finland); Meuronen, I. [Suomen Teknohaus Oy (Finland); Lehto, K. [Valmet Oyj Rautpohja Foundry (Finland)

    1999-06-01

    The summary and status of the results of the manufacturing technology programmes concerning the disposal canister for spent nuclear fuel conducted by Posiva Oy are given in this report. Posiva has maintained a draft plan for a disposal canister design and an assessment of potential manufacturing technologies for about ten years in Finland. Now, during the year 1999, the first full scale demonstration canister is manufactured in Finland. The technology used for manufacturing of this prototype is developed by Posiva Oy mainly in co-operation with domestic industry. The main partner in developing the manufacturing technology for the copper shell has been Outokumpu Poricopper Oy, Pori, Finland, and the main partner in developing the technology for the iron insert of the canister has been Valmet Oyj Rautpohja Foundry, Jyvaeskylae, Finland. In both areas many subcontractors have been used, predominantly domestic engineering workshops, but also some foreign subcontractors, e.g. for EB-welding, who have had large enough welding equipment. This report describes the developing programmes for canister manufacturing, evaluates the results and presents some alternative methods, and tries to evaluate the pros and contras of them. In addition, the adequacy of the achieved technological know-how is assessed in respect of the required quality of the disposal canister. The following manufacturing technologies have been the concrete topics of the development programme: Electron beam welding technology development for thick-walled copper, Casting of massive copper billets, Hot rolling of thick-walled copper plates, Hot pressing and forging in lid manufacture, Extrusion and drawing of copper tubes, Bending of copper plates by roller or press, Machining of copper, Residual stress removal by heat treatment, Non-destructive testing, Long-term strength of EB-welds, Casting and machining of the iron insert of the canister The specialists from all the main developing partner companies have

  2. Unlocking the potential of process innovation : A conceptual framework for the exploitation of advanced manufacturing technologies

    OpenAIRE

    Schrettle, Stefan

    2010-01-01

    This paper aims at providing a holistic understanding of the determinants that influence the realization of benefits of new manufacturing technologies. Based on findings from operations management and strategic decision-making literature, we propose a framework that explicitly distinguishes between the phase of decision-making and the phase of implementation of advanced manufacturing technologies. Based on a broad literature review, contingency factors are presented and related to each phase ...

  3. ASPECTS OF THE TECHNOLOGICAL PROCESS OF MANUFACTURING – SEWING A FOOTWEAR PRODUCT FOR WOMEN, TYPE SHOE

    OpenAIRE

    Cristina Secan; Florentina Harnagea

    2013-01-01

    This paper presents the technological process for manufacturing a low-cut footwear product (type shoe) for women, for casual use, in an IL system.The paper begins with a general presentation of the technological process of manufacturing the product, and follows with a case study which details the characteristic operations, as well as the common ones, which take place during the process.Depending on the structure of the model and the characteristics of the raw and auxiliary materials, the tech...

  4. Viral vaccines and their manufacturing cell substrates: New trends and designs in modern vaccinology.

    Science.gov (United States)

    Rodrigues, Ana F; Soares, Hugo R; Guerreiro, Miguel R; Alves, Paula M; Coroadinha, Ana S

    2015-09-01

    Vaccination is one of the most effective interventions in global health. The worldwide vaccination programs significantly reduced the number of deaths caused by infectious agents. A successful example was the eradication of smallpox in 1979 after two centuries of vaccination campaigns. Since the first variolation administrations until today, the knowledge on immunology has increased substantially. This knowledge combined with the introduction of cell culture and DNA recombinant technologies revolutionized vaccine design. This review will focus on vaccines against human viral pathogens, recent developments on vaccine design and cell substrates used for their manufacture. While the production of attenuated and inactivated vaccines requires the use of the respective permissible cell substrates, the production of recombinant antigens, virus-like particles, vectored vaccines and chimeric vaccines requires the use - and often the development - of specific cell lines. Indeed, the development of novel modern viral vaccine designs combined with, the stringent safety requirements for manufacture, and the better understanding on animal cell metabolism and physiology are increasing the awareness on the importance of cell line development and engineering areas. A new era of modern vaccinology is arriving, offering an extensive toolbox to materialize novel and creative ideas in vaccine design and its manufacture.

  5. Viral vaccines and their manufacturing cell substrates: New trends and designs in modern vaccinology.

    Science.gov (United States)

    Rodrigues, Ana F; Soares, Hugo R; Guerreiro, Miguel R; Alves, Paula M; Coroadinha, Ana S

    2015-09-01

    Vaccination is one of the most effective interventions in global health. The worldwide vaccination programs significantly reduced the number of deaths caused by infectious agents. A successful example was the eradication of smallpox in 1979 after two centuries of vaccination campaigns. Since the first variolation administrations until today, the knowledge on immunology has increased substantially. This knowledge combined with the introduction of cell culture and DNA recombinant technologies revolutionized vaccine design. This review will focus on vaccines against human viral pathogens, recent developments on vaccine design and cell substrates used for their manufacture. While the production of attenuated and inactivated vaccines requires the use of the respective permissible cell substrates, the production of recombinant antigens, virus-like particles, vectored vaccines and chimeric vaccines requires the use - and often the development - of specific cell lines. Indeed, the development of novel modern viral vaccine designs combined with, the stringent safety requirements for manufacture, and the better understanding on animal cell metabolism and physiology are increasing the awareness on the importance of cell line development and engineering areas. A new era of modern vaccinology is arriving, offering an extensive toolbox to materialize novel and creative ideas in vaccine design and its manufacture. PMID:26212697

  6. Effects of Job Characteristics on Performance of Advanced Manufacturing Technology:an Empirical Examination to Equipment-manufacturing Industry

    Institute of Scientific and Technical Information of China (English)

    DAI Dashuang; WANG Dongbo; SONG Jinbo

    2006-01-01

    Advanced manufacturing technology (AMT) is pivotal for firms to gain manufacturing performance and competitive advantage. Job characteristics, as a kind of important factors affecting the implementation effects of AMT, have become the focus in the field of academy. Based on a literature review, this study refines the implementation effects of AMT into operational performance, satisfaction and competitive performance, and reclassifies the job characteristics of AMT into job autonomy, job responsibility, job complexity and job significance. With a large sample of 307 equipment-manufacturing firms selected from the 2005 China International Equipment and Manufacturing Exposition, linear structural equation analysis (LIEREL) is performed to examine the relationships between job characteristics and the implementation effects of AMT. The results show that job responsibility and job significance have positive effects on satisfaction; satisfaction is positively correlated with operational performance; operational performance positively affects competitive performance. The findings provide the guide for firms to improve satisfaction, achieve higher operational performance and further gain higher competitive by reasonable job redesign.

  7. Euro and technology effects on job turnover in Greek manufacturing

    OpenAIRE

    Papadogonas, Theodore; Voulgaris, Fotini

    2010-01-01

    This paper investigates the effects of Greece’s European Union (EU) accession and European Economic and Monetary Union (EMU) entry, as well as R&D intensity and industry concentration on job creation and job destruction in the Greek manufacturing sector. The study is based on firm-level economic data of 1418 firms and covers the time period from 1995 to 2004. The econometric model, besides other firm-level determinants used in similar studies, incorporates variables that capture the potential...

  8. Manufacturing facility of solar cell. Taiyo denchi no seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Makoto; Takagi, Akira; Ban, Noriji; Ishihara, Mikiji.

    1990-01-09

    When a p-n junction type CdTe solar cell is manufactured by the metal-organic chemical vapor deposition (MOCVD) , dislocation of the position of its p-n junction interface from the specified position and dislocation of the distribution of impurities in the direction of depth at the p layer and the n layer occur, inhibiting the manufacture of the p-n junction. In order to eliminate the above problem and manufacture a p-n junction type CdTe solar cell with high energy conversion efficiency by the MOCVD, this invention proposes to form a n type CdTe layer as the first layer on a substrate at the first substrate temperature, form a non-dope CdTe layer as the second layer at the second substrate temperature lower than the first substrate temperature, form a p type CdTe layer as the third layer at the third substrate temperature lower than the first substrate temperature and from the thickness that the second layer does not remain as an i layer due to diffusion of the impurities from the first and third layers and yet mutual diffusion of the impurities between the first and third layers is controlled. 2 figs., 1 tab.

  9. Forecasting the Costs of Automotive PEM Fuel Cell Systems: Using Bounded Manufacturing Progress Functions

    OpenAIRE

    Lipman, Timonthy E.; Sperling, Daniel

    2001-01-01

    The future manufacturing costs of emerging technologies are difficult to assess because of the complex dynamics of both product and process innovation, and because cost data often are proprietary and difficult to obtain. One method of forecasting potential future technology costs uses the concept of manufacturing progress functions, which are closely related to manufacturing experience curves. Manufacturing cost is related to cumulative production volume for a specific firm in an industry, us...

  10. Development of manufacturing capability for high-concentration, high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, R.A.; Verlinden, P.J.; Crane, R.A.; Swanson, R.N. [SunPower Corp., Sunnyvale, CA (United States)

    1996-10-01

    This report presents a summary of the major results from a program to develop a manufacturable, high-efficiency silicon concentrator solar cell and a cost-effective manufacturing facility. The program was jointly funded by the Electric Power Research Institute, Sandia National Laboratories through the Concentrator Initiative, and SunPower Corporation. The key achievements of the program include the demonstration of 26%-efficient silicon concentrator solar cells with design-point (20 W/cm{sup 2}) efficiencies over 25%. High-performance front-surface passivations; that were developed to achieve this result were verified to be absolutely stable against degradation by 475 days of field exposure at twice the design concentration. SunPower demonstrated pilot production of more than 1500 of these cells. This cell technology was also applied to pilot production to supply 7000 17.7-cm{sup 2} one-sun cells (3500 yielded wafers) that demonstrated exceptional quality control. The average efficiency of 21.3% for these cells approaches the peak efficiency ever demonstrated for a single small laboratory cell within 2% (absolute). Extensive cost models were developed through this program and calibrated by the pilot-production project. The production levels achieved indicate that SunPower could produce 7-10 MW of concentrator cells per year in the current facility based upon the cell performance demonstrated during the program.

  11. Is There A Rural-Urban Technology Gap? Results of the ERS Rural Manufacturing Survey

    OpenAIRE

    Gale, H. Frederick, Jr.

    1997-01-01

    Advanced technology use is less prevalent in rural than in urban manufacturing plants, but plants of comparable size in the same industry use about the same level of technology, regardless of urban/rural location. The rural gap comes about because the mix of rural industries is more heavily weighted with "low-technology" industries. Both rural and urban businesses rate inadequate worker skills as the most important barrier to use of new production technologies and management practices, while ...

  12. Degradation and stability of R2R manufactured polymer solar cells

    DEFF Research Database (Denmark)

    Norrman, Kion; Krebs, Frederik C

    2009-01-01

    Polymer solar cells have many advantages such as light weight, flexibility, environmental friendliness, low thermal budget, low cost and most notably very fast modes of production by printing techniques. Production experiments have shown that it is highly feasible with existing technology to mass...... produce polymer solar cells at a very low cost. We have employed state-of-the-art analytical techniques to address the challenging issues of degradation and stability of R2R manufactured devices. We have specifically studied the relative effect of oxygen and water on the operational devices in regard...

  13. Linking management accounting and control systems, strategy, information technology, manufacturing technology and organizational performance of the firm in contingency framework

    OpenAIRE

    Hyvönen, J. (Johanna)

    2008-01-01

    Abstract This dissertation aims to provide an extensive picture of management accounting systems and explore the relationships between management accounting systems, strategy, information technology, manufacturing technology and organizational performance. The dissertation consists of four essays. The first essay focuses on the adoption and benefits of management accounting practices, whereas the second essay studies the relations between customer-focused strategy, performance measurement ...

  14. Manufacture and evaluation of Li/BCX DD cells

    Science.gov (United States)

    Meyer, S.; Takeuchi, E.

    1990-01-01

    This project is divided into four main tasks: cell manufacture, acceptance, and lot certification of cells, performance testing of cells, and abuse testing of cells. Lithium/bromine chloride in thionyl chloride (Li/BCX) 149 DD cells (PN 3B2085-XA) were built according to the provisions of Electrochem Industries Quality Plan 17096. Acceptance and lot certification testing was performed according to NASA JSC Document EP5-83-025, Revision B. Acceptance testing included open circuit and load voltage check, visual examination, size and weight measurements, and high temperature exposure. Lot certification tests were performed for capacity performance and for performance under conditions of thermal and electrical abuse. These tests included 149 C exposure, capacity discharge, fuse check, high temperature exposure, high rate discharge, short circuit, vibration, and overdischarge testing. A quantity of 200 cells was delivered to Johnson Space Center for life test evaluation. A parametric evaluation of the capacity discharge of Li/BCX DD cells was performed over a variety of temperatures and discharge rates. This testing served to map the performance capability of the cell. Tests were also performed over a variety of electrical and thermal abuse conditions. Abuse tests included short circuit, charging, overdischarge, high temperature exposure, shock, and vibration.

  15. Manufacturing technology and some properties of HTSC-films

    International Nuclear Information System (INIS)

    The technological methods employed for the high-temperature superconducting (HTSC) films fabrication are reviewed. Special attention is given to the problem of obtaining the required film composition with respect to cations, to the in situ film fabrication technology and to obtaining epitaxial HTSC-films. Some technological issues of bismuth- and tallium-based superconducting films are considered. The main criteria for the substrate selection are discussed as well as some investigation techniques and properties of HTSC-films obtained by different methods. 181 refs.; 23 figs.; 4 tabs

  16. Renewable Energy Technology—Is It a Manufactured Technology or an Information Technology?

    Directory of Open Access Journals (Sweden)

    Kwok L. Shum

    2010-07-01

    Full Text Available Socio-technical or strategic approach to renewable energy deployment all suggests that the uptake of renewable energy technology such as solar photovoltaic is as much a social issue as a technical issue. Among social issues, one most direct and immediate component is the cost of the renewable energy technology. Because renewable electricity provides no new functionality—a clean electron does the same work as a dirty electron does—but is relatively expensive compared with fossil fuel based electricity, there is currently an under-supply of renewable electricity. Policy instruments based on economics approaches are therefore developed to encourage the production and consumption of renewable electricity, aiming to remediate the market inefficiencies that stem from the failure in internalizing the environmental or social costs of fossil fuels. In this vein, the most discussed instruments are renewable portfolio standard or quota based system and the general category of feed-in tariff. Feed-in tariff is to support output or generation of the renewable electricity by subsidizing revenues. The existing discussions have all concerned about the relative effectiveness of these two instruments in terms of cost, prices and implementation efficiency. This paper attempts a different basis of evaluation of these two instruments in terms of cost and (network externality effects. The cost effect is driven by deploying the renewable as a manufactured technology, and the network externality effect is driven by deploying the renewable as an information technology. The deployment instruments are studied in terms of how these two effects are leveraged in the deployment process. Our formulation lends itself to evolutionary policy interpretation. Future research directions associated with this new energy policy framework is then suggested.

  17. Continuous extrusion and rolling forming technology of copper strip manufacture

    OpenAIRE

    Yun Xinbing; Zhou Mo; Tian Tian; Zhao Ying

    2015-01-01

    Continuous extrusion and rolling technology was proposed as a new strip production technology. It finished hot rolling process using the waste heat of the continuous extrusion forming. The continuous extrusion and rolling forming process was simulated by DEFORM-3DT software. The influence of extrusion wheel velocity and strip size on the continuous extrusion and rolling forming process was analyzed. The experiment was carried out according to optimized results of numerical simulation, the mic...

  18. Technology Roadmap for Energy Reduction in Automotive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2008-09-01

    U.S. Department of Energy’s (DOE) Industrial Technologies Program (ITP), in collaboration with the United States Council for Automotive Research LLC (USCAR), hosted a technology roadmap workshop in Troy, Michigan in May 2008. The purpose of the workshop was to explore opportunities for energy reduction, discuss the challenges and barriers that might need to be overcome, and identify priorities for future R&D. The results of the workshop are presented in this report.

  19. UNRELIABLE FLEXIBLE MANUFACTURING CELL WITH COMMON CAUSE FAILURE

    Directory of Open Access Journals (Sweden)

    SUPRIYA MAHESHWARI

    2010-09-01

    Full Text Available A mathematical model is developed for unreliable flexible manufacturing cell (FMC which operates under stochastic environment and produces a variety of parts by utilizing computer controlled machines, a robot and an automated pallet system. FMC is served by the pallet system which delivers blanks into the cell and moves finished parts out of the cell. The robot acts as a mediator between pallet system and the machines i.e. it takes the blanks from the pallet to load them on the machines and places manufactured parts again on the pallet after unloading them from the machines. The operation times, loading/unloading times and material handling times by the pallet are assumed to be exponentially distributed. Using birth death process, the differential difference equations governingthe Markov model have been constructed. By using Runge-Kutta method, the probabilities for different system states have been evaluated. Various performance measures viz. machine utilization, robot utilization, pallet handling system utilization, production rate, etc. are established. The model has been compared with that of earlier existing models with reliable/unreliable machines/robot; such models can be treated as special cases of our model. The sensitivity analysis is also performed to explore the effects of different parameters on the various system performance indices, which have been displayed with the help of tables and graphs.

  20. Photovoltaic Manufacturing Technology (PVMaT) improvements for ENTECH's concentrator module

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, M.J.; McDanal, A.J.; Perry, J.L.; Jackson, M.C.; Walters, R.R. (ENTECH, Inc., Dallas-Fort Worth Airport, TX (United States))

    1991-11-01

    This final technical report documents ENTECH's Phase 1 contract with Photovoltaic Manufacturing Technology (PVMaT) project. Under this project we prepared a detailed description of our current manufacturing process for making our unique linear Fresnel lens photovoltaic concentrator modules. In addition, we prepared a detailed description of an improved manufacturing process, which will simultaneously increase module production rates, enhance module quality, and substantially reduce module costs. We also identified potential problems in implementing the new manufacturing process, and we proposed solutions to these anticipated problems. Before discussing the key results of our program, however, we present a brief description of our unique photovoltaic technology. The key conclusion of our PVMAT Phase 1 study is that our module technology, without further breakthroughs, can realistically meet the near-term DOE goal of 12 cents/kWh levelized electricity cost, provided that we successfully implement the new manufacturing process at a production volume of at least 10 megawatts per year. The key recommendation from our Phase 1 study is to continue our PVMaT project into Phase 2A, which is directed toward the actual manufacturing technology development required for our new module production process. 15 refs.

  1. Comparison of Cell formation techniques in Cellular manufacturing using three cell formation algorithms

    Directory of Open Access Journals (Sweden)

    Prabhat Kumar Giri

    2016-01-01

    Full Text Available In the present era of globalization and competitive market, cellular manufacturing has become a vital tool for meeting the challenges of improving productivity, which is the way to sustain growth. Getting best results of cellular manufacturing depends on the formation of the machine cells and part families. This paper examines advantages of ART method of cell formation over array based clustering algorithms, namely ROC-2 and DCA. The comparison and evaluation of the cell formation methods has been carried out in the study. The most appropriate approach is selected and used to form the cellular manufacturing system. The comparison and evaluation is done on the basis of performance measure as grouping efficiency and improvements over the existing cellular manufacturing system is presented.

  2. SOLID OXIDE FUEL CELL MANUFACTURING COST MODEL: SIMULATING RELATIONSHIPS BETWEEN PERFORMANCE, MANUFACTURING, AND COST OF PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Eric J. Carlson; Yong Yang; Chandler Fulton

    2004-04-20

    The successful commercialization of fuel cells will depend on the achievement of competitive system costs and efficiencies. System cost directly impacts the capital equipment component of cost of electricity (COE) and is a major contributor to the O and M component. The replacement costs for equipment (also heavily influenced by stack life) is generally a major contributor to O and M costs. In this project, they worked with the SECA industrial teams to estimate the impact of general manufacturing issues of interest on stack cost using an activities-based cost model for anode-supported planar SOFC stacks with metallic interconnects. An earlier model developed for NETL for anode supported planar SOFCs was enhanced by a linkage to a performance/thermal/mechanical model, by addition of Quality Control steps to the process flow with specific characterization methods, and by assessment of economies of scale. The 3-dimensional adiabatic performance model was used to calculate the average power density for the assumed geometry and operating conditions (i.e., inlet and exhaust temperatures, utilization, and fuel composition) based on publicly available polarizations curves. The SECA team provided guidance on what manufacturing and design issues should be assessed in this Phase I demonstration of cost modeling capabilities. They considered the impact of the following parameters on yield and cost: layer thickness (i.e., anode, electrolyte, and cathode) on cost and stress levels, statistical nature of ceramic material failure on yield, and Quality Control steps and strategies. In this demonstration of the capabilities of the linked model, only the active stack (i.e., anode, electrolyte, and cathode) and interconnect materials were included in the analysis. Factory costs are presented on an area and kilowatt basis to allow developers to extrapolate to their level of performance, stack design, materials, seal and system configurations, and internal corporate overheads and margin

  3. Application Of Artificial Neural Networks In Modeling Of Manufactured Front Metallization Contact Resistance For Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Musztyfaga-Staszuk M.

    2015-09-01

    Full Text Available This paper presents the application of artificial neural networks for prediction contact resistance of front metallization for silicon solar cells. The influence of the obtained front electrode features on electrical properties of solar cells was estimated. The front electrode of photovoltaic cells was deposited using screen printing (SP method and next to manufactured by two methods: convectional (1. co-fired in an infrared belt furnace and unconventional (2. Selective Laser Sintering. Resistance of front electrodes solar cells was investigated using Transmission Line Model (TLM. Artificial neural networks were obtained with the use of Statistica Neural Network by Statsoft. Created artificial neural networks makes possible the easy modelling of contact resistance of manufactured front metallization and allows the better selection of production parameters. The following technological recommendations for the screen printing connected with co-firing and selective laser sintering technology such as optimal paste composition, morphology of the silicon substrate, co-firing temperature and the power and scanning speed of the laser beam to manufacture the front electrode of silicon solar cells were experimentally selected in order to obtain uniformly melted structure well adhered to substrate, of a small front electrode substrate joint resistance value. The prediction possibility of contact resistance of manufactured front metallization is valuable for manufacturers and constructors. It allows preserving the customers’ quality requirements and bringing also measurable financial advantages.

  4. Business models for additive manufacturing:exploring digital technologies, consumer roles, and supply chains

    OpenAIRE

    Hadar, Ronen; Bilberg, Arne; Bogers, Marcel

    2015-01-01

    Digital fabrication — including additive manufacturing (AM), rapid prototyping and 3D printing — has the potential to revolutionize the way in which products are produced and delivered to the customer. Therefore, it challenges companies to reinvent their business model — describing the logic of creating and capturing value. In this paper, we explore the implications that AM technologies have for manufacturing systems in the new business models that they enable. In particular, we consider how ...

  5. INFLUENCE OF PROCESS PARAMETERS ON DIMENSIONAL ACCURACY OF PARTS MANUFACTURED USING FUSED DEPOSITION MODELLING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Filip Górski

    2013-09-01

    Full Text Available The paper presents the results of experimental study – part of research of additive technology using thermoplastics as a build material, namely Fused Deposition Modelling (FDM. Aim of the study was to identify the relation between basic parameter of the FDM process – model orientation during manufacturing – and a dimensional accuracy and repeatability of obtained products. A set of samples was prepared – they were manufactured with variable process parameters and they were measured using 3D scanner. Significant differences in accuracy of products of the same geometry, but manufactured with different set of process parameters were observed.

  6. Status of Development and Manufacture of Solid Oxide Fuel Cell at Topsoe Fuel Cell A/S and Risø/DTU

    DEFF Research Database (Denmark)

    Christiansen, Niels; Hansen, John Bøgild; Holm-Larsen, Helge;

    2009-01-01

    Laboratory (Risø/DTU) which includes material synthesis and cost effective ceramic manufacturing methods for anode and metal supported flat planar cells in addition to multilayer assembling for compact stacks with metallic interconnects. The development is focussing on high electrochemical performance...... in SOFC technology includes system development in collaboration with system partners and development and manufacturing of integrated stack assemblies called PowerCore. ©2009 COPYRIGHT ECS - The Electrochemical Society...

  7. Lessons Learned from the Photovoltaic Manufacturing Technology/PV Manufacturing R&D and Thin Film PV Partnership Projects

    Energy Technology Data Exchange (ETDEWEB)

    Margolis, R.; Mitchell, R.; Zweibel, K.

    2006-09-01

    As the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program initiates new cost-shared solar energy R&D under the Solar America Initiative (SAI), it is useful to analyze the experience gained from cost-shared R&D projects that have been funded through the program to date. This report summarizes lessons learned from two DOE-sponsored photovoltaic (PV) projects: the Photovoltaic Manufacturing Technology/PV Manufacturing R&D (PVMaT/PVMR&D) project and the Thin-Film PV Partnership project. During the past 10-15 years, these two projects have invested roughly $330 million of government resources in cost-shared R&D and leveraged another $190 million in private-sector PV R&D investments. Following a description of key findings and brief descriptions of the PVMaT/PVMR&D and Thin-Film PV Partnership projects, this report presents lessons learned from the projects.

  8. A Further Discussion on Trends in the Development of Advanced Manufacturing Technology

    Institute of Scientific and Technical Information of China (English)

    YANG Shu-zi; WU Bo; LI Bin

    2006-01-01

    This paper is a supplement to "Trends in the Development of Advanced Manufacturing Technology" (Yang and Wu in Chin.J Mech.Eng.,39:73,2003)but delves deeper into it.It first points out the strategic status of manufacturing industry in state development.Then.a de tailed analysis is given on the features and trends in the development of advanced manufacturing technology in a total of 12 points from three aspects:"precision,""extreme," and"culture" from the aspect of the product itself;"green," "rapidness,""saving,"and"efficiency"during the manu facturing process;and"digit,""auto,""integration,""net working,"and"intelligence"in view of the manufacturing method.In addition,it emphasizes that all the above aspects should be based on two base points:"manufacture"and "machinery."Finally,it puts forth the guiding ideologies for the development of advanced manufacturing technology and the aspects China should give priority to in development,while stressing on the principles of independence,innovation and"humanorientation."

  9. EVOLUTIONARY ALGORITHMS WITH PREFERENCE FOR MANUFACTURING CELLS FORMATION

    Institute of Scientific and Technical Information of China (English)

    WANG Jianwei; WEI Xiaopeng; LI Rui

    2008-01-01

    Due to the combinatorial nature of cell formation problem and the characteristics of multi-objective and multi-constrain, a novel method of evolutionary algorithm with preference is proposed. The analytic hierarchy process (AHP) is adopted to determine scientifically the weights of the sub-objective functions. The satisfaction of constraints is considered as a new objective, the ratio of the population which doesn't satisfy all constraints is assigned as the weight of new objective. In addition, the self-adaptation of weights is applied in order to converge more easily towards the feasible domain. Therefore, both features multi-criteria and constrains are dealt with simultaneously. Finally, an example is selected from the literature to evaluate the performance of the proposed approach. The results validate the effectiveness of the proposed method in designing the manufacturing cells.

  10. Foreign-owned firms and technological capabilities in the Argentinean manufacturing industry

    OpenAIRE

    Costa, Ionara; Marin, Anabel

    2007-01-01

    This deals with the technological development implications of the substantial and long-dated presence of foreign-owned affiliates in the Argentinean manufacturing industry. It put forward the argument that the learning process of foreign-owned firms should be central in the analysis of the technological impacts of inward FDI. In other words, FDI impacts to host economies are dependent not exclusively on the technology and knowledge that multinational corporations are willing to transfer to th...

  11. Determining Technological Innovation and Competitiveness: A Cross Organizational Analysis of the Malaysian Manufacturing Industry

    OpenAIRE

    Amlus Ibrahim; Ezanee Mohamed Elias; Abd.Rahim Saad; RAMAYAH, T.

    2012-01-01

    This study analyzed the determinants of technological innovation in the Malaysian manufacturing industry. Its main purpose is to identify a set of management- related variables characterizing Malaysian innovative firms. Moreover, the study aimed to test whether the set of determinant differs for firms with different technological trajectories. A sample of 204 Malaysian firms was used for the investigation, with one respondent from each firm. The questionnaire measured the technological innova...

  12. The Technological Structure and Performance of Developing Country Manufactured Exports, 1985-98.

    OpenAIRE

    Lall, Sanjaya

    2000-01-01

    This paper maps out the recent manufactured export patterns of developing countries, using a new and detailed classification by technological levels. It argues that export structures, being path-dependent and difficult to change, have important implications for growth and development. Low-technology products (which have the least beneficial learning and spillover effects) tend to grow the slowest, and technology-intensive products (which have the most beneficial effects) the fastest in world ...

  13. Microscale technologies for cell engineering

    CERN Document Server

    Gaharwar, Akhilesh

    2016-01-01

    This book offers readers cutting-edge research at the interface of polymer science and engineering, biomedical engineering, materials science, and biology. State-of-the-art developments in microscale technologies for cell engineering applications are covered, including technologies relevant to both pluripotent and adult stem cells, the immune system, and somatic cells of the animal and human origin. This book bridges the gap in the understanding of engineering biology at multiple length scale, including microenvironmental control, bioprocessing, and tissue engineering in the areas of cardiac, cartilage, skeletal, and vascular tissues, among others. This book also discusses unique, emerging areas of micropatterning and three-dimensional printing models of cellular engineering, and contributes to the better understanding of the role of biophysical factors in determining the cell fate. Microscale Technologies for Cell Engineering is valuable for bioengineers, biomaterial scientists, tissue engineers, clinicians,...

  14. 增材制造技术在模具制造中的应用研究%Application research of additive manufacturing technology in die & mould manufacturing

    Institute of Scientific and Technical Information of China (English)

    洪奕; 高鹏

    2015-01-01

    The advantages, different manufacturing methods and characteristics of additive manufacturing technology in die & mould manufacturing were presented. The application of composite material and functional gradient material in die & mould was realized by using additive manufacturing technology; and the application prospect of additive manufacturing technology was pointed out.%介绍了增材制造技术的优点,阐述了增材制造技术在模具制造中的各种制造方法及特点,叙述了利用增材制造技术实现模具复合材料和梯度功能材料的应用,指出了增材制造技术的应用前景。

  15. 增材制造技术在模具制造中的应用研究%Application research of additive manufacturing technology in die & mould manufacturing

    Institute of Scientific and Technical Information of China (English)

    洪奕; 高鹏

    2015-01-01

    介绍了增材制造技术的优点,阐述了增材制造技术在模具制造中的各种制造方法及特点,叙述了利用增材制造技术实现模具复合材料和梯度功能材料的应用,指出了增材制造技术的应用前景。%The advantages, different manufacturing methods and characteristics of additive manufacturing technology in die & mould manufacturing were presented. The application of composite material and functional gradient material in die & mould was realized by using additive manufacturing technology; and the application prospect of additive manufacturing technology was pointed out.

  16. The strategic value of industrial radiation manufacturing and processing technologies

    International Nuclear Information System (INIS)

    Planned and projected budget cuts over the next many years will reduce the number of Department of Defense (DoD) personnel and the diversity and quantity of their armaments and systems. Consequently, there is a requirement for the deployment of more effective defense equipment and their more efficient operation. Concomitant with this challenge is an opportunity for innovative technologies that can, at a lower cost, produce new, stronger, more durable materials-and do so with less environmental impact. Radiation processing offers this potential for (a) creating significant cost savings and performance advantages in a broad range of defense materials; (b) destroying and detoxifying dangerous chemicals, ordnance, and rocket propellants; (c) cleaning noxious gaseous effluents; and (d) purifying contaminated water. Radiation technology has the potential to immediately affect defense materials and, in the short and long terms, US industrial international competitiveness

  17. Ergonomic Optimization of a Manufacturing System Work Cell in a Virtual Environment

    Directory of Open Access Journals (Sweden)

    F. Caputo

    2006-01-01

    Full Text Available The paper deals with the development of a methodology for studying, in a virtual environment, the ergonomics of a work cell in an automotive manufacturing system. The methodology is based on the use of digital human models and virtual reality techniques in order to simulate, in a virtual environment, human performances during the execution of assembly operations. The objective is to define the optimum combination of those geometry features that influence human postures during assembly operation in a work cell. In the demanding global marketplace, ensuring that human factors are comprehensively addressed is becoming an increasingly important aspect of design. Manufacturers have to design work cells that conform to all relevant Health and Safety standards. The proposed methodology can assist the designer to evaluate the performance of workers in a workplace before it has been realized. The paper presents an analysis of a case study proposed by COMAU, a global supplier of industrial automation systems for the automotive manufacturing sector and a global provider of full maintenance services. The study and all the virtual simulations have been carried out in the Virtual Reality Laboratory of the Competence Regional Center for the qualification of transportation systems (CRdC “Trasporti” - www.centrodicompetenzatrasporti.unina. it, which was founded by the Campania region with the aim of delivering advanced services and introducing new technologies into local companies operating in the field of transport. 

  18. Assessment of the manufacturability of Escherichia coli high cell density fermentations.

    Science.gov (United States)

    Perez-Pardo, M A; Ali, S; Balasundaram, B; Mannall, G J; Baganz, F; Bracewell, D G

    2011-01-01

    The physical and biological conditions of the host cell obtained at the end of fermentation influences subsequent downstream processing unit operations. The ability to monitor these characteristics is central to the improvement of biopharmaceutical manufacture. In this study, we have used a combination of techniques such as adaptive focus acoustics (AFA) and ultra scale-down (USD) centrifugation that utilize milliliter quantities of sample to obtain an insight into the interaction between cells from the upstream process and initial downstream unit operations. This is achieved primarily through an assessment of cell strength and its impact on large-scale disc stack centrifugation performance, measuring critical attributes such as viscosity and particle size distribution. An Escherichia coli fed-batch fermentation expressing antibody fragments in the periplasm was used as a model system representative of current manufacturing challenges. The weakening of cell strength during cultivation time, detected through increased micronization and viscosity, resulted in a 2.6-fold increase in product release rates from the cell (as measured by AFA) and approximately fourfold decrease in clarification performance (as measured by USD centrifugation). The information obtained allows for informed harvest point decisions accounting for both product leakages during fermentation and potential losses during primary recovery. The clarification performance results were verified at pilot scale. The use of these technologies forms a route to the process understanding needed to tailor the host cell and upstream process to the product and downstream process, critical to the implementation of quality-by-design principles.

