WorldWideScience

Sample records for cell labeling research

  1. Recent developments in blood cell labeling research

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Straub, R.F.; Meinken, G.E.

    1988-01-01

    A number of recent developments in research on blood cell labeling techniques are presented. The discussion relates to three specific areas: (1) a new in vitro method for red blood cell labeling with /sup 99m/Tc; (2) a method for labeling leukocytes and platelets with /sup 99m/Tc; and (3) the use of monoclonal antibody technique for platelet labeling. The advantages and the pitfalls of these techniques are examined in the light of available mechanistic information. Problems that remain to be resolved are reviewed. An assessment is made of the progress as well as prospects in blood cell labeling methodology including that using the monoclonal antibody approach. 37 refs., 4 figs

  2. Recent developments in blood cell labeling research

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.; Straub, R.F.; Meinken, G.E.

    1988-09-07

    A number of recent developments in research on blood cell labeling techniques are presented. The discussion relates to three specific areas: (1) a new in vitro method for red blood cell labeling with /sup 99m/Tc; (2) a method for labeling leukocytes and platelets with /sup 99m/Tc; and (3) the use of monoclonal antibody technique for platelet labeling. The advantages and the pitfalls of these techniques are examined in the light of available mechanistic information. Problems that remain to be resolved are reviewed. An assessment is made of the progress as well as prospects in blood cell labeling methodology including that using the monoclonal antibody approach. 37 refs., 4 figs.

  3. Clinical applications of cells labelling

    International Nuclear Information System (INIS)

    Gonzalez, B.M.

    1994-01-01

    Blood cells labelled with radionuclides are reviewed and main applications are described. Red blood cell labelling by both random and specific principle. A table with most important clinical uses, 99mTc labelling of RBC are described pre tinning and in vivo reduction of Tc, in vitro labelling and administration of labelled RBC and in vivo modified technique. Labelled leucocytes with several 99mTc-complex radiopharmaceuticals by in vitro technique and specific monoclonal s for white cells(neutrofiles). Labelled platelets for clinical use and research by in vitro technique and in vivo labelling

  4. Label-free isolation of circulating tumor cells in microfluidic devices: Current research and perspectives.

    Science.gov (United States)

    Cima, Igor; Wen Yee, Chay; Iliescu, Florina S; Phyo, Wai Min; Lim, Kiat Hon; Iliescu, Ciprian; Tan, Min Han

    2013-01-01

    This review will cover the recent advances in label-free approaches to isolate and manipulate circulating tumor cells (CTCs). In essence, label-free approaches do not rely on antibodies or biological markers for labeling the cells of interest, but enrich them using the differential physical properties intrinsic to cancer and blood cells. We will discuss technologies that isolate cells based on their biomechanical and electrical properties. Label-free approaches to analyze CTCs have been recently invoked as a valid alternative to "marker-based" techniques, because classical epithelial and tumor markers are lost on some CTC populations and there is no comprehensive phenotypic definition for CTCs. We will highlight the advantages and drawbacks of these technologies and the status on their implementation in the clinics.

  5. Tritium labeling for bio-med research

    International Nuclear Information System (INIS)

    Lemmon, R.M.

    1980-01-01

    A very large fraction of what we know about biochemical pathways in the living cell has resulted from the use of radioactively-labeled tracer compounds; the use of tritium-labeled compounds has been particularly important. As research in biochemistry and biology has progressed the need has arisen to label compounds of higher specific activity and of increasing molecular complexity - for example, oligo-nucleotides, polypeptides, hormones, enzymes. Our laboratory has gradually developed special facilities for handling tritium at the kilocurie level. These facilities have already proven extremely valuable in producing labeled compounds that are not available from commercial sources. The principal ways employed for compound labeling are: (1) microwave discharge labeling, (2) catalytic tritio-hydrogenation, (3) catalytic exchange with T 2 O, and (4) replacement of halogen atoms by T. Studies have also been carried out on tritiation by the replacement of halogen atoms with T atoms. These results indicate that carrier-free tritium-labeled products, including biomacromolecules, can be produced in this way

  6. Label-Free Biosensors for Cell Biology

    Directory of Open Access Journals (Sweden)

    Ye Fang

    2011-01-01

    Full Text Available Label-free biosensors for studying cell biology have finally come of age. Recent developments have advanced the biosensors from low throughput and high maintenance research tools to high throughput and low maintenance screening platforms. In parallel, the biosensors have evolved from an analytical tool solely for molecular interaction analysis to powerful platforms for studying cell biology at the whole cell level. This paper presents historical development, detection principles, and applications in cell biology of label-free biosensors. Future perspectives are also discussed.

  7. A brief history of cell labelling

    International Nuclear Information System (INIS)

    Peters, A.M.

    2005-01-01

    The term cell labelling is usually used in the context of labelled leukocytes for imaging inflammation and labelled platelets for imaging thrombosis. Erythrocyte labelling for in vitro measurements of red cell life span, in vivo measurements of splenic red cell pooling, radionuclide ventriculography and imaging sites of bleeding has developed rather separately and has a different history. Labelled platelets and leukocytes were originally developed for cell kinetic studies. Since the current-day applications of labelled platelets and leukocytes depend on a clear understanding of cell kinetics, these classical studies are important and relevant to the history of cell labelling

  8. Labelled molecules, modern research implements

    International Nuclear Information System (INIS)

    Pichat, L.; Langourieux, Y.

    1974-01-01

    Details of the synthesis of carbon 14- and tritium-labelled molecules are examined. Although the methods used are those of classical organic chemistry the preparation of carbon 14-labelled molecules differs in some respects, most noticeably in the use of 14 CO 2 which requires very special handling techniques. For the tritium labelling of organic molecules the methods are somewhat different, very often involving exchange reactions. The following are described in turn: the so-called Wilzbach exchange method; exchange by catalysis in solution; catalytic hydrogenation with tritium; reductions with borotritides. Some applications of labelled molecules in organic chemistry, biochemistry and pharmacology are listed [fr

  9. Progress on research of radioisotope-labeled porphyrin derivatives

    International Nuclear Information System (INIS)

    Yang Yuqing; Pu Manfei; Song Hu; Song Hongtao; Li Xingliang

    2010-01-01

    Porphyrin derivatives can be taken up by tumor cells and accumulated there for a long time. Since 1960's, radioactive isotope-labeled porphyrins have been under extensive researches around the world. The progress of labeled porphyrins with various radioactive isotopes includes 3 H, 11 C, 123 I, 131 I, 99m Tc, 188 Re, 117,113m Sn, 153 Sm, 109 Pd, 111 In, 57 Co, 58 Co, 65 Zn, 64, 67 Cu, 90 Y, 166 Ho is reviewed here. Among them, we studied the labeling conditions, chemical and biochemical properties of 188 Re-labeled, 117,113 mSn-labeled and 153 Sm-labeled T 3,4 CPP and TPPS 4 . We also studied the bio-distribution of 188 Re-labeled T 3,4 CPP and TPPS 4 in mice with transplanted liver tumor and melanoma. Other researches in porphyrins which could affect the research of radioisotope-labeled porphyrins are introduced in the end. This review could provide a reference for design of better radioisotope-labeled porphyrins. (authors)

  10. The antibody approach of labeling blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.

    1991-12-31

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated.

  11. The antibody approach of labeling blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.

    1991-01-01

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated.

  12. The antibody approach of labeling blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.

    1992-12-31

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are critically assessed and evaluated.

  13. The antibody approach of labeling blood cells

    International Nuclear Information System (INIS)

    Srivastava, S.C.

    1991-01-01

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated

  14. The antibody approach of labeling blood cells

    International Nuclear Information System (INIS)

    Srivastava, S.C.

    1992-01-01

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are critically assessed and evaluated

  15. Stable isotope labeling of oligosaccharide cell surface antigens

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, C.J.; Silks, L.A. III; Martinez, R.A. [and others

    1998-12-31

    The overall goal of this Laboratory Directed Research and Development (LDRD) project was to develop new methods for synthesis of {sup 13}C-labeled oligosaccharides that are required for nuclear magnetic resonance (NMR) studies of their solution conformation. Oligosaccharides are components of the cell`s outer surface and are involved in important processes such as cell-cell recognition and adhesion. Recently, Danishefsky and coworkers at Slone-Kettering Cancer Center developed a method for the solid-phase chemical synthesis of oligosaccharides. The specific goal of this LDRD project was to prepare uniform {sup 13}C-labeled aldohexose precursors required for the solid-phase synthesis of the Lewis blood-group antigenic determinants. We report the synthesis of {sup 13}C-labeled D-glucal, D-galactal and Fucosyl precursors. We have been collaborating with the Danishefsky group on the synthesis of the Lewis oligosaccharides and the NMR analysis of their solution conformation.

  16. Research on consumer reactions to nutrition labelling (FLABEL)

    DEFF Research Database (Denmark)

    Grunert, Klaus G.

    Nutrition labels are potentially a major instrument for enabling consumers to make healthier food choices, but current insights into how nutrition labels are used by consumers in real-world shopping situations are limited, making the science-based formulation of new labelling policies and the eva......Nutrition labels are potentially a major instrument for enabling consumers to make healthier food choices, but current insights into how nutrition labels are used by consumers in real-world shopping situations are limited, making the science-based formulation of new labelling policies...... and the evaluation of existing ones difficult. Recent and ongoing research, including research in the European Union (EU)-funded FP7 project FLABEL (Food Labelling to Advance Better Education for Life), is accumulating evidence not only on consumer liking of labels and on self-reported use, but also on labels...

  17. Aptamer-mediated indirect quantum dot labeling and fluorescent imaging of target proteins in living cells

    International Nuclear Information System (INIS)

    Liu, Jianbo; Zhang, Pengfei; Yang, Xiaohai; Wang, Kemin; Guo, Qiuping; Huang, Jin; Li, Wei

    2014-01-01

    Protein labeling for dynamic living cell imaging plays a significant role in basic biological research, as well as in clinical diagnostics and therapeutics. We have developed a novel strategy in which the dynamic visualization of proteins within living cells is achieved by using aptamers as mediators for indirect protein labeling of quantum dots (QDs). With this strategy, the target protein angiogenin was successfully labeled with fluorescent QDs in a minor intactness model, which was mediated by the aptamer AL6-B. Subsequent living cell imaging analyses indicated that the QDs nanoprobes were selectively bound to human umbilical vein endothelial cells, gradually internalized into the cytoplasm, and mostly localized in the lysosome organelle, indicating that the labeled protein retained high activity. Compared with traditional direct protein labeling methods, the proposed aptamer-mediated strategy is simple, inexpensive, and provides a highly selective, stable, and intact labeling platform that has shown great promise for future biomedical labeling and intracellular protein dynamic analyses. (paper)

  18. A Chemical Probe that Labels Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Nao Hirata

    2014-03-01

    Full Text Available A small-molecule fluorescent probe specific for human pluripotent stem cells would serve as a useful tool for basic cell biology research and stem cell therapy. Screening of fluorescent chemical libraries with human induced pluripotent stem cells (iPSCs and subsequent evaluation of hit molecules identified a fluorescent compound (Kyoto probe 1 [KP-1] that selectively labels human pluripotent stem cells. Our analyses indicated that the selectivity results primarily from a distinct expression pattern of ABC transporters in human pluripotent stem cells and from the transporter selectivity of KP-1. Expression of ABCB1 (MDR1 and ABCG2 (BCRP, both of which cause the efflux of KP-1, is repressed in human pluripotent stem cells. Although KP-1, like other pluripotent markers, is not absolutely specific for pluripotent stem cells, the identified chemical probe may be used in conjunction with other reagents.

  19. Silica-coated superparamagnetic nano- and microparticles for cell labeling

    Czech Academy of Sciences Publication Activity Database

    Zasońska, Beata Anna; Horák, Daniel; Boiko, N.; Stoika, R.

    2013-01-01

    Roč. 29, Suppl 2 (2013), s. 93 ISSN 0233-7657. [Bridges in Life Sciences Annual Conference /8./ - Laugh and Be the Best in Research and Patient Care. 05.04.2013-07.04.2013, Prague] R&D Projects: GA ČR GAP206/12/0381 Institutional support: RVO:61389013 Keywords : magnetic * cell labeling * nanoparticles Subject RIV: CB - Analytical Chemistry, Separation

  20. In vivo quantification of magnetically labelled cells by MRI relaxometry.

    Science.gov (United States)

    Gimenez, Ulysse; Lajous, Hélène; El Atifi, Michèle; Bidart, Marie; Auboiroux, Vincent; Fries, Pascal Henry; Berger, François; Lahrech, Hana

    2016-11-01

    Cellular MRI, which visualizes magnetically labelled cells (cells*), is an active research field for in vivo cell therapy and tracking. The simultaneous relaxation rate measurements (R 2 *, R 2 , R 1 ) are the basis of a quantitative cellular MRI method proposed here. U937 cells were labelled with Molday ION Rhodamine B, a bi-functional superparamagnetic and fluorescent nanoparticle (U937*). U937* viability and proliferation were not affected in vitro. In vitro relaxometry was performed in a cell concentration range of [2.5 × 10 4 -10 8 ] cells/mL. These measurements show the existence of complementary cell concentration intervals where these rates vary linearly. The juxtaposition of these intervals delineates a wide cell concentration range over which one of the relaxation rates in a voxel of an in vivo image can be converted into an absolute cell concentration. The linear regime was found at high concentrations for R 1 in the range of [10 6 - 2 × 10 8 ] cells/mL, at intermediate concentrations for R 2 in [2.5 × 10 5 - 5 × 10 7 ] cells/mL and at low concentrations for R 2 * in [8 × 10 4 - 5 × 10 6 ] cells/mL. In vivo relaxometry was performed in a longitudinal study, with labelled U937 cells injected into a U87 glioma mouse model. Using in vitro data, maps of in vivo U937* concentrations were obtained by converting one of the in vivo relaxation rates to cell concentration maps. MRI results were compared with the corresponding optical images of the same brains, showing the usefulness of our method to accurately follow therapeutic cell biodistribution in a longitudinal study. Results also demonstrate that the method quantifies a large range of magnetically labelled cells*. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Current state of the art of blood cell labeling

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Straub, R.F.; Meinken, G.E.; Gil, M.C.

    1985-01-01

    An update on some recent developments in the area of blood cell labeling is provided. Specific topics covered include red cell labeling with /sup 99m/Tc, platelet labeling using an antiplatelet monoclonal antibody, and the labeling of leukocytes with /sup 99m/Tc. Mechanistic information, where available, is discussed. A critical evaluation of current techniques, their pitfalls as well as advantages, and the problems that remain to be resolved, is presented. The promise shown by recent results using the antibody approach for cell labeling is emphasized. An assessment of the progress made in these areas is presented. 38 refs., 10 figs., 6 tabs

  2. Investigation of retinal ganglion cells and axons of normal rats using fluorogold retrograde labeling

    International Nuclear Information System (INIS)

    Yin Xiaolei; Ye Jian; Chen Chunlin

    2006-01-01

    To investigate the retinal ganglion cells (RGCs) by means of fluorogold retrograde labeling, RGCs were labeled by injecting the fluorogold bilaterally into the superficial superior colliculus and lateral genicutate nucleus in six adult SD rats. One and two weeks (3 rats in each group) after injecting the fluorogold, RGCs FG-labeled were observed and the number of them were counted. The results showed that after a week mean density of fluorogold-labeled RGCs was 2210 ± 128/mm 2 , and it was 2164 ± 117/mm 2 after two weeks. Our conclusion is fluorogold retrograde labeling could be very useful in the research of RGCs. (authors)

  3. Hemosiderin deposits confounds tracking of iron-oxide-labeled stem cells: an experimental study.

    Science.gov (United States)

    Rigol, M; Solanes, N; Roqué, M; Farré, J; Batlle, M; Roura, S; Bellera, N; Prat-Vidal, C; Sionis, A; Ramírez, J; Sitges, M; Sanz, G; Bayés-Genís, A; Heras, M

    2008-12-01

    The aim of the present research was to study the possible interference of hemosiderin deposits with the histological detection of dextran-coated, iron-labeled, mesenchymal stem cells after intracoronary administration in a porcine model of myocardial infarction. A myocardial infarction was induced in six animals that received intracoronary iron-labeled autologous mesenchymal stem cells (group 1; n = 2) or placebo (group 2; n = 4). Six control animals without myocardial infarction underwent direct intramyocardial injections of iron-labeled autologous mesenchymal stem cells (group 3; n = 2) or placebo (group 4; n = 4). Histological sections from explanted hearts were stained with Prussian blue to identify dextran-coated, iron-labeled, mesenchymal stem cells. After Prussian blue staining, granular blue labeling in the tissue was observed in both groups of animals with infarcts. Similar granular blue labeling was detected in hearts from control animals without infarction that had received iron-labeled mesenchymal stem cells. However, hearts from control animals without infarction that received placebo did not have any granular blue labeling in the tissue. Hemosiderin from infarction hemorrhage interferes with detection of dextran-coated iron-labeled mesenchymal stem cells after intracoronary administration, suggesting that this marker is not useful to detect mesenchymal stem cells in a porcine model of myocardial infarction.

  4. Nanodiamonds with silicon vacancy defects for nontoxic photostable fluorescent labeling of neural precursor cells.

    Science.gov (United States)

    Merson, Tobias D; Castelletto, Stefania; Aharonovich, Igor; Turbic, Alisa; Kilpatrick, Trevor J; Turnley, Ann M

    2013-10-15

    Nanodiamonds (NDs) containing silicon vacancy (SiV) defects were evaluated as a potential biomarker for the labeling and fluorescent imaging of neural precursor cells (NPCs). SiV-containing NDs were synthesized using chemical vapor deposition and silicon ion implantation. Spectrally, SiV-containing NDs exhibited extremely stable fluorescence and narrow bandwidth emission with an excellent signal to noise ratio exceeding that of NDs containing nitrogen-vacancy centers. NPCs labeled with NDs exhibited normal cell viability and proliferative properties consistent with biocompatibility. We conclude that SiV-containing NDs are a promising biomedical research tool for cellular labeling and optical imaging in stem cell research.

  5. State of the science of blood cell labeling

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Straub, R.F.

    1989-01-01

    Blood cell labeling can be considered a science in as far as it is based on precise knowledge and can be readily reproduced. This benchmark criterion is applied to all current cell labeling modalities and their relative merits and deficiencies are discussed. Mechanisms are given where they are known as well as labeling yields, label stability, and cell functionality. The focus is on the methodology and its suitability to the clinical setting rather than on clinical applications per se. Clinical results are cited only as proof of efficacy of the various methods. The emphasis is on technetium as the cell label, although comparisons are made between technetium and indium, and all blood cells are covered. 52 refs., 6 figs., 7 tabs

  6. Stem cell monitoring with a direct or indirect labeling method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Hwan; Lee, Yong Jin [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul (Korea, Republic of)

    2016-12-15

    The molecular imaging techniques allow monitoring of the transplanted cells in the same individuals over time, from early localization to the survival, migration, and differentiation. Generally, there are two methods of stem cell labeling: direct and indirect labeling methods. The direct labeling method introduces a labeling agent into the cell, which is stably incorporated or attached to the cells prior to transplantation. Direct labeling of cells with radionuclides is a simple method with relatively fewer adverse events related to genetic responses. However, it can only allow short-term distribution of transplanted cells because of the decreasing imaging signal with radiodecay, according to the physical half-lives, or the signal becomes more diffuse with cell division and dispersion. The indirect labeling method is based on the expression of a reporter gene transduced into the cell before transplantation, which is then visualized upon the injection of an appropriate probe or substrate. In this review, various imaging strategies to monitor the survival and behavior change of transplanted stem cells are covered. Taking these new approaches together, the direct and indirect labeling methods may provide new insights on the roles of in vivo stem cell monitoring, from bench to bedside.

  7. Carbon isotope labelling in graphene research

    Czech Academy of Sciences Publication Activity Database

    Frank, Otakar; Kavan, Ladislav; Kalbáč, Martin

    2014-01-01

    Roč. 6, č. 12 (2014), s. 6363-6370 ISSN 2040-3364 R&D Projects: GA ČR GA13-07724S; GA MŠk LL1301; GA ČR GA14-15357S Institutional support: RVO:61388955 Keywords : CHEMICAL-VAPOR-DEPOSITION * STACKED BILAYER GRAPHENE * SENSITIZED SOLAR -CELLS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.394, year: 2014

  8. Phagocytotic labelling of migratory blood cells and it clinical applications

    International Nuclear Information System (INIS)

    Oberhausen, E.; Schroth, H.J.

    1984-01-01

    A method for the labelling of monocytes and granulocytes with 99m-Tc-Sn-colloid in whole blood is described. The basis of the method is the phagocytosis of the Sn-colloid by the monocytes and granulocytes. There is the disadvantage that more than half of the activity is accumulated in the liver and spleen after the reinjection of labelled cells. Experiments in rats have revealed that about 90% of the administered cell bound activity were removed from the circulation and were taken up in the liver and spleen. By venipuncture of such a rat it was possible to remove circulating labelled cells of which, on reinjection into a second rat, about one half remiained in the circulation. This evidence indicated that phagocytotic tagging of white blood cells with 99m-Tc-Sn-colloid yielded viable, labelled cells. (Auth.)

  9. Single particle labeling of RNA virus in live cells.

    Science.gov (United States)

    Liu, Xiaohui; Ouyang, Ting; Ouyang, Hongsheng; Ren, Linzhu

    2017-06-02

    Real-time and visual tracking of viral infection is crucial for elucidating the infectious and pathogenesis mechanisms. To track the virus successfully, an efficient labeling method is necessary. In this review, we first discuss the practical labeling techniques for virus tracking in live cells. We then describe the current knowledge of interactions between RNA viruses (especially influenza viruses, immunodeficiency viruses, and Flaviviruses) and host cellular structures, obtained using single particle labeling techniques combined with real-time fluorescence microscopy. Single particle labeling provides an easy system for understanding the RNA virus life cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Carbon "Quantum" Dots for Fluorescence Labeling of Cells.

    Science.gov (United States)

    Liu, Jia-Hui; Cao, Li; LeCroy, Gregory E; Wang, Ping; Meziani, Mohammed J; Dong, Yiyang; Liu, Yuanfang; Luo, Pengju G; Sun, Ya-Ping

    2015-09-02

    The specifically synthesized and selected carbon dots of relatively high fluorescence quantum yields were evaluated in their fluorescence labeling of cells. For the cancer cell lines, the cellular uptake of the carbon dots was generally efficient, resulting in the labeling of the cells with bright fluorescence emissions for both one- and two-photon excitations from predominantly the cell membrane and cytoplasm. In the exploration on labeling the live stem cells, the cellular uptake of the carbon dots was relatively less efficient, though fluorescence emissions could still be adequately detected in the labeled cells, with the emissions again predominantly from the cell membrane and cytoplasm. This combined with the observed more efficient internalization of the same carbon dots by the fixed stem cells might suggest some significant selectivity of the stem cells toward surface functionalities of the carbon dots. The needs and possible strategies for more systematic and comparative studies on the fluorescence labeling of different cells, including especially live stem cells, by carbon dots as a new class of brightly fluorescent probes are discussed.

  11. Easy labeling of proliferative phase and sporogonic phase of microsporidia Nosema bombycis in host cells.

    Directory of Open Access Journals (Sweden)

    Jie Chen

    Full Text Available Microsporidia are eukaryotic, unicellular parasites that have been studied for more than 150 years. These organisms are extraordinary in their ability to invade a wide range of hosts including vertebrates and invertebrates, such as human and commercially important animals. A lack of appropriate labeling methods has limited the research of the cell cycle and protein locations in intracellular stages. In this report, an easy fluorescent labeling method has been developed to mark the proliferative and sporogonic phases of microsporidia Nosema bombycis in host cells. Based on the presence of chitin, Calcofluor White M2R was used to label the sporogonic phase, while β-tubulin antibody coupled with fluorescence secondary antibody were used to label the proliferative phase by immunofluorescence. This method is simple, efficient and can be used on both infected cells and tissue slices, providing a great potential application in microsporidia research.

  12. Optimization of in vitro cell labeling methods for human umbilical cord-derived mesenchymal stem cells.

    Science.gov (United States)

    Tao, R; Sun, T-J; Han, Y-Q; Xu, G; Liu, J; Han, Y-F

    2014-01-01

    Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are a novel source of seed cells for cell therapy and tissue engineering. However, in vitro labeling methods for hUCMSCs need to be optimized for better detection of transplanted cells. To identify the most stable and efficient method for labeling hUCMSCs in vitro. hUCMSCs were isolated using a modified enzymatic digestion procedure and cultured. hUCMSCs of passage three (P3) were then labeled with BrdU, PKH26, or lentivirus-GFP and passaged further. Cells from the first labeled passage (LP1), the fourth labeled passage (LP4) and later passages were observed using a fluorescence microscope. The differentiation potential of LP4 cells was assessed by induction with adipogenic and osteogenic medium. Flow cytometry was used to measure the percentage of labeled cells and the percentage of apoptotic or dead cells. The labeling efficiencies of the three hUCMSC-labeling methods were compared in vitro. BrdU, PKH26, and lentivirus-GFP all labeled LP1 cells with high intensity and clarity. However, the BrdU labeling of the LP4 cells was vague and not localized to the cell nuclei; LP9 cells were not detected under a fluorescence microscope. There was also a significant decrease in the fluorescence intensity of PKH26-labeled LP4 cells, and LP11 cells were not detected under a fluorescence microscope. However, the fluorescence of LP4 cells labeled with lentivirus-GFP remained strong, and cells labeled with lentivirus-GFP were detected up to LP14 under a fluorescence microscope. Statistical analyses indicated that percentages of LP1 cells labeled with PKH26 and lentivirus-GFP were significantly higher than that of cells labeled with BrdU (p 0.05) was observed between the death rates of labeled and unlabeled cells. Lentivirus-GFP is a valid method for long-term in vitro labeling, and it may be used as a long-term hUCMSC tracker following transplantation in vivo.

  13. Production of Alexa Fluor 488-labeled reovirus and characterization of target cell binding, competence, and immunogenicity of labeled virions.

    Science.gov (United States)

    Fecek, Ronald J; Busch, Ryan; Lin, Hong; Pal, Kasturi; Cunningham, Cynthia A; Cuff, Christopher F

    2006-07-31

    Respiratory enteric orphan virus (reovirus) has been used to study many aspects of the biology and genetics of viruses, viral infection, pathogenesis, and the immune response to virus infection. This report describes the functional activity of virus labeled with Alexa Fluor 488, a stable fluorescent dye. Matrix assisted laser desorption-time of flight analysis indicated that Alexa Fluor 488 labeled the outer capsid proteins of reovirus. Labeled virus bound to murine L929 fibroblasts as determined by flow cytometry and fluorescence microscopy, and the specificity of binding were demonstrated by competitive inhibition with non-labeled virus. Labeled reovirus induced apoptosis and cytopathic effect in infected L929 cells. Mice infected with labeled virus mounted robust serum antibody and CD8(+) T-cell responses, indicating that labeled virus retained immunogenicity in vivo. These results indicate that Alexa Fluor 488-labeled virus provides a powerful new tool to analyze reovirus infection in vitro and in vivo.

  14. Immediate bromodeoxyuridine labelling of unseparated human bone marrow cells ex vivo is superior to labelling after routine laboratory processing

    DEFF Research Database (Denmark)

    Jensen, P O; Mortensen, B T; Christensen, I J

    1998-01-01

    a reliable and reproducible technique for estimation of the fraction of cells that incorporated BrdUrd into DNA during S-phase. We have compared immediate BrdUrd labelling of unseparated bone marrow cells with the previously used labelling in the laboratory after routine separation of the mononuclear cells...

  15. Deep Learning in Label-free Cell Classification

    Science.gov (United States)

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-03-01

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.

  16. Clinical applications of indium-111-acetylacetone-labelled blood cells

    International Nuclear Information System (INIS)

    Georgi, P.; Sinn, H.; Wellman, H.; Clorius, J.H.; Becker, W.

    1981-01-01

    A method permitting red-cell labelling with 111 In-acetylacetone was reported in 1974 for evaluating intestinal blood loss, the liver-spleen ratio and the red-cell volume. White blood cells can be tagged similarly. In white-cell labelling, simultaneous red-cell or platelet tagging is avoided. Several procedures (dextran separation and gradient centrifugations) have been combined, to develop a highly selective cell separation. In osteomyelitis it may not be as advantageous to use 67 Ga-citrate, as in inflammatory soft tissue processes. The detection of inflammatory processes with labelled leukocytes could be of great importance for the scintigraphic diagnosis of osteomyelitidies. A group of 97 patients with suspected osteomyelitis have been examined using 111 In-acetylacetone-labelled leukocytes ( 111 In-AAL) immediately following positive routine skeletal scintigraphy. Images obtained 24 h post injection usually were the most satisfactory. In the followup group of 70 patients 21 true positives, 43 true negatives, 21 false negatives and 3 false positives were observed. These findings result in a specificity of 92%, sensitivity of 50% and accuracy of 70% with 111 In-AAL for osteomyelitis. Preliminary investigations using 111 In-acetylacetone-labelled thrombocytes ( 111 In-AAT) were carried out to detect rejection of transplanted kidneys. The platelets were separated by means of additional special density gradient centrifugations but no dextran from 15-20 ml of autologous whole blood. Scans have been obtained 15 min, 2.5 h and 24 h post injection in an initial group of 10 patients. In acute rejection, a high transplant uptake has been detected, whereas patients without acute rejection showed no or only a minimum activity accumulation. Patients with chronic rejection have intermediate uptakes

  17. Surface-modified magnetic nanoparticles for cell labeling

    Czech Academy of Sciences Publication Activity Database

    Zasońska, Beata Anna; Patsula, Vitalii; Stoika, R.; Horák, Daniel

    2014-01-01

    Roč. 13, č. 4 (2014), s. 63-73 ISSN 2305-7815 R&D Projects: GA MŠk(CZ) LH14318 Institutional support: RVO:61389013 Keywords : magnetic nanoparticles * surface-modified * cell labeling Subject RIV: CD - Macromolecular Chemistry

  18. Off-label use of adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Francesco Simonacci

    2017-12-01

    Conclusion: In Europe, clinical trials involving cultured ASCs and/or the use of collagenase, which causes changes in the structural and functional properties of stem cells, and/or ASCs application in non-homologous tissue, should be considered off-label. ASCs should be non-cultured, isolated mechanically, and used only in the subcutaneous tissue.

  19. In vitro labelling of mouse embryonic stem cells with SPIO nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Jana; Pacherník, J.; Hampl, Aleš; Dvořák, Petr

    2008-01-01

    Roč. 27, č. 3 (2008), s. 164-173 ISSN 0231-5882 Grant - others:GA ČR(CZ) GA301/08/0717 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : embryonic stem cells * differentiation * magnetic labelling Subject RIV: BO - Biophysics Impact factor: 0.697, year: 2008

  20. Effect of misoprostol and cimetidine on gastric cell labeling index

    International Nuclear Information System (INIS)

    Fich, A.; Arber, N.; Sestieri, M.; Zajicek, G.; Rachmilewitz, D.

    1985-01-01

    The effect of misoprostol and cimetidine on gastric cell turnover was studied. Endoscopic biopsy specimens of fundic and antral mucosa were obtained from duodenal ulcer patients before and after 4 wk of therapy with cimetidine 1.2 g/day or misoprostol 800 micrograms/day. Biopsy specimens were incubated with [ 3 H]thymidine. Glandular column length and number of labeled cells were determined after autoradiography. There was no significant difference in column length of antral or fundic glands before or after therapy with cimetidine and misoprostol. The number of antral and fundic labeled cells was significantly decreased after misoprostol treatment (3.6 +/- 0.3 and 4.6 +/- 0.4, mean +/- SE), as opposed to their respective number before therapy (6.9 +/- 0.5 and 8.3 +/- 0.8) (p less than 0.01). On the other hand, after treatment with cimetidine, the number of antral and fundic labeled cells was significantly higher (11.8 +/- 0.9 and 7.5 +/- 1.0, respectively) as compared with their number before therapy (5.7 +/- 0.5 and 5.6 +/- 0.6, respectively). The decreased gastric cell turnover induced by misoprostol indicates that the trophic effect of prostanoids on gastric mucosa is not due to an increase in cellular kinetics. The increased gastric cell turnover induced by cimetidine may contribute to its therapeutic effect in peptic ulcer disease

  1. Effect of misoprostol and cimetidine on gastric cell labeling index

    Energy Technology Data Exchange (ETDEWEB)

    Fich, A.; Arber, N.; Sestieri, M.; Zajicek, G.; Rachmilewitz, D.

    1985-07-01

    The effect of misoprostol and cimetidine on gastric cell turnover was studied. Endoscopic biopsy specimens of fundic and antral mucosa were obtained from duodenal ulcer patients before and after 4 wk of therapy with cimetidine 1.2 g/day or misoprostol 800 micrograms/day. Biopsy specimens were incubated with (/sup 3/H)thymidine. Glandular column length and number of labeled cells were determined after autoradiography. There was no significant difference in column length of antral or fundic glands before or after therapy with cimetidine and misoprostol. The number of antral and fundic labeled cells was significantly decreased after misoprostol treatment (3.6 +/- 0.3 and 4.6 +/- 0.4, mean +/- SE), as opposed to their respective number before therapy (6.9 +/- 0.5 and 8.3 +/- 0.8) (p less than 0.01). On the other hand, after treatment with cimetidine, the number of antral and fundic labeled cells was significantly higher (11.8 +/- 0.9 and 7.5 +/- 1.0, respectively) as compared with their number before therapy (5.7 +/- 0.5 and 5.6 +/- 0.6, respectively). The decreased gastric cell turnover induced by misoprostol indicates that the trophic effect of prostanoids on gastric mucosa is not due to an increase in cellular kinetics. The increased gastric cell turnover induced by cimetidine may contribute to its therapeutic effect in peptic ulcer disease.

  2. Gold nanoparticle-cell labeling methodology for tracking stem cells within the brain

    Science.gov (United States)

    Betzer, Oshra; Meir, Rinat; Motiei, Menachem; Yadid, Gal; Popovtzer, Rachela

    2017-02-01

    Cell therapy provides a promising approach for diseases and injuries that conventional therapies cannot cure effectively. Mesenchymal stem cells (MSCs) can be used as effective targeted therapy, as they exhibit homing capabilities to sites of injury and inflammation, exert anti-inflammatory effects, and can differentiate in order to regenerate damaged tissue. Despite the potential efficacy of cell therapy, applying cell-based therapy in clinical practice is very challenging; there is a need to uncover the mystery regarding the fate of the transplanted cells. Therefore, in this study, we developed a method for longitudinal and quantitative in vivo cell tracking, based on the superior visualization abilities of classical X-ray computed tomography (CT), and combined with gold nanoparticles as labeling agents. We applied this technique for non-invasive imaging of MSCs transplanted in a rat model for depression, a highly prevalent and disabling neuropsychiatric disorder lacking effective treatment. Our results, which demonstrate that cell migration could be detected as early as 24 hours and up to one month post-transplantation, revealed that MSCs specifically navigated and homed to distinct depression related brain regions. This research further reveals that cell therapy is a beneficial approach for treating neuropsychiatric disorders; Behavioral manifestations of core symptoms of depressive behavior, were significantly attenuated following treatment. We expect This CT-based technique to lead to a significant enhancement in cellular therapy both for basic research and clinical applications of brain pathologies.

  3. Labeling of mesenchymal stem cells for MRI with single-cell sensitivity

    Directory of Open Access Journals (Sweden)

    Ariza de Schellenberger A

    2016-04-01

    Full Text Available Angela Ariza de Schellenberger,1 Harald Kratz,1 Tracy D Farr,2,3 Norbert Löwa,4 Ralf Hauptmann,1 Susanne Wagner,1 Matthias Taupitz,1 Jörg Schnorr,1 Eyk A Schellenberger1 1Department of Radiology, 2Department of Experimental Neurology, Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany; 3School of Life Sciences, University of Nottingham, Medical School, Nottingham, UK; 4Department of Biomagnetic Signals, Physikalisch-Technische Bundesanstalt Berlin, Berlin, Germany Abstract: Sensitive cell detection by magnetic resonance imaging (MRI is an important tool for the development of cell therapies. However, clinically approved contrast agents that allow single-cell detection are currently not available. Therefore, we compared very small iron oxide nanoparticles (VSOP and new multicore carboxymethyl dextran-coated iron oxide nanoparticles (multicore particles, MCP designed by our department for magnetic particle imaging (MPI with discontinued Resovist® regarding their suitability for detection of single mesenchymal stem cells (MSC by MRI. We achieved an average intracellular nanoparticle (NP load of >10 pg Fe per cell without the use of transfection agents. NP loading did not lead to significantly different results in proliferation, colony formation, and multilineage in vitro differentiation assays in comparison to controls. MRI allowed single-cell detection using VSOP, MCP, and Resovist® in conjunction with high-resolution T2*-weighted imaging at 7 T with postprocessing of phase images in agarose cell phantoms and in vivo after delivery of 2,000 NP-labeled MSC into mouse brains via the left carotid artery. With optimized labeling conditions, a detection rate of ~45% was achieved; however, the experiments were limited by nonhomogeneous NP loading of the MSC population. Attempts should be made to achieve better cell separation for homogeneous NP loading and to thus improve NP

  4. Immediate bromodeoxyuridine labelling of unseparated human bone marrow cells ex vivo is superior to labelling after routine laboratory processing

    DEFF Research Database (Denmark)

    Jensen, P O; Mortensen, B T; Christensen, I J

    1998-01-01

    It is important to evaluate the proliferation of bone marrow cells in several disease conditions and during treatment of patients with for example cytokines. Labelling with bromodeoxyuridine (BrdUrd), immunocytochemical staining with anti-BrdUrd antibody and analysis by flow cytometry provides...... a reliable and reproducible technique for estimation of the fraction of cells that incorporated BrdUrd into DNA during S-phase. We have compared immediate BrdUrd labelling of unseparated bone marrow cells with the previously used labelling in the laboratory after routine separation of the mononuclear cells...

  5. A simple method for stem cell labeling with fluorine 18

    International Nuclear Information System (INIS)

    Ma Bing; Hankenson, Kurt D.; Dennis, James E.; Caplan, Arnold I.; Goldstein, Steven A.; Kilbourn, Michael R.

    2005-01-01

    Hexadecyl-4-[ 18 F]fluorobenzoate ([ 18 F]HFB), a long chain fluorinated benzoic acid ester, was prepared in a one-step synthesis by aromatic nucleophilic substitution of [ 18 F]fluoride ion on hexadecyl-4-(N,N,N-trimethylammonio)benzoate. The radiolabeled ester was obtained in good yields (52% decay corrected) and high purity (97%). [ 18 F]HFB was used to radiolabel rat mesenchymal stem cells (MSCs) by absorption into cell membranes. MicroPET imaging of [ 18 F]HFB-labeled MSCs following intravenous injection into the rat showed the expected high and persistent accumulation of radioactivity in the lungs. [ 18 F]HFB is thus simple to prepare and uses labeling agent for short-term distribution studies of injected stem cells

  6. Polyelectrolyte coating of ferumoxytol nanoparticles for labeling of dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Celikkin, Nehar; Jakubcová, Lucie; Zenke, Martin [Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen (Germany); Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen (Germany); Hoss, Mareike [Institute of Pathology, Electron Microscopy Facility, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen (Germany); Wong, John Erik, E-mail: John.Wong@avt.rwth-aachen.de [Chemical Process Engineering, RWTH Aachen University, Turmstrasse 46, 52056 Aachen (Germany); DWI – Leibniz Institute for Interactive Materials Research, Forckenbeckstrasse 50, Aachen (Germany); Hieronymus, Thomas, E-mail: thomas.hieronymus@rwth-aachen.de [Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen (Germany); Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen (Germany)

    2015-04-15

    Engineered magnetic nanoparticles (MNPs) are emerging to be used as cell tracers, drug delivery vehicles, and contrast agents for magnetic resonance imaging (MRI) for enhanced theragnostic applications in biomedicine. In vitro labeling of target cell populations with MNPs and their implantation into animal models and patients shows promising outcomes in monitoring successful cell engraftment, differentiation and migration by using MRI. Dendritic cells (DCs) are professional antigen-presenting cells that initiate adaptive immune responses. Thus, DCs have been the focus of cellular immunotherapy and are increasingly applied in clinical trials. Here, we addressed the coating of different polyelectrolytes (PE) around ferumoxytol particles using the layer-by-layer technique. The impact of PE-coated ferumoxytol particles for labeling of DCs and Flt3{sup +} DC progenitors was then investigated. The results from our studies revealed that PE-coated ferumoxytol particles can be readily employed for labeling of DC and DC progenitors and thus are potentially suitable as contrast agents for MRI tracking.

  7. Hot cell for the synthesis of labelled organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J.S.; Karlstrom, K.; Koehler, C.; Lambrecht, R.M.; MacGregor, R.R.; Ruth, T.J.; Sceviour, W.; Wolf, A.P.

    1979-01-01

    The design of a hot cell for use in labelling organic compounds is described. Versatility has been incorporated so that the cell can be used with a wide variety of organic syntheses as well as a large dynamic range of radioactivity (from ..mu..Ci to Ci levels). This is made possible by having the large work area easily accessible from the front which can be opened or closed and a small sliding lead glass window and master slave manipulator. A variety of syntheses setups which have been modified for use in such a cell are described.

  8. Small Molecule-Photoactive Yellow Protein Labeling Technology in Live Cell Imaging

    Directory of Open Access Journals (Sweden)

    Feng Gao

    2016-08-01

    Full Text Available Characterization of the chemical environment, movement, trafficking and interactions of proteins in live cells is essential to understanding their functions. Labeling protein with functional molecules is a widely used approach in protein research to elucidate the protein location and functions both in vitro and in live cells or in vivo. A peptide or a protein tag fused to the protein of interest and provides the opportunities for an attachment of small molecule probes or other fluorophore to image the dynamics of protein localization. Here we reviewed the recent development of no-wash small molecular probes for photoactive yellow protein (PYP-tag, by the means of utilizing a quenching mechanism based on the intramolecular interactions, or an environmental-sensitive fluorophore. Several fluorogenic probes have been developed, with fast labeling kinetics and cell permeability. This technology allows quick live-cell imaging of cell-surface and intracellular proteins without a wash-out procedure.

  9. Ultra-fast stem cell labelling using cationised magnetoferritin

    Science.gov (United States)

    Correia Carreira, S.; Armstrong, J. P. K.; Seddon, A. M.; Perriman, A. W.; Hartley-Davies, R.; Schwarzacher, W.

    2016-03-01

    Magnetic cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) facilitates many important biotechnological applications, such as cell imaging and remote manipulation. However, to achieve adequate cellular loading of SPIONs, long incubation times (24 hours and more) or laborious surface functionalisation are often employed, which can adversely affect cell function. Here, we demonstrate that chemical cationisation of magnetoferritin produces a highly membrane-active nanoparticle that can magnetise human mesenchymal stem cells (hMSCs) using incubation times as short as one minute. Magnetisation persisted for several weeks in culture and provided significant T2* contrast enhancement during magnetic resonance imaging. Exposure to cationised magnetoferritin did not adversely affect the membrane integrity, proliferation and multi-lineage differentiation capacity of hMSCs, which provides the first detailed evidence for the biocompatibility of magnetoferritin. The combination of synthetic ease and flexibility, the rapidity of labelling and absence of cytotoxicity make this novel nanoparticle system an easily accessible and versatile platform for a range of cell-based therapies in regenerative medicine.Magnetic cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) facilitates many important biotechnological applications, such as cell imaging and remote manipulation. However, to achieve adequate cellular loading of SPIONs, long incubation times (24 hours and more) or laborious surface functionalisation are often employed, which can adversely affect cell function. Here, we demonstrate that chemical cationisation of magnetoferritin produces a highly membrane-active nanoparticle that can magnetise human mesenchymal stem cells (hMSCs) using incubation times as short as one minute. Magnetisation persisted for several weeks in culture and provided significant T2* contrast enhancement during magnetic resonance imaging. Exposure to cationised

  10. Specific Labeling of Stem Cell Activity in Human Colorectal Organoids Using an ASCL2-Responsive Minigene

    Directory of Open Access Journals (Sweden)

    Koen C. Oost

    2018-02-01

    Full Text Available Organoid technology provides the possibility of culturing patient-derived colon tissue and colorectal cancers (CRCs while maintaining all functional and phenotypic characteristics. Labeling stem cells, especially in normal and benign tumor organoids of human colon, is challenging and therefore limits maximal exploitation of organoid libraries for human stem cell research. Here, we developed STAR (stem cell Ascl2 reporter, a minimal enhancer/promoter element that reports transcriptional activity of ASCL2, a master regulator of LGR5+ intestinal stem cells. Using lentiviral infection, STAR drives specific expression in stem cells of normal organoids and in multiple engineered and patient-derived CRC organoids of different genetic makeup. STAR reveals that differentiation hierarchies and the potential for cell fate plasticity are present at all stages of human CRC development. Organoid technology, in combination with the user-friendly nature of STAR, will facilitate basic research into human adult stem cell biology.

  11. Different cell moieties and white blood cell (WBC) integrity in In-111 labeled WBC preparations

    International Nuclear Information System (INIS)

    Saha, G.B.; Feiglin, D.H.I.; McMahon, J.T.; Go, R.T.; O'Donnell, J.K.; MacIntyre, W.J.

    1985-01-01

    Indium-111 labeled white blood cells (WBC) have become very popular in detecting inflammatory diseases. The purpose of this paper is to determine the distribution of different types of cells in WBC preparation for In-111 oxine labeling, and also to assess the histological integrity of WBC's after labeling with In-111 oxine. Forty to fifty cc of blood was collected from each patient and WBC's were separated by sedimentation and centrifugation. After labeling with In-111 oxine, an aliquot of the WBC sample was used for cell counting and a second aliquot was used for electron microscopic (EM) examination. The different cell moieties were counted, and the mean and standard deviation of twelve determinations calculated. Cells were prepared by the standard technique for electron microscopic examination and images of the cells were obtained at different magnifications (X8,000-25,000). The EM images revealed that although minimal cytoplasmic vacuolization occurred in the WBC's due to the labeling process, the overall histological integrity of the cells remained intact. The relative labeling efficiency of WBC's is greater than those of RBC's and platelets (J Nuc) Med 25:p98, 1984) and, therefore, even a comparatively low population of WBC's gives optimal imaging due to their increased tracer uptake

  12. Nutrition labelling: a review of research on consumer and industry response in the global South

    Directory of Open Access Journals (Sweden)

    Jessie Mandle

    2015-01-01

    Full Text Available Background: To identify peer-reviewed research on consumers’ usage and attitudes towards the nutrition label and the food industry's response to labelling regulations outside Europe, North America, and Australia and to determine knowledge gaps for future research. Design: Narrative review. Results: This review identified nutrition labelling research from 20 countries in Asia, Africa, the Middle East, and Latin America. Consumers prefer that pre-packaged food include nutrition information, although there is a disparity between rates of use and comprehension. Consumer preference is for front-of-pack labelling and for information that shows per serving or portion as a reference unit, and label formats with graphics or symbols. Research on the food and beverage industry's response is more limited but shows that industry plays an active role in influencing legislation and regulation. Conclusions: Consumers around the world share preferences with consumers in higher income countries with respect to labelling. However, this may reflect the research study populations, who are often better educated than the general population. Investigation is required into how nutrition labels are received in emerging economies especially among the urban and rural poor, in order to assess the effectiveness of labelling policies. Further research into the outlook of the food and beverage industry, and also on expanded labelling regulations is a priority. Sharing context-specific research regarding labelling between countries in the global South could be mutually beneficial in evaluating obesity prevention policies and strategies.

  13. Nutrition labelling: a review of research on consumer and industry response in the global South.

    Science.gov (United States)

    Mandle, Jessie; Tugendhaft, Aviva; Michalow, Julia; Hofman, Karen

    2015-01-01

    To identify peer-reviewed research on consumers' usage and attitudes towards the nutrition label and the food industry's response to labelling regulations outside Europe, North America, and Australia and to determine knowledge gaps for future research. Narrative review. This review identified nutrition labelling research from 20 countries in Asia, Africa, the Middle East, and Latin America. Consumers prefer that pre-packaged food include nutrition information, although there is a disparity between rates of use and comprehension. Consumer preference is for front-of-pack labelling and for information that shows per serving or portion as a reference unit, and label formats with graphics or symbols. Research on the food and beverage industry's response is more limited but shows that industry plays an active role in influencing legislation and regulation. Consumers around the world share preferences with consumers in higher income countries with respect to labelling. However, this may reflect the research study populations, who are often better educated than the general population. Investigation is required into how nutrition labels are received in emerging economies especially among the urban and rural poor, in order to assess the effectiveness of labelling policies. Further research into the outlook of the food and beverage industry, and also on expanded labelling regulations is a priority. Sharing context-specific research regarding labelling between countries in the global South could be mutually beneficial in evaluating obesity prevention policies and strategies.

  14. Production of yeastolates for uniform stable isotope labelling in eukaryotic cell culture.

    NARCIS (Netherlands)

    Egorova-Zachernyuk, T.A.; Bosman, G.J.C.G.M.; Pistorius, A.M.A.; Grip, W.J. de

    2009-01-01

    Preparation of stable isotope-labelled yeastolates opens up ways to establish more cost-effective stable isotope labelling of biomolecules in insect and mammalian cell lines and hence to employ higher eukaryotic cell lines for stable isotope labelling of complex recombinant proteins. Therefore, we

  15. Nutrition labelling: a review of research on consumer and industry response in the global South

    OpenAIRE

    Mandle, Jessie; Tugendhaft, Aviva; Michalow, Julia; Hofman, Karen

    2015-01-01

    Background: To identify peer-reviewed research on consumers’ usage and attitudes towards the nutrition label and the food industry's response to labelling regulations outside Europe, North America, and Australia and to determine knowledge gaps for future research. Design: Narrative review. Results: This review identified nutrition labelling research from 20 countries in Asia, Africa, the Middle East, and Latin America. Consumers prefer that pre-packaged food include nutrition information, alt...

  16. Research on advanced intervention using novel bone marrOW stem cell (RAINBOW): a study protocol for a phase I, open-label, uncontrolled, dose-response trial of autologous bone marrow stromal cell transplantation in patients with acute ischemic stroke.

