WorldWideScience

Sample records for cell lymphotropic virus

  1. Failure to demonstrate human T cell lymphotropic virus type I in multiple sclerosis patients

    DEFF Research Database (Denmark)

    Fugger, L; Morling, N; Ryder, L P;

    1990-01-01

    The polymerase chain reaction (PCR) technique was employed in searching for human T cell lymphotropic virus type I (HTLV-I) gag, env and pol sequences in samples of DNA prepared from two HTLV-I seropositive patients with tropical spastic paraparesis (TSP), the Swedish multiple sclerosis (MS...... and detection probes. In MS patients and healthy individuals, no signals were obtained with gag and env. In occasional experiments, weak signals were seen for the pol segment for a single MS patient and/or healthy individuals, but these signals were not reproducible in subsequent experiments. Thus, the present...

  2. Diffuse Large B-Cell Lymphoma in Human T-Lymphotropic Virus Type 1 Carriers

    Directory of Open Access Journals (Sweden)

    Brady E. Beltran

    2012-01-01

    Full Text Available We describe the clinical and pathological characteristics of seven patients who were human T-lymphotropic virus type 1 (HTLV-1 carriers and had a pathological diagnosis of de novo diffuse large B-cell lymphoma. Interestingly, three of our cases showed positive expression of Epstein-Barr-virus, (EBV- encoded RNA within the tumor cells indicating a possible interaction between these two viruses. Furthermore, our three EBV-positive cases presented with similar clinical characteristics such as early clinical stage and low-risk indices. To the best of our knowledge, this is the first case series describing the characteristics of HTLV-1-positive DLBCL patients. The potential relationship between HTLV-1 and EBV should be further explored.

  3. Discovery of a new human T-cell lymphotropic virus (HTLV-3 in Central Africa

    Directory of Open Access Journals (Sweden)

    Mahieux Renaud

    2005-05-01

    Full Text Available Abstract Human T-cell Leukemia virus type 1 (HTLV-1 and type 2 (HTLV-2 are pathogenic retroviruses that infect humans and cause severe hematological and neurological diseases. Both viruses have simian counterparts (STLV-1 and STLV-2. STLV-3 belongs to a third group of lymphotropic viruses which infect numerous African monkeys species. Among 240 Cameroonian plasma tested for the presence of HTLV-1 and/or HTLV-2 antibodies, 48 scored positive by immunofluorescence. Among those, 27 had indeterminate western-blot pattern. PCR amplification of pol and tax regions, using HTLV-1, -2 and STLV-3 highly conserved primers, demonstrated the presence of a new human retrovirus in one DNA sample. tax (180 bp and pol (318 bp phylogenetic analyses demonstrated the strong relationships between the novel human strain (Pyl43 and STLV-3 isolates from Cameroon. The virus, that we tentatively named HTLV-3, originated from a 62 years old Bakola Pygmy living in a remote settlement in the rain forest of Southern Cameroon. The plasma was reactive on MT2 cells but was negative on C19 cells. The HTLV 2.4 western-blot exhibited a strong reactivity to p19 and a faint one to MTA-1. On the INNO-LIA strip, it reacted faintly with the generic p19 (I/II, but strongly to the generic gp46 (I/II and to the specific HTLV-2 gp46. The molecular relationships between Pyl43 and STLV-3 are thus not paralleled by the serological results, as most of the STLV-3 infected monkeys have an "HTLV-2 like" WB pattern. In the context of the multiple interspecies transmissions which occurred in the past, and led to the present-day distribution of the PTLV-1, it is thus very tempting to speculate that this newly discovered human retrovirus HTLV-3 might be widespread, at least in the African continent.

  4. Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein.

    Science.gov (United States)

    Jaworski, Elizabeth; Narayanan, Aarthi; Van Duyne, Rachel; Shabbeer-Meyering, Shabana; Iordanskiy, Sergey; Saifuddin, Mohammed; Das, Ravi; Afonso, Philippe V; Sampey, Gavin C; Chung, Myung; Popratiloff, Anastas; Shrestha, Bindesh; Sehgal, Mohit; Jain, Pooja; Vertes, Akos; Mahieux, Renaud; Kashanchi, Fatah

    2014-08-08

    Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. The HTLV-1 transactivator protein Tax controls many critical cellular pathways, including host cell DNA damage response mechanisms, cell cycle progression, and apoptosis. Extracellular vesicles called exosomes play critical roles during pathogenic viral infections as delivery vehicles for host and viral components, including proteins, mRNA, and microRNA. We hypothesized that exosomes derived from HTLV-1-infected cells contain unique host and viral proteins that may contribute to HTLV-1-induced pathogenesis. We found exosomes derived from infected cells to contain Tax protein and proinflammatory mediators as well as viral mRNA transcripts, including Tax, HBZ, and Env. Furthermore, we observed that exosomes released from HTLV-1-infected Tax-expressing cells contributed to enhanced survival of exosome-recipient cells when treated with Fas antibody. This survival was cFLIP-dependent, with Tax showing induction of NF-κB in exosome-recipient cells. Finally, IL-2-dependent CTLL-2 cells that received Tax-containing exosomes were protected from apoptosis through activation of AKT. Similar experiments with primary cultures showed protection and survival of peripheral blood mononuclear cells even in the absence of phytohemagglutinin/IL-2. Surviving cells contained more phosphorylated Rb, consistent with the role of Tax in regulation of the cell cycle. Collectively, these results suggest that exosomes may play an important role in extracellular delivery of functional HTLV-1 proteins and mRNA to recipient cells.

  5. Human T-lymphotropic Virus Type 1-infected Cells Secrete Exosomes That Contain Tax Protein*

    Science.gov (United States)

    Jaworski, Elizabeth; Narayanan, Aarthi; Van Duyne, Rachel; Shabbeer-Meyering, Shabana; Iordanskiy, Sergey; Saifuddin, Mohammed; Das, Ravi; Afonso, Philippe V.; Sampey, Gavin C.; Chung, Myung; Popratiloff, Anastas; Shrestha, Bindesh; Sehgal, Mohit; Jain, Pooja; Vertes, Akos; Mahieux, Renaud; Kashanchi, Fatah

    2014-01-01

    Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. The HTLV-1 transactivator protein Tax controls many critical cellular pathways, including host cell DNA damage response mechanisms, cell cycle progression, and apoptosis. Extracellular vesicles called exosomes play critical roles during pathogenic viral infections as delivery vehicles for host and viral components, including proteins, mRNA, and microRNA. We hypothesized that exosomes derived from HTLV-1-infected cells contain unique host and viral proteins that may contribute to HTLV-1-induced pathogenesis. We found exosomes derived from infected cells to contain Tax protein and proinflammatory mediators as well as viral mRNA transcripts, including Tax, HBZ, and Env. Furthermore, we observed that exosomes released from HTLV-1-infected Tax-expressing cells contributed to enhanced survival of exosome-recipient cells when treated with Fas antibody. This survival was cFLIP-dependent, with Tax showing induction of NF-κB in exosome-recipient cells. Finally, IL-2-dependent CTLL-2 cells that received Tax-containing exosomes were protected from apoptosis through activation of AKT. Similar experiments with primary cultures showed protection and survival of peripheral blood mononuclear cells even in the absence of phytohemagglutinin/IL-2. Surviving cells contained more phosphorylated Rb, consistent with the role of Tax in regulation of the cell cycle. Collectively, these results suggest that exosomes may play an important role in extracellular delivery of functional HTLV-1 proteins and mRNA to recipient cells. PMID:24939845

  6. Complex cell cycle abnormalities caused by human T-lymphotropic virus type 1 Tax.

    Science.gov (United States)

    Yang, Liangpeng; Kotomura, Naoe; Ho, Yik-Khuan; Zhi, Huijun; Bixler, Sandra; Schell, Michael J; Giam, Chou-Zen

    2011-03-01

    Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia/lymphoma (ATL), a malignancy of CD4(+) T cells whose etiology is thought to be associated with the viral trans-activator Tax. We have shown recently that Tax can drastically upregulate the expression of p27(Kip1) and p21(CIP1/WAF1) through protein stabilization and mRNA trans-activation and stabilization, respectively. The Tax-induced surge in p21(CIP1/WAF1) and p27(Kip1) begins in S phase and results in cellular senescence. Importantly, HeLa and SupT1 T cells infected by HTLV-1 also arrest in senescence, thus challenging the notion that HTLV-1 infection causes cell proliferation. Here we use time-lapse microscopy to investigate the effect of Tax on cell cycle progression in two reporter cell lines, HeLa/18x21-EGFP and HeLa-FUCCI, that express enhanced green fluorescent protein (EGFP) under the control of 18 copies of the Tax-responsive 21-bp repeat element and fluorescent ubiquitin cell cycle indicators, respectively. Tax-expressing HeLa cells exhibit elongated or stalled cell cycle phases. Many of them bypass mitosis and become single senescent cells as evidenced by the expression of senescence-associated β-galactosidase. Such cells have twice the normal equivalent of cellular contents and hence are enlarged, with exaggerated nuclei. Interestingly, nocodazole treatment revealed a small variant population of HeLa/18x21-EGFP cells that could progress into mitosis normally with high levels of Tax expression, suggesting that genetic or epigenetic changes that prevent Tax-induced senescence can occur spontaneously at a detectable frequency.

  7. Sexual transmission of human T-cell lymphotropic virus type 1

    Directory of Open Access Journals (Sweden)

    Arthur Paiva

    2014-06-01

    Full Text Available Human T-cell lymphotropic virus type 1 (HTLV-1 is endemic in many parts of the world and is primarily transmitted through sexual intercourse or from mother to child. Sexual transmission occurs more efficiently from men to women than women to men and might be enhanced by sexually transmitted diseases that cause ulcers and result in mucosal ruptures, such as syphilis, herpes simplex type 2 (HSV-2, and chancroid. Other sexually transmitted diseases might result in the recruitment of inflammatory cells and could increase the risk of HTLV-1 acquisition and transmission. Additionally, factors that are associated with higher transmission risks include the presence of antibodies against the viral oncoprotein Tax (anti-Tax, a higher proviral load in peripheral blood lymphocytes, and increased cervicovaginal or seminal secretions. Seminal fluid has been reported to increase HTLV replication and transmission, whereas male circumcision and neutralizing antibodies might have a protective effect. Recently, free virions were discovered in plasma, which reveals a possible new mode of HTLV replication. It is unclear how this discovery might affect the routes of HTLV transmission, particularly sexual transmission, because HTLV transmission rates are significantly higher from men to women than women to men.

  8. Human T-cell lymphotropic virus type III infection in a cohort of homosexual men in New York City

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, C.E.; Taylor, P.E.; Zang, E.A.; Morrison, J.M.; Harley, E.J.; de Cordoba, S.R.; Bacino, C.; Ting, R.C.; Bodner, A.J.; Sarngadharan, M.G.; Gallo, R.C.

    1986-04-25

    Using blood samples collected since 1978, the authors investigated the epidemiology of human T-cell lymphotropic virus type III (HTLV-III), the etiologic agent of the acquired immunodeficiency syndrome, in a group of 378 homosexually active men who have resided in New York City since the acquire immunodeficiency syndrome epidemic began. The anti-HTLV-III prevalence was 6.6% in sera from 1978 or 1979, and the subsequent annual incidence of seroconversion among susceptible men ranged between 5.5% and 10.6%. The highest incidences were in recent years, even though these men reported a decrease in their sexual activity during this time. These data demonstrate the continuing risk of HTLV-III infections in the homosexual population studied and emphasize the need for more effective prevention of transmission. The year during which antibody was first present was the only factor identified that was associated with altered cell-mediated immunity in antibody-positive men.

  9. Analysis of human T-cell lymphotropic virus in CD25+ anaplastic large cell lymphoma in children.

    Science.gov (United States)

    Gualco, Gabriela; Chioato, Lucimara; Weiss, Lawrence M; Harrington, William J; Bacchi, Carlos E

    2009-07-01

    Anaplastic large cell lymphoma (ALCL) is recognized as 2 distinct diseases: anaplastic lymphoma kinase (ALK)+ ALCL and ALK- ALCL. ALK+ ALCL occurs in younger patients and has a better prognosis. Human T-cell lymphotropic virus (HTLV-1) is linked to the development of adult T-cell leukemia/lymphoma (ATLL), which frequently expresses CD25. CD25 is significantly expressed in childhood ALCL. In Brazil, HTLV-1 infection is endemic, and vertical transmission is responsible for spread to children. Of HTLV-1 carriers, 90% or more remain asymptomatic. Some cases of adult HTLV-1-related lymphomas have characteristics of ALCL but are considered CD30+ ATLL subtypes. No similar cases have been described in children. We analyzed 33 cases of pediatric ALCL, CD25+ and CD25-, for proviral HTLV-1 DNA. All cases corresponded to the common histologic ALCL type and were CD30+ in virtually all neoplastic cells. ALK expression was observed in 31 (94%) of 33 cases; CD25 was positive in 27 (82%), including 1 ALK- ALCL case. There was a strong positive correlation between ALK and CD25 expression. None of the cases showed proviral HTLV-1 DNA. ALCL in children has no relationship with HTLV-1; the frequent CD25 expression must be explained by a mechanism different from that in ATLL.

  10. Prevalence of human T-cell lymphotropic virus types 1 and 2 in blood donors of the Caruaru Blood Center (Hemope

    Directory of Open Access Journals (Sweden)

    Waleska Mayara Gomes de Lima

    2013-01-01

    Full Text Available BACKGROUND: There is difficulty in gathering data on the prevalence of human T-cell lymphotropic virus in blood donors as confirmatory testing is not mandatory in Brazil. This suggests there may be an underreporting of the prevalence. OBJECTIVE: To estimate the prevalence of human T-cell lymphotropic virus types 1 and 2 in donors of a blood bank in Caruaru, Brazil. METHODS: This was an observational, epidemiological, descriptive, longitudinal and retrospective study with information about the serology of donors of the Caruaru Blood Center, Fundação de Hematologia e Hemoterapia de Pernambuco (Hemope from May 2006 to December 2010. The data were analyzed using the Excel 2010 computer program (Microsoft Office(r. RESULTS: Of 61,881 donors, 60 (0.096% individuals were identified as potential carriers of human T-cell lymphotropic virus types 1 and 2. Of these, 28 (0.045% were positive and 32 (0.051% had inconclusive results in the serological screening. Forty-five (0.072% were retested; 17 were positive (0.027% and 3 inconclusive (0.005%. After confirmatory tests, 8 were positive (0.013%. Six (75% of the confirmed cases were women. CONCLUSION: Epidemiological surveys like this are very important in order to create campaigns to attract donors and reduce the costs of laboratory tests.

  11. Hepatitis C virus has a genetically determined lymphotropism through co-receptor B7.2

    Science.gov (United States)

    Chen, Chia-Lin; Huang, Jeffrey Y.; Wang, Chun-Hsiang; Tahara, Stanley M; Zhou, Lin; Kondo, Yasuteru; Schechter, Joel; Su, Lishan; Lai, Michael M C.; Wakita, Takaji; Cosset, François-Loïc; Jung, Jae U; Machida, Keigo

    2017-01-01

    B-cell infection by hepatitis C virus (HCV) has been a controversial topic. To examine whether HCV has a genetically determined lymphotropism through a co-receptor specific for the infection by lymphotropic HCV, we established an infectious clone and chimeric virus of hepatotropic and lymphotropic HCV strains derived from an HCV-positive B-cell lymphoma. The viral envelope and 5′-UTR sequences of the lymphotropic HCV strain were responsible for the lymphotropism. Silencing of the virus sensor, RIGI, or overexpression of microRNA-122 promoted persistent viral replication in B cells. By cDNA library screening, we identified an immune cell-specific, co-stimulatory receptor B7.2 (CD86) as a co-receptor of lymphotropic HCV. Infection of B cells by HCV inhibited the recall reaction to antigen stimulation. Together, a co-receptor B7.2 enabled lymphotropic HCV to infect memory B cells, leading to inhibition of memory B-cell function and persistent HCV infection in HCV-infected hosts. PMID:28067225

  12. Seroepidemiology of human T-cell lymphotropic virus type-I in blood donors of Northeastern Iran, Sabzevar

    Directory of Open Access Journals (Sweden)

    Mahtab Maghsudlu

    2015-01-01

    Full Text Available Background and Objectives: Human T-cell lymphotropic virus type-I (HTLV-I infection is considered as a public health challenge in endemic areas. The virus is associated with severe diseases, such as adult T-cell leukemia/lymphoma, and HTLV-I-associated myelopathy/tropical spastic paraparesis. One of the major routes of the HTLV-I transmission includes blood transfusion. Sabzevar is located in the endemic region of HTLV-I infection. The aim of the present study was to determine the seroprevalence of HTLV-I infection in the blood donors in Sabzevar. Materials and Methods: A total of 35,067 blood donors in Sabzevar from March 2009 to April 2012 who were screened with HTLV-I on the enzyme-linked immunosorbent assay screening test were included in this survey. Reactive samples that confirmed by western blot were considered to be seropositive cases. The required data were obtained from blood donors′ database of blood transfusion service. Results: The overall prevalence of HTLV-1 based on the positive result of western blot test was 0.14%. The seropositive donors aged 17-59 years with a mean age of 38.10 ± 11.82. The prevalence rates of HTLV-I infection in 3 years of study were 0.19%, 0.14%, and 0.09%, respectively. A significant relation between age, sex, educational level, and history of blood donation was observed with seropositivity of HTLV-I. Conclusion: The improvement of donor selection and laboratory screening caused a decline in the prevalence of infection in blood donors. Given the lower prevalence of infection in regular donors with lower age and higher educational level, more efforts should be done to attract blood donors from these populations.

  13. Genetic characterization of human T-cell lymphotropic virus type 1 in Mozambique: transcontinental lineages drive the HTLV-1 endemic.

    Directory of Open Access Journals (Sweden)

    Ana Carolina P Vicente

    Full Text Available BACKGROUND: Human T-Cell Lymphotropic Virus Type 1 (HTLV-1 is the etiological agent of adult T-cell leukemia (ATL and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. It has been estimated that 10-20 million people are infected worldwide, but no successful treatment is available. Recently, the epidemiology of this virus was addressed in blood donors from Maputo, showing rates from 0.9 to 1.2%. However, the origin and impact of HTLV endemic in this population is unknown. OBJECTIVE: To assess the HTLV-1 molecular epidemiology in Mozambique and to investigate their relationship with HTLV-1 lineages circulating worldwide. METHODS: Blood donors and HIV patients were screened for HTLV antibodies by using enzyme immunoassay, followed by Western Blot. PCR and sequencing of HTLV-1 LTR region were applied and genetic HTLV-1 subtypes were assigned by the neighbor-joining method. The mean genetic distance of Mozambican HTLV-1 lineages among the genetic clusters were determined. Human mitochondrial (mt DNA analysis was performed and individuals classified in mtDNA haplogroups. RESULTS: LTR HTLV-1 analysis demonstrated that all isolates belong to the Transcontinental subgroup of the Cosmopolitan subtype. Mozambican HTLV-1 sequences had a high inter-strain genetic distance, reflecting in three major clusters. One cluster is associated with the South Africa sequences, one is related with Middle East and India strains and the third is a specific Mozambican cluster. Interestingly, 83.3% of HIV/HTLV-1 co-infection was observed in the Mozambican cluster. The human mtDNA haplotypes revealed that all belong to the African macrohaplogroup L with frequencies representatives of the country. CONCLUSIONS: The Mozambican HTLV-1 genetic diversity detected in this study reveals that although the strains belong to the most prevalent and worldwide distributed Transcontinental subgroup of the Cosmopolitan subtype, there is a high HTLV diversity that could be

  14. Prevalence of human T-cell lymphotropic virus (HTLV-1/2) in individuals from public health centers in Mozambique.

    Science.gov (United States)

    Caterino-de-Araujo, Adele; Magri, Mariana Cavalheiro; Costa, Emanuela Avelar Silva; Manuel, Rolanda Carmen Rafael

    2010-05-01

    The prevalence of human T-cell lymphotropic viruses types 1 and 2 (HTLV-1/2) in Mozambique is not known. The present study examined blood samples from 208, 226, and 318 individuals from Northern, Central, and Southern Mozambique, respectively, of all socioeconomic and demographic strata attending public health centers in Mozambique for HTLV-1/2-specific antibodies. Serum samples were assessed for HIV- and HTLV-1/2-specific antibodies by using enzyme immunoassays, and infections with HTLV-1 and -2 were confirmed by using Western blot. An overall HTLV-1/2 prevalence of 2.3% (2.9% in female and 1.1% in male subjects) was observed, and the prevalence of infection increased with age. Regional variation in the prevalence of HIV and HTLV-1/2 was observed; 32.2%, 65.5%, and 44% of individuals tested HIV positive in Northern, Central, and Southern Mozambique, respectively, and 2.4%, 3.9%, and 0.9% tested HTLV-1/2 positive in the same regions. HTLV-1 infection was confirmed in these individuals. No association between HTLV-1 infection and sociodemographic variables or HIV status was detected, although the low number of HTLV-1-positive cases did not allow robust statistical analyses. The results obtained suggest different risk factors and epidemiologic correlates of HIV and HTLV-1 transmission in Mozambique. Furthermore, our results suggested that North and Central Mozambique should be considered endemic regions for HTLV-1 infection. As no cases of HTLV-2 were detected, HTLV-2 appears to have not been introduced into Mozambique.

  15. Barefoot Plantar Pressure Indicates Progressive Neurological Damage in Patients with Human T-Cell Lymphotropic Virus Type 1 Infection.

    Directory of Open Access Journals (Sweden)

    Beatriz Helena B Vasconcelos

    Full Text Available The human T-Cell Lymphotropic Virus Type 1 (HTLV-1 is a retrovirus associated with neurological alterations; individuals with HTLV-1 infection may develop HTLV-1 associated myelopathy / tropical spastic paraparesis (HAM/TSP. Frequent neurological complaints include foot numbness and leg weakness. In this study, we compared the distribution of the body weight on different areas of the foot in HTLV-1 patients with HAM/TSP, asymptomatic HTLV-1 patients, and healthy individuals.We studied 36 HTLV-1 infected patients, who were divided in two groups of 18 patients each based on whether or not they had been diagnosed with HAM/TSP, and 17 control subjects. The evaluation included an interview on the patient's clinical history and examinations of the patient's reflexes, foot skin tactile sensitivity, and risk of falling. The pressure distribution on different areas of the foot was measured with baropodometry, using a pressure platform, while the patients had their eyes open or closed.The prevalence of neurological disturbances-altered reflexes and skin tactile sensitivity and increased risk of falling-was higher in HTLV-1 HAM/TSP patients than in HTLV-1 asymptomatic patients. The medium and maximum pressure values were higher in the forefoot than in the midfoot and hindfoot in both HTLV-1 groups. In addition, the pressure on the hindfoot was lower in HAM/TSP patients compared to control subjects.The neurological disturbances associated with HTLV-1 infection gradually worsened from HTLV-1 asymptomatic patients to HAM/TSP patients. Baropodometry is a valuable tool to establish the extent of neurological damage in patients suffering from HTLV-1 infection.

  16. Constitutive Release of IFNγ and IL2 from Peripheral Blood Mononuclear Cells of Rhesus Macaques (Macaca mulatta) Infected with Simian T-Lymphotropic Virus Type 1

    Science.gov (United States)

    Yee, JoAnn L; Montiel, Nestor A; Ardeshr, Amir; Lerche, Nicholas W

    2013-01-01

    Simian T-cell lymphotropic viruses (STLV), the nonhuman primate counterparts of human T-cell lymphotropic viruses (HTLV), are endemic in many populations of African and Asian monkeys and apes. Although an etiologic link between STLV1 infection and lymphoproliferative disorders such as malignant lymphomas has been suggested in some nonhuman primate species, most STLV infections are inapparent, and infected animals remain clinically healthy. The retroviral transactivator, tax, is well known to increase transcription of viral and cellular genes, resulting in altered cytokine profiles. This study compared the cytokine profiles of peripheral blood mononuclear cell (PBMC) cultures from 25 STLV1-seropositive rhesus macaques (Macaca mulatta) with those of age- and sex-matched seronegative controls. IFNγ, TNFα, IL10, and IL2 levels in unstimulated PBMC culture supernatants were measured at 24, 48, and 72 h by using enzyme immunoassays. IFNγ concentrations were found significantly higher in the supernatants of PBMC cultures of seropositive monkeys as compared with seronegative controls. In addition, although IL2 concentrations were not significantly elevated in the supernatants of PBMC cultures of all seropositive monkeys as compared with all seronegative controls, IL2 levels were increased in a subset of 5 pairs. Increased constitutive cytokine release occurred in the absence of spontaneous proliferation. The increased constitutive release of IFNγ and IL2 suggests that STLV1 alters immune functions in infected but clinically healthy rhesus macaques and further characterizes STLV1 infection of rhesus macaques as a potential model for human HTLV1 infection. PMID:24326227

  17. Low prevalence of human immunodeficiency virus-1 (HIV-1), HIV-2, and human T cell lymphotropic virus-1 infection in Somalia.

    Science.gov (United States)

    Scott, D A; Corwin, A L; Constantine, N T; Omar, M A; Guled, A; Yusef, M; Roberts, C R; Watts, D M

    1991-12-01

    A seroepidemiologic survey was conducted to determine the prevalence of human immunodeficiency virus type 1 (HIV-1), HIV-2, human T cell lymphotropic virus type I (HTLV-I), and Treponema pallidum infection among southern Somalis. Sera were collected from 1,269 study subjects in the urban area of the capital city, Mogadishu, and in the rural towns of Merka, Qoryoley, and Kismayo. The subjects included 57 prostitutes, 79 sexually transmitted disease (STD) patients, and 1,133 others, including outpatient and hospitalized patients with leprosy, tuberculosis, other infectious diseases, individuals from rehabilitation camps and secondary schools, and Ethiopian immigrants. Results indicated that none of the sera were positive for HIV-1 and HIV-2 by Western blot, but one was positive for HTLV-I. The prostitutes had a significantly higher prevalence of treponemal antibody (50.8%; P less than 0.0001) than either the STD patients (12.6%) or the other subjects (5.2%). Epidemiologic data indicated that 94% of the males and females were circumcised and only 2.6% of the males used condoms. Overall, the results of this study suggested a very low prevalence of HIV-1, HIV-2, and HTLV-I infections, especially among prostitutes and STD patients, who were considered at greatest risk of contracting these retroviral infections.

  18. Human T-Cell Lymphotropic Virus Types 1 and 2 Seropositivity among Blood Donors at Mbarara Regional Blood Bank, South Western Uganda.

    Science.gov (United States)

    Uchenna Tweteise, Patience; Natukunda, Bernard; Bazira, Joel

    2016-01-01

    Background. The human T-cell lymphotropic virus types 1 and 2 (HTLV 1/2) are retroviruses associated with different pathologies. HTLV-1 causes adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP); HTLV-2 is not clearly associated with a known clinical disease. Both viruses may be transmitted by whole blood transfusion, from mother to child predominantly through breastfeeding, and by sexual contact. Presently, none of the regional blood banks in Uganda perform routine pretransfusion screening for HTLV. The aim of this study was to determine the prevalence of anti-human T-cell lymphotropic virus types 1/2 (HTLV-1/2) antibodies among blood donors at Mbarara Regional Blood Bank in South Western Uganda. A cross-sectional study was conducted between June 2014 and September 2014. Methodology. Consecutive blood samples of 368 blood donors were screened for anti-HTLV-1/2 antibodies using an enzyme linked immunosorbent assay (ELISA). Samples reactive on a first HTLV-1/2 ELISA were further retested in duplicate using the same ELISA. Of the three hundred and sixty-eight blood donors (229 (62.2%) males and 139 (37.8%) females), only two male donors aged 20 and 21 years were HTLV-1/2 seropositive, representing a prevalence of 0.54%. Conclusion. HTLV-1/2 prevalence is low among blood donors at Mbarara Regional Blood Bank. Studies among other categories of people at risk for HTLV 1/2 infection should be carried out.

  19. Human T-Cell Lymphotropic Virus Types 1 and 2 Seropositivity among Blood Donors at Mbarara Regional Blood Bank, South Western Uganda

    Directory of Open Access Journals (Sweden)

    Patience Uchenna Tweteise

    2016-01-01

    Full Text Available Background. The human T-cell lymphotropic virus types 1 and 2 (HTLV 1/2 are retroviruses associated with different pathologies. HTLV-1 causes adult T-cell leukemia/lymphoma (ATL and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP; HTLV-2 is not clearly associated with a known clinical disease. Both viruses may be transmitted by whole blood transfusion, from mother to child predominantly through breastfeeding, and by sexual contact. Presently, none of the regional blood banks in Uganda perform routine pretransfusion screening for HTLV. The aim of this study was to determine the prevalence of anti-human T-cell lymphotropic virus types 1/2 (HTLV-1/2 antibodies among blood donors at Mbarara Regional Blood Bank in South Western Uganda. A cross-sectional study was conducted between June 2014 and September 2014. Methodology. Consecutive blood samples of 368 blood donors were screened for anti-HTLV-1/2 antibodies using an enzyme linked immunosorbent assay (ELISA. Samples reactive on a first HTLV-1/2 ELISA were further retested in duplicate using the same ELISA. Of the three hundred and sixty-eight blood donors (229 (62.2% males and 139 (37.8% females, only two male donors aged 20 and 21 years were HTLV-1/2 seropositive, representing a prevalence of 0.54%. Conclusion. HTLV-1/2 prevalence is low among blood donors at Mbarara Regional Blood Bank. Studies among other categories of people at risk for HTLV 1/2 infection should be carried out.

  20. Expansion of Natural Killer Cells in Peripheral Blood in a Japanese Elderly with Human T-Cell Lymphotropic Virus Type 1-Related Skin Lesions

    Directory of Open Access Journals (Sweden)

    Shinsaku Imashuku

    2014-01-01

    Full Text Available Natural killer (NK cells were proposed to play an important role in the pathogenesis of human T-cell lymphotropic virus type 1- (HTLV-1- associated neurologic disease. Our patient was a 77-year-old Japanese man, who had been treated for infective dermatitis associated with HTLV-1 for nearly 10 years. When referred to us, he had facial eczema/edema as well as extensive dermatitis at the neck/upper chest and nuchal area/upper back regions. Dermal lesions had CD3+CD4+ cells, but no NK cells. Flow cytometry of his peripheral blood showed a phenotype of CD2+ (97%, CD3+ (17%, CD4+ (12%, CD7+ (94%, CD8+ (6%, CD11c+ (70%, CD16+ (82%, CD19+ (0%, CD20+ (0%, CD56+ (67%, HLA-DR+ (68%, and NKp46+ (36%. Absolute numbers of CD56+NK cells in the peripheral blood were in a range of 986/μL–1,270/μL. The expanded NK cells in the peripheral blood are considered to be reactive, to maintain the confinement of the HTLV-1-positive CD4+ cells in the skin, and to prevent the progression of the disease.

  1. Relationship Among Strongyloides stercoralis Infection, Human T-Cell Lymphotropic Virus Type 1 Infection, and Cancer: A 24-Year Cohort Inpatient Study in Okinawa, Japan.

    Science.gov (United States)

    Tanaka, Teruhisa; Hirata, Tetsuo; Parrott, Gretchen; Higashiarakawa, Miwa; Kinjo, Takeshi; Kinjo, Tetsu; Hokama, Akira; Fujita, Jiro

    2016-02-01

    This study evaluated the prevalence of Strongyloides stercoralis infection and human T-cell lymphotropic virus type 1 (HTLV-1) infection in the population. In addition, this study investigated the relationship between S. stercoralis infection or HTLV-1 infection and a patient's risk of developing related cancers. This is a retrospective cohort study of 5,209 patients. The prevalence of S. stercoralis infection was 5.2% among all patients. The prevalence among men (6.3%) was significantly higher than among women (3.6%, P stercoralis and HTLV-1 in the Okinawan population has been steadily decreasing over the past 24 years. HTLV-1 infection significantly increases the odds of developing liver cancer and lymphomas other than ATLL.

  2. Human T-lymphotropic virus type-1 p30 alters cell cycle G2 regulation of T lymphocytes to enhance cell survival

    Directory of Open Access Journals (Sweden)

    Silverman Lee

    2007-07-01

    Full Text Available Abstract Background Human T-lymphotropic virus type-1 (HTLV-1 causes adult T-cell leukemia/lymphoma and is linked to a number of lymphocyte-mediated disorders. HTLV-1 contains both regulatory and accessory genes in four pX open reading frames. pX ORF-II encodes two proteins, p13 and p30, whose roles are still being defined in the virus life cycle and in HTLV-1 virus-host cell interactions. Proviral clones of HTLV-1 with pX ORF-II mutations diminish the ability of the virus to maintain viral loads in vivo. p30 expressed exogenously differentially modulates CREB and Tax-responsive element-mediated transcription through its interaction with CREB-binding protein/p300 and while acting as a repressor of many genes including Tax, in part by blocking tax/rex RNA nuclear export, selectively enhances key gene pathways involved in T-cell signaling/activation. Results Herein, we analyzed the role of p30 in cell cycle regulation. Jurkat T-cells transduced with a p30 expressing lentivirus vector accumulated in the G2-M phase of cell cycle. We then analyzed key proteins involved in G2-M checkpoint activation. p30 expression in Jurkat T-cells resulted in an increase in phosphorylation at serine 216 of nuclear cell division cycle 25C (Cdc25C, had enhanced checkpoint kinase 1 (Chk1 serine 345 phosphorylation, reduced expression of polo-like kinase 1 (PLK1, diminished phosphorylation of PLK1 at tyrosine 210 and reduced phosphorylation of Cdc25C at serine 198. Finally, primary human lymphocyte derived cell lines immortalized by a HTLV-1 proviral clone defective in p30 expression were more susceptible to camptothecin induced apoptosis. Collectively these data are consistent with a cell survival role of p30 against genotoxic insults to HTLV-1 infected lymphocytes. Conclusion Collectively, our data are the first to indicate that HTLV-1 p30 expression results in activation of the G2-M cell cycle checkpoint, events that would promote early viral spread and T-cell

  3. Insights into origins of Human T-cell Lymphotropic Virus Type 1 based on new strains from aboriginal people of Canada.

    Science.gov (United States)

    Andonov, Anton; Coulthart, Michael B; Pérez-Losada, Marcos; Crandall, Keith A; Posada, David; Padmore, Ruth; Giulivi, Antonio; Oger, Joel J; Peters, Andrew A; Dekaban, Gregory A

    2012-12-01

    The causes of the worldwide distribution of Human T-cell Lymphotropic Virus Type 1 (HTLV-1) remain incompletely understood, with competing hypotheses regarding the number and timing of events leading to intercontinental spread on historical and prehistoric timescales. Ongoing discovery of this virus in aboriginal populations of Asia and the Americas has been the main source of evidence for the latter. We conducted molecular phylogenetic and dating analyses for 13 newly reported HTLV-1 strains from Canada. We analyzed two full-length proviral genomes from aboriginal residents of Nunavut (an autonomous territory in Northern Canada including most of the Canadian Arctic), 11 long-terminal-repeat (LTR) sequences from aboriginal residents of British Columbia's Pacific coast, and 2 LTR sequences from non-aboriginal Canadians. Phylogenetic analysis demonstrated a well-supported affinity between the two Nunavut strains and two East Asian strains, suggesting the presence of an Asian-American sublineage within the widespread "transcontinental" subgroup A clade of HTLV-1 Cosmopolitan subtype a. This putative sublineage was estimated to be 5400-11,900 years in age, consistent with a long-term presence of HTLV-1 in aboriginal populations of the Canadian Arctic. Phylogenetic affinities of the other 11 Canadian HTLV-1 aboriginal strains were diverse, strengthening earlier evidence for multiple incursions of this virus into coastal aboriginal populations of British Columbia. Our results are consistent with the hypothesis of ancient presence of HTLV-1 in aboriginal populations of North America.

  4. Cell-Free versus Cell-to-Cell Infection by Human Immunodeficiency Virus Type 1 and Human T-Lymphotropic Virus Type 1: Exploring the Link among Viral Source, Viral Trafficking, and Viral Replication.

    Science.gov (United States)

    Dutartre, Hélène; Clavière, Mathieu; Journo, Chloé; Mahieux, Renaud

    2016-09-01

    Human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus type 1 (HTLV-1) are complex retroviruses mainly infecting CD4(+) T lymphocytes. In addition, antigen-presenting cells such as dendritic cells (DCs) are targeted in vivo by both viruses, although to a lesser extent. Interaction of HIV-1 with DCs plays a key role in viral dissemination from the mucosa to CD4(+) T lymphocytes present in lymphoid organs. While similar mechanisms may occur for HTLV-1 as well, most HTLV-1 data were obtained from T-cell studies, and little is known regarding the trafficking of this virus in DCs. We first compared the efficiency of cell-free versus cell-associated viral sources of both retroviruses at infecting DCs. We showed that both HIV-1 and HTLV-1 cell-free particles are poorly efficient at productively infecting DCs, except when DC-SIGN has been engaged. Furthermore, while SAMHD-1 accounts for restriction of cell-free HIV-1 infection, it is not involved in HTLV-1 restriction. In addition, cell-free viruses lead mainly to a nonproductive DC infection, leading to trans-infection of T-cells, a process important for HIV-1 spread but not for that of HTLV-1. Finally, we show that T-DC cell-to-cell transfer implies viral trafficking in vesicles that may both increase productive infection of DCs ("cis-infection") and allow viral escape from immune surveillance. Altogether, these observations allowed us to draw a model of HTLV-1 and HIV-1 trafficking in DCs.

  5. A cluster of human T-cell lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis in Jujuy, Argentina.

    Science.gov (United States)

    Biglione, Mirna M; Pizarro, Manuel; Puca, Alberto; Salomón, Horacio E; Berría, Maria I

    2003-04-01

    Compared with other regions in Argentina, greater human T-cell lymphotropic virus type I (HTLV-I) seroprevalence has been reported in Jujuy Province, where it reaches 2.32% in the general population, so that a search for HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) cases deserved to be carried out. Accordingly, a clinically diagnosed and serologically confirmed cluster of cases in 1 man and 10 women, including 2 sisters, is described here. Most patients (9/11) were born in Cochinoca Department, located in an Andes highland area called Puna Jujeña, situated at more that 3400 m above sea level. No history of risk factors was disclosed, except for a single transfusion in 1 patient. In contrast to the Andean region of Bolivia, where high HTLV-I seroprevalence is in part attributable to Japanese immigrants, the Jujuy population mainly consists of aborigines, mestizos, and European descendants. Therefore, the long-term presence of virus in Jujuy natives may be taken for granted. Considering the HAM/TSP cluster described here plus previously reported isolated cases in neighboring Salta Province, we speculate that the Puna Jujeña region and regions in that vicinity would be a microepidemic focus of disease. To determine the role of possible pathogenic cofactors such as geographic, ethnic, genetic, and cultural features, further pertinent surveys are required in subtropical northwestern Argentina.

  6. Mapping the molecular characteristics of Brazilian human T-cell lymphotropic virus type 1 Env (gp46 and Pol amino acid sequences for vaccine design

    Directory of Open Access Journals (Sweden)

    Aline Cristina Mota-Miranda

    2007-09-01

    Full Text Available This study was carried out to evaluate the molecular pattern of all available Brazilian human T-cell lymphotropic virus type 1 Env (n = 15 and Pol (n = 43 nucleotide sequences via epitope prediction, physico-chemical analysis, and protein potential sites identification, giving support to the Brazilian AIDS vaccine program. In 12 previously described peptides of the Env sequences we found 12 epitopes, while in 4 peptides of the Pol sequences we found 4 epitopes. The total variation on the amino acid composition was 9 and 17% for human leukocyte antigen (HLA class I and class II Env epitopes, respectively. After analyzing the Pol sequences, results revealed a total amino acid variation of 0.75% for HLA-I and HLA-II epitopes. In 5 of the 12 Env epitopes the physico-chemical analysis demonstrated that the mutations magnified the antigenicity profile. The potential protein domain analysis of Env sequences showed the loss of a CK-2 phosphorylation site caused by D197N mutation in one epitope, and a N-glycosylation site caused by S246Y and V247I mutations in another epitope. Besides, the analysis of selection pressure have found 8 positive selected sites (w = 9.59 using the codon-based substitution models and maximum-likelihood methods. These studies underscore the importance of this Env region for the virus fitness, for the host immune response and, therefore, for the development of vaccine candidates.

  7. Human T-Lymphotropic Virus Type 1 (HTLV-1 and Regulatory T Cells in HTLV-1-Associated Neuroinflammatory Disease

    Directory of Open Access Journals (Sweden)

    Yoshihisa Yamano

    2011-08-01

    Full Text Available Human T-lymphotropic virus type 1 (HTLV-1 is a retrovirus that is the causative agent of adult T cell leukemia/lymphoma (ATL and associated with multiorgan inflammatory disorders, including HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP and uveitis. HTLV-1-infected T cells have been hypothesized to contribute to the development of these disorders, although the precise mechanisms are not well understood. HTLV-1 primarily infects CD4+ T helper (Th cells that play a central role in adaptive immune responses. Based on their functions, patterns of cytokine secretion, and expression of specific transcription factors and chemokine receptors, Th cells that are differentiated from naïve CD4+ T cells are classified into four major lineages: Th1, Th2, Th17, and T regulatory (Treg cells. The CD4+CD25+CCR4+ T cell population, which consists primarily of suppressive T cell subsets, such as the Treg and Th2 subsets in healthy individuals, is the predominant viral reservoir of HTLV-1 in both ATL and HAM/TSP patients. Interestingly, CD4+CD25+CCR4+ T cells become Th1-like cells in HAM/TSP patients, as evidenced by their overproduction of IFN-γ, suggesting that HTLV-1 may intracellularly induce T cell plasticity from Treg to IFN-γ+ T cells. This review examines the recent research into the association between HTLV-1 and Treg cells that has greatly enhanced understanding of the pathogenic mechanisms underlying immune dysregulation in HTLV-1-associated neuroinflammatory disease.

  8. Occult persistence and lymphotropism of hepatitis C virus infection

    Institute of Scientific and Technical Information of China (English)

    Tram NQ Pham; Tomasz I Michalak

    2008-01-01

    Recent discovery of occult hepatitis C virus (HCV)infection persisting after spontaneous or antiviral therapy-induced resolution of hepatitis C was made possible by the introduction of nucleic acid amplification assays capable of detecting HCV RNA at sensitivities superseding those offered by clinical tests. Although individuals with this seemingly silent HCV infection are usually anti-HCV antibody reactive and have normal liver function tests, occult HCV infection has also been reported in anti-HCV-negative individuals with persistently elevated liver enzymes of unknown etiology. Studies have shown that HCV RNA can persist for years in serum, iymphomononuciear cells and liver in the absence of clinical symptoms, although histological evidence of a mild inflammatory liver injury can be occasionally encountered. Furthermore, while HCV RNA can be detected in circulating lymphoid cells in approximately 30% of cases, a short-term culture under stimulatory conditions augments HCV replication in these cells allowing detection of virus in otherwise HCV-negative cases. HCV infects different immune cell subsets, including CD4+ and CD8+ T lymphocytes, B cells and monocytes. Studies employing cional sequencing and single-stranded conformational polymorphism analyses have revealed unique HCV variants residing in immune cells, further strengthening the notion of HCV lymphotropism. Overall, the data accumulated suggest that occult HCV infection is a common consequence of resolution of symptomatic hepatitis C and that examination of the cells of the immune system is an effective approach to diagnosis of HCV infection and its long-term persistence. Further work is required to fully realize pathogenic and epidemiological consequences of occult HCV persistence.

  9. Endemicity and phylogeny of the human T cell lymphotropic virus type II subtype A from the Kayapo Indians of Brazil: evidence for limited regional dissemination.

    Science.gov (United States)

    Switzer, W M; Black, F L; Pieniazek, D; Biggar, R J; Lal, R B; Heneine, W

    1996-05-01

    Long terminal repeat (LTR)-based restriction fragment length polymorphism (RFLP) analysis of human T cell lymphotropic virus type II (HTLV-II) from 17 seropositive Kayapo Indians from Brazil showed that all 17 samples contained a unique HTLV-IIa subtype (A-II). Additional RFLP screening demonstrated the presence of this subtype in two of three Brazilian blood donors and a Mexican prostitute and her child. In contrast, 129 samples from blood donors and intravenous drug users (IDUs) from the United States, two Pueblo Indian samples, five samples from Norwegian IDUs, and two samples from blood donors from Denmark were all found to be a different HTLV-IIa subtype (A-III). Phylogenetic analysis of two Kayapo and one Mexican LTR sequences showed that they cluster with a subtype A-II sequence from a Brazilian blood donor and with sequences from two prostitutes from Ghana and Cameroon. These results demonstrate that infection with the A-II subtype is endemic among the Kayapo Amerindians, has disseminated to non-Indian populations in Brazil, and is also present in Mexico. Furthermore, the A-II subtype does not appear to represent an origin for the HTLV-IIa infection in urban areas of the United States and Europe. This study provides evidence that HTLV-IIa may be a Paleo-Indian subtype as previously suggested for HTLV-IIb.

  10. Prevalence of human retroviral infection in Quillabamba and Cuzco, Peru: a new endemic area for human T cell lymphotropic virus type 1.

    Science.gov (United States)

    Zurita, S; Costa, C; Watts, D; Indacochea, S; Campos, P; Sanchez, J; Gotuzzo, E

    1997-05-01

    An epidemiologic study was conducted to determine the prevalence of retroviral infections among people of Qucchua origin in Cuzco and Quillabamba, Peru. The study volunteers included individuals at low and at high risk for retroviral infections. Each volunteer was interviewed to obtain clinical and epidemiologic data, and to identify risk behaviors for infection. The serum was tested for human immunodeficiency virus type 1 (HIV-1) and human T cell lymphotropic virus types 1/2 (HTLV-1/2) by standard enzyme-linked immunosorbent and Western blot assays. Among a total of 370 volunteers enrolled in the study, 276 were women and 94 were men whose ages ranged between 15 and 49 years. Infection with HTLV-1 was demonstrated in 5.1% (19 of 370), and one of these, a homosexual, was also positive for HIV-1; none had HTLV-2. Overall, the rate of HTLV-1 infection was 5.3% (5 of 94) for males and 5% (14 of 276) for females. Among the low risk group of 211 healthy pregnant women, five (2.3%) were positive for HTLV-1. The rate of HTLV-1 infection in this group was significantly correlated with a history of dental surgery, as well as other surgical procedures, and a history of jaundice. Among the volunteers who practiced risk behavior(s) for retroviral infections, the positive rates for HTLV-1 were 13.7% (7 of 51) for female sex workers, 6.2% (3 of 48) for homosexuals and/or bisexuals, 8.5% (4 of 47) for patients with sexually transmitted diseases (STDs), and 0.0% (0 of 13) for promiscuous heterosexual males. In female sex workers. HTLV-1 infection was found to be significantly associated with age, a history of STDs or genital ulcers, sexual intercourse during menses, and vaginal douching (P < 0.05). A low prevalence of HIV-1 infection indicates that the virus has not yet spread significantly in these areas.

  11. Magnetic resonance imaging for Human T-cell lymphotropic virus type 1 (HTLV1- associated myelopathy/tropical spastic paraparesis patients: a systematic review

    Directory of Open Access Journals (Sweden)

    Fariba Zemorshidi

    2015-06-01

    Full Text Available Introduction: Human T-cell lymphotropic virus type 1 (HTLV-1 associated myelopathy/tropical spastic paraparesis is a chronic progressive neurologic disease which might be associated by brain and spinal cord atrophy and lesions. Here we systematically reviewed the brain and spinal cord abnormalities reported by using magnetic resonance imaging modality on HTLV-1 associated myelopathy/tropical spastic paraparesis patients. Methods: PubMed was searched for all the relevant articles which used magnetic resonance imaging for patients with human HTLV-1 associated myelopathy/tropical spastic paraparesis disease. Included criteria were all the cohort and case series on with at least 10 patients. We had no time limitation for searched articles, but only English language articles were included in our systematic review. Exclusion criteria were none-English articles, case reports, articles with less than 10 patients, spastic paraparesis patients with unknown etiology, and patients with HTLVII. Results: Total of 14 relevant articles were extracted after studying title, abstracts, and full text of the irrelevant articles. Only 2/14 articles, reported brain atrophy incidence. 5/14 articles studied the brain lesions prevalence. Spinal cord atrophy and lesions, each were studied in 6/14 articles.Discussion: According to the extracted data, brain atrophy does not seem to happen frequently in patients with HTLV-1 associated myelopathy/tropical spastic paraparesis. None-specific brain lesions identified in articles are indicative of low specificity of magnetic resonance imaging technique despite its high sensitivity. Conclusion: Prevalence of spinal cord lesions and atrophy in these patients might be due to the degenerative processes associated with aging phenomenon. Further larger studies in endemic areas can more accurately reveal the specificity of magnetic resonance imaging for these patients.

  12. Localization of human T-cell lymphotropic virus-1 gag proviral sequences in dermato-immunological disorders with eosinophilia.

    Science.gov (United States)

    Nagy, K; Marschalkó, Márta; Kemény, B; Horváth, A

    2005-01-01

    The mechanisms leading to the development of eosinophilia were investigated in 65 patients with immunodermatological disorders, including the role of eosinophilotactic cytokines and the possible involvement of human T-cell leukemia virus, HTLV. HTLV-1 gag proviral sequences were revealed in two cases of lymphoproliferative disorders such as angiolymphoid hyperplasia with eosinophilia (ALHE) and CD4+ cutaneous lymphoma, respectively. Increased level of GM-CSF was detected in 33% of disorders studied. Elevated level of IL-5 and eotaxin was detected in 27% and 30%, respectively, of patients with bullous diseases. Elevated level of GM-CSF and eotaxin was found in 33% and 46%, respectively, of patients with inflammatory diseases. Neither of the four cytokines, however proved to be responsible alone or together for the induction of eosinophilia. The possible indirect role of human retroviruses through induction of eosinophilic chemotactic cytokines is hypothesized.

  13. Hepatitis C virus lymphotropism and peculiar immunological phenotype: Effects on natural history and antiviral therapy

    Institute of Scientific and Technical Information of China (English)

    Paolo Conca; Giovanni Tarantino

    2009-01-01

    Hepatitis C virus (HCV) has been recognized to be both a hepato- and lymphotropic virus. HCV lymphotropism represents an essential lap in the pathogenesis of virusrelated autoimmune and lymphoproliferative disorders, ranging from clonal expansion of B-cells with organ-and non-organ-specific autoantibody production up step-by-step model of B-cell lymphomagenesis, where the intermediated mixed cryoglobulinemia could be considered as a stage of suppressible antigen-driven lymphoproliferation. HCV infection of lymphoid cells could set up privileged reservoirs able to interfere with the host viral clearance efficiency and may be implicated in viral recurrence after apparently successful antiviral therapy. The HCV long-lasting extrahepatic replicative state generates an abnormal systemic immunological response, easily detectable by searching simple laboratory and clinical parameters, mainly represented by vasculitis-like skin features and hypocomplementemia.The presence or absence of this hypersensitivity pattern seems to correlate with the antiviral response and could be identified as a novel immunological cofactor. Further research is required to fully verify the real impact on therapeutic choice/regimen.

  14. Human T-lymphotropic virus 1 (HTLV-1)-associated lichenoid dermatitis induced by CD8+ T cells in HTLV-1 carrier, HTLV-1-associated myelopathy/tropical spastic paraparesis and adult T-cell leukemia/lymphoma.

    Science.gov (United States)

    Tokura, Yoshiki; Ito, Taisuke; Kawakami, Chika; Sugita, Kazunari; Kasuya, Akira; Tatsuno, Kazuki; Sawada, Yu; Nakamura, Motonobu; Shimauchi, Takatoshi

    2015-10-01

    Human T-lymphotropic virus type 1 (HTLV-1) induces adult T-cell leukemia/lymphoma (ATLL), HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and carrier. ATLL is a mature CD4+ CD25+ CCR4+ T-cell neoplasm, and approximately half of patients have direct skin involvement manifesting patch, plaque, tumor, multiple papules, erythroderma and purpura. However, there exist secondary eruptions without tumor cell infiltration in patients with ATLL or HAM/TSP and carriers of HTLV-1. To clarify the presence of reactive skin eruptions in HTLV-1-infected individuals, we reviewed our patients with HTLV-1-associated diseases. In 2002-2012, we saw 50 ATLL or HAM/TSP patients and HTLV-1 carriers presenting with skin lesions. We retrospectively selected cases that histologically showed lichenoid tissue reactions with predominant infiltration of CD8+ T cells, but not CD4+ tumor cells. The cases included erythroderma (HTLV-1 carrier), lichen planus (HTLV-1 carrier), alopecia areata (HAM/TSP), chronic actinic dermatitis (HTLV-1 carrier to acute ATLL conversion) and discoid lupus erythematosus (smoldering ATLL). They were graft-versus-host disease-like, major secondary lesions and seen in HTLV-1 carriers and patients with HAM/TSP and smoldering ATLL. We coin the term HTLV-1-associated lichenoid dermatitis (HALD) to encompass the conditions. HALD may occur in association with the elevated immunity toward HTLV-1-infected CD4+ T cells, thus sharing the pathogenetic role of cytotoxic T cells with HAM/TSP.

  15. Tax posttranslational modifications and interaction with calreticulin in MT-2 cells and human peripheral blood mononuclear cells of human T cell lymphotropic virus type-I-associated myelopathy/tropical spastic paraparesis patients.

    Science.gov (United States)

    Medina, Fernando; Quintremil, Sebastian; Alberti, Carolina; Barriga, Andres; Cartier, Luis; Puente, Javier; Ramírez, Eugenio; Ferreira, Arturo; Tanaka, Yuetsu; Valenzuela, Maria Antonieta

    2014-04-01

    The human retrovirus human T cell lymphotropic virus type-I (HTLV-1) is the etiologic agent of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Axonal degeneration in HAM/TSP patients occurs without neuron infection, with the secreted viral Tax protein proposed to be involved. We previously found that Tax secreted into the culture medium of MT-2 cells (HTLV-1-infected cell line) produced neurite retraction in neuroblastoma cells differentiated to neuronal type. To assess the relevance of Tax posttranslational modifications on this effect, we addressed the question of whether Tax secreted by MT-2 cells and peripheral blood mononuclear cells (PBMCs) of HTLV-1-infected subjects is modified. The interaction of Tax with calreticulin (CRT) that modulates intracellular Tax localization and secretion has been described. We studied Tax localization and modifications in MT-2 cells and its interaction with CRT. Intracellular Tax in MT-2 cells was assessed by flow cytometry, corresponding mainly to a 71-kDa protein followed by western blot. This protein reported as a chimera with gp21 viral protein-confirmed by mass spectrometry-showed no ubiquitination or SUMOylation. The Tax-CRT interaction was determined by confocal microscopy and coimmunoprecipitation. Extracellular Tax from HAM/TSP PBMCs is ubiquitinated according to western blot, and its interaction with CRT was shown by coimmunoprecipitation. A positive correlation between Tax and CRT secretion was observed in HAM/TSP PBMCs and asymptomatic carriers. For both proteins inhibitors and activators of secretion showed secretion through the endoplasmic reticulum-Golgi complex. Tax, present in PBMC culture medium, produced neurite retraction in differentiated neuroblastoma cells. These results suggest that Tax, whether ubiquitinated or not, is active for neurite retraction.

  16. Human T Lymphotropic Virus Type I (HTLV-I Oncogenesis: Molecular Aspects of Virus and Host Interactions in Pathogenesis of Adult T cell Leukemia/Lymphoma (ATL

    Directory of Open Access Journals (Sweden)

    Sanaz Ahmadi Ghezeldasht

    2013-03-01

    Full Text Available     The study of tumor viruses paves the way for understanding the mechanisms of virus pathogenesis, including those involved in establishing infection and dissemination in the host tumor affecting immune-compromised patients. The processes ranging from viral infection to progressing malignancy are slow and usually insufficient for establishment of transformed cells that develop cancer in only a minority of infected subjects. Therefore, viral infection is usually not the only cause of cancer, and further environmental and host factors, may be implicated. HTLV-I, in particular, is considered as an oncovirus cause of lymphoproliferative disease such as adult T cell leukemia/lymphoma (ATL and disturbs the immune responses which results in HTLV-I associated meylopathy/tropical spastic parapresis (HAM/TSP. HTLV-I infection causes ATL in a small proportion of infected subjects (2-5% following a prolonged incubation period (15-30 years despite a strong adaptive immune response against the virus.   Overall, these conditions offer a prospect to study the molecular basis of tumorgenicity in mammalian cells. In this review, the oncogencity of HTLV-I is being considered as an oncovirus in context of ATL.    

  17. Mother-to-Child Transmission of Human T-Cell Lymphotropic Viruses-1/2: What We Know, and What Are the Gaps in Understanding and Preventing This Route of Infection

    Science.gov (United States)

    Carneiro-Proietti, A. B. F.; Amaranto-Damasio, M. S.; Leal-Horiguchi, C. F.; Bastos, R. H. C.; Seabra-Freitas, G.; Borowiak, D. R.; Ribeiro, M. A.; Proietti, F. A.; Ferreira, A. S. D.; Martins, M. L.

    2014-01-01

    Although human T-cell lymphotropic viruses (HTLV-1/2) were described over 30 years ago, they are relatively unknown to the public and even to healthcare personnel. Although HTLV-1 is associated with severe illnesses, these occur in only approximately 10% of infected individuals, which may explain the lack of public knowledge about them. However, cohort studies are showing that a myriad of other disease manifestations may trouble infected individuals and cause higher expenditures with healthcare. Testing donated blood for HTLV-1/2 started soon after reliable tests were developed, but unfortunately testing is not available for women during prenatal care. Vertical transmission can occur before or after birth of the child. Before birth, it occurs transplacentally or by transfer of virus during cesarean delivery, but these routes of infection are rare. After childbirth, viral transmission occurs during breastfeeding and increases with longer breastfeeding and high maternal proviral load. Unlike the human immunodeficiency virus types 1 and 2, HTLV is transmitted primarily through breastfeeding and not transplacentally or during delivery. In this study, we review what is currently known about HTLV maternal transmission, its prevention, and the gaps still present in the understanding of this process. PMID:25232474

  18. High seroprevalence of human T-cell lymphotropic virus type 1 in blood donors in Guyana and molecular and phylogenetic analysis of new strains in the Guyana shelf (Guyana, Suriname, and French Guiana).

    Science.gov (United States)

    Pouliquen, Jean-François; Hardy, Lynette; Lavergne, Anne; Kafiludine, Eric; Kazanji, Mirdad

    2004-05-01

    The prevalence of human T-cell lymphotropic virus type 1 (HTLV-1) and HTLV-2 in blood donors in Guyana has never been estimated. We evaluated the prevalence of these viruses in blood donors by enzyme-linked immunosorbent assay and Western blotting and showed a prevalence of HTLV-1 of 1.3%; no HTLV-2 was detected. Female donors had a much higher HTLV-1 seroprevalence (3.6%) than male donors (0.7%). HTLV-1-seropositive donors tended to be slightly older than the average age for the total pool of donors. We also investigated the phylogenetic and molecular characteristics of HTLV-1 strains in Guyana and compared them with those identified in Suriname and French Guiana. Analysis of portions of the env and long terminal repeat nucleotide sequences showed that all the strains in Guyana and Suriname, like those in French Guiana, belonged to the transcontinental group of cosmopolitan subtype A. The similarities were greater between strains from Suriname and Guyana than between strains from Suriname and Guyana and those from French Guiana. Nevertheless, our results confirm that the HTLV-1 strains in all three countries have a common African origin.

  19. Tax secretion from peripheral blood mononuclear cells and Tax detection in plasma of patients with human T-lymphotropic virus-type 1-associated myelopathy/tropical spastic paraparesis and asymptomatic carriers.

    Science.gov (United States)

    Medina, Fernando; Quintremil, Sebastián; Alberti, Carolina; Godoy, Fabián; Pando, María E; Bustamante, Andrés; Barriga, Andrés; Cartier, Luis; Puente, Javier; Tanaka, Yuetsu; Valenzuela, María A; Ramírez, Eugenio

    2016-03-01

    Human T-lymphotropic virus-type 1 (HTLV-1) is the etiologic agent of the neurologic disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Tax viral protein plays a critical role in viral pathogenesis. Previous studies suggested that extracellular Tax might involve cytokine-like extracellular effects. We evaluated Tax secretion in 18 h-ex vivo peripheral blood mononuclear cells (PBMCs) cultures from 15 HAM/TSP patients and 15 asymptomatic carriers. Futhermore, Tax plasma level was evaluated from other 12 HAM/TSP patients and 10 asymptomatic carriers. Proviral load and mRNA encoding Tax were quantified by PCR and real-time RT-PCR, respectively. Intracellular Tax in CD4(+)CD25(+) cells occurred in 100% and 86.7% of HAM/TSP patients and asymptomatic carriers, respectively. Percentage of CD4(+)CD25(+) Tax+, proviral load and mRNA encoding Tax were significantly higher in HAM/TSP patients. Western blot analyses showed higher secretion levels of ubiquitinated Tax in HAM/TSP patients than in asymptomatic carriers. In HTLV-1-infected subjects, Western blot of plasma Tax showed higher levels in HAM/TSP patients than in asymptomatic carriers, whereas no Tax was found in non-infected subjects. Immunoprecipitated plasma Tax resolved on SDS-PAGE gave two major bands of 57 and 48 kDa allowing identification of Tax and Ubiquitin peptides by mass spectrometry. Relative percentage of either CD4(+)CD25(+) Tax+ cells, or Tax protein released from PBMCs, or plasma Tax, correlates neither with tax mRNA nor with proviral load. This fact could be explained by a complex regulation of Tax expression. Tax secreted from PBMCs or present in plasma could potentially become a biomarker to distinguish between HAM/TSP patients and asymptomatic carriers.

  20. 对嗜T淋巴细胞病毒Ⅰ型重组env的研究%Study on the expression of recombinant antigen env in human T-cell lymphotropic virus type into prokaryotic vector I

    Institute of Scientific and Technical Information of China (English)

    朱庆华; 王梅芬

    2012-01-01

    Objective To investigate the expression of recombinant antigen env in human T-cell lymphotropic virus type I. Methods The target gene of HTLV-I env were analyzed and selected, cloned into prokaryotic vector pQE80L and identified it through PCR and restriction methods. Then the expressed recombinant env protein antigen was induced and purified by affinity chromatography. Western—blot method was adapted to test the activity of the recombinant env antigen expressed by prokaryotic, and ELISA method was adapted to test its specificity. Results The positive recombinants pQE80L-env was selected through PCR amplification and restriction. SDS-PAGE suggested the relative molecular mass of the recombinant protein was approximately 25KDa,which was in line with the expected molecular weight,and Western-blot showed an obvious specific band at 25KDa. The transfected cells were cultured for 48h,then the corresponding SDS-PAGE indicated the relative molecular mass of the recombinant protein was approximately 27KDa,which coincided with the expected molecular weight,and Western-blot revealed an obvious specific band at 27KDa. The reference sera of normal, HIV-positive and HTLV- II -positive people were all detected negative, while HTLV- I -positive people was strongly positive. Conclusion 5915-6545nt area of HTLV-I env gene can be cloned into prokaryotic and eukaryotic vector to express the specific recombinant antigen HTLV-I. There are no significant differences between the two antigens,and it holds the potential to be used as test kits.%目的 探讨人类嗜T淋巴细胞病毒( Human T-cell Lymphotropic Virus,HTLV)I型重组env抗原的表达.方法 分析和选择HTLV-Ⅰ env目的基因,将目的基因片段分别克隆人原核表达载体pQE80L,PCR和酶切鉴定重组子,诱导并亲和层析纯化表达重组env蛋白抗原,Western-blot检测重组env蛋白抗原活性,ELISA方法测试重组env蛋白抗原的特异性.结果 PCR扩增和酶切筛

  1. NF-kappa B activity in T cells stably expressing the Tax protein of human T cell lymphotropic virus type I

    Energy Technology Data Exchange (ETDEWEB)

    Lacoste, J.; Cohen, L.; Hiscott, J. (Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec (Canada))

    1991-10-01

    The effect of constitutive Tax expression on the interaction of NF-{kappa} B with its recognition sequence and on NF-{kappa} B-dependent gene expression was examined in T lymphoid Jurkat cell lines (19D and 9J) stably transformed with a Tax expression vector. Tax expressing T cell lines contained a constitutive level of NF-{kappa} B binding activity, detectable by mobility shift assay and uv cross-linking using a palindromic NF-{kappa} B probe homologous to the interferon beta PRDII site. In Jurkat and NC2.10 induction with phorbol esters resulted in the appearance of new DNA binding proteins of 85, 75, and 54 kDa, whereas in Tax expressing cells the 85-kDa protein and a 92-kDa DNA binding protein were constitutively induced. Expression of Tax protein in 19D and 9J resulted in transcription of the endogenous NF-kappa B-dependent granulocyte-macrophage colony stimulating factor gene and increased basal level expression of transfected NF-kappa B-regulated promoters. Nonetheless transcription of both the endogenous and the transfected gene was inducible by PMA treatment. Tax expression in Jurkat T cells may alter the stoichiometry of NF-kappa B DNA binding proteins and thus change the expression of NF-kappa B-regulated promoters.

  2. Human T Lymphotropic Virus Type 1 (HTLV-1: Molecular Biology and Oncogenesis

    Directory of Open Access Journals (Sweden)

    Patrick L. Green

    2010-09-01

    Full Text Available Human T lymphotropic viruses (HTLVs are complex deltaretroviruses that do not contain a proto-oncogene in their genome, yet are capable of transforming primary T lymphocytes both in vitro and in vivo. There are four known strains of HTLV including HTLV type 1 (HTLV-1, HTLV-2, HTLV-3 and HTLV-4. HTLV-1 is primarily associated with adult T cell leukemia (ATL and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. HTLV-2 is rarely pathogenic and is sporadically associated with neurological disorders. There have been no diseases associated with HTLV-3 or HTLV-4 to date. Due to the difference in the disease manifestation between HTLV-1 and HTLV-2, a clear understanding of their individual pathobiologies and the role of various viral proteins in transformation should provide insights into better prognosis and prevention strategies. In this review, we aim to summarize the data accumulated so far in the transformation and pathogenesis of HTLV-1, focusing on the viral Tax and HBZ and citing appropriate comparisons to HTLV-2.

  3. Correlation between LTR point mutations and proviral load levels among Human T cell Lymphotropic Virus type 1 (HTLV-1 asymptomatic carriers

    Directory of Open Access Journals (Sweden)

    Neto Walter K

    2011-12-01

    Full Text Available Abstract Background In vitro studies have demonstrated that deletions and point mutations introduced into each 21 bp imperfect repeat of Tax-responsive element (TRE of the genuine human T-cell leukemia virus type I (HTLV-1 viral promoter abolishes Tax induction. Given these data, we hypothesized that similar mutations may affect the proliferation of HTLV-1i nfected cells and alter the proviral load (PvL. To test this hypothesis, we conducted a cross-sectional genetic analysis to compare the near-complete LTR nucleotide sequences that cover the TRE1 region in a sample of HTLV-1 asymptomatic carriers with different PvL burden. Methods A total of 94 asymptomatic HTLV-1 carriers with both sequence from the 5' long terminal repeat (LTR and a PvL for Tax DNA measured using a sensitive SYBR Green real-time PCR were studied. The 94 subjects were divided into three groups based on PvL measurement: 31 low, 29 intermediate, and 34 high. In addition, each group was compared based on sex, age, and viral genotypes. In another analysis, the median PvLs between individuals infected with mutant and wild-type viruses were compared. Results Using a categorical analysis, a G232A substitution, located in domain A of the TRE-1 motif, was detected in 38.7% (12/31, 27.5% (8/29, and 61.8% (21/34 of subjects with low, intermediate, or high PvLs, respectively. A significant difference in the detection of this mutation was found between subjects with a high or low PvL and between those with a high or intermediate PvL (both p p > 0.05. This result was confirmed by a non-parametric analysis that showed strong evidence for higher PvLs among HTLV-1 positive individuals with the G232A mutation than those without this mutation (p p > 0. 05. Conclusions The data described here show that changes in domain A of the HTLV-1 TRE-1 motif resulting in the G232A mutation may increase HTLV-1 replication in a majority of infected subjects.

  4. Regulation of human T-lymphotropic virus type I latency and reactivation by HBZ and Rex.

    Directory of Open Access Journals (Sweden)

    Subha Philip

    2014-04-01

    Full Text Available Human T lymphotropic virus type I (HTLV-I infection is largely latent in infected persons. How HTLV-1 establishes latency and reactivates is unclear. Here we show that most HTLV-1-infected HeLa cells become senescent. By contrast, when NF-κB activity is blocked, senescence is averted, and infected cells continue to divide and chronically produce viral proteins. A small population of infected NF-κB-normal HeLa cells expresses low but detectable levels of Tax and Rex, albeit not Gag or Env. In these "latently" infected cells, HTLV-1 LTR trans-activation by Tax persists, but NF-κB trans-activation is attenuated due to inhibition by HBZ, the HTLV-1 antisense protein. Furthermore, Gag-Pol mRNA localizes primarily in the nuclei of these cells. Importantly, HBZ was found to inhibit Rex-mediated export of intron-containing mRNAs. Over-expression of Rex or shRNA-mediated silencing of HBZ led to viral reactivation. Importantly, strong NF-κB inhibition also reactivates HTLV-1. Hence, during HTLV-1 infection, when Tax/Rex expression is robust and dominant over HBZ, productive infection ensues with expression of structural proteins and NF-κB hyper-activation, which induces senescence. When Tax/Rex expression is muted and HBZ is dominant, latent infection is established with expression of regulatory (Tax/Rex/HBZ but not structural proteins. HBZ maintains viral latency by down-regulating Tax-induced NF-κB activation and senescence, and by inhibiting Rex-mediated expression of viral structural proteins.

  5. Molecular investigation of the evolutionary history and diversity of primate T-lymphotropic virus types 1 and 3

    NARCIS (Netherlands)

    Van Dooren, Sonia Jeanne Albertine

    2005-01-01

    The Primate T-lymphotropic viruses (PTLV) comprise a group of complex retroviruses that infect both humans (HTLV) and simians (STLV) and have been associated with leukaemia or lymphoma and with neurological disorders. PTLVs have a peculiar replication strategy: their way of life is mainly determined

  6. HUMAN T-LYMPHOTROPIC VIRUS 1 (HTLV-1 AND HUMAN T-LYMPHOTROPIC VIRUS 2 (HTLV-2: GEOGRAPHICAL RESEARCH TRENDS AND COLLABORATION NETWORKS (1989-2012

    Directory of Open Access Journals (Sweden)

    Gregorio GONZÁLEZ-ALCAIDE

    2016-01-01

    Full Text Available Publications are often used as a measure of research work success. Human T-lymphotropic virus (HTLV type 1 and 2 are human retroviruses, which were discovered in the early 1980s, and it is estimated that 15-20 million people are infected worldwide. This article describes a bibliometric review and a coauthorship network analysis of literature on HTLV indexed in PubMed in a 24-year period. A total of 7,564 documents were retrieved, showing a decrease in the number of documents from 1996 to 2007. HTLV manuscripts were published in 1,074 journals. Japan and USA were the countries with the highest contribution in this field (61% followed by France (8%. Production ranking changed when the number of publications was normalized by population (Dominican Republic and Japan, by gross domestic product (Guinea-Bissau and Gambia, and by gross national income per capita (Brazil and Japan. The present study has shed light on some of the defining features of scientific collaboration performed by HTLV research community, such as the existence of core researchers responsible for articulating the development of research in the area, facilitating wider collaborative relationships and the integration of new authors in the research groups.