  19. Pellet manufacturing by extrusion-spheronization using process analytical technology

    DEFF Research Database (Denmark)

    Sandler, Niklas; Rantanen, Jukka; Heinämäki, Jyrki;

    2005-01-01

    The aim of this study was to investigate the phase transitions occurring in nitrofurantoin and theophylline formulations during pelletization by extrusion-spheronization. An at-line process analytical technology (PAT) approach was used to increase the understanding of the solid-state behavior...... hydrate (nitrofurantoin), dehydration was observed at higher temperatures. To reach an understanding of the process and to find the critical process parameters, the use of complementary analytical techniques are absolutely necessary when signals from APIs and different excipients overlap each other....

  20. Technology and manufacturing process selection the product life cycle perspective

    CERN Document Server

    Pecas, Paulo; Silva, Arlindo

    2014-01-01

    This book provides specific topics intending to contribute to an improved knowledge on Technology Evaluation and Selection in a Life Cycle Perspectives. Although each chapter will present possible approaches and solutions, there are no recipes for success. Each reader will find his/her balance in applying the different topics to his/her own specific situation. Case studies presented throughout will help in deciding what fits best to each situation, but most of all any ultimate success will come out of the interplay between the available solutions and the specific problem or opportunity the reader is faced with.

  1. Hybrid Fuel Cell Technology Overview

    Energy Technology Data Exchange (ETDEWEB)

    None available

    2001-05-31

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  2. New technologies on eggs manufacturing; Innovazione tecnologica nell`industria di lavorazione delle uova

    Energy Technology Data Exchange (ETDEWEB)

    Pizzichini, M.; Serse, A. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Innovazione; Marcolini, P.; Erbisti, P. [Soc. Coop. Avicola Lessinia, Pigozzo, Verona (Italy)

    1996-10-01

    Objective of this paper is innovate the industrial manufacturing process, up grading the white egg commercial value according the following points: - improve the albumen rheological properties (whippability); - concentrate the white eggs without damaging the protein functional properties; - fractionate eggs white proteins to improve the useful application range in the pharmaceutical industry. The albumen chemical-physical properties and the protein separation technologies, based mainly on membrane techniques, are discussed. This paper represents a first technical overview on eggs manufacturing, carried out by ENEA (Italian Agency for New Technologies, Energy and the Environment) and the Avicola Lessinia, with the objective to develop a new production process.

  3. Design for manufacturability from 1D to 4D for 90-22 nm technology nodes

    CERN Document Server

    Balasinski, Artur

    2013-01-01

    This book explains integrated circuit design for manufacturability (DfM) at the product level (packaging, applications) and applies engineering DfM principles to the latest standards of product development at 22 nm technology nodes.  It is a valuable guide for layout designers, packaging engineers and quality engineers, covering DfM development from 1D to 4D, involving IC design flow setup, best practices, links to manufacturing and product definition, for process technologies down to 22 nm node, and product families including memories, logic, system-on-chip and system-in-package.

  4. Results from a beam test of silicon strip sensors manufactured by Infineon Technologies AG

    CERN Document Server

    Dragicevic, M; Bartl, U; Bergauer, T; Gamerith, S; Hacker, J; König, A; Kröner, F; Kucher, E; Moser, J; Neidhart, T; Schulze, H-J; Schustereder, W; Treberspurg, W; Wübben, T

    2014-01-01

    Most modern particle physics experiments use silicon based sensors for their tracking systems. These sensors are able to detect particles generated in high energy collisions with high spatial resolution and therefore allow the precise reconstruction of particle tracks. So far only a few vendors were capable of producing silicon strip sensors with the quality needed in particle physics experiments. Together with the European-based semiconductor manufacturer Infineon Technologies AG (Infineon) the Institute of High Energy Physics of the Austrian Academy of Sciences (HEPHY) developed planar silicon strip sensors in p-on-n technology. This work presents the first results from a beam test of strip sensors manufactured by Infineon.

  5. Results from a beam test of silicon strip sensors manufactured by Infineon Technologies AG

    Energy Technology Data Exchange (ETDEWEB)

    Dragicevic, M., E-mail: marko.dragicevic@oeaw.ac.at [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Auzinger, G. [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); CERN, Geneva (Switzerland); Bartl, U. [Infineon Technologies Austria AG, Villach (Austria); Bergauer, T. [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Gamerith, S.; Hacker, J. [Infineon Technologies Austria AG, Villach (Austria); König, A. [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Infineon Technologies Austria AG, Villach (Austria); Kröner, F.; Kucher, E.; Moser, J.; Neidhart, T. [Infineon Technologies Austria AG, Villach (Austria); Schulze, H.-J. [Infineon Technologies AG, Munich (Germany); Schustereder, W. [Infineon Technologies Austria AG, Villach (Austria); Treberspurg, W. [Institute of High Energy Physics, Austrian Academy of Sciences, Vienna (Austria); Wübben, T. [Infineon Technologies Austria AG, Villach (Austria)

    2014-11-21

    Most modern particle physics experiments use silicon based sensors for their tracking systems. These sensors are able to detect particles generated in high energy collisions with high spatial resolution and therefore allow the precise reconstruction of particle tracks. So far only a few vendors were capable of producing silicon strip sensors with the quality needed in particle physics experiments. Together with the European-based semiconductor manufacturer Infineon Technologies AG (Infineon) the Institute of High Energy Physics of the Austrian Academy of Sciences (HEPHY) developed planar silicon strip sensors in p-on-n technology. This work presents the first results from a beam test of strip sensors manufactured by Infineon.

  6. Development of vitrification line technology and the manufacture of equipment

    International Nuclear Information System (INIS)

    The development is described of technology and the production of equipment for the vitrification of liquid radioactive wastes. For vitrification, frit Frita F270 is used containing up to 20% titanium and featuring a corrosion effect lower by one order than that of lead glass. The liquid waste is discharged in a measuring tank where it is mixed with formic acid. It is then pumped into an evaporator. Breed vapor is carried via a condenser to a condensate tank. The evaporator concentrate is transported to a homogenizer where it is gradually mixed with Frita. The viscous mush thus produced is carried into a furnace where the remaining water is evaporated. The furnace decontamination factor is 102 to 103. At a temperature of up to 1,050 degC the frit melts and is discharged into a case. Currently, technology has been developed of mush preparation and the design has been completed of a vitrification furnace featuring remote lid opening and closing, and of equipment for processing furnace emissions. (J.B.). 3 figs., 1 tab., 1 ref

  7. Translating Research into Clinical Scale Manufacturing of Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Karen Bieback

    2010-01-01

    Full Text Available It sounds simple to obtain sufficient numbers of cells derived from fetal or adult human tissues, isolate and/or expand the stem cells, and then transplant an appropriate number of these cells into the patient at the correct location. However, translating basic research into routine therapies is a complex multistep process which necessitates product regulation. The challenge relates to managing the expected therapeutic benefits with the potential risks and to balance the fast move to clinical trials with time-consuming cautious risk assessment. This paper will focus on the definition of mesenchymal stromal cells (MSCs, and challenges and achievements in the manufacturing process enabling their use in clinical studies. It will allude to different cellular sources, special capacities of MSCs, but also to current regulations, with a special focus on accessory material of human or animal origin, like media supplements. As cellular integrity and purity, formulation and lot release testing of the final product, validation of all procedures, and quality assurance are of utmost necessity, these topics will be addressed.

  8. Comparative manufacture and cell-based delivery of antiretroviral nanoformulations

    Directory of Open Access Journals (Sweden)

    Balkundi S

    2011-12-01

    Full Text Available Shantanu Balkundi1, Ari S Nowacek1, Ram S Veerubhotla1, Han Chen2, Andrea Martinez-Skinner1, Upal Roy1, R Lee Mosley1,3, Georgette Kanmogne1, Xinming Liu1,3,4, Alexander V Kabanov3,4, Tatiana Bronich3,4, JoEllyn McMillan1, Howard E Gendelman1,31Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; 2Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USA; 3Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE, USA; 4Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USAAbstract: Nanoformulations of crystalline indinavir, ritonavir, atazanavir, and efavirenz were manufactured by wet milling, homogenization or sonication with a variety of excipients. The chemical, biological, immune, virological, and toxicological properties of these formulations were compared using an established monocyte-derived macrophage scoring indicator system. Measurements of drug uptake, retention, release, and antiretroviral activity demonstrated differences amongst preparation methods. Interestingly, for drug cell targeting and antiretroviral responses the most significant difference among the particles was the drug itself. We posit that the choice of drug and formulation composition may ultimately affect clinical utility.Keywords: human immunodeficiency virus type one, nanotoxicology, monocyte-derived macrophage, nanoformulated antiretroviral therapy, manufacturing techniques

  9. Design and manufacture of turbine runner blades using CAD/CAM technology

    Energy Technology Data Exchange (ETDEWEB)

    Strohmer, F.; Winkler, S.

    1986-05-01

    Advances in hydraulic and mechanical design and manufacture of hydraulic turbines have occured over the last years. The turbines have reached a high level of performance. This is especially a result of a proper design and accurate manufacture of the turbine runner due to the application of the computer aided design and computer aided manufacturing systems combined with new computerized analysis techniques. The various steps of the modular numerical system - hydraulic computation, interactive blade design, fluid flow analysis, stress analysis and CNC-manufacture of the model blade - are shown on the example of a runner blade for axial turbines. For optimizing the manufacturing of the prototype blade the CAD/CAM-technology is applied. The data flow from the model blade, measured on an electronic coordinate measurement machine, via the CAD/CAM-system, which represents the blade surface in a mathematical form and calculates the tool paths, to the five axis CNC-milling machine is demonstrated. Through the application of the CAD/CAM-technology to hydraulic blades the time frame for designing and manufacturing has been reduced while improving quality and accuracy of the blades.

  10. Manufacturing capability as a technological development indicator in the pharmaceutical industry

    Directory of Open Access Journals (Sweden)

    John Jairo Gallo Castro

    2010-05-01

    Full Text Available The pharmaceutical industrial has five subsectors: medicines, cosmetics, phytotherapeutics, cleaning products and medical devices. The medicine subsector consists of organisations producing, importing and selling these products. Most studies about this industry have been guided by economic interests without assessing technological aspects of production. This article was aimed at proposing a methodology for assessing and describing the medicine sector according to its technological development by using the manufacturing capability concept. The main information was taken from the Colombian Medicaments and Food Surveillance Institute’s (Instituto Nacional de Vigilancia de Medicamentos y Alimentos - INVIMA databases related to pharmaceutical plant production in Bogotá, including material transformation facilities. This study led to three characteristics being identified for defining the pharmaceutical industry’s manufacturing capability: that related to the pharmacological group to which active pharmaceutical ingredients belong, that linked to specifications regarding medicines’ sterility and that related to the technology required for manufacturing each pharmaceutical product. An analysis of these features has thus been presented and some technologies have been identified which have not been transferred or assimilated by the organisations being studied. It was found that manufacturing capability should be considered as being an indicator of the degree of technological development in these subsectors in Colombia.

  11. Technological innovation capability in Malaysian-owned resource-based manufacturing companies: Early findings

    Science.gov (United States)

    Razali, Nur Fhathyhah; Mohd Suradi, Nur Riza; Ahmad Shahabuddin, Faridatul Azna; Ismail, Wan Rosmanira; Abidin, Norkisme Zainal; Ahmad, Nor Amalina; Mustafa, Zainol

    2013-04-01

    This study aims to identify the determinants of technological innovation capability of Malaysian-owned companies in the resources-based manufacturing, to identify the relationship between technological innovation capability (TIC) and technological innovation performance (TIP) for the resource-based manufacturing. Furthermore, this study also aims to identify innovation capability factors that need more emphasis and improvements from the respective authority. The scope of the study covers four industries which are petrochemical industries, pharmaceutical industries, palm oil-based industries and food processing industries which are located in the state of Selangor. Descriptive analysis, correlation analysis and performance capability analysis were used in this study. It was found that, technological innovation capabilities (TIC) for companies in the resource-based manufacturing are moderate. Factors such as policies capability, human resources capability and facilities capability have a positive relationship with the performance of technological innovation (TIP). These findings will help the government in making decisions and better implementation of policies to strengthen the competitiveness of the company, particularly in resource-based manufacturing.

  12. Developments of Additive Manufacturing Technology%增材制造技术的发展

    Institute of Scientific and Technical Information of China (English)

    李涤尘; 田小永; 王永信; 卢秉恒

    2012-01-01

    Additive Manufacturing Technology as one of non-traditional machining technologies, which was called rapid prototyping technology, developed rapidly in the last 30 years. The advantages of this technology include the rapid and free-form fabrication of three dimensional components. It was widely used in the fields of new products development and single-piece and small - batch fabrication. The development trends and key technologies were elaborated in the present paper by introducing the equipments and applications of Additive Manufacturing Technologies. In the future, AM technology will develop in three areas which including manufacturing of consumption goods, manufacturing of function parts and integrated manufacturing of macro & micro structures.%增材制造技术是近30年快速发展的特种加工技术,其优势在于三维结构的快速和自由制造,被广泛应用于新产品开发、单件小批量制造.通过对增材制造技术设备和应用情况的介绍,阐述了我国增材制造技术的发展趋势和关键技术.未来增材制造技术将向着三个方向发展:一是日常消费品制造方向;二是功能零件制造方向;三是组织与结构一体化制造方向.

  13. Advanced Manufacturing Technology: The Perceived Impact on Producer’s Value

    Directory of Open Access Journals (Sweden)

    Rohani Abdullah

    2012-09-01

    Full Text Available The purpose of this study is to determine which AMT has the greatest perceived impact on producer’s value and to identify which AMTs has been most successfully employed. The study population consists of senior manufacturing executives in electrical and electronic firms located in the northern region of Malaysia. The study addresses the senior manufacturing executives’ perceptions on how well specific AMTs have achieved the expectation of the firms implementing them. They are selected as respondents because of their understanding of the technology and their effects, and because as top manufacturing decision makers, their opinions are likely to shape the future technology of the organization. This study found that the type of AMT that perceived the greatest impact on producer’s value is Flexible Manufacturing System, due to its high effects on two dimensions of producer’s value: quality and cost while Just-in-Time is found to be the most successfully employed AMT among respondents. The findings of this study are significant as they contribute to the AMT literature especially in the context of Electrical and Electronic firms. Keywords: advanced manufacturing technology, producer’s value

  14. Object-oriented architecture of control system for agile manufacturing cells

    OpenAIRE

    Lau, HCW; Ning, A.; Chan, FTS; Zhang, J.

    2000-01-01

    The depiction of the agile manufacturing cell includes a synopsis of some of the change proficiencies obtained by the configuration. To achieve agile configuration, the cell control system for agile manufacturing must be rapidly and efficiently generated or modified. In this paper, the object-oriented architecture is defined that supports design and implementation of highly reconfigurable control systems for agile manufacturing cells, which is composed of database objects, control objects, an...

  15. Recent Progress in Development and Manufacturing of SOFC at Topsoe Fuel Cell A/S and Risø DTU

    OpenAIRE

    Christiansen, Niels; Holm-Larsen, Helge; Primdahl, Søren; Wandel, Marie; Ramousse, Severine; Hagen, Anke

    2011-01-01

    The SOFC development at Topsoe Fuel Cell A/S (TOFC) and Risø DTU is based on a R&D consortium which includes material development and manufacturing of materials, cells and stacks with metallic interconnects focussing on high electrochemical performance, durability and robustness. A significant effort is directed towards improvement of current generations as well as development of the next generation SOFC technology. The innovative concept of the next generation, aiming at improved reliabi...

  16. Current state-of-the-art manufacturing technology for He-cooled divertor finger

    International Nuclear Information System (INIS)

    A divertor concept for DEMO has been investigated at Karlsruhe Institute of Technology (KIT) which has to withstand a heat flux of 10 MW/m2. The design utilizes small finger module composed of a small tungsten tile brazed on a thimble made from tungsten alloy. The divertor finger is cooled by helium jet impingement at 10 MPa and 600 deg. C. The subject of this paper is technological studies on machining and braze joining the divertor components. Goal of this task, which is considered an important R and D issue, is to find out appropriate manufacturing methods to ensure high functionality and high reliability of the divertor as well as to meet the economic aspect. One of the major requirements for manufacturing is micro-crack-free surface of tungsten parts, since crack propagations in tungsten were observed in the previous high-heat-flux tests at Efremov. Different manufacturing methods and the corresponding results are discussed in the following report.

  17. Clean Economy, Living Planet. The Race to the Top of Global Clean Energy Technology Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Van der Slot, A.; Van den Berg, W. [Roland Berger Strategy Consultants RBSC, Amsterdam (Netherlands)

    2012-05-15

    For four years, WWF and Roland Berger have tracked developments in the global clean energy technology (cleantech) sector and ranked countries according to their cleantech sales. The 3rd annual 'Clean Economy, Living Planet' report ranks 40 countries based on the 2011 sales value of the clean energy technology products they manufacture. The report shows that the EU has lost its position to China as the leader in the fast growing global cleantech energy manufacturing sector. However, when cleantech sales are weighted as a percentage of GDP, Denmark and Germany occupied the first and third position globally. Last year the sector's global sales value rose by 10% to almost 200 billion euros, close to the scale of consumer electronics manufacturing. It is projected to overtake oil and gas equipment in the next three years.

  18. Quality control of laser- and powder bed-based Additive Manufacturing (AM) technologies

    Science.gov (United States)

    Berumen, Sebastian; Bechmann, Florian; Lindner, Stefan; Kruth, Jean-Pierre; Craeghs, Tom

    The quality of metal components manufactured by laser- and powder bed-based additive manufacturing technologies has continuously been improved over the last years. However, to establish this production technology in industries with very high quality standards the accessibility of prevalent quality management methods to all steps of the process chain needs still to be enhanced. This publication describes which tools are and will be available to fulfil those requirements from the perspective of a laser machine manufacturer. Generally five aspects of the part building process are covered by separate Quality Management (QM) modules: the powder quality, the temperature management, the process gas atmosphere, the melt pool behaviour and the documentation module. This paper sets the focus on melt pool analysis and control.

  19. The future of pharmaceutical manufacturing in the context of the scientific, social, technological and economic evolution.

    Science.gov (United States)

    Stegemann, Sven

    2016-07-30

    Healthcare provision is one of the import elements of modern societies. Life sciences and technology has made substantial progress over the past century and is continuing to evolve exponentially in many different areas. The use of genotypic and phenotypic information in drug discovery and drug therapy, the increasing wealth around the world, growing patient involvement through information and communication technology and finally innovations in pharmaceutical manufacturing technology are transforming the provision of healthcare. The adoption of this new science and technology is going to happen due to the synergistic effects and visible benefits for the society and healthcare systems. The different aspects driving advanced pharmaceutical manufacturing are reviewed to identify future research direction to assure overall acceptance and adoption into healthcare practice. PMID:26542345

  20. Innovative tissue engineering structures through advanced manufacturing technologies.

    Science.gov (United States)

    Ciardelli, Gianluca; Chiono, Valeria; Cristallini, Caterina; Barbani, Niccoletta; Ahluwalia, Arti; Vozzi, Giovanni; Previti, Antonino; Tantussi, Giovanni; Giusti, Paolo

    2004-04-01

    Awide range of rapid prototyping (RP) techniques for the construction of three-dimensional (3-D) scaffolds for tissue engineering has been recently developed. In this study, we report and compare two methods for the fabrication of poly-(epsilon-caprolactone) and poly-(epsilon-caprolactone)-poly-(oxyethylene)-poly-(epsilon-caprolactone) copolymer scaffolds. The first technique is based on the use of a microsyringe and a computer-controlled three-axis micropositioner, which regulates motor speed and position. Polymer solutions are extruded through the needle of the microsyringe by the application of a constant pressure of 10-300 mm Hg, resulting in controlled polymer deposition of 5-600 microm lateral dimensions. The second method utilises the heating energy of a laser beam to sinter polymer microparticles according to computer-guided geometries. Materials may be fed either as dry powder or slurry of microparticles. Both powder granulometry and laser working parameters influence resolution (generally 300 microm x 700 microm), accuracy of sintering and surface and bulk properties of the final structures. The two RP methods allow the fabrication of 3-D scaffolds with a controlled architecture, providing a powerful means to study cell response to an environment similar to that found

  1. Analysis of Syetem Reliability in Manufacturing Cell Based on Triangular Fuzzy Number

    Institute of Scientific and Technical Information of China (English)

    ZHANG Caibo; HAN Botang; SUN Changsen; XU Chunjie

    2006-01-01

    Due to lacking of test-data and field-data in reliability research during the design stage of manufacturing cell system. The degree of manufacturing cell system reliability research is increased. In order to deal with the deficient data and the uncertainty occurred from analysis and judgment, the paper discussed a method for studying reliability of manufacturing cell system through the analysis of fuzzy fault tree, which was based on triangular fuzzy number. At last, calculation case indicated that it would have great significance for ascertaining reliability index, maintenance and establishing keeping strategy towards manufacturing cell system.

  2. Development of a manufacturing technology of compacted graphite iron castings from a cupola furnace

    OpenAIRE

    O. Bouska; J. Heunisch; A. Zadera; K. Nedelova; F. Kobersky

    2012-01-01

    Compacted graphite iron, also known as vermicular cast iron or semiductile cast iron is a modern material, the production of which is increasing globaly. Recently this material has been very often used in automotive industry. This paper reviews some findigs gained during the development of the manufacturing technology of compacted graphite iron under the conditions in Slévárna Heunisch Brno, Ltd. The new technology assumes usage of cupola furnace for melting and is beeing developed for produc...

  3. Uncovering dynamics in the accumulation of technological capabilities and skills in the Mozambican manufacturing sector

    OpenAIRE

    Alex Warren-Rodríguez

    2008-01-01

    This paper examines the formation and accumulation of skills and technological capabilities in the Mozambican manufacturing sector. To this effect, it deploys Sanjaya Lall’s technology capabilities conceptual and methodological framework to examine these issues for the Mozambican metalworking and light chemical sectors in the context of historical dynamics taking place in Mozambique in the economic and industrial policy spheres. This analysis shows that these two industries are experiencing...

  4. The Impact of Trade Liberalization and Information Technology on India's Manufacturing Sector

    Science.gov (United States)

    Sharma, Shruti

    2013-01-01

    This dissertation is an investigation into how trade liberalization and the adoption of information technology have impacted labour and productivity in India's manufacturing sector respectively. The second chapter analyses the relationship between India's liberalization of tariffs on imported intermediate inputs (henceforth input tariff…

  5. Status of Fuel Development and Manufacturing for Space Nuclear Reactors at BWX Technologies

    Science.gov (United States)

    Carmack, W. J.; Husser, D. L.; Mohr, T. C.; Richardson, W. C.

    2004-02-01

    New advanced nuclear space propulsion systems will soon seek a high temperature, stable fuel form. BWX Technologies Inc (BWXT) has a long history of fuel manufacturing. UO2, UCO, and UCx have been fabricated at BWXT for various US and international programs. Recent efforts at BWXT have focused on establishing the manufacturing techniques and analysis capabilities needed to provide a high quality, high power, compact nuclear reactor for use in space nuclear powered missions. To support the production of a space nuclear reactor, uranium nitride has recently been manufactured by BWXT. In addition, analytical chemistry and analysis techniques have been developed to provide verification and qualification of the uranium nitride production process. The fabrication of a space nuclear reactor will require the ability to place an unclad fuel form into a clad structure for assembly into a reactor core configuration. To this end, BWX Technologies has reestablished its capability for machining, GTA welding, and EB welding of refractory metals. Specifically, BWX Technologies has demonstrated GTA welding of niobium flat plate and EB welding of niobium and Nb-1Zr tubing. In performing these demonstration activities, BWX Technologies has established the necessary infrastructure to manufacture UO2, UCx, or UNx fuel, components, and complete reactor assemblies in support of space nuclear programs.

  6. Integrated Computer Aided Planning and Manufacture of Advanced Technology Jet Engines

    Directory of Open Access Journals (Sweden)

    B. K. Subhas

    1987-10-01

    Full Text Available This paper highlights an attempt at evolving a computer aided manufacturing system on a personal computer. A case study of an advanced technology jet engine component is included to illustrate various outputs from the system. The proposed system could be an alternate solution to sophisticated and expensive CAD/CAM workstations.

  7. 75 FR 13766 - Food and Drug Administration and Process Analytical Technology for Pharma Manufacturing: Food and...

    Science.gov (United States)

    2010-03-23

    ... HUMAN SERVICES Food and Drug Administration Food and Drug Administration and Process Analytical Technology for Pharma Manufacturing: Food and Drug Administration--Partnering With Industry; Public Conference AGENCY: Food and Drug Administration, HHS. ACTION: Notice of public conference. The Food and...

  8. EFG Technology and Diagnostic R&D for Large-Scale PV Manufacturing; Final Subcontract Report, 1 March 2002 - 31 March 2005

    Energy Technology Data Exchange (ETDEWEB)

    Kalejs, J.; Aurora, P.; Bathey, B.; Cao, J.; Doedderlein, J.; Gonsiorawski, R.; Heath, B.; Kubasti, J.; Mackintosh, B.; Ouellette, M.; Rosenblum, M.; Southimath, S.; Xavier, G.

    2005-10-01

    The objective of this subcontract was to carry out R&D to advance the technology, processes, and performance of RWE Schott-Solar's wafer, cell, and module manufacturing lines, and help configure these lines for scaling up of edge-defined, film-fed growth (EFG) ribbon technology to the 50-100 MW PV factory level. EFG ribbon manufacturing continued to expand during this subcontract period and now has reached a capacity of 40 MW. EFG wafer products were diversified over this time period. In addition to 10 cm x 10 cm and 10 cm x 15 cm wafer areas, which were the standard products at the beginning of this program, R&D has focused on new EFG technology to extend production to 12.5 cm x 12.5 cm EFG wafers. Cell and module production also has continued to expand in Billerica. A new 12-MW cell line was installed and brought on line in 2003. R&D on this subcontract improved cell yield and throughput, and optimized the cell performance, with special emphasis on work to speed up wafer transfer, hence enhancing throughput. Improvements of wafer transfer processes during this program have raised cell line capacity from 12 MW to over 18 MW. Optimization of module manufacturing processes was carried out on new equipment installed during a manufacturing upgrade in Billerica to a 12-MW capacity to improve yield and reliability of products.

  9. Laser texturization in technology of multicrystalline silicon solar cells

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2008-07-01

    Full Text Available Purpose: This paper presents technology of multicrystalline silicon solar cells with laser texturization step. The texturing of polycrystalline silicon surface using Nd:YAG laser makes it possible to increase absorption of the incident solar radiation. Moreover, the additional technological operation consisting in etching in 20% KOH solution at temperature of 80ºC introduced into technology of the photovoltaic cells manufactured from laser textured wafers allows for significant improvement in their electrical performance compared to cells produced from the non-textured wafers after saw damage removal.Design/methodology/approach: The topography of laser textured surfaces were investigated using DSM 940 OPTON scanning electron microscope and LSM 5 Pascal ZEISS confocal laser scanning microscope. The reflectance of produced textures was measured by Perkin-Elmer Lambda spectrophotometer with an integrating sphere. Electrical parameters of manufactured solar cells were characterized by measurements of I-V light characteristics under standard AM 1.5 radiation.Findings: Solar cells manufactured from laser-textured polycrystalline silicon wafers demonstrate worse electrical performance than cells manufactured from the non-textured wafers after saw damage removal as well as wafers textured by etching in alkaline solutions. Etching of textured surface in 20% KOH solution at temperature of 80ºC subsequent to laser processing shows to have a greatly increased impact on electrical performance of solar cells.Research limitations/implications: Continued etching to remove laser induced defects cause the texture to flatten out reducing it optical effectiveness.Originality/value: This paper demonstrates, that laser processing is very promising technique for texturing multicrystaline silicon independent on grains crystallographic orientation compared to conventional texturing methods in technology of solar cells.

  10. SUPPLIER SELECTION STRATEGY AND MANUFACTURING FLEXIBILITY: IMPACT OF QUALITY AND TECHNOLOGY ROADMAPS

    Directory of Open Access Journals (Sweden)

    Muhamad Jantan

    2006-01-01

    Full Text Available The study evaluates the relationship between technology, quality, cost and delivery performance-based, supplier selection strategies, and manufacturing flexibilities namely, product flexibility, launch flexibility, and volume flexibility. Moreover, the moderating impact of supplier management strategies, namely quality roadmap and technology roadmap on the above relationships were also explored. The data for the study was drawn from a sample of companies listed in the factory directory published by the Penang Development Corporation (PDC. A postal survey of 120 manufacturers provided a return of 92 usable responses. The results reveal that the selection of suppliers based on technological and quality performance positively affects all the three dimensions of manufacturing flexibility, with complementary effects of good technology and quality roadmaps. Technology and quality roadmaps act as predictors for product and volume flexibilities. However, when launch flexibility is the focus, both technology and quality roadmaps moderate the impact of supplier selection strategies. Details of the findings, theoretical and practical implications, and the research limitation are discussed.

  11. The ``Micromorph'' cell: a new way to high-efficiency-low-temperature crystalline silicon thin-film cell manufacturing?

    Science.gov (United States)

    Keppner, H.; Kroll, U.; Torres, P.; Meier, J.; Platz, R.; Fischer, D.; Beck, N.; Dubail, S.; Anna Selvan, J. A.; Pellaton Vaucher, N.; Goerlitzer, M.; Ziegler, Y.; Tscharner, R.; Hof, Ch.; Goetz, M.; Pernet, P.; Wyrsch, N.; Vuille, J.; Cuperus, J.; Shah, A.; Pohl, J.

    1997-02-01

    Hydrogenated microcrystalline Silicon (μc-Si:H) produced by the VHF-GD (Very High Frequency Glow Discharge) process can be considered to be a new base material for thin-film crystalline silicon solar cells. The most striking feature of such cells, in contrast to conventional amorphous silicon technology, is their stability under light-soaking. With respect to crystalline silicon technology, their most striking advantage is their low process temperature (220 °C). The so called "micromorph" cell contains such a μc-Si:H based cell as bottom cell, whereas the top-cell consists of amorphous silicon. A stable efficiency of 10.7% (confirmed by ISE Freiburg) is reported in this paper. At present, all solar cell concepts based on thin-film crystalline silicon have a common problem to overcome: namely, too long manufacturing times. In order to help in solving this problem for the particular case of plasma-deposited μc-Si:H, results on combined argon/hydrogen dilution of the feedgas (silane) are presented. It is shown that rates as high as 9.4 Å/s can be obtained: furthermore, a first solar cell deposited with 8.7 Å/s resulted in an efficiency of 3.1%.

  12. Assimilation Patterns in the Use of Advanced Manufacturing Technologies in SMEs: Exploring their Effects on Product Innovation Performance

    OpenAIRE

    Sylvestre Uwizeyemungu; Placide Poba-Nzaou; Josée St-Pierre

    2015-01-01

    Manufacturing small and medium-sized enterprises (SMEs) are more and more adopting advanced manufacturing technologies (AMT) aimed at fostering product innovation process, improving product quality, streamlining the production process, and gaining productivity. In this study, we analyze the relationship between AMT proficiency levels in manufacturing SMEs and product innovation performance. Using data from 616 manufacturing SMEs, and considering a wide range of various AMT (20 different types...

  13. Gas Diffusion Electrodes Manufactured by Casting Evaluation as Air Cathodes for Microbial Fuel Cells (MFC

    Directory of Open Access Journals (Sweden)

    Sandipam Srikanth

    2016-07-01

    Full Text Available One of the most intriguing renewable energy production methods being explored currently is electrical power generation by microbial fuel cells (MFCs. However, to make MFC technology economically feasible, cost efficient electrode manufacturing processes need to be proposed and demonstrated. In this context, VITO has developed an innovative electrode manufacturing process based on film casting and phase inversion. The screening and selection process of electrode compositions was done based on physicochemical properties of the active layer, which in turn maintained a close relation with their composition A dual hydrophilic-hydrophobic character in the active layer was achieved with values of εhydrophilic up to 10% while εTOTAL remained in the range 65 wt % to 75 wt %. Eventually, selected electrodes were tested as air cathodes for MFC in half cell and full cell modes. Reduction currents, up to −0.14 mA·cm2− at −100 mV (vs. Ag/AgCl were reached in long term experiments in the cathode half-cell. In full MFC, a maximum power density of 380 mW·m−2 was observed at 100 Ω external load.

  14. Understanding technological progress and input price as drivers of energy demand in manufacturing industries in India

    International Nuclear Information System (INIS)

    This paper presents a comprehensive analysis of energy demand behaviour of seven energy intensive manufacturing industries and the aggregate manufacturing sector in India during 1973–74 to 2011–12. The policy Perform, Achieve and Trade (PAT) has mandated energy efficiency targets for these manufacturing industries in India. We focus on two major drivers of energy demand: technological progress and energy price. Productivity growth accounting and estimation of parametric cost function using Annual Survey of Industry data bring out important implications regarding the role of these two drivers. Results suggest that these industries experienced technological progress over the study period (1973–74 to 2011–12) with significant energy-saving bias during 1998–99 to 2011–12. Increase in energy price has led to reduction in energy demand and augmented technological progress in most of the industries. Energy and material inputs are mostly substitutes. During 1998–99 to 2011–12, productivity growth of energy input was induced by both technological progress and increase in energy price. Estimates of inter-factor substitution suggest that price induced reduction in energy demand can be a capital-intensive process in case of some industries. Rebound effect has never taken back full gains of energy efficiency policies in the context of these industries. -- Highlights: •Energy use behaviour of manufacturing industries in India during 1973/74 to 2011/12. •Technological progress induced output growth and gain in energy productivity. •Energy saving bias of technological progress is prevalent in recent years. •Own price elasticity of energy demand is negative. •Increase in energy price has induced technological progress

  15. Post Processing Methods used to Improve Surface Finish of Products which are Manufactured by Additive Manufacturing Technologies: A Review

    Science.gov (United States)

    Kumbhar, N. N.; Mulay, A. V.