    Science.gov (United States)

    Shichinohe, Hideo; Kawabori, Masahito; Iijima, Hiroaki; Teramoto, Tuyoshi; Abumiya, Takeo; Nakayama, Naoki; Kazumata, Ken; Terasaka, Shunsuke; Arato, Teruyo; Houkin, Kiyohiro

    2017-09-08

    Stroke is a leading cause of death and disability, and despite intensive research, few treatment options exist. However, a recent breakthrough in cell therapy is expected to reverse the neurological sequelae of stroke. Although some pioneer studies on the use of cell therapy for treating stroke have been reported, certain problems remain unsolved. Recent studies have demonstrated that bone marrow stromal cells (BMSCs) have therapeutic potential against stroke. We investigated the use of autologous BMSC transplantation as a next-generation cell therapy for treating stroke. In this article, we introduce the protocol of a new clinical trial, the Research on Advanced Intervention using Novel Bone marrOW stem cell (RAINBOW). RAINBOW is a phase 1, open-label, uncontrolled, dose-response study, with the primary aim to determine the safety of the autologous BMSC product HUNS001-01 when administered to patients with acute ischemic stroke. Estimated enrollment is 6-10 patients suffering from moderate to severe neurological deficits. Approximately 50 mL of the bone marrow is extracted from the iliac bone of each patient 15 days or later from the onset. BMSCs are cultured with allogeneic human platelet lysate (PL) as a substitute for fetal calf serum and are labeled with superparamagnetic iron oxide for cell tracking using magnetic resonance imaging (MRI). HUNS001-01 is stereotactically administered around the area of infarction in the subacute phase. Each patient will be administered a dose of 20 or 50 million cells. Neurological scoring, MRI for cell tracking, 18 F-fuorodeoxyglucose positron emission tomography, and 123 I-Iomazenil single-photon emission computed tomography will be performed for 1 year after the administration. This is a first-in-human trial for HUNS001-01 to the patients with acute ischemic stroke. We expect that intraparenchymal injection can be a more favorable method for cell delivery to the lesion and improvement of the motor function than

  17. Review of metabolic pathways activated in cancer cells as determined through isotopic labeling and network analysis.

    Science.gov (United States)

    Dong, Wentao; Keibler, Mark A; Stephanopoulos, Gregory

    2017-09-01

    Cancer metabolism has emerged as an indispensable part of contemporary cancer research. During the past 10 years, the use of stable isotopic tracers and network analysis have unveiled a number of metabolic pathways activated in cancer cells. Here, we review such pathways along with the particular tracers and labeling observations that led to the discovery of their rewiring in cancer cells. The list of such pathways comprises the reductive metabolism of glutamine, altered glycolysis, serine and glycine metabolism, mutant isocitrate dehydrogenase (IDH) induced reprogramming and the onset of acetate metabolism. Additionally, we demonstrate the critical role of isotopic labeling and network analysis in identifying these pathways. The alterations described in this review do not constitute a complete list, and future research using these powerful tools is likely to discover other cancer-related pathways and new metabolic targets for cancer therapy. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. Nanoparticle-labeled stem cells: a novel therapeutic vehicle

    Directory of Open Access Journals (Sweden)

    Abir O El-Sadik

    2010-03-01

    Full Text Available Abir O El-Sadik1, Afaf El-Ansary2, Sherif M Sabry31Stem Cell Unit, Anatomy Department, College of Medicine, Health Science Colleges; 2Biochemistry Department, Science College, King Saud University; 3Anatomy Department, Faculty of Medicine, Cairo University, Cairo, EgyptAbstract: Nanotechnology has been described as a general purpose technology. It has already generated a range of inventions and innovations. Development of nanotechnology will provide clinical medicine with a range of new diagnostic and therapeutic opportunities such as medical imaging, medical diagnosis, drug delivery, and cancer detection and management. Nanoparticles such as manganese, polystyrene, silica, titanium oxide, gold, silver, carbon, quantum dots, and iron oxide have received enormous attention in the creation of new types of analytical tools for biotechnology and life sciences. Labeling of stem cells with nanoparticles overcame the problems in homing and fixing stem cells to their desired site and guiding extension of stem cells to specific directions. Although the biologic effects of some nanoparticles have already been assessed, information on toxicity and possible mechanisms of various particle types remains inadequate. The aim of this review is to give an overview of the mechanisms of internalization and distribution of nanoparticles inside stem cells, as well as the influence of different types of nanoparticles on stem cell viability, proliferation, differentiation, and cytotoxicity, and to assess the role of nanoparticles in tracking the fate of stem cells used in tissue regeneration.Keywords: nanoparticles, stem cells, uptake, differentiation, cytotoxicity, tracking

  19. Dye solar cell research

    CSIR Research Space (South Africa)

    Cummings, F

    2009-11-01

    Full Text Available Cummings Energy and Processes Materials Science and Manufacturing Council for Scientific and Industrial Research P.O. Box 395 Pretoria 0001, South Africa 27 November 2009 CONTENT head2rightBackground head2rightCSIR Dye Solar Cell Research head2... rightCollaborations and Links © CSIR 2007 www.csir.co.za head2rightAcknowledgements BACKGROUND head2rightSA is dry: Annual rainfall average of 450 mm compared with a world average of 860 mm head2rightOn upside, we have some...

  20. HaloTag protein-mediated specific labeling of living cells with quantum dots

    International Nuclear Information System (INIS)

    So, Min-kyung; Yao Hequan; Rao Jianghong

    2008-01-01

    Quantum dots emerge as an attractive alternative to small molecule fluorophores as fluorescent tags for in vivo cell labeling and imaging. This communication presents a method for specific labeling of live cells using quantum dots. The labeling is mediated by HaloTag protein expressed at the cell surface which forms a stable covalent adduct with its ligand (HaloTag ligand). The labeling can be performed in one single step with quantum dot conjugates that are functionalized with HaloTag ligand, or in two steps with biotinylated HaloTag ligand first and followed by streptavidin coated quantum dots. Live cell fluorescence imaging indicates that the labeling is specific and takes place at the cell surface. This HaloTag protein-mediated cell labeling method should facilitate the application of quantum dots for live cell imaging

  1. Fuel Cell Research

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Peter M. [Brown University

    2014-03-30

    Executive Summary In conjunction with the Brown Energy Initiative, research Projects selected for the fuel cell research grant were selected on the following criteria: They should be fundamental research that has the potential to significantly impact the nation’s energy infrastructure. They should be scientifically exciting and sound. They should synthesize new materials, lead to greater insights, explore new phenomena, or design new devices or processes that are of relevance to solving the energy problems. They involve top-caliper senior scientists with a record of accomplishment, or junior faculty with outstanding promise of achievement. They should promise to yield at least preliminary results within the given funding period, which would warrant further research development. They should fit into the overall mission of the Brown Energy Initiative, and the investigators should contribute as partners to an intellectually stimulating environment focused on energy science. Based on these criteria, fourteen faculty across three disciplines (Chemistry, Physics and Engineering) and the Charles Stark Draper Laboratory were selected to participate in this effort.1 In total, there were 30 people supported, at some level, on these projects. This report highlights the findings and research outcomes of the participating researchers.

  2. Information on Stem Cell Research

    Science.gov (United States)

    ... Home » Current Research » Focus on Research Focus on Stem Cell Research Stem cells possess the unique ability to differentiate into ... virus infection. To search the complete list of stem cell research projects funded by NIH please go to NIH ...

  3. D-mannose-modified iron oxide nanoparticles for stem cell labeling

    Czech Academy of Sciences Publication Activity Database

    Horák, Daniel; Babič, Michal; Jendelová, Pavla; Herynek, V.; Trchová, Miroslava; Pientka, Zbyněk; Pollert, Emil; Hájek, M.; Syková, Eva

    2007-01-01

    Roč. 18, č. 3 (2007), s. 635-644 ISSN 1043-1802 R&D Projects: GA ČR GA525/05/0311; GA ČR(CZ) GA309/06/1594; GA MŠk 1M0538; GA AV ČR KAN201110651 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50390512; CEZ:AV0Z10100521 Keywords : cell labeling * stem cells * magnetic * D-mannose Subject RIV: CE - Biochemistry Impact factor: 4.384, year: 2007

  4. Improved modification for in vitro labeling of red blood cells with Technetium-99m

    International Nuclear Information System (INIS)

    Gerson, B.; Ballinger, J.R.; Gulenchyn, K.Y.

    1988-01-01

    The authors have tested a modification of Brookhaven method for in vitro labeling of red blood cells (RBCs) with technetium-99m by adding an initial centrifugation step and performing the labeling on packed RBCs. This results in reproducible, high labeling efficiencies (99.3% +/- 0.4%, n = 50) after 15 min of incubation. The use of packed RBCs also results in a higher concentration of labeled RBCs (smaller bolus for injection) and less radiation exposure to the technologist. This technique has proved useful for radionuclide angiography, venography, gastrointestinal bleeding studies, and red cell mass determinations. It is particularly advantageous for RBC labeling in patients receiving chemotherapy

  5. Diagnostic Labels, Stigma, and Participation in Research Related to Dementia and Mild Cognitive Impairment

    OpenAIRE

    Garand, Linda; Lingler, Jennifer H.; Conner, Kyaien O.; Dew, Mary Amanda

    2009-01-01

    Health care professionals use diagnostic labels to classify individuals for both treatment and research purposes. Despite their clear benefits, diagnostic labels also serve as cues that activate stigma and stereotypes. Stigma associated with the diagnostic labels of dementia and mild cognitive impairment (MCI) can have a significant and negative impact on interpersonal relationships, interactions with the health care community, attitudes about service utilization, and participation in clinica...

  6. Effect of labeling with iron oxide particles or nanodiamonds on the functionality of adipose-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Sinead P Blaber

    Full Text Available Stem cells are increasingly the focus of translational research as well as having emerging roles in human cellular therapy. To support these uses there is a need for improved methods for in vivo cell localization and tracking. In this study, we examined the effects of cell labeling on the in vitro functionality of human adipose-derived mesenchymal stem cells. Our results provide a basis for future in vivo studies investigating implanted cell fate and longevity. In particular, we investigated the effects of two different particles: micron-sized (~0.9 µm fluorescently labeled (Dragon Green superparamagnetic iron oxide particles (M-SPIO particles; and, carboxylated nanodiamonds of ~0.25 µm in size. The effects of labeling on the functionality of adipose-derived MSCs were assessed by in vitro morphology, osteogenic and adipogenic differentiation potential, CD marker expression, cytokine secretion profiling and quantitative proteomics of the intra-cellular proteome. The differentiation and CD marker assays for stem-like functionality were not altered upon label incorporation and no secreted or intra-cellular protein changes indicative of stress or toxicity were detected. These in vitro results indicate that the M-SPIO particles and nanodiamonds investigated in this study are biocompatible with MSCs and therefore would be suitable labels for cell localization and tracking in vivo.

  7. Label-Free Imaging of Umbilical Cord Tissue Morphology and Explant-Derived Cells

    Directory of Open Access Journals (Sweden)

    Raf Donders

    2016-01-01

    Full Text Available In situ detection of MSCs remains difficult and warrants additional methods to aid with their characterization in vivo. Two-photon confocal laser scanning microscopy (TPM and second harmonic generation (SHG could fill this gap. Both techniques enable the detection of cells and extracellular structures, based on intrinsic properties of the specific tissue and intracellular molecules under optical irradiation. TPM imaging and SHG imaging have been used for label-free monitoring of stem cells differentiation, assessment of their behavior in biocompatible scaffolds, and even cell tracking in vivo. In this study, we show that TPM and SHG can accurately depict the umbilical cord architecture and visualize individual cells both in situ and during culture initiation, without the use of exogenously applied labels. In combination with nuclear DNA staining, we observed a variance in fluorescent intensity in the vessel walls. In addition, antibody staining showed differences in Oct4, αSMA, vimentin, and ALDH1A1 expression in situ, indicating functional differences among the umbilical cord cell populations. In future research, marker-free imaging can be of great added value to the current antigen-based staining methods for describing tissue structures and for the identification of progenitor cells in their tissue of origin.

  8. Label-Free Imaging of Umbilical Cord Tissue Morphology and Explant-Derived Cells

    Science.gov (United States)

    Paesen, Rik; Gyselaers, Wilfried; Stinissen, Piet

    2016-01-01

    In situ detection of MSCs remains difficult and warrants additional methods to aid with their characterization in vivo. Two-photon confocal laser scanning microscopy (TPM) and second harmonic generation (SHG) could fill this gap. Both techniques enable the detection of cells and extracellular structures, based on intrinsic properties of the specific tissue and intracellular molecules under optical irradiation. TPM imaging and SHG imaging have been used for label-free monitoring of stem cells differentiation, assessment of their behavior in biocompatible scaffolds, and even cell tracking in vivo. In this study, we show that TPM and SHG can accurately depict the umbilical cord architecture and visualize individual cells both in situ and during culture initiation, without the use of exogenously applied labels. In combination with nuclear DNA staining, we observed a variance in fluorescent intensity in the vessel walls. In addition, antibody staining showed differences in Oct4, αSMA, vimentin, and ALDH1A1 expression in situ, indicating functional differences among the umbilical cord cell populations. In future research, marker-free imaging can be of great added value to the current antigen-based staining methods for describing tissue structures and for the identification of progenitor cells in their tissue of origin. PMID:27746820

  9. Noninvasive imaging of protein metabolic labeling in single human cells using stable isotopes and Raman microscopy

    NARCIS (Netherlands)

    van Manen, H.J.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2008-01-01

    We have combined nonresonant Raman microspectroscopy and spectral imaging with stable isotope labeling by amino acids in cell culture (SILAC) to selectively detect the incorporation of deuterium-labeled phenylalanine, tyrosine, and methionine into proteins in intact, single HeLa cells. The C−D

  10. Uniform stable-isotope labeling in mammalian cells: formulation of a cost-effective culture medium

    NARCIS (Netherlands)

    Egorova-Zachernyuk, T.A.; Bosman, G.J.C.G.M.; Grip, W.J. de

    2011-01-01

    Uniform stable-isotope labeling of mammalian cells is achieved via a novel formulation of a serum-free cell culture medium that is based on stable-isotope-labeled autolysates and lipid extracts of various microbiological origin. Yeast autolysates allow complete replacement of individual amino acids

  11. Preparation of labelled lipids by the use of plant cell cultures

    International Nuclear Information System (INIS)

    Mangold, H.K.

    1978-01-01

    The preparation of some radioacitvely labelled lipids by the use of plant cell cultures is discussed and further applications of the new method are suggested. Cell suspension cultures of rape (Brassica napus) and soya (Glycine max) have been used for the preparation of lipids labelled with radioisotopes. Radioactive acetic acid as well as various long-chain fatty acids are readily incorporated into the neutral and ionic lipids of plant cell cultures. In addition, 14 C-labelled glycerol, ethanolamine and choline are well utilized by the cells. Randomly labelled lipids have been obtained by incubating cell suspension cultures of rape and soya with [1- 14 C] acetic acid, and uniformly labelled lipids have been isolated from cultures that had been incubated with a mixture of [1- 14 C] acetic acid plus [2- 14 C] acetic acid. The use of techniques of plant cell cultures for the preparation of lipds labelled with stable or radioactive isotopesappears particularly rewarding because the uptake of precursors by the cells and their incorporation into various lipid compounds proceeds rapidly and often quanitatively.This new approach should be useful also for the biosynthesis of lipids whose acyl moieties contain a spn radical, a fluorescent group, or a light-sensitive label. Thus, plant cell cultures constitute valuable new tools for the biosynthetic preparation of a great variety of labelled lipids. (A.G.)

  12. Distribution of 51Cr labeled leukemia cells in mice: Comparison with representative normal cells

    International Nuclear Information System (INIS)

    Boranic, M.; Radacic, M.

    1978-01-01

    Cells of two transplantable leukemias of mice, one myeloid and one lymphoid, were labeled with 51 Cr in order to follow their distribution in hemopoietic and parenchymatous organs and blood of syngeneic recipients. Distribution of myeloid leukemia cells was compared with that of regenerating bone marrow cells and normal spleen cells. The organ distribution of myeloid leukemia cells was essentially different from that of cells of regenerating bone marrow, and both were different from that of normal spleen cells. Cells of lymphoid leukemia, which are presumably of B-lymphocyte origin, were compared with a B-lymphocyte enriched population, obtained from the lymph nodes of so-called TIR mice (thymectomized, irradiated, and reconstituted with syngeneic bone marrow), and with spleen cells of normal mice. The three patterns of organ distribution were different. It is concluded that the two leukemias studied each have a specific and characteristic distribution. (author)

  13. Evaluation of in vivo labelled dendritic cell migration in cancer patients

    Directory of Open Access Journals (Sweden)

    Ridolfi Laura

    2004-07-01

    Full Text Available Abstract Background Dendritic Cell (DC vaccination is a very promising therapeutic strategy in cancer patients. The immunizing ability of DC is critically influenced by their migration activity to lymphatic tissues, where they have the task of priming naïve T-cells. In the present study in vivo DC migration was investigated within the context of a clinical trial of antitumor vaccination. In particular, we compared the migration activity of mature Dendritic Cells (mDC with that of immature Dendritic Cells (iDC and also assessed intradermal versus subcutaneous administration. Methods DC were labelled with 99mTc-HMPAO or 111In-Oxine, and the presence of labelled DC in regional lymph nodes was evaluated at pre-set times up to a maximum of 72 h after inoculation. Determinations were carried out in 8 patients (7 melanoma and 1 renal cell carcinoma. Results It was verified that intradermal administration resulted in about a threefold higher migration to lymph nodes than subcutaneous administration, while mDC showed, on average, a six-to eightfold higher migration than iDC. The first DC were detected in lymph nodes 20–60 min after inoculation and the maximum concentration was reached after 48–72 h. Conclusions These data obtained in vivo provide preliminary basic information on DC with respect to their antitumor immunization activity. Further research is needed to optimize the therapeutic potential of vaccination with DC.

  14. Evaluation of in vivo labelled dendritic cell migration in cancer patients.

    Science.gov (United States)

    Ridolfi, Ruggero; Riccobon, Angela; Galassi, Riccardo; Giorgetti, Gianluigi; Petrini, Massimiliano; Fiammenghi, Laura; Stefanelli, Monica; Ridolfi, Laura; Moretti, Andrea; Migliori, Giuseppe; Fiorentini, Giuseppe

    2004-07-30

    BACKGROUND: Dendritic Cell (DC) vaccination is a very promising therapeutic strategy in cancer patients. The immunizing ability of DC is critically influenced by their migration activity to lymphatic tissues, where they have the task of priming naïve T-cells. In the present study in vivo DC migration was investigated within the context of a clinical trial of antitumor vaccination. In particular, we compared the migration activity of mature Dendritic Cells (mDC) with that of immature Dendritic Cells (iDC) and also assessed intradermal versus subcutaneous administration. METHODS: DC were labelled with 99mTc-HMPAO or 111In-Oxine, and the presence of labelled DC in regional lymph nodes was evaluated at pre-set times up to a maximum of 72 h after inoculation. Determinations were carried out in 8 patients (7 melanoma and 1 renal cell carcinoma). RESULTS: It was verified that intradermal administration resulted in about a threefold higher migration to lymph nodes than subcutaneous administration, while mDC showed, on average, a six-to eightfold higher migration than iDC. The first DC were detected in lymph nodes 20-60 min after inoculation and the maximum concentration was reached after 48-72 h. CONCLUSIONS: These data obtained in vivo provide preliminary basic information on DC with respect to their antitumor immunization activity. Further research is needed to optimize the therapeutic potential of vaccination with DC.

  15. Uptake of Retrograde Tracers by Intact Optic Nerve Axons: A New Way to Label Retinal Ganglion Cells

    OpenAIRE

    Liang, Yu-Xiang; Yang, Jian; Yuan, Ti-Fei; So, Kwok-Fai

    2015-01-01

    Retrograde labelling of retinal ganglion cells with optic nerve transection often leads to degeneration of ganglion cells in prolonged experiments. Here we report that an intact optic nerve could uptake retrograde tracers applied onto the surface of the nerve, leading to high efficiency labelling of ganglion cells in the retina with long-term survival of cells. This method labelled a similar number of ganglion cells (2289 +/- 174 at 2 days) as the retrograde labeling technique from the superi...

  16. Classification of blood cells and tumor cells using label-free ultrasound and photoacoustics.

    Science.gov (United States)

    Strohm, Eric M; Kolios, Michael C

    2015-08-01

    A label-free method that can identify cells in a blood sample using high frequency photoacoustic and ultrasound signals is demonstrated. When the wavelength of the ultrasound or photoacoustic wave is similar to the size of a single cell (frequencies of 100-500 MHz), unique periodic features occur within the ultrasound and photoacoustic power spectrum that depend on the cell size, structure, and morphology. These spectral features can be used to identify different cell types present in blood, such as red blood cells (RBCs), white blood cells (WBCs), and circulating tumor cells. Circulating melanoma cells are ideal for photoacoustic detection due to their endogenous optical absorption properties. Using a 532 nm pulsed laser and a 375 MHz transducer, the ultrasound and photoacoustic signals from RBCs, WBCs, and melanoma cells were individually measured in an acoustic microscope to examine how the signals change between cell types. A photoacoustic and ultrasound signal was detected from RBCs and melanoma cells; only an ultrasound signal was detected from WBCs. The different cell types were distinctly separated using the ultrasound and photoacoustic signal amplitude and power spectral periodicity. The size of each cell was also estimated from the spectral periodicity. For the first time, sound waves generated using pulse-echo ultrasound and photoacoustics have been used to identify and size single cells, with applications toward counting and identifying cells, including circulating melanoma cells. © 2015 International Society for Advancement of Cytometry.

  17. Imaging of nanoparticle-labeled stem cells using magnetomotive optical coherence tomography, laser speckle reflectometry, and light microscopy

    Science.gov (United States)

    Cimalla, Peter; Werner, Theresa; Winkler, Kai; Mueller, Claudia; Wicht, Sebastian; Gaertner, Maria; Mehner, Mirko; Walther, Julia; Rellinghaus, Bernd; Wittig, Dierk; Karl, Mike O.; Ader, Marius; Funk, Richard H. W.; Koch, Edmund

    2015-03-01

    Cell transplantation and stem cell therapy are promising approaches for regenerative medicine and are of interest to researchers and clinicians worldwide. However, currently, no imaging technique that allows three-dimensional in vivo inspection of therapeutically administered cells in host tissues is available. Therefore, we investigate magnetomotive optical coherence tomography (MM-OCT) of cells labeled with magnetic particles as a potential noninvasive cell tracking method. We develop magnetomotive imaging of mesenchymal stem cells for future cell therapy monitoring. Cells were labeled with fluorescent iron oxide nanoparticles, embedded in tissue-mimicking agar scaffolds, and imaged using a microscope setup with an integrated MM-OCT probe. Magnetic particle-induced motion in response to a pulsed magnetic field of 0.2 T was successfully detected by OCT speckle variance analysis, and cross-sectional and volumetric OCT scans with highlighted labeled cells were obtained. In parallel, fluorescence microscopy and laser speckle reflectometry were applied as two-dimensional reference modalities to image particle distribution and magnetically induced motion inside the sample, respectively. All three optical imaging modalities were in good agreement with each other. Thus, magnetomotive imaging using iron oxide nanoparticles as cellular contrast agents is a potential technique for enhanced visualization of selected cells in OCT.

  18. Melanopsin retinal ganglion cells are not labeled in Thy-1YFP-16 transgenic mice.

    Science.gov (United States)

    Grillo, Stephanie L; Stella, Salvatore L

    2018-01-17

    Retinal ganglion cells (RGCs) that express the photopigment melanopsin (mRGCs) are photosensitive and initiate the non-image-forming pathway, where the majority of their axons terminate in the suprachiasmatic nucleus (SCN). RGCs only make up approximately half of the cells in the ganglion cell layer of the retina; therefore, it is important to be able to distinguish them from other cell types. The transgenic Thy-1 YFP mouse line 16 (Thy-1 YFP-16) expresses yellow-fluorescent protein (YFP) in projection neurons, including RGCs. Our objective was to determine whether mRGCs are labeled with YFP in Thy-1 YFP-16 transgenic mice. Paraformaldehyde-fixed retinal wholemounts and frozen vertical sections were prepared from Thy-1 YFP-16 mice and fluorescently labeled with rabbit anti-melanopsin and guinea-pig anti-RNA binding protein with multiple splicing to identify mRGCs and total RGCs, respectively. Thy-1 YFP-16 mouse brains were sectioned coronally and imaged to view RGC axonal projections to the SCN. Confocal images of retinal preparations show that the majority (∼89%) of mRGCs are not YFP-positive in Thy-1 YFP-16 mice, where ∼11% expressed a weak fluorescent signal. In addition, there are almost no YFP-positive axons present in the SCN of coronal brain sections. We conclude that the majority of mRGC somas and axons are not labeled with YFP in the transgenic Thy-1 YFP-16 mouse line; therefore, this mouse model may not suitable for research involving mRGC visual pathways.

  19. Cell Surface Proteome of Dental Pulp Stem Cells Identified by Label-Free Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Christian Niehage

    Full Text Available Multipotent mesenchymal stromal cells (MSCs are promising tools for regenerative medicine. They can be isolated from different sources based on their plastic-adherence property. The identification of reliable cell surface markers thus becomes the Holy Grail for their prospective isolation. Here, we determine the cell surface proteomes of human dental pulp-derived MSCs isolated from single donors after culture expansion in low (2% or high (10% serum-containing media. Cell surface proteins were tagged on intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin, which allows their enrichment by streptavidin pull-down. For the proteomic analyses, we first compared label-free methods to analyze cell surface proteomes i.e. composition, enrichment and proteomic differences, and we developed a new mathematical model to determine cell surface protein enrichment using a combinatorial gene ontology query. Using this workflow, we identified 101 cluster of differentiation (CD markers and 286 non-CD cell surface proteins. Based on this proteome profiling, we identified 14 cell surface proteins, which varied consistently in abundance when cells were cultured under low or high serum conditions. Collectively, our analytical methods provide a basis for identifying the cell surface proteome of dental pulp stem cells isolated from single donors and its evolution during culture or differentiation. Our data provide a comprehensive cell surface proteome for the precise identification of dental pulp-derived MSC populations and their isolation for potential therapeutic intervention.

  20. Non-invasive cell tracking of SPIO labeled cells in an intrinsic regenerative environment: the axolotl limb

    DEFF Research Database (Denmark)

    Lauridsen, Henrik; Foldager, Casper; Hansen, Line

    2017-01-01

    Non-invasive methods to track the progress of stem cell therapies are important in the development of future regenerative therapies. Super-paramagnetic iron oxide particles (SPIOs) have previously been applied to track cells using magnetic resonance imaging (MRI) in vivo in non-regenerative animal...... models. In this study we test for the first time the feasibility of tracking SPIO labeled cells in an intrinsic regenerative environment, the regenerating limb of the axolotl, and investigate the homing of stem cell like blastema cells to the regenerative zone. Viability and labeling success of labeled...... axolotl blastema cells was tested in vitro using cell culture and histology. SPIO labeling was performed in situ by intramuscular injections and mapped using MRI. Enhanced permeability and retention (EPR) effect was evaluated in the blastema, liver, heart, kidney and a back muscle. Finally, SPIO...

  1. Use of labelled pesticides in pesticide research studies and problems in the interpretation of the data

    International Nuclear Information System (INIS)

    Sree Ramulu, U.S.; Krishnamoorthy, K.K.

    1980-01-01

    The introduction of labelled pesticides has helped to solve number of problems connected with the formation and degradation of pesticides, factors influencing the above, location of the metabolites in the plants etc. However in most of the studies, the active ingredient has been labelled and diluted and applied at the recommended doses. But the efficacy of the pesticide is modified by the method of formulation, nature of fillers, emulsifiers, solvents, size of droplets etc. Hence the utility as well as the limitations in the use of labelled pesticides in the formulations are discussed. Also due to the variations in the half life of the radioisotopes used for labelling, the use of labelled pesticides for long as well as short duration crops has also been indicated. Autoradiography has become an useful tool in studying the movement of pesticide in the plant, and insects and also locating the regions of high concentration of pesticides and their residues. Though useful, the production of artefacts caused by exudation of cell sap, and other exudates, thickness of samples, increasing time of contact in the case of low energy radioisotope labelled compounds etc. have prevented the use of this technique on a wide scale. The problems in the preparation of autoradiographs of the plant specimens treated with labelled pesticides are also discussed. (author)

  2. Tumor-Initiating Label-Retaining Cancer Cells in Human Gastrointestinal Cancers Undergo Asymmetric Cell Division

    Science.gov (United States)

    Xin, Hong-Wu; Hari, Danielle M.; Mullinax, John E.; Ambe, Chenwi M.; Koizumi, Tomotake; Ray, Satyajit; Anderson, Andrew J.; Wiegand, Gordon W.; Garfield, Susan H.; Thorgeirsson, Snorri S.; Avital, Itzhak

    2012-01-01

    Label-retaining cells (LRCs) have been proposed to represent adult tissue stem cells. LRCs are hypothesized to result from either slow cycling or asymmetric cell division (ACD). However, the stem cell nature and whether LRC undergo ACD remain controversial. Here, we demonstrate label-retaining cancer cells (LRCCs) in several gastrointestinal (GI) cancers including fresh surgical specimens. Using a novel method for isolation of live LRCC, we demonstrate that a subpopulation of LRCC is actively dividing and exhibits stem cells and pluripotency gene expression profiles. Using real-time confocal microscopic cinematography, we show live LRCC undergoing asymmetric nonrandom chromosomal cosegregation LRC division. Importantly, LRCCs have greater tumor-initiating capacity than non-LRCCs. Based on our data and that cancers develop in tissues that harbor normal-LRC, we propose that LRCC might represent a novel population of GI stem-like cancer cells. LRCC may provide novel mechanistic insights into the biology of cancer and regenerative medicine and present novel targets for cancer treatment. PMID:22331764

  3. HoloMonitor M4: holographic imaging cytometer for real-time kinetic label-free live-cell analysis of adherent cells

    Science.gov (United States)

    Sebesta, Mikael; Egelberg, Peter J.; Langberg, Anders; Lindskov, Jens-Henrik; Alm, Kersti; Janicke, Birgit

    2016-03-01

    Live-cell imaging enables studying dynamic cellular processes that cannot be visualized in fixed-cell assays. An increasing number of scientists in academia and the pharmaceutical industry are choosing live-cell analysis over or in addition to traditional fixed-cell assays. We have developed a time-lapse label-free imaging cytometer HoloMonitorM4. HoloMonitor M4 assists researchers to overcome inherent disadvantages of fluorescent analysis, specifically effects of chemical labels or genetic modifications which can alter cellular behavior. Additionally, label-free analysis is simple and eliminates the costs associated with staining procedures. The underlying technology principle is based on digital off-axis holography. While multiple alternatives exist for this type of analysis, we prioritized our developments to achieve the following: a) All-inclusive system - hardware and sophisticated cytometric analysis software; b) Ease of use enabling utilization of instrumentation by expert- and entrylevel researchers alike; c) Validated quantitative assay end-points tracked over time such as optical path length shift, optical volume and multiple derived imaging parameters; d) Reliable digital autofocus; e) Robust long-term operation in the incubator environment; f) High throughput and walk-away capability; and finally g) Data management suitable for single- and multi-user networks. We provide examples of HoloMonitor applications of label-free cell viability measurements and monitoring of cell cycle phase distribution.

  4. In vivo red blood cell compatibility testing using indium-113m tropolone-labeled red blood cells

    International Nuclear Information System (INIS)

    Morrissey, G.J.; Gravelle, D.; Dietz, G.; Driedger, A.A.; King, M.; Cradduck, T.D.

    1988-01-01

    In vivo radionuclide crossmatch is a method for identifying compatible blood for transfusion when allo- or autoantibodies preclude the use of conventional crossmatching techniques. A technique for labeling small volumes of donor red blood cells with [/sup 113m/In]tropolone is reported. The use of /sup 113m/In minimizes the accumulation of background radioactivity and the radiation dose especially so when multiple crossmatches are performed. Labeling red cells with [/sup 113m/In]tropolone is faster and easier to perform than with other radionuclides. Consistently high labeling efficiencies are obtained and minimal /sup 113m/In activity elutes from the labeled red blood cells. A case study involving 22 crossmatches is presented to demonstrate the technique. The radiation dose equivalent from /sup 113m/In is significantly less than with other radionuclides that may be used to label red cells

  5. Cell-selective labeling of bacterial proteomes with an orthogonal phenylalanine amino acid reporter.

    Science.gov (United States)

    Grammel, Markus; Dossa, Paul D; Taylor-Salmon, Emma; Hang, Howard C

    2012-02-01

    Orthogonal amino acid reporters allow the selective labeling of different cell types in heterogeneous populations through the expression of engineered aminoacyl tRNA synthetases. Here, we demonstrate that para-ethynylphenylalanine (PEP) can be used as an orthogonal amino acid reporter for efficient selective labeling of an intracellular bacterial pathogen during infection. This journal is © The Royal Society of Chemistry 2012

  6. Surface-Enhanced Raman Scattering Nanoparticles as Optical Labels for Imaging Cell Surface Proteins

    Science.gov (United States)

    MacLaughlin, Christina M.

    Assaying the expression of cell surface proteins has widespread application for characterizing cell type, developmental stage, and monitoring disease transformation. Immunophenotyping is conducted by treating cells with labelled targeting moieties that have high affinity for relevant surface protein(s). The sensitivity and specificity of immunophenotyping is defined by the choice of contrast agent and therefore, the number of resolvable signals that can be used to simultaneously label cells. Narrow band width surface-enhanced Raman scattering (SERS) nanoparticles are proposed as optical labels for multiplexed immunophenotying. Two types of surface coatings were investigated to passivate the gold nanoparticles, incorporate SERS functionality, and to facilitate attachment of targeting antibodies. Thiolated poly(ethylene glycol) forms dative bonds with the gold surface and is compatible with multiple physisorbed Raman-active reporter molecules. Ternary lipid bilayers are used to encapsulate the gold nanoparticles particles, and incorporate three different classes of Raman reporters. TEM, UV-Visible absorbance spectroscopy, DLS, and electrophoretic light scattering were used characterize the particle coating. Colourimetric protein assay, and secondary antibody labelling were used to quantify the antibody conjugation. Three different in vitromodels were used to investigate the binding efficacy and specificity of SERS labels for their biomarker targets. Primary human CLL cells, LY10 B lymphoma, and A549 adenocarcinoma lines were targeted. Dark field imaging was used to visualize the colocalization of SERS labels with cells, and evidence of receptor clustering was obtained based on colour shifts of the particles' Rayleigh scattering. Widefield, and spatially-resolved Raman spectra were used to detect labels singly, and in combination from labelled cells. Fluorescence flow cytometry was used to test the particles' binding specificity, and SERS from labelled cells was also

  7. Methodological quality of front-of-pack labeling studies: a review plus identification of research challenges.

    Science.gov (United States)

    Vyth, Ellis L; Steenhuis, Ingrid H M; Brandt, Hella E; Roodenburg, Annet J C; Brug, Johannes; Seidell, Jacob C

    2012-12-01

    This review evaluates the methodological quality of current front-of-pack labeling research and discusses future research challenges. Peer-reviewed articles were identified using a computerized search of the databases PubMed and Web of Science (ISI) from 1990 to February 2011; reference lists from key published articles were used as well. The quality of the 31 included studies was assessed. The results showed that the methodological quality of published front-of-pack labeling research is generally low to mediocre; objective observational data-based consumer studies were of higher quality than consumer studies relying on self-reports. Experimental studies that included a control group were lacking. The review further revealed a lack of a validated methodology to measure the use of front-of-pack labels and the effects of these labels in real-life settings. In conclusion, few methodologically sound front-of-pack labeling studies are presently available. The highest methodological quality and the greatest public health relevance are achieved by measuring the health effects of front-of-pack labels using biomarkers in a longitudinal, randomized, controlled design in a real-life setting. © 2012 International Life Sciences Institute.

  8. Algal autolysate medium to label proteins for NMR in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Fuccio, Carmelo; Luchinat, Enrico; Barbieri, Letizia [University of Florence, Magnetic Resonance Center (CERM) (Italy); Neri, Sara [Giotto Biotech S.R.L. (Italy); Fragai, Marco, E-mail: fragai@cerm.unifi.it [University of Florence, Magnetic Resonance Center (CERM) (Italy)

    2016-04-15

    In-cell NMR provides structural and functional information on proteins directly inside living cells. At present, the high costs of the labeled media for mammalian cells represent a limiting factor for the development of this methodology. Here we report a protocol to prepare a homemade growth medium from Spirulina platensis autolysate, suitable to express uniformly labeled proteins inside mammalian cells at a reduced cost-per-sample. The human proteins SOD1 and Mia40 were overexpressed in human cells grown in {sup 15}N-enriched S. platensis algal-derived medium, and high quality in-cell NMR spectra were obtained.

  9. Label-Free Detection of Rare Cell in Human Blood Using Gold Nano Slit Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    Mansoureh Z. Mousavi

    2015-03-01

    Full Text Available Label-free detection of rare cells in biological samples is an important and highly demanded task for clinical applications and various fields of research, such as detection of circulating tumor cells for cancer therapy and stem cells studies. Surface Plasmon Resonance (SPR as a label-free method is a promising technology for detection of rare cells for diagnosis or research applications. Short detection depth of SPR (400 nm provides a sensitive method with minimum interference of non-targets in the biological samples. In this work, we developed a novel microfluidic chip integrated with gold nanoslit SPR platform for highly efficient immunomagnetic capturing and detection of rare cells in human blood. Our method offers simple yet efficient detection of target cells with high purity. The approach for detection consists of two steps. Target cells are firs captured on functionalized magnetic nanoparticles (MNPs with specific antibody I. The suspension containing the captured cells (MNPs-cells is then introduced into a microfluidic chip integrated with a gold nanoslit film. MNPs-cells bind with the second specific antibody immobilized on the surface of the gold nanoslit and are therefore captured on the sensor active area. The cell binding on the gold nanoslit was monitored by the wavelength shift of the SPR spectrum generated by the gold nanoslits.

  10. Labeling Adipose-Derived Stem Cells with Hoechst 33342: Usability and Effects on Differentiation Potential and DNA Damage

    Directory of Open Access Journals (Sweden)

    P. Schendzielorz

    2016-01-01

    Full Text Available Adipose-derived stem cells (ASCs have been extensively studied in the field of stem cell research and possess numerous clinical applications. Cell labeling is an essential component of various experimental protocols and Hoechst 33342 (H33342 represents a cost-effective and easy methodology for live staining. The purpose of this study was to evaluate the labeling of rat ASCs with two different concentrations of H33342 (0.5 μg/mL and 5 μg/mL, with particular regard to usability, interference with cell properties, and potential DNA damage. Hoechst 33342 used at a low concentration of 0.5 μg/mL did not significantly affect cell proliferation, viability, or differentiation potential of the ASCs, nor did it cause any significant DNA damage as measured by the olive tail moment. High concentrations of 5 μg/mL H33342, however, impaired the proliferation and viability of the ASCs, and considerable DNA damage was observed. Undesirable colabeling of unlabeled cocultivated cells was seen in particular with higher concentrations of H33342, independent of varying washing procedures. Hence, H33342 labeling with lower concentrations represents a usable method, which does not affect the tested cell properties. However, the colabeling of adjacent cells is a drawback of the technique.

  11. Human Adipose-Derived Stem Cells Labeled with Plasmonic Gold Nanostars for Cellular Tracking and Photothermal Cancer Cell Ablation.

    Science.gov (United States)

    Shammas, Ronnie L; Fales, Andrew M; Crawford, Bridget M; Wisdom, Amy J; Devi, Gayathri R; Brown, David A; Vo-Dinh, Tuan; Hollenbeck, Scott T

    2017-04-01

    Gold nanostars are unique nanoplatforms that can be imaged in real time and transform light energy into heat to ablate cells. Adipose-derived stem cells migrate toward tumor niches in response to chemokines. The ability of adipose-derived stem cells to migrate and integrate into tumors makes them ideal vehicles for the targeted delivery of cancer nanotherapeutics. To test the labeling efficiency of gold nanostars, undifferentiated adipose-derived stem cells were incubated with gold nanostars and a commercially available nanoparticle (Qtracker), then imaged using two-photon photoluminescence microscopy. The effects of gold nanostars on cell phenotype, proliferation, and viability were assessed with flow cytometry, 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide metabolic assay, and trypan blue, respectively. Trilineage differentiation of gold nanostar-labeled adipose-derived stem cells was induced with the appropriate media. Photothermolysis was performed on adipose-derived stem cells cultured alone or in co-culture with SKBR3 cancer cells. Efficient uptake of gold nanostars occurred in adipose-derived stem cells, with persistence of the luminescent signal over 4 days. Labeling efficiency and signal quality were greater than with Qtracker. Gold nanostars did not affect cell phenotype, viability, or proliferation, and exhibited stronger luminescence than Qtracker throughout differentiation. Zones of complete ablation surrounding the gold nanostar-labeled adipose-derived stem cells were observed following photothermolysis in both monoculture and co-culture models. Gold nanostars effectively label adipose-derived stem cells without altering cell phenotype. Once labeled, photoactivation of gold nanostar-labeled adipose-derived stem cells ablates neighboring cancer cells, demonstrating the potential of adipose-derived stem cells as a vehicle for the delivery of site-specific cancer therapy.

  12. CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells.

    Science.gov (United States)

    Deng, Wulan; Shi, Xinghua; Tjian, Robert; Lionnet, Timothée; Singer, Robert H

    2015-09-22

    Direct visualization of genomic loci in the 3D nucleus is important for understanding the spatial organization of the genome and its association with gene expression. Various DNA FISH methods have been developed in the past decades, all involving denaturing dsDNA and hybridizing fluorescent nucleic acid probes. Here we report a novel approach that uses in vitro constituted nuclease-deficient clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated caspase 9 (Cas9) complexes as probes to label sequence-specific genomic loci fluorescently without global DNA denaturation (Cas9-mediated fluorescence in situ hybridization, CASFISH). Using fluorescently labeled nuclease-deficient Cas9 (dCas9) protein assembled with various single-guide RNA (sgRNA), we demonstrated rapid and robust labeling of repetitive DNA elements in pericentromere, centromere, G-rich telomere, and coding gene loci. Assembling dCas9 with an array of sgRNAs tiling arbitrary target loci, we were able to visualize nonrepetitive genomic sequences. The dCas9/sgRNA binary complex is stable and binds its target DNA with high affinity, allowing sequential or simultaneous probing of multiple targets. CASFISH assays using differently colored dCas9/sgRNA complexes allow multicolor labeling of target loci in cells. In addition, the CASFISH assay is remarkably rapid under optimal conditions and is applicable for detection in primary tissue sections. This rapid, robust, less disruptive, and cost-effective technology adds a valuable tool for basic research and genetic diagnosis.

  13. MRI tracking of SPIO labelled stem cells in a true regenerative environment, the regenerating limb of the axolotl

    DEFF Research Database (Denmark)

    Lauridsen, Henrik; Foldager, Casper Bindzus; Hagensen, Mette

    displayed no significant effect on the rate of regeneration. Discussion: SPIO labelling for MRI cell tracking has shown promising results for regenerative therapies using stem cells. This study contributes to broaden the potential of SPIOs to track regenerating tissue in an inherently regenerative model......, facilitating the use of SPIOs in future chemically or genetically induced regenerative therapies. In addition, this study concludes that SPIO labelling and MRI tracking of axolotl stem cells allow for non-invasive longitudinal studies in this model, increasing the potential to draw knowledge from......Introduction: Regeneration is a widespread phenomenon functioning to maintain and restore normal form and function of cells, tissues, and in some cases organs or appendages. While mammals like mice and rats are typically employed as experimental models in regenerative research, these animals...

  14. Stable isotope labelling with amino acids in cell culture for human embryonic stem cell proteomic analysis

    DEFF Research Database (Denmark)

    Harkness, Linda; Prokhorova, Tatyana A; Kassem, Moustapha

    2012-01-01

    The identification and quantitative measurements of proteins in human embryonic stem cells (hESC) is a fast growing interdisciplinary area with an enormous impact on understanding the biology of hESC and the mechanism controlling self-renewal and differentiation. Using a quantitative mass...... spectroscopic method of stable isotope labelling with amino acids during cell culture (SILAC), we are able to analyse differential expression of proteins from different cellular compartments and to identify intracellular signalling pathways involved in self-renewal and differentiation. In this chapter, we...

  15. Measuring cell cycle progression kinetics with metabolic labeling and flow cytometry.

    Science.gov (United States)

    Fleisig, Helen; Wong, Judy

    2012-05-22

    metabolic processes for each cell cycle stage are useful in blocking the progression of the cell cycle to the next stage. For example, the ribonucleotide reductase inhibitor hydroxyurea halts cells at the G1/S juncture by limiting the supply of deoxynucleotides, the building blocks of DNA. Other notable chemicals include treatment with aphidicolin, a polymerase alpha inhibitor for G1 arrest, treatment with colchicine and nocodazole, both of which interfere with mitotic spindle formation to halt cells in M phase and finally, treatment with the DNA chain terminator 5-fluorodeoxyridine to initiate S phase arrest. Treatment with these chemicals is an effective means of synchronizing an entire population of cells at a particular phase. With removal of the chemical, cells rejoin the cell cycle in unison. Treatment of the test agent following release from the cell cycle blocking chemical ensures that the drug response elicited is from a uniform, cell cycle stage-specific population. However, since many of the chemical synchronizers are known genotoxic compounds, teasing apart the participation of various response pathways (to the synchronizers vs. the test agents) is challenging. Here we describe a metabolic labeling method for following a subpopulation of actively cycling cells through their progression from the DNA replication phase, through to the division and separation of their daughter cells. Coupled with flow cytometry quantification, this protocol enables for measurement of kinetic progression of the cell cycle in the absence of either mechanically- or chemically- induced cellular stresses commonly associated with other cell cycle synchronization methodologies. In the following sections we will discuss the methodology, as well as some of its applications in biomedical research.

  16. Development of Novel Radio-labeled Materials using Research Reactor

    International Nuclear Information System (INIS)

    Choi, Sun Ju; Hong, Y. D.; Choi, K. H.

    2010-04-01

    In this project, we aim to develop the novel radiomaterials using reactor-produced radioisotope for the targeted therapy of cancer. At initial stage, we have examined the effect of beta particle-emission radionuclides on the proliferation of various types of tumor cells and found that beta particle emission radionuclides significantly inhibited the proliferation of tumor cells. We have synthesized new bifunctional chelating agents (BFCAs) for bio-conjugation with bio-active molecules, such as peptide and antibody, and radioabeling with radionuclide. For targeted radiotherapy, we have prepared target materials and radiolabeled with various radionuclides using BFCAs and obtained candidate materials for the treatment of melanoma. We have next treated melanoma-induced animals with candidate radiopharmaceuticals. The tumor growth was significantly reduced by treatment with candidates, and survival rate of the animals was prolonged, suggesting that candidate radiopharmaceuticals are promising agents for the treatment of melanoma

  17. Methodological quality of front-of-pack labeling studies : a review plus identification of research challenges

    NARCIS (Netherlands)

    Vyth, Ellis L; Steenhuis, Ingrid H M; Brandt, Hella E; Roodenburg, Annet J C; Brug, Johannes; Seidell, Jacob C

    2012-01-01

    This review evaluates the methodological quality of current front-of-pack labeling research and discusses future research challenges. Peer-reviewed articles were identified using a computerized search of the databases PubMed and Web of Science (ISI) from 1990 to February 2011; reference lists from

  18. Technetium-99m labeled red blood cells in the evaluation of hemangiosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, U.A.; Jhingran, S.G.

    1987-11-01

    Imaging with Tc-99m labeled red blood cells (RBC) is increasingly being used in the detection of acute gastro-intestinal bleeding, especially in patients with intermittent bleeding. A patient is presented in whom the labeled RBC scan was helpful in the incidental discovery of a previously unsuspected probable angiosarcoma of the right femur and adjacent soft tissues of the right hip due to the blood pool or blush effect of the labeled cells. The labeled RBC scan also identified extravasation due to active gastrointestinal bleeding from a previously unknown angiosarcoma of the ascending colon. Thus, the Tc-99m labeled RBC scan was useful in simultaneously detecting extravasation and blood pool effect at two remote tumor sites in the same patient.

  19. Nitrilase-Activatable Noncanonical Amino Acid Precursors for Cell-Selective Metabolic Labeling of Proteomes.

    Science.gov (United States)

    Li, Zefan; Zhu, Yuntao; Sun, Yuting; Qin, Ke; Liu, Weibing; Zhou, Wen; Chen, Xing

    2016-12-16

    Cell-selective protein metabolic labeling is of great interest for studying cell-cell communications and tissue homeostasis. We herein describe a nitrilase-activatable noncanonical amino acid tagging (NANCAT) strategy that exploits an exogenous nitrilase to enzymatically convert the nitrile-substituted precursors to their corresponding noncanonical amino acids (ncAAs), l-azidohomoalanine (Aha) or homopropargylglycine (Hpg), in living cells. Only cells expressing the nitrilase can generate Aha or Hpg in cellulo and metabolically incorporate them into the nascent proteins. Subsequent click-labeling of the azide- or alkyne-incorporated proteins with fluorescent probes or with affinity tags enables visualization and proteomic profiling of nascent proteomes, respectively. We have demonstrated that NANCAT can serve as a versatile strategy for cell-selective labeling of proteomes in both bacterial and mammalian cells.

  20. Viability and proliferation potential of adipose-derived stem cells following labeling with a positron-emitting radiotracer

    Energy Technology Data Exchange (ETDEWEB)

    Elhami, Esmat [University of Manitoba, Department of Radiology, Winnipeg (Canada); University of Winnipeg, Department of Physics, Winnipeg, MB (Canada); Goertzen, Andrew L.; Mzengeza, Shadreck [University of Manitoba, Department of Radiology, Winnipeg (Canada); Xiang, Bo; Deng, Jixian; Stillwell, Chris; Tian, Ganghong [National Research Council Canada, Cardiac Studies Group, Institute for Biodiagnostics, Winnipeg (Canada); Arora, Rakesh C.; Freed, Darren [St. Boniface General Hospital, Cardiac Science Program, Winnipeg (Canada)

    2011-07-15

    Adipose-derived stem cells (ASCs) have promising potential in regenerative medicine and cell therapy. Our objective is to examine the biological function of the labeled stem cells following labeling with a readily available positron emission tomography (PET) tracer, {sup 18}F-fluoro-2-deoxy-D-glucose (FDG). In this work we characterize labeling efficiency through assessment of FDG uptake and retention by the ASCs and the effect of FDG on cell viability, proliferation, transdifferentiation, and cell function in vitro using rat ASCs. Samples of 10{sup 5} ASCs (from visceral fat tissue) were labeled with concentrations of FDG (1-55 Bq/cell) in 0.75 ml culture medium. Label uptake and retention, as a function of labeling time, FDG concentration, and efflux period were measured to determine optimum cell labeling conditions. Cell viability, proliferation, DNA structure damage, cell differentiation, and other cell functions were examined. Non-labeled ASC samples were used as a control for all experimental groups. Labeled ASCs were injected via tail vein in several healthy rats and initial cell biodistribution was assessed. Our results showed that FDG uptake and retention by the stem cells did not depend on FDG concentration but on labeling and efflux periods and glucose content of the labeling and efflux media. Cell viability, transdifferentiation, and cell function were not greatly affected. DNA damage due to FDG radioactivity was acute, but reversible; cells managed to repair the damage and continue with cell cycles. Over all, FDG (up to 25 Bq/cell) did not impose severe cytotoxicity in rat ASCs. Initial biodistribution of the FDG-labeled ASCs was 80% + retention in the lungs. In the delayed whole-body images (2-3 h postinjection) there was some activity distribution resembling typical FDG uptake patterns. For in vivo cell tracking studies with PET tracers, the parameter of interest is the amount of radiotracer that is present in the cells being labeled and consequent

  1. Tracking of iron-labeled human neural stem cells by magnetic resonance imaging in cell replacement therapy for Parkinson′s disease

    Directory of Open Access Journals (Sweden)

    Milagros Ramos-Gómez

    2016-01-01

    Full Text Available Human neural stem cells (hNSCs derived from the ventral mesencephalon are powerful research tools and candidates for cell therapies in Parkinson′s disease. However, their clinical translation has not been fully realized due, in part, to the limited ability to track stem cell regional localization and survival over long periods of time after in vivo transplantation. Magnetic resonance imaging provides an excellent non-invasive method to study the fate of transplanted cells in vivo. For magnetic resonance imaging cell tracking, cells need to be labeled with a contrast agent, such as magnetic nanoparticles, at a concentration high enough to be easily detected by magnetic resonance imaging. Grafting of human neural stem cells labeled with magnetic nanoparticles allows cell tracking by magnetic resonance imaging without impairment of cell survival, proliferation, self-renewal, and multipotency. However, the results reviewed here suggest that in long term grafting, activated microglia and macrophages could contribute to magnetic resonance imaging signal by engulfing dead labeled cells or iron nanoparticles dispersed freely in the brain parenchyma over time.

  2. Fast, Cell-compatible Click Chemistry with Copper-chelating Azides for Biomolecular Labeling**

    Science.gov (United States)

    Uttamapinant, Chayasith; Tangpeerachaikul, Anupong; Grecian, Scott; Clarke, Scott; Singh, Upinder; Slade, Peter; Gee, Kyle R.; Ting, Alice. Y.