  7. Family Aggregation of Human T-Lymphotropic Virus 1-Associated Diseases: A Systematic Review

    Science.gov (United States)

    Alvarez, Carolina; Gotuzzo, Eduardo; Vandamme, Anne-Mieke; Verdonck, Kristien

    2016-01-01

    Human T-lymphotropic virus 1 (HTLV-1) is a retrovirus that produces a persistent infection. Two transmission routes (from mother to child and via sexual intercourse) favor familial clustering of HTLV-1. It is yet unknown why most HTLV-1 carriers remain asymptomatic while about 10% of them develop complications. HTLV-1 associated diseases were originally described as sporadic entities, but familial presentations have been reported. To explore what is known about family aggregation of HTLV-1-associated diseases we undertook a systematic review. We aimed at answering whether, when, and where family aggregation of HTLV-1-associated diseases was reported, which relatives were affected and which hypotheses were proposed to explain aggregation. We searched MEDLINE, abstract books of HTLV conferences and reference lists of selected papers. Search terms used referred to HTLV-1 infection, and HTLV-1-associated diseases, and family studies. HTLV-1-associated diseases considered are adult T-cell leukemia/lymphoma (ATLL), HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), HTLV-1-associated uveitis, and infective dermatitis. Seventy-four records reported HTLV-1-associated diseases in more than one member of the same family and were included. Most reports came from HTLV-1-endemic countries, mainly Japan (n = 30) and Brazil (n = 10). These reports described a total of 270 families in which more than one relative had HTLV-1-associated diseases. In most families, different family members suffered from the same disease (n = 223). The diseases most frequently reported were ATLL (115 families) and HAM/TSP (102 families). Most families (n = 144) included two to four affected individuals. The proportion of ATLL patients with family history of ATLL ranged from 2 to 26%. The proportion of HAM/TSP patients with family history of HAM/TSP ranged from 1 to 48%. The predominant cluster types for ATLL were clusters of siblings and parent-child pairs and for HAM/TSP, an affected

  8. Highly endemic human T-lymphotropic virus type II (HTLV-II) infection in a Venezuelan Guahibo Amerindian group.

    Science.gov (United States)

    Leon-Ponte, M; Noya, O; Bianco, N; Echeverría de Perez, G

    1996-11-01

    Sera from 166 Guahibo Indians (55% of the population) living in southwest Venezuela were screened by enzyme-linked immunoassay for antibodies to human T-cell lymphotropic virus (HTLV) I and II. Positive samples were confirmed by immunofluorescence and Western blot. Forty-one Guahibos (24.8%) were found to be seropositive. Polymerase chain reaction (PCR) analysis of proviral DNA in mononuclear cell lysates revealed the virus to be HTLV-II. Prevalence increased with age, and sexual contact with HTLV-II-seropositive partners was identified as a risk factor for infection. PCR amplification of a region of the pol gene, utilizing the primer pair SK110/SK111, with subsequent digestion of the 140-base-pair amplification products with HinfI and MseI restriction enzymes, showed an HTLV-II subtype-b restriction pattern in all cases. These data suggest that the substrain infecting this Guahibo community belongs to the b subtype, the most frequent among Paleo-Amerindian populations.

  9. Clinical symptoms and the odds of human T-cell lymphotropic virus type 1-associated myelopathy/ tropical spastic paraparesis (HAM/TSP) in healthy virus carriers: application of best-fit logistic regression equation based on host genotype, age, and provirus load.

    Science.gov (United States)

    Nose, Hirohisa; Saito, Mineki; Usuku, Koichiro; Sabouri, Amir H; Matsuzaki, Toshio; Kubota, Ryuji; Eiraku, Nobutaka; Furukawa, Yoshitaka; Izumo, Shuji; Arimura, Kimiyoshi; Osame, Mitsuhiro

    2006-06-01

    The authors have previously developed a logistic regression equation to predict the odds that a human T-cell lymphotropic virus type 1 (HTLV-1)-infected individual of specified genotype, age, and provirus load has HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in southern Japan. This study evaluated whether this equation is useful predictor for monitoring asymptomatic HTLV-1-seropositive carriers (HCs) in the same population. The authors genotyped 181 HCs for each HAM/TSP-associated gene (tumor necrosis factor [TNF]-alpha-863A/C, stromal cell-derived factor 1 (SDF-1) +801G/A, human leukocyte antigen [HLA]-A*02, HLA-Cw*08, HTLV-1 tax subgroup) and measured HTLV-1 provirus load in peripheral blood mononuclear cells using real-time polymerase chain reaction (PCR). Finally, the odds of HAM/TSP for each subject were calculated by using the equation and compared the results with clinical symptoms and laboratory findings. Although no clear difference was seen between the odds of HAM/TSP and either sex, family history of HAM/TSP or adult T-cell lenkemia (ATL), history of blood transfusion, it was found that brisk patellar deep tendon reflexes, which suggest latent central nervous system compromise, and flower cell-like abnormal lymphocytes, which is the morphological characteristic of ATL cells, were associated with a higher odds of HAM/TSP. The best-fit logistic regression equation may be useful for detecting subclinical abnormalities in HCs in southern Japan.

  10. Molecular epidemiology of endemic human T-lymphotropic virus type 1 in a rural community in Guinea-Bissau.

    Directory of Open Access Journals (Sweden)

    Carla van Tienen

    Full Text Available Human T-Lymphotropic Virus Type 1 (HTLV-1 infection causes lethal adult T-cell leukemia (ATL and severely debilitating HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP in up to 5% of infected adults. HTLV-1 is endemic in parts of Africa and the highest prevalence in West Africa (5% has been reported in Caio, a rural area in the North-West of Guinea-Bissau. It is not known which HTLV-1 variants are present in this community. Sequence data can provide insights in the molecular epidemiology and help to understand the origin and spread of HTLV-1.To gain insight into the molecular diversity of HTLV-1 in West Africa.HTLV-1 infected individuals were identified in community surveys between 1990-2007. The complete Long Terminal Repeat (LTR and p24 coding region of HTLV-1 was sequenced from infected subjects. Socio-demographic data were obtained from community census and from interviews performed by fieldworkers. Phylogenetic analyses were performed to characterize the relationship between the Caio HTLV-1 and HTLV-1 from other parts of the world.LTR and p24 sequences were obtained from 72 individuals (36 LTR, 24 p24 only and 12 both. Consistent with the low evolutionary change of HTLV-1, many of the sequences from unrelated individuals showed 100% nucleotide identity. Most (45 of 46 of the LTR sequences clustered with the Cosmopolitan HTLV-1 subtype 1a, subgroup D (1aD. LTR and p24 sequences from two subjects were divergent and formed a significant cluster with HTLV-1 subtype 1g, and with the most divergent African Simian T-cell Lymphotropic Virus, Tan90.The Cosmopolitan HTLV-1 1aD predominates in this rural West African community. However, HTLV-1 subtype 1g is also present. This subtype has not been described before in West Africa and may be more widespread than previously thought. These data are in line with the hypothesis that multiple monkey-to-man zoonotic events are contributing to HTLV-1 diversity.

  11. Imaging of human T-lymphotropic virus type I-associated chronic progressive myeloneuropathies

    Energy Technology Data Exchange (ETDEWEB)

    Alcindor, F. (Dept. of Neurology, State Univ. of New York, Health Science Center, Brooklyn, NY (United States)); Valderrama, R. (Dept. of Neurology, State Univ. of New York, Health Science Center, Brooklyn, NY (United States)); Canavaggio, M. (Abbott Labs., North Chicago, IL (United States)); Lee, H. (Abbott Labs., North Chicago, IL (United States)); Katz, A. (Dept. of Neurology, State Univ. of New York, Health Science Center, Brooklyn, NY (United States)); Montesinos, C. (Beth Israel Medical Center, Dept. of Neurology and Clinical Electrophysiology, New York, NY (United States)); Madrid, R.E. (New York State Office of Mental Retardation and Developmental Disabilities, Inst. for Basic Research in Developmental Disabilities, NY (United States)); Merino, R.R. (Beth Israel Medical Center, Dept. of Neurology and Clinical Electrophysiology, New York, NY (United States)); Pipia, P.A. (Dept. of Neurology, State Univ. of New York, Health Science Center, Brooklyn, NY (United States))

    1992-12-01

    We studied magnetic resonance imaging (MRI) of the head and cervical spine and CT of the head in 46 patients (14 men, 32 women) with chronic progressive myeloneuropathy. The findings were correlated with human T-lymphotropic virus type I (HTLV-I) serology, race, country of origin, and age. We found a female predominance of 2:1. Most patients were aged between 30 and 50 years, and most were Caribbean immigrants and black. There were 9 men and 17 women with blood antibody titers to HTLV-I and 7 mem and 15 women with cerebrospinal fluid (CSF) titers. All patients with virus or antibodies in blood or CSF were Caribbean immigrants or black. T2-weighted cranial MRI showed scattered areas of high signal intensity in the cerebral white matter, usually in the periventricular and subcortical areas, but not in the posterior cranial fossa. Cranial CT revealed periventricular low density areas, ventricular enlargement, and atrophy MRI of the cervical spine showed atrophy of the cord. Myelography was normal in all 15 patients examined. No imaging differences were observed between the HTLV-I-positive and -negative patients. These findings, although consistent with demyelination, are not specific. (orig.)

  12. Long-term increases in lymphocytes and platelets in human T-lymphotropic virus type II infection.

    Science.gov (United States)

    Bartman, Melissa T; Kaidarova, Zhanna; Hirschkorn, Dale; Sacher, Ronald A; Fridey, Joy; Garratty, George; Gibble, Joan; Smith, James W; Newman, Bruce; Yeo, Anthony E; Murphy, Edward L

    2008-11-15

    Human T-lymphotropic viruses types I and II (HTLV-I and HTLV-II) cause chronic infections of T lymphocytes that may lead to leukemia and myelopathy. However, their long-term effects on blood counts and hematopoiesis are poorly understood. We followed 151 HTLV-I-seropositive, 387 HTLV-II-seropositive, and 799 HTLV-seronegative former blood donors from 5 U.S. blood centers for a median of 14.0 years. Complete blood counts were performed every 2 years. Multivariable repeated measures analyses were conducted to evaluate the independent effect of HTLV infection and potential confounders on 9 hematologic measurements. Participants with HTLV-II had significant (P platelet counts (+16 544 and +21 657 cells/mm(3); P platelet count and lymphocyte counts, and to increases in MCV and monocytes. Sex, race, smoking, and alcohol consumption all had significant effects on blood counts. The HTLV-II effect on lymphocytes is novel and may be related to viral transactivation or immune response. HTLV-I and HTLV-II associations with higher platelet counts suggest viral effects on hematopoietic growth factors or cytokines.

  13. Possible etiologies for tropical spastic paraparesis and human T lymphotropic virus I-associated myelopathy

    Directory of Open Access Journals (Sweden)

    V. Zaninovic'

    2004-01-01

    Full Text Available The epidemiology of tropical spastic paraparesis/human T lymphotropic virus I (HTLV-I-associated myelopathy (TSP/HAM is frequently inconsistent and suggests environmental factors in the etiology of these syndromes. The neuropathology corresponds to a toxometabolic or autoimmune process and possibly not to a viral disease. Some logical hypotheses about the etiology and physiopathology of TSP and HAM are proposed. Glutamate-mediated excitotoxicity, central distal axonopathies, cassava, lathyrism and cycad toxicity may explain most cases of TSP. The damage caused to astrocytes and to the blood-brain barrier by HTLV-I plus xenobiotics may explain most cases of HAM. Analysis of the HTLV-I/xenobiotic ratio clarifies most of the paradoxical epidemiology of TSP and HAM. Modern neurotoxicology, neuroimmunology and molecular biology may explain the neuropathology of TSP and HAM. It is quite possible that there are other xenobiotics implicated in the etiology of some TSP/HAMs. The prevention of these syndromes appears to be possible today.

  14. A novel Cre recombinase imaging system for tracking lymphotropic virus infection in vivo.

    Directory of Open Access Journals (Sweden)

    Bernadette M Dutia

    Full Text Available BACKGROUND: Detection, isolation, and identification of individual virus infected cells during long term infection are critical to advance our understanding of mechanisms of pathogenesis for latent/persistent viruses. However, current approaches to study these viruses in vivo have been hampered by low sensitivity and effects of cell-type on expression of viral encoded reporter genes. We have designed a novel Cre recombinase (Cre-based murine system to overcome these problems, and thereby enable tracking and isolation of individual in vivo infected cells. METHODOLOGY/PRINCIPAL FINDINGS: Murine gammaherpesvirus 68 (MHV-68 was used as a prototypic persistent model virus. A Cre expressing recombinant virus was constructed and characterised. The virus is attenuated both in lytic virus replication, producing ten-fold lower lung virus titres than wild type virus, and in the establishment of latency. However, despite this limitation, when the sEGFP7 mouse line containing a Cre-activated enhanced green fluorescent protein (EGFP was infected with the Cre expressing virus, sites of latent and persistent virus infection could be identified within B cells and macrophages of the lymphoid system on the basis of EGFP expression. Importantly, the use of the sEGFP7 mouse line which expresses high levels of EGFP allowed individual virus positive cells to be purified by FACSorting. Virus gene expression could be detected in these cells. Low numbers of EGFP positive cells could also be detected in the bone marrow. CONCLUSIONS/SIGNIFICANCE: The use of this novel Cre-based virus/mouse system allowed identification of individual latently infected cells in vivo and may be useful for the study and long-term monitoring of other latent/persistent virus infections.

  15. Manifestações reumáticas associadas ao vírus linfotrópico humano de células T do tipo I (HTLV-I Rheumatic manifestations associated with the human T-Cell lymphotropic virus type I (HTLV-I

    Directory of Open Access Journals (Sweden)

    Boris A. Cruz

    2005-04-01

    Full Text Available O vírus linfotrópico humano de células T tipo I (HTLV-I é reconhecido como agente etiológico da leucemia de células T do adulto. O HTLV-I é também relacionado a uma mielopatia crônica, que inclui agressão inflamatória (auto imune-mediada em sua patogênese. Outras síndromes auto-imunes, dentre as quais artrite reumatóide e síndrome de Sjögren são descritas em pacientes infectados. Nestes pacientes, estas condições clínicas parecem ser o resultado da interação entre o vírus como fator do ambiente e susceptibilidade do hospedeiro, levando ao funcionamento aberrante de mecanismos imuno-moduladores, proliferação celular e inflamação. O estudo dos aspectos clínicos e imunológicos das manifestações reumáticas associadas ao HTLV-I pode contribuir para o melhor entendimento das doenças auto-imunes.The Human T-Cell Lymphotropic Virus Type I is known as the etiologic agent of Adult T-Cell Leukemia. The HTLV-I is also related to a chronic myelopathy, which includes (auto immune-mediated inflammatory injury in its pathogenesis. Other autoimmune syndromes such as Rheumatoid Arthritis and Sjögren's Syndrome are reported in infected patients. In those patients, these clinical conditions seem to be the result of the interaction between the virus as an environmental agent and host susceptibility, leading to an aberrant functioning of immunomodulatory mechanisms, cellular proliferation and inflammation. The study of clinical and immunological aspects of the HTLV-I-associated rheumatic manifestations may contribute to the better understanding of the auto-immune diseases.

  16. Influence of human t-cell lymphotropic virus type 1 (HTLV-1 Infection on laboratory parameters of patients with chronic hepatitis C virus Influência da infecção pelo vírus linfotrópico humano tipo 1 (HTLV-1 em parâmetros laboratoriais de pacientes com hepatite C crônica

    Directory of Open Access Journals (Sweden)

    Daniela Fernandes Cardoso

    2009-12-01

    Full Text Available Hepatitis C virus (HCV and human T-cell lymphotropic virus type 1 (HTLV-1 share routes of transmission and some individuals have dual infection. Although some studies point to a worse prognosis of hepatitis C virus in patients co-infected with HTLV-1, the interaction between these two infections is poorly understood. This study evaluated the influence of HTLV-1 infection on laboratory parameters in chronic HCV patients. Twelve HTLV-1/HCV-coinfected patients were compared to 23 patients infected only with HCV, in regard to demographic data, risk factors for viral acquisition, HCV genotype, presence of cirrhosis, T CD4+ and CD8+ cell counts and liver function tests. There was no difference in regard to age, gender, alcohol consumption, smoking habits, HCV genotype or presence of cirrhosis between the groups. Intravenous drug use was the most common risk factor among individuals co-infected with HTLV-1. These patients showed higher TCD8+ counts (p = 0.0159 and significantly lower median values of AST and ALT (p = 0.0437 and 0.0159, respectively. In conclusion, we have shown that HCV/HTLV-1 co-infected patients differs in laboratorial parameters involving both liver and immunological patterns. The meaning of these interactions in the natural history of these infections is a matter that deserves further studies.O vírus da hepatite C (VHC e vírus linfotrópico humano tipo 1 (HTLV-1 compartilham formas de transmissão e algumas pessoas apresentam coinfecção. Embora alguns estudos apontem para um pior prognóstico da infecção pelo VHC em pacientes coinfectados com HTLV-1, a interação entre estas infecções é mal compreendida. Este estudo avaliou a influência da infecção pelo HTLV-1 em parâmetros laboratoriais de pacientes com VHC. 12 coinfectados VHC/HTLV-1 foram comparados com 23 pacientes monoinfectados com VHC, no que diz respeito aos dados demográficos, fatores de risco para aquisição viral, genótipo do VHC, presença de cirrose

  17. Quantitative Analysis of Human T-Lymphotropic Virus Type 1 (HTLV-1) Infection Using Co-Culture with Jurkat LTR-Luciferase or Jurkat LTR-GFP Reporter Cells.

    Science.gov (United States)

    Alais, Sandrine; Dutartre, Hélène; Mahieux, Renaud

    2017-01-01

    Unlike HIV-1, HTLV-1 viral transmission requires cell-to-cell contacts, while cell-free virions are poorly infectious and almost absent from body fluids. Though the virus uses three nonexclusive mechanisms to infect new target cells: (1) MTOC polarization followed by formation of a virological synapse and viral transfer into a synaptic cleft, (2) genesis of a viral biofilm and its transfer of embedded viruses, or (3) HTLV-1 transmission using conduits. The Tax transactivator and the p8 viral proteins are involved in virological synapse and nanotube formation respectively.HTLV-1 transcription from the viral promoter (i.e., LTR) requires the Tax protein that is absent from the viral particle and is expressed after productive infection. The present chapter focuses on a series of protocols used to quantify HTLV-1 de novo infection of target cells. These techniques do not discriminate between the different modes of transmission, but allow an accurate measure of productive infection. We used cell lines that are stably transfected with LTR-GFP or LTR-luciferase plasmids and quantified Green Fluorescent Protein expression or luciferase activity, since both of them reflect Tax expression.

  18. Infection of brain-derived cells with the human immunodeficiency virus.

    Science.gov (United States)

    Chiodi, F; Fuerstenberg, S; Gidlund, M; Asjö, B; Fenyö, E M

    1987-01-01

    A malignant glioma cell line was infected with the human T-lymphotropic virus type IIIB isolate of the human immunodeficiency virus. Infection appeared to be latent rather than productive. Through contact with monocytic or lymphoid cells, the virus present in the glioma cells could be transmitted and gave rise to a fully productive infection. Images PMID:3644020

  19. Ancient, independent evolution and distinct molecular features of the novel human T-lymphotropic virus type 4

    Directory of Open Access Journals (Sweden)

    Wolfe Nathan D

    2009-02-01

    Full Text Available Abstract Background Human T-lymphotropic virus type 4 (HTLV-4 is a new deltaretrovirus recently identified in a primate hunter in Cameroon. Limited sequence analysis previously showed that HTLV-4 may be distinct from HTLV-1, HTLV-2, and HTLV-3, and their simian counterparts, STLV-1, STLV-2, and STLV-3, respectively. Analysis of full-length genomes can provide basic information on the evolutionary history and replication and pathogenic potential of new viruses. Results We report here the first complete HTLV-4 sequence obtained by PCR-based genome walking using uncultured peripheral blood lymphocyte DNA from an HTLV-4-infected person. The HTLV-4(1863LE genome is 8791-bp long and is equidistant from HTLV-1, HTLV-2, and HTLV-3 sharing only 62–71% nucleotide identity. HTLV-4 has a prototypic genomic structure with all enzymatic, regulatory, and structural proteins preserved. Like STLV-2, STLV-3, and HTLV-3, HTLV-4 is missing a third 21-bp transcription element found in the long terminal repeats of HTLV-1 and HTLV-2 but instead contains unique c-Myb and pre B-cell leukemic transcription factor binding sites. Like HTLV-2, the PDZ motif important for cellular signal transduction and transformation in HTLV-1 and HTLV-3 is missing in the C-terminus of the HTLV-4 Tax protein. A basic leucine zipper (b-ZIP region located in the antisense strand of HTLV-1 and believed to play a role in viral replication and oncogenesis, was also found in the complementary strand of HTLV-4. Detailed phylogenetic analysis shows that HTLV-4 is clearly a monophyletic viral group. Dating using a relaxed molecular clock inferred that the most recent common ancestor of HTLV-4 and HTLV-2/STLV-2 occurred 49,800 to 378,000 years ago making this the oldest known PTLV lineage. Interestingly, this period coincides with the emergence of Homo sapiens sapiens during the Middle Pleistocene suggesting that early humans may have been susceptible hosts for the ancestral HTLV-4. Conclusion The

  20. Human T-cell lymphotropic virus type II in Guaraní Indians, Southern Brazil Vírus linfotrópico de células T-humanas do tipo II em Índios Guaraní, Sul do Brasil

    Directory of Open Access Journals (Sweden)

    Marcio Menna-Barreto

    2005-12-01

    Full Text Available Human T-cell lymphotropic virus type II (HTLV-II is found in many New World Indian groups on the American continent. In Brazil, HTLV-II has been found among urban residents and Indians in the Amazon region, in the North. Guaraní Indians in the South of Brazil were studied for HTLV-I/II infection. Among 52 individuals, three (5.76% showed positive anti-HTLV-II antibodies (enzyme-linked immunosorbent assay and Western blot. This preliminary report is the first seroepidemiological study showing HTLV-II infection among Indians in the South of Brazil.O vírus linfotrópico de células T-humanas do tipo II (HTLV-II é identificado em muitos grupos de ameríndios. No Brasil, tem sido encontrado em indivíduos da população urbana, bem como em índios oriundos da região Amazônica. Os Índios Guaraní, do Sul do país, foram investigados para infecção por HTLV-I/II. Três indivíduos, oriundos de uma amostra de 52 índios, demonstraram sororeatividade para HTLV-II (ensaio imunoenzimático e Western blot. Este estudo preliminar foi o primeiro a identificar a presença de infecção por HTLV-II em ameríndios do Sul do Brasil.

  1. Are lipid disorders involved in the predominance of human T-lymphotropic virus-1 infections in women?

    Directory of Open Access Journals (Sweden)

    Luciana Debortoli de Carvalho

    2015-12-01

    Full Text Available Abstract INTRODUCTION : The human T-lymphotropic virus-1 (HTLV-1 is associated with chronic inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP, a chronic inflammatory disease. Disturbances in lipid metabolism are involved in inflammatory and demyelinating diseases. METHODS : Plasma levels of triglycerides, total cholesterol, and fractions of HTLV-1-infected individuals of both sexes with different clinical progressions were determined. RESULTS : Elevated levels of triglyceride and very low-density lipoproteins (VLDL were exclusively detected in HTLV-1-infected women from asymptomatic and HAM/TSP groups compared with uninfected individuals (p = 0.02. CONCLUSIONS : Elevated triglyceride and VLDL levels in HTLV-1-infected women may be related to the predominance of HAM/TSP in women.

  2. Quantification of Human T-lymphotropic virus type I (HTLV-I) provirus load in a rural West African population: no enhancement of human immunodeficiency virus type 2 pathogenesis, but HTLV-I provirus load relates to mortality

    DEFF Research Database (Denmark)

    Ariyoshi, K; Berry, N; Cham, F;

    2003-01-01

    Human T-lymphotropic virus type I (HTLV-I) provirus load was examined in a cohort of a population in Guinea-Bissau among whom human immunodeficiency virus (HIV) type 2 is endemic. Geometric mean of HIV-2 RNA load among HTLV-I-coinfected subjects was significantly lower than that in subjects infec...

  3. Epigallocatechin-3-gallate inhibits tax-dependent activation of nuclear factor kappa B and of matrix metalloproteinase 9 in human T-cell lymphotropic virus-1 positive leukemia cells.

    Science.gov (United States)

    Harakeh, Steve; Diab-Assaf, Mona; Azar, Rania; Hassan, Hani Mutlak Abdulla; Tayeb, Safwan; Abou-El-Ardat, Khalil; Damanhouri, Ghazi Abdullah; Qadri, Ishtiaq; Abuzenadah, Adel; Chaudhary, Adeel; Kumosani, Taha; Niedzwiecki, Aleksandra; Rath, Mathias; Yacoub, Haitham; Azhar, Esam; Barbour, Elie

    2014-01-01

    Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol molecule from green tea and is known to exhibit antioxidative as well as tumor suppressing activity. In order to examine EGCG tumor invasion and suppressing activity against adult T-cell leukemia (ATL), two HTLV-1 positive leukemia cells (HuT-102 and C91- PL) were treated with non-cytotoxic concentrations of EGCG for 2 and 4 days. Proliferation was significantly inhibited by 100 μM at 4 days, with low cell lysis or cytotoxicity. HTLV-1 oncoprotein (Tax) expression in HuT- 102 and C91-PL cells was inhibited by 25 μM and 125 μM respectively. The same concentrations of EGCG inhibited NF-kB nuclearization and stimulation of matrix metalloproteinase-9 (MMP-9) expression in both cell lines. These results indicate that EGCG can inhibit proliferation and reduce the invasive potential of HTLV-1- positive leukemia cells. It apparently exerted its effects by suppressing Tax expression, manifested by inhibiting the activation of NF-kB pathway and induction of MMP-9 transcription in HTLV-1 positive cells.

  4. Short Communication: Current Prevalence and Risk Factors Associated with Human T Lymphotropic Virus Type 1 and Human T Lymphotropic Virus Type 2 Infections Among HIV/AIDS Patients in São Paulo, Brazil.

    Science.gov (United States)

    Caterino-de-Araujo, Adele; Sacchi, Cláudio Tavares; Gonçalves, Maria Gisele; Campos, Karoline Rodrigues; Magri, Mariana Cavalheiro; Alencar, Wong Kuen

    2015-05-01

    During the 1990s, high prevalences of HIV/human T lymphotropic virus type 1 (HTLV-1) and HIV/human T lymphotropic virus type 2 (HTLV-2) coinfections were detected in São Paulo, Brazil in association with intravenous drug use (IDU). The current prevalences and risk factors for HIV/HTLV-1/-2 were evaluated in 1,608 patients attending the AIDS/STD Reference and Training Center in São Paulo. Blood samples were analyzed for HTLV-1/2-specific antibodies using enzyme immunoassays (EIA Murex HTLV-I+II, Diasorin, and Gold ELISA HTLV-I+II, REM) and immunoblotting (HTLV Blot 2.4, MP Biomedicals and INNO-LIA HTLV-I/II, Innogenetics) and for the pol proviral DNA segments of HTLV-1 and HTLV-2 by "in-house" real-time PCR. These analyses revealed that 50 (3.11%) of the samples were HTLV positive, including 25 (1.55%) that were HTLV-1 positive, 21 (1.31%) that were HTLV-2 positive, and 4 (0.25%) that were HTLV positive (untypeable). The median age of the HIV/HTLV-coinfected individuals was 50 years versus 44 years in the overall population (p=0.000). The risk factors associated with HIV/HTLV-1/-2 coinfections were female gender (OR 3.26, 1.78-5.95), black/pardo color (OR 2.21, 1.21-4.03), infection with hepatitis B virus (HBV) (OR 4.27, 2.32-7.87) or hepatitis C virus (HCV) (OR 24.40, 12.51-48.11), and intravenous drug use (IDU) (OR 30.01, 15.21-59.29). The current low prevalence of HTLV-1/2 in HIV-infected patients in São Paulo could be explained in part by programs providing IDUs with sterile needles and syringes and changes in the drug usage patterns of individuals from injecting cocaine to smoking crack cocaine.

  5. Epstein-Barr Virus Lymphoproliferative Disease Following Allogeneic Hematopoietic Stem Cell Transplantation: Prediction and Early Intervention

    NARCIS (Netherlands)

    J.W.J. van Esser (Joost)

    2003-01-01

    textabstractEpstein-Barr virus (EBV) has been associated with a variety of both infectious and malignant human diseases. These viruses are characterized by (B-cell) lymphotropism, their ability to establish latent infection in host cells and to induce proliferation of these latently infected cells.

  6. Human T-lymphotropic virus-1/2 detected in drug abused men who have sex with men in Surakarta Indonesia

    Science.gov (United States)

    Prasetyo, Afiono Agung; Sari, Yulia

    2017-02-01

    Human T-cell lymphotropic virus types 1 and 2 (HTLV-1/2) are retroviruses that probably among the most neglected blood-borne pathogens. The molecular epidemiology data of HTLV-1/2 in Indonesia is very rare. This study evaluated the prevalence of HTLV-1 and 2 in men who have sex with men with drug abused history in Surakarta Indonesia, to track the presentation of HTLV-1/2 in Indonesia. All blood samples collected from men who have sex with men with drug abused history in Surakarta in 2009-2013 were tested using enzyme linked immunosorbent assays and confirmed by RT-PCR nested addressed the part of HTLV-1 LTR and HTLV-2 LTR region, respectively. The specificity of the molecular assays was confirmed by sequencing the amplicons. The anti HTLV-1/2 positive rate was 4.8% (6/126). All positive serological samples were confirmed by nested RT-PCR. Of these, two was HTLV-1 positive and four was HTLV-2 positive. Molecular analysis of positive PCR products revealed that all HTLV-1 isolate had close relationship with HTLV-1 isolated in Japan while all HTLV-2 isolate with that of isolated in USA. HTLV-1 and HTLV-2 were detected in men who have sex with men with drug abused history in Surakarta indicated that these viruses were circulated in Indonesia, especially in the high risk communities

  7. Molecular Determinants of Human T-lymphotropic Virus Type 1 Transmission and Spread

    Directory of Open Access Journals (Sweden)

    Patrick L. Green

    2011-07-01

    Full Text Available Human T-lymphotrophic virus type-1 (HTLV-1 infects approximately 15 to 20 million people worldwide, with endemic areas in Japan, the Caribbean, and Africa. The virus is spread through contact with bodily fluids containing infected cells, most often from mother to child through breast milk or via blood transfusion. After prolonged latency periods, approximately 3 to 5% of HTLV-1 infected individuals will develop either adult T-cell leukemia/lymphoma (ATL, or other lymphocyte-mediated disorders such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. The genome of this complex retrovirus contains typical gag, pol, and env genes, but also unique nonstructural proteins encoded from the pX region. These nonstructural genes encode the Tax and Rex regulatory proteins, as well as novel proteins essential for viral spread in vivo such as, p30, p12, p13 and the antisense encoded HBZ. While progress has been made in the understanding of viral determinants of cell transformation and host immune responses, host and viral determinants of HTLV-1 transmission and spread during the early phases of infection are unclear. Improvements in the molecular tools to test these viral determinants in cellular and animal models have provided new insights into the early events of HTLV-1 infection. This review will focus on studies that test HTLV-1 determinants in context to full length infectious clones of the virus providing insights into the mechanisms of transmission and spread of HTLV-1.

  8. Use of anti-tumor necrosis factor biologics in the treatment of rheumatoid arthritis does not change human T-lymphotropic virus type 1 markers: a case series.

    Science.gov (United States)

    Umekita, Kunihiko; Umeki, Kazumi; Miyauchi, Shunichi; Ueno, Shiro; Kubo, Kazuyoshi; Kusumoto, Norio; Takajo, Ichiro; Nagatomo, Yasuhiro; Okayama, Akihiko

    2015-09-01

    Anti-tumor necrosis factor (anti-TNF) biologics are effective in the treatment of rheumatoid arthritis (RA); however, it is still not clear whether this treatment promotes the development of malignancies such as lymphoma. Human T-lymphotropic virus type 1 (HTLV-1), which is a causative agent of adult T-cell lymphoma (ATL), is prevalent in Japan. Many HTLV-1-positive patients with RA are assumed to exist; however, there have thus far been no reports on the effect of anti-TNF biologics on HTLV-1-positive patients. We analyzed the response to treatment with anti-TNF biologics and change of HTLV-1 markers in two cases of RA. The two cases showed no response based on the European League Against of Rheumatism response criteria 60-96 weeks after administration of anti-TNF biologics (infliximab and etanercept). No signs of ATL were observed and HTLV-1 markers, such as proviral load and clonality of HTLV-1-infected cells, showed no significant change in either of two cases. Therefore, treatment with anti-TNF biologics did not induce activation of HTLV-1, although the effect on RA was not as effective as in HTLV-1-negative patients in this limited study. Further long-term study with a greater number of patients is necessary to clarify the safety and efficacy of anti-TNF biologics in HTLV-1-positive patients with RA.

  9. Detection of DNA of Lymphotropic Herpesviruses in Plasma of Human Immunodeficiency Virus-Infected Patients: Frequency and Clinical Significance

    Science.gov (United States)

    Broccolo, Francesco; Bossolasco, Simona; Careddu, Anna M.; Tambussi, Giuseppe; Lazzarin, Adriano; Cinque, Paola

    2002-01-01

    The frequency and clinical significance of detection of DNA of cytomegalovirus (CMV), Epstein-Barr virus (EBV), human herpesvirus 6 (HHV-6), HHV-7, and HHV-8 in plasma were investigated by PCR. The plasma was obtained from 120 selected human immunodeficiency virus (HIV)-infected patients, of whom 75 had AIDS-related manifestations, 32 had primary HIV infection (PHI), and 13 had asymptomatic infections. Nested PCR analysis revealed that none of the lymphotropic herpesviruses tested were found in patients with PHI, in asymptomatic HIV-positive individuals, or in HIV-negative controls. By contrast, DNA of one or more of the viruses was found in 42 (56%) of 75 patients with AIDS-related manifestations, including CMV disease (CMV-D) or AIDS-related tumors. The presence of CMV DNA in plasma was significantly associated with CMV-D (P < 0.001). By contrast, EBV detection was not significantly associated with AIDS-related lymphomas (P = 0.31). Interestingly, the presence of HHV-8 DNA in plasma was significantly associated with Kaposi's sarcoma (KS) disease (P < 0.001) and with the clinical status of KS patients (P < 0.001). CMV (primarily), EBV, and HHV-8 were the viruses most commonly reactivated in the context of severe immunosuppression (P < 0.05). In contrast, HHV-6 and HHV-7 infections were infrequent at any stage of disease. In conclusion, plasma PCR was confirmed to be useful in the diagnosis of CMV-D but not in that of tumors or other conditions possibly associated with EBV, HHV-6, and HHV-7. Our findings support the hypothesis of a direct involvement of HHV-8 replication in KS pathogenesis, thus emphasizing the usefulness of sensitive and specific diagnostic tests to monitor HHV-8 infection. PMID:12414753

  10. Repression of Human T-lymphotropic virus type 1 Long Terminal Repeat sense transcription by Sp1 recruitment to novel Sp1 binding sites

    Science.gov (United States)

    Fauquenoy, Sylvain; Robette, Gwenaëlle; Kula, Anna; Vanhulle, Caroline; Bouchat, Sophie; Delacourt, Nadège; Rodari, Anthony; Marban, Céline; Schwartz, Christian; Burny, Arsène; Rohr, Olivier; Van Driessche, Benoit; Van Lint, Carine

    2017-01-01

    Human T-lymphotropic Virus type 1 (HTLV-1) infection is characterized by viral latency in the majority of infected cells and by the absence of viremia. These features are thought to be due to the repression of viral sense transcription in vivo. Here, our in silico analysis of the HTLV-1 Long Terminal Repeat (LTR) promoter nucleotide sequence revealed, in addition to the four Sp1 binding sites previously identified, the presence of two additional potential Sp1 sites within the R region. We demonstrated that the Sp1 and Sp3 transcription factors bound in vitro to these two sites and compared the binding affinity for Sp1 of all six different HTLV-1 Sp1 sites. By chromatin immunoprecipitation experiments, we showed Sp1 recruitment in vivo to the newly identified Sp1 sites. We demonstrated in the nucleosomal context of an episomal reporter vector that the Sp1 sites interfered with both the sense and antisense LTR promoter activities. Interestingly, the Sp1 sites exhibited together a repressor effect on the LTR sense transcriptional activity but had no effect on the LTR antisense activity. Thus, our results demonstrate the presence of two new functional Sp1 binding sites in the HTLV-1 LTR, which act as negative cis-regulatory elements of sense viral transcription. PMID:28256531

  11. Human T-Cell Lymphotropic Virus Type I (HTLV-1: implications for autoimmune diseases Vírus linfotrópico de células T humano tipo 1 (HTLV-1: implicações em doenças autoimunes

    Directory of Open Access Journals (Sweden)

    Dênis Augusto Santana Reis

    2012-06-01

    Full Text Available Autoimmunity is characterized by tissue destruction that implicates functional damages caused by self-reactive cells that escape self-tolerance mechanisms. Autoimmune diseases can be initiated by viral infections and the study of the association between these viruses and autoimmunity has advanced the understanding of the molecular mechanisms involved in autoimmune diseases. The Human T-Cell Lymphotropic Virus Type I (HTLV-1 is a deltavirus that infects preferentially lymphocytes. Retrovirus particles like has been identified in patients with autoimmune diseases. Therefore this review had by objective approach the main aspects involving HTLV-1 with systemic lupus erythematosus and rheumatoid arthritis. Studies show that retroviruses can integrate their genetic material in host DNA, changing the expression gene profile related with apoptosis and immunologic system molecules. It’s known that HTLV-1 can cause different clinical manifestations in their careers and the mechanisms that triggers the HTLV-1 associated autoimmune diseases are not well known. Besides the perpetuation and marked production of pro-inflammatory cytokines, studies have demonstrated that both Th17 cells and T regulatory cells (Tregs are involved in autoimmune diseases pathogenesis. Therefore the HTLV-1 viral particles recognized could be used as a risk marker in the development of autoimmune diseases.A autoimunidade é caracterizada pela destruição tecidual, que acarreta danos funcionais, causados por células autoreativas que escapam dos mecanismos de autotolerância. Doenças autoimunes podem ser iniciadas por infecções virais e o estudo da associação entre essas viroses e a autoimunidade tem possibilitado melhor conhecimento dos mecanismos moleculares envolvidos nas doenças autoimunes. O vírus linfotrópico de células T humano tipo 1 (HTLV-1 é um delta vírus que infecta preferencialmente linfócitos. Partículas semelhantes aos retrovírus foram identificadas em

  12. Wild-type measles virus infection of primary epithelial cells occurs via the basolateral surface without syncytium formation or release of infectious virus

    NARCIS (Netherlands)

    M. Ludlow (Martin); L.J. Rennick (Linda); S. Sarlang (Severine); G. Skibinski (Grzegorz); S. McQuaid (Stephen); T. Moore (Tara); R.L. de Swart (Rik); W.P. Duprex (Paul)

    2010-01-01

    textabstractThe lymphotropic and myelotropic nature of wild-type measles virus (wt-MV) is well recognized, with dendritic cells and lymphocytes expressing the MV receptor CD150 mediating systemic spread of the virus. Infection of respiratory epithelial cells has long been considered crucial for entr

  13. Physiotherapy for human T-lymphotropic virus 1-associated myelopathy: review of the literature and future perspectives

    Directory of Open Access Journals (Sweden)

    Sá KN

    2015-02-01

    Full Text Available Katia N Sá,1 Maíra C Macêdo,1 Rosana P Andrade,2 Selena D Mendes,1 José V Martins,3 Abrahão F Baptista1,4 1Neuromusculoskeletal Research Group, Bahian School of Medicine and Human Health, Salvador, Brazil; 2Edgard Santos University Hospital, Federal University of Bahia, Salvador, 3Deolindo Couto Institute of Neurology, Federal University of Rio de Janeiro, Rio de Janeiro, 4Biomorphology Department, Health Sciences Institute, Federal University of Bahia, Salvador, Brazil Abstract: Human T-lymphotropic virus 1 (HTLV-1 infection may be associated with damage to the spinal cord – HTLV-associated myelopathy/tropical spastic paraparesis – and other neurological symptoms that compromise everyday life activities. There is no cure for this disease, but recent evidence suggests that physiotherapy may help individuals with the infection, although, as far as we are aware, no systematic review has approached this topic. Therefore, the objective of this review is to address the core problems associated with HTLV-1 infection that can be detected and treated by physiotherapy, present the results of clinical trials, and discuss perspectives on the development of knowledge in this area. Major problems for individuals with HTLV-1 are pain, sensory-motor dysfunction, and urinary symptoms. All of these have high impact on quality of life, and recent clinical trials involving exercises, electrotherapeutic modalities, and massage have shown promising effects. Although not influencing the basic pathologic disturbances, a physiotherapeutic approach seems to be useful to detect specific problems related to body structures, activity, and participation related to movement in HTLV-1 infection, as well as to treat these conditions. Keywords: HTLV-1, HAM/TSP, physical therapy modalities, quality of life, pain, sensory-motor dysfunction, urinary symptoms

  14. Human T-Lymphotropic Virus Type 1 and 2 Seroprevalence among first-time blood donors in Chile, 2011-2013.

    Science.gov (United States)

    San Martín, Héctor; Balanda, Monserrat; Vergara, Nicolás; Valenzuela, María Antonieta; Cartier, Luis; Ayala, Salvador; Ramírez, Eugenio

    2016-06-01

    Infection with human T-lymphotropic virus type 1/2 (HTLV-1/2) is a major health problem. HTLV-1/2 infection is endemic in Chile but representative donor prevalence data are lacking. Data on all blood donors in a large network of Chilean blood centers were examined during 2011-2013. Screening of HTLV-1/2 antibodies were measured by enzyme immunoassay (EIA) at all blood banks. Blood samples with anticoagulants from initially reactive blood donors were analyzed by serological confirmation tests (immunofluorescence or recombinant immunoblot) at the HTLV National Reference Laboratory of the Public Health Institute of Chile. Additionally, detection of HTLV-1 and HTLV-2 provirus in peripheral blood mononuclear cells (PBMCs) was performed in all blood donors as confirmatory test. Prevalence rates were calculated. Among 694,016 donors, 706 were seropositive for HTLV-1 (prevalence, 1.02 cases per 1,000; 95% confidence interval [CI], 0.94-1.09), and 97 were seropositive for HTLV-2 (prevalence, 0.14 cases per 1,000; 95%CI, 0.11-0.17). Prevalence of HTLV-1 differed considerably by region, from 0.51 to 1.69 per 1,000. Prevalence of HTLV-2 was similar across the country (0.12-0.16). HTLV-1 prevalence was associated with female sex, older age, and residence in the north of Chile. HTVL-2 prevalence was associated with older age. The HTLV-1 prevalence among Chilean blood donors was relatively high and could be reduced by improving donor recruitment and selection in high prevalence areas. Blood center data may contribute to surveillance for HTLV-1 and HTLV-2 infections.

  15. Human T-Lymphotropic Virus Type I (HTLV-1) Infection among Iranian Blood Donors: First Case-Control Study on the Risk Factors.

    Science.gov (United States)

    Hedayati-Moghaddam, Mohammad Reza; Tehranian, Farahnaz; Bayati, Maryam

    2015-11-04

    Human T-cell lymphotropic virus type 1 (HTLV-1) infection is an endemic condition in Northeast Iran and, as such, identification of risk factors associated with the infection in this region seems to be a necessity. All the possible risk factors for HTLV-1 seropositivity among first-time blood donors were evaluated in Mashhad, Iran, during the period of 2011-2012. Blood donation volunteers were interviewed for demographic data, medical history, and behavioral characteristics and the frequencies of risk factors were compared between HTLV-1 positive (case) and HTLV-1 negative (control) donors. The data was analyzed using Chi square and t-tests. Logistic regression analysis was performed to identify independent risk factors for the infection. Assessments were carried out on 246 cases aged 17-60 and 776 controls aged 17-59, who were matched based on their ages, gender, and date and center of donation. Logistic analysis showed low income (OR = 1.53, p = 0.035), low educational level (OR = 1.64, p = 0.049), being born in the cities of either Mashhad (OR = 2.47, p = 0.001) or Neyshabour (OR = 4.30, p risk factors for HTLV-1 infection, such as prolonged breastfeeding and sexual promiscuity. Pre-donation screening of possible risk factors for transfusion-transmissible infections should also be considered as an important issue, however, a revision of the screening criteria such as a history of transfusion for more than one year prior to donation is strongly recommended.

  16. Manifestações infanto-juvenis da infecção pelo vírus linfotrópico de células T humanas (HTLV-I Manifestations of the human T-cell lymphotropic virus type I infection in childhood and adolescence

    Directory of Open Access Journals (Sweden)

    Achiléa Lisboa Bittencourt

    2006-12-01

    Full Text Available OBJETIVOS: Revisão da literatura sobre doenças relacionadas à infecção pelo vírus linfotrópico de células T humanas (HTLV-I na infância e adolescência, focalizando clínica, diagnóstico, patogênese, evolução e tratamento. FONTES DOS DADOS: Literatura médica dos últimos 20 anos utilizando PubMed e MEDLINE e livros médicos especializados, com ênfase na dermatite infecciosa associada ao HTLV-I (DIH, na forma infanto-juvenil da mielopatia associada ao HTLV/paraparesia espástica tropical (HAM/TSP, na leucemia/linfoma de células T do adulto (ATL e na uveíte associada ao HTLV-I. Palavras-chave usadas na pesquisa: dermatite infecciosa associada ao HTLV-I, mielopatia associada ao HTLV/paraparesia espástica tropical, leucemia/linfoma de células T do adulto, uveíte associada ao HTLV-I. SÍNTESE DOS ACHADOS: A DIH é uma dermatite crônica, recidivante e infectada da infância que sempre envolve o couro cabeludo e que pode evoluir para HAM/TSP e ATL. A HAM/TSP é uma mielopatia crônica e incapacitante do adulto. Há 17 casos infanto-juvenis de HAM/TSP bem documentados na literatura, 12 dos quais em pacientes com DIH. Ao contrário da doença no adulto, essa forma é rapidamente progressiva. A ATL é uma leucemia/linfoma T do adulto, geralmente fatal. De 24 casos infanto-juvenis de ATL da literatura, 11 foram diagnosticados no Brasil. CONCLUSÕES: Essas doenças devem ser mais freqüentes na infância e adolescência do que indica a literatura. É aconselhável fazer sorologia para o HTLV-I em crianças e adolescentes com eczema crônico e recidivante, com sintomas e sinais de mielopatia ou com diagnóstico de leucemia/linfoma de células T. É importante que os pediatras saibam reconhecer as manifestações pediátricas dessa infecção para diagnosticá-las corretamente, propiciando aos pacientes orientação e tratamento adequados.OBJECTIVES: To review the literature on diseases linked with infection by human T-cell lymphotropic

  17. Soroprevalência e perfil imunofenotípico de células linfóides T em indivíduos soropositivos para o vírus linfotrópico de células T humanas Seroprevalence and immunophenotypic profile of T lymphocyte cells in human T lymphotropic virus seropositive individuals

    Directory of Open Access Journals (Sweden)

    Geane F. de Sóuza

    2003-03-01

    Full Text Available O vírus linfotrópico de células T humana (HTLV é transmitido por transfusões, uso compartilhado de agulhas contaminadas, aleitamento e contato sexual. A prevalência varia de acordo com a região geográfica, grupo racial e população estudada. Cerca de 1% a 4% dos indivíduos infectados desenvolvem algum tipo de doença em decorrência da infecção. É reconhecida a associação entre o HTLV-I e leucemia de células T do adulto e paraparesia espástica tropical (PET. Embora a maioria dos portadores permaneça assintomática, existem evidências de comprometimento funcional da resposta imune celular. Os objetivos desse trabalho foram avaliar a prevalência de soropositividade para HTLV-I/II na população de doadores de sangue do HEMOCE e analisar o perfil imunofenotípico de células linfóides circulantes em 26 doadores soronegativos, 11 soropositivos para HTLV-I sintomáticos e 24 assintomáticos, comparando-os entre si. A prevalência da soropositividade para HTLV-I/II foi de 0,66%. No grupo de indivíduos contaminados pelo HTLV-I houve predomínio do sexo feminino e a maior média de idade. O grupo soropositivo apresentou menor valor de hemoglobina e o grupo sintomático evidenciou contagem de neutrófilos significativamente mais elevada. A contagem média de linfócitos não diferiu entre os grupos. A análise imunofenotípica mostrou que os valores médios de células CD3+, CD4+, CD8+ e relação CD4/CD8 não diferiram significativamente entre os grupos. Uma elevação de células CD8+ no grupo soropositivo foi observada embora não alcançasse significância estatística. A ativação de linfócitos CD8+ está envolvida na patogênese das doenças associadas ao HTLV-I. A definição do valor preditivo desse achado requer confirmação posterior.Human T lymphotropic virus (HTLV can be transmitted by transfusions of cellular blood products, shared use of contaminated syringes, breast feeding and sexual intercourse. The prevalence of

  18. Human T-Lymphotropic virus (HTLV type I in vivo integration in oral keratinocytes

    Directory of Open Access Journals (Sweden)

    Martha C Domínguez

    2011-03-01

    Full Text Available Although the infection of HTLV-1 to cell components of the mouth have been previously reported, there was not until this report, a detailed study to show the characteristics of such infection. From 14 Tropical Spastic Paraparesis/ HTLV-1-Associated Myelopathy (HAM/TSP patients and 11 asymptomatic carrier individuals (AC coming from HTLV-1 endemic areas of southwest Pacific of Colombia, infected oral mucosa cells were primary cultured during five days. These cell cultures were immunophenotyped by dual color fluorescence cell assortment using different lymphocyte CD markers and also were immunohistochemically processed using a polyclonal anti-keratin antibody. Five days old primary cultures were characterized as oral keratinocytes, whose phenotype was CD3- /CD4-/CD8-/CD19-/CD14-/CD45-/A575-keratin+. From DNA extracted of primary cultures LTR, pol, env and tax HTLV-1 proviral DNA regions were differentially amplified by PCR showing proviral integration. Using poly A+ RNA obtained of these primary cultures, we amplify by RT-PCR cDNA of tax and pol in 57.14% (8/14 HAM/TSP patients and 27.28% (3/11 AC. Tax and pol poly A+ RNA were expressed only in those sIgA positive subjects. Our results showed that proviral integration and viral gene expression in oral keratinocytes are associated with a HTLV-1 specific local mucosal immune response only in those HTLV-1 infected individuals with detectable levels of sIgA in their oral fluids. Altogether the results gave strong evidence that oral mucosa infection would be parte of the systemic spreading of HTLV-1 infection.

  19. Debilitating clinical disease in a wild-born captive western lowland gorilla (Gorilla gorilla gorilla) co-infected with varicella zoster virus (VZV) and simian T-lymphotropic virus (STLV).

    Science.gov (United States)

    Masters, Nicholas; Niphuis, Henk; Verschoor, Ernst; Breuer, Judith; Quinlivan, Mark; Wawrzynczyk, Teresa; Stidworthy, Mark

    2010-12-01

    A wild-born, 34-yr-old female western lowland gorilla (Gorilla gorilla gorilla) was transferred between zoologic collections in the United Kingdom. Adjustment to its new environment was difficult and a series of health problems ensued. Progressive severe illness of multiple etiologies, and a failure to respond to multiple therapies, led to its euthanasia 5 mo later. Disease processes included severe thoracic and axillary cutaneous ulceration of T2-3 dermatome distribution, gastroenteritis, ulcerative stomatitis, emaciation, hind limb weakness or paresis, and decubitus ulcers of the ankles and elbows. Ante- and postmortem infectious disease screening revealed that this animal was not infected with Mycobacterium tuberculosis, simian varicella virus (SVV), simian immunodeficiency virus (SIV), or hepatitis B virus; but was infected with varicella-zoster virus (VZV) and simian T-lymphotropic virus (STLV). It is hypothesized that recrudescence of VZV and other disease processes described were associated with chronic STLV infection and the end of a characteristically long incubation period.

  20. A Novel Human T-lymphotropic Virus Type 1c Molecular Variant in an Indigenous Individual from New Caledonia, Melanesia

    Science.gov (United States)

    Charavay, Françoise; Touzain, Frédéric; Jeannin, Patricia; Grangeon, Jean-Paul; Laumond, Sylvie; Chungue, Eliane; Martin, Paul M. V.; Gessain, Antoine

    2017-01-01

    Background Human T-Lymphotropic Virus type 1 (HTLV-1) is endemic among people of Melanesian descent in Papua New Guinea, Solomon Islands and Vanuatu, and in Indigenous populations from Central Australia. Molecular studies revealed that these Australo-Melanesian strains constitute the highly divergent HTLV-1c subtype. New Caledonia is a French overseas territory located in the Southwest Pacific Ocean. HTLV-1 situation is poorly documented in New Caledonia and the molecular epidemiology of HTLV-1 infection remains unknown. Objectives Studying 500 older adults Melanesian natives from New Caledonia, we aim to evaluate the HTLV-1 seroprevalence and to molecularly characterize HTLV-1 proviral strains. Study design Plasma from 262 men and 238 females (age range: 60–96 years old, mean age: 70.5) were screened for anti-HTLV-1 antibodies by particle agglutination (PA) and indirect immunofluorescence assay (IFA). Serological confirmation was obtained using Western blot assay. DNAs were extracted from peripheral blood buffy coat of HTLV-1 seropositive individuals, and subjected to four series of PCR (LTR-gag; pro-pol; pol-env and tax-LTR). Primers were designed from highly common conserved regions of the major HTLV-1 subtypes to characterize the entire HTLV-1 proviral genome. Results Among 500 samples, 3 were PA and IFA positive. The overall seroprevalence was 0.6%. The DNA sample from 1 New Caledonian woman (NCP201) was found positive by PCR and the complete HTLV-1 proviral genome (9,033-bp) was obtained. The full-length HTLV-1 genomic sequence from a native woman from Vanuatu (EM5), obtained in the frame of our previous studies, was also characterized. Both sequences belonged to the HTLV-1c Australo-Melanesian subtype. The NCP201 strain exhibited 0.3% nucleotide divergence with the EM5 strain from Vanuatu. Furthermore, divergence reached 1.1% to 2.9% with the Solomon and Australian sequences respectively. Phylogenetic analyses on a 522-bp-long fragment of the gp21-env gene

  1. Coupled Transcriptome and Proteome Analysis of Human Lymphotropic Tumor Viruses: Insights on the Detection and Discovery of Viral Genes

    Energy Technology Data Exchange (ETDEWEB)

    Dresang, Lindsay R.; Teuton, Jeremy R.; Feng, Huichen; Jacobs, Jon M.; Camp, David G.; Purvine, Samuel O.; Gritsenko, Marina A.; Li, Zhihua; Smith, Richard D.; Sugden, Bill; Moore, Patrick S.; Chang, Yuan

    2011-12-20

    Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are related human tumor viruses that cause primary effusion lymphomas (PEL) and Burkitt's lymphomas (BL), respectively. Viral genes expressed in naturally-infected cancer cells contribute to disease pathogenesis; knowing which viral genes are expressed is critical in understanding how these viruses cause cancer. To evaluate the expression of viral genes, we used high-resolution separation and mass spectrometry coupled with custom tiling arrays to align the viral proteomes and transcriptomes of three PEL and two BL cell lines under latent and lytic culture conditions. Results The majority of viral genes were efficiently detected at the transcript and/or protein level on manipulating the viral life cycle. Overall the correlation of expressed viral proteins and transcripts was highly complementary in both validating and providing orthogonal data with latent/lytic viral gene expression. Our approach also identified novel viral genes in both KSHV and EBV, and extends viral genome annotation. Several previously uncharacterized genes were validated at both transcript and protein levels. Conclusions This systems biology approach coupling proteome and transcriptome measurements provides a comprehensive view of viral gene expression that could not have been attained using each methodology independently. Detection of viral proteins in combination with viral transcripts is a potentially powerful method for establishing virus-disease relationships.

  2. Coupled transcriptome and proteome analysis of human lymphotropic tumor viruses: insights on the detection and discovery of viral genes

    Directory of Open Access Journals (Sweden)

    Dresang Lindsay R

    2011-12-01

    Full Text Available Abstract Background Kaposi's sarcoma-associated herpesvirus (KSHV and Epstein-Barr virus (EBV are related human tumor viruses that cause primary effusion lymphomas (PEL and Burkitt's lymphomas (BL, respectively. Viral genes expressed in naturally-infected cancer cells contribute to disease pathogenesis; knowing which viral genes are expressed is critical in understanding how these viruses cause cancer. To evaluate the expression of viral genes, we used high-resolution separation and mass spectrometry coupled with custom tiling arrays to align the viral proteomes and transcriptomes of three PEL and two BL cell lines under latent and lytic culture conditions. Results The majority of viral genes were efficiently detected at the transcript and/or protein level on manipulating the viral life cycle. Overall the correlation of expressed viral proteins and transcripts was highly complementary in both validating and providing orthogonal data with latent/lytic viral gene expression. Our approach also identified novel viral genes in both KSHV and EBV, and extends viral genome annotation. Several previously uncharacterized genes were validated at both transcript and protein levels. Conclusions This systems biology approach coupling proteome and transcriptome measurements provides a comprehensive view of viral gene expression that could not have been attained using each methodology independently. Detection of viral proteins in combination with viral transcripts is a potentially powerful method for establishing virus-disease relationships.

  3. Plasma Epstein–Barr virus and Hepatitis B virus in non-Hodgkin lymphomas: Two lymphotropic, potentially oncogenic, latently occurring DNA viruses

    Directory of Open Access Journals (Sweden)

    Mahua Sinha

    2016-01-01

    Full Text Available Context: There is a need to study potential infective etiologies in lymphomas. Lymphocyte-transforming viruses can directly infect lymphocytes, disrupt normal cell functions, and promote cell division. Epstein–Barr virus (EBV is known to be associated with several lymphomas, especially Hodgkin lymphomas (HLs. And recently, the lymphocyte-transforming role of hepatitis B virus (HBV has been emphasized. Aims: The aim of this study was to elucidate the association of two potentially oncogenic, widely prevalent latent DNA viruses, EBV and HBV, in non-HL (NHL. Settings and Design: In this prospective study, we estimated plasma EBV and HBV DNA in NHL patients. Materials and Methods: Peripheral blood was obtained from newly diagnosed, treatment na ïve, histologically confirmed NHL patients. Plasma EBV DNA was quantified by real-time polymerase chain reaction (PCR targeting Epstein–Barr Nucleic acid 1 while the plasma HBV DNA was detected using nested PCR targeting HBX gene. In a small subset of patients, follow-up plasma samples post-anticancer chemotherapy were available and retested for viral DNA. Results: Of the 110 NHL patients, ~79% were B-cell NHL and ~21% were T-cell NHL. Plasma EBV-DNA was detected in 10% NHLs with a higher EBV association in Burkitt lymphoma (33.3% than other subtypes. Pretherapy HBV DNA was detected in 21% NHLs; most of them being diffuse large B-cell lymphoma (DLBCL. Moreover, 42% of DLBCL patients had HBV DNA in plasma. Since all patients were HBV surface antigen seronegative at diagnosis, baseline plasma HBV-DNAemia before chemotherapy was indicative of occult hepatitis B infection. Conclusions: Our findings indicate a significant association of HBV with newly diagnosed DLBCL.

  4. Prevalência, fatores de risco e caracterização genética dos vírus linfotrópico de células T humana tipo 1 e 2 em pacientes infectados pelo vírus da imunodeficiência humana tipo 1 nas Cidades de Ribeirão Preto e São Paulo Prevalence, risk factors and genetic characterization of human T-cell lymphotropic virus types 1 and 2 in patients infected with human immunodeficiency virus type 1 in the cities of Ribeirão Preto and São Paulo

    Directory of Open Access Journals (Sweden)

    Walter Kleine Neto

    2009-06-01

    Full Text Available O objetivo deste estudo foi definir a prevalência dos vírus linfotrópico de células T humana tipo 1 e 2 em pacientes positivos para o vírus da imunodeficiência humana tipo 1 no Estado de São Paulo, Brasil. Avaliamos 319 indivíduos atendidos em clínicas de Ribeirão Preto e Capital. Os pacientes foram entrevistados e testados sorologicamente. Foram seqüenciadas as regiões tax e long terminal repeat para diferenciação e determinação do subtipo. A soroprevalência geral foi de 7,5% (24/319 e esteve associada somente com uso de drogas injetáveis e ao vírus da hepatite tipo C (pThe aim of this study was to define the prevalence of human T cell lymphotropic virus types 1 and 2 in patients who were positive for human immunodeficiency virus type 1 in the State of São Paulo, Brazil. We evaluated 319 individuals infected with HIV type 1 who were attended at specialized clinics in two cities (Ribeirão Preto and São Paulo. The patients were interviewed and tested for antibodies against HTLV types 1 and 2 (Orthoâ HTLV-1/HTLV-2 Ab-Capture enzyme immunoassay. Direct DNA sequencing of polymerase chain reaction products from the tax region of HTLV type 2 and the long terminal repeat region of HTLV types 1 and 2 were performed to differentiate and determine the subtypes. The overall prevalence of anti-HTLV type 1 and 2 antibodies was 7.5% (24/319; 95% CI: 5.2-11.5. HTLV type 1 and 2 infection was associated with a history of injected drug use and with antibodies for hepatitis C virus (p 0.05. HTLV DNA was detected in 13 out of 24 samples, of which 12 were characterized as HTLV subtype 2c and one as HTLV subtype 1a. Among the 12 HTLV type 2 samples, seven were from injected drug users, thus indicating that this route is an important risk factor for HTLV type 2 transmission among our population infected with HIV type 1.

  5. Lymphotropic Virions Affect Chemokine Receptor-Mediated Neural Signaling and Apoptosis: Implications for Human Immunodeficiency Virus Type 1-Associated Dementia

    Science.gov (United States)

    Zheng, Jialin; Ghorpade, Anuja; Niemann, Douglas; Cotter, Robin L.; Thylin, Michael R.; Epstein, Leon; Swartz, Jennifer M.; Shepard, Robin B.; Liu, Xiaojuan; Nukuna, Adeline; Gendelman, Howard E.

    1999-01-01

    Chemokine receptors pivotal for human immunodeficiency virus type 1 (HIV-1) infection in lymphocytes and macrophages (CCR3, CCR5, and CXCR4) are expressed on neural cells (microglia, astrocytes, and/or neurons). It is these cells which are damaged during progressive HIV-1 infection of the central nervous system. We theorize that viral coreceptors could effect neural cell damage during HIV-1-associated dementia (HAD) without simultaneously affecting viral replication. To these ends, we studied the ability of diverse viral strains to affect intracellular signaling and apoptosis of neurons, astrocytes, and monocyte-derived macrophages. Inhibition of cyclic AMP, activation of inositol 1,4,5-trisphosphate, and apoptosis were induced by diverse HIV-1 strains, principally in neurons. Virions from T-cell-tropic (T-tropic) strains (MN, IIIB, and Lai) produced the most significant alterations in signaling of neurons and astrocytes. The HIV-1 envelope glycoprotein, gp120, induced markedly less neural damage than purified virions. Macrophage-tropic (M-tropic) strains (ADA, JR-FL, Bal, MS-CSF, and DJV) produced the least neural damage, while 89.6, a dual-tropic HIV-1 strain, elicited intermediate neural cell damage. All T-tropic strain-mediated neuronal impairments were blocked by the CXCR4 antibody, 12G5. In contrast, the M-tropic strains were only partially blocked by 12G5. CXCR4-mediated neuronal apoptosis was confirmed in pure populations of rat cerebellar granule neurons and was blocked by HA1004, an inhibitor of calcium/calmodulin-dependent protein kinase II, protein kinase A, and protein kinase C. Taken together, these results suggest that progeny HIV-1 virions can influence neuronal signal transduction and apoptosis. This process occurs, in part, through CXCR4 and is independent of CD4 binding. T-tropic viruses that traffic in and out of the brain during progressive HIV-1 disease may play an important role in HAD neuropathogenesis. PMID:10482576

  6. Western blot seroindeterminate individuals for Human T-lymphotropic Virus 1/2 (HTLV-1/2 in Fortaleza (Brazil: a serological and molecular diagnostic and epidemiological approach

    Directory of Open Access Journals (Sweden)

    Terezinha de Jesus Teixeira Santos

    2003-06-01

    Full Text Available How to handle Western blot (WB seroindeterminate individuals for Human T-lymphotropic Virus 1/2 (HTLV-1/2 constitutes a challenge for blood banks and fam ilies. We made a cross-sectional study of 191 enzyme linked immunoassay (EIA reactive individuals from the hematological center (HEMOCE of Fortaleza (Brazil, examining their serological (WB and molecular (PCR diagnosis, and demographic profiles, as well as a possible association of their condition with other infectious pathologies and risk factors. Ethical institutional approval and personal consent were obtained. Out of 191 EIA reactive individuals, 118 were WB seroindeterminate and 73 were seropositive for HTLV-1/2. In the PCR analysis of 41 WB seroindeterminate individuals, 9 (22% were positive and 32 (78% were negative for HTLV-1/2. The demographic analysis indicated a trend towards a predominance of males among the seroindeterminate individuals and females in the seropositive ones. The seroindeterminate individuals were younger than the seropositive ones. We did not find any association of these conditions with syphilis, Chagas disease or HIV or hepatitis, and with risk factors such as breast-feeding, blood transfusion, STD (syphilis and IDU.

  7. Two Cases of Human T-Lymphotropic Virus Type I-Associated Myelopathy/Tropical Spastic Paraparesis Caused by Living-Donor Renal Transplantation

    Directory of Open Access Journals (Sweden)

    Yasutaka Tajima

    2016-01-01

    Full Text Available In rare instances, recipients of organ transplants from human T-lymphotropic virus type I- (HTLV-I- positive donors reportedly developed neurologic symptoms due to HTLV-I-associated myelopathy (HAM. We present herein two cases of HAM associated with renal transplantation from HTLV-I seropositive living-donors. The first patient was a 42-year-old woman with chronic renal failure for twelve years and seronegative for HTLV-I. She underwent renal transplantation with her HTLV-I seropositive mother as the donor, and she developed HAM three years after the transplantation. The second patient was a 65-year-old man who had been suffering from diabetic nephropathy. He was seronegative for HTLV-I and underwent renal transplantation one year previously, with his HTLV-I seropositive wife as the donor. He developed HAM eight months after renal transplantation. Both cases showed neurological improvements after the immunomodulating therapies. We tried to shed some light on the understanding of immunological mechanisms of transplantation-associated HAM, focusing on therapeutic strategies based on the immunopathogenesis of the condition.

  8. Unique pattern of enzootic primate viruses in Gibraltar macaques.

    Science.gov (United States)

    Engel, Gregory A; Pizarro, Mark; Shaw, Eric; Cortes, John; Fuentes, Agustin; Barry, Peter; Lerche, Nicholas; Grant, Richard; Cohn, Douglas; Jones-Engel, Lisa

    2008-07-01

    Because Gibraltar's macaques (Macaca sylvanus) have frequent contact with humans, we assayed 79 macaques for antibodies to enzootic primate viruses. All macaques were seronegative for herpesvirus B, simian T-cell lymphotropic virus, simian retrovirus, simian immunodeficiency virus, and rhesus cytomegalovirus. Seroprevalence of simian foamy virus reached 88% among adult animals.

  9. Decline in prevalence and asymmetric distribution of human T cell lymphotropic virus 1 and 2 in blood donors, State of Minas Gerais, Brazil, 1993 to 2007 Declínio na prevalência e distribuição assimétrica do vírus linfotrópico de células T humanas em doadores de sangue, Estado de Minas Gerais, Brasil, 1993 a 2007

    Directory of Open Access Journals (Sweden)

    Maria Regina Dias-Bastos

    2010-12-01

    Full Text Available INTRODUCTION: Human T cell lymphotropic virus types 1 and 2 (HTLV-1/2 are endemic in Brazil and are screened for in transfusion services since 1993. This study evaluated the evolution of the prevalence of HTLV-1 and 2 in blood donors of the Hemominas Foundation from 1993 to 2007, and its geographical distribution in State of Minas Gerais, Brazil. METHODS: The Hemominas Foundation is a centralized blood center in Minas Gerais, Brazil. The sources of data were the Hemominas Foundation Technical Bulletin and files from the centralized serological laboratory. Donors were tested in the period using enzyme linked immuno sorbent assays (ELISA, followed by Western blot, when repeatedly reactive. The data were analyzed by EPIINFO 6.2 and TABWIN 3.5 softwares. RESULTS: The average seroprevalence in the period 1993-2007 was 0.1%. A steady decline occurred from 0.4% in 1993 to below 0.1% in 2002 and later, with a transient peak of 0.5% in 1994. HTLV reactivity distribution was asymmetrical in the state, with regions of higher prevalence, interspersed with low prevalence areas. Comparison of positive and negative donors verified that increasing age was proportional to virus positivity. Odds ratio for age ranged from 1.43 (30 to 39 years-old to 3.09 (50 to 65 years-old. Women had a greater chance of being positive (OR-1.64, as previously described. CONCLUSIONS: Possible explanations for HTLV-1/2 prevalence decline are the exclusion of positive donors from the donor pool, an increase in repeat donors and ELISA test improvement, with reduction in the number of false positive results.INTRODUÇÃO: Os vírus linfotrópicos de células T humanas 1 e 2 (HTLV-1/2 são endêmicos no Brasil e são testados nos serviços de transfusão desde 1993. Este estudo avaliou a evolução da prevalência do HTLV-1 e 2 em doadores de sangue da Hemominas, de 1993 a 2007, bem como sua distribuição geográfica no Estado de Minas Gerais, Brasil. MÉTODOS: A Hemominas é um servi

  10. Isolation of a new herpes virus from human CD4 sup + T cells

    Energy Technology Data Exchange (ETDEWEB)

    Frenkel, N.; Schirmer, E.C.; Wyatt, L.S.; Katsafanas, G.; Roffman, E.; Danovich, R.M. (National Institutes of Health, Rockville, MD (USA)); June, C.H. (Naval Medical Research Institute, Bethesda, MD (USA))

    1990-01-01

    A new human herpes virus has been isolated from CD4{sup +} T cells purified from peripheral blood mononuclear cells of a healthy individual (RK), following incubation of the cells under conditions promoting T-cell activation. The virus could not be recovered from nonactivated cells. Cultures of lymphocytes infected with the RK virus exhibited a cytopathic effect, and electron microscopic analyses revealed a characteristic herpes virus structure. RK virus DNA did not hybridize with large probes derived from herpes simplex virus, Epstein-Barr virus, varicella-zoster virus, and human cytomegalovirus. The genetic relatedness of the RK virus to the recently identified T-lymphotropic human herpes virus 6 (HHV-6) was investigated by restriction enzyme analyses using 21 different enzymes and by blot hydridization analyses using 11 probes derived from two strains of HHV-6 (Z29 and U1102). Whereas the two HHV-6 strains exhibited only limited restriction enzyme polymorphism, cleavage of the RK virus DNA yielded distinct patterns. Of the 11 HHV-6 DNA probes tested, only 6 cross-hybridized with DNA fragments derived from the RK virus. Taken together, the maximal homology amounted to 31 kilobases of the 75 kilobases tested. The authors conclude that the RK virus is distinct from previously characterized human herpesviruses. The authors propose to designate it as the prototype of a new herpes virus, the seventh human herpes virus identified to date.