    2016-08-01

    The Additive Manufacturing (AM) processes open the possibility to go directly from Computer-Aided Design (CAD) to a physical prototype. These prototypes are used as test models before it is finalized as well as sometimes as a final product. Additive Manufacturing has many advantages over the traditional process used to develop a product such as allowing early customer involvement in product development, complex shape generation and also save time as well as money. Additive manufacturing also possess some special challenges that are usually worth overcoming such as Poor Surface quality, Physical Properties and use of specific raw material for manufacturing. To improve the surface quality several attempts had been made by controlling various process parameters of Additive manufacturing and also applying different post processing techniques on components manufactured by Additive manufacturing. The main objective of this work is to document an extensive literature review in the general area of post processing techniques which are used in Additive manufacturing.

  16. Advanced manufacturing technologies of large martensitic stainless steel castings with ultra low carbon and high cleanliness

    Directory of Open Access Journals (Sweden)

    Lou Yanchun

    2010-11-01

    Full Text Available The key manufacturing technologies associated with composition, microstructure, mechanical properties, casting quality and key process control for large martensitic stainless steel castings are involved in this paper. The achievements fully satisfied the technical requirements of the large 700 MW stainless steel hydraulic turbine runner for the Three Gorges Hydropower Station, and become the major technical support for the design and manufacture of the largest 700 MW hydraulic turbine generator unit in the world developed through our own efforts. The characteristics of a new high yield to tensile strength (Rp0.2/Rm ratio and high obdurability martensitic stainless steel with ultra low carbon and high cleanliness are also described. Over the next ten years, the large martensitic stainless steel castings and advanced manufacturing technologies will see a huge demand in clean energy industry such as nuclear power, hydraulic power at home and abroad. Therefore, the new high yield o tensile strength (Rp0.2/Rm ratio and high obdurability martensitic stainless steel materials, the fast and flexible manufacturing technologies of large size castings, and new environment friendly sustainable process will face new challenges and opportunities.

  17. Use of PolyJet technology in manufacture of new product

    Directory of Open Access Journals (Sweden)

    B. Vaupotič

    2006-08-01

    Full Text Available Purpose: The paper presents an approach to rapid manufacture of new product by PolyJet technology.Design/methodology/approach: Resolution, accuracy, speed and materials are basic factors of rapidprototyping, which mutually exclude themselves on most devices. PolyJet procedure is a technology, whichsuccessfully simultaneously solves some of these problems.Findings: The manufacture of product by PolyJet technology has proved to be a good approach. All advantagesoffered by that technology have been applied and all requirements of the new product have been satisfied. Bytesting on the first prototype the adequacy of the product shape has been established and the prototype has beensuitably adapted. As the data on the product shape are in the computerized form, the changes on the productare made simply.Research limitations/implications: Regrettably, the models from rapid prototyping do not allow majorloadings and exposure to exacting conditions, since the materials used are in the development stage and aregradually gaining strength and toughness. Our product is not exposed to major mechanical loadings; thereforethe process as such is adequate.Practical implications: By this technology very sophisticated and complicated products can be made. It assuresthe manufacture of nested structures and mechanisms already assembled. The price is influenced only by theproduct size. The shape complexity is not important at all.Originality/value: : In case of a small quantity of products, not exposed to major mechanical loadings, themodels made by PolyJet process are usable also as final products.

  18. Manufacturing Cost Analysis for YSZ-Based FlexCells at Pilot and Full Scale Production Scales

    Energy Technology Data Exchange (ETDEWEB)

    Scott Swartz; Lora Thrun; Robin Kimbrell; Kellie Chenault

    2011-05-01

    Significant reductions in cell costs must be achieved in order to realize the full commercial potential of megawatt-scale SOFC power systems. The FlexCell designed by NexTech Materials is a scalable SOFC technology that offers particular advantages over competitive technologies. In this updated topical report, NexTech analyzes its FlexCell design and fabrication process to establish manufacturing costs at both pilot scale (10 MW/year) and full-scale (250 MW/year) production levels and benchmarks this against estimated anode supported cell costs at the 250 MW scale. This analysis will show that even with conservative assumptions for yield, materials usage, and cell power density, a cost of $35 per kilowatt can be achieved at high volume. Through advancements in cell size and membrane thickness, NexTech has identified paths for achieving cell manufacturing costs as low as $27 per kilowatt for its FlexCell technology. Also in this report, NexTech analyzes the impact of raw material costs on cell cost, showing the significant increases that result if target raw material costs cannot be achieved at this volume.

  19. Advanced composites structural concepts and materials technologies for primary aircraft structures: Design/manufacturing concept assessment

    Science.gov (United States)

    Chu, Robert L.; Bayha, Tom D.; Davis, HU; Ingram, J. ED; Shukla, Jay G.

    1992-01-01

    Composite Wing and Fuselage Structural Design/Manufacturing Concepts have been developed and evaluated. Trade studies were performed to determine how well the concepts satisfy the program goals of 25 percent cost savings, 40 percent weight savings with aircraft resizing, and 50 percent part count reduction as compared to the aluminum Lockheed L-1011 baseline. The concepts developed using emerging technologies such as large scale resin transfer molding (RTM), automatic tow placed (ATP), braiding, out-of-autoclave and automated manufacturing processes for both thermoset and thermoplastic materials were evaluated for possible application in the design concepts. Trade studies were used to determine which concepts carry into the detailed design development subtask.

  20. Emerging Technologies in the Built Environment: Geographic Information Science (GIS), 3D Printing, and Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    New, Joshua Ryan [ORNL

    2014-01-01

    Abstract 1: Geographic information systems emerged as a computer application in the late 1960s, led in part by projects at ORNL. The concept of a GIS has shifted through time in response to new applications and new technologies, and is now part of a much larger world of geospatial technology. This presentation discusses the relationship of GIS and estimating hourly and seasonal energy consumption profiles in the building sector at spatial scales down to the individual parcel. The method combines annual building energy simulations for city-specific prototypical buildings and commonly available geospatial data in a GIS framework. Abstract 2: This presentation focuses on 3D printing technologies and how they have rapidly evolved over the past couple of years. At a basic level, 3D printing produces physical models quickly and easily from 3D CAD, BIM (Building Information Models), and other digital data. Many AEC firms have adopted 3D printing as part of commercial building design development and project delivery. This presentation includes an overview of 3D printing, discusses its current use in building design, and talks about its future in relation to the HVAC industry. Abstract 3: This presentation discusses additive manufacturing and how it is revolutionizing the design of commercial and residential facilities. Additive manufacturing utilizes a broad range of direct manufacturing technologies, including electron beam melting, ultrasonic, extrusion, and laser metal deposition for rapid prototyping. While there is some overlap with the 3D printing talk, this presentation focuses on the materials aspect of additive manufacturing and also some of the more advanced technologies involved with rapid prototyping. These technologies include design of carbon fiber composites, lightweight metals processing, transient field processing, and more.

  1. A new method for decreasing cell-load variation in dynamic cellular manufacturing systems

    OpenAIRE

    Aidin Delgoshaei; Mohd Khairol Mohd Ariffin,; Btht Hang Tuah Bin Baharudin; Zulkiflle Leman

    2016-01-01

    Cell load variation is considered a significant shortcoming in scheduling of cellular manufacturing systems. In this article, a new method is proposed for scheduling dynamic cellular manufacturing systems in the presence of bottleneck and parallel machines. The aim of this method is to control cell load variation during the process of determining the best trading off values between in-house manufacturing and outsourcing. A genetic algorithm (GA) is developed because of the high potential of t...

  2. Evaluation Of Electrochemical Machining Technology For Surface Improvements In Additive Manufactured Components

    Energy Technology Data Exchange (ETDEWEB)

    Dehoff, Ryan R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); List, III, Frederick Alyious [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carver, Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-23

    ORNL Manufacturing Demonstration Facility worked with ECM Technologies LLC to investigate the use of precision electro-chemical machining technology to polish the surface of parts created by Arcam electron beam melting. The goals for phase one of this project have been met. The project goal was to determine whether electro-chemical machining is a viable method to improve the surface finish of Inconel 718 parts fabricated using the Arcam EBM method. The project partner (ECM) demonstrated viability for parts of both simple and complex geometry. During the course of the project, detailed process knowledge was generated. This project has resulted in the expansion of United States operations for ECM Technologies.

  3. Factors that Influence the Dissemination of Knowledge in Technology Transfer among Malaysian Manufacturing Employees

    Directory of Open Access Journals (Sweden)

    Mughaneswari ap Sahadevan

    2014-04-01

    Full Text Available The meaning of technology transfer is so wide but mostly involving some form of technology-re- lated exchange. However, in this particular paper, technology transfer is consider as a concept to examine the process of disseminating knowledge and skills that a person owned to another per- son in order to generate higher productivity with new approach of producing a particular prod- uct or service. Although, many researchers have explored the evolution of technology transfer, nonetheless some drivers are yet to be explored in a Malaysian manufacturing industry. This study, therefore attempts to determine the relationship between absorptive capacity, transfer capacity, communication motivation and learning intent and technology transfer performance. A survey methodology was used in a Japanese multinational company based in Klang Valley, Malaysia. A total of 117 questionnaires were received. Results show that absorptive capacity is the most signifi- cant to influence technology transfer performance.

  4. Analysis of Impact of 3D Printing Technology on Traditional Manufacturing Technology

    Science.gov (United States)

    Wu, Niyan; Chen, Qi; Liao, Linzhi; Wang, Xin

    With quiet rise of 3D printing technology in automobile, aerospace, industry, medical treatment and other fields, many insiders hold different opinions on its development. This paper objectively analyzes impact of 3D printing technology on mold making technology and puts forward the idea of fusion and complementation of 3D printing technology and mold making technology through comparing advantages and disadvantages of 3D printing mold and traditional mold making technology.

  5. Proceedings of the 1999 Review Conference on Fuel Cell Technology

    Energy Technology Data Exchange (ETDEWEB)

    None Available

    2000-06-05

    The 1999 Review Conference on Fuel Cell Technology was jointly sponsored by the U.S. Department of Energy, Federal Energy Technology Center (FETC), the Gas Research Institute (GRI), and the Electric Power Research Institute (EPRI). It was held August 3 to 5 in Chicago, Illinois. The goal of this conference was to provide a forum for reviewing fuel cell research and development (R&D) programs, assist in strategic R&D planning, promote awareness of sponsor activities, and enhance interactions between manufacturers, researchers, and stakeholders. This conference was attended by over 250 representatives from industry, academia, national laboratories, gas and electric utilities, DOE, and other Government agencies. The conference agenda included a keynote session, five presentation sessions, a poster presentation reception, and three breakout sessions. The presentation session topics were DOD Fuel Cell Applications, Low-Temperature Fuel Cell Manufacturers, Low-Temperature Component Research, High-Temperature Fuel Cell Manufacturers, and High-Temperature Component Research; the breakout session topics were Future R&D Directions for Low-Temperature Fuel Cells, Future R&D Directions for High-Temperature Fuel Cells, and a plenary summary session. All sessions were well attended.

  6. Development of manufacturing technology and fabrication of prototype for main coolant pump

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Koon Seok; Han, C.K.; Chei, J.M.; Chung, K.S.; Youn, M.H.; Shin, S.A.; Choi, D.J.; Kim, H.C. [HALLA Industrial Co., Ltd., Pusan (Korea)

    1999-03-01

    This study presents the development of the manufacturing technology for the Main Coolant Pump of the SMART. This report contains the followings; (1) Select axial type pump for the MCP (2) MCP is drived by squirrel-cage induction motor that consisted canned motor type. (3) MCP shaft has three horizontal and one vertical support bearings. (4) Design of several part of the MCP (5) Manufacturing of the performance test motor (6) Design and manufacturing of the speed sensor (7) Procedures for three-axial and five-axial M.C.T., Tig welding and Electron Beam Welding were developed. (8) Conceptional design of the MCP test facility for the performance test under operating conditions. (9) Results of standard weld test specimens according to the ASME section IX. (author). 21 refs., 35 figs., 10 tabs.

  7. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    Energy Technology Data Exchange (ETDEWEB)

    Roy Scandrol

    2003-10-01

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregates that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create nine (9) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry FGD technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.

  8. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    Energy Technology Data Exchange (ETDEWEB)

    Roy Scandrol

    2003-04-01

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregates that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create eight (8) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry flue gas desulfurization (FGD) technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.

  9. Biological and intelligent manufacturing: human life-skills applied to technological development

    Directory of Open Access Journals (Sweden)

    Claudia Nelcy Jiménez Hernández

    2010-07-01

    Full Text Available Highly competitive settings, characterised by development being promoting by the predominance of knowledge, means that mul- tidisciplinary approaches must be adopted for dealing with specific problems. Indeed, techniques and tools have been created by imitating human beings’ behaviour and applying them to productive and technological contexts to increase efficiency and enable a quick response. This paper deals with this topic and presents the results of scientometric- and technological surveillance-based research for revealing life sciences’ impact on technological development and its management. It was found that such impact has been mainly reflected in producing concepts and applications for topics such as intelligent manufacturing, biological manu- facturing systems and holonic and bionic manufacturing, thereby providing manufacturing and information management with hu- man attributes such as adaptation, self-learning, flexibility and the ability to evolve. It may thus be concluded that technological factor management has been strengthened, based on fields such as biology, thereby leading to direct outcomes regarding pro- duction.

  10. Printing Processes Used to Manufacture Photovoltaic Solar Cells

    Science.gov (United States)

    Rardin, Tina E.; Xu, Renmei

    2011-01-01

    There is a growing need for renewable energy sources, and solar power is a good option in many instances. Photovoltaic solar panels are now being manufactured via various methods, and different printing processes are being incorporated into the manufacturing process. Screen printing has been used most prevalently in the printing process to make…

  11. Thick-film materials for silicon photovoltaic cell manufacture

    Science.gov (United States)

    Field, M. B.

    1977-01-01

    Thick film technology is applicable to three areas of silicon solar cell fabrication; metallization, junction formation, and coating for protection of screened ohmic contacts, particularly wrap around contacts, interconnection and environmental protection. Both material and process parameters were investigated. Printed ohmic contacts on n- and p-type silicon are very sensitive to the processing parameters of firing time, temperature, and atmosphere. Wrap around contacts are easily achieved by first printing and firing a dielectric over the edge and subsequently applying a low firing temperature conductor. Interconnection of cells into arrays can be achieved by printing and cofiring thick film metal pastes, soldering, or with heat curing conductive epoxies on low cost substrates. Printed (thick) film vitreous protection coatings do not yet offer sufficient optical uniformity and transparency for use on silicon. A sprayed, heat curable SiO2 based resin shows promise of providing both optical matching and environmental protection.

  12. Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Annual subcontract report, 1 January 1996--31 December 1996

    Energy Technology Data Exchange (ETDEWEB)

    Wohlgemuth, J. [Solarex Corp., Frederick, MD (United States)

    1997-10-01

    This report describes Solarex`s accomplishments during this phase of the Photovoltaic Manufacturing Technology (PVMaT) program. During this reporting period, Solarex researchers converted 79% of production casting stations to increase ingot size and operated them at equivalent yields and cell efficiencies; doubled the casting capacity at 20% the cost of buying new equipment to achieve the same capacity increase; operated the wire saws in a production mode with higher yields and lower costs than achieved on the ID saws; purchased additional wire saws; developed and qualified a new wire-guide coating material that doubles the wire-guide lifetime and produces significantly less scatter in wafer thickness; ran an Al paste back-surface-field process on 25% of all cells in manufacturing; completed environmental qualification of modules using cells produced by an all-print metallization process; qualified a vendor-supplied Tedlar/ethylene vinyl acetate (EVA) laminate to replace the combination of separate sheets of EVA and Tedlar backsheet; substituted RTV adhesive for the 3M Very High Bond tape after several field problems with the tape; demonstrated the operation of a prototype unit to trim/lead attach/test modules; demonstrated the use of light soldering for solar cells; demonstrated the operation of a wafer pull-down system for cassetting wet wafers; and presented three PVMaT-related papers at the 25th IEEE Photovoltaic Specialists Conference.

  13. Radiation technology in finishing process improves health, safety and environment (HSE) in the furniture manufacturing industry

    International Nuclear Information System (INIS)

    In furniture manufacturing, processes like cross cutting, molding, planning, shaping, turning, assembling and finishing are involved. The most significant types of negative impact of these processes are such as dust emission, noise, hazardous work, health risk, emission of organic solvent, toxic chemicals emission and chemical waste. In the finishing process, a number of negative effects that will cause health, safety and environmental (HSE) performance. This article highlights the environmental problems in the furniture finishing processes and how the radiation technology can reduce these negative impacts. The drawbacks that hamper the manufacturers from adopting this technology are also discussed. The objective of the paper is to create the awareness among the industrialist and consumers on the HSE hazardous in furniture finishing and steps can be taken to improve

  14. Utilization of UV Curing Technology to Significantly Reduce the Manufacturing Cost of LIB Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Voelker, Gary [Miltec UV International, LLC, Stevensville, MD (United States); Arnold, John [Miltec UV International, LLC, Stevensville, MD (United States)

    2015-11-30

    Previously identified novel binders and associated UV curing technology have been shown to reduce the time required to apply and finish electrode coatings from tens of minutes to less than one second. This revolutionary approach can result in dramatic increases in process speeds, significantly reduced capital (a factor of 10 to 20) and operating costs, reduced energy requirements, and reduced environmental concerns and costs due to the virtual elimination of harmful volatile organic solvents and associated solvent dryers and recovery systems. The accumulated advantages of higher speed, lower capital and operating costs, reduced footprint, lack of VOC recovery, and reduced energy cost is a reduction of 90% in the manufacturing cost of cathodes. When commercialized, the resulting cost reduction in Lithium batteries will allow storage device manufacturers to expand their sales in the market and thereby accrue the energy savings of broader utilization of HEVs, PHEVs and EVs in the U.S., and a broad technology export market is also envisioned.

  15. MAS-based production scheduling system for manufacturing cell-based workshop

    Institute of Scientific and Technical Information of China (English)

    CHU Hong-yan; CAO Quan-jun; FEI Ren-yuan

    2006-01-01

    The task of production scheduling is to determine the detailed machining path,time,machine tool,etc.,for every work piece,according to the production objective and constraints.It is also an important part of the manufacturing system.In this paper,the manufacturing cell-based workshop is described and its scheduling system structure is established based on MAS (multi-agent system) technology.Through the negotiation and communication of each agent,the machining path is determined and the machining sequence and start time are calculated by GA (genetics algorithm).The communication among agents uses the CORBA (common object request broker architecture) technology of the OMG (Object Management Group).The CORBA-based architecture of the communication is designed and some interfaces for the communication are listed.For the genetics algorithm,chromosome coding,fitness function,parameters selection,and the basic genetics operation including selection,crossover and aberrance,are described.The scheduling system also can deal with some abnormal conditions,such as machine tool failure and urgent tasks.Finally,two scheduling examples are given.

  16. Delivering manufacturing technology and workshop appreciation to engineering undergraduates using the flipped classroom approach

    OpenAIRE

    Mavromihales, Mike; Holmes, Violeta

    2016-01-01

    Delivery of manufacturing technology and practical workshop-based work, on undergraduate engineering courses that engage the learners, is challenging. The paper presents an experimental method of workshop delivery using the flipped learning approach, a pedagogical model in which the typical lecture and homework elements of a course are reversed. Video lectures are viewed by students prior to class. In-class time can be devoted to exercises, projects, or discussions as in this case. Learners w...

  17. Fabrication of HA/PLLA Composite Scaffolds for Bone Tissue Engineering Using Additive Manufacturing Technologies

    OpenAIRE

    Cruz, Fernando

    2010-01-01

    The main goal of the experimental work was to demonstrate the feasibility of producing HA/PLLA parts by selective laser sintering. The results were successful in proving that feasibility. In fact, the main results of the trials performed, have shown that: It is possible to produce bioceramic parts (HA based) by means of AMT - Additive Manufacturing Technologies, namely the Selective Laser Sintering (SLS) process, using a biocompatible/biodegradable polymer as binder; For that purpose it is ne...

  18. Applications of the Rapid Prototyping Technology to Manufacture the Pelton Runners

    Directory of Open Access Journals (Sweden)

    Dorian Nedelcu

    2013-05-01

    Full Text Available The paper presents an application of the Rapid Prototyping technology using Objet Desktop 3D Printer to manufacture two Pelton runners that are destined for experimental measurements on a Pelton microturbine. The runners are different by bucket’s number and the bucket’s geometry of the second runner is similar with those of the first runner, but scaled in all directions with the bucket’s numbers ratio.

  19. Technologies for value creation an exploration of remote diagnostics systems in the manufacturing industry

    OpenAIRE

    Jonsson, Katrin; Westergren, Ulrika H.; Holmström, Jonny

    2008-01-01

    With firms increasingly relying on ubiquitous computing to implement major business initiatives, it is becoming ever more necessary to understand the technological aspects of business developments. This paper analyzes the use of remote diagnostics systems in the manufacturing industry and discusses the opportunities and challenges for the early adopters. It pays specific attention to the impact on business aspects such as the value creation process consisting of relationships, roles, and arch...

  20. Evaluation of the impact energy of the samples produced by the additive manufacturing technology

    OpenAIRE

    Dobránsky, J.; M. Kočiško; Baron, P.; Simkulet, V.; L. Běhálek; E. Vojnová; Ľ. Nováková Marcinčinová

    2016-01-01

    The article covered the evaluation of the impact energy, notch toughness and morphology of the fracture surfaces of the specimens manufactured by the Direct Metal Laser Sintering Technology. Specimens without heat treatment with no notch were not broken through in course of testing, therefore there was no fracture surface present. The heat treatment resulted in the increase in hardness values. The values of impact energy after the heat treatment was approximately 60 % lower. Ductile intergran...

  1. Managing Energy Efficiency in Manufacturing Processes - Implementing Energy Performance in Production Information Technology Systems

    OpenAIRE

    Bunse, Katharina; Vodicka, Matthias

    2010-01-01

    International audience Climate change and unsecured energy supply are topics that become increasingly important in today's society. Although renewable energy technologies may be a long-term solution, more efficient energy use potentially makes a high and economic contribution to the given challenges in the short term. New CO2 regulations, rising energy prices and environmentally aware customers make energy efficient manufacturing a priority topic on the agenda of industrial companies. This...

  2. The method of manufacture of nylon dental partially removable prosthesis using additive technologies

    Science.gov (United States)

    Kashapov, R. N.; Korobkina, A. I.; Platonov, E. V.; Saleeva, G. T.

    2014-12-01

    The article is devoted to the topic of creating new methods of dental prosthesis. The aim of this work is to investigate the possibility of using additive technology to create nylon prosthesis. As a result of experimental studies, was made a sample of nylon partially removable prosthesis using 3D printing has allowed to simplify, accelerate and reduce the coat of manufacturing high-precision nylon dentures.

  3. Organization of Students’ Self-Study in Studying the Subject “Manufacturing Technology of Drugs”

    OpenAIRE

    Fedorovska, M.; Barna, O.; Bondarchuk, O.

    2014-01-01

    Modern society development requires that specialists must quickly adapt to new working conditions, act creatively and independently. Therefore, the purpose of the work is to reveal the importance and forms of students’ self-study, its assessment peculiarity in concern with the subject “Manufacturing technology of drugs” (MTD). The article presents the components and features of students’ self-study at the pharmaceutical department under credit-modular system of education on the example of MTD...

  4. From technology transfer to local manufacturing: China's emergence in the global wind power industry

    Science.gov (United States)

    Lewis, Joanna Ingram

    This dissertation examines the development of China's large wind turbine industry, including the players, the status of the technology, and the strategies used to develop turbines for the Chinese market. The primary goals of this research project are to identify the models of international technology transfer that have been used among firms in China's wind power industry; examine to what extent these technology transfers have contributed to China's ability to locally manufacture large wind turbine technology; and evaluate China's ability to become a major player in the global wind industry. China is a particularly important place to study the opportunities for and dynamics of clean energy development due to its role in global energy consumption. China is the largest coal consuming and producing nation in the world, and consequently the second largest national emitter of carbon dioxide after only the United States. Energy consumption and carbon emissions are growing rapidly, and China is expected to surpass the US and become the largest energy consuming nation and carbon dioxide emitter in coming decades. The central finding of this dissertation is that even though each firm involved in the large wind turbine manufacturing industry in China has followed a very different pathway of technology procurement for the Chinese market, all of the firms are increasing the utilization of locally-manufactured components, and many are doing so without transferring turbine technology or the associated intellectual property. Only one fully Chinese-owned firm, Goldwind, has succeeded in developing a commercially available large wind turbine for the Chinese market. No Chinese firms or foreign firms are manufacturing turbines in China for export overseas, though many have stated plans to do so. There already exists a possible niche market for the smaller turbines that are currently being made in China, particularly in less developed countries that are looking for less expensive

  5. Development of a manufacturing technology of compacted graphite iron castings from a cupola furnace

    Directory of Open Access Journals (Sweden)

    O. Bouska

    2012-01-01

    Full Text Available Compacted graphite iron, also known as vermicular cast iron or semiductile cast iron is a modern material, the production of which is increasing globaly. Recently this material has been very often used in automotive industry. This paper reviews some findigs gained during the development of the manufacturing technology of compacted graphite iron under the conditions in Slévárna Heunisch Brno, Ltd. The new technology assumes usage of cupola furnace for melting and is beeing developed for production of castings weighing up to 300 kilograms poured into bentonite sand moulds.

  6. [INVITED] Laser-induced forward transfer: A high resolution additive manufacturing technology

    Science.gov (United States)

    Delaporte, Philippe; Alloncle, Anne-Patricia

    2016-04-01

    Among the additive manufacturing techniques, laser-induced forward transfer addresses the challenges of printing thin films in solid phase or small volume droplets in liquid phase with very high resolution. This paper reviews the physics of this process and explores the pros and cons of this technology versus other digital printing technologies. The main field of applications are printed electronics, organic electronics and tissue engineering, and the most promising short terms ones concern digital laser printing of sensors and conductive tracks. Future directions and emerging areas of interest are discussed such as printing solid from a liquid phase and 3D digital nanomanufacturing.

  7. Manufacturing of superconducting cable for the LHC-Key technology and statistical analysis

    CERN Document Server

    Shimada, T; Nagasu, Y; Takagi, A; Wada, K; Shimizu, H; Kimura, A; Meguro, S

    2002-01-01

    Manufacturing of superconducting cable for the LHC main dipole magnet is in progress at The Furukawa Electric Co., Ltd. (here after referred to as "FEC"). Fabrication technology of Rutherford type cable for accelerator magnets has made a remarkable advance through development of the LHC Cable2 Key technology includes many different things such as multi-filament billet design, assembly, control of copper to superconductor ratio, optimization of thermo-mechanical heat treatment, drawing process, Sn-Ag coating and cabling. The well- balanced Cable2 with high quality was developed, and all of the electrical and mechanical performances met the specification requirements. (7 refs).

  8. Equipment characterization to mitigate risks during transfers of cell culture manufacturing processes.

    Science.gov (United States)

    Sieblist, Christian; Jenzsch, Marco; Pohlscheidt, Michael

    2016-08-01

    The production of monoclonal antibodies by mammalian cell culture in bioreactors up to 25,000 L is state of the art technology in the biotech industry. During the lifecycle of a product, several scale up activities and technology transfers are typically executed to enable the supply chain strategy of a global pharmaceutical company. Given the sensitivity of mammalian cells to physicochemical culture conditions, process and equipment knowledge are critical to avoid impacts on timelines, product quantity and quality. Especially, the fluid dynamics of large scale bioreactors versus small scale models need to be described, and similarity demonstrated, in light of the Quality by Design approach promoted by the FDA. This approach comprises an associated design space which is established during process characterization and validation in bench scale bioreactors. Therefore the establishment of predictive models and simulation tools for major operating conditions of stirred vessels (mixing, mass transfer, and shear force.), based on fundamental engineering principles, have experienced a renaissance in the recent years. This work illustrates the systematic characterization of a large variety of bioreactor designs deployed in a global manufacturing network ranging from small bench scale equipment to large scale production equipment (25,000 L). Several traditional methods to determine power input, mixing, mass transfer and shear force have been used to create a data base and identify differences for various impeller types and configurations in operating ranges typically applied in cell culture processes at manufacturing scale. In addition, extrapolation of different empirical models, e.g. Cooke et al. (Paper presented at the proceedings of the 2nd international conference of bioreactor fluid dynamics, Cranfield, UK, 1988), have been assessed for their validity in these operational ranges. Results for selected designs are shown and serve as examples of structured

  9. Proceedings of the Queen's-RMC Fuel Cell Research Centre fuel cell technology day

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The Queen's-RMC Fuel Cell Research Centre was formed to conduct research on polymer electrolyte membrane (PEM) and solid oxide (SOFC) fuel cells as well as fuel processing and hydrogen production and storage technologies. The centre focuses on the development of manufacturing methods, mathematical modelling, catalysis and reaction engineering, and computational thermodynamics. The fuel cell technology day provided a forum for research leaders from various institutions to discuss recent studies related to PEM and SOFC fuel cells. Issues related to materials and system degradation in fuel cells were discussed along with recent developments in the micro-engineering of SOFC cathodes. Commercialization plans for megawatt fuel cells were also discussed, and recent spectroscopy and voltammetry studies of PEM fuel cells were presented. A panel discussion was also held to determine research directions for the future. The technology day featured 7 presentations, of which 2 have been catalogued separately for inclusion in this database. tabs., figs.

  10. Determining Technological Innovation and Competitiveness: A Cross Organizational Analysis of the Malaysian Manufacturing Industry

    Directory of Open Access Journals (Sweden)

    Amlus Ibrahim

    2012-01-01

    Full Text Available This study analyzed the determinants of technological innovation in the Malaysian manufacturing industry. Its main purpose is to identify a set of management- related variables characterizing Malaysian innovative firms. Moreover, the study aimed to test whether the set of determinant differs for firms with different technological trajectories. A sample of 204 Malaysian firms was used for the investigation, with one respondent from each firm. The questionnaire measured the technological innovation, as well as 5 main potential determinants of innovation adopted from literature. Statistical analysis used, including bivariate correlation and multivariate regression, in identifying association between the technological innovation and the determining variables. The results of the analysis lead the researcher to the model of 5 important determining factors of technological innovation. The important factors were intensity of R&D, trvhnoogical trajectories,intensity of marketing, engineers, scientist and managers with experience locally and technical competency of personnel,. The analysis of technological trajectories confirmed the hypotheses that set of important determinants of innovation as well as the extent of technological innovation differs for firms in different innovation processes.Keywords: Technologies trajectories, technological innovation, intensity of R&D.

  11. Cost-Effective Additive Manufacturing in Space: HELIOS Technology Challenge Guide

    Science.gov (United States)

    DeVieneni, Alayna; Velez, Carlos Andres; Benjamin, David; Hollenbeck, Jay

    2012-01-01

    Welcome to the HELIOS Technology Challenge Guide. This document is intended to serve as a general road map for participants of the HELIOS Technology Challenge [HTC] Program and the associated inaugural challenge: HTC-01: Cost-Effective Additive Manufacturing in Space. Please note that this guide is not a rule book and is not meant to hinder the development of innovative ideas. Its primary goal is to highlight the objectives of the HTC-01 Challenge and to describe possible solution routes and pitfalls that such technology may encounter in space. Please also note that participants wishing to demonstrate any hardware developed under this program during any future HELIOS Technology Challenge showcase event(s) may be subject to event regulations to be published separately at a later date.

  12. Recent Advancements and Techniques in Manufacture of Solar Cells: Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    B. Naga Venkata Sai Ganesh,

    2013-03-01

    Full Text Available The major problem faced by the society is power crisis. All the non-renewable resources like fossil fuelsnecessary for producing power are being used excessively, which might result a day in future where, the world might godark due to lack of power producing resources. Usage of renewable resources like solar energy can be a solution to thisproblem. Solar cells invented to overcome this problem show rigidity in their structure which is a drawback. Inorganicsolar cells are rigid and can be mounted only on rooftops. Hence only upper surface of buildings are utilized. In this paperwe bring out a new era or solar cells- organic solar cells, which are flexible. These organic solar cells offer the bestsolution for the above problem for a tradeoff of efficiency. This paper briefs the manufacturing technique of solar cellsfrom plastic i.e. ,organic polymers, their architecture, the working process of solar energy production from the organicsolar cells with their ease of usage

  13. FACTORS INFLUENCING THE SUCCESS OF TECHNOLOGY ADOPTION: A CASE STUDY OF INDONESIAN MANUFACTURING FIRMS

    Directory of Open Access Journals (Sweden)

    Lena Ellitan

    2002-01-01

    Full Text Available To date, the role of technology management as a factor of success in technological innovation has been a subject of significant interest among practitioners and academicians. Despite the plethora of attention given to the numerous issues of management of new technology adoption and implementation, many organizations still fail to manage their technology efficiently, effectively, and strategically. This paper is based on a field investigation via face to face interviews with top management in East Java involving medium and large manufacturing companies from the tobacco, plastic, pulp, furniture, textile, cable and plywood sectors. This research seeks to investigate the extent of technology adoption and its management in medium and large Indonesian manufacturing companies. Further, this study investigates the technology benefits perceived by respondents. The study found that: (1 Indonesian manufacturing companies still lack a strategic perspective when adopting technologies and they are more concerned with short-term issues; (2 they face problems related to people, organizational issues, limited budgets and lack of government support; (3 these problems limit the choice of technologies and together with the national economic situation, reinforces the short-term mindset of top management. In addition, the investigation of critical success factors and inhibitors of technology adoption is necessary for identification of a proper vision and strategic viewpoint of managing new technology. Abstract in Bahasa Indonesia : Sampai sekarang, peranan manajemen teknologi sebagai factor keberhasilan dalam inovasi teknologi menjadi topik yang menarik perhatian para praktisis maupun akademisi. Walaupun masalah-masalah manajemen teknologi dan implementasinya telah banyak diperhatikan, masih ada banyak perusahaan yang belum mampu mengatur teknologi secara efisien, secara efektif atau dengan strategi yang tepat. Makalah ini dibuat berdasarkan survei lapangan yang

  14. A new technology for manufacturing scheduling derived from space system operations

    Science.gov (United States)

    Hornstein, R. S.; Willoughby, J. K.