    2012-01-01

    We report that azides capable of copper-chelation undergo much faster “Click chemistry” (copper-accelerated azide-alkyne cycloaddition, or CuAAC) than nonchelating azides under a variety of biocompatible conditions. This kinetic enhancement allowed us to perform site-specific protein labeling on the surface of living cells with only 10–40 µM CuI/II and much higher signal than could be obtained using the best previously-reported live-cell compatible CuAAC labeling conditions. Detection sensitivity was also increased for CuAAC detection of alkyne-modified proteins and RNA labeled by metabolic feeding. PMID:22555882

  3. Cell Labeling for 19F MRI: New and Improved Approach to Perfluorocarbon Nanoemulsion Design

    Directory of Open Access Journals (Sweden)

    Jonathan Williams

    2013-09-01

    Full Text Available This report describes novel perfluorocarbon (PFC nanoemulsions designed to improve ex vivo cell labeling for 19F magnetic resonance imaging (MRI. 19F MRI is a powerful non-invasive technique for monitoring cells of the immune system in vivo, where cells are labeled ex vivo with PFC nanoemulsions in cell culture. The quality of 19F MRI is directly affected by the quality of ex vivo PFC cell labeling. When co-cultured with cells for longer periods of time, nanoemulsions tend to settle due to high specific weight of PFC oils (1.5–2.0 g/mL. This in turn can decrease efficacy of excess nanoemulsion removal and reliability of the cell labeling in vitro. To solve this problem, novel PFC nanoemulsions are reported which demonstrate lack of sedimentation and high stability under cell labeling conditions. They are monodisperse, have small droplet size (~130 nm and low polydispersity (<0.15, show a single peak in the 19F nuclear magnetic resonance spectrum at −71.4 ppm and possess high fluorine content. The droplet size and polydispersity remained unchanged after 160 days of follow up at three temperatures (4, 25 and 37 °C. Further, stressors such as elevated temperature in the presence of cells, and centrifugation, did not affect the nanoemulsion droplet size and polydispersity. Detailed synthetic methodology and in vitro testing for these new PFC nanoemulsions is presented.

  4. In vivo ultrasound and photoacoustic monitoring of mesenchymal stem cells labeled with gold nanotracers.

    Directory of Open Access Journals (Sweden)

    Seung Yun Nam

    Full Text Available Longitudinal monitoring of cells is required in order to understand the role of delivered stem cells in therapeutic neovascularization. However, there is not an imaging technique that is capable of quantitative, longitudinal assessment of stem cell behaviors with high spatial resolution and sufficient penetration depth. In this study, in vivo and in vitro experiments were performed to demonstrate the efficacy of ultrasound-guided photoacoustic (US/PA imaging to monitor mesenchymal stem cells (MSCs labeled with gold nanotracers (Au NTs. The Au NT labeled MSCs, injected intramuscularly in the lower limb of the Lewis rat, were detected and spatially resolved. Furthermore, our quantitative in vitro cell studies indicate that US/PA imaging is capable of high detection sensitivity (1×10⁴ cells/mL of the Au NT labeled MSCs. Finally, Au NT labeled MSCs captured in the PEGylated fibrin gel system were imaged in vivo, as well as in vitro, over a one week time period, suggesting that longitudinal cell tracking using US/PA imaging is possible. Overall, Au NT labeling of MSCs and US/PA imaging can be an alternative approach in stem cell imaging capable of noninvasive, sensitive, quantitative, longitudinal assessment of stem cell behaviors with high spatial and temporal resolutions at sufficient depths.

  5. Supernova: A Versatile Vector System for Single-Cell Labeling and Gene Function Studies in vivo.

    Science.gov (United States)

    Luo, Wenshu; Mizuno, Hidenobu; Iwata, Ryohei; Nakazawa, Shingo; Yasuda, Kosuke; Itohara, Shigeyoshi; Iwasato, Takuji

    2016-10-24

    Here we describe "Supernova" series of vector systems that enable single-cell labeling and labeled cell-specific gene manipulation, when introduced by in utero electroporation (IUE) or adeno-associated virus (AAV)-mediated gene delivery. In Supernova, sparse labeling relies on low TRE leakage. In a small population of cells with over-threshold leakage, initial tTA-independent weak expression is enhanced by tTA/TRE-positive feedback along with a site-specific recombination system (e.g., Cre/loxP, Flpe/FRT). Sparse and bright labeling by Supernova with little background enables the visualization of the morphological details of individual neurons in densely packed brain areas such as the cortex and hippocampus, both during development and in adulthood. Sparseness levels are adjustable. Labeled cell-specific gene knockout was accomplished by introducing Cre/loxP-based Supernova vectors into floxed mice. Furthermore, by combining with RNAi, TALEN, and CRISPR/Cas9 technologies, IUE-based Supernova achieved labeled cell-specific gene knockdown and editing/knockout without requiring genetically altered mice. Thus, Supernova system is highly extensible and widely applicable for single-cell analyses in complex organs, such as the mammalian brain.

  6. Superparamagnetic iron oxide nanoparticles labeling of bone marrow stromal (mesenchymal cells does not affect their "stemness".

    Directory of Open Access Journals (Sweden)

    Arun Balakumaran

    2010-07-01

    Full Text Available Superparamagnetic iron oxide nanoparticles (SPION are increasingly used to label human bone marrow stromal cells (BMSCs, also called "mesenchymal stem cells" to monitor their fate by in vivo MRI, and by histology after Prussian blue (PB staining. SPION-labeling appears to be safe as assessed by in vitro differentiation of BMSCs, however, we chose to resolve the question of the effect of labeling on maintaining the "stemness" of cells within the BMSC population in vivo. Assays performed include colony forming efficiency, CD146 expression, gene expression profiling, and the "gold standard" of evaluating bone and myelosupportive stroma formation in vivo in immuncompromised recipients. SPION-labeling did not alter these assays. Comparable abundant bone with adjoining host hematopoietic cells were seen in cohorts of mice that were implanted with SPION-labeled or unlabeled BMSCs. PB+ adipocytes were noted, demonstrating their donor origin, as well as PB+ pericytes, indicative of self-renewal of the stem cell in the BMSC population. This study confirms that SPION labeling does not alter the differentiation potential of the subset of stem cells within BMSCs.

  7. Labeling and Imaging Mesenchymal Stem Cells with Quantum Dots

    Science.gov (United States)

    Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into bone, cartilage, adipose and muscle cells. Adult derived MSCs are being actively investigated because of their potential to be utilized for therapeutic cell-based transplantation. Methods...

  8. Direct fluorescent-dye labeling of α-tubulin in mammalian cells for live cell and superresolution imaging.

    Science.gov (United States)

    Schvartz, Tomer; Aloush, Noa; Goliand, Inna; Segal, Inbar; Nachmias, Dikla; Arbely, Eyal; Elia, Natalie

    2017-10-15

    Genetic code expansion and bioorthogonal labeling provide for the first time a way for direct, site-specific labeling of proteins with fluorescent-dyes in live cells. Although the small size and superb photophysical parameters of fluorescent-dyes offer unique advantages for high-resolution microscopy, this approach has yet to be embraced as a tool in live cell imaging. Here we evaluated the feasibility of this approach by applying it for α-tubulin labeling. After a series of calibrations, we site-specifically labeled α-tubulin with silicon rhodamine (SiR) in live mammalian cells in an efficient and robust manner. SiR-labeled tubulin successfully incorporated into endogenous microtubules at high density, enabling video recording of microtubule dynamics in interphase and mitotic cells. Applying this labeling approach to structured illumination microscopy resulted in an increase in resolution, highlighting the advantages in using a smaller, brighter tag. Therefore, using our optimized assay, genetic code expansion provides an attractive tool for labeling proteins with a minimal, bright tag in quantitative high-resolution imaging. © 2017 Schvartz et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. International Society for Stem Cell Research

    Science.gov (United States)

    ... renowned stem cell and regenerative medicine community. More stem cell research Take a closer look Recent Blogs View All ... story independent nonprofit organization & the voice of the stem cell research community The International Society for Stem Cell Research ( ...

  10. Breast cancer cells synchronous labeling and separation based on aptamer and fluorescence-magnetic silica nanoparticles

    Science.gov (United States)

    Wang, Qiu-Yue; Huang, Wei; Jiang, Xing-Lin; Kang, Yan-Jun

    2018-01-01

    In this work, an efficient method based on biotin-labeled aptamer and streptavidin-conjugated fluorescence-magnetic silica nanoprobes (FITC@Fe3O4@SiNPs-SA) has been established for human breast carcinoma MCF-7 cells synchronous labeling and separation. Carboxyl-modified fluorescence-magnetic silica nanoparticles (FITC@Fe3O4@SiNPs-COOH) were first synthesized using the Stöber method. Streptavidin (SA) was then conjugated to the surface of FITC@Fe3O4@SiNPs-COOH. The MCF-7 cell suspension was incubated with biotin-labeled MUC-1 aptamer. After centrifugation and washing, the cells were then treated with FITC@Fe3O4@SiNPs-SA. Afterwards, the mixtures were separated by a magnet. The cell-probe conjugates were then imaged using fluorescent microscopy. The results show that the MUC-1 aptamer could recognize and bind to the targeted cells with high affinity and specificity, indicating the prepared FITC@Fe3O4@SiNPs-SA with great photostability and superparamagnetism could be applied effectively in labeling and separation for MCF-7 cell in suspension synchronously. In addition, the feasibility of MCF-7 cells detection in peripheral blood was assessed. The results indicate that the method above is also applicable for cancer cells synchronous labeling and separation in complex biological system.

  11. Discrimination of bromodeoxyuridine labelled and unlabelled mitotic cells in flow cytometric bromodeoxyuridine/DNA analysis

    DEFF Research Database (Denmark)

    Jensen, P O; Larsen, J K; Christensen, I J

    1994-01-01

    Bromodeoxyuridine (BrdUrd) labelled and unlabelled mitotic cells, respectively, can be discriminated from interphase cells using a new method, based on immunocytochemical staining of BrdUrd and flow cytometric four-parameter analysis of DNA content, BrdUrd incorporation, and forward and orthogonal...... light scatter. The method was optimized using the human leukemia cell lines HL-60 and K-562. Samples of 10(5) ethanol-fixed cells were treated with pepsin/HCl and stained as a nuclear suspension with anti-BrdUrd antibody, FITC-conjugated secondary antibody, and propidium iodide. Labelled mitoses could...

  12. In vivo MRI discrimination between live and lysed iron-labelled cells using balanced steady state free precession

    International Nuclear Information System (INIS)

    Ribot, E.J.; Foster, P.J.

    2012-01-01

    The goal of this study was to evaluate the ability of balanced steady state free precession (b-SSFP) magnetic resonance imaging sequence to distinguish between live and lysed iron-labelled cells. Human breast cancer cells were labelled with iron oxide nanoparticles. Cells were lysed using sonication. Imaging was performed at 3 T. The timing parameters for b-SSFP and the number of iron-labelled cells in samples were varied to optimise the b-SSFP signal difference between live and lysed iron-labelled cell samples. For in vivo experiments, cells were mixed with Matrigel and implanted into nude mice. Three mice implanted with live labelled cancer cells were irradiated to validate this method. Lysed iron-labelled cells have a significantly higher signal compared with live, intact iron-labelled cells in bSSFP images. The contrast between live and dead cells can be maximised by careful optimisation of timing parameters. A change in the b-SSFP signal was measured 6 days after irradiation, reflecting cell death in vivo. Histology confirmed the presence of dead cells in the implant. Our results show that the b-SSFP sequence can be optimised to allow for the discrimination of live iron-labelled cells and lysed iron-labelled cells in vitro and in vivo. (orig.)

  13. Functionalized nanopipettes: toward label-free, single cell biosensors

    OpenAIRE

    Actis, Paolo; Mak, Andy C.; Pourmand, Nader

    2010-01-01

    Nanopipette technology has been proven to be a label-free biosensor capable of identifying DNA and proteins. The nanopipette can include specific recognition elements for analyte discrimination based on size, shape, and charge density. The fully electrical read-out and the ease and low-cost fabrication are unique features that give this technology an enormous potential. Unlike other biosensing platforms, nanopipettes can be precisely manipulated with submicron accuracy and used to study singl...

  14. Labeling human embryonic stem-cell-derived cardiomyocytes for tracking with MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda, Rosalinda T.; Daldrup-Link, Heike [Lucile Packard Children' s Hospital, Stanford School of Medicine, Pediatric Radiology, Stanford, CA (United States); Boddington, Sophie; Wendland, Mike; Mandrussow, Lydia [University of California, Department of Radiology and Biomedical Imaging, UCSF Medical Center, San Francisco, CA (United States); Henning, Tobias D. [University Hospital of Cologne, Department of Radiology and Neuroradiology, Cologne (Germany); Liu, Siyuan [National Institutes of Health, Language Section, Voice, Speech and Language Branch, National Institute on Deafness and Other Communication Disorders, Bethesda, MD (United States)

    2011-11-15

    Human embryonic stem cells (hESC) can generate cardiomyocytes (CM), which offer promising treatments for cardiomyopathies in children. However, challenges for clinical translation result from loss of transplanted cell from target sites and high cell death. An imaging technique that noninvasively and repetitively monitors transplanted hESC-CM could guide improvements in transplantation techniques and advance therapies. To develop a clinically applicable labeling technique for hESC-CM with FDA-approved superparamagnetic iron oxide nanoparticles (SPIO) by examining labeling before and after CM differentiation. Triplicates of hESC were labeled by simple incubation with 50 {mu}g/ml of ferumoxides before or after differentiation into CM, then imaged on a 7T MR scanner using a T2-weighted multi-echo spin-echo sequence. Viability, iron uptake and T2-relaxation times were compared between groups using t-tests. hESC-CM labeled before differentiation demonstrated significant MR effects, iron uptake and preserved function. hESC-CM labeled after differentiation showed no significant iron uptake or change in MR signal (P < 0.05). Morphology, differentiation and viability were consistent between experimental groups. hESC-CM should be labeled prior to CM differentiation to achieve a significant MR signal. This technique permits monitoring delivery and engraftment of hESC-CM for potential advancements of stem cell-based therapies in the reconstitution of damaged myocardium. (orig.)

  15. Front-of-pack nutrition labelling in New Zealand: an exploration of stakeholder views about research and implementation.

    Science.gov (United States)

    Signal, Louise; Lanumata, Tolotea; Ni Mhurchu, Cliona; Gorton, Delvina

    2012-04-01

    Front-of-pack (FOP) labels are identified as a way to encourage healthy food choices and good nutrition, factors critical in promoting health. New Zealand and Australia are currently considering policy on front-of-pack labels. This research aimed to identify the challenges associated with implementing a front-of-pack nutrition labelling policy in New Zealand and with designing research to determine its likely effect. A strategic sample of key stakeholders with knowledge of food labelling from New Zealand and Australia participated in the research. The 17 participants included five food industry representatives, six policy makers, and six representatives of non-governmental organisations. Several key themes emerged including support for front-of-pack labels from key food industry, policy and NGO stakeholders because of potential for better informed consumers, changes in consumer behaviour and reduction in chronic disease. Barriers to front-of-pack labelling included limited evidence upon which to make decisions, lack of agreement on the label format, and the clash of values between 'profit driven' industry and public health. There is a high level of agreement about the need for real-life research on the effectiveness of FOP labelling. The introduction of consistent, comprehensive front-of-pack nutrition labelling in New Zealand has the potential to assist in the effort to promote healthy eating. This research suggests agreement on front-of-pack labels may not be easy to achieve.

  16. Filling the void: Proximity-based labeling of proteins in living cells

    Science.gov (United States)

    Kim, Dae In; Roux, Kyle J.

    2016-01-01

    There are inherent limitations with traditional methods to study protein behavior or to determine the constituency of proteins in discrete subcellular compartments. In response to these limitations, several methods have recently been developed that use proximity-dependent labeling. By fusing proteins to enzymes that generate reactive molecules, most commonly biotin, proximate proteins are covalently labeled to enable their isolation and identification. In this review, we describe current methods for proximity-dependent labeling in living cells, and discuss their applications and future use in the study of protein behavior. PMID:27667171

  17. Functional investigations on embryonic stem cells labeled with clinically translatable iron oxide nanoparticles

    Science.gov (United States)

    Liu, Jing; Wang, Liqin; Cao, Jianbo; Huang, Yue; Lin, Yu; Wu, Xiaoyun; Wang, Zhiyong; Zhang, Fan; Xu, Xiuqin; Liu, Gang

    2014-07-01

    Stem cell based therapies offer significant potential in the field of regenerative medicine. The development of superparamagnetic iron oxide (SPIO) nanoparticle labeling and magnetic resonance imaging (MRI) have been increasingly used to track the transplanted cells, enabling in vivo determination of cell fate. However, the impact of SPIO-labeling on the cell phenotype and differentiation capacity of embryonic stem cells (ESCs) remains unclear. In this study, we wrapped SPIO nanoparticles with stearic acid grafted PEI600, termed as Stearic-LWPEI-SPIO, to generate efficient and non-toxic ESC labeling tools. Our results showed that efficient labeling of ESCs at an optimized low dosage of Stearic-LWPEI-SPIO nanoparticles did not alter the differentiation and self-renewal properties of ESCs. The localization of the transplanted ESCs observed by MRI correlated well with histological studies. These findings demonstrate that Stearic-LWPEI-SPIO nanoparticles have potential to be clinically translatable MRI probes and may enable non-invasive in vivo tracking of ESCs in experimental and clinical settings during cell-based therapies.Stem cell based therapies offer significant potential in the field of regenerative medicine. The development of superparamagnetic iron oxide (SPIO) nanoparticle labeling and magnetic resonance imaging (MRI) have been increasingly used to track the transplanted cells, enabling in vivo determination of cell fate. However, the impact of SPIO-labeling on the cell phenotype and differentiation capacity of embryonic stem cells (ESCs) remains unclear. In this study, we wrapped SPIO nanoparticles with stearic acid grafted PEI600, termed as Stearic-LWPEI-SPIO, to generate efficient and non-toxic ESC labeling tools. Our results showed that efficient labeling of ESCs at an optimized low dosage of Stearic-LWPEI-SPIO nanoparticles did not alter the differentiation and self-renewal properties of ESCs. The localization of the transplanted ESCs observed by MRI

  18. Kit for the selective labeling of red blood cells in whole blood with .sup.9 TC

    Science.gov (United States)

    Srivastava, Suresh C.; Babich, John W.; Straub, Rita; Richards, Powell

    1992-01-01

    Disclosed herein are a method and kit for the preparation of .sup.99m Tc labeled red blood cells using whole blood in a closed sterile system containing stannous tin in a form such that it will enter the red blood cells and be available therein for reduction of technetium.

  19. Toward microfluidic sperm refinement: continuous flow label-free analysis and sorting of sperm cells

    NARCIS (Netherlands)

    de Wagenaar, B.; Dekker, Stefan; van den Berg, Albert; Segerink, Loes Irene

    2015-01-01

    This manuscript reports upon the development of a microfluidic setup to detect and sort sperm cells from polystyrene beads label-free and non-invasively. Detection is performed by impedance analysis. When sperm cells passed the microelectrodes, the recorded impedance (19.6 ± 5.7 Ω) was higher

  20. Identification of miRNA targets with stable isotope labeling by amino acids in cell culture

    DEFF Research Database (Denmark)

    Vinther, Jeppe; Hedegaard, Mads Marquardt; Gardner, Paul Phillip

    2006-01-01

    miRNAs are small noncoding RNAs that regulate gene expression. We have used stable isotope labeling by amino acids in cell culture (SILAC) to investigate the effect of miRNA-1 on the HeLa cell proteome. Expression of 12 out of 504 investigated proteins was repressed by miRNA-1 transfection...

  1. Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation.

    Science.gov (United States)

    Habaza, Mor; Kirschbaum, Michael; Guernth-Marschner, Christian; Dardikman, Gili; Barnea, Itay; Korenstein, Rafi; Duschl, Claus; Shaked, Natan T

    2017-02-01

    A major challenge in the field of optical imaging of live cells is achieving rapid, 3D, and noninvasive imaging of isolated cells without labeling. If successful, many clinical procedures involving analysis and sorting of cells drawn from body fluids, including blood, can be significantly improved. A new label-free tomographic interferometry approach is presented. This approach provides rapid capturing of the 3D refractive-index distribution of single cells in suspension. The cells flow in a microfluidic channel, are trapped, and then rapidly rotated by dielectrophoretic forces in a noninvasive and precise manner. Interferometric projections of the rotated cell are acquired and processed into the cellular 3D refractive-index map. Uniquely, this approach provides full (360°) coverage of the rotation angular range around any axis, and knowledge on the viewing angle. The experimental demonstrations presented include 3D, label-free imaging of cancer cells and three types of white blood cells. This approach is expected to be useful for label-free cell sorting, as well as for detection and monitoring of pathological conditions resulting in cellular morphology changes or occurrence of specific cell types in blood or other body fluids.

  2. In vivo phenotypic characterisation of nucleoside label-retaining cells in mouse periosteum

    Directory of Open Access Journals (Sweden)

    HM Cherry

    2014-03-01

    Full Text Available Periosteum is known to contain cells that, after isolation and culture-expansion, display properties of mesenchymal stromal/stem cells (MSCs. However, the equivalent cells have not been identified in situ mainly due to the lack of specific markers. Postnatally, stem cells are slow-cycling, long-term nucleoside-label-retaining cells. This study aimed to identify and characterise label-retaining cells in mouse periosteum in vivo. Mice received iodo-deoxy-uridine (IdU via the drinking water for 30 days, followed by a 40-day washout period. IdU+ cells were identified by immunostaining in conjunction with MSC and lineage markers. IdU-labelled cells were detected throughout the periosteum with no apparent focal concentration, and were negative for the endothelial marker von Willebrand factor and the pan-haematopoietic marker CD45. Subsets of IdU+ cells were positive for the mesenchymal/stromal markers vimentin and cadherin-11. IdU+ cells expressed stem cell antigen-1, CD44, CD73, CD105, platelet-derived growth factor receptor-α and p75, thereby displaying an MSC-like phonotype. Co-localisation was not detectable between IdU and the pericyte markers CD146, alpha smooth muscle actin or NG2, nor did IdU co-localise with β-galactosidase in a transgenic mouse expressing this reporter gene in pericytes and smooth muscle cells. Subsets of IdU+ cells expressed the osteoblast-lineage markers Runx2 and osteocalcin. The IdU+ cells expressing osteocalcin were lining the bone and were negative for the MSC marker p75. In conclusion, mouse periosteum contains nucleoside-label-retaining cells with a phenotype compatible with MSCs that are distinct from pericytes and osteoblasts. Future studies characterising the MSC niche in vivo could reveal novel therapeutic targets for promoting bone regeneration/repair.

  3. Development of Intrinsically Labeled Eggs and Poultry Meat for Use in Human Metabolic Research.

    Science.gov (United States)

    van Vliet, Stephan; Beals, Joseph W; Parel, Justin T; Hanna, Christina D; Utterback, Pamela L; Dilger, Anna C; Ulanov, Alexander V; Li, Zhong; Paluska, Scott A; Moore, Daniel R; Parsons, Carl M; Burd, Nicholas A

    2016-07-01

    Stable isotope amino acids are regularly used as tracers to examine whole-body and muscle protein metabolism in humans. To accurately assess in vivo dietary protein digestion and absorption kinetics, the amino acid tracer is required to be incorporated within the dietary protein food source (i.e., intrinsically labeled protein). We assessed the practicality of producing eggs and poultry meat intrinsically labeled with l-[5,5,5-(2)H3]leucine through noninvasive oral tracer administration. A specifically formulated diet containing 0.52% leucine was supplemented with 0.3% l-[5,5,5-(2)H3]leucine and subsequently fed to 3 laying hens (Lohmann LSL Whites) for 55 d. On day 55, the hens were slaughtered and their meat, bones, and organs were harvested to determine tissue labeling. In Expt. 1, 2 healthy young men [mean ± SEM age: 22 ± 1.5 y; mean ± SEM body mass index (BMI; in kg/m(2)): 23.7 ± 0.5] ingested 18 g l-[5,5,5-(2)H3]leucine-labeled egg protein. In Expt. 2, 2 healthy young men (mean ± SEM age: 20.0 ± 0.0 y; mean ± SEM BMI: 26.4 ± 3.1) ingested 28 g l-[5,5,5-(2)H3]leucine-labeled poultry meat protein. Plasma samples (Expts. 1 and 2) and muscle biopsies (Expt. 1) were collected before and after labeled-food ingestion. High tracer labeling [>20 mole percent excess (MPE)] in the eggs was obtained after 7 d and maintained throughout the feeding protocol (P meat was 9.6 ± 0.1 MPE. In Expts. 1 and 2, the consumption of labeled eggs and poultry meat protein increased plasma l-[5,5,5-(2)H3]leucine enrichment, with mean ± SEM peak values of 6.7 ± 0.1 MPE and 4.0 ± 0.9 MPE, respectively. The mean ± SEM 5-h postprandial increase in myofibrillar l-[5,5,5-(2)H3]leucine enrichment after egg ingestion in healthy young men was 0.051 ± 0.008 MPE (Expt. 1). We demonstrated the feasibility of producing intrinsically labeled eggs and poultry meat for use in human metabolic research. © 2016 American Society for Nutrition.

  4. Magnetic cell labeling of primary and stem cell-derived pig hepatocytes for MRI-based cell tracking of hepatocyte transplantation.

    Directory of Open Access Journals (Sweden)

    Dwayne R Roach

    Full Text Available Pig hepatocytes are an important investigational tool for optimizing hepatocyte transplantation schemes in both allogeneic and xenogeneic transplant scenarios. MRI can be used to serially monitor the transplanted cells, but only if the hepatocytes can be labeled with a magnetic particle. In this work, we describe culture conditions for magnetic cell labeling of cells from two different pig hepatocyte cell sources; primary pig hepatocytes (ppHEP and stem cell-derived hepatocytes (PICM-19FF. The magnetic particle is a micron-sized iron oxide particle (MPIO that has been extensively studied for magnetic cell labeling for MRI-based cell tracking. ppHEP could endocytose MPIO with labeling percentages as high as 70%, achieving iron content as high as ~55 pg/cell, with >75% viability. PICM-19FF had labeling >97%, achieving iron content ~38 pg/cell, with viability >99%. Extensive morphological and functional assays indicated that magnetic cell labeling was benign to the cells. The results encourage the use of MRI-based cell tracking for the development and clinical use of hepatocyte transplantation methodologies. Further, these results generally highlight the importance of functional cell assays in the evaluation of contrast agent biocompatibility.

  5. A novel in vivo cell-wall labeling approach sheds new light on peptidoglycan synthesis in Escherichia coli

    NARCIS (Netherlands)

    Olrichs, N.K.; Aarsman, M.E.G.; Verheul, J.; Arnusch, C.J.; Martin, N.I.; Hervé, M.; Vollmer, W.; de Kruijff, B.; Breukink, E.; den Blaauwen, T.

    2011-01-01

    Peptidoglycan synthesis and turnover in relation to cell growth and division has been studied by using a new labeling method. This method involves the incorporation of fluorescently labeled peptidoglycan precursors into the cell wall by means of the cell-wall recycling pathway. We show that

  6. Label-retaining cells in the adult murine salivary glands possess characteristics of adult progenitor cells.

    Directory of Open Access Journals (Sweden)

    Alejandro M Chibly

    Full Text Available Radiotherapy is the primary treatment for patients with head and neck cancer, which account for roughly 500,000 annual cases worldwide. Dysfunction of the salivary glands and associated conditions like xerostomia and dysphagia are often developed by these patients, greatly diminishing their life quality. Current preventative and palliative care fail to deliver an improvement in the quality of life, thus accentuating the need for regenerative therapies. In this study, a model of label retaining cells (LRCs in murine salivary glands was developed, in which LRCs demonstrated proliferative potential and possessed markers of putative salivary progenitors. Mice were labeled with 5-Ethynyl-2'-deoxyuridine (EdU at postnatal day 10 and chased for 8 weeks. Tissue sections from salivary glands obtained at the end of chase demonstrated co-localization between LRCs and the salivary progenitor markers keratin 5 and keratin 14, as well as kit mRNA, indicating that LRCs encompass a heterogeneous population of salivary progenitors. Proliferative potential of LRCs was demonstrated by a sphere assay, in which LRCs were found in primary and secondary spheres and they co-localized with the proliferation marker Ki67 throughout sphere formation. Surprisingly, LRCs were shown to be radio-resistant and evade apoptosis following radiation treatment. The clinical significance of these findings lie in the potential of this model to study the mechanisms that prevent salivary progenitors from maintaining homeostasis upon exposure to radiation, which will in turn facilitate the development of regenerative therapies for salivary gland dysfunction.

  7. Label-Retaining Cells in the Adult Murine Salivary Glands Possess Characteristics of Adult Progenitor Cells

    Science.gov (United States)

    Chibly, Alejandro M.; Querin, Lauren; Harris, Zoey; Limesand, Kirsten H.

    2014-01-01

    Radiotherapy is the primary treatment for patients with head and neck cancer, which account for roughly 500,000 annual cases worldwide. Dysfunction of the salivary glands and associated conditions like xerostomia and dysphagia are often developed by these patients, greatly diminishing their life quality. Current preventative and palliative care fail to deliver an improvement in the quality of life, thus accentuating the need for regenerative therapies. In this study, a model of label retaining cells (LRCs) in murine salivary glands was developed, in which LRCs demonstrated proliferative potential and possessed markers of putative salivary progenitors. Mice were labeled with 5-Ethynyl-2′-deoxyuridine (EdU) at postnatal day 10 and chased for 8 weeks. Tissue sections from salivary glands obtained at the end of chase demonstrated co-localization between LRCs and the salivary progenitor markers keratin 5 and keratin 14, as well as kit mRNA, indicating that LRCs encompass a heterogeneous population of salivary progenitors. Proliferative potential of LRCs was demonstrated by a sphere assay, in which LRCs were found in primary and secondary spheres and they co-localized with the proliferation marker Ki67 throughout sphere formation. Surprisingly, LRCs were shown to be radio-resistant and evade apoptosis following radiation treatment. The clinical significance of these findings lie in the potential of this model to study the mechanisms that prevent salivary progenitors from maintaining homeostasis upon exposure to radiation, which will in turn facilitate the development of regenerative therapies for salivary gland dysfunction. PMID:25238060

  8. Production of isotopically labeled heterologous proteins in non-E. coli prokaryotic and eukaryotic cells.

    Science.gov (United States)

    Takahashi, Hideo; Shimada, Ichio

    2010-01-01

    The preparation of stable isotope-labeled proteins is necessary for the application of a wide variety of NMR methods, to study the structures and dynamics of proteins and protein complexes. The E. coli expression system is generally used for the production of isotope-labeled proteins, because of the advantages of ease of handling, rapid growth, high-level protein production, and low cost for isotope-labeling. However, many eukaryotic proteins are not functionally expressed in E. coli, due to problems related to disulfide bond formation, post-translational modifications, and folding. In such cases, other expression systems are required for producing proteins for biomolecular NMR analyses. In this paper, we review the recent advances in expression systems for isotopically labeled heterologous proteins, utilizing non-E. coli prokaryotic and eukaryotic cells.

  9. Production of isotopically labeled heterologous proteins in non-E. coli prokaryotic and eukaryotic cells

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Shimada, Ichio

    2010-01-01

    The preparation of stable isotope-labeled proteins is necessary for the application of a wide variety of NMR methods, to study the structures and dynamics of proteins and protein complexes. The E. coli expression system is generally used for the production of isotope-labeled proteins, because of the advantages of ease of handling, rapid growth, high-level protein production, and low cost for isotope-labeling. However, many eukaryotic proteins are not functionally expressed in E. coli, due to problems related to disulfide bond formation, post-translational modifications, and folding. In such cases, other expression systems are required for producing proteins for biomolecular NMR analyses. In this paper, we review the recent advances in expression systems for isotopically labeled heterologous proteins, utilizing non-E. coli prokaryotic and eukaryotic cells.

  10. Magnetic resonance investigation of magnetic-labeled baker's yeast cells

    Science.gov (United States)

    Godoy Morais, J. P. M.; Azevedo, R. B.; Silva, L. P.; Lacava, Z. G. M.; Báo, S. N.; Silva, O.; Pelegrini, F.; Gansau, C.; Buske, N.; Safarik, I.; Safarikova, M.; Morais, P. C.

    2004-05-01

    In this study, the interaction of DMSA-coated magnetite nanoparticles (5 and 10 nm core-size) with Saccharomyces cerevisae was investigated using magnetic resonance (MR) and transmission electron microscopy (TEM). The TEM micrographs revealed magnetite nanoparticles attached externally to the cell wall. The MR data support the strong interaction among the nanoparticles supported by the cells. A remarkable shift in the resonance field was used as signature of particle attachment to the cell wall.

  11. Vinylboronic Acids as Efficient Bioorthogonal Reactants for Tetrazine Labeling in Living Cells.

    Science.gov (United States)

    Eising, Selma; van der Linden, Nicole G A; Kleinpenning, Fleur; Bonger, Kimberly M

    2018-02-19

    Bioorthogonal chemistry can be used for the selective modification of biomolecules without interfering with any other functionality present in the cell. The tetrazine ligation is very suitable as a bioorthogonal reaction because of its selectivity and high reaction rates with several alkenes and alkynes. Recently, we described vinylboronic acids (VBAs) as novel hydrophilic bioorthogonal moieties that react efficiently with dipyridyl-s-tetrazines and used them for protein modification in cell lysate. It is not clear, however, whether VBAs are suitable for labeling experiments in living cells because of the possible coordination with, for example, vicinal carbohydrate diols. Here, we evaluated VBAs as bioorthogonal reactants for labeling of proteins in living cells using an irreversible inhibitor of the proteasome and compared the reactivity to that of an inhibitor containing norbornene, a widely used reactant for the tetrazine ligation. No large differences were observed between the VBA and norbornene probes in a two-step labeling approach with a cell-penetrable fluorescent tetrazine, indicating that the VBA gives little or no side reactions with diols and can be used efficiently for protein labeling in living cells.

  12. Cell death induced by a 131I-labeled monoclonal antibody in ovarian cancer multicell spheroids

    International Nuclear Information System (INIS)

    Filippovich, I.V.; Sorokina, N.; Robillard, N.; Faivre-Chauvet, A.; Bardies, M.; Chatal, J.F.

    1996-01-01

    Treatment of OVCAR-3 spheroids with 131 I-OC125 monoclonal antibody produced a decrease in spheroid volume and a concomitant rise in necrotic cell number. No increase in apoptotic cell number was observed during incubation of spheroids with the labeled antibody. Necrosis began early, reaching a maximum after 3 Gy of accumulated dose delivered at a dose rate of 1.8 cGy/h. Higher accumulated doses induced necrosis for longer incubation times. Thus, dose rate and time are both determinants of ultimate radiation effects when spheroids are incubated with labeled antibodies, although dose rate is the most important factor

  13. Cell death induced by a 131I-labeled monoclonal antibody in ovarian cancer multicell spheroids.

    Science.gov (United States)

    Filippovich, I V; Sorokina, N; Robillard, N; Faivre-Chauvet, A; Bardies, M; Chatal, J F

    1996-07-01

    Treatment of OVCAR-3 spheroids with 131I-OC125 monoclonal antibody produced a decrease in spheroid volume and a concomitant rise in necrotic cell number. No increase in apoptotic cell number was observed during incubation of spheroids with the labeled antibody. Necrosis began early, reaching a maximum after 3 Gy of accumulated dose delivered at a dose rate of 1.8 cGy/h. Higher accumulated doses induced necrosis for longer incubation times. Thus, dose rate and time are both determinants of ultimate radiation effects when spheroids are incubated with labeled antibodies, although dose rate is the most important factor.

  14. Magnetic Resonance Imaging of Ferumoxytol-Labeled Human Mesenchymal Stem Cells in the Mouse Brain.

    Science.gov (United States)

    Lee, Na Kyung; Kim, Hyeong Seop; Yoo, Dongkyeom; Hwang, Jung Won; Choi, Soo Jin; Oh, Wonil; Chang, Jong Wook; Na, Duk L

    2017-02-01

    The success of stem cell therapy is highly dependent on accurate delivery of stem cells to the target site of interest. Possible ways to track the distribution of MSCs in vivo include the use of reporter genes or nanoparticles. The U.S. Food and Drug Administration (FDA) has approved ferumoxytol (Feraheme® [USA], Rienso® [UK]) as a treatment for iron deficiency anemia. Ferumoxytol is an ultrasmall superparamagnetic iron oxide nanoparticle (USPIO) that has recently been used to track the fate of transplanted cells using magnetic resonance imaging (MRI). The major objectives of this study were to demonstrate the feasibility of labeling hUCB-MSCs with ferumoxytol and to observe, through MRI, the engraftment of ferumoxytol-labeled human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) delivered via stereotactic injection into the hippocampi of a transgenic mouse model of familial Alzheimer's disease (5XFAD). Ferumoxytol had no toxic effects on the viability or stemness of hUCB-MSCs when assessed in vitro. Through MRI, hypointense signals were discernible at the site where ferumoxytol-labeled human MSCs were injected. Iron-positive areas were also observed in the engrafted hippocampi. The results from this study support the use of nanoparticle labeling to monitor transplanted MSCs in real time as a follow-up for AD stem cell therapy in the clinical field.

  15. Label free imaging of cell-substrate contacts by holographic total internal reflection microscopy.

    Science.gov (United States)

    Mandracchia, Biagio; Gennari, Oriella; Marchesano, Valentina; Paturzo, Melania; Ferraro, Pietro

    2017-09-01

    The study of cell adhesion contacts is pivotal to understand cell mechanics and interaction at substrates or chemical and physical stimuli. We designed and built a HoloTIR microscope for label-free quantitative phase imaging of total internal reflection. Here we show for the first time that HoloTIR is a good choice for label-free study of focal contacts and of cell/substrate interaction as its sensitivity is enhanced in comparison with standard TIR microscopy. Finally, the simplicity of implementation and relative low cost, due to the requirement of less optical components, make HoloTIR a reasonable alternative, or even an addition, to TIRF microscopy for mapping cell/substratum topography. As a proof of concept, we studied the formation of focal contacts of fibroblasts on three substrates with different levels of affinity for cell adhesion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Safety and radiation risks in the labelling of blood cells

    International Nuclear Information System (INIS)

    Gonzalez, B.M.

    1994-01-01

    Risk in the management of radioactive material and biological exposition to infectious agents. Protocols and normative to observe GOOD RADIOPHARMACY Practices. Main infectious agents that may be transmitted during preparation of a blood cell radiopharmaceutical. Problems of contamination

  17. DNA labeled during phosphonoacetate inhibition and following its reversal in herpesvirus infected cells

    International Nuclear Information System (INIS)

    Jacob, R.J.

    1984-01-01

    Human embryonic lung cells were pre-equilibrated with phosphonoacetate and 32 P orthophosphate label, then infected with phosphonoacetate-sensitive herpes simplex virus (HSV) type 1. Analyses of viral DNA produced in these cells showed the following. i) Viral DNA was synthesized in infected cells exposed to 100 μg of the drug per ml of medium but not in cells exposed to four-fold higher concentrations of the drug. ii) At 300 μg/ml a region of the DNA between 0.58 and 0.69 map units became transiently labeled, but the restriction endonuclease fragment containing these sequences migrated more slowly than the corresponding fragment from virion DNA. iii) Viral DNA extracted from infected cells 1.5 hours post drug withdrawal (300 μg/ml) was preferentially labeled in 2 regions of the genome mapping between 0.17 and 0.23 and 0.58-0.69 map units. This finding is in agreement with a report of Friedman et al. suggesting that HSV DNA contains two different sites if initiation. In addition a 4.8 x 10 6 molecular weight fragment was also preferentially labeled. This fragment could represent a smaller, aberrantly migrating fragment from the 0.17-0.27 map unit region of the DNA. iv) Viral DNA extracted from infected cells at longer intervals after drug withdrawal showed an increasing gradient of radioactivity progressively labeling the genome. These results are consistent with the hypothesis that viral DNA has at least two sites of initiation of DNA synthesis and that both sites are within the L component of the DNA. Alternatively, the results could be interpreted as two sites of localized synthesis (repair) that are detected at high concentrations of phosphonoacetate and immediately following reversal of inhibition of DNA synthesis. The results do not exclude the possibility that secondary sites in both L and S are utilized late in infection or in untreated cells. (Author)

  18. Targeting aldehyde dehydrogenase: a potential approach for cell labeling

    Energy Technology Data Exchange (ETDEWEB)

    Vaidyanathan, Ganesan [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States)], E-mail: ganesan.v@duke.edu; Song, Haijing; Affleck, Donna; McDougald, Darryl L. [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States); Storms, Robert W. [Division of Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710 (United States); Zalutsky, Michael R.; Chin, Bennett B. [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States)

    2009-11-15

    Introduction: To advance the science and clinical application of stem cell therapy, the availability of a highly sensitive, quantitative and translational method for tracking stem cells would be invaluable. Because hematopoetic stem cells express high levels of the cytosolic enzyme aldehyde dehydrogenase-1A1 (ALDH1), we sought to develop an agent that is specific to ALDH1 and thus to cells expressing the enzyme. Such an agent might be also helpful in identifying tumors that are resistant to cyclophosphomide chemotherapy because ALDH1 is known to be responsible for this resistance. Methods: We developed schemes for the synthesis of two radioiodinated aldehdyes - N-formylmethyl-5-[*I]iodopyridine-3-carboxamide ([*I]FMIC) and 4-diethylamino-3-[*I]iodobenzaldehyde ([*I]DEIBA)-at no-carrier-added levels from their respective tin precursors. These agents were evaluated using pure ALDH1 and tumor cells that expressed the enzyme. Results: The average radiochemical yields for the synthesis of [{sup 125}I]FMIC and [{sup 125}I]DEIBA were 70{+-}5% and 47{+-}14%, respectively. ALDH1 converted both compounds to respective acids suggesting their suitability as ALDH1 imaging agents. Although ability of ALDH1 within the cells to oxidize one of these substrates was shown, specific uptake in ALDH-expressing tumor cells could not be demonstrated. Conclusion: To pursue this approach for ALDH1 imaging, radiolabeled aldehydes need to be designed such that, in addition to being good substrates for ALDH1, the cognate products should be sufficiently polar so as to be retained within the cells.

  19. Targeting aldehyde dehydrogenase: a potential approach for cell labeling

    International Nuclear Information System (INIS)

    Vaidyanathan, Ganesan; Song, Haijing; Affleck, Donna; McDougald, Darryl L.; Storms, Robert W.; Zalutsky, Michael R.; Chin, Bennett B.

    2009-01-01

    Introduction: To advance the science and clinical application of stem cell therapy, the availability of a highly sensitive, quantitative and translational method for tracking stem cells would be invaluable. Because hematopoetic stem cells express high levels of the cytosolic enzyme aldehyde dehydrogenase-1A1 (ALDH1), we sought to develop an agent that is specific to ALDH1 and thus to cells expressing the enzyme. Such an agent might be also helpful in identifying tumors that are resistant to cyclophosphomide chemotherapy because ALDH1 is known to be responsible for this resistance. Methods: We developed schemes for the synthesis of two radioiodinated aldehdyes - N-formylmethyl-5-[*I]iodopyridine-3-carboxamide ([*I]FMIC) and 4-diethylamino-3-[*I]iodobenzaldehyde ([*I]DEIBA)-at no-carrier-added levels from their respective tin precursors. These agents were evaluated using pure ALDH1 and tumor cells that expressed the enzyme. Results: The average radiochemical yields for the synthesis of [ 125 I]FMIC and [ 125 I]DEIBA were 70±5% and 47±14%, respectively. ALDH1 converted both compounds to respective acids suggesting their suitability as ALDH1 imaging agents. Although ability of ALDH1 within the cells to oxidize one of these substrates was shown, specific uptake in ALDH-expressing tumor cells could not be demonstrated. Conclusion: To pursue this approach for ALDH1 imaging, radiolabeled aldehydes need to be designed such that, in addition to being good substrates for ALDH1, the cognate products should be sufficiently polar so as to be retained within the cells.

  20. Selective Labeling of Proteins on Living Cell Membranes Using Fluorescent Nanodiamond Probes

    Directory of Open Access Journals (Sweden)

    Shingo Sotoma

    2016-03-01

    Full Text Available The impeccable photostability of fluorescent nanodiamonds (FNDs is an ideal property for use in fluorescence imaging of proteins in living cells. However, such an application requires highly specific labeling of the target proteins with FNDs. Furthermore, the surface of unmodified FNDs tends to adsorb biomolecules nonspecifically, which hinders the reliable targeting of proteins with FNDs. Here, we combined hyperbranched polyglycerol modification of FNDs with the β-lactamase-tag system to develop a strategy for selective imaging of the protein of interest in cells. The combination of these techniques enabled site-specific labeling of Interleukin-18 receptor alpha chain, a membrane receptor, with FNDs, which eventually enabled tracking of the diffusion trajectory of FND-labeled proteins on the membrane surface.

  1. Quantitative Label-Free Cell Proliferation Tracking with a Versatile Electrochemical Impedance Detection Platform

    DEFF Research Database (Denmark)

    Caviglia, Claudia; Carminati, M; Heiskanen, Arto

    2012-01-01

    Since the use of impedance measurements for label-free monitoring of cells has become widespread but still the choice of sensing configuration is not unique though crucial for a quantitative interpretation of data, we demonstrate the application of a novel custom multipotentiostat platform to study...... optimal detection strategies. Electrochemical Impedance Spectroscopy (EIS) has been used to monitor and compare adhesion of different cell lines. HeLa cells and 3T3 fibroblasts have been cultured for 12 hours on interdigitated electrode arrays integrated into a tailor-made cell culture platform. Both...... vertical and coplanar interdigitated sensing configuration approaches have been used and compared on the same cell populations....

  2. Cryo-imaging of fluorescently labeled single cells in a mouse

    Science.gov (United States)

    Steyer, Grant J.; Roy, Debashish; Salvado, Olivier; Stone, Meredith E.; Wilson, David L.

    2009-02-01

    We developed a cryo-imaging system to provide single-cell detection of fluorescently labeled cells in mouse, with particular applicability to stem cells and metastatic cancer. The Case cryoimaging system consists of a fluorescence microscope, robotic imaging positioner, customized cryostat, PC-based control system, and visualization/analysis software. The system alternates between sectioning (10-40 μm) and imaging, collecting color brightfield and fluorescent blockface image volumes >60GB. In mouse experiments, we imaged quantum-dot labeled stem cells, GFP-labeled cancer and stem cells, and cell-size fluorescent microspheres. To remove subsurface fluorescence, we used a simplified model of light-tissue interaction whereby the next image was scaled, blurred, and subtracted from the current image. We estimated scaling and blurring parameters by minimizing entropy of subtracted images. Tissue specific attenuation parameters were found [uT : heart (267 +/- 47.6 μm), liver (218 +/- 27.1 μm), brain (161 +/- 27.4 μm)] to be within the range of estimates in the literature. "Next image" processing removed subsurface fluorescence equally well across multiple tissues (brain, kidney, liver, adipose tissue, etc.), and analysis of 200 microsphere images in the brain gave 97+/-2% reduction of subsurface fluorescence. Fluorescent signals were determined to arise from single cells based upon geometric and integrated intensity measurements. Next image processing greatly improved axial resolution, enabled high quality 3D volume renderings, and improved enumeration of single cells with connected component analysis by up to 24%. Analysis of image volumes identified metastatic cancer sites, found homing of stem cells to injury sites, and showed microsphere distribution correlated with blood flow patterns. We developed and evaluated cryo-imaging to provide single-cell detection of fluorescently labeled cells in mouse. Our cryo-imaging system provides extreme (>60GB), micron

  3. Immunospecific red cell binding of iodine 125-labeled immunoglobulin G erythrocyte autoantibodies

    International Nuclear Information System (INIS)

    Masouredis, S.P.; Branks, M.J.; Garratty, G.; Victoria, E.J.

    1987-01-01

    The primary interaction of autoantibodies with red cells has been studied by using labeled autoantibodies. Immunoglobulin G red cell autoantibodies obtained from IgG antiglobulin-positive normal blood donors were labeled with radioactive iodine and compared with alloanti-D with respect to their properties and binding behavior. Iodine 125 -labeled IgG autoantibody migrated as a single homogeneous peak with the same relative mobility as human IgG on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric focusing pattern of labeled autoantibodies varied from donor to donor but was similar to that of alloanti-D, consisting of multiple IgG populations with isoelectric points in the neutral to alkaline range. 125 I-autoantibody bound to all human red cells of common Rh phenotypes. Evidence for immunospecific antibody binding of the labeled autoantibody was based on variation in equilibrium binding to nonhuman and human red cells of common and rare phenotypes, enhanced binding after red cell protease modification, antiglobulin reactivity of cell-bound IgG comparable to that of cell-bound anti-D, and saturation binding in autoantibody excess. Scatchard analysis of two 125 I-autoantibody preparations yielded site numbers of 41,500 and 53,300 with equilibrium constants of 3.7 and 2.1 X 10(8) L X mol-1. Dog, rabbit, rhesus monkey, and baboon red cells were antigen(s) negative by quantitative adsorption studies adsorbing less than 3% of the labeled autoantibody. Reduced ability of rare human D--red blood cells to adsorb the autoantibody and identification of donor autoantibodies that bind to Rh null red blood cells indicated that eluates contained multiple antibody populations of complex specificities in contrast to anti-D, which consists of a monospecific antibody population. Another difference is that less than 70% of the autoantibody IgG was adsorbed by maximum binding red blood cells as compared with greater than 85% for alloanti-D

  4. Nestin Reporter Transgene Labels Multiple Central Nervous System Precursor Cells

    Directory of Open Access Journals (Sweden)

    Avery S. Walker

    2010-01-01

    Full Text Available Embryonic neuroepithelia and adult subventricular zone (SVZ stem and progenitor cells express nestin. We characterized a transgenic line that expresses enhanced green fluorescent protein (eGFP specified to neural tissue by the second intronic enhancer of the nestin promoter that had several novel features. During embryogenesis, the dorsal telencephalon contained many and the ventral telencephalon few eGFP+ cells. eGFP+ cells were found in postnatal and adult neurogenic regions. eGFP+ cells in the SVZ expressed multiple phenotype markers, glial fibrillary acidic protein, Dlx, and neuroblast-specific molecules suggesting the transgene is expressed through the lineage. eGFP+ cell numbers increased in the SVZ after cortical injury, suggesting this line will be useful in probing postinjury neurogenesis. In non-neurogenic regions, eGFP was strongly expressed in oligodendrocyte progenitors, but not in astrocytes, even when they were reactive. This eGFP+ mouse will facilitate studies of proliferative neuroepithelia and adult neurogenesis, as well as of parenchymal oligodendrocytes.

  5. Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds.

    Science.gov (United States)

    Hsu, Tzu-Chia; Liu, Kuang-Kai; Chang, Huan-Cheng; Hwang, Eric; Chao, Jui-I

    2014-05-16

    Nanodiamond is a promising carbon nanomaterial developed for biomedical applications. Here, we show fluorescent nanodiamond (FND) with the biocompatible properties that can be used for the labeling and tracking of neuronal differentiation and neuron cells derived from embryonal carcinoma stem (ECS) cells. The fluorescence intensities of FNDs were increased by treatment with FNDs in both the mouse P19 and human NT2/D1 ECS cells. FNDs were taken into ECS cells; however, FNDs did not alter the cellular morphology and growth ability. Moreover, FNDs did not change the protein expression of stem cell marker SSEA-1 of ECS cells. The neuronal differentiation of ECS cells could be induced by retinoic acid (RA). Interestingly, FNDs did not affect on the morphological alteration, cytotoxicity and apoptosis during the neuronal differentiation. Besides, FNDs did not alter the cell viability and the expression of neuron-specific marker β-III-tubulin in these differentiated neuron cells. The existence of FNDs in the neuron cells can be identified by confocal microscopy and flow cytometry. Together, FND is a biocompatible and readily detectable nanomaterial for the labeling and tracking of neuronal differentiation process and neuron cells from stem cells.

  6. Selective labelling of cell-surface proteins using CyDye DIGE Fluor minimal dyes.

    Science.gov (United States)

    Hagner-McWhirter, Asa; Winkvist, Maria; Bourin, Stephanie; Marouga, Rita

    2008-11-26

    Surface proteins are central to the cell's ability to react to its environment and to interact with neighboring cells. They are known to be inducers of almost all intracellular signaling. Moreover, they play an important role in environmental adaptation and drug treatment, and are often involved in disease pathogenesis and pathology (1). Protein-protein interactions are intrinsic to signaling pathways, and to gain more insight in these complex biological processes, sensitive and reliable methods are needed for studying cell surface proteins. Two-dimensional (2-D) electrophoresis is used extensively for detection of biomarkers and other targets in complex protein samples to study differential changes. Cell surface proteins, partly due to their low abundance (1 2% of cellular proteins), are difficult to detect in a 2-D gel without fractionation or some other type of enrichment. They are also often poorly represented in 2-D gels due to their hydrophobic nature and high molecular weight (2). In this study, we present a new protocol for intact cells using CyDye DIGE Fluor minimal dyes for specific labeling and detection of this important group of proteins. The results showed specific labeling of a large number of cell surface proteins with minimal labeling of intracellular proteins. This protocol is rapid, simple to use, and all three CyDye DIGE Fluor minimal dyes (Cy 2, Cy 3 and Cy 5) can be used to label cell-surface proteins. These features allow for multiplexing using the 2-D Fluorescence Difference Gel Electrophoresis (2-D DIGE) with Ettan DIGE technology and analysis of protein expression changes using DeCyder 2-D Differential Analysis Software. The level of cell-surface proteins was followed during serum starvation of CHO cells for various lengths of time (see Table 1). Small changes in abundance were detected with high accuracy, and results are supported by defined statistical methods.