  11. Evaluation of the use of real-time PCR for human T cell lymphotropic virus 1 and 2 as a confirmatory test in screening for blood donors Análise do uso da PCR em tempo real para HTLV-1 e 2 como teste confirmatório na triagem de doadores de sangue

    Directory of Open Access Journals (Sweden)

    Rafaela Gomes Andrade

    2010-04-01

    Full Text Available INTRODUCTION: HTLV-1/2 screening among blood donors commonly utilizes an enzyme-linked immunosorbent assay (EIA, followed by a confirmatory method such as Western blot (WB if the EIA is positive. However, this algorithm yields a high rate of inconclusive results, and is expensive. METHODS: Two qualitative real-time PCR assays were developed to detect HTLV-1 and 2, and a total of 318 samples were tested (152 blood donors, 108 asymptomatic carriers, 26 HAM/TSP patients and 30 seronegative individuals. RESULTS: The sensitivity and specificity of PCR in comparison with WB results were 99.4% and 98.5%, respectively. PCR tests were more efficient for identifying the virus type, detecting HTLV-2 infection and defining inconclusive cases. CONCLUSIONS: Because real-time PCR is sensitive and practical and costs much less than WB, this technique can be used as a confirmatory test for HTLV in blood banks, as a replacement for WB.INTRODUÇÃO: A triagem para HTLV-1/2 em doadores de sangue geralmente utiliza imunoensaio enzimático, seguido de um método confirmatório como Western blot quando o EIA é positivo, mas este algoritmo mostra alta taxa de resultados inconclusivos, e elevado custo. MÉTODOS: Dois ensaios qualitativos de PCR em tempo real foram desenvolvidos para detectar HTLV-1 e 2 e um total de 318 amostras foram testadas por PCR (152 de doadores de sangue, 108 de portadores assintomáticos, 26 de pacientes HAM/TSP e 30 de indivíduos soronegativos. RESULTADOS: A sensibilidade e especificidade das PCR em relação aos resultados de WB foram de 99,4% e 98,5%, respectivamente. As PCR foram mais eficientes em identificar o tipo viral, a infecção pelo HTLV-2 e úteis para definir casos inconclusivos. CONCLUSÕES: Por serem sensíveis, práticas e de custo muito inferior ao do WB, as técnicas de PCR em tempo real podem ser usadas como teste confirmatório do HTLV em bancos de sangue, em substituição ao WB.

  12. Impaired cell mediated immunity in haemophilia in the absence of infection with human immunodeficiency virus.

    Science.gov (United States)

    Madhok, R; Gracie, A; Lowe, G D; Burnett, A; Froebel, K; Follett, E; Forbes, C D

    1986-10-18

    The cell mediated immune response was evaluated in vivo in 29 patients with clinically severe haemophilia by means of the dinitrochlorobenzene skin test. All patients had a response below the median normal value, and in 19 the response was on or below the lower limit of the normal range. There was no difference in skin response between patients positive and negative for the human immunodeficiency virus (HIV; formerly known as human T cell lymphotropic virus III or lymphadenopathy associated virus). In the whole group, and in seronegative patients (n = 17), there was an inverse relation between exposure to clotting factor and skin response. In seropositive patients (n = 12) no such association was apparent. This study shows that clotting factor concentrate impairs the cell mediated immune response to a new antigen in the absence of infection with HIV.

  13. Human T Cell Lymphotropic Virus Type I Infection Among Female Sex Workers in Peru

    Science.gov (United States)

    1994-01-01

    Seattlei). and peweistantly rea.-dve Ptlic and meodical history chancteris~tcs to MTLY-1l tnfecfloa sera wfte tested by Western blot (Cambndge Slotectu...negative or indetermirtate by and bccauseourestimate of thenurbev orrecent clients mav Western blot , a small misciaasoffcation bias could have oc. not have...anccCFHTLVIaesoHTtV- NarwepiuiM1 ~wioa a~~llwti1 by Wester bio% ana~los. InIw Im- I1 inikcslon in the AIDS epidemic.to. in Volbeuding P. Jacobsacn MA

  14. Antibody to human T-lymphotropic virus in a patient with Guillain-Barré syndrome (case report Anticorpo para o vírus linfotrópico humano T em um paciente com a síndrome de Guillain-Barré

    Directory of Open Access Journals (Sweden)

    C.M. Nakauchi

    1991-08-01

    Full Text Available Serum sample obtained from a male, 12 year old patient suffering from Guillain-Barré syndrome (GBS was positive for human T-lymphotropic virus (HTLV-I antibody by the enzyme-linked immunosorbent assay (ELISA and the Western Blot analysis (WB. Attempts to isolate enteroviruses (including poliovirus from faecal material in both tissue culture and suckling mice were unsuccessful; in addition, acute and convalescent paired serum samples did not show any evidence of recent poliovirus infection when tested against the three serotypes. Specific tests for detection of Epstein-Barr virus infection were not performed; however, the Paul-Bunnel test yielded negative results. ELISA for detection of anti-cytomegalovirus IgM was also negative. The concomitant occurrence of either adult T cell leukemia (ATL or lymphoma was not recorded in this case.Amostra de soro obtida de paciente com a síndrome de Guillain-Barré revelou-se positiva quanto à presença de anticorpos para o vírus linfotrópico humano T (HTLV-I pelo método imuno-enzimático (ELISA e a análise por "Western-Blot". Resultaram negativos os testes visando à detecção de enterovírus (incluindo poliovírus a partir de material fecal, tanto em cultura de tecidos como em camundongos recém-nascidos; exames com amostras de soro aguda e convalescente não exibiram qualquer evidência de infecção recente pelos três tipos de poliovírus. O teste de Paul-Bunnel, assim como o "ELISA" para a detecção de IgM anti-citomegalovírus resultaram negativos. Não foi registrada, no presente caso, quer a leucemia adulta de células T, quer linfomas.

  15. Frequent Simian Foamy Virus Infection in Persons Occupationally Exposed to Nonhuman Primates

    OpenAIRE

    SWITZER, WILLIAM M.; Bhullar, Vinod; Shanmugam, Vedapuri; Cong, Mian-er; Parekh, Bharat; Lerche, Nicholas W; Yee, JoAnn L.; Ely, John J.; Boneva, Roumiana; Chapman, Louisa E.; Folks, Thomas M.; Heneine, Walid

    2004-01-01

    The recognition that AIDS originated as a zoonosis heightens public health concerns associated with human infection by simian retroviruses endemic in nonhuman primates (NHPs). These retroviruses include simian immunodeficiency virus (SIV), simian T-cell lymphotropic virus (STLV), simian type D retrovirus (SRV), and simian foamy virus (SFV). Although occasional infection with SIV, SRV, or SFV in persons occupationally exposed to NHPs has been reported, the characteristics and significance of t...

  16. In vitro and in vivo infectivity and pathogenicity of the lymphoid cell-derived woodchuck hepatitis virus.

    Science.gov (United States)

    Lew, Y Y; Michalak, T I

    2001-02-01

    Woodchuck hepatitis virus (WHV) and human hepatitis B virus are closely related, highly hepatotropic mammalian DNA viruses that also replicate in the lymphatic system. The infectivity and pathogenicity of hepadnaviruses propagating in lymphoid cells are under debate. In this study, hepato- and lymphotropism of WHV produced by naturally infected lymphoid cells was examined in specifically established woodchuck hepatocyte and lymphoid cell cultures and coculture systems, and virus pathogenicity was tested in susceptible animals. Applying PCR-based assays discriminating between the total pool of WHV genomes and covalently closed circular DNA (cccDNA), combined with enzymatic elimination of extracellular viral sequences potentially associated with the cell surface, our study documents that virus replicating in woodchuck lymphoid cells is infectious to homologous hepatocytes and lymphoid cells in vitro. The productive replication of WHV from lymphoid cells in cultured hepatocytes was evidenced by the appearance of virus-specific DNA, cccDNA, and antigens, transmissibility of the virus through multiple passages in hepatocyte cultures, and the ability of the passaged virus to infect virus-naive animals. The data also revealed that WHV from lymphoid cells can initiate classical acute viral hepatitis in susceptible animals, albeit small quantities (approximately 10(3) virions) caused immunovirologically undetectable (occult) WHV infection that engaged the lymphatic system but not the liver. Our results provide direct in vitro and in vivo evidence that lymphoid cells in the infected host support propagation of infectious hepadnavirus that has the potential to induce hepatitis. They also emphasize a principal role of the lymphatic system in the maintenance and dissemination of hepadnavirus infection, particularly when infection is induced by low virus doses.

  17. Kinetics of virus production from single cells.

    Science.gov (United States)

    Timm, Andrea; Yin, John

    2012-03-01

    The production of virus by infected cells is an essential process for the spread and persistence of viral diseases, the effectiveness of live-viral vaccines, and the manufacture of viruses for diverse applications. Yet despite its importance, methods to precisely measure virus production from cells are lacking. Most methods test infected-cell populations, masking how individual cells behave. Here we measured the kinetics of virus production from single cells. We combined simple steps of liquid-phase infection, serial dilution, centrifugation, and harvesting, without specialized equipment, to track the production of virus particles from BHK cells infected with vesicular stomatitis virus. Remarkably, cell-to-cell differences in latent times to virus release were within a factor of two, while production rates and virus yields spanned over 300-fold, highlighting an extreme diversity in virus production for cells from the same population. These findings have fundamental and technological implications for health and disease.

  18. Virus Discovery Using Tick Cell Lines

    Science.gov (United States)

    Bell-Sakyi, Lesley; Attoui, Houssam

    2016-01-01

    While ticks have been known to harbor and transmit pathogenic arboviruses for over 80 years, the application of high-throughput sequencing technologies has revealed that ticks also appear to harbor a diverse range of endogenous tick-only viruses belonging to many different families. Almost nothing is known about these viruses; indeed, it is unclear in most cases whether the identified viral sequences are derived from actual replication-competent viruses or from endogenous virus elements incorporated into the ticks’ genomes. Tick cell lines play an important role in virus discovery and isolation through the identification of novel viruses chronically infecting such cell lines and by acting as host cells to aid in determining whether or not an entire replication-competent, infective virus is present in a sample. Here, we review recent progress in tick-borne virus discovery and comment on the actual and potential applications for tick cell lines in this emerging research area. PMID:27679414

  19. Cell killing by avian leukosis viruses.

    OpenAIRE

    Weller, S K; Temin, H M

    1981-01-01

    Infection of chicken cells with a cytopathic avian leukosis virus resulted in the detachment of killed cells from the culture dish. The detached, dead cells contained more unintegrated viral DNA than the attached cells. These results confirm the hypothesis that cell killing after infection with a cytopathic avian leukosis virus is associated with accumulation of large amounts of unintegrated viral DNA. No accumulation of large amounts of integrated viral DNA was found in cells infected with c...

  20. Detection of Active Epstein-Barr Virus Infection in Duodenal Mucosa of Patients With Refractory Celiac Disease.

    Science.gov (United States)

    Perfetti, Vittorio; Baldanti, Fausto; Lenti, Marco Vincenzo; Vanoli, Alessandro; Biagi, Federico; Gatti, Marta; Riboni, Roberta; Dallera, Elena; Paulli, Marco; Pedrazzoli, Paolo; Corazza, Gino Roberto

    2016-08-01

    Refractory celiac disease is characterized by mucosal damage in patients with celiac disease despite a gluten-free diet. Little is known about the mechanisms that cause persistent intestinal inflammation in these patients. We performed a case-control study of 17 consecutive patients diagnosed with refractory celiac disease from 2001 through 2014 (median age, 51 y; 10 women) and 24 patients with uncomplicated celiac disease (controls) to determine whether refractory disease is associated with infection by lymphotropic oncogenic viruses. We performed real-time PCR analyses of duodenal biopsy samples from all patients to detect Epstein-Barr virus (EBV), human herpesvirus-8, and human T-cell lymphotropic virus-I, -II, or -III. We used in situ hybridization and immunohistochemical analyses to identify infected cells and viral proteins. We did not detect human herpesvirus-8 or human T-cell lymphotropic viruses in any of the biopsy specimens. However, 12 of 17 (70.5%) biopsy specimens from patients with refractory celiac disease were positive for EBV, compared with 4 of 24 (16.6%) biopsy specimens from controls (P celiac disease and enteropathy-associated T-cell lymphoma.

  1. Adult T-Cell Leukemia-Lymphoma during Pregnancy

    OpenAIRE

    2013-01-01

    Adult T-cell leukemia-lymphoma (ATL) is an uncommon highly aggressive T-cell lymphoma associated with human T-cell lymphotropic virus type 1 (HTLV-1) infection. It is rarely encountered during pregnancy and is particularly challenging to treat due to its aggressive nature and because of the lack of robust data on optimal chemotherapy. We report a case of a Jamaican immigrant diagnosed with ATL during pregnancy.

  2. Adult T-Cell Leukemia-Lymphoma during Pregnancy

    Directory of Open Access Journals (Sweden)

    Martin Miguel Amor

    2013-01-01

    Full Text Available Adult T-cell leukemia-lymphoma (ATL is an uncommon highly aggressive T-cell lymphoma associated with human T-cell lymphotropic virus type 1 (HTLV-1 infection. It is rarely encountered during pregnancy and is particularly challenging to treat due to its aggressive nature and because of the lack of robust data on optimal chemotherapy. We report a case of a Jamaican immigrant diagnosed with ATL during pregnancy.

  3. [Susceptibility of immunocompetent cells to animal viruses].

    Science.gov (United States)

    López-Guerrero, J A

    1990-06-01

    The infection of several cell lines of the immune system by animal viruses has been studied. In general, those cell lines derived either from the myeloid or from the lymphoid differentiation pathways were poorly affected by these viruses. Only Semliki Forest Virus (SFV) and poliovirus were able to replicate in most of the cell lines assayed, inhibiting the cellular protein synthesis. However, this inhibition was not accompanied by a significant expression of viral proteins. These effects were not observed with UV irradiated virus suggesting that intact viral particles were required to interfere with the host macromolecular synthesis.

  4. Oncogenic viruses and cancer

    Institute of Scientific and Technical Information of China (English)

    Guangxiang; George; Luo; Jing-hsiung; James; Ou

    2015-01-01

    <正>This special issue of the journal is dedicated to the important topic of oncogenic viruses and cancer.It contains seven review articles covering all known oncogenic viruses except for human T-lymphotropic virus type1(HTLV-1).These review articles are contributed by experts on specific viruses and their associated human cancers.Viruses account for about 20%of total human cancer cases.Although many viruses can cause various tumors in animals,only seven of them

  5. [Lymphotropic therapy for acute purulent odontogenic jaw periostitis].

    Science.gov (United States)

    Maĭborodin, I V; Lĭubarskiĭ, M S; Loĭko, E R; Sheplev, B V

    2003-01-01

    The structure of the gingival mucosa was studied by optic microscopy in patients with acute purulent odontogenic maxillary periostitis treated traditionally and receiving lymphotropic therapy. Lymphotropic administration of the antibiotic during 2 days resulted in less pronounced dilatation of the interstitial spaces and lymph vessels adjacent to the molars and higher counts of lymphocytes, monocytes, and macrophages. This indicated high efficiency of lymphotropic therapy of acute purulent maxillary periostitis for molars. Microcirculation parameters and tissue leukocyte cytogram in gingival mucosal tissue adjacent to the canines and premolars differed negligibly in patients treated by different methods.

  6. Viruses, dendritic cells and the lung

    Directory of Open Access Journals (Sweden)

    Graham Barney S

    2001-06-01

    Full Text Available Abstract The interaction between viruses and dendritic cells (DCs is varied and complex. DCs are key elements in the development of a host response to pathogens such as viruses, but viruses have developed survival tactics to either evade or diminish the immune system that functions to kill and eliminate these micro-organisms. In the present review we summarize current concepts regarding the function of DCs in the immune system, our understanding of how viruses alter DC function to attenuate both the virus-specific and global immune response, and how we may be able to exploit DC function to prevent or treat viral infections.

  7. Early T Cell Recognition of B Cells following Epstein-Barr Virus Infection: Identifying Potential Targets for Prophylactic Vaccination.

    Directory of Open Access Journals (Sweden)

    Jill M Brooks

    2016-04-01

    Full Text Available Epstein-Barr virus, a B-lymphotropic herpesvirus, is the cause of infectious mononucleosis, has strong aetiologic links with several malignancies and has been implicated in certain autoimmune diseases. Efforts to develop a prophylactic vaccine to prevent or reduce EBV-associated disease have, to date, focused on the induction of neutralising antibody responses. However, such vaccines might be further improved by inducing T cell responses capable of recognising and killing recently-infected B cells. In that context, EBNA2, EBNA-LP and BHRF1 are the first viral antigens expressed during the initial stage of B cell growth transformation, yet have been poorly characterised as CD8+ T cell targets. Here we describe CD8+ T cell responses against each of these three "first wave" proteins, identifying target epitopes and HLA restricting alleles. While EBNA-LP and BHRF1 each contained one strong CD8 epitope, epitopes within EBNA2 induced immunodominant responses through several less common HLA class I alleles (e.g. B*3801 and B*5501, as well as subdominant responses through common class I alleles (e.g. B7 and C*0304. Importantly, such EBNA2-specific CD8+ T cells recognised B cells within the first day post-infection, prior to CD8+ T cells against well-characterised latent target antigens such as EBNA3B or LMP2, and effectively inhibited outgrowth of EBV-transformed B cell lines. We infer that "first wave" antigens of the growth-transforming infection, especially EBNA2, constitute potential CD8+ T cell immunogens for inclusion in prophylactic EBV vaccine design.

  8. Lassa Virus Cell Entry Reveals New Aspects of Virus-Host Cell Interaction.

    Science.gov (United States)

    Torriani, Giulia; Galan-Navarro, Clara; Kunz, Stefan

    2017-02-15

    Viral entry represents the first step of every viral infection and is a determinant for the host range and disease potential of a virus. Here, we review the latest developments on cell entry of the highly pathogenic Old World arenavirus Lassa virus, providing novel insights into the complex virus-host cell interaction of this important human pathogen. We will cover new discoveries on the molecular mechanisms of receptor recognition, endocytosis, and the use of late endosomal entry factors.

  9. Cell Transformation by RNA Viruses: An Overview

    Directory of Open Access Journals (Sweden)

    Hung Fan

    2011-06-01

    Full Text Available Studies of oncogenic viruses have made seminal contributions to the molecular biology of cancer. Key discoveries include the identification of viral oncogenes and cellular proto-oncogenes, elucidation of signal transduction pathways, and identification of tumor suppressor genes. The origins of cancer virology began almost exactly one hundred years ago with the discovery of avian sarcoma and acute leukemia viruses—RNA-containing viruses of the retrovirus family. The study of animal cancer viruses accelerated beginning in the late 1960s and early 1970s, with the discovery of DNA viruses that could transform cells in culture, and the development of quantitative assays for transformation by DNA and RNA-containing tumor viruses. The discovery of reverse transcriptase in retroviruses in 1970 also greatly accelerated research on these viruses. Indeed RNA and DNA tumor viruses led the way in cancer molecular biology during this era before molecular cloning. It was possible to physically purify virus particles and generate specific hybridization probes for viral DNA and RNA at a time when it was not possible to analyze cellular genes in the same manner. [...

  10. Cells in Dengue Virus Infection In Vivo

    Directory of Open Access Journals (Sweden)

    Sansanee Noisakran

    2010-01-01

    Full Text Available Dengue has been recognized as one of the most important vector-borne emerging infectious diseases globally. Though dengue normally causes a self-limiting infection, some patients may develop a life-threatening illness, dengue hemorrhagic fever (DHF/dengue shock syndrome (DSS. The reason why DHF/DSS occurs in certain individuals is unclear. Studies in the endemic regions suggest that the preexisting antibodies are a risk factor for DHF/DSS. Viremia and thrombocytopenia are the key clinical features of dengue virus infection in patients. The amounts of virus circulating in patients are highly correlated with severe dengue disease, DHF/DSS. Also, the disturbance, mainly a transient depression, of hematological cells is a critical clinical finding in acute dengue patients. However, the cells responsible for the dengue viremia are unresolved in spite of the intensive efforts been made. Dengue virus appears to replicate and proliferate in many adapted cell lines, but these in vitro properties are extremely difficult to be reproduced in primary cells or in vivo. This paper summarizes reports on the permissive cells in vitro and in vivo and suggests a hematological cell lineage for dengue virus infection in vivo, with the hope that a new focus will shed light on further understanding of the complexities of dengue disease.

  11. Molecular Mechanisms of HTLV-1 Cell-to-Cell Transmission

    Directory of Open Access Journals (Sweden)

    Christine Gross

    2016-03-01

    Full Text Available The tumorvirus human T-cell lymphotropic virus type 1 (HTLV-1, a member of the delta-retrovirus family, is transmitted via cell-containing body fluids such as blood products, semen, and breast milk. In vivo, HTLV-1 preferentially infects CD4+ T-cells, and to a lesser extent, CD8+ T-cells, dendritic cells, and monocytes. Efficient infection of CD4+ T-cells requires cell-cell contacts while cell-free virus transmission is inefficient. Two types of cell-cell contacts have been described to be critical for HTLV-1 transmission, tight junctions and cellular conduits. Further, two non-exclusive mechanisms of virus transmission at cell-cell contacts have been proposed: (1 polarized budding of HTLV-1 into synaptic clefts; and (2 cell surface transfer of viral biofilms at virological synapses. In contrast to CD4+ T-cells, dendritic cells can be infected cell-free and, to a greater extent, via viral biofilms in vitro. Cell-to-cell transmission of HTLV-1 requires a coordinated action of steps in the virus infectious cycle with events in the cell-cell adhesion process; therefore, virus propagation from cell-to-cell depends on specific interactions between cellular and viral proteins. Here, we review the molecular mechanisms of HTLV-1 transmission with a focus on the HTLV-1-encoded proteins Tax and p8, their impact on host cell factors mediating cell-cell contacts, cytoskeletal remodeling, and thus, virus propagation.

  12. Canine distemper virus infection leads to an inhibitory phenotype of monocyte-derived dendritic cells in vitro with reduced expression of co-stimulatory molecules and increased interleukin-10 transcription.

    Directory of Open Access Journals (Sweden)

    Visar Qeska

    Full Text Available Canine distemper virus (CDV exhibits a profound lymphotropism that causes immunosuppression and increased susceptibility of affected dogs to opportunistic infections. Similar to human measles virus, CDV is supposed to inhibit terminal differentiation of dendritic cells (DCs, responsible for disturbed repopulation of lymphoid tissues and diminished antigen presenting function in dogs. In order to testify the hypothesis that CDV-infection leads to an impairment of professional antigen presenting cells, canine DCs have been generated from peripheral blood monocytes in vitro and infected with CDV. Virus infection was confirmed and quantified by transmission electron microscopy, CDV-specific immunofluorescence, and virus titration. Flow cytometric analyses revealed a significant down-regulation of the major histocompatibility complex class II and co-stimulatory molecules CD80 and CD86 in CDV-infected DCs, indicative of disturbed antigen presenting capacity. Molecular analyses revealed an increased expression of the immune inhibitory cytokine interleukin-10 in DCs following infection. Results of the present study demonstrate that CDV causes phenotypical changes and altered cytokine expression of DCs, which represent potential mechanisms to evade host immune responses and might contribute to immune dysfunction and virus persistence in canine distemper.

  13. Canine Distemper Virus Infection Leads to an Inhibitory Phenotype of Monocyte-Derived Dendritic Cells In Vitro with Reduced Expression of Co-Stimulatory Molecules and Increased Interleukin-10 Transcription

    Science.gov (United States)

    Herder, Vanessa; Stein, Veronika M.; Tipold, Andrea; Urhausen, Carola; Günzel-Apel, Anne-Rose; Rohn, Karl; Baumgärtner, Wolfgang; Beineke, Andreas

    2014-01-01

    Canine distemper virus (CDV) exhibits a profound lymphotropism that causes immunosuppression and increased susceptibility of affected dogs to opportunistic infections. Similar to human measles virus, CDV is supposed to inhibit terminal differentiation of dendritic cells (DCs), responsible for disturbed repopulation of lymphoid tissues and diminished antigen presenting function in dogs. In order to testify the hypothesis that CDV-infection leads to an impairment of professional antigen presenting cells, canine DCs have been generated from peripheral blood monocytes in vitro and infected with CDV. Virus infection was confirmed and quantified by transmission electron microscopy, CDV-specific immunofluorescence, and virus titration. Flow cytometric analyses revealed a significant down-regulation of the major histocompatibility complex class II and co-stimulatory molecules CD80 and CD86 in CDV-infected DCs, indicative of disturbed antigen presenting capacity. Molecular analyses revealed an increased expression of the immune inhibitory cytokine interleukin-10 in DCs following infection. Results of the present study demonstrate that CDV causes phenotypical changes and altered cytokine expression of DCs, which represent potential mechanisms to evade host immune responses and might contribute to immune dysfunction and virus persistence in canine distemper. PMID:24769532

  14. Monitoring virus entry into living cells using DiD-labeled dengue virus particles

    NARCIS (Netherlands)

    Ayala Nunez, Vanesa; Wilschut, Jan; Smit, Jolanda M.

    2011-01-01

    A variety of approaches can be applied to investigate the multiple steps and interactions that occur during virus entry into the host cell. Single-virus tracking is a powerful real-time imaging technique that offers the possibility to monitor virus-cell binding, internalization, intracellular traffi

  15. EBV Persistence--Introducing the Virus.

    Science.gov (United States)

    Thorley-Lawson, David A

    2015-01-01

    Persistent infection by EBV is explained by the germinal center model (GCM) which provides a satisfying and currently the only explanation for EBVs disparate biology. Since the GCM touches on every aspect of the virus, this chapter will serve as an introduction to the subsequent chapters. EBV is B lymphotropic, and its biology closely follows that of normal mature B lymphocytes. The virus persists quiescently in resting memory B cells for the lifetime of the host in a non-pathogenic state that is also invisible to the immune response. To access this compartment, the virus infects naïve B cells in the lymphoepithelium of the tonsils and activates these cells using the growth transcription program. These cells migrate to the GC where they switch to a more limited transcription program, the default program, which helps rescue them into the memory compartment where the virus persists. For egress, the infected memory cells return to the lymphoepithelium where they occasionally differentiate into plasma cells activating viral replication. The released virus can either infect more naïve B cells or be amplified in the epithelium for shedding. This cycle of infection and the quiescent state in memory B cells allow for lifetime persistence at a very low level that is remarkably stable over time. Mathematically, this is a stable fixed point where the mechanisms regulating persistence drive the state back to equilibrium when perturbed. This is the GCM of EBV persistence. Other possible sites and mechanisms of persistence will also be discussed.

  16. Human T-cell lymphotropic virus type 1 subtype C molecular variants among indigenous australians: new insights into the molecular epidemiology of HTLV-1 in Australo-Melanesia.

    Directory of Open Access Journals (Sweden)

    Olivier Cassar

    Full Text Available BACKGROUND: HTLV-1 infection is endemic among people of Melanesian descent in Papua New Guinea, the Solomon Islands and Vanuatu. Molecular studies reveal that these Melanesian strains belong to the highly divergent HTLV-1c subtype. In Australia, HTLV-1 is also endemic among the Indigenous people of central Australia; however, the molecular epidemiology of HTLV-1 infection in this population remains poorly documented. FINDINGS: Studying a series of 23 HTLV-1 strains from Indigenous residents of central Australia, we analyzed coding (gag, pol, env, tax and non-coding (LTR genomic proviral regions. Four complete HTLV-1 proviral sequences were also characterized. Phylogenetic analyses implemented with both Neighbor-Joining and Maximum Likelihood methods revealed that all proviral strains belong to the HTLV-1c subtype with a high genetic diversity, which varied with the geographic origin of the infected individuals. Two distinct Australians clades were found, the first including strains derived from most patients whose origins are in the North, and the second comprising a majority of those from the South of central Australia. Time divergence estimation suggests that the speciation of these two Australian clades probably occurred 9,120 years ago (38,000-4,500. CONCLUSIONS: The HTLV-1c subtype is endemic to central Australia where the Indigenous population is infected with diverse subtype c variants. At least two Australian clades exist, which cluster according to the geographic origin of the human hosts. These molecular variants are probably of very ancient origin. Further studies could provide new insights into the evolution and modes of dissemination of these retrovirus variants and the associated ancient migration events through which early human settlement of Australia and Melanesia was achieved.

  17. Ultrastructural study of Mayaro virus replication in BHK-21 cells.

    Science.gov (United States)

    Mezencio, J M; de Souza, W; Fonseca, M E; Rebello, M A

    1990-01-01

    The replication of Mayaro virus in BHK-21 cells was studied by electron microscopy. The infected cells show an intense vacuolization and proliferation of membranous structures. At 5 h post-infection, precursor virus particles were seen in the cytoplasm of infected cells. Later, mature virus particles were found outside the cells and budding from the plasma membrane. Enveloped virus particles were also observed inside the vesicles and budding across their membrane. The release of virus particles into the extracellular space by exocytosis was also observed. In a later stage of the infection, inclusion bodies were sometimes present in the cytoplasm of infected cells. We conclude that in BHK-21 cells, budding from the plasma membrane is the main process of Mayaro virus maturation, and in this kind of cell replication differs significantly from that observed in Aedes albopictus cells.

  18. Dynamics of Chikungunya Virus Cell Entry Unraveled by Single-Virus Tracking in Living Cells

    NARCIS (Netherlands)

    Hoornweg, Tabitha E; van Duijl-Richter, Mareike K S; Ayala Nuñez, Nilda V; Albulescu, Irina C; van Hemert, Martijn J; Smit, Jolanda M

    2016-01-01

    Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne human pathogen causing major outbreaks in Africa, Asia and the Americas. The cell entry pathway hijacked by CHIKV to infect a cell has been studied before using inhibitory compounds. There has been some debate on the mechanism by which C

  19. Dynamics of Chikungunya Virus Cell Entry Unraveled by Single-Virus Tracking in Living Cells

    NARCIS (Netherlands)

    Hoornweg, Tabitha E.; van Duijl-Richter, Mareike K. S.; Nunez, Nilda V. Ayala; Albulescu, Irina C.; van Hemert, Martijn J.; Smit, Jolanda M.

    2016-01-01

    Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne human pathogen causing major outbreaks in Africa, Asia, and the Americas. The cell entry pathway hijacked by CHIKV to infect a cell has been studied previously using inhibitory compounds. There has been some debate on the mechanism by wh

  20. Investigating potential exogenous tumor initiating and promoting factors for Cutaneous T-Cell Lymphomas (CTCL), a rare skin malignancy

    DEFF Research Database (Denmark)

    Litvinov, Ivan V.; Shtreis, Anna; Kobayashi, Kenneth

    2016-01-01

    -Cell lymphotropic virus type 1 (HTLV1), Epstein-Barr virus (EBV), and herpes simplex virus (HSV). In this report, we review recent evidence evaluating the involvement of these agents in cancer initiation/progression. Most importantly, recent molecular experimental evidence documented for the first time that S...... are then able to activate STAT3 and STAT5 oncogenic signaling and promote cancer progression and IL-17 secretion. In light of these findings, it might be important for patients with exacerbation of their CTCL symptoms to maintain high index of suspicion and treat these individuals for S. aureus colonization and...

  1. Role of viruses in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Mehdi Salehipoor

    2012-01-01

    Full Text Available To determine whether viral infections are related to renal cell carcinoma (RCC, we studied 49 patients with RCC (29 patients were males with age ranging from 30 to 81 years and a mean of 57.5 years; 20 patients were females with age ranging from 36 to 70 years with a mean of 58.4 years and 16 non-neoplastic kidney patients as controls. Tissues specimens from study patients and controls were examined by nested polymerase chain reaction (PCR to determine the presence of DNA of several viruses including human papilloma virus (HPV, Epstein-Barr virus (EBV, and polyoma viruses (BKV and JCV. Our results revealed that 7 of 49 (14.29% RCC tissue specimens had HPV DNA compared with none of 16 non-cancer control subjects. Regarding the HPV types, all the positive results were high-risk HPV types (type 16 in three and 18 in four patients. The present study suggests that HPV infection, especially high-risk types, is associated with RCC. However, more studies are necessary to demonstrate the molecular oncogenic processes involved in this association.

  2. Isolation of influenza viruses in MDCK 33016PF cells and clearance of contaminating respiratory viruses.

    Science.gov (United States)

    Roth, Bernhard; Mohr, Hannah; Enders, Martin; Garten, Wolfgang; Gregersen, Jens-Peter

    2012-01-11

    This paper summarizes results obtained by multiplex PCR screening of human clinical samples for respiratory viruses and corresponding data obtained after passaging of virus-positive samples in MDCK 33016PF cells. Using the ResPlexII v2.0 (Qiagen) multiplex PCR, 393 positive results were obtained in 468 clinical samples collected during an influenza season in Germany. The overall distribution of positive results was influenza A 42.0%, influenza B 38.7%, adenovirus 1.5%, bocavirus 0.5%, coronavirus 3.3%, enterovirus 5.6%, metapneumovirus 1.0%, parainfluenza virus 0.8%, rhinovirus 4.1%, and respiratory syncytial virus (RSV) 2.5%. Double infections of influenza virus together with another virus were found for adenovirus B and E, bocavirus, coronavirus, enterovirus and for rhinovirus. These other viruses were rapidly lost upon passages in MDCK 33016PF cells and under conditions as applied to influenza virus passaging. Clinical samples, in which no influenza virus but other viruses were found, were also subject to passages in MDCK 33016PF cells. Using lower inoculum dilutions than those normally applied for preparations containing influenza virus (total dilution of the original sample of ∼10(4)), the positive results for the different viruses turned negative already after 2 or 3 passages in MDCK 33016PF cells. These results demonstrate that, under practical conditions as applied to grow influenza viruses, contaminating viruses can be effectively removed by passages in MDCK cells. In combination with their superior isolation efficiency, MDCK cells appear highly suitable to be used as an alternative to embryonated eggs to isolate and propagate influenza vaccine candidate viruses.

  3. Hepatitis C virus host cell interactions uncovered

    DEFF Research Database (Denmark)

    Gottwein, Judith; Bukh, Jens

    2007-01-01

      Insights into virus-host cell interactions as uncovered by Randall et al. (1) in a recent issue of PNAS further our understanding of the hepatitis C virus (HCV) life cycle, persistence, and pathogenesis and might lead to the identification of new therapeutic targets. HCV persistently infects 180...... million individuals worldwide, causing chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The only approved treatment, combination therapy with IFN- and ribavirin, targets cellular pathways (2); however, a sustained virologic response is achieved only in approximately half of the patients...... treated. Therefore, there is a pressing need for the identification of novel drugs against hepatitis C. Although most research focuses on the development of HCV-specific antivirals, such as protease and polymerase inhibitors (3), cellular targets could be pursued and might allow the development of broad...

  4. Evasion of T cell immunity by Epstein-Barr virus

    NARCIS (Netherlands)

    Horst, D.

    2011-01-01

    Immune evasion strategies are thought to contribute essentially to the life cycle of persistent viruses by delaying the elimination of the infected cell long enough to enable the virus to replicate. Exemplary in this context are the herpesviruses, large DNA viruses that are carried as a persistent a

  5. Interaction of classical swine fever virus with dendritic cells

    NARCIS (Netherlands)

    Carrasco, C.P.; Rigden, R.C.; Vincent, I.E.; Balmelli, C.; Ceppi, M.; Bauhofer, O.; Tache, V.; Hjertner, B.; McNeilly, F.; Gennip, van H.G.P.; McCullough, K.C.; Summerfield, A.

    2004-01-01

    Functional disruption of dendritic cells (DCs) is an important strategy for viral pathogens to evade host defences. Monocytotropic viruses such as classical swine fever virus (CSFV) could employ such a mechanism, since the virus can suppress immune responses and induce apoptosis without infecting ly

  6. Vaccination against δ-Retroviruses: The Bovine Leukemia Virus Paradigm

    Directory of Open Access Journals (Sweden)

    Gerónimo Gutiérrez

    2014-06-01

    Full Text Available Bovine leukemia virus (BLV and human T-lymphotropic virus type 1 (HTLV-1 are closely related d-retroviruses that induce hematological diseases. HTLV-1 infects about 15 million people worldwide, mainly in subtropical areas. HTLV-1 induces a wide spectrum of diseases (e.g., HTLV-associated myelopathy/tropical spastic paraparesis and leukemia/lymphoma (adult T-cell leukemia. Bovine leukemia virus is a major pathogen of cattle, causing important economic losses due to a reduction in production, export limitations and lymphoma-associated death. In the absence of satisfactory treatment for these diseases and besides the prevention of transmission, the best option to reduce the prevalence of d-retroviruses is vaccination. Here, we provide an overview of the different vaccination strategies in the BLV model and outline key parameters required for vaccine efficacy.

  7. Activation of porcine cytomegalovirus, but not porcine lymphotropic herpesvirus, in pig-to-baboon xenotransplantation.

    Science.gov (United States)

    Mueller, Nicolas J; Livingston, Christine; Knosalla, Christoph; Barth, Rolf N; Yamamoto, Shin; Gollackner, Bernd; Dor, Frank J M F; Buhler, Leo; Sachs, David H; Yamada, Kazuhiko; Cooper, David K C; Fishman, Jay A

    2004-05-01

    Tissue-invasive disease due to porcine cytomegalovirus (PCMV) has been demonstrated after pig-to-baboon solid-organ xenotransplantation. Porcine lymphotropic herpesvirus (PLHV)-1 is associated with B cell proliferation and posttransplant lymphoproliferative disorder after allogeneic bone marrow transplantation in swine but has not been observed in pig-to-primate xenotransplantation. Activation of PCMV and PLHV-1 was investigated in 22 pig-to-baboon xenotransplants by use of quantitative polymerase chain reaction. PCMV was found in all xenografts; increased viral replication occurred in 68% of xenografts during immunosuppression. PLHV-1 was found in 12 xenografts (55%); no increases in viral replication occurred during immunosuppression. Control immunosuppressed swine coinfected with PCMV and PLHV-1 had activation of PCMV but not PLHV-1. PCMV, but not PLHV-1, is activated in solid-organ xenotransplantation.

  8. Dissecting the Cell Entry Pathway of Dengue Virus by Single-Particle Tracking in Living Cells

    NARCIS (Netherlands)

    van der Schaar, Hilde M.; Rust, Michael J.; Chen, Chen; van der Ende-Metselaar, Heidi; Wilschut, Jan; Zhuang, Xiaowei; Smit, Jolanda M.

    2008-01-01

    Dengue virus (DENV) is an enveloped RNA virus that causes the most common arthropod-borne infection worldwide. The mechanism by which DENV infects the host cell remains unclear. In this work, we used live-cell imaging and single-virus tracking to investigate the cell entry, endocytic trafficking, an

  9. "The evil virus cell": Students‘ knowledge and beliefs about viruses

    Science.gov (United States)

    Enzinger, Sonja M.; Fink, Andreas

    2017-01-01

    Education about virus biology at school is of pivotal interest to raise public awareness concerning means of disease transmission and, thus, methods to prevent infection, and to reduce unnecessary antibiotic treatment due to patient pressure on physicians in case of viral diseases such as influenza. This study aimed at making visible the knowledge of Austrian high school and university students with respect to virus biology, virus structure and health-education issues. The data presented here stem from comprehensive questionnaire analyses, including the task to draw a virus, from a cross-sectional study with 133 grade 7 and 199 grade 10 high school students, and 133 first-year biology and 181 first-year non-biology university students. Analyses were performed both quantitatively and qualitatively. ANOVA revealed a highly significant group effect for total knowledge relating to virus biology and health issues (F(3, 642) = 44.17, p knowledge between high schools, virus biology seems to have been taught similarly among the tested schools. However, the majority of participants stated that the virus-related knowledge they had acquired at school was not sufficient. Based on the results presented here we urgently suggest improving and intensifying teaching this topic at school, since virus-related knowledge was by far too fragmentary among many participants. Such lack of health-relevant knowledge may contribute to pressure on physicians by patients to unnecessarily prescribe antibiotics, and possibly lead to potentially dangerous neglect concerning vaccination. The effectiveness of newly developed virus-related teaching units and material could be tested with the instrument used here. PMID:28350815

  10. Susceptibility testing of fish cell lines for virus isolation

    DEFF Research Database (Denmark)

    Ariel, Ellen; Skall, Helle Frank; Olesen, Niels Jørgen

    2009-01-01

    compare susceptibility between cell lines and between lineages within a laboratory and between laboratories (Inter-laboratory Proficiency Test). The objective being that the most sensitive cell line and lineages are routinely selected for diagnostic purposes.In comparing cell lines, we simulated "non......-cell-culture-adapted" virus by propagating the virus in heterologous cell lines to the one tested. A stock of test virus was produced and stored at - 80 °C and tests were conducted biannually. This procedure becomes complicated when several cell lines are in use and does not account for variation among lineages. In comparing...... cell lineages, we increased the number of isolates of each virus, propagated stocks in a given cell line and tested all lineages of that line in use in the laboratory. Testing of relative cell line susceptibility between laboratories is carried out annually via the Inter-laboratory Proficiency Test...

  11. Viruses and cells intertwined since the dawn of evolution.

    Science.gov (United States)

    Durzyńska, Julia; Goździcka-Józefiak, Anna

    2015-10-16

    Many attempts have been made to define nature of viruses and to uncover their origin. Our aim within this work was to show that there are different perceptions of viruses and many concepts to explain their emergence: the virus-first concept (also called co-evolution), the escape and the reduction theories. Moreover, a relatively new concept of polyphyletic virus origin called "three RNA cells, three DNA viruses" proposed by Forterre is described herein. In this paper, not only is each thesis supported by a body of evidence but also counter-argued in the light of various findings to give more insightful considerations to the readers. As the origin of viruses and that of living cells are most probably interdependent, we decided to reveal ideas concerning nature of cellular last universal common ancestor (LUCA). Furthermore, we discuss monophyletic ancestry of cellular domains and their relationships at the molecular level of membrane lipids and replication strategies of these three types of cells. In this review, we also present the emergence of DNA viruses requiring an evolutionary transition from RNA to DNA and recently discovered giant DNA viruses possibly involved in eukaryogenesis. In the course of evolution viruses emerged many times. They have always played a key role through horizontal gene transfer in evolutionary events and in formation of the tree of life or netlike routes of evolution providing a great deal of genetic diversity. In our opinion, future findings are crucial to better understand past relations between viruses and cells and the origin of both.

  12. Easy and Rapid Detection of Mumps Virus by Live Fluorescent Visualization of Virus-Infected Cells.

    Directory of Open Access Journals (Sweden)

    Tadanobu Takahashi

    Full Text Available Mumps viruses show diverse cytopathic effects (CPEs of infected cells and viral plaque formation (no CPE or no plaque formation in some cases depending on the viral strain, highlighting the difficulty in mumps laboratory studies. In our previous study, a new sialidase substrate, 2-(benzothiazol-2-yl-4-bromophenyl 5-acetamido-3,5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosidonic acid (BTP3-Neu5Ac, was developed for visualization of sialidase activity. BTP3-Neu5Ac can easily and rapidly perform histochemical fluorescent visualization of influenza viruses and virus-infected cells without an antiviral antibody and cell fixation. In the present study, the potential utility of BTP3-Neu5Ac for rapid detection of mumps virus was demonstrated. BTP3-Neu5Ac could visualize dot-blotted mumps virus, virus-infected cells, and plaques (plaques should be called focuses due to staining of infected cells in this study, even if a CPE was not observed. Furthermore, virus cultivation was possible by direct pick-up from a fluorescent focus. In conventional methods, visible appearance of the CPE and focuses often requires more than 6 days after infection, but the new method with BTP3-Neu5Ac clearly visualized infected cells after 2 days and focuses after 4 days. The BTP3-Neu5Ac assay is a precise, easy, and rapid assay for confirmation and titration of mumps virus.

  13. Aquatic viruses induce host cell death pathways and its application.

    Science.gov (United States)

    Reshi, Latif; Wu, Jen-Leih; Wang, Hao-Ven; Hong, Jiann-Ruey

    2016-01-01

    Virus infections of mammalian and animal cells consist of a series of events. As intracellular parasites, viruses rely on the use of host cellular machinery. Through the use of cell culture and molecular approaches over the past decade, our knowledge of the biology of aquatic viruses has grown exponentially. The increase in aquaculture operations worldwide has provided new approaches for the transmission of aquatic viruses that include RNA and DNA viruses. Therefore, the struggle between the virus and the host for control of the cell's death machinery is crucial for survival. Viruses are obligatory intracellular parasites and, as such, must modulate apoptotic pathways to control the lifespan of their host to complete their replication cycle. This paper updates the discussion on the detailed mechanisms of action that various aquatic viruses use to induce cell death pathways in the host, such as Bad-mediated, mitochondria-mediated, ROS-mediated and Fas-mediated cell death circuits. Understanding how viruses exploit the apoptotic pathways of their hosts may provide great opportunities for the development of future potential therapeutic strategies and pathogenic insights into different aquatic viral diseases.

  14. Hepatitis C virus cell-cell transmission and resistance to direct-acting antiviral agents

    DEFF Research Database (Denmark)

    Xiao, Fei; Fofana, Isabel; Heydmann, Laura;

    2014-01-01

    genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host......-targeting entry inhibitors (HTEIs) was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission......Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies...

  15. Tumor cell marker PVRL4 (nectin 4 is an epithelial cell receptor for measles virus.

    Directory of Open Access Journals (Sweden)

    Ryan S Noyce

    2011-08-01

    Full Text Available Vaccine and laboratory adapted strains of measles virus can use CD46 as a receptor to infect many human cell lines. However, wild type isolates of measles virus cannot use CD46, and they infect activated lymphocytes, dendritic cells, and macrophages via the receptor CD150/SLAM. Wild type virus can also infect epithelial cells of the respiratory tract through an unidentified receptor. We demonstrate that wild type measles virus infects primary airway epithelial cells grown in fetal calf serum and many adenocarcinoma cell lines of the lung, breast, and colon. Transfection of non-infectable adenocarcinoma cell lines with an expression vector encoding CD150/SLAM rendered them susceptible to measles virus, indicating that they were virus replication competent, but lacked a receptor for virus attachment and entry. Microarray analysis of susceptible versus non-susceptible cell lines was performed, and comparison of membrane protein gene transcripts produced a list of 11 candidate receptors. Of these, only the human tumor cell marker PVRL4 (Nectin 4 rendered cells amenable to measles virus infections. Flow cytometry confirmed that PVRL4 is highly expressed on the surfaces of susceptible lung, breast, and colon adenocarcinoma cell lines. Measles virus preferentially infected adenocarcinoma cell lines from the apical surface, although basolateral infection was observed with reduced kinetics. Confocal immune fluorescence microscopy and surface biotinylation experiments revealed that PVRL4 was expressed on both the apical and basolateral surfaces of these cell lines. Antibodies and siRNA directed against PVRL4 were able to block measles virus infections in MCF7 and NCI-H358 cancer cells. A virus binding assay indicated that PVRL4 was a bona fide receptor that supported virus attachment to the host cell. Several strains of measles virus were also shown to use PVRL4 as a receptor. Measles virus infection reduced PVRL4 surface expression in MCF7 cells, a

  16. The ancient Virus World and evolution of cells

    Directory of Open Access Journals (Sweden)

    Dolja Valerian V

    2006-09-01

    Full Text Available Abstract Background Recent advances in genomics of viruses and cellular life forms have greatly stimulated interest in the origins and evolution of viruses and, for the first time, offer an opportunity for a data-driven exploration of the deepest roots of viruses. Here we briefly review the current views of virus evolution and propose a new, coherent scenario that appears to be best compatible with comparative-genomic data and is naturally linked to models of cellular evolution that, from independent considerations, seem to be the most parsimonious among the existing ones. Results Several genes coding for key proteins involved in viral replication and morphogenesis as well as the major capsid protein of icosahedral virions are shared by many groups of RNA and DNA viruses but are missing in cellular life forms. On the basis of this key observation and the data on extensive genetic exchange between diverse viruses, we propose the concept of the ancient virus world. The virus world is construed as a distinct contingent of viral genes that continuously retained its identity throughout the entire history of life. Under this concept, the principal lineages of viruses and related selfish agents emerged from the primordial pool of primitive genetic elements, the ancestors of both cellular and viral genes. Thus, notwithstanding the numerous gene exchanges and acquisitions attributed to later stages of evolution, most, if not all, modern viruses and other selfish agents are inferred to descend from elements that belonged to the primordial genetic pool. In this pool, RNA viruses would evolve first, followed by retroid elements, and DNA viruses. The Virus World concept is predicated on a model of early evolution whereby emergence of substantial genetic diversity antedates the advent of full-fledged cells, allowing for extensive gene mixing at this early stage of evolution. We outline a scenario of the origin of the main classes of viruses in conjunction

  17. Cell type mediated resistance of vesicular stomatitis virus and Sendai virus to ribavirin.

    Science.gov (United States)

    Shah, Nirav R; Sunderland, Amanda; Grdzelishvili, Valery Z

    2010-06-22

    Ribavirin (RBV) is a synthetic nucleoside analog with broad spectrum antiviral activity. Although RBV is approved for the treatment of hepatitis C virus, respiratory syncytial virus, and Lassa fever virus infections, its mechanism of action and therapeutic efficacy remains highly controversial. Recent reports show that the development of cell-based resistance after continuous RBV treatment via decreased RBV uptake can greatly limit its efficacy. Here, we examined whether certain cell types are naturally resistant to RBV even without prior drug exposure. Seven different cell lines from various host species were compared for RBV antiviral activity against two nonsegmented negative-strand RNA viruses, vesicular stomatitis virus (VSV, a rhabdovirus) and Sendai virus (SeV, a paramyxovirus). Our results show striking differences between cell types in their response to RBV, ranging from virtually no antiviral effect to very effective inhibition of viral replication. Despite differences in viral replication kinetics for VSV and SeV in the seven cell lines, the observed pattern of RBV resistance was very similar for both viruses, suggesting that cellular rather than viral determinants play a major role in this resistance. While none of the tested cell lines was defective in RBV uptake, dramatic variations were observed in the long-term accumulation of RBV in different cell types, and it correlated with the antiviral efficacy of RBV. While addition of guanosine neutralized RBV only in cells already highly resistant to RBV, actinomycin D almost completely reversed the RBV effect (but not uptake) in all cell lines. Together, our data suggest that RBV may inhibit the same virus via different mechanisms in different cell types depending on the intracellular RBV metabolism. Our results strongly point out the importance of using multiple cell lines of different origin when antiviral efficacy and potency are examined for new as well as established drugs in vitro.

  18. Cell type mediated resistance of vesicular stomatitis virus and Sendai virus to ribavirin.

    Directory of Open Access Journals (Sweden)

    Nirav R Shah

    Full Text Available Ribavirin (RBV is a synthetic nucleoside analog with broad spectrum antiviral activity. Although RBV is approved for the treatment of hepatitis C virus, respiratory syncytial virus, and Lassa fever virus infections, its mechanism of action and therapeutic efficacy remains highly controversial. Recent reports show that the development of cell-based resistance after continuous RBV treatment via decreased RBV uptake can greatly limit its efficacy. Here, we examined whether certain cell types are naturally resistant to RBV even without prior drug exposure. Seven different cell lines from various host species were compared for RBV antiviral activity against two nonsegmented negative-strand RNA viruses, vesicular stomatitis virus (VSV, a rhabdovirus and Sendai virus (SeV, a paramyxovirus. Our results show striking differences between cell types in their response to RBV, ranging from virtually no antiviral effect to very effective inhibition of viral replication. Despite differences in viral replication kinetics for VSV and SeV in the seven cell lines, the observed pattern of RBV resistance was very similar for both viruses, suggesting that cellular rather than viral determinants play a major role in this resistance. While none of the tested cell lines was defective in RBV uptake, dramatic variations were observed in the long-term accumulation of RBV in different cell types, and it correlated with the antiviral efficacy of RBV. While addition of guanosine neutralized RBV only in cells already highly resistant to RBV, actinomycin D almost completely reversed the RBV effect (but not uptake in all cell lines. Together, our data suggest that RBV may inhibit the same virus via different mechanisms in different cell types depending on the intracellular RBV metabolism. Our results strongly point out the importance of using multiple cell lines of different origin when antiviral efficacy and potency are examined for new as well as established drugs in vitro.

  19. Varicella-zoster virus glycoprotein I is essential for growth of virus in Vero cells.

    OpenAIRE

    Cohen, J I; Nguyen, H.

    1997-01-01

    Varicella-zoster virus (VZV) encodes at least six glycoproteins. Glycoprotein I (gI), the product of open reading frame 67, is a 58- to 62-kDa glycoprotein found in VZV-infected cells. We constructed two VZV gI deletion mutants. Immunoprecipitation of VZV gE from infected cells indicated that cells infected with VZV deleted for gI expressed a gE that was larger (100 kDa) than that expressed in cells infected with the parental virus (98 kDa). Cell-associated or cell-free VZV deleted for gI gre...

  20. Sendai virus utilizes specific sialyloligosaccharides as host cell receptor determinants.

    OpenAIRE

    1980-01-01

    Purified sialyltransferases (CMP-N-acetyl-neuraminate:D-galactosyl-glycoprotein N-acetylneuraminyl-transferase, EC 2.4.99.1) in conjunction with neuraminidase (acylneuraminyl hydrolase, EC 3.2.1.18) were used to produce cell surface sialyloligosaccharides of defined sequence to investigate their role in paramyxovirus infection of host cells. Infection of Madin-Darby bovine kidney cells by Sendai virus was monitored by hemagglutination titer of the virus produced and by changes in morphologica...

  1. Cell entry of Lassa virus induces tyrosine phosphorylation of dystroglycan.

    Science.gov (United States)

    Moraz, Marie-Laurence; Pythoud, Christelle; Turk, Rolf; Rothenberger, Sylvia; Pasquato, Antonella; Campbell, Kevin P; Kunz, Stefan

    2013-05-01

    The extracellular matrix (ECM) receptor dystroglycan (DG) serves as a cellular receptor for the highly pathogenic arenavirus Lassa virus (LASV) that causes a haemorrhagic fever with high mortality in human. In the host cell, DG provides a molecular link between the ECM and the actin cytoskeleton via the adapter proteins utrophin or dystrophin. Here we investigated post-translational modifications of DG in the context of LASV cell entry. Using the tyrosine kinase inhibitor genistein, we found that tyrosine kinases are required for efficient internalization of virus particles, but not virus-receptor binding. Engagement of cellular DG by LASV envelope glycoprotein (LASV GP) in human epithelial cells induced tyrosine phosphorylation of the cytoplasmic domain of DG. LASV GP binding to DG further resulted in dissociation of the adapter protein utrophin from virus-bound DG. This virus-induced dissociation of utrophin was affected by genistein treatment, suggesting a role of receptor tyrosine phosphorylation in the process.

  2. The cell biology of Tobacco mosaic virus replication and movement.

    Science.gov (United States)

    Liu, Chengke; Nelson, Richard S

    2013-01-01

    Successful systemic infection of a plant by Tobacco mosaic virus (TMV) requires three processes that repeat over time: initial establishment and accumulation in invaded cells, intercellular movement, and systemic transport. Accumulation and intercellular movement of TMV necessarily involves intracellular transport by complexes containing virus and host proteins and virus RNA during a dynamic process that can be visualized. Multiple membranes appear to assist TMV accumulation, while membranes, microfilaments and microtubules appear to assist TMV movement. Here we review cell biological studies that describe TMV-membrane, -cytoskeleton, and -other host protein interactions which influence virus accumulation and movement in leaves and callus tissue. The importance of understanding the developmental phase of the infection in relationship to the observed virus-membrane or -host protein interaction is emphasized. Utilizing the latest observations of TMV-membrane and -host protein interactions within our evolving understanding of the infection ontogeny, a model for TMV accumulation and intracellular spread in a cell biological context is provided.

  3. Early Events in Chikungunya Virus Infection-From Virus Cell Binding to Membrane Fusion.

    Science.gov (United States)

    van Duijl-Richter, Mareike K S; Hoornweg, Tabitha E; Rodenhuis-Zybert, Izabela A; Smit, Jolanda M

    2015-07-07

    Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne alphavirus causing millions of infections in the tropical and subtropical regions of the world. CHIKV infection often leads to an acute self-limited febrile illness with debilitating myalgia and arthralgia. A potential long-term complication of CHIKV infection is severe joint pain, which can last for months to years. There are no vaccines or specific therapeutics available to prevent or treat infection. This review describes the critical steps in CHIKV cell entry. We summarize the latest studies on the virus-cell tropism, virus-receptor binding, internalization, membrane fusion and review the molecules and compounds that have been described to interfere with virus cell entry. The aim of the review is to give the reader a state-of-the-art overview on CHIKV cell entry and to provide an outlook on potential new avenues in CHIKV research.

  4. Early Events in Chikungunya Virus Infection—From Virus CellBinding to Membrane Fusion

    Directory of Open Access Journals (Sweden)

    Mareike K. S. van Duijl-Richter

    2015-07-01

    Full Text Available Chikungunya virus (CHIKV is a rapidly emerging mosquito-borne alphavirus causing millions of infections in the tropical and subtropical regions of the world. CHIKV infection often leads to an acute self-limited febrile illness with debilitating myalgia and arthralgia. A potential long-term complication of CHIKV infection is severe joint pain, which can last for months to years. There are no vaccines or specific therapeutics available to prevent or treat infection. This review describes the critical steps in CHIKV cell entry. We summarize the latest studies on the virus-cell tropism, virus-receptor binding, internalization, membrane fusion and review the molecules and compounds that have been described to interfere with virus cell entry. The aim of the review is to give the reader a state-of-the-art overview on CHIKV cell entry and to provide an outlook on potential new avenues in CHIKV research.

  5. Susceptibility of different leukocyte cell types to Vaccinia virus infection

    Directory of Open Access Journals (Sweden)

    Sánchez-Puig Juana M

    2004-11-01

    Full Text Available Abstract Background Vaccinia virus, the prototype member of the family Poxviridae, was used extensively in the past as the Smallpox vaccine, and is currently considered as a candidate vector for new recombinant vaccines. Vaccinia virus has a wide host range, and is known to infect cultures of a variety of cell lines of mammalian origin. However, little is known about the virus tropism in human leukocyte populations. We report here that various cell types within leukocyte populations have widely different susceptibility to infection with vaccinia virus. Results We have investigated the ability of vaccinia virus to infect human PBLs by using virus recombinants expressing green fluorescent protein (GFP, and monoclonal antibodies specific for PBL subpopulations. Flow cytometry allowed the identification of infected cells within the PBL mixture 1–5 hours after infection. Antibody labeling revealed that different cell populations had very different infection rates. Monocytes showed the highest percentage of infected cells, followed by B lymphocytes and NK cells. In contrast to those cell types, the rate of infection of T lymphocytes was low. Comparison of vaccinia virus strains WR and MVA showed that both strains infected efficiently the monocyte population, although producing different expression levels. Our results suggest that MVA was less efficient than WR in infecting NK cells and B lymphocytes. Overall, both WR and MVA consistently showed a strong preference for the infection of non-T cells. Conclusions When infecting fresh human PBL preparations, vaccinia virus showed a strong bias towards the infection of monocytes, followed by B lymphocytes and NK cells. In contrast, very poor infection of T lymphocytes was detected. These finding may have important implications both in our understanding of poxvirus pathogenesis and in the development of improved smallpox vaccines.

  6. Modelling Spread of Oncolytic Viruses in Heterogeneous Cell Populations

    Science.gov (United States)

    Ellis, Michael; Dobrovolny, Hana

    2014-03-01

    One of the most promising areas in current cancer research and treatment is the use of viruses to attack cancer cells. A number of oncolytic viruses have been identified to date that possess the ability to destroy or neutralize cancer cells while inflicting minimal damage upon healthy cells. Formulation of predictive models that correctly describe the evolution of infected tumor systems is critical to the successful application of oncolytic virus therapy. A number of different models have been proposed for analysis of the oncolytic virus-infected tumor system, with approaches ranging from traditional coupled differential equations such as the Lotka-Volterra predator-prey models, to contemporary modeling frameworks based on neural networks and cellular automata. Existing models are focused on tumor cells and the effects of virus infection, and offer the potential for improvement by including effects upon normal cells. We have recently extended the traditional framework to a 2-cell model addressing the full cellular system including tumor cells, normal cells, and the impacts of viral infection upon both populations. Analysis of the new framework reveals complex interaction between the populations and potential inability to simultaneously eliminate the virus and tumor populations.

  7. Monitoring Physiological Changes in Haloarchaeal Cell during Virus Release

    Directory of Open Access Journals (Sweden)

    Julija Svirskaitė

    2016-02-01

    Full Text Available The slow rate of adsorption and non-synchronous release of some archaeal viruses have hindered more thorough analyses of the mechanisms of archaeal virus release. To address this deficit, we utilized four viruses that infect Haloarcula hispanica that represent the four virion morphotypes currently known for halophilic euryarchaeal viruses: (1 icosahedral internal membrane-containing SH1; (2 icosahedral tailed HHTV-1; (3 spindle-shaped His1; and (4 pleomorphic His2. To discern the events occurring as the progeny viruses exit, we monitored culture turbidity, as well as viable cell and progeny virus counts of infected and uninfected cultures. In addition to these traditional metrics, we measured three parameters associated with membrane integrity: the binding of the lipophilic anion phenyldicarbaundecaborane, oxygen consumption, and both intra- and extra-cellular ATP levels.

  8. Monitoring Physiological Changes in Haloarchaeal Cell during Virus Release

    Science.gov (United States)

    Svirskaitė, Julija; Oksanen, Hanna M.; Daugelavičius, Rimantas; Bamford, Dennis H.

    2016-01-01

    The slow rate of adsorption and non-synchronous release of some archaeal viruses have hindered more thorough analyses of the mechanisms of archaeal virus release. To address this deficit, we utilized four viruses that infect Haloarcula hispanica that represent the four virion morphotypes currently known for halophilic euryarchaeal viruses: (1) icosahedral internal membrane-containing SH1; (2) icosahedral tailed HHTV-1; (3) spindle-shaped His1; and (4) pleomorphic His2. To discern the events occurring as the progeny viruses exit, we monitored culture turbidity, as well as viable cell and progeny virus counts of infected and uninfected cultures. In addition to these traditional metrics, we measured three parameters associated with membrane integrity: the binding of the lipophilic anion phenyldicarbaundecaborane, oxygen consumption, and both intra- and extra-cellular ATP levels. PMID:26927156

  9. Lesões dermatológicas em pacientes infectados pelo vírus linfotrópico humano de células T do tipo 1 (HTLV-1 Dermatologic lesions in patients infected with the human T-cell lymphotropic vírus type 1 (HTLV-1

    Directory of Open Access Journals (Sweden)

    Vandack Nobre

    2005-02-01

    Full Text Available O vírus linfotrópico humano de células T do tipo 1 (HTLV-1 é o primeiro retrovírus isolado do ser humano. Descreveu-se, em pouco tempo, o seu papel etiológico em algumas doenças, com destaque para a leucemia/linfoma de células T do adulto (ATLL, a mielopatia associada ao HTLV-1/paraparesia espástica tropical (HAM/TSP e a uveíte associada ao HTLV-1 (HAU. Na década de 90, o HTLV-1 foi associado a eczema grave da infância, conhecido como dermatite infecciosa (DI. Desde então, diversos outros tipos de lesões cutâneas têm sido observados em pacientes infectados pelo HTLV-1, em especial, nos doentes de HAM/TSP ou de ATLL. Porém, mesmo portadores assintomáticos do vírus apresentam doenças dermatológicas. Excetuando-se a dermatite infecciosa, não há lesão da pele específica da infecção pelo HTLV-1. Aqui, os autores apresentam as principais lesões dermatológicas descritas em pacientes infectados pelo HTLV-1, destacando o valor epidemiológico e clínico desses achados.Human T-cell Lymphotropic vírus type I (HTLV-1 was the first human retrovírus described. Some time after its discovery a group of diseases were related to this vírus, such as, adult T-cell leukemia lymphoma (ATLL, HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP and HTLV-1 associated uveitis (HAU. In the nineties, HTLV-1 was associated to a severe eczema of children, called infective dermatitis (ID. Since then, several other skin manifestations have been observed in HTLV-1-infected individuals, particularly in patients with ATLL or HAM/TSP. However, according to some reports, dermatologic lesions are also common in asymptomatic HTLV-1 carriers. Besides ID, all other skin lesions reported are nonspecific. The aim of this review is to outline the dermatologic manifestations reported in HTLV-1 infected patients, emphasizing the clinical and epidemiological value of these findings.

  10. Ultrastructure of Zika virus particles in cell cultures.

    Science.gov (United States)

    Barreto-Vieira, Debora Ferreira; Barth, Ortrud Monika; Silva, Marcos Alexandre Nunes da; Santos, Carolina Cardoso; Santos, Aline da Silva; F, Joaquim Batista; Filippis, Ana Maria Bispo de

    2016-08-01

    Zika virus (ZIKV) has infected thousands of Brazilian people and spread to other American countries since 2015. The introduction of ZIKV brought a strong impact to public health in Brazil. It is of utmost importance to identify a susceptible cell line that will enable the isolation and identification of the virus from patient samples, viral mass production, and testing of drug and vaccine candidates. Besides real-time reverse transcriptase polymerase chain reaction diagnosis for detecting the viral genome, virus isolation in cell lines was useful in order to study the structure of the viral particle and its behaviour inside cells. Analysis of ZIKV infected cell lines was achieved using transmission electron microscopy (TEM). Blood was obtained from a Brazilian patient during the first days after presenting with signs of the disease, and ZIKV from the patient's blood was isolated in the C6/36 mosquito cell line. Afterwards, Vero cells were inoculated with the viral suspension, fixed six days after inoculation, embedded in polymers, and ultra-thin cut. Like dengue viruses, this flavivirus showed numerous virus particles present inside cellular vesicles thereby confirming the susceptibility of the Vero cell line to ZIKV replication. TEM is a unique technique available to make the virus visible.

  11. Ultrastructure of Zika virus particles in cell cultures

    Directory of Open Access Journals (Sweden)

    Debora Ferreira Barreto-Vieira

    2016-01-01

    Full Text Available Zika virus (ZIKV has infected thousands of Brazilian people and spread to other American countries since 2015. The introduction of ZIKV brought a strong impact to public health in Brazil. It is of utmost importance to identify a susceptible cell line that will enable the isolation and identification of the virus from patient samples, viral mass production, and testing of drug and vaccine candidates. Besides real-time reverse transcriptase polymerase chain reaction diagnosis for detecting the viral genome, virus isolation in cell lines was useful in order to study the structure of the viral particle and its behaviour inside cells. Analysis of ZIKV infected cell lines was achieved using transmission electron microscopy (TEM. Blood was obtained from a Brazilian patient during the first days after presenting with signs of the disease, and ZIKV from the patient’s blood was isolated in the C6/36 mosquito cell line. Afterwards, Vero cells were inoculated with the viral suspension, fixed six days after inoculation, embedded in polymers, and ultra-thin cut. Like dengue viruses, this flavivirus showed numerous virus particles present inside cellular vesicles thereby confirming the susceptibility of the Vero cell line to ZIKV replication. TEM is a unique technique available to make the virus visible.

  12. Ultrastructure of Zika virus particles in cell cultures

    Science.gov (United States)

    Barreto-Vieira, Debora Ferreira; Barth, Ortrud Monika; da Silva, Marcos Alexandre Nunes; Santos, Carolina Cardoso; Santos, Aline da Silva; F, Joaquim Batista; de Filippis, Ana Maria Bispo

    2016-01-01

    Zika virus (ZIKV) has infected thousands of Brazilian people and spread to other American countries since 2015. The introduction of ZIKV brought a strong impact to public health in Brazil. It is of utmost importance to identify a susceptible cell line that will enable the isolation and identification of the virus from patient samples, viral mass production, and testing of drug and vaccine candidates. Besides real-time reverse transcriptase polymerase chain reaction diagnosis for detecting the viral genome, virus isolation in cell lines was useful in order to study the structure of the viral particle and its behaviour inside cells. Analysis of ZIKV infected cell lines was achieved using transmission electron microscopy (TEM). Blood was obtained from a Brazilian patient during the first days after presenting with signs of the disease, and ZIKV from the patient’s blood was isolated in the C6/36 mosquito cell line. Afterwards, Vero cells were inoculated with the viral suspension, fixed six days after inoculation, embedded in polymers, and ultra-thin cut. Like dengue viruses, this flavivirus showed numerous virus particles present inside cellular vesicles thereby confirming the susceptibility of the Vero cell line to ZIKV replication. TEM is a unique technique available to make the virus visible. PMID:27581122

  13. Lichen planus-like lesions as the first manifestation of adult T-cell leukaemia/lymphoma.

    Science.gov (United States)

    Sumida, Hayakazu; Sugaya, Makoto; Kamata, Masahiro; Suga, Hiraku; Miyagaki, Tomomitsu; Ohmatsu, Hanako; Fujita, Hideki; Sato, Shinichi

    2013-07-06

    Cutaneous involvement is frequent in adult T-cell leukaemia/lymphoma (ATLL), a peripheral T-cell neoplasm caused by human T-cell lymphotropic virus type I (HTLV-I). Patients with ATLL manifest different types of skin lesions, including nodules, plaques, ulcers, erythroderma and purpura. It has been reported that this type of skin eruption is an independent prognostic factor for ATLL. We report here a rare case of a 62-year-old Japanese woman with smouldering-type ATLL, first manifested by lichen planus-like skin lesions on the lower leg. This case report highlights the multiplicity of skin manifestations in ATLL.

  14. Mechanisms of Virus-Induced Neural Cell Death

    Science.gov (United States)

    2005-03-01

    respectively. TNFa was purchased from Invitrogen and was used at a concentration of 100 ng/ml. The cell permeable, synthetic , peptide inhibitors of caspase...Sindbis 46,47 and Dengue virus 48 is associated with the induction of apoptosis, which may increase viral spread. In still other cases, proteins encoded by...J. Cell Biol. 1998; 141: 1479-1487. 23 48. Jan JT, Chen BH, Ma SH, et al. Potential dengue virus-triggered apoptotic pathway in human neuroblastoma

  15. Hepatitis C virus cell-cell transmission and resistance to direct-acting antiviral agents.

    Directory of Open Access Journals (Sweden)

    Fei Xiao

    2014-05-01

    Full Text Available Hepatitis C virus (HCV is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies. In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs in state-of-the-art model systems for cell-cell transmission and spread. Using HCV genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host-targeting entry inhibitors (HTEIs was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission plays an important role in dissemination and maintenance of resistant variants in cell culture models. Blocking virus cell-cell transmission prevents emergence of drug resistance in persistent viral infection including resistance to HCV DAAs.

  16. Exosomes and Their Role in the Life Cycle and Pathogenesis of RNA Viruses

    Directory of Open Access Journals (Sweden)

    Harendra Singh Chahar

    2015-06-01

    Full Text Available Exosomes are membrane-enclosed vesicles actively released into the extracellular space, whose content reflect the physiological/pathological state of the cells they originate from. These vesicles participate in cell-to-cell communication and transfer of biologically active proteins, lipids, and RNAs. Their role in viral infections is just beginning to be appreciated. RNA viruses are an important class of pathogens and affect millions of people worldwide. Recent studies on Human Immunodeficiency Virus (HIV, Hepatitis C Virus (HCV, human T-cell lymphotropic virus (HTLV, and Dengue Virus (DENV have demonstrated that exosomes released from infected cells harbor and deliver many regulatory factors including viral RNA and proteins, viral and cellular miRNA, and other host functional genetic elements to neighboring cells, helping to establish productive infections and modulating cellular responses. Exosomes can either spread or limit an infection depending on the type of pathogen and target cells, and can be exploited as candidates for development of antiviral or vaccine treatments. This review summarizes recent progress made in understanding the role of exosomes in RNA virus infections with an emphasis on their potential contribution to pathogenesis.

  17. Exosomes and Their Role in the Life Cycle and Pathogenesis of RNA Viruses.

    Science.gov (United States)

    Chahar, Harendra Singh; Bao, Xiaoyong; Casola, Antonella

    2015-06-19

    Exosomes are membrane-enclosed vesicles actively released into the extracellular space, whose content reflect the physiological/pathological state of the cells they originate from. These vesicles participate in cell-to-cell communication and transfer of biologically active proteins, lipids, and RNAs. Their role in viral infections is just beginning to be appreciated. RNA viruses are an important class of pathogens and affect millions of people worldwide. Recent studies on Human Immunodeficiency Virus (HIV), Hepatitis C Virus (HCV), human T-cell lymphotropic virus (HTLV), and Dengue Virus (DENV) have demonstrated that exosomes released from infected cells harbor and deliver many regulatory factors including viral RNA and proteins, viral and cellular miRNA, and other host functional genetic elements to neighboring cells, helping to establish productive infections and modulating cellular responses. Exosomes can either spread or limit an infection depending on the type of pathogen and target cells, and can be exploited as candidates for development of antiviral or vaccine treatments. This review summarizes recent progress made in understanding the role of exosomes in RNA virus infections with an emphasis on their potential contribution to pathogenesis.