    1993-02-01

    A new technology for producing finite capacity schedules has been developed in response to complex requirements for operating space systems such as the Space Shuttle, the Space Station, and the Deep Space Network for telecommunications. This technology has proven its effectiveness in manufacturing environments where popular scheduling techniques associated with Materials Resources Planning (MRPII) and with factory simulation are not adequate for shop-floor work planning and control. The technology has three components. The first is a set of data structures that accommodate an extremely general description of a factory's resources, its manufacturing activities, and the constraints imposed by the environment. The second component is a language and set of software utilities that enable a rapid synthesis of functional capabilities. The third component is an algorithmic architecture called the Five Ruleset Model which accommodates the unique needs of each factory. Using the new technology, systems can model activities that generate, consume, and/or obligate resources. This allows work-in-process (WIP) to be generated and used; it permits constraints to be imposed or intermediate as well as finished goods inventories. It is also possible to match as closely as possible both the current factory state and future conditions such as promise dates. Schedule revisions can be accommodated without impacting the entire production schedule. Applications have been successful in both discrete and process manufacturing environments. The availability of a high-quality finite capacity production planning capability enhances the data management capabilities of MRP II systems. These schedules can be integrated with shop-floor data collection systems and accounting systems. Using the new technology, semi-custom systems can be developed at costs that are comparable to products that do not have equivalent functional capabilities and/or extensibility.

  15. The Technological Bias in the Establishment of a Technological Regime: the adoption and enforcement of early information processing technologies in US manufacturing, 1870-1930

    OpenAIRE

    Reinstaller, A.; Hoelzl, W.

    2001-01-01

    This paper presents a qualitative study on the adoption of early information technologies, such as typewriters, calculators or Hollerith machines in US manufacturing in the period between 1870 and 1930, which was by all means a true systemic innovation. Our empirical work is guided by a theoretical framework in which the theory of induced innovation is interpreted along "classical" lines in which an explicit link to the concept of technological regimes is established. We show how the presence...

  16. The effect of chromium coating in RP technology for airfoil manufacturing

    Indian Academy of Sciences (India)

    S Daneshmand; C Aghanajafi; A Ahmadi Nadooshan

    2010-10-01

    Most wind tunnel models are fabricated of all metal components using computerized numerical control (CNC) milling machines. Fabrication of metal wind tunnel models is very expensive and time consuming. The models can require months to manufacture and are often made by small high technology companies that specialize in wind tunnel model manufacture. Using rapid prototype manufacturing techniques and materials in this way significantly reduces time and cost of production of wind tunnel models. This study was done by fused deposition modelling and their ability to make components for wind tunnel models in a timely and cost effective manner. This paper discusses the application of wind tunnel model configuration constructed using FDM and FDM with chromium coating for subsonic wind tunnel testing. A study was undertaken comparing a rapid prototyping model constructed of FDM technologies using polycarbonate to that of a standard machined steel model. Results from this study show relatively good agreement among the three models and rapid prototyping method with chromium coating does have an effect on the aerodynamic characteristics which produced satisfactory results.

  17. Modeling and Control of Welding Flexible Manufacturing Cell Using Petri Net

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new welding flexible manufacturing cell (WFMC) with intelligent welding sensors was investigated. Based on the analysis of information flow in WFMC, automation Petri net control model has been studied, which can be extended to complex welding flexible manufacturing system in the future.

  18. An integrated approach for developing a technology strategy framework for small- to medium-sized furniture manufacturers to improve competitiveness

    Directory of Open Access Journals (Sweden)

    Lourens, A.S.

    2013-05-01

    Full Text Available Low-technology firms, such as those found within the furniture manufacturing industry, have no framework or methodology to guide them successfully to acquire and integrate technology that enables them to operate more competitively. The aim of this article is to illustrate the development of a technology strategy framework for small- to medium-sized furniture manufacturers to assist them to improve their competitiveness. More specifically, this article presents an integrated technology strategy framework that enables management to integrate their business strategy with their technology requirements successfully, thus improving competitiveness.

  19. Survey of US Department of Defense Manufacturing Technology Program activities applicable to civilian manufacturing industries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Azimi, S.A.; Conrad, J.L.; Reed, J.E.

    1985-03-01

    Intent of the survey was to identify and characterize activities potentially applicable to improving energy efficiency and overall productivity in the civilian manufacturing industries. The civilian industries emphasized were the general manufacturing industries (including fabricated metals, glass, machinery, paper, plastic, textile, and transportation equipment manufacturing) and the primary metals industries (including primary aluminum, copper, steel, and zinc production). The principal steps in the survey were to: develop overview taxonomies of the general manufacturing and primary metals industries as well as specific industry taxonomies; identify needs and opportunities for improving process energy efficiency and productivity in the industries included; identify federal programs, capabilities, and special technical expertise that might be relevant to industry's needs and opportunities; contact federal laboratories/facilities, through visits and other forms of inquiry; prepare formatted profiles (descriptions) potentially applicable work efforts; review findings with industry; and compile and evaluate industry responses.

  20. 3D Printing, Additive Manufacturing, and Solid Freeform Fabrication: The Technologies of the Past, Present and Future

    Science.gov (United States)

    Beaman, Joseph

    2015-03-01

    Starting in the late 1980's, several new technologies were created that have the potential to revolutionize manufacturing. These technologies are, for the most part, additive processes that build up parts layer by layer. In addition, the processes that are being touted for hard-core manufacturing are primarily laser or e-beam based processes. This presentation gives a brief history of Additive Manufacturing and gives an assessment for these technologies. These technologies initially grew out of a commercial need for rapid prototyping. This market has a different requirement for process and quality control than traditional manufacturing. The relatively poor process control of the existing commercial Additive Manufacturing equipment is a vestige of this history. This presentation discusses this history and improvements in quality over time. The emphasis will be on Additive Manufacturing processes that are being considered for direct manufacturing, which is a different market than the 3D Printing ``Makerbot'' market. Topics discussed include past and present machine sensors, materials, and operational methods that were used in the past and those that are used today to create manufactured parts. Finally, a discussion of new methods and future directions of AM is presented.

  1. On-line Measurements and Control of Viable Cell Density in Cell Culture Manufacturing Processes using Radio-frequency Impedance.

    Science.gov (United States)

    Carvell, John P; Dowd, Jason E

    2006-03-01

    In this work, radio-frequency (RF) impedance is reviewed as a method for monitoring and controlling cell culture manufacturing processes. It is clear from the many publications cited that RF Impedance is regarded as an accurate and reliable method for measuring the live cell bio-volume both on-line and off-line and the technology is also sutable for animal cells in suspension, attached to micro-carriers or immobilized in fixed beds. In cGMP production, RF Impedance is being used in three main areas. Firstly, it is being used as a control instrument for maintaining consistent perfusion culture allowing the bioreactor to operate under optimum conditions for maximum production of recombinant proteins. In the second application it has not replaced traditional off-line live cell counting techniques but it is being used as an additional monitoring tool to check product conformance. Finally, RF Impedance is being used to monitor the concentration of live cells immobilized on micro-carriers or packed beds in cGMP processes where traditional off-line live cell counting methods are inaccurate or impossible to perform. PMID:19003069

  2. Current information technology needs of small to medium sized apparel manufacturers and contractors

    Energy Technology Data Exchange (ETDEWEB)

    Wimple, C., LLNL

    1998-04-01

    This report documents recent efforts of the American Textile Partnership (AMTEX{sup TM}) Demand Activated Manufacturing Architecture (DAMA) Project to identify opportunities for cost effective enhanced information technology use by small to medium sized apparel manufacturers and contractors. Background on the AMTEX/DAMA project and objectives for the specific DAMA Small and Medium Enterprise (SME) effort are discussed in this section. The approach used to gather information about current opportunities or needs is outlined in Section 2 Approach, and relevant findings are identified and a brief analysis of the information gathered is presented in Section 3 Findings. Recommendations based on the analysis, are offered in Section 4 Recommendations, and plans are suggested for DAMA follow-on in Section 5 Future Plans. Trip reports for each of the companies visited are contained in Appendix E - Company Trip Reports. These individual reports contain the data upon which the analysis presented in Section 3 Findings is based.

  3. An experiment in remote manufacturing using the advanced communications technology satellite

    Science.gov (United States)

    Tsatsoulis, Costas; Frost, Victor

    1991-10-01

    The goal of the completed project was to develop an experiment in remote manufacturing that would use the capabilities of the ACTS satellite. A set of possible experiments that could be performed using the Advanced Communications Technology Satellite (ACTS), and which would perform remote manufacturing using a laser cutter and an integrated circuit testing machine are described in detail. The proposed design is shown to be a feasible solution to the offered problem and it takes into consideration the constraints that were placed on the experiment. In addition, we have developed two more experiments that are included in this report: backup of rural telecommunication networks, and remote use of Synthetic Aperture Radar (SAR) data analysis for on-site collection of glacier scattering data in the Antarctic.

  4. Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies

    Institute of Scientific and Technical Information of China (English)

    Lawrence E. Murr; Sara M. Gaytan; Diana A. Ramirez; Edwin Martinez; Jennifer Hernandez; Krista N. Amato; Patrick W. Shindo; Francisco R. Medina; R.yan B. Wicker

    2012-01-01

    Lawrence E. Murr is Mr.J Mrs. Macintosh Murehison Professor and Chairman of the Department of Metallurgical and Materials Engineering and Ph.D. Program Director in the Materials Research Technology Institute at The University of Texas at El Paso. Dr. Murr received his B.Sc. in physical science from Albright College, and his B.S.E.E. in electronics, his M.S. in engineering mechanics, and his Ph.D. in solidstate science, all from the Pennsylvania State University. Dr. Murr has published 20 books, over 750 scientific and technical articles in a wide range of research areas in materials science and engineering, environmental science and engineering, manufacturing science and engineering (especially rapid prototype/layered manufacturing),

  5. Paths of Improving the Technological Process of Manufacture of GTE Turbine Blades

    Science.gov (United States)

    Vdovin, R. A.; Smelov, V. G.; Bolotov, M. A.; Pronichev, N. D.

    2016-08-01

    The article provides an analysis of the problems at manufacture of blades of the turbine of gas-turbine engines and power stations is provided in article, and also paths of perfecting of technological process of manufacture of blades are offered. The analysis of the main systems of basing of blades in the course of machining and the control methods of the processed blades existing at the enterprises with the indication of merits and demerits is carried out. In work criteria in the form of the mathematical models of a spatial distribution of an allowance considering the uniform distribution of an allowance on a feather profile are developed. The considered methods allow to reduce percent of release of marriage and to reduce labor input when polishing path part of a feather of blades of the turbine.

  6. Technology Needs for Reduced Design and Manufacturing Cost of Commercial Transport Engines

    Science.gov (United States)

    Rohn, Douglas A.

    1997-01-01

    The objective of the study was to assess the needs in the design and manufacturing processes and identify areas where technology could impact in cost and cycle-time reduction. At the highest level, the team first identified the goals that were in line with long-range needs of the aeropropulsion industry, and to which technology and process improvements would be required to contribute. These goals are to reduce the time and costs in the development cycle of aircraft engines by a factor of two, reduce production cycle time by a factor of four, and to reduce production costs by 25%. Also, it was the intent of the team to identify the highest impact technologies that could be developed and demonstrated in five years.

  7. Developments and the preliminary tests of Resistive GEMs manufactured by a screen printing technology

    CERN Document Server

    Agócs, G; Oliveira, R; Martinego, P; Peskov, Vladimir; Pietropaolo, P; Picchi, P

    2008-01-01

    We report promising initial results obtained with new resistive-electrode GEM (RETGEM) detectors manufactured, for the first time, using screen printing technology. These new detectors allow one to reach gas gains nearly as high as with ordinary GEM-like detectors with metallic electrodes; however, due to the high resistivity of its electrodes the RETGEM, in contrast to ordinary hole-type detectors, has the advantage of being fully spark protected. We discovered that RETGEMs can operate stably and at high gains in noble gases and in other badly quenched gases, such as mixtures of noble gases with air and in pure air; therefore, a wide range of practical applications, including dosimetry and detection of dangerous gases, is foreseeable. To promote a better understanding of RETGEM technology some comparative studies were completed with metallic-electrode thick GEMs. A primary benefit of these new RETGEMs is that the screen printing technology is easily accessible to many research laboratories. This accessibilit...

  8. THE EFFECT OF TQM PRACTICES ON TECHNOLOGICAL INNOVATION CAPABILITIES: APPLYING ON MALAYSIAN MANUFACTURING SECTOR

    Directory of Open Access Journals (Sweden)

    Maha Mohammed Yusr

    2014-06-01

    Full Text Available The relationship between TQM practices and innovation performance had drawn the attention of several scholars during last decade,however, this relationship still not clear and inconclusive. Therefore, this study is one of the attempts that aim to clarify the nature of this relationship. Reviewing the past studies reveals that there is somewhat ignoring in examining the indirect relationship between TQM and innovation performance. Thus, to determine and explore the effect of applying TQM practices within the organization on innovation performance, this study is aiming to investigate the relationship between TQM practices and technological innovation capabilities in Malaysian context. The obtained result of SmartPLS statistical analysis confirmed the positive effect of applying TQM practice on technological innovation capabilities. Moreover, the findings also provide an indication regarding the level of occurrence of technological innovation capabilities among Malaysian manufacturing companies. According to the output several recommendations have been highlighted to the managers of the companies.

  9. New Paradigms in International University/Industry/Government Cooperation. Canada-China Collaboration in Advanced Manufacturing Technologies.

    Science.gov (United States)

    Bulgak, Akif Asil; Liquan, He

    1996-01-01

    A Chinese university and a Canadian university collaborated on an advanced manufacturing technologies project designed to address human resource development needs in China. The project featured university/industry/government partnership and attention to environmental issues. (SK)

  10. Manufacturing models permitting roll out/scale out of clinically led autologous cell therapies: regulatory and scientific challenges for comparability.

    Science.gov (United States)

    Hourd, Paul; Ginty, Patrick; Chandra, Amit; Williams, David J

    2014-08-01

    Manufacturing of more-than-minimally manipulated autologous cell therapies presents a number of unique challenges driven by complex supply logistics and the need to scale out production to multiple manufacturing sites or near the patient within hospital settings. The existing regulatory structure in Europe and the United States imposes a requirement to establish and maintain comparability between sites. Under a single market authorization, this is likely to become an unsurmountable burden beyond two or three sites. Unless alternative manufacturing approaches can be found to bridge the regulatory challenge of comparability, realizing a sustainable and investable business model for affordable autologous cell therapy supply is likely to be extremely demanding. Without a proactive approach by the regulators to close this "translational gap," these products may not progress down the development pipeline, threatening patient accessibility to an increasing number of clinician-led autologous cellular therapies that are already demonstrating patient benefits. We propose three prospective manufacturing models for the scale out/roll out of more-than-minimally manipulated clinically led autologous cell therapy products and test their prospects for addressing the challenge of product comparability with a selected expert reference panel of US and UK thought leaders. This paper presents the perspectives and insights of the panel and identifies where operational, technological and scientific improvements should be prioritized. The main purpose of this report is to solicit feedback and seek input from key stakeholders active in the field of autologous cell therapy in establishing a consensus-based manufacturing approach that may permit the roll out of clinically led autologous cell therapies.

  11. Development of materials and manufacturing technologies for Indian fast reactor programme

    International Nuclear Information System (INIS)

    Fast Breeder Reactors (FBRs) are vital towards meeting security and sustainability of energy for the growing economy of India. The development of FBRs necessitates extensive research and development in domains of materials and manufacturing technologies in association with a wide spectrum of disciplines and their inter-twining to meet the challenging technology. The paper highlight the work and the approaches adopted for the successful deployment of materials, manufacturing and inspection technologies for the in-core and structural components of current and future Indian Fast Breeder Reactor Programme. Indigenous development of in-core materials viz. Titanium modified austenitic stainless steel (Alloy D9) and its variants, ferritic/martensitic oxide-dispersion strengthened (ODS) steels as well as structural materials viz. 316L(N) stainless steel and modified 9Cr-1Mo have been achieved through synergistic interactions between Indira Gandhi Centre for Atomic Research (IGCAR), education and research institutes and industries. Robust manufacturing technology has been established for forming and joining of various components of 500 MWe Prototype Fast Breeder Reactor (PFBR) through 'science-based technology' approach. To achieve the strict quality standards of formed parts in terms of geometrical tolerances, residual stresses and microstructural defects, FEM-based modelling and experimental validation was carried out for estimation of spring-back during forming of multiple curvature thick plantes. Optimization of grain boundary character distribution in Alloy D9 was carried out by adopting the grain boundary engineering approach to reduce radiation induced segregation. Extensive welding is involved in the fabrication of reactor vessels, piping, steam generators, fuel sub-assemblies etc. Activated Tungsten Inert Gas Welding process along with activated flux developed at IGCAR has been successfully used in fabrication of dummy fuel subassemblies (DFSA) required for testing

  12. Development of materials and manufacturing technologies for Indian fast reactor programme

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Baldev; Jayakumar, T.; Bhaduri, A.K.; Mandal, Sumantra [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2010-07-01

    Fast Breeder Reactors (FBRs) are vital towards meeting security and sustainability of energy for the growing economy of India. The development of FBRs necessitates extensive research and development in domains of materials and manufacturing technologies in association with a wide spectrum of disciplines and their inter-twining to meet the challenging technology. The paper highlight the work and the approaches adopted for the successful deployment of materials, manufacturing and inspection technologies for the in-core and structural components of current and future Indian Fast Breeder Reactor Programme. Indigenous development of in-core materials viz. Titanium modified austenitic stainless steel (Alloy D9) and its variants, ferritic/martensitic oxide-dispersion strengthened (ODS) steels as well as structural materials viz. 316L(N) stainless steel and modified 9Cr-1Mo have been achieved through synergistic interactions between Indira Gandhi Centre for Atomic Research (IGCAR), education and research institutes and industries. Robust manufacturing technology has been established for forming and joining of various components of 500 MWe Prototype Fast Breeder Reactor (PFBR) through 'science-based technology' approach. To achieve the strict quality standards of formed parts in terms of geometrical tolerances, residual stresses and microstructural defects, FEM-based modelling and experimental validation was carried out for estimation of spring-back during forming of multiple curvature thick plantes. Optimization of grain boundary character distribution in Alloy D9 was carried out by adopting the grain boundary engineering approach to reduce radiation induced segregation. Extensive welding is involved in the fabrication of reactor vessels, piping, steam generators, fuel sub-assemblies etc. Activated Tungsten Inert Gas Welding process along with activated flux developed at IGCAR has been successfully used in fabrication of dummy fuel subassemblies (DFSA) required

  13. Final manufacturing process of front side metallisation on silicon solar cells using conventional and unconventional techniques:

    OpenAIRE

    Dobrzański, Leszek Adam; Drygała, Aleksandra; Musztyfaga, Małgorzata

    2013-01-01

    The paper presents the results of the investigation of the front electrode manufactured using two silver pastes (PV 145 manufactured by Du Pont and another based on nanopowder experimentally prepared) on monocrystalline silicon solar cells in order to reduce contact resistance. The aim of the paper was a comparison between a conventional and an unconventional method to improve the quality of forming electrodes of silicon solar cells. The Screen Printing (SP) method is the most widely used con...

  14. Final manufacturing process of front side metallisation on silicon solar cells using conventional and unconventional techniques

    OpenAIRE

    Dobrzański, Leszek A.; Musztyfaga, Małgorzata; Drygała, Aleksandra

    2015-01-01

    The paper presents the results of the investigation of the front electrode manufactured using two silver pastes (PV 145 manufactured by Du Pont and another based on nanopowder experimentally prepared) on monocrystalline silicon solar cells in order to reduce contact resistance. The aim of the paper was a comparison between a conventional and an unconventional method to improve the quality of forming electrodes of silicon solar cells. The Screen Printing (SP) method is the most widely used con...

  15. Development and manufacturing of tape casted, anode-supported solid oxide fuel cells; Entwicklung und Herstellung von foliengegossenen, anodengestuetzten Festoxidbrennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Schafbauer, Wolfgang

    2010-07-01

    Solid oxide fuel cells offer high potential in transforming the chemical energy of hydrogen or natural gas into electrical energy. Due to the high efficiency of fuel cells, lots of effort has been made in the improvement of net efficiency and in materials development during the last years. Recently, the introduction of high performance, low-cost production technologies become more and more important. At the Institute of Energy Research IEF-1 of Forschungszentrum Julich, standard SOFCs were processed by time and work consuming methods. On the way to market entrance, product costs have to be reduced drastically. The aim of this thesis is the introduction of a high efficient low-cost processing route for the SOFC manufacturing. Therefore, the well-known and well established shaping technology tape casting was used for generating the anode substrates. As the first goal of this approach, two different tape casting slurries were developed in order to get substrates in the thickness range from 300 to 500 {mu}m after sintering. After shaping of the substrates, sinter regimes for the different necessary coatings were adapted to the novel substrate types in order to obtain cells with high performance and strength. Therefore, the different coating technologies like screen printing and vacuum slip casting were used for cell manufacturing. The optimization of the different coating steps during cell manufacturing led to high performance SOFCs with a 10% higher power output compared to the Julich state-of-the-art SOFC. Additional experiments verified the workability of the novel tape cast substrates for the manufacturing of near-net-shape SOFC. Finally, the novel cell types based on tape cast substrates were assembled to stacks with up to ten repeating units. Stack tests showed identical performance and degradation compared to stacks containing state-of-the-art SOFCs. Thus, the complete lifetime circle of a SOFC starting from powder preparation to stack assembly has been

  16. Pollution prevention opportunity assessment for building 878, manufacturing science and technology, organization 14100.

    Energy Technology Data Exchange (ETDEWEB)

    Klossner, Kristin Ann

    2004-05-01

    This report describes the methodology, analysis and conclusions of a preliminary assessment carried out for activities and operations at Sandia National Laboratories Building 878, Manufacturing Science and Technology, Organization 14100. The goal of this assessment is to evaluate processes being carried out within the building to determine ways to reduce waste generation and resource use. The ultimate purpose of this assessment is to analyze and prioritize processes within Building 878 for more in-depth assessments and to identify projects that can be implemented immediately.

  17. Impact of information technology on vendor objectives, capabilities, and competences in contract electronic manufacturing

    DEFF Research Database (Denmark)

    Perunovic, Zoran; Mefford, Robert; Christoffersen, Mads

    2012-01-01

    Many factors influence the success of an outsourcing arrangement but vendor capabilities have been recognized as one of the main contributors. This paper investigates how information technology (IT) utilization contributes to success in outsourcing. We take a vendor's perspective and study how...... IT impacts vendor capabilities. The research framework integrates four concepts/theories: the resource-based view (RBV), the concept of manufacturing strategy, the concept of business performance, and the concept of IT impact on business performance. Two case companies are studied, one with a high level...

  18. Advanced Shape Memory Technology to Reshape Product Design, Manufacturing and Recycling

    Directory of Open Access Journals (Sweden)

    Wen Guang Yang

    2014-08-01

    Full Text Available This paper provides a brief review on the advanced shape memory technology (ASMT with a focus on polymeric materials. In addition to introducing the concept and fundamentals of the ASMT, the potential applications of the ASMT either alone or integrated with an existing mature technique (such as, 3D printing, quick response (QR code, lenticular lens and phenomena (e.g., wrinkling and stress-enhanced swelling effect in product design, manufacturing, and recycling are demonstrated. It is concluded that the ASMT is indeed able to provide a range of powerful approaches to reshape part of the life cycle or the whole life cycle of products.

  19. Quality assurance experience in the manufacture of PFBR reactor vessel during technology development work

    International Nuclear Information System (INIS)

    An efficient and proper implementation of quality assurance in the technology development works of Prototype Fast Breeder Reactor (PFBR) main vessel was undertaken to achieve the desired quality and dimensional accuracy of main vessel. In this paper an attempt has been made to bring out the methods and procedures adopted to implement the quality assurance programme on important activities including approval of documents, material, general requirements for manufacture of SS components, inspection procedures, forming and welding of petals, non-destructive testing etc. (author)

  20. Basalt fiber manufacturing technology and the possibility of its use in dentistry

    Science.gov (United States)

    Karavaeva, E.; Rogozhnikov, A.; Nikitin, V.; Cherepennikov, Yu; Lysakov, A.

    2015-11-01

    The article touches upon the technology of basalt fiber manufacturing and prospects of its use in dental practice. Two kinds of construction using basalt fiber have been proposed. The first one is a splinting construction for mobile teeth and the second one is the reinforced base for removable plate-denture. The work presents the results of the investigation of physical and mechanical properties of the constructions based on basalt fiber. It also describes the aspects of biomechanical modeling of such constructions in the ANSYS software package. The results of the investigation have proved that applying constructions using basalt fiber is highly promising for prosthetic dentistry practice.

  1. Synthesizing R&D Data: Experiences from the Integrated Manufacturing Technology Roadmap (IMTR) Project

    Energy Technology Data Exchange (ETDEWEB)

    merrell, m.a.

    1999-05-05

    IMTR is a tremendous undertaking to assess the current state and future needs of Manufacturing Technology R&D. A follow-on project to the roadmaps is the development and populating of a Gap Analysis database containing current R&D abstracts related to the roadmaps' technical elements. Efficiently identifying the R&D projects within scope presents many travails of synthesizing data from across a wide spectrum. Challenges to this project were directly proportional to the lack of single-source data collections.

  2. Mobile Technology Applications for Manufacturing, Reduction of Muda (Waste and the Effect on Manufacturing Economy and Efficiency

    Directory of Open Access Journals (Sweden)

    Angela M Huenerfauth

    2014-10-01

    Full Text Available Mobile devices in the manufacturing setting offer mobility and information whenever and wherever it is needed; these advantages allow for a more efficient workflow and allow the user to make more informed decisions. Due to these advantages, companies are reducing muda (waste by using mobile devices (implementing Lean Manufacturing and therefore saving money. Some of the mobile applications discussed in this paper are the following: Augmented Reality for assembly training, pruefcubing, remotely-monitored shop floors, statistical process control (SPC, and change requests for construction, and the two types of muda (waste reduced by these mobile applications are “unnecessary / excess motion and defects.”

  3. 2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.; Ulsh, M.

    2012-08-01

    In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

  4. Advanced Manufacturing Technologies and Green Innovation: The Role of Internal Environmental Collaboration

    Directory of Open Access Journals (Sweden)

    Ting Kong

    2016-10-01

    Full Text Available Green innovation has been deemed a key corporate capability to deal with environmental issues. The usage of advanced manufacturing technologies (AMT provides important resources and knowledge for firms’ green innovation. Drawing on a resources-based approach, this study contributes to the existing literature by examining how the adoption of specific types of AMT (process, design, and planning influences two dimensions of green innovation (green product innovation and green process innovation. In particular, we explore these relationships through internal environmental collaboration. Based on data collected from 198 Chinese manufacturing firms, we found that process, design, and planning AMT can contribute to both green products and process innovation. Moreover, the findings confirm the significant mediating role of internal environmental collaboration in this relationship. Specifically, internal environmental collaboration mediates the relationship between process AMT and green product innovation as well as the relationship between design AMT and two dimensions of green innovation; it also partially mediates the relationship between process AMT and green process innovation as well as the relationship between planning AMT and two dimensions of green innovation. These findings provide novel insights into how manufacturing firms can use various types of AMT to enhance their green innovation.

  5. Achievement report for fiscal 1997 on the technological development for practical application of a solar energy power generation system. Development of technology to manufacture ultra-high efficiency crystal compound solar cells; 1997 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Chokokoritsu kessho kagobutsu taiyo denchi no seizo gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The present research is intended to develop hetero-epitaxy technology for compound semiconductors on silicon substrates, and hetero-epitaxy technology for grid mismatch between III-V family compound semiconductors, and realize high-efficiency solar cells on silicon substrates. Based on the InP-based etching using a reactive ion etching device, etching conditions suitable for contact layer removal and element separation were obtained. The InP substrate etched under the optimized condition was found etched ideally. Test samples were made, which use a GaAs layer grown at high V/III ratio as the buffer layer, and its effect on crystallization performance was investigated. As a result, it was found that making the V/III ratio high can achieve reduction in defect density and improvement in crystallization performance. A three-stage growth method was used to improve efficiency of GaAs/Si cells, and heat treatment temperature was optimized for an attempt of improving the cell efficiency. It was revealed that rise in the open terminal voltage contributes to improving the cell characteristics at annealing temperatures higher than 950 degrees C or higher, which has been used on a trial basis during this fiscal year. (NEDO)

  6. A Graph Theoretic Method to Handle Deadlocks in Flexible Manufacturing Cells

    Institute of Scientific and Technical Information of China (English)

    WANG Chunxiang; LIU Donglin

    2006-01-01

    The deadlock-handling scheme is based on a bipartite graph model of the part-machine relationship in the manufacturing cell. A distinction is made between permanent deadlock and transient deadlock. Permanent deadlock depicts a manufacturing system state where parts are irrevocably blocked and where external intervention is required to resolve the deadlock, whereas a transient deadlock indicates that there is a positive probability that the deadlock will resolve itself over time. To recover from deadlocks, one control policy is studied: resolve deadlocks in the manufacturing cell. Under the policy, it is shown that it is sufficient to resolve any cycle in the set of deadlocked parts to resolve the deadlock. Finally, we estimate the deadlocks in flexible manufacturing cells.

  7. Towards a commercial process for the manufacture of genetically modified T cells for therapy.

    Science.gov (United States)

    Kaiser, A D; Assenmacher, M; Schröder, B; Meyer, M; Orentas, R; Bethke, U; Dropulic, B

    2015-03-01

    The recent successes of adoptive T-cell immunotherapy for the treatment of hematologic malignancies have highlighted the need for manufacturing processes that are robust and scalable for product commercialization. Here we review some of the more outstanding issues surrounding commercial scale manufacturing of personalized-adoptive T-cell medicinal products. These include closed system operations, improving process robustness and simplifying work flows, reducing labor intensity by implementing process automation, scalability and cost, as well as appropriate testing and tracking of products, all while maintaining strict adherence to Current Good Manufacturing Practices and regulatory guidelines. A decentralized manufacturing model is proposed, where in the future patients' cells could be processed at the point-of-care in the hospital.

  8. Continuous roll-to-roll a-Si photovoltaic manufacturing technology. Annual subcontractor report, 1 April 1992--31 March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Izu, M. [Energy Conversion Devices, Inc., Troy, MI (United States)

    1993-12-01

    This report describes work done under a 3-year program to advance ECD`s roll-to-roll, triple-junction photovoltaic manufacturing technologies, to reduce the module production costs, to increase the stabilized module performance, and to expand commercial capacity utilizing ECD technology. The specific 3-year goal is to develop advanced large-scale manufacturing technology incorporating ECD`s earlier research advances with the capability of producing modules with stable 11% efficiency at a cost of approximately $1.00 per peak watt. Accomplishments during Phase 1 included: (1) ECD successfully incorporated a high-performance Ag/metal-oxide back-reflector system into its continuous roll-to-roll commercial production operation. (2) High-quality a-Si-Ge narrow-band-gap solar cells were incorporated into the manufacturing. (3) ECD demonstrated the continuous roll-to-roll production of high-efficiency, triple-junction, two-band-gap solar cells consistently and uniformly throughout a 762-m (2500-ft) run with high yield. (4) ECD achieved 11.1% initial sub-cell efficiency of triple-junction, two-band-gap a-Si alloy solar cells in the production line. (5) The world`s first 0.37-m{sup 2} (4-ft{sup 2}) PV modules were produced utilizing triple-junction spectrum-splitting solar cells manufactured in the production line. (6) As a result of process optimization to reduce the layer thickness and to improve the gas utilization, ECD achieved a 77% material cost reduction for germane and 58% reduction for disilane. Additionally, ECD developed a new low-cost module that saves approximately 30% in assembly material costs.

  9. Additive Manufacturing and High-Performance Computing: a Disruptive Latent Technology

    Science.gov (United States)

    Goodwin, Bruce

    2015-03-01

    This presentation will discuss the relationship between recent advances in Additive Manufacturing (AM) technology, High-Performance Computing (HPC) simulation and design capabilities, and related advances in Uncertainty Quantification (UQ), and then examines their impacts upon national and international security. The presentation surveys how AM accelerates the fabrication process, while HPC combined with UQ provides a fast track for the engineering design cycle. The combination of AM and HPC/UQ almost eliminates the engineering design and prototype iterative cycle, thereby dramatically reducing cost of production and time-to-market. These methods thereby present significant benefits for US national interests, both civilian and military, in an age of austerity. Finally, considering cyber security issues and the advent of the ``cloud,'' these disruptive, currently latent technologies may well enable proliferation and so challenge both nuclear and non-nuclear aspects of international security.

  10. The Impact of Technological Innovation on Industrial Efficiency and Food Manufacturing Industry

    Directory of Open Access Journals (Sweden)

    Xuxian Yan

    2015-02-01

    Full Text Available There is no denying that China's rapid economic growth is largely relying on high consumption and high emission, shows the character as low efficiency of extensive growth, which will inevitably lead to deep-seated contradictions and problems that restrict economic long-term development. From the perspective of economic growth, the enhancement of technical efficiency can make existing economic resources be fully utilized and reduce the losses caused by low efficiency, while the enhancement of technological progress can make the continuous and stable economic growth possible. In this study, we make an empirical analysis of how technological innovation will impact on industrial efficiency in food manufacturing industry. The result shows that: technological innovation has important influence to the rising of industrial efficiency; it has a strong co integration relationship with industrial efficiency at 5% significance level. Therefore, technological innovation is the fundamental way to solve the problems of environment and resources. At the same time, technological innovation is the Grainger reason to the industrial efficiency in food processing industry.