  7. PDMAAm-coated .gamma.-Fe2O3 nanoparticles for cell labeling

    Czech Academy of Sciences Publication Activity Database

    Zasońska, Beata Anna; Boiko, N.; Horák, Daniel; Stoika, R.

    2012-01-01

    Roč. 28, Suppl. 2 (2012), s. 79 ISSN 0233-7657. [Bridges in Life Sciences Annual Conference /7./, Science and Art for the Advancement in Medicine. 30.03.2012-01.04.2012, Budapest] R&D Projects: GA ČR GAP206/12/0381 Institutional support: RVO:61389013 Keywords : magnetic * cell labeling * nanoparticles Subject RIV: CB - Analytical Chemistry, Separation

  8. Clinical impact of ki-67 labeling index in non-small cell lung cancer

    DEFF Research Database (Denmark)

    Jakobsen, Jan Nyrop; Sørensen, Jens Benn

    2013-01-01

    The ki-67 index is a marker of proliferation in malignant tumors. Studies from the period 2000 to 2012 on the prognostic and predictive value of ki-67 labeling index (LI) in non-small cell cancer (NSCLC) are reviewed. Twenty-eight studies reported on the prognostic value of ki-67 index with various...

  9. Bone marrow toxicity in mice treated with Indium-114m-Labelled blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Hoyes, K. P.; Wadeson, P. J.; Lord, B. I. [University of Manchester, Paterson Institute for Cancer Research, Cancer Research Campaign, Dept. of Experimental Haematology, Manchester (United Kingdom); Cowan, R. A. [University of Manchester, Christie Hospital, North Western Medical Physics Dept., Dept. of Clinical Oncology, Manchester (United Kingdom); Sharma, H. L. [University of Manchester, Dept. of Imaging Science and Biomedical Engineering, Manchester (United Kingdom)

    2001-12-01

    Clinical trials with autologous indium-114m-labelled lymphocytes have revealed significant anti-tumour effects in chronic lymphocytic leukaemia patients with highly resistant disease. Substitution of the lymphocyte vector with heat-damaged red blood cells (HDRBC) may make this treatment more universally applicable and reduce the dose-limiting myelosuppression encountered with labelled lymphocytes. Therefore, the bone marrow localization and toxicities of indium-labelled lymphocytes or HDRBC have been investigated in BDF1 mice. At 24 hours approximately 4% and 1.2% of {sup 114}In{sup m} administered as labelled lymphocytes or HDRBC respectively was localized within the bone marrow and remained constant for 57 days thereafter. Toxicity towards bone marrow stem cells, measured as CFU-S, was equivalent for both cellular vectors. However, at clinically relevant activities, {sup 114}In{sup m} HDRBC were less toxic than labelled lymphocytes towards committed progenitors, assayed as in vitro-CFC and CFU-Meg. These data suggest that substitution of HDRBC for lymphocytes as the {sup 114}In{sup m} vector may be beneficial in reducing the myelosuppression associated with this technique.

  10. Label-free quantitative proteomics of CD133-positive liver cancer stem cells

    Directory of Open Access Journals (Sweden)

    Tsai Sheng-Ta

    2012-11-01

    Full Text Available Abstract Background CD133-positive liver cancer stem cells, which are characterized by their resistance to conventional chemotherapy and their tumor initiation ability at limited dilutions, have been recognized as a critical target in liver cancer therapeutics. In the current work, we developed a label-free quantitative method to investigate the proteome of CD133-positive liver cancer stem cells for the purpose of identifying unique biomarkers that can be utilized for targeting liver cancer stem cells. Label-free quantitation was performed in combination with ID-based Elution time Alignment by Linear regression Quantitation (IDEAL-Q and MaxQuant. Results Initially, IDEAL-Q analysis revealed that 151 proteins were differentially expressed in the CD133-positive hepatoma cells when compared with CD133-negative cells. We then analyzed these 151 differentially expressed proteins by MaxQuant software and identified 10 significantly up-regulated proteins. The results were further validated by RT-PCR, western blot, flow cytometry or immunofluorescent staining which revealed that prominin-1, annexin A1, annexin A3, transgelin, creatine kinase B, vimentin, and EpCAM were indeed highly expressed in the CD133-positive hepatoma cells. Conclusions These findings confirmed that mass spectrometry-based label-free quantitative proteomics can be used to gain insights into liver cancer stem cells.

  11. Magnetic resonance imaging of single co-labeled mesenchymal stromal cells after intracardial injection in mice

    Energy Technology Data Exchange (ETDEWEB)

    Salamon, J.; Adam, G.; Peldschus, K. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Diagnostic and Interventional Radiology; Wicklein, D.; Schumacher, U. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Inst. of Anatomy II: Experimental Morphology; Didie, M. [Goettingen Univ. (Germany). Inst. of Pharmacology; Lange, C. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Bone Marrow Transplantation

    2014-04-15

    Purpose: The aim of this study was to establish co-labeling of mesenchymal stromal cells (MSC) for the detection of single MSC in-vivo by MRI and histological validation. Materials and Methods: Mouse MSC were co-labeled with fluorescent iron oxide micro-particles and carboxyfluorescein succinimidyl ester (CFSE). The cellular iron content was determined by atomic absorption spectrometry. Cell proliferation and expression of characteristic surface markers were determined by flow cytometry. The chondrogenic differentiation capacity was assessed. Different amounts of cells (n1 = 5000, n2 = 15 000, n3 = 50 000) were injected into the left heart ventricle of 12 mice. The animals underwent sequential MRI on a clinical 3.0T scanner (Intera, Philips Medical Systems, Best, The Netherlands). For histological validation cryosections were examined by fluorescent microscopy. Results: Magnetic and fluorescent labeling of MSC was established (mean cellular iron content 23.6 ± 3 pg). Flow cytometry showed similar cell proliferation and receptor expression of labeled and unlabeled MSC. Chondrogenic differentiation of labeled MSC was verified. After cell injection MRI revealed multiple signal voids in the brain and fewer signal voids in the kidneys. In the brain, an average of 4.6 ± 1.2 (n1), 9.0 ± 3.6 (n2) and 25.0 ± 1.0 (n3) signal voids were detected per MRI slice. An average of 8.7 ± 3.1 (n1), 22.0 ± 6.1 (n2) and 89.8 ± 6.5 (n3) labeled cells per corresponding stack of adjacent cryosections could be detected in the brain. Statistical correlation of the numbers of MRI signal voids in the brain and single MSC found by histology revealed a correlation coefficient of r = 0.91. Conclusion: The study demonstrates efficient magnetic and fluorescent co-labeling of MSC and their detection on a single cell level in mice by in-vivo MRI and histology. The described techniques may broaden the methods for in-vivo tracking of MSC. (orig.)

  12. Evaluation of red blood cell (RBC) labelling procedures in cardiovascular scintigraphy

    International Nuclear Information System (INIS)

    Hinkle, G.H.; Reid, R.D.; Shaffer, P.B.; Olsen, J.O.

    1984-01-01

    The clinical images obtained and the percentage of radioactivity associated with the red blood cells at the conclusion of this study provided a method of assessing four technique for preparing 99 mTc-labeled red blood cells for use in cardiovascular scintigraphy. The methods consisted of a totally in vivo preparation, and semi-in vitro and two different cell separation techniques. The semi-in vitro procedure provided the best clinical image with the highest ventricle to spleen and ventricle to lung ratios. Higher count rates in the left ventricle also led to shorter acquisition times and greater efficiency of ejection fraction calculations. A semi-in vitro method of labelling red-blood cells improves the nuclear medicine cardiovascular studies utilized for cardiac function determination

  13. Double-labelled HIV-1 particles for study of virus-cell interaction

    International Nuclear Information System (INIS)

    Lampe, Marko; Briggs, John A.G.; Endress, Thomas; Glass, Baerbel; Riegelsberger, Stefan; Kraeusslich, Hans-Georg; Lamb, Don C.; Braeuchle, Christoph; Mueller, Barbara

    2007-01-01

    Human immunodeficiency virus (HIV) delivers its genome to a host cell through fusion of the viral envelope with a cellular membrane. While the viral and cellular proteins involved in entry have been analyzed in detail, the dynamics of virus-cell fusion are largely unknown. Single virus tracing (SVT) provides the unique opportunity to visualize viral particles in real time allowing direct observation of the dynamics of this stochastic process. For this purpose, we developed a double-coloured HIV derivative carrying a green fluorescent label attached to the viral matrix protein combined with a red label fused to the viral Vpr protein designed to distinguish between complete virions and subviral particles lacking MA after membrane fusion. We present here a detailed characterization of this novel tool together with exemplary live cell imaging studies, demonstrating its suitability for real-time analyses of HIV-cell interaction

  14. Fluorophore-conjugated iron oxide nanoparticle labeling and analysis of engrafting human hematopoietic stem cells

    DEFF Research Database (Denmark)

    Maxwell, Dustin J; Bonde, Jesper; Hess, David A

    2008-01-01

    The use of nanometer-sized iron oxide particles combined with molecular imaging techniques enables dynamic studies of homing and trafficking of human hematopoietic stem cells (HSC). Identifying clinically applicable strategies for loading nanoparticles into primitive HSC requires strictly defined...... to the dextran coat for fluorescence-activated cell sorting purification eliminated spurious signals from nonsequestered nanoparticle contaminants. A short-term defined incubation strategy was developed that allowed efficient labeling of both quiescent and cycling HSC, with no discernable toxicity in vitro...... or in vivo. Transplantation of purified primary human cord blood lineage-depleted and CD34(+) cells into immunodeficient mice allowed detection of labeled human HSC in the recipient bones. Flow cytometry was used to precisely quantitate the cell populations that had sequestered the nanoparticles...

  15. Fluorine-19 Labeling of Stromal Vascular Fraction Cells for Clinical Imaging Applications.

    Science.gov (United States)

    Rose, Laura C; Kadayakkara, Deepak K; Wang, Guan; Bar-Shir, Amnon; Helfer, Brooke M; O'Hanlon, Charles F; Kraitchman, Dara L; Rodriguez, Ricardo L; Bulte, Jeff W M

    2015-12-01

    Stromal vascular fraction (SVF) cells are used clinically for various therapeutic targets. The location and persistence of engrafted SVF cells are important parameters for determining treatment failure versus success. We used the GID SVF-1 platform and a clinical protocol to harvest and label SVF cells with the fluorinated ((19)F) agent CS-1000 as part of a first-in-human phase I trial (clinicaltrials.gov identifier NCT02035085) to track SVF cells with magnetic resonance imaging during treatment of radiation-induced fibrosis in breast cancer patients. Flow cytometry revealed that SVF cells consisted of 25.0% ± 15.8% CD45+, 24.6% ± 12.5% CD34+, and 7.5% ± 3.3% CD31+ cells, with 2.1 ± 0.7 × 10⁵ cells per cubic centimeter of adipose tissue obtained. Fluorescent CS-1000 (CS-ATM DM Green) labeled 87.0% ± 13.5% of CD34+ progenitor cells compared with 47.8% ± 18.5% of hematopoietic CD45+ cells, with an average of 2.8 ± 2.0 × 10¹² ¹⁹F atoms per cell, determined using nuclear magnetic resonance spectroscopy. The vast majority (92.7% ± 5.0%) of CD31+ cells were also labeled, although most coexpressed CD34. Only 16% ± 22.3% of CD45-/CD31-/CD34- (triple-negative) cells were labeled with CS-ATM DM Green. After induction of cell death by either apoptosis or necrosis, >95% of ¹⁹F was released from the cells, indicating that fluorine retention can be used as a surrogate marker for cell survival. Labeled-SVF cells engrafted in a silicone breast phantom could be visualized with a clinical 3-Tesla magnetic resonance imaging scanner at a sensitivity of approximately 2 × 10⁶ cells at a depth of 5 mm. The current protocol can be used to image transplanted SVF cells at clinically relevant cell concentrations in patients. Stromal vascular fraction (SVF) cells harvested from adipose tissue offer great promise in regenerative medicine, but methods to track such cell therapies are needed to ensure correct administration and monitor survival. A clinical protocol was

  16. Label-free haemogram using wavelength modulated Raman spectroscopy for identifying immune-cell subset

    Science.gov (United States)

    Ashok, Praveen C.; Praveen, Bavishna B.; Campbell, Elaine C.; Dholakia, Kishan; Powis, Simon J.

    2014-03-01

    Leucocytes in the blood of mammals form a powerful protective system against a wide range of dangerous pathogens. There are several types of immune cells that has specific role in the whole immune system. The number and type of immune cells alter in the disease state and identifying the type of immune cell provides information about a person's state of health. There are several immune cell subsets that are essentially morphologically identical and require external labeling to enable discrimination. Here we demonstrate the feasibility of using Wavelength Modulated Raman Spectroscopy (WMRS) with suitable machine learning algorithms as a label-free method to distinguish between different closely lying immune cell subset. Principal Component Analysis (PCA) was performed on WMRS data from single cells, obtained using confocal Raman microscopy for feature reduction, followed by Support Vector Machine (SVM) for binary discrimination of various cell subset, which yielded an accuracy >85%. The method was successful in discriminating between untouched and unfixed purified populations of CD4+CD3+ and CD8+CD3+ T lymphocyte subsets, and CD56+CD3- natural killer cells with a high degree of specificity. It was also proved sensitive enough to identify unique Raman signatures that allow clear discrimination between dendritic cell subsets, comprising CD303+CD45+ plasmacytoid and CD1c+CD141+ myeloid dendritic cells. The results of this study clearly show that WMRS is highly sensitive and can distinguish between cell types that are morphologically identical.

  17. Label-free profiling of cell dynamics: A sequence of impedance-based assays to estimate tumor cell invasiveness in vitro.

    Science.gov (United States)

    Láng, Orsolya; Kőhidai, László; Wegener, Joachim

    2017-10-01

    Dynamic properties of cancer cells, most notably their ability to migrate, have been correlated successfully with their invasive nature in vivo. To establish a stronger experimental basis for such a correlation we subjected five different cancer cell lines of well-defined metastatic potential to a sequence of three independent assays reporting on three different aspects of cell dynamics, namely (1) the kinetics of cell spreading, (2) cell shape fluctuations, and (3) cell migration. The sequentially applied assays correspond to different measuring modes of the well-established ECIS technique that is based on non-invasive and label-free impedance readings of planar gold-film electrodes that serve as the growth substrate for the cells under study. Every individual assay returned a characteristic parameter describing the behavior of the cell lines in that particular assay quantitatively. The parameters of all three assays were ranked to establish individual profiles of cell dynamics for every cell line that correlate favorably with the cells' invasive properties. The sequence of impedance-based assays described here requires only small cell populations (< 10.000 cells), it is highly automated and easily adapted to 96-well formats. It provides an in-depth dynamic profile of adherent cells that might be useful in other areas besides cancer research as well. Copyright © 2017. Published by Elsevier Inc.

  18. Novel positively charged nanoparticle labeling for in vivo imaging of adipose tissue-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Hiroshi Yukawa

    Full Text Available Stem cell transplantation has been expected to have various applications for regenerative medicine. However, in order to detect and trace the transplanted stem cells in the body, non-invasive and widely clinically available cell imaging technologies are required. In this paper, we focused on magnetic resonance (MR imaging technology, and investigated whether the trimethylamino dextran-coated magnetic iron oxide nanoparticle -03 (TMADM-03, which was newly developed by our group, could be used for labeling adipose tissue-derived stem cells (ASCs as a contrast agent. No cytotoxicity was observed in ASCs transduced with less than 100 µg-Fe/mL of TMADM-03 after a one hour transduction time. The transduction efficiency of TMADM-03 into ASCs was about four-fold more efficient than that of the alkali-treated dextran-coated magnetic iron oxide nanoparticle (ATDM, which is a major component of commercially available contrast agents such as ferucarbotran (Resovist, and the level of labeling was maintained for at least two weeks. In addition, the differentiation ability of ASCs labeled with TMADM-03 and their ability to produce cytokines such as hepatocyte growth factor (HGF, vascular endothelial growth factor (VEGF and prostaglandin E2 (PGE2, were confirmed to be maintained. The ASCs labeled with TMADM-03 were transplanted into the left kidney capsule of a mouse. The labeled ASCs could be imaged with good contrast using a 1T MR imaging system. These data suggest that TMADM-03 can therefore be utilized as a contrast agent for the MR imaging of stem cells.

  19. Labelling techniques of biomolecules for targeted radiotherapy. Final report of a co-ordinated research project 1998-2002

    International Nuclear Information System (INIS)

    2003-07-01

    Malignant tumour disease accounts for approximately one third of deaths worldwide. Gastrointestinal adenocarcinomas, prostate and breast cancers are among the most frequently appearing tumours. Radiotherapy is an essential mode of treatment of all cancer patients either alone or in conjunction with other modalities like surgery and chemotherapy. In most cases radiotherapy is given using external radiation sources. It is also possible to administer radiotherapy by specifically localizing radioisotopes emitting particulate radiation in the tumour tissue. This targeted therapy has proved to have several advantages over external beam therapy, notably the possibility of selectively delivering higher radiation doses to the targeted tumour cells and treating multiple metastases. Procedures for therapy of thyroid carcinoma and hyper-thyroidism using radioiodine (131I) introduced about five decades ago, have stood the test of time and are still widely used the world over. In addition to the therapeutic nuclides of the first generation 131I, 89Sr, 32P, 90Y, etc., which are still widely utilized and accepted by the medical community, many other beta emitting radionuclides with relatively short half-lives such as 153Sm, 186Re, 188Re, 166Ho, 165Dy, etc. have also been recently made available for therapy and used with promising good results. In spite of the potential of targeted radiotherapy to treat a wide range of malignant conditions, routine clinical use is mostly confined to therapy of thyroid carcinoma, hyperthyroidism, metastatic bone pain and synovectomy. In most of the cases, the limitation is obviously not the availability of suitable radionuclides but rather the lack of suitable carrier molecules that would adequately concentrate these radionuclides in target tissues of interest. Based on the above considerations, the scope of the Co-ordinated Research Project (CRP) has focused on the synthesis of the required BFCAs for MoAbs and peptide labelling, development and

  20. Differential phospholipid-labeling suggests two subtypes of phospholipase D in rat Leydig cells

    DEFF Research Database (Denmark)

    Lauritzen, L.; Hansen, Harald S.

    1995-01-01

    Cho). The [H] phosphatidylethanol formation in response to 4ß-phorbol 12-myristate 13-acetate (PMA), sphingosine, or Ca-ionophore A23187, was lower when Leydig cells were labeled with 1-O-[H]alkyl lysoPtdCho compared with the responses when [H]myristic acid was employed. In contrast, the results...... for the receptor agonists (vasopressin, bradykinin, and lysophosphatidic acid), using the two labels, showed mole consistency. Thus, the PLD-activity induced by PMA, sphingosine, or A23187 has a more selective substrate range (i.e. mainly acyl-linked PtdCho) than the PLD-activity stimulated via a receptor. Our...

  1. SIRB, sans iron oxide rhodamine B, a novel cross-linked dextran nanoparticle, labels human neuroprogenitor and SH-SY5Y neuroblastoma cells and serves as a USPIO cell labeling control.

    Science.gov (United States)

    Shen, Wei-Bin; Vaccaro, Dennis E; Fishman, Paul S; Groman, Ernest V; Yarowsky, Paul

    2016-05-01

    This is the first report of the synthesis of a new nanoparticle, sans iron oxide rhodamine B (SIRB), an example of a new class of nanoparticles. SIRB is designed to provide all of the cell labeling properties of the ultrasmall superparamagnetic iron oxide (USPIO) nanoparticle Molday ION Rhodamine B (MIRB) without containing the iron oxide core. MIRB was developed to label cells and allow them to be tracked by MRI or to be manipulated by magnetic gradients. SIRB possesses a similar size, charge and cross-linked dextran coating as MIRB. Of great interest is understanding the biological and physiological changes in cells after they are labeled with a USPIO. Whether these effects are due to the iron oxide buried within the nanoparticle or to the surface coating surrounding the iron oxide core has not been considered previously. MIRB and SIRB represent an ideal pairing of nanoparticles to identify nanoparticle anatomy responsible for post-labeling cytotoxicity. Here we report the effects of SIRB labeling on the SH-SY5Y neuroblastoma cell line and primary human neuroprogenitor cells (hNPCs). These effects are contrasted with the effects of labeling SH-SY5Y cells and hNPCs with MIRB. We find that SIRB labeling, like MIRB labeling, (i) occurs without the use of transfection reagents, (ii) is packaged within lysosomes distributed within cell cytoplasm, (iii) is retained within cells with no loss of label after cell storage, and (iv) does not alter cellular viability or proliferation, and (v) SIRB labeled hNPCs differentiate normally into neurons or astrocytes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Label-free recognition of drug resistance via impedimetric screening of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Bilge Eker

    Full Text Available We present a novel study on label-free recognition and distinction of drug resistant breast cancer cells (MCF-7 DOX from their parental cells (MCF-7 WT via impedimetric measurements. Drug resistant cells exhibited significant differences in their dielectric properties compared to wild-type cells, exerting much higher extracellular resistance (Rextra . Immunostaining revealed that MCF-7 DOX cells gained a much denser F-actin network upon acquiring drug resistance indicating that remodeling of actin cytoskeleton is probably the reason behind higher Rextra , providing stronger cell architecture. Moreover, having exposed both cell types to doxorubicin, we were able to distinguish these two phenotypes based on their substantially different drug response. Interestingly, impedimetric measurements identified a concentration-dependent and reversible increase in cell stiffness in the presence of low non-lethal drug doses. Combined with a profound frequency analysis, these findings enabled distinguishing distinct cellular responses during drug exposure within four concentration ranges without using any labeling. Overall, this study highlights the possibility to differentiate drug resistant phenotypes from their parental cells and to assess their drug response by using microelectrodes, offering direct, real-time and noninvasive measurements of cell dependent parameters under drug exposure, hence providing a promising step for personalized medicine applications such as evaluation of the disease progress and optimization of the drug treatment of a patient during chemotherapy.

  3. An ultrafiltration technique for labeling red blood cells with Tc-99m

    International Nuclear Information System (INIS)

    Hendershott, L.R.; Gatson, R.C.; Ordway, F.S.; Ahmad, M.; Saint Louis Univ., MO; Saint Louis Univ., MO

    1979-01-01

    This method automates the preparation of autologous Tc-99m labeled red blood cells utilizing the Amicon on-line column eluate concentrator to separate the plasma from the red blood cells. The red blood cells were pre-tinned with stannous diphosphonate and continuously recirculated over a 0.6 μ filter until all of the plasma was removed and the red blood cells remained suspended in a solution of 0.9% sodium chloride. Once the plasma has been removed the red blood cells are incubated with Tc-99m pertechnetate. The above Tc-99m red blood cells were compared to Tc-99m red blood cells produced in a similar manner except that centrifugation was used to separate the red blood cells from the plasma. Both preparations had a tagging efficiency of 98% or greater and rat distribution studies demonstrate that both preparations are equally stable as an in vivo intravascular agent. (orig.) [de

  4. Study of internalization and viability of multimodal nanoparticles for labeling of human umbilical cord mesenchymal stem cells

    International Nuclear Information System (INIS)

    Miyaki, Liza Aya Mabuchi; Sibov, Tatiana Tais; Pavon, Lorena Favaro; Mamani, Javier Bustamante; Gamarra, Lionel Fernel

    2012-01-01

    Objective: To analyze multimodal magnetic nanoparticles-Rhodamine B in culture media for cell labeling, and to establish a study of multimodal magnetic nanoparticles-Rhodamine B detection at labeled cells evaluating they viability at concentrations of 10 μg Fe/mL and 100μg Fe/mL. Methods: We performed the analysis of stability of multimodal magnetic nanoparticles-Rhodamine B in different culture media; the mesenchymal stem cells labeling with multimodal magnetic nanoparticles-Rhodamine B; the intracellular detection of multimodal magnetic nanoparticles-Rhodamine B in mesenchymal stem cells, and assessment of the viability of labeled cells by kinetic proliferation. Results: The stability analysis showed that multimodal magnetic nanoparticles-Rhodamine B had good stability in cultured Dulbecco's Modified Eagle's-Low Glucose medium and RPMI 1640 medium. The mesenchymal stem cell with multimodal magnetic nanoparticles-Rhodamine B described location of intracellular nanoparticles, which were shown as blue granules co-localized in fluorescent clusters, thus characterizing magnetic and fluorescent properties of multimodal magnetic nanoparticles Rhodamine B. Conclusion: The stability of multimodal magnetic nanoparticles-Rhodamine B found in cultured Dulbecco's Modified Eagle's-Low Glucose medium and RPMI 1640 medium assured intracellular mesenchymal stem cells labeling. This cell labeling did not affect viability of labeled mesenchymal stem cells since they continued to proliferate for five days. (author)

  5. Translating stem cell research: challenges at the research frontier.

    Science.gov (United States)

    Magnus, David

    2010-01-01

    This paper will address the translation of basic stem cell research into clinical research. While "stem cell" trials are sometimes used to describe established practices of bone marrow transplantation or transplantation of primary cells derived from bone marrow, for the purposes of this paper, I am primarily focusing on stem cell trials which are far less established, including use of hESC derived stem cells. The central ethical challenges in stem cell clinical trials arise in frontier research, not in standard, well-established areas of research.

  6. Autonomous magnetic labelling of functional mesenchymal stem cells for improved traceability and spatial control in cell therapy applications.

    Science.gov (United States)

    Harrison, Richard; Markides, Hareklea; Morris, Robert H; Richards, Paula; El Haj, Alicia J; Sottile, Virginie

    2017-08-01

    Mesenchymal stem cells (MSCs) represent a valuable resource for regenerative medicine treatments for orthopaedic repair and beyond. Following developments in isolation, expansion and differentiation protocols, efforts to promote clinical translation of emerging cellular strategies now seek to improve cell delivery and targeting. This study shows efficient live MSC labelling using silica-coated magnetic particles (MPs), which enables 3D tracking and guidance of stem cells. A procedure developed for the efficient and unassisted particle uptake was shown to support MSC viability and integrity, while surface marker expression and MSC differentiation capability were also maintained. In vitro, MSCs showed a progressive decrease in labelling over increasing culture time, which appeared to be linked to the dilution effect of cell division, rather than to particle release, and did not lead to detectable secondary particle uptake. Labelled MSC populations demonstrated magnetic responsiveness in vitro through directed migration in culture and, when seeded onto a scaffold, supporting MP-based approaches to cell targeting. The potential of these silica-coated MPs for MRI cell tracking of MSC populations was validated in 2D and in a cartilage repair model following cell delivery. These results highlight silica-coated magnetic particles as a simple, safe and effective resource to enhance MSC targeting for therapeutic applications and improve patient outcomes. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.

  7. In vitro preparation of radionuclides labeled blood cells: Status and requirements

    International Nuclear Information System (INIS)

    Couret, I.; Desruet, M.D.; Bolot, C.; Chassel, M.L.; Pellegrin, M.

    2010-01-01

    Labelled blood cells permit nuclear medicine imaging using their physiological behaviours. The radiolabeling must be performed in vitro because of the lack of specific markers and requires several highly technical stages of preparation. Labelled blood cells have not the medication drug status, so that the nuclear physician conducting the nuclear test is fully liable. In most cases, the physician delegates the technical responsibility to radio-pharmacists. Although the status of radiolabelled autologous cells is not legally defined and in the absence of a specific repository, it is essential that their preparation is subject to the requirements of the rules of French Good Manufacturing Practice published by Agence francaise de securite sanitaire des produits de sante (Afssaps). It would be desirable to harmonize the practices of radiolabeling cellular blood components by editing a repository. (authors)

  8. Tritium labelling of a cholesterol amphiphile designed for cell membrane anchoring of proteins.

    Science.gov (United States)

    Schäfer, Balázs; Orbán, Erika; Kele, Zoltán; Tömböly, Csaba

    2015-01-01

    Cell membrane association of proteins can be achieved by the addition of lipid moieties to the polypeptide chain, and such lipid-modified proteins have important biological functions. A class of cell surface proteins contains a complex glycosylphosphatidylinositol (GPI) glycolipid at the C-terminus, and they are accumulated in cholesterol-rich membrane microdomains, that is, lipid rafts. Semisynthetic lipoproteins prepared from recombinant proteins and designed lipids are valuable probes and model systems of the membrane-associated proteins. Because GPI-anchored proteins can be reinserted into the cell membrane with the retention of the biological function, they are appropriate candidates for preparing models via reduction of the structural complexity. A synthetic headgroup was added to the 3β-hydroxyl group of cholesterol, an essential lipid component of rafts, and the resulting cholesterol derivative was used as a simplified GPI mimetic. In order to quantitate the membrane integrated GPI mimetic after the exogenous addition to live cells, a tritium labelled cholesterol anchor was prepared. The radioactive label was introduced into the headgroup, and the radiolabelled GPI mimetic anchor was obtained with a specific activity of 1.37 TBq/mmol. The headgroup labelled cholesterol derivative was applied to demonstrate the sensitive detection of the cell membrane association of the anchor under in vivo conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Epithelial Label-Retaining Cells Are Absent during Tooth Cycling in Salmo salar and Polypterus senegalus.

    Science.gov (United States)

    Vandenplas, Sam; Willems, Maxime; Witten, P Eckhard; Hansen, Tom; Fjelldal, Per Gunnar; Huysseune, Ann

    2016-01-01

    The Atlantic salmon (Salmo salar) and African bichir (Polypterus senegalus) are both actinopterygian fish species that continuously replace their teeth without the involvement of a successional dental lamina. Instead, they share the presence of a middle dental epithelium: an epithelial tier enclosed by inner and outer dental epithelium. It has been hypothesized that this tier could functionally substitute for a successional dental lamina and might be a potential niche to house epithelial stem cells involved in tooth cycling. Therefore, in this study we performed a BrdU pulse chase experiment on both species to (1) determine the localization and extent of proliferating cells in the dental epithelial layers, (2) describe cell dynamics and (3) investigate if label-retaining cells are present, suggestive for the putative presence of stem cells. Cells proliferate in the middle dental epithelium, outer dental epithelium and cervical loop at the lingual side of the dental organ to form a new tooth germ. Using long chase times, both in S. salar (eight weeks) and P. senegalus (eight weeks and twelve weeks), we could not reveal the presence of label-retaining cells in the dental organ. Immunostaining of P. senegalus dental organs for the transcription factor Sox2, often used as a stem cell marker, labelled cells in the zone of outer dental epithelium which grades into the oral epithelium (ODE transition zone) and the inner dental epithelium of a successor only. The location of Sox2 distribution does not provide evidence for epithelial stem cells in the dental organ and, more specifically, in the middle dental epithelium. Comparison of S. salar and P. senegalus reveals shared traits in tooth cycling and thus advances our understanding of the developmental mechanism that ensures lifelong replacement.

  10. Epithelial Label-Retaining Cells Are Absent during Tooth Cycling in Salmo salar and Polypterus senegalus.

    Directory of Open Access Journals (Sweden)

    Sam Vandenplas

    Full Text Available The Atlantic salmon (Salmo salar and African bichir (Polypterus senegalus are both actinopterygian fish species that continuously replace their teeth without the involvement of a successional dental lamina. Instead, they share the presence of a middle dental epithelium: an epithelial tier enclosed by inner and outer dental epithelium. It has been hypothesized that this tier could functionally substitute for a successional dental lamina and might be a potential niche to house epithelial stem cells involved in tooth cycling. Therefore, in this study we performed a BrdU pulse chase experiment on both species to (1 determine the localization and extent of proliferating cells in the dental epithelial layers, (2 describe cell dynamics and (3 investigate if label-retaining cells are present, suggestive for the putative presence of stem cells. Cells proliferate in the middle dental epithelium, outer dental epithelium and cervical loop at the lingual side of the dental organ to form a new tooth germ. Using long chase times, both in S. salar (eight weeks and P. senegalus (eight weeks and twelve weeks, we could not reveal the presence of label-retaining cells in the dental organ. Immunostaining of P. senegalus dental organs for the transcription factor Sox2, often used as a stem cell marker, labelled cells in the zone of outer dental epithelium which grades into the oral epithelium (ODE transition zone and the inner dental epithelium of a successor only. The location of Sox2 distribution does not provide evidence for epithelial stem cells in the dental organ and, more specifically, in the middle dental epithelium. Comparison of S. salar and P. senegalus reveals shared traits in tooth cycling and thus advances our understanding of the developmental mechanism that ensures lifelong replacement.

  11. Label-free in situ imaging of lignification in plant cell walls.

    Science.gov (United States)

    Schmidt, Martin; Perera, Pradeep; Schwartzberg, Adam M; Adams, Paul D; Schuck, P James

    2010-11-01

    Meeting growing energy demands safely and efficiently is a pressing global challenge. Therefore, research into biofuels production that seeks to find cost-effective and sustainable solutions has become a topical and critical task. Lignocellulosic biomass is poised to become the primary source of biomass for the conversion to liquid biofuels. However, the recalcitrance of these plant cell wall materials to cost-effective and efficient degradation presents a major impediment for their use in the production of biofuels and chemicals. In particular, lignin, a complex and irregular poly-phenylpropanoid heteropolymer, becomes problematic to the postharvest deconstruction of lignocellulosic biomass. For example in biomass conversion for biofuels, it inhibits saccharification in processes aimed at producing simple sugars for fermentation. The effective use of plant biomass for industrial purposes is in fact largely dependent on the extent to which the plant cell wall is lignified. The removal of lignin is a costly and limiting factor and lignin has therefore become a key plant breeding and genetic engineering target in order to improve cell wall conversion. Analytical tools that permit the accurate rapid characterization of lignification of plant cell walls become increasingly important for evaluating a large number of breeding populations. Extractive procedures for the isolation of native components such as lignin are inevitably destructive, bringing about significant chemical and structural modifications. Analytical chemical in situ methods are thus invaluable tools for the compositional and structural characterization of lignocellulosic materials. Raman microscopy is a technique that relies on inelastic or Raman scattering of monochromatic light, like that from a laser, where the shift in energy of the laser photons is related to molecular vibrations and presents an intrinsic label-free molecular "fingerprint" of the sample. Raman microscopy can afford non

  12. Comparison between 125IUdR and 51Cr as cell labels in investigations of tumor cell migration

    DEFF Research Database (Denmark)

    Basse, P; Hokland, P; Hokland, M

    1991-01-01

    YAC-1 tumor cells double-labeled with Na2[51Cr]O4 [51Cr] and [125I]iododeoxyuridine [125IUdR] were injected intravenously into Balb/c mice in order to investigate their migration and fate 0-4 h after the injection. Whereas the clearance of tumor cells from the lung tissue was similar as judged wi...

  13. Hydrodynamic and label-free sorting of circulating tumor cells from whole blood

    Science.gov (United States)

    Geislinger, Thomas M.; Stamp, Melanie E. M.; Wixforth, Achim; Franke, Thomas

    2015-11-01

    We demonstrate continuous, passive, and label-free sorting of different in vitro cancer cell lines (MV3, MCF7, and HEPG2) as model systems for circulating tumor cells (CTCs) from undiluted whole blood employing the non-inertial lift effect as driving force. This purely viscous, repulsive cell-wall interaction is sensitive to cell size and deformability differences and yields highly efficient cell separation and high enrichment factors. We show that the performance of the device is robust over a large range of blood cell concentrations and flow rates as well as for the different cell lines. The collected samples usually contain more than 90% of the initially injected CTCs and exhibit average enrichment factors of more than 20 for sorting from whole blood samples.

  14. Histochemical evidence for the differential surface labeling, uptake, and intracellular transport of a colloidal gold-labeled insulin complex by normal human blood cells

    International Nuclear Information System (INIS)

    Ackerman, G.A.; Wolken, K.W.

    1981-01-01

    A colloidal gold-labeled insulin-bovine serum albumin (GIA) reagent has been developed for the ultrastructural visualization of insulin binding sites on the cell surface and for tracing the pathway of intracellular insulin translocation. When applied to normal human blood cells, it was demonstrated by both visual inspection and quantitative analysis that the extent of surface labeling, as well as the rate and degree of internalization of the insulin complex, was directly related to cell type. Further, the pathway of insulin (GIA) transport via round vesicles and by tubulo-vesicles and saccules and its subsequent fate in the hemic cells was also related to cell variety. Monocytes followed by neutrophils bound the greatest amount of labeled insulin. The majority of lymphocytes bound and internalized little GIA, however, between 5-10% of the lymphocytes were found to bind considerable quantities of GIA. Erythrocytes rarely bound the labeled insulin complex, while platelets were noted to sequester large quantities of the GIA within their extracellular canalicular system. GIA uptake by the various types of leukocytic cells appeared to occur primarily by micropinocytosis and by the direct opening of cytoplasmic tubulo-vesicles and saccules onto the cell surface in regions directly underlying surface-bound GIA. Control procedures, viz., competitive inhibition of GIA labeling using an excess of unlabeled insulin in the incubation medium, preincubation of the GIA reagent with an antibody directed toward porcine insulin, and the incorporation of 125I-insulin into the GIA reagent, indicated the specificity and selectivity of the GIA histochemical procedure for the localization of insulin binding sites

  15. Assessments of proliferation capacity and viability of New Zealand rabbit peripheral blood endothelial progenitor cells labeled with superparamagnetic particles.

    Science.gov (United States)

    Mai, Xiao-Li; Ma, Zhan-Long; Sun, Jun-Hui; Ju, Sheng-Hong; Ma, Ming; Teng, Gao-Jun

    2009-01-01

    Magnetic resonance imaging (MRI) has proven to be effective in tracking the distribution of transplanted stem cells to target organs by way of labeling cells with superparamagnetic iron oxide particles (SPIO). However, the effect of SPIO upon labeled cells is still unclear on a cellular level. With this study, the proliferation and viability of New Zealand rabbit peripheral blood endothelial progenitor cells (EPCs) labeled with SPIO were evaluated and in vitro images were obtained using a 1.5 T MR scanner. Mononuclear cells (MNCs) were isolated from peripheral blood of the adult New Zealand rabbit and cultured in fibronectin-coated culture flasks, in which EPCs were identified from cell morphology, outgrowth characteristics, and internalization of DiI-Ac-LDL and binding to FITC-UEA I. EPCs were incubated with the self-synthesized poly-L-lysine-conjugated SPIO (PLL-SPIO) particles in a range of concentrations. The prevalence of iron-containing vesicles or endosomes in the cytoplasm of labeled cells was confirmed with Prussian blue staining and transmission electron microscopy. Tetrazolium salt (MTT) assay, cell apoptosis, and cycle detection were assessed to evaluate proliferation and function of various concentrations, magnetically labeled EPCs. The quantity of iron per cell was determined by atomic absorption spectrometry. The cells underwent MRI with different sequences. The result showed that rabbit EPCs were efficiently labeled with the home synthesized PLL-SPIO. There was found to be no statistically significant difference in the MTT values of light absorption measured on the third and fifth days. Between labeled and unlabeled cells, there were also no aberrations found in the cell cycles, apoptosis, or growth curves. The atomic absorption spectrophotometer showed that the intracellular content of Fe decreased as more time elapsed after labeling. The labeled EPCs demonstrated a loss of MRI signal intensity (SI) when compared with the SI of unlabeled cells

  16. Label-free separation of human embryonic stem cells (hESCs) and their cardiac derivatives using Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J W; Lieu, D K; Huser, T R; Li, R A

    2008-09-08

    Self-renewable, pluripotent human embryonic stem cells (hESCs) can be differentiated into cardiomyocytes (CMs), providing an unlimited source of cells for transplantation therapies. However, unlike certain cell lineages such as hematopoietic cells, CMs lack specific surface markers for convenient identification, physical separation, and enrichment. Identification by immunostaining of cardiac-specific proteins such as troponin requires permeabilization, which renders the cells unviable and non-recoverable. Ectopic expression of a reporter protein under the transcriptional control of a heart-specific promoter for identifying hESC-derived CMs (hESC-CMs) is useful for research but complicates potential clinical applications. The practical detection and removal of undifferentiated hESCs in a graft, which may lead to tumors, is also critical. Here, we demonstrate a non-destructive, label-free optical method based on Raman scattering to interrogate the intrinsic biochemical signatures of individual hESCs and their cardiac derivatives, allowing cells to be identified and classified. By combining the Raman spectroscopic data with multivariate statistical analysis, our results indicate that hESCs, human fetal left ventricular CMs, and hESC-CMs can be identified by their intrinsic biochemical characteristics with an accuracy of 96%, 98% and 66%, respectively. The present study lays the groundwork for developing a systematic and automated method for the non-invasive and label-free sorting of (i) high-quality hESCs for expansion, and (ii) ex vivo CMs (derived from embryonic or adult stem cells) for cell-based heart therapies.

  17. Biological Atomic Force Microscopy for Imaging Gold-Labeled Liposomes on Human Coronary Artery Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Ana-María Zaske

    2013-01-01

    Full Text Available Although atomic force microscopy (AFM has been used extensively to characterize cell membrane structure and cellular processes such as endocytosis and exocytosis, the corrugated surface of the cell membrane hinders the visualization of extracellular entities, such as liposomes, that may interact with the cell. To overcome this barrier, we used 90 nm nanogold particles to label FITC liposomes and monitor their endocytosis on human coronary artery endothelial cells (HCAECs in vitro. We were able to study the internalization process of gold-coupled liposomes on endothelial cells, by using AFM. We found that the gold-liposomes attached to the HCAEC cell membrane during the first 15–30 min of incubation, liposome cell internalization occurred from 30 to 60 min, and most of the gold-labeled liposomes had invaginated after 2 hr of incubation. Liposomal uptake took place most commonly at the periphery of the nuclear zone. Dynasore monohydrate, an inhibitor of endocytosis, obstructed the internalization of the gold-liposomes. This study showed the versatility of the AFM technique, combined with fluorescent microscopy, for investigating liposome uptake by endothelial cells. The 90 nm colloidal gold nanoparticles proved to be a noninvasive contrast agent that efficiently improves AFM imaging during the investigation of biological nanoprocesses.

  18. Label-free isolation and deposition of single bacterial cells from heterogeneous samples for clonal culturing

    OpenAIRE

    J. Riba; T. Gleichmann; S. Zimmermann; R. Zengerle; P. Koltay

    2016-01-01

    The isolation and analysis of single prokaryotic cells down to 1??m and less in size poses a special challenge and requires micro-engineered devices to handle volumes in the picoliter to nanoliter range. Here, an advanced Single-Cell Printer (SCP) was applied for automated and label-free isolation and deposition of bacterial cells encapsulated in 35?pl droplets by inkjet-like printing. To achieve this, dispenser chips to generate micro droplets have been fabricated with nozzles 20??m in size....

  19. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    Science.gov (United States)

    Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei

    2014-09-01

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  20. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei, E-mail: biehzw@nus.edu.sg [Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2014-09-08

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  1. Mathematical analysis of 51Cr-labelled red cell survival curves in congenital haemolytic anaemias

    International Nuclear Information System (INIS)

    Kasfiki, A.G.; Antipas, S.E.; Dimitriou, P.A.; Gritzali, F.A.; Melissinos, K.G.

    1982-01-01

    The parameters of 51 Cr labelled red cell survival curves were calculated in 26 patients with homozygous β-thalassaemia, 8 with sickle-cell anaemia and 3 with s-β-thalassaemia, using a non-linear weighted least squares analysis computer program. In thalassaemic children the calculated parameters denote that the shorting of the mean cell life is due to early senescence alone, while there is some evidence that in thalassaemic adults additional extracellular destruction mechanisms participate as well. Red cell survival curves from patients with sickle-cell anaemia and s-β-thalassaemia resemble each other, while their parameters indicate an initial rapid loss of radioactivity, early senescence and the presence of extracellular red cell destruction factors. (orig.)

  2. Autodegradation of 125I-labeled human epidermal cell surface proteins

    International Nuclear Information System (INIS)

    Hashimoto, K.; Singer, K.H.; Lazarus, G.S.

    1982-01-01

    Triton X-100 extracts of cultured human epidermal cells exhibited proteolytic activity as measured by the hydrolysis of [ 3 H]-casein at neutral pH. The majority of endogenous proteolytic activity was inhibited by parahydroxy mercuribenzoate and by mersalyl acid, indicating the enzyme(s) was a thiol class proteinase(s). Crude Triton X-100 extracts were prepared from epidermal cells following labeling of proteins with 125 I. Autodegradation of labeled proteins at 37 degrees C was detected as early as 1 hr and reached a plateau level by 4 hr. Degradation was inhibited by thiol class proteinase inhibitors. Among the detergent-solubilized radiolabeled proteins a polypeptide chain of Mr 155,000 was particularly sensitive to degradation by endogenous thiol proteinase(s)

  3. Protein Labelling with Versatile Phosphorescent Metal Complexes for Live Cell Luminescence Imaging.

    Science.gov (United States)

    Connell, Timothy U; James, Janine L; White, Anthony R; Donnelly, Paul S

    2015-09-28

    To take advantage of the luminescent properties of d(6) transition metal complexes to label proteins, versatile bifunctional ligands were prepared. Ligands that contain a 1,2,3-triazole heterocycle were synthesised using Cu(I) catalysed azide-alkyne cycloaddition "click" chemistry and were used to form phosphorescent Ir(III) and Ru(II) complexes. Their emission properties were readily tuned, by changing either the metal ion or the co-ligands. The complexes were tethered to the metalloprotein transferrin using several conjugation strategies. The Ir(III)/Ru(II)-protein conjugates could be visualised in cancer cells using live cell imaging for extended periods without significant photobleaching. These versatile phosphorescent protein-labelling agents could be widely applied to other proteins and biomolecules and are useful alternatives to conventional organic fluorophores for several applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Magnetic Labelling of Mesenchymal Stem Cells with Iron-Doped Hydroxyapatite Nanoparticles as Tool for Cell Therapy.

    Science.gov (United States)

    Panseri, Silvia; Montesi, Monica; Iafisco, Michele; Adamiano, Alessio; Ghetti, Martina; Cenacchi, Giovanna; Tampieri, Anna

    2016-05-01

    Superparamagnetic nanoparticles offer several opportunities in nanomedicine and magnetic cell targeting. They are considered to be an extremely promising approach for the translation of cell-based therapies from the laboratory to clinical studies. In fact, after injection, the magnetic labeled cells could be driven by a static magnetic field and localized to the target site where they can perform their specific role. In this study, innovative iron-doped hydroxyapatite nanoparticles (FeHA NPs) were tested with mesenchymal stem cells (MSCs) as tools for cell therapy. Results showed that FeHA NPs could represent higher cell viability in'respect to commercial superparamagnetic iron oxide nanoparticles (SPION) at four different concentrations ranging from 10 μg/ml up to 200 μg/ml and would also upregulate an early marker involved in commitment and differentiation of MSCs. Moreover, FeHA NPs were uptaken without negatively affecting the cell behavior and their ultrastructure. Thus obtained magnetic cells were easily guided by application of a static magnetic field. This work demonstrates the promising opportunities of FeHA NPs in MSCs labeling due to the unique features of fast degradation and very low iron content of FeHA NPs compared to SPIONs. Likewise, due to the intrinsic properties of FeHA NPs, this approach could be simply transferred to different cell types as an effective magnetic carrier of drugs, growth factors, miRNA, etc., offering favorable prospects in nanomedicine.

  5. Implications of Tobacco Industry Research on Packaging Colors for Designing Health Warning Labels.

    Science.gov (United States)

    Lempert, Lauren K; Glantz, Stanton A

    2016-09-01

    Health warning labels (HWLs) are an important way to educate the public about the dangers of tobacco products. Tobacco companies conducted research to understand how pack colors affect consumers' perceptions of the products and make packages and their labeling more visually prominent. We analyzed previously secret tobacco industry documents concerning the tobacco industry's internal research on how cigarette package colors and design influence the visual prominence of packages and consumers' perceptions of the harmfulness of the products. The companies found that black is visually prominent, placing dark pack elements on a contrasting light background makes them stand out more, and black text on a white background is more prominent than white text on a black background. Yellow most quickly and effectively seizes and holds consumers' attention and signals warning or danger, while white connotes health and safety. Using black text on a bright contrasting background color, particularly yellow, attracts consumers' attention to the message. Tobacco industry research on pack color choices that make pack elements more prominent, attract and keep consumers' attention, and convey danger instead of health should guide governments in specifying requirements for HWLs. These factors suggest that HWLs printed on a yellow background with black lettering and borders would most effectively seize and keep consumers' attention and signal the danger of cigarettes and other tobacco products. Tobacco companies' internal research on improving the prominence of pack elements suggests that HWLs using black lettering on a contrasting yellow background would most effectively seize and hold consumers' attention and signal the danger of cigarettes and other tobacco products. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Single-cell FRET imaging of transferrin receptor trafficking dynamics by Sfp-catalyzed, site-specific protein labeling.

    Science.gov (United States)

    Yin, Jun; Lin, Alison J; Buckett, Peter D; Wessling-Resnick, Marianne; Golan, David E; Walsh, Christopher T

    2005-09-01

    Fluorescence imaging of living cells depends on an efficient and specific method for labeling the target cellular protein with fluorophores. Here we show that Sfp phosphopantetheinyl transferase-catalyzed protein labeling is suitable for fluorescence imaging of membrane proteins that spend at least part of their membrane trafficking cycle at the cell surface. In this study, transferrin receptor 1 (TfR1) was fused to peptide carrier protein (PCP), and the TfR1-PCP fusion protein was specifically labeled with fluorophore Alexa 488 by Sfp. The trafficking of transferrin-TfR1-PCP complex during the process of transferrin-mediated iron uptake was imaged by fluorescence resonance energy transfer between the fluorescently labeled transferrin ligand and TfR1 receptor. We thus demonstrated that Sfp-catalyzed small molecule labeling of the PCP tag represents a practical and efficient tool for molecular imaging studies in living cells.

  7. Human Aortic Endothelial Cell Labeling with Positive Contrast Gadolinium Oxide Nanoparticles for Cellular Magnetic Resonance Imaging at 7 Tesla

    Directory of Open Access Journals (Sweden)

    Yasir Loai

    2012-03-01

    Full Text Available Positive T1 contrast using gadolinium (Gd contrast agents can potentially improve detection of labeled cells on magnetic resonance imaging (MRI. Recently, gadolinium oxide (Gd2O3 nanoparticles have shown promise as a sensitive T1 agent for cell labeling at clinical field strengths compared to conventional Gd chelates. The objective of this study was to investigate Gado CELLTrack, a commercially available Gd2O3 nanoparticle, for cell labeling and MRI at 7 T. Relaxivity measurements yielded r1 = 4.7 s−1 mM−1 and r2/r1 = 6.2. Human aortic endothelial cells were labeled with Gd2O3 at various concentrations and underwent MRI from 1 to 7 days postlabeling. The magnetic resonance relaxation times T1 and T2 of labeled cell pellets were measured. Cellular contrast agent uptake was quantified by inductively coupled plasma–atomic emission spectroscopy, which showed very high uptake compared to conventional Gd compounds. MRI demonstrated significant positive T1 contrast and stable labeling on cells. Enhancement was optimal at low Gd concentrations, attained in the 0.02 to 0.1 mM incubation concentration range (corresponding cell uptake was 7.26 to 34.1 pg Gd/cell. Cell viability and proliferation were unaffected at the concentrations tested and up to at least 3 days postlabeling. Gd2O3 is a promising sensitive and stable positive contrast agent for cellular MRI at 7 T.

  8. Detection of gastritis by /sup 99m/Tc-labeled red-blood-cell scintigraphy

    International Nuclear Information System (INIS)

    Wilton, G.P.; Wahl, R.L.; Juni, J.E.; Froelich, J.W.