  18. Dengue Virus Infection Perturbs Lipid Homeostasis in Infected Mosquito Cells

    Energy Technology Data Exchange (ETDEWEB)

    Perera, Rushika M.; Riley, Catherine; Isaac, Georgis; Hopf- Jannasch, Amber; Moore, Ronald J.; Weitz, Karl K.; Pasa-Tolic, Ljiljana; Metz, Thomas O.; Adamec, Jiri; Kuhn, Richard J.

    2012-03-22

    Dengue virus causes {approx}50-100 million infections per year and thus is considered one of the most aggressive arthropod-borne human pathogen worldwide. During its replication, dengue virus induces dramatic alterations in the intracellular membranes of infected cells. This phenomenon is observed both in human and vector-derived cells. Using high-resolution mass spectrometry of mosquito cells, we show that this membrane remodeling is directly linked to a unique lipid repertoire induced by dengue virus infection. Specifically, 15% of the metabolites detected were significantly different between DENV infected and uninfected cells while 85% of the metabolites detected were significantly different in isolated replication complex membranes. Furthermore, we demonstrate that intracellular lipid redistribution induced by the inhibition of fatty acid synthase, the rate-limiting enzyme in lipid biosynthesis, is sufficient for cell survival but is inhibitory to dengue virus replication. Lipids that have the capacity to destabilize and change the curvature of membranes as well as lipids that change the permeability of membranes are enriched in dengue virus infected cells. Several sphingolipids and other bioactive signaling molecules that are involved in controlling membrane fusion, fission, and trafficking as well as molecules that influence cytoskeletal reorganization are also up regulated during dengue infection. These observations shed light on the emerging role of lipids in shaping the membrane and protein environments during viral infections and suggest membrane-organizing principles that may influence virus-induced intracellular membrane architecture.

  19. Effect of monensin on Mayaro virus replication in monkey kidney and Aedes albopictus cells.

    Science.gov (United States)

    De Campos, R M; Ferreira, D F; Da Veiga, V F; Rebello, M A; Rebello, M C S

    2003-01-01

    The effect of a cationic ionophore, monensin, on the replication of Mayaro virus in monkey kidney TC7 and Aedes albopictus cells has been studied. Treatment of these cells with 1 micromol/l monensin during infection did not affect the virus protein synthesis but inhibited severely the virus replication. Electron microscopy of the cells infected with Mayaro virus and treated with monensin revealed that the morphogenesis of Mayaro virus was impaired in TC7 but not in A. albopictus cells.

  20. Understanding and altering cell tropism of vesicular stomatitis virus

    Science.gov (United States)

    Hastie, Eric; Cataldi, Marcela; Marriott, Ian; Grdzelishvili, Valery Z.

    2013-01-01

    Vesicular stomatitis virus (VSV) is a prototypic nonsegmented negative-strand RNA virus. VSV’s broad cell tropism makes it a popular model virus for many basic research applications. In addition, a lack of preexisting human immunity against VSV, inherent oncotropism and other features make VSV a widely used platform for vaccine and oncolytic vectors. However, VSV’s neurotropism that can result in viral encephalitis in experimental animals needs to be addressed for the use of the virus as a safe vector. Therefore, it is very important to understand the determinants of VSV tropism and develop strategies to alter it. VSV glycoprotein (G) and matrix (M) protein play major roles in its cell tropism. VSV G protein is responsible for VSV broad cell tropism and is often used for pseudotyping other viruses. VSV M affects cell tropism via evasion of antiviral responses, and M mutants can be used to limit cell tropism to cell types defective in interferon signaling. In addition, other VSV proteins and host proteins may function as determinants of VSV cell tropism. Various approaches have been successfully used to alter VSV tropism to benefit basic research and clinically relevant applications. PMID:23796410

  1. Reference gene selection for quantitative real-time PCR analysis in virus infected cells: SARS corona virus, Yellow fever virus, Human Herpesvirus-6, Camelpox virus and Cytomegalovirus infections

    Directory of Open Access Journals (Sweden)

    Müller Marcel A

    2005-02-01

    Full Text Available Abstract Ten potential reference genes were compared for their use in experiments investigating cellular mRNA expression of virus infected cells. Human cell lines were infected with Cytomegalovirus, Human Herpesvirus-6, Camelpox virus, SARS coronavirus or Yellow fever virus. The expression levels of these genes and the viral replication were determined by real-time PCR. Genes were ranked by the BestKeeper tool, the GeNorm tool and by criteria we reported previously. Ranking lists of the genes tested were tool dependent. However, over all, β-actin is an unsuitable as reference gene, whereas TATA-Box binding protein and peptidyl-prolyl-isomerase A are stable reference genes for expression studies in virus infected cells.

  2. Structure and cell biology of archaeal virus STIV.

    Science.gov (United States)

    Fu, Chi-yu; Johnson, Johnson E

    2012-04-01

    Recent investigations of archaeal viruses have revealed novel features of their structures and life cycles when compared to eukaryotic and bacterial viruses, yet there are structure-based unifying themes suggesting common ancestral relationships among dsDNA viruses in the three kingdoms of life. Sulfolobus solfataricus and the infecting virus Sulfolobus turreted icosahedral virus (STIV) is one of the well-established model systems to study archaeal virus replication and viral-host interactions. Reliable laboratory conditions to propagate STIV and available genetic tools allowed structural characterization of the virus and viral components that lead to the proposal of common capsid ancestry with PRD1 (bacteriophage), Adenovirus (eukaryotic virus) and PBCV (chlorellavirus). Microarray and proteomics approaches systematically analyzed viral replication and the corresponding host responses. Cellular cryo-electron tomography and thin-section EM studies uncovered the assembly and maturation pathway of STIV and revealed dramatic cellular ultra-structure changes upon infection. The viral-induced pyramid-like protrusions on cell surfaces represent a novel viral release mechanism and previously uncharacterized functions in viral replication.

  3. Apoptosis in Raji cell line induced by influenza A virus

    Institute of Scientific and Technical Information of China (English)

    李虹; 肖丽英; 李华林; 李婉宜; 蒋中华; 张林; 李明远

    2003-01-01

    Objective To study the apoptotic effects of influenza A virus on the Raji cell line. Methods Cultured Raji cells were infected with influenza A virus at a multiplicity of infection (m.o.i) of 20 and the effects of apoptosis were detected at different time points post infection using the following methods: electron microscope, DNA agarose gel electrophoresis, PI stained flow cytometry (FCM) and Annexin-V FITC/PI stained FCM.Results Raji cells infected with influenza A virus showed changes of morphology apoptotis, DNA agarose electrophoresis also demonstrated a ladder-like pattern of DNA fragments in a time-dependent manner. PI stained FCM showed "apoptosis peak" and FITC/PI stained FCM showed apoptotic cells. Quantitative analysis indicated that the percentage of apoptotic Raji cells increased after infection, and cycloheximide (CHX), an eukaryotic transcription inhibitor, could effectively inhibit the apoptotic effects of influenza A virus in vitro.Conclusions Influenza A virus can induce apoptosis in Raji cell line suggesting that it may lead to a potential method for tumor therapy.

  4. Global Dynamics of a Virus Dynamical Model with Cell-to-Cell Transmission and Cure Rate

    Directory of Open Access Journals (Sweden)

    Tongqian Zhang

    2015-01-01

    Full Text Available The cure effect of a virus model with both cell-to-cell transmission and cell-to-virus transmission is studied. By the method of next generation matrix, the basic reproduction number is obtained. The locally asymptotic stability of the virus-free equilibrium and the endemic equilibrium is considered by investigating the characteristic equation of the model. The globally asymptotic stability of the virus-free equilibrium is proved by constructing suitable Lyapunov function, and the sufficient condition for the globally asymptotic stability of the endemic equilibrium is obtained by constructing suitable Lyapunov function and using LaSalle invariance principal.

  5. Inhibition of Bim enhances replication of varicella-zoster virus and delays plaque formation in virus-infected cells.

    Science.gov (United States)

    Liu, Xueqiao; Cohen, Jeffrey I

    2014-01-01

    Programmed cell death (apoptosis) is an important host defense mechanism against intracellular pathogens, such as viruses. Accordingly, viruses have evolved multiple mechanisms to modulate apoptosis to enhance replication. Varicella-zoster virus (VZV) induces apoptosis in human fibroblasts and melanoma cells. We found that VZV triggered the phosphorylation of the proapoptotic proteins Bim and BAD but had little or no effect on other Bcl-2 family members. Since phosphorylation of Bim and BAD reduces their proapoptotic activity, this may prevent or delay apoptosis in VZV-infected cells. Phosphorylation of Bim but not BAD in VZV-infected cells was dependent on activation of the MEK/extracellular signal-regulated kinase (ERK) pathway. Cells knocked down for Bim showed delayed VZV plaque formation, resulting in longer survival of VZV-infected cells and increased replication of virus, compared with wild-type cells infected with virus. Conversely, overexpression of Bim resulted in earlier plaque formation, smaller plaques, reduced virus replication, and increased caspase 3 activity. Inhibition of caspase activity in VZV-infected cells overexpressing Bim restored levels of virus production similar to those seen with virus-infected wild-type cells. Previously we showed that VZV ORF12 activates ERK and inhibits apoptosis in virus-infected cells. Here we found that VZV ORF12 contributes to Bim and BAD phosphorylation. In summary, VZV triggers Bim phosphorylation; reduction of Bim levels results in longer survival of VZV-infected cells and increased VZV replication.

  6. Chikungunya virus isolation using simplified cell culture technique in Mauritius.

    Science.gov (United States)

    Pyndiah, M N; Pursem, V; Meetoo, G; Daby, S; Ramuth, V; Bhinkah, P; Chuttoo, R; Paratian, U

    2012-03-01

    During the chikungunya outbreak of 2005 - 2006, the only laboratory facilities available in Mauritius were virus isolation in cell culture tubes and serology. The laboratory was submerged with large numbers of blood samples. Comparative isolation was made in human embryonic lung (HEL) and VERO cells grown in 96-well plate. Culture on HEL cells was found to be more sensitive and presence of cytopathic effect (CPE) was observed earlier than in VERO cells. Out of the 18 300 blood samples inoculated on HEL, 11 165 were positive. This virus isolation method was of great help for the surveillance and control of the vectors. In cases of an outbreak a cheap, rapid and simple method of isolating chikungunya virus is described.

  7. IMMUNE INHIBITION OF VIRUS RELEASE FROM HUMAN AND NONHUMAN CELLS BY ANTIBODY TO VIRAL AND HOST-CELL DETERMINANTS

    NARCIS (Netherlands)

    SHARIFF, DM; DESPERBASQUES, M; BILLSTROM, M; GEERLIGS, HJ; WELLING, GW; WELLINGWESTER, S; BUCHAN, A; SKINNER, GRB

    1991-01-01

    Immune inhibition of release of the DNA virues, herpes simplex virus types 1 and 2 and pseudorabies virus by anti-viral and anti-host cell sera occurred while two RNA viruses, influenza and encephalomyocarditis, were inhibited only by anti-viral sera (not anti-host cell sera). Simian virus 40 and su

  8. Vaccination against feline immunodeficiency virus using fixed infected cells

    NARCIS (Netherlands)

    Horzinek, M.C.; Verschoor, E.J.; Vliet, A.L.W. van; Egberink, H.F.; Hesselink, W.; Alphen, W.E. van; Joosten, I.; Boog, C.J.P.; Ronde, A. de

    1995-01-01

    Crandell feline kidney cells and feline thymocytes, either feline immunodeficiency virus (FIV) infected or uninfected, were fixed with paraformaldehyde and used to vaccinate cats. The cells were mixed with a 30:70 water/mineral oil emulsion containing 250 mu g ml−1 N-acetyl-d-glucosaminyl-beta-(1 4)

  9. Sendai virus utilizes specific sialyloligosaccharides as host cell receptor determinants.

    Science.gov (United States)

    Markwell, M A; Paulson, J C

    1980-10-01

    Purified sialyltransferases (CMP-N-acetyl-neuraminate:D-galactosyl-glycoprotein N-acetylneuraminyl-transferase, EC 2.4.99.1) in conjunction with neuraminidase (acylneuraminyl hydrolase, EC 3.2.1.18) were used to produce cell surface sialyloligosaccharides of defined sequence to investigate their role in paramyxovirus infection of host cells. Infection of Madin-Darby bovine kidney cells by Sendai virus was monitored by hemagglutination titer of the virus produced and by changes in morphological characteristics. By either criterion, treatment of the cells with Vibrio cholerae neuraminidase to remove cell surface sialic acids rendered them resistant to infection by Sendai virus. Endogenous replacement of receptors by the cell occurred slowly but supported maximal levels of infection within 6 hr. In contrast, sialylation during a 20-min incubation with CMP-sialic acid and beta-galactoside alpha 2,3-sialytransferase restored full susceptibility to infection. This enzyme elaborates the NeuAc alpha 2,3Gal beta 1,3GalNAc (NeuAc, N-acetylneuraminic acid) sequence on glycoproteins and glycolipids. No restoration of infectivity was observed when neuraminidase-treated cells were sialylated by using beta-galactoside alpha 2,6-sialytransferase, which elaborates the NeuAc-alpha 2,6Gal beta 1,4GlcNAc sequence. These results suggest that sialyloligosaccharide receptor determinants of defined sequence are required for Sendai virus infection of host cells.

  10. Hepatitis C virus infection of cholangiocarcinoma cell lines

    NARCIS (Netherlands)

    Fletcher, Nicola F.; Humphreys, Elizabeth; Jennings, Elliott; Osburn, William; Lissauer, Samantha; Wilson, Garrick K.; van Ijzendoorn, Sven C. D.; Baumert, Thomas F.; Balfe, Peter; Afford, Simon; McKeating, Jane A.

    2015-01-01

    Hepatitis C virus (HCV) infects the liver and hepatocytes are the major cell type supporting viral replication. Hepatocytes and cholangiocytes derive from a common hepatic progenitor cell that proliferates during inflammatory conditions, raising the possibility that cholangiocytes may support HCV re

  11. Conservation of T cell epitopes between seasonal inlfuenza viruses and the novel inlfuenza A H7N9 virus

    Institute of Scientific and Technical Information of China (English)

    Huawei Mao; Hui-Ling Yen; Yinping Liu; Yu-Lung Lau; JS Malik Peiris; Wenwei Tu

    2014-01-01

    A novel avian influenza A (H7N9) virus recently emerged in the Yangtze River delta and caused diseases, often severe, in over 130 people. This H7N9 virus appeared to infect humans with greater ease than previous avian inlfuenza virus subtypes such as H5N1 and H9N2. While there are other potential explanations for this large number of human infections with an avian influenza virus, we investigated whether a lack of conserved T-cell epitopes between endemic H1N1 and H3N2 inlfuenza viruses and the novel H7N9 virus contributes to this observation. Here we demonstrate that a number of T cell epitopes are conserved between endemic H1N1 and H3N2 viruses and H7N9 virus. Most of these conserved epitopes are from viral internal proteins. The extent of conservation between endemic human seasonal inlfuenza and avian inlfuenza H7N9 was comparable to that with the highly pathogenic avian inlfuenza H5N1. Thus, the ease of inter-species transmission of H7N9 viruses (compared with avian H5N1 viruses) cannot be attributed to the lack of conservation of such T cell epitopes. On the contrary, our ifndings predict signiifcant T-cell based cross-reactions in the human population to the novel H7N9 virus. Our findings also have implications for H7N9 virus vaccine design.

  12. 3D rotating wall vessel and 2D cell culture of four veterinary virus pathogens: A comparison of virus yields, portions of infectious particles and virus growth curves.

    Science.gov (United States)

    Malenovská, Hana

    2016-02-01

    Only very few comparative studies have been performed that evaluate general trends of virus growth under 3D in comparison with 2D cell culture conditions. The aim of this study was to investigate differences when four animal viruses are cultured in 2D and 3D. Suid herpesvirus 1 (SuHV-1), Vesicular stomatitis virus (VSIV), Bovine adenovirus (BAdV) and Bovine parainfluenza 3 virus (BPIV-3) were cultivated in 3D rotating wall vessels (RWVs) and conventional 2D cultures. The production of virus particles, the portion of infectious particles, and the infectious growth curves were compared. For all viruses, the production of virus particles (related to cell density), including the non-infectious ones, was lower in 3D than in 2D culture. The production of only infectious particles was significantly lower in BAdV and BPIV-3 in 3D cultures in relation to cell density. The two cultivation approaches resulted in significantly different virus particle-to-TCID50 ratios in three of the four viruses: lower in SuHV-1 and BPIV-3 and higher in BAdV in 3D culture. The infectious virus growth rates were not significantly different in all viruses. Although 3D RWV culture resulted in lower production of virus particles compared to 2D systems, the portion of infectious particles was higher for some viruses.

  13. Oseltamivir expands quasispecies of influenza virus through cell-to-cell transmission.

    Science.gov (United States)

    Mori, Kotaro; Murano, Kensaku; Ohniwa, Ryosuke L; Kawaguchi, Atsushi; Nagata, Kyosuke

    2015-03-16

    The population of influenza virus consists of a huge variety of variants, called quasispecies, due to error-prone replication. Previously, we reported that progeny virions of influenza virus become infected to adjacent cells via cell-to-cell transmission pathway in the presence of oseltamivir. During cell-to-cell transmission, viruses become infected to adjacent cells at high multiplicity since progeny virions are enriched on plasma membrane between infected cells and their adjacent cells. Co-infection with viral variants may rescue recessive mutations with each other. Thus, it is assumed that the cell-to-cell transmission causes expansion of virus quasispecies. Here, we have demonstrated that temperature-sensitive mutations remain in progeny viruses even at non-permissive temperature by co-infection in the presence of oseltamivir. This is possibly due to a multiplex infection through the cell-to-cell transmission by the addition of oseltamivir. Further, by the addition of oseltamivir, the number of missense mutation introduced by error-prone replication in segment 8 encoding NS1 was increased in a passage-dependent manner. The number of missense mutation in segment 5 encoding NP was not changed significantly, whereas silent mutation was increased. Taken together, we propose that oseltamivir expands influenza virus quasispecies via cell-to-cell transmission, and may facilitate the viral evolution and adaptation.

  14. Characterization of RD-114 Virus Isolated from a Commercial Canine Vaccine Manufactured Using CRFK Cells

    Science.gov (United States)

    Yoshikawa, Rokusuke; Sato, Eiji; Igarashi, Tatsuhiko; Miyazawa, Takayuki

    2010-01-01

    Recently, we found that several commercial pet vaccines were contaminated with an infectious endogenous retrovirus, RD-114-related virus. Here, we determined the entire nucleotide sequences of RD-114-related viruses isolated from CRFK cells and a vaccine manufactured using CRFK cells. These RD-114-related viruses were nearly identical to the authentic RD-114 virus. PMID:20631117

  15. Myxoma virus suppresses proliferation of activated T lymphocytes yet permits oncolytic virus transfer to cancer cells.

    Science.gov (United States)

    Villa, Nancy Y; Wasserfall, Clive H; Meacham, Amy M; Wise, Elizabeth; Chan, Winnie; Wingard, John R; McFadden, Grant; Cogle, Christopher R

    2015-06-11

    Allogeneic hematopoietic cell transplant (allo-HCT) can be curative for certain hematologic malignancies, but the risk of graft-versus-host disease (GVHD) is a major limitation for wider application. Ideally, strategies to improve allo-HCT would involve suppression of T lymphocytes that drive GVHD while sparing those that mediate graft-versus-malignancy (GVM). Recently, using a xenograft model, we serendipitously discovered that myxoma virus (MYXV) prevented GVHD while permitting GVM. In this study, we show that MYXV binds to resting, primary human T lymphocytes but will only proceed into active virus infection after the T cells receive activation signals. MYXV-infected T lymphocytes exhibited impaired proliferation after activation with reduced expression of interferon-γ, interleukin-2 (IL-2), and soluble IL-2Rα, but did not affect expression of IL-4 and IL-10. MYXV suppressed T-cell proliferation in 2 patterns (full vs partial) depending on the donor. In terms of GVM, we show that MYXV-infected activated human T lymphocytes effectively deliver live oncolytic virus to human multiple myeloma cells, thus augmenting GVM by transfer of active oncolytic virus to residual cancer cells. Given this dual capacity of reducing GVHD plus increasing the antineoplastic effectiveness of GVM, ex vivo virotherapy with MYXV may be a promising clinical adjunct to allo-HCT regimens.

  16. African swine fever virus uses macropinocytosis to enter host cells.

    Directory of Open Access Journals (Sweden)

    Elena G Sánchez

    Full Text Available African swine fever (ASF is caused by a large and highly pathogenic DNA virus, African swine fever virus (ASFV, which provokes severe economic losses and expansion threats. Presently, no specific protection or vaccine against ASF is available, despite the high hazard that the continued occurrence of the disease in sub-Saharan Africa, the recent outbreak in the Caucasus in 2007, and the potential dissemination to neighboring countries, represents. Although virus entry is a remarkable target for the development of protection tools, knowledge of the ASFV entry mechanism is still very limited. Whereas early studies have proposed that the virus enters cells through receptor-mediated endocytosis, the specific mechanism used by ASFV remains uncertain. Here we used the ASFV virulent isolate Ba71, adapted to grow in Vero cells (Ba71V, and the virulent strain E70 to demonstrate that entry and internalization of ASFV includes most of the features of macropinocytosis. By a combination of optical and electron microscopy, we show that the virus causes cytoplasm membrane perturbation, blebbing and ruffles. We have also found that internalization of the virions depends on actin reorganization, activity of Na(+/H(+ exchangers, and signaling events typical of the macropinocytic mechanism of endocytosis. The entry of virus into cells appears to directly stimulate dextran uptake, actin polarization and EGFR, PI3K-Akt, Pak1 and Rac1 activation. Inhibition of these key regulators of macropinocytosis, as well as treatment with the drug EIPA, results in a considerable decrease in ASFV entry and infection. In conclusion, this study identifies for the first time the whole pathway for ASFV entry, including the key cellular factors required for the uptake of the virus and the cell signaling involved.

  17. Gamma interferon augments Fc gamma receptor-mediated dengue virus infection of human monocytic cells.

    OpenAIRE

    Kontny, U.; Kurane, I; Ennis, F A

    1988-01-01

    It has been reported that anti-dengue antibodies at subneutralizing concentrations augment dengue virus infection of monocytic cells. This is due to the increased uptake of dengue virus in the form of virus-antibody complexes by cells via Fc gamma receptors. We analyzed the effects of recombinant human gamma interferon (rIFN-gamma) on dengue virus infection of human monocytic cells. U937 cells, a human monocytic cell line, were infected with dengue virus in the form of virus-antibody complexe...

  18. Differential sensitivity of bat cells to infection by enveloped RNA viruses: coronaviruses, paramyxoviruses, filoviruses, and influenza viruses.

    Directory of Open Access Journals (Sweden)

    Markus Hoffmann

    Full Text Available Bats (Chiroptera host major human pathogenic viruses including corona-, paramyxo, rhabdo- and filoviruses. We analyzed six different cell lines from either Yinpterochiroptera (including African flying foxes and a rhinolophid bat or Yangochiroptera (genera Carollia and Tadarida for susceptibility to infection by different enveloped RNA viruses. None of the cells were sensitive to infection by transmissible gastroenteritis virus (TGEV, a porcine coronavirus, or to infection mediated by the Spike (S protein of SARS-coronavirus (SARS-CoV incorporated into pseudotypes based on vesicular stomatitis virus (VSV. The resistance to infection was overcome if cells were transfected to express the respective cellular receptor, porcine aminopeptidase N for TGEV or angiotensin-converting enzyme 2 for SARS-CoV. VSV pseudotypes containing the S proteins of two bat SARS-related CoV (Bg08 and Rp3 were unable to infect any of the six tested bat cell lines. By contrast, viral pseudotypes containing the surface protein GP of Marburg virus from the family Filoviridae infected all six cell lines though at different efficiency. Notably, all cells were sensitive to infection by two paramyxoviruses (Sendai virus and bovine respiratory syncytial virus and three influenza viruses from different subtypes. These results indicate that bat cells are more resistant to infection by coronaviruses than to infection by paramyxoviruses, filoviruses and influenza viruses. Furthermore, these results show a receptor-dependent restriction of the infection of bat cells by CoV. The implications for the isolation of coronaviruses from bats are discussed.

  19. Beet yellow stunt virus in cells of Sonchus oleraceus L. and its relation to host mitochondria.

    Science.gov (United States)

    Esau, K

    1979-10-15

    In Sonchus oleraceus L. (Asteraceae) infected with the beet yellow stunt virus (BYSV) the virions are found in phloem cells, including the sieve elements. In parenchymatous phloem cells, the virus is present mainly in the cytoplasm. In some parenchymatous cells, containing massive accumulations of virus, the flexuous rodlike virus particles are found partly inserted into mitochondrial cristae. The mitochondrial envelope is absent where virus is present in the cristae. A similar relation between virus and host mitochondria apparently has not been recorded for any other plant virus.

  20. CD4+ T cell responses in hepatitis C virus infection

    Institute of Scientific and Technical Information of China (English)

    Nasser Semmo; Paul Klenerman

    2007-01-01

    Hepatitis C virus (HCV) infection is a major cause of liver damage, with virus-induced end-stage disease such as liver cirrhosis and hepatocellular carcinoma resulting in a high rate of morbidity and mortality worldwide. Evidence that CD4+ T cell responses to HCV play an important role in the outcome of acute infection has been shown in several studies. However, the mechanisms behind viral persistence and the failure of CD4+ T cell responses to contain virus are poorly understood. During chronic HCV infection, HCV-specific CD4+ T cell responses are relatively weak or absent whereas in resolved infection these responses are vigorous and multispecific. Persons with a T-helper type Ⅰ profile, which promotes cellular effector mechanisms are thought to be more likely to experience viral clearance, but the overall role of these cells in the immunopathogenesis of chronic liver disease is not known. To define this, much more data is required on the function and specificity of virus-specific CD4+ T cells,especially in the early phases of acute disease and in the liver during chronic infection. The role and possible mechanisms of action of CD4+ T cell responses in determining the outcome of acute and chronic HCV infection will be discussed in this review.

  1. Hepatitis C virus long-term persistence in peripheral blood mononuclear cells in patients with haemophilia. Detection of occult genotype 1.

    Science.gov (United States)

    Parodi, C; García, G; Monzani, M C; Culasso, A; Aloisi, N; Corti, M; Campos, R; de E de Bracco, M M; Baré, P

    2015-07-01

    Peripheral blood mononuclear cells (PBMC) from chronic hepatitis C virus-infected persons can harbour viral variants that are not detected in plasma samples. We explored the presence and persistence of HCV genotypes in plasma and PBMC cultures from 25 HCV-monoinfected and 25 HIV/HCV-coinfected patients with haemophilia. Cell cultures were performed at different time points between 1993 and 2010-2011, and the HCV genome was examined in culture supernatants. Sequential plasma samples were studied during the same time period. Analysing sequential plasma samples, 21% of patients had mixed-genotype infections, while 50% had mixed infections determined from PBMC culture supernatants. HIV coinfection was significantly associated with the presence of mixed infections (OR = 4.57, P = 0.02; 95% CI = 1.38-15.1). In our previous study, genotype 1 was found in 72% of 288 patients of this cohort. Similar results were obtained with the sequential plasma samples included in this study, 69% had genotype 1. However, when taking into account plasma samples and the results from PBMC supernatants, genotype 1 was identified in 94% of the population. The PBMC-associated variants persisted for 10 years in some subjects, emphasizing their role as long-term reservoirs. The presence of genotype 1 in PBMC may be associated with therapeutic failure and should not be disregarded when treating haemophilic patients who have been infected by contaminated factor concentrates. The clinical implications of persistent lymphotropic HCV variants deserve further examination among multiple exposed groups of HCV-infected patients.

  2. The Arabidopsis synaptotagmin SYTA regulates the cell-to-cell movement of diverse plant viruses

    Directory of Open Access Journals (Sweden)

    Asako eUchiyama

    2014-11-01

    Full Text Available Synaptotagmins are a large gene family in animals that have been extensively characterized due to their role as calcium sensors to regulate synaptic vesicle exocytosis and endocytosis in neurons, and dense core vesicle exocytosis for hormone secretion from neuroendocrine cells. Thought to be exclusive to animals, synaptotagmins have recently been characterized in Arabidopsis thaliana, in which they comprise a five gene family. Using infectivity and leaf-based functional assays, we have shown that Arabidopsis SYTA regulates endocytosis and marks an endosomal vesicle recycling pathway to regulate movement protein-mediated trafficking of the Begomovirus Cabbage leaf curl virus (CaLCuV and the Tobamovirus Tobacco mosaic virus (TMV through plasmodesmata (Lewis and Lazarowitz, 2010. To determine whether SYTA has a central role in regulating the cell-to-cell trafficking of a wider range of diverse plant viruses, we extended our studies here to examine the role of SYTA in the cell-to-cell movement of additional plant viruses that employ different modes of movement, namely the Potyvirus Turnip mosaic virus (TuMV, the Caulimovirus Cauliflower mosaic virus (CaMV and the Tobamovirus Turnip vein clearing virus (TVCV, which in contrast to TMV does efficiently infect Arabidopsis. We found that both TuMV and TVCV systemic infection, and the cell-to-cell trafficking of the their movement proteins, were delayed in the Arabidopsis Col-0 syta-1 knockdown mutant. In contrast, CaMV systemic infection was not inhibited in syta-1. Our studies show that SYTA is a key regulator of plant virus intercellular movement, being necessary for the ability of diverse cell-to-cell movement proteins encoded by Begomoviruses (CaLCuV MP, Tobamoviruses (TVCV and TMV 30K protein and Potyviruses (TuMV P3N-PIPO to alter PD and thereby mediate virus cell-to-cell spread.

  3. Requirement of cell nucleus for Sindbis virus replication in cultured Aedes albopictus cells.

    Science.gov (United States)

    Erwin, C; Brown, D T

    1983-02-01

    The ability of Sindbis virus to grow in enucleated BHK-21 (vertebrate) and Aedes albopictus (invertebrate) cells was tested to determine the dependence of this virus upon nuclear function in these two phylogenetically unrelated hosts. Although both cell types could be demonstrated to produce viable cytoplasts (enucleated cells) which produced virus-specific antigen subsequent to infection. BHK cytoplasts produced a significant number of progeny virions, whereas mosquito cytoplasts did not. The production of vesicular stomatitis virus in mosquito cells was not significantly reduced by enucleation. That such a host function was not essential for vesicular stomatitis virus growth in insect cells is supported by the observation that the production of this virus by mosquito cells is not actinomycin D sensitive. This result agrees with a previously published report in which it was shown that Sindbis virus maturation in invertebrate cells is inhibited by actinomycin D, indicating a possible requirement for host cell nuclear function (Scheefers-Borchel et al., Virology, 110:292-301, 1981).

  4. The cell biology of Tobacco mosaic virus replication and movement

    Directory of Open Access Journals (Sweden)

    Chengke eLiu

    2013-02-01

    Full Text Available Successful systemic infection of a plant by Tobacco mosaic virus (TMV requires three processes that repeat over time: initial establishment and accumulation in invaded cells, intercellular movement and systemic transport. Accumulation and intercellular movement of TMV necessarily involves intracellular transport by complexes containing virus and host proteins and virus RNA during a dynamic process that can be visualized. Multiple membranes appear to assist TMV accumulation, while membranes, microfilaments and microtubules appear to assist TMV movement. Here we review cell biological studies that describe TMV-membrane, -cytoskeleton and -other host protein interactions which influence virus accumulation and movement in leaves and callus tissue. The importance of understanding the developmental phase of the infection in relationship to the observed virus-membrane or -host protein interaction is emphasized. Utilizing the latest observations of TMV-membrane and -host protein interactions within our evolving understanding of the infection ontogeny, a model for TMV accumulation and intracellular spread in a cell biological context is provided.

  5. Variation in RNA virus mutation rates across host cells.

    Directory of Open Access Journals (Sweden)

    Marine Combe

    2014-01-01

    Full Text Available It is well established that RNA viruses exhibit higher rates of spontaneous mutation than DNA viruses and microorganisms. However, their mutation rates vary amply, from 10(-6 to 10(-4 substitutions per nucleotide per round of copying (s/n/r and the causes of this variability remain poorly understood. In addition to differences in intrinsic fidelity or error correction capability, viral mutation rates may be dependent on host factors. Here, we assessed the effect of the cellular environment on the rate of spontaneous mutation of the vesicular stomatitis virus (VSV, which has a broad host range and cell tropism. Luria-Delbrück fluctuation tests and sequencing showed that VSV mutated similarly in baby hamster kidney, murine embryonic fibroblasts, colon cancer, and neuroblastoma cells (approx. 10(-5 s/n/r. Cell immortalization through p53 inactivation and oxygen levels (1-21% did not have a significant impact on viral replication fidelity. This shows that previously published mutation rates can be considered reliable despite being based on a narrow and artificial set of laboratory conditions. Interestingly, we also found that VSV mutated approximately four times more slowly in various insect cells compared with mammalian cells. This may contribute to explaining the relatively slow evolution of VSV and other arthropod-borne viruses in nature.

  6. Identification of chikungunya virus interacting proteins in mammalian cells

    Indian Academy of Sciences (India)

    Mandar S Paingankar; Vidya A Arankalle

    2014-06-01

    Identification and characterization of virus host interactions is an essential step for the development of novel antiviral strategies. Very few studies have been targeted towards identification of chikungunya virus (CHIKV) interacting host proteins. In current study, virus overlay protein binding assay (VOPBA) and matrix-assisted laser desorption/ionization time of flight analysis (MALDI TOF/TOF) were employed for the identification of CHIKV binding proteins in mammalian cells. HSP70 and actin were identified as virus binding proteins in HEK-293T and Vero-E6 cells, whereas STAT-2 was identified as an additional protein in Vero-E6 cells. Pre-incubation with anti-HSP70 antibody and miRNA silencing of HSP70 significantly reduced the CHIKV production in HEK-293T and Vero-E6 cells at early time points. These results suggest that CHIKV exploits the housekeeping molecules such as actin, HSP70 and STAT-2 to establish infection in the mammalian cells.

  7. Endogenous production of infectious Inoue-Melnick virus in a human meningioma cell line.

    Science.gov (United States)

    Nishibe, Y; Inoue, Y K; Hollinshead, A C

    1987-11-01

    We investigated continuous production of Inoue-Melnick virus (IMV) in the MG-1 cell line, established from human meningioma. The infectious virus, identified as a type 1 virus, was mostly recovered extracellularly. Assay of MG-1 cells as infective centers indicated that most of the cells were capable of producing infectious virus. By immunofluorescence, more than 90% of the cells were found to have IMV-associated cytoplasmic antigen(s) (IMCA).

  8. Adaptation and Study of AIDS Viruses in Animal and Cell Culture Systems

    Science.gov (United States)

    1989-01-30

    category one, e.g , Friend Murine -6- Leukemia Virus (FMuLV), Feline Leukemia Virus (FeLV), and the Macaque Type D SAIDS retrovirus (SRV) have been...10). One other animal lentivirus, Feline Immunodeficiency Virus (FIV), has had some utility in the study of protective immunity and in screening...et al. (58) transplanted RNA mumps virus infected human HeLa cells, or RNA vesicular stomatitis virus-infected hamster BHK cells into nude mice

  9. Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment.

    Science.gov (United States)

    Sakurai, Yasuteru; Kolokoltsov, Andrey A; Chen, Cheng-Chang; Tidwell, Michael W; Bauta, William E; Klugbauer, Norbert; Grimm, Christian; Wahl-Schott, Christian; Biel, Martin; Davey, Robert A

    2015-02-27

    Ebola virus causes sporadic outbreaks of lethal hemorrhagic fever in humans, but there is no currently approved therapy. Cells take up Ebola virus by macropinocytosis, followed by trafficking through endosomal vesicles. However, few factors controlling endosomal virus movement are known. Here we find that Ebola virus entry into host cells requires the endosomal calcium channels called two-pore channels (TPCs). Disrupting TPC function by gene knockout, small interfering RNAs, or small-molecule inhibitors halted virus trafficking and prevented infection. Tetrandrine, the most potent small molecule that we tested, inhibited infection of human macrophages, the primary target of Ebola virus in vivo, and also showed therapeutic efficacy in mice. Therefore, TPC proteins play a key role in Ebola virus infection and may be effective targets for antiviral therapy.

  10. Effects of human respiratory syncytial virus, metapneumovirus, parainfluenza virus 3 and influenza virus on CD4+ T cell activation by dendritic cells.

    Directory of Open Access Journals (Sweden)

    Cyril Le Nouën

    Full Text Available BACKGROUND: Human respiratory syncytial virus (HRSV, and to a lesser extent human metapneumovirus (HMPV and human parainfluenza virus type 3 (HPIV3, re-infect symptomatically throughout life without antigenic change, suggestive of incomplete immunity. One causative factor is thought to be viral interference with dendritic cell (DC-mediated stimulation of CD4+ T cells. METHODOLOGY, PRINCIPAL FINDINGS: We infected human monocyte-derived DC with purified HRSV, HMPV, HPIV3, or influenza A virus (IAV and compared their ability to induce activation and proliferation of autologous CD4+ T cells in vitro. IAV was included because symptomatic re-infection without antigenic change is less frequent, suggesting that immune protection is more complete and durable. We examined virus-specific memory responses and superantigen-induced responses by multiparameter flow cytometry. Live virus was more stimulatory than inactivated virus in inducing DC-mediated proliferation of virus-specific memory CD4+ T cells, suggesting a lack of strong suppression by live virus. There were trends of increasing proliferation in the order: HMPVcells in response to IAV, but differences were not significant. Exposure of DC to HRSV, HPIV3, or IAV reduced CD4+ T cell proliferation in response to secondary stimulus with superantigen, but the effect was transitory and greatest for IAV. T cell cytokine production was similar, with no evidence of Th2 or Th17 skewing. CONCLUSIONS, SIGNIFICANCE: Understanding the basis for the ability of HRSV in particular to symptomatically re-infect without significant antigenic change is of considerable interest. The present results show that these common respiratory viruses are similar in their ability to induce DC to activate CD4+ T cells. Thus, the results do not support the common model in which viral suppression of CD4+ T cell activation and

  11. Studies on the replication of Mayaro virus grown in interferon treated cells.

    Science.gov (United States)

    Rebello, M C; Fonseca, M E; Marinho, J O; Rebello, M A

    1994-01-01

    Mayaro virus grown in interferon treated infected cells has been characterized with regard to its ability to replicate in vertebrate (TC7) and invertebrate (Aedes albopictus) cells. Virus purified from interferon treated TC7 cells adsorbs and penetrates to the same extent as the control virus. During infection, these virus particles caused inhibition of host protein synthesis and synthesized the same spectrum of viral proteins as normal virus. This population however, was apparently more sensitive to interferon treatment. Electron microscopy of TC7 cells showed the presence of numerous aberrant virus particles budding from the plasma membrane.

  12. Studies on the replication of Mayaro virus grown in interferon treated cells

    Directory of Open Access Journals (Sweden)

    M. C. S. Rebello

    1994-12-01

    Full Text Available Mayaro virus grown in interferon treated infected cells has been characterized with regard to its ability to replicate in vertebrate (TC7 and invertebrate (Aedes albopictus cells. Virus purified from interferon treated TC7 cells adsorbs and penetrates to the same extent as the control virus. During infection, these virus particles caused inhibition of host protein synthesis and synthesized the same spectrum of viral proteins as normal virus. This population however, was apparently more sensitive to interferon treatment. Electron microscopy of TC7 cells showed the presence of numerous aberrant virus particles budding from the plasma membrane.

  13. Recognition of extremophilic archaeal viruses by eukaryotic cells

    DEFF Research Database (Denmark)

    Uldahl, Kristine Buch; Wu, Linping; Hall, Arnaldur

    2016-01-01

    followed viral uptake, intracellular trafficking and cell viability in human endothelial cells of brain (hCMEC/D3 cells) and umbilical vein (HUVEC) origin. Whereas SMV1 is efficiently internalized into both types of human cells, SSV2 differentiates between HUVECs and hCMEC/D3 cells, thus opening a path......Viruses from the third domain of life, Archaea, exhibit unusual features including extreme stability that allow their survival in harsh environments. In addition, these species have never been reported to integrate into human or any other eukaryotic genomes, and could thus serve for exploration...

  14. Globally visualizing the microtubule-dependent transport behaviors of influenza virus in live cells.

    Science.gov (United States)

    Liu, Shu-Lin; Zhang, Li-Juan; Wang, Zhi-Gang; Zhang, Zhi-Ling; Wu, Qiu-Mei; Sun, En-Ze; Shi, Yun-Bo; Pang, Dai-Wen

    2014-04-15

    Understanding the microtubule-dependent behaviors of viruses in live cells is very meaningful for revealing the mechanisms of virus infection and endocytosis. Herein, we used a quantum dots-based single-particle tracking technique to dynamically and globally visualize the microtubule-dependent transport behaviors of influenza virus in live cells. We found that the intersection configuration of microtubules can interfere with the transport behaviors of the virus in live cells, which lead to the changing and long-time pausing of the transport behavior of viruses. Our results revealed that most of the viruses moved along straight microtubules rapidly and unidirectionally from the cell periphery to the microtubule organizing center (MTOC) near the bottom of the cell, and the viruses were confined in the grid of microtubules near the top of the cell and at the MTOC near the bottom of the cell. These results provided deep insights into the influence of entire microtubule geometry on the virus infection.

  15. Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking

    NARCIS (Netherlands)

    van der Schaar, Hilde M.; Rust, Michael J.; Waarts, Barry-Lee; van der Ende-Metselaarl, Heidi; Kuhn, Richard J.; Wilschut, Jan; Zhuang, Xiaowei; Smit, Jolanda M.

    2007-01-01

    In this study, we investigated the cell entry characteristics of dengue virus (DENV) type 2 strain SI on mosquito, BHK-15, and BS-C-1 cells. The concentration of virus particles measured by biochemical assays was found to be substantially higher than the number of infectious particles determined by

  16. Identification of cell surface molecules involved in dystroglycan-independent Lassa virus cell entry.

    Science.gov (United States)

    Shimojima, Masayuki; Ströher, Ute; Ebihara, Hideki; Feldmann, Heinz; Kawaoka, Yoshihiro

    2012-02-01

    Although O-mannosylated dystroglycan is a receptor for Lassa virus, a causative agent of Lassa fever, recent findings suggest the existence of an alternative receptor(s). Here we identified four molecules as receptors for Lassa virus: Axl and Tyro3, from the TAM family, and dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and liver and lymph node sinusoidal endothelial calcium-dependent lectin (LSECtin), from the C-type lectin family. These molecules enhanced the binding of Lassa virus to cells and mediated infection independently of dystroglycan. Axl- or Tyro3-mediated infection required intracellular signaling via the tyrosine kinase activity of Axl or Tyro3, whereas DC-SIGN- or LSECtin-mediated infection and binding were dependent on a specific carbohydrate and on ions. The identification of these four molecules as Lassa virus receptors advances our understanding of Lassa virus cell entry.

  17. Newly described human polyomaviruses Merkel Cell, KI and WU are present in urban sewage and may represent potential environmental contaminants

    Directory of Open Access Journals (Sweden)

    Carratala Anna

    2010-06-01

    Full Text Available Abstract Recently, three new polyomaviruses (KI, WU and Merkel cell polyomavirus have been reported to infect humans. It has also been suggested that lymphotropic polyomavirus, a virus of simian origin, infects humans. KI and WU polyomaviruses have been detected mainly in specimens from the respiratory tract while Merkel cell polyomavirus has been described in a very high percentage of Merkel cell carcinomas. The distribution, excretion level and transmission routes of these viruses remain unknown. Here we analyzed the presence and characteristics of newly described human polyomaviruses in urban sewage and river water in order to assess the excretion level and the potential role of water as a route of transmission of these viruses. Nested-PCR assays were designed for the sensitive detection of the viruses studied and the amplicons obtained were confirmed by sequencing analysis. The viruses were concentrated following a methodology previously developed for the detection of JC and BK human polyomaviruses in environmental samples. JC polyomavirus and human adenoviruses were used as markers of human contamination in the samples. Merkel cell polyomavirus was detected in 7/8 urban sewage samples collected and in 2/7 river water samples. Also one urine sample from a pregnant woman, out of 4 samples analyzed, was positive for this virus. KI and WU polyomaviruses were identified in 1/8 and 2/8 sewage samples respectively. The viral strains detected were highly homologous with other strains reported from several other geographical areas. Lymphotropic polyomavirus was not detected in any of the 13 sewage neither in 9 biosolid/sludge samples analyzed. This is the first description of a virus isolated from sewage and river water with a strong association with cancer. Our data indicate that the Merkel cell polyomavirus is prevalent in the population and that it may be disseminated through the fecal/urine contamination of water. The procedure developed may

  18. Newcastle disease virus selectively kills human tumor cells.

    Science.gov (United States)

    Reichard, K W; Lorence, R M; Cascino, C J; Peeples, M E; Walter, R J; Fernando, M B; Reyes, H M; Greager, J A

    1992-05-01

    Newcastle disease virus (NDV), strain 73-T, has previously been shown to be cytolytic to mouse tumor cells. In this study, we have evaluated the ability of NDV to replicate in and kill human tumor cells in culture and in athymic mice. Plaque assays were used to determine the cytolytic activity of NDV on six human tumor cell lines, fibrosarcoma (HT1080), osteosarcoma (KHOS), cervical carcinoma (KB8-5-11), bladder carcinoma (HCV29T), neuroblastoma (IMR32), and Wilm's tumor (G104), and on nine different normal human fibroblast lines. NDV formed plaques on all tumor cells tested as well as on chick embryo cells (CEC), the native host for NDV. Plaques did not form on any of the normal fibroblast lines. To detect NDV replication, virus yield assays were performed which measured virus particles in infected cell culture supernatants. Virus yield increased 10,000-fold within 24 hr in tumor and CEC supernatants. Titers remained near zero in normal fibroblast supernatants. In vivo tumoricidal activity was evaluated in athymic nude Balb-c mice by subcutaneous injection of 9 x 10(6) tumor cells followed by intralesional injection of either live or heat-killed NDV (1.0 x 10(6) plaque forming units [PFU]), or medium. After live NDV treatment, tumor regression occurred in 10 out of 11 mice bearing KB8-5-11 tumors, 8 out of 8 with HT-1080 tumors, and 6 out of 7 with IMR-32 tumors. After treatment with heat-killed NDV no regression occurred (P less than 0.01, Fisher's exact test). Nontumor-bearing mice injected with 1.0 x 10(8) PFU of NDV remained healthy. These results indicate that NDV efficiently and selectively replicates in and kills tumor cells, but not normal cells, and that intralesional NDV causes complete tumor regression in athymic mice with a high therapeutic index.

  19. Human skin Langerhans cells are targets of dengue virus infection

    NARCIS (Netherlands)

    Wu, SJL; Grouard-Vogel, G; Mascola, [No Value; Brachtel, E; Putvatana, R; Louder, MK; Filgueira, L; Marovich, MA; Wong, HK; Blauvelt, A; Murphy, GS; Robb, ML; Innes, BL; Birx, DL; Hayes, CG; Frankel, SS

    2000-01-01

    Dengue virus (DV), an arthropod-borne flavivirus, causes a febrile illness for which there is no antiviral treatment and no vaccine(1,2). Macrophages are important in dengue pathogenesis; however, the initial target cell for DV infection remains unknown. As DV is introduced into human skin by mosqui

  20. Regulatory T Cells in Chronic Hepatitis B Virus Infection

    NARCIS (Netherlands)

    J.N. Stoop (Jeroen Nicolaas)

    2007-01-01

    textabstractWorldwide 400 million people suffer from chronic hepatitis B virus (HBV) infection and approximately 1 million people die annually from HBV-related disease. To clear HBV, an effective immune response, in which several cell types and cytokines play a role, is important. It is known that p

  1. Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells.

    Directory of Open Access Journals (Sweden)

    Hilde M van der Schaar

    2008-12-01

    Full Text Available Dengue virus (DENV is an enveloped RNA virus that causes the most common arthropod-borne infection worldwide. The mechanism by which DENV infects the host cell remains unclear. In this work, we used live-cell imaging and single-virus tracking to investigate the cell entry, endocytic trafficking, and fusion behavior of DENV. Simultaneous tracking of DENV particles and various endocytic markers revealed that DENV enters cells exclusively via clathrin-mediated endocytosis. The virus particles move along the cell surface in a diffusive manner before being captured by a pre-existing clathrin-coated pit. Upon clathrin-mediated entry, DENV particles are transported to Rab5-positive endosomes, which subsequently mature into late endosomes through acquisition of Rab7 and loss of Rab5. Fusion of the viral membrane with the endosomal membrane was primarily detected in late endosomal compartments.

  2. Isolation of eastern equine encephalitis virus in A549 and MRC-5 cell cultures.

    Science.gov (United States)

    Sotomayor, E A; Josephson, S L

    1999-07-01

    Eastern equine encephalitis (EEE) has been diagnosed either serologically or by virus isolation. Until now, the recovery of EEE virus has been delegated to reference laboratories with the expertise and resources needed to amplify the virus in a susceptible vertebrate host and/or to isolate and identify the virus in cell culture. We report a case in which EEE virus was recovered directly from a patient's cerebrospinal fluid in A549 and MRC-5 cell cultures. Many clinical virology laboratories routinely use these cells to recover adenovirus, herpes simplex virus, and enterovirus. To the best of our knowledge, this is the first report of isolation of EEE virus in A549 cell culture. This report demonstrates the possibility of recovery of EEE virus in cell culture without the necessity of bioamplification or maintaining unusual cell lines.

  3. Absence of C-type virus production in human leukemic B cell, T cell and null cell lines.

    Directory of Open Access Journals (Sweden)

    Ogura,Hajime

    1978-06-01

    Full Text Available Electron microscope observation of cultured human leukemic B cell, T cell and null cell lines and reverse transcriptase assay of the culture supernatants were all negative for the presence of C-type virus. Bat cell line, which propagates primate C-type viruses well, was cocultivated with the human leukemic cell lines, in the hope of amplification of virus if present. Three weeks after mixed culture, the culture supernatants were again examined for reverse transcriptase activity and the cells were tested for syncytia formation by cocultivation with rat XC, human KC and RSb cell lines. All these tests, except for the positive control using a simian sarcoma virus, were negative, suggesting that no C-type was produced from these human leukemic cell lines.

  4. Establishment of a new bovine leukosis virus producing cell line.

    Science.gov (United States)

    Beier, D; Riebe, R; Blankenstein, P; Starick, E; Bondzio, A; Marquardt, O

    2004-11-01

    Due to the prevalence of different bovine leukosis virus (BLV) species in the cattle population in Europe, problems may arise in the serological diagnosis of BLV infections. In addition, earlier investigations demonstrated that contamination of the BLV antigen-producing cell culture systems by bovine viral diarrhea virus (BVDV) may give rise to misinterpretation of serological test results after BVDV vaccination of cattle. By co-cultivation of peripheral leukocytes of a BLV-infected cow with a permanent sheep kidney cell line, a new BLV-producing cell line named PO714 was established. This line carries a BLV provirus of the Belgian species and has been tested to be free of a variety of possibly contaminating viruses and mycoplasms. Investigations of a panel of well-characterised sera by agar gel immunodiffusion (AGID) and capture ELISA (cELISA) tests using antigen prepared from this new cell line in comparison with antigen of the well-known cell line FLK/BLV yielded comparable results. False positive results caused by BVDV cross-reactions could be eliminated when tests were carried out with antigen derived from the new cell line.

  5. High virus-to-cell ratios indicate ongoing production of viruses in deep subsurface sediments.

    Science.gov (United States)

    Engelhardt, Tim; Kallmeyer, Jens; Cypionka, Heribert; Engelen, Bert

    2014-07-01

    Marine sediments cover two-thirds of our planet and harbor huge numbers of living prokaryotes. Long-term survival of indigenous microorganisms within the deep subsurface is still enigmatic, as sources of organic carbon are vanishingly small. To better understand controlling factors of microbial life, we have analyzed viral abundance within a comprehensive set of globally distributed subsurface sediments. Phages were detected by electron microscopy in deep (320 m below seafloor), ancient (∼14 Ma old) and the most oligotrophic subsurface sediments of the world's oceans (South Pacific Gyre (SPG)). The numbers of viruses (10(4)-10(9) cm(-3), counted by epifluorescence microscopy) generally decreased with sediment depth, but always exceeded the total cell counts. The enormous numbers of viruses indicate their impact as a controlling factor for prokaryotic mortality in the marine deep biosphere. The virus-to-cell ratios increased in deeper and more oligotrophic layers, exhibiting values of up to 225 in the deep subsurface of the SPG. High numbers of phages might be due to absorption onto the sediment matrix and a diminished degradation by exoenzymes. However, even in the oldest sediments, microbial communities are capable of maintaining viral populations, indicating an ongoing viral production and thus, viruses provide an independent indicator for microbial life in the marine deep biosphere.

  6. Alteration of cell cycle progression by Sindbis virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ruirong; Saito, Kengo [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Isegawa, Naohisa [Laboratory Animal Center, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Shirasawa, Hiroshi, E-mail: sirasawa@faculty.chiba-u.jp [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan)

    2015-07-10

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.

  7. Restriction of Rift Valley Fever Virus Virulence in Mosquito Cells

    Directory of Open Access Journals (Sweden)

    Sonja R. Gerrard

    2010-02-01

    Full Text Available Arboviruses are maintained in a natural cycle that requires blood-sucking arthropod and vertebrate hosts. Arboviruses are believed to persistently infect their arthropod host without overt pathology and cause acute infection with viremia in their vertebrate host. We have focused on elucidating how a specific arbovirus, Rift Valley fever (RVF virus, causes cytopathic effect in cells derived from vertebrates and non-cytopathic infection in cells derived from arthropods. We demonstrate that the vertebrate virulence factor, NSs, is functional in arthropod cells but is expressed at significantly lower levels in infected arthropod versus infected vertebrate cells.

  8. Cell-specific targeting of lentiviral vectors mediated by fusion proteins derived from Sindbis virus, vesicular stomatitis virus, or avian sarcoma/leukosis virus

    Directory of Open Access Journals (Sweden)

    Marino Michael P

    2010-01-01

    Full Text Available Abstract Background The ability to efficiently and selectively target gene delivery vectors to specific cell types in vitro and in vivo remains one of the formidable challenges in gene therapy. We pursued two different strategies to target lentiviral vector delivery to specific cell types. In one of the strategies, vector particles bearing a membrane-bound stem cell factor sequence plus a separate fusion protein based either on Sindbis virus strain TR339 glycoproteins or the vesicular stomatitis virus G glycoprotein were used to selectively transduce cells expressing the corresponding stem cell factor receptor (c-kit. An alternative approach involved soluble avian sarcoma/leukosis virus receptors fused to cell-specific ligands including stem cell factor and erythropoietin for targeting lentiviral vectors pseudotyped with avian sarcoma/leukosis virus envelope proteins to cells that express the corresponding receptors. Results The titers of unconcentrated vector particles bearing Sindbis virus strain TR339 or vesicular stomatitis virus G fusion proteins plus stem cell factor in the context of c-kit expressing cells were up to 3.2 × 105 transducing units per ml while vector particles lacking the stem cell factor ligand displayed titers that were approximately 80 fold lower. On cells that lacked the c-kit receptor, the titers of stem cell factor-containing vectors were approximately 40 times lower compared to c-kit-expressing cells. Lentiviral vectors pseudotyped with avian sarcoma/leukosis virus subgroup A or B envelope proteins and bearing bi-functional bridge proteins encoding erythropoietin or stem cell factor fused to the soluble extracellular domains of the avian sarcoma/leukosis virus subgroup A or B receptors resulted in efficient transduction of erythropoietin receptor or c-kit-expressing cells. Transduction of erythropoietin receptor-expressing cells mediated by bi-functional bridge proteins was found to be dependent on the dose, the

  9. Performance characteristics of qualified cell lines for isolation and propagation of influenza viruses for vaccine manufacturing.

    Science.gov (United States)

    Donis, Ruben O; Davis, C Todd; Foust, Angie; Hossain, M Jaber; Johnson, Adam; Klimov, Alexander; Loughlin, Rosette; Xu, Xiyan; Tsai, Theodore; Blayer, Simone; Trusheim, Heidi; Colegate, Tony; Fox, John; Taylor, Beverly; Hussain, Althaf; Barr, Ian; Baas, Chantal; Louwerens, Jaap; Geuns, Ed; Lee, Min-Shi; Venhuizen, Odewijk; Neumeier, Elisabeth; Ziegler, Thedi

    2014-11-12

    Cell culture is now available as a method for the production of influenza vaccines in addition to eggs. In accordance with currently accepted practice, viruses recommended as candidates for vaccine manufacture are isolated and propagated exclusively in hens' eggs prior to distribution to manufacturers. Candidate vaccine viruses isolated in cell culture are not available to support vaccine manufacturing in mammalian cell bioreactors so egg-derived viruses have to be used. Recently influenza A (H3N2) viruses have been difficult to isolate directly in eggs. As mitigation against this difficulty, and the possibility of no suitable egg-isolated candidate viruses being available, it is proposed to consider using mammalian cell lines for primary isolation of influenza viruses as candidates for vaccine production in egg and cell platforms. To investigate this possibility, we tested the antigenic stability of viruses isolated and propagated in cell lines qualified for influenza vaccine manufacture and subsequently investigated antigen yields of such viruses in these cell lines at pilot-scale. Twenty influenza A and B-positive, original clinical specimens were inoculated in three MDCK cell lines. The antigenicity of recovered viruses was tested by hemagglutination inhibition using ferret sera against contemporary vaccine viruses and the amino acid sequences of the hemagglutinin and neuraminidase were determined. MDCK cell lines proved to be highly sensitive for virus isolation. Compared to the virus sequenced from the original specimen, viruses passaged three times in the MDCK lines showed up to 2 amino acid changes in the hemagglutinin. Antigenic stability was also established by hemagglutination inhibition titers comparable to those of the corresponding reference virus. Viruses isolated in any of the three MDCK lines grew reasonably well but variably in three MDCK cells and in VERO cells at pilot-scale. These results indicate that influenza viruses isolated in vaccine

  10. Genome rearrangement affects RNA virus adaptability on prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Kendra ePesko

    2015-04-01

    Full Text Available Gene order is often highly conserved within taxonomic groups, such that organisms with rearranged genomes tend to be less fit than wildtype gene orders, and suggesting natural selection favors genome architectures that maximize fitness. But it is unclear whether rearranged genomes hinder adaptability: capacity to evolutionarily improve in a new environment. Negative-sense nonsegmented RNA viruses (order Mononegavirales have specific genome architecture: 3′ UTR – core protein genes – envelope protein genes – RNA-dependent RNA-polymerase gene – 5′ UTR. To test how genome architecture affects RNA virus evolution, we examined vesicular stomatitis virus (VSV variants with the nucleocapsid (N gene moved sequentially downstream in the genome. Because RNA polymerase stuttering in VSV replication causes greater mRNA production in upstream genes, N-gene translocation towards the 5’ end leads to stepwise decreases in N transcription, viral replication and progeny production, and also impacts the activation of type 1 interferon mediated antiviral responses. We evolved VSV gene-order variants in two prostate cancer cell lines: LNCap cells deficient in innate immune response to viral infection, and PC3 cells that mount an IFN stimulated anti-viral response to infection. We observed that gene order affects phenotypic adaptability (reproductive growth; viral suppression of immune function, especially on PC3 cells that strongly select against virus infection. Overall, populations derived from the least-fit ancestor (most-altered N position architecture adapted fastest, consistent with theory predicting populations with low initial fitness should improve faster in evolutionary time. Also, we observed correlated responses to selection, where viruses improved across both hosts, rather than suffer fitness trade-offs on unselected hosts. Whole genomics revealed multiple mutations in evolved variants, some of which were conserved across selective

  11. Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus.

    Directory of Open Access Journals (Sweden)

    Yonatan Y Mahller

    Full Text Available BACKGROUND: Although disease remission can frequently be achieved for patients with neuroblastoma, relapse is common. The cancer stem cell theory suggests that rare tumorigenic cells, resistant to conventional therapy, are responsible for relapse. If true for neuroblastoma, improved cure rates may only be achieved via identification and therapeutic targeting of the neuroblastoma tumor initiating cell. Based on cues from normal stem cells, evidence for tumor populating progenitor cells has been found in a variety of cancers. METHODOLOGY/PRINCIPAL FINDINGS: Four of eight human neuroblastoma cell lines formed tumorspheres in neural stem cell media, and all contained some cells that expressed neurogenic stem cell markers including CD133, ABCG2, and nestin. Three lines tested could be induced into multi-lineage differentiation. LA-N-5 spheres were further studied and showed a verapamil-sensitive side population, relative resistance to doxorubicin, and CD133+ cells showed increased sphere formation and tumorigenicity. Oncolytic viruses, engineered to be clinically safe by genetic mutation, are emerging as next generation anticancer therapeutics. Because oncolytic viruses circumvent typical drug-resistance mechanisms, they may represent an effective therapy for chemotherapy-resistant tumor initiating cells. A Nestin-targeted oncolytic herpes simplex virus efficiently replicated within and killed neuroblastoma tumor initiating cells preventing their ability to form tumors in athymic nude mice. CONCLUSIONS/SIGNIFICANCE: These results suggest that human neuroblastoma contains tumor initiating cells that may be effectively targeted by an oncolytic virus.

  12. The effect of neurotoxin on rabies virus binding to mouse neuroblastoma cells.

    Science.gov (United States)

    Briggs, D J; Phillips, R M

    1991-08-01

    Mouse neuroblastoma cells were exposed to alpha bungarotoxin, a neurotoxin known to inhibit rabies virus binding to the nicotinic acetylcholine receptor located at the neuromuscular junction in muscle tissue. The total amount of 3H-CVS virus that bound to neurotoxin treated cells was separated into specific and non-specific binding using a cold competition assay. Comparison of untreated and neurotoxin treated cells demonstrated that the majority of cell-associated virus in untreated cells was of a specific nature whereas the majority of the cell-associated virus in neurotoxin treated cells was due to non-specific binding.

  13. Infection of Mosquito Cells (C6/36) by Dengue-2 Virus Interferes with Subsequent Infection by Yellow Fever Virus.

    Science.gov (United States)

    Abrao, Emiliana Pereira; da Fonseca, Benedito Antônio Lopes

    2016-02-01

    Dengue is one of the most important diseases caused by arboviruses in the world. Yellow fever is another arthropod-borne disease of great importance to public health that is endemic to tropical regions of Africa and the Americas. Both yellow fever and dengue viruses are flaviviruses transmitted by Aedes aegypti mosquitoes, and then, it is reasonable to consider that in a given moment, mosquito cells could be coinfected by both viruses. Therefore, we decided to evaluate if sequential infections of dengue and yellow fever viruses (and vice-versa) in mosquito cells could affect the virus replication patterns. Using immunofluorescence and real-time PCR-based replication assays in Aedes albopictus C6/36 cells with single or sequential infections with both viruses, we demonstrated the occurrence of viral interference, also called superinfection exclusion, between these two viruses. Our results show that this interference pattern is particularly evident when cells were first infected with dengue virus and subsequently with yellow fever virus (YFV). Reduction in dengue virus replication, although to a lower extent, was also observed when C6/36 cells were initially infected with YFV followed by dengue virus infection. Although the importance that these findings have on nature is unknown, this study provides evidence, at the cellular level, of the occurrence of replication interference between dengue and yellow fever viruses and raises the question if superinfection exclusion could be a possible explanation, at least partially, for the reported lack of urban yellow fever occurrence in regions where a high level of dengue transmission occurs.

  14. Prostaglandin A1 inhibits replication of Mayaro virus in Aedes albopictus cells.

    Science.gov (United States)

    Barbosa, J A; Rebello, M A

    1995-01-01

    Prostaglandin A1 (PGA1) reduced Mayaro virus replication in Aedes albopictus (mosquito) cells in culture. The highest nontoxic dose of PGA1, 7.5 microM, decreased virus production by 90%. In Mayaro virus-infected cells, PGA1 inhibited virus-specific protein synthesis. However, in mock-infected cells the presence of PGA1 stimulated the synthesis of several proteins with molecular masses of 70, 57 and 23 kDa, respectively. The data obtained from this study show that PGA1 plays a role in the metabolic regulation of Aedes albopictus cells, blocking the synthesis of Mayaro virus and inducing the synthesis of cellular polypeptides.

  15. In vitro transcription of a cloned vaccinia virus gene by a soluble extract prepared from vaccinia virus-infected HeLa cells.

    OpenAIRE

    Foglesong, P D

    1985-01-01

    Faithful transcription of a vaccinia virus gene was accomplished in vitro by using a soluble extract prepared from vaccinia virus-infected HeLa cells. Specific transcription of the cloned vaccinia virus gene was detected by using template DNA restricted within the transcribed region. The vaccinia virus gene was not transcribed by extracts prepared from uninfected HeLa cells even with supplementation by purified vaccinia virus RNA polymerase, nor was a clone of adenovirus 2 DNA bearing the maj...

  16. Characterization of cell lines stably transfected with rubella virus replicons

    Energy Technology Data Exchange (ETDEWEB)

    Tzeng, Wen-Pin; Xu, Jie [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States); Frey, Teryl K., E-mail: tfrey@gsu.edu [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States)

    2012-07-20

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was {approx}9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  17. T-cell responses to dengue virus in humans.

    Science.gov (United States)

    Kurane, Ichiro; Matsutani, Takaji; Suzuki, Ryuji; Takasaki, Tomohiko; Kalayanarooj, Siripen; Green, Sharone; Rothman, Alan L; Ennis, Francis A

    2011-12-01

    Dengue virus (DENV) is a leading cause of morbidity and mortality in most tropical and subtropical areas of the world. Dengue virus infection induces specific CD4+CD8- and CD8+CD4- T cells in humans. In primary infection, T-cell responses to DENV are serotype cross-reactive, but the highest response is to the serotype that caused the infection. The epitopes recognized by DENV-specific T cells are located in most of the structural and non-structural proteins, but NS3 is the protein that is most dominantly recognized. In patients with dengue hemorrhagic fever (DHF) caused by secondary DENV infection, T cells are highly activated in vivo. These highly activated T cells are DENV-specific and oligoclonal. Multiple kinds of lymphokines are produced by the activated T cells, and it has been hypothesized that these lymphokines are responsible for induction of plasma leakage, one of the most characteristic features of DHF. Thus, T-cells play important roles in the pathogenesis of DHF and in the recovery from DENV infection.

  18. Cell entry of lymphocytic choriomeningitis virus is restricted in myotubes.

    Science.gov (United States)

    Iwasaki, Masaharu; Urata, Shuzo; Cho, Yoshitake; Ngo, Nhi; de la Torre, Juan C

    2014-06-01

    In mice persistently infected since birth with the prototypic arenavirus lymphocytic choriomeningitis viurs, viral antigen and RNA are readily detected in most organs and cell types but remarkably absent in skeletal muscle. Here we report that mouse C2C12 myoblasts that are readily infected by LCMV, become highly refractory to LCMV infection upon their differentiation into myotubes. Myotube's resistance to LCMV was not due to an intracellular restriction of virus replication but rather an impaired cell entry mediated by the LCMV surface glycoprotein. Our findings provide an explanation for the observation that in LCMV carrier mice myotubes, which are constantly exposed to blood-containing virus, remain free of viral antigen and RNA despite myotubes express high levels of the LCMV receptor alpha dystroglycan and do not pose an intracellular blockade to LCMV multiplication.

  19. Fatty acid acylated antibodies against virus suppress its reproduction in cells.

    Science.gov (United States)

    Kabanov, A V; Ovcharenko, A V; Melik-Hubarov, N S; Bannikov, A I; Alakhov VYu; Kiselev, V I; Sveshnikov, P G; Kiselev, O I; Levashov, A V; Severin, E S

    1989-07-03

    A method for suppression of virus reproduction in cells using fatty acylated antiviral antibodies, which in contrast to non-modified antibodies are capable of intracellular penetration, has been suggested. The addition of stearoylated antiviral antibodies to influenza A/Chili virus-infected cells causes a 100-fold suppression of virus reproduction. Non-modified antibodies do not produce any effect on virus reproduction.

  20. Functional CD8+ T Cell Responses in Lethal Ebola Virus Infection

    Science.gov (United States)

    2008-03-15

    2003. Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses . J. Immunol. 170: 2797–2801. 20. Bosio, C. M., B...Functional CD8 T Cell Responses in Lethal Ebola Virus Infection1 Steven B. Bradfute, Kelly L. Warfield, and Sina Bavari2 Ebola virus (EBOV) causes...the development of an effective adap- tive immune response, leading to overwhelming infection and death. Ebola virus (EBOV)3 is a single-stranded

  1. The V protein of canine distemper virus is required for virus replication in human epithelial cells.

    Directory of Open Access Journals (Sweden)

    Noriyuki Otsuki

    Full Text Available Canine distemper virus (CDV becomes able to use human receptors through a single amino acid substitution in the H protein. In addition, CDV strains possessing an intact C protein replicate well in human epithelial H358 cells. The present study showed that CDV strain 007Lm, which was isolated from lymph node tissue of a dog with distemper, failed to replicate in H358 cells, although it possessed an intact C protein. Sequence analyses suggested that a cysteine-to-tyrosine substitution at position 267 of the V protein caused this growth defect. Analyses using H358 cells constitutively expressing the CDV V protein showed that the V protein with a cysteine, but not that with a tyrosine, at this position effectively blocked the interferon-stimulated signal transduction pathway, and supported virus replication of 007Lm in H358 cells. Thus, the V protein as well as the C protein appears to be functional and essential for CDV replication in human epithelial cells.

  2. Affinity (tropism) of caprine arthritis encephalitis virus for brain cells.

    Science.gov (United States)

    Adebayo, I A; Olaleye, O D; Awoniyi, T A M

    2010-12-01

    One of the constraints in unraveling the mysteries blurring the advancement of research in the quest to totally put HIV problems under control is getting the appropriate animal model that would truly simulate human cases. This problem is more apparent in studies involving the central nervous system. Consequently, a viable animal model to generate information for the production of drugs and vaccines for the prevention and or control of lentiviral induced dementia in affected host animals is pertinent and vital. In this study, explant cultures prepared from the brain of new-born goat-kid were infected with CaprineArthritis Encephalitis (CAE) virus- a retrovirus affecting goats. The specific brain cell types infected by the (CAE) virus were determined using reverse-transcription polymerase chain reaction (RT-PCR) and transmission electron microscopy (TEM techniques). TEM showed that in 85 - 90% cases, microglia were the cells specifically infected by the virus. Amplification of the genomic sequence of the envelope and the gag genes by RT-PCR confirmed the presence of CAEV proviral DNA in the brain cells of affected animals. No productive infection of the astrocytes was observed. The results of this study showed a lot of similarities in the tropism of CAE virus infection of goat brain cells to that of HIV infection in humans thus suggesting the potential usefulness of the caprine model for the study of HIV neuropathology. The goat model system as a non-primate model therefore could be more adaptable as a simple animal model than primate models with their complexity of anthropological, environmental and safety problems.

  3. Human influenza viruses and CD8(+) T cell responses.

    Science.gov (United States)

    Grant, Emma J; Quiñones-Parra, Sergio M; Clemens, E Bridie; Kedzierska, Katherine

    2016-02-01

    Influenza A viruses (IAVs) cause significant morbidity and mortality worldwide, despite new strain-specific vaccines being available annually. As IAV-specific CD8(+) T cells promote viral control in the absence of neutralizing antibodies, and can mediate cross-reactive immunity toward distinct IAVs to drive rapid recovery from both mild and severe influenza disease, there is great interest in developing a universal T cell vaccine. However, despite detailed studies in mouse models of influenza virus infection, there is still a paucity of data on human epitope-specific CD8(+) T cell responses to IAVs. This review focuses on our current understanding of human CD8(+) T cell immunity against distinct IAVs and discusses the possibility of achieving a CD8(+) T cell mediated-vaccine that protects against multiple, distinct IAV strains across diverse human populations. We also review the importance of CD8(+) T cell immunity in individuals highly susceptible to severe influenza infection, including those hospitalised with influenza, the elderly and Indigenous populations.