  11. Establishment of a production-ready manufacturing process utilizing thin silicon substrates for solar cells. Final report. Motorola report No. 2364/4

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, R. A.

    1980-10-01

    Three inch diameter Czochralski silicon substrates sliced directly to 5 mil, 8 mil, and 27 mil thicknesses with wire saw techniques were procured. Processing sequences incorporating either diffusion or ion implantation technologies were employed to produce n+p or n+pp+ solar cell structures. These cells were evaluated for performance, ease of fabrication, and cost effectiveness. It was determined that the use of 7 mil or even 4 mil wafers would provide near term cost reductions for solar cell manufacturers.

  12. Initiating long-term modernization programs in low-technology manufacturing environments

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, D.R.; Paul, B.K.; Doherty, T.J.; Billo, R.E.

    1990-11-01

    In this paper, a planning approach is discussed for initiating and expediting modernization efforts in manufacturing environments. The approach consists of six major steps. First, staff employees from a variety of functional organizations are involved in modernization planning activities through the formation of site modernization teams used to organize and facilitate modernization planning activities. Second, initial planning exercises are expedited by identifying high-priority areas for improvement through a functional assessment. Third, data acquired from the initial assessment described above are used as input to a strategic planning workshop aimed at building managerial support for modernization plans and integrating the plant's strategic objectives with its operational modernization plan. Fourth, the site modernization team receives training in the specific modernization technologies to aid them in the selection, design, implementation and maintenance of the appropriate modernization technology. Fifth, as a means for initiating modernization efforts, the planning approach produces preliminary versions of action-oriented implementation plans thus enabling improvement actions to begin more quickly. Sixth, an overall cost-benefit analysis is done to assess the feasibility of modernization projects. Finally, by meeting the above objectives, the approach provides a foundation for future modernization efforts. Results from implementing this methodology in six manufacturing environments are discussed along with a review of benefits of the approach. 11 refs., 1 fig.

  13. Innovation and adoption of energy efficient technologies: An exploratory analysis of Italian primary metal manufacturing SMEs

    International Nuclear Information System (INIS)

    Additional efforts will be needed by European countries to improve the energy efficiency, as with current trends the 20% objective will be missed. Small and medium-sized enterprises (SMEs) manufacturing sector is a promising field, as SMEs are less energy-efficient than larger enterprises. Several studies investigated the barriers to the diffusion of technologies and practices for industrial energy efficiency, but little attention has been paid to understand the factors affecting the perception of such barriers by SMEs. In this multiple case-study, we have investigated 20 Primary Metal manufacturing SMEs in Northern Italy. Economic and information barriers are perceived as the major issues. Interestingly, firm's size, innovativeness of the market in which enterprises operate, as well as product and process innovation are factors affecting barriers to energy efficiency. Differences have been observed within SMEs, especially for information and competence-related barriers. In particular, a more innovative external context in which enterprises operate and a greater production process complexity seem to reduce barriers. Moreover, more product innovative enterprises seem to have a lower perception of behavioral and technology-related barriers. The results of this exploratory investigation provide useful suggestions for policy design and further research on industrial energy efficiency. - highlights: • Economic and Information emerge as the most relevant barriers to energy efficiency. • Market, product and process innovation seem relevant factors affecting barriers. • Firm's size is a factor affecting barriers' perception

  14. Novel R2R Manufacturable Photonic-Enhanced Thin Film Solar Cells; January 28, 2010 -- January 31, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Slafer, D.; Dalal, V.

    2012-03-01

    Final subcontract report for PV Incubator project 'Novel R2R Manufacturable Photonic-Enhanced Thin Film Solar Cells.' The goal of this program was to produce tandem Si cells using photonic bandgap enhancement technology developed at ISU and Lightwave Power that would have an NREL-verified efficiency of 7.5% on 0.25 cm{sup 2} area tandem junction cell on plastic substrates. This goal was met and exceeded within the timeframe and budget of the program. On smaller area cells, the efficiency was even higher, {approx}9.5% (not verified by NREL). Appropriate polymers were developed to fabricate photonic and plasmonic devices on stainless steel, Kapton and PEN substrates. A novel photonic-plasmon structure was developed which shows a promise of improving light absorption in thin film cells, a better light absorption than by any other scheme.

  15. Flat plate vs. concentrator solar photovoltaic cells - A manufacturing cost analysis

    Science.gov (United States)

    Granon, L. A.; Coleman, M. G.

    1980-01-01

    The choice of which photovoltaic system (flat plate or concentrator) to use for utilizing solar cells to generate electricity depends mainly on the cost. A detailed, comparative manufacturing cost analysis of the two types of systems is presented. Several common assumptions, i.e., cell thickness, interest rate, power rate, factory production life, polysilicon cost, and direct labor rate are utilized in this analysis. Process sequences, cost variables, and sensitivity analyses have been studied, and results of the latter show that the most important parameters which determine manufacturing costs are concentration ratio, manufacturing volume, and cell efficiency. The total cost per watt of the flat plate solar cell is $1.45, and that of the concentrator solar cell is $1.85, the higher cost being due to the increased process complexity and material costs.

  16. Additive Manufacturing for High Value Metal Production in an Optimized Hybrid Manufacturing Cell

    OpenAIRE

    Brøtan, Vegard

    2015-01-01

    The in-between processes have also been investigated. In the hybrid cell, the surface roughing is done by a surface milling operation in the milling machine, contrary to the traditional sand blasting operation. And, there is no need to use a lot of time on setting up the part, since the part is fastened to a pallet, where the location data is transferred through the local network. Cleaning the part is done by gas pressure, since there is no cutting fluids used in the machining ...

  17. Achieving continuous manufacturing: technologies and approaches for synthesis, workup, and isolation of drug substance. May 20-21, 2014 Continuous Manufacturing Symposium.

    Science.gov (United States)

    Baxendale, Ian R; Braatz, Richard D; Hodnett, Benjamin K; Jensen, Klavs F; Johnson, Martin D; Sharratt, Paul; Sherlock, Jon-Paul; Florence, Alastair J

    2015-03-01

    This whitepaper highlights current challenges and opportunities associated with continuous synthesis, workup, and crystallization of active pharmaceutical ingredients (drug substances). We describe the technologies and requirements at each stage and emphasize the different considerations for developing continuous processes compared with batch. In addition to the specific sequence of operations required to deliver the necessary chemical and physical transformations for continuous drug substance manufacture, consideration is also given to how adoption of continuous technologies may impact different manufacturing stages in development from discovery, process development, through scale-up and into full scale production. The impact of continuous manufacture on drug substance quality and the associated challenges for control and for process safety are also emphasized. In addition to the technology and operational considerations necessary for the adoption of continuous manufacturing (CM), this whitepaper also addresses the cultural, as well as skills and training, challenges that will need to be met by support from organizations in order to accommodate the new work flows. Specific action items for industry leaders are: Develop flow chemistry toolboxes, exploiting the advantages of flow processing and including highly selective chemistries that allow use of simple and effective continuous workup technologies. Availability of modular or plug and play type equipment especially for workup to assist in straightforward deployment in the laboratory. As with learning from other industries, standardization is highly desirable and will require cooperation across industry and academia to develop and implement. Implement and exploit process analytical technologies (PAT) for real-time dynamic control of continuous processes. Develop modeling and simulation techniques to support continuous process development and control. Progress is required in multiphase systems such as

  18. Achieving continuous manufacturing: technologies and approaches for synthesis, workup, and isolation of drug substance. May 20-21, 2014 Continuous Manufacturing Symposium.

    Science.gov (United States)

    Baxendale, Ian R; Braatz, Richard D; Hodnett, Benjamin K; Jensen, Klavs F; Johnson, Martin D; Sharratt, Paul; Sherlock, Jon-Paul; Florence, Alastair J

    2015-03-01

    This whitepaper highlights current challenges and opportunities associated with continuous synthesis, workup, and crystallization of active pharmaceutical ingredients (drug substances). We describe the technologies and requirements at each stage and emphasize the different considerations for developing continuous processes compared with batch. In addition to the specific sequence of operations required to deliver the necessary chemical and physical transformations for continuous drug substance manufacture, consideration is also given to how adoption of continuous technologies may impact different manufacturing stages in development from discovery, process development, through scale-up and into full scale production. The impact of continuous manufacture on drug substance quality and the associated challenges for control and for process safety are also emphasized. In addition to the technology and operational considerations necessary for the adoption of continuous manufacturing (CM), this whitepaper also addresses the cultural, as well as skills and training, challenges that will need to be met by support from organizations in order to accommodate the new work flows. Specific action items for industry leaders are: Develop flow chemistry toolboxes, exploiting the advantages of flow processing and including highly selective chemistries that allow use of simple and effective continuous workup technologies. Availability of modular or plug and play type equipment especially for workup to assist in straightforward deployment in the laboratory. As with learning from other industries, standardization is highly desirable and will require cooperation across industry and academia to develop and implement. Implement and exploit process analytical technologies (PAT) for real-time dynamic control of continuous processes. Develop modeling and simulation techniques to support continuous process development and control. Progress is required in multiphase systems such as

  19. A Systematic Evaluation Model for Solar Cell Technologies

    Directory of Open Access Journals (Sweden)

    Chang-Fu Hsu

    2014-01-01

    Full Text Available Fossil fuels, including coal, petroleum, natural gas, and nuclear energy, are the primary electricity sources currently. However, with depletion of fossil fuels, global warming, nuclear crisis, and increasing environmental consciousness, the demand for renewable energy resources has skyrocketed. Solar energy is one of the most popular renewable energy resources for meeting global energy demands. Even though there are abundant studies on various solar technology developments, there is a lack of studies on solar technology evaluation and selection. Therefore, this research develops a model using interpretive structural modeling (ISM, benefits, opportunities, costs, and risks concept (BOCR, and fuzzy analytic network process (FANP to aggregate experts' opinions in evaluating current available solar cell technology. A case study in a photovoltaics (PV firm is used to examine the practicality of the proposed model in selecting the most suitable technology for the firm in manufacturing new products.

  20. PVMaT improvements in the Solarex photovoltaic module manufacturing technology: Annual subcontract report: May 5, 1998 -- April 30, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Wohlgemuth, J.

    2000-01-10

    This report describes work done by Solarex during the first year of this subcontract. The objective of this three-year PVMaT program is to continue the advancement of Solarex PV manufacturing technologies to design and implement a process that produces polycrystalline silicon PV modules that can be sold profitably for $2.00 per peak watt or less and that will increase the production capacity of the Frederick plant to at least 25 megawatts per year. Accomplishments during the first year of the program include: (1) Verification of the process to produce SiF{sub 4}, the precursor to silicon feedstock. (2) Design of a silicon feedstock pilot facility using the SiNaF process. (3) Development of and transfer to manufacturing of a process to use thinner wire in the wire saw. (4) Completion of a production trial with recycled SiC. (5) Laboratory development of a selective emitter process using rapid thermal processing. (6) Fabrication of high-efficiency polycrystalline cells using silicon nitride from three different sources. (7) Development of a new encapsulation formulation and laboratory demonstration of a 6-minute lamination cycle. (8) Implementation of an automated laminator. (9) Laboratory demonstration of automated handling of ceramics.

  1. Network-based Advanced Manufacturing Technology%基于网络的先进制造技术

    Institute of Scientific and Technical Information of China (English)

    李健; 刘飞

    2001-01-01

    Owing to the development of network technology especially theInternet/Intranet/Extranet, manufacturing globalization and network-based manufacturing have become the primary developing trends of modern manufacturing. In order to adapt the trends, the authors stress the concept, Network-based Advanced Manufacturing Technology (NAMT), to generalize the advanced manufacturing techniques based on network and the research fields. A kind of technology architecture for NAMT is established, which consists of network technology, database technology and four Network-based manufacturing technology groups: management and business of manufacturing systems, product design and development, production, and system integration. There are a series of innovative function characteristics for NAMT. It is necessary and important for China to develop NAMT and some strategies for developing NAMT are proposed.%根据网络技术在现代制造业中的重大影响和作用,论述了基于网络的先进制造技术(network-based advancedmanufacturing technology,NAMT)的内涵;提出了一种在计算机网络技术和数据库技术支持下的包括管理和营销、产品设计开发、制造过程和系统集成四大技术群的NAMT的技术内容框架,论述了NAMT的一系列创新功能特点;分析了我国发展NAMT的必要性;提出了我国发展NAMT的几点战略性建议。

  2. AlliedSignal solid oxide fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Minh, N.; Barr, K.; Kelly, P.; Montgomery, K. [AlliedSignal Aerospace Equipment Systems, Torrance, CA (United States)

    1996-12-31

    AlliedSignal has been developing high-performance, lightweight solid oxide fuel cell (SOFC) technology for a broad spectrum of electric power generation applications. This technology is well suited for use in a variety of power systems, ranging from commercial cogeneration to military mobile power sources. The AlliedSignal SOFC is based on stacking high-performance thin-electrolyte cells with lightweight metallic interconnect assemblies to form a compact structure. The fuel cell can be operated at reduced temperatures (600{degrees} to 800{degrees}C). SOFC stacks based on this design has the potential of producing 1 kW/kg and 1 ML. This paper summarizes the technical status of the design, manufacture, and operation of AlliedSignal SOFCs.

  3. Cryopreservation of human vascular umbilical cord cells under good manufacturing practice conditions for future cell banks

    Directory of Open Access Journals (Sweden)

    Polchow Bianca

    2012-05-01

    Full Text Available Abstract Background In vitro fabricated tissue engineered vascular constructs could provide an alternative to conventional substitutes. A crucial factor for tissue engineering of vascular constructs is an appropriate cell source. Vascular cells from the human umbilical cord can be directly isolated and cryopreserved until needed. Currently no cell bank for human vascular cells is available. Therefore, the establishment of a future human vascular cell bank conforming to good manufacturing practice (GMP conditions is desirable for therapeutic applications such as tissue engineered cardiovascular constructs. Materials and methods A fundamental step was the adaption of conventional research and development starting materials to GMP compliant starting materials. Human umbilical cord artery derived cells (HUCAC and human umbilical vein endothelial cells (HUVEC were isolated, cultivated, cryopreserved (short- and long-term directly after primary culture and recultivated subsequently. Cell viability, expression of cellular markers and proliferation potential of fresh and cryopreserved cells were studied using trypan blue staining, flow cytometry analysis, immunofluorescence staining and proliferation assays. Statistical analyses were performed using Student’s t-test. Results Sufficient numbers of isolated cells with acceptable viabilities and homogenous expression of cellular markers confirmed that the isolation procedure was successful using GMP compliant starting materials. The influence of cryopreservation was marginal, because cryopreserved cells mostly maintain phenotypic and functional characteristics similar to those of fresh cells. Phenotypic studies revealed that fresh cultivated and cryopreserved HUCAC were positive for alpha smooth muscle actin, CD90, CD105, CD73, CD29, CD44, CD166 and negative for smoothelin. HUVEC expressed CD31, CD146, CD105 and CD144 but not alpha smooth muscle actin. Functional analysis demonstrated acceptable

  4. Preliminary definition and characterization of a solar industrial process heat technology and manufacturing plant for the year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Prythero, T.; Meyer, R. T.

    1980-09-01

    A solar industrial process heat technology and an associated solar systems manufacturing plant for the year 2000 has been projected, defined, and qualitatively characterized. The technology has been defined for process heat applications requiring temperatures of 300/sup 0/C or lower, with emphasis on the 150/sup 0/ to 300/sup 0/C range. The selected solar collector technology is a parabolic trough collector of the line-focusing class. The design, structure, and material components are based upon existing and anticipated future technological developments in the solar industry. The solar system to be manufactured and assembled within a dedicated manufacturing plant is projected to consist of the collector and the major collector components, including reflector, absorber, parabolic trough structure, support stand, tracking drive mechanism, sun-sensing device and control system, couplings, etc. Major manufacturing processes to be introduced into the year 2000 plant operations are glassmaking, silvering, electroplating and plastic-forming. These operations will generate significant environmental residuals not encountered in present-day solar manufacturing plants. Important residuals include chemical vapors, acids, toxic elements (e.g. arsenic), metallic and chemical sludges, fumes from plastics, etc. The location, design, and operations of these sophisticated solar manufacturing plants will have to provide for the management of the environmental residuals.

  5. Did technology shocks drive the great depression? Explaining cyclical productivity movements in US manufacturing, 1919-1939

    NARCIS (Netherlands)

    Inklaar, Robert; de Jong, Herman; Gouma, Reitze

    2011-01-01

    Technology shocks and declining productivity have been advanced as important factors driving the Great Depression in the United States, based on real business cycle theory. We estimate an improved measure of technology for interwar manufacturing, using data from the U.S. census reports. There is cle

  6. Technology-design-manufacturing co-optimization for advanced mobile SoCs

    Science.gov (United States)

    Yang, Da; Gan, Chock; Chidambaram, P. R.; Nallapadi, Giri; Zhu, John; Song, S. C.; Xu, Jeff; Yeap, Geoffrey

    2014-03-01

    How to maintain the Moore's Law scaling beyond the 193 immersion resolution limit is the key question semiconductor industry needs to answer in the near future. Process complexity will undoubtfully increase for 14nm node and beyond, which brings both challenges and opportunities for technology development. A vertically integrated design-technologymanufacturing co-optimization flow is desired to better address the complicated issues new process changes bring. In recent years smart mobile wireless devices have been the fastest growing consumer electronics market. Advanced mobile devices such as smartphones are complex systems with the overriding objective of providing the best userexperience value by harnessing all the technology innovations. Most critical system drivers are better system performance/power efficiency, cost effectiveness, and smaller form factors, which, in turns, drive the need of system design and solution with More-than-Moore innovations. Mobile system-on-chips (SoCs) has become the leading driver for semiconductor technology definition and manufacturing. Here we highlight how the co-optimization strategy influenced architecture, device/circuit, process technology and package, in the face of growing process cost/complexity and variability as well as design rule restrictions.

  7. RADIX ROC: a low complexity algorithm for the cell manufacturing design

    Directory of Open Access Journals (Sweden)

    Marcos Ricardo Rosa Georges

    2014-12-01

    Full Text Available The Cellular Manufacturing System has been widely used in industry as an alternative to increase the ability to compete. The benefits of the use of cellular manufacturing include increased flexibility, reduction of work in process and reducing the total processing time. The first step in the adoption of cellular manufacturing industries is in the design of the cell, which is made from an analysis of the incidence matrix. There are several algorithms to perform the analysis of this matrix to seek groups that may provide sources of manufacturing cells. This article proposes an algorithm of low computational complexity called RADIX ROC. This algorithm is based on the classic algorithm ROC (Rank Order Clustering. A comparative analysis of some algorithms is done at the end to demonstrate the low complexity of the algorithm and a review of the literature on the subject completes this work.

  8. An Approach to Determining the Optimal Cell Number of Manufacturing Cell Formation

    Directory of Open Access Journals (Sweden)

    Jianwei Wang

    2013-04-01

    Full Text Available An approach to determining the optimal cell number of manufacturing cell formation is presented. Firstly, the difference of weighting exponent, cluster center and metrics how to have an impact upon the clustering results and membership function are studied. Secondly, a method to determine the optimal m value is given. Two-order partial derivative of the objective function for FCM is calculated, and the variational weighting exponent m is obtained that can prevent the parameter from being the unique value and play an important role in the process of fuzzy clustering. Moreover, in order to avoid a single validity index can not assess correctly, partition coefficient (PC, classification entropy (CE, Fukuyama and Sugeno (FS and Xie and Beni (XB are considered as multi-performance indexes to evaluate the cluster validity, and then an optimal number c is chosen based on these validity measures. Finally, test exampls are given to illustrate the validity of the proposed approach.

  9. Production technique for fuel cells: from handicraft to robot based manufacturing process; Herstelltechnik fuer Brennstoffzellen: Vom Handwerk zu robotergestuetzten Fertigungsverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Joerissen, L.; Einhart, H.; Scholta, J.; Konold, P. [ZSW, Ulm (Germany); Wehrheim, M. [Hochschule Ulm (Germany)

    2008-07-01

    Polymer Electrolyte membrane Fuel Cell (PEFC) stacks are currently manufactured in small numbers using mainly manual manufacturing processes. Despite the fact that components such as Membrane Electrode Assemblies (MEA), bipolar plates, Gas Diffusion Layers (GDL) etc. are already being manufactured industrially by automated processes, the components are not yet optimized for subsequent stack assembly. Taking this into account, manual assembly processes are advantageous as compared to automated processes. Fuel cell stacks are consisting of many parts repeating each cell which need to be assembled gas tight and electrically conducting. This imposes tough requirements concerning production tolerances of the single components as well as accuracy of positioning during assembly. Manual assembly of large numbers of identical parts is quite sensitive in this respect. Handling parts of strongly different rigidity during stack assembly poses an additional challenge. Positioning and joining parts with different haptics can be done in a controlled manner when using manual assembly. Automated stack assembly requires the development of special picking technology. In this chapter two different concepts for stack assembly will be presented and discussed with respect to automatization at a later stage. (orig.)

  10. Requirements and Matching Software Technologies for Sustainable and Agile Manufacturing Systems

    NARCIS (Netherlands)

    Telgen, Daniël; Moergestel, Leo van; Puik, Erik; Muller, Pascal

    2013-01-01

    Sustainable and Agile manufacturing is expected of future generation manufacturing systems. The goal is to create scalable, reconfigurable and adaptable manufacturing systems which are able to produce a range of products without new investments into new manufacturing equipment. This requires a new a

  11. An integrated approach for the cell formation and layout design in cellular manufacturing systems

    NARCIS (Netherlands)

    Javadi, Babak; Jolai, Fariborz; Slomp, Jannes; Rabbani, Masoud; Tavakkoli-Moghaddam, Reza

    2013-01-01

    In this paper, a comprehensive model is presented for cell formation and layout design in cellular manufacturing systems (CMS). The proposed model incorporates an extensive coverage of important operational features and especially layout design aspects to determine optimal cell configuration and Int

  12. Development of an Improved Process for Installation Projects of High Technology Manufacturing Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Quintana, Sarah V. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-04-30

    High technology manufacturing equipment is utilized at Los Alamos National Laboratory (LANL) to support nuclear missions. This is undertaken from concept initiation where equipment is designed and then taken through several review phases, working closely with system engineers (SEs) responsible for each of the affected systems or involved disciplines (from gasses to HVAC to structural, etc.). After the design is finalized it moves to procurement and custom fabrication of the equipment and equipment installation, including all of the paperwork involved. Not only are the engineering and manufacturing aspects important, but also the scheduling, financial forecasting, and planning portions that take place initially and are sometimes modified as the project progresses should requirements, changes or additions become necessary. The process required to complete a project of this type, including equipment installation, is unique and involves numerous steps to complete. These processes can be improved and recent work on the Direct Current Arc (DC Arc) Glovebox Design, Fabrication and Installation Project provides an opportunity to identify some important lessons learned (LL) that can be implemented in the future for continued project improvement and success.

  13. DICP's New Technology for Manufacture of Propylene Oxide through Direct Oxidation of Propylene by Hydrogen Peroxide Passed Appraisal

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ In August 2008 the new technology for manufacture of pro-pylene oxide through direct oxidation of propylene by hy-drogen peroxide developed by Dalian Institute of Chemical Physics (DICP), CAS has passed the experts' appraisal or-ganized by the Science and Technology Department of Liaoning Province. It is told that this new technology, being an environmentally friendly new process, will eventually put an end to the severe pollution characteristic of the tradi-tional propylene oxide production process.

  14. SETEC/Semiconductor Manufacturing Technologies Program: 1999 Annual and Final Report

    Energy Technology Data Exchange (ETDEWEB)

    MCBRAYER,JOHN D.

    2000-12-01

    This report summarizes the results of work conducted by the Semiconductor Manufacturing Technologies Program at Sandia National Laboratories (Sandia) during 1999. This work was performed by one working group: the Semiconductor Equipment Technology Center (SETEC). The group's projects included Numerical/Experimental Characterization of the Growth of Single-Crystal Calcium Fluoride (CaF{sub 2}); The Use of High-Resolution Transmission Electron Microscopy (HRTEM) Imaging for Certifying Critical-Dimension Reference Materials Fabricated with Silicon Micromachining; Assembly Test Chip for Flip Chip on Board; Plasma Mechanism Validation: Modeling and Experimentation; and Model-Based Reduction of Contamination in Gate-Quality Nitride Reactor. During 1999, all projects focused on meeting customer needs in a timely manner and ensuring that projects were aligned with the goals of the National Technology Roadmap for Semiconductors sponsored by the Semiconductor Industry Association and with Sandia's defense mission. This report also provides a short history of the Sandia/SEMATECH relationship and a brief on all projects completed during the seven years of the program.

  15. Review of production status of heavy steel castings and key technologies for their manufacture in China

    Directory of Open Access Journals (Sweden)

    Liu Baicheng

    2008-02-01

    Full Text Available This paper expatiates on domestic status of heavy steel casting production, with a special focus on hydraulic turbine castings for Three Gorges Project. In China, there is magnificent demand for heavy castings with the rapid growth of the national economy in recent years and the expected high growth in the coming 10 to 20 years. Some heavy and large castings such as mill housing and hydraulic turbine runner crown, blade and band for Three Gorges Project have been successfully made. However, the domestic production capability is still far from meeting the gigantic requirements. The domestic capability still lags behind the world class level, and a lot of heavy castings still depend on import. The paper also gives a particular introduction of the key technologies in the manufacturing of heavy steel castings like metal melting, foundry technology, heat treatment technology and numerical simulation technique, etc. In addition, several case studies on the application of numerical simulation in the production of heavy steel castings are presented.

  16. Review of production status of heavy steel castings and key technologies for their manufacture in China

    Institute of Scientific and Technical Information of China (English)

    Kang Jinwu; Huang Tianyou; Liu Baicheng

    2008-01-01

    This paper expatiates on domestic status of heavy steel casting production, with a special focus on hydraulic turbine castings for Three Gorges Project. In China, there is magnificent demand for heavy castings with the rapid growth of the national economy in recent years and the expected high growth in the coming 10 to 20 years. Some heavy and large castings such as mill housing and hydraulic turbine runner crown, blade and band for Three Gorges Project have been successfully made. However, the domestic production capability is still far from meeting the gigantic requirements. The domestic capability still lags behind the world class level, and a lot of heavy castings still depend on import. The paper also gives a particular introduction of the key technologies in the manufacturing of heavy steel castings like metal melting, foundry technology, heat treatment technology and numerical simulation technique, etc.In addition, several case studies on the application of numerical simulation in the production of heavy steel castings are presented.

  17. Design, manufacture and technological verification of SiC/C composite stirrer

    Directory of Open Access Journals (Sweden)

    A. Dolata-Grosz

    2009-09-01

    Full Text Available Purpose: In article were presented assumptions and choose results of investigations connected with material selection and technology production of prototype’s ceramic stirrer with destination to work in environment of liquid metal. In the research work the result of the design, manufacture and technological verification of SiC/C composite stirrer have been presented.Design/methodology/approach: The design of the stirrer (2D and 3D models and strength tests on the blade and fragment of the composite axle was prepared in the programme Solid Works and the FEM, using COSMOS software. Polymer infiltration and pyrolysis (PIP technique was used for fabrication SiC/C stirrer. Examination of wettability and suitability of the SiC/C composite for application in a liquid metal with sessile drop wettability was conducted. The surface geometry, conducted using a non-contact optical profilometer, FRT Micro’Prof.Findings: Further laboratory tests of the SiC/C composite stirrer, designed and developed in the Institute of Lightweight Engineering and Polymer Technology at TU Dresden have confirmed rightness of the design, assumptions regarding the thermal, mechanical and chemical resistance of the stirrer.Practical implications: The technological tests have proven a considerable reduction of the turbulence flow, which with an unchanged system of controlling the stirrer ensured stability of the liquid metal whirl and repeatability of the process.Originality/value: The application of this new material will enable not only the expansion of laboratory research, but it may also facilitate the implementation of liquid/phase technologies of obtaining MMC composites for the industry and thus, contribute to increasing the durability of stirrers in comparison with the solutions applied so far.

  18. Photovoltaic manufacturing technology (PVMaT). Annual subcontract report, March 31, 1994--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Holley, W A [Springborn Labs., Inc., Enfield, CT (United States)

    1996-01-01

    This report describes work performed under a subcontract to the National Renewable Energy Laboratory under the Photovoltaic Manufacturing Technology Project. The objectives of this subcontract are to (1) define the problem of yellowing/browning of EVA-based encapsulants; (2) determine probable mechanisms and the role of various parameters such as heat, UV exposure, module construction, EVA interfaces, and EVA thickness, in the browning of EVA-based encapsulants; (3) develop stabilization strategies for various module constructions to protect the encapsulant from degradative failure; (4) conduct laboratory, accelerated outdoor, and field testing of encapsulant, laminated test coupons, and full modules to demonstrate the functional adequacy of the stabilization strategies; and (5) implement these strategies. This report summarizes the accomplishments related to the above goals for the reporting period.

  19. Evaluation of the impact energy of the samples produced by the additive manufacturing technology

    Directory of Open Access Journals (Sweden)

    J. Dobránsky

    2016-07-01

    Full Text Available The article covered the evaluation of the impact energy, notch toughness and morphology of the fracture surfaces of the specimens manufactured by the Direct Metal Laser Sintering Technology. Specimens without heat treatment with no notch were not broken through in course of testing, therefore there was no fracture surface present. The heat treatment resulted in the increase in hardness values. The values of impact energy after the heat treatment was approximately 60 % lower. Ductile intergranular fracture with more or less segmented dimple morphology appeared in every specimen. At places where the internal plastic bond was resisting the test, cracks remaining after particles broke away from the surface can be seen as craters.

  20. Electrochemical cells and methods of manufacturing the same

    Energy Technology Data Exchange (ETDEWEB)

    Bazzarella, Ricardo; Slocum, Alexander H.; Doherty, Tristan; Cross, III, James C.

    2016-07-26

    Electrochemical cells and methods of making electrochemical cells are described herein. In some embodiments, an apparatus includes a multi-layer sheet for encasing an electrode material for an electrochemical cell. The multi-layer sheet including an outer layer, an intermediate layer that includes a conductive substrate, and an inner layer disposed on a portion of the conductive substrate. The intermediate layer is disposed between the outer layer and the inner layer. The inner layer defines an opening through which a conductive region of the intermediate layer is exposed such that the electrode material can be electrically connected to the conductive region. Thus, the intermediate layer can serve as a current collector for the electrochemical cell.

  1. The State of the Art Report on the Development and Manufacturing Technology of Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. S.; Jeong, Y. H.; Park, S. Y.; Lee, M. H.; Choi, B. K.; Baek, J. H.; Park, J. Y.; Kim, J. H.; Kim, H. G.; Kim, K. H

    2006-07-15

    The main objective of the present R and D on breeder blanket is the development of test blanket modules (TBMs) to be installed and tested in International Thermonuclear Experimental Reactor (ITER). In the program of the blanket development, a blanket module test in the ITER is scheduled from the beginning of the ITER operation, and the performance test of TBM in ITER is the most important milestone for the development of the DEMO blanket. The fabrication of TBMs has been required to test the basic performance of the DEMO blanket, i.e., tritium production/recovery, high-grade heat generation and radiation shielding. Therefore, the integration of the TBM systems into ITER has been investigated with the aim to check the safety, reliability and compatibility under nuclear fusion state. For this reason, in the Test Blanket Working Group (TBWG) as an activity of the International Energy Association (IEA), a variety of ITER TBMs have been proposed and investigated by each party: helium-cooled ceramic (WSG-1), helium-cooled LiPb (WSG-2), water-cooled ceramic (WSG-3), self-cooled lithium (WSG-4) and self-cooled molten salt (WSG-5) blanket systems. Because we are still deficient in investigation of TBM development, the need of development became pressing. In this report, for the development of TBM sub-module and mock-up, it is necessary to analyze and examine the state of the art on the development of manufacturing technology of TBM in other countries. And we will be applied as basic data to establish a manufacturing technology.

  2. Prospects of Nanostructure-Based Solar Cells for Manufacturing Future Generations of Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    N. Gupta

    2009-01-01

    Full Text Available We present a comprehensive review on prospects for one-, two-, or three-dimensional nanostructure-based solar cells for manufacturing the future generation of photovoltaic (PV modules. Reducing heat dissipation and utilizing the unabsorbed part of the solar spectrum are the key driving forces for the development of nanostructure-based solar cells. Unrealistic assumptions involved in theoretical work and the tendency of stretching observed experimental results are the primary reasons why quantum phenomena-based nanostructures solar cells are unlikely to play a significant role in the manufacturing of future generations of PV modules. Similar to the invention of phase shift masks (to beat the conventional diffraction limit of optical lithography clever design concepts need to be invented to take advantage of quantum-based nanostructures. Silicon-based PV manufacturing will continue to provide sustained growth of the PV industry.

  3. Behind the development of technology: The transition of innovation modes in China’s wind turbine manufacturing industry

    International Nuclear Information System (INIS)

    The market scale of China’s wind turbine manufacturing industry has grown immensely. Despite China still having a limited capacity in terms of technology innovation, the institutional support has promoted the technology capability development of the wind turbine manufacturing industry. This paper explores the driving forces underlying this development by reviewing the transition of the innovation modes and the dynamic interactions among the technology capability, innovation modes, market formation, and wind energy policy. The innovation mode in China began with imitative innovation, then transitioned to cooperative innovation, and has more recently set its sights on attaining truly indigenous innovation. Public policy serves as a key driving force for the evolution of innovation modes, as well as the development of the market. The policy focus has evolved in the following sequence: 1. building the foundation for technological innovation; 2. encouraging technology transfer; 3. enhancing local R and D and manufacturing capabilities; 4. enlarging the domestic market; and 5. cultivating an open environment for global competition and sustainable market development in China. - Highlights: ► New data were provided for China’s wind turbine manufacturing industry. ► The transition of innovation modes in the industry is reviewed. ► The interaction among the technology, market, policy, and innovation mode is explored. ► Public policies are the key driving forces for the transition.