    1984-01-01

    Gastritis is a common condition, with a variety of causes, that is diagnosed most often by barium upper gastrointestinal tract series or endoscopy. The authors report a case in which gastritis without active bleeding was apparent in scintiscans obtained during the evaluation of GI bleeding using /sup 99m/Tc-labeled red blood cells (TcRBC). The scintigraphic findings that suggest gastritis are described

  9. Blood volume measurements in gopher snakes, using autologous 51Cr-labeled red blood cells.

    Science.gov (United States)

    Smeller, J M; Bush, M; Seal, U S

    1978-02-01

    Blood volume determinations were performed in 5 anesthetized gopher snakes (Pituophis melanoleucus catenifer) by means of a 51Cr-labeled red blood cell (RBC) method. The mean blood volume was 52.8 ml/kg of body weight (+/- 6.21 SE). Previous blood volume measurements have not been reported for this species. The RBC survival rate was estimated to be greater than 660 days. The RBC survival rate is long, but it cannot be determined accurately by this method.

  10. Multifocal peritoneal splenosis in Tc-99m-labeled heat-denatured red blood cell scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Min Ki; Hwang, Kyung Hoon; Choe, Won Sick [Gachon University Gil Medical Center, Incheon (Korea, Republic of)

    2006-06-15

    A 44-year-old man with a past medical history of splenectomy came to hospital because of epigastric pain abdominopelvic computed tomography(CT) showed a soft tissue mass and multifocal variable-sized nodules as well as finding suggestive of cholecystitis. Subsequently, he underwent Tc-99m-labeled heat- denatured red blood cell(RBC) scintigraphy to evaluate the mass and nodules. The scintigraphy confirmed multifocal peritoneal splenosis in the abdominopelvic cavity.

  11. Fuel cells: Trends in research and applications

    Science.gov (United States)

    Appleby, A. J.

    Various aspects of fuel cells are discussed. The subjects addressed include: fuel cells for electric power production; phosphoric acid fuel cells; long-term testing of an air-cooled 2.5 kW PAFC stack in Italy; status of fuel cell research and technology in the Netherlands, Bulgaria, PRC, UK, Sweden, India, Japan, and Brazil; fuel cells from the manufacturer's viewpoint; and fuel cells using biomass-derived fuels. Also examined are: solid oxide electrolye fuel cells; aluminum-air batteries with neutral chloride electrolyte; materials research for advanced solid-state fuel cells at the Energy Research Laboratory in Denmark; molten carbonate fuel cells; the impact of the Siemens program; fuel cells at Sorapec; impact of fuel cells on the electric power generation systems in industrial and developing countries; and application of fuel cells to large vehicles.

  12. Preliminary evaluation of two radioiodinated maleimide derivatives targeting peripheral and membrane sulfhydryl groups for in vitro cell labeling

    Energy Technology Data Exchange (ETDEWEB)

    Amartey, John K., E-mail: amarjk48@hotmail.co [Cyclotron and Radiopharmaceuticals Department, P.O. Box 3354, Riyadh 11211 (Saudi Arabia); Parhar, Ranjit S. [Biological and Medical Research Department, P.O. Box 3354, Riyadh 11211 (Saudi Arabia); Shi, Yufei [Genetics Department, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211 (Saudi Arabia); Al-Mohanna, Futwan [Biological and Medical Research Department, P.O. Box 3354, Riyadh 11211 (Saudi Arabia)

    2011-01-15

    A factor impeding the advancement of cell mediated therapy is the inability to track these cells in vivo by noninvasive techniques. It has been shown that cells express high levels of sulfhydryl groups. We sought to explore these groups to covalently label cells with radiolabeled maleimide derivatives. Two maleimide derivatives; N-[2-(2,5-dioxoazolinyl)ethyl](5-iodo(3-pyridyl))carboxamide and N-[2-(2,5-dioxoazolinyl)ethyl](3-iodophenyl)carboxamide ([{sup 125}I]-4 and [{sup 125}I]-8) were synthesized and radioiodinated. These compounds were evaluated for in vitro binding to neutrophils, endothelial and mesenchymal stem cells, and biodistribution of the radiolabeled stem cells in nude mice. These radiotracers were obtained in moderate to high radiochemical yields. Binding to cells were moderate (20-60%/10{sup 6} cells) and the label was retained, although washout (an average of 18-55%) was observed depending on the cell type and the tracer used. The labeled cells initially localized in well perfused organs and at a later time showed a general distribution as expected. The novel tracers labeled several cell types and shown that the stability of the label and viability of the cells were maintained in vitro and in vivo for a reasonable period and warrant further in vivo investigation.

  13. Fluorescent labelling of DNA on superparamagnetic nanoparticles by a perylene bisimide derivative for cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Maltas, Esra, E-mail: maltasesra@gmail.com [Selcuk University, Faculty of Science, Department of Chemistry, 42075 Konya (Turkey); Malkondu, Sait [Selcuk University, Faculty of Science, Department of Chemistry, 42075 Konya (Turkey); Uyar, Pembegul [Selcuk University, Faculty of Science, Department of Biology, 42075 Konya (Turkey); Selcuk University, Advanced Technology Research and Application Center, Konya (Turkey); Ozmen, Mustafa [Selcuk University, Faculty of Science, Department of Chemistry, 42075 Konya (Turkey)

    2015-03-01

    N,N′-Bis[tris-(2-aminoethyl) amine]-3,4,9,10-perylenetetracarboxylic diimide (PBI-TRIS), nonfluorescent dye was used to fluorescent labelling of DNA. For this aim, (3-aminopropyl) triethoxysilane (APTS) modified superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized to provide a suitable surface for binding of DNA. Amine functionalized nanoparticles showed a high immobilization capacity (82.70%) at 25 mg of nanoparticle concentration for Calf thymus DNA. Binding capacity of PBI-TRIS to DNA-SPION was also found as 1.93 μM on 25 mg of nanoparticles by using UV–vis spectroscopy. Binding of PBI-TRIS to DNA onto nanoparticles was also characterized by scanning electron microscopy and infrared spectroscopy. The confocal images of PBI-TRIS labelled DNA-SPION and breast cells were taken at 488 and 561.7 nm of excitation wavelengths. Cell image was also compared with a commercial dye, DAPI at 403.7 nm of excitation wavelength. Results showed that PBI-TRIS can be used for cell staining. - Highlights: • Functionalized SPIONs were synthesized and treated with DNA. • The binding of PBI-TRIS with DNA was studied. • The image of PBI-TRIS labelled DNA-SPION was detected by a confocal microscope.

  14. Imaging viral RNA using multiply labeled tetravalent RNA imaging probes in live cells.

    Science.gov (United States)

    Alonas, Eric; Vanover, Daryll; Blanchard, Emmeline; Zurla, Chiara; Santangelo, Philip J

    2016-04-01

    Viruses represent an important class of pathogens that have had an enormous impact on the health of the human race. They are extraordinarily diverse; viral particles can range in size from ∼80nm to ∼10μm in length, and contain genomes with RNA or DNA strands. Regardless of their genome type, RNA species are frequently generated as a part of their replication process, and for viruses with RNA genomes, their loading into the virion represents a critical step in the creation of infectious particles. RNA imaging tools represent a powerful approach to gain insight into fundamental viral processes, including virus entry, replication, and virion assembly. Imaging viral processes in live cells is critical due to both the heterogeneity of these processes on a per cell basis, and the inherent dynamics of these processes. There are a number of methods for labeling RNA in live cells; we'll introduce the myriad of methods and then focus on one approach for labeling viral RNA, using multiply-labeled tetravalent RNA imaging probes (MTRIPs), which do not require engineering of the target RNAs. We feel this approach is advantageous given many viral genomes may not tolerate large nucleotide insertions into their sequences. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Targeted labeling of cancer cells using biotin tagged avidin functionalized biocompatible fluorescent nanocrystals.

    Science.gov (United States)

    Aswathy, J; Jahnavi, S; Krishna, R; Manzoor, K; Nair, Shantikumar; Menon, Deepthy

    2011-09-01

    The present study details the development of biotin tagged avidin functionalized Zinc Sulphide [ZnS] nanocrystals through a simple aqueous chemistry route at room temperature for targeted imaging applications. Surface functionalization of Manganese doped ZnS nanocrystals with L-cysteine provided functional groups that facilitated its conjugation to avidin. Further biotinylation of these particles through the strong non-covalent interaction between biotin and avidin enabled highly specific labeling of the biotin receptors on human hepatocellular carcinoma (HepG2) cells. The nanobioconjugates thus developed exhibited stable and brilliant fluorescence upon labeling the biotin receptors on cells as observed through fluorescence microscopy. Characterization studies using X-ray diffraction, dynamic light scattering as well as Fourier transform infrared spectroscopy revealed the bioconjugated particles to be appropriately functionalized and stable, with size ranging from 50 to 80 nm. Cytotoxicity of this material system evaluated using MTT, LDH leakage and apoptosis assay revealed its non-toxic nature even for high concentrations extending upto 250 microM and 48 hours of incubation. Our results confirmed that biotinylated ZnS nanocrystals offer great potential for highly specific labeling and targeted imaging of cancer cells.

  16. Diagnosis of infection by preoperative scintigraphy with indium-labeled white blood cells

    International Nuclear Information System (INIS)

    Wukich, D.K.; Abreu, S.H.; Callaghan, J.J.; Van Nostrand, D.; Savory, C.G.; Eggli, D.F.; Garcia, J.E.; Berrey, B.H.

    1987-01-01

    Scintigraphy with indium-labeled white blood cells has been reported to be sensitive and specific in the diagnosis of low-grade sepsis of the musculoskeletal system. We reviewed the records of fifty patients who had suspected osteomyelitis or suspected infection about a total joint prosthesis and who underwent scintigraphy with technetium-99m methylene diphosphonate and scintigraphy with indium-111 oxine-labeled white blood cells before an open surgical procedure. Any patient who received preoperative antibiotics was not included in the study. For all of the patients, gram-stain examination of smears, evaluation of a culture of material from the operative site, and histological examination were done. The patients were divided into two groups. Group I was composed of twenty-four patients, each of whom had a prosthesis in place and complained of pain. Group II was composed of twenty-six patients for whom a diagnosis of chronic osteomyelitis had to be considered. With the indium scans alone, there was only one false-negative result (in Group II), but there were eighteen false-positive results (eight patients in Group II and ten patients in Group I). Although scintigraphy with indium-labeled white blood cells is quite sensitive, it is not specific in detecting chronic osteomyelitis; a negative scan should be considered highly suggestive that osteomyelitis is not present. Specificity can be increased by interpreting the indium scan in conjunction with the technetium scan

  17. Fluorescent labelling of DNA on superparamagnetic nanoparticles by a perylene bisimide derivative for cell imaging

    International Nuclear Information System (INIS)

    Maltas, Esra; Malkondu, Sait; Uyar, Pembegul; Ozmen, Mustafa

    2015-01-01

    N,N′-Bis[tris-(2-aminoethyl) amine]-3,4,9,10-perylenetetracarboxylic diimide (PBI-TRIS), nonfluorescent dye was used to fluorescent labelling of DNA. For this aim, (3-aminopropyl) triethoxysilane (APTS) modified superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized to provide a suitable surface for binding of DNA. Amine functionalized nanoparticles showed a high immobilization capacity (82.70%) at 25 mg of nanoparticle concentration for Calf thymus DNA. Binding capacity of PBI-TRIS to DNA-SPION was also found as 1.93 μM on 25 mg of nanoparticles by using UV–vis spectroscopy. Binding of PBI-TRIS to DNA onto nanoparticles was also characterized by scanning electron microscopy and infrared spectroscopy. The confocal images of PBI-TRIS labelled DNA-SPION and breast cells were taken at 488 and 561.7 nm of excitation wavelengths. Cell image was also compared with a commercial dye, DAPI at 403.7 nm of excitation wavelength. Results showed that PBI-TRIS can be used for cell staining. - Highlights: • Functionalized SPIONs were synthesized and treated with DNA. • The binding of PBI-TRIS with DNA was studied. • The image of PBI-TRIS labelled DNA-SPION was detected by a confocal microscope

  18. Study of the adhesion interaction using 51Cr labelling method between the myeloma cell lines and the endothelial cells

    International Nuclear Information System (INIS)

    Zhang Xueguang; Wang Jiangfang; Mao Zijun

    1995-06-01

    Using 51 Cr labelled multiple myeloma (MM) cell lines U266/XG-7, the regulatory effect of cytokines on the adhesive interaction between myeloma-cell lines U266/XG-7 and the endothelial cells, and the effects of these cytokines on expression of adhesion molecules and secretion of other cytokines were studied. The experimental results were as follows: (1) IL-6 and IL-6 Rgp 130-associated growth factors (such as GM-CSF) are not only myeloma cell growth factors, but also can enhance the adhesion between MM cells and endothelial cells and thus facilitated the metastasis of tumor cells. (2) Cytokines could induce increase in the expression of CD54 and CD44 on the endothelial cells and the secretion of IL-6 and TNF by the endothelial cells. On the other hand, the adhesion could also cause the change of CD11a, CD54, CD44 and VLA-4 on surface of myeloma cells XG-7. Finally, the interaction between MM cells and stromal cells from murine bone marrow could rapidly induce autocrine of IL-6 in human IL-6-dependent MM cells. (3) The interaction between stromal cells and tumor cells regulated by the cytokines and adhesion molecules was a key element in the pathogenesis and development of human MM. Among these factors, VLA-4 might be one of the molecules involved in U266/XG-7-EC interaction. (5 tabs., 8 figs.)

  19. Thyroid cell lines in research on goitrogenesis.

    Science.gov (United States)

    Gerber, H; Peter, H J; Asmis, L; Studer, H

    1991-12-01

    Thyroid cell lines have contributed a lot to the understanding of goitrogenesis. The cell lines mostly used in thyroid research are briefly discussed, namely the rat thyroid cell lines FRTL and FRTL-5, the porcine thyroid cell lines PORTHOS and ARTHOS, The sheep thyroid cell lines OVNIS 5H and 6H, the cat thyroid cell lines PETCAT 1 to 4 and ROMCAT, and the human thyroid cell lines FTC-133 and HTh 74. Chinese hamster ovary (CHO) cells and COS-7 cells, stably transfected with TSH receptor cDNA and expressing a functional TSH receptor, are discussed as examples for non-thyroidal cells, transfected with thyroid genes.

  20. Selective labelling of stromal cell-derived factor 1α with carboxyfluorescein to study receptor internalisation.

    Science.gov (United States)

    Bellmann-Sickert, Kathrin; Baumann, Lars; Beck-Sickinger, Annette G

    2010-10-01

    SDF1α plays an important role in the regeneration of injured tissue after ischemia or stroke by inducing the migration of progenitor cells. In order to study the function of this therapeutically relevant chemokine site-specific protein labelling is of great interest. However, modification of SDF1α is complicated because of its complex tertiary structure. Here, we describe the first site-specific fluorescent modification of SDF1α by EPL. We recombinantly expressed SDF1α (1-49) by intein-mediated protein expression. The C-terminal peptide SDF1α (50-68) was synthesised by SPPS and selectively labelled with carboxyfluorescein at Lys(56). In a cell migration assay, M-[K(56)(CF)]SDF1α showed a clear potency to induce chemotaxis of human T-cell leukaemia cells. Microscopic analysis on HEK293 cells transfected with the CXCR4 revealed specific binding of the fluorescent ligand. Furthermore, receptor-induced internalisation of the ligand could be visualised. These results show that site-specific modification of SDF1α yields in a biologically functional molecule that allows the characterisation of CXCR4 production of cells on a molecular level. © 2010 European Peptide Society and John Wiley & Sons, Ltd.

  1. Nifedipine effect on the labelling of blood cells and plasma proteins with Tc-99m

    International Nuclear Information System (INIS)

    Gutfilen, B.; Boasquevisque, E.M.; Bernardo Filho, M.

    1988-01-01

    The labeling of red blood cells (RBC) with Tc-99m depends on the presence of stannous ion (Sn) that helps this radionuclide's fixation on the hemoglobin molecule. Nifedipine is an agent capable to block a specific way where calcius (Ca) ion acrosses the cellular membrane and to bind itself on plasma proteins. The effect of nifedipine in the labeling of RBC and plasma proteins with Tc-99m was studied because of similarities between Ca and Sn ions. Blood with anticoagulant was treated with nifedipine concentration of 10 -6 M for 15 min at 37 0 C. The labeling of RBC with Tc-99m was done incubating with Sn ion solution (3 uM) for different times. The % of radioactivity in RBC was determined. Samples of plasma were precipited with trichloroacetic acid and the % of radiocctivity in insoluble fraction was calculated. The same procedure was done using different nifedipine concentrations and the blood was incubated for 60 min with Sn ion. The determination of the % of Tc-99m labeled in RBC and plasma proteins showed that this drug does not have the capability to alter this incorporation because the results are similar to control. It is suggested that the Sn ions passage across RBC is not altered by nifedipine although this drug could bind to plasma protein, it does not modify the Tc-99m fixation on it. (author) [pt

  2. Metabolic labeling and membrane fractionation for comparative proteomic analysis of Arabidopsis thaliana suspension cell cultures.

    Science.gov (United States)

    Szymanski, Witold G; Kierszniowska, Sylwia; Schulze, Waltraud X

    2013-09-28

    Plasma membrane microdomains are features based on the physical properties of the lipid and sterol environment and have particular roles in signaling processes. Extracting sterol-enriched membrane microdomains from plant cells for proteomic analysis is a difficult task mainly due to multiple preparation steps and sources for contaminations from other cellular compartments. The plasma membrane constitutes only about 5-20% of all the membranes in a plant cell, and therefore isolation of highly purified plasma membrane fraction is challenging. A frequently used method involves aqueous two-phase partitioning in polyethylene glycol and dextran, which yields plasma membrane vesicles with a purity of 95% (1). Sterol-rich membrane microdomains within the plasma membrane are insoluble upon treatment with cold nonionic detergents at alkaline pH. This detergent-resistant membrane fraction can be separated from the bulk plasma membrane by ultracentrifugation in a sucrose gradient (2). Subsequently, proteins can be extracted from the low density band of the sucrose gradient by methanol/chloroform precipitation. Extracted protein will then be trypsin digested, desalted and finally analyzed by LC-MS/MS. Our extraction protocol for sterol-rich microdomains is optimized for the preparation of clean detergent-resistant membrane fractions from Arabidopsis thaliana cell cultures. We use full metabolic labeling of Arabidopsis thaliana suspension cell cultures with K(15)NO3 as the only nitrogen source for quantitative comparative proteomic studies following biological treatment of interest (3). By mixing equal ratios of labeled and unlabeled cell cultures for joint protein extraction the influence of preparation steps on final quantitative result is kept at a minimum. Also loss of material during extraction will affect both control and treatment samples in the same way, and therefore the ratio of light and heave peptide will remain constant. In the proposed method either labeled or

  3. Rhenium-188-labeled anti-neural cell adhesion molecule antibodies with 2-iminothiolane modification for targeting small-cell lung cancer.

    Science.gov (United States)

    Hosono, M N; Hosono, M; Mishra, A K; Faivre-Chauvet, A; Gautherot, E; Barbet, J; Knapp, F F; Chatal, J F

    2000-06-01

    We have evaluated the potential of 188Re-labeled monoclonal antibodies (MAbs) modified with 2-iminothiolane (2IT) for targeting small-cell lung cancer (SCLC). Radiolabeled MAbs NK1NBL1 and C218 recognizing neural cell adhesion molecule were injected i.v. into athymic mice inoculated with human SCLC tumors, and the biodistribution was examined. NK1NBL1 localized in the tumors better than C218. 188Re-labeled MAbs cleared from the blood faster than 125I-labeled counterparts, resulting in higher tumor-to-blood ratios. In conclusion, the 188Re-labeled MAbs are attractive candidates for imaging and therapy of SCLC.

  4. Connected components labeling for giga-cell multi-categorical rasters

    Science.gov (United States)

    Netzel, Pawel; Stepinski, Tomasz F.

    2013-09-01

    Labeling of connected components in an image or a raster of non-imagery data is a fundamental operation in fields of pattern recognition and machine intelligence. The bulk of effort devoted to designing efficient connected components labeling (CCL) algorithms concentrated on the domain of binary images where labeling is required for a computer to recognize objects. In contrast, in the Geographical Information Science (GIS) a CCL algorithm is mostly applied to multi-categorical rasters in order to either convert a raster to a shapefile, or for statistical characterization of individual clumps. Recently, it has become necessary to label connected components in very large, giga-cell size, multi-categorical rasters but performance of existing CCL algorithms lacks sufficient speed to accomplish such task. In this paper we present a modification to the popular two-scan CCL algorithm that enables labeling of giga-cell size, multi-categorical rasters. Our approach is to apply a divide-and-conquer technique coupled with parallel processing to a standard two-scan algorithm. For specificity, we have developed a variant of a standard CCL algorithm implemented as r.clump in GRASS GIS. We have established optimal values of data blocks (stemming from the divide-and-conquer technique) and optimal number of computational threads (stemming from parallel processing) for a new algorithm called r.clump3p. The performance of the new algorithm was tested on a series of rasters up to 160 Mcells in size; for largest size test raster a speed up over the original algorithm is 74 times. Finally, we have applied the new algorithm to the National Land Cover Dataset 2006 raster with 1.6×1010 cells. Labeling this raster took 39 h using two-processors, 16 cores computer and resulted in 221,718,501 clumps. Estimated speed up over the original algorithm is 450 times. The r.clump3p works within the GRASS environment and is available in the public domain.

  5. Laser microbeam abalation of GFP-labeled nuclear organelles in a living cell.

    Science.gov (United States)

    LaMorte, Vickie J.; Krasieva, Tatiana B.; Evans, Ronald M.; Berns, Michael W.; Tromberg, Bruce J.

    1997-05-01

    Cancer, development, cellular growth and differentiation are governed by gene expression. Recent molecular and cellular advances to visualize and perturb the pathways of transcriptional regulation, nascent RNA processing, and protein trafficking at the single cell level have been developed. More recently, applications utilizing the green fluorescent marker (GFP) from Aequorea victoria have facilitated visualization of these molecular events in a living cell. Specifically, we will describe a novel approach to perturb cellular processes by labeling discrete cellular components of interest with GFP and subsequently altering/ablating them with a laser microbeam.

  6. Metabolic labeling with (14C)-glucose of bloodstream and cell culture trypanosoma cruzi trypomastigotes:

    International Nuclear Information System (INIS)

    Lederkremer, R.M. de; Groisman, J.F.; Lima, C.; Katzin, A.

    1990-01-01

    Trypomastigote forms of Trypanosoma cruzi from infected mouse blood and from cell culture were metabolically labeled by incubation with D-( 14 C)-glucose. Analysis by polyacrylamide gel electrophoresis of lysates from parasites of two strains (RA and CA 1 ) showed a significantly different pattern. The difference was mainly quantitative when the blood and cell culture trypomastigotes of the RA strain were compared. Analysis of the culture medium by paper electrophoresis showed an anionic exometabolite only in the blood forms of both strains. (Author) [es

  7. A method for double-labeling sputum cells for p53 and cytokeratin

    International Nuclear Information System (INIS)

    Neft, R.E.; Tierney, L.A.; Belinsky, S.A.

    1995-01-01

    Molecular and immunological techniques may enhance the usefulness of sputum cytology as a screening tool for lung cancer. These techniques may also be useful in detecting and following the early progression of disease from metaplasia to dysplasia, carcinoma in situ, and finally to invasive carcinoma. Longitudinal information on the evolution of these malignant changes in the respiratory epithelium can be gained by prospective study of populations at high risk for lung cancer. This work is significant because double-labeling of cells in sputum with p53 and cytokeratin antibodies facilitates rapid screening of p53 positive neoplastic and preneoplastic lung cells by brightfield and fluorescence microscopy

  8. A method for double-labeling sputum cells for p53 and cytokeratin

    Energy Technology Data Exchange (ETDEWEB)

    Neft, R.E.; Tierney, L.A.; Belinsky, S.A. [and others

    1995-12-01

    Molecular and immunological techniques may enhance the usefulness of sputum cytology as a screening tool for lung cancer. These techniques may also be useful in detecting and following the early progression of disease from metaplasia to dysplasia, carcinoma in situ, and finally to invasive carcinoma. Longitudinal information on the evolution of these malignant changes in the respiratory epithelium can be gained by prospective study of populations at high risk for lung cancer. This work is significant because double-labeling of cells in sputum with p53 and cytokeratin antibodies facilitates rapid screening of p53 positive neoplastic and preneoplastic lung cells by brightfield and fluorescence microscopy.

  9. A new 99mTc-red blood cell labeling procedure for cardiac blood pool imaging: Clinical results

    International Nuclear Information System (INIS)

    Kelbaek, H.; Buelow, K.; Aldershvile, J.; Moegelyang, J.; Nielsen, S.L.; Copenhagen Univ.

    1989-01-01

    The first clinical results of a new 99m Tc-red blood cell labeling procedure avoiding cell centrifugation are presented. One ml heparinized blood samples were incubated with small amounts of a stannous kit. By titration studies, ideal quantities of sodium hypochlorite for oxidation of extracellular tin and of EDTA as stabilizer of the label were found. The Cl - concentration and pH of the labeled blood were acceptable, and EDTA increased labeling yield and stability determined in vitro by a few percent. The new procedure gave a slightly higher labeling yield than a current technique using centrifugation of cells. Labeling efficiency expressed as cell bound/total activity was 96.6%±1.3% in healthy subjects and 95.5%±2.2% in cardiac patients and remained high for 2 h after reinjection. The biological halflife of labeled cells following the new procedure was 11-12 h rendering it suitable for serial determinations of radionuclide cardiography. (orig.)

  10. Near-infrared emitting fluorescent nanocrystals-labeled natural killer cells as a platform technology for the optical imaging of immunotherapeutic cells-based cancer therapy

    International Nuclear Information System (INIS)

    Lim, Yong Taik; Cho, Mi Young; Noh, Young-Woock; Chung, Bong Hyun; Chung, Jin Woong

    2009-01-01

    This study describes the development of near-infrared optical imaging technology for the monitoring of immunotherapeutic cell-based cancer therapy using natural killer (NK) cells labeled with fluorescent nanocrystals. Although NK cell-based immunotherapeutic strategies have drawn interest as potent preclinical or clinical methods of cancer therapy, there are few reports documenting the molecular imaging of NK cell-based cancer therapy, primarily due to the difficulty of labeling of NK cells with imaging probes. Human natural killer cells (NK92MI) were labeled with anti-human CD56 antibody-coated quantum dots (QD705) for fluorescence imaging. FACS analysis showed that the NK92MI cells labeled with anti-human CD56 antibody-coated QD705 have no effect on the cell viability. The effect of anti-human CD56 antibody-coated QD705 labeling on the NK92MI cell function was investigated by measuring interferon gamma (IFN- γ) production and cytolytic activity. Finally, the NK92MI cells labeled with anti-human CD56 antibody-coated QD705 showed a therapeutic effect similar to that of unlabeled NK92MI cells. Images of intratumorally injected NK92MI cells labeled with anti-human CD56 antibody-coated could be acquired using near-infrared optical imaging both in vivo and in vitro. This result demonstrates that the immunotherapeutic cells labeled with fluorescent nanocrystals can be a versatile platform for the effective tracking of injected therapeutic cells using optical imaging technology, which is very important in cell-based cancer therapies.

  11. Accurate and sensitive determination of molar fractions of {sup 13}C-Labeled intracellular metabolites in cell cultures grown in the presence of isotopically-labeled glucose

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Fernández, Mario [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo (Spain); Rodríguez-González, Pablo, E-mail: rodriguezpablo@uniovi.es [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo (Spain); Hevia Sánchez, David; González-Menéndez, Pedro; Sainz Menéndez, Rosa M. [University Institute of Oncology (IUOPA), University of Oviedo, Julián Clavería 6, 33006 Oviedo (Spain); García Alonso, J. Ignacio [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo (Spain)

    2017-05-29

    This work describes a methodology based on multiple linear regression and GC-MS for the determination of molar fractions of isotopically-labeled intracellular metabolites in cell cultures. Novel aspects of this work are: i) the calculation of theoretical isotopic distributions of the different isotopologues from an experimentally measured value of % 13C enrichment of the labeled precursor ii) the calculation of the contribution of lack of mass resolution of the mass spectrometer and different fragmentation mechanism such as the loss or gain of hydrogen atoms in the EI source to measure the purity of the selected cluster for each metabolite and iii) the validation of the methodology not only by the analysis of gravimetrically prepared mixtures of isotopologues but also by the comparison of the obtained molar fractions with experimental values obtained by GC-Combustion-IRMS based on {sup 13}C/{sup 12}C isotope ratio measurements. The method is able to measure molar fractions for twenty-eight intracellular metabolites derived from glucose metabolism in cell cultures grown in the presence of {sup 13}C-labeled Glucose. The validation strategies demonstrate a satisfactory accuracy and precision of the proposed procedure. Also, our results show that the minimum value of {sup 13}C incorporation that can be accurately quantified is significantly influenced by the calculation of the spectral purity of the measured cluster and the number of {sup 13}C atoms of the labeled precursor. The proposed procedure was able to accurately quantify gravimetrically prepared mixtures of natural and labeled glucose molar fractions of 0.07% and mixtures of natural and labeled glycine at molar fractions down to 0.7%. The method was applied to initial studies of glucose metabolism of different prostate cancer cell lines. - Highlights: • Determination of molar fractions of {sup 13}C-labeled metabolites in cell cultures. • The method is based on multiple linear regression and GC-MS.

  12. Label free quantitative proteomics analysis on the cisplatin resistance in ovarian cancer cells.

    Science.gov (United States)

    Wang, F; Zhu, Y; Fang, S; Li, S; Liu, S

    2017-05-20

    Quantitative proteomics has been made great progress in recent years. Label free quantitative proteomics analysis based on the mass spectrometry is widely used. Using this technique, we determined the differentially expressed proteins in the cisplatin-sensitive ovarian cancer cells COC1 and cisplatin-resistant cells COC1/DDP before and after the application of cisplatin. Using the GO analysis, we classified those proteins into different subgroups bases on their cellular component, biological process, and molecular function. We also used KEGG pathway analysis to determine the key signal pathways that those proteins were involved in. There are 710 differential proteins between COC1 and COC1/DDP cells, 783 between COC1 and COC1/DDP cells treated with cisplatin, 917 between the COC1/DDP cells and COC1/DDP cells treated with LaCl3, 775 between COC1/DDP cells treated with cisplatin and COC1/DDP cells treated with cisplatin and LaCl3. Among the same 411 differentially expressed proteins in cisplatin-sensitive COC1 cells and cisplain-resistant COC1/DDP cells before and after cisplatin treatment, 14% of them were localized on the cell membrane. According to the KEGG results, differentially expressed proteins were classified into 21 groups. The most abundant proteins were involved in spliceosome. This study lays a foundation for deciphering the mechanism for drug resistance in ovarian tumor.

  13. In vivo transfer of intracellular labels from locally implanted bone marrow stromal cells to resident tissue macrophages.

    Directory of Open Access Journals (Sweden)

    Edyta Pawelczyk

    Full Text Available Intracellular labels such as dextran coated superparamagnetic iron oxide nanoparticles (SPION, bromodeoxyuridine (BrdU or green fluorescent protein (GFP are frequently used to study the fate of transplanted cells by in vivo magnetic resonance imaging or fluorescent microscopy. Bystander uptake of labeled cells by resident tissue macrophages (TM can confound the interpretation of the presence of intracellular labels especially during direct implantation of cells, which can result in more than 70% cell death. In this study we determined the percentages of TM that took up SPION, BrdU or GFP from labeled bone marrow stromal cells (BMSCs that were placed into areas of angiogenesis and inflammation in a mouse model known as Matrigel plaque perfusion assay. Cells recovered from digested plaques at various time points were analyzed by fluorescence microscopy and flow cytometry. The analysis of harvested plaques revealed 5% of BrdU(+, 5-10% of GFP(+ and 5-15% of dextran(+ macrophages. The transfer of the label was not dependent on cell dose or viability. Collectively, this study suggests that care should be taken to validate donor origin of cells using an independent marker by histology and to assess transplanted cells for TM markers prior to drawing conclusions about the in vivo behavior of transplanted cells.

  14. Evaluating the effect of ultrasmall superparamagnetic iron oxide nanoparticles for a long-term magnetic cell labeling

    Directory of Open Access Journals (Sweden)

    Saeed Shanehsazzadeh

    2013-01-01

    Full Text Available In order to evaluate the long-term viability, the iron content stability, and the labeling efficiency of mammalian cells using magnetic cell labeling; dextran-coated ultrasmall superparamagnetic iron oxide (USPIOs nanoparticles with plain surfaces having a hydrodynamic size of 25 nm were used for this study. Tests were carried out in four groups each containing 5 flasks of 5.5 × 10 6 AD-293 embryonic kidney cells. The cell lines were incubated for 24 h using four different iron concentrations with and without protamine sulfate (Pro, washed with phosphate-buffered saline (PBS and centrifuged three times to remove the unbounded USPIOs. Cell viability was also verified using USPIOs. There were no significant differences in the cell viability between the control group of cells and those groups with iron uptake at the specified iron concentrations. The average iron uptake ratio compared to that of the control group was (114 ± 1. The magnetic resonance images (MRI at post-labeling day 1 and day 21 showed (75 ± 4% and (22 ± 5% signal decrements compared to that of the control, respectively. The Perl′s Prussian blue test showed that 98% of the cells were labeled, and the iron concentration within the media did not affect the cell iron uptake. Magnetic cellular labeling with the USPIO-Pro complex had no short or medium term (3 weeks toxic effects on AD-293 embryonic kidney cells.

  15. Effect of paclitaxel, epirubicin and tamoxifen on labelling index in cultured ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Arican, G. Oe.; Oezalpan, A.

    2001-01-01

    The effect of Paclitaxel (PAC), Epirubicin (EPR) and Tamoxifen (TAM) on ''3H-thymidine labelling index (''3H-TdR LI) of Ehrlich ascites tumor cells (EAT) was investigated in cultured. In the present study, an estrogen receptor positive ER(+) hyper diploid cell lines were studied. We used optimum doses of PAC, EPR and TAM (12 mg/ml, 12 mg/ml and 2 mg/ml, respectively). Cells were treated with these doses for 0, 4, 8, 16 and 32 hours. At the end of these periods, both control and treated cells were labelled for 5 mCi/ml 3H-thymidine for 30 minutes. The results showed that inhibition of DNA synthesis in cultured EAT cells were increased in the combined treatment of two drugs when compared to the treatment of a single drug (p<0.01). In the treatment of three drugs, however, this effect reached a maximum (p<0.001). As a result, PAC+EPR+TAM treatment's had a maximum synergistic effect at 4 hours treatment

  16. Setting FIRES to Stem Cell Research

    Science.gov (United States)

    Miller, Roxanne Grietz

    2005-01-01

    The goal of this lesson is to present the basic scientific knowledge about stem cells, the promise of stem cell research to medicine, and the ethical considerations and arguments involved. One of the challenges of discussing stem cell research is that the field is constantly evolving and the most current information changes almost daily. Few…

  17. Suicide of EMT-6 tumor cells by decays from radioactively-labelled sensitizer adducts

    International Nuclear Information System (INIS)

    Roa, W.H.Y.; Chapman, J.D.

    1987-01-01

    Nitroaromatic radiosensitizers become metabolically bound preferentially to hypoxic cells and at least 10/sup 9/ adducts/cell can be tolerated as non-toxic. EMT-6 tumor cells have been incubated in hypoxia in the presence of /sup 3/H-Misonidazole and /sup 125/I-Azomycin Riboside for various times and the amount of /sup 3/H or /sup 125/I bound/cell was determined. Cells were stored as monolayers at 25 0 C for up to 96 hr to accumulate radioactive decays and transferred at various times to 37 0 C for colony-forming assays. No radiation inactivation was measured in cells which had incorporated at least 10/sup 6/ /sup 3/H or 10/sup 5/ /sup 125/I atoms. Previous studies had shown that -- 1% of MISO adducts to EMT-6 cells was associated with cellular DNA. These data indicate that the radiation-induced damage produced by these quantities of bound /sup 3/H or /sup 125/I causes little or not cell inactivation. The results of current studies to measure the colony-forming ability of sensitizer-labelled cells which have been stored in liquid nitrogen to facilitate the accumulation of more decays will be reported. These data suggest that a ''sensitizer-adduct suicide technique'' as a hypoxic cell selective adjunct to other cancer therapies is not feasible. These data are also instructive for those who attempt to develop radiolabelled ''tumor specific'' antibodies for therapeutic purposes

  18. Artificial intelligence in label-free microscopy biological cell classification by time stretch

    CERN Document Server

    Mahjoubfar, Ata; Jalali, Bahram

    2017-01-01

    This book introduces time-stretch quantitative phase imaging (TS-QPI), a high-throughput label-free imaging flow cytometer developed for big data acquisition and analysis in phenotypic screening. TS-QPI is able to capture quantitative optical phase and intensity images simultaneously, enabling high-content cell analysis, cancer diagnostics, personalized genomics, and drug development. The authors also demonstrate a complete machine learning pipeline that performs optical phase measurement, image processing, feature extraction, and classification, enabling high-throughput quantitative imaging that achieves record high accuracy in label -free cellular phenotypic screening and opens up a new path to data-driven diagnosis. • Demonstrates how machine learning is used in high-speed microscopy imaging to facilitate medical diagnosis; • Provides a systematic and comprehensive illustration of time stretch technology; • Enables multidisciplinary application, including industrial, biomedical, and artificial intell...

  19. Report of the research co-ordination meeting on labelling techniques of biomolecules for targeted radiotherapy

    International Nuclear Information System (INIS)

    2000-01-01

    The CRP's focus is on the preparation of site-specific radiopharmaceuticals labelled with β-emitters for the treatment of cancer. The radiopharmaceuticals should be designed in such a way to deliver the therapeutic doses with high specificity to tumour sites and with minimum dose to other organs. The 2. Research Co-ordination Meeting (RCM) took place in Mumbai, India from 31 January to 4 February 2000. The present report includes the results of all the participants including the report of the participant from Pakistan who could not attend the meeting. During the second RCM, three main aspects were dealt with viz. the different therapeutic isotopes studied, different carrier molecules like peptides and antibody and the biological aspects of these preparations

  20. Report of the research co-ordination meeting on labelling techniques of biomolecules for targeted radiotherapy

    International Nuclear Information System (INIS)

    2000-01-01

    The CRP's focus is on the preparation of site-specific radiopharmaceuticals labelled with with β - emitters for the treatment of cancer. The radiopharmaceuticals should be designed in such a way to deliver the therapeutic doses with high specificity to tumour sites and with minimum dose to other organs. The 2nd Research Co-ordination Meeting (RCM) took place in Mumbai, India from 31 January to 4 February 2000. The present report includes the results of all the participants including the report of the participant from Pakistan who could not attend the meeting. During the second RCM, three main aspects were dealt with viz. the different therapeutic isotopes studied, different carrier molecules like peptides and antibody and the biological aspects of these preparations

  1. Human induced pluripotent stem cells labeled with fluorescent magnetic nanoparticles for targeted imaging and hyperthermia therapy for gastric cancer

    International Nuclear Information System (INIS)

    Li, Chao; Ruan, Jing; Yang, Meng; Pan, Fei; Gao, Guo; Qu, Su; Shen, You-Lan; Dang, Yong-Jun; Wang, Kan; Jin, Wei-Lin; Cui, Da-Xiang

    2015-01-01

    Human induced pluripotent stem (iPS) cells exhibit great potential for generating functional human cells for medical therapies. In this paper, we report for use of human iPS cells labeled with fluorescent magnetic nanoparticles (FMNPs) for targeted imaging and synergistic therapy of gastric cancer cells in vivo. Human iPS cells were prepared and cultured for 72 h. The culture medium was collected, and then was co-incubated with MGC803 cells. Cell viability was analyzed by the MTT method. FMNP-labeled human iPS cells were prepared and injected into gastric cancer-bearing nude mice. The mouse model was observed using a small-animal imaging system. The nude mice were irradiated under an external alternating magnetic field and evaluated using an infrared thermal mapping instrument. Tumor sizes were measured weekly. iPS cells and the collected culture medium inhibited the growth of MGC803 cells. FMNP-labeled human iPS cells targeted and imaged gastric cancer cells in vivo, as well as inhibited cancer growth in vivo through the external magnetic field. FMNP-labeled human iPS cells exhibit considerable potential in applications such as targeted dual-mode imaging and synergistic therapy for early gastric cancer

  2. Propanolol, Ciclosporine, Adryamicine, nifedipine and the in vitro labelling of red blood cells with 99mtechnetium

    International Nuclear Information System (INIS)

    Cardoso, V.N.; Diniz, S.O.F.; Roca, M.; Martin-Comin, J.

    2002-01-01

    Objectives: To evaluate the possible influence of Propanolol, Ciclosporine, Adryamicine and Nifedipine on the labelling in vitro of red blood cells. Materials And Methods: 20 ml of blood were withdrawn from 40 healthy volunteers that have not used drug seven days before of experiments. 2,0ml aliquots of each sample were incubated at 37 deg. C for 30 min with different concentrations of drugs to the two labelling method used. In the simple method 60ml of stannous chloride solution (10,2 m g/ml) were added and the samples centrifuged at 1000g for 5 min and plasma and blood cells were isolated. After that, 2,0ml of saline, 0,2 ml of EDTA (2,2%) and 7,4 MBq of 99m Tc were also added. To the hypochlorite method the blood samples were incubated with SnCl 2 (10,2m g/ml) for 5 min. After this period of time, 40ml of NaClO solution (1%) and all the reagents mentioned to simple method were added. The samples were centrifuged and labelling yield was calculated to both methods. Conclusions: The analysis of the results shows that using the two methods described there are no significant differences on the in vitro labelling of RBC with 99m Tc at the used concentrations of all of these studied drugs. We can speculate that the interferences observed in vivo may be due the presence of active metabolites or interactions among different drugs

  3. Serial in vivo imaging of the porcine heart after percutaneous, intramyocardially injected 111In-labeled human mesenchymal stromal cells

    DEFF Research Database (Denmark)

    Lyngbaek, Stig; Ripa, Rasmus S; Haack-Sørensen, Mandana

    2010-01-01

    This pilot trial aimed to investigate the utilization of (111)In-labeling of mesenchymal stromal cells (MSC) for in vivo tracking after intramyocardial transplantation in a xenotransplantation model with gender mismatched cells. Human male MSC were expanded ex vivo and labeled with (111)In-tropol...... of (111)In-labeled cells for tracking. The results further suggest that xenografting of human MSC into porcine hearts leads to inflammation contradicting previous studies implying a special immunoprivileged status for MSC.......This pilot trial aimed to investigate the utilization of (111)In-labeling of mesenchymal stromal cells (MSC) for in vivo tracking after intramyocardial transplantation in a xenotransplantation model with gender mismatched cells. Human male MSC were expanded ex vivo and labeled with (111)In......-tropolone. Ten female pigs were included. The labeled cells were transplanted intramyocardially using a percutaneous injection system. The (111)In activity was determined using gamma camera imaging. Excised hearts were analyzed by fluorescence in situ hybridization (FISH) and microscopy. Gamma camera imaging...

  4. Serial in vivo imaging of the porcine heart after percutaneous, intramyocardially injected (111)In-labeled human mesenchymal stromal cells

    DEFF Research Database (Denmark)

    Lyngbæk, Stig; Ripa, Rasmus Sejersten; Haack-Sørensen, Mandana

    2009-01-01

    This pilot trial aimed to investigate the utilization of (111)In-labeling of mesenchymal stromal cells (MSC) for in vivo tracking after intramyocardial transplantation in a xenotransplantation model with gender mismatched cells. Human male MSC were expanded ex vivo and labeled with (111)In-tropol...... of (111)In-labeled cells for tracking. The results further suggest that xenografting of human MSC into porcine hearts leads to inflammation contradicting previous studies implying a special immunoprivileged status for MSC.......This pilot trial aimed to investigate the utilization of (111)In-labeling of mesenchymal stromal cells (MSC) for in vivo tracking after intramyocardial transplantation in a xenotransplantation model with gender mismatched cells. Human male MSC were expanded ex vivo and labeled with (111)In......-tropolone. Ten female pigs were included. The labeled cells were transplanted intramyocardially using a percutaneous injection system. The (111)In activity was determined using gamma camera imaging. Excised hearts were analyzed by fluorescence in situ hybridization (FISH) and microscopy. Gamma camera imaging...

  5. The Non-Specific Binding of Fluorescent-Labeled MiRNAs on Cell Surface by Hydrophobic Interaction.

    Directory of Open Access Journals (Sweden)

    Ting Lu

    Full Text Available MicroRNAs are small noncoding RNAs about 22 nt long that play key roles in almost all biological processes and diseases. The fluorescent labeling and lipofection are two common methods for changing the levels and locating the position of cellular miRNAs. Despite many studies about the mechanism of DNA/RNA lipofection, little is known about the characteristics, mechanisms and specificity of lipofection of fluorescent-labeled miRNAs.Therefore, miRNAs labeled with different fluorescent dyes were transfected into adherent and suspension cells using lipofection reagent. Then, the non-specific binding and its mechanism were investigated by flow cytometer and laser confocal microscopy. The results showed that miRNAs labeled with Cy5 (cyanine fluorescent dye could firmly bind to the surface of adherent cells (Hela and suspended cells (K562 even without lipofection reagent. The binding of miRNAs labeled with FAM (carboxyl fluorescein to K562 cells was obvious, but it was not significant in Hela cells. After lipofectamine reagent was added, most of the fluorescently labeled miRNAs binding to the surface of Hela cells were transfected into intra-cell because of the high transfection efficiency, however, most of them were still binding to the surface of K562 cells. Moreover, the high-salt buffer which could destroy the electrostatic interactions did not affect the above-mentioned non-specific binding, but the organic solvent which could destroy the hydrophobic interactions eliminated it.These results implied that the fluorescent-labeled miRNAs could non-specifically bind to the cell surface by hydrophobic interaction. It would lead to significant errors in the estimation of transfection efficiency only according to the cellular fluorescence intensity. Therefore, other methods to evaluate the transfection efficiency and more appropriate fluorescent dyes should be used according to the cell types for the accuracy of results.

  6. Studies on the cytotoxic activity of human lymphoid cells using 51Cr-labeled target cells, (1)

    International Nuclear Information System (INIS)

    Nanba, Hidehiro

    1979-01-01

    Normal human lymphoid cells were used as effector cells and 51 Cr-labeled chicken erythrocytes as target cells. PHA-induced cellular cytotoxicity (PICC) was optimally obtained with 5 μ1 of PHA at an effector-to-target cell ratio of 25 : 1. The tubes were incubated at 37 0 C for 24 h in an atmosphere of 5% CO 2 and humidified air. PICC was demonstrable in all normal human samples tested. The activity, however, varied from one individual to another. Sequential studies done on several samples of peripheral blood lymphocytes derived from the same individual demonstrated that PICC Activity remains relatively constant for each individual. If PICC measures potentially activated cytotoxic cells, it may be serve as a good test of this activity in patients recieving various immune modalities. (author)

  7. Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells

    Directory of Open Access Journals (Sweden)

    Varela Juan A

    2012-09-01

    Full Text Available Abstract Background Nanoparticles (NPs are currently used in a wide variety of fields such as technology, medicine and industry. Due to the novelty of these applications and to ensure their success, a precise characterization of the interactions between NPs and cells is essential. Findings The current study explores the uptake of polystyrene NPs by 1321N1 human astrocytoma and A549 human lung carcinoma cell lines. In this work we show for the first time a comparison of the uptake rates of fluorescently labeled carboxylated polystyrene (PS NPs of different sizes (20, 40 and 100 nm in two different cell types, keeping the number of NPs per unit volume constant for all sizes. We propose a reliable methodology to control the dose of fluorescently labeled NPs, by counting individual NPs using automated particle detection from 3D confocal microscopy images. The possibility of detecting individual NPs also allowed us to calculate the size of each nanoparticle and compare the fluorescence of single NPs across different sizes, thereby providing a robust platform for normalization of NP internalization experiments as measured by flow cytometry. Conclusions Our findings show that 40 nm NPs are internalized faster than 20 nm or 100 nm particles in both cell lines studied, suggesting that there is a privileged size gap in which the internalization of NPs is higher.

  8. In Vitro Osteogenic Potential of Green Fluorescent Protein Labelled Human Embryonic Stem Cell-Derived Osteoprogenitors

    Directory of Open Access Journals (Sweden)

    Intekhab Islam

    2016-01-01

    Full Text Available Cellular therapy using stem cells in bone regeneration has gained increasing interest. Various studies suggest the clinical utility of osteoprogenitors-like mesenchymal stem cells in bone regeneration. However, limited availability of mesenchymal stem cells and conflicting evidence on their therapeutic efficacy limit their clinical application. Human embryonic stem cells (hESCs are potentially an unlimited source of healthy and functional osteoprogenitors (OPs that could be utilized for bone regenerative applications. However, limited ability to track hESC-derived progenies in vivo greatly hinders translational studies. Hence, in this study, we aimed to establish hESC-derived OPs (hESC-OPs expressing green fluorescent protein (GFP and to investigate their osteogenic differentiation potential in vitro. We fluorescently labelled H9-hESCs using a plasmid vector encoding GFP. The GFP-expressing hESCs were differentiated into hESC-OPs. The hESC-OPsGFP+ stably expressed high levels of GFP, CD73, CD90, and CD105. They possessed osteogenic differentiation potential in vitro as demonstrated by increased expression of COL1A1, RUNX2, OSTERIX, and OPG transcripts and mineralized nodules positive for Alizarin Red and immunocytochemical expression of osteocalcin, alkaline phosphatase, and collagen-I. In conclusion, we have demonstrated that fluorescently labelled hESC-OPs can maintain their GFP expression for the long term and their potential for osteogenic differentiation in vitro. In future, these fluorescently labelled hESC-OPs could be used for noninvasive assessment of bone regeneration, safety, and therapeutic efficacy.

  9. Cryopreservation of embryonic stem cell-derived multicellular neural aggregates labeled with micron-sized particles of iron oxide for magnetic resonance imaging.

    Science.gov (United States)

    Yan, Yuanwei; Sart, Sébastien; Calixto Bejarano, Fabian; Muroski, Megan E; Strouse, Geoffrey F; Grant, Samuel C; Li, Yan

    2015-01-01

    Magnetic resonance imaging (MRI) provides an effective approach to track labeled pluripotent stem cell (PSC)-derived neural progenitor cells (NPCs) for neurological disorder treatments after cell labeling with a contrast agent, such as an iron oxide derivative. Cryopreservation of pre-labeled neural cells, especially in three-dimensional (3D) structure, can provide a uniform cell population and preserve the stem cell niche for the subsequent applications. In this study, the effects of cryopreservation on PSC-derived multicellular NPC aggregates labeled with micron-sized particles of iron oxide (MPIO) were investigated. These NPC aggregates were labeled prior to cryopreservation because labeling thawed cells can be limited by inefficient intracellular uptake, variations in labeling efficiency, and increased culture time before use, minimizing their translation to clinical settings. The results indicated that intracellular MPIO incorporation was retained after cryopreservation (70-80% labeling efficiency), and MPIO labeling had little adverse effects on cell recovery, proliferation, cytotoxicity and neural lineage commitment post-cryopreservation. MRI analysis showed comparable detectability for the MPIO-labeled cells before and after cryopreservation indicated by T2 and T2* relaxation rates. Cryopreserving MPIO-labeled 3D multicellular NPC aggregates can be applied in in vivo cell tracking studies and lead to more rapid translation from preservation to clinical implementation. © 2015 American Institute of Chemical Engineers.