  4. Optimization Manufacture of Virus- and Tumor-Specific T Cells

    Directory of Open Access Journals (Sweden)

    Natalia Lapteva

    2011-01-01

    Full Text Available Although ex vivo expanded T cells are currently widely used in pre-clinical and clinical trials, the complexity of manufacture remains a major impediment for broader application. In this review we discuss current protocols for the ex vivo expansion of virus- and tumor-specific T cells and describe our experience in manufacture optimization using a gas-permeable static culture flask (G-Rex. This innovative device has revolutionized the manufacture process by allowing us to increase cell yields while decreasing the frequency of cell manipulation and in vitro culture time. It is now being used in good manufacturing practice (GMP facilities for clinical cell production in our institution as well as many others in the US and worldwide.

  5. A human multi-epitope recombinant vaccinia virus as a universal T cell vaccine candidate against influenza virus.

    Directory of Open Access Journals (Sweden)

    Alan G Goodman

    Full Text Available There is a need to develop a universal vaccine against influenza virus infection to avoid developing new formulations of a seasonal vaccine each year. Many of the vaccine strategies for a universal vaccine target strain-conserved influenza virus proteins, such as the matrix, polymerase, and nucleoproteins, rather than the surface hemagglutinin and neuraminidase proteins. In addition, non-disease-causing viral vectors are a popular choice as a delivery system for the influenza virus antigens. As a proof-of-concept, we have designed a novel influenza virus immunogen based on the NP backbone containing human T cell epitopes for M1, NS1, NP, PB1 and PA proteins (referred as NPmix as well as a construct containing the conserved regions of influenza virus neuraminidase (N-terminal and hemagglutinin (C-terminal (referred as NA-HA. DNA vectors and vaccinia virus recombinants expressing NPmix (WR-NP or both NPmix plus NA-HA (WR-flu in the cytosol were tested in a heterologous DNA-prime/vaccinia virus-boost vaccine regimen in mice. We observed an increase in the number of influenza virus-specific IFNγ-secreting splenocytes, composed of populations marked by CD4(+ and CD8(+ T cells producing IFNγ or TNFα. Upon challenge with influenza virus, the vaccinated mice exhibited decreased viral load in the lungs and a delay in mortality. These findings suggest that DNA prime/poxvirus boost with human multi-epitope recombinant influenza virus proteins is a valid approach for a general T-cell vaccine to protect against influenza virus infection.

  6. Dengue virus-specific, human CD4+ CD8- cytotoxic T-cell clones: multiple patterns of virus cross-reactivity recognized by NS3-specific T-cell clones.

    OpenAIRE

    Kurane, I; Brinton, M.A.; Samson, A L; Ennis, F A

    1991-01-01

    Thirteen dengue virus-specific, cytotoxic CD4+ CD8- T-cell clones were established from a donor who was infected with dengue virus type 3. These clones were examined for virus specificity and human leukocyte antigen (HLA) restriction in cytotoxic assays. Six patterns of virus specificities were determined. Two serotype-specific clones recognized only dengue virus type 3. Two dengue virus subcomplex-specific clones recognized dengue virus types 2, 3, and 4, and one subcomplex-specific clone re...

  7. Repertoire of virus-derived small RNAs produced by mosquito and mammalian cells in response to dengue virus infection.

    Science.gov (United States)

    Schirtzinger, Erin E; Andrade, Christy C; Devitt, Nicholas; Ramaraj, Thiruvarangan; Jacobi, Jennifer L; Schilkey, Faye; Hanley, Kathryn A

    2015-02-01

    RNA interference (RNAi) is the major defense of many arthropods against arthropod-borne RNA viruses (arboviruses), but the role of RNAi in vertebrate immunity to arboviruses is not clear. RNA viruses can trigger RNAi in vertebrate cells, but the vertebrate interferon response may obscure this interaction. We quantified virus-derived small RNAs (vRNAs) generated by mosquito (U4.4) cells and interferon-deficient (Vero) and interferon-competent (HuH-7) mammalian cells infected with a single isolate of mosquito-borne dengue virus. Mosquito cells produced significantly more vRNAs than mammalian cells, and mosquito cell vRNAs were derived from both the positive- and negative-sense dengue genomes whereas mammalian cell vRNAs were derived primarily from positive-sense genome. Mosquito cell vRNAs were predominantly 21 nucleotides in length whereas mammalian cell vRNAs were between 12 and 36 nucleotides with a modest peak at 24 nucleotides. Hot-spots, regions of the virus genome that generated a disproportionate number of vRNAs, overlapped among the cell lines.

  8. Hepatitis G virus

    Institute of Scientific and Technical Information of China (English)

    Vasiliy Ivanovich Reshetnyak; Tatiana Igorevna Karlovich; Ljudmila Urievna Ilchenko

    2008-01-01

    A number of new hepatitis viruses (G,TT,SEN) were discovered late in the past century.We review the data available in the literature and our own findings suggesting that the new hepatitis G virus (HGV),disclosed in the late 1990s,has been rather well studied.Analysis of many studies dealing with HGV mainly suggests the lymphotropicity of this virus.HGV or GBV-C has been ascertained to influence course and prognosis in the HIV-infected patient.Until now,the frequent presence of GBV-C in coinfections,hematological diseases,and biliary pathology gives no grounds to determine it as an "accidental tourist" that is of no significance.The similarity in properties of GBV-C and hepatitis C virus (HCV) offers the possibility of using HGV,and its induced experimental infection,as a model to study hepatitis C and to develop a hepatitis C vaccine.

  9. Weak bases affect late stages of Mayaro virus replication cycle in vertebrate cells.

    Science.gov (United States)

    Ferreira, D F; Santo, M P; Rebello, M A; Rebello, M C

    2000-04-01

    This paper describes the effect of two weak bases (ammonium chloride and chloroquine) on the morphogenesis of Mayaro virus. When Mayaro virus-infected TC7 (monkey kidney) cells were treated with these agents it was observed that weak bases caused a significant reduction in virus yield. Also, cellular protein synthesis, which is inhibited by Mayaro virus infection, recovered to nearly normal levels. However, the synthesis of Mayaro virus proteins was affected. These phenomena were dose-dependent. The process of Mayaro virus infection in vertebrate cells is very rapid. Virus precursors are not observed in cell cytoplasm and budding through the plasma membrane seems to be the only way of virus release. Electron microscopy of cells infected with Mayaro virus and treated with weak bases revealed an accumulation of virus structures in cell cytoplasm. The study also noted an inhibition of budding through the plasma membrane and the appearance of virus particles inside intracytoplasmic vacuoles. These observations indicate an impairment at the final stages of the virus replication cycle.

  10. Going Wild: Lessons from Naturally Occurring T-Lymphotropic Lentiviruses

    OpenAIRE

    VandeWoude, Sue; Apetrei, Cristian

    2006-01-01

    Over 40 nonhuman primate (NHP) species harbor species-specific simian immunodeficiency viruses (SIVs). Similarly, more than 20 species of nondomestic felids and African hyenids demonstrate seroreactivity against feline immunodeficiency virus (FIV) antigens. While it has been challenging to study the biological implications of nonfatal infections in natural populations, epidemiologic and clinical studies performed thus far have only rarely detected increased morbidity or impaired fecundity/sur...

  11. Cell culture systems for the hepatitis C virus

    Institute of Scientific and Technical Information of China (English)

    Gilles Duverlie; Czeslaw Wychowski

    2007-01-01

    Since the discovery of HCV in 1989, the lack of a cell culture system has hampered research progress on this important human pathogen. No robust system has been obtained by empiric approaches, and HCV cell culture remained hypothetical until 2005. The construction of functional molecular clones has served as a starting point to reconstitute a consensus infectious cDNA that was able to transcribe infectious HCV RNAs as shown by intrahepatic inoculation in a chimpanzee. Other consensus clones have been selected and established in a human hepatoma cell line as replicons, i.e. self-replicating subgenomic or genomic viral RNAs. However, these replicons did not support production of infectious virus. Interestingly, some full-length replicons could be established without adaptive mutations and one of them was able to replicate at very high levels and to release virus particles that are infectious in cell culture and in vivo. This new cell culture system represents a major breakthrough in the HCV field and should enable a broad range of basic and applied studies to be achieved.

  12. Inhibition of Lassa virus and Ebola virus infection in host cells treated with the kinase inhibitors genistein and tyrphostin.

    Science.gov (United States)

    Kolokoltsov, Andrey A; Adhikary, Shramika; Garver, Jennifer; Johnson, Lela; Davey, Robert A; Vela, Eric M

    2012-01-01

    Arenaviruses and filoviruses are capable of causing hemorrhagic fever syndrome in humans. Limited therapeutic and/or prophylactic options are available for humans suffering from viral hemorrhagic fever. In this report, we demonstrate that pre-treatment of host cells with the kinase inhibitors genistein and tyrphostin AG1478 leads to inhibition of infection or transduction in cells infected with Ebola virus, Marburg virus, and Lassa virus. In all, the results demonstrate that a kinase inhibitor cocktail consisting of genistein and tyrphostin AG1478 is a broad-spectrum antiviral that may be used as a therapeutic or prophylactic against arenavirus and filovirus hemorrhagic fever.

  13. Deletion of Marek's disease virus large subunit of ribonucleotide reductase impairs virus growth in vitro and in vivo.

    Science.gov (United States)

    Sun, Aijun; Lee, Lucy F; Khan, Owais A; Heidari, Mohammad; Zhang, Huanmin; Lupiani, Blanca; Reddy, Sanjay M

    2013-06-01

    Marek's disease virus (MDV), a highly cell-associated lymphotropic alphaherpesvirus, is the causative agent of a neoplastic disease in domestic chickens called Marek's disease (MD). In the unique long (UL) region of the MDV genome, open reading frames UL39 and UL40 encode the large and small subunits of the ribonucleotide reductase (RR) enzyme, named RR1 and RR2, respectively. MDV RR is distinguishable from that present in chicken and duck cells by monoclonal antibody T81. Using recombinant DNA technology we have generated a mutant MDV (Md5deltaRR1) in which RR1 was deleted. PCR amplification of the RR gene in Md5deltaRR1-infected duck embryo fibroblasts (DEF) confirmed the deletion of the 2.4 kb RR1 gene with a resultant amplicon of a 640-bp fragment. Restriction enzyme digests with SalI confirmed a UL39 deletion and the absence of gross rearrangement. The biologic characteristics of Md5deltaRR1 virus were studied in vitro and in vivo. The Md5deltaRR1 replicated in DEF, but significantly slower than parental Md5-BAC, suggesting that RR is important but not essential for replication in fibroblasts. In vivo studies, however, showed that the RR1 deletion virus was impaired for its ability to replicate in chickens. Inoculation of specific-pathogen-free (SPF) chickens with Md5deltaRR1 showed the mutant virus is nonpathogenic and does not induce MD in birds. A revertant virus, Md5deltaRR1/R, was generated with the restored phenotype of the parental Md5-BAC in vivo, indicating that RR is essential for replication of the virus in chickens. Protection studies in SPF chickens indicated that the Md5deltaRR1 virus is not a candidate vaccine against MD.

  14. Human immunodeficiency virus type 1 infection of human uterine epithelial cells: viral shedding and cell contact-mediated infectivity.

    Science.gov (United States)

    Asin, Susana N; Wildt-Perinic, Dunja; Mason, Sarah I; Howell, Alexandra L; Wira, Charles R; Fanger, Michael W

    2003-05-15

    We examined the mechanism of human immunodeficiency virus (HIV) type 1 infection of human uterine epithelial cells to gain a clearer understanding of the events by which HIV-1 infects cells within the female reproductive tract. We demonstrated that these cells can be productively infected by HIV-1 and that infection is associated with viral RNA reverse transcription, DNA transcription, and secretion of infectious virus. Levels of viral DNA and secreted virus decreased gradually after infection. Moreover, virus released by the uterine epithelial cells shortly after infection was able to infect human T cell lines, but virus released later did not. In contrast, human CD4(+) T cell lines were infected after cocultivation with epithelial cells at both early and late stages of infection. These data demonstrated that HIV-1 infects human epithelial cells of upper reproductive tract origin and that productive viral infection of epithelial cells may be an important mechanism of transmission of HIV-1 infection in women.

  15. Human papilloma virus, herpes simplex virus and epstein barr virus in oral squamous cell carcinoma from eight different countries.

    Science.gov (United States)

    Jalouli, Jamshid; Jalouli, Miranda M; Sapkota, Dipak; Ibrahim, Salah O; Larsson, Per-Anders; Sand, Lars

    2012-02-01

    Oral squamous cell carcinoma (OSCC) is a major health problem in many parts of the world, and the major causative agents are thought to be the use of alcohol and tobacco. Oncogenic viruses have also been suggested to be involved in OSCC development. This study investigated the prevalence of human papillomaviruses (HPV), herpes simplex virus (HSV) and Epstein-Barr virus (EBV) in 155 OSCC from eight different countries from different ethnic groups, continents and with different socioeconomic backgrounds. 41 A total of OSCCs were diagnosed in the tongue (26%) and 23 in the floor of the mouth (15%); the other 91 OSCCs were diagnosed in other locations (59%). The patients were also investigated regarding the use of alcohol and smoking and smokeless tobacco habits. Tissue samples were obtained from formalin-fixed, paraffin-embedded samples of the OSCC. DNA was extracted and the viral genome was examined by single, nested and semi-nested PCR assays. Sequencing of double-stranded DNA from the PCR product was carried out. Following sequencing of the HPV-, HSV- and EBV-positive PCR products, 100% homology between the sampels was found. Of all the 155 OSCCs examined, 85 (55%) were positive for EBV, 54 (35%) for HPV and 24 (15%) for HSV. The highest prevalence of HPV was seen in Sudan (65%), while HSV (55%) and EBV (80%) were most prevalent in the UK. In 34% (52/155) of all the samples examined, co-infection by two (46/155=30%) or three (6/155=4%) virus specimens was detected. The most frequent double infection was HPV with EBV in 21% (32/155) of all OSCCs. There was a statistically significant higher proportion of samples with HSV (p=0.026) and EBV (p=0.015) in industrialized countries (Sweden, Norway, UK and USA) as compared to developing countries (Sudan, India, Sri Lanka and Yemen). Furthermore, there was a statistically significant higher co-infection of HSV and EBV in samples from industrialized countries (p=0.00031). No firm conclusions could be drawn regarding the

  16. Exposure to human immunodeficiency virus/hepatitis C virus in hepatic and stellate cell lines reveals cooperative profibrotic transcriptional activation between viruses and cell types.

    Science.gov (United States)

    Salloum, Shadi; Holmes, Jacinta A; Jindal, Rohit; Bale, Shyam S; Brisac, Cynthia; Alatrakchi, Nadia; Lidofsky, Anna; Kruger, Annie J; Fusco, Dahlene N; Luther, Jay; Schaefer, Esperance A; Lin, Wenyu; Yarmush, Martin L; Chung, Raymond T

    2016-12-01

    Human immunodeficiency virus (HIV)/hepatitis C virus (HCV) coinfection accelerates progressive liver fibrosis; however, the mechanisms remain poorly understood. HCV and HIV independently induce profibrogenic markers transforming growth factor beta-1 (TGFβ1) (mediated by reactive oxygen species [ROS]) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) in hepatocytes and hepatic stellate cells in monoculture; however, they do not account for cellular crosstalk that naturally occurs. We created an in vitro coculture model and investigated the contributions of HIV and HCV to hepatic fibrogenesis. Green fluorescent protein reporter cell lines driven by functional ROS (antioxidant response elements), NFκB, and mothers against decapentaplegic homolog 3 (SMAD3) promoters were created in Huh7.5.1 and LX2 cells, using a transwell to generate cocultures. Reporter cell lines were exposed to HIV, HCV, or HIV/HCV. Activation of the 3 pathways was measured and compared according to infection status. Extracellular matrix products (collagen type 1 alpha 1 (CoL1A1) and tissue inhibitor of metalloproteinase 1 (TIMP1)) were also measured. Both HCV and HIV independently activated TGFβ1 signaling through ROS (antioxidant response elements), NFκB, and SMAD3 in both cell lines in coculture. Activation of these profibrotic pathways was additive following HIV/HCV coexposure. This was confirmed when examining CoL1A1 and TIMP1, where messenger RNA and protein levels were significantly higher in LX2 cells in coculture following HIV/HCV coexposure compared with either virus alone. In addition, expression of these profibrotic genes was significantly higher in the coculture model compared to either cell type in monoculture, suggesting an interaction and feedback mechanism between Huh7.5.1 and LX2 cells.

  17. Determining Influenza Virus Shedding at Different Time Points in Madin-Darby Canine Kidney Cell Line

    Directory of Open Access Journals (Sweden)

    Asghar Abdoli

    2013-01-01

    Full Text Available Objective: Monitoring of influenza virus shedding and optimization of multiplicities of infection (MOI is important in the investigation of a virus one step growth cycle and for obtaining a high yield of virus in vaccine development and conventional basic diagnostic methods. However, eluted infectious viruses may still be present immediately after virus inoculation and when cells are washed following virus cultivation which may lead to a false positive virus infectivity assay.Materials and Methods: In this experimental study, we investigated influenza virus progeny production in Madin-Darby canine kidney (MDCK cells with five different MOI at determined time points. The results were analyzed by end point titration tests and immunofluorescence assay.Results: Higher titers of eluted virus were observed following a high MOI inoculation of virus in cell culture. Most probably, this was the result of sialic acid residues from viral hemagglutin in proteins that were cleaved by neuraminidase glycoproteins on the surface of the influenza virus, which promoted viral spread from the host cell to the culture supernatant or during endocytosis, where viruses recycle to the cell surface by recycling endosomes which culminated in virus shedding without replication.Conclusion: We demonstrated that the pattern of influenza virus progeny production was dose-dependent and not uniform. This production was influenced by several factors, particularly MOI. Understanding the exact features of viral particle propagation has a major impact in producing high virus yields in the development of vaccines. Use of lower MOI (0.01 could result in accurate, precise quantitative assays in virus diagnosis and titration methods.

  18. In Vitro Evolution of Bovine Foamy Virus Variants with Enhanced Cell-Free Virus Titers and Transmission.

    Science.gov (United States)

    Bao, Qiuying; Hipp, Michaela; Hugo, Annette; Lei, Janet; Liu, Yang; Kehl, Timo; Hechler, Torsten; Löchelt, Martin

    2015-11-11

    Virus transmission is essential for spreading viral infections and is a highly coordinated process which occurs by cell-free transmission or cell-cell contact. The transmission of Bovine Foamy Virus (BFV) is highly cell-associated, with undetectable cell-free transmission. However, BFV particle budding can be induced by overexpression of wild-type (wt) BFV Gag and Env or artificial retargeting of Gag to the plasma membrane via myristoylation membrane targeting signals, closely resembling observations in other foamy viruses. Thus, the particle release machinery of wt BFV appears to be an excellent model system to study viral adaption to cell-free transmission by in vitro selection and evolution. Using selection for BFV variants with high cell-free infectivity in bovine and non-bovine cells, infectivity dramatically increased from almost no infectious units to about 105-106 FFU (fluorescent focus forming units)/mL in both cell types. Importantly, the selected BFV variants with high titer (HT) cell-free infectivity could still transmit via cell-cell contacts and were neutralized by serum from naturally infected cows. These selected HT-BFV variants will shed light into virus transmission and potential routes of intervention in the spread of viral infections. It will also allow the improvement or development of new promising approaches for antiretroviral therapies.

  19. Three-dimensional cell culture models for investigating human viruses.

    Science.gov (United States)

    He, Bing; Chen, Guomin; Zeng, Yi

    2016-10-01

    Three-dimensional (3D) culture models are physiologically relevant, as they provide reproducible results, experimental flexibility and can be adapted for high-throughput experiments. Moreover, these models bridge the gap between traditional two-dimensional (2D) monolayer cultures and animal models. 3D culture systems have significantly advanced basic cell science and tissue engineering, especially in the fields of cell biology and physiology, stem cell research, regenerative medicine, cancer research, drug discovery, and gene and protein expression studies. In addition, 3D models can provide unique insight into bacteriology, virology, parasitology and host-pathogen interactions. This review summarizes and analyzes recent progress in human virological research with 3D cell culture models. We discuss viral growth, replication, proliferation, infection, virus-host interactions and antiviral drugs in 3D culture models.

  20. Induction of cytopathogenicity in human glioblastoma cells by chikungunya virus.

    Directory of Open Access Journals (Sweden)

    Rachy Abraham

    Full Text Available Chikungunya virus (CHIKV, an arthritogenic old-world alphavirus, has been implicated in the central nervous system (CNS infection in infants and elderly patients. Astrocytes are the major immune cells of the brain parenchyma that mediate inflammation. In the present study we found that a local isolate of CHIKV infect and activate U-87 MG cells, a glioblastoma cell line of human astrocyte origin. The infection kinetics were similar in infected U-87 MG cells and the human embryo kidney (HEK293 cells as indicated by immunofluorescence and plaque assays, 24h post-infection (p.i.. In infected U-87 MG cells, apoptosis was detectable from 48h p.i. evidenced by DNA fragmentation, PARP cleavage, loss of mitochondrial membrane potential, nuclear condensation and visible cytopathic effects in a dose and time-dependent manner. XBP1 mRNA splicing and eIF2α phosphorylation studies indicated the occurrence of endoplasmic reticulum stress in infected cells. In U-87 MG cells stably expressing a green fluorescent protein-tagged light chain-3 (GFP-LC3 protein, CHIKV infection showed increased autophagy response. The infection led to an enhanced expression of the mRNA transcripts of the pro-inflammatory cytokines IL-1β, TNF-α, IL-6 and CXCL9 within 24h p.i. Significant up-regulation of the proteins of RIG-I like receptor (RLR pathway, such as RIG-I and TRAF-6, was observed indicating the activation of the cytoplasmic-cellular innate immune response. The overall results show that the U-87 MG cell line is a potential in vitro model for in depth study of these molecular pathways in response to CHIKV infection. The responses in these cells of CNS origin, which are inherently defective in Type I interferon response, could be analogous to that occurring in infants and very old patients who also have a compromised interferon-response. The results also point to the intriguing possibility of using this virus for studies to develop oncolytic virus therapy approaches

  1. Entry of Oncolytic Herpes Simplex Virus into Human Squamous Cell Carcinoma Cells by Ultrasound

    Directory of Open Access Journals (Sweden)

    Shusuke Okunaga

    2015-10-01

    Full Text Available Low-intensity ultrasound is a useful method to introduce materials into cells due to the transient formation of micropores, called sonoporations, on the cell membrane. Whether oncolytic herpes simplex virus type 1 (HSV-1 can be introduced into oral squamous cell carcinoma (SCC cells through membrane pores remains undetermined. Human SCC cell line SAS and oncolytic HSV-1 RH2, which was deficient in the 134.5 gene and fusogenic, were used. Cells were exposed to ultrasound in the presence or absence of microbubbles. The increase of virus entry was estimated by plaque numbers. Viral infection was hardly established without the adsorption step, but plaque number was increased by the exposure of HSV-1-inoculated cells to ultrasound. Plaque number was also increased even if SAS cells were exposed to ultrasound and inoculated with RH2 without the adsorption step. This effect was abolished when the interval from ultrasound exposure to virus inoculation was prolonged. Scanning electron microscopy revealed depressed spots on the cell surface after exposure to ultrasound. These results suggest that oncolytic HSV-1 RH2 can be introduced into SAS cells through ultrasound-mediated pores of the cell membrane that are resealed after an interval.

  2. Ebola Virus: The Role of Macrophages and Dendritic Cells in the Pathogenesis of Ebola Hemorrhagic Fever

    Science.gov (United States)

    2007-11-02

    Impairment of den- dritic cells and adaptive immunity by Ebola and Lassa viruses . J. Immunol., 170(6), 2797–2801. Reed, D. S., Hensley, L. E., Geisbert, J...The International Journal of Biochemistry & Cell Biology 37 (2005) 1560–1566 Medicine in focus Ebola virus : The role of macrophages and dendritic...In consequence, virus disseminates to these and other cell types throughout the body, causing multifocal necrosis and a syndrome resembling septic

  3. Cell tropism and pathogenesis of measles virus in monkeys

    Directory of Open Access Journals (Sweden)

    Sei-ich eKato

    2012-01-01

    Full Text Available Measles virus (MV is an enveloped negative strand RNA virus belonging to the family of Paramyxoviridae, genus Morbillivirus, and causes one of the most contagious diseases in humans. Experimentally infected non-human primates are used as animal models for studies of the pathogenesis of human measles. We established a reverse genetics system based on a highly pathogenic wild-type MV (IC-B strain. Infection of monkeys with recombinant MV strains generated by reverse genetics enabled analysis of the molecular basis of MV pathogenesis. In addition, recombinant wild-type MV strains expressing enhanced green fluorescent protein enable visual tracking of MV-infected cells in vitro and in vivo. To date, 3 different molecules have been identified as receptors for MV. Signaling lymphocyte activation molecule (SLAM, also called CD150, expressed on immune cells, is a major receptor for MV. CD46, ubiquitously expressed in all nucleated cells in humans and monkeys, is a receptor for vaccine and laboratory strains of MV. The newly identified nectin-4 (also called PVRL4 is an epithelial cell receptor for MV. The impact of MV receptor usage in vivo on disease outcomes is now under investigation.

  4. Phospholipid Synthesis in Sindbis Virus-Infected Cells

    Science.gov (United States)

    Waite, Marilynn R. F.; Pfefferkorn, E. R.

    1970-01-01

    We investigated the metabolic requirements for the decrease in phospholipid synthesis previously observed by Pfefferkorn and Hunter in primary cultures of chick embryo fibroblasts infected with Sindbis virus. The incorporation of 32PO4 into all classes of phospholipids was found to decline at the same rate and to the same extent; thus, incorporation of 14C-choline into acid-precipitable form provided a convenient measure of phospholipid synthesis that was used in subsequent experiments. Experiments with temperature-sensitive mutants suggested that some viral ribonucleic acid (RNA) synthesis was essential for the inhibition of choline incorporation, but that functional viral structural proteins were not required. The reduction in phospholipid synthesis was probably a secondary effect of infection resulting from viral inhibition of the cellular RNA and protein synthesis. All three inhibitory effects required about the same amount of viral RNA synthesis; the inhibition of host RNA and protein synthesis began sooner than the decline in phospholipid synthesis; and both actinomycin D and cycloheximide inhibited 14C-choline incorporation in uninfected cells. In contrast, incorporation of 14C-choline into BHK-21 cells was not decreased by 10 hr of exposure to actinomycin D and declined only slowly after cycloheximide treatment. Growth of Sindbis virus in BHK cells did not cause the marked stimulation of phospholipid synthesis seen in picornavirus infections of other mammalian cells; however, inhibition was seen only late in infection. PMID:5530011

  5. Viral protein determinants of Lassa virus entry and release from polarized epithelial cells.

    Science.gov (United States)

    Schlie, Katrin; Maisa, Anna; Freiberg, Fabian; Groseth, Allison; Strecker, Thomas; Garten, Wolfgang

    2010-04-01

    The epithelium plays a key role in the spread of Lassa virus. Transmission from rodents to humans occurs mainly via inhalation or ingestion of droplets, dust, or food contaminated with rodent urine. Here, we investigated Lassa virus infection in cultured epithelial cells and subsequent release of progeny viruses. We show that Lassa virus enters polarized Madin-Darby canine kidney (MDCK) cells mainly via the basolateral route, consistent with the basolateral localization of the cellular Lassa virus receptor alpha-dystroglycan. In contrast, progeny virus was efficiently released from the apical cell surface. Further, we determined the roles of the glycoprotein, matrix protein, and nucleoprotein in directed release of nascent virus. To do this, a virus-like-particle assay was developed in polarized MDCK cells based on the finding that, when expressed individually, both the glycoprotein GP and matrix protein Z form virus-like particles. We show that GP determines the apical release of Lassa virus from epithelial cells, presumably by recruiting the matrix protein Z to the site of virus assembly, which is in turn essential for nucleocapsid incorporation into virions.

  6. Effective Binding of a Phosphatidylserine-Targeting Antibody to Ebola Virus Infected Cells and Purified Virions

    Science.gov (United States)

    Dowall, S. D.; Graham, V. A.; Corbin-Lickfett, K.; Empig, C.; Schlunegger, K.; Bruce, C. B.; Easterbrook, L.; Hewson, R.

    2015-01-01

    Ebola virus is responsible for causing severe hemorrhagic fevers, with case fatality rates of up to 90%. Currently, no antiviral or vaccine is licensed against Ebola virus. A phosphatidylserine-targeting antibody (PGN401, bavituximab) has previously been shown to have broad-spectrum antiviral activity. Here, we demonstrate that PGN401 specifically binds to Ebola virus and recognizes infected cells. Our study provides the first evidence of phosphatidylserine-targeting antibody reactivity against Ebola virus. PMID:25815346

  7. Effective Binding of a Phosphatidylserine-Targeting Antibody to Ebola Virus Infected Cells and Purified Virions

    Directory of Open Access Journals (Sweden)

    S. D. Dowall

    2015-01-01

    Full Text Available Ebola virus is responsible for causing severe hemorrhagic fevers, with case fatality rates of up to 90%. Currently, no antiviral or vaccine is licensed against Ebola virus. A phosphatidylserine-targeting antibody (PGN401, bavituximab has previously been shown to have broad-spectrum antiviral activity. Here, we demonstrate that PGN401 specifically binds to Ebola virus and recognizes infected cells. Our study provides the first evidence of phosphatidylserine-targeting antibody reactivity against Ebola virus.

  8. In-cell infection: a novel pathway for Epstein-Barr virus infection mediated by cell-in-cell structures.

    Science.gov (United States)

    Ni, Chao; Chen, Yuhui; Zeng, Musheng; Pei, Rongjuan; Du, Yong; Tang, Linquan; Wang, Mengyi; Hu, Yazhuo; Zhu, Hanyu; He, Meifang; Wei, Xiawei; Wang, Shan; Ning, Xiangkai; Wang, Manna; Wang, Jufang; Ma, Li; Chen, Xinwen; Sun, Qiang; Tang, Hong; Wang, Ying; Wang, Xiaoning

    2015-07-01

    Epstein-Barr virus (EBV) can infect both susceptible B lymphocytes and non-susceptible epithelial cells (ECs). Viral tropism analyses have revealed two intriguing means of EBV infection, either by a receptor-mediated infection of B cells or by a cell-to-cell contact-mediated infection of non-susceptible ECs. Herein, we report a novel "in-cell infection" mechanism for EBV infection of non-susceptible ECs through the formation of cell-in-cell structures. Epithelial CNE-2 cells were invaded by EBV-infected Akata B cells to form cell-in-cell structures in vitro. Such unique cellular structures could be readily observed in the specimens of nasopharyngeal carcinoma. Importantly, the formation of cell-in-cell structures led to the autonomous activation of EBV within Akata cells and subsequent viral transmission to CNE-2 cells, as evidenced by the expression of viral genes and the presence of virion particles in CNE-2 cells. Significantly, EBV generated from in-cell infected ECs displayed altered tropism with higher infection efficacy to both B cells and ECs. In addition to CNE-2 tumor cells, cell-in-cell structure formation could also mediate EBV infection of NPEC1-Bmi1 cells, an immortalized nasopharyngeal epithelial cell line. Furthermore, efficient infection by this mechanism involved the activation of the PI3K/AKT signaling pathway. Thus, our study identified "in-cell infection" as a novel mechanism for EBV infection. Given the diversity of virus-infected cells and the prevalence of cell-in-cell structures during chronic infection, we speculate that "in-cell infection" is likely a general mechanism for EBV and other viruses to infect non-susceptible ECs.

  9. Human neuronal cell protein responses to Nipah virus infection

    Directory of Open Access Journals (Sweden)

    Hassan Sharifah

    2007-06-01

    Full Text Available Abstract Background Nipah virus (NiV, a recently discovered zoonotic virus infects and replicates in several human cell types. Its replication in human neuronal cells, however, is less efficient in comparison to other fully susceptible cells. In the present study, the SK-N-MC human neuronal cell protein response to NiV infection is examined using proteomic approaches. Results Method for separation of the NiV-infected human neuronal cell proteins using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE was established. At least 800 protein spots were resolved of which seven were unique, six were significantly up-regulated and eight were significantly down-regulated. Six of these altered proteins were identified using mass spectrometry (MS and confirmed using MS/MS. The heterogenous nuclear ribonucleoprotein (hnRNP F, guanine nucleotide binding protein (G protein, voltage-dependent anion channel 2 (VDAC2 and cytochrome bc1 were present in abundance in the NiV-infected SK-N-MC cells in contrast to hnRNPs H and H2 that were significantly down-regulated. Conclusion Several human neuronal cell proteins that are differentially expressed following NiV infection are identified. The proteins are associated with various cellular functions and their abundance reflects their significance in the cytopathologic responses to the infection and the regulation of NiV replication. The potential importance of the ratio of hnRNP F, and hnRNPs H and H2 in regulation of NiV replication, the association of the mitochondrial protein with the cytopathologic responses to the infection and induction of apoptosis are highlighted.

  10. Characterization of an infectious pancreatic necrosis (IPN) virus carrier cell culture with resistance to superinfection with heterologous viruses.

    Science.gov (United States)

    García, Inmaculada; Galiana, Antonio; Falcó, Alberto; Estepa, Amparo; Perez, Luis

    2011-04-21

    A state of persistence of a non susceptible fish cell line with infectious pancreatic necrosis virus (IPNV) was established in vitro by experimental infection. The persistently infected culture showed sustained production of infectious virus and could be continuously passaged for months. A distinct feature of this culture is that only a very small fraction of the cells harbours virus replication, in contrast to other reported IPNV-persistently infected cells from salmonid fish, where nearly all the cells express viral antigens. In spite of the small number of detectable IPNV-infected cells, the carrier culture shows resistance to superinfection with homologous as well as heterologous viruses. Temperature shift-up experiments indicate that viral interference is due to continuous replication of IPNV in the culture. Quantitation of Mx gene expression suggested that the interference phenomenon could be mediated by the activation of the interferon (IFN) system. However, conditioned medium from the IPNV-infected cell cultures only marginally protected other cells against VHSV infection, indicating that other type I IFN-independent mechanism may be underlying the resistance of the persistently infected culture to infection with heterologous viruses. Our study defines a novel in vitro model of IPNV persistence and contributes to the understanding of the widespread distribution of aquabirnaviruses in marine and fresh water environments by establishing a carrier state in non susceptible fish species.

  11. Influenza H5N1 virus infection of polarized human alveolar epithelial cells and lung microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Yuen Kit M

    2009-10-01

    Full Text Available Abstract Background Highly pathogenic avian influenza (HPAI H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease. Aim To study influenza A (H5N1 virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease. Methods We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces. Results We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our

  12. Virus-free transient protein production in Sf9 cells.

    Science.gov (United States)

    Shen, Xiao; Hacker, David L; Baldi, Lucia; Wurm, Florian M

    2014-02-10

    A method for virus-free transient gene expression from suspension-adapted Sf9 insect cells was developed with the gene of interest being expressed from a plasmid carrying the homologous region 5 enhancer (hr5) and the immediate early 1 (ie1) promoter from Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). Under the optimal conditions described in the study, cells were transfected at a density of 30×10⁶ cells/mL with 0.9 μg DNA and 1.35 μg of linear 25 kD polyethylenimine (PEI) per million cells. Following transfection, the culture was diluted to 4×10⁶ cells/mL for the protein production phase. The volumetric yield of tumor necrosis factor receptor (ectodomain) fused to an Fc domain (TNFR-Fc) was about 100 μg/mL for cultures at volumes up to 300 mL. As expected, the molecular weight of the dimeric TNFR-Fc produced from Sf9 cells was about 6 kDa less than that produced from a recombinant Chinese hamster ovary (CHO) cell line due to differences in glycosylation between the two hosts. Transient transfection provides an alternative to the baculovirus expression vector system (BEVS) for the rapid production of recombinant proteins from Sf9 cells.

  13. Evidences Suggesting Involvement of Viruses in Oral Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Kanupriya Gupta

    2013-01-01

    Full Text Available Oral cancer is one of the most common cancers and it constitutes a major health problem particularly in developing countries. Oral squamous cell carcinoma (OSCC represents the most frequent of all oral neoplasms. Several risk factors have been well characterized to be associated with OSCC with substantial evidences. The etiology of OSCC is complex and involves many factors. The most clearly defined potential factors are smoking and alcohol, which substantially increase the risk of OSCC. However, despite this clear association, a substantial proportion of patients develop OSCC without exposure to them, emphasizing the role of other risk factors such as genetic susceptibility and oncogenic viruses. Some viruses are strongly associated with OSCC while the association of others is less frequent and may depend on cofactors for their carcinogenic effects. Therefore, the exact role of viruses must be evaluated with care in order to improve the diagnosis and treatment of OSCC. Although a viral association within a subset of OSCC has been shown, the molecular and histopathological characteristics of these tumors have yet to be clearly defined.

  14. Impact of host cell line adaptation on quasispecies composition and glycosylation of influenza A virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Jana Verena Roedig

    Full Text Available The genome of influenza A viruses is constantly changing (genetic drift resulting in small, gradual changes in viral proteins. Alterations within antibody recognition sites of the viral membrane glycoproteins hemagglutinin (HA and neuraminidase (NA result in an antigenetic drift, which requires the seasonal update of human influenza virus vaccines. Generally, virus adaptation is necessary to obtain sufficiently high virus yields in cell culture-derived vaccine manufacturing. In this study detailed HA N-glycosylation pattern analysis was combined with in-depth pyrosequencing analysis of the virus genomic RNA. Forward and backward adaptation from Madin-Darby Canine Kidney (MDCK cells to African green monkey kidney (Vero cells was investigated for two closely related influenza A virus PR/8/34 (H1N1 strains: from the National Institute for Biological Standards and Control (NIBSC or the Robert Koch Institute (RKI. Furthermore, stability of HA N-glycosylation patterns over ten consecutive passages and different harvest time points is demonstrated. Adaptation to Vero cells finally allowed efficient influenza A virus replication in Vero cells. In contrast, during back-adaptation the virus replicated well from the very beginning. HA N-glycosylation patterns were cell line dependent and stabilized fast within one (NIBSC-derived virus or two (RKI-derived virus successive passages during adaptation processes. However, during adaptation new virus variants were detected. These variants carried "rescue" mutations on the genomic level within the HA stem region, which result in amino acid substitutions. These substitutions finally allowed sufficient virus replication in the new host system. According to adaptation pressure the composition of the virus populations varied. In Vero cells a selection for "rescue" variants was characteristic. After back-adaptation to MDCK cells some variants persisted at indifferent frequencies, others slowly diminished and even

  15. High-titer replication of nondefective Sendai virus in MDBK cells.

    Science.gov (United States)

    Famulari, N G; Fleissner, E

    1976-02-01

    Egg-grown Sendai virus was adapted to growth in a bovine kidney cell line (MDBK cells) by serial passage under defined conditions. The adapted virus contained only 50S RNA and was highly infectious for MDBK cells. Infection of these cells with a high multiplicity of adapted virus resulted in a yield of 10(8) MDBK-infectious units/ml by 18 h, accompanied by severe cytopathic changes in the host. Cell fusion did not occur. Examination of the proteins of the adapted virus revealed that despite the high infectivity of this virus for MDBK cells the virions contained considerable quantities of Fo, the precursor to the F glycoprotein that is responsible for cell fusion and high infectivity in other systems.

  16. Mielopatia associada ao vírus linfotrópico humanode células T do tipo 1 (HTLV-1 Human T-cell lymphotropic virus type 1(HTLV-1 - associated myelopathy

    Directory of Open Access Journals (Sweden)

    João Gabriel Ramos Ribas

    2002-08-01

    Full Text Available A mielopatia associada ao HTLV-1 (HAM, também conhecida como paraparesia espástica tropical (TSP, é uma doença desmielinizante crônica progressiva que afeta a medula espinal e a substância branca do cérebro. Menos de 5% dos portadores crônicos do HTLV-1 desenvolverão essa complicação. As primeiras manifestações da doença ocorrem na quarta década da vida e observa-se relação mulher/homem de 2:1. Os distúrbios da marcha, a fraqueza e o enrijecimento dos membros inferiores constituem os principais sinais e sintomas de apresentação da mielopatia. As extremidades inferiores são afetadas com maior intensidade do que as extremidades superiores. A espasticidade pode variar de moderada a intensa e a dor lombar baixa revela-se comum. Com a progressão da doença há, com freqüência, disfunção vesical e intestinal. O envolvimento sensitivo mostra-se discreto e manifesta-se com graus variados de perdas sensitivas e sensação de disestesia. A ressonância nuclear magnética do sistema nervoso pode resultar normal ou revelar atrofia da medula espinal e alterações inespecíficas no cérebro. Há evidências de envolvimento imunológico na gênese da lesão medular. Não há tratamento eficaz para a mielopatia. Os corticoesteróides e o interferon-a produziram benefícios transitórios no tratamento da doença. Não houve melhora da marcha e da disfunção vesical em pacientes que usaram o danazol, um esteróide anabolizante. O valor da zidovudina (anti-retroviral no tratamento da mielopatia ainda não se encontra definido.HTLV-1-associated myelopathy (HAM, also known as tropical spastic paraparesis (TSP, is a chronic progressive demyelinating disease that affects the spinal cord and white matter of the central nervous system. The lifetime incidence of HAM in HTLV-1 carriers is estimated to be less than 5%. Typical time of onset is in the fourth decade of life, with a female-to-male rate of 2:1. Gait disturbance and weakness and stiffness of the lower limbs are common presenting signs and symptoms of HAM. Lower extremities are affected to a much greater degree than upper extremities. Spasticity may be moderate to severe, and lower back pain is common. As the disease progresses, bladder and bowel dysfunction can occur. Sensory involvement is generally mild and can result in a variable degree of sensory loss and dysesthesia. Results of magnetic resonance imaging may be normal, or the scans show atrophy of the spinal cord and nonspecific lesions in the brain. Immunologic evidence suggests that an immune mechanism may play a role in the development of HAM. There is no effective treatment for the myelopathy. Corticosteroids, and INF-gamma may produce transient responses. Danazol, an anabolic steroid, does not improve gait and bladder function. The value of zidovudine (anti-retroviral agent in the treatment has not been defined yet.

  17. Modelling the Impact of Cell-To-Cell Transmission in Hepatitis B Virus

    Science.gov (United States)

    2016-01-01

    Cell-free virus is a well-recognized and efficient mechanism for the spread of hepatitis B virus (HBV) infection in the liver. Cell-to-cell transmission (CCT) can be a more efficient means of virus propagation. Despite experimental evidence implying CCT occurs in HBV, its relative impact is uncertain. We develop a 3-D agent-based model where each hepatocyte changes its viral state according to a dynamical process driven by cell-free virus infection, CCT and intracellular replication. We determine the relative importance of CCT in the development and resolution of acute HBV infection in the presence of cytolytic (CTL) and non-CTL mechanisms. T cell clearance number is defined as the minimum number of infected cells needed to be killed by each T cell at peak infection that results in infection clearance within 12 weeks with hepatocyte turnover (HT, number of equivalent livers) ≤3. We find that CCT has very little impact on the establishment of infection as the mean cccDNA copies/cell remains between 15 to 20 at the peak of the infection regardless of CCT strength. In contrast, CCT inhibit immune-mediated clearance of acute HBV infection as higher CCT strength requires higher T cell clearance number and increases the probability of T cell exhaustion. An effective non-CTL inhibition can counter these negative effects of higher strengths of CCT by supporting rapid, efficient viral clearance and with little liver destruction. This is evident as the T cell clearance number drops by approximately 50% when non-CTL inhibition is increased from 10% to 80%. Higher CCT strength also increases the probability of the incidence of fulminant hepatitis with this phenomenon being unlikely to arise for no CCT. In conclusion, we report the possibility of CCT impacting HBV clearance and its contribution to fulminant hepatitis. PMID:27560827

  18. Asthma and influenza virus infection:focusing on cell death and stress pathways in influenza virus replication.

    OpenAIRE

    2013-01-01

    Asthma is one of the fastest growing syndromes in many countries and is adding a huge cost to the health care system. Increasing reports have linked airway infectious diseases to asthma. Influenza is one of the most serious airway infectious diseases and in recent years there have been some serious influenza virus pandemics which caused increased fatality in numerous different populations. Diverse host response pathways during virus infection have been identified, including different cell dea...

  19. Antibodies against analogous heptad repeat peptide HR212 of Newcastle Disease Virus inhibit virus-cell membrane fusion

    Institute of Scientific and Technical Information of China (English)

    LI Ying; TIEN Po

    2007-01-01

    Membrane fusion is a key step in enveloped virus entry. Highly conserved heptad repeat regions (HR1 and HR2) of Newcastle disease virus (NDV) fusion protein (F) are critical functional domains for viral membrane fusion. They display different conformations in the membrane fusion states and are viewed as candidate targets for neutralizing antibody responses. We previously reported that an analog of heptad repeat peptides HR2-HR1-HR2(HR212) and HR2 could inhibit NDV induced cell-cell membrane fusion. Here, we show that HR212 can induce the production of highly potent antibody in immunized rabbits, which could recognize full length peptides of both HR1 and HR2, and inhibit NDV hemagglutination and NDV entry. These suggest that either HR212 or its antibody could be an inhibitor of virus-induced cell-cell membrane fusion.

  20. Efficient Hepatitis Delta Virus RNA Replication in Avian Cells Requires a Permissive Factor(s) from Mammalian Cells

    OpenAIRE

    Liu, Yu-Tsueng; Brazas, Rob; Ganem, Don

    2001-01-01

    Hepatitis delta virus (HDV) is a highly pathogenic human RNA virus whose genome is structurally related to those of plant viroids. Although its spread from cell to cell requires helper functions supplied by hepatitis B virus (HBV), intracellular HDV RNA replication can proceed in the absence of HBV proteins. As HDV encodes no RNA-dependent RNA polymerase, the identity of the (presumably cellular) enzyme responsible for this reaction remains unknown. Here we show that, in contrast to mammalian...

  1. Inter-laboratory comparison of cell lines for susceptibility to three viruses: VHSV, IHNV and IPNV

    DEFF Research Database (Denmark)

    Lorenzen, Ellen; Carstensen, Bendix; Olesen, Niels Jørgen

    1999-01-01

    Eleven European National Reference Laboratories participated in an inter-laboratory comparison of the susceptibility of 5 selected cell lines to 3 fish pathogenic viruses. The test included viral hemorrhagic septicaemia virus (VHSV), infectious hematopoietic necrosis virus (IHNV) and infectious...... pancreatic necrosis Virus (IPNV), and the cell lines derived from bluegill fry (BF-2), chinook salmon embryo (CHSE-214), epithelioma papulosum cyprini (EPC), fathead minnow (FHM) and rainbow trout gonad (RTG-2). The results showed that for isolation of VHSV, BF-2 and RTG-2 cells performed equally well...

  2. CXCL10 and trafficking of virus-specific T cells during coronavirus-induced demyelination.

    Science.gov (United States)

    Stiles, Linda N; Liu, Michael T; Kane, Joy A C; Lane, Thomas E

    2009-09-01

    Chronic expression of CXC chemokine ligand 10 (CXCL10) in the central nervous system (CNS) following infection with the neurotropic JHM strain of mouse hepatitis virus (JHMV) is associated with an immune-mediated demyelinating disease. Treatment of mice with anti-CXCL10 neutralizing antibody results in limited CD4+ T cell infiltration into the CNS accompanied by a reduction in white matter damage. The current study determines the antigen-specificity of the T lymphocytes present during chronic disease and evaluates how blocking CXCL10 signaling affects retention of virus-specific T cells within the CNS. CXCL10 neutralization selectively reduced accumulation and/or retention of virus-specific CD4+ T cells, yet exhibited limited effect on virus-specific CD8+ T cells. The response of CXCL10 neutralization on virus-specific T cell subsets is not due to differential expression of the CXCL10 receptor CXCR3 on T cells as there was no appreciable difference in receptor expression on virus-specific T cells during either acute or chronic disease. These findings emphasize the importance of virus-specific CD4+ T cells in amplifying demyelination in JHMV-infected mice. In addition, differential signals are required for trafficking and retention of virus-specific CD4+ and CD8+ T cells during chronic demyelination in JHMV-infected mice.

  3. Canine distemper virus epithelial cell infection is required for clinical disease but not for immunosuppression.

    Science.gov (United States)

    Sawatsky, Bevan; Wong, Xiao-Xiang; Hinkelmann, Sarah; Cattaneo, Roberto; von Messling, Veronika

    2012-04-01

    To characterize the importance of infection of epithelial cells for morbillivirus pathogenesis, we took advantage of the severe disease caused by canine distemper virus (CDV) in ferrets. To obtain a CDV that was unable to enter epithelial cells but retained the ability to enter immune cells, we transferred to its attachment (H) protein two mutations shown to interfere with the interaction of measles virus H with its epithelial receptor, human nectin-4. As expected for an epithelial receptor (EpR)-blind CDV, this virus infected dog and ferret epithelial cells inefficiently and did not cause cell fusion or syncytium formation. On the other hand, the EpR-blind CDV replicated in cells expressing canine signaling lymphocyte activation molecule (SLAM), the morbillivirus immune cell receptor, with similar kinetics to those of wild-type CDV. While ferrets infected with wild-type CDV died within 12 days after infection, after developing severe rash and fever, animals infected with the EpR-blind virus showed no clinical signs of disease. Nevertheless, both viruses spread rapidly and efficiently in immune cells, causing similar levels of leukopenia and inhibition of lymphocyte proliferation activity, two indicators of morbillivirus immunosuppression. Infection was documented for airway epithelia of ferrets infected with wild-type CDV but not for those of animals infected with the EpR-blind virus, and only animals infected with wild-type CDV shed virus. Thus, epithelial cell infection is necessary for clinical disease and efficient virus shedding but not for immunosuppression.

  4. Reconstitution of the Entire Hepatitis C Virus Life Cycle in Nonhepatic Cells

    OpenAIRE

    Da Costa, Daniel; Turek, Marine; Felmlee, Daniel,; Girardi, Erika; Pfeffer, Sébastien; Long, Gang; Bartenschlager, Ralf; Zeisel, Mirjam,; Baumert, Thomas,

    2012-01-01

    International audience; Hepatitis C virus (HCV) is a human hepatotropic virus, yet the relevant host factors restricting HCV infection to hepatocytes are only partially understood. We demonstrate that exogenous expression of defined host factors reconstituted the entire HCV life cycle in human non-hepatic 293T cells. This study shows robust HCV entry, RNA replication, and production of infectious virus in human non-hepatic cells, and highlights key host factors required for liver tropism of HCV.

  5. High Permissivity of Human HepG2 Hepatoma Cells for Influenza Viruses

    OpenAIRE

    Ollier, Laurence; Caramella, Anne; Giordanengo, Valérie; Lefebvre, Jean-Claude

    2004-01-01

    Human HepG2 hepatoma cells are highly permissive for influenza virus type A and type B, even without the addition of trypsin, and they exhibit a marked cytopathic effect. This property greatly facilitates the primary isolation of influenza viruses. Virus replication was significantly reduced by the plasmin(ogen)-specific inhibitor tranexamic acid, and this suggests a potential role played by the plasminogen/tissue plasminogen activator complex at the surface of HepG2 cells. This might represe...

  6. Acylated simian virus 40-specific proteins in the plasma membrane of HeLa cells infected with adenovirus 2-simian virus 40 hybrid virus Ad2+ND2

    Energy Technology Data Exchange (ETDEWEB)

    Klockmann, U.; Deppert, W.

    1983-04-30

    HeLa cells infected with the adenovirus 2-simian virus 40 (Ad2+SV40) hybrid virus Ad2+ND2 were labeled with either (/sup 35/S)methionine or (/sup 3/H)palmitate and fractionated into cytoplasmic, nuclear, and plasma membrane fractions. Analysis of these fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the SV40-specific proteins in the plasma membrane fraction were specificially acylated.

  7. Extrahepatic manifestations in chronic hepatitis C virus carriers.

    Science.gov (United States)

    Rosenthal, E; Cacoub, P

    2015-04-01

    Patients with chronic hepatitis C virus (HCV) infection frequently present with extrahepatic manifestations covering a large spectrum, involving different organ systems leading to the concept of systemic HCV infection. These manifestations include autoimmune phenomena and frank autoimmune and/or rheumatic diseases and may dominate the course of chronic HCV infection. Chronic HCV infection causes liver inflammation affecting the development of hepatic diseases. HCV is also a lymphotropic virus that triggers B cells and promotes favorable conditions for B lymphocyte proliferation, including mixed cryoglobulinemia (MC) and MC vasculitis, which is the most prominent extrahepatic manifestation of chronic HCV infection. HCV may also promote a low-grade chronic systemic inflammation that may affect the development of some extrahepatic manifestations, particularly cardiovascular and cerebral vascular diseases. Recognition of extrahepatic symptoms of HCV infection could facilitate early diagnosis and treatment. The development of direct-acting antiviral agents (DDAs) has revolutionized HCV treatment. DDAs, as well as new B-cell-depleting or B-cell-modulating monoclonal antibodies, will expand the panorama of treatment options for HCV-related extrahepatic manifestations including cryoglobulinemic vasculitis. In this context, a proactive, integrated approach to HCV therapy should maximize the benefits of HCV therapy, even when liver disease is mild.

  8. The receptors for gibbon ape leukemia virus and amphotropic murine leukemia virus are not downregulated in productively infected cells

    Directory of Open Access Journals (Sweden)

    Eiden Maribeth V

    2011-07-01

    Full Text Available Abstract Background Over the last several decades it has been noted, using a variety of different methods, that cells infected by a specific gammaretrovirus are resistant to infection by other retroviruses that employ the same receptor; a phenomenon termed receptor interference. Receptor masking is thought to provide an earlier means of blocking superinfection, whereas receptor down regulation is generally considered to occur in chronically infected cells. Results We used replication-competent GFP-expressing viruses containing either an amphotropic murine leukemia virus (A-MLV or the gibbon ape leukemia virus (GALV envelope. We also constructed similar viruses containing fluorescence-labeled Gag proteins for the detection of viral particles. Using this repertoire of reagents together with a wide range of antibodies, we were able to determine the presence and availability of viral receptors, and detect viral envelope proteins and particles presence on the cell surface of chronically infected cells. Conclusions A-MLV or GALV receptors remain on the surface of chronically infected cells and are detectable by respective antibodies, indicating that these receptors are not downregulated in these infected cells as previously proposed. We were also able to detect viral envelope proteins on the infected cell surface and infected cells are unable to bind soluble A-MLV or GALV envelopes indicating that receptor binding sites are masked by endogenously expressed A-MLV or GALV viral envelope. However, receptor masking does not completely prevent A-MLV or GALV superinfection.

  9. Cell-mediated infection of cervix derived epithelial cells with primary isolates of human immunodeficiency virus.

    Science.gov (United States)

    Tan, X; Phillips, D M

    1996-01-01

    We have previously demonstrated that HIV-infected transformed T-cells or monocytes adhere to monolayers of CD4-negative epithelial cells. Adhesion is soon followed by budding of HIV from infected mononuclear cells onto the surface of epithelial cells. Epithelial cells subsequently take up virus and become productively infected. Based on these findings, we proposed that sexual transmission of HIV may involve cell-mediated infection of intact mucosal epithelia of the urogenital tract. However, it has become increasingly clear that primary cells and HIV strains isolated from patients are more appropriate models for HIV infection than established cell lines and lab strains of virus. In the studies described here, we infected cervix-derived epithelial monolayers with primary monocytes infected with patient isolates of non-syncytial inducing (NSI) macrophage-tropic strains of HIV. Under the culture conditions employed, HIV-infected primary monocytes do not remain adherent to the apical surface of the epithelium, as did HIV-infected transformed cells. Instead, following adherence, the primary cells migrate between epithelial cells. Virus is secreted from a pseudopod as HIV-infected primary monocytes pass between cells of the epithelium. Productive infection of the epithelium was detected by p24 ELISA and PCR Southern blot analysis. Infection can be blocked by sera from HIV-seropositive individuals or by certain sulfated polysaccharides. These findings support the supposition that transmission of HIV may occur via cell-mediated infection of intact epithelia. The observations also hint at the possibility that-HIV-infected monocyte/macrophages in semen or cervical-vaginal secretions could cross intact epithelia by passing between epithelial cells. Blocking studies suggest that it may be possible to inhibit sexual transmission of HIV either by antibodies in genital tract secretions or by a topical formulation containing certain sulfated polysaccharides.

  10. Orsay, Santeuil and Le Blanc viruses primarily infect intestinal cells in Caenorhabditis nematodes.

    Science.gov (United States)

    Franz, Carl J; Renshaw, Hilary; Frezal, Lise; Jiang, Yanfang; Félix, Marie-Anne; Wang, David

    2014-01-05

    The discoveries of Orsay, Santeuil and Le Blanc viruses, three viruses infecting either Caenorhabditis elegans or its relative Caenorhabditis briggsae, enable the study of virus-host interactions using natural pathogens of these two well-established model organisms. We characterized the tissue tropism of infection in Caenorhabditis nematodes by these viruses. Using immunofluorescence assays targeting proteins from each of the viruses, and in situ hybridization, we demonstrate viral proteins and RNAs localize to intestinal cells in larval stage Caenorhabditis nematodes. Viral proteins were detected in one to six of the 20 intestinal cells present in Caenorhabditis nematodes. In Orsay virus-infected C. elegans, viral proteins were detected as early as 6h post-infection. The RNA-dependent RNA polymerase and capsid proteins of Orsay virus exhibited different subcellular localization patterns. Collectively, these observations provide the first experimental insights into viral protein expression in any nematode host, and broaden our understanding of viral infection in Caenorhabditis nematodes.

  11. Host cell kinases and the hepatitis C virus life cycle.

    Science.gov (United States)

    Colpitts, Che C; Lupberger, Joachim; Doerig, Christian; Baumert, Thomas F

    2015-10-01

    Hepatitis C virus (HCV) infection relies on virus-host interactions with human hepatocytes, a context in which host cell kinases play critical roles in every step of the HCV life cycle. During viral entry, cellular kinases, including EGFR, EphA2 and PKA, regulate the localization of host HCV entry factors and induce receptor complex assembly. Following virion internalization, viral genomes replicate on endoplasmic reticulum-derived membranous webs. The formation of membranous webs depends on interactions between the HCV NS5a protein and PI4KIIIα. The phosphorylation status of NS5a, regulated by PI4KIIIα, CKI and other kinases, also acts as a molecular switch to virion assembly, which takes place on lipid droplets. The formation of lipid droplets is enhanced by HCV activation of IKKα. In view of the multiple crucial steps in the viral life cycle that are mediated by host cell kinases, these enzymes also represent complementary targets for antiviral therapy. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.

  12. Hepatitis C virus and host cell lipids: an intimate connection.

    Science.gov (United States)

    Alvisi, Gualtiero; Madan, Vanesa; Bartenschlager, Ralf

    2011-01-01

    Hepatitis C virus (HCV) is a major human pathogen, persistently infecting more than 170 million individuals worldwide. The recent establishment of fully permissive culture systems allowed unraveling the close link between host cell lipids and HCV, at each step of the viral replication cycle. HCV entry is triggered by the timely coordinated interaction of virus particles with cell surface receptors, including the low-density lipoprotein receptor. Viral RNA replication strictly depends on fatty acids and cholesterol biosynthesis. This process occurs on modified intracellular membranes, forming a membranous web. Their biogenesis is induced by the viral nonstructural proteins (NS) 4B and NS5A and requires the activity of cellular lipid kinases belonging to the phosphatidylinositol-4-kinase III family. A hallmark of HCV-induced membranes is thus the presence of phosphatidylinositol-4-phosphate (PI4P), which is synthesized by these kinases. Intriguingly, certain recently identified HCV dependency factors selectively bind to PI derivatives, suggesting a crucial role for PIPs in viral RNA replication and assembly. The latter occurs on the surface of lipid droplets and is tightly connected to the very low density lipoprotein pathway leading to the formation of unique lipoviro particles. Thus, HCV exploits lipid metabolism in many ways and may therefore serve as a model system to gain insights into membrane biogenesis, lipid droplet formation and lipid trafficking.

  13. MUC1 in human milk blocks transmission of human immunodeficiency virus from dendritic cells to T cells

    NARCIS (Netherlands)

    Saeland, E.; Jong, de M.A.W.P.; Nabatov, A.; Kalay, H.; Kooijk, van Y.; Geijtenbeek, T.B.H.

    2009-01-01

    Mother-to-child transmission of human immunodeficiency virus-1 (HIV-1) occurs frequently via breast-feeding. HIV-1 targets DC-SIGN+ dendritic cells (DCs) in mucosal areas that allow efficient transmission of the virus to T cells. Here, we demonstrate that the epithelial mucin MUC1, abundant in milk,

  14. Effect of the infectious laryngotracheitis virus (ILTV) glycoprotein G on virus attachment, penetration, growth curve and direct cell-to-cell spread

    Institute of Scientific and Technical Information of China (English)

    SUN Zhaogang; ZHANG Manfu

    2005-01-01

    The secreted alphaherpesvirus glycoprotein G (gG) works differently from other proteins. Analysis of the role of ILTV gG in virus attachment, penetration, direct cell-to-cell spread (CTCS) and the growth curve showed that gG or its antibody had no effect on ILTV attachment and penetration and that the gG antibody reduced the virus plaque size and the one-step growth curve on chicken embryo liver (CEL) cells, but gG did not affect the virus plaque size or the one-step growth curve on CEL cells. Laser scanning confocal microscopy (LSCM) detection showed that ILTV gG is located in the perinuclear region and the membrane of the CEL cells. These results suggested that ILTV gG might contribute to direct cell-to-cell transmission.

  15. Quantitative proteome profiling of respiratory virus-infected lung epithelial cells.

    Science.gov (United States)

    van Diepen, Angela; Brand, H Kim; Sama, Iziah; Lambooy, Lambert H J; van den Heuvel, Lambert P; van der Well, Leontine; Huynen, Martijn; Osterhaus, Albert D M E; Andeweg, Arno C; Hermans, Peter W M

    2010-08-05

    Respiratory virus infections are among the primary causes of morbidity and mortality in humans. Influenza virus, respiratory syncytial virus (RSV), parainfluenza (PIV) and human metapneumovirus (hMPV) are major causes of respiratory illness in humans. Especially young children and the elderly are susceptible to infections with these viruses. In this study we aim to gain detailed insight into the molecular pathogenesis of respiratory virus infections by studying the protein expression profiles of infected lung epithelial cells. A549 cells were exposed to a set of respiratory viruses [RSV, hMPV, PIV and Measles virus (MV)] using both live and UV-inactivated virus preparations. Cells were harvested at different time points after infection and processed for proteomics analysis by 2-dimensional difference gel electrophoresis. Samples derived from infected cells were compared to mock-infected cells to identify proteins that are differentially expressed due to infection. We show that RSV, hMPV, PIV3, and MV induced similar core host responses and that mainly proteins involved in defense against ER stress and apoptosis were affected which points towards an induction of apoptosis upon infection. By 2-D DIGE analyses we have gathered information on the induction of apoptosis by respiratory viruses in A549 cells.

  16. In vitro selection of high-infectious, leukemogenic virus from low-infectious, non-leukemogenic type C virus from a malignant ST/a mouse cell line

    DEFF Research Database (Denmark)

    Willumsen, B M

    1979-01-01

    -leukemogenic, whereas the NB-tropic virus selected from this after passage in BALB/3T3 or NIH/3T3 cells was highly leukemogenic. Viruses isolated from leukemic animals were indistinguishable with respect to host range and protein mobilities in SDS gels from the ones with which the mice were inoculated. Although the SC......; however, virus was detected in supernatant fluids only after two to four subcultures of the infected cells. The virus thus produced was XC(+) and a large plaque former. The virus released from infected SC-1 cells was N-tropic, whereas the viruses from infected NIH/3T3 and BALB/3T3 cells were NB...... nanogram of p30, was 30- to 60-fold lower for the virus released from the ST-L1 cell line than that of the viruses after passage in SC-1, NIH/3T3, and BALB/3T3 cells. None of the viruses could infect rabbit or mink cells. Inoculation of the viruses into newborn mice showed that the ST-L1 virus was non...

  17. Dendritic cells in dengue virus infection: Targets of virus replication and mediators of immunity

    Directory of Open Access Journals (Sweden)

    Michael A. Schmid

    2014-12-01

    Full Text Available Dendritic cells (DCs are sentinels of the immune system and detect pathogens at sites of entry, such as the skin. In addition to the ability of DCs to control infections directly via their innate immune functions, DCs help to prime adaptive B and T cell responses via antigen presentation in lymphoid tissues. Infected Aedes aegypti or Ae. albopictus mosquitoes transmit the four dengue virus (DENV serotypes to humans while probing for small blood vessels in the skin. DENV causes the most prevalent arthropod-borne viral disease in humans, yet no vaccine or specific therapeutic is currently approved. Although primary DENV infection confers life-long protective immunity against re-infection with the same DENV serotype, secondary infection with a different DENV serotype can lead to increased disease severity via cross-reactive T cells or enhancing antibodies. This review summarizes recent findings in humans and animal models about DENV infection of DCs, monocytes and macrophages. We discuss the dual role of DCs as both targets of DENV replication and mediators of innate and adaptive immunity, and summarize immune evasion strategies whereby DENV impairs the function of infected DCs. We suggest that DCs play a key role in priming DENV-specific neutralizing or potentially harmful memory B and T cell responses, and that future DC-directed therapies may help induce protective memory responses and reduce dengue pathogenesis.

  18. The ex vivo purge of cancer cells using oncolytic viruses: recent advances and clinical implications

    Directory of Open Access Journals (Sweden)

    Tsang JJ

    2015-01-01

    Full Text Available Jovian J Tsang,1,2 Harold L Atkins2,3 1Department of Biochemistry, University of Ottawa, 2Cancer Therapeutics, Ottawa Hospital Research Institute, 3Blood and Marrow Transplant Program, The Ottawa Hospital, Ottawa, ON, Canada Abstract: Hematological malignancies are treated with intensive high-dose chemotherapy, with or without radiation. This is followed by hematopoietic stem cell (HSC transplantation (HSCT to rescue or reconstitute hematopoiesis damaged by the anticancer therapy. Autologous HSC grafts may contain cancer cells and purging could further improve treatment outcomes. Similarly, allogeneic HSCT may be improved by selectively purging alloreactive effector cells from the graft rather than wholesale immune cell depletion. Viral agents that selectively replicate in specific cell populations are being studied in experimental models of cancer and immunological diseases and have potential applications in the context of HSC graft engineering. This review describes preclinical studies involving oncolytic virus strains of adenovirus, herpes simplex virus type 1, myxoma virus, and reovirus as ex vivo purging agents for HSC grafts, as well as in vitro and in vivo experimental studies using oncolytic coxsackievirus, measles virus, parvovirus, vaccinia virus, and vesicular stomatitis virus to eradicate hematopoietic malignancies. Alternative ex vivo oncolytic virus strategies are also outlined that aim to reduce the risk of relapse following autologous HSCT and mitigate morbidity and mortality due to graft-versus-host disease in allogeneic HSCT. Keywords: hematopoietic stem cells, oncolytic virus, hematopoietic stem cell transplantation, stem cell graft purging, hematopoietic malignancy, graft vs host disease

  19. Expression of Factor X in BHK-21 Cells Promotes Low Pathogenic Influenza Viruses Replication

    Directory of Open Access Journals (Sweden)

    Shahla Shahsavandi

    2015-01-01

    Full Text Available A cDNA clone for factor 10 (FX isolated from chicken embryo inserted into the mammalian cell expression vector pCDNA3.1 was transfected into the baby hamster kidney (BHK-21 cell line. The generated BHK-21 cells with inducible expression of FX were used to investigate the efficacy of the serine transmembrane protease to proteolytic activation of influenza virus hemagglutinin (HA with monobasic cleavage site. Data showed that the BHK-21/FX stably expressed FX after ten serial passages. The cells could proteolytically cleave the HA of low pathogenic avian influenza virus at multiplicity of infection 0.01. Growth kinetics of the virus on BHK-21/FX, BHK-21, and MDCK cells were evaluated by titrations of virus particles in each culture supernatant. Efficient multicycle viral replication was markedly detected in the cell at subsequent passages. Virus titration demonstrated that BHK-21/FX cell supported high-titer growth of the virus in which the viral titer is comparable to the virus grown in BHK-21 or MDCK cells with TPCK-trypsin. The results indicate potential application for the BHK-21/FX in influenza virus replication procedure and related studies.

  20. Inhibition of Mayaro virus replication by cerulenin in Aedes albopictus cells.

    Science.gov (United States)

    Pereira, H S; Rebello, M A

    1998-12-01

    The antibiotic cerulenin, an inhibitor of lipid synthesis, was shown to suppress Mayaro virus replication in Aedes albopictus cells at non-cytotoxic doses. Cerulenin blocked the incorporation of [3H]glycerol into lipids when present at any time post infection (p.i.). Cerulenin added at the beginning of infection inhibited the synthesis of virus proteins. However, when this antibiotic was added at later stages of infection, it had only a mild effect on the virus protein synthesis. The possibility that cerulenin acts by blocking an initial step in the Mayaro virus replication after virus entry and before late viral translation is discussed.

  1. Vaccinia virus infection attenuates innate immune responses and antigen presentation by epidermal dendritic cells.

    Science.gov (United States)

    Deng, Liang; Dai, Peihong; Ding, Wanhong; Granstein, Richard D; Shuman, Stewart

    2006-10-01

    Langerhans cells (LCs) are antigen-presenting cells in the skin that play sentinel roles in host immune defense by secreting proinflammatory molecules and activating T cells. Here we studied the interaction of vaccinia virus with XS52 cells, a murine epidermis-derived dendritic cell line that serves as a surrogate model for LCs. We found that vaccinia virus productively infects XS52 cells, yet this infection displays an atypical response to anti-poxvirus agents. Whereas adenosine N1-oxide blocked virus production and viral protein synthesis during a synchronous infection, cytosine arabinoside had no effect at concentrations sufficient to prevent virus replication in BSC40 monkey kidney cells. Vaccinia virus infection of XS52 cells not only failed to elicit the production of various cytokines, including tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta), IL-6, IL-10, IL-12 p40, alpha interferon (IFN-alpha), and IFN-gamma, it actively inhibited the production of proinflammatory cytokines TNF-alpha and IL-6 by XS52 cells in response to exogenous lipopolysaccharide (LPS) or poly(I:C). Infection with a vaccinia virus mutant lacking the E3L gene resulted in TNF-alpha secretion in the absence of applied stimuli. Infection of XS52 cells or BSC40 cells with the DeltaE3L virus, but not wild-type vaccinia virus, triggered proteolytic decay of IkappaBalpha. These results suggest a novel role for the E3L protein as an antagonist of the NF-kappaB signaling pathway. DeltaE3L-infected XS52 cells secreted higher levels of TNF-alpha and IL-6 in response to LPS and poly(I:C) than did cells infected with the wild-type virus. XS52 cells were productively infected by a vaccinia virus mutant lacking the K1L gene. DeltaK1L-infected cells secreted higher levels of TNF-alpha and IL-6 in response to LPS than wild-type virus-infected cells. Vaccinia virus infection of primary LCs harvested from mouse epidermis was nonpermissive, although a viral reporter protein was

  2. The V domain of dog PVRL4 (nectin-4) mediates canine distemper virus entry and virus cell-to-cell spread

    Energy Technology Data Exchange (ETDEWEB)

    Delpeut, Sebastien; Noyce, Ryan S. [The Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5 (Canada); IWK Health Centre, Canadian Center for Vaccinology, Goldbloom Pavilion, Halifax, Nova Scotia, Canada B3H 1X5 (Canada); Richardson, Christopher D., E-mail: chris.richardson@dal.ca [The Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5 (Canada); IWK Health Centre, Canadian Center for Vaccinology, Goldbloom Pavilion, Halifax, Nova Scotia, Canada B3H 1X5 (Canada); The Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia (Canada)

    2014-04-15

    The entry of canine distemper virus (CDV) is a multistep process that involves the attachment of CDV hemagglutinin (H) to its cellular receptor, followed by fusion between virus and cell membranes. Our laboratory recently identified PVRL4 (nectin-4) to be the epithelial receptor for measles and canine distemper viruses. In this study, we demonstrate that the V domain of PVRL4 is critical for CDV entry and virus cell-to-cell spread. Furthermore, four key amino acid residues within the V domain of dog PVRL4 and two within the CDV hemagglutinin were shown to be essential for receptor-mediated virus entry. - Highlights: • PVRL4 (nectin-4) is the epithelial cell receptor for measles and canine distemper viruses. • V domain of PVRL4 is critical for CDV entry, cell-to-cell spread, and syncytia formation. • Chimeric PVRL1 backbone substituted with the V domain of PVRL4 can function as a receptor. • Amino acids (F132/P133/A134/G135) within the V domain are essential for PVRL4 receptor activity. • Amino acids (P493/Y539) within CDV H protein are essential for PVRL4 receptor interaction.