  4. Manufacture of clinical-grade CD19-specific T cells stably expressing chimeric antigen receptor using Sleeping Beauty system and artificial antigen presenting cells.

    Directory of Open Access Journals (Sweden)

    Harjeet Singh

    Full Text Available Adoptive transfer of T cells expressing a CD19-specific chimeric antigen receptor (CAR is being evaluated in multiple clinical trials. Our current approach to adoptive immunotherapy is based on a second generation CAR (designated CD19RCD28 that signals through a CD28 and CD3-ζ endodomain. T cells are electroporated with DNA plasmids from the Sleeping Beauty (SB transposon/transposase system to express this CAR. Stable integrants of genetically modified T cells can then be retrieved when co-cultured with designer artificial antigen presenting cells (aAPC in the presence of interleukin (IL-2 and 21. Here, we reveal how the platform technologies of SB-mediated transposition and CAR-dependent propagation on aAPC were adapted for human application. Indeed, we have initiated clinical trials in patients with high-risk B-lineage malignancies undergoing autologous and allogeneic hematopoietic stem-cell transplantation (HSCT. We describe the process to manufacture clinical grade CD19-specific T cells derived from healthy donors. Three validation runs were completed in compliance with current good manufacturing practice for Phase I/II trials demonstrating that by 28 days of co-culture on γ-irradiated aAPC ∼10(10 T cells were produced of which >95% expressed CAR. These genetically modified and propagated T cells met all quality control testing and release criteria in support of infusion.

  5. Application and prospect of laser manufacture technology%激光制造技术的应用与展望

    Institute of Scientific and Technical Information of China (English)

    辛晨光

    2012-01-01

    Laser manufacturing technology is a kind of green manufacturing technology which is full of potential for development of high flexibility. Describes applications of laser technology in different areas, different manufacturing process including laser welding , laser cladding and laser surface alloying, laser quenching, laser surface modification, laser cutting, laser rapid forming, laser drilling,laser nanometer manufacturing,and prospects the research and development tend of laser manufacturing technology.%激光制造技术是一种具有巨大发展潜力的高柔性、绿色制造技术.阐述了目前激光制造技术在不同制造领域、不同工艺范围的应用现状,包括激光焊接、激光熔覆及激光表面合金化、激光淬火、激光表面改性、激光切割、激光快速成形、激光打孔和激光纳米制造,并展望了激光制造技术未来的研究及发展趋势.

  6. Remote Robot Vision Control of a Flexible Manufacturing Cell

    OpenAIRE

    Anton, Silvia; Anton, Florin Daniel; Borangiu, Theodor

    2010-01-01

    The project was finished at the end of 2008 as part of the PRIC research program (Shared Research and Training Resources). The research project provide a communication and collaboration portal solution for linking the existing pilot platform with multiple V+ industrial robot-vision controllers from Adept Technology located in four University Labs from Romania (Bucharest, Craiova, Iasi and Galati). This allow teachers to train their student using robots and expensive devices which they do not ...

  7. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: RESIDENTIAL ELECTRIC POWER GENERATION USING THE PLUG POWER SU1 FUEL CELL SYSTEM

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of the Plug Power SU1 Fuel Cell System manufactured by Plug Power. The SU1 is a proton exchange membrane fuel cell that requires hydrogen (H2) as fuel. H2 is generally not available, so the ...

  8. Media fill for validation of a good manufacturing practice-compliant cell production process.

    Science.gov (United States)

    Serra, Marta; Roseti, Livia; Bassi, Alessandra

    2015-01-01

    According to the European Regulation EC 1394/2007, the clinical use of Advanced Therapy Medicinal Products, such as Human Bone Marrow Mesenchymal Stem Cells expanded for the regeneration of bone tissue or Chondrocytes for Autologous Implantation, requires the development of a process in compliance with the Good Manufacturing Practices. The Media Fill test, consisting of a simulation of the expansion process by using a microbial growth medium instead of the cells, is considered one of the most effective ways to validate a cell production process. Such simulation, in fact, allows to identify any weakness in production that can lead to microbiological contamination of the final cell product as well as qualifying operators. Here, we report the critical aspects concerning the design of a Media Fill test to be used as a tool for the further validation of the sterility of a cell-based Good Manufacturing Practice-compliant production process.

  9. Requirements and Matching Software Technologies for Sustainable and Agile Manufacturing Systems

    OpenAIRE

    Telgen, Daniël; Moergestel, Leo van; Puik, Erik; Muller, Pascal

    2013-01-01

    Sustainable and Agile manufacturing is expected of future generation manufacturing systems. The goal is to create scalable, reconfigurable and adaptable manufacturing systems which are able to produce a range of products without new investments into new manufacturing equipment. This requires a new approach with a combination of high performance software and intelligent systems. Other case studies have used hybrid and intelligent systems in software before. However, they were mainly used to im...

  10. Argonne National Laboratory study of the transfer of federal computational technology to manufacturing industry in the State of Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.J.

    1991-11-01

    This report describes a pilot study to develop, initiate the implementation, and document a process to identify computational technology capabilities resident within Argonne National Laboratory to small and medium-sized businesses in the State of Michigan. It is a derivative of a program entitled ``Technology Applications Development Process for the State of Michigan`` undertaken by the Industrial Technology Institute and MERRA under funding from the National Institute of Standards and Technology. The overall objective of the latter program is to develop procedures which can facilitate the discovery and commercialization of new technologies for the benefit of small and medium-size manufacturing firms. Federal laboratories such as Argonne, along with universities, have been identified by the Industrial Technology Institute as key sources of technology which can be profitably commercialized by the target firms. The scope of this study limited the investigation of technology areas for technology transfer to that of computational science and engineering featuring high performance computing. This area was chosen as the broad technological capability within Argonne to investigate for technology transfer to Michigan firms for several reasons. First, and most importantly, as a multidisciplinary laboratory, Argonne has the full range of scientific and engineering skills needed to utilize leading-edge computing capabilities in many areas of manufacturing.

  11. Argonne National Laboratory study of the transfer of federal computational technology to manufacturing industry in the State of Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.J.

    1991-11-01

    This report describes a pilot study to develop, initiate the implementation, and document a process to identify computational technology capabilities resident within Argonne National Laboratory to small and medium-sized businesses in the State of Michigan. It is a derivative of a program entitled Technology Applications Development Process for the State of Michigan'' undertaken by the Industrial Technology Institute and MERRA under funding from the National Institute of Standards and Technology. The overall objective of the latter program is to develop procedures which can facilitate the discovery and commercialization of new technologies for the benefit of small and medium-size manufacturing firms. Federal laboratories such as Argonne, along with universities, have been identified by the Industrial Technology Institute as key sources of technology which can be profitably commercialized by the target firms. The scope of this study limited the investigation of technology areas for technology transfer to that of computational science and engineering featuring high performance computing. This area was chosen as the broad technological capability within Argonne to investigate for technology transfer to Michigan firms for several reasons. First, and most importantly, as a multidisciplinary laboratory, Argonne has the full range of scientific and engineering skills needed to utilize leading-edge computing capabilities in many areas of manufacturing.

  12. 5th International and 26th All India Manufacturing Technology, Design and Research Conference

    CERN Document Server

    Dixit, Uday

    2015-01-01

    This edited book contains extended research papers from AIMTDR 2014. This includes recent research work in the fields of friction stir welding, sheet forming, joining and forming, modeling and simulation, efficient prediction strategies, micro-manufacturing, sustainable and green manufacturing issues etc. This will prove useful to students, researchers, and practitioners in the field of materials forming and manufacturing.

  13. Health and safety issues in photovoltaic cell manufacture

    International Nuclear Information System (INIS)

    The photovoltaics industry has received widespread support from government, industry, and the public because of their belief that photovoltaic energy systems can harness the sun's energy to provide renewable energy in an economically competitive and environmentally acceptable manner. Over the last decade, great advances have been made in producing photovoltaic devices, which are becoming more technologically and economically competitive. At the same time, there has been growing awareness within industry that production of these devises can present hazards to health and the environment due to the types of materials and processing options involved. Many of these hazards must be managed to reduce the rusks they present to health and the environment. This paper reviews these hazards, and describes optics available to the photovoltaics industry to work with such materials and equipment in a manner which will protect health and safety

  14. Development of PEM fuel cell technology at international fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  15. Stem cell technology for neurodegenerative diseases.

    Science.gov (United States)

    Lunn, J Simon; Sakowski, Stacey A; Hur, Junguk; Feldman, Eva L

    2011-09-01

    Over the past 20 years, stem cell technologies have become an increasingly attractive option to investigate and treat neurodegenerative diseases. In the current review, we discuss the process of extending basic stem cell research into translational therapies for patients suffering from neurodegenerative diseases. We begin with a discussion of the burden of these diseases on society, emphasizing the need for increased attention toward advancing stem cell therapies. We then explain the various types of stem cells utilized in neurodegenerative disease research, and outline important issues to consider in the transition of stem cell therapy from bench to bedside. Finally, we detail the current progress regarding the applications of stem cell therapies to specific neurodegenerative diseases, focusing on Parkinson disease, Huntington disease, Alzheimer disease, amyotrophic lateral sclerosis, and spinal muscular atrophy. With a greater understanding of the capacity of stem cell technologies, there is growing public hope that stem cell therapies will continue to progress into realistic and efficacious treatments for neurodegenerative diseases.

  16. Solar cell materials developing technologies

    CERN Document Server

    Conibeer, Gavin J

    2014-01-01

    This book presents a comparison of solar cell materials, including both new materials based on organics, nanostructures and novel inorganics and developments in more traditional photovoltaic materials. It surveys the materials and materials trends in the field including third generation solar cells (multiple energy level cells, thermal approaches and the modification of the solar spectrum) with an eye firmly on low costs, energy efficiency and the use of abundant non-toxic materials.

  17. Technology Solutions Case Study: Southern Energy Homes, First DOE Zero Energy Ready Manufactured Home

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    The country’s first Zero Energy Ready manufactured home that is certified by the U.S. Department of Energy (DOE) is up and running in Russellville, Alabama. The manufactured home was built by a partnership between Southern Energy Homes and the Advanced Residential Integrated Energy Solutions Collaborative (ARIES), which is a DOE Building America team. The effort was part of a three-home study including a standard-code manufactured home and an ENERGY STAR® manufactured home. Cooling-season results showed that the building used half the space-conditioning energy of a manufactured home built to the U.S. Department of Housing and Urban Development’s (HUD’s) Manufactured Home Construction and Safety Standards. These standards are known collectively as the HUD Code, which is the building standard for all U.S. manufactured housing.

  18. Automotive Lithium-ion Cell Manufacturing: Regional Cost Structures and Supply Chain Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Donald [Clean Energy Manufacturing Analysis Center, Godlen, CO (United States); Elgqvist, Emma [Clean Energy Manufacturing Analysis Center, Godlen, CO (United States); Santhanagopalan, Shriram [Clean Energy Manufacturing Analysis Center, Godlen, CO (United States)

    2016-04-08

    Manufacturing capacity for lithium-ion batteries (LIBs)--which power many consumer electronics and are increasingly used to power electric vehicles--is heavily concentrated in east Asia. Currently, China, Japan, and Korea collectively host 88% of all LIB cell and 79% of automotive LIB cell manufacturing capacity. Mature supply chains and strong cumulative production experience suggest that most LIB cell production will remain concentrated in Asia. However, other regions--including North America--could be competitive in the growing automotive LIB cell market under certain conditions. To illuminate the factors that drive regional competitiveness in automotive LIB cell production, this study models cell manufacturing cost and minimum sustainable price, and examines development of LIB supply chains and current LIB market conditions. Modeled costs are for large format, 20-Ah stacked pouch cells with lithium-nickel-manganese-cobalt-oxide (NMC) cathodes and graphite anodes suitable for automotive application. Production volume is assumed to be at commercial scale, 600 MWh per year.

  19. Mathematical models for the definition of cell manufacturing layout. Literature review

    Directory of Open Access Journals (Sweden)

    Gustavo Andrés Romero Duque

    2015-11-01

    Full Text Available This review article discusses the approach to the layout problem of cell manufacturing (LCM in a descriptive form; considering at first the problem and its variations, then the elements of the mathematical models, subsequently presenting solution methods used; and finally some future perspectives about this topic are considered.

  20. Changes in production control required for untended operation of a flexible manufacturing cell

    NARCIS (Netherlands)

    Slomp, Jannes; Stecke, Kathryn E.

    2012-01-01

    This article examines and improves the production control system of a firm that wants to operate its flexible manufacturing cell (FMC) in an untended third shift. The FMC consists of a machining centre, a pallet storage, a rail-guided transport vehicle for pallets and a clamping/unclamping station.

  1. Perovskite solar cells: an emerging photovoltaic technology

    OpenAIRE

    Nam-Gyu Park

    2015-01-01

    Perovskite solar cells based on organometal halides represent an emerging photovoltaic technology. Perovskite solar cells stem from dye-sensitized solar cells. In a liquid-based dye-sensitized solar cell structure, the adsorption of methylammonium lead halide perovskite on a nanocrystalline TiO2 surface produces a photocurrent with a power conversion efficiency (PCE) of around 3–4%, as first discovered in 2009. The PCE was doubled after 2 years by optimizing the perovskite coating conditions....

  2. Precision manufacturing

    CERN Document Server

    Dornfeld, David

    2008-01-01

    Today there is a high demand for high-precision products. The manufacturing processes are now highly sophisticated and derive from a specialized genre called precision engineering. Precision Manufacturing provides an introduction to precision engineering and manufacturing with an emphasis on the design and performance of precision machines and machine tools, metrology, tooling elements, machine structures, sources of error, precision machining processes and precision process planning. As well as discussing the critical role precision machine design for manufacturing has had in technological developments over the last few hundred years. In addition, the influence of sustainable manufacturing requirements in precision processes is introduced. Drawing upon years of practical experience and using numerous examples and illustrative applications, David Dornfeld and Dae-Eun Lee cover precision manufacturing as it applies to: The importance of measurement and metrology in the context of Precision Manufacturing. Th...

  3. A University Engagement Model for Achieving Technology Adoption and Performance Improvement Impacts in Healthcare, Manufacturing, and Government

    Science.gov (United States)

    McKinnis, David R.; Sloan, Mary Anne; Snow, L. David; Garimella, Suresh V.

    2014-01-01

    The Purdue Technical Assistance Program (TAP) offers a model of university engagement and service that is achieving technology adoption and performance improvement impacts in healthcare, manufacturing, government, and other sectors. The TAP model focuses on understanding and meeting the changing and challenging needs of those served, always…

  4. Advanced Manufacturing Technologies (AMT): Additive Manufactured Hot Fire Planning and Testing in GRC Cell 32 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — GRC and AR have identified the following roles and responsibilities necessary to accomplish the hot fire objective of this task.  AR will be responsible for...

  5. Implementation of ion-beam techniques in microsystems manufacturing: opportunities in cell biology

    Science.gov (United States)

    Campo, E. M.; Lopez-Martinez, M. J.; Fernández, E.; Esteve, J..; Plaza, J. A.

    2009-05-01

    Micromachining techniques are proposed to mass-manufacture innovative silicon oxide micropipettes and conventional boron-silicate pipettes with highly customized tips to address increasingly demanding cell handling procedures. Cell handling has become a crucial procedure in cell biology, especially in nuclear transfer, DNA injection, and in assisted reproductive techniques. Most pipette manufacturing procedures involve tedious artisanal methods prone to failure and with limited functionality. We expect high tip customization to have a large impact in current and future cell manipulation, paving the way for augmented functionality. Although proper biocompatibility assessments remain to be explored, initial pierced embryos are seen to continue their division procedure up to at least 24 hours. The continued cellular division is a good sign of biocompatibility. These results suggest that residual chemical agents or gallium ions injected during milling could be harmless to life development. We conclude that we have produced a novel technique combining microfabrication and Focus Ion Beam processes with great potential for industrial applications.

  6. Technologies for Single-Cell Isolation

    Directory of Open Access Journals (Sweden)

    Andre Gross

    2015-07-01

    Full Text Available The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting respectively Flow cytometry (33% usage, laser microdissection (17%, manual cell picking (17%, random seeding/dilution (15%, and microfluidics/lab-on-a-chip devices (12% are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field.

  7. PVMaT cost reductions in the EFG high volume PV manufacturing line: Annual report, 5 August 1998--4 August 1999[PhotoVoltaic Manufacturing Technology, Edge-defined Film-fed Growth

    Energy Technology Data Exchange (ETDEWEB)

    Bathey, B.; Brown, B.; Cao, J.; Ebers, S.; Gonsiorawski, R.; Heath, B.; Kalejs, J.; Kardauskas, M.; Mackintosh, B.; Ouellette, M.; Piwczyk, B.; Rosenblum, M.; Southimath, B.

    1999-11-16

    This report describes work performed by ASE Americas researchers during the first year of this Photovoltaic Manufacturing Technology 5A2 program. Significant accomplishments in each of three task are as follows. Task 1--Manufacturing Systems: Researchers completed key node analysis, started statistical process control (SPC) charting, carried out design-of-experiment (DoE) matrices on the cell line to optimize efficiencies, performed a capacity and bottleneck study, prepared a baseline chemical waste analysis report, and completed writing of more than 50% of documentation and statistical sections of ISO 9000 procedures. A highlight of this task is that cell efficiencies in manufacturing were increased by 0.4%--0.5% absolute, to an average in excess of 14.2%, with the help of DoE and SPC methods. Task 2--Low-Cost Processes: Researchers designed, constructed, and tested a 50-cm-diameter, edge-defined, film-fed growth (EFG) cylinder crystal growth system to successfully produce thin cylinders up to 1.2 meters in length; completed a model for heat transfer; successfully deployed new nozzle designs and used them with a laser wafer-cutting system with the potential to decrease cutting labor costs by 75% and capital costs by 2X; achieved laser-cutting speeds of up to 8X and evaluation of this system is proceeding in production; identified laser-cutting conditions that reduce damage for both Q-switched Nd:YAG and copper-vapor lasers with the help of a breakthrough in fundamental understanding of cutting with these short-pulse-length lasers; and found that bulk EFG material lifetimes are optimized when co-firing of silicon nitride and aluminum is carried out with rapid thermal processing (RTP). Task 3--Flexible Manufacturing: Researchers improved large-volume manufacturing of 10-cm {times} 15-cm EFG wafers by developing laser-cutting fixtures, adapting carriers and fabricating adjustable racks for etching and rinsing facilities, and installing a high-speed data collection

  8. Reviews on Solid Oxide Fuel Cell Technology

    OpenAIRE

    Apinan Soottitantawat; Arnornchai Arpornwichanop; Worapon Kiatkittipong; Wisitsree Wiyaratn; Navadol Laosiripojana; Suttichai Assabumrungrat

    2009-01-01

    Solid Oxide Fuel Cell (SOFC) is one type of high temperature fuel cell that appears to be one of the most promising technology to provide the efficient and clean energy production for wide range of applications (from small units to large scale power plants). This paper reviews the current status and related researches on SOFC technologies. In details, the research trend for the development of SOFC components(i.e. anode, electrolyte, cathode, and interconnect) are presented. Later, the current...

  9. Prospects of Nanostructure-Based Solar Cells for Manufacturing Future Generations of Photovoltaic Modules

    OpenAIRE

    K. F. Poole; Singh, R.; R. Podila; G. F. Alapatt; Gupta, N

    2009-01-01

    We present a comprehensive review on prospects for one-, two-, or three-dimensional nanostructure-based solar cells for manufacturing the future generation of photovoltaic (PV) modules. Reducing heat dissipation and utilizing the unabsorbed part of the solar spectrum are the key driving forces for the development of nanostructure-based solar cells. Unrealistic assumptions involved in theoretical work and the tendency of stretching observed experimental results are the primary reasons why quan...

  10. Laser processing of organic photovoltaic cells with a roll-to-roll manufacturing process

    Science.gov (United States)

    Petsch, Tino; Haenel, Jens; Clair, Maurice; Keiper, Bernd; Scholz, Christian

    2011-03-01

    Flexible large area organic photovoltaic (OPV) is currently one of the fastest developing areas of organic electronics. New light absorbing polymer blends combined with new transparent conductive materials provide higher power conversion efficiencies while new and improved production methods are developed to achieve higher throughput at reduced cost. A typical OPV is formed by TCO layers as the transparent front contact and polymers as active layer as well as interface layer between active layer and front contact. The several materials have to be patterned in order to allow for a row connection of the solar cell. 3D-Micromac used ultra-short pulsed lasers to evaluate the applicability of various wavelengths for the selective ablation of the indium tin oxide (ITO) layer and the selective ablation of the bulk hetero junction (BHJ) consisting of poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) on top of a Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) without damaging the ITO. These lasers in combination with high performance galvanometer scanning systems achieve superior scribing quality without damaging the substrate. With scribing speeds of 10 m/s and up it is possible to integrate this technology into a roll-to-roll manufacturing tool. The functionality of an OPV usually also requires an annealing step, especially when using a BHJ for the active layer consisting of P3HT:PCBM, to optimize the layers structure and therewith the efficiency of the solar cell (typically by thermal treatment, e.g. oven). The process of laser annealing was investigated using a short-pulsed laser with a wavelength close to the absorption maximum of the BHJ.

  11. The {open_quotes}Micromorph{close_quotes} cell: a new way to high-efficiency-low-temperature crystalline silicon thin-film cell manufacturing?

    Energy Technology Data Exchange (ETDEWEB)

    Keppner, H.; Kroll, U.; Torres, P.; Meier, J.; Platz, R.; Fischer, D.; Beck, N.; Dubail, S.; Anna Selvan, J.A.; Pellaton Vaucher, N.; Goerlitzer, M.; Ziegler, Y.; Tscharner, R.; Hof, C.; Goetz, M.; Pernet, P.; Wyrsch, N.; Vuille, J.; Cuperus, J.; Shah, A. [Institut de Microtechnique, A.-L. Breguet 2, Universite de Neuchatel, CH-2000 Neuchatel (Switzerland); Pohl, J. [University of Konstanz, D-78434 Konstanz (Germany)

    1997-02-01

    Hydrogenated microcrystalline Silicon ({mu}c-Si:H) produced by the VHF-GD (Very High Frequency Glow Discharge) process can be considered to be a new base material for thin-film crystalline silicon solar cells. The most striking feature of such cells, in contrast to conventional amorphous silicon technology, is their stability under light-soaking. With respect to crystalline silicon technology, their most striking advantage is their low process temperature (220{degree}C). The so called {open_quotes}micromorph{close_quotes} cell contains such a {mu}c-Si:H based cell as bottom cell, whereas the top-cell consists of amorphous silicon. A stable efficiency of 10.7{percent} (confirmed by ISE Freiburg) is reported in this paper. At present, all solar cell concepts based on thin-film crystalline silicon have a common problem to overcome: namely, too long manufacturing times. In order to help in solving this problem for the particular case of plasma-deposited {mu}c-Si:H, results on combined argon/hydrogen dilution of the feedgas (silane) are presented. It is shown that rates as high as 9.4 {Angstrom}/s can be obtained: furthermore, a first solar cell deposited with 8.7 {Angstrom}/s resulted in an efficiency of 3.1{percent}. {copyright} {ital 1997 American Institute of Physics.}

  12. Exploring Hydrogen Fuel Cell Technology

    Science.gov (United States)

    Brus, David; Hotek, Doug

    2010-01-01

    One of the most significant technological issues of the 21st Century is finding a way to fulfill the energy demands without destroying the environment through global warming and climate change. Worldwide human population is on the rise, and with it, the demand for more energy in pursuit of a higher quality of life. In the meantime, as people use…

  13. Technology transfer of oil-in-water emulsion adjuvant manufacturing for pandemic influenza vaccine production in Romania.

    Science.gov (United States)

    Fox, Christopher B; Huynh, Chuong; O'Hara, Michael K; Onu, Adrian

    2013-03-15

    Many developing countries lack or have inadequate pandemic influenza vaccine manufacturing capacity. In the 2009 H1N1 pandemic, this led to delayed and inadequate vaccine coverage in the developing world. Thus, bolstering developing country influenza vaccine manufacturing capacity is urgently needed. The Cantacuzino Institute in Bucharest, Romania has been producing seasonal influenza vaccine since the 1970s, and has the capacity to produce ∼5 million doses of monovalent vaccine in the event of an influenza pandemic. Inclusion of an adjuvant in the vaccine could enable antigen dose sparing, expanding vaccine coverage and potentially allowing universal vaccination of the Romanian population and possibly neighboring countries. However, adjuvant formulation and manufacturing know-how are difficult to access. This manuscript describes the successful transfer of oil-in-water emulsion adjuvant manufacturing and quality control technologies from the Infectious Disease Research Institute in Seattle, USA to the Cantacuzino Institute. By describing the challenges and accomplishments of the project, it is hoped that the knowledge and experience gained will benefit other institutes involved in similar technology transfer projects designed to facilitate increased vaccine manufacturing capacity in developing countries.

  14. Manufacturing Interfaces

    NARCIS (Netherlands)

    Houten, van F.J.A.M.

    1992-01-01

    The paper identifies the changing needs and requirements with respect to the interfacing of manufacturing functions. It considers the manufacturing system, its components and their relationships from the technological and logistic point of view, against the background of concurrent engineering. Desi

  15. Cleaner Technology in the Hard Disk Drive Manufacturing Industry: A Case Study

    Science.gov (United States)

    Moolla, Premchai; Chompu-inwai, Rungchat

    2010-10-01

    The objectives of this research are to improve raw material and energy consumption efficiency, as well as reduce defects and the use of chemicals in the arm coil assembly process of hard disk drive manufacturing in the case study company by applying the Cleaner Technology concepts. The four main sequential steps used in this research were: (1) pre-assessment, (2) assessment, (3) feasibility study, and (4) implementation. In the first step, raw data, such as process flows, raw material usage and defects data were collected. In the second step, the loss during production and causes of loss were analyzed. Opportunities to reduce raw material, chemical and energy wastage could then be recommended. The next step was to evaluate the feasibility and potential benefits of a particular Cleaner Technology opportunity. Finally, in the last step, after a thorough evaluation and implementation of the opportunities to apply Cleaner Technology, the results showed that arm coil defects could be reduced by improving the production process using the ECRS technique. ECRS stands for Eliminate, Combine, Rearrange and Simplify. This improvement reduced arm coil defect rates from 0.48% to 0.15%, thus saving approximately 139,638 Thai Baht per month. In addition, production stoppage decision made by workers was used to increase employee involvement in defect detection. Allowing workers to participate in such a decision was an effective way to reduce defect rate and could motivate workers to produce a better quality job. This resulted in arm coil defects reducing from 0.41% to 0.025%, with about 74,562 Thai Baht per month saving. Additionally, an increase in the efficiency of electricity consumption occurred, by increasing the speed of the infrared oven conveyor belt, improving average productivity from 533 pieces/hour to 560 pieces/hour, without adversely affecting product costs and quality, thus producing products of up to the value of 206,242 Thai Baht per month. Furthermore, the new

  16. Cell sheet technology for regeneration of esophageal mucosa

    Institute of Scientific and Technical Information of China (English)

    Ryo Takagi; Teruo Okano; Masayuki Yamato; Nobuo Kanai; Daisuke Murakami; Makoto Kondo; Takaaki Ishii; Takeshi Ohki; Hideo Namiki; Masakazu Yamamoto

    2012-01-01

    The progress of tissue-engineering technology has realized development of new therapies to treat various disorders by using cultured cells.Cell-and tissue-based therapies have been successfully applied to human patients,and several tissue-engineered products have been approved by the regulatory agencies and are commercially available.In the review article,we describe our experience of development and clinical application of cell sheet-based regenerative medicine.Endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD) have been shown to be useful for removal of gastrointestinal neoplasms with less invasiveness compared with open surgery,especially in esophageal surgery.However,postoperative inflammation and stenosis are major complications observed after intensive mucosal resection.Therefore,we have developed novel regenerative medicine to prevent such complications and promote wound healing of esophageal mucosa after EMR or ESD.Transplantable oral mucosal epithelial cell sheets were fabricated from patients' own oral mucosa.Immediately after EMR or ESD,fabricated autologous cell sheets were endoscopically transplanted to the ulcer sites.We performed a preclinical study with a canine model.In human clinical settings,cell culture and cell sheet fabrication were performed in clean rooms according to good manufacturing practice guidelines,and pharmaceutical drugs were used as supplements to culture medium in place of research regents used in animal study.We believe that cell-based regenerative medicine would be useful to improve quality of life of patients after EMR or ESD.

  17. Optical Metrology for CIGS Solar Cell Manufacturing and its Cost Implications

    Science.gov (United States)

    Sunkoju, Sravan Kumar

    conducting oxide (TCO) bi-layer, thus derived were used in a fiber optic-based spectroscopic reflectometry optical monitoring system installed in the pilot line at the PVMC's Halfmoon facility. Results obtained from this study show that the use of regular fiber optics, instead of polarization-maintaining fiber optics, is sufficient for the purpose of process monitoring. Also, the technique does not need to be used "in-situ", but the measurements can be taken in-line, and are applicable to a variety of deposition techniques used for different functional layers deposited on rigid or flexible substrates. In addition, effect of Cu concentration on the CIGS optical properties has been studied. Mixed CIGS/Cu2-xSe phase was observed at the surface at the end of the second stage of 3-stage deposition process, under Cu-rich conditions. A significant change in optical behavior of CIGS due to Cu2-xSe at the surface was observed under Cu-rich conditions, which can be used as end-point detection method to move from 2nd stage to 3rd stage in the deposition process. Developed optical functions were applied to in-line reflectance measurements not only to identify the Cu2-xSe phase at the surface but also to measure the thickness of the mixed CIGS/Cu2-xSe layer. This spectroscopic reflectometry based in-line process control technique can be used for end-point detection as well as to control thickness during the preparation of large area CIGS films. These results can assist in the development of optical process-control tools for the manufacturing of high quality CIGS based photovoltaic cells, increasing the uptime and yield of the production line. Finally, to understand the cost implications, low cost potential of two different deposition technologies has been studied on both rigid and flexible substrates with the help of cost analysis. Cost advantages of employing a contactless optics based process control technique have been investigated in order to achieve a low cost of thin-film module

  18. Forming technologies for manufacturing and processing of lightweight structures; Umformverfahren zur Herstellung und Weiterverarbeitung von Leichtbaustrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, R.; Ebert, A.; Hohmeier, P.; Schulz, J. [Technische Hochschule Aachen (Germany). Inst. fuer Bildsame Formgebung

    2000-07-01

    Besides Air- and Space-technology, a growing demand for lightweight structures has developed during the last years in fields such as car manufacture. This paper presents the activities in the field of lightweight construction carried out at the Institute of Metal forming of Aachen University of Technology. Examples for developed lightweight structures are Tailor Rolled Blanks and Grid Sheets. In both cases the potential for weight reduction as well as formability is pointed out. Furthermore the Shot Peen Forming process is presented which enables the production of large spacecraft parts with three-dimensional curvatures. By means of two sided peening this process can be optimised regarding part properties and productivity. First results of Finite-Element Simulations of the two sided process are presented. (orig.) [German] In den vergangenen Jahren hat die Entwicklung und der Einsatz von Leichtbaustrukturen in der Automobilindustrie zunehmend an Bedeutung gewonnen und gehoert heute ohne Zweifel zu einem der Forschungsschwerpunkte in dieser Branche. Besondere Impulse entstanden durch die Selbstverpflichtung der Automobilindustrie, die CO{sub 2} Emissionen neu zugelassener Fahrzeuge von heute 186 g/km bis zum Jahre 2008 auf 140 g/km zu reduzieren. Neben der Automobilindustrie gewinnt der Leichtbau aber auch in anderen Branchen an 'Gewicht'. Beispielhaft sei hier der Maschinenbau genannt, wo das Bestreben zu einer Reduktion der Nebenzeiten zu immer hoeheren Verfahrgeschwindigkeiten der Werkzeuge fuehrt. Hierdurch werden die mit den Beschleunigungen verbundenen Massenkraefte immer oefter groesser als die eigentlichen Prozesskraefte. Eine Reduzierung von Beschleunigungskraeften bei gleichzeitiger Verbesserung der Dynamik erfordert eine Reduzierung der Massen und damit Leichtbau. Anhand ausgewaehlter Beispiele sollen im Folgenden die Taetigkeiten des Instituts fuer Bildsame Formgebung (IBF) auf dem Gebiet der Leichtbauforschung und -entwicklung dargestellt und

  19. Results of an electron beam test with prototype silicon sensors manufactured by Infineon Technologies Austria AG

    International Nuclear Information System (INIS)

    The demand on silicon based sensors continuously increased since they have been used the first time in particle physics for tracking purposes. In accordance with this development the Institute of High Energy Physics of the Austrian Academy of Sciences (HEPHY) and the European semiconductor manufacturer Infineon Technologies Austria AG engaged in a cooperation to develop prototype p-on-n silicon strip sensors. The sensors of two independent batches with slightly varying production processes are evaluated. To investigate their performance, modules have been assembled with an analogue readout chip (APV25) and operated in an electron beam test. An already well-studied problem of poorly isolated strips, restricted to a small region of the sensor could be further investigated at one sensor and has proven to be cured at the others. Therefore charge sharing effects and their dependency on the bias voltage have been investigated on different regions of the sensors. Furthermore the recorded data of the modules, including one gamma irradiated, document the functionality of the devices

  20. Failure analysis concepts for microelectronics technologies and manufacturing of the future

    Science.gov (United States)

    Boit, Christian; Weiland, Rainer; Olbrich, A.; Muehle, U.; Simmnacher, B.