  10. Uptake of label-free graphene oxide by Caco-2 cells is dependent on the cell differentiation status.

    Science.gov (United States)

    Kucki, Melanie; Diener, Liliane; Bohmer, Nils; Hirsch, Cordula; Krug, Harald F; Palermo, Vincenzo; Wick, Peter

    2017-06-21

    Understanding the interaction of graphene-related materials (GRM) with human cells is a key to the assessment of their potential risks for human health. There is a knowledge gap regarding the potential uptake of GRM by human intestinal cells after unintended ingestion. Therefore the aim of our study was to investigate the interaction of label-free graphene oxide (GO) with the intestinal cell line Caco-2 in vitro and to shed light on the influence of the cell phenotype given by the differentiation status on cellular uptake behaviour. Internalisation of two label-free GOs with different lateral size and thickness by undifferentiated and differentiated Caco-2 cells was analysed by scanning electron microscopy and transmission electron microscopy. Semi-quantification of cells associated with GRM was performed by flow cytometry. Undifferentiated Caco-2 cells showed significant amounts of cell-associated GRM, whereas differentiated Caco-2 cells exhibited low adhesion of GO sheets. Transmission electron microscopy analysis revealed internalisation of both applied GO (small and large) by undifferentiated Caco-2 cells. Even large GO sheets with lateral dimensions up to 10 µm, were found internalised by undifferentiated cells, presumably by macropinocytosis. In contrast, no GO uptake could be found for differentiated Caco-2 cells exhibiting an enterocyte-like morphology with apical brush border. Our results show that the internalisation of GO is highly dependent on the cell differentiation status of human intestinal cells. During differentiation Caco-2 cells undergo intense phenotypic changes which lead to a dramatic decrease in GRM internalisation. The results support the hypothesis that the cell surface topography of differentiated Caco-2 cells given by the brush border leads to low adhesion of GO sheets and sterical hindrance for material uptake. In addition, the mechanical properties of GRM, especially flexibility of the sheets, seem to be an important factor for

  11. 18F-FDG-labeled red blood cell PET for blood-pool imaging: preclinical evaluation in rats.

    Science.gov (United States)

    Matsusaka, Yohji; Nakahara, Tadaki; Takahashi, Kazuhiro; Iwabuchi, Yu; Nishime, Chiyoko; Kajimura, Mayumi; Jinzaki, Masahiro

    2017-12-01

    Red blood cells (RBCs) labeled with single-photon emitters have been clinically used for blood-pool imaging. Although some PET tracers have been introduced for blood-pool imaging, they have not yet been widely used. The present study investigated the feasibility of labeling RBCs with 18 F-2-deoxy-2-fluoro-D-glucose ( 18 F-FDG) for blood-pool imaging with PET. RBCs isolated from venous blood of rats were washed with glucose-free phosphate-buffered saline and labeled with 18 F-FDG. To optimize labeling efficiency, the effects of glucose deprivation time and incubation (labeling) time with 18 F-FDG were investigated. Post-labeling stability was assessed by calculating the release fraction of radioactivity and identifying the chemical forms of 18 F in the released and intracellular components of 18 F-FDG-labeled RBCs incubated in plasma. Just after intravenous injection of the optimized autologous 18 F-FDG-labeled RBCs, dynamic PET scans were performed to evaluate in vivo imaging in normal rats and intraabdominal bleeding models (temporary and persistent bleeding). The optimal durations of glucose deprivation and incubation (labeling) with 18 F-FDG were 60 and 30 min, respectively. As low as 10% of 18 F was released as the form of 18 F-FDG from 18 F-FDG-labeled RBCs after a 60-min incubation. Dynamic PET images of normal rats showed strong persistence in the cardiovascular system for at least 120 min. In the intraabdominal bleeding models, 18 F-FDG-labeled RBC PET visualized the extravascular blood clearly and revealed the dynamic changes of the extravascular radioactivity in the temporary and persistent bleeding. RBCs can be effectively labeled with 18 F-FDG and used for blood-pool imaging with PET in rats.

  12. The effect of various antibiotics on the labelling efficiency of human white blood cells with 111In-oxine

    International Nuclear Information System (INIS)

    Sinzinger, Helmut; Granegger, Susanne

    1988-01-01

    Earlier clinical studies revealed that in patients suffering from chronic osteomyelitis undergoing antibiotic therapy the white blood cell scanning missed the right diagnosis in 40% of cases, whereas all the acute untreated cases were imaged correctly. Thus, it was suspected that an impaired labelling efficiency and white blood cell function might have been causative. Retrospective analysis of labelling efficiency exhibited no difference between patients on antibiotics and those not on antibiotics. Prospective cellular viability testing in 81 patients, 71 of whom were on various antibiotics, using latex particles (phagocytosis) and the Trypan blue exclusion test, did not reveal any different function behaviour either. Examining the labelling efficiency (after 111 In-oxine and 111 In-oxine-sulphate labelling), recovery, half-life and viability of white blood cells of 107 patients undergoing therapy with various antibiotics as compared to controls, it becomes evident that the antibiotic therapy is not causative of the clinical difference observed. (author)

  13. Labeling of adipose-derived stem cells with quantum dots provides stable and long-term fluorescent signal for ex vivo cell tracking.

    Science.gov (United States)

    Costa, Clautina R M; Feitosa, Matheus L T; Bezerra, Dayseanny O; Carvalho, Yulla K P; Olivindo, Rodrigo F G; Fernando, Pablo B; Silva, Gustavo C; Silva, Mirna L G; Ambrósio, Carlos E; Conde Júnior, Airton M; Argolo Neto, Napoleão M; Costa Silva, Laís M; Carvalho, Maria A M

    2017-04-01

    Stem cells derived from adipose tissue (ADSC) have been used in cell therapy as an alternative to treat chronic and degenerative diseases. Using biomedical and image trials to track the cells when infused in the target tissue is essential to control cell migration and adhesion. The objective of the present study was to label and assess the adhesion of goat adipose tissue-derived stem cells (g-ADSC) after cell infusion in animal models by tracking luminescent intracytoplasmatic nanocrystals. The cells were labeled by using Qdots. The g-ADSCs infused with nanocrystal were prepared either fresh or fixed and further visualized under a fluorescence microscope. The labeled cells were infused in the goat mammary glands and mouse testicles and kidneys via tail vein injection. Thirty days after cell infusion, biopsy was carried out for analyses. The g-ADSC cultures were presented with high cellularity and fibroblast morphology, even after infusion of the nanocrystals. It was possible, by processing in paraffin and under fluorescence microscopy, demonstrating the success of the labeling in the long term. Freezing mammary gland biopsies in liquid NO 2 did not alter the quality of labeling with Qdots. Therefore, g-ADSCs can be labeled with intracytoplasmatic nanocrystals (Qdots) enabling their in vitro and ex vivo tracking.

  14. Fuel cell research: Towards efficient energy

    CSIR Research Space (South Africa)

    Rohwer, MB

    2008-11-01

    Full Text Available fuel cells by optimising the loading of catalyst (being expensive noble metals) and ionomer; 2) Improving conventional acidic direct alcohol fuel cells by developing more efficient catalysts and by investigating other fuels than methanol; 3...) Investigating anionic membranes for use in alkaline direct alcohol fuel cells, as cheaper and more efficient alternatives to conventional acidic direct alcohol fuel cells. The aim of the authors’ research activities is to develop fuel cell...

  15. Micro-Computed Tomography Detection of Gold Nanoparticle-Labelled Mesenchymal Stem Cells in the Rat Subretinal Layer

    Directory of Open Access Journals (Sweden)

    Pooi Ling Mok

    2017-02-01

    Full Text Available Mesenchymal stem cells are widely used in many pre-clinical and clinical settings. Despite advances in molecular technology; the migration and homing activities of these cells in in vivo systems are not well understood. Labelling mesenchymal stem cells with gold nanoparticles has no cytotoxic effect and may offer suitable indications for stem cell tracking. Here, we report a simple protocol to label mesenchymal stem cells using 80 nm gold nanoparticles. Once the cells and particles were incubated together for 24 h, the labelled products were injected into the rat subretinal layer. Micro-computed tomography was then conducted on the 15th and 30th day post-injection to track the movement of these cells, as visualized by an area of hyperdensity from the coronal section images of the rat head. In addition, we confirmed the cellular uptake of the gold nanoparticles by the mesenchymal stem cells using transmission electron microscopy. As opposed to other methods, the current protocol provides a simple, less labour-intensive and more efficient labelling mechanism for real-time cell tracking. Finally, we discuss the potential manipulations of gold nanoparticles in stem cells for cell replacement and cancer therapy in ocular disorders or diseases.

  16. Micro-Computed Tomography Detection of Gold Nanoparticle-Labelled Mesenchymal Stem Cells in the Rat Subretinal Layer.

    Science.gov (United States)

    Mok, Pooi Ling; Leow, Sue Ngein; Koh, Avin Ee-Hwan; Mohd Nizam, Hairul Harun; Ding, Suet Lee Shirley; Luu, Chi; Ruhaslizan, Raduan; Wong, Hon Seng; Halim, Wan Haslina Wan Abdul; Ng, Min Hwei; Idrus, Ruszymah Binti Hj; Chowdhury, Shiplu Roy; Bastion, Catherine Mae-Lynn; Subbiah, Suresh Kumar; Higuchi, Akon; Alarfaj, Abdullah A; Then, Kong Yong

    2017-02-08

    Mesenchymal stem cells are widely used in many pre-clinical and clinical settings. Despite advances in molecular technology; the migration and homing activities of these cells in in vivo systems are not well understood. Labelling mesenchymal stem cells with gold nanoparticles has no cytotoxic effect and may offer suitable indications for stem cell tracking. Here, we report a simple protocol to label mesenchymal stem cells using 80 nm gold nanoparticles. Once the cells and particles were incubated together for 24 h, the labelled products were injected into the rat subretinal layer. Micro-computed tomography was then conducted on the 15th and 30th day post-injection to track the movement of these cells, as visualized by an area of hyperdensity from the coronal section images of the rat head. In addition, we confirmed the cellular uptake of the gold nanoparticles by the mesenchymal stem cells using transmission electron microscopy. As opposed to other methods, the current protocol provides a simple, less labour-intensive and more efficient labelling mechanism for real-time cell tracking. Finally, we discuss the potential manipulations of gold nanoparticles in stem cells for cell replacement and cancer therapy in ocular disorders or diseases.

  17. Tumour Cell Labelling by Magnetic Nanoparticles with Determination of Intracellular Iron Content and Spatial Distribution of the Intracellular Iron

    Directory of Open Access Journals (Sweden)

    Alfred Cuschieri

    2013-04-01

    Full Text Available Magnetically labelled cells are used for in vivo cell tracking by MRI, used for the clinical translation of cell-base therapies. Studies involving magnetic labelled cells may include separation of labelled cells, targeted delivery and controlled release of drugs, contrast enhanced MRI and magnetic hyperthermia for the in situ ablation of tumours. Dextran-coated super-paramagnetic iron oxide (SPIO ferumoxides are used clinically as an MR contrast agents primarily for hepatic imaging. The material is also widely used for in vitro cell labelling, as are other SPIO-based particles. Our results on the uptake by human cancer cell lines of ferumoxides indicate that electroporation in the presence of protamine sulphate (PS results in rapid high uptake of SPIO nanoparticles (SPIONs by parenchymal tumour cells without significant impairment of cell viability. Quantitative determination of cellular iron uptake performed by colorimetric assay is in agreement with data from the literature. These results on intracellular iron content together with the intracellular distribution of SPIONs by magnetic force microscopy (MFM following in vitro uptake by parenchymal tumour cells confirm the potential of this technique for clinical tumour cell detection and destruction.

  18. Micro-Computed Tomography Detection of Gold Nanoparticle-Labelled Mesenchymal Stem Cells in the Rat Subretinal Layer

    Science.gov (United States)

    Mok, Pooi Ling; Leow, Sue Ngein; Koh, Avin Ee-Hwan; Mohd Nizam, Hairul Harun; Ding, Suet Lee Shirley; Luu, Chi; Ruhaslizan, Raduan; Wong, Hon Seng; Halim, Wan Haslina Wan Abdul; Ng, Min Hwei; Idrus, Ruszymah Binti Hj.; Chowdhury, Shiplu Roy; Bastion, Catherine Mae-Lynn; Subbiah, Suresh Kumar; Higuchi, Akon; Alarfaj, Abdullah A.; Then, Kong Yong

    2017-01-01

    Mesenchymal stem cells are widely used in many pre-clinical and clinical settings. Despite advances in molecular technology; the migration and homing activities of these cells in in vivo systems are not well understood. Labelling mesenchymal stem cells with gold nanoparticles has no cytotoxic effect and may offer suitable indications for stem cell tracking. Here, we report a simple protocol to label mesenchymal stem cells using 80 nm gold nanoparticles. Once the cells and particles were incubated together for 24 h, the labelled products were injected into the rat subretinal layer. Micro-computed tomography was then conducted on the 15th and 30th day post-injection to track the movement of these cells, as visualized by an area of hyperdensity from the coronal section images of the rat head. In addition, we confirmed the cellular uptake of the gold nanoparticles by the mesenchymal stem cells using transmission electron microscopy. As opposed to other methods, the current protocol provides a simple, less labour-intensive and more efficient labelling mechanism for real-time cell tracking. Finally, we discuss the potential manipulations of gold nanoparticles in stem cells for cell replacement and cancer therapy in ocular disorders or diseases. PMID:28208719

  19. The nematode stoma: Homology of cell architecture with improved understanding by confocal microscopy of labeled cell boundaries.

    Science.gov (United States)

    Jay Burr, A H; Baldwin, James G

    2016-09-01

    Nematode stomas vary widely in the cuticular structures evolved for different feeding strategies, yet the arrangement of the epithelial cell classes that form these structures may be conserved. This article addresses several issues that have impeded the full acceptance of this hypothesis including controversies arising from the structure of the Caenorhabditis elegans stoma. We investigated fluorescent antibody labeling of cell boundaries in conjunction with confocal microscopy as an alternative to transmission electron microscopy (TEM), using MH27 to label apical junctions in C. elegans and two other species. Accurately spaced optical sections collected by the confocal microscope provide a three-dimensional array of pixels (voxels) that, using image-processing software, can be rotated and sectioned at accurately chosen thicknesses and locations. Ribbons of fluorescence clearly identify cell boundaries along the luminal cuticle in C. elegans and Zeldia punctata and less clearly in Bunonema sp. The patterns render cell classes and their relationships readily identifiable. In the C. elegans stoma they correct a misreading of serial TEMs that was not congruent with architecture in other nematodes-the row of marginal cells is now seen to be continuous as in other nematodes, rather than being interrupted by encircling pm1 cells. Also impeding understanding, the reference to certain cell classes as 'epithelial' and others as "muscle" in the C. elegans literature is at variance with muscle expression in most other taxa. For consistent comparison among species, we propose that these cell class descriptors based on function be replaced by topological terms. With these and other confusing concepts and terminology removed, the homology of the cellular architecture among taxa becomes obvious. We provide a corrected description of the cell architecture of the C. elegans stoma and examples of how it is modified in other taxa with different feeding strategies. J. Morphol. 277

  20. Label-Free Raman Hyperspectral Imaging of Single Cells Cultured on Polymer Substrates.

    Science.gov (United States)

    Sinjab, Faris; Sicilia, Giovanna; Shipp, Dustin W; Marlow, Maria; Notingher, Ioan

    2017-12-01

    While Raman hyperspectral imaging has been widely used for label-free mapping of biomolecules in cells, these measurements require the cells to be cultured on weakly Raman scattering substrates. However, many applications in biological sciences and engineering require the cells to be cultured on polymer substrates that often generate large Raman scattering signals. Here, we discuss the theoretical limits of the signal-to-noise ratio in the Raman spectra of cells in the presence of polymer signals and how optical aberrations may affect these measurements. We show that Raman spectra of cells cultured on polymer substrates can be obtained using automatic subtraction of the polymer signals and demonstrate the capabilities of these methods in two important applications: tissue engineering and in vitro toxicology screening of drugs. Apart from their scientific and technological importance, these applications are examples of the two most common measurement configurations: (1) cells cultured on an optically thick polymer substrate measured using an immersion/dipping objective; and (2) cells cultured on a transparent polymer substrate and measured using an inverted optical microscope. In these examples, we show that Raman hyperspectral data sets with sufficient quality can be successfully acquired to map the distribution of common biomolecules in cells, such as nucleic acids, proteins, and lipids, as well as detecting the early stages of apoptosis. We also discuss strategies for further improvements that could expand the application of Raman hyperspectral imaging on polymer substrates even further in biomedical sciences and engineering.

  1. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics

    DEFF Research Database (Denmark)

    Ong, S.E.; Blagoev, B.; Kratchmarova, I.

    2002-01-01

    -radioactive, isotopically labeled form of that amino acid, in this case deuterated leucine (Leu-d3). We find that growth of cells maintained in these media is no different from growth in normal media as evidenced by cell morphology, doubling time, and ability to differentiate. Complete incorporation of Leu-d3 occurred....... Here we describe a method, termed SILAC, for stable isotope labeling by amino acids in cell culture, for the in vivo incorporation of specific amino acids into all mammalian proteins. Mammalian cell lines are grown in media lacking a standard essential amino acid but supplemented with a non...

  2. Rapid and label-free separation of Burkitt's lymphoma cells from red blood cells by optically-induced electrokinetics.

    Directory of Open Access Journals (Sweden)

    Wenfeng Liang

    Full Text Available Early stage detection of lymphoma cells is invaluable for providing reliable prognosis to patients. However, the purity of lymphoma cells in extracted samples from human patients' marrow is typically low. To address this issue, we report here our work on using optically-induced dielectrophoresis (ODEP force to rapidly purify Raji cells' (a type of Burkitt's lymphoma cell sample from red blood cells (RBCs with a label-free process. This method utilizes dynamically moving virtual electrodes to induce negative ODEP force of varying magnitudes on the Raji cells and RBCs in an optically-induced electrokinetics (OEK chip. Polarization models for the two types of cells that reflect their discriminate electrical properties were established. Then, the cells' differential velocities caused by a specific ODEP force field were obtained by a finite element simulation model, thereby established the theoretical basis that the two types of cells could be separated using an ODEP force field. To ensure that the ODEP force dominated the separation process, a comparison of the ODEP force with other significant electrokinetics forces was conducted using numerical results. Furthermore, the performance of the ODEP-based approach for separating Raji cells from RBCs was experimentally investigated. The results showed that these two types of cells, with different concentration ratios, could be separated rapidly using externally-applied electrical field at a driven frequency of 50 kHz at 20 Vpp. In addition, we have found that in order to facilitate ODEP-based cell separation, Raji cells' adhesion to the OEK chip's substrate should be minimized. This paper also presents our experimental results of finding the appropriate bovine serum albumin concentration in an isotonic solution to reduce cell adhesion, while maintaining suitable medium conductivity for electrokinetics-based cell separation. In short, we have demonstrated that OEK technology could be a promising tool for

  3. Two new kit preparations for sup(99m)Tc-labeled red blood cells

    International Nuclear Information System (INIS)

    Weininger, J.; Trumper, J.; Lubin, E.; Abrashkin, D.

    1978-01-01

    Two simple methods have been developed and tested clinically. The recommended procedure for vascular space visualization requires successive incubations of previously separated red blood cells (RBC) with reducing agent (Sn-glucoheptonate) and sup(99m)Tc-pertechnetate solution. This labelling process is very simple, requires no washings and reduces the preparation time as well as the number of mechanical steps. The label is only slightly sensitive to Tc-carrier effect and to the detrimental influence of oxidants possibly present in the eluates of generators. The high labelling yields of 95 to 97% obtained were stable in vitro and the activity of the 15 min sample from patients was more than 93% of the injected dose. Images of good quality could be obtained even when prolonged follow-up was necessary. Whole-blood activity followed a biexponential decay pattern after injection, suggesting a two compartment pharmacokinetic model. The in vivo behaviour of sup(99m)-Tc-RBC cannot therefore be characterized by a single half-life. (author)

  4. Guidelines for human embryonic stem cell research

    National Research Council Canada - National Science Library

    Committee on Guidelines for Human Embryonic Stem Cell Research; National Research Council; Board on Health Sciences Policy; Institute of Medicine; Division on Earth and Life Studies; National Research Council

    2005-01-01

    .... Given limited federal involvement, privately funded hES cell research has thus far been carried out under a patchwork of existing regulations, many of which were not designed with this research specifically in mind...

  5. Toxicity of trastuzumab labeled {sup 177}Lu on MCF7 and SKBr3 cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Rasaneh, Samira [Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran (Iran, Islamic Republic of); Rajabi, Hossein, E-mail: hrajabi@modares.ac.i [Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran (Iran, Islamic Republic of); Hossein Babaei, Mohammad; Johari Daha, Fariba [Department of Radioisotope, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2010-10-15

    In this study, we labeled trastuzumab with {sup 177}Lu to synthesize a new radiopharmaceutical for therapy of breast cancer and at the first stage investigated its therapeutic effects on SKBr3 and MCF7 breast cancer cell lines. Trastuzumab-{sup 177}Lu showed very good in-vitro characteristics such as high radiochemical purity (91{+-}0.9%), good stability in PBS buffer (86{+-}2.3%) and blood serum (81{+-}2.7%) up to 96 h, appropriate immunoreactivity (85.4{+-}1.1%) and high cytotoxicity in HER2 expression cells. 5 fold increase in toxicity of trastuzumab-{sup 177}Lu was observed when compared with unlabeled trastuzumab on SKBr3 cells.

  6. Toxicity of trastuzumab labeled 177Lu on MCF7 and SKBr3 cell lines.

    Science.gov (United States)

    Rasaneh, Samira; Rajabi, Hossein; Hossein Babaei, Mohammad; Johari Daha, Fariba

    2010-10-01

    In this study, we labeled trastuzumab with (177)Lu to synthesize a new radiopharmaceutical for therapy of breast cancer and at the first stage investigated its therapeutic effects on SKBr3 and MCF7 breast cancer cell lines. Trastuzumab-(177)Lu showed very good in-vitro characteristics such as high radiochemical purity (91+/-0.9%), good stability in PBS buffer (86+/-2.3%) and blood serum (81+/-2.7%) up to 96 h, appropriate immunoreactivity (85.4+/-1.1%) and high cytotoxicity in HER2 expression cells. 5 fold increase in toxicity of trastuzumab-(177)Lu was observed when compared with unlabeled trastuzumab on SKBr3 cells. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Label-Free Imaging and Biochemical Characterization of Bovine Sperm Cells

    Directory of Open Access Journals (Sweden)

    Maria Antonietta Ferrara

    2015-04-01

    Full Text Available A full label-free morphological and biochemical characterization is desirable to select spermatozoa during preparation for artificial insemination. In order to study these fundamental parameters, we take advantage of two attractive techniques: digital holography (DH and Raman spectroscopy (RS. DH presents new opportunities for studying morphological aspect of cells and tissues non-invasively, quantitatively and without the need for staining or tagging, while RS is a very specific technique allowing the biochemical analysis of cellular components with a spatial resolution in the sub-micrometer range. In this paper, morphological and biochemical bovine sperm cell alterations were studied using these techniques. In addition, a complementary DH and RS study was performed to identify X- and Y-chromosome-bearing sperm cells. We demonstrate that the two techniques together are a powerful and highly efficient tool elucidating some important criterions for sperm morphological selection and sex-identification, overcoming many of the limitations associated with existing protocols.

  8. In vivo tracking of stem cells labeled with a nanoparticle in Alzheimer's disease animal model

    Science.gov (United States)

    Ha, Sungji; Suh, Yoo-Hun; Chang, Keun-A.

    2013-05-01

    Stem cell therapy is a promising tool for the treatment of diverse conditions including neurodegenerative diseases. To understand transplanted stem cell biology, in vivo imaging is necessary. Nano material has great potential for in vivo imaging and several noninvasive methods are used such as magnetic resonance imaging (MRI), positron emission tomography (PET), Fluorescence imaging (FI) and Near-infrared fluorescence imaging (NIRFI). However, each method has limitations for in vivo imaging. To overcome these limitations, multimodal nanoprobes have been developed. In the present study, we intravenously injected human adipose derived stem cells (hASCs) that labeled with multimodal nano particle, LEO-LIVETM-Magnoxide 797 or 675, into the Tg2576 mice, Alzheimer's disease (AD) mouse model. Sequential in vivo tracking was performed with mice injected with hASCs. We could found fluorescence signals until 10 days after injection.

  9. Calorie Labeling in a Rural Middle School Influences Food Selection: Findings from Community-Based Participatory Research

    Directory of Open Access Journals (Sweden)

    Monica Hunsberger

    2015-01-01

    Full Text Available Background. Calorie labeling at the point-of-purchase in chain restaurants has been shown to reduce energy intake. Objective. To investigate the impact of point-of-purchase calorie information at one rural middle school. Methods. With a community-based participatory research framework a mixed method approach was used to evaluate the impact of point-of-purchase calorie information. Students in grades 6–8, dining at the school cafeteria January and February 2010, participated for 17 school days each month; in January a menu was offered in the usual manner without calorie labels; the same menu was prepared in February with the addition of calorie labels at point-of-purchase. Gross calories served per student were measured each day allowing for matched comparison by menu. In March/April of 2010, 32 students who ate in the cafeteria 3 or more times per week were interviewed regarding their views on menu labeling. Results. Calorie consumption decreased by an average of 47 calories/day; fat intake reduced by 2.1 grams/day. Five main themes were consistent throughout the interviews. Conclusion. Point-of-purchase calorie labels can play a role in reducing the number of calories consumed by middle school age children at the lunch. The majority of students interviewed found the calorie labels helped them choose healthier food.

  10. Calorie labeling in a rural middle school influences food selection: findings from community-based participatory research.

    Science.gov (United States)

    Hunsberger, Monica; McGinnis, Paul; Smith, Jamie; Beamer, Beth Ann; O'Malley, Jean

    2015-01-01

    Calorie labeling at the point-of-purchase in chain restaurants has been shown to reduce energy intake. To investigate the impact of point-of-purchase calorie information at one rural middle school. With a community-based participatory research framework a mixed method approach was used to evaluate the impact of point-of-purchase calorie information. Students in grades 6-8, dining at the school cafeteria January and February 2010, participated for 17 school days each month; in January a menu was offered in the usual manner without calorie labels; the same menu was prepared in February with the addition of calorie labels at point-of-purchase. Gross calories served per student were measured each day allowing for matched comparison by menu. In March/April of 2010, 32 students who ate in the cafeteria 3 or more times per week were interviewed regarding their views on menu labeling. Calorie consumption decreased by an average of 47 calories/day; fat intake reduced by 2.1 grams/day. Five main themes were consistent throughout the interviews. Point-of-purchase calorie labels can play a role in reducing the number of calories consumed by middle school age children at the lunch. The majority of students interviewed found the calorie labels helped them choose healthier food.

  11. A modified method for the in vivo labeling of red blood cells with /sup 99m/Tc: concise communication

    International Nuclear Information System (INIS)

    Callahan, R.J.; Froelich, J.W.; McKusick, K.A.; Leppo, J.; Strauss, H.W.

    1982-01-01

    The rate of incorporation of /sup 99m/Tc into red blood cells pretinned in vivo was measured by collecting blood samples in stannous DTPA solution, which served as a competing ligand for /sup 99m/Tc. This collection technique permitted a measurement of high-affinity red-cell labeling efficiency at the instant of sampling. At 0.5 min after injection only 62% of technetium is tightly bound to the red cell; this rises to 94.5% at 10 min. Based on the graded labeling of the red cells, the in vivo labeling procedure was modified by isolating pertechnetate and red blood cells tinned in vivo in a syringe during the first 10 min of labeling. The pertechnetate is thus prevented from distributing to extravascular compartments, and 90% of the injected /sup 99m/Tc is firmly bound to red blood cells at the time of injection. In a series of 23 patients, seven were tested with the in vivo method and seven with the modified in vivo method, and nine patients were tested with each method on separate occasions. A decrease in gastric activity and improved image quality were found with the modified method compared with the standard method of in vivo red-cell labeling

  12. Cell Phones: Current Research Results

    Science.gov (United States)

    ... Potential Biological or Adverse Health Effects of Wireless Communication Devices World Health Organization: Electromagnetic Fields and Public Health: Mobile Phones International Agency for Research on Cancer Press Release ...

  13. Label-free investigation of the effects of lithium niobate polarization on cell adhesion

    Science.gov (United States)

    Mandracchia, B.; Gennari, O.; Paturzo, M.; Grilli, S.; Ferraro, P.

    2017-06-01

    The determination of contact area is pivotal to understand how biomaterials properties influence cell adhesion. In particular, the influence of surface charges is well-known but still controversial, especially when new functional materials and methods are introduced. Here, we use for the first time Holographic Total Internal Reflection Microscopy (HoloTIRM) to study the influence of the spontaneous polarization of ferroelectric lithium niobate (LN) on the adhesion properties of fibroblast cells. The selective illumination of a very thin region directly above the substrate, achieved by Total Internal Reflection, provides high-contrast images of the contact regions. Holographic recording, on the other hand, allows for label-free quantitative phase imaging of the contact areas between cells and LN. Phase signal is more sensitive in the first 100nm and, thus more reliable in order to locate focal contacts. This work shows that cells adhering on negatively polarized LN present a significant increase of the contact area in comparison with cells adhering on the positively polarized LN substrate, as well as an intensification of contact vicinity. This confirms the potential of LN as a platform for investigating the role of charges on cellular processes. The similarity of cell adhesion behavior on negatively polarized LN and glass control also confirms the possibility to use LN as an active substrate without impairing cell behavior.

  14. SCF increases in utero-labeled stem cells migration and improves wound healing.

    Science.gov (United States)

    Zgheib, Carlos; Xu, Junwang; Mallette, Andrew C; Caskey, Robert C; Zhang, Liping; Hu, Junyi; Liechty, Kenneth W

    2015-01-01

    Diabetic skin wounds lack the ability to heal properly and constitute a major and significant complication of diabetes. Nontraumatic lower extremity amputations are the number one complication of diabetic skin wounds. The complexity of their pathophysiology requires an intervention at many levels to enhance healing and wound closure. Stem cells are a promising treatment for diabetic skin wounds as they have the ability to correct abnormal healing. Stem cell factor (SCF), a chemokine expressed in the skin, can induce stem cells migration, however the role of SCF in diabetic skin wound healing is still unknown. We hypothesize that SCF would correct the impairment and promote the healing of diabetic skin wounds. Our results show that SCF improved wound closure in diabetic mice and increased HIF-1α and vascular endothelial growth factor (VEGF) expression levels in these wounds. SCF treatment also enhanced the migration of red fluorescent protein (RFP)-labeled skin stem cells via in utero intra-amniotic injection of lenti-RFP at E8. Interestingly these RFP+ cells are present in the epidermis, stain negative for K15, and appear to be distinct from the already known hair follicle stem cells. These results demonstrate that SCF improves diabetic wound healing in part by increasing the recruitment of a unique stem cell population present in the skin. © 2015 by the Wound Healing Society.

  15. Whole-cell biosensor for label-free detection of GPCR-mediated drug responses in personal cell lines.

    Science.gov (United States)

    Hillger, Julia M; Schoop, Jeffison; Boomsma, Dorret I; Slagboom, P Eline; IJzerman, Adriaan P; Heitman, Laura H

    2015-12-15

    Deciphering how genetic variation in drug targets such as G protein-coupled receptors (GPCRs) affects drug response is essential for precision medicine. GPCR signaling is traditionally investigated in artificial cell lines which do not provide sufficient physiological context. Patient-derived cell lines such as lymphoblastoid cell lines (LCLs) could represent the ideal cellular model system. Here we describe a novel label-free, whole-cell biosensor method for characterizing GPCR-mediated drug responses in LCLs. Generally, such biosensor technology is deemed only compatible with adherent cell lines. We optimized and applied the methodology to study cellular adhesion properties as well as GPCR drug responses in LCLs, which are suspension cells. Coating the detector surface with the extracellular matrix protein fibronectin resulted in cell adherence and allowed detection of cellular responses. A prototypical GPCR present on these cells, i.e. the cannabinoid receptor 2 (CB2), was selected for pharmacological characterization. Receptor activation with the agonist JWH133, blockade by antagonist AM630 as well as downstream signaling inhibition by PTX could be monitored sensitively and receptor-specifically. Potencies and effects were comparable between LCLs of two genetically unrelated individuals, providing the proof-of-principle that this biosensor technology can be applied to LCLs, despite their suspension cell nature, in order to serve as an in vitro model system for the evaluation of individual genetic influences on GPCR-mediated drug responses. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Spray David C

    2011-02-01

    Full Text Available Abstract Background Stem cell therapy has emerged as a promising addition to traditional treatments for a number of diseases. However, harnessing the therapeutic potential of stem cells requires an understanding of their fate in vivo. Non-invasive cell tracking can provide knowledge about mechanisms responsible for functional improvement of host tissue. Superparamagnetic iron oxide nanoparticles (SPIONs have been used to label and visualize various cell types with magnetic resonance imaging (MRI. In this study we performed experiments designed to investigate the biological properties, including proliferation, viability and differentiation capacity of mesenchymal cells (MSCs labeled with clinically approved SPIONs. Results Rat and mouse MSCs were isolated, cultured, and incubated with dextran-covered SPIONs (ferumoxide alone or with poly-L-lysine (PLL or protamine chlorhydrate for 4 or 24 hrs. Labeling efficiency was evaluated by dextran immunocytochemistry and MRI. Cell proliferation and viability were evaluated in vitro with Ki67 immunocytochemistry and live/dead assays. Ferumoxide-labeled MSCs could be induced to differentiate to adipocytes, osteocytes and chondrocytes. We analyzed ferumoxide retention in MSCs with or without mitomycin C pretreatment. Approximately 95% MSCs were labeled when incubated with ferumoxide for 4 or 24 hrs in the presence of PLL or protamine, whereas labeling of MSCs incubated with ferumoxide alone was poor. Proliferative capacity was maintained in MSCs incubated with ferumoxide and PLL for 4 hrs, however, after 24 hrs it was reduced. MSCs incubated with ferumoxide and protamine were efficiently visualized by MRI; they maintained proliferation and viability for up to 7 days and remained competent to differentiate. After 21 days MSCs pretreated with mitomycin C still showed a large number of ferumoxide-labeled cells. Conclusions The efficient and long lasting uptake and retention of SPIONs by MSCs using a protocol

  17. A review of European research on consumer response to nutrition information on food labels

    DEFF Research Database (Denmark)

    Grunert, Klaus G.; Wills, Josephine M.

    2007-01-01

    that they understand them and they can replay key information presented to them in an experimental situation. There is, however, virtually no insight into how labelling information is, or will be, used in a real-world shopping situation, and how it will affect consumers' dietary patterns. Results are largely in line...... information on food labels in a real-world setting....

  18. 78 FR 8446 - Center for Drug Evaluation and Research; Prescription Drug Labeling Improvement and Enhancement...

    Science.gov (United States)

    2013-02-06

    ... utility of the prescription drug labeling as a communication tool and to discuss strategies for making it... the Web site after this document publishes in the Federal Register.) All holders of marketing... safety or effectiveness) voluntarily convert their labeling to PLR format and submit it to FDA for...

  19. Correlative scanning electron and confocal microscopy imaging of labeled cells coated by indium-tin-oxide.

    Science.gov (United States)

    Rodighiero, Simona; Torre, Bruno; Sogne, Elisa; Ruffilli, Roberta; Cagnoli, Cinzia; Francolini, Maura; Di Fabrizio, Enzo; Falqui, Andrea

    2015-06-01

    Confocal microscopy imaging of cells allows to visualize the presence of specific antigens by using fluorescent tags or fluorescent proteins, with resolution of few hundreds of nanometers, providing their localization in a large field-of-view and the understanding of their cellular function. Conversely, in scanning electron microscopy (SEM), the surface morphology of cells is imaged down to nanometer scale using secondary electrons. Combining both imaging techniques have brought to the correlative light and electron microscopy, contributing to investigate the existing relationships between biological surface structures and functions. Furthermore, in SEM, backscattered electrons (BSE) can image local compositional differences, like those due to nanosized gold particles labeling cellular surface antigens. To perform SEM imaging of cells, they could be grown on conducting substrates, but obtaining images of limited quality. Alternatively, they could be rendered electrically conductive, coating them with a thin metal layer. However, when BSE are collected to detect gold-labeled surface antigens, heavy metals cannot be used as coating material, as they would mask the BSE signal produced by the markers. Cell surface could be then coated with a thin layer of chromium, but this results in a loss of conductivity due to the fast chromium oxidation, if the samples come in contact with air. In order to overcome these major limitations, a thin layer of indium-tin-oxide was deposited by ion-sputtering on gold-decorated HeLa cells and neurons. Indium-tin-oxide was able to provide stable electrical conductivity and preservation of the BSE signal coming from the gold-conjugated markers. © 2015 Wiley Periodicals, Inc.

  20. Correlative scanning electron and confocal microscopy imaging of labeled cells coated by indium-tin-oxide

    KAUST Repository

    Rodighiero, Simona

    2015-03-22

    Confocal microscopy imaging of cells allows to visualize the presence of specific antigens by using fluorescent tags or fluorescent proteins, with resolution of few hundreds of nanometers, providing their localization in a large field-of-view and the understanding of their cellular function. Conversely, in scanning electron microscopy (SEM), the surface morphology of cells is imaged down to nanometer scale using secondary electrons. Combining both imaging techniques have brought to the correlative light and electron microscopy, contributing to investigate the existing relationships between biological surface structures and functions. Furthermore, in SEM, backscattered electrons (BSE) can image local compositional differences, like those due to nanosized gold particles labeling cellular surface antigens. To perform SEM imaging of cells, they could be grown on conducting substrates, but obtaining images of limited quality. Alternatively, they could be rendered electrically conductive, coating them with a thin metal layer. However, when BSE are collected to detect gold-labeled surface antigens, heavy metals cannot be used as coating material, as they would mask the BSE signal produced by the markers. Cell surface could be then coated with a thin layer of chromium, but this results in a loss of conductivity due to the fast chromium oxidation, if the samples come in contact with air. In order to overcome these major limitations, a thin layer of indium-tin-oxide was deposited by ion-sputtering on gold-decorated HeLa cells and neurons. Indium-tin-oxide was able to provide stable electrical conductivity and preservation of the BSE signal coming from the gold-conjugated markers. © 2015 Wiley Periodicals, Inc.

  1. Ethical Issues in Stem Cell Research

    OpenAIRE

    Lo, Bernard; Parham, Lindsay

    2009-01-01

    Stem cell research offers great promise for understanding basic mechanisms of human development and differentiation, as well as the hope for new treatments for diseases such as diabetes, spinal cord injury, Parkinson’s disease, and myocardial infarction. However, human stem cell (hSC) research also raises sharp ethical and political controversies. The derivation of pluripotent stem cell lines from oocytes and embryos is fraught with disputes about the onset of human personhood. The reprogramm...

  2. In vivo cell tracking imaging of hexadecyl-4-[{sup 123,} {sup 124}I]iodobenzoate labeled adipose derived stem cells (ADSCs) in rat heart

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Hwan; Lee, Yong Jin; Lee, Kyo Chul [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2011-10-15

    Monitoring of transplanted stem cells for cardiac repair is important part in regenerative medicine. Direct cell labeling techniques using [{sup 18}F]FDG, [{sup 64}Cu]PTSM and [{sup 99m}Tc]-HMPAO have been developed for in vivo imaging. Especially, {sup 18}F-labeled derivates have been widely used for direct labeling agent. But the {sup 18}F has short half life (T{sub 1/2}={approx}2 h), thus this imaging agent has limitation of in vivo imaging. We used {sup 123}I or {sup 124}I which has relative long half life, to track the transplanted stem cells for a long-term imaging. This study is aimed to track the transplanted adipose derived stem cells (ADSCs) in rat heart using hexadecyl-4-[{sup 123,} {sup 124}I]iodobenzoate ([{sup 123,} {sup 124}I]HIB) mediated direct labeling method in vivo

  3. Ultrasensitive enzyme-free immunoassay for squamous cell carcinoma antigen using carbon supported Pd-Au as electrocatalytic labels.

    Science.gov (United States)

    Gao, Jian; Du, Bin; Zhang, Xiaoyue; Guo, Aiping; Zhang, Yong; Wu, Dan; Ma, Hongmin; Wei, Qin

    2014-06-23

    A novel nonenzymatic sandwich-type electrochemical immunosensor has been developed to detect squamous cell carcinoma antigen (SCCA). Nitrogen-doped graphene sheet (N-GS) was used to increase capacity of capturing primary antibodies (Ab1). Carbon-supported Pd-Au binary nanoparticles (Pd-Au/C) were synthesized and used to label secondary antibodies (Ab2). The specific binding of SCCA and antibodies enabled a quantitative attachment of Pd-Au/C on the electrode surface. Electrocatalytic analysis showed that the prepared Pd-Au/C exhibit excellent electrocatalytic activity towards hydrogen peroxide (H2O2). We use current response of electrocatalytic labels Pd-Au/C to detect the concentration of SCCA. The unique nonenzymatic immunosensor exhibits a relatively wide linear range from 0.005 to 2 ng mL(-1) and high sensitivity with a low detection limit of 1.7 pg mL(-1). The immunsensor also shows good reproducibility (4.2%) and stability (5.8%), which makes it an enormous application prospect in clinical research. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Magentic Cell labeling of primary and stem cell-derived pig hepatocytes for MRI-based cell tracking of heptocytes transplantation

    Science.gov (United States)

    Pig hepatocytes are an important investigational tool for optimizing hepatocyte transplantation schemes in both allogeneic and xenogeneic transplant scenarios. MRI can be used to serially monitor the transplanted cells, but only if the hepatocytes can be labeled with a magnetic particle. In this wo...

  5. Induction of DNA strand breaks in 14C-labelled cells

    International Nuclear Information System (INIS)

    Sundell-Bergman, S.; Johanson, K.J.

    1979-01-01

    Chinese hamster cells grown in vitro were labelled with 14 C-thymidine for 18 hours and after 3 hours in non-radioactive medium they were stored at 0 0 C for various periods ( 1 to 12 hours). During this treatment a number of DNA strand breaks were induced by 14 C decay which were not repaired at 0 0 C. The number of DNA strand breaks was determined using the DNA unwinding technique. At 0.5-1 dpm per cell a detectable number of DNA strand breaks were found. Treatment for six hours (1 dpm per cell) reduced the percentage of double-stranded DNA from 80 to 70%, corresponding to about 750 DNA strand breaks per cell. The rejoining of DNA strand breaks was studied after treatment for 12 hours at 0 0 C followed by incubation of the cells for various periods at 37 0 C. Most of the DNA strand breaks induced by 14 C decay at 0 0 C were repaired after incubation at 37 0 C for 15 minutes. Assuming an absorbed dose of 1.8 mGy per 14 C decay to the cell nucleus an RBE value close to 1 was found for internal irradiation from 14 C decay as compared with 60 Co-gamma irradiation. (author)

  6. Quantitative assessment of limb blood flow using Tc-99m labeled red blood cells

    International Nuclear Information System (INIS)

    Itoh, Kazuo; Shougase, Takashi; Kawamura, Naoyuki; Tsukamoto, Eriko; Nakada, Kunihiro; Sakuma, Makoto; Furudate, Masayori

    1987-01-01

    A quantitative assessment of limb blood flow using a non-diffusible radioindicator, Tc-99m labeled red blood cells, was reported. This was an application of venous occlusion plethysmography using radionuclide which was originally proposed by M. Fukuoka et al. The peripheral blood flow (mean ± s.e.) of 30 legs in a normal control group was 1.87 ± 0.08 ml/100 ml/min. In heart diseases (46 legs), it was 1.49 ± 0.13 ml/100 ml/min. The limb blood flow between a control group and heart diseases was statistically significant (p < 0.01) in the t-test. The peripheral blood flow at rest between diseased legs and normal legs in occlusive arterial disorders was also statistically significant (p < 0.01) in a paired t-test. RAVOP was done after the completion of objective studies such as radionuclide angiography or ventriculography. Technique and calculation of a blood flow were very easy and simple. RAVOP study which was originally proposed by Fukuoka et al. was reappraised to be hopeful for quantitative measurement of limb blood flow as a non-invasive technique using Tc-99m labeled red blood cells. (author)

  7. Tc-99m-labeled red blood cells for the measurement of red cell mass in newborn infants: concise communication

    International Nuclear Information System (INIS)

    Linderkamp, O.; Betke, K.; Fendel, H.; Klemm, J.; Lorenzen, K.; Riegel, K.P.

    1980-01-01

    In vitro and in vivo investigations were performed to examine the binding of Tc-99m to neonatal red blood cells (RBC). Labeling efficiency was about 90%, and unbound Tc-99m less than 3% after one washing, in premature and full-term newborns and in children. Thus presence of high percentages of fetal hemoglobin (Hb F) did not influence the labeling of RBCs with Tc-99m. RBCs of 11 newborns were hemolysed and the distribution of Tc-99m on RBC components was analyzed. Although Hb F percentage averaged (60.0 +- 8.10)% (s.d.), only (11.9 +- 3.7)% of Tc-99m was bound by Hb F, whereas (45.0 +- 6.1)% was associated with Hb A. RBC membranes bound (13.7 +- 4.3)% and (29.3 +- 4.0)% were found unbound in hemolysates. These results indicate that Tc-99m preferentially binds to beta chains. In vivo equilibration of Tc-99m RBCs and of albumin labeled with Evans blue was investigated in five newborn infants. Tc-99m RBCs were stable in each case during the first hour after injection. Elution of Tc-99m from RBCs was (3.4 +- 1.5)% per h. Body-to-venous hematocrit ratio averaged 0.86 +- 0.03

  8. A Breast Cell Atlas: Organelle analysis of the MDA-MB-231 cell line by density-gradient fractionation using isotopic marking and label-free analysis

    Directory of Open Access Journals (Sweden)

    Marianne Sandin

    2015-09-01

    Full Text Available Protein translocation between organelles in the cell is an important process that regulates many cellular functions. However, organelles can rarely be isolated to purity so several methods have been developed to analyse the fractions obtained by density gradient centrifugation. We present an analysis of the distribution of proteins amongst organelles in the human breast cell line, MDA-MB-231 using two approaches: an isotopic labelling and a label-free approach.

  9. Inhibitory effects of 131I labeled 17-allylamino-17-demethoxygeldanamycin on breast cancer cell line

    International Nuclear Information System (INIS)

    Chen Daozhen; Liu Lu; Jiang Xinyu; Huang Ying; Yang Min; Yu Huixin; Luo Shineng; Lin Xiufeng

    2007-01-01

    Objective: 17-allylamino-17-demethoxygeldanamycin(17-AAG) is a less toxic analogue of geldanamycin (GA) that retains the tumoricidal features of GA. Same as its parent compound, 17-AAG inhibits several signaling pathways through binding to heat shock protein (HSP) 90, which results in destabilization of signaling complexes and degradation of client proteins in a variety of tumor cell growth. Treatment with 17-AAG was effective to inhibit tumor growth and induce apoptosis in colon cancer, glioblastoma, and breast cancer cell lines. This study aimed at exploring the anti-proliferation effects and mechanism of 131 I labeled 17-AAG on human breast cancer cell line MCF-7. Methods: 131 I-17-AAG was prepared by the reaction of 17-AAG with Na 131 I in the presence of hydrogen peroxide. The MCF-7 cells were divided into 5 groups with different additional drugs: group A, dimethyl sulfoxide (DMSO); group B, 370 kBq Na 131 I; group C, 2.5 mg/L 17-AAG; group D, 370 kBq 131 I-17-AAG; group E, 370 kBq 131 I-17-AAG + 2.5 mg/L 17-AAG. 3- (4,5-dimethylthiazol-2-yl)-2,5, diphenylte-trazolium bromide (MTT) assay was used to evaluate the effect of growth inhibition of MCF-7 cells. Cell cycle and apoptosis were analyzed by flow cytometry. The change of the expression of Akt2 mRNA in MCF-7 cells was examined by RT-PCR. Results: The labeling yield of 131 I-17-AAG was 83%. The radiochemical purity of 131 I-17-AAG after purification was 96.6%. The specific activity was 1.48 x 10 5 MBq/μmol. All drugs could significantly inhibit the growth of MCF-7 cells in vitro as the duration lasts longer, especially for group E. After 48 h, sub-G1 peaks detected by flow cytometry were(1.54±0.13)%, (5.72±1.05)%, (12.97±1.44)%, (20.65±1.36)%, (35.39±4.15)% for group A, B, C, D and E, respectively. The experimental groups (B-E) were all significantly higher than the control group (A, all P 131 I-17-AAG could suppress the growth of human breast cancer cell line MCF-7 and hasten the apoptosis. It could

  10. Highly Luminescent Heterostructured Copper-Doped Zinc Sulfide Nanocrystals for Application in Cancer Cell Labeling.

    Science.gov (United States)

    Ang, Huixiang; Bosman, Michel; Thamankar, Ramesh; Zulkifli, Muhammad Faizal B; Yen, Swee Kuan; Hariharan, Anushya; Sudhaharan, Thankiah; Selvan, Subramanian Tamil

    2016-08-18

    The structural characteristics of the seed-mediated synthesis of heterostructured CuS-ZnS nanocrystals (NCs) and Cu-doped ZnS (ZnS:Cu) NCs synthesized by two different protocols are compared and analyzed. At high Cu dopant concentrations, segregated subclusters of ZnS and CuS are observed. The photoluminescence quantum yield of ZnS:Cu NCs is about 50-80 %; a value much higher than that of ZnS NCs (6 %). Finally, these NCs are coated with a thin silica shell by using (3-mercaptopropyl)triethoxysilane in a reverse microemulsion to make them water soluble. Cytotoxicity experiments show that these silica-coated NCs have greatly reduced toxicity on both cancerous HeLa and noncancerous Chinese hamster ovary cells. The labeling of cancerous HeLa cells is also demonstrated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Dynamic MRI of ferumoxide-labeled bone mesenchmal stem cells after transplantation in infarcted myocardium

    International Nuclear Information System (INIS)

    Liu Qiong; Zhao Shihua; Lu Minjie; Jiang Shiliang; Yan Chaowu; Zhang Yan; Meng Liang; Tang Yue; Meng Xianmin; Wei Yingjie; Wang Qingzhi

    2009-01-01

    Objective: To investigate the ability of magnetic resonance imaging (MRI) in tracking magnetically labeled mesenchymal stem cells (MR-MSCs) in a swine myocardial infarction (MI) model. Methods: Adult Chinese mini-pigs (n=6) were subjected to open-chest experimental MI operation. Their autogeneic bone marrow-derived mesenchymal stem cells (MSCs) was cultured and doubly labeled with ferumoxides and DAPI. On the 14 th day after MSCs transplantation, the size and location of the myocardial infarction were assessed by using delayed-enhancement MRI (DE-MRI). Then the labeled MSCs were injected intramyocardially into peri-infarct zone and normal myocardium. At 24 hrs and 3 weeks after injection, the contrast and the volume of the MR-MSCs hypointense lesion from the MR images were acquired, and the contrast was determined using the difference in signal intensity between the hypointense and normal myocardium divided by signal intensity of the normal region. After humane euthanasia, the heart was excised and histology corresponding to MRI slices that demonstrated MR-MSCs lesions was performed. Repeated-measures ANOVA and a paired t test were used for comparison of the contrast and the volume of the MR-MSCs hypointense lesion at different time points. Comparisons between independent groups were performed with the standard Student t test. Results: The labeling efficiency of ferumoxides and DAPI was 100%. On the 14 th day after the MI operation, the average percentage of infracted myocardial area was (33.6±8.9)%. Twenty- four hours after MSCs transplantation, MSCs injection sites appeared as ovoid hypointensive lesions with sharp border on T 2 * images. At 24 h after injection, the signal contrast [(67.00±5.48)% vs (61.92±7.76)%,t=1.65, P=0.1158] and the size [(0.56±0.24) cm 2 vs (0.52±0.25) cm 2 , t=0.39, P=0.7044] of the lesions showed no statistical difference between the peri-infarct zone and the normal myocardium. At 3 weeks after injection, the signal contrast

  12. Fluorescent labeling in semi-solid medium for selection of mammalian cells secreting high-levels of recombinant proteins

    Directory of Open Access Journals (Sweden)

    Garnier Alain

    2009-05-01

    Full Text Available Abstract Background Despite the powerful impact in recent years of gene expression markers like the green fluorescent protein (GFP to link the expression of recombinant protein for selection of high producers, there is a strong incentive to develop rapid and efficient methods for isolating mammalian cell clones secreting high levels of marker-free recombinant proteins. Recently, a method combining cell colony growth in methylcellulose-based medium with detection by a fluorescently labeled secondary antibody or antigen has shown promise for the selection of Chinese Hamster Ovary (CHO cell lines secreting recombinant antibodies. Here we report an extension of this method referred to as fluorescent labeling in semi-solid medium (FLSSM to detect recombinant proteins significantly smaller than antibodies, such as IGF-E5, a 25 kDa insulin-like growth factor derivative. Results CHO cell clones, expressing 300 μg/ml IGF-E5 in batch culture, were isolated more easily and quickly compared to the classic limiting dilution method. The intensity of the detected fluorescent signal was found to be proportional to the amount of IGF-E5 secreted, thus allowing the highest producers in the population to be identified and picked. CHO clones producing up to 9.5 μg/ml of Tissue-Plasminogen Activator (tPA, 67 kDa were also generated using FLSSM. In addition, IGF-E5 high-producers were isolated from 293SF transfectants, showing that cell selection in semi-solid medium is not limited to CHO and lymphoid cells. The best positive clones were collected with a micromanipulator as well as with an automated colony picker, thus demonstrating the method's high throughput potential. Conclusion FLSSM allows rapid visualization of the high secretors from transfected pools prior to picking, thus eliminating the tedious task of screening a high number of cell isolates. Because of its rapidity and its simplicity, FLSSM is a versatile method for the screening of high producers for

  13. Feasibility and Limits of Magnetically Labeling Primary Cultured Rat T Cells with Ferumoxides Coupled with Commonly Used Transfection Agents

    Directory of Open Access Journals (Sweden)

    Cedric Berger

    2006-04-01

    Full Text Available Visualization and quantification of inflammatory processes is of high importance for early diagnosis of a multitude of diseases. Magnetic resonance imaging (MRI using iron oxide (FeO nanoparticles as contrast agents allows the study of macrophage infiltration during inflammation in a variety of tissues. Macrophages are effectors of the immune response, their appearance being orchestrated by activated T lymphocytes. Therefore, tracking of labeled T lymphocytes, which initiate the immune process, should enable earlier detection of tissue inflammation. In this study, we investigate the feasibility of specifically labeling harvested T cells by using dextran-coated FeO nanoparticles and commonly available transfection agents (TAs. Physicochemical properties of the newly formed FeO/TA vesicles were determined as well as their cell toxicity and their T cell activation potential. The labeling efficiency of each FeO/TA combination was evaluated by measuring the transverse MRI relaxation rate R2 by X-ray spectroscopy and magnetic selection. Toxicity and labeling efficacy differed significantly among TAs. The best results were achieved by using polyamine TAs and in particular by using poly-l-lysine at a concentration of 1.5 µg/mL administered in combination with 22.5 µg iron/mL. By using this protocol, up to 60% of harvested T cells could be labeled. Microscopic investigation revealed FeO/TA nanoparticles not only localized within the cytoplasma of the cells but also sticking to the outer membrane surface.