  3. Nanomechanical mapping of first binding steps of a virus to animal cells

    Science.gov (United States)

    Alsteens, David; Newton, Richard; Schubert, Rajib; Martinez-Martin, David; Delguste, Martin; Roska, Botond; Müller, Daniel J.

    2016-10-01

    Viral infection is initiated when a virus binds to cell surface receptors. Because the cell membrane is dynamic and heterogeneous, imaging living cells and simultaneously quantifying the first viral binding events is difficult. Here, we show an atomic force and confocal microscopy set-up that allows the surface receptor landscape of cells to be imaged and the virus binding events within the first millisecond of contact with the cell to be mapped at high resolution (virus and cell surface receptors. We find that the first bond formed between the viral glycoprotein and its cognate cell surface receptor has relatively low lifetime and free energy, but this increases as additional bonds form rapidly (≤1 ms). The formation of additional bonds occurs with positive allosteric modulation and the three binding sites of the viral glycoprotein are quickly occupied. Our quantitative approach can be readily applied to study the binding of other viruses to animal cells.

  4. Fluorescent Protein-Tagged Sindbis Virus E2 Glycoprotein Allows Single Particle Analysis of Virus Budding from Live Cells

    Directory of Open Access Journals (Sweden)

    Joyce Jose

    2015-11-01

    Full Text Available Sindbis virus (SINV is an enveloped, mosquito-borne alphavirus. Here we generated and characterized a fluorescent protein-tagged (FP-tagged SINV and found that the presence of the FP-tag (mCherry affected glycoprotein transport to the plasma membrane whereas the specific infectivity of the virus was not affected. We examined the virions by transmission electron cryo-microscopy and determined the arrangement of the FP-tag on the surface of the virion. The fluorescent proteins are arranged icosahedrally on the virus surface in a stable manner that did not adversely affect receptor binding or fusion functions of E2 and E1, respectively. The delay in surface expression of the viral glycoproteins, as demonstrated by flow cytometry analysis, contributed to a 10-fold reduction in mCherry-E2 virus titer. There is a 1:1 ratio of mCherry to E2 incorporated into the virion, which leads to a strong fluorescence signal and thus facilitates single-particle tracking experiments. We used the FP-tagged virus for high-resolution live-cell imaging to study the spatial and temporal aspects of alphavirus assembly and budding from mammalian cells. These processes were further analyzed by thin section microscopy. The results demonstrate that SINV buds from the plasma membrane of infected cells and is dispersed into the surrounding media or spread to neighboring cells facilitated by its close association with filopodial extensions.

  5. Fluorescent Protein-Tagged Sindbis Virus E2 Glycoprotein Allows Single Particle Analysis of Virus Budding from Live Cells.

    Science.gov (United States)

    Jose, Joyce; Tang, Jinghua; Taylor, Aaron B; Baker, Timothy S; Kuhn, Richard J

    2015-12-01

    Sindbis virus (SINV) is an enveloped, mosquito-borne alphavirus. Here we generated and characterized a fluorescent protein-tagged (FP-tagged) SINV and found that the presence of the FP-tag (mCherry) affected glycoprotein transport to the plasma membrane whereas the specific infectivity of the virus was not affected. We examined the virions by transmission electron cryo-microscopy and determined the arrangement of the FP-tag on the surface of the virion. The fluorescent proteins are arranged icosahedrally on the virus surface in a stable manner that did not adversely affect receptor binding or fusion functions of E2 and E1, respectively. The delay in surface expression of the viral glycoproteins, as demonstrated by flow cytometry analysis, contributed to a 10-fold reduction in mCherry-E2 virus titer. There is a 1:1 ratio of mCherry to E2 incorporated into the virion, which leads to a strong fluorescence signal and thus facilitates single-particle tracking experiments. We used the FP-tagged virus for high-resolution live-cell imaging to study the spatial and temporal aspects of alphavirus assembly and budding from mammalian cells. These processes were further analyzed by thin section microscopy. The results demonstrate that SINV buds from the plasma membrane of infected cells and is dispersed into the surrounding media or spread to neighboring cells facilitated by its close association with filopodial extensions.

  6. Bat airway epithelial cells: a novel tool for the study of zoonotic viruses.

    Directory of Open Access Journals (Sweden)

    Isabella Eckerle

    Full Text Available Bats have been increasingly recognized as reservoir of important zoonotic viruses. However, until now many attempts to isolate bat-borne viruses in cell culture have been unsuccessful. Further, experimental studies on reservoir host species have been limited by the difficulty of rearing these species. The epithelium of the respiratory tract plays a central role during airborne transmission, as it is the first tissue encountered by viral particles. Although several cell lines from bats were established recently, no well-characterized, selectively cultured airway epithelial cells were available so far. Here, primary cells and immortalized cell lines from bats of the two important suborders Yangochiroptera and Yinpterochiroptera, Carollia perspicillata (Seba's short-tailed bat and Eidolon helvum (Straw-colored fruit bat, were successfully cultured under standardized conditions from both fresh and frozen organ specimens by cell outgrowth of organ explants and by the use of serum-free primary cell culture medium. Cells were immortalized to generate permanent cell lines. Cells were characterized for their epithelial properties such as expression of cytokeratin and tight junctions proteins and permissiveness for viral infection with Rift-Valley fever virus and vesicular stomatitis virus Indiana. These cells can serve as suitable models for the study of bat-borne viruses and complement cell culture models for virus infection in human airway epithelial cells.

  7. Acute Myeloid Leukemia Targeting by Myxoma Virus In Vivo Depends on Cell Binding But Not Permissiveness to Infection In Vitro

    OpenAIRE

    Madlambayan, Gerard J.; Bartee, Eric; Kim, Manbok; Rahman, Masmudur M.; Meacham, Amy; Scott, Edward W.; McFadden, Grant; Cogle, Christopher R.

    2012-01-01

    Some oncolytic viruses, such as myxoma virus (MYXV), can selectively target malignant hematopoietic cells, while sparing normal hematopoietic cells. This capacity for discrimination creates an opportunity to use oncolytic viruses as ex vivo purging agents of autologous hematopoietic cell grafts in patients with hematologic malignancies. However, the mechanisms by which oncolytic viruses select malignant hematopoietic cells are poorly understood. In this study, we investigated how MYXV specifi...

  8. Virus and Bacterial Cell Chemical Analysis by NanoSIMS

    Energy Technology Data Exchange (ETDEWEB)

    Weber, P; Holt, J

    2008-07-28

    In past work for the Department of Homeland Security, the LLNL NanoSIMS team has succeeded in extracting quantitative elemental composition at sub-micron resolution from bacterial spores using nanometer-scale secondary ion mass spectrometry (NanoSIMS). The purpose of this task is to test our NanoSIMS capabilities on viruses and bacterial cells. This initial work has proven successful. We imaged Tobacco Mosaic Virus (TMV) and Bacillus anthracis Sterne cells using scanning electron microscopy (SEM) and then analyzed those samples by NanoSIMS. We were able resolve individual viral particles ({approx}18 nm by 300 nm) in the SEM and extract correlated elemental composition in the NanoSIMS. The phosphorous/carbon ratio observed in TMV is comparable to that seen in bacterial spores (0.033), as was the chlorine/carbon ratio (0.11). TMV elemental composition is consistent from spot to spot, and TMV is readily distinguished from debris by NanoSIMS analysis. Bacterial cells were readily identified in the SEM and relocated in the NanoSIMS for elemental analysis. The Ba Sterne cells were observed to have a measurably lower phosphorous/carbon ratio (0.005), as compared to the spores produced in the same run (0.02). The chlorine/carbon ratio was approximately 2.5X larger in the cells (0.2) versus the spores (0.08), while the fluorine/carbon ratio was approximately 10X lower in the cells (0.008) than the spores (0.08). Silicon/carbon ratios for both cells and spores encompassed a comparable range. The initial data in this study suggest that high resolution analysis is useful because it allows the target agent to be analyzed separate from particulates and other debris. High resolution analysis would also be useful for trace sample analysis. The next step in this work is to determine the potential utility of elemental signatures in these kinds of samples. We recommend bulk analyses of media and agent samples to determine the range of media compositions in use, and to determine how

  9. Chimeric Yellow Fever/Dengue Virus as a Candidate Dengue Vaccine: Quantitation of the Dengue Virus-Specific CD8 T-Cell Response

    OpenAIRE

    van der Most, Robbert G.; Murali-Krishna, Kaja; Ahmed, Rafi; Strauss, James H.

    2000-01-01

    We have constructed a chimeric yellow fever/dengue (YF/DEN) virus, which expresses the premembrane (prM) and envelope (E) genes from DEN type 2 (DEN-2) virus in a YF virus (YFV-17D) genetic background. Immunization of BALB/c mice with this chimeric virus induced a CD8 T-cell response specific for the DEN-2 virus prM and E proteins. This response protected YF/DEN virus-immunized mice against lethal dengue encephalitis. Control mice immunized with the parental YFV-17D were not protected against...

  10. Differential proteome analysis of chikungunya virus infection on host cells.

    Directory of Open Access Journals (Sweden)

    Christina Li-Ping Thio

    Full Text Available BACKGROUND: Chikungunya virus (CHIKV is an emerging mosquito-borne alphavirus that has caused multiple unprecedented and re-emerging outbreaks in both tropical and temperate countries. Despite ongoing research efforts, the underlying factors involved in facilitating CHIKV replication during early infection remains ill-characterized. The present study serves to identify host proteins modulated in response to early CHIKV infection using a proteomics approach. METHODOLOGY AND PRINCIPAL FINDINGS: The whole cell proteome profiles of CHIKV-infected and mock control WRL-68 cells were compared and analyzed using two-dimensional gel electrophoresis (2-DGE. Fifty-three spots were found to be differentially modulated and 50 were successfully identified by MALDI-TOF/TOF. Eight were significantly up-regulated and 42 were down-regulated. The mRNA expressions of 15 genes were also found to correlate with the corresponding protein expression. STRING network analysis identified several biological processes to be affected, including mRNA processing, translation, energy production and cellular metabolism, ubiquitin-proteasome pathway (UPP and cell cycle regulation. CONCLUSION/SIGNIFICANCE: This study constitutes a first attempt to investigate alteration of the host cellular proteome during early CHIKV infection. Our proteomics data showed that during early infection, CHIKV affected the expression of proteins that are involved in mRNA processing, host metabolic machinery, UPP, and cyclin-dependent kinase 1 (CDK1 regulation (in favour of virus survival, replication and transmission. While results from this study complement the proteomics results obtained from previous late host response studies, functional characterization of these proteins is warranted to reinforce our understanding of their roles during early CHIKV infection in humans.

  11. High permissivity of human HepG2 hepatoma cells for influenza viruses.

    Science.gov (United States)

    Ollier, Laurence; Caramella, Anne; Giordanengo, Valérie; Lefebvre, Jean-Claude

    2004-12-01

    Human HepG2 hepatoma cells are highly permissive for influenza virus type A and type B, even without the addition of trypsin, and they exhibit a marked cytopathic effect. This property greatly facilitates the primary isolation of influenza viruses. Virus replication was significantly reduced by the plasmin(ogen)-specific inhibitor tranexamic acid, and this suggests a potential role played by the plasminogen/tissue plasminogen activator complex at the surface of HepG2 cells. This might represent a new approach for study of the interrelations of this complex with influenza viruses.

  12. p53-Mediated Cellular Response to DNA Damage in Cells with Replicative Hepatitis B Virus

    Science.gov (United States)

    Puisieux, Alain; Ji, Jingwei; Guillot, Celine; Legros, Yann; Soussi, Thierry; Isselbacher, Kurt; Ozturk, Mehmet

    1995-02-01

    Wild-type p53 acts as a tumor suppressor gene by protecting cells from deleterious effects of genotoxic agents through the induction of a G_1/S arrest or apoptosis as a response to DNA damage. Transforming proteins of several oncogenic DNA viruses inactivate tumor suppressor activity of p53 by blocking this cellular response. To test whether hepatitis B virus displays a similar effect, we studied the p53-mediated cellular response to DNA damage in 2215 hepatoma cells with replicative hepatitis B virus. We demonstrate that hepatitis B virus replication does not interfere with known cellular functions of p53 protein.

  13. Alpha 4 integrin directs virus-activated CD8+ T cells to sites of infection

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Andersson, E C; Scheynius, A;

    1995-01-01

    This article examines the role of VLA-4 in directing lymphocytes to sites of viral infection using the murine lymphocytic choriomeningitis virus infection (LCMV) as the model system. This virus by itself induces little or no inflammation, but in most mouse/virus strain combinations a potent T cell...... infection results in the appearance of activated CD8+ cells with an increased expression of VLA-4. In this study we have compared various T cell high and low responder situations, and these experiments revealed that acute inflammation correlates directly with VLA-4 expression on splenic CD8+ cells....... This correlation could be extended to CD4+ and B cells in chronically infected low responder DBA/2 mice. The vascular ligand for VLA-4, VCAM-1, was found to be up-regulated on endothelial cells in sites of inflammation. Finally, preincubation of virus-primed donor cells with mAb to VLA-4 completely blocked...

  14. Construction of cytopathic PK-15 cell model of classical swine fever virus

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    No cytopathic effect (CPE) can be observed on classical swine fever virus (CSFV) infected cell culture in vitro. This brings an obstacle to the researches on reciprocity between CSFV and host cells. Based on the construction of full-length genomic infectious Cdna clone of Chinese CSFV standard virulent Shimen strain, partial deletion is intro- duced into genomic Cdna to obtain a 7.5 kb subgenomic Cdna. A new subgenomic CSFV is derived from transfection with the subgenomic Cdna on PK-15 cells pre-infected by CSFV Shimen virus. Typical CPE induced by this subgenomic virus is observed on PK-15 cells. Coexistence of wild- type and subgenomic virus in cytopathic cell culture is dem- onstrated by RT-PCR detection in cytopathic cells. For conclusion, the construction of cytopathic cell model exploited a new way for researches on the molecular mechanism of CSFV pathogenesis.

  15. Vaccinia virus, herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus dependent parvovirus

    Energy Technology Data Exchange (ETDEWEB)

    Schlehofer, J.R.; Ehrbar, M.; zur Hausen, H.

    1986-07-15

    The SV40-transformed human kidney cell line, NB-E, amplifies integrated as well as episomal SV40 DNA upon treatment with chemical (DMBA) or physical (uv irradiation) carcinogens (initiators) as well as after infection with herpes simplex virus (HSV) type 1 or with vaccinia virus. In addition it is shown that vaccinia virus induces SV40 DNA amplification also in the SV40-transformed Chinese hamster embryo cell line, CO631. These findings demonstrate that human cells similar to Chinese hamster cells amplify integrated DNA sequences after treatment with carcinogens or infection with specific viruses. Furthermore, a poxvirus--vaccinia virus--similar to herpes group viruses induces DNA amplification. As reported for other systems, the vaccinia virus-induced DNA amplification in NB-E cells is inhibited by coinfection with adeno-associated virus (AAV) type 5. This is in line with previous studies on inhibition of carcinogen- or HSV-induced DNA amplification in CO631 cells. The experiments also demonstrate that vaccinia virus, in addition to herpes and adenoviruses acts as a helper virus for replication and structural antigen synthesis of AAV-5 in NB-E cells.

  16. Selective destruction of cells infected with human immunodeficiency virus

    Science.gov (United States)

    Keener, William K.; Ward, Thomas E.

    2003-09-30

    Compositions and methods for selectively killing a cell containing a viral protease are disclosed. The composition is a variant of a protein synthesis inactivating toxin wherein a viral protease cleavage site is interposed between the A and B chains. The variant of the type II ribosome-inactivating protein is activated by digestion of the viral protease cleavage site by the specific viral protease. The activated ribosome-inactivating protein then kills the cell by inactivating cellular ribosomes. A preferred embodiment of the invention is specific for human immunodeficiency virus (HIV) and uses ricin as the ribosome-inactivating protein. In another preferred embodiment of the invention, the variant of the ribosome-inactivating protein is modified by attachment of one or more hydrophobic agents. The hydrophobic agent facilitates entry of the variant of the ribosome-inactivating protein into cells and can lead to incorporation of the ribosome-inactivating protein into viral particles. Still another preferred embodiment of the invention includes a targeting moiety attached to the variants of the ribosome-inactivating protein to target the agent to HIV infectable cells.

  17. Selective Destruction Of Cells Infected With The Human Immunodeficiency Virus

    Science.gov (United States)

    Keener, William K.; Ward, Thomas E.

    2006-03-28

    Compositions and methods for selectively killing a cell containing a viral protease are disclosed. The composition is a varient of a protein synthesis inactivating toxin wherein a viral protease cleavage site is interposed between the A and B chains. The variant of the type II ribosome-inactivating protein is activated by digestion of the viral protease cleavage site by the specific viral protease. The activated ribosome-inactivating protein then kills the cell by inactivating cellular ribosomes. A preferred embodiment of the invention is specific for human immunodeficiency virus (HIV) and uses ricin as the ribosome-inactivating protein. In another preferred embodiment of the invention, the variant of the ribosome-inactivating protein is modified by attachment of one or more hydrophobic agents. The hydrophobic agent facilitates entry of the variant of the ribosome-inactivating protein into cells and can lead to incorporation of the ribosome-inactivating protein into viral particles. Still another preferred embodiment of the invention includes a targeting moiety attached to the variants of the ribosome-inactivating protein to target the agent to HIV infectable cells.

  18. Azathioprine inhibits vaccinia virus replication in both BSC-40 and RAG cell lines acting on different stages of virus cycle.

    Science.gov (United States)

    Damaso, Clarissa R A; Oliveira, Marcus F; Massarani, Susana M; Moussatché, Nissin

    2002-08-15

    In the present study we demonstrate that azathioprine (AZA) inhibits vaccinia virus (VV) replication in both BSC-40 and RAG cell lines, acting on different stages of virus cycle. In BSC-40 cells, early protein synthesis was not significantly affected, but late gene expression was severely impaired. In RAG cells all stages of gene expression were completed during synchronous infection in the presence of the drug. The onset of DNA replication was not affected in RAG cells, but a severe inhibition was observed in BSC-40 cells. Electron microscopic analysis of VV-infected RAG cells treated with AZA revealed brick-shaped particles presenting abnormal definition of the internal structure. Purified virions from AZA-treated RAG cells presented several modifications of the protein content, a lesser amount of DNA, and a lower PFU:particle ratio. Our results suggest that in VV-infected RAG cells AZA interfered with virus morphogenesis, whereas in BSC-40 cells the replicative cycle was inhibited at the DNA replication stage.

  19. Guiding plant virus particles to integrin-displaying cells

    Science.gov (United States)

    Hovlid, Marisa L.; Steinmetz, Nicole F.; Laufer, Burkhardt; Lau, Jolene L.; Kuzelka, Jane; Wang, Qian; Hyypiä, Timo; Nemerow, Glen R.; Kessler, Horst; Manchester, Marianne; Finn, M. G.

    2012-05-01

    Viral nanoparticles (VNPs) are structurally regular, highly stable, tunable nanomaterials that can be conveniently produced in high yields. Unmodified VNPs from plants and bacteria generally do not show tissue specificity or high selectivity in binding to or entry into mammalian cells. They are, however, malleable by both genetic and chemical means, making them useful scaffolds for the display of large numbers of cell- and tissue-targeting ligands, imaging moieties, and/or therapeutic agents in a well-defined manner. Capitalizing on this attribute, we modified the genetic sequence of the Cowpea mosaic virus (CPMV) coat protein to display an RGD oligopeptide sequence derived from human adenovirus type 2 (HAdV-2). Concurrently, wild-type CPMV was modified via NHS acylation and Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to attach an integrin-binding cyclic RGD peptide. Both types of particles showed strong and selective affinity for several different cancer cell lines that express RGD-binding integrin receptors.Viral nanoparticles (VNPs) are structurally regular, highly stable, tunable nanomaterials that can be conveniently produced in high yields. Unmodified VNPs from plants and bacteria generally do not show tissue specificity or high selectivity in binding to or entry into mammalian cells. They are, however, malleable by both genetic and chemical means, making them useful scaffolds for the display of large numbers of cell- and tissue-targeting ligands, imaging moieties, and/or therapeutic agents in a well-defined manner. Capitalizing on this attribute, we modified the genetic sequence of the Cowpea mosaic virus (CPMV) coat protein to display an RGD oligopeptide sequence derived from human adenovirus type 2 (HAdV-2). Concurrently, wild-type CPMV was modified via NHS acylation and Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to attach an integrin-binding cyclic RGD peptide. Both types of particles showed strong and selective affinity

  20. Intracellular Transport of Plant Viruses: Finding the Door out of the Cell

    Institute of Scientific and Technical Information of China (English)

    James E. Schoelz; Phillip A. Harries; Richard S. Nelson

    2011-01-01

    Plant viruses are a class of plant pathogens that specialize in movement from cell to cell.As part of their arsenal for infection of plants,every virus encodes a movement protein (MP),a protein dedicated to enlarging the pore size of plasmodesmata (PD) and actively transporting the viral nucleic acid into the adjacent cell.As our knowledge of intercellular transport has increased,it has become apparent that viruses must also use an active mechanism to target the virus from their site of replication within the cell to the PD.Just as viruses are too large to fit through an unmodified plasmodesma,they are also too large to be freely diffused through the cytoplasm of the cell.Evidence has accumulated now for the involvement of other categories of viral proteins in intracellular movement in addition to the MP,including viral proteins originally associated with replication or gene expression.In this review,we will discuss the strategies that viruses use for intracellular movement from the replication site to the PD,in particular focusing on the role of host membranes for intracellular transport and the coordinated interactions between virus proteins within cells that are necessary for successful virus spread.

  1. Effect of brefeldin A on Mayaro virus replication in Aedes albopictus and Vero cells.

    Science.gov (United States)

    Da Costa, L J; Rebello, M A

    1999-12-01

    Brefeldin A (BFA), a fungal metabolite that blocks transport of newly synthesized proteins from the endoplasmic reticulum, was found to inhibit Mayaro virus replication. At the concentration of 0.05 microgram/ml, the yield of the virus was inhibited by 94% in Aedes albopictus cells and by 99.5% in Vero cells. Treatment of A. albopictus cells with BFA did not inhibit the virus protein synthesis. However, this compound drastically reduced viral protein synthesis in Vero cells. The inhibitory effect progressively declined when BFA was added at late times post infection (p.i.). The effect of BFA on protein glycosylation is discussed.

  2. Humoral immune response to the entire human immunodeficiency virus envelope glycoprotein made in insect cells

    Energy Technology Data Exchange (ETDEWEB)

    Rusche, J.R.; Lynn, D.L.; Robert-Guroff, M.; Langlois, A.J.; Lyerly, H.K.; Carson, H.; Krohn, K.; Ranki, A.; Gallo, R.C.; Bolognesi, D.P.; Putney, S.D.

    1987-10-01

    The human immunodeficiency virus envelope gene was expressed in insect cells by using a Baculovirus expression vector. The protein has an apparent molecular mass of 160 kDa, appears on the surface of infected insect cells, and does not appear to be cleaved to glycoproteins gp120 and gp41. Goats immunized with the 160-kDa protein have high titers of antibody that neutralizes virus infection as measured by viral gene expression or cell cytolysis. In addition, immune sera can block fusion of human immunodeficiency virus-infected cells in culture. Both neutralization and fusion-blocking activities are bound to and eluted from immobilized gp120.

  3. DIESEL EXHAUST ENHANCES INFLUENZA VIRUS INFECTIONS IN RESPIRATORY EPITHELIAL CELLS

    Science.gov (United States)

    Several factors, such as age and nutritional status can affect the susceptibility to influenza infections. Moreover, exposure to air pollutants, such as diesel exhaust (DE), has been shown to affect respiratory virus infections in rodent models. Influenza virus primarily infects ...

  4. Comparative sensitivity of three mosquito cell lines for isolation of dengue viruses.

    Science.gov (United States)

    Kuno, G; Gubler, D J; Vélez, M; Oliver, A

    1985-01-01

    Comparative studies were carried out on three mosquito cell lines (C6/36 clone of Aedes albopictus, AP-61 from A. pseudoscutellaris, and TRA-284 from Toxorhynchites amboinensis) to determine their sensitivity to dengue virus isolation, growth, and handling characteristics for immunofluorescent testing. Virus isolation rates from human sera were the highest in the TRA-284-SF (a line adapted to serum-free medium), followed by the TRA-284 parental line and AP-61. Virus isolation was the lowest in the C6/36 line. All 3 cell lines were comparable in terms of ease of handling, but C6/36 cells were preferable for detecting infected cells by the direct fluorescent antibody test (DFAT) because of frequent cell clumping in the AP-61 and TRA-284 lines. Early detection of viral antigen of all 4 serotypes in the infected cells by DFAT was dependent upon the virus titre in the serum. The AP-61 and TRA-284-SF cells were the best for early detection and identification of viral antigen. Similarly, both AP-61 and TRA-284 cells were more resistant than C6/36 cells to toxic effects of human sera. Based on the economy of using the serum-free medium, their higher sensitivity for dengue virus isolation, and their ease of handling, it is recommended that the TRA-284-SF cell line be used for routine dengue virus isolation in laboratories with cell culture capability.

  5. Comparative sensitivity of three mosquito cell lines for isolation of dengue viruses*

    Science.gov (United States)

    Kuno, G.; Gubler, D. J.; Vélez, M.; Oliver, A.

    1985-01-01

    Comparative studies were carried out on three mosquito cell lines (C6/36 clone of Aedes albopictus, AP-61 from A. pseudoscutellaris, and TRA-284 from Toxorhynchites amboinensis) to determine their sensitivity to dengue virus isolation, growth, and handling characteristics for immunofluorescent testing. Virus isolation rates from human sera were the highest in the TRA-284-SF (a line adapted to serum-free medium), followed by the TRA-284 parental line and AP-61. Virus isolation was the lowest in the C6/36 line. All 3 cell lines were comparable in terms of ease of handling, but C6/36 cells were preferable for detecting infected cells by the direct fluorescent antibody test (DFAT) because of frequent cell clumping in the AP-61 and TRA-284 lines. Early detection of viral antigen of all 4 serotypes in the infected cells by DFAT was dependent upon the virus titre in the serum. The AP-61 and TRA-284-SF cells were the best for early detection and identification of viral antigen. Similarly, both AP-61 and TRA-284 cells were more resistant than C6/36 cells to toxic effects of human sera. Based on the economy of using the serum-free medium, their higher sensitivity for dengue virus isolation, and their ease of handling, it is recommended that the TRA-284-SF cell line be used for routine dengue virus isolation in laboratories with cell culture capability. PMID:2861916

  6. The ancient Virus World and evolution of cells

    OpenAIRE

    Dolja Valerian V; Senkevich Tatiana G; Koonin Eugene V

    2006-01-01

    Abstract Background Recent advances in genomics of viruses and cellular life forms have greatly stimulated interest in the origins and evolution of viruses and, for the first time, offer an opportunity for a data-driven exploration of the deepest roots of viruses. Here we briefly review the current views of virus evolution and propose a new, coherent scenario that appears to be best compatible with comparative-genomic data and is naturally linked to models of cellular evolution that, from ind...

  7. Apoptosis transcriptional mechanism of feline infectious peritonitis virus infected cells.

    Science.gov (United States)

    Shuid, Ahmad Naqib; Safi, Nikoo; Haghani, Amin; Mehrbod, Parvaneh; Haron, Mohd Syamsul Reza; Tan, Sheau Wei; Omar, Abdul Rahman

    2015-11-01

    Apoptosis has been postulated to play an important role during feline infectious peritonitis virus (FIPV) infection; however, its mechanism is not well characterized. This study is focused on apoptosis and transcriptional profiling of FIPV-infected cells following in vitro infection of CRFK cells with FIPV 79-1146 WSU. Flow cytometry was used to determine mode of cell death in first 42 h post infection (hpi). FIPV infected cells underwent early apoptosis at 9 hpi (p < 0.05) followed by late apoptosis at 12 hpi (p < 0.05) and necrosis from 24 hpi (p < 0.05). Then, next generation sequencing was performed on 9 hpi and control uninfected cells by Illumina analyzer. An aggregate of 4546 genes (2229 down-regulated and 2317 up-regulated) from 17 cellular process, 11 molecular functions and 130 possible biological pathways were affected by FIPV. 131 genes from apoptosis cluster (80 down-regulated and 51 up-regulated) along with increase of apoptosis, p53, p38 MAPK, VEGF and chemokines/cytokines signaling pathways were probably involved in apoptosis process. Six of the de-regulated genes expression (RASSF1, BATF2, MAGEB16, PDCD5, TNFα and TRAF2) and TNFα protein concentration were analyzed by RT-qPCR and ELISA, respectively, at different time-points. Up-regulations of both pro-apoptotic (i.e. PDCD5) and anti-apoptotic (i.e. TRAF2) were detected from first hpi and continuing to deregulate during apoptosis process in the infected cells.

  8. Chimeric yellow fever/dengue virus as a candidate dengue vaccine: quantitation of the dengue virus-specific CD8 T-cell response.

    Science.gov (United States)

    van Der Most, R G; Murali-Krishna, K; Ahmed, R; Strauss, J H

    2000-09-01

    We have constructed a chimeric yellow fever/dengue (YF/DEN) virus, which expresses the premembrane (prM) and envelope (E) genes from DEN type 2 (DEN-2) virus in a YF virus (YFV-17D) genetic background. Immunization of BALB/c mice with this chimeric virus induced a CD8 T-cell response specific for the DEN-2 virus prM and E proteins. This response protected YF/DEN virus-immunized mice against lethal dengue encephalitis. Control mice immunized with the parental YFV-17D were not protected against DEN-2 virus challenge, indicating that protection was mediated by the DEN-2 virus prM- and E-specific immune responses. YF/DEN vaccine-primed CD8 T cells expanded and were efficiently recruited into the central nervous systems of DEN-2 virus challenged mice. At 5 days after challenge, 3 to 4% of CD8 T cells in the spleen were specific for the prM and E proteins, and 34% of CD8 T cells in the central nervous system recognized these proteins. Depletion of either CD4 or CD8 T cells, or both, strongly reduced the protective efficacy of the YF/DEN virus, stressing the key role of the antiviral T-cell response.

  9. Recovery of Epstein--Barr virus from nonproducer neonatal human lymphoid cell transformants. [X radiation

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, G.; Miller, G.

    1979-06-01

    Lymphoid cell lines (LCL) were established by infection of two batches of human umbilical cord lymphocytes with low multiplicities of the B95-8 strain of Epstein--Barr virus. Three of the 17 lines released minute mounts of transforming virus. The rest did not, nor did they make capsid antigen. However virus could be regularly recovered by lethal x-irradiation of transformed cells followed by cocultivation with primary human umbilical cord leukocytes. By this technique transforming activity could be identified in 15 of the 17 lines. These data indicate that these nonproducer human neonatal cell transformants established by EBV infection in vitro possess sufficient genetic information to code for production of biologically active mature virions. X rays alone failed to cause a detectable increase in the number of cells with capsid antigen or to enhance extracellular virus production. EBV-positive human serum blocked rescue if it was added during the first 2 to 4 hr after cocultivation, but not thereafter. Transforming virus could be recovered from x-rayed cells which were immediately thereafter lysed by freezing and thawing. These results suggest that recovery of virus following x-ray and cocultivation is not due to activation of the intracellular virus genome. Rather, it is likely that the method detects small numbers of virions which are cell associated. While transforming virus could regularly be rescued from lymphoblastoid cell lines resulting from in vitro transformation, attempts to rescue virus from Raji or EBV-converted BJAB cells were unsuccessful. This discrepancy suggests differences in genome complexity or in genome-cell interactions in different types of EBV-transformed cells.

  10. Giardiavirus-resistant Giardia lamblia lacks a virus receptor on the cell membrane surface.

    OpenAIRE

    1994-01-01

    Giardia lamblia virus (GLV) is a small nonenveloped double-stranded RNA virus that infects specifically the parasitic protozoan G. lamblia. Among the many collected strains of G. lamblia, a few turn out to be highly resistant to the virus infection. Two of these strains, Ac and JH, were subjected to electroporation with the RNA from GLV-infected G. lamblia WB strain. Subsequent studies indicated the presence of GLV double-stranded RNA and GLV protein in the electroporated and propagated cells...

  11. Ethanol suppression of peripheral blood mononuclear cell trafficking across brain endothelial cells in immunodeficiency virus infection

    Directory of Open Access Journals (Sweden)

    Lola C Hudson

    2010-01-01

    Full Text Available Lola C Hudson1, Brenda A Colby1, Rick B Meeker21Department of Molecular Biosciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; 2Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USAAbstract: Earlier studies suggested that the combination of alcohol use and immunodeficiency virus infection resulted in more severe neurologic disease than either condition individually. These deleterious interactions could be due to increased immune cell and virus trafficking or may result from interactions between ethanol and human immunodeficiency virus (HIV-associated toxicity within the brain. To determine the extent to which increased trafficking played a role, we examined the effect of ethanol on the migration of different peripheral blood mononuclear cell (PBMCs subsets across a brain endothelial cell monolayer. We utilized combinations of feline brain endothelial cells with astrocytes, and/or microglia with either acute exposure to 0.08 g/dL ethanol, a combination of ethanol and feline immunodeficiency virus (FIV, or FIV alone. Adherence of PBMCs to endothelium was increased in all combinations of cells with the addition of ethanol. Despite increased PBMC adhesion with ethanol treatment, transmigration of B cells, monocytes, CD4 T cells and CD8 T cells was not increased and was actually decreased in the presence of astrocytes. Expression of three common adhesion molecules, intercellular adhesion molecule-1 (ICAM1, ICAM2, and vascular cell adhesion molecule, was unchanged or slightly decreased by ethanol. This indicated that although adherence is increased by ethanol it is not due to an increased expression of adhesion molecules. RANTES, MIP1α, MIP1β, and MCP-1 mRNA expression was also studied in brain endothelial cells, astrocytes and microglia by reverse transcriptase-polymerase chain reaction. Ethanol treatment of astrocytes resulted in modest changes of

  12. The Wnt pathway: a key network in cell signalling dysregulated by viruses.

    Science.gov (United States)

    van Zuylen, Wendy J; Rawlinson, William D; Ford, Caroline E

    2016-09-01

    Viruses are obligate parasites dependent on host cells for survival. Viral infection of a cell activates a panel of pattern recognition receptors that mediate antiviral host responses to inhibit viral replication and dissemination. Viruses have evolved mechanisms to evade and subvert this antiviral host response, including encoding proteins that hijack, mimic and/or manipulate cellular processes such as the cell cycle, DNA damage repair, cellular metabolism and the host immune response. Currently, there is an increasing interest whether viral modulation of these cellular processes, including the cell cycle, contributes to cancer development. One cellular pathway related to cell cycle signalling is the Wnt pathway. This review focuses on the modulation of this pathway by human viruses, known to cause (or associated with) cancer development. The main mechanisms where viruses interact with the Wnt pathway appear to be through (i) epigenetic modification of Wnt genes; (ii) cellular or viral miRNAs targeting Wnt genes; (iii) altering specific Wnt pathway members, often leading to (iv) nuclear translocation of β-catenin and activation of Wnt signalling. Given that diverse viruses affect this signalling pathway, modulating Wnt signalling could be a generalised critical process for the initiation or maintenance of viral pathogenesis, with resultant dysregulation contributing to virus-induced cancers. Further study of this virus-host interaction may identify options for targeted therapy against Wnt signalling molecules as a means to reduce virus-induced pathogenesis and the downstream consequences of infection. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Gammaherpesvirus-driven plasma cell differentiation regulates virus reactivation from latently infected B lymphocytes.

    Science.gov (United States)

    Liang, Xiaozhen; Collins, Christopher M; Mendel, Justin B; Iwakoshi, Neal N; Speck, Samuel H

    2009-11-01

    Gammaherpesviruses chronically infect their host and are tightly associated with the development of lymphoproliferative diseases and lymphomas, as well as several other types of cancer. Mechanisms involved in maintaining chronic gammaherpesvirus infections are poorly understood and, in particular, little is known about the mechanisms involved in controlling gammaherpesvirus reactivation from latently infected B cells in vivo. Recent evidence has linked plasma cell differentiation with reactivation of the human gammaherpesviruses EBV and KSHV through induction of the immediate-early viral transcriptional activators by the plasma cell-specific transcription factor XBP-1s. We now extend those findings to document a role for a gammaherpesvirus gene product in regulating plasma cell differentiation and thus virus reactivation. We have previously shown that the murine gammaherpesvirus 68 (MHV68) gene product M2 is dispensable for virus replication in permissive cells, but plays a critical role in virus reactivation from latently infected B cells. Here we show that in mice infected with wild type MHV68, virus infected plasma cells (ca. 8% of virus infected splenocytes at the peak of viral latency) account for the majority of reactivation observed upon explant of splenocytes. In contrast, there is an absence of virus infected plasma cells at the peak of latency in mice infected with a M2 null MHV68. Furthermore, we show that the M2 protein can drive plasma cell differentiation in a B lymphoma cell line in the absence of any other MHV68 gene products. Thus, the role of M2 in MHV68 reactivation can be attributed to its ability to manipulate plasma cell differentiation, providing a novel viral strategy to regulate gammaherpesvirus reactivation from latently infected B cells. We postulate that M2 represents a new class of herpesvirus gene products (reactivation conditioners) that do not directly participate in virus replication, but rather facilitate virus reactivation by

  14. Gammaherpesvirus-driven plasma cell differentiation regulates virus reactivation from latently infected B lymphocytes.

    Directory of Open Access Journals (Sweden)

    Xiaozhen Liang

    2009-11-01

    Full Text Available Gammaherpesviruses chronically infect their host and are tightly associated with the development of lymphoproliferative diseases and lymphomas, as well as several other types of cancer. Mechanisms involved in maintaining chronic gammaherpesvirus infections are poorly understood and, in particular, little is known about the mechanisms involved in controlling gammaherpesvirus reactivation from latently infected B cells in vivo. Recent evidence has linked plasma cell differentiation with reactivation of the human gammaherpesviruses EBV and KSHV through induction of the immediate-early viral transcriptional activators by the plasma cell-specific transcription factor XBP-1s. We now extend those findings to document a role for a gammaherpesvirus gene product in regulating plasma cell differentiation and thus virus reactivation. We have previously shown that the murine gammaherpesvirus 68 (MHV68 gene product M2 is dispensable for virus replication in permissive cells, but plays a critical role in virus reactivation from latently infected B cells. Here we show that in mice infected with wild type MHV68, virus infected plasma cells (ca. 8% of virus infected splenocytes at the peak of viral latency account for the majority of reactivation observed upon explant of splenocytes. In contrast, there is an absence of virus infected plasma cells at the peak of latency in mice infected with a M2 null MHV68. Furthermore, we show that the M2 protein can drive plasma cell differentiation in a B lymphoma cell line in the absence of any other MHV68 gene products. Thus, the role of M2 in MHV68 reactivation can be attributed to its ability to manipulate plasma cell differentiation, providing a novel viral strategy to regulate gammaherpesvirus reactivation from latently infected B cells. We postulate that M2 represents a new class of herpesvirus gene products (reactivation conditioners that do not directly participate in virus replication, but rather facilitate virus

  15. [Presence of autocomplementary RNA with viral specificity in cells infected with herpes virus].

    Science.gov (United States)

    Béchet, J M; Montagnier, L; Latarjet, R

    1975-01-13

    RNA from cells infected with Herpes simplex virus contain a higher percentage of double-stranded RNA than non-infected cells. This percentage increases three-fold upon self-annealing. The complementary RNA sequences were shown to be virus-specific by the following criteria: (1) high melting temperature than double-stranded RNA from non infected cells; (2) higher density in caesium sulphate; (3) specific hybridization with viral DNA.

  16. Dependence of herpes simplex virus type 1-induced cell fusion on cell type

    Energy Technology Data Exchange (ETDEWEB)

    Bzik, D.J.; Person, S.

    1981-04-15

    Syncytial mutants of herpes simplex virus type 1 (HSV-1), such as syn20, cause extensive fusion of human embryonic lung (HEL) cells but only a small amount of fusion of human epidermoid carcinoma No. 2 (HEp-2) cells. In order to determine the cellular basis of this difference in fusion, sparse cultures of syn20-infected HEL or HEp-2 cells, previously labeled with (/sup 3/H)thymidine, were surrounded with uninfected, unlabeled HEL or HEp-2 cells. The fusion of radioactive with nonradioactive cells was determined at different times after infection using radioautography. The major difference in the fusion capacity of HEL and HEp-2 cells was not due to a difference in cell-surface receptors for a fusion factor in the two cell types. The process of infection of HEp-2 cells did not cause the plasma membranes of the cells to become refractory to fusion, because syn20-infected HEL cells fused equally well with either uninfected or infected HEp-2 cells. In a mixed infection with equal numbers of MP and its nonsyncytial parent, mP, extensive fusion was observed for infected HEL cells and significantly less fusion was observed for infected African green monkey (CV-1), baby hamster kidney (BHK-21), and HEp-2 cells.

  17. Chloroquine Inhibits Dengue Virus Type 2 Replication in Vero Cells but Not in C6/36 Cells

    Directory of Open Access Journals (Sweden)

    Kleber Juvenal Silva Farias

    2013-01-01

    Full Text Available Dengue viruses are the most important arthropod-borne viruses in terms of morbidity and mortality in the world. Since there is no dengue vaccine available for human use, we have set out to investigate the use of chloroquine as an antiviral drug against dengue. Chloroquine, an amine acidotropic drug known to affect intracellular exocytic pathways by increasing endosomal pH, was used in the in vitro treatment of Vero and C6/36 cells infected with dengue virus type 2 (DENV-2. Real-time RT-PCR and plaque assays were used to quantify the DENV-2 load in infected Vero and C6/36 cells after chloroquine treatment. Our results showed that a dose of 50 μg/ml of chloroquine was not toxic to the cells and induced a statistically significant inhibition of virus production in infected Vero cells when compared to untreated cells. In C6/36 cells, chloroquine does not induce a statistically significant difference in viral replication when compared to untreated cells, showing that this virus uses an unlikely pathway of penetration in these cells, and results were also confirmed by the plaque assay (PFU. These data suggest that the inhibition of virus infection induced by chloroquine is due to interference with acidic vesicles in mammalian cells.

  18. Inhibition of Mayaro virus replication by prostaglandin A(1) in Vero cells.

    Science.gov (United States)

    Burlandy, F M; Rebello, M A

    2001-01-01

    Prostaglandins exhibit antiviral activity against a wide variety of RNA and DNA viruses. In the present report, we describe the effect of cyclopentenone prostaglandin A(1) (PGA(1)) on Mayaro virus replication in Vero cells. Virus yield was significantly reduced at nontoxic concentrations which did not suppress DNA, RNA or protein synthesis in uninfected or infected cells. Antiviral action decreased if PGA(1) was added at later times after infection. In Mayaro virus-infected cells, PGA(1) inhibited the synthesis of virus proteins. This effect is accompanied by the induction of heat shock proteins (HSPs). Actinomycin D treatment not only inhibited the induction of HSPs but also partially prevented PGA(1) antiviral activity.

  19. Influenza a virus induces an immediate cytotoxic activity in all major subsets of peripheral blood mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Sanda Sturlan

    Full Text Available BACKGROUND: A replication defective influenza A vaccine virus (delNS1 virus was developed. Its attenuation is due to potent stimulation of the innate immune system by the virus. Since the innate immune system can also target cancer cells, we reasoned that delNS1 virus induced immune-stimulation should also lead to the induction of innate cytotoxic effects towards cancer cells. METHODOLOGY/PRINCIPAL FINDINGS: Peripheral blood mononuclear cells (PBMCs, isolated CD56+, CD3+, CD14+ and CD19+ subsets and different combinations of the above subsets were stimulated by delNS1, wild type (wt virus or heat inactivated virus and co-cultured with tumor cell lines in the presence or absence of antibodies against the interferon system. Stimulation of PBMCs by the delNS1 virus effectively induced cytotoxicity against different cancer cell lines. Surprisingly, virus induced cytotoxicity was exerted by all major subtypes of PBMCs including CD56+, CD3+, CD14+ and CD19+ cells. Virus induced cytotoxicity in CD3+, CD14+ and CD19+ cells was dependent on virus replication, whereas virus induced cytotoxicity in CD56+ cells was only dependent on the binding of the virus. Virus induced cytotoxicity of isolated cell cultures of CD14+, CD19+ or CD56+ cells could be partially blocked by antibodies against type I and type II (IFN interferon. In contrast, virus induced cytotoxicity in the complete PBMC preparation could not be inhibited by blocking type I or type II IFN, indicating a redundant system of activation in whole blood. CONCLUSIONS/SIGNIFICANCE: Our data suggest that apart from their well known specialized functions all main subsets of peripheral blood cells also initially exert a cytotoxic effect upon virus stimulation. This closely links the innate immune system to the adaptive immune response and renders delNS1 virus a potential therapeutic tool for viro-immunotherapy of cancer.

  20. Cloning and identification of measles virus receptor gene from marmoset cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The measles virus (MV) strains with mutated hemagglutinin gene (ha) lost the capacity to infect its sensitive host cells (Vero cells), but it may infect the marmoset B-lymphoblastoid cell line B95a. From above, we can presume that there is a novel cellular receptor for those measles virus strains on B95a cell s. Using the yeast two-hybrid system, we screened and cloned a novel gene--bip (B-lympho- blastoid interaction protein of marmoset) from B95a cell cDNA library, which encoded a protein interacting with measles virus hemagglutinin protein (Ha). The bip cDNA was 1540 base pairs in length and contained a unique open rea ding frame (ORF) of 1011 base pairs encoding a transmembrane protein of 337 amino acid residues. The primary structure of amino acids residue is predicted that the Bip comprised a hydrophobic transmembrane domain and a hydrophobic leader region. The researches about the deletion mutants showed that the deletion of tran smembrane domain in Bip did not affect the interaction between Bip and Ha protei ns. Expression of bip in measles virus non-permissive cell line--CHO (Chinese hamster ovary) cells was performed to prove that CHO/Bip can be infected by meas les virus and then turned to the MV permissive cells. We concluded that the bip gene is a novel measles virus receptor gene in marmoset B-lymphoblastoid cells.

  1. Heterogeneity of the MDCK cell line and its applicability for influenza virus research.

    Directory of Open Access Journals (Sweden)

    Vladimir Y Lugovtsev

    Full Text Available Single-cell clones have been established from the MDCK cell line, characterized for their morphology and evaluated for their suitability for influenza virus research. Three discrete cell morphotypes were identified using light microscopy. Besides morphological features, the cell types can be distinguished by the level of expression of surface glycans recognized by peanut agglutinin (PNA. All clones were susceptible to infection by influenza viruses of different subtypes of influenza A virus (H1N1, H1N1pdm09, H3N2, H5N1 and influenza B virus, and all possessed on their surface terminally sialylated glycans with both types of glycosidic linkage (α2-3 and α2-6. The Type-1 cell lines were able to support a multicycle replication of influenza A and B viruses without help of an exogenous trypsin. In contrast, cell lines exhibiting Type-2 morphology were unable to support multicycle replication of influenza A viruses without trypsin supplementation. Western blot analysis of the hemagglutinin of H1N1 strains demonstrated that Type-2 cells were deficient in production of proteolytically activated hemagglutinin (no cleavage between HA1/HA2 was observed. HA1/HA2 cleavage of influenza B viruses in the Type-2 cells was also significantly impaired, but not completely abrogated, producing sufficient amount of activated HA to support efficient virus replication without trypsin. In contrast, all clones of Type-1 cells were able to produce proteolytically activated hemagglutinin of influenza A and B viruses. However, the growth kinetics and plaque size of influenza A viruses varied significantly in different clones. Influenza B virus also showed different plaque size, with the biggest plaque formation in the Type-2 cells, although the growth kinetics and peak infectivity titers were similar in all clones. Taken together, the study demonstrates that the population of original MDCK cells is represented by various types of cells that differ in their capacities to

  2. Staphylococcus aureus and influenza A virus stimulate human bronchoalveolar cells to release histamine and leukotrienes

    DEFF Research Database (Denmark)

    Clementsen, P; Bisgaard, H; Pedersen, M

    1989-01-01

    was found to release histamine from cells from 7 of the 13 individuals and influenza A virus in 3 of 5 persons. Furthermore, Staph, aureus stimulated the BAL-cells to release leukotriene B4 in 7 of 11 subjects, whereas no release was found by influenza A virus in 7 examined persons. When cells from 4...... persons were stimulated with Staph. aureus no release of leukotriene C4 was found. The mediator release caused by bacteria and virus might be of importance for the exacerbation of bronchial asthma in upper respiratory tract infections, since histamine is assumed to increase the epithelial permeability...

  3. Pleiotropic expression of Epstein--Barr virus DNA in human epithelial cells.

    OpenAIRE

    1981-01-01

    We have attempted to establish a system that can be used to study the association of Epstein--Barr virus (EBV) with epithelial cells. Attempts were made to transfect human carcinoma cells with EBV DNA. Successful transfection was confirmed by the expression of EBV-specific early antigen (EA), virus capsid antigen, and the presence of virus DNA. The transfecting preparation contained a mixture of EBV and cellular DNA extracted from two producer cell lines, P3HR-1 and AG-876. Our data suggest t...

  4. The degradation of potato virus M (PVM particles in plant cells

    Directory of Open Access Journals (Sweden)

    Anna Rudzińska-Langwald

    2014-02-01

    Full Text Available Degradation of potato virus M particles was observed in the cells of Solanum tuberosum, Solanum rostratum, Lycopersicon esculentum and Lycopersicon chilense plants infected with this virus. PVM particles found in the cytoplasm of infected parenchyma cells grouped together in the form of inclusions, often found near the tonoplast. The ends of the virus particles and the tonoplast came into close contact. Cytoplasmic protrusions containing PVM particles, reaching into vacuoles were formed in those places. In addition to a large central vacuole, small vacuoles were observed in cells containing PVM particles. Various stages of degradation of cytoplasmic protrusions were observed both in the large and small vacuoles.

  5. Differential transcriptional responses to Ebola and Marburg virus infection in bat and human cells

    DEFF Research Database (Denmark)

    Hölzer, Martin; Krähling, Verena; Amman, Fabian;

    2016-01-01

    The unprecedented outbreak of Ebola in West Africa resulted in over 28,000 cases and 11,000 deaths, underlining the need for a better understanding of the biology of this highly pathogenic virus to develop specific counter strategies. Two filoviruses, the Ebola and Marburg viruses, result...... expressed genes, activity motifs and pathways in human and bat cells infected with the Ebola and Marburg viruses, and we demonstrate that the replication of filoviruses is more rapid in human cells than in bat cells. We also found that the most strongly regulated genes upon filovirus infection are chemokine...

  6. Impaired antiviral response of adenovirus-transformed cell lines supports virus replication.

    Science.gov (United States)

    Bachmann, Mandy; Breitwieser, Theresa; Lipps, Christoph; Wirth, Dagmar; Jordan, Ingo; Reichl, Udo; Frensing, Timo

    2016-02-01

    Activation of the innate immune response represents one of the most important cellular mechanisms to limit virus replication and spread in cell culture. Here, we examined the effect of adenoviral gene expression on the antiviral response in adenovirus-transformed cell lines; HEK293, HEK293SF and AGE1.HN. We demonstrate that the expression of the early region protein 1A in these cell lines impairs their ability to activate antiviral genes by the IFN pathway. This property may help in the isolation of newly emerging viruses and the propagation of interferon-sensitive virus strains.

  7. NK cells during dengue disease and their recognition of dengue virus-infected cells

    Directory of Open Access Journals (Sweden)

    Davis Alexander Beltrán

    2014-05-01

    Full Text Available The innate immune response, in addition to the B and T cell response, plays a role in protection against dengue virus (DENV infection and the degree of disease severity. Early activation of NK cells and type-I interferon-dependent immunity may be important in limiting viral replication during the early stages of DENV infection and thus reducing subsequent pathogenesis. NK cells may also produce cytokines that reduce inflammation and tissue injury. On the other hand, NK cells are also capable of inducing liver injury at early-time points of DENV infection. In vitro, NK cells can kill antibody-coated DENV-infected cells through antibody-dependent cell-mediated cytotoxicity (ADCC. In additional, NK cells may directly recognize DENV-infected cells through their activating receptors, although the increase in HLA class I expression may allow infected cells to escape the NK response. Recently, genome-wide association studies (GWAS have shown an association between MICB and MICA, which encode ligands of the activating NK receptor NKG2D, and dengue disease outcome. This review focuses on recognition of DENV-infected cells by NK cells and on the regulation of expression of NK cell ligands by DENV.

  8. Creation and characterization of a cell-death reporter cell line for hepatitis C virus infection

    Science.gov (United States)

    Chen, Zhilei; Simeon, Rudo; Chockalingam, Karuppiah; Rice, Charles M.

    2010-01-01

    The present study describes the creation and characterization of a hepatoma cell line, n4mBid, that supports all stages of the hepatitis C virus (HCV) life cycle and strongly reports HCV infection by a cell-death phenotype. The n4mBid cell line is derived from the highly HCV-permissive Huh-7.5 hepatoma cell line and contains a modified Bid protein (mBid) that is cleaved and activated by the HCV serine protease NS3-4A. N4mBid exhibited a 10–20 fold difference in cell viability between the HCV-infected and mock-infected states, while the parental Huh-7.5 cells showed <2 fold difference under the same conditions. The pronounced difference in n4mBid cell viability between the HCV- and mock-infected states in a 96-well plate format points to its usefulness in cell survival-based high-throughput screens for anti-HCV molecules. The degree of cell death was found to be proportional to the intracellular load of HCV. HCV-low n4mBid cells, expressing an anti-HCV short hairpin RNA, showed a significant growth advantage over naïve cells and could be rapidly enriched after HCV infection, suggesting the possibility of using n4mBid cells for the cell survival-based selection of genetic anti-HCV factors. PMID:20188762

  9. Licensing virus-specific T cells to secrete the neutrophil attracting chemokine CXCL-8 during hepatitis B virus infection.

    Directory of Open Access Journals (Sweden)

    Adam J Gehring

    Full Text Available T cell functional plasticity helps tailor antiviral immunity during different phases of infections. We tested whether, during different phases of HBV infection, virus-specific T cells can acquire specific proinflammatory functions that could drive granulocyte/mononuclear cell liver infiltration. Multifunctional analysis of HBV-specific T cells during acute and chronic HBV infection revealed that HBV-specific T cells had the capacity to produce the neutrophil chemokine CXCL-8 but not IL-17. CXCL-8 producing T cells were detectable in the liver of chronic HBV patients with active hepatitis; while in acute HBV patients CXCL-8 production by T cells was temporally limited to the acute phase of disease, concomitant with the peak of liver inflammation. Characterization of the conditions necessary for the development of CXCL-8 producing T cells showed a requirement for IL-7 and IL-15 during T cell expansion. These data show that functional plasticity of virus-specific T cells spontaneously occurs during HBV infection and that an environment rich IL-7 and IL-15 can license T cells with the ability to produce CXCL-8 and potentially influence liver pathology.

  10. Mitochondrial and bioenergetic dysfunction in human hepatic cells infected with dengue 2 virus

    OpenAIRE

    El-Bacha, Tatiana; Midlej, Victor; Silva, Ana Paula Pereira da; COSTA,LEANDRO SILVA DA; Benchimol, Marlene; Galina, Antonio; POIAN,ANDREA T. DA

    2007-01-01

    Mitochondrial and bioenergetic dysfunction in human hepatic cells infected with dengue 2 virus correspondence: Corresponding author. Fax: +55 21 22708647. (El-Bacha, Tatiana) (El-Bacha, Tatiana) Laboratorio de Bioquimica de Virus, Instituto de Bioquimica Medica, Universidade Federal do Rio de Janeiro - RJ-Brasil--> , Av. Bauhinia n? 400 ? CCS Bloco H 2? andar--> , sala 22. Ilha do Governador--> ...

  11. Transcriptomic microarray analysis of BoMac cells after infection with bovine foamy virus

    NARCIS (Netherlands)

    Rola-Luszczak, M.; Materniak, M.; Pluta, A.; Hulst, M.M.; Kuz'mak, J.

    2014-01-01

    Bovine foamy virus (BFV) infections are highly prevalent among cattle worldwide. However, relatively little is known about the impact of this virus on the host immune system. In our study, we focused on a bovine macrophage cell line (BoMac) and examined changes in the BoMac transcriptome after in vi

  12. Live-attenuated measles virus vaccine targets dendritic cells and macrophages in muscle of nonhuman primates

    NARCIS (Netherlands)

    L.J. Rennick (Linda); R.D. de Vries (Rory); T.J. Carsillo (Thomas J.); K. Lemon (Ken); G. van Amerongen (Geert); M. Ludlow (Martin); D.T. Nguyen (Tien); S. Yüksel (Selma); R.J. Verbugh (Joyce); P. Haddock (Paula); S. McQuaid (Stephen); W.P. Duprex (Paul); R.L. de Swart (Rik)

    2015-01-01

    textabstractAlthough live-attenuated measles virus (MV) vaccines have been used successfully for over 50 years, the target cells that sustain virus replication in vivo are still unknown. We generated a reverse genetics system for the live-attenuated MV vaccine strain Edmonston- Zagreb (EZ), allowing

  13. Herpes simplex virus-mediated human hypoxanthine-guanine phosphoribosyltransferase gene transfer into neuronal cells

    Energy Technology Data Exchange (ETDEWEB)

    Palella, T.D.; Silverman, L.J.; Schroll, C.T.; Homa, F.L.; Levine, M.; Kelley, W.N.

    1988-01-01

    The virtually complete deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) results in a devastating neurological disease, Lesch-Nyhan syndrome. Transfer of the HPRT gene into fibroblasts and lymphoblasts in vitro and into hematopoietic cells in vivo has been accomplished by other groups with retroviral-derived vectors. It appears to be necessary, however, to transfer the HPRT gene into neuronal cells to correct the neurological dysfunction of this disorder. The neurotropic virus herpes simplex virus type 1 has features that make it suitable for use as a vector to transfer the HPRT gene into neuronal tissue. This report describes the isolation of an HPRT-deficient rat neuroma cell line, designated B103-4C, and the construction of a recombinant herpes simplex virus type 1 that contained human HPRT cDNA. These recombinant viruses were used to infect B103-4C cells. Infected cells expressed HPRT activity which was human in origin.

  14. Molecular evolution of hepatitis A virus in a human diploid cell line

    Institute of Scientific and Technical Information of China (English)

    Cai-Hua Tang; Jiang-Sen Mao; Shao-Ai Chai; Yong Chen; Fang-Cheng Zhuang

    2007-01-01

    AIM: To investigate the hotspots, direction, and the time course of evolution of hepatitis A virus in the process of consecutive cell culture passage in human KMB17 diploid cells.METHODS: Wild type hepatitis A virus H2w was serially propagated in KMB17 cells until passage 30, and the full-length genomes of H2w and its six chosen progenies were determined by directly sequencing RT-PCR products amplified from viral genomic RNA. Alignment comparison of sequences from H2w with its six progenies and phylogenetic analysis of the whole VP1 region from H2w, progenies of H2w, and other cell culture adapted hepatitis A virus were then carried out to obtain data on the molecular evolution of hepatitis A virus in the process of consecutive passage in KMB17 cells.RESULTS: Most of the mutations occurred by passage 5 and several hotspots related to adaptation of the virus during cell growth were observed. After that stage, few additional mutations occurred through the remaining duration of passage in KMB17 cells except for mutation in the virulence determinants, which occurred in the vicinity of passage 15. The phylogenetic analysis of the whole VP1 region suggested that the progenies of H2w evolved closely to other cell culture adapted hepatitis A virus, i.e. MBB, L-A-1, other than its progenitor H2w.CONCLUSION: Hepatitis A virus served as a useful model for studying molecular evolution of viruses in a given environment. The information obtained in this study may provide assistance in cultivating the next generation of a seed virus for live hepatitis A vaccine production.

  15. Mixed cells in shell vials for detection of influenza viruses and enteroviruses from clinical specimens

    Institute of Scientific and Technical Information of China (English)

    汪千力

    2013-01-01

    Objective To evaluate shell vials of MHV,a combination of Madin-Darby canine kidney cells(MDCK),human epidermoid cancer cells(Hep-2) and African green monkey kidney cells(Vero), and conventional cell culture in detecting influenza viruses and enterovirus from

  16. Efficient cell culture system for hepatitis C virus genotype 5A

    DEFF Research Database (Denmark)

    2013-01-01

    of in vitro transcripts in Huh7.5 cells, production of infectious viruses was delayed. However, in subsequent viral passages efficient spread of infection and HCV RNA titers as high as for J6/JFH were obtained. Infectivity titers were at all time points analyzed comparable to J6/JFH control virus. Sequence...... analysis of recovered 5a/2a recombinants from 2 serial passages and subsequent reverse genetic studies revealed adaptive mutations in p7, NS2 and/or NS3. Infectivity of the 5a/2a viruses was CD81 and SR-BI dependant, and the recombinant viruses could be neutralized by chronic phase sera from patients...

  17. Crimean-Congo hemorrhagic fever virus activates endothelial cells.

    Science.gov (United States)

    Connolly-Andersen, Anne-Marie; Moll, Guido; Andersson, Cecilia; Akerström, Sara; Karlberg, Helen; Douagi, Iyadh; Mirazimi, Ali

    2011-08-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) causes viral hemorrhagic fever with high case-fatality rates and is geographically widely distributed. Due to the requirement for a biosafety level 4 (BSL-4) laboratory and the lack of an animal model, knowledge of the viral pathogenesis is limited. Crimean-Congo hemorrhagic fever (CCHF) is characterized by hemorrhage and vascular permeability, indicating the involvement of endothelial cells (ECs). The interplay between ECs and CCHFV is therefore important for understanding the pathogenesis of CCHF. In a previous study, we found that CCHFV-infected monocyte-derived dendritic cells (moDCs) activated ECs; however, the direct effect of CCHFV on ECs was not investigated. Here, we report that ECs are activated upon infection, as demonstrated by upregulation of mRNA levels for E-selectin, vascular cell adhesion molecule 1 (VCAM1), and intercellular adhesion molecule 1 (ICAM1). Protein levels and cell surface expression of ICAM1 responded in a dose-dependent manner to increasing CCHFV titers with concomitant increase in leukocyte adhesion. Furthermore, we examined vascular endothelial (VE) cadherin in CCHFV-infected ECs by different approaches. Infected ECs released higher levels of interleukin 6 (IL-6) and IL-8; however, stimulation of resting ECs with supernatants derived from infected ECs did not result in increased ICAM1 expression. Interestingly, the moDC-mediated activation of ECs was abrogated by addition of neutralizing tumor necrosis factor alpha (TNF-α) antibody to moDC supernatants, thereby identifying this soluble mediator as the key cytokine causing EC activation. We conclude that CCHFV can exert both direct and indirect effects on ECs.

  18. Sequence adaptations during growth of rescued classical swine fever viruses in cell culture and within infected pigs

    DEFF Research Database (Denmark)

    Hadsbjerg, Johanne; Friis, Martin Barfred; Fahnøe, Ulrik

    2016-01-01

    RNA could be detected. However, the animals inoculated with these mutant viruses seroconverted against CSFV. Thus, these mutant viruses were highly attenuated in vivo. All 4 rescued viruses were also passaged up to 20 times in cell culture. Using full genome sequencing, the same two adaptations within...... adaptation and to identify key determinants of viral replication efficiency in cells and within host animals....

  19. Persistent RNA virus infection of lepidopteran cell lines: Interactions with the RNAi machinery.

    Science.gov (United States)

    Swevers, Luc; Ioannidis, Konstantinos; Kolovou, Marianna; Zografidis, Aris; Labropoulou, Vassiliki; Santos, Dulce; Wynant, Niels; Broeck, Jozef Vanden; Wang, Luoluo; Cappelle, Kaat; Smagghe, Guy

    RNAi is broadly used as a technique for specific gene silencing in insects but few studies have investigated the factors that can affect its efficiency. Viral infections have the potential to interfere with RNAi through their production of viral suppressors of RNAi (VSRs) and the production of viral small RNAs that can saturate and inactivate the RNAi machinery. In this study, the impact of persistent infection of the RNA viruses Flock house virus (FHV) and Macula-like virus (MLV) on RNAi efficiency was investigated in selected lepidopteran cell lines. Lepidopteran cell lines were found to be readily infected by both viruses without any apparent pathogenic effects, with the exception of Bombyx-derived Bm5 and BmN4 cells, which could not be infected by FHV. Because Sf21 cells were free from both FHV and MLV and Hi5-SF were free from FHV and only contained low levels of MLV, they were tested to evaluate the impact of the presence of the virus. Two types of RNAi reporter assays however did not detect a significant interference with gene silencing in infected Sf21 and Hi5-SF cells when compared to virus-free cells. In Hi5 cells, the presence of FHV could be easily cleared through the expression of an RNA hairpin that targets its VSR gene, confirming that the RNAi mechanism was not inhibited. Sequencing indicated that the B2 RNAi inhibitor gene of FHV and a putative VSR gene from MLV were intact in persistently infected cell lines, indicating that protection against RNAi remains essential for virus survival. It is proposed that infection levels of persistent viruses in the cell lines are too low to have an impact on RNAi efficiency in the lepidopteran cell lines and that encoded VSRs act locally at the sites of viral replication (mitochondrial membranes) without affecting the rest of the cytoplasm.

  20. Screening for Recombinant Avian Leukosis Viruses in Cell Cultures Inoculated with Various Subgroups of Virus

    Science.gov (United States)

    Chicken embryo fibroblasts (CEFs) prepared from ADOL SPF embryos were co-infected with different concentration ratios of subgroups A, J and E avian leukosis virus (ALV). Inoculated cultures were screened for recombination among the ALV strains. Potential recombinant viruses were purified by limiting...

  1. Use of genetically-encoded calcium indicators for live cell calcium imaging and localization in virus-infected cells.

    Science.gov (United States)

    Perry, Jacob L; Ramachandran, Nina K; Utama, Budi; Hyser, Joseph M

    2015-11-15

    Calcium signaling is a ubiquitous and versatile process involved in nearly every cellular process, and exploitation of host calcium signals is a common strategy used by viruses to facilitate replication and cause disease. Small molecule fluorescent calcium dyes have been used by many to examine changes in host cell calcium signaling and calcium channel activation during virus infections, but disadvantages of these dyes, including poor loading and poor long-term retention, complicate analysis of calcium imaging in virus-infected cells due to changes in cell physiology and membrane integrity. The recent expansion of genetically-encoded calcium indicators (GECIs), including blue and red-shifted color variants and variants with calcium affinities appropriate for calcium storage organelles like the endoplasmic reticulum (ER), make the use of GECIs an attractive alternative for calcium imaging in the context of virus infections. Here we describe the development and testing of cell lines stably expressing both green cytoplasmic (GCaMP5G and GCaMP6s) and red ER-targeted (RCEPIAer) GECIs. Using three viruses (rotavirus, poliovirus and respiratory syncytial virus) previously shown to disrupt host calcium homeostasis, we show the GECI cell lines can be used to detect simultaneous cytoplasmic and ER calcium signals. Further, we demonstrate the GECI expression has sufficient stability to enable long-term confocal imaging of both cytoplasmic and ER calcium during the course of virus infections.

  2. The citrus flavanone naringenin impairs dengue virus replication in human cells

    Science.gov (United States)

    Frabasile, Sandra; Koishi, Andrea Cristine; Kuczera, Diogo; Silveira, Guilherme Ferreira; Verri, Waldiceu Aparecido; Duarte dos Santos, Claudia Nunes; Bordignon, Juliano

    2017-01-01

    Dengue is one of the most significant health problems in tropical and sub-tropical regions throughout the world. Nearly 390 million cases are reported each year. Although a vaccine was recently approved in certain countries, an anti-dengue virus drug is still needed. Fruits and vegetables may be sources of compounds with medicinal properties, such as flavonoids. This study demonstrates the anti-dengue virus activity of the citrus flavanone naringenin, a class of flavonoid. Naringenin prevented infection with four dengue virus serotypes in Huh7.5 cells. Additionally, experiments employing subgenomic RepDV-1 and RepDV-3 replicon systems confirmed the ability of naringenin to inhibit dengue virus replication. Antiviral activity was observed even when naringenin was used to treat Huh7.5 cells 24 h after dengue virus exposure. Finally, naringenin anti-dengue virus activity was demonstrated in primary human monocytes infected with dengue virus sertoype-4, supporting the potential use of naringenin to control dengue virus replication. In conclusion, naringenin is a suitable candidate molecule for the development of specific dengue virus treatments. PMID:28157234

  3. Virus movements on the plasma membrane support infection and transmission between cells.

    Directory of Open Access Journals (Sweden)

    Christoph J Burckhardt

    2009-11-01

    Full Text Available How viruses are transmitted across the mucosal epithelia of the respiratory, digestive, or excretory tracts, and how they spread from cell to cell and cause systemic infections, is incompletely understood. Recent advances from single virus tracking experiments have revealed conserved patterns of virus movements on the plasma membrane, including diffusive motions, drifting motions depending on retrograde flow of actin filaments or actin tail formation by polymerization, and confinement to submicrometer areas. Here, we discuss how viruses take advantage of cellular mechanisms that normally drive the movements of proteins and lipids on the cell surface. A concept emerges where short periods of fast diffusive motions allow viruses to rapidly move over several micrometers. Coupling to actin flow supports directional transport of virus particles during entry and cell-cell transmission, and local confinement coincides with either nonproductive stalling or infectious endocytic uptake. These conserved features of virus-host interactions upstream of infectious entry offer new perspectives for anti-viral interference.

  4. The ex vivo purge of cancer cells using oncolytic viruses: recent advances and clinical implications.

    Science.gov (United States)

    Tsang, Jovian J; Atkins, Harold L

    2015-01-01

    Hematological malignancies are treated with intensive high-dose chemotherapy, with or without radiation. This is followed by hematopoietic stem cell (HSC) transplantation (HSCT) to rescue or reconstitute hematopoiesis damaged by the anticancer therapy. Autologous HSC grafts may contain cancer cells and purging could further improve treatment outcomes. Similarly, allogeneic HSCT may be improved by selectively purging alloreactive effector cells from the graft rather than wholesale immune cell depletion. Viral agents that selectively replicate in specific cell populations are being studied in experimental models of cancer and immunological diseases and have potential applications in the context of HSC graft engineering. This review describes preclinical studies involving oncolytic virus strains of adenovirus, herpes simplex virus type 1, myxoma virus, and reovirus as ex vivo purging agents for HSC grafts, as well as in vitro and in vivo experimental studies using oncolytic coxsackievirus, measles virus, parvovirus, vaccinia virus, and vesicular stomatitis virus to eradicate hematopoietic malignancies. Alternative ex vivo oncolytic virus strategies are also outlined that aim to reduce the risk of relapse following autologous HSCT and mitigate morbidity and mortality due to graft-versus-host disease in allogeneic HSCT.