    2001-04-01

    The answer of Failure Analysis (F/A) to the technological innovations in microelectronics in the past was: with a slight evolution (i.e. optical microscope -- SEM -- TEM) we can do it. The innovations around the corner today enforce a paradigm shift in F/A to match the challenges by increasing wafer sizes, decreasing feature sizes and new package concepts. This presentation highlights various aspects of the small feature size time bomb (how TEM becomes mandatory and obsolete synchronously), the completely new inline F/A approach on productive wafers inevitable from 300 nm wafer size on, and the reinvention of electrical fail site localization techniques, now from the backside of the die due to new package concepts and innumerable metal layers. Even if F/A manages to overcome all these challenges from a technical point of view, the according revolution in terms of methods, skills and tools implies a cost explosion unless F/A becomes an active part in the business process and the projects of development and manufacturing. This holds even under the assumption that a rising number of today's F/A problems will be solved by modern testing techniques. Only this way F/A can deliver custom-tailored solutions that are optimized in productivity and time to result, and that fulfill the cost reduction requirements of semiconductor products.

  1. Effect of information technology on value chain of Iranian Exemplary Exporter Manufacturer Companies

    Directory of Open Access Journals (Sweden)

    mahmood naderi beni

    2013-03-01

    Full Text Available The fast and ever-increasing progress in Information Technology (IT area and their role in helping firms to improve their performance cause them to depend on IT day by day. At the same time, few studies have been conducted in this area, so the mechanism and effects of IT on Iranian firm’s value chains are unclear. Therefore, it is necessary to study in this area. This study is a descriptive survey. The statistical population of the research is composed of Iranian exemplary exporter manufacturer companies that have elected since 2004 to 2010 by the Trade Promotion Organization of Iran. Data gathering instrument was questionnaire and path analysis technique has been used for the purpose of data analysis. The research has three main hypotheses and three sub-hypotheses. The conceptual research model has four variables including: IT process infrastructure, the speed desirability of value chain process and the cost and accuracy of that. The findings indicate that the IT process infrastructure of firms has directly effect on the speed and accuracy of the value chin processes. Moreover, IT has indirect effect on cost desirability of value chain processes through effecting on speed of that value chain.

  2. Self Aligned Cell: Scaling Up Manufacture of a Cost Effective Cell Architecture for Multicrystalline Silicon Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Gabor, A.; van Mierlo, F.

    2010-12-01

    Two areas of technology for fabrication of higher efficiency Si-wafer solar cells were addressed: (1) the formation of structured texturing that is an improvement over the industry-standard isotexture process for multicrystalline wafers. (2) the formation of fine line (<50 micron) metallization seed layers in a self-aligned manner where the fingers can be automatically and perfectly lined up to a selective emitter and where expensive silver screen printing paste can be mostly replaced by plating up the seed layers with silver or copper. The benefits are: a) Lower reflectivity , b) Decoupling the performance of the texture from the saw damage, thus allowing for better advances in sawing and a more robust wet process. 1366 Technologies developed 2 pilot machines for 1) deposition and patterning of low-cost resist layers to enable simultaneous Honeycomb front texturing and groove formation for multicrystalline Si wafers, and 2) fine-line dispensing of materials that are self aligned to the grooves.

  3. Advanced Manufacturing Technologies (AMT): Additive Construction for Mobile Emplacement (ACME) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Conventional methods of manufacturing automation do not lend themselves to construction of large structures with internal features, especially if various other...

  4. Bio-inspired solutions in design for manufacturing of micro fuel cell

    DEFF Research Database (Denmark)

    Omidvarnia, Farzaneh; Hansen, Hans Nørgaard

    2014-01-01

    In this paper the application of biomimetic principles in design for micro manufacturing is investigated. A micro direct methanol fuel cell (μDMFC) for power generation in hearing aid devices is considered as the case study in which the bioinspired functions are replicated. The focus in design of μ......DMFC is mainly on solving the problem of fuel delivery to the anode in the fuel chamber. Two different biological phenomena are suggested, and based on them different bioinspired solutions are proposed and modeled in CAD software. Considering the manufacturing constraints and design specifications......, the advantages and drawbacks of each proposed solution is discussed. Finally, the most feasible idea, in terms of manufacturing and function, is selected and an initial experimental verification is carried out....

  5. Regulatory requirements in the good manufacturing practice production of an epithelial cell graft for ocular surface reconstruction.

    Science.gov (United States)

    Sheth-Shah, Radhika; Vernon, Amanda J; Seetharaman, Shankar; Neale, Michael H; Daniels, Julie T

    2016-04-01

    In the past decade, stem cell therapy has been increasingly employed for the treatment of various diseases. Subsequently, there has been a great interest in the manufacture of stem cells under good manufacturing practice, which is required by law for their use in humans. The cells for sight Stem Cell Therapy Research Unit, based at UCL Institute of Ophthalmology, delivers somatic cell-based and tissue-engineered therapies to patients suffering from blinding eye diseases at Moorfields Eye Hospital (London, UK). The following article is based on our experience in the conception, design, construction, validation and manufacturing within a good manufacturing practice manufacturing facility based in the UK. As such the regulations can be extrapolated to the 28 members stated within the EU. However, the principles may have a broad relevance outside the EU.

  6. Hybrid fuel cells technologies for electrical microgrids

    Energy Technology Data Exchange (ETDEWEB)

    San Martin, Jose Ignacio; Zamora, Inmaculada; San Martin, Jose Javier; Aperribay, Victor; Eguia, Pablo [Department of Electrical Engineering, University of the Basque Country, Alda. de Urquijo, s/n, 48013 Bilbao (Spain)

    2010-09-15

    Hybrid systems are characterized by containing two or more electrical generation technologies, in order to optimize the global efficiency of the processes involved. These systems can present different operating modes. Besides, they take into account aspects that not only concern the electrical and thermal efficiencies, but also the reduction of pollutant emissions. There is a wide range of possible configurations to form hybrid systems, including hydrogen, renewable energies, gas cycles, vapour cycles or both. Nowadays, these technologies are mainly used for energy production in electrical microgrids. Some examples of these technologies are: hybridization processes of fuel cells with wind turbines and photovoltaic plants, cogeneration and trigeneration processes that can be configured with fuel cell technologies, etc. This paper reviews and analyses the main characteristics of electrical microgrids and the systems based on fuel cells for polygeneration and hybridization processes. (author)

  7. High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, H.

    2011-03-01

    Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

  8. Strategies for selecting recombinant CHO cell lines for cGMP manufacturing: improving the efficiency of cell line generation.

    Science.gov (United States)

    Porter, Alison J; Racher, Andrew J; Preziosi, Richard; Dickson, Alan J

    2010-01-01

    Transfectants with a wide range of cellular phenotypes are obtained during the process of cell line generation. For the successful manufacture of a therapeutic protein, a means is required to identify a cell line with desirable growth and productivity characteristics from this phenotypically wide-ranging transfectant population. This identification process is on the critical path for first-in-human studies. We have stringently examined a typical selection strategy used to isolate cell lines suitable for cGMP manufacturing. One-hundred and seventy-five transfectants were evaluated as they progressed through the different assessment stages of the selection strategy. High producing cell lines, suitable for cGMP manufacturing, were identified. However, our analyses showed that the frequency of isolation of the highest producing cell lines was low and that ranking positions were not consistent between each assessment stage, suggesting that there is potential to improve upon the strategy. Attempts to increase the frequency of isolation of the 10 highest producing cell lines, by in silico analysis of alternative selection strategies, were unsuccessful. We identified alternative strategies with similar predictive capabilities to the typical selection strategy. One alternate strategy required fewer cell lines to be progressed at the assessment stages but the stochastic nature of the models means that cell line numbers are likely to change between programs. In summary, our studies illuminate the potential for improvement to this and future selection strategies, based around use of assessments that are more informative or that reduce variance, paving the way to improved efficiency of generation of manufacturing cell lines. PMID:20623584

  9. High Efficiency Polymer Solar Cells Technologies

    Institute of Scientific and Technical Information of China (English)

    Abdrhman M G; LI Hang-quan; ZHANG Li-ye; ZHOU Bing

    2006-01-01

    The conjugated polymer-based solar cell is one of the most promising devices in search of sustainable, renewable energy sources in last decade. It is the youngest field in organic solar cell research and also is certainly the fastest growing one at the moment. In addition, the key factor for polymer-based solar cells with high-efficiency is to invent new materials. Organic solar cell has attracted significant researches and commercial interest due to its low cost in fabrication and flexibility in applications. However, they suffer from relatively low conversion efficiency. The summarization of the significance and concept of high efficiency polymer solar cell technologies are presented.

  10. Technology of mammalian cell encapsulation

    NARCIS (Netherlands)

    Uludag, H; De Vos, P; Tresco, PA

    2000-01-01

    Entrapment of mammalian cells in physical membranes has been practiced since the early 1950s when it was originally introduced as a basic research tool. The method has since been developed based on the promise of its therapeutic usefulness in tissue transplantation. Encapsulation physically isolates

  11. Development of Technology and Equipment of the Automated Laser Welding for Manufacturing Heat Exchanger Details of Marine Engines

    Directory of Open Access Journals (Sweden)

    Shelyagin, V.D.

    2014-09-01

    Full Text Available Based on the developed automated laser welding technology for flat tubes of copper-nickel alloys laser welding complex technological equipment, which can be applied on the enterprises of machine building, aerospace, shipbuilding and automobile industries, was designed and created. To control the integrity of welded flat tubes a technique, which consists in testing sample pressure and finding defective sections by laser interferometry in the automated mode, was developed. Specialized welding head was designed and manufactured for the industrial use of the developed laser welding technology.

  12. Solid Oxide Fuel Cell Technology Stationary Power Application Project

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Pierre

    2009-03-05

    The objectives of this program were to: (1) Develop a reliable, cost-effective, and production-friendly technique to apply the power-enhancing layer at the interface of the air electrode and electrolyte of the Siemens SOFC; (2) Design, build, install, and operate in the field two 5 kWe SOFC systems fabricated with the state-of-the-art cylindrical, tubular cell and bundle technology and incorporating advanced module design features. Siemens successfully demonstrated, first in a number of single cell tests and subsequently in a 48-cell bundle test, a significant power enhancement by employing a power-enhancing composite interlayer at the interface between the air electrode and electrolyte. While successful from a cell power enhancement perspective, the interlayer application process was not suitable for mass manufacturing. The application process was of inconsistent quality, labor intensive, and did not have an acceptable yield. This program evaluated the technical feasibility of four interlayer application techniques. The candidate techniques were selected based on their potential to achieve the technical requirements of the interlayer, to minimize costs (both labor and material), and suitably for large-scale manufacturing. Preliminary screening, utilizing lessons learned in manufacturing tubular cells, narrowed the candidate processes to two, ink-roller coating (IRC) and dip coating (DC). Prototype fixtures were successfully built and utilized to further evaluate the two candidate processes for applying the interlayer to the high power density Delta8 cell geometry. The electrical performance of interlayer cells manufactured via the candidate processes was validated. Dip coating was eventually selected as the application technique of choice for applying the interlayer to the high power Delta8 cell. The technical readiness of the DC process and product quality was successfully and repeatedly demonstrated, and its throughput and cost are amenable to large scale

  13. Technology advancement for integrative stem cell analyses.

    Science.gov (United States)

    Jeong, Yoon; Choi, Jonghoon; Lee, Kwan Hyi

    2014-12-01

    Scientists have endeavored to use stem cells for a variety of applications ranging from basic science research to translational medicine. Population-based characterization of such stem cells, while providing an important foundation to further development, often disregard the heterogeneity inherent among individual constituents within a given population. The population-based analysis and characterization of stem cells and the problems associated with such a blanket approach only underscore the need for the development of new analytical technology. In this article, we review current stem cell analytical technologies, along with the advantages and disadvantages of each, followed by applications of these technologies in the field of stem cells. Furthermore, while recent advances in micro/nano technology have led to a growth in the stem cell analytical field, underlying architectural concepts allow only for a vertical analytical approach, in which different desirable parameters are obtained from multiple individual experiments and there are many technical challenges that limit vertically integrated analytical tools. Therefore, we propose--by introducing a concept of vertical and horizontal approach--that there is the need of adequate methods to the integration of information, such that multiple descriptive parameters from a stem cell can be obtained from a single experiment.

  14. Current information technology needs of small to medium sized apparel manufacturers and contractors

    Energy Technology Data Exchange (ETDEWEB)

    Wipple, C.; Vosti, E.

    1997-11-01

    This report documents recent efforts of the American Textile Partnership (AMTEX) Demand Activated Manufacturing Architecture (DAMA) Project to address needs that are characterized of small to medium sized apparel manufactures and contractors. Background on the AMTEX/DAMA project and objectives for this specific efforts are discussed.

  15. V1.6 Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Leavitt, Mark; Lam, Patrick; Nelson, Karl M.; johnson, Brice A.; Johnson, Kenneth I.; Alvine, Kyle J.; Ruiz, Antonio; Adams, Jesse

    2012-10-01

    The goal of this project is to develop an innovative manufacturing process for Type IV high-pressure hydrogen storage vessels, with the intent to significantly lower manufacturing costs. Part of the development is to integrate the features of high precision AFP and commercial FW. Evaluation of an alternative fiber to replace a portion of the baseline fiber will help to reduce costs further.

  16. Concentrated fed-batch cell culture increases manufacturing capacity without additional volumetric capacity.

    Science.gov (United States)

    Yang, William C; Minkler, Daniel F; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming

    2016-01-10

    Biomanufacturing factories of the future are transitioning from large, single-product facilities toward smaller, multi-product, flexible facilities. Flexible capacity allows companies to adapt to ever-changing pipeline and market demands. Concentrated fed-batch (CFB) cell culture enables flexible manufacturing capacity with limited volumetric capacity; it intensifies cell culture titers such that the output of a smaller facility can rival that of a larger facility. We tested this hypothesis at bench scale by developing a feeding strategy for CFB and applying it to two cell lines. CFB improved cell line A output by 105% and cell line B output by 70% compared to traditional fed-batch (TFB) processes. CFB did not greatly change cell line A product quality, but it improved cell line B charge heterogeneity, suggesting that CFB has both process and product quality benefits. We projected CFB output gains in the context of a 2000-L small-scale facility, but the output was lower than that of a 15,000-L large-scale TFB facility. CFB's high cell mass also complicated operations, eroded volumetric productivity, and showed our current processes require significant improvements in specific productivity in order to realize their full potential and savings in manufacturing. Thus, improving specific productivity can resolve CFB's cost, scale-up, and operability challenges.

  17. Concentrated fed-batch cell culture increases manufacturing capacity without additional volumetric capacity.

    Science.gov (United States)

    Yang, William C; Minkler, Daniel F; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming

    2016-01-10

    Biomanufacturing factories of the future are transitioning from large, single-product facilities toward smaller, multi-product, flexible facilities. Flexible capacity allows companies to adapt to ever-changing pipeline and market demands. Concentrated fed-batch (CFB) cell culture enables flexible manufacturing capacity with limited volumetric capacity; it intensifies cell culture titers such that the output of a smaller facility can rival that of a larger facility. We tested this hypothesis at bench scale by developing a feeding strategy for CFB and applying it to two cell lines. CFB improved cell line A output by 105% and cell line B output by 70% compared to traditional fed-batch (TFB) processes. CFB did not greatly change cell line A product quality, but it improved cell line B charge heterogeneity, suggesting that CFB has both process and product quality benefits. We projected CFB output gains in the context of a 2000-L small-scale facility, but the output was lower than that of a 15,000-L large-scale TFB facility. CFB's high cell mass also complicated operations, eroded volumetric productivity, and showed our current processes require significant improvements in specific productivity in order to realize their full potential and savings in manufacturing. Thus, improving specific productivity can resolve CFB's cost, scale-up, and operability challenges. PMID:26521697

  18. Plant Cell-Based Recombinant Antibody Manufacturing with a 200 L Orbitally Shaken Disposable Bioreactor.

    Science.gov (United States)

    Raven, Nicole; Schillberg, Stefan; Rasche, Stefan

    2016-01-01

    Tobacco BY-2 cells are an attractive platform for the manufacture of a variety of biopharmaceutical proteins, including antibodies. Here, we describe the scaled-up cultivation of human IgG-secreting BY-2 cells in a 200 L orbitally shaken disposable bioreactor, resulting in cell growth and recombinant protein yields that are proportionately comparable with those obtained from cultivations in 500 mL shake flasks. Furthermore, we present an efficient downstream process for antibody recovery from the viscous spent culture medium using expanded bed adsorption (EBA) chromatography. PMID:26614289

  19. Lessons learned during the development and transfer of technology related to a new Hib conjugate vaccine to emerging vaccine manufacturers.

    Science.gov (United States)

    Hamidi, A; Boog, C; Jadhav, S; Kreeftenberg, H

    2014-07-16

    The incidence of Haemophilus Influenzae type b (Hib) disease in developed countries has decreased since the introduction of Hib conjugate vaccines in their National Immunization Programs (NIP). In countries where Hib vaccination is not applied routinely, due to limited availability and high cost of the vaccines, invasive Hib disease is still a cause of mortality. Through the development of a production process for a Hib conjugate vaccine and related quality control tests and the transfer of this technology to emerging vaccine manufacturers in developing countries, a substantial contribution was made to the availability and affordability of Hib conjugate vaccines in these countries. Technology transfer is considered to be one of the fastest ways to get access to the technology needed for the production of vaccines. The first Hib conjugate vaccine based on the transferred technology was licensed in 2007, since then more Hib vaccines based on this technology were licensed. This paper describes the successful development and transfer of Hib conjugate vaccine technology to vaccine manufacturers in India, China and Indonesia. By describing the lessons learned in this process, it is hoped that other technology transfer projects can benefit from the knowledge and experience gained.

  20. Development and application of high-precision laser welding technology for manufacturing Ti alloy frames of glasses

    International Nuclear Information System (INIS)

    The research and development efforts of the high precision laser welding technology for manufacturing titanium alloy frames of glasses. For this purpose, laser welding device with the high beam quality is designed and fabricated, which consists of a optical fiber transmission part, a welding monitoring part and a welding controller. The welding nozzle and holding fixtures for manufacturing titanium and shape memory alloy frames of glasses. Titanium and shape memory alloy frames of glasses to be developed were experimentally manufactured by utilizing the laser welding using the optical fiber of GI 400 μm. As a result, the seam welding with the bead width of 0.3 mm or less and the weld penetration of 0.3-0.4mm could be accomplished. The fundamental technology was established through design of welding jigs with a variety of configurations and adequate welding conditions. Also, for the purpose to enable the companies participating in this project to commercialize the developed technology acceleratedly, a training program for the engineers belonging to such companies was conducted along with the technology transfer through joint experiments with the engineers. (author)

  1. Assimilation Patterns in the Use of Advanced Manufacturing Technologies in SMEs: Exploring their Effects on Product Innovation Performance

    Directory of Open Access Journals (Sweden)

    Sylvestre Uwizeyemungu

    2015-10-01

    Full Text Available Manufacturing small and medium-sized enterprises (SMEs are more and more adopting advanced manufacturing technologies (AMT aimed at fostering product innovation process, improving product quality, streamlining the production process, and gaining productivity. In this study, we analyze the relationship between AMT proficiency levels in manufacturing SMEs and product innovation performance. Using data from 616 manufacturing SMEs, and considering a wide range of various AMT (20 different types of AMT grouped into 5 categories, we derived three AMT assimilation patterns through a cluster analysis procedure combining hierarchical and non-hierarchical clustering algorithms. The analysis of the relationship between AMT assimilation patterns and product innovation performance shows a rather unexpected picture: in spite of the existence of clearly distinct patterns of AMT assimilation, we find no significant relationship between any pattern and product innovation performance. Instead, we find the organizational and environmental context of SMEs to be more determinant for product innovation performance than any of the AMT assimilation patterns. From a practical point of view, this study indicates that manufacturing SMEs managers interested in fostering their innovation capabilities through AMT assimilation need to be aware of the contingency effects of their organizational size, age, and sector of activity.

  2. EPR 蒸汽发生器制造技术%Manufacture Technology of the EPR Steam Generator

    Institute of Scientific and Technical Information of China (English)

    景军涛; 江才林; 罗吾希; 郑晨

    2013-01-01

    根据欧洲第三代先进压水堆型( EPR)核电蒸汽发生器的制造过程中积累的经验,并结合其他压水堆型核电蒸汽发生器的制造经验,介绍了EPR蒸汽发生器的结构特点,并分别对制造过程中的一些关键制造技术,如管板一次侧面堆焊、管板深孔钻、内套筒的装配和水室封头的制造等进行详细阐述,为后续压水堆型核电蒸汽发生器的制造提供经验参考。%According to the manufacture experience of evolutionary power reactor ( EPR) steam generator ( third generation reactor type ) and combining with the manufacture experience other pressurized water reactor(PWR) steam generator,the structure characteristic of EPR steam generator was introduced .Some key technology during EPR steam generator manufacture , such as tubesheet primary side cladding , tubesheet deep drilling , installation of the bundle wrapper , manufacture of the channel head and so on were also introduced .It provides some reference for manufacturing the PWR steam generator .

  3. The Integration of Technology and Management in the Competitiveness of the United States Short Staple Yarn Manufacturing Industry

    Directory of Open Access Journals (Sweden)

    Suvalee T. Tangboonritruthai

    2014-01-01

    Full Text Available The purpose of this research was to investigate whether a balance of technology and management could be used in order to sustain a viable United States (US short staple yarn production industry. The methodology used in this study consisted of primary research comprising two phases. The first phase consisted of interviews with industry executives in order to find out what US yarn manufacturers think are the important factors in maintaining a competitive yarn industry. The second phase was an online survey with industry customers in order to find out why weavers and knitters buy from US manufacturers. Results reveal that US manufacturers have competitive advantages over other countries because of skill level of workforce, variety of products offered, customer relationships, innovation and technology, and product quality. In order to keep these competitive advantages, “technology” and “management” strategies should be implemented. Results also reveal the areas in which the US yarn manufacturers should focus their resources in order to stay competitive or indeed survive.

  4. Smart Manufacturing.

    Science.gov (United States)

    Davis, Jim; Edgar, Thomas; Graybill, Robert; Korambath, Prakashan; Schott, Brian; Swink, Denise; Wang, Jianwu; Wetzel, Jim

    2015-01-01

    Historic manufacturing enterprises based on vertically optimized companies, practices, market share, and competitiveness are giving way to enterprises that are responsive across an entire value chain to demand dynamic markets and customized product value adds; increased expectations for environmental sustainability, reduced energy usage, and zero incidents; and faster technology and product adoption. Agile innovation and manufacturing combined with radically increased productivity become engines for competitiveness and reinvestment, not simply for decreased cost. A focus on agility, productivity, energy, and environmental sustainability produces opportunities that are far beyond reducing market volatility. Agility directly impacts innovation, time-to-market, and faster, broader exploration of the trade space. These changes, the forces driving them, and new network-based information technologies offering unprecedented insights and analysis are motivating the advent of smart manufacturing and new information technology infrastructure for manufacturing.

  5. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES

    Energy Technology Data Exchange (ETDEWEB)

    Yakovleva, Marina

    2012-12-31

    FMC Lithium Division has successfully completed the project “Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries”. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

  6. Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries

    Energy Technology Data Exchange (ETDEWEB)

    Atreya, Arvind

    2013-04-15

    The purpose of this research was to develop and test a transformational combustion technology for high temperature furnaces to reduce the energy intensity and carbon footprint of U.S. manufacturing industries such as steel, aluminum, glass, metal casting, and petroleum refining. A new technology based on internal and/or external Flue Gas Recirculation (FGR) along with significant enhancement in flame radiation was developed. It produces "Radiative Flameless Combustion (RFC)" and offers tremendous energy efficiency and pollutant reduction benefits over and above the now popular "flameless combustion." It will reduce the energy intensity (or fuel consumption per unit system output) by more than 50% and double the furnace productivity while significantly reducing pollutants and greenhouse gas emissions (10^3 times reduction in NOx and 10 times reduction in CO & hydrocarbons and 3 times reduction in CO2). Product quality improvements are also expected due to uniform radiation, as well as, reduction in scale/dross formation is expected because of non-oxidative atmosphere. RFC is inexpensive, easy to implement, and it was successfully tested in a laboratory-scale furnace at the University of Michigan during the course of this work. A first-ever theory with gas and particulate radiation was also developed. Numerical programs were also written to design an industrial-scale furnace. Nine papers were published (or are in the process of publication). We believe that this early stage research adequately proves the concept through laboratory experiments, modeling and computational models. All this work is presented in the published papers. Important conclusions of this work are: (1) It was proved through experimental measurements that RFC is not only feasible but a very beneficial technology. (2) Theoretical analysis of RFC was done in (a) spatially uniform strain field and (b) a planar momentum jet where the strain rate is neither prescribed nor uniform. Four important non

  7. Research report for fiscal 1998. Research into the trends of low-carbon automotive fuel manufacturing technologies; 1998 nendo jidoshayo teitanso nenryo no seizo gijutsu doko chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Studies are made of optimum materials and methods for manufacturing low-carbon fuels for reduction in greenhouse gas emissions. When their thermal dynamic limits and the technological maturity are considered, it is inferred that no extensive improvement will be achieved by merely improving on the efficiency of the existing fuels. The use of various high-efficiency driving power sources utterly different in mechanism from the conventional ones, such as those for fuel cell-powered automobiles, and the promotion of the use of low-carbon fuels such as methanol and methane for all kinds of driving power sources including those for the said fuel cell-powered automobiles, will become necessary. The use will also be necessary of recyclable materials. The biomass resources, in particular, since they absorb CO2 gas in their growing process by virtue of photosynthesis, may be said to be free of CO2 gas emissions. They have their own problems, however, which involve the economy of energy consumed for their production, harvesting, transportation, and conversion into fuels. It is therefore required that their whole life cycle be studied before their greenhouse gas reduction effect may be correctly assessed. The quantities of resources available for the production of automotive low-carbon fuels, manufacturing technologies, etc., are first of all put in order for easy perusal. An effective way is assessed for the whole including the life cycle. (NEDO)

  8. Surface and Electrical Characterization of Ag/AgCl Pseudo-Reference Electrodes Manufactured with Commercially Available PCB Technologies

    Directory of Open Access Journals (Sweden)

    Despina Moschou

    2015-07-01

    Full Text Available Lab-on-Chip is a technology that could potentially revolutionize medical Point-of-Care diagnostics. Considerable research effort is focused towards innovating production technologies that will make commercial upscaling financially viable. Printed circuit board manufacturing techniques offer several prospects in this field. Here, we present a novel approach to manufacturing Printed Circuit Board (PCB-based Ag/AgCl reference electrodes, an essential component of biosensors. Our prototypes were characterized both structurally and electrically. Scanning Electron Microscopy (SEM and X-Ray Photoelectron Spectroscopy (XPS were employed to evaluate the electrode surface characteristics. Electrical characterization was performed to determine stability and pH dependency. Finally, we demonstrate utilization along with PCB pH sensors, as a step towards a fully integrated PCB platform, comparing performance with discrete commercial reference electrodes.

  9. 2008 Fuel Cell Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    DOE

    2010-06-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  10. 2008 Fuel Cell Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, B. [Breakthrough Technologies Inst., Washington, DC (United States)

    2010-06-30

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  11. Resource-saving technology for manufacturing billets for piston’s rings

    Directory of Open Access Journals (Sweden)

    A. N. Krutilin

    2010-10-01

    Full Text Available Piston’s rings are one of the most critical parts of heavy-duty engines for wear-work in conditions of prolonged exposure of alternating loads and high temperatures. Currently in the world production of billets for piston’s rings is dominated by the two methods of casting: production of individual and oiling billets of gray and ductile cast iron in green-sand mold and shell mold and centrifugal casting method (intended primarily for oiling billets of ductile iron; the technology for individual production billets for piston’s rings with a diameter up to 250 mm, from 250 to 450 mm with individual and oiling ways, over 450 mm - preference of oiling billet. The best parameters of physical-mechanical and operational characteristics piston’s rings are in the case of manufacture of billets to the maximum extent approaching the configuration to the finished product. The rings made of shaped billets are characterized by uniform distribution of properties from the perimeter, provide a given diagram of pressures and full fit to the cylinder. Because of deficiencies of traditional methods of casting, continuous quality requirements for billets, the need for economy of material, fuel and energy resources, are finding new progressive technological processes of production of high-quality billets for piston’s rings. One of the most promising for piston rings billet is a method of casting consists of immersing the sand molds into the melt. It is interesting idea, expressed by A. Sutherland and subsequently patented in several countries in the way of casting method, called "immersion pouring technology" (ICT-Immersion Casting Technique [1]. Experiments, conducted in the laboratory of the Belarusian National Technical University, have identified significant shortcomings of immersion method of casting. When forms are immersing, have an intensive gassing in molten metal, and freezing of the metal on the out surface of the form. But despite some

  12. CONTROL TECHNOLOGY OVERVIEW REPORT: CFC-11 EMISSIONS FROM FLEXIBLE POLYURETHANE FOAM MANUFACTURING

    Science.gov (United States)

    The report gives results of an engineering evaluation of technical options to reduce chlorofluorocarbon (CFC) emissions from flexible slabstock and molded polyurethane foam manufacturing plants. Among the technical options studied were recovery and recycle of CFC-11, alternative ...

  13. Application of FDM three-dimensional printing technology in the digital manufacture of custom edentulous mandible trays

    OpenAIRE

    Hu Chen; Xu Yang; Litong Chen; Yong Wang; Yuchun Sun

    2016-01-01

    The objective was to establish and evaluate a method for manufacture of custom trays for edentulous jaws using computer aided design and fused deposition modeling (FDM) technologies. A digital method for design the custom trays for edentulous jaws was established. The tissue surface data of ten standard mandibular edentulous plaster models, which was used to design the digital custom tray in a reverse engineering software, were obtained using a 3D scanner. The designed tray was printed by a 3...

  14. Rapid Manufacturing Technology for Precision Casting MouldBased on Selective Laser Sintering

    Institute of Scientific and Technical Information of China (English)

    白培康; 程军; 王建宏; 刘斌

    2004-01-01

    The selective laser sintering (SLS) technique is introduced. A new type of rapid prototyping material (PCPI) has been developed, which can be used to produce precision casting mould directly and rapidly from a CAD model by the selective sintering of successive layers of PCPI with a laser beam. In comparison with conventional manufacturing methods, prominent features of this technique include high forming rate, low development cost and good flexibility. The rapid manufacturing process of precision casting mould based on SLS is discussed.

  15. Technical efficiency, technological change and total factor productivity growth in Malaysian manufacturing sector

    OpenAIRE

    Idris JAJRI; Ismail, Rahmah

    2006-01-01

    The manufacturing sector is becoming more important for the Malaysia economy. The contribution of output and employment from this sector is continuously increasing since the 1980 an, except for certain period when an economy experiences recession. Viewing from its capacity to spearhead economic growth the government has given emphasis to the manufacturing sector in achieving industrialized nation by year 2020. It is a claim that productivity for this sector had not yet achieved optima level a...

  16. 2007 Fuel Cell Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    McMurphy, K.

    2009-07-01

    The fuel cell industry, which has experienced continued increases in sales, is an emerging clean energy industry with the potential for significant growth in the stationary, portable, and transportation sectors. Fuel cells produce electricity in a highly efficient electrochemical process from a variety of fuels with low to zero emissions. This report describes data compiled in 2008 on trends in the fuel cell industry for 2007 with some comparison to two previous years. The report begins with a discussion of worldwide trends in units shipped and financing for the fuel cell industry for 2007. It continues by focusing on the North American and U.S. markets. After providing this industry-wide overview, the report identifies trends for each of the major fuel cell applications -- stationary power, portable power, and transportation -- including data on the range of fuel cell technologies -- polymer electrolyte membrane fuel cell (PEMFC), solid oxide fuel cell (SOFC), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), phosphoric acid fuel cell (PAFC), and direct-methanol fuel cell (DMFC) -- used for these applications.

  17. Isolation of Human Amnion Epithelial Cells According to Current Good Manufacturing Procedures.

    Science.gov (United States)

    Gramignoli, Roberto; Srinivasan, Raghuraman C; Kannisto, Kristina; Strom, Stephen C

    2016-01-01

    Different cell types can be isolated from human placental tissues, and some have been reported to retain phenotypic plasticity and characteristics that make them a promising source of cells for regenerative medicine. Among these are human amnion epithelial cells (hAECs). Adoption of current good manufacturing practices (cGMP) and enhanced quality control is essential when isolating hAECs in order to deliver a safe and effective cellular product for clinical purposes. This unit describes a detailed protocol for selective isolation of hAECs from human term placenta with little to no contamination by other cell types. A method for characterizing the heterogeneity of the hAEC suspension is also provided. The resulting cell product will be useful for clinical as well as basic research applications. © 2016 by John Wiley & Sons, Inc. PMID:27171794

  18. Manufacture, integration and demonstration of polymer solar cells in a lamp for the Lighting Africa initiative

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Damgaard Nielsen, Torben; Fyenbo, Jan;

    2010-01-01

    Semitransparent flexible polymer solar cells were manufactured in a full roll-to-roll process under ambient conditions. After encapsulation a silver based circuit was printed onto the back side of the polymer solar cell module followed by sheeting and application of discrete components and vias...... mm. A hole with a ring was punched in one corner to enable mechanical fixation or tying. The lamp has two states. In the charging state it has a completely flat outline and will charge the battery when illuminated from either side while the front side illumination is preferable. When used as a lamp...