  14. A DNA hybridization system for labeling of neural stem cells with SPIO nanoparticles for MRI monitoring post-transplantation.

    Science.gov (United States)

    Egawa, Edgar Y; Kitamura, Narufumi; Nakai, Ryusuke; Arima, Yusuke; Iwata, Hiroo

    2015-06-01

    Neural stem cells (NSCs) demonstrate encouraging results in cell replacement therapy for neurodegenerative disorders and traumatic injury in the central nervous system. Monitor the survival and migration of transplanted cells would provide us important information concerning the performance and integration of the graft during the therapy time course. Magnetic resonance imaging (MRI) allow us to monitor the transplanted cells in a non-invasive way. The only requirement is to use an appropriate contrast agent to label the transplanted cells. Superparamagnetic iron oxide (SPIO) nanoparticles are one of the most commonly used contrast agent for MRI detection of transplanted cells. SPIO nanoparticles demonstrated to be suitable for labeling several types of cells including NSCs. However, the current methods for SPIO labeling are non-specific, depending mostly on electrostatic interactions, demanding relatively high SPIO concentration, and long incubation time, which can affect the viability of cells. In this study, we propose a specific and relatively fast method to label NSCs with SPIO nanoparticles via DNA hybridization. Two short single stranded DNAs (ssDNAs), oligo[dT]20 and oligo[dA]20 were conjugated with a lipid molecule and SPIO nanoparticle respectively. The labeling process comprises two simple steps; first the cells are modified to present oligo[dT]20 ssDNA on the cell surface, then the oligo[dA]20 ssDNA conjugated with SPIO nanoparticles are presented to the modified cells to allow the oligo[dT]20-oligo[dA]20 hybridization. The method showed to be non-toxic at concentrations up to 50 μg/mL oligo[dA]20-SPIO nanoparticles. Presence of SPIO nanoparticles at cell surface and cell cytoplasm was verified by transmission electron microscopy (TEM). SPIO labeling via DNA hybridization demonstrated to not interfere on NSCs proliferation, aggregates formation, and differentiation. NSCs labeled with SPIO nanoparticles via DNA hybridization system were successfully

  15. In vivo labelling of Anagallis arvensis L. cells with green fluorescent protein

    Directory of Open Access Journals (Sweden)

    Marcin Łukaszewicz

    2014-01-01

    Full Text Available A few methods only enable to follow the fate of plant cells in vivo. One of the most promising is using the Green Fluorescent Protein (GFP. In our preliminary study we set up the experimental system enabling labelling of Anagallis arvensis cells with this marker. We prepared an expression plasmid containing red-shifted gfp with optimised translation start site context, under the control of CaMV 35S transcription promoter. The construct was introduced into A. arvensis cells by particle bombardment. We developed two methods of material preparation for this transformation: in vitro cultured stem internodes with regenerating adventitious shoots (the earliest stages of regeneration; and shoot tips with temporarily exposed apices. The reflected light fluorescence microscope Olympus with the set of filters U-MNB designed for fluorescein detection enables the observation of GFP fluorescence. Both ordinary epidermal cells and stomata guard cells were transformed. Their fluorescence was observed for up to 14 days. Artefacts (autofluorescence of glandular trichomes and faint green glowing of meristematic tissue could be overcome by the optimisation of the filter set.

  16. A Subpopulation of Label-Retaining Cells of the Kidney Papilla Regenerates Injured Kidney Medullary Tubules.

    Science.gov (United States)

    Oliver, Juan A; Sampogna, Rosemary V; Jalal, Sumreen; Zhang, Qing-Yin; Dahan, Alexander; Wang, Weiwei; Shen, Tian Huai; Al-Awqati, Qais

    2016-05-10

    To determine whether adult kidney papillary label-retaining cells (pLRCs) are specialized precursors, we analyzed their transcription profile. Among genes overexpressed in pLRCs, we selected candidate genes to perform qPCR and immunodetection of their encoded proteins. We found that Zfyve27, which encodes protrudin, identified a subpopulation of pLRCs. With Zfyve27-CreERT2 transgenic and reporter mice we generated bitransgenic animals and performed cell-lineage analysis. Post tamoxifen, Zfyve27-CreERT2 marked cells preferentially located in the upper part of the papilla. These cells were low cycling and did not generate progeny even after long-term observation, thus they did not appear to contribute to kidney homeostasis. However, after kidney injury, but only if severe, they activated a program of proliferation, migration, and morphogenesis generating multiple and long tubular segments. Remarkably these regenerated tubules were located preferentially in the kidney medulla, indicating that repair of injury in the kidney is regionally specified. These results suggest that different parts of the kidney have different progenitor cell pools. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Improved Imaging of Magnetically Labeled Cells Using Rotational Magnetomotive Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Peter Cimalla

    2017-04-01

    Full Text Available In this paper, we present a reliable and robust method for magnetomotive optical coherence tomography (MM-OCT imaging of single cells labeled with iron oxide particles. This method employs modulated longitudinal and transverse magnetic fields to evoke alignment and rotation of anisotropic magnetic structures in the sample volume. Experimental evidence suggests that magnetic particles assemble themselves in elongated chains when exposed to a permanent magnetic field. Magnetomotion in the intracellular space was detected and visualized by means of 3D OCT as well as laser speckle reflectometry as a 2D reference imaging method. Our experiments on mesenchymal stem cells embedded in agar scaffolds show that the magnetomotive signal in rotational MM-OCT is significantly increased by a factor of ~3 compared to previous pulsed MM-OCT, although the solenoid’s power consumption was 16 times lower. Finally, we use our novel method to image ARPE-19 cells, a human retinal pigment epithelium cell line. Our results permit magnetomotive imaging with higher sensitivity and the use of low power magnetic fields or larger working distances for future three-dimensional cell tracking in target tissues and organs.

  18. Label-free identification of white blood cell using optical diffraction tomography (Conference Presentation)

    Science.gov (United States)

    Yoon, Jonghee; Kim, Kyoohyun; Kim, Min-hyeok; Kang, Suk-Jo; Park, YongKeun

    2016-03-01

    White blood cells (WBC) have crucial roles in immune systems which defend the host against from disease conditions and harmful invaders. Various WBC subsets have been characterized and reported to be involved in many pathophysiologic conditions. It is crucial to isolate a specific WBC subset to study its pathophysiological roles in diseases. Identification methods for a specific WBC population are rely on invasive approaches, including Wright-Gimesa staining for observing cellular morphologies and fluorescence staining for specific protein markers. While these methods enable precise classification of WBC populations, they could disturb cellular viability or functions. In order to classify WBC populations in a non-invasive manner, we exploited optical diffraction tomography (ODT). ODT is a three-dimensional (3-D) quantitative phase imaging technique that measures 3-D refractive index (RI) distributions of individual WBCs. To test feasibility of label-free classification of WBC populations using ODT, we measured four subtypes of WBCs, including B cell, CD4 T cell, CD8 T cell, and natural killer (NK) cell. From measured 3-D RI tomograms of WBCs, we obtain quantitative structural and biochemical information and classify each WBC population using a machine learning algorithm.

  19. Fake news portrayals of stem cells and stem cell research.

    Science.gov (United States)

    Marcon, Alessandro R; Murdoch, Blake; Caulfield, Timothy

    2017-10-01

    This study examines how stem cells and stem cell research are portrayed on websites deemed to be purveyors of distorted and dubious information. Content analysis was conducted on 224 articles from 2015 to 2016, compiled by searching with the keywords 'stem cell(s)' on a list of websites flagged for containing either 'fake' or 'junk science' news. Articles contained various exaggerated positive and negative claims about stem cells and stem cell science, health and science related conspiracy theories, and statements promoting fear and mistrust of conventional medicine. Findings demonstrate the existence of organized misinformation networks, which may lead the public away from accurate information and facilitate a polarization of public discourse.

  20. Synthesis of carbon nanohorns/chitosan/quantum dots nanocomposite and its applications in cells labeling and in vivo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; He, Zhe [Chemistry Department, Northeastern University, Shenyang 110819 (China); Guo, Changrun [College of Life Sciences, Jilin University, Changchun 130023 (China); Wang, Liping, E-mail: wanglp@jlu.edu.cn [College of Life Sciences, Jilin University, Changchun 130023 (China); Xu, Shukun, E-mail: xushukun46@126.com [Chemistry Department, Northeastern University, Shenyang 110819 (China)

    2014-01-15

    Due to the unique optical and chemical features of quantum dots and the special structural advantages of carbon nanohorns, it is highly desirable to synthesize nanohorns/quantum dots nanocompsite which can be applied in cell labeling and in vivo imaging. Here, we report a new method which uses chitosan as connector to synthesize nanohorns/chitosan/quantum dots fluorescent nanocomposite. Further more, the synthesized nanocomposite demonstrated strong red fluorescence and had been successfully used in Hela cells labeling and in vivo imaging of Caenorhabditis elegans (C. elegans). -- Highlights: Carbon nanohorn/chitosan/QDs nanocomposite was prepared by covalent linkage The nanocomposite was successfully used in the labeling of HeLa cells The nanocomposite was used for in vivo imaging with C. elegans as animal mode.

  1. The measurement of limb blood flow using technetium-labelled red blood cells

    International Nuclear Information System (INIS)

    Parkin, A; Robinson, P.J.; Wiggins, P.A.; Leveson, S.H.; Salter, M.C.P.; Matthews, I.F.; Ware, F.M.

    1986-01-01

    A method for measuring blood flow below the knee during reactive hyperaemia induced by 3 min of arterial occlusion has been developed. Subjects are positioned with lower limbs within the field of view of a gamma camera and pneumatic cuffs are placed below the knees to isolate the blood and induce a hyperaemic response. The remaining blood pool is labelled with 99 Tcsup(m)-labelled red cells. Blood flows have been derived from the initial gradients of time-activity curves and from equilibrium blood sampling. The technique has been validated using a tissue-equivalent leg phantom and peristaltic pump. The method has been applied to a small group of patients with peripheral vascular disease and to normal controls. The mean value (+-SD) of limb perfusion for normal controls was found to be 16.4+-3.0 ml/100 ml/min and for patients with intermittent claudication was 5.1+-2.6 ml/100 ml/min. Flow measurements are found to correlate with clinical findings and with symptoms. Reproducibility (established by repeated measurements) is high. The method is well tolerated even by patients suffering from rest pain. (author)

  2. A Phase Ib open label, randomized, safety study of SANGUINATE™ in patients with sickle cell anemia

    Directory of Open Access Journals (Sweden)

    Hemant Misra

    Full Text Available Abstract Background: Treatment of sickle cell anemia is a challenging task and despite the well understood genetic and biochemical pathway of sickle hemoglobin, current therapy continues to be limited to the symptomatic treatment of pain, supplemental oxygen, antibiotics, red blood cell transfusions and hydroxyurea. SANGUINATE is a carbon monoxide releasing molecule and oxygen transfer agent under clinical development for the treatment of sickle cell anemia and comorbidities. Methods: An open-label randomized Phase Ib study was performed in adult sickle cell anemia patients. Two dose levels of SANGUINATE were compared to hydroxyurea in 24 homozygotes for Hb SS. Twelve subjects received either a low dose (160 mg/kg of SANGUINATE or 15 mg/kg hydroxyurea. Another 12 subjects received either a high dose (320 mg/kg of SANGUINATE or 15 mg/kg hydroxyurea. The primary endpoint was the safety of SANGUINATE versus hydroxyurea in sickle cell anemia patients. Secondary endpoints included determination of the plasma pharmacokinetics and assessment of hematologic measurements. Results: Musculoskeletal related adverse events were the most common. Transient troponin I levels increased in three patients, one of whom had an increase in tricuspid regurgitant velocity; however, no clinical signs were noted. Following an assessment of vital signs, tricuspid regurgitant velocity, electrocardiogram, serum biochemistry, hematology, urinalysis, and analysis of reported adverse events, SANGUINATE was found to be safe in stable sickle cell anemia patients. Conclusions: The clinical trial met its primary objective of demonstrating an acceptable safety profile for SANGUINATE in patients with sickle cell anemia. This trial established the safety of SANGUINATE at both dose levels and permitted its advance to Phase II trials.

  3. Label-free multidimensional information acquisition from optogenetically engineered cells using a graphene transistor.

    Science.gov (United States)

    Li, Gongxin; Yang, Jia; Yang, Wenguang; Wang, Feifei; Wang, Yuechao; Wang, Wenxue; Liu, Lianqing

    2018-02-01

    The optogenetic technique, which allows the manipulation of cellular activity patterns in space and time by light, has transformed the field of neuroscience. However, acquiring multidimensional optogenetic information remains challenging despite the fact that several cellular information detection methods have been proposed. Herein, we present a new method to acquire label-free multidimensional information from optogenetically engineered cells using a graphene transistor. Using a graphene film to form a strong densely packed layer with cells, the cellular action potentials were characterized as light-activated transistor conductance signals, which quantified the multidimensional optogenetic information. Based on this approach, some important cellular optogenetic information, including electrophysiological state, cell concentration, expression levels of opsin and response to variable light intensity, were also precisely detected. Furthermore, the graphene transistor was also used to distinguish cells expressing different channelrhodopsin-2 variants. Our study offers a general detection method of multidimensional optogenetic information for extending the applications of the optogenetic technique and provides a novel sensor for the development of future biological prosthetic devices.

  4. Intracellular localization and trafficking of fluorescein-labeled cisplatin in human ovarian carcinoma cells.

    Science.gov (United States)

    Safaei, Roohangiz; Katano, Kuniyuki; Larson, Barrett J; Samimi, Goli; Holzer, Alison K; Naerdemann, Wiltrud; Tomioka, Mika; Goodman, Murray; Howell, Stephen B

    2005-01-15

    We sought to identify the subcellular compartments in which cisplatin [cis-diamminedichloroplatinum (DDP)] accumulates in human ovarian carcinoma cells and define its export pathways. Deconvoluting digital microscopy was used to identify the subcellular location of fluorescein-labeled DDP (F-DDP) in 2008 ovarian carcinoma cells stained with organelle-specific markers. Drugs that block vesicle movement were used to map the traffic pattern. F-DDP accumulated in vesicles and were not detectable in the cytoplasm. F-DDP accumulated in the Golgi, in vesicles belonging to the secretory export pathway, and in lysosomes but not in early endosomes. F-DDP extensively colocalized with vesicles expressing the copper efflux protein, ATP7A, whose expression modulates the cellular pharmacology of DDP. Inhibition of vesicle trafficking with brefeldin A, wortmannin, or H89 increased the F-DDP content of vesicles associated with the pre-Golgi compartments and blocked the loading of F-DDP into vesicles of the secretory pathway. The importance of the secretory pathway was confirmed by showing that wortmannin and H89 increased whole cell accumulation of native DDP. F-DDP is extensively sequestered into vesicular structures of the lysosomal, Golgi, and secretory compartments. Much of the distribution to other compartments occurs via vesicle trafficking. F-DDP detection in the vesicles of the secretory pathway is consistent with a major role for this pathway in the efflux of F-DDP and DDP from the cell.

  5. Divergent Label-free Cell Phenotypic Pharmacology of Ligands at the Overexpressed β2-Adrenergic Receptors

    Science.gov (United States)

    Ferrie, Ann M.; Sun, Haiyan; Zaytseva, Natalya; Fang, Ye

    2014-01-01

    We present subclone sensitive cell phenotypic pharmacology of ligands at the β2-adrenergic receptor (β2-AR) stably expressed in HEK-293 cells. The parental cell line was transfected with green fluorescent protein (GFP)-tagged β2-AR. Four stable subclones were established and used to profile a library of sixty-nine AR ligands. Dynamic mass redistribution (DMR) profiling resulted in a pharmacological activity map suggesting that HEK293 endogenously expresses functional Gi-coupled α2-AR and Gs-coupled β2-AR, and the label-free cell phenotypic activity of AR ligands are subclone dependent. Pathway deconvolution revealed that the DMR of epinephrine is originated mostly from the remodeling of actin microfilaments and adhesion complexes, to less extent from the microtubule networks and receptor trafficking, and certain agonists displayed different efficacy towards the cAMP-Epac pathway. We demonstrate that receptor signaling and ligand pharmacology is sensitive to the receptor expression level, and the organization of the receptor and its signaling circuitry.

  6. Molecular Imaging and Stem Cell Research

    Directory of Open Access Journals (Sweden)

    Yoon-Young Jang

    2011-03-01

    Full Text Available During the last decade, there has been enormous progress in understanding both multipotent stem cells such as hematopoietic stem cells and pluripotent stem cells such as embryonic stem cells and induced pluripotent stem cells. However, it has been challenging to study developmental potentials of these stem cells because they reside in complex cellular environments and aspects of their distribution, migration, engraftment, survival, proliferation, and differentiation often could not be sufficiently elucidated based on limited snapshot images of location or environment or molecular markers. Therefore, reliable imaging methods to monitor or track the fate of the stem cells are highly desirable. Both short-term and more permanent monitoring of stem cells in cultures and in live organisms have benefited from recently developed imaging approaches that are designed to investigate cell behavior and function. Confocal and multiphoton microscopy, time-lapse imaging technology, and series of noninvasive imaging technologies enable us to investigate cell behavior in the context of a live organism. In turn, the knowledge gained has brought our understanding of stem cell biology to a new level. In this review, we discuss the application of current imaging modalities for research of hematopoietic stem cells and pluripotent stem cells and the challenges ahead.

  7. Stem Cell Research and Health Education

    Science.gov (United States)

    Eve, David J.; Marty, Phillip J.; McDermott, Robert J.; Klasko, Stephen K.; Sanberg, Paul R.

    2008-01-01

    Stem cells are being touted as the greatest discovery for the potential treatment of a myriad of diseases in the new millennium, but there is still much research to be done before it will be known whether they can live up to this description. There is also an ethical debate over the production of one of the most valuable types of stem cell: the…

  8. Magnetic resonance tracking of transplanted neural stem cells labeled with superparamagnetic iron oxide nanoparticles in ischemic rat

    International Nuclear Information System (INIS)

    Xue Jing; Gao Peiyi; Li Jin; Sun Congran; Huang Hua; An Yihua

    2006-01-01

    Objective: To explore the methods of labeling neural stem cells (NSCs) with superparamagnetic iron oxide (SPIO) particles, and to monitor the labeled cells after transplantation into the ischemic rat with MR scanning. Methods: Neural stem cells were derived from the brain of embryonic 14- day rat and co-labeled with SPIO mediated by poly-L-lysine and bromodeoxyuridine (BrdU). The 24 focal cortical infarction models of male Sprague-Dawley rats were induced ten days before transplantation. The models were divided into three groups in random: (1) The labeled NSCs were transplanted into the ipsilateral caudate nucleus; (2) The labeled NSCs were transplanted into the contralateral caudate nucleus; (3) The unlabeled NSCs were transplanted into the contralateral caudate nucleus. MR scanning was performed to monitor the transplanted cells after 1,3,5,7 weeks. After Mil imaging, two rats of each group were killed and performed Prussian blue staining and BrdU staining of the histological sections. Results: During the first postimplantation, MR scanning showed well-defined hyperintensity in the cortical infarct lesion. The implanted labeled cells were visible on MR images as a hypointense area at the injection site (caudate nucleus) in the first and the second group. In group 3, the unlabeled cells were not observed. Three weeks later, linear hypointensity was observed in the subcortical infarct lesion in group 1. After five weeks, the low signal intensity could be seen in the corpus callosum and formed a triangle-like troop with its tip directed to the lesion side in group 2. Seven weeks later, hypointensity was observed in the lesion of the second group. GRE sequence was more clearly than T 2 weight imaging in showing labeled cells. MR scanning results were confirmed by Prussian blue staining and BrdU staining of' histological sections. Conclusion: NSCs colabeled with SPIO nanoparticles and BrdU could migrate into the lesions after transplanted into rats' brains. MR

  9. Cell death induced by a {sup 131}I-labeled monoclonal antibody in ovarian cancer multicell spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Filippovich, I.V.; Sorokina, N.; Robillard, N.; Faivre-Chauvet, A.; Bardies, M.; Chatal, J.F

    1996-07-01

    Treatment of OVCAR-3 spheroids with {sup 131}I-OC125 monoclonal antibody produced a decrease in spheroid volume and a concomitant rise in necrotic cell number. No increase in apoptotic cell number was observed during incubation of spheroids with the labeled antibody. Necrosis began early, reaching a maximum after 3 Gy of accumulated dose delivered at a dose rate of 1.8 cGy/h. Higher accumulated doses induced necrosis for longer incubation times. Thus, dose rate and time are both determinants of ultimate radiation effects when spheroids are incubated with labeled antibodies, although dose rate is the most important factor.

  10. Comparison of Superparamagnetic and Ultrasmall Superparamagnetic Iron Oxide Cell Labeling for Tracking Green Fluorescent Protein Gene Marker with Negative and Positive Contrast Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Zhuoli Zhang

    2009-05-01

    Full Text Available The objectives of this study were to investigate the feasibility of imaging green fluorescent protein (GFP-expressing cells labeled with iron oxide nanoparticles with the fast low-angle positive contrast steady-state free precession (FLAPS method and to compare them with the traditional negative contrast technique. The GFP-R3230Ac cell line (GFP cell was incubated for 24 hours using 20 μg Fe/mL concentration of superparamagnetic iron oxide (SPIO and ultrasmall superparamagnetic iron oxide (USPIO nanoparticles. Cell samples were prepared for iron content analysis and cell function evaluation. The labeled cells were imaged using positive contrast with FLAPS imaging, and FLAPS images were compared with negative contrast T2*-weighted images. The results demonstrated that SPIO and USPIO labeling of GFP cells had no effect on cell function or GFP expression. Labeled cells were successfully imaged with both positive and negative contrast magnetic resonance imaging (MRI. The labeled cells were observed as a narrow band of signal enhancement surrounding signal voids in FLAPS images and were visible as signal voids in T2*-weighted images. Positive contrast and negative contrast imaging were both valuable for visualizing labeled GFP cells. MRI of labeled cells with GFP expression holds potential promise for monitoring the temporal and spatial migration of gene markers and cells, thereby enhancing the understanding of cell- and gene-based therapeutic strategies.

  11. Comparison of superparamagnetic and ultrasmall superparamagnetic iron oxide cell labeling for tracking green fluorescent protein gene marker with negative and positive contrast magnetic resonance imaging.

    Science.gov (United States)

    Zhang, Zhuoli; Dharmakumar, Rohan; Mascheri, Nicole; Fan, Zhaoyang; Wu, Shengyong; Li, Debiao

    2009-01-01

    The objectives of this study were to investigate the feasibility of imaging green fluorescent protein (GFP)-expressing cells labeled with iron oxide nanoparticles with the fast low-angle positive contrast steady-state free precession (FLAPS) method and to compare them with the traditional negative contrast technique. The GFP-R3230Ac cell line (GFP cell) was incubated for 24 hours using 20 microg Fe/mL concentration of superparamagnetic iron oxide (SPIO) and ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. Cell samples were prepared for iron content analysis and cell function evaluation. The labeled cells were imaged using positive contrast with FLAPS imaging, and FLAPS images were compared with negative contrast T2*-weighted images. The results demonstrated that SPIO and USPIO labeling of GFP cells had no effect on cell function or GFP expression. Labeled cells were successfully imaged with both positive and negative contrast magnetic resonance imaging (MRI). The labeled cells were observed as a narrow band of signal enhancement surrounding signal voids in FLAPS images and were visible as signal voids in T2*-weighted images. Positive contrast and negative contrast imaging were both valuable for visualizing labeled GFP cells. MRI of labeled cells with GFP expression holds potential promise for monitoring the temporal and spatial migration of gene markers and cells, thereby enhancing the understanding of cell- and gene-based therapeutic strategies.

  12. Comparison of Superparamagnetic and Ultrasmall Superparamagnetic Iron Oxide Cell Labeling for Tracking Green Fluorescent Protein Gene Marker with Negative and Positive Contrast Magnetic Resonance Imaging

    Science.gov (United States)

    Zhang, Zhuoli; Dharmakumar, Rohan; Mascheri, Nicole; Fan, Zhaoyang; Wu, Shengyong; Li, Debiao

    2010-01-01

    The objectives of this study were to investigate the feasibility of imaging green fluorescent protein (GFP)-expressing cells labeled with iron oxide nanoparticles with the fast low-angle positive contrast steady-state free precession (FLAPS) method and to compare them with the traditional negative contrast technique. The GFP-R3230Ac cell line (GFP cell) was incubated for 24 hours using 20 μg Fe/mL concentration of superparamagnetic iron oxide (SPIO) and ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. Cell samples were prepared for iron content analysis and cell function evaluation. The labeled cells were imaged using positive contrast with FLAPS imaging, and FLAPS images were compared with negative contrast T2*-weighted images. The results demonstrated that SPIO and USPIO labeling of GFP cells had no effect on cell function or GFP expression. Labeled cells were successfully imaged with both positive and negative contrast magnetic resonance imaging (MRI). The labeled cells were observed as a narrow band of signal enhancement surrounding signal voids in FLAPS images and were visible as signal voids in T2*-weighted images. Positive contrast and negative contrast imaging were both valuable for visualizing labeled GFP cells. MRI of labeled cells with GFP expression holds potential promise for monitoring the temporal and spatial migration of gene markers and cells, thereby enhancing the understanding of cell- and gene-based therapeutic strategies. PMID:19723472

  13. Improvements in low-cost label-free QPI microscope for live cell imaging

    Science.gov (United States)

    Seniya, C.; Towers, C. E.; Towers, D. P.

    2017-07-01

    This paper reports an improvement in the development of a low-cost QPI microscope offering new capabilities in term of phase measurement accuracy for label-free live samples in the longer term (i.e., hours to days). The spatially separated scattered and non-scattered image light fields are reshaped in the Fourier plane and modulated to form an interference image at a CCD camera. The apertures that enable these two beams to be generated have been optimised by means of laser-cut apertures placed on the mirrors of a Michelson interferometer and has improved the phase measuring and reconstruction capability of the QPI microscope. The microscope was tested with transparent onion cells as an object of interest.

  14. Spleen scanning with 99Tcsup(m)-labelled red blood cells after splenectomy

    International Nuclear Information System (INIS)

    Spencer, G.R.; Bird, C.; Prothero, D.L.; Brown, T.R.; Mackenzie, F.A.F.; Phillips, M.J.

    1981-01-01

    In order to correlate the haematological changes which occur after splenectomy, with the presence or absence of residual splenic tissue, spleen scans using 99 Tcsup(m)-labelled red blood cells were performed in 36 patients who had had a splenectomy. Positive spleen scans were found in 44 per cent (8 out of 18) of patients who had undergone splenectomy for trauma and in 17 per cent (3 out of 18) of patients who had undergone elective splenectomy. No relationship was found between the presence of Howell-Jolly bodies, platelet counts, the levels of IgG, IgM and IgA and the scan result. It is concluded that these findings are due to the presence of splenunculi, whose incidence is more common than the 12 per cent usually quoted. (author)

  15. Single-Cell Optical Distortion Correction and Label-Free 3D Cell Shape Reconstruction on Lattices of Nanostructures.

    Science.gov (United States)

    Stephan, Jürgen; Keber, Felix; Stierle, Valentin; Rädler, Joachim O; Paulitschke, Philipp

    2017-12-13

    Imaging techniques can be compromised by aberrations. Especially when imaging through biological specimens, sample-induced distortions can limit localization accuracy. In particular, this phenomenon affects localization microscopy, traction force measurements, and single-particle tracking, which offer high-resolution insights into biological tissue. Here we present a method for quantifying and correcting the optical distortions induced by single, adherent, living cells. The technique uses periodically patterned gold nanostructures as a reference framework to quantify optically induced displacements with micrometer-scale sampling density and an accuracy of a few nanometers. The 3D cell shape and a simplified geometrical optics approach are then utilized to remap the microscope image. Our experiments reveal displacements of up to several hundred nanometers, and in corrected images these distortions are reduced by a factor of 3. Conversely, the relationship between cell shape and distortion provides a novel method of 3D cell shape reconstruction from a single image, enabling label-free 3D cell analysis.

  16. Comparison of three fluorescence labeling and tracking methods of endothelial progenitor cells in laser-injured retina

    Directory of Open Access Journals (Sweden)

    Hui Shi

    2018-04-01

    Full Text Available AIM: To compare three kinds of fluorescent probes for in vitro labeling and in vivo tracking of endothelial progenitor cells (EPCs in a mouse model of laser-induced retinal injury. METHODS: EPCs were isolated from human umbilical cord blood mononuclear cells and labeled with three different fluorescent probes: 5-(and-6-carboxyfluorescein diacetate succinimidyl ester (CFSE, 1,1′-dilinoleyl-3,3,3′,3′-tetramethylindo-carbocyanine perchlorate linked acetylated low-density lipoprotein (DiI-AcLDL, and green fluorescent protein (GFP. The fluorescent intensity of EPCs was examined by confocal microscopy. Survival rate of labeled EPCs was calculated with trypan blue staining, and their adhesive capability was assessed. A mouse model of retinal injury was induced by laser, and EPCs were injected into the vitreous cavity. Frozen section and fluorescein angiography on flat-mounted retinal samples was employed to track the labeled EPCs in vivo. RESULTS: EPCs labeled with CFSE and DiI-AcLDL exhibited an intense green and red fluorescence at the beginning; the fluorescence intensity decreased gradually to 20.23% and 49.99% respectively, after 28d. On the contrary, the florescent intensity of GFP-labeled EPCs increased in a time-dependent manner. All labeled EPCs showed normal morphology and no significant change in survival and adhesive capability. In the mouse model, transplantation of EPCs showed a protective effect against retinal injury. EPCs labeled with CFSE and DiI-AcLDL were successfully tracked in mice during the development of retinal injury and repair; however, GFP-labeled EPCs were not detected in the laser-injured mouse retina. CONCLUSION: The three fluorescent markers used in this study have their own set of advantages and disadvantages. CFSE and DiI-AcLDL are suitable for short-term EPC-labeling, while GFP should be used for long-term labeling. The choice of fluorescent markers should be guided by the purpose of the study.

  17. Rhenium-188-labeled anti-neural cell adhesion molecule antibodies with 2-iminothiolane modification for targeting small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hosono, Masako N. [Osaka City Univ. (Japan); Hosono, Makoto; Mishra, A.K.; Faivre-Chauvet, A.; Gautherot, E.; Barbet, J.; Knapp, F.F.R. Jr; Chatal, J.F.

    2000-06-01

    We have evaluated the potential of {sup 188}Re-labeled monoclonal antibodies (MAbs) modified with 2-iminothiolane (2IT) for targeting small-cell lung cancer (SCLC). Radiolabeled MAbs NK1NBL1 and C218 recognizing neural cell adhesion molecule were injected i.v. into athymic mice inoculated with human SCLC tumors, and the biodistribution was examined. NK1NBL1 localized in the tumors better than C218. {sup 188}Re-labeled MAbs cleared from the blood faster than {sup 125}I-labeled counterparts, resulting in higher tumor-to-blood ratios. In conclusion, the {sup 188}Re-labeled MAbs are attractive candidates for imaging and therapy of SCLC. (author)

  18. Tobacco packaging and labeling policies under the U.S. Tobacco Control Act: research needs and priorities.

    Science.gov (United States)

    Hammond, David

    2012-01-01

    The Family Smoking Prevention and Tobacco Control Act (the "Act"), enacted in June 2009, gave the U.S. Food and Drug Administration authority to regulate tobacco products. The current paper reviews the provisions for packaging and labeling, including the existing evidence and research priorities. Narrative review using electronic literature search of published and unpublished sources in 3 primary areas: health warnings, constituent labeling, and prohibitions on the promotional elements of packaging. The Act requires 9 pictorial health warnings covering half of cigarette packages and 4 text warnings covering 30% of smokeless tobacco packages. The Act also prohibits potentially misleading information on packaging, including the terms "light" and "mild," and provides a mandate to require disclosure of chemical constituents on packages. Many of the specific regulatory provisions are based on the extent to which they promote "greater public understanding of the risks of tobacco." As a result, research on consumer perceptions has the potential to shape the design and renewal of health warnings and to determine what, if any, information on product constituents should appear on packages. Research on consumer perceptions of existing and novel tobacco products will also be critical to help identify potentially misleading information that should be restricted under the Act. Packaging and labeling regulations required under the Act will bring the United States in line with international standards. There is an immediate need for research to evaluate these measures to guide future regulatory action.

  19. The effect of varying type and volume of sedimenting agents on leukocyte harvesting and labelling in sickle cell patients

    Energy Technology Data Exchange (ETDEWEB)

    Webber, D.; Nunan, T.O.; O' Doherty, M.J. (Guys and Saint Thomas' s Hospital Trust, London (United Kingdom))

    1994-09-01

    Leukocyte labelling in patients with sickle cell anaemia has been reported as difficult if not impossible due to the slow erythrocyte sedimentation rate (ESR) in these patients. This study investigated standard sedimentation methods in patients with sickle cell disease (n=16) and compared the results obtained with those following changes in the amount and type of sedimenting agent used. Labelling with either [sup 111]In-oxine or [sup 99]Tc[sup m]-exametazime was attempted in only five patients. Replacement of the commonly used 6% Hetastarch (Hespan) with Dextran or Haemaccel did not improve leukocyte harvesting, even when the proportions used of these agents were increased. In most cases where standard procedures for leukocyte collection did not lead to harvesting of viable samples, it was possible to collect reasonably pure samples by increasing the proportion of Hespan used. It is possible to obtain adequate leukocyte labelling in the majority of sickle cell patients using a minor modification of standard techniques. In this group of patients a ratio of 8 ml of Hespan to 16 ml of blood should be used for cell separation. If this fails then donor cells, anti-granulocyte antibody labelling or HIG should be considered. (author).

  20. The effect of cryoprotection on the use of PLGA encapsulated iron oxide nanoparticles for magnetic cell labeling

    International Nuclear Information System (INIS)

    Tang, Kevin S; Shapiro, Erik M; Hashmi, Sarah M

    2013-01-01

    Magnetic PLGA nanoparticles are a significant advancement in the quest to translate MRI-based cell tracking to the clinic. The benefits of these types of particles are that they encapsulate large amounts of iron oxide nanocrystals within an FDA-approved polymer matrix, combining the best aspects of inert micron-sized iron oxide particles, or MPIOs, and biodegradable small particles of iron oxide, or SPIOs. Practically, PLGA nanoparticle fabrication and storage requires some form of cryoprotectant to both protect the particle during freeze drying and to promote resuspension. While this is a commonly employed procedure in the fabrication of drug loaded PLGA nanoparticles, it has yet to be investigated for magnetic particles and what effect this might have on internalization of magnetic particles. As such, in this study, magnetic PLGA nanoparticles were fabricated with various concentrations of two common cryoprotectants, dextrose and sucrose, and analyzed for their ability to magnetically label cells. It was found that cryoprotection with either sugar significantly enhanced the ability to resuspend nanoparticles without aggregation. Magnetic cell labeling was impacted by sugar concentration, with higher sugar concentrations used during freeze drying more significantly reducing magnetic cell labeling than lower concentrations. These studies suggest that cryoprotection with 1% dextrose is an optimal compromise that preserves monodispersity following resuspension and high magnetic cell labeling. (paper)

  1. The effect of varying type and volume of sedimenting agents on leukocyte harvesting and labelling in sickle cell patients

    International Nuclear Information System (INIS)

    Webber, D.; Nunan, T.O.; O'Doherty, M.J.

    1994-01-01

    Leukocyte labelling in patients with sickle cell anaemia has been reported as difficult if not impossible due to the slow erythrocyte sedimentation rate (ESR) in these patients. This study investigated standard sedimentation methods in patients with sickle cell disease (n=16) and compared the results obtained with those following changes in the amount and type of sedimenting agent used. Labelling with either 111 In-oxine or 99 Tc m -exametazime was attempted in only five patients. Replacement of the commonly used 6% Hetastarch (Hespan) with Dextran or Haemaccel did not improve leukocyte harvesting, even when the proportions used of these agents were increased. In most cases where standard procedures for leukocyte collection did not lead to harvesting of viable samples, it was possible to collect reasonably pure samples by increasing the proportion of Hespan used. It is possible to obtain adequate leukocyte labelling in the majority of sickle cell patients using a minor modification of standard techniques. In this group of patients a ratio of 8 ml of Hespan to 16 ml of blood should be used for cell separation. If this fails then donor cells, anti-granulocyte antibody labelling or HIG should be considered. (author)

  2. STEM CELL RESEARCH-CONCEPT AND CONTROVERSIES

    African Journals Online (AJOL)

    Dr. E. P. Gharoro

    The concept of stem cell research is unarguably one of the most profound concepts of our time and the controversies surrounding it are both complex and difficult to analyse. The issue is hotly debated by all and sundry, among scientists and researchers, in government circles, among people of different faith, even within the ...

  3. Radioactively labelled DNA probes for crop improvement. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    2001-11-01

    With the advent of DNA molecular marker technology in the 1980s plant breeding had a new and powerful tool with which to increase its efficacy. Such markers are abundant and directly reveal information about the genotype and therefore are more useful than simple phenotypic markers. In plant breeding applications, molecular markers reveal information about variability and genetic relationships, and enable genetic mapping, which greatly assists the breeder in selection of parents and progeny, as well as in management of breeding strategies. Furthermore, molecular markers linked to phenotypic traits permit very early selection of superior progenies from breeding populations, therefore significantly reducing the need for field testing and greatly increasing efficiency of plant breeding programmes. For this to occur the oligonucleotide probes for labelling genetic markers and/or the primers for polymerase chain reactions to amplify genetic markers needed to be also accessible to scientists in developing Member States. In addition, technical information, training and troubleshooting were needed to support the utilization of DNA markers. In the early 1990s there was a dramatic increase in requests for access to this technology. This co-ordinated research project (CRP) facilitated the transfer of molecular marker technology, in terms of both material and information, from advanced laboratories to assist breeding programmes in developing countries. Two other CRPs were conducted concurrently in order to assist developing Member States to utilise molecular markers - Application of DNA Based Marker Mutations for Improvement of Cereals and other Sexually Reproduced Crop Plants, and Use of Novel DNA Fingerprinting Techniques for the Detection and Characterisation of Genetic Variation in Vegetatively Propagated Crops (IAEA-TECDOC-1010 and IAEA-TECDOC-1047, respectively). The present CRP built upon the success of the former projects by ensuring the availability of probes

  4. Low cost label-free live cell imaging for biological samples

    Science.gov (United States)

    Seniya, C.; Towers, C. E.; Towers, D. P.

    2017-02-01

    This paper reports the progress to develop a practical phase measuring microscope offering new capabilities in terms of phase measurement accuracy and quantification of cell:cell interactions over the longer term. A novel, low cost phase interference microscope for imaging live cells (label-free) is described. The method combines the Zernike phase contrast approach with a dual mirror design to enable phase modulation between the scattered and un-scattered optical fields. Two designs are proposed and demonstrated, one of which retains the common path nature of Zernike's original microscopy concept. In both setups the phase shift is simple to control via a piezoelectric driven mirror in the back focal plane of the imaging system. The approach is significantly cheaper to implement than those based on spatial light modulators (SLM) at approximately 20% of the cost. A quantitative assessment of the performance of a set of phase shifting algorithms is also presented, specifically with regard to broad bandwidth illumination in phase contrast microscopy. The simulation results show that the phase measurement accuracy is strongly dependent on the algorithm selected and the optical path difference in the sample.

  5. Iron labeling and pre-clinical MRI visualization of therapeutic human neural stem cells in a murine glioma model.

    Directory of Open Access Journals (Sweden)

    Mya S Thu

    2009-09-01

    Full Text Available Treatment strategies for the highly invasive brain tumor, glioblastoma multiforme, require that cells which have invaded into the surrounding brain be specifically targeted. The inherent tumor-tropism of neural stem cells (NSCs to primary and invasive tumor foci can be exploited to deliver therapeutics to invasive brain tumor cells in humans. Use of the strategy of converting prodrug to drug via therapeutic transgenes delivered by immortalized therapeutic NSC lines have shown efficacy in animal models. Thus therapeutic NSCs are being proposed for use in human brain tumor clinical trials. In the context of NSC-based therapies, MRI can be used both to non-invasively follow dynamic spatio-temporal patterns of the NSC tumor targeting allowing for the optimization of treatment strategies and to assess efficacy of the therapy. Iron-labeling of cells allows their presence to be visualized and tracked by MRI. Thus we aimed to iron-label therapeutic NSCs without affecting their cellular physiology using a method likely to gain United States Federal Drug Administration (FDA approval.For human use, the characteristics of therapeutic Neural Stem Cells must be clearly defined with any pertubation to the cell including iron labeling requiring reanalysis of cellular physiology. Here, we studied the effect of iron-loading of the therapeutic NSCs, with ferumoxide-protamine sulfate complex (FE-Pro on viability, proliferation, migratory properties and transgene expression, when compared to non-labeled cells. FE-Pro labeled NSCs were imaged by MRI at tumor sites, after intracranial administration into the hemisphere contralateral to the tumor, in an orthotopic human glioma xenograft mouse model.FE-Pro labeled NSCs retain their proliferative status, tumor tropism, and maintain stem cell character, while allowing in vivo cellular MRI tracking at 7 Tesla, to monitor their real-time migration and distribution at brain tumor sites. Of significance, this work directly

  6. Research of ddi based on multi-label conditional random field

    Directory of Open Access Journals (Sweden)

    Yu Yangzhi

    2017-01-01

    Full Text Available The detection of drug name and drug-drug interaction(DDI is considered as a sequence labeling task in this paper. We present the multi-label CRF method to complete it. Compared to the traditional method, our method can not only identify drug names, but also can identify drug-drug interaction. According to the characteristics of medical texts, this paper extracts the good features of the description of DDI. The proposed method has good performance in DDIExtraction 2013 evaluation corpus.

  7. Fundamental studies of leukemic cell labeling with 111 In-oxine and their applications to cell kinetics in patients with acute leukemia

    International Nuclear Information System (INIS)

    Takagi, Yuhkoh; Matsuda, Shin; Uchida, Tatsumi; Kariyone, Shigeo

    1984-01-01

    Fundamental studies of leukemic cell labeling with 111 In-oxine and their applications to leukemic cell kinetics in five patients with acute myeloblastic leukemia (AML) were examined. Labeling efficiency of leukemic cells was 80.3 +- 3.6% for more than 1 x 10 8 cells at room temperature for 20 minutes of incubation followed by two times washes. Cell viability determined by means of trypanblue exclusion test was 95.3 +- 2.6%. In vitro elution rate of 111 In from the labeled cells during 12 hours was 10.0 +- 1.2%. The disappearance curves of labeled leukemic cells in AMLs followed a single exponential fashion, and the half time of disappearance (T 1/2) ranged from 9.6 to 31.8 hours. Total blood leukemic cell pool (TBLCP) calculated with the dilution principles of radioisotopes correlated significantly with the leukemic cell counts (LC) in the peripheral blood (Y = 0.32 + 1.94X, r = 0.99). In the studies of organ distribution which were observed and analized with gamma camera and computer, labeled leukemic cells passed through lungs within 15 minutes. Radioactivity in the spleen increased rapidly for 30 - 60 minutes, then reached a plateau. Hepatic radioactivity showed a temporary decrease during 10 - 60 minutes following the moderate accumulation in initial 10 minutes. In two cases, bone marrow was visualized 24 hours after the injection. Radioactivity of the leukemic cells isolated from the bone marrow at 22 hours after the injection in one case was one third of the radioactivity in leukemic cells obtained from the peripheral blood at the same time. (author)

  8. Abortion, embryonic stem cell research, and waste.

    Science.gov (United States)

    Jensen, David A

    2008-01-01

    Can one consistently deny the permissibility of abortion while endorsing the killing of human embryos for the sake of stem cell research? The question is not trivial; for even if one accepts that abortion is prima facie wrong in all cases, there are significant differences with many of the embryos used for stem cell research from those involved in abortion--most prominently, many have been abandoned in vitro, and appear to have no reasonably likely meaningful future. On these grounds one might think to maintain a strong position against abortion but endorse killing human embryos for the sake of stem cell research and its promising benefits. I will argue, however, that these differences are not decisive. Thus, one who accepts a strong view against abortion is committed to the moral impermissibility of killing human embryos for the sake of stem cell research. I do not argue for the moral standing of either abortion or the killing of embryos for stem cell research; I only argue for the relation between the two. Thus the conclusion is relevant to those with a strong view in favor of the permissibility of killing embryos for the sake of research as much as for those who may strongly oppose abortion; neither can consider their position in isolation from the other.

  9. Detection of miRNA in cell cultures by using microchip electrophoresis with a fluorescence-labeled riboprobe.

    Science.gov (United States)

    Yamamura, Shohei; Yatsushiro, Shouki; Yamaguchi, Yuka; Abe, Kaori; Shinohara, Yasuo; Kataoka, Masatoshi

    2012-01-01

    The analysis of a microRNA (miRNA), miR-222 isolated from the PC12 cell line, was performed by use of the ribonuclease (RNase) protection assay, cyanine 5 (Cy5)-labeled miR-222 riboprobe, and a Hitachi SV1210 microchip electrophoresis system, which can be used to evaluate the integrity of total RNA. The fluorescence intensity corresponding to the protected RNA fragment increased in a dose-dependent manner with respect to the complementary-strand RNA. More highly sensitive detection of miRNA by microchip electrophoresis than by conventional method using fluorescence-labeled riboprobe could be obtained in 180 s. An obvious increase in miR-222 expression induced by nerve growth factor in PC12 cells could be observed. These results clearly indicate the potential of microchip electrophoresis for the analysis of miRNA using RNase protection assay with a fluorescence-labeled riboprobe.

  10. Optimal labeling dose, labeling time, and magnetic resonance imaging detection limits of ultrasmall superparamagnetic iron-oxide nanoparticle labeled mesenchymal stromal cells

    DEFF Research Database (Denmark)

    Mathiasen, Anders Bruun; Hansen, Louise; Friis, Tina

    2013-01-01

    Background. Regenerative therapy is an emerging treatment modality. To determine migration and retention of implanted cells, it is crucial to develop noninvasive tracking methods. The aim was to determine ex vivo magnetic resonance imaging (MRI) detection limits of ultrasmall superparamagnetic iron...

  11. A novel medium for expression of proteins selectively labeled with 15N-amino acids in Spodoptera frugiperda (Sf9) insect cells

    International Nuclear Information System (INIS)

    Brueggert, Michael; Rehm, Till; Shanker, Sreejesh; Georgescu, Julia; Holak, Tad A.

    2003-01-01

    Whereas bacterial expression systems are widely used for production of uniformly or selectively 15 N-labeled proteins the usage of the baculovirus expression system for labeling is limited to very few examples in the literature. Here we present the complete formulations of the two insect media, IML406 and 455, for the high-yield production of selectively 15 N-labeled proteins in insect cells. The quantities of 15 N-amino acids utilized in the production of labeled GST were similar in the case of bacterial and viral expression. For the most studied amino acids essential for insect cells the 15 N-HSQC spectra, recorded with GST labeled in insect cells, showed no cross labeling and provided therefore spectra of better quality compared to NMR spectra of GST expressed in E. coli. Also in the case of amino acids not essential for Sf9 cells we were able to label a defined number of amino acid species. Therefore the selective labeling using the baculovirus expression vector system represents a complement or even an alternative to the bacterial expression system. Based on these findings we can provide a first simple overview of the network of the amino acid metabolism in E. coli and insect cells focused on nitrogen. For some amino acids the expression of labeled proteins in insect cells can replace the cell-free protein expression

  12. Amacrine cells in the retina of a cyprinid fish: functional characterization and intracellular labelling with horseradish peroxidase.

    Science.gov (United States)

    Djamgoz, M B; Downing, J E; Wagner, H J

    1989-06-01

    Forty amacrine cells in retinae of a cyprinid fish, the roach, were intracellularly labelled with horseradish peroxidase following electrophysiological identification as sustained depolarizing, sustained hyperpolarizing or transient units. Labelled cells were analysed by light microscopy and compared with a catalogue of amacrine cells established in a previous Golgi study on the same species. About 30% of the cell types characterized by the Golgi method were encountered in the present study. When intracellularly labelled cells were differentiated on the basis of their dendritic organization in the plane of the retina, a given electrophysiological response pattern was found to be generated by different morphological types, and vice versa. However, examination of the ramification patterns of the dendrites within the inner plexiform layer (i.e. in the radial dimension of the retina), showed that this morphological parameter of a given amacrine cell could be correlated with its light-evoked response. Several amacrine cell types were found to possess special distal dendrites which arose from the main dendritic branches and extended well over a mm in the retina. Distal dendrites were oriented tangentially with respect to the optic nerve papilla, but did not appear to be involved in any synaptic connectivity. It is concluded that the Golgi-based classification is a valuable tool for identifying intracellularly labelled amacrine cells. However, although the correlation between layering of dendrites in the inner plexiform layer and electrophysiology was generally good, additional physiological parameters would be required to determine whether more extensive parallels exist between structural and functional characteristics of amacrine cells. Alternatively, the considerable morphological diversity of amacrine cells may be of limited physiological significance.

  13. Effect of lonidamine on the utilization of 14C-labeled glucose by human astrocytoma cells

    International Nuclear Information System (INIS)

    Paggi, M.G.; Zupi, G.; Fanciulli, M.; Del Carlo, C.; Giorno, S.; Laudonio, N.; Silvestrini, B.; Caputo, A.; Floridi, A.