  5. Viral glycoprotein-mediated cell fusion assays using vaccinia virus vectors.

    Science.gov (United States)

    Bossart, Katharine N; Broder, Christopher C

    2004-01-01

    The vaccinia virus-based expression of viral envelope glycoprotein genes-derived from enveloped viruses that infect their respective host cells through a pH-independent mechanism of membrane fusion-has been a powerful tool in helping to characterize these important attachment and fusion proteins. The cellular expression of these viral envelope glycoproteins has allowed for the measurement of membrane fusion events using cell-cell fusion or syncytia formation. This method has been enhanced by the addition of a reporter-gene system to the vaccinia virus-based cell-cell fusion assay. This improvement has provided a high-throughput and quantitative aspect to this assay, which can serve as a surrogate for virus entry and is therefore ideally suited in the characterization of numerous enveloped viruses, including biological safety level-4 (BSL-4) agents. This chapter will detail the methods of the vaccinia virus-based reporter-gene fusion assay and how it may be used to characterize the fusion mediated by the BSL-4-classified Hendra and Nipah viruses.

  6. Over-expression of putative transcriptional coactivator KELP interferes with Tomato mosaic virus cell-to-cell movement.

    Science.gov (United States)

    Sasaki, Nobumitsu; Ogata, Takuya; Deguchi, Masakazu; Nagai, Shoko; Tamai, Atsushi; Meshi, Tetsuo; Kawakami, Shigeki; Watanabe, Yuichiro; Matsushita, Yasuhiko; Nyunoya, Hiroshi

    2009-03-01

    Tomato mosaic virus (ToMV) encodes a movement protein (MP) that is necessary for virus cell-to-cell movement. We have demonstrated previously that KELP, a putative transcriptional coactivator of Arabidopsis thaliana, and its orthologue from Brassica campestris can bind to ToMV MP in vitro. In this study, we examined the effects of the transient over-expression of KELP on ToMV infection and the intracellular localization of MP in Nicotiana benthamiana, an experimental host of the virus. In co-bombardment experiments, the over-expression of KELP inhibited virus cell-to-cell movement. The N-terminal half of KELP (KELPdC), which had been shown to bind to MP, was sufficient for inhibition. Furthermore, the over-expression of KELP and KELPdC, both of which were co-localized with ToMV MP, led to a reduction in the plasmodesmal association of MP. In the absence of MP expression, KELP was localized in the nucleus and the cytoplasm by the localization signal in its N-terminal half. It was also shown that ToMV amplified normally in protoplasts prepared from leaf tissue that expressed KELP transiently. These results indicate that over-expressed KELP interacts with MP in vivo and exerts an inhibitory effect on MP function for virus cell-to-cell movement, but not on virus amplification in individual cells.

  7. Chemoresistance to Valproate Treatment of Bovine Leukemia Virus-Infected Sheep; Identification of Improved HDAC Inhibitors.

    Science.gov (United States)

    Gillet, Nicolas; Vandermeers, Fabian; de Brogniez, Alix; Florins, Arnaud; Nigro, Annamaria; François, Carole; Bouzar, Amel-Baya; Verlaeten, Olivier; Stern, Eric; Lambert, Didier M; Wouters, Johan; Willems, Luc

    2012-10-08

    We previously proved that a histone deacetylase inhibitor (valproate, VPA) decreases the number of leukemic cells in bovine leukemia virus (BLV)-infected sheep. Here, we characterize the mechanisms initiated upon interruption of treatment. We observed that VPA treatment is followed by a decrease of the B cell counts and proviral loads (copies per blood volume). However, all sheep eventually relapsed after different periods of time and became refractory to further VPA treatment. Sheep remained persistently infected with BLV. B lymphocytes isolated throughout treatment and relapse were responsive to VPA-induced apoptosis in cell culture. B cell proliferation is only marginally affected by VPA ex vivo. Interestingly, in four out of five sheep, ex vivo viral expression was nearly undetectable at the time of relapse. In two sheep, a new tumoral clone arose, most likely revealing a selection process exerted by VPA in vivo. We conclude that the interruption of VPA treatment leads to the resurgence of the leukemia in BLV-infected sheep and hypothesize that resistance to further treatment might be due to the failure of viral expression induction. The development of more potent HDAC inhibitors and/or the combination with other compounds can overcome chemoresistance. These observations in the BLV model may be important for therapies against the related Human T-lymphotropic virus type 1.

  8. Chemoresistance to Valproate Treatment of Bovine Leukemia Virus-Infected Sheep; Identification of Improved HDAC Inhibitors

    Directory of Open Access Journals (Sweden)

    Nicolas Gillet

    2012-10-01

    Full Text Available We previously proved that a histone deacetylase inhibitor (valproate, VPA decreases the number of leukemic cells in bovine leukemia virus (BLV-infected sheep. Here, we characterize the mechanisms initiated upon interruption of treatment. We observed that VPA treatment is followed by a decrease of the B cell counts and proviral loads (copies per blood volume. However, all sheep eventually relapsed after different periods of time and became refractory to further VPA treatment. Sheep remained persistently infected with BLV. B lymphocytes isolated throughout treatment and relapse were responsive to VPA-induced apoptosis in cell culture. B cell proliferation is only marginally affected by VPA ex vivo. Interestingly, in four out of five sheep, ex vivo viral expression was nearly undetectable at the time of relapse. In two sheep, a new tumoral clone arose, most likely revealing a selection process exerted by VPA in vivo. We conclude that the interruption of VPA treatment leads to the resurgence of the leukemia in BLV-infected sheep and hypothesize that resistance to further treatment might be due to the failure of viral expression induction. The development of more potent HDAC inhibitors and/or the combination with other compounds can overcome chemoresistance. These observations in the BLV model may be important for therapies against the related Human T-lymphotropic virus type 1.

  9. Severe cutaneous human papilloma virus infection associated with Natural Killer cell deficiency following stem cell transplantation for severe combined immunodeficiency

    Science.gov (United States)

    Kamili, Qurat-ul-Ain; Seeborg, Filiz O; Saxena, Kapil; Nicholas, Sarah K; Banerjee, Pinaki P; Angelo, Laura S; Mace, Emily M; Forbes, Lisa R; Martinez, Caridad; Wright, Teresa S; Orange, Jordan S.; Hanson, Imelda Celine

    2016-01-01

    Capsule Summary The authors identify Natural Killer cell deficiency in post-transplant severe combined immunodeficiency patients who developed severe human papilloma virus infections as a long term complication. PMID:25159470

  10. Quantitative analysis of particles, genomes and infectious particles in supernatants of haemorrhagic fever virus cell cultures

    Directory of Open Access Journals (Sweden)

    Hedlund Kjell-Olof

    2011-02-01

    Full Text Available Abstract Information on the replication of viral haemorrhagic fever viruses is not readily available and has never been analysed in a comparative approach. Here, we compared the cell culture growth characteristics of haemorrhagic fever viruses (HFV, of the Arenaviridae, Filoviridae, Bunyaviridae, and Flavivridae virus families by performing quantitative analysis of cell culture supernatants by (i electron microscopy for the quantification of virus particles, (ii quantitative real time PCR for the quantification of genomes, and (iii determination of focus forming units by coating fluorescent antibodies to infected cell monolayers for the quantification of virus infectivity. The comparative analysis revealed that filovirus and RVFV replication results in a surplus of genomes but varying degrees of packaging efficiency and infectious particles. More efficient replication and packaging was observed for Lassa virus, and Dengue virus resulting in a better yield of infectious particles while, YFV turned out to be most efficient with only 4 particles inducing one FFU. For Crimean-Congo haemorrhagic fever virus (CCHFV a surplus of empty shells was observed with only one in 24 particles equipped with a genome. The complete particles turned out to be extraordinarily infectious.

  11. Interactions between dengue virus and the host cell

    OpenAIRE

    Mondotte, Juan Alberto

    2011-01-01

    El virus del dengue produce en humanos la enfermedad viral más frecuentemente transmitida por artrópodos y no existe hasta el momento terapia antiviral ni vacuna alguna. En este trabajo se desarrollaron diferentes herramientas genéticas con el fin de estudiar las distintas etapas de la replicación viral y la interacción del virus con la célula huésped. Así, se obtuvo el primer clon infeccioso del virus del dengue de un aislamiento argentino y distintas generaciones de virus con proteínas repo...

  12. Deficient CD4+ T cell priming and regression of CD8+ T cell functionality in virus-infected mice lacking a normal B cell compartment

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Kauffmann, Susanne Ørding; Thomsen, Allan Randrup

    2003-01-01

    precedes recrudescence of detectable virus, indicating that the T cell defect is not simply a secondary event due to virus buildup resulting from the failure of B(-/-) mice to produce neutralizing Abs. In contrast with CD8(+) T cells, which initially respond almost as in wild-type mice, the priming...

  13. Virus replication cycle of white spot syndrome virus in secondary cell cultures from the lymphoid organ of Litopenaeus vannamei.

    Science.gov (United States)

    Li, Wenfeng; Desmarets, Lowiese M B; De Gryse, Gaëtan M A; Theuns, Sebastiaan; Van Tuan, Vo; Van Thuong, Khuong; Bossier, Peter; Nauwynck, Hans J

    2015-09-01

    The replication cycle of white spot syndrome virus (WSSV) was investigated in secondary cell cultures from the lymphoid organ of Litopenaeus vannamei. The secondary cells formed a confluent monolayer at 24 h post-reseeding, and this monolayer could be maintained for 10 days with a viability of 90 %. Binding of WSSV to cells reached a maximum (73 ± 3 % of cells and 4.84 ± 0.2 virus particles per virus-binding cell) at 120 min at 4 °C. WSSV entered cells by endocytosis. The co-localization of WSSV and early endosomes was observed starting from 30 min post-inoculation (p.i.). Double indirect immunofluorescence staining showed that all cell-bound WSSV particles entered these cells in the period between 0 and 60 min p.i. and that the uncoating of WSSV occurred in the same period. After 1 h inoculation at 27 °C, the WSSV nucleocapsid protein VP664 and envelope protein VP28 started to be synthesized in the cytoplasm from 1 and 3 h p.i., and were transported into nuclei from 3 and 6 h p.i., respectively. The percentage of cells that were VP664- and VP28-positive in their nuclei peaked (50 ± 4 %) at 12 h p.i. Quantitative PCR showed that WSSV DNA started to be synthesized from 6 h p.i. In vivo titration of the supernatants showed that the progeny WSSV were released from 12 h p.i. and peaked at 18 h p.i. In conclusion, the secondary cell cultures from the lymphoid organ were proven to be ideal for examination of the replication cycle of WSSV.

  14. Quantitative analysis of human immunodeficiency virus type 1-infected CD4+ cell proteome: dysregulated cell cycle progression and nuclear transport coincide with robust virus production.

    Science.gov (United States)

    Chan, Eric Y; Qian, Wei-Jun; Diamond, Deborah L; Liu, Tao; Gritsenko, Marina A; Monroe, Matthew E; Camp, David G; Smith, Richard D; Katze, Michael G

    2007-07-01

    Relatively little is known at the functional genomic level about the global host response to human immunodeficiency virus type 1 (HIV-1) infection. Microarray analyses by several laboratories, including our own, have revealed that HIV-1 infection causes significant changes in host mRNA abundance and regulation of several cellular biological pathways. However, it remains unclear what consequences these changes bring about at the protein level. Here we report the expression levels of approximately 3,200 proteins in the CD4(+) CEMx174 cell line after infection with the LAI strain of human immunodeficiency virus type 1 (HIV-1); the proteins were assessed using liquid chromatography-mass spectrometry coupled with stable isotope labeling and the accurate mass and time tag approach. Furthermore, we found that 687 (21%) proteins changed in abundance at the peak of virus production at 36 h postinfection. Pathway analysis revealed that the differential expression of proteins was concentrated in select biological pathways, exemplified by ubiquitin-conjugating enzymes in ubiquitination, carrier proteins in nucleocytoplasmic transport, cyclin-dependent kinase in cell cycle progression, and pyruvate dehydrogenase of the citrate cycle pathways. Moreover, we observed changes in the abundance of proteins with known interactions with HIV-1 viral proteins. Our proteomic analysis captured changes in the host protein milieu at the time of robust virus production, depicting changes in cellular processes that may contribute to virus replication. Continuing analyses are expected to focus on blocking virus replication by targeting these pathways and their effector proteins.

  15. Protective essential oil attenuates influenza virus infection: An in vitro study in MDCK cells

    Directory of Open Access Journals (Sweden)

    Metcalf Jordan P

    2010-11-01

    Full Text Available Abstract Background Influenza is a significant cause of morbidity and mortality. The recent pandemic of a novel H1N1 influenza virus has stressed the importance of the search for effective treatments for this disease. Essential oils from aromatic plants have been used for a wide variety of applications, such as personal hygiene, therapeutic massage and even medical practice. In this paper, we investigate the potential role of an essential oil in antiviral activity. Methods We studied a commercial essential oil blend, On Guard™, and evaluated its ability in modulating influenza virus, A/PR8/34 (PR8, infection in Madin-Darby canine kidney (MDCK cells. Influenza virus was first incubated with the essential oil and infectivity in MDCK cells was quantified by fluorescent focus assay (FFA. In order to determine the mechanism of effects of essential oil in viral infection inhibition, we measured hemagglutination (HA activity, binding and internalization of untreated and oil-treated virus in MDCK cells by flow cytometry and immunofluorescence microscopy. In addition, the effect of oil treatment on viral transcription and translation were assayed by relative end-point RT-PCR and western blot analysis. Results Influenza virus infectivity was suppressed by essential oil treatment in a dose-dependent manner; the number of nascent viral particles released from MDCK cells was reduced by 90% and by 40% when virus was treated with 1:4,000 and 1:6,000 dilutions of the oil, respectively. Oil treatment of the virus also decreased direct infection of the cells as the number of infected MDCK cells decreased by 90% and 45% when virus was treated with 1:2,000 and 1:3,000 dilutions of the oil, respectively. This was not due to a decrease in HA activity, as HA was preserved despite oil treatment. In addition, oil treatment did not affect virus binding or internalization in MDCK cells. These effects did not appear to be due to cytotoxicity of the oil as MDCK cell

  16. Lymphotropic Herpesvirus infection and malignant lymphoma, immunological aspects of cytomegalovirus and Epstein- Barr virus infections

    NARCIS (Netherlands)

    Napel, Christianus Hubertus Henricus ten

    1979-01-01

    In de voorgaande hoofdstukken van dit proefschrift werd de oorspronkelijke chronologische volgorde van het onderzoek aangehouden. Maar in dit deel wordt hiervan afgeweken en zullen de resultaten worden samengevat en besproken volgens onderstaande indeling: 1. Cytomegalovirus( CMV)-specifieke immuunr

  17. Prevalence of human T-lymphotropic virus type 1 carriers among pregnant women in Hokkaido, Japan.

    Science.gov (United States)

    Yamada, Takahiro; Togashi, Takehiro; Tsutsumi, Hiroyuki; Imamura, Masahiro; Okubo, Hitoshi; Okabe, Mihiro; Takamuro, Noriko; Tashiro, Kunio; Yano, Koichi; Yamamoto, Nagafumi; Hirakawa, Yukiko; Minakami, Hisanori

    2014-08-01

    As there is a risk of MTCT of HTLV-1, the HSGP HTLV-1 MTCT was organized in 2011. To determine how many pregnant women are infected with HTLV-1 in Hokkaido, which is the northernmost and the second largest island in Japan with a population of 5,467,000 and 39,392 newborns in 2011, the HSGP HTLV-1 MTCT asked all facilities that may care for pregnant women in Hokkaido in July 2013 to provide information on the number of pregnant women who underwent screening for anti-HTLV-1 antibody using particle agglutination or chemiluminescent enzyme immunoassay, and the numbers of those with positive, equivocal, and negative test results in the screening and confirmation tests using western blotting or PCR methods in 2012, respectively. A total of 111 facilities participated in this study and provided information on 33,617 pregnant women who underwent screening in 2012, corresponding to approximately 85% of all pregnant women who gave birth in Hokkaido in 2012. Of 81 candidates for a confirmation test because of positive (n = 77) or equivocal (n = 4) results on screening, 63 (78%) underwent the confirmation test and, finally, 34 (0.1%) and 33,563 (99.8%) women were judged to be HTLV-1 carriers and non-carriers, respectively. It was concluded that the prevalence rate of HTLV-1 carriers was low, one per 1000 pregnant women in Hokkaido. Approximately 40 infants are born yearly to mothers infected with HTLV-1 in Hokkaido.

  18. Transmission of pseudorabies virus from immune-masked blood monocytes to endothelial cells

    OpenAIRE

    Van de Walle, Gerlinde; Favoreel, Herman; Nauwynck, Hans; Mettenleiter, Thomas C.; Pensaert, Maurice

    2003-01-01

    Pseudorabies virus (PRV) may cause abortion, even in the presence of vaccination-induced immunity. Blood monocytes are essential to transport the virus in these immune animals, including transport to the pregnant uterus. Infected monocytes express viral proteins on their cell surface. Specific antibodies recognize these proteins and should activate antibody-dependent cell lysis. Previous work showed that addition of PRV-specific polyclonal antibodies to PRV-infected monocytes induced internal...

  19. Virus-Free Human Placental Cell Lines To Study Genetic Functions | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Institute of Child Health and Human Development's Section on Cellular Differentiation is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize immortalized virus-free human placental cell lines.The National Institute of Child Health and Human Development's Section on Cellular Differentiation is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize immortalized virus-free human placental cell lines.

  20. Capsid proteins from field strains of foot-and-mouth disease virus confer a pathogenic phenotype in cattle on an attenuated, cell-culture-adapted virus

    DEFF Research Database (Denmark)

    Bøtner, Anette; Kakker, Naresh K.; Barbezange, Cyril

    2011-01-01

    Chimeric foot-and-mouth disease viruses (FMDVs) have been generated from plasmids containing full-length FMDV cDNAs and characterized. The parental virus cDNA was derived from the cell-culture-adapted O1Kaufbeuren B64 (O1K B64) strain. Chimeric viruses, containing capsid coding sequences derived...... cells than the rescued parental O1K B64 virus. The two chimeric viruses displayed the expected antigenicity in serotype-specific antigen ELISAs. Following inoculation of each virus into cattle, the rescued O1K B64 strain proved to be attenuated whereas, with each chimeric virus, typical clinical signs...... from the O/UKG/34/2001 or A/Turkey 2/2006 field viruses, were constructed using the backbone from the O1K B64 cDNA, and viable viruses (O1K/O-UKG and O1K/A-Tur, respectively) were successfully rescued in each case. These viruses grew well in primary bovine thyroid cells but grew less efficiently in BHK...

  1. Single-Cell Mass Cytometry Analysis of Human Tonsil T Cell Remodeling by Varicella Zoster Virus

    Directory of Open Access Journals (Sweden)

    Nandini Sen

    2014-07-01

    Full Text Available Although pathogens must infect differentiated host cells that exhibit substantial diversity, documenting the consequences of infection against this heterogeneity is challenging. Single-cell mass cytometry permits deep profiling based on combinatorial expression of surface and intracellular proteins. We used this method to investigate varicella-zoster virus (VZV infection of tonsil T cells, which mediate viral transport to skin. Our results indicate that VZV induces a continuum of changes regardless of basal phenotypic and functional T cell characteristics. Contrary to the premise that VZV selectively infects T cells with skin trafficking profiles, VZV infection altered T cell surface proteins to enhance or induce these properties. Zap70 and Akt signaling pathways that trigger such surface changes were activated in VZV-infected naive and memory cells by a T cell receptor (TCR-independent process. Single-cell mass cytometry is likely to be broadly relevant for demonstrating how intracellular pathogens modulate differentiated cells to support pathogenesis in the natural host.

  2. HumanViCe: Host ceRNA network in virus infected cells in human

    Directory of Open Access Journals (Sweden)

    Suman eGhosal

    2014-07-01

    Full Text Available Host-virus interaction via host cellular components has been an important field of research in recent times. RNA interference mediated by short interfering RNAs and microRNAs (miRNA, is a widespread anti-viral defence strategy. Importantly, viruses also encode their own miRNAs. In recent times miRNAs were identified as key players in host-virus interaction. Furthermore, viruses were shown to exploit the host miRNA networks to suite their own need. The complex cross-talk between host and viral miRNAs and their cellular and viral targets forms the environment for viral pathogenesis. Apart from protein-coding mRNAs, non-coding RNAs may also be targeted by host or viral miRNAs in virus infected cells, and viruses can exploit the host miRNA mediated gene regulatory network via the competing endogenous RNA effect. A recent report showed that viral U-rich non-coding RNAs called HSUR, expressed in primate virus herpesvirus saimiri (HVS infected T cells, were able to bind to three host miRNAs, causing significant alteration in cellular level for one of the miRNAs. We have predicted protein coding and non protein-coding targets for viral and human miRNAs in virus infected cells. We identified viral miRNA targets within host non-coding RNA loci from AGO interacting regions in three different virus infected cells. Gene ontology (GO and pathway enrichment analysis of the genes comprising the ceRNA networks in the virus infected cells revealed enrichment of key cellular signalling pathways related to cell fate decisions and gene transcription, like Notch and Wnt signalling pathways, as well as pathways related to viral entry, replication and virulence. We identified a vast number of non-coding transcripts playing as potential ceRNAs to the immune response associated genes; e.g. APOBEC family genes, in some virus infected cells. All these information are compiled in HumanViCe, a comprehensive database that provides the potential ceRNA networks in virus

  3. Inhibition of Mayaro virus replication by prostaglandin A1 and B2 in Vero cells.

    Science.gov (United States)

    Ishimaru, D; Marcicano, F G; Rebello, M A

    1998-09-01

    The effect of prostaglandins (PGA1 and PGB2) on the replication of Mayaro virus was studied in Vero cells. PGA1 and PGB2 antiviral activity was found to be dose-dependent. However, while 10 micrograms/ml PGB2 inhibited virus yield by 60%, at the same dose PGA1 suppressed virus replication by more than 90%. SDS-PAGE analysis of [35S]-methionine-labelled proteins showed that PGA1 did not alter cellular protein synthesis. In infected cells, PGA1 slightly inhibited the synthesis of protein C, while drastically inhibiting the synthesis of glycoproteins E1 and E2.

  4. Inhibition of Mayaro virus replication by prostaglandin A1 and B2 in Vero cells

    Directory of Open Access Journals (Sweden)

    Ishimaru D.

    1998-01-01

    Full Text Available The effect of prostaglandins (PGA1 and PGB2 on the replication of Mayaro virus was studied in Vero cells. PGA1 and PGB2 antiviral activity was found to be dose-dependent. However, while 10 µg/ml PGB2 inhibited virus yield by 60%, at the same dose PGA1 suppressed virus replication by more than 90%. SDS-PAGE analysis of [35S]-methionine-labelled proteins showed that PGA1 did not alter cellular protein synthesis. In infected cells, PGA1 slightly inhibited the synthesis of protein C, while drastically inhibiting the synthesis of glycoproteins E1 and E2.

  5. Development of avian sarcoma and leukosis virus-based vector-packaging cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Stoker, A.W.; Bissell, M.J. (Univ. of California, Berkeley (USA))

    1988-03-01

    The authors have constructed an avian leukosis virus derivative with a 5{prime} deletion extending from within the tRNA primer binding site to a SacI site in the leader region. The aim was to remove cis-acting replicative and/or encapsidation sequences and to use this derivative, RAV-1{Psi}{sup {minus}}, to develop vector-packaging cell lines. They show that RAV-1{Psi}{sup {minus}} can be stably expressed in the quail cell line QT6 and chicken embryo fibroblasts and that it is completely replication deficient in both cell types. Moreover, they have demonstrated that QT6-derived lines expressing RAV-1{Psi}{sup {minus}} can efficiently package four structurally different replication-defective v-src expression vectors into infectious virus, with very low or undetectable helper virus release. These RAV-{Psi}{sup {minus}}-expressing cell lines comprise the first prototype avian sarcoma and leukosis virus-based vector-packaging system. The construction of our vectors has also shown us that a sequence present within gag, thought to facilitate virus packaging, is not necessary for efficient vector expression and high virus production. They show that quantitation and characterization of replication-defective viruses can be achieved with a sensitive immunocytochemical procedure, presenting an alternative to internal selectable vector markers.

  6. Replication of simian virus 40 in simian virus 40-transformed hamster kidney cells induced by mitomycin C or /sup 60/Co. gamma. irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rakusanova, T.; Smales, W.P.; Kaplan, J.C.; Black, P.H.

    1978-07-15

    Several clones of simian virus 40 (SV40)-transformed hamster kidney cells, which are heterogeneous for induction of infectious SV40, have been studied. SV40 yields are low after induction with /sup 60/Co ..gamma.. irradiation or mitomycin C. In order to clarify the mechanism(s) by which virus is produced in induced cells, we analyzed the replication of viral DNA and production of virion (V) antigen and infectious virus after induction in various clones as well as in lytically infected permissive cells. Cells replicating SV40 DNA or synthesizing V antigen were visualized by in situ hybridization and immunofluorescence techniques, respectively. Only some cells in induced cultures were found to produce SV40 and those which did were less efficient than lytically infected monkey cells. Mitomycin C or /sup 60/Co ..gamma.. irradiation acted by inducing more cells to replicate virus rather than by increasing the amount of SV40 released from individual cells. A greater proportion of cells could be induced to replicate SV40 DNA than to synthesize V antigen in all induced clones studied. Also, SV40 DNA replication was induced at lower doses of ..gamma.. irradiation than the production of either V antigen or infectious virus suggesting that synthesis of late virus protein is more restricted in induced cells than is replication of SV40 DNA. These findings indicate that one of the effects of induction treatments on SV40-transformed hamster cells is an enhancement of the cells' capacity to support SV40 replication.

  7. Vesiculobullous variant of adult T-cell leukemia/lymphoma in a Caribbean Émigré.

    Science.gov (United States)

    Mouzakis, John; Black, William; Messina, Jane; Cherpelis, Basil

    2011-12-01

    Adult T-cell leukemia/lymphoma (ATLL) results from human T-cell lymphotropic virus (HTLV) type I infection and may present as a diverse array of cutaneous findings. Often these clinical manifestations are non-specific and overlap significantly with cutaneous T-cell lymphoma (CTCL). However, it is exceedingly rare for a patient suffering from ATLL to develop vesicular or bullous pathology and only a handful of such cases have been reported in the literature. The authors describe a patient of Jamaican descent afflicted with ATLL who developed an impressive vesiculobullous eruption. This case provides further support of the near complete clinical overlap between ATLL and CTCL. Patients from HTLV endemic areas with consistent clinical manifestations should have viral serologies drawn as the treatment and prognosis of ATLL and CTCL differ greatly.

  8. Permissivity of the NCI-60 cancer cell lines to oncolytic Vaccinia Virus GLV-1h68

    Directory of Open Access Journals (Sweden)

    Bedognetti Davide

    2011-10-01

    Full Text Available Abstract Background Oncolytic viral therapy represents an alternative therapeutic strategy for the treatment of cancer. We previously described GLV-1h68, a modified Vaccinia Virus with exclusive tropism for tumor cells, and we observed a cell line-specific relationship between the ability of GLV-1h68 to replicate in vitro and its ability to colonize and eliminate tumor in vivo. Methods In the current study we surveyed the in vitro permissivity to GLV-1h68 replication of the NCI-60 panel of cell lines. Selected cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV strain. In order to identify correlates of permissity to viral infection, we measured transcriptional profiles of the cell lines prior infection. Results We observed highly heterogeneous permissivity to VACV infection amongst the cell lines. The heterogeneity of permissivity was independent of tissue with the exception of B cell derivation. Cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV strain and a significant correlation was found suggesting a common permissive phenotype. While no clear transcriptional pattern could be identified as predictor of permissivity to infection, some associations were observed suggesting multifactorial basis permissivity to viral infection. Conclusions Our findings have implications for the design of oncolytic therapies for cancer and offer insights into the nature of permissivity of tumor cells to viral infection.

  9. An electron microscopic study of MDBK cells persistently infected with Newcastle disease virus.

    Science.gov (United States)

    McNulty, M S; Gowans, E J; Louza, A C; Fraser, G

    1977-01-01

    Ultrastructural examination of a line of MDBK cells persistently infected with Newcastle disease virus (MDBKpi cells) revealed the presence of cytoplasmic aggregates of both smooth and granular nucleocapsids. Only granular nucleocapsids aligned under modified areas of plasma membrane and were incorporated into virus particles. On the grounds of morphogenesis, there was no apparent explanation for the persistent, not-cytocidal nature of the infection. Both nuclear and cytoplasmic aggregates of smooth nucleocapsids were present in MDBKpi cells which had been held without subculture for between 40 and 130 days (aged MDBKpi cells). Modified areas of plasma membrane with associated alignment of nucleocapsids were not present in aged MDBKpi cells, and neither budding nor released virus particles were observed, indicating a block in virus maturation. It is suggested that the granular material coating granular nucleocapsids allows them to interact with modified areas of plasma membrane, thereby inducing virus budding. A deficiency of this material, as apparently occurs in aged MDBKpi cells, would therefore cause a block in virus maturation. The nature of this granular material is discussed, and we suggest that it consists of M protein.

  10. Small tumor virus genomes are integrated near nuclear matrix attachment regions in transformed cells.

    Science.gov (United States)

    Shera, K A; Shera, C A; McDougall, J K

    2001-12-01

    More than 15% of human cancers have a viral etiology. In benign lesions induced by the small DNA tumor viruses, viral genomes are typically maintained extrachromosomally. Malignant progression is often associated with viral integration into host cell chromatin. To study the role of viral integration in tumorigenesis, we analyzed the positions of integrated viral genomes in tumors and tumor cell lines induced by the small oncogenic viruses, including the high-risk human papillomaviruses, hepatitis B virus, simian virus 40, and human T-cell leukemia virus type 1. We show that viral integrations in tumor cells lie near cellular sequences identified as nuclear matrix attachment regions (MARs), while integrations in nonneoplastic cells show no significant correlation with these regions. In mammalian cells, the nuclear matrix functions in gene expression and DNA replication. MARs play varied but poorly understood roles in eukaryotic gene expression. Our results suggest that integrated tumor virus genomes are subject to MAR-mediated transcriptional regulation, providing insight into mechanisms of viral carcinogenesis. Furthermore, the viral oncoproteins serve as invaluable tools for the study of mechanisms controlling cellular growth. Similarly, our demonstration that integrated viral genomes may be subject to MAR-mediated transcriptional effects should facilitate elucidation of fundamental mechanisms regulating eukaryotic gene expression.

  11. Cell Culture Models for the Investigation of Hepatitis B and D Virus Infection

    Science.gov (United States)

    Verrier, Eloi R.; Colpitts, Che C.; Schuster, Catherine; Zeisel, Mirjam B.; Baumert, Thomas F.

    2016-01-01

    Chronic hepatitis B virus (HBV) and hepatitis D virus (HDV) infections are major causes of liver disease and hepatocellular carcinoma worldwide. Despite the presence of an efficient preventive vaccine, more than 250 million patients are chronically infected with HBV. Current antivirals effectively control but only rarely cure chronic infection. While the molecular biology of the two viruses has been characterized in great detail, the absence of robust cell culture models for HBV and/or HDV infection has limited the investigation of virus-host interactions. Native hepatoma cell lines do not allow viral infection, and the culture of primary hepatocytes, the natural host cell for the viruses, implies a series of constraints restricting the possibilities of analyzing virus-host interactions. Recently, the discovery of the sodium taurocholate co-transporting polypeptide (NTCP) as a key HBV/HDV cell entry factor has opened the door to a new era of investigation, as NTCP-overexpressing hepatoma cells acquire susceptibility to HBV and HDV infections. In this review, we summarize the major cell culture models for HBV and HDV infection, discuss their advantages and limitations and highlight perspectives for future developments. PMID:27657111

  12. Morphology and infectivity of virus that persistently caused infection in an AGS cell line.

    Science.gov (United States)

    Ooi, Yukimasa; Daikoku, Eriko; Wu, Hong; Aoki, Hiroaki; Morita, Chizuko; Nakano, Takashi; Kohno, Takehiro; Takasaki, Tomohiko; Sano, Kouichi

    2011-12-01

    A recent report has indicated that proteins and genes of simian virus 5 (SV5) are detected in a human gastric adenocarcinoma (AGS) cell line, which is widely provided for oncology, immunology, and microbiology research. However, the production of infective virions has not been determined in this cell line. In this study, the morphology and infectivity of the virus particles of the AGS cell line were studied by light and electron microscopy and virus transmission assay. The virus particles were approximately 176.0 ± 41.1 nm in diameter. The particles possessed projections 8-12 nm long on the surface and contained a nucleocapsid determined to be 13-18 nm in width and less than 1,000 nm in length. The virus was transmissible to the Vero cell line, induced multinuclear giant cell formation, and reproduced the same shape of antigenic virions. In this study, the persistently infected virus in the AGS cell line was determined to be infective and form reproducible virions, and a new morphological feature of SV5 was determined.

  13. Virus Innexins induce alterations in insect cell and tissue function

    Science.gov (United States)

    Polydnaviruses are dsDNA viruses that induce immune and developmental alterations in their caterpillar hosts. Characterization of polydnavirus gene families and family members is necessary to understand mechanisms of pathology and evolution of these viruses, and may aid to elucidate the role of host...

  14. Detection and identification of putative bacterial endosymbionts and endogenous viruses in tick cell lines☆

    Science.gov (United States)

    Alberdi, M. Pilar; Dalby, Matthew J.; Rodriguez-Andres, Julio; Fazakerley, John K.; Kohl, Alain; Bell-Sakyi, Lesley

    2012-01-01

    As well as being vectors of many viral, bacterial, and protozoan pathogens of medical and veterinary importance, ticks harbour a variety of microorganisms which are not known to be pathogenic for vertebrate hosts. Continuous cell lines established from ixodid and argasid ticks could be infected with such endosymbiotic bacteria and endogenous viruses, but to date very few cell lines have been examined for their presence. DNA and RNA extracted from over 50 tick cell lines deposited in the Roslin Wellcome Trust Tick Cell Biobank (http://tickcells.roslin.ac.uk) were screened for presence of bacteria and RNA viruses, respectively. Sequencing of PCR products amplified using pan-16S rRNA primers revealed the presence of DNA sequences from bacterial endosymbionts in several cell lines derived from Amblyomma and Dermacentor spp. ticks. Identification to species level was attempted using Rickettsia- and Francisella-specific primers. Pan-Nairovirus primers amplified PCR products of uncertain specificity in cell lines derived from Rhipicephalus, Hyalomma, Ixodes, Carios, and Ornithodoros spp. ticks. Further characterisation attempted with primers specific for Crimean-Congo haemorrhagic fever virus segments confirmed the absence of this arbovirus in the cells. A set of pan-Flavivirus primers did not detect endogenous viruses in any of the cell lines. Transmission electron microscopy revealed the presence of endogenous reovirus-like viruses in many of the cell lines; only 4 of these lines gave positive results with primers specific for the tick Orbivirus St Croix River virus, indicating that there may be additional, as yet undescribed ‘tick-only’ viruses inhabiting tick cell lines. PMID:22743047

  15. Detection and identification of putative bacterial endosymbionts and endogenous viruses in tick cell lines.

    Science.gov (United States)

    Alberdi, M Pilar; Dalby, Matthew J; Rodriguez-Andres, Julio; Fazakerley, John K; Kohl, Alain; Bell-Sakyi, Lesley

    2012-06-01

    As well as being vectors of many viral, bacterial, and protozoan pathogens of medical and veterinary importance, ticks harbour a variety of microorganisms which are not known to be pathogenic for vertebrate hosts. Continuous cell lines established from ixodid and argasid ticks could be infected with such endosymbiotic bacteria and endogenous viruses, but to date very few cell lines have been examined for their presence. DNA and RNA extracted from over 50 tick cell lines deposited in the Roslin Wellcome Trust Tick Cell Biobank (http://tickcells.roslin.ac.uk) were screened for presence of bacteria and RNA viruses, respectively. Sequencing of PCR products amplified using pan-16S rRNA primers revealed the presence of DNA sequences from bacterial endosymbionts in several cell lines derived from Amblyomma and Dermacentor spp. ticks. Identification to species level was attempted using Rickettsia- and Francisella-specific primers. Pan-Nairovirus primers amplified PCR products of uncertain specificity in cell lines derived from Rhipicephalus, Hyalomma, Ixodes, Carios, and Ornithodoros spp. ticks. Further characterisation attempted with primers specific for Crimean-Congo haemorrhagic fever virus segments confirmed the absence of this arbovirus in the cells. A set of pan-Flavivirus primers did not detect endogenous viruses in any of the cell lines. Transmission electron microscopy revealed the presence of endogenous reovirus-like viruses in many of the cell lines; only 4 of these lines gave positive results with primers specific for the tick Orbivirus St Croix River virus, indicating that there may be additional, as yet undescribed 'tick-only' viruses inhabiting tick cell lines.

  16. GAPDH--a recruits a plant virus movement protein to cortical virus replication complexes to facilitate viral cell-to-cell movement.

    Directory of Open Access Journals (Sweden)

    Masanori Kaido

    2014-11-01

    Full Text Available The formation of virus movement protein (MP-containing punctate structures on the cortical endoplasmic reticulum is required for efficient intercellular movement of Red clover necrotic mosaic virus (RCNMV, a bipartite positive-strand RNA plant virus. We found that these cortical punctate structures constitute a viral replication complex (VRC in addition to the previously reported aggregate structures that formed adjacent to the nucleus. We identified host proteins that interacted with RCNMV MP in virus-infected Nicotiana benthamiana leaves using a tandem affinity purification method followed by mass spectrometry. One of these host proteins was glyceraldehyde 3-phosphate dehydrogenase-A (NbGAPDH-A, which is a component of the Calvin-Benson cycle in chloroplasts. Virus-induced gene silencing of NbGAPDH-A reduced RCNMV multiplication in the inoculated leaves, but not in the single cells, thereby suggesting that GAPDH-A plays a positive role in cell-to-cell movement of RCNMV. The fusion protein of NbGAPDH-A and green fluorescent protein localized exclusively to the chloroplasts. In the presence of RCNMV RNA1, however, the protein localized to the cortical VRC as well as the chloroplasts. Bimolecular fluorescence complementation assay and GST pulldown assay confirmed in vivo and in vitro interactions, respectively, between the MP and NbGAPDH-A. Furthermore, gene silencing of NbGAPDH-A inhibited MP localization to the cortical VRC. We discuss the possible roles of NbGAPDH-A in the RCNMV movement process.

  17. Infection of Polarized MDCK Cells with Herpes Simplex Virus 1: Two Asymmetrically Distributed Cell Receptors Interact with Different Viral Proteins

    Science.gov (United States)

    Sears, Amy E.; McGwire, Bradford S.; Roizman, Bernard

    1991-06-01

    Herpes simplex virus 1 attaches to at least two cell surface receptors. In polarized epithelial (Madin-Darby canine kidney; MDCK) cells one receptor is located in the apical surface and attachment to the cells requires the presence of glycoprotein C in the virus. The second receptor is located in the basal surface and does not require the presence of glycoprotein C. Exposure of MDCK cells at either the apical or basal surface to wild-type virus yields plaques and viral products whereas infection by a glycoprotein C-negative mutant yields identical results only after exposure of MDCK cells to virus at the basal surface. Multiple receptors for viral entry into cells expand the host range of the virus. The observation that glycoprotein C-negative mutants are infectious in many nonpolarized cell lines suggests that cells in culture may express more than one receptor and explains why genes that specify the viral proteins that recognize redundant receptors, like glycoprotein C, are expendable.

  18. Giant cell arteritis associated with chronic active Epstein-Barr virus infection

    Directory of Open Access Journals (Sweden)

    A. Giardina

    2013-03-01

    Full Text Available Giant cell arteritis is an inflammatory vasculopathy that preferentially affects medium-sized and large arteries. A viral cause has been suspected but not confirmed in polymyalgia rheumatica and giant-cell arteritis. We report the case of a 81-year-old female who suffered from chronic active Epstein-Barr virus infection and developed giant cell temporal arteritis.

  19. A determinant of feline immunodeficiency virus involved in Crandell feline kidney cell tropism.

    NARCIS (Netherlands)

    C.H.J. Siebelink (Kees); J.A. Karlas (Jos); G.F. Rimmelzwaan (Guus); A.D.M.E. Osterhaus (Albert); M.L. Bosch (Marnix)

    1995-01-01

    textabstractViral progeny of the molecular clone 19k1 of feline immunodeficiency virus (FIV) can infect feline T-cells but not Crandell feline kidney (CrFK) cells. In contrast, the biological isolate FIV-AM6c, which was CrFK adapted by co-cultivation of FIV-AM6 infected thymocytes with CrFK cells, c

  20. Proteomic profile of human monocytic cells infected with dengue virus

    Institute of Scientific and Technical Information of China (English)

    Viviana Martnez-Betancur; Marlen Martnez-Gutierrez

    2016-01-01

    Objective: To identify the changes in the proteome of U937 cells infected with dengue virus (DENV). Methods: In this study, differentiated U937 cultures were infected with two DENV-2 strains, one of which was associated with dengue (DENV-2/NG) and the other one with severe dengue (DENV-2/16681), with the aim of determining the cellular proteomic profiles under different infection conditions. Cellular proteins were extracted and sepa-rated by two-dimensional electrophoresis, and those proteins with differential expression profiles were identified by mass spectrometry. The obtained results were correlated with cellular viability, the number of infectious viral particles, and the viral DNA/protein quantity. Results: In comparison with non-infected cultures, in the cells infected with the DENV-2/NG strain, nine proteins were expressed differentially (five were upregulated and four were downregulated); in those cultures infected with the DENV-2/16681 strain, six proteins were differentially expressed (two were downregulated and four were upregu-lated). The downregulated proteins included fatty acid-binding protein, heterogeneous nuclear ribonucleoprotein 1, protein disulfide isomerase, enolase 1, heat shock 70 kDa protein 9, phosphotyrosyl phosphatase, and annexin IV. The upregulated proteins included heat shock 90 kDa protein AA1, tubulin beta, enolase 1, pyruvate kinase, transaldolase and phospholipase C-alpha. Conclusions: Because the monocyte/macrophage lineage is critical for disease patho-genicity, additional studies on these proteins could provide a better understanding of the cellular response to DENV infection and could help identify new therapeutic targets against infection.

  1. Mutation of a chloroplast-targeting signal in Alternanthera mosaic virus TGB3 impairs cell-to-cell movement and eliminates long-distance virus movement.

    Science.gov (United States)

    Lim, Hyoun-Sub; Vaira, Anna Maria; Bae, Hanhong; Bragg, Jennifer N; Ruzin, Steven E; Bauchan, Gary R; Dienelt, Margaret M; Owens, Robert A; Hammond, John

    2010-08-01

    Cell-to-cell movement of potexviruses requires coordinated action of the coat protein and triple gene block (TGB) proteins. The structural properties of Alternanthera mosaic virus (AltMV) TGB3 were examined by methods differentiating between signal peptides and transmembrane domains, and its subcellular localization was studied by Agrobacterium-mediated transient expression and confocal microscopy. Unlike potato virus X (PVX) TGB3, AltMV TGB3 was not associated with the endoplasmic reticulum, and accumulated preferentially in mesophyll cells. Deletion and site-specific mutagenesis revealed an internal signal VL(17,18) of TGB3 essential for chloroplast localization, and either deletion of the TGB3 start codon or alteration of the chloroplast-localization signal limited cell-to-cell movement to the epidermis, yielding a virus that was unable to move into the mesophyll layer. Overexpression of AltMV TGB3 from either AltMV or PVX infectious clones resulted in veinal necrosis and vesiculation at the chloroplast membrane, a cytopathology not observed in wild-type infections. The distinctive mesophyll and chloroplast localization of AltMV TGB3 highlights the critical role played by mesophyll targeting in virus long-distance movement within plants.

  2. Virus-induced non-specific signals cause cell cycle progression of primed CD8(+) T cells but do not induce cell differentiation

    DEFF Research Database (Denmark)

    Ørding Andreasen, Susanne; Christensen, Jan Pravsgaard; Marker, O;

    1999-01-01

    with known specificity and priming history in an environment also containing a normal heterogeneous CD8(+) population which served as an intrinsic control. Three parameters of T cell activation were analyzed: cell cycle progression, phenotypic conversion and cytolytic activity. Following injection of the IFN......In this report the significance of virus-induced non-specific T cell activation was re-evaluated using transgenic mice in which about half of the CD8(+) T cells expressed a TCR specific for amino acids 33-41 of lymphocytic choriomeningitis virus glycoprotein I. This allowed tracing of cells...... inducer poly(I:C), proliferation of memory (CD44(hi)) CD8(+) T cells but no phenotypic or functional activation was observed. Following injection of an unrelated virus [vesicular stomatitis virus (VSV)], naive TCR transgenic cells did not become significantly activated with respect to any...

  3. Annulate lamellae in phloem cells of virus-infected Sonchus plants.

    Science.gov (United States)

    Steinkamp, M P; Hoefert, L L

    1977-07-01

    The occurrence of annulate lamellae (AL) in differentiating phloem of Sonchus oleraceus (Compositae) singly infected with sowthistle yellow vein virus (SYVV) and doubly infected with a combination of SYVV and beet yellow stunt virus is documented by electron microscopy. Cell types in which AL were found were immature sieve elements and phloem parenchyma cells. AL were found only in cells that also contained SYVV particles although a direct association between the virus and AL was not apparent. The substructure of the AL and the relationships between the AL and the nuclear envelope and endoplasmic reticulum are similar to those reported in other descriptions of this organelle in the literature. This report appears to be the first one concerning the association of AL with a plant virus disease.

  4. An important role for syndecan-1 in herpes simplex virus type-1 induced cell-to-cell fusion and virus spread.

    Directory of Open Access Journals (Sweden)

    Ghadah A Karasneh

    Full Text Available Herpes simplex virus type-1 (HSV-1 is a common human pathogen that relies heavily on cell-to-cell spread for establishing a lifelong latent infection. Molecular aspects of HSV-1 entry into host cells have been well studied; however, the molecular details of the spread of the virus from cell-to-cell remain poorly understood. In the past, the role of heparan sulfate proteoglycans (HSPG during HSV-1 infection has focused solely on the role of HS chains as an attachment receptor for the virus, while the core protein has been assumed to perform a passive role of only carrying the HS chains. Likewise, very little is known about the involvement of any specific HSPGs in HSV-1 lifecycle. Here we demonstrate that a HSPG, syndecan-1, plays an important role in HSV-1 induced membrane fusion and cell-to-cell spread. Interestingly, the functions of syndecan-1 in fusion and spread are independent of the presence of HS on the core protein. Using a mutant CHO-K1 cell line that lacks all glycosaminoglycans (GAGs on its surface (CHO-745 we demonstrate that the core protein of syndecan-1 possesses the ability to modulate membrane fusion and viral spread. Altogether, we identify a new role for syndecan-1 in HSV-1 pathogenesis and demonstrate HS-independent functions of its core protein in viral spread.

  5. TCR Down-Regulation Controls Virus-Specific CD8+ T Cell Responses

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte Menné; Haks, Mariëlle; Nielsen, Bodil

    2008-01-01

    The CD3gamma di-leucine-based motif plays a central role in TCR down-regulation. However, little is understood about the role of the CD3gamma di-leucine-based motif in physiological T cell responses. In this study, we show that the expansion in numbers of virus-specific CD8(+) T cells is impaired...... in mice with a mutated CD3gamma di-leucine-based motif. The CD3gamma mutation did not impair early TCR signaling, nor did it compromise recruitment or proliferation of virus-specific T cells, but it increased the apoptosis rate of the activated T cells by increasing down-regulation of the antiapoptotic...... molecule Bcl-2. This resulted in a 2-fold reduction in the clonal expansion of virus-specific CD8(+) T cells during the acute phase of vesicular stomatitis virus and lymphocytic choriomeningitis virus infections. These results identify an important role of CD3gamma-mediated TCR down-regulation in virus...

  6. Efficient replication of pneumonia virus of mice (PVM in a mouse macrophage cell line

    Directory of Open Access Journals (Sweden)

    Martin Brittany V

    2007-06-01

    Full Text Available Abstract Pneumonia virus of mice (PVM; family Paramyxoviridae, subfamily Pneumovirinae is a natural respiratory pathogen of rodent species and an important new model for the study of severe viral bronchiolitis and pneumonia. However, despite high virus titers typically detected in infected mouse lung tissue in vivo, cell lines used routinely for virus propagation in vitro are not highly susceptible to PVM infection. We have evaluated several rodent and primate cell lines for susceptibility to PVM infection, and detected highest virus titers from infection of the mouse monocyte-macrophage RAW 264.7 cell line. Additionally, virus replication in RAW 264.7 cells induces the synthesis and secretion of proinflammatory cytokines relevant to respiratory virus disease, including tumor necrosis factor-α (TNF-α, interferon-β (IFN-β, macrophage inflammatory proteins 1α and 1β (MIP-1α and MIP-1β and the functional homolog of human IL-8, mouse macrophage inflammatory peptide-2 (MIP-2. Identification and characterization of a rodent cell line that supports the replication of PVM and induces the synthesis of disease-related proinflammatory mediators will facilitate studies of molecular mechanisms of viral pathogenesis that will complement and expand on findings from mouse model systems.

  7. Infectious salmon anaemia virus infection of Atlantic salmon gill epithelial cells

    Directory of Open Access Journals (Sweden)

    Weli Simon

    2013-01-01

    Full Text Available Abstract Infectious salmon anaemia virus (ISAV, a member of the Orthomyxoviridae family, infects and causes disease in farmed Atlantic salmon (Salmo salar L.. Previous studies have shown Atlantic salmon endothelial cells to be the primary targets of ISAV infection. However, it is not known if cells other than endothelial cells play a role in ISAV tropism. To further assess cell tropism, we examined ISAV infection of Atlantic salmon gill epithelial cells in vivo and in vitro. We demonstrated the susceptibility of epithelial cells to ISAV infection. On comparison of primary gill epithelial cell cultures with ISAV permissive fish cell cultures, we found the virus yield in primary gill epithelial cells to be comparable with that of salmon head kidney (SHK-1 cells, but lower than TO or Atlantic salmon kidney (ASK-II cells. Light and transmission electron microscopy (TEM revealed that the primary gill cells possessed characteristics consistent with epithelial cells. Virus histochemistry showed that gill epithelial cells expressed 4-O-acetylated sialic acid which is recognized as the ISAV receptor. To the best of our knowledge, this is the first demonstration of ISAV infection in Atlantic salmon primary gill epithelial cells. This study thus broadens our understanding of cell tropism and transmission of ISAV in Atlantic salmon.

  8. Melaleuca alternifolia Concentrate Inhibits in Vitro Entry of Influenza Virus into Host Cells

    Directory of Open Access Journals (Sweden)

    Lifang Jiang

    2013-08-01

    Full Text Available Influenza virus causes high morbidity among the infected population annually and occasionally the spread of pandemics. Melaleuca alternifolia Concentrate (MAC is an essential oil derived from a native Australian tea tree. Our aim was to investigate whether MAC has any in vitro inhibitory effect on influenza virus infection and what mechanism does the MAC use to fight the virus infection. In this study, the antiviral activity of MAC was examined by its inhibition of cytopathic effects. In silico prediction was performed to evaluate the interaction between MAC and the viral haemagglutinin. We found that when the influenza virus was incubated with 0.010% MAC for one hour, no cytopathic effect on MDCK cells was found after the virus infection and no immunofluorescence signal was detected in the host cells. Electron microscopy showed that the virus treated with MAC retained its structural integrity. By computational simulations, we found that terpinen-4-ol, which is the major bioactive component of MAC, could combine with the membrane fusion site of haemagglutinin. Thus, we proved that MAC could prevent influenza virus from entering the host cells by disturbing the normal viral membrane fusion procedure.

  9. Propagation of Brazilian Zika virus strains in static and suspension cultures using Vero and BHK cells.

    Science.gov (United States)

    Nikolay, Alexander; Castilho, Leda R; Reichl, Udo; Genzel, Yvonne

    2017-03-23

    The recent spread of Zika virus (ZIKV) in the Americas and the Pacific has reached alarming levels in more than 60 countries. However, relatively little is known about the disease on a virological and epidemiological level and its consequences for humans. Accordingly, a large demand for in vitro derived Brazilian ZIKV material to support in vitro and in vivo studies has arisen. However, a prompt supply of ZIKV and ZIKV antigens cannot be guaranteed as the production of this virus typically using Vero or C6/36 cell lines remains challenging. Here we present a production platform based on BHK-21 suspension (BHK-21SUS) cells to propagate Brazilian ZIKV at larger quantities in perfusion bioreactors. Scouting experiments performed in tissue culture flasks using adherent BHK-21 and Vero cells have demonstrated similar permissivity and virus yields for four different Brazilian ZIKV isolates. The cell-specific yield of infectious virus particles varied between respective virus strains (1-48PFU/cell), and the ZIKV isolate from the Brazilian state Pernambuco (ZIKV(PE)) showed to be a best performing isolate for both cell lines. However, infection studies of BHK-21SUS cells with ZIKV(PE) in shake flasks resulted in poor virus replication, with a maximum titer of 8.9×10(3)PFU/mL. Additional RT-qPCR measurements of intracellular and extracellular viral RNA levels revealed high viral copy numbers within the cell, but poor virus release. Subsequent cultivation in a perfusion bioreactor using an alternating tangential flow filtration system (ATF) under controlled process conditions enabled cell concentrations of about 1.2×10(7)cells/mL, and virus titers of 3.9×10(7)PFU/mL. However, while the total number of infectious virus particles was increased, the cell-specific yield (3.3PFU/cell) remained lower than determined in adherent cell lines. Nevertheless, the established perfusion process allows to provide large amounts of ZIKV material for research and is a first step towards

  10. Nrf2 protects human alveolar epithelial cells against injury induced by influenza A virus

    Directory of Open Access Journals (Sweden)

    Kosmider Beata

    2012-06-01

    Full Text Available Abstract Background Influenza A virus (IAV infection primarily targets respiratory epithelial cells and produces clinical outcomes ranging from mild upper respiratory infection to severe pneumonia. Recent studies have shown the importance of lung antioxidant defense systems against injury by IAV. Nuclear factor-erythroid 2 related factor 2 (Nrf2 activates the majority of antioxidant genes. Methods Alveolar type II (ATII cells and alveolar macrophages (AM were isolated from human lungs not suitable for transplantation and donated for medical research. In some studies ATII cells were transdifferentiated to alveolar type I-like (ATI-like cells. Alveolar epithelial cells were infected with A/PR/8/34 (PR8 virus. We analyzed PR8 virus production, influenza A nucleoprotein levels, ROS generation and expression of antiviral genes. Immunocytofluorescence was used to determine Nrf2 translocation and western blotting to detect Nrf2, HO-1 and caspase 1 and 3 cleavage. We also analyzed ingestion of PR8 virus infected apoptotic ATII cells by AM, cytokine levels by ELISA, glutathione levels, necrosis and apoptosis by TUNEL assay. Moreover, we determined the critical importance of Nrf2 using adenovirus Nrf2 (AdNrf2 or Nrf2 siRNA to overexpress or knockdown Nrf2, respectively. Results We found that IAV induced oxidative stress, cytotoxicity and apoptosis in ATI-like and ATII cells. We also found that AM can ingest PR8 virus-induced apoptotic ATII cells (efferocytosis but not viable cells, whereas ATII cells did not ingest these apoptotic cells. PR8 virus increased ROS production, Nrf2, HO-1, Mx1 and OAS1 expression and Nrf2 translocation to the nucleus. Nrf2 knockdown with siRNA sensitized ATI-like cells and ATII cells to injury induced by IAV and overexpression of Nrf2 with AdNrf2 protected these cells. Furthermore, Nrf2 overexpression followed by infection with PR8 virus decreased virus replication, influenza A nucleoprotein expression, antiviral response and

  11. Exosome-associated hepatitis C virus in cell cultures and patient plasma.

    Science.gov (United States)

    Liu, Ziqing; Zhang, Xiugen; Yu, Qigui; He, Johnny J

    2014-12-12

    Hepatitis C virus (HCV) infects its target cells in the form of cell-free viruses and through cell-cell contact. Here we report that HCV is associated with exosomes. Using highly purified exosomes and transmission electron microscopic imaging, we demonstrated that HCV occurred in both exosome-free and exosome-associated forms. Exosome-associated HCV was infectious and resistant to neutralization by an anti-HCV neutralizing antibody. There were more exosome-associated HCV than exosome-free HCV detected in the plasma of HCV-infected patients. These results suggest exosome-associated HCV as an alternative form for HCV infection and transmission.

  12. Generation of influenza virus from avian cells infected by Salmonella carrying the viral genome.

    Directory of Open Access Journals (Sweden)

    Xiangmin Zhang

    Full Text Available Domestic poultry serve as intermediates for transmission of influenza A virus from the wild aquatic bird reservoir to humans, resulting in influenza outbreaks in poultry and potential epidemics/pandemics among human beings. To combat emerging avian influenza virus, an inexpensive, heat-stable, and orally administered influenza vaccine would be useful to vaccinate large commercial poultry flocks and even migratory birds. Our hypothesized vaccine is a recombinant attenuated bacterial strain able to mediate production of attenuated influenza virus in vivo to induce protective immunity against influenza. Here we report the feasibility and technical limitations toward such an ideal vaccine based on our exploratory study. Five 8-unit plasmids carrying a chloramphenicol resistance gene or free of an antibiotic resistance marker were constructed. Influenza virus was successfully generated in avian cells transfected by each of the plasmids. The Salmonella carrier was engineered to allow stable maintenance and conditional release of the 8-unit plasmid into the avian cells for recovery of influenza virus. Influenza A virus up to 10⁷ 50% tissue culture infective doses (TCID50/ml were recovered from 11 out of 26 co-cultures of chicken embryonic fibroblasts (CEF and Madin-Darby canine kidney (MDCK cells upon infection by the recombinant Salmonella carrying the 8-unit plasmid. Our data prove that a bacterial carrier can mediate generation of influenza virus by delivering its DNA cargoes into permissive host cells. Although we have made progress in developing this Salmonella influenza virus vaccine delivery system, further improvements are necessary to achieve efficient virus production, especially in vivo.

  13. Mechanisms of Virus-Induced Neural Cell Death

    Science.gov (United States)

    2002-09-01

    43 W 1,904 nd CVID/IVIG GCV Improved 28 Guillain -Barr1 M 55 W 2,000 nd A NONE ACV Stable EBV = Epstein- Barr virus; CSF = cerebrospinal fluid; CNSL...caused by Epstein- Barr virus, a related herpesvirus (15). Expanded SOW Aim 1.1: Cellular apoptotic pathways activated in human viral apoptosis. We have...quantitative CSF PCR in the analysis of Epstein- Barr virus infections of the central nervous system. Ann Neurol (MS#200200341, In Press), 2002. 16

  14. Asthma and influenza virus infection:focusing on cell death and stress pathways in influenza virus replication.

    Science.gov (United States)

    Yeganeh, Behzad; Rezaei Moghadam, Adel; Tran, Ahn Thuy; Rahim, Mohammad Niaz; Ande, Sudu R; Hashemi, Mohammad; Coombs, Kevin M; Ghavami, Saeid

    2013-03-01

    Asthma is one of the fastest growing syndromes in many countries and is adding a huge cost to the health care system. Increasing reports have linked airway infectious diseases to asthma. Influenza is one of the most serious airway infectious diseases and in recent years there have been some serious influenza virus pandemics which caused increased fatality in numerous different populations. Diverse host response pathways during virus infection have been identified, including different cell death and survival pathways. These pathways include 1) programmed cell death I (apoptosis), 2) programmed cell death II (autophagy), and 3) endoplasmic reticulum stress with subsequent unfolded protein response (UPR). There has been extensive research on the regulatory roles of these pathways during the influenza virus life cycle. These studies address the benefits of enhancing or inhibiting these pathways on viral replication. Here we review the most recent and significant knowledge in this area for possible benefits to clinicians and basic scientist researchers in different areas of the respiratory and virology sciences.

  15. Asthma and influenza virus infection:focusing on cell death and stress pathways in influenza virus replication.

    Directory of Open Access Journals (Sweden)

    Behzad Yeganeh

    2013-03-01

    Full Text Available Asthma is one of the fastest growing syndromes in many countries and is adding a huge cost to the health care system. Increasing reports have linked airway infectious diseases to asthma. Influenza is one of the most serious airway infectious diseases and in recent years there have been some serious influenza virus pandemics which caused increased fatality in numerous different populations. Diverse host response pathways during virus infection have been identified, including different cell death and survival pathways. These pathways include1 programmed cell death I (apoptosis, 2 programmed cell death II (autophagy, and 3 endoplasmic reticulum stress with subsequent unfolded protein response (UPR. There has been extensive research on the regulatory roles of these pathways during the influenza virus life cycle. These studies address the benefits of enhancing or inhibiting these pathways on viral replication. Here we review the most recent and significant knowledge in this area for possible  benefits  to  clinicians and  basic  scientist researchers  in  different  areas  of  the respiratory and virology sciences.

  16. Macrophages as target cells for Mayaro virus infection: involvement of reactive oxygen species in the inflammatory response during virus replication.

    Science.gov (United States)

    Cavalheiro, Mariana G; Costa, Leandro Silva DA; Campos, Holmes S; Alves, Letícia S; Assunção-Miranda, Iranaia; Poian, Andrea T DA

    2016-09-01

    Alphaviruses among the viruses that cause arthritis, consisting in a public health problem worldwide by causing localized outbreaks, as well as large epidemics in humans. Interestingly, while the Old World alphaviruses are arthritogenic, the New World alphaviruses cause encephalitis. One exception is Mayaro virus (MAYV), which circulates exclusively in South America but causes arthralgia and is phylogenetically related to the Old World alphaviruses. Although MAYV-induced arthritis in humans is well documented, the molecular and cellular factors that contribute to its pathogenesis are completely unknown. In this study, we demonstrated for the first time that macrophages, key players in arthritis development, are target cells for MAYV infection, which leads to cell death through apoptosis. We showed that MAYV replication in macrophage induced the expression of TNF, a cytokine that would contribute to pathogenesis of MAYV fever, since TNF promotes an inflammatory profile characteristic of arthritis. We also found a significant increase in the production of reactive oxygen species (ROS) at early times of infection, which coincides with the peak of virus replication and precedes TNF secretion. Treatment of the cells with antioxidant agents just after infection completely abolished TNF secretion, indicating an involvement of ROS in inflammation induced during MAYV infection.

  17. Macrophages as target cells for Mayaro virus infection: involvement of reactive oxygen species in the inflammatory response during virus replication

    Directory of Open Access Journals (Sweden)

    MARIANA G. CAVALHEIRO

    Full Text Available ABSTRACT Alphaviruses among the viruses that cause arthritis, consisting in a public health problem worldwide by causing localized outbreaks, as well as large epidemics in humans. Interestingly, while the Old World alphaviruses are arthritogenic, the New World alphaviruses cause encephalitis. One exception is Mayaro virus (MAYV, which circulates exclusively in South America but causes arthralgia and is phylogenetically related to the Old World alphaviruses. Although MAYV-induced arthritis in humans is well documented, the molecular and cellular factors that contribute to its pathogenesis are completely unknown. In this study, we demonstrated for the first time that macrophages, key players in arthritis development, are target cells for MAYV infection, which leads to cell death through apoptosis. We showed that MAYV replication in macrophage induced the expression of TNF, a cytokine that would contribute to pathogenesis of MAYV fever, since TNF promotes an inflammatory profile characteristic of arthritis. We also found a significant increase in the production of reactive oxygen species (ROS at early times of infection, which coincides with the peak of virus replication and precedes TNF secretion. Treatment of the cells with antioxidant agents just after infection completely abolished TNF secretion, indicating an involvement of ROS in inflammation induced during MAYV infection.

  18. Effects of inducing or inhibiting apoptosis on Sindbis virus replication in mosquito cells.

    Science.gov (United States)

    Wang, Hua; Blair, Carol D; Olson, Ken E; Clem, Rollie J

    2008-11-01

    Sindbis virus (SINV) is a mosquito-borne virus in the genus Alphavirus, family Togaviridae. Like most alphaviruses, SINVs exhibit lytic infection (apoptosis) in many mammalian cell types, but are generally thought to cause persistent infection with only moderate cytopathic effects in mosquito cells. However, there have been several reports of apoptotic-like cell death in mosquitoes infected with alphaviruses or flaviviruses. Given that apoptosis has been shown to be an antiviral response in other systems, we have constructed recombinant SINVs that express either pro-apoptotic or anti-apoptotic genes in order to test the effects of inducing or inhibiting apoptosis on SINV replication in mosquito cells. Recombinant SINVs expressing the pro-apoptotic genes reaper (rpr) from Drosophila or michelob_x (mx) from Aedes aegypti caused extensive apoptosis in cells from the mosquito cell line C6/36, thus changing the normal persistent infection observed with SINV to a lytic infection. Although the infected cells underwent apoptosis, high levels of virus replication were still observed during the initial infection. However, virus production subsequently decreased compared with persistently infected cells, which continued to produce high levels of virus over the next several days. Infection of C6/36 cells with SINV expressing the baculovirus caspase inhibitor P35 inhibited actinomycin D-induced caspase activity and protected infected cells from actinomycin D-induced apoptosis, but had no observable effect on virus replication. This study is the first to test directly whether inducing or inhibiting apoptosis affects arbovirus replication in mosquito cells.

  19. Cell transformation mediated by chromosomal deoxyribonucleic acid of polyoma virus-transformed cells

    Energy Technology Data Exchange (ETDEWEB)

    Della Valle, G.; Fenton, R.G.; Basilico, C.

    1981-05-01

    To study the mechanism of deoxyribonucleic acid (DNA)-mediated gene transfer, normal rat cells were transfected with total cellular DNA extracted from polyoma virus-transformed cells. This resulted in the appearance of the transformed phenotype in 1 x 10/sup -6/ to 3 x 10/sup -6/ of the transfected cells. Transformation was invariably associated with the acquisition of integrated viral DNA sequences characteristic of the donor DNA. This was caused not by the integration of free DNA molecules, but by the transfer of large DNA fragments (10 to 20 kilobases) containing linked cellular and viral sequences. Although Southern blot analysis showed that integration did not appear to occur in a homologus region of the recipient chromosome, the frequency of transformation was rather high when compared with that of purified polyoma DNA, perhaps due to ''position'' effects or to the high efficiency of recombination of large DNA fragments.

  20. Replication of Syngrapha falcifera Multiple-Nuclear Polyhedrosis Virus-D in Different Insect Cells

    Science.gov (United States)

    Khalid Nessr Alhag, Sadeq; Xin, Peng Jian

    Six insect cell lines were tested for susceptibility to Syngrapha falcifera multiple nucleocapsid nucleopolyhedrovirus-D (SfaMNPV-D) infection by use of a typical endpoint assay procedure. Cell lines from Trichoplusia ni (Tn5B1-4), (L105-clone), Spodoptera litura (SL-ZSU-1), Spodoptera frugiperda (IPLB-SF-21), Pieris rapaeb (Pr-E-HNU9) and Helicoverpa zea (BCIRL-HZ-AM1) in 96-well tissue culture plates were infected with dilutions of extra cellular virus suspensions of (SfaMNPV-D). Each cell/virus combination was incubated at temperatures 27°C and wells were scored for positive infection at 2 to 4 day intervals. The resulting data were analyzed by Reed and Muench method, providing virus titers for each combination of virus, cell line. The results were categorized by accuracy and by rapidity of maximum titer. Virus titer of Tn5B-4 was higher than other cell lines TCID50 8.7x108, the lowest level detected in infected was in (Pr-E-HNU9) cells TCID50 2.4x108. No Virions or polyhedral inclusion bodies were detected in infected SL-ZSU-1 cells.

  1. Plasmalemmal vesicle associated protein (PV1) modulates SV40 virus infectivity in CV-1 cells.

    Science.gov (United States)

    Tse, Dan; Armstrong, David A; Oppenheim, Ariella; Kuksin, Dmitry; Norkin, Leonard; Stan, Radu V

    2011-08-26

    Plasmalemmal vesicle associated protein (Plvap/PV1) is a structural protein required for the formation of the stomatal diaphragms of caveolae. Caveolae are plasma membrane invaginations that were implicated in SV40 virus entry in primate cells. Here we show that de novo Plvap/PV1 expression in CV-1 green monkey epithelial cells significantly reduces the ability of SV40 virus to establish productive infection, when cells are incubated with low concentrations of the virus. However, in presence of high viral titers PV1 has no effect on SV40 virus infectivity. Mechanistically, PV1 expression does not reduce the cell surface expression of known SV40 receptors such as GM1 ganglioside and MHC class I proteins. Furthermore, PV1 does not reduce the binding of virus-like particles made by SV40 VP1 protein to the CV-1 cell surface and does not impact their internalization when cells are incubated with either high or low VLP concentrations. These results suggest that PV1 protein is able to block SV40 infectivity at low but not at high viral concentration either by interfering with the infective internalization pathway at the cell surface or at a post internalization step.

  2. Development and characterization of a Rift Valley fever virus cell-cell fusion assay using alphavirus replicon vectors.

    Science.gov (United States)

    Filone, Claire Marie; Heise, Mark; Doms, Robert W; Bertolotti-Ciarlet, Andrea

    Rift Valley fever virus (RVFV), a member of the Phlebovirus genus in the Bunyaviridae family, is transmitted by mosquitoes and infects both humans and domestic animals, particularly cattle and sheep. Since primary RVFV strains must be handled in BSL-3+ or BSL-4 facilities, a RVFV cell-cell fusion assay will facilitate the investigation of RVFV glycoprotein function under BSL-2 conditions. As for other members of the Bunyaviridae family, RVFV glycoproteins are targeted to the Golgi, where the virus buds, and are not efficiently delivered to the cell surface. However, overexpression of RVFV glycoproteins using an alphavirus replicon vector resulted in the expression of the glycoproteins on the surface of multiple cell types. Brief treatment of RVFV glycoprotein expressing cells with mildly acidic media (pH 6.2 and below) resulted in rapid and efficient syncytia formation, which we quantified by beta-galactosidase alpha-complementation. Fusion was observed with several cell types, suggesting that the receptor(s) for RVFV is widely expressed or that this acid-dependent virus does not require a specific receptor to mediate cell-cell fusion. Fusion occurred over a broad temperature range, as expected for a virus with both mosquito and mammalian hosts. In contrast to cell fusion mediated by the VSV-G glycoprotein, RVFV glycoprotein-dependent cell fusion could be prevented by treating target cells with trypsin, indicating that one or more proteins (or protein-associated carbohydrate) on the host cell surface are needed to support membrane fusion. The cell-cell fusion assay reported here will make it possible to study the membrane fusion activity of RVFV glycoproteins in a high-throughput format and to screen small molecule inhibitors for the ability to block virus-specific membrane fusion.

  3. Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models

    Directory of Open Access Journals (Sweden)

    Rodrigo Delvecchio

    2016-11-01

    Full Text Available Zika virus (ZIKV infection in utero might lead to microcephaly and other congenital defects. Since no specific therapy is available thus far, there is an urgent need for the discovery of agents capable of inhibiting its viral replication and deleterious effects. Chloroquine is widely used as an antimalarial drug, anti-inflammatory agent, and it also shows antiviral activity against several viruses. Here we show that chloroquine exhibits antiviral activity against ZIKV in Vero cells, human brain microvascular endothelial cells, human neural stem cells, and mouse neurospheres. We demonstrate that chloroquine reduces the number of ZIKV-infected cells in vitro, and inhibits virus production and cell death promoted by ZIKV infection without cytotoxic effects. In addition, chloroquine treatment partially reveres morphological changes induced by ZIKV infection in mouse neurospheres.