  19. Isolation and Manufacture of Clinical-Grade Bone Marrow-Derived Human Mesenchymal Stromal Cells.

    Science.gov (United States)

    Miller, Renuka P; Hanley, Patrick J

    2016-01-01

    Mesenchymal stromal cells (MSCs) are multipotent cells with both regenerative and immunomodulatory capacities. These unique properties make them appealing as a biologic, with multiple phase 1-3 clinical trials currently testing their safety and efficacy. Although expanding MSCs does not require extensive manipulation, expanding MSCs for use in clinical trials does require the knowledge and safety that are delineated in current good manufacturing practices (GMPs). Here we briefly detail the characteristics of MSCs and considerations for expanding them for clinical use. We then include a step-by-step protocol for expanding MSCs for early phase clinical trials, with important notes to consider during the expansion of these MSCs. PMID:27236680

  20. Plasma monitoring and PECVD process control in thin film silicon-based solar cell manufacturing

    Directory of Open Access Journals (Sweden)

    Gabriel Onno

    2014-02-01

    Full Text Available A key process in thin film silicon-based solar cell manufacturing is plasma enhanced chemical vapor deposition (PECVD of the active layers. The deposition process can be monitored in situ by plasma diagnostics. Three types of complementary diagnostics, namely optical emission spectroscopy, mass spectrometry and non-linear extended electron dynamics are applied to an industrial-type PECVD reactor. We investigated the influence of substrate and chamber wall temperature and chamber history on the PECVD process. The impact of chamber wall conditioning on the solar cell performance is demonstrated.

  1. Perovskite solar cells: an emerging photovoltaic technology

    Directory of Open Access Journals (Sweden)

    Nam-Gyu Park

    2015-03-01

    Full Text Available Perovskite solar cells based on organometal halides represent an emerging photovoltaic technology. Perovskite solar cells stem from dye-sensitized solar cells. In a liquid-based dye-sensitized solar cell structure, the adsorption of methylammonium lead halide perovskite on a nanocrystalline TiO2 surface produces a photocurrent with a power conversion efficiency (PCE of around 3–4%, as first discovered in 2009. The PCE was doubled after 2 years by optimizing the perovskite coating conditions. However, the liquid-based perovskite solar cell receives little attention because of its stability issues, including instant dissolution of the perovskite in a liquid electrolyte. A long-term, stable, and high efficiency (∼10% perovskite solar cell was developed in 2012 by substituting the solid hole conductor with a liquid electrolyte. Efficiencies have quickly risen to 18% in just 2 years. Since PCE values over 20% are realistically anticipated with the use of cheap organometal halide perovskite materials, perovskite solar cells are a promising photovoltaic technology. In this review, the opto-electronic properties of perovskite materials and recent progresses in perovskite solar cells are described. In addition, comments on the issues to current and future challenges are mentioned.

  2. Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules

    DEFF Research Database (Denmark)

    Andersen, Thomas Rieks; Dam, Henrik Friis; Hösel, Markus;

    2014-01-01

    Inline printing and coating methods have been demonstrated to enable a high technical yield of fully roll-to-roll processed polymer tandem solar cell modules. We demonstrate generality by employing different material sets and also describe how the ink systems must be carefully co-developed in order...... the manufacture of completely functional devices in exceptionally high yields. Critical to the ink and process development is a carefully chosen technology transfer to industry method where first a roll coater is employed enabling contactless stack build up, followed by a small roll-to-roll coater fitted to an X......-ray machine enabling in situ studies of wet ink deposition and drying mechanisms, ultimately elucidating how a robust inline processed recombination layer is key to a high technical yield. Finally, the transfer to full roll-to-roll processing is demonstrated....

  3. Single-cell technologies in environmental omics

    KAUST Repository

    Kodzius, Rimantas

    2015-10-22

    Environmental studies are primarily done by culturing isolated microorganisms or by amplifying and sequencing conserved genes. Difficulties understanding the complexity of large numbers of various microorganisms in an environment led to the development of techniques to enrich specific microorganisms for upstream analysis, ultimately leading to single-cell isolation and analyses. We discuss the significance of single-cell technologies in omics studies with focus on metagenomics and metatranscriptomics. We propose that by reducing sample heterogeneity using single-cell genomics, metaomic studies can be simplified.

  4. Manufacturing and Characterization of a Thermoelectric Energy Harvester Using the CMOS-MEMS Technology

    Directory of Open Access Journals (Sweden)

    Shih-Wen Peng

    2015-10-01

    Full Text Available The fabrication and characterization of a thermoelectric energy harvester using the complementary metal oxide semiconductor (CMOS-microelectromechanical system (MEMS technology were presented. The thermoelectric energy harvester is composed of eight circular energy harvesting cells, and each cell consists of 25 thermocouples in series. The thermocouples are made of p-type and n-type polysilicons. The output power of the energy harvester relies on the number of the thermocouples. In order to enhance the output power, the energy harvester increases the thermocouple number per area. The energy harvester requires a post-CMOS process to etch the sacrificial silicon dioxide layer and the silicon substrate to release the suspended structures of hot part. The experimental results show that the energy harvester has an output voltage per area of 0.178 mV·mm−2·K−1 and a power factor of 1.47 × 10−3 pW·mm−2·K−2.

  5. Application Research of New Type COE Pipe Manufacturing Technology%COE新型制管工艺应用研究

    Institute of Scientific and Technical Information of China (English)

    陈昌; 裴银柱; 黄克坚; 张坤鹏; 王良塑

    2016-01-01

    In order to solve the technical difficulties of small diameter submerged arc welded pipe,such as unstable quality, low efficiency etc., the manufacturing process of UOE, JCOE and HFW welded pipe were investigated comprehensively. A new kind of COE longitudinal submerged arc welded pipe manufacturing technology was developed on the basis of analyzing the steel pipe forming technology, prewelding technology and expanding technology. Actual application showed that COE technology greatly enhanced the production efficiency of small diameter submerged arc welded pipe , reduced production cost, and steel pipe forming was good,the product quality was stable, it was with good promotion prospect in the small diameter of submerged arc welding pipe manufacture.%为了解决小直径直缝埋弧焊管质量不稳定、效率低等生产技术难题,综合考察了UOE、JCOE、 HFW焊管制造工艺。在对钢管成型技术、预焊技术和扩径技术进行分析的基础上,开发出COE直缝埋弧焊管制造工艺。应用实践表明:采用COE制管工艺极大地提高了小直径埋弧焊管的生产效率,降低了生产成本,并且焊管管体成型好,产品质量稳定,在小直径埋弧焊管制造方面具有良好的推广前景。

  6. Recent development of cellular manufacturing systems

    Indian Academy of Sciences (India)

    P K Arora; A Haleem; M K Singh

    2013-06-01

    Cellular manufacturing system has been proved a vital approach for batch and job shop production systems. Group technology has been an essential tool for developing a cellular manufacturing system. The paper aims to discuss various cell formation techniques and highlights the significant research work done in past over the years and attempts to points out the gap in research.

  7. Cell-free DNA: Comparison of Technologies.

    Science.gov (United States)

    Dar, Pe'er; Shani, Hagit; Evans, Mark I

    2016-06-01

    Cell-free fetal DNA screening for Down syndrome has gained rapid acceptance over the past few years with increasing market penetration. Three main laboratory methodologies are currently used: a massive parallel shotgun sequencing (MPSS), a targeted massive parallel sequencing (t-MPS) and a single nucleotide polymorphism (SNP) based approach. Although each of these technologies has its own advantages and disadvantages, the performance of all was shown to be comparable and superior to that of traditional first-trimester screening for the detection of trisomy 21 in a routine prenatal population. Differences in performance were predominantly shown for chromosomal anomalies other than trisomy 21. Understanding the limitations and benefits of each technology is essential for proper counseling to patients. These technologies, as well as few investigational technologies described in this review, carry a great potential beyond screening for the common aneuploidies. PMID:27235906

  8. cGMP-Manufactured Human Induced Pluripotent Stem Cells Are Available for Pre-clinical and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Behnam Ahmadian Baghbaderani

    2015-10-01

    Full Text Available The discovery of induced pluripotent stem cells (iPSCs and the concurrent development of protocols for their cell-type-specific differentiation have revolutionized our approach to cell therapy. It has now become critical to address the challenges related to the generation of iPSCs under current good manufacturing practice (cGMP compliant conditions, including tissue sourcing, manufacturing, testing, and storage. Furthermore, regarding the technical challenges, it is very important to keep the costs of manufacturing and testing reasonable and solve logistic hurdles that permit the global distribution of these products. Here we describe our efforts to develop a process for the manufacturing of iPSC master cell banks (MCBs under cGMPs and announce the availability of such banks.

  9. Framework for Grid Manufacturing

    Institute of Scientific and Technical Information of China (English)

    陈笠; 邓宏; 邓倩妮; 吴振宇

    2004-01-01

    With the development of networked manufacturing, it is more and more imminent to solve problems caused by inherent limitations of network technology, such as heterogeneity, collaboration collision, and decentralized control.This paper presents a framework for grid manufacturing, which neatly combines grid technology with the infrastructure of advanced manufacturing technology.The paper studies grid-oriented knowledge description and acquisition, and constructs a distributed knowledge grid model.The paper also deals with the protocol of node description in collaborative design, and describes a distributed collaborative design model.The protocol and node technology leads to a collaborative production model for grid manufacturing.The framework for grid manufacturing offers an effective and feasible solution for the problems of networked manufacturing.The grid manufacturing will become an advanced distributed manufacturing model and promote the development of advanced manufacturing technologies.

  10. Manufacture method of a solar cell. Taiyo denchi no seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, S.; Hanabusa, A.; Arita, T.; Murosono, M.

    1993-12-24

    Conventional manufacture methods of a CdS/CdTe solar cell have problems that a blurred layer of CdTe printing and a redeposition layer of CdTe firing exist at a CdS contact surface and the contact width between the CdS film and its electrode AgIn film is required to be larger than 0.30 mm in order to reduce the contact resistance and to give a highly efficient solar cell. This invention aims to provide a manufacture method of a solar cell in which a CdS film of the window layer and a CdTe film of the optical absorption layer are stacked successively followed by the formation of a carbon film as an acceptor material on the CdTe film, and the surface of the CdS film is treated by laser irradiation by the use of a mask of the carbon film. Consequently, a clean surface is obtained between the CdS film and the electrode AgIn film so as to reduce the contact resistance and the contact width between the CdS film and the AgIn film can be reduced so that a highly efficient solar cell can be produced. 5 figs.

  11. Low-cost Electromagnetic Heating Technology for Polymer Extrusion-based Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Carter, William G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rios, Orlando [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Akers, Ronald R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Morrison, William A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-07

    To improve the flow of materials used in in polymer additive manufacturing, ORNL and Ajax Tocco created an induction system for heating fused deposition modeling (FDM) nozzles used in polymer additive manufacturing. The system is capable of reaching a temperature of 230 C, a typical nozzle temperature for extruding ABS polymers, in 17 seconds. A prototype system was built at ORNL and sent to Ajax Tocco who analyzed the system and created a finalized power supply. The induction system was mounted to a PrintSpace Altair desktop printer and used to create several test parts similar in quality to those created using a resistive heated nozzle.

  12. Effects of Computer-Aided Manufacturing Technology on Precision of Clinical Metal-Free Restorations

    OpenAIRE

    Ki-Hong Lee; In-Sung Yeo; Wu, Benjamin M.; Jae-Ho Yang; Jung-Suk Han; Sung-Hun Kim; Yang-Jin Yi; Taek-Ka Kwon

    2015-01-01

    Purpose. The purpose of this study was to investigate the marginal fit of metal-free crowns made by three different computer-aided design/computer-aided manufacturing (CAD/CAM) systems. Materials and Methods. The maxillary left first premolar of a dentiform was prepared for all-ceramic crown restoration. Thirty all-ceramic premolar crowns were made, ten each manufactured by the Lava system, Cercon, and Cerec. Ten metal ceramic gold (MCG) crowns served as control. The marginal gap of each samp...

  13. Influence of manufacturing processes on cell surface properties of probiotic strain Lactobacillus rhamnosus Lcr35®.

    Science.gov (United States)

    Nivoliez, Adrien; Veisseire, Philippe; Alaterre, Elina; Dausset, Caroline; Baptiste, Fabrice; Camarès, Olivier; Paquet-Gachinat, Marylise; Bonnet, Muriel; Forestier, Christiane; Bornes, Stéphanie

    2015-01-01

    The influence of the industrial process on the properties of probiotics, administered as complex manufactured products, has been poorly investigated. In the present study, we comparatively assessed the cell wall characteristics of the probiotic strain Lactobacillus rhamnosus Lcr35® together with three of its commercial formulations with intestinal applications. Putative secreted and transmembrane-protein-encoding genes were initially searched in silico in the genome of L. rhamnosus Lcr35®. A total of 369 candidate genes were identified which expressions were followed using a custom Lactobacillus DNA chip. Among them, 60 or 67 genes had their expression either upregulated or downregulated in the Lcr Restituo® packet or capsule formulations, compared to the native Lcr35® strain. Moreover, our data showed that the probiotic formulations (Lcr Lenio®, Lcr restituo® capsule and packet) showed a better capacity to adhere to intestinal epithelial Caco-2 cells than the native Lcr35® strain. Microbial (MATS) tests showed that the probiotic was an electron donor and that they were more hydrophilic than the native strain. The enhanced adhesion capacity of the active pharmaceutical ingredients (APIs) to epithelial Caco-2 cells and their antipathogen effect could be due to this greater surface hydrophilic character. These findings suggest that the manufacturing process influences the protein composition and the chemical properties of the cell wall. It is therefore likely that the antipathogen effect of the formulation is modulated by the industrial process. Screening of the manufactured products' properties would therefore represent an essential step in evaluating the effects of probiotic strains. PMID:25280746

  14. Rapid Deposition Technology Holds the Key for the World's Largest Manufacturer of Thin-Film Solar Modules (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-08-01

    First Solar, Inc. has been collaborating with NREL since 1991, advancing its thin-film cadmium telluride solar technology to grow from a startup company to become one of the world's largest manufacturers of solar modules, and the world's largest manufacturer of thin-film solar modules.

  15. The Colloidal Stabilization of Quantum Dots: Towards Manufacturable, Efficient Solution-Processed Solar Cells

    Science.gov (United States)

    Rollny, Lisa

    Understanding colloidal stabilization can influence the design of optoelectronic devices and enable improvements to their performance and stability. For photovoltaics, important characteristics of the active layer material are high conductivity along with a minimum of recombination centers. In order to capitalize on the benefits of solution-processed materials, it is important to minimize the number of processing steps: ideally, to achieve a low-cost solution, materials would be deposited using a single process step compatible with roll-to-roll manufacturing. Prior to this work, the highest-performing colloidal quantum dots (CQD) solar cells have relied on several deposition steps that are repeated in a layer-by-layer (LBL) fashion. The purpose of these process steps has been to remove the long insulating ligands used in synthesis and replace them with short ligands that allow electrical conduction. The large number of steps combined, typically implemented via spin coating, leads to inefficient materials utilization and fails to show a path to a manufacturable solution. In this work, the first CQD solar cells were designed, built, and characterized combining state-of-art performance with scalable manufacture. Firstly, I report the first automated CQD synthesis to result in CQDs that form high-performance CQD solar cells. I analyze the CQD synthesis and by separating it into two phases---nucleation and growth phase---my insights are used to create higher-quality CQDs exhibiting enhanced monodispersity. I then proceed to develop a CQD ink: a CQD solution ready for direct deposition to form a semiconducting film exhibiting low trap state density. In early trials the CQD ink showed only limited power conversion efficiencies of 2%. I designed a new ink strategy, which I term cleavable hemiketal ligands. This novel two-component ligand strategy enables the combination of colloidal stabilization (via this longer two-component ligand) and cleavability (enabling excellent

  16. Automated manufacturing of chimeric antigen receptor T cells for adoptive immunotherapy using CliniMACS prodigy.

    Science.gov (United States)

    Mock, Ulrike; Nickolay, Lauren; Philip, Brian; Cheung, Gordon Weng-Kit; Zhan, Hong; Johnston, Ian C D; Kaiser, Andrew D; Peggs, Karl; Pule, Martin; Thrasher, Adrian J; Qasim, Waseem

    2016-08-01

    Novel cell therapies derived from human T lymphocytes are exhibiting enormous potential in early-phase clinical trials in patients with hematologic malignancies. Ex vivo modification of T cells is currently limited to a small number of centers with the required infrastructure and expertise. The process requires isolation, activation, transduction, expansion and cryopreservation steps. To simplify procedures and widen applicability for clinical therapies, automation of these procedures is being developed. The CliniMACS Prodigy (Miltenyi Biotec) has recently been adapted for lentiviral transduction of T cells and here we analyse the feasibility of a clinically compliant T-cell engineering process for the manufacture of T cells encoding chimeric antigen receptors (CAR) for CD19 (CAR19), a widely targeted antigen in B-cell malignancies. Using a closed, single-use tubing set we processed mononuclear cells from fresh or frozen leukapheresis harvests collected from healthy volunteer donors. Cells were phenotyped and subjected to automated processing and activation using TransAct, a polymeric nanomatrix activation reagent incorporating CD3/CD28-specific antibodies. Cells were then transduced and expanded in the CentriCult-Unit of the tubing set, under stabilized culture conditions with automated feeding and media exchange. The process was continuously monitored to determine kinetics of expansion, transduction efficiency and phenotype of the engineered cells in comparison with small-scale transductions run in parallel. We found that transduction efficiencies, phenotype and function of CAR19 T cells were comparable with existing procedures and overall T-cell yields sufficient for anticipated therapeutic dosing. The automation of closed-system T-cell engineering should improve dissemination of emerging immunotherapies and greatly widen applicability.

  17. The Impact of Wireless Technology Feedback on Inventory Management at a Dairy Manufacturing Plant

    Science.gov (United States)

    Goomas, David T.

    2012-01-01

    Replacing the method of counting inventory from paper count sheets to that of wireless reliably reduced the elapsed time to complete a daily inventory of the storage cooler in a dairy manufacturing plant. The handheld computers delivered immediate prompts as well as auditory and visual feedback. Reducing the time to complete the daily inventory…

  18. Analysis of Key Technologies and Equipments Development of Largescale Melted Extrusion Manufacturing Systems

    Institute of Scientific and Technical Information of China (English)

    Lei ZHANG; Sheng CHEN; Yongnian YAN; Renji ZHANG

    2003-01-01

    To develop large-scale RP systems used to producing functional parts and large-sized models has become an urgentcall now. In this paper, a large-scale RP system, MEM600-l, based on the melted extrusion manufacturing (MEM)process has been developed success

  19. Innovation and adoption of energy efficient technologies: an exploratory analysis of Italian primary metal manufacturing SMEs

    NARCIS (Netherlands)

    Trianni, A.; Cagno, E.; Worrell, E.

    2013-01-01

    Additional efforts will be needed by European countries to improve the energy efficiency, as with current trends the 20% objective will be missed. Small and medium-sized enterprises (SMEs) manufacturing sector is a promising field, as SMEs are less energy-efficient than larger enterprises. Several s

  20. Glocalized Manufacturing – Local Supply Chains on a Global Scale and Changeable Technologies

    DEFF Research Database (Denmark)

    Hadar, Ronen; Bilberg, Arne

    is a changeable and reconfigurable production facility. This smaller but intelligent facility is able to completely supply a predefined market area. By doing so, manufacturers will be able to reduce lead time and forecasting periods, increase customization to particular markets, utilize local energy production...

  1. Climbing the technology ladder too fast? New evidence on comparative productivity performance in Asian manufacturing

    NARCIS (Netherlands)

    Timmer, M.P.

    2002-01-01

    This paper attempts to shed new light on the debate about the sources of rapid growth in Asian manufacturing. For the period from 1963 to 1997, a comparison of productivity levels in India, Indonesia, South Korea, and Taiwan with the United States as the reference country is provided. Using the indu

  2. Statistics for competitive advantage and technological innovation: applicative scenarios in manufacturing industry and research centres

    OpenAIRE

    Tagliaferri, Flaviana

    2011-01-01

    L'obiettivo principale della Tesi di Dottorato è quello di evidenziare come un approccio statistico sistematico nella progettazione delle attività sperimentali, possa indurre innovazione sia nel settore industriale del manufacturing sia in centri di ricerca nazionali ed internazionali. Le metodologie sviluppate sono state sperimentali e teoriche.

  3. Good manufacturing practice-compliant isolation and culture of human adipose derived stem cells

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2014-04-01

    Full Text Available Adipose-derived stem cells (ADSCs are excellent for regenerative medicine. Like mesenchymal stem cells, ADSCs possess multi-potent differentiation capacity that enables them to differentiate into osteoblasts, chondrocytes and adipocytes, as well as trans-differentiation into other cells. ADSC transplantation has gained attention in recent years, especially in vitro expanded ADSC transplantation. This study aimed to provide a new method to in vitro primarily culture and secondary culture of ADSCs that were compliant with good manufacturing practice for clinical applications. Stromal vascular fraction (SVF was extracted from adipose tissue by commercial kits. SVF was expanded in vitro in medium with non-allogeneic supplements. Cultured ADSCs maintained immune-phenotype, karyotype, and differentiation potential after ten passages. Moreover, ADSCs at 15th passage could not form tumors in NOD/SCID mice. This research produced a suitable protocol for clinical applications of expanded ADSCs. [Biomed Res Ther 2014; 1(4.000: 133-141

  4. 先进制造技术特点及发展趋势%The characteristics of advanced manufacturing technology and its development trend

    Institute of Scientific and Technical Information of China (English)

    王群

    2013-01-01

    This paper introduces the advanced manufacturing technology progress, elaborated the development trend of advanced manufacturing technology, system ana lysis of the development of advanced manufacturing technology content, method, characteristic and direction. Only the advanced manufacturing technology has the world advanced level, the production of products can have global competition.%  本文介绍了先进制造技术发展的概况特点,阐述了先进制造技术的发展趋势,系统的分析了先进制造技术发展的内容、方法、特点以及方向。只有先进制造技术具有世界先进水平,生产产品才能具有全球竞争性。

  5. The characteristics of advanced manufacturing technology and its development trend%先进制造技术特点及发展趋势

    Institute of Scientific and Technical Information of China (English)

    王群

    2013-01-01

      本文介绍了先进制造技术发展的概况特点,阐述了先进制造技术的发展趋势,系统的分析了先进制造技术发展的内容、方法、特点以及方向。只有先进制造技术具有世界先进水平,生产产品才能具有全球竞争性。%This paper introduces the advanced manufacturing technology progress, elaborated the development trend of advanced manufacturing technology, system ana lysis of the development of advanced manufacturing technology content, method, characteristic and direction. Only the advanced manufacturing technology has the world advanced level, the production of products can have global competition.

  6. Failure mechanisms of additively manufactured porous biomaterials: Effects of porosity and type of unit cell.

    Science.gov (United States)

    Kadkhodapour, J; Montazerian, H; Darabi, A Ch; Anaraki, A P; Ahmadi, S M; Zadpoor, A A; Schmauder, S

    2015-10-01

    Since the advent of additive manufacturing techniques, regular porous biomaterials have emerged as promising candidates for tissue engineering scaffolds owing to their controllable pore architecture and feasibility in producing scaffolds from a variety of biomaterials. The architecture of scaffolds could be designed to achieve similar mechanical properties as in the host bone tissue, thereby avoiding issues such as stress shielding in bone replacement procedure. In this paper, the deformation and failure mechanisms of porous titanium (Ti6Al4V) biomaterials manufactured by selective laser melting from two different types of repeating unit cells, namely cubic and diamond lattice structures, with four different porosities are studied. The mechanical behavior of the above-mentioned porous biomaterials was studied using finite element models. The computational results were compared with the experimental findings from a previous study of ours. The Johnson-Cook plasticity and damage model was implemented in the finite element models to simulate the failure of the additively manufactured scaffolds under compression. The computationally predicted stress-strain curves were compared with the experimental ones. The computational models incorporating the Johnson-Cook damage model could predict the plateau stress and maximum stress at the first peak with less than 18% error. Moreover, the computationally predicted deformation modes were in good agreement with the results of scaling law analysis. A layer-by-layer failure mechanism was found for the stretch-dominated structures, i.e. structures made from the cubic unit cell, while the failure of the bending-dominated structures, i.e. structures made from the diamond unit cells, was accompanied by the shearing bands of 45°. PMID:26143351

  7. The "Micromorph" cell: a New Way to High-Efficiency-Low-Temperature Crystalline Silicon Thin-Film Cell Manufacturing ?

    OpenAIRE

    Keppner, H.; Kroll, U.; Torres, P.; J. Meier; Platz, R.; Fischer, D.; Beck, N; Dubail, S.; Anna Selvan, J. A.; Pellaton Vaucher, N.; Goerlitzer, M.; Ziegler, Y.; Tscharner, R.; Hof, Ch.; Goetz, M

    1997-01-01

    Hydrogenated microcrystalline Silicon (µc-Si:H) produced by the VHF-GD (Very High Frequency Glow Discharge) process can be considered to be a new base material for thin-film crystalline silicon solar cells. The most striking feature of such cells, in contrast to conventional amorphous silicon technology, is their stability under light-soaking. With respect to crystalline silicon technology, their most striking advantage is their low process temperature (220 °C). The so called “micromorph” cel...

  8. The role of multi-agent systems in improving performance of manufacturing robotized cells

    Science.gov (United States)

    Sękala, A.; Ćwikła, G.; Kost, G.

    2015-11-01

    Present market conditions causes that modern control systems of robotized manufacturing cells should be characterized by the much greater degree of flexibility, selforganization and, above all, adaptability to emerging outer excitations. The phenomenon of information distribution is one of the most important features of modern control systems. In the paper is presented the approach, based on application of multi-agent systems, for supporting the operation of robotized manufacturing cells. The aim of this approach is to obtain the flexible response to outer excitations and preventing situations that might cause the delay of the production process. The presented paper includes description of the concept of an informatics system designed for controlling the work of production systems, including work cells. Such systems could operate independently if it would be equipped with the selforganization mechanism. It is possible in the case of the proposed multi-agent system. The implementation of the presented concept will follow the present analysis of the described concept. The advantage of the proposed concept is its hierarchical depiction that allows integrating different utilized informatics tools in one complex system. It allows preparing the final computer program.

  9. Modeling of machine failures in a flexible manufacturing cell with two machines served by a robot

    International Nuclear Information System (INIS)

    In this study, a stochastic model is developed to analyze performance measures of a flexible manufacturing cell (FMC) under different operational conditions, including machine failures and repairs. The FMC consists of two machines served by a robot for loading and loading purposes, and a pallet handling system. The model is based on Markov processes and determines closed-form solutions for the probabilities of system states that are used to calculate system performance measures, such as production output rate and utilizations of system components under different parametric conditions and equipment failures and repairs

  10. Modeling of machine failures in a flexible manufacturing cell with two machines served by a robot

    Energy Technology Data Exchange (ETDEWEB)

    Savsar, Mehmet [Department of Industrial and Management Systems Engineering, College of Engineering and Petroleum, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait)], E-mail: Mehmet@kuc01.kuniv.edu.kw; Aldaihani, Majid [Department of Industrial and Management Systems Engineering, College of Engineering and Petroleum, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait)], E-mail: Aldaihani@kuc01.kuniv.edu.kw

    2008-10-15

    In this study, a stochastic model is developed to analyze performance measures of a flexible manufacturing cell (FMC) under different operational conditions, including machine failures and repairs. The FMC consists of two machines served by a robot for loading and loading purposes, and a pallet handling system. The model is based on Markov processes and determines closed-form solutions for the probabilities of system states that are used to calculate system performance measures, such as production output rate and utilizations of system components under different parametric conditions and equipment failures and repairs.

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, SHARPE MANUFACTURING TITANIUM T1-CG SPRAY GUN

    Science.gov (United States)

    Under EPA’s Environmental Technology Verification program, which provides objective and scientific third party analysis of new technology that can benefit the environment, the pollution prevention capabilities of a high transfer efficiency liquid spray gun was tested. This ...

  12. Manufacturing process applications team (MATEAM). [technology transfer in the areas of machine tools and robots

    Science.gov (United States)

    1979-01-01

    The transfer of NASA technology to the industrial sector is reported. Presentations to the machine tool and robot industries and direct technology transfers of the Adams Manipulator arm, a-c motor control, and the bolt tension monitor are discussed. A listing of proposed RTOP programs with strong potential is included. A detailed description of the rotor technology available to industry is given.

  13. Does external technology acquisition determine export performance? Evidence from Chinese manufacturing firms

    DEFF Research Database (Denmark)

    Wang, Yuandi; Cao, Wei; Zhou, Zhao;

    2013-01-01

    Although technology profile has been one of the key determinants of firms’ export performance in the international business literature, most research has focused on only the role of internal technology efforts rather than the role of external technology. This study thus aims to extend our underst...

  14. The status of fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, J.B.

    1991-02-20

    This brief status report provides an introduction to what fuel cells are, why they are important, what uses have been made of them to date, the goals and timetables of current programs, and who the players are in this vital technology. Copies of most of the slides presented and additional diagrams are appended to this paper. Further details can be obtained from the comprehensive texts cited in the bibliography. 11 refs., 44 figs.

  15. Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ulsh, M.; Wheeler, D.; Protopappas, P.

    2011-08-01

    The U.S. Department of Energy (DOE) is interested in supporting manufacturing research and development (R&D) for fuel cell systems in the 10-1,000 kilowatt (kW) power range relevant to stationary and distributed combined heat and power applications, with the intent to reduce manufacturing costs and increase production throughput. To assist in future decision-making, DOE requested that the National Renewable Energy Laboratory (NREL) provide a baseline understanding of the current levels of adoption of automation in manufacturing processes and flow, as well as of continuous processes. NREL identified and visited or interviewed key manufacturers, universities, and laboratories relevant to the study using a standard questionnaire. The questionnaire covered the current level of vertical integration, the importance of quality control developments for automation, the current level of automation and source of automation design, critical balance of plant issues, potential for continuous cell manufacturing, key manufacturing steps or processes that would benefit from DOE support for manufacturing R&D, the potential for cell or stack design changes to support automation, and the relationship between production volume and decisions on automation.

  16. Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components

    Science.gov (United States)

    Thivillon, L.; Bertrand, Ph.; Laget, B.; Smurov, I.

    2009-03-01

    Direct metal deposition (DMD) is an automated 3D deposition process arising from laser cladding technology with co-axial powder injection to refine or refurbish parts. Recently DMD has been extended to manufacture large-size near-net-shape components. When applied for manufacturing new parts (or their refinement), DMD can provide tailored thermal properties, high corrosion resistance, tailored tribology, multifunctional performance and cost savings due to smart material combinations. In repair (refurbishment) operations, DMD can be applied for parts with a wide variety of geometries and sizes. In contrast to the current tool repair techniques such as tungsten inert gas (TIG), metal inert gas (MIG) and plasma welding, laser cladding technology by DMD offers a well-controlled heat-treated zone due to the high energy density of the laser beam. In addition, this technology may be used for preventative maintenance and design changes/up-grading. One of the advantages of DMD is the possibility to build functionally graded coatings (from 1 mm thickness and higher) and 3D multi-material objects (for example, 100 mm-sized monolithic rectangular) in a single-step manufacturing cycle by using up to 4-channel powder feeder. Approved materials are: Fe (including stainless steel), Ni and Co alloys, (Cu,Ni 10%), WC compounds, TiC compounds. The developed coatings/parts are characterized by low porosity (stainless steel 17-4PH). The intended applications concern cooling elements with complex geometry, friction joints under high temperature and load, light-weight mechanical support structures, hermetic joints, tubes with complex geometry, and tailored inside and outside surface properties, etc.

  17. Applications of Evolutionary Technology to Manufacturing and Logistics Systems : State-of-the Art Survey

    Science.gov (United States)

    Gen, Mitsuo; Lin, Lin

    Many combinatorial optimization problems from industrial engineering and operations research in real-world are very complex in nature and quite hard to solve them by conventional techniques. Since the 1960s, there has been an increasing interest in imitating living beings to solve such kinds of hard combinatorial optimization problems. Simulating the natural evolutionary process of human beings results in stochastic optimization techniques called evolutionary algorithms (EAs), which can often outperform conventional optimization methods when applied to difficult real-world problems. In this survey paper, we provide a comprehensive survey of the current state-of-the-art in the use of EA in manufacturing and logistics systems. In order to demonstrate the EAs which are powerful and broadly applicable stochastic search and optimization techniques, we deal with the following engineering design problems: transportation planning models, layout design models and two-stage logistics models in logistics systems; job-shop scheduling, resource constrained project scheduling in manufacturing system.

  18. An Analysis Of Tensile Test Results to Assess the Innovation Risk for an Additive Manufacturing Technology

    OpenAIRE

    Adamczak Stanisław; Bochnia Jerzy; Kaczmarska Bożena

    2015-01-01

    The aim of this study was to assess the innovation risk for an additive manufacturing process. The analysis was based on the results of static tensile tests obtained for specimens made of photocured resin. The assessment involved analyzing the measurement uncertainty by applying the FMEA method. The structure of the causes and effects of the discrepancies was illustrated using the Ishikawa diagram. The risk priority numbers were calculated. The uncertainty of the tensile test measurement was ...

  19. Fuzzy Relational Modeling of Cost and Affordability for Advanced Technology Manufacturing Environment

    OpenAIRE

    Kohout, Ladislav J.; Kim, Eunjin; Zenz, Gary

    2003-01-01

    Relational representation of knowledge makes it possible to perform all the computations and decision making in a uniform relational way by means of special relational compositions called triangle and square products. In this paper some applications in manufacturing related to cost analysis are described. Testing fuzzy relational structures for various relational properties allows us to discover dependencies, hierarchies, similarities, and equivalences of the attributes characterizing technol...

  20. Creating science and technology superiority,increasing marine equipment manufacturing capability to build China into world No.1 shipbuilding country

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    The creation of science and technol-ogy superiority is the basic driving forceto push forward the development ofChina’s shipbuilding Industry by leaps andbounds,and achieve the goal of buildingChina into the world number one ship-building country. 1.The strength of science and tech-nology is the decisive factor affecting ourcompetitiveness in the world market The shipbuilding industry is a labour-intensive,capital-intensive and technology-intensive industry.However,ever since the90’s of the last century,with the wide ap-plication of new technology and new manu-facturing process,the productivity of shipconstruction has increased significantly,therole of primary production elements suchas low-priced labor has weakened dramati-cally in the market competition.With thecontinuous increase of technology inten-siveness in the shipbuilding industry,thestrength of science and technology is becoming the most important factor of mar-ket competitiveness.In the last ten years,in order to strengthen their technical sup