  4. MEK kinase 1 is a negative regulator of virus-specific CD8(+) T cells

    DEFF Research Database (Denmark)

    Labuda, Tord; Christensen, Jan Pravsgaard; Rasmussen, Susanne;

    2006-01-01

    MEK kinase 1 (MEKK1) is a potent JNK-activating kinase, a regulator of T helper cell differentiation, cytokine production and proliferation in vitro. Using mice deficient for MEKK1 activity (Mekk1(DeltaKD)) exclusively in their hematopoietic system, we show that MEKK1 has a negative regulatory role...... in the generation of a virus-specific immune response. Mekk1(DeltaKD) mice challenged with vesicular stomatitis virus (VSV) showed a fourfold increase in splenic CD8(+) T cell numbers. In contrast, the number of splenic T cells in infected WT mice was only marginally increased. The CD8(+) T cell expansion in Mekk1...... suggest that MEKK1 plays a negative regulatory role in the expansion of virus-specific CD8(+) T cells in vivo....

  5. Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions

    Directory of Open Access Journals (Sweden)

    Ichou Mohamed

    2010-07-01

    Full Text Available Abstract Monkeypox virus (MPV is a zoonotic Orthopoxvirus and a potential biothreat agent that causes human disease with varying morbidity and mortality. Members of the Orthopoxvirus genus have been shown to suppress antiviral cell defenses, exploit host cell machinery, and delay infection-induced cell death. However, a comprehensive study of all host genes and virus-targeted host networks during infection is lacking. To better understand viral strategies adopted in manipulating routine host biology on global scale, we investigated the effect of MPV infection on Macaca mulatta kidney epithelial cells (MK2 using GeneChip rhesus macaque genome microarrays. Functional analysis of genes differentially expressed at 3 and 7 hours post infection showed distinctive regulation of canonical pathways and networks. While the majority of modulated histone-encoding genes exhibited sharp copy number increases, many of its transcription regulators were substantially suppressed; suggesting involvement of unknown viral factors in host histone expression. In agreement with known viral dependence on actin in motility, egress, and infection of adjacent cells, our results showed extensive regulation of genes usually involved in controlling actin expression dynamics. Similarly, a substantial ratio of genes contributing to cell cycle checkpoints exhibited concerted regulation that favors cell cycle progression in G1, S, G2 phases, but arrest cells in G2 phase and inhibits entry into mitosis. Moreover, the data showed that large number of infection-regulated genes is involved in molecular mechanisms characteristic of cancer canonical pathways. Interestingly, ten ion channels and transporters showed progressive suppression during the course of infection. Although the outcome of this unusual channel expression on cell osmotic homeostasis remains unknown, instability of cell osmotic balance and membrane potential has been implicated in intracellular pathogens egress. Our

  6. Susceptibility of testicular cell cultures of crab, Scylla serrata (Forskal) to white spot syndrome virus.

    Science.gov (United States)

    Shashikumar, Anumol; Desai, P V

    2013-03-01

    Testicular cell culture of crab, Scylla serrata (Forskal) was used to study the effects of White spot syndrome virus (WSSV). We are showing the susceptibility of cell culture of crabs to WSSV. The proliferating cell culture of testes were maintained for more than 4 months in a medium prepared from L15 and crab saline supplemented with epidermal growth factor. The cell cultures inoculated with different concentrations of virus showed distinct cytopathic effects such as change in cell appearance, shrinkage and cell lysis. WSSV infection of cultured cells was confirmed by Nested PCR technique. The incorporation of viral DNA in cultured cells was shown by RAPD profile generated using 10-mer primers. The controls that were not exposed to WSSV did not show cytopathic effects. This work shows the usefulness of proliferating testicular cell culture for studying WSSV infection using molecular tools. Thus, this report gains significance as it opens new vistas for diagnostics and drugs for WSSV.

  7. Preliminary study on Herpes simplex virus type 1 infection of human oral epithelial cell in vitro

    Institute of Scientific and Technical Information of China (English)

    Jie Zhao; Weibin Sun; Juan Wang

    2008-01-01

    Objective: To explore the functions and mechanisms of herpes simplex virus type 1(HSV-1) while infecting human oral epithelial cells in vitro(being similar to the infection in vivo). Methods:An abundance of HSV-1 strains amplified in Vero cells were used to infect human oral epithelial cells. The culture supernatant was collected to infect Veto cells again. Morphology of HSV-1 was identified by inverted microscope and transmission electron microscope. Nucleic acid of the virus was detected by PCR. Results:The infected human oral epithelial cells didn't display an obvious cytopathic effect(CPE) under inverted microscope(while Veto cells which were infected by the culture supematant showed typical(CPE). The virus particles were not observed in the cytoplasm nor in nucleus of human oral epithelial cells, however under transmission electron microscope in the cytoplasm of Vero cells, the nucleic acid of HSV-1 could be detected in infected human oral epithelial cells, by PCR. Conclusion:HSV-1 can successfully infect human oral epithelial cells. This model may provide a useful approach for studying the pathogenesis of herpes virus-associated periodontal disease.

  8. Comparative analysis of signature genes in porcine reproductive and respiratory syndrome virus (PRRSV)-infected porcine monocyte-derived dendritic cells at differential activation statuses

    Science.gov (United States)

    Activation statuses of monocytic cells, e.g. monocytes, macrophages and dendritic cells (DCs), are critically important for antiviral immunity. In particular, some devastating viruses, including porcine reproductive and respiratory syndrome virus (PRRSV), are capable of directly infecting these cell...

  9. Induction of virus-neutralizing antibodies and T cell responses by dengue virus type 1 virus-like particles prepared from Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    TANG Yun-xia; JIANG Li-fang; ZHOU Jun-mei; YIN Yue; YANG Xiao-meng; LIU Wen-quan; FANG Dan-yun

    2012-01-01

    Background Dengue is currently a significant global health problem but no vaccines are available against the four dengue serotypes virus infections.The development of safe and effective vaccines has been hampered by the requirement of conferring complete protection against all four dengue serotypes and the lack of a convenient animal model.Virus-like particles (VLPs) have emerged as a promising subunit vaccine candidate.One strategy of vaccine development is to produce a tetravalent dengue subunit vaccine by mixing recombinant VLPs,corresponding to all four dengue virus serotypes.Towards this end,this study aimed to establish a Pichia pastoris (P.pastoris) expression system for production of dengue virus type 1 (DENV-1) VLPs and evaluate the humoral and cellular immune response of this particle in mice.Methods A recombinant yeast P.pastoris clone containing prM and E genes of DENV-1 was constructed and DENV-1 VLPs expressed by this clone were analyzed by sucrose density gradient centrifugation,Western blotting,and transmission electron microscope.Groups of mice were immunized by these particles plus adjuvant formulations,then mice were tested by ELISA and neutralization assay for humoral immune response,and by lymphocyte proliferation and cytokine production assays for a cellular immune response.Results Our data demonstrated that recombinant DENV-1 VLPs consisting of prM and E protein were successfully expressed in the yeast P.pastoris.Sera of VLPs immunized mice were shown to contain a high-titer of antibodies and the neutralization assay suggested that those antibodies neutralized virus infection in vitro.Data from the T lymphocyte proliferation assay showed proliferation of T cell,and ELISA found elevated secretion levels of interferon IFN-y and IL-4.Conclusions P.pastoris-expressed DENV-1 VLPs can induce virus neutralizing antibodies and T cell responses in immunized mice.Using P.pastoris to produce VLPs offers a promising and economic strategy for dengue virus

  10. Adaptive mutations allow establishment of JFH1-based cell culture systems for hepatitis C virus genotype 4A

    DEFF Research Database (Denmark)

    2013-01-01

    transmembrane domain (.alpha.), in the cytoplasmic part (.beta.) or at the NS2/NS3 cleavage site (y). Following transfection of Huh7.5 cells with RNA transcripts, infectious viruses were produced in the ED43/JFH1-.beta. and -y cultures only. Compared to the 2a control virus, production of infectious viruses...

  11. Hepatitis E Virus Produced from Cell Culture Has a Lipid Envelope.

    Directory of Open Access Journals (Sweden)

    Ying Qi

    Full Text Available The absence of a productive cell culture system hampered detailed analysis of the structure and protein composition of the hepatitis E virion. In this study, hepatitis E virus from a robust HEV cell culture system and from the feces of infected monkeys at the peak of virus excretion was purified by ultra-centrifugation. The common feature of the two samples after ultracentrifugation was that the ORF2 protein mainly remained in the top fractions. The ORF2 protein from cell culture system was glycosylated, with an apparent molecular weight of 88 kDa, and was not infectious in PLC/PRF/5 cells. The ORF2 protein in this fraction can bind to and protect HEV RNA from digestion by RNase A. The RNA-ORF2 product has a similar sedimentation coefficient to the virus from feces. The viral RNA in the cell culture supernatant was mainly in the fraction of 1.15 g/cm3 but that from the feces was mainly in the fraction of 1.21 g/cm3. Both were infectious in PLC/PRF/5 cells. And the fraction in the middle of the gradient (1.06 g/cm3 from the cell culture supernatant,but not that from the feces, also has ORF2 protein and HEV RNA but was not infectious in PLC/PRF/5.The infectious RNA-rich fraction from the cell culture contained ORF3 protein and lipid but the corresponding fraction from feces had no lipid and little ORF3 protein. The lipid on the surface of the virus has no effect on its binding to cells but the ORF3 protein interferes with binding. The result suggests that most of the secreted ORF2 protein is not associated with HEV RNA and that hepatitis E virus produced in cell culture differs in structure from the virus found in feces in that it has a lipid envelope.

  12. Expression of the Lassa virus nucleocapsid protein in insect cells infected with a recombinant baculovirus: application to diagnostic assays for Lassa virus infection.

    Science.gov (United States)

    Barber, G N; Clegg, J C; Lloyd, G

    1990-01-01

    The coding region of the gene for the nucleocapsid protein of Lassa virus has been inserted into the genome of Autographa californica nuclear polyhedrosis virus (AcNPV) using the transfer vector pAcYM1, so that expression of the foreign DNA is under the control of the promoter of the AcNPV polyhedrin gene. Infection of cultured Spodoptera frugiperda cells with recombinant virus resulted in the synthesis of high levels of a protein that was indistinguishable from the authentic Lassa virus protein by SDS gel electrophoresis and immunoblotting with a variety of specific immune sera and monoclonal antibodies (MAbs). The kinetics of appearance of the protein were comparable to those of polyhedrin production in wild-type AcNPV-infected cells. The recombinant material was antigenic when used in ELISA for Lassa virus-specific antibodies, reacting well with MAbs specific for the nucleocapsid protein and with sera from experimentally infected guinea-pigs. The recombinant ELISA was able to clearly distinguish sera from human cases of Lassa fever against a panel of known negative sera of African origin. Recombinant-infected insect cells were an effective substitute for mammalian cells infected with Lassa virus itself in the immunofluorescence assay for Lassa virus-specific antibodies. This system offers attractive alternatives to the use of Lassa virus-infected materials as reagents in diagnostic procedures.

  13. A thiopurine drug inhibits West Nile virus production in cell culture, but not in mice.

    Directory of Open Access Journals (Sweden)

    Pei-Yin Lim

    Full Text Available Many viruses within the Flavivirus genus cause significant disease in humans; however, effective antivirals against these viruses are not currently available. We have previously shown that a thiopurine drug, 6-methylmercaptopurine riboside (6MMPr, inhibits replication of distantly related viruses within the Flaviviridae family in cell culture, including bovine viral diarrhea virus and hepatitis C virus replicon. Here we further examined the potential antiviral effect of 6MMPr on several diverse flaviviruses. In cell culture, 6MMPr inhibited virus production of yellow fever virus, dengue virus-2 (DENV-2 and West Nile virus (WNV in a dose-dependent manner, and DENV-2 was significantly more sensitive to 6MMPr treatment than WNV. We then explored the use of 6MMPr as an antiviral against WNV in an immunocompetent mouse model. Once a day treatment of mice with 0.5 mg 6MMPr was just below the toxic dose in our mouse model, and this dose was used in subsequent studies. Mice were treated with 6MMPr immediately after subcutaneous inoculation with WNV for eight consecutive days. Treatment with 6MMPr exacerbated weight loss in WNV-inoculated mice and did not significantly affect mortality. We hypothesized that 6MMPr has low bioavailability in the central nervous system (CNS and examined the effect of pre-treatment with 6MMPr on viral loads in the periphery and CNS. Pre-treatment with 6MMPr had no significant effect on viremia or viral titers in the periphery, but resulted in significantly higher viral loads in the brain, suggesting that the effect of 6MMPr is tissue-dependent. In conclusion, despite being a potent inhibitor of flaviviruses in cell culture, 6MMPr was not effective against West Nile disease in mice; however, further studies are warranted to reduce the toxicity and/or improve the bioavailability of this potential antiviral drug.

  14. Dengue virus specific dual HLA binding T cell epitopes induce CD8+ T cell responses in seropositive individuals.

    Science.gov (United States)

    Comber, Joseph D; Karabudak, Aykan; Huang, Xiaofang; Piazza, Paolo A; Marques, Ernesto T A; Philip, Ramila

    2014-01-01

    Dengue virus infects an estimated 300 million people each year and even more are at risk of becoming infected as the virus continues to spread into new areas. Despite the increase in viral prevalence, no anti-viral medications or vaccines are approved for treating or preventing infection. CD8+ T cell responses play a major role in viral clearance. Therefore, effective vaccines that induce a broad, multi-functional T cell response with substantial cross-reactivity between all virus serotypes can have major impacts on reducing infection rates and infection related complications. Here, we took an immunoproteomic approach to identify novel MHC class I restricted T cell epitopes presented by dengue virus infected cells, representing the natural and authentic targets of the T cell response. Using this approach we identified 4 novel MHC-I restricted epitopes: 2 with the binding motif for HLA-A24 molecules and 2 with both HLA-A2 and HLA-A24 binding motifs. These peptides were able to activate CD8+ T cell responses in both healthy, seronegative individuals and in seropositive individuals who have previously been infected with dengue virus. Importantly, the dual binding epitopes activated pre-existing T cell precursors in PBMCs obtained from both HLA-A2+ and HLA-A24+ seropositive individuals. Together, the data indicate that these epitopes are immunologically relevant T cell activating peptides presented on infected cells during a natural infection and therefore may serve as candidate antigens for the development of effective multi-serotype specific dengue virus vaccines.

  15. Adoptive Transfer of Engineered Rhesus Simian Immunodeficiency Virus-Specific CD8+ T Cells Reduces the Number of Transmitted/Founder Viruses Established in Rhesus Macaques.

    Science.gov (United States)

    Ayala, Victor I; Trivett, Matthew T; Barsov, Eugene V; Jain, Sumiti; Piatak, Michael; Trubey, Charles M; Alvord, W Gregory; Chertova, Elena; Roser, James D; Smedley, Jeremy; Komin, Alexander; Keele, Brandon F; Ohlen, Claes; Ott, David E

    2016-11-01

    AIDS virus infections are rarely controlled by cell-mediated immunity, in part due to viral immune evasion and immunodeficiency resulting from CD4(+) T-cell infection. One likely aspect of this failure is that antiviral cellular immune responses are either absent or present at low levels during the initial establishment of infection. To test whether an extensive, timely, and effective response could reduce the establishment of infection from a high-dose inoculum, we adoptively transferred large numbers of T cells that were molecularly engineered with anti-simian immunodeficiency virus (anti-SIV) activity into rhesus macaques 3 days following an intrarectal SIV inoculation. To measure in vivo antiviral activity, we assessed the number of viruses transmitted using SIVmac239X, a molecularly tagged viral stock containing 10 genotypic variants, at a dose calculated to transmit 12 founder viruses. Single-genome sequencing of plasma virus revealed that the two animals receiving T cells expressing SIV-specific T-cell receptors (TCRs) had significantly fewer viral genotypes than the two control animals receiving non-SIV-specific T cells (means of 4.0 versus 7.5 transmitted viral genotypes; P = 0.044). Accounting for the likelihood of transmission of multiple viruses of a particular genotype, the calculated means of the total number of founder viruses transmitted were 4.5 and 14.5 in the experimental and control groups, respectively (P = 0.021). Thus, a large antiviral T-cell response timed with virus exposure can limit viral transmission. The presence of strong, preexisting T-cell responses, including those induced by vaccines, might help prevent the establishment of infection at the lower-exposure doses in humans that typically transmit only a single virus.

  16. Characterization of dengue virus 2 growth in megakaryocyte–erythrocyte progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Kristina B. [Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA (United States); Hsiao, Hui-Mien; Bassit, Leda [Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine and Veterans Affairs Medical Center, Atlanta, GA (United States); Crowe, James E. [Departments of Pediatrics, Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN (United States); Schinazi, Raymond F. [Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine and Veterans Affairs Medical Center, Atlanta, GA (United States); Perng, Guey Chuen [Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Villinger, Francois [Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA (United States); New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA (United States)

    2016-06-15

    Megakaryocyte–erythrocyte progenitor (MEP) cells are potential in vivo targets of dengue virus (DENV); the virus has been found associated with megakaryocytes ex vivo and platelets during DENV-induced thrombocytopenia. We report here that DENV serotype 2 (DENV2) propagates well in human nondifferentiated MEP cell lines (Meg01 and K562). In comparison to virus propagated in Vero cells, viruses from MEP cell lines had similar structure and buoyant density. However, differences in MEP-DENV2 stability and composition were suggested by distinct protein patterns in western blot analysis. Also, antibody neutralization of envelope domain I/II on MEP-DENV2 was reduced relative to that on Vero-DENV2. Infectious DENV2 was produced at comparable kinetics and magnitude in MEP and Vero cells. However, fewer virion structures appeared in electron micrographs of MEP cells. We propose that DENV2 infects and produces virus efficiently in megakaryocytes and that megakaryocyte impairment might contribute to dengue disease pathogenesis. - Highlights: • DenV replicates efficiently in undifferentiated megakaryocyte–erythrocyte progenitors. • MEP produced DenV differs in protein content from Vero produced DenV. • MEP produced DenV may be more difficult to neutralize relative to Vero DenV.

  17. Respiratory virus infection up-regulates TRPV1, TRPA1 and ASICS3 receptors on airway cells

    Science.gov (United States)

    Omar, Shadia; Clarke, Rebecca; Abdullah, Haniah; Brady, Clare; Corry, John; Winter, Hanagh; Touzelet, Olivier; Power, Ultan F.; Lundy, Fionnuala; McGarvey, Lorcan P. A.

    2017-01-01

    Receptors implicated in cough hypersensitivity are transient receptor potential vanilloid 1 (TRPV1), transient receptor potential cation channel, Subfamily A, Member 1 (TRPA1) and acid sensing ion channel receptor 3 (ASIC3). Respiratory viruses, such as respiratory syncytial virus (RSV) and measles virus (MV) may interact directly and/or indirectly with these receptors on sensory nerves and epithelial cells in the airways. We used in vitro models of sensory neurones (SHSY5Y or differentiated IMR-32 cells) and human bronchial epithelium (BEAS-2B cells) as well as primary human bronchial epithelial cells (PBEC) to study the effect of MV and RSV infection on receptor expression. Receptor mRNA and protein levels were examined by qPCR and flow cytometry, respectively, following infection or treatment with UV inactivated virus, virus-induced soluble factors or pelleted virus. Concentrations of a range of cytokines in resultant BEAS-2B and PBEC supernatants were determined by ELISA. Up-regulation of TRPV1, TRPA1 and ASICS3 expression occurred by 12 hours post-infection in each cell type. This was independent of replicating virus, within the same cell, as virus-induced soluble factors alone were sufficient to increase channel expression. IL-8 and IL-6 increased in infected cell supernatants. Antibodies against these factors inhibited TRP receptor up-regulation. Capsazepine treatment inhibited virus induced up-regulation of TRPV1 indicating that these receptors are targets for treating virus-induced cough. PMID:28187208

  18. Heparan Sulfate-Binding Foot-and-Mouth Disease Virus Enters Cells Via Caveolae-Mediated Endocytosis

    Science.gov (United States)

    Foot-and-mouth disease virus (FMDV) utilizes different cell surface macromolecules to facilitate infection of cultured cells. Virus which is virulent for susceptible animals infects cells via four members of the alpha V subclass of cellular integrins. In contrast, tissue culture adaptation of some...

  19. Tat protein expression in MDBK cells does not confer susceptibility to bovine immunodeficiency virus.

    Science.gov (United States)

    Kempster, S; Collins, M E; Brownlie, J

    2002-03-01

    The ability of BIV strain R29 to infect bovine cell lines in the presence or absence of a functional lentiviral Tat protein is described. Jembrana disease virus (JDV) Tat protein was stably expressed in MDBK cells. No viral replication could be detected in this cell line after infection with BIV R29. Transfection of MDBK cells and MDBK Tat expressing cells with BIV R29 proviral DNA established that BIV R29 could not replicate in MDBK cells. Whether viral entry into MDBK cells is also a block to BIV R29 infection of MDBK cells has yet to be established.

  20. Ebola virus glycoproteins induce global surface protein down-modulation and loss of cell adherence.

    Science.gov (United States)

    Simmons, Graham; Wool-Lewis, Rouven J; Baribaud, Frédéric; Netter, Robert C; Bates, Paul

    2002-03-01

    The Ebola virus envelope glycoprotein (GP) derived from the pathogenic Zaire subtype mediates cell rounding and detachment from the extracellular matrix in 293T cells. In this study we provide evidence that GPs from the other pathogenic subtypes, Sudan and Côte d'Ivoire, as well as from Reston, a strain thought to be nonpathogenic in humans, also induced cell rounding, albeit at lower levels than Zaire GP. Sequential removal of regions of potential O-linked glycosylation at the C terminus of GP1 led to a step-wise reduction in cell detachment without obviously affecting GP function, suggesting that such modifications are involved in inducing the detachment phenotype. While causing cell rounding and detachment in 293T cells, Ebola virus GP did not cause an increase in cell death. Indeed, following transient expression of GP, cells were able to readhere and continue to divide. Also, the rounding effect was not limited to 293T cells. Replication-deficient adenovirus vectors expressing Ebola virus GP induced the loss of cell adhesion in a range of cell lines and primary cell types, including those with proposed relevance to Ebola virus infection in vivo, such as endothelial cells and macrophages. In both transfected 293T and adenovirus-infected Vero cells, a reduction in cell surface expression of adhesion molecules such as integrin beta1 concurrent with the loss of cell adhesion was observed. A number of other cell surface molecules, however, including major histocompatibility complex class I and the epidermal growth factor receptor, were also down-modulated, suggesting a global mechanism for surface molecule down-regulation.

  1. VARICELLA ZOSTER VIRUS-ITS PATHOGENESIS, LATENCY & CELL-MEDIATED IMMUNITY

    Directory of Open Access Journals (Sweden)

    Anis Ahmed

    2013-07-01

    Full Text Available Varicella zoster virus causes primary infection as chickenpox, at which time latencyis established in the neurons of the dorsal root ganglia or ganglia of the cranial nerves.Reactivation produces herpes zoster infection (HZI, commonly called shingles. Anunderstanding of the mechanisms of latency is crucial in developing effective therapies forVZV infections of the nervous system. This article describes the pathogenesis of VZVwhich includes immune response to the virus, immune evasion by the virus, mechanism ofits latency and cell-mediated immunity.

  2. An African horse sickness virus serotype 4 recombinant canarypox virus vaccine elicits specific cell-mediated immune responses in horses.

    Science.gov (United States)

    El Garch, H; Crafford, J E; Amouyal, P; Durand, P Y; Edlund Toulemonde, C; Lemaitre, L; Cozette, V; Guthrie, A; Minke, J M

    2012-09-15

    A recombinant canarypox virus vectored vaccine co-expressing synthetic genes encoding outer capsid proteins, VP2 and VP5, of African horse sickness virus (AHSV) serotype 4 (ALVAC(®)-AHSV4) has been demonstrated to fully protect horses against homologous challenge with virulent field virus. Guthrie et al. (2009) detected weak and variable titres of neutralizing antibody (ranging from horses received two vaccinations twenty-eight days apart and three horses remained unvaccinated. The detection of VP2/VP5 specific IFN-γ responses was assessed by enzyme linked immune spot (ELISpot) assay and clearly demonstrated that all ALVAC(®)-AHSV4 vaccinated horses developed significant IFN-γ production compared to unvaccinated horses. More detailed immune responses obtained by flow cytometry demonstrated that ALVAC(®)-AHSV4 vaccinations induced immune cells, mainly CD8(+) T cells, able to recognize multiple T-epitopes through all VP2 and only the N-terminus sequence of VP5. Neither VP2 nor VP5 specific IFN-γ responses were detected in unvaccinated horses. Overall, our data demonstrated that an experimental recombinant canarypox based vaccine induced significant CMI specific for both VP2 and VP5 proteins of AHSV4.

  3. Human T cell responses to Japanese encephalitis virus in health and disease

    OpenAIRE

    Turtle, L.; Bali, T; Buxton, G; Chib, S.; Chan, S; Soni, M.; Hussain, M; H. Isenman; Fadnis, P; Venkataswamy, MM; Satishkumar, V; Lewthwaite, P; Kurioka, A; Krishna, S.; Shankar, MV

    2016-01-01

    Japanese encephalitis (JE) virus (JEV) is an important cause of encephalitis in children of South and Southeast Asia. However, the majority of individuals exposed to JEV only develop mild symptoms associated with long-lasting adaptive immunity. The related flavivirus dengue virus (DENV) cocirculates in many JEV-endemic areas, and clinical data suggest cross-protection between DENV and JEV. To address the role of T cell responses in protection against JEV, we conducted the first full-breadth a...

  4. Identification of Zika virus epitopes reveals immunodominant and protective roles for dengue virus cross-reactive CD8(+) T cells.

    Science.gov (United States)

    Wen, Jinsheng; Tang, William Weihao; Sheets, Nicholas; Ellison, Julia; Sette, Alessandro; Kim, Kenneth; Shresta, Sujan

    2017-03-13

    CD8(+) T cells play an important role in controlling Flavivirus infection, including Zika virus (ZIKV). Here, we have identified 25 HLA-B*0702-restricted epitopes and 1 HLA-A*0101-restricted epitope using interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) and intracellular cytokine staining (ICS) in ZIKV-infected IFN-α/β receptor-deficient HLA transgenic mice. The cross-reactivity of ZIKV epitopes to dengue virus (DENV) was tested using IFN-γ-ELISPOT and IFN-γ-ICS on CD8(+) T cells from DENV-infected mice, and five cross-reactive HLA-B*0702-binding peptides were identified by both assays. ZIKV/DENV cross-reactive CD8(+) T cells in DENV-immune mice expanded post ZIKV challenge and dominated in the subsequent CD8(+) T cell response. ZIKV challenge following immunization of mice with ZIKV-specific and ZIKV/DENV cross-reactive epitopes elicited CD8(+) T cell responses that reduced infectious ZIKV levels, and CD8(+) T cell depletions confirmed that CD8(+) T cells mediated this protection. These results identify ZIKV-specific and ZIKV/DENV cross-reactive epitopes and demonstrate both an altered immunodominance pattern in the DENV-immune setting relative to naive, as well as a protective role for epitope-specific CD8(+) T cells against ZIKV. These results have important implications for ZIKV vaccine development and provide a mouse model for evaluating anti-ZIKV CD8(+) T cell responses of human relevance.

  5. The effect of cell line, phylogenetics and medium on baculovirus budded virus yield and quality.

    Science.gov (United States)

    Matindoost, Leila; Hu, Hao; Chan, Leslie C L; Nielsen, Lars K; Reid, Steven

    2014-01-01

    The performance of bioprocesses involving baculoviruses largely depends on an efficient infection of cells by concentrated budded virus (BV) inoculums. Baculovirus expression vector systems have been established using Autographa californica nucleopolyhedrovirus (AcMNPV), a group I NPV that displays rapid virus kinetics, whereas bioprocesses using group II baculovirus-based biopesticides such as Helicoverpa armigera nucleopolyhedrovirus (HearNPV) have the limitation of low levels of BV, as these viruses often display poor BV production kinetics. In this study, the effect of key parameters involved in the quality of progeny virions, including cell line, virus phylogenetics and medium, on viral DNA replication, virus trafficking to the extracellular environment, and the yield of recombinant protein or polyhedra were investigated in synchronous infections of HearNPV and AcMNPV. HearNPV showed higher vDNA replication in its optimum medium, SF900III, when compared to AcMNPV, but both viruses had similar specific extracellular virion content. However, the ratio of AcMNPV extracellular virions to the total number of progeny virions produced was higher, and their quality was tenfold higher than that of HearNPV extracellular virions. The results of infection of two different cell lines, High Five and Sf9, with AcMNPV, along with HearNPV infection of HzAM1 cells in three different media, suggest that the host cells and the nutritional state of the medium as well as the phylogenetics of the virus affect the BV yields produced by different baculovirus/cell line/medium combinations.

  6. Host range restriction of vaccinia virus in Chinese hamster ovary cells: relationship to shutoff of protein synthesis.

    Science.gov (United States)

    Drillien, R; Spehner, D; Kirn, A

    1978-12-01

    Chinese hamster ovary cells were found to be nonpermissive for vaccinia virus. Although early virus-induced events occurred in these cells (RNA and polypeptide synthesis), subsequent events appeared to be prevented by a very rapid and nonselective shutoff of protein synthesis. Within less than 2 h after infection, both host and viral protein syntheses were arrested. At low multiplicities of infection, inhibition of RNA synthesis with cordycepin resulted in failure of the virus to block protein synthesis. Moreover, infection of the cells in the presence of cycloheximide prevented the immediate onset of shutoff after reversal of cycloheximide. Inactivation of virus particles by UV irradiation also impaired the capacity of the virus to inhibit protein synthesis. These results suggested that an early vaccinia virus-coded product was implicated in the shutoff of protein synthesis. Either the nonpermissive Chinese hamster ovary cells were more sensitive to this inhibition than permissive cells, or a regulatory control of the vaccinia shutoff function was defective.

  7. Replication of the resident Marek's Disease virus genome in synchronized nonproducer MKT-1 cells.

    Science.gov (United States)

    Lau, R Y; Nonoyama, M

    1980-02-01

    MKT-1, a virus nonproducer lymphoblastoid cell line established from a Marek's disease tumor, was synchronized by double thymidine block to determine the sequence of events in the synthesis of cellular and latent marek's disease virus DNA. Cellular DNA synthesis was measured by incorporation of [3H]thymidine, whereas viral DNA synthesis was determined by DNA-DNA reassociation kinetics. The results of these studies indicate that the resident Marek's disease viral DNA in MKT-1 cells replicates during the early S phase of the cell cycle, before the onset of active cellular DNA synthesis. This observation is similar to that seen in the replication of resident Epstein-Barr virus DNA in synchronized Raji cells.

  8. Generation of induced pluripotent stem cells from human nasal epithelial cells using a Sendai virus vector.

    Directory of Open Access Journals (Sweden)

    Mizuho Ono

    Full Text Available The generation of induced pluripotent stem cells (iPSCs by introducing reprogramming factors into somatic cells is a promising method for stem cell therapy in regenerative medicine. Therefore, it is desirable to develop a minimally invasive simple method to create iPSCs. In this study, we generated human nasal epithelial cells (HNECs-derived iPSCs by gene transduction with Sendai virus (SeV vectors. HNECs can be obtained from subjects in a noninvasive manner, without anesthesia or biopsy. In addition, SeV carries no risk of altering the host genome, which provides an additional level of safety during generation of human iPSCs. The multiplicity of SeV infection ranged from 3 to 4, and the reprogramming efficiency of HNECs was 0.08-0.10%. iPSCs derived from HNECs had global gene expression profiles and epigenetic states consistent with those of human embryonic stem cells. The ease with which HNECs can be obtained, together with their robust reprogramming characteristics, will provide opportunities to investigate disease pathogenesis and molecular mechanisms in vitro, using cells with particular genotypes.

  9. Generation of Induced Pluripotent Stem Cells from Human Nasal Epithelial Cells Using a Sendai Virus Vector

    Science.gov (United States)

    Ono, Mizuho; Hamada, Yuko; Horiuchi, Yasue; Matsuo-Takasaki, Mami; Imoto, Yoshimasa; Satomi, Kaishi; Arinami, Tadao; Hasegawa, Mamoru; Fujioka, Tsuyoshi; Nakamura, Yukio; Noguchi, Emiko

    2012-01-01

    The generation of induced pluripotent stem cells (iPSCs) by introducing reprogramming factors into somatic cells is a promising method for stem cell therapy in regenerative medicine. Therefore, it is desirable to develop a minimally invasive simple method to create iPSCs. In this study, we generated human nasal epithelial cells (HNECs)-derived iPSCs by gene transduction with Sendai virus (SeV) vectors. HNECs can be obtained from subjects in a noninvasive manner, without anesthesia or biopsy. In addition, SeV carries no risk of altering the host genome, which provides an additional level of safety during generation of human iPSCs. The multiplicity of SeV infection ranged from 3 to 4, and the reprogramming efficiency of HNECs was 0.08–0.10%. iPSCs derived from HNECs had global gene expression profiles and epigenetic states consistent with those of human embryonic stem cells. The ease with which HNECs can be obtained, together with their robust reprogramming characteristics, will provide opportunities to investigate disease pathogenesis and molecular mechanisms in vitro, using cells with particular genotypes. PMID:22912751

  10. Productive homologous and non-homologous recombination of hepatitis C virus in cell culture

    DEFF Research Database (Denmark)

    Scheel, Troels K H; Galli, Andrea; Li, Yi-Ping

    2013-01-01

    . In addition, recombination is an important regulatory mechanism of cytopathogenicity for the related pestiviruses. Here we describe recombination of HCV RNA in cell culture leading to production of infectious virus. Initially, hepatoma cells were co-transfected with a replicating JFH1ΔE1E2 genome (genotype 2a......) lacking functional envelope genes and strain J6 (2a), which has functional envelope genes but does not replicate in culture. After an initial decrease in the number of HCV positive cells, infection spread after 13-36 days. Sequencing of recovered viruses revealed non-homologous recombinants with J6...

  11. Efficient Human Immunodeficiency Virus (HIV-1) Infection of Cells Lacking PDZD8

    OpenAIRE

    Zhang, Shijian; Sodroski, Joseph

    2015-01-01

    PDZD8 can bind the capsid proteins of different retroviruses, and transient knockdown of PDZD8 results in a decrease in the efficiency of an early, post-entry event in the retrovirus life cycle. Here we used the CRISPR-CAS9 system to create cell lines in which PDZD8 expression is stably eliminated. The PDZD8-knockout cell lines were infected by human immunodeficiency virus (HIV-1) and murine leukemia virus as efficiently as the parental PDZD8-expressing cells. These results indicate that PDZD...

  12. Efficient human immunodeficiency virus (HIV-1) infection of cells lacking PDZD8.

    Science.gov (United States)

    Zhang, Shijian; Sodroski, Joseph

    2015-07-01

    PDZD8 can bind the capsid proteins of different retroviruses, and transient knockdown of PDZD8 results in a decrease in the efficiency of an early, post-entry event in the retrovirus life cycle. Here we used the CRISPR-CAS9 system to create cell lines in which PDZD8 expression is stably eliminated. The PDZD8-knockout cell lines were infected by human immunodeficiency virus (HIV-1) and murine leukemia virus as efficiently as the parental PDZD8-expressing cells. These results indicate that PDZD8 is not absolutely necessary for HIV-1 infection and diminishes its attractiveness as a potential target for intervention.

  13. Non-MHC genes influence virus clearance through regulation of the antiviral T-cell response: correlation between virus clearance and Tc and Td activity in segregating backcross progeny

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Marker, O; Thomsen, Allan Randrup

    1994-01-01

    To determine the mechanism by which non-MHC genes control the rate of virus clearance in mice infected with lymphocytic choriomeningitis virus, a segregating backcross population was studied. Thirty BC1 animals were infected with virus, and virus-specific delayed-type hypersensitivity (DTH...... and the ability to clear virus. Amongst Tc low responders a correlation between DTH reactivity and virus clearance was observed. Taken together, these results indicate that non-MHC genes affect virus clearance through regulation of the antiviral T-cell response, especially the virus-specific Tc response. However...

  14. Novel avian influenza A (H7N9 virus induces impaired interferon responses in human dendritic cells.

    Directory of Open Access Journals (Sweden)

    Veera Arilahti

    Full Text Available In March 2013 a new avian influenza A(H7N9 virus emerged in China and infected humans with a case fatality rate of over 30%. Like the highly pathogenic H5N1 virus, H7N9 virus is causing severe respiratory distress syndrome in most patients. Based on genetic analysis this avian influenza A virus shows to some extent adaptation to mammalian host. In the present study, we analyzed the activation of innate immune responses by this novel H7N9 influenza A virus and compared these responses to those induced by the avian H5N1 and seasonal H3N2 viruses in human monocyte-derived dendritic cells (moDCs. We observed that in H7N9 virus-infected cells, interferon (IFN responses were weak although the virus replicated as well as the H5N1 and H3N2 viruses in moDCs. H7N9 virus-induced expression of pro-inflammatory cytokines remained at a significantly lower level as compared to H5N1 virus-induced "cytokine storm" seen in human moDCs. However, the H7N9 virus was extremely sensitive to the antiviral effects of IFN-α and IFN-β in pretreated cells. Our data indicates that different highly pathogenic avian viruses may show considerable differences in their ability to induce host antiviral responses in human primary cell models such as moDCs. The unexpected appearance of the novel H7N9 virus clearly emphasizes the importance of the global influenza surveillance system. It is, however, equally important to systematically characterize in normal human cells the replication capacity of the new viruses and their ability to induce and respond to natural antiviral substances such as IFNs.

  15. Cooperation of B cells and T cells is required for survival of mice infected with vesicular stomatitis virus

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Nansen, A; Andersen, C

    1997-01-01

    To define the role of T cells and B cells in resistance to vesicular stomatitis virus (VSV) infection, knockout mice with different specific immune defects on an identical background were infected i.v. and the outcome of infection was compared; in this way a more complete picture of the relative...

  16. Early Events in Chikungunya Virus Infection-From Virus Cell Binding to Membrane Fusion

    NARCIS (Netherlands)

    van Duijl-Richter, Mareike K. S.; Hoornweg, Tabitha E.; Rodenhuis-Zybert, Izabela A.; Smit, Jolanda M.

    2015-01-01

    Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne alphavirus causing millions of infections in the tropical and subtropical regions of the world. CHIKV infection often leads to an acute self-limited febrile illness with debilitating myalgia and arthralgia. A potential long-term complica

  17. Virus-Specific Proteins Synthesized in Cells Infected with RNA+ Temperature-Sensitive Mutants of Sindbis Virus

    Science.gov (United States)

    Scheele, Christina M.; Pfefferkorn, E. R.

    1970-01-01

    All Sindbis virus temperature-sensitive mutants defective in “late” functions were systematically surveyed by acrylamide-gel electrophoresis for similarities and differences in the intracellular pattern of virus-specific proteins synthesized at the permissive and nonpermissive temperatures. Only cells infected with mutants of complementation group C showed an altered pattern. At the nonpermissive temperature, these mutants failed to induce the synthesis of a polypeptide corresponding to the nucleocapsid protein and instead overproduced a protein of higher molecular weight than either viral structural protein. This defect was shown to be irreversible by the finding that 3H-leucine incorporated at 41.5 C specifically failed to appear in the nucleocapsid of virions subsequently released at 29 C. Attempts to demonstrate a precursor protein in wild-type infections were inconclusive. PMID:5461887

  18. The New World arenavirus Tacaribe virus induces caspase-dependent apoptosis in infected cells.

    Science.gov (United States)

    Wolff, Svenja; Groseth, Allison; Meyer, Bjoern; Jackson, David; Strecker, Thomas; Kaufmann, Andreas; Becker, Stephan

    2016-04-01

    The Arenaviridae is a diverse and growing family of viruses that already includes more than 25 distinct species. While some of these viruses have a significant impact on public health, others appear to be non-pathogenic. At present little is known about the host cell responses to infection with different arenaviruses, particularly those found in the New World; however, apoptosis is known to play an important role in controlling infection of many viruses. Here we show that infection with Tacaribe virus (TCRV), which is widely considered the prototype for non-pathogenic arenaviruses, leads to stronger induction of apoptosis than does infection with its human-pathogenic relative Junín virus. TCRV-induced apoptosis occurred in several cell types during late stages of infection and was shown to be caspase-dependent, involving the activation of caspases 3, 7, 8 and 9. Further, UV-inactivated TCRV did not induce apoptosis, indicating that the activation of this process is dependent on active viral replication/transcription. Interestingly, when apoptosis was inhibited, growth of TCRV was not enhanced, indicating that apoptosis does not have a direct negative effect on TCRV infection in vitro. Taken together, our data identify and characterize an important virus-host cell interaction of the prototypic, non-pathogenic arenavirus TCRV, which provides important insight into the growing field of arenavirus research aimed at better understanding the diversity in responses to different arenavirus infections and their functional consequences.

  19. Presence of Gumprecht shadows (smudge cells) in bovine leukemia virus-positive cattle.

    Science.gov (United States)

    Panei, Carlos Javier; Larsen, Alejandra; González, Ester Teresa; Echeverría, María Gabriela

    2013-11-01

    Enzootic Bovine Leukosis is a chronic disease caused by the bovine leukemia virus (BLV). Smudge cells, also known as Gumprecht shadows, are not simple artifacts of slide preparation, but ragged lymphoid cells found mainly in peripheral blood smears from human patients with chronic lymphocytic leukemia. In this study, we report the presence of Gumprecht shadows in peripheral blood from BLV-positive cattle.

  20. Nasal lavage natural killer cell function is suppressed in smokers after live attenuated influenza virus

    Science.gov (United States)

    Background Modified function of immune cells in nasal secretions may playa role in the enhanced susceptibility to resp iratory viruses that is seen in smokers. Innate immune cells in nasal secretions have largely been characterized by cellular differentials using morphologic c...

  1. Previous heat shock treatment inhibits Mayaro virus replication in human lung adenocarcinoma (A549) cells.

    Science.gov (United States)

    Virgilio, P L; Godinho-Netto, M C; Carvalho Mda, G

    1997-01-01

    Human lung adenocarcinoma cells (A549) were submitted to mild or severe heat shock (42 degrees C or 44 degrees C) for 1 h, while another group of cells was double-heat-shocked (submitted to 42 degrees C for 1 h, returned to 37 degrees C for 3 h, then exposed to 44 degrees C for 1 h). After each heat treatment, the cells were infected with Mayaro virus for 24 h and incubated at 37 degrees C. The results showed that the double-heat-shocked thermotolerant cells exhibited a 10(4)-fold virus titre inhibition, despite the recovery of protein synthesis and original morphology 24 h post-infection. In contrast, cells submitted to mild or severe heat shock exhibited weaker inhibition of Mayaro virus titre (10(2)-fold). The mildly heat-shocked cells also presented a full recovery in protein synthesis, which was not observed in severely heat-shocked cells. These results indicate that exposure of A549 cells to a mild or to a double heat shock treatment before Mayaro virus infection induces an antiviral state.

  2. Folding of influenza virus hemagglutinin in insect cells is fast and efficient

    NARCIS (Netherlands)

    Li, X.; Oers, van M.M.; Vlak, J.M.; Braakman, I.

    2015-01-01

    Folding of influenza virus hemagglutinin (HA) in the endoplasmic reticulum has been well defined inmammalian cells. In different mammalian cell lines the protein follows the same folding pathway withidentical folding intermediates, but folds with very different kinetics. To examine the effect of cel

  3. Folding of influenza virus hemagglutinin in insect cells is fast and efficient

    NARCIS (Netherlands)

    Li, Xin; van Oers, Monique M; Vlak, Just M; Braakman, Ineke

    2015-01-01

    Folding of influenza virus hemagglutinin (HA) in the endoplasmic reticulum has been well defined in mammalian cells. In different mammalian cell lines the protein follows the same folding pathway with identical folding intermediates, but folds with very different kinetics. To examine the effect of c

  4. Inhibition of Indoleamine-2,3-dioxygenase (IDO in Glioblastoma Cells by Oncolytic Herpes Simplex Virus

    Directory of Open Access Journals (Sweden)

    Bonnie Reinhart

    2012-01-01

    Full Text Available Successful oncolytic virus treatment of malignant glioblastoma multiforme depends on widespread tumor-specific lytic virus replication and escape from mitigating innate immune responses to infection. Here we characterize a new HSV vector, JD0G, that is deleted for ICP0 and the joint sequences separating the unique long and short elements of the viral genome. We observed that JD0G replication was enhanced in certain glioblastoma cell lines compared to HEL cells, suggesting that a vector backbone deleted for ICP0 may be useful for treatment of glioblastoma. The innate immune response to virus infection can potentially impede oncolytic vector replication in human tumors. Indoleamine-2,3-dioxygenase (IDO is expressed in response to interferon γ (IFNγ and has been linked to both antiviral functions and to the immune escape of tumor cells. We observed that IFNγ treatment of human glioblastoma cells induced the expression of IDO and that this expression was quelled by infection with both wild-type and JD0G viruses. The role of IDO in inhibiting virus replication and the connection of this protein to the escape of tumor cells from immune surveillance suggest that IDO downregulation by HSV infection may enhance the oncolytic activity of vectors such as JD0G.

  5. Optical manipulation of a single human virus for study of viral-cell interactions

    Science.gov (United States)

    Hou, Ximiao; DeSantis, Michael C.; Tian, Chunjuan; Cheng, Wei

    2016-09-01

    Although Ashkin and Dziedzic first demonstrated optical trapping of individual tobacco mosaic viruses in suspension as early as 1987, this pioneering work has not been followed up only until recently. Using human immunodeficiency virus type 1 (HIV-1) as a model virus, we have recently demonstrated that a single HIV-1 virion can be stabled trapped, manipulated and measured in physiological media with high precision. The capability to optically trap a single virion in suspension not only allows us to determine, for the first time, the refractive index of a single virus with high precision, but also quantitate the heterogeneity among individual virions with single-molecule resolution, the results of which shed light on the molecular mechanisms of virion infectivity. Here we report the further development of a set of microscopic techniques to physically deliver a single HIV-1 virion to a single host cell in solution. Combined with simultaneous epifluorescence imaging, the attachment and dissociation events of individual manipulated virions on host cell surface can be measured and the results help us understand the role of diffusion in mediating viral attachment to host cells. The establishment of these techniques opens up new ways for investigation of a wide range of virion-cell interactions, and should be applicable for study of B cell interactions with particulate antigens such as viruses.

  6. Differential infection of receptor-modified host cells by receptor-specific influenza viruses.

    Science.gov (United States)

    Carroll, S M; Paulson, J C

    1985-09-01

    Influenza viruses of contrasting receptor specificity have been examined for their ability to infect receptor-modified MDCK cells containing sialyloligosaccharide receptor determinants of defined sequence. Cells were treated with sialidase to remove sialic acid and render them resistant to infection and were then incubated with sialyltransferase and CMP-sialic acid to restore sialic acid in the SA alpha 2,6Gal or SA alpha 2,3Gal linkages. The viruses A/RI/5 + /57 and A/duck/Ukraine/1/63, previously shown to exhibit preferential binding of SA alpha 2,6Gal and SA alpha 2,3Gal linkages, respectively, were found to exhibit differential infection of the receptor-modified cells in accord with their receptor specificity. Coinfection of SA alpha 2,3Gal derivatized cells with a mixture of the two viruses resulted in selective propagation of the SA alpha 2,3Gal-specific A/duck/Ukraine/1/63 virus. The results demonstrate the potential for cell surface receptors to mediate selection of receptor-specific variants of influenza virus.

  7. Determining the cellular diversity of hepatitis C virus quasispecies by single-cell viral sequencing.

    Science.gov (United States)

    McWilliam Leitch, E Carol; McLauchlan, John

    2013-12-01

    Single-cell genomics is emerging as an important tool in cellular biology. We describe for the first time a system to investigate RNA virus quasispecies diversity at the cellular level utilizing hepatitis C virus (HCV) replicons. A high-fidelity nested reverse transcription (RT)-PCR assay was developed, and validation using control transcripts of known copy number indicated a detection limit of 3 copies of viral RNA/reaction. This system was used to determine the cellular diversity of subgenomic JFH-1 HCV replicons constitutively expressed in Huh7 cells. Each cell contained a unique quasispecies that was much less diverse than the quasispecies of the bulk cell population from which the single cells were derived, suggesting the occurrence of independent evolution at the cellular level. An assessment of the replicative fitness of the predominant single-cell quasispecies variants indicated a modest reduction in fitness compared to the wild type. Real-time RT-PCR methods capable of determining single-cell viral loads were developed and indicated an average of 113 copies of replicon RNA per cell, correlating with calculated RNA copy numbers in the bulk cell population. This study introduces a single-cell RNA viral-sequencing method with numerous potential applications to explore host-virus interactions during infection. HCV quasispecies diversity varied greatly between cells in vitro, suggesting different within-cell evolutionary pathways. Such divergent trajectories in vivo could have implications for the evolution and establishment of antiviral-resistant variants and host immune escape mutants.

  8. Caveolin-1 influences human influenza A virus (H1N1 multiplication in cell culture

    Directory of Open Access Journals (Sweden)

    Hemgård Gun-Viol

    2010-05-01

    Full Text Available Abstract Background The threat of recurring influenza pandemics caused by new viral strains and the occurrence of escape mutants necessitate the search for potent therapeutic targets. The dependence of viruses on cellular factors provides a weak-spot in the viral multiplication strategy and a means to interfere with viral multiplication. Results Using a motif-based search strategy for antiviral targets we identified caveolin-1 (Cav-1 as a putative cellular interaction partner of human influenza A viruses, including the pandemic influenza A virus (H1N1 strains of swine origin circulating from spring 2009 on. The influence of Cav-1 on human influenza A/PR/8/34 (H1N1 virus replication was determined in inhibition and competition experiments. RNAi-mediated Cav-1 knock-down as well as transfection of a dominant-negative Cav-1 mutant results in a decrease in virus titre in infected Madin-Darby canine kidney cells (MDCK, a cell line commonly used in basic influenza research as well as in virus vaccine production. To understand the molecular basis of the phenomenon we focussed on the putative caveolin-1 binding domain (CBD located in the lumenal, juxtamembranal portion of the M2 matrix protein which has been identified in the motif-based search. Pull-down assays and co-immunoprecipitation experiments showed that caveolin-1 binds to M2. The data suggest, that Cav-1 modulates influenza virus A replication presumably based on M2/Cav-1 interaction. Conclusion As Cav-1 is involved in the human influenza A virus life cycle, the multifunctional protein and its interaction with M2 protein of human influenza A viruses represent a promising starting point for the search for antiviral agents.

  9. Rhesus monkeys kidney cells persistently infected with Simian Virus 40: production of defective interfering virus and acquisition of the transformed phenotype.

    Science.gov (United States)

    Norkin, L C

    1976-09-01

    Monolayer cultures of LLC-MK2 rhesus monkey kidney cells became persistently infected with simian virus 40 (SV40) when infected at a multiplicity of infection of 100 plaque-forming units/cell. A stable carrier state developed characterized by extensive viral proliferation without obvious cytopathic effect other than the slow growth of these cultures. By 11 weeks all cells produced the SV40 T antigen. In contrast, less than 5% of the cells produced V antigen. Virus-free clonal isolates were obtained by cloning in SV40 antiserum. Continuous cultivation in antiserum resulted in a temporary cure of unclone cultures. When virus did eventually reappear in the "cured" cultures the titers remained low. The virus produced by the carrier culture was defective at both 31 and 37% c, and it interfered with the growth of standard s40 during mixed infection of CV-1 green monkey kidney cells. All of the interfering activity in carrier culture homogenates could be sedimented by centrifugation at 109,000 x g for 3 h. These cultures were completely susceptible to vesicular stomatitis virus. Extensive viral deoxyribonucleic acid synthesis occurred in CV-1 cells infected with carrier culture virus. Carrier culture homogenates are only slightly less cytopathic to CV-1 cells than standard SV40. The carrier culture express several properties of SV40 transformation.

  10. Porcine mast cells infected with H1N1 influenza virus release histamine and inflammatory cytokines and chemokines.

    Science.gov (United States)

    Lee, In Hong; Kim, Hyun Soo; Seo, Sang Heui

    2017-04-01

    Mast cells reside in many tissues, including the lungs, and might play a role in enhancing influenza virus infections in animals. In this study, we cultured porcine mast cells from porcine bone marrow cells with IL-3 and stem cell factor to study the infectivity and activation of the 2009 pandemic H1N1 influenza virus of swine origin. Porcine mast cells were infected with H1N1 influenza virus, without the subsequent production of infectious viruses but were activated, as indicated by the release of histamines. Inflammatory cytokine- and chemokine-encoding genes, including IL-1α, IL-6, CXCL9, CXCL10, and CXCL11, were upregulated in the infected porcine mast cells. Our results suggest that mast cells could be involved in enhancing influenza-virus-mediated disease in infected animals.

  11. Apoptosis and pro-inflammatory cytokine response of mast cells induced by influenza A viruses.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available The pathogenesis of the influenza A virus has been investigated heavily, and both the inflammatory response and apoptosis have been found to have a definitive role in this process. The results of studies performed by the present and other groups have indicated that mast cells may play a role in the severity of the disease. To further investigate cellular responses to influenza A virus infection, apoptosis and inflammatory response were studied in mouse mastocytoma cell line P815. This is the first study to demonstrate that H1N1 (A/WSN/33, H5N1 (A/Chicken/Henan/1/04, and H7N2 (A/Chicken/Hebei/2/02 influenza viruses can induce mast cell apoptosis. They were found to do this mainly through the mitochondria/cytochrome c-mediated intrinsic pathway, and the activation of caspase 8-mediated extrinsic pathway was here found to be weak. Two pro-apoptotic Bcl-2 homology domain 3 (BH3 -only molecules Bim and Puma appeared to be involved in the apoptotic pathways. When virus-induced apoptosis was inhibited in P815 cells using pan-caspase (Z-VAD-fmk and caspase-9 (Z-LEHD-fmk inhibitors, the replication of these three subtypes of viruses was suppressed and the secretions of pro-inflammatory cytokines and chemokines, including IL-6, IL-18, TNF-α, and MCP-1, decreased. The results of this study may further understanding of the role of mast cells in host defense and pathogenesis of influenza virus. They may also facilitate the development of novel therapeutic aids against influenza virus infection.

  12. Tick cell lines for study of Crimean-Congo hemorrhagic fever virus and other arboviruses.

    Science.gov (United States)

    Bell-Sakyi, Lesley; Kohl, Alain; Bente, Dennis A; Fazakerley, John K

    2012-09-01

    Continuous cell lines derived from many of the vectors of tick-borne arboviruses of medical and veterinary importance are now available. Their role as tools in arbovirus research to date is reviewed and their potential application in studies of tick cell responses to virus infection is explored, by comparison with recent progress in understanding mosquito immunity to arbovirus infection. A preliminary study of propagation of the human pathogen Crimean-Congo hemorrhagic fever virus (CCHFV) in tick cell lines is reported; CCHFV replicated in seven cell lines derived from the ticks Hyalomma anatolicum (a known vector), Amblyomma variegatum, Rhipicephalus (Boophilus) decoloratus, Rhipicephalus (Boophilus) microplus, and Ixodes ricinus, but not in three cell lines derived from Rhipicephalus appendiculatus and Ornithodoros moubata. This indicates that tick cell lines can be used to study growth of CCHFV in arthropod cells and that there may be species-specific restriction in permissive CCHFV infection at the cellular level.

  13. Expression Analysis Highlights AXL as a Candidate Zika Virus Entry Receptor in Neural Stem Cells.

    Science.gov (United States)

    Nowakowski, Tomasz J; Pollen, Alex A; Di Lullo, Elizabeth; Sandoval-Espinosa, Carmen; Bershteyn, Marina; Kriegstein, Arnold R

    2016-05-01

    The recent outbreak of Zika virus (ZIKV) in Brazil has been linked to substantial increases in fetal abnormalities and microcephaly. However, information about the underlying molecular and cellular mechanisms connecting viral infection to these defects remains limited. In this study we have examined the expression of receptors implicated in cell entry of several enveloped viruses including ZIKV across diverse cell types in the developing brain. Using single-cell RNA-seq and immunohistochemistry, we found that the candidate viral entry receptor AXL is highly expressed by human radial glial cells, astrocytes, endothelial cells, and microglia in developing human cortex and by progenitor cells in developing retina. We also show that AXL expression in radial glia is conserved in developing mouse and ferret cortex and in human stem cell-derived cerebral organoids, highlighting multiple experimental systems that could be applied to study mechanisms of ZIKV infectivity and effects on brain development.

  14. Innate immune response to influenza A virus in differentiated human alveolar type II cells.

    Science.gov (United States)

    Wang, Jieru; Nikrad, Mrinalini P; Phang, Tzulip; Gao, Bifeng; Alford, Taylor; Ito, Yoko; Edeen, Karen; Travanty, Emily A; Kosmider, Beata; Hartshorn, Kevan; Mason, Robert J

    2011-09-01

    Alveolar Type II (ATII) cells are important targets for seasonal and pandemic influenza. To investigate the influenza-induced innate immune response in those cells, we measured the global gene expression profile of highly differentiated ATII cells infected with the influenza A virus at a multiplicity of infection of 0.5 at 4 hours and 24 hours after inoculation. Infection with influenza stimulated a significant increase in the mRNA concentrations of many host defense-related genes, including pattern/pathogen recognition receptors, IFN, and IFN-induced genes, chemokines, and suppressors of cytokine signaling. We verified these changes by quantitative real-time RT-PCR. At the protein level, we detected a robust virus-induced secretion of the three glutamic acid-leucine-arginine (ELR)-negative chemokines CXCL9, CXCL10, and CXCL11, according to ELISA. The ultraviolet inactivation of virus abolished the chemokine and cytokine response. Viral infection did not appear to alter the differentiation of ATII cells, as measured by cellular mRNA and concentrations of surfactant proteins. However, viral infection significantly reduced the secretion of surfactant protein (SP)-A and SP-D. In addition, influenza A virus triggered a time-dependent activation of phosphatidylinositol 3-kinase signaling in ATII cells. The inhibition of this pathway significantly decreased the release of infectious virus and the chemokine response, but did not alter virus-induced cell death. This study provides insights into influenza-induced innate immunity in differentiated human ATII cells, and demonstrates that the alveolar epithelium is a critical part of the initial innate immune response to influenza.

  15. Modulation of gene expression in a human cell line caused by poliovirus, vaccinia virus and interferon

    Directory of Open Access Journals (Sweden)

    Hoddevik Gunnar

    2007-03-01

    Full Text Available Abstract Background The project was initiated to describe the response of a human embryonic fibroblast cell line to the replication of two different viruses, and, more specifically, to look for candidate genes involved in viral defense. For this purpose, the cells were synchronously infected with poliovirus in the absence or presence of interferon-alpha, or with vaccinia virus, a virus that is not inhibited by interferon. By comparing the changes in transcriptosome due to these different challenges, it should be possible to suggest genes that might be involved in defense. Results The viral titers were sufficient to yield productive infection in a majority of the cells. The cells were harvested in triplicate at various time-points, and the transcriptosome compared with mock infected cells using oligo-based, global 35 k microarrays. While there was very limited similarities in the response to the different viruses, a large proportion of the genes up-regulated by interferon-alpha were also up-regulated by poliovirus. Interferon-alpha inhibited poliovirus replication, but there were no signs of any interferons being induced by poliovirus. The observations suggest that the cells do launch an antiviral response to poliovirus in the absence of interferon. Analyses of the data led to a list of candidate antiviral genes. Functional information was limited, or absent, for most of the candidate genes. Conclusion The data are relevant for our understanding of how the cells respond to poliovirus and vaccinia virus infection. More annotations, and more microarray studies with related viruses, are required in order to narrow the list of putative defence-related genes.

  16. Intracellular Immunization of Human Fetal Cord Blood Stem/Progenitor Cells with a Ribozyme Against Human Immunodeficiency Virus Type 1

    Science.gov (United States)

    Yu, Mang; Leavitt, Mark C.; Maruyama, Midori; Yamada, Osamu; Young, Dennis; Ho, Anthony D.; Wong-Staal, Flossie

    1995-01-01

    Successful treatment of human immunodeficiency virus infection may ultimately require targeting of hematopoietic stem cells. Here we used retroviral vectors carrying the ribozyme gene to transduce CD34^+ cells from human fetal cord blood. Transduction and ribozyme expression had no apparent adverse effect on cell differentiation and/or proliferation. The macrophage-like cells, differentiated from the stem/progenitor cells in vitro, expressed the ribozyme gene and resisted infection by a macrophage tropic human immunodeficiency virus type 1. These results suggest the feasibility of stem cell gene therapy for human immunodeficiency virus-infected patients.

  17. Development of a helper cell-dependent form of peste des petits ruminants virus: a system for making biosafe antigen.

    Science.gov (United States)

    Baron, Jana; Baron, Michael D

    2015-09-23

    Peste des petits ruminants (PPR) is a viral disease of sheep and goats that is spreading through many countries in the developing world. Work on the virus is often restricted to studies of attenuated vaccine strains or to work in laboratories that have high containment facilities. We have created a helper cell dependent form of PPR virus by removing the entire RNA polymerase gene and complementing it with polymerase made constitutively in a cell line. The resultant L-deleted virus grows efficiently in the L-expressing cell line but not in other cells. Virus made with this system is indistinguishable from normal virus when used in diagnostic assays, and can be grown in normal facilities without the need for high level biocontainment. The L-deleted virus will thus make a positive contribution to the control and study of this important disease.

  18. Dengue Virus Type 2: Protein Binding and Active Replication in Human Central Nervous System Cells

    Directory of Open Access Journals (Sweden)

    Ma Isabel Salazar

    2013-01-01

    Full Text Available An increased number of dengue cases with neurological complications have been reported in recent years. The lack of reliable animal models for dengue has hindered studies on dengue virus (DENV pathogenesis and cellular tropism in vivo. We further investigate the tropism of DENV for the human central nervous system (CNS, characterizing DENV interactions with cell surface proteins in human CNS cells by virus overlay protein binding assays (VOPBA and coimmunoprecipitations. In VOPBA, three membrane proteins (60, 70, and 130 kDa from the gray matter bound the entire virus particle, whereas only a 70 kDa protein bound in white matter. The coimmunoprecipitation assays revealed three proteins from gray matter consistently binding virus particles, one clearly distinguishable protein (~32 kDa and two less apparent proteins (100 and 130 kDa. Monoclonal anti-NS3 targeted the virus protein in primary cell cultures of human CNS treated with DENV-2, which also stained positive for NeuH, a neuron-specific marker. Thus, our results indicate (1 that DENV-2 exhibited a direct tropism for human neurons and (2 that human neurons sustain an active DENV replication as was demonstrated by the presence of the NS3 viral antigen in primary cultures of these cells treated with DENV-2.

  19. Production of CCHF Virus-Like Particle by a Baculovirus-Insect Cell Expression System

    Institute of Scientific and Technical Information of China (English)

    Zhao-rui Zhou; Man-li Wang; Fei Deng; Tian-xian Li; Zhi-hong Hu; Hua-fin Wang

    2011-01-01

    Crimean-Congo Haemorrhagic Fever Virus(CCHFV)is a tick-born virus of the Nairovirus genus within the Bunyaviridae family,which is widespread and causes,high fatality. The nucleocapsid of CCHFV is comprised of N proteins that are encoded by the S segment. In this research,the N protein of CCHFV was expressed in insect cells using a recombinant baculovirus. Under an electron microscope,Virus-Like Particles (VLPs)with various size and morphology were observed in cytoplasmic vesicles in the infected cells.Sucrose-gradient purification of the cell lysate indicated that the VLPs were mainly located in the upper fraction after ultracentrifugation,which was confirmed by Western blot analysis and immuno-electron microscopy(IEM).

  20. Intracellular cytokine production by dengue virus-specific T cells correlates with subclinical secondary infection.

    Science.gov (United States)

    Hatch, Steven; Endy, Tim P; Thomas, Stephen; Mathew, Anuja; Potts, James; Pazoles, Pamela; Libraty, Daniel H; Gibbons, Robert; Rothman, Alan L

    2011-05-01

    The pathophysiology of dengue virus infection remains poorly understood, although secondary infection is strongly associated with more severe disease. In the present study, we performed a nested, case-control study comparing the responses of pre-illness peripheral blood mononuclear cells between children who would subsequently develop either subclinical or symptomatic secondary infection 6-11 months after the baseline blood samples were obtained and frozen. We analyzed intracellular cytokine production by CD4(+) and CD8(+) cells in response to stimulation with dengue antigen. We found higher frequencies of dengue virus-specific TNFα, IFNγ-, and IL-2-producing T cells among schoolchildren who subsequently developed subclinical infection, compared with those who developed symptomatic secondary dengue virus infection. Although other studies have correlated immune responses during secondary infection with severity of disease, to our knowledge this is the first study to demonstrate a pre-infection dengue-specific immune response that correlates specifically with a subclinical secondary infection.

  1. Synergism of herpes simplex virus and tobacco-specific N'-nitrosamines in cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Park, N.H.; Dokko, H.; Li, S.L.; Cherrick, H.M. (UCLA School of Dentistry (USA))

    1991-03-01

    Previous studies indicate that herpes simplex virus (HSV) enhances the carcinogenic activity of smokeless tobacco and tobacco-related chemical carcinogens in animals. Since tobacco-specific N'-nitrosamines (TSNAs) such as N'-nitrosonornicotine (NNN) and 4-(N-methyl-N'-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are major chemical carcinogens of smokeless tobacco and are known to be responsible for the development of oral cancers in smokeless tobacco users, the combined effects of TSNAs and HSV in cell transformation were investigated. Exposure of cells to NNN or NNK followed by virus infection resulted in a significant enhancement of transformation frequency when compared with that observed with chemical carcinogens or virus alone. This study suggests that TSNAs and HSV can interact together and show synergism in cell transformation.

  2. Detecting Newcastle disease virus in combination of RT-PCR with red blood cell absorption

    Directory of Open Access Journals (Sweden)

    Liu Chengqian

    2011-05-01

    Full Text Available Abstract Reverse transcription-polymerase chain reaction (RT-PCR has limited sensitivity when treating complicated samples, such as feces, waste-water in farms, and nucleic acids, protein rich tissue samples, all the factors may interfere with the sensitivity of PCR test or generate false results. In this study, we developed a sensitive RT-PCR, combination of red blood cell adsorption, for detecting Newcastle disease virus (NDV. One pair of primers which was highly homologous to three NDV pathotypes was designed according to the consensus nucleocapsid protein (NP gene sequence. To eliminate the interfere of microbes and toxic substances, we concentrated and purified NDV from varied samples utilizing the ability of NDV binding red blood cells (RBCs. The RT-PCR coupled with red blood cell adsorption was much more sensitive in comparison with regular RT-PCR. The approach could also be used to detect other viruses with the property of hemagglutination, such as influenza viruses.

  3. Multiple specificities in the murine CD4+ and CD8+ T-cell response to dengue virus.

    OpenAIRE

    Rothman, A. L.; Kurane, I; Ennis, F A

    1996-01-01

    The target epitopes, serotype specificity, and cytolytic function of dengue virus-specific T cells may influence their theoretical roles in protection against secondary infection as well as the immunopathogenesis of dengue hemorrhagic fever. To study these factors in an experimental system, we isolated dengue virus-specific CD4+ and CD8+ T-cell clones from dengue-2 virus-immunized BALB/c mice. The T-cell response to dengue virus in this mouse strain was heterogeneous; we identified at least f...

  4. Selective purging of human multiple myeloma cells from autologous stem cell transplant grafts using oncolytic myxoma virus

    Science.gov (United States)

    Bartee, Eric; Chan, Winnie S.; Moreb, Jan S.; Cogle, Christopher R.; McFadden, Grant

    2012-01-01

    Autologous stem cell transplantation (ASCT) and novel therapies have improved overall survival of patients with multiple myeloma; however, most patients relapse and eventually succumb to their disease. Evidence indicates that residual cancer cells contaminate autologous grafts and may contribute to early relapses after ASCT. Here, we demonstrate that ex vivo treatment with an oncolytic poxvirus called myxoma virus results in specific elimination of human myeloma cells by inducing rapid cellular apoptosis while fully sparing normal hematopoietic stem and progenitor cells (HSPCs). The specificity of this elimination is based on strong binding of the virus to myeloma cells coupled with an inability of the virus to bind or infect CD34+ HSPCs. These two features allow myxoma to readily identify and distinguish even low levels of myeloma cells in complex mixtures. This ex vivo MYXV treatment also effectively inhibits systemic in vivo engraftment of human myeloma cells into immunodeficient mice and results in efficient elimination of primary CD138+ myeloma cells contaminating patient hematopoietic cell products. We conclude that ex vivo myxoma treatment represents a safe and effective method to selectively eliminate myeloma cells from hematopoietic autografts prior to reinfusion. PMID:22516053

  5. Localization of West Nile Virus in monkey brain: double staining antigens immunohistochemically of neurons, neuroglia cells and West Nile Virus.

    Science.gov (United States)

    He, Xianli; Ren, Junping; Xu, Fangling; Ferguson, Monique R; Li, Guangyu

    2009-11-15

    West Nile virus (WNV) can cause encephalitis or meningitis that affects brain tissue, which can also lead to permanent neurological damage that can be fatal. To our knowledge, no consistent double immunohistochemical staining of neurons, neuroglia cells, and WNV has yet been reported. To establish a method for performing double-label immunohistochemical detection of neurons, neuroglia cells and WNV, examining the pathological characteristics of WNV-infected neurons, neuroglia cells, and investigating distribution of WNV in monkey brain, paraffin-embedded monkey brain tissue were retrospectively studied by immunohistochemical staining of neurons, neuroglia cells and WNV. Antibodies against neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP) and WNV were used to develop the method of double-label immunohistochemical staining, which allowed independent assessment of neuron status and WNV distribution. A range of immunohistochemical WNV infection in monkey brain was observed in both neurons and neuroglia cells in terms of the thickness of lesion staining, and the WNV staining was slightly higher in neuroglia cells than in neurons. All these findings suggest that WNV invasion in the brain plays a crucial role in neurological damage by inducing central nervous system (CNS) cell dysfunction or cell death directly.

  6. Mechanisms of respiratory syncytial virus specific T cell activation

    NARCIS (Netherlands)

    Kruijsen, D.

    2011-01-01

    Respiratory syncytial virus (RSV) is an important cause of severe lower respiratory tract infections (LRTI) in infants, elderly people and immune compromised individuals. Moreover, RSV causes repeated symptomatic re-infections in healthy individuals, which is presumed to be due to ineffective acquir

  7. Zika Virus Antagonizes Type I Interferon Responses during Infection of Human Dendritic Cells

    Science.gov (United States)

    Maddur, Mohan S.; O’Neal, Justin T.; Fedorova, Nadia B.; Puri, Vinita; Pulendran, Bali; Suthar, Mehul S.

    2017-01-01

    Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that is causally linked to severe neonatal birth defects, including microcephaly, and is associated with Guillain-Barre syndrome in adults. Dendritic cells (DCs) are an important cell type during infection by multiple mosquito-borne flaviviruses, including dengue virus, West Nile virus, Japanese encephalitis virus, and yellow fever virus. Despite this, the interplay between ZIKV and DCs remains poorly defined. Here, we found human DCs supported productive infection by a contemporary Puerto Rican isolate with considerable variability in viral replication, but not viral binding, between DCs from different donors. Historic isolates from Africa and Asia also infected DCs with distinct viral replication kinetics between strains. African lineage viruses displayed more rapid replication kinetics and infection magnitude as compared to Asian lineage viruses, and uniquely induced cell death. Infection of DCs with both contemporary and historic ZIKV isolates led to minimal up-regulation of T cell co-stimulatory and MHC molecules, along with limited secretion of inflammatory cytokines. Inhibition of type I interferon (IFN) protein translation was observed during ZIKV infection, despite strong induction at the RNA transcript level and up-regulation of other host antiviral proteins. Treatment of human DCs with RIG-I agonist potently restricted ZIKV replication, whil