    1987-01-01

    The effect of lonidamine (LND), 1-(2,4-dichlorobenzyl)-1H-indazol-3 carboxylic acid, on the utilization of carbon from 14 C-labeled glucose by cell cultures of the permanent strain LI derived from a human glioblastoma multiforme (astrocytoma) has been investigated. The results may be summarized as follows. Aerobic glycolysis is the main energy-yielding process as shown by the fact that the greatest part of glucose carbon atoms is incorporated into lactate. Nevertheless, the amount of glucose converted accounts for only 63% of the lactate produced, indicating the presence of an elevated endogenous aerobic glycolysis. The amount of glucose carbon atoms incorporated into CO 2 , lipids, nucleic acid, and supporting structures is low. LND decreased the incorporation of 14 C activity in all the above mentioned isolated compounds because of its ability to inhibit glucose phosphorylation. Consequently, there is a lower concentration of glucose-6-phosphate which, in turn, affects the rate of formation of several metabolites in glycolytic and pentose phosphate pathways. Experiments with [1- 14 C]-2-deoxy-D-glucose further substantiate the idea of glucose phosphorylation as a main target of LND and strongly suggest the presence of a mitochondrially bound hexokinase. The higher inhibition of glucose phosphorylation in exponentially growing cells indicates a further shift of the enzyme toward mitochondria-bound form and confirms the importance of the energy status of the cell in eliciting the response to LND. The reduced capacity of LND-treated cells to synthetize ATP and glucose-6-phosphate reflects the decreased synthesis of proteins and nucleic acids, which affects cell growth and duplication

  14. A NIR-remote controlled upconverting nanoparticle: an improved tool for living cell dye-labeling

    International Nuclear Information System (INIS)

    Zheng, Bin; Gong, Xiaoqun; Wang, Hanjie; Wang, Sheng; Chang, Jin; Wang, Huiquan; Li, Wei; Tan, Jian

    2015-01-01

    In living cells, due to the selective permeability and complicated cellular environment, the uptake efficiency and fluorescence decay of organic dyes during dye-labeling may be influenced, which may eventually result in poor fluorescent imaging. In this work, a protocol of UCNs@mSiO 2 -(FA and Azo) core–shell nanocarriers was designed and prepared successfully. The core–shell nanocarriers were assembled from two parts, including a mesoporous silica shell surface modified by folate (FA) and azobenzene (Azo), and an upconverting nanocrystal (UCN) core. The mesoporous silica shell is used for loading organic dyes and conjugating folate which helps to enhance the cellular uptake of nanocarriers. The UCN core works as a transducer to convert near infrared (NIR) light to local UV and visible light to activate a back-and-forth wagging motion of azobenzene molecules on the surface, while the azobenzene acts as a molecular impeller for propelling the release of organic dyes. The nanocarriers of loading organic dyes can maintain the stability of the fluorescent imaging effect better than free organic dyes. The experimental results show that with the help of the nanoparticle, cell uptake efficiency of the model dyes of rhodamine and 4′, 6-diamidino-2-phenylindole (DAPI) was significantly improved. The release of dyes can only be triggered by NIR light exposure and their quantity is highly dependent on the duration of NIR light exposure, thus realizing NIR-regulated dye release spatiotemporally. Our work may open a novel avenue for precisely controlling UCN-based living cell imaging in biotechnology and diagnostics, as well as studying cell dynamics, cell–cell interactions, and tissue morphogenesis. (paper)

  15. Tannic acid label indicates abnormal cell development coinciding with regeneration of renal tubules.

    Science.gov (United States)

    Minuth, Will W; Denk, Lucia

    2014-01-01

    Stem/progenitor cells are in the focus of research as a future therapeutic option to stimulate regeneration in diseased renal parenchyma. However, current data indicate that successful seeding of implanted stem/progenitor cells is prevented by harmful interstitial fluid and altered extracellular matrix. To find out possible parameters for cell adaptation, the present investigation was performed. Renal stem/progenitor cells were mounted in an artificial interstitium for perfusion culture. Exposure to chemically defined but CO2-independent culture media was tested during 13 days. Cell biological features were then analyzed by histochemistry, while structural details were investigated by transmission electron microscopy after conventional and improved fixation of specimens. Culture of renal stem/progenitor cells as well in Leibovitz's L-15 Medium as CO2 Independent Medium shows in fluorescence microscopy spatial development of numerous tubules. Specimens of both media fixed by conventional glutaraldehyde exhibit in electron microscopy a homogeneous cell population in developed tubules. In contrast, fixation by glutaraldehyde including tannic acid illuminates that dispersed dark marked cells of unknown function are present. The screening further demonstrates that the dark cell type does not comply with cells found in embryonic, maturing or matured renal parenchyma. The actual data show that development of abnormal cell features must be taken into account, when regeneration of renal tubules is simulated under in vitro conditions.

  16. In vivo/in vitro labeling of red blood cells with sup(99m)Tc and clinical applications

    International Nuclear Information System (INIS)

    Bauer, R.; Langhammer, H.; Pabst, H.W.; Bauer, U.; Sauer, E.

    1981-01-01

    A reliable and stabile in vivo/in vitro labeling technique of red blood cells (RBC) is described. The patients are injected 20% of the content of an unlabeled kit used for bone scintigraphy (TechneScan PYP, Byk-Mallinckrodt). 15 minutes later 3 ml blood are sampled in a heparinized syringe. The blood is incubated together with 30-40 mCi (1-1.5 GBq) sup(99m)Tc for 10 minutes in a water bath at 35-37 0 C. After centrifugation at 500 g a dose of 15-25 mCi (0.6-1 GBq) sup(99m)Tc labeled RBC may be withdrawn in a volume of 1-1.5 ml. Mean labeling efficiency is 88%, without using the first eluat of a Tc-generator the yield is as high as 92%. Due to the small volume, the labeled RBC may be reinjected as bolus and first pass radionuclide angiocardiography can be performed. Using labeled RBC, scintigraphy of the intravasal space is possible up to 20 hours without deterioration in contrast or accumulation of radioactivity in the extravasal space or in other organs. Evaluation of heart function can be performed up to 10 hours. In addition, labeled RBC are useful in detecting unknown gastrointestinal bleeding. (orig.) [de

  17. The role of nanotechnology in induced pluripotent and embryonic stem cells research.

    Science.gov (United States)

    Chen, Lukui; Qiu, Rong; Li, Lushen

    2014-12-01

    This paper reviews the recent studies on development of nanotechnology in the field of induced pluripotent and embryonic stem cells. Stem cell therapy is a promising therapy that can improve the quality of life for patients with refractory diseases. However, this option is limited by the scarcity of tissues, ethical problem, and tumorigenicity. Nanotechnology is another promising therapy that can be used to mimic the extracellular matrix, label the implanted cells, and also can be applied in the tissue engineering. In this review, we briefly introduce implementation of nanotechnology in induced pluripotent and embryonic stem cells research. Finally, the potential application of nanotechnology in tissue engineering and regenerative medicine is also discussed.

  18. Anti-Cra: family study and survival of chromium-labeled incompatible red cells in a Spanish-American patient

    International Nuclear Information System (INIS)

    Smith, K.J.; Coonce, L.S.; South, S.F.; Troup, G.M.

    1983-01-01

    A 22-year-old Spanish-American woman with juvenile rheumatoid arthritis developed anti-Cra after transfusion during colectomy. No Cra negative family members were found among 13 relatives, including four siblings and both parents. Chromium-labeled red cell survival studies showed a T1/2 of 14 days with Cra positive cells. Two units of Cra positive blood were transfused uneventfully for bleeding after ileorectal anastomosis

  19. In vivo tracking of {sup 111}In-oxine labeled mesenchymal stem cells following infusion in patients with advanced cirrhosis

    Energy Technology Data Exchange (ETDEWEB)

    Gholamrezanezhad, Ali, E-mail: agholam1@jhmi.edu [Research Institute for Nuclear Medicine. Shariati Hospital. Tehran University of Medical Sciences, Tehran, 14114 (Iran, Islamic Republic of); Mirpour, Sahar [Research Institute for Nuclear Medicine. Shariati Hospital. Tehran University of Medical Sciences, Tehran, 14114 (Iran, Islamic Republic of); Bagheri, Mohammad; Mohamadnejad, Mehdi [Digestive Disease Research Center. Shariati Hospital. Tehran University of Medical Sciences, Tehran, 14114 (Iran, Islamic Republic of); Alimoghaddam, Kamran [Hematology and BMT Research Center. Shariati Hospital. Tehran University of Medical Sciences, Tehran, 14114 (Iran, Islamic Republic of); Abdolahzadeh, Leila [Digestive Disease Research Center. Shariati Hospital. Tehran University of Medical Sciences, Tehran, 14114 (Iran, Islamic Republic of); Saghari, Mohsen [Research Institute for Nuclear Medicine. Shariati Hospital. Tehran University of Medical Sciences, Tehran, 14114 (Iran, Islamic Republic of); Malekzadeh, Reza [Digestive Disease Research Center. Shariati Hospital. Tehran University of Medical Sciences, Tehran, 14114 (Iran, Islamic Republic of)

    2011-10-15

    Background: Several animal and few human studies suggest the beneficial role of bone marrow mesenchymal stem cells (MSCs) in liver cirrhosis. However, little is known about the fate of MSCs after infusion in cirrhotic patients. We evaluated stem cell biodistribution after peripheral infusion of MSCs in four cirrhotic patients. Methods: After three passages of MSCs, the patients received a total of 250-400x10{sup 6} cells, of which only 50% of the cells were labeled. Specific activities of 0.21-0.67 MBq/10{sup 6} cells were maintained for the injected labeled MSCs. Planar whole-body acquisitions (anterior/posterior projections) were acquired immediately following infusion as well as at 2 h, 4 h, 6 h, 24 h, 48 h, 7th and 10th days after cell infusion. Results: After intravenous infusion, the radioactivity was first observed to accumulate in the lungs. During the following hours to days, the radioactivity gradually increased in the liver and spleen, with spleen uptake exceeding that in the liver in all patients. Region-of-interest analysis showed that the percentage of cells homing to the liver (following decay and background corrections and geometric mean calculation) increased from 0.0%-2.8% at immediately post-infusion images to 13.0-17.4% in 10th-day post-infusion. Similarly, the residual activities in the spleen increased from 2.0%-10.2% at immediately post-infusion images to 30.1%-42.2% in 10th-day post-infusion. During the same period, the residual activities in the lungs decreased from 27.0-33.5% to 2.0-5.4%. Conclusion: The infusion of MSCs labeled with {sup 111}In-oxine through a peripheral vein is safe in cirrhosis. Cell labeling with {sup 111}In-oxine is a suitable method for tracking MSC distribution after infusion.

  20. In vivo tracking of 111In-oxine labeled mesenchymal stem cells following infusion in patients with advanced cirrhosis

    International Nuclear Information System (INIS)

    Gholamrezanezhad, Ali; Mirpour, Sahar; Bagheri, Mohammad; Mohamadnejad, Mehdi; Alimoghaddam, Kamran; Abdolahzadeh, Leila; Saghari, Mohsen; Malekzadeh, Reza

    2011-01-01

    Background: Several animal and few human studies suggest the beneficial role of bone marrow mesenchymal stem cells (MSCs) in liver cirrhosis. However, little is known about the fate of MSCs after infusion in cirrhotic patients. We evaluated stem cell biodistribution after peripheral infusion of MSCs in four cirrhotic patients. Methods: After three passages of MSCs, the patients received a total of 250-400x10 6 cells, of which only 50% of the cells were labeled. Specific activities of 0.21-0.67 MBq/10 6 cells were maintained for the injected labeled MSCs. Planar whole-body acquisitions (anterior/posterior projections) were acquired immediately following infusion as well as at 2 h, 4 h, 6 h, 24 h, 48 h, 7th and 10th days after cell infusion. Results: After intravenous infusion, the radioactivity was first observed to accumulate in the lungs. During the following hours to days, the radioactivity gradually increased in the liver and spleen, with spleen uptake exceeding that in the liver in all patients. Region-of-interest analysis showed that the percentage of cells homing to the liver (following decay and background corrections and geometric mean calculation) increased from 0.0%-2.8% at immediately post-infusion images to 13.0-17.4% in 10th-day post-infusion. Similarly, the residual activities in the spleen increased from 2.0%-10.2% at immediately post-infusion images to 30.1%-42.2% in 10th-day post-infusion. During the same period, the residual activities in the lungs decreased from 27.0-33.5% to 2.0-5.4%. Conclusion: The infusion of MSCs labeled with 111 In-oxine through a peripheral vein is safe in cirrhosis. Cell labeling with 111 In-oxine is a suitable method for tracking MSC distribution after infusion.

  1. Functional labeling of insulin receptor subunits in live cells. Alpha 2 beta 2 species is the major autophosphorylated form

    International Nuclear Information System (INIS)

    Le Marchand-Brustel, Y.; Ballotti, R.; Gremeaux, T.; Tanti, J.F.; Brandenburg, D.; Van Obberghen, E.

    1989-01-01

    Both receptor subunits were functionally labeled in order to provide methods allowing, in live cells and in broken cell systems, concomitant evaluation of the insulin receptor dual function, hormone binding, and kinase activity. In cell-free systems, insulin receptors were labeled on their alpha-subunit with 125I-photoreactive insulin, and on their beta-subunit by autophosphorylation. Thereafter, phosphorylated receptors were separated from the complete set of receptors by means of anti-phosphotyrosine antibodies. Using this approach, a subpopulation of receptors was found which had bound insulin, but which were not phosphorylated. Under nonreducing conditions, receptors appeared in three oligomeric species identified as alpha 2 beta 2, alpha 2 beta, and alpha 2. Mainly the alpha 2 beta 2 receptor species was found to be phosphorylated while insulin was bound to alpha 2 beta 2, alpha 2 beta, and alpha 2 forms. In live cells, biosynthetic labeling of insulin receptors was used. Receptors were first labeled with [35S]methionine. Subsequently, the addition of insulin led to receptor autophosphorylation by virtue of the endogenous ATP pool. The total amount of [35S]methionine-labeled receptors was precipitated with antireceptor antibodies, whereas with anti-phosphotyrosine antibodies, only the phosphorylated receptors were isolated. Using this approach we made the two following key findings: (1) Both receptor species, alpha 2 beta 2 and alpha 2 beta, are present in live cells and in comparable amounts. This indicates that the alpha 2 beta form is not a degradation product of the alpha 2 beta 2 form artificially generated during receptor preparation. (2) The alpha 2 beta 2 species is the prevalently autophosphorylated form

  2. MR tracking of stem cells labeled with superparamagnetic nanoparticles in ischemic brain

    Czech Academy of Sciences Publication Activity Database

    Jendelová, Pavla; Růžičková, Kateřina; Urdzíková, Lucia; Kroupová, Jana; Herynek, V.; Dvořák, Petr; Hájek, M.; Syková, Eva

    č. 2 (2003), s. 35 ISSN 0894-1491. [European Meeting on Glial Cell Function in Health and Disease /6./. Berlín, 03.09.2003-06.09.2003] R&D Projects: GA MŠk LN00A065; GA ČR GA304/03/1189 Institutional research plan: CEZ:AV0Z5039906; CEZ:MSM 111300004 Keywords : Stem cells * Nanoparticles Subject RIV: FH - Neurology Impact factor: 4.677, year: 2003

  3. Fluorescence-Activated Cell Sorting of EGFP-Labeled Neural Crest Cells From Murine Embryonic Craniofacial Tissue

    Directory of Open Access Journals (Sweden)

    Saurabh Singh

    2005-01-01

    Full Text Available During the early stages of embryogenesis, pluripotent neural crest cells (NCC are known to migrate from the neural folds to populate multiple target sites in the embryo where they differentiate into various derivatives, including cartilage, bone, connective tissue, melanocytes, glia, and neurons of the peripheral nervous system. The ability to obtain pure NCC populations is essential to enable molecular analyses of neural crest induction, migration, and/or differentiation. Crossing Wnt1-Cre and Z/EG transgenic mouse lines resulted in offspring in which the Wnt1-Cre transgene activated permanent EGFP expression only in NCC. The present report demonstrates a flow cytometric method to sort and isolate populations of EGFP-labeled NCC. The identity of the sorted neural crest cells was confirmed by assaying expression of known marker genes by TaqMan Quantitative Real-Time Polymerase Chain Reaction (QRT-PCR. The molecular strategy described in this report provides a means to extract intact RNA from a pure population of NCC thus enabling analysis of gene expression in a defined population of embryonic precursor cells critical to development.

  4. Live cell imaging of bacterial cells: Pyrenoylpyrrole-based fluorescence labeling.

    Science.gov (United States)

    Arun Divakar, Mathiyazhagan; Shanmugam, Sivakumar

    2017-10-01

    A novel substituted pyrenoylpyrroles was synthesized by the reaction of pyrenoyl chalcone, TosMIC and methyl iodide under mild condition. All the synthesized compounds were screened for their bioactivity, and the MIC was determined, among which few compounds showed moderate antibacterial activity toward Gram-positive as well as Gram-negative bacteria. Further, cytotoxicity assay ascertained that these compounds were non-toxic to mammalian cells as well. The pyrene chromophore in the synthesized compounds (3a-e) and (5a-e) is responsible for the good photophysical properties which have an absorbance at λ 340 nm and emission at λ 410 nm. Hence, two of the selected novel synthesized compounds with non-cytotoxic nature prospected for bio-imaging of bacterial cells using high-content screening analysis show that the molecule is suitable for microbial imaging in pathological diagnostic studies. © 2017 John Wiley & Sons A/S.

  5. Adaptation of a Commonly Used, Chemically Defined Medium for Human Embryonic Stem Cells to Stable Isotope Labeling with Amino Acids in Cell Culture

    DEFF Research Database (Denmark)

    Liberski, A. R.; Al-Noubi, M. N.; Rahman, Z. H.

    2013-01-01

    rarely employed in the context of complex culturing conditions as those required for human embryonic stem cells (hESCs). Classic hESC culture is based on the use of mouse embryonic fibroblasts (MEFs) as a feeder layer, and as a result, possible xenogeneic contamination, contribution of unlabeled amino......Metabolic labeling with stable isotopes is a prominent technique for comparative quantitative proteomics, and stable isotope labeling with amino acids in cell culture (SILAC) is the most commonly used approach. SILAC is, however, traditionally limited to simple tissue culture regimens and only...... developed by Ludwig et al. and commercially available as mTeSR1 [mTeSR1 is a trade mark of WiCell (Madison, WI) licensed to STEMCELL Technologies (Vancouver, Canada)]. This medium, together with adjustments to the culturing protocol, facilitates reproducible labeling that is easily scalable to the protein...

  6. Are reviewers obstructing stem cell research?

    Directory of Open Access Journals (Sweden)

    Bernard Binetruy

    2010-08-01

    Full Text Available Bernard BinetruyINSERM U626, Faculté de Médecine La Timone, Marseille, FranceA current controversy in stem cell research was published on the BBC website recently. Some stem cell researchers have said that "they believe a small group of scientists is effectively vetoing high quality science from publication in journals". They strongly suspected some reviewers to be deliberately sending back negative comments or asking for unnecessary experiments. Nature editor, Dr Philip Campbell, has said that "this idea is utterly false".

  7. Huge Varicose Inferior Mesenteric Vein: an Unanticipated {sup 99m}Tc-labeled Red Blood Cell Scintigraphy Finding

    Energy Technology Data Exchange (ETDEWEB)

    Hoseinzadeh, Samaneh; Shafiei, Babak; Salehian, Mohamadtaghi; Neshandar Asli, Isa; Ghodoosi, Iraj [Shaheed Beheshti Medical University, Tehran (Iran, Islamic Republic of)

    2010-09-15

    Ectopic varices (EcV) are enlarged portosystemic venous collaterals, which usually develop secondary to portal hypertension (PHT). Mesocaval collateral vessels are unusual pathways to decompress the portal system. Here we report the case of a huge varicose inferior mesenteric vein (IMV) that drained into peri rectal collateral veins, demonstrated by {sup 99m}Tc-labeled red blood cell (RBC) scintigraphy performed for lower gastrointestinal (GI) bleeding in a 14-year-old girl. This case illustrates the crucial role of {sup 99m}Tc-labeled RBC scintigraphy for the diagnosis of rare ectopic lower GI varices.

  8. Transfer of label from aspartate to malate by the cell-free extract of Sedum mexicanum leaves

    International Nuclear Information System (INIS)

    Amagasa, Tadashi; Yoshida, Seiichi

    1979-01-01

    The cell-free extract from the leaves of Sedum mexicanum, a typical CAM plant, formed 14 C-malate from 14 C-aspartate in the presence of NAD. No reduction of NAD was observed during the reaction. Analysis of this reaction revealed that the transfer of label from 14 C-aspartate to malate took place by the action of malate dehydrogenase and aspartate aminotransferase, and the reaction was reversible in the model experiment with commercial enzymes. The pitfalls in assessing the data on dark 14 CO 2 fixation in CAM are discussed with reference to the transfer of label between malate and aspartate without actual synthesis. (Kaihara, S.)

  9. Distribution studies of /sup 111/In-oxine-labeled peritoneal mononuclear cells in tumor-bearing rats

    Energy Technology Data Exchange (ETDEWEB)

    Abreo, K.; Lieberman, L.M.; Moorthy, A.V.

    1985-01-01

    The distribution of /sup 111/In-labeled peritoneal mononuclear cells (PMC) in Sprague-Dawley rats with carcinosarcoma (CS) tumor was studied. The authors obtained PMC from normal rats and rats pretreated with BCG or irradiated CS cells as antigenic stimulant. PMC were labeled in-vitro with /sup 111/In-oxine and transferred by tail-vein injection to rats bearing CS tumor. Twenty-four, 48 and 72 h after PMC transfer, the authors measured the accumulation of these cells in the CS tumor as a percentage of dose radioactivity per gram of tumor using an external gamma-ray camera. PMC from normal and BCG treated donor rats accumulated 0.4% and 0.46% dose per gram of CS tumor respectively. PMC from donor rats given killed CS cells accumulated significantly greater concentrations of /sup 111/In (0.79% dose per gram of CS tumor, P less than 0.025). Thus, killed CS cells were able to sensitize the PMC of normal rats. /sup 111/In-oxine-labeling is an elegant procedure to study the distribution of mononuclear cells in tumors.

  10. Stem Cell Research: Unlocking the Mystery of Disease

    Science.gov (United States)

    ... Home Current Issue Past Issues From the Director: Stem Cell Research: Unlocking the Mystery of Disease Past Issues / Summer ... Zerhouni, NIH Director, described the need for expanding stem cell research. Recently, he spoke about stem cell research with ...

  11. Impact of Magnetic Labeling on Human and Mouse Stem Cells and Their Long-Term Magnetic Resonance Tracking in a Rat Model of Parkinson Disease

    Directory of Open Access Journals (Sweden)

    Albrecht Stroh

    2009-05-01

    Full Text Available Magnetic resonance imaging (MRI of magnetically labeled stem cells has become a valuable tool in the understanding and evaluation of experimental stem cell–based therapies of degenerative central nervous system disorders. This comprehensive study assesses the impact of magnetic labeling of both human and rodent stem cell–containing populations on multiple biologic parameters as maintenance of stemness and oxidative stress levels. Cells were efficiently magnetically labeled with very small superparamagnetic iron oxide particles. Only under the condition of tailored labeling strategies can the impact of magnetic labeling on vitality, proliferation, pluripotency, and oxidative stress levels be minimized. In a rat model of Parkinson disease, magnetically labeled mouse embryonic stem cells were tracked by high-field MRI for 6 months. Significant interindividual differences concerning the spatial distribution of cells became evident. Histologically, transplanted green fluorescent protein–positive iron oxide–labeled cells were clearly identified. No significant increase in oxidative stress levels at the implantation site and no secondary uptake of magnetic label by host phagocytotic cells were observed. Our study strongly suggests that molecular MRI approaches must be carefully tailored to the respective cell population to exert minimal physiologic impact, ensuring the feasibility of this imaging approach for clinical applications.

  12. Umbilical cord mesenchymal stem cells labeled with multimodal iron oxide nanoparticles with fluorescent and magnetic properties: application for in vivo cell tracking.

    Science.gov (United States)

    Sibov, Tatiana T; Pavon, Lorena F; Miyaki, Liza A; Mamani, Javier B; Nucci, Leopoldo P; Alvarim, Larissa T; Silveira, Paulo H; Marti, Luciana C; Gamarra, Lf

    2014-01-01

    Here we describe multimodal iron oxide nanoparticles conjugated to Rhodamine-B (MION-Rh), their stability in culture medium, and subsequent validation of an in vitro protocol to label mesenchymal stem cells from umbilical cord blood (UC-MSC) with MION-Rh. These cells showed robust labeling in vitro without impairment of their functional properties, the viability of which were evaluated by proliferation kinetic and ultrastructural analyzes. Thus, labeled cells were infused into striatum of adult male rats of animal model that mimic late onset of Parkinson's disease and, after 15 days, it was observed that cells migrated along the medial forebrain bundle to the substantia nigra as hypointense spots in T2 magnetic resonance imaging. These data were supported by short-term magnetic resonance imaging. Studies were performed in vivo, which showed that about 5 × 10(5) cells could be efficiently detected in the short term following infusion. Our results indicate that these labeled cells can be efficiently tracked in a neurodegenerative disease model.

  13. Infrared fluorescent protein 1.4 genetic labeling tracks engrafted cardiac progenitor cells in mouse ischemic hearts.

    Directory of Open Access Journals (Sweden)

    Lijuan Chen

    Full Text Available Stem cell therapy has a potential for regenerating damaged myocardium. However, a key obstacle to cell therapy's success is the loss of engrafted cells due to apoptosis or necrosis in the ischemic myocardium. While many strategies have been developed to improve engrafted cell survival, tools to evaluate cell efficacy within the body are limited. Traditional genetic labeling tools, such as GFP-like fluorescent proteins (eGFP, DsRed, mCherry, have limited penetration depths in vivo due to tissue scattering and absorption. To circumvent these limitations, a near-infrared fluorescent mutant of the DrBphP bacteriophytochrome from Deinococcus radiodurans, IFP1.4, was developed for in vivo imaging, but it has yet to be used for in vivo stem/progenitor cell tracking. In this study, we incorporated IFP1.4 into mouse cardiac progenitor cells (CPCs by a lentiviral vector. Live IFP1.4-labeled CPCs were imaged by their near-infrared fluorescence (NIRF using an Odyssey scanner following overnight incubation with biliverdin. A significant linear correlation was observed between the amount of cells and NIRF signal intensity in in vitro studies. Lentiviral mediated IFP1.4 gene labeling is stable, and does not impact the apoptosis and cardiac differentiation of CPC. To assess efficacy of our model for engrafted cells in vivo, IFP1.4-labeled CPCs were intramyocardially injected into infarcted hearts. NIRF signals were collected at 1-day, 7-days, and 14-days post-injection using the Kodak in vivo multispectral imaging system. Strong NIRF signals from engrafted cells were imaged 1 day after injection. At 1 week after injection, 70% of the NIRF signal was lost when compared to the intensity of the day 1 signal. The data collected 2 weeks following transplantation showed an 88% decrease when compared to day 1. Our studies have shown that IFP1.4 gene labeling can be used to track the viability of transplanted cells in vivo.

  14. Tc-99m Labeled Red Blood Cell by Ultra Tag RBC Kit in Patients Suspected of Gastrointestinal Bleeding

    International Nuclear Information System (INIS)

    Pusuwan, Pawana; Leaungwutiwong, Suraphong; Tocharoenchai, Chiraporn; Chaiwatanarat, Tawatchai; Sirisatipoch, Sasitorn; Rajadara, Samart; Naktong, Thanyada; Thanyarak, Sucheera

    2001-06-01

    Twenty patients suspected of gastrointestinal bleeding who underwent Tc-99m labeled red blood cell (RBC) by ultraTag RBC kit at Division of Nuclear Medicine, Bumrungrad Hospital between January 2000 and December 2002 were studied. The histories of patients together with either endoscopic results or angiographic findings or pathological reports were used as gold standards. Two by Two decision matrix was used for data analysis and the sensitivity together with specificity were calculated. The results show that the sensitivity and specificity of Tc-99m labeled RBC by ultraTag RBC kit are 87.5% and 91.7%, respectively. We conclude that Tc-99m labeled RBC by ultraTag RBC kit gives high percentages of sensitivity and specificity. Moreover, the image quality is improved because of the absence of free Tc-99m pertechnetate uptake in the stomach in all patients

  15. What Undergraduates Misunderstand about Stem Cell Research

    Science.gov (United States)

    Halverson, Kristy Lynn; Freyermuth, Sharyn K.; Siegel, Marcelle A.; Clark, Catharine G.

    2010-01-01

    As biotechnology-related scientific advances, such as stem cell research (SCR), are increasingly permeating the popular media, it has become ever more important to understand students' ideas about this issue. Very few studies have investigated learners' ideas about biotechnology. Our study was designed to understand the types of alternative…

  16. Label-free detection of HIV-1 infected cells via integration of optical tweezers and photoluminescence spectroscopy

    Science.gov (United States)

    Lugongolo, Masixole Yvonne; Ombinda-Lemboumba, Saturnin; Noto, Luyanda Lunga; Maaza, Malik; Mthunzi-Kufa, Patience

    2018-02-01

    The human immunodeficiency virus-1 (HIV-1) is currently detected using conventional qualitative and quantitative tests to determine the presence or absence of HIV in blood samples. However, the approach of these tests detects the presence of either viral antibodies or viral RNA that require labelling which may be costly, sophisticated and time consuming. A label-free approach of detecting the presence of HIV is therefore desirable. Of note optical tweezers can be coupled with other technologies including spectroscopy, which also investigates light-matter interactions. For example, coupling of optical tweezers with luminescence spectroscopy techniques has emerged as a powerful tool in biology for micro-manipulation, detection and analysis of individual cells. Integration of optical techniques has enabled studying biological particles in a label-free manner, whilst detecting functional groups and other essential molecules within mixed populations of cells. In the current study, an optical trapping system coupled to luminescence spectroscopy was utilised to detect the presence of HIV infection in TZM-bl cells in vitro. This was performed by infecting TZM-bl cells with the ZM53 HIV-1 pseudovirus, and incubating them for 48 hours prior analysis. The differences between infected and uninfected cells were thereafter displayed as shown by the spectrographs obtained. Combination of these two techniques has a potential in the field of infectious disease diagnostics.

  17. Perturbation of DNA replication and cell cycle progression by commonly used ( sup 3 H)thymidine labeling protocols

    Energy Technology Data Exchange (ETDEWEB)

    Hoy, C.A.; Lewis, E.D.; Schimke, R.T. (Stanford Univ., CA (USA))

    1990-04-01

    The effect of tritiated thymidine incorporation on DNA replication was studied in Chinese hamster ovary cells. Rapidly eluting (small) DNA from cells labeled with 2 microCi of ({sup 3}H)thymidine per ml (200 microCi/mmol) for 60 min matured to a large nonelutable size within approximately 2 to 4 h, as measured by the alkaline elution technique. However, DNA from cells exposed to 10 microCi of ({sup 3}H)thymidine per ml (66 microCi/mmol) was more rapidly eluting initially and did not mature to a nonelutable size during subsequent incubation. Semiconservative DNA replication measured by cesium chloride gradient analysis of bromodeoxyuridine-substituted DNA was also found to be affected by the final specific activity of the ({sup 3}H)thymidine used in the labeling protocol. Dramatic cell cycle perturbations accompanied these effects on DNA replication, suggesting that labeling protocols commonly used to study DNA metabolism produce aberrant DNA replication and subsequent cell cycle perturbations.

  18. European stem cell research in legal shackles.

    Science.gov (United States)

    Nielen, Myrthe G; de Vries, Sybe A; Geijsen, Niels

    2013-12-11

    Advances in stem cell biology have raised legal challenges to the patentability of stem cells and any derived technologies and processes. In 1999, Oliver Brüstle was granted a patent for the generation and therapeutic use of neural cells derived from human embryonic stem cells (hESCs). The patent was challenged and put before the European Court of Justice, which ruled that inventions involving the prior destruction of human embryos cannot be patented. The legal maneuvering around this case demonstrates that the future of stem cell-based patents in Europe remains unsettled. Furthermore, owing to the European Court's broad definition of hESC as 'any cell that is capable of commencing development into a human being,' novel technologies that could eliminate the need for hESCs, such as induced pluripotent stem cells (iPSCs), are at risk of being included under the same ruling. Advances in the in vitro development of germ cells from pluripotent stem cells may one day provide a direct developmental path from iPSC to oocyte and sperm, and, according to the European Court's reasoning, legally equate iPSCs with human embryos. In this review, we will briefly discuss the Brüstle v Greenpeace case and the implications of the European Court of Justice's ruling. We will identify potential risks for stem cell research and future therapeutics resulting from the broad legal definition of the human embryo. Finally, we will broach the current legal landscape, as this broad definition has also created great uncertainty about the status of human iPSCs.

  19. Differentiation of MCF-7 tumor cells from leukocytes and fibroblast cells using epithelial cell adhesion molecule targeted multicore surface-enhanced Raman spectroscopy labels

    Science.gov (United States)

    Freitag, Isabel; Matthäus, Christian; Csaki, Andrea; Clement, Joachim H.; Cialla-May, Dana; Weber, Karina; Krafft, Christoph; Popp, Jürgen

    2015-05-01

    Identification of tumor and normal cells is a promising application of Raman spectroscopy. The throughput of Raman-assisted cell sorting is limited by low sensitivity. Surface-enhanced Raman spectroscopy (SERS) is a well-recognized candidate to increase the intensity of Raman signals of cells. First, different strategies are summarized to detect tumor cells using targeted SERS probes. Then, a protocol is described to prepare multicore-SERS-labels (MSLs) by aggregating gold nanoparticles, coating with a reporter molecule and a thin silver shell to further boost enhancement, encapsulating with a stable silica layer, and functionalizing by epithelial cell adhesion molecule (EpCAM) antibodies. Raman, dark field and fluorescence microscopy proved the specific and nonspecific binding of functionalized and nonfunctionalized MSLs to MCF-7 tumor cells, leukocytes from blood, and nontransformed human foreskin fibroblasts. Raman imaging and dark field microscopy indicated no uptake of MSLs, yet binding to the cellular membrane. Viability tests were performed with living tumor cells to demonstrate the low toxicity of MSL-EpCAM. The SERS signatures were detected from cells with exposure times down to 25 ms at 785-nm laser excitation. The prospects of these MSLs in multiplex assays, for enumeration and sorting of circulating tumor cells in microfluidic chips, are discussed.

  20. Label-Free Imaging of Nanoparticle Uptake Competition in Single Cells by Hyperspectral Stimulated Raman Scattering.

    Science.gov (United States)

    Huang, Bin; Yan, Shuai; Xiao, Lin; Ji, Rong; Yang, Liuyan; Miao, Ai-Jun; Wang, Ping

    2018-03-01

    Imaging and quantification of nanoparticles in single cells in their most natural condition are expected to facilitate the biotechnological applications of nanoparticles and allow for better assessment of their biosafety risks. However, current imaging modalities either require tedious sample preparation or only apply to nanoparticles with specific physicochemical characteristics. Here, the emerging hyperspectral stimulated Raman scattering (SRS) microscopy, as a label-free and nondestructive imaging method, is used for the first time to investigate the subcellular distribution of nanoparticles in the protozoan Tetrahymena thermophila. The two frequently studied nanoparticles, polyacrylate-coated α-Fe 2 O 3 and TiO 2 , are found to have different subcellular distribution pattern as a result of their dissimilar uptake routes. Significant uptake competition between these two types of nanoparticles is further discovered, which should be paid attention to in future bioapplications of nanoparticles. Overall, this study illustrates the great promise of hyperspectral SRS as an analytical imaging tool in nanobiotechnology and nanotoxicology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Autologous Bone Marrow Mononuclear Cell Therapy for Autism: An Open Label Proof of Concept Study

    Directory of Open Access Journals (Sweden)

    Alok Sharma

    2013-01-01

    Full Text Available Cellular therapy is an emerging therapeutic modality with a great potential for the treatment of autism. Recent findings show that the major underlying pathogenetic mechanisms of autism are hypoperfusion and immune alterations in the brain. So conceptually, cellular therapy which facilitates counteractive processes of improving perfusion by angiogenesis and balancing inflammation by immune regulation would exhibit beneficial clinical effects in patients with autism. This is an open label proof of concept study of autologous bone marrow mononuclear cells (BMMNCs intrathecal transplantation in 32 patients with autism followed by multidisciplinary therapies. All patients were followed up for 26 months (mean 12.7. Outcome measures used were ISAA, CGI, and FIM/Wee-FIM scales. Positron Emission Tomography-Computed Tomography (PET-CT scan recorded objective changes. Out of 32 patients, a total of 29 (91% patients improved on total ISAA scores and 20 patients (62% showed decreased severity on CGI-I. The difference between pre- and postscores was statistically significant (P<0.001 on Wilcoxon matched-pairs signed rank test. On CGI-II 96% of patients showed global improvement. The efficacy was measured on CGI-III efficacy index. Few adverse events including seizures in three patients were controlled with medications. The encouraging results of this leading clinical study provide future directions for application of cellular therapy in autism.

  2. Cell Science and Cell Biology Research at MSFC: Summary

    Science.gov (United States)

    2003-01-01

    The common theme of these research programs is that they investigate regulation of gene expression in cells, and ultimately gene expression is controlled by the macromolecular interactions between regulatory proteins and DNA. The NASA Critical Path Roadmap identifies Muscle Alterations and Atrophy and Radiation Effects as Very Serious Risks and Severe Risks, respectively, in long term space flights. The specific problem addressed by Dr. Young's research ("Skeletal Muscle Atrophy and Muscle Cell Signaling") is that skeletal muscle loss in space cannot be prevented by vigorous exercise. Aerobic skeletal muscles (i.e., red muscles) undergo the most extensive atrophy during long-term space flight. Of the many different potential avenues for preventing muscle atrophy, Dr. Young has chosen to study the beta-adrenergic receptor (betaAR) pathway. The reason for this choice is that a family of compounds called betaAR agonists will preferentially cause an increase in muscle mass of aerobic muscles (i.e., red muscle) in animals, potentially providing a specific pharmacological solution to muscle loss in microgravity. In addition, muscle atrophy is a widespread medical problem in neuromuscular diseases, spinal cord injury, lack of exercise, aging, and any disease requiring prolonged bedridden status. Skeletal muscle cells in cell culture are utilized as a model system to study this problem. Dr. Richmond's research ("Radiation & Cancer Biology of Mammary Cells in Culture") is directed toward developing a laboratory model for use in risk assessment of cancer caused by space radiation. This research is unique because a human model will be developed utilizing human mammary cells that are highly susceptible to tumor development. This approach is preferential over using animal cells because of problems in comparing radiation-induced cancers between humans and animals.

  3. Use of KikGR a photoconvertible green-to-red fluorescent protein for cell labeling and lineage analysis in ES cells and mouse embryos

    Directory of Open Access Journals (Sweden)

    Hadjantonakis Anna-Katerina

    2009-09-01

    Full Text Available Abstract Background The use of genetically-encoded fluorescent proteins has revolutionized the fields of cell and developmental biology and in doing so redefined our understanding of the dynamic morphogenetic processes that shape the embryo. With the advent of more accessible and sophisticated imaging technologies as well as an abundance of fluorescent proteins with different spectral characteristics, the dynamic processes taking place in situ in living cells and tissues can now be probed. Photomodulatable fluorescent proteins are one of the emerging classes of genetically-encoded fluorescent proteins. Results We have compared PA-GFP, PS-CFP2, Kaede and KikGR four readily available and commonly used photomodulatable fluorescent proteins for use in ES cells and mice. Our results suggest that the green-to-red photoconvertible fluorescent protein, Kikume Green-Red (KikGR, is most suitable for cell labeling and lineage studies in ES cells and mice because it is developmentally neutral, bright and undergoes rapid and complete photoconversion. We have generated transgenic ES cell lines and strains of mice exhibiting robust widespread expression of KikGR. By efficient photoconversion of KikGR we labeled subpopulations of ES cells in culture, and groups of cells within ex utero cultured mouse embryos. Red fluorescent photoconverted cells and their progeny could be followed for extended periods of time. Conclusion Transgenic ES cells and mice exhibiting widespread readily detectable expression of KikGR are indistinguishable from their wild type counterparts and are amenable to efficient photoconversion. They represent novel tools for non-invasive selective labeling specific cell populations and live imaging cell dynamics and cell fate. Genetically-encoded photomodulatable proteins such as KikGR represent emergent attractive alternatives to commonly used vital dyes, tissue grafts and genetic methods for investigating dynamic behaviors of individual cells

  4. Data-driven simultaneous fault diagnosis for solid oxide fuel cell system using multi-label pattern identification

    Science.gov (United States)

    Li, Shuanghong; Cao, Hongliang; Yang, Yupu

    2018-02-01

    Fault diagnosis is a key process for the reliability and safety of solid oxide fuel cell (SOFC) systems. However, it is difficult to rapidly and accurately identify faults for complicated SOFC systems, especially when simultaneous faults appear. In this research, a data-driven Multi-Label (ML) pattern identification approach is proposed to address the simultaneous fault diagnosis of SOFC systems. The framework of the simultaneous-fault diagnosis primarily includes two components: feature extraction and ML-SVM classifier. The simultaneous-fault diagnosis approach can be trained to diagnose simultaneous SOFC faults, such as fuel leakage, air leakage in different positions in the SOFC system, by just using simple training data sets consisting only single fault and not demanding simultaneous faults data. The experimental result shows the proposed framework can diagnose the simultaneous SOFC system faults with high accuracy requiring small number training data and low computational burden. In addition, Fault Inference Tree Analysis (FITA) is employed to identify the correlations among possible faults and their corresponding symptoms at the system component level.

  5. Ultrasensitive electrochemical aptasensor based on sandwich architecture for selective label-free detection of colorectal cancer (CT26) cells.

    Science.gov (United States)

    Hashkavayi, Ayemeh Bagheri; Raoof, Jahan Bakhsh; Ojani, Reza; Kavoosian, Saeid

    2017-06-15

    Colorectal cancer is one of the most common cancers in the world and has no effective treatment. Therefore, development of new methods for early diagnosis is instantly required. Biological recognition probes such as synthetic receptor and aptamer is one of the candidate recognition layers to detect important biomolecules. In this work, an electrochemical aptasensor was developed by fabricating an aptamer-cell-aptamer sandwich architecture on an SBA-15-3-aminopropyltriethoxysilane (SBA-15-pr-NH 2 ) and Au nanoparticles (AuNPs) modified graphite screen printed electrode (GSPE) surface for the selective, label-free detection of CT26 cancer cells. Based on the incubation of the thiolated aptamer with CT26 cells, the electron-transfer resistance of Fe (CN) 6 3-/4- redox couple increased considerably on the aptasensor surface. The results obtained from cyclic voltammetry and electrochemical impedance spectroscopy studies showed that the fabricated aptasensor can specifically identify CT26 cells in the concentration ranges of 10-1.0×10 5 cells/mL and 1.0×10 5 -6.0×10 6 cells/mL, respectively, with a detection limit of 2cells/mL. Applying the thiol terminated aptamer (5TR1) as a recognition layer led to a sensor with high affinity for CT26 cancer cells, compared to control cancer cells of AGS cells, VERO Cells, PC3 cells and SKOV-3 cells. Therefore a simple, rapid, label free, inexpensive, excellent, sensitive and selective electrochemical aptasensor based on sandwich architecture was developed for detection of CT26 Cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A non-genetic approach to labelling acute myeloid leukemia and bone marrow cells with quantum dots.

    Science.gov (United States)

    Zheng, Yanwen; Tan, Dongming; Chen, Zheng; Hu, Chenxi; Mao, Zhengwei J; Singleton, Timothy P; Zeng, Yan; Shao, Xuejun; Yin, Bin

    2014-06-01

    The difficulty in manipulation of leukemia cells has long hindered the dissection of leukemia pathogenesis. We have introduced a non-genetic approach of marking blood cells, using quantum dots. We compared quantum dots complexed with different vehicles, including a peptide Tat, cationic polymer Turbofect and liposome. Quantum dots-Tat showed the highest efficiency of marking hematopoietic cells among the three vehicles. Quantum dots-Tat could also label a panel of leukemia cell lines at varied efficiencies. More uniform intracellular distributions of quantum dots in mouse bone marrow and leukemia cells were obtained with quantum dots-Tat, compared with the granule-like formation obtained with quantum dots-liposome. Our results suggest that quantum dots have provided a photostable and non-genetic approach that labels normal and malignant hematopoietic cells, in a cell type-, vehicle-, and quantum dot concentration-dependent manner. We expect for potential applications of quantum dots as an easy and fast marking tool assisting investigations of various types of blood cells in the future.

  7. High-resolution, label-free imaging of living cells with direct electron-beam-excitation-assisted optical microscopy.

    Science.gov (United States)

    Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-06-01

    High spatial resolution microscope is desired for deep understanding of cellular functions, in order to develop medical technologies. We demonstrate high-resolution imaging of un-labelled organelles in living cells, in which live cells on a 50 nm thick silicon nitride membrane are imaged by autofluorescence excited with a focused electron beam through the membrane. Electron beam excitation enables ultrahigh spatial resolution imaging of organelles, such as mitochondria, nuclei, and various granules. Since the autofluorescence spectra represent molecular species, this microscopy allows fast and detailed investigations of cellular status in living cells.

  8. Fluorescein isothiocyanate labeled, magnetic nanoparticles conjugated D-penicillamine-anti-metadherin and in vitro evaluation on breast cancer cells

    International Nuclear Information System (INIS)

    Akca, Ozlet; Unak, Perihan; Medine, E. Ylker; Sakarya, Serhan; Ozdemir, Caglar; Timur, Suna

    2011-01-01

    Silane modified magnetic nanoparticles were prepared after capped with silica generated from the hydrolyzation of tetraethyl orthosilicate (TEOS). Amino silane (SG-Si900) was added to this solution for surface modification of silica coated magnetic particles. Finally, D-penicillamine (D-PA)-antimetadherin (anti-MTDH) was covalently linked to the amine group using glutaraldehyde as cross-linker. Magnetic nanoparticles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and atomic force microscopy (AFM). AFM results showed that particles are nearly monodisperse, and the average size of particles was 40 to 50 nm. An amino acid derivative D-PA was conjugated anti-MTDH, which results the increase of uptaking potential of a conjugated agent, labelled fluorescein isothiocyanate (FITC) and then conjugated to the magnetic nanoparticles. In vitro evaluation of the conjugated D-PA-anti-MTDH-FITC to magnetic nanoparticle was studied on MCF-7 breast cancer cell lines. Fluorescence microscopy images of cells after incubation of the sample were obtained to monitor the interaction of the sample with the cancerous cells. Incorporation on cells of FITC labeled and magnetic nanoparticles conjugated D-PA-anti-MTDH was found higher than FITC labeled D-PA-anti-MTDH. The results show that magnetic properties and application of magnetic field increased incorporation rates. The obtained D-PA-anti-MTDH-magnetic nanoparticles-FITC complex has been used for in vitro imaging of breast cancer cells. FITC labeled and magnetic nanoparticles conjugated D-PA-anti-MTDH may be useful as a new class of scintigraphic agents. Results of this study are sufficiently encouraging to bring about further evaluation of this and related compounds for ultraviolet magnetic resonance (UV-MR) dual imaging. (author)

  9. Dynamic nano-imaging of label-free living cells using electron beam excitation-assisted optical microscope.

    Science.gov (United States)

    Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-11-03

    Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications.

  10. Dynamic nano-imaging of label-free living cells using electron beam excitation-assisted optical microscope

    Science.gov (United States)

    Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-01-01

    Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications. PMID:26525841

  11. Improved biocompatibility and efficient labeling of neural stem cells with poly(L-lysine-coated maghemite nanoparticles

    Directory of Open Access Journals (Sweden)

    Igor M. Pongrac

    2016-06-01

    Full Text Available Background: Cell tracking is a powerful tool to understand cellular migration, dynamics, homing and function of stem cell transplants. Nanoparticles represent possible stem cell tracers, but they differ in cellular uptake and side effects. Their properties can be modified by coating with different biocompatible polymers. To test if a coating polymer, poly(L-lysine, can improve the biocompatibility of nanoparticles applied to neural stem cells, poly(L-lysine-coated maghemite nanoparticles were prepared and characterized. We evaluated their cellular uptake, the mechanism of internalization, cytotoxicity, viability and proliferation of neural stem cells, and compared them to the commercially available dextran-coated nanomag®-D-spio nanoparticles.Results: Light microscopy of Prussian blue staining revealed a concentration-dependent intracellular uptake of iron oxide in neural stem cells. The methyl thiazolyl tetrazolium assay and the calcein acetoxymethyl ester/propidium iodide assay demonstrated that poly(L-lysine-coated maghemite nanoparticles scored better than nanomag®-D-spio in cell labeling efficiency, viability and proliferation of neural stem cells. Cytochalasine D blocked the cellular uptake of nanoparticles indicating an actin-dependent process, such as macropinocytosis, to be the internalization mechanism for both nanoparticle types. Finally, immunocytochemistry analysis of neural stem cells after treatment with poly(L-lysine-coated maghemite and nanomag®-D-spio nanoparticles showed that they preserve their identity as neural stem cells and their potential to differentiate into all three major neural cell types (neurons, astrocytes and oligodendrocytes.Conclusion: Improved biocompatibility and efficient cell labeling makes poly(L-lysine-coated maghemite nanoparticles appropriate candidates for future neural stem cell in vivo tracking studies.

  12. [18F]FDG labeling of neural stem cells for in vivo cell tracking with positron emission tomography: inhibition of tracer release by phloretin.

    Science.gov (United States)

    Stojanov, Katica; de Vries, Erik F J; Hoekstra, Dick; van Waarde, Aren; Dierckx, Rudi A J O; Zuhorn, Inge S

    2012-02-01

    The introduction of neural stem cells into the brain has promising therapeutic potential for the treatment of neurodegenerative diseases. To monitor the cellular replacement therapy, that is, to determine stem cell migration, survival, and differentiation, in vivo tracking methods are needed. Ideally, these tracking methods are noninvasive. Noninvasive tracking methods that have been successfully used for the visualization of blood-derived progenitor cells include magnetic resonance imaging and radionuclide imaging using single-photon emission computed tomography (SPECT) and positron emission tomography (PET). The SPECT tracer In-111-oxine is suitable for stem cell labeling, but for studies in small animals, the higher sensitivity and facile quantification that can be obtained with PET are preferred. Here the potential of 2'-[18F]fluoro-2'-deoxy-D-glucose ([18F]-FDG), a PET tracer, for tracking of neural stem cell (NSCs) trafficking toward an inflammation site was investigated. [18F]-FDG turns out to be a poor radiopharmaceutical to label NSCs owing to the low labeling efficiency and substantial release of radioactivity from these cells. Efflux of [18F]-FDG from NSCs can be effectively reduced by phloretin in vitro, but inhibition of tracer release is insufficient in vivo for accurate monitoring of stem cell trafficking.

  13. An enzyme-linked immunoabsorbent assay for estimating red cell survival of transfused red cells-validation using CR-51 labeling

    International Nuclear Information System (INIS)

    Drew, H.; Kickler, T.; Smith, B.; LaFrance, N.

    1984-01-01

    The survival time of transfused red cells antigenically distinct from the recipient's red cells was determined using an indirect enzyme linked antiglobulin test. These results were then compared to those determined by Cr-51 labeling. Three patients with hypoproliferative anemias and one patient (2 studies) with traumatic hemolytic anemia caused by a prosthetic heart valve were studied. Survival times were performed by transfusing a 5cc aliquot of Cr-51 labeled cells along with the remaining unit. One hour post transfusion, a blood sample was drawn and used as the 100% value. Subsequent samples drawn over a 2-3 week period were then compared to the initial sample to determine percent survival for both methods. The ELISA method for measuring red cell survival in antigenically distinct cells is in close agreement with the Cr-51 method. Although CR-51 labeling is the accepted method for red cell survival determination the ELISA method can be used when radioisotopes are unavailable or contraindicated or when the decision to estimate red cell survival is made after transfusion

  14. [18F]FDG Labeling of Neural Stem Cells for in Vivo Cell Tracking with Positron Emission Tomography: Inhibition of Tracer Release by Phloretin

    Directory of Open Access Journals (Sweden)

    Katica Stojanov

    2012-01-01

    Full Text Available The introduction of neural stem cells into the brain has promising therapeutic potential for the treatment of neurodegenerative diseases. To monitor the cellular replacement therapy, that is, to determine stem cell migration, survival, and differentiation, in vivo tracking methods are needed. Ideally, these tracking methods are noninvasive. Noninvasive tracking methods that have been successfully used for the visualization of blood-derived progenitor cells include magnetic resonance imaging and radionuclide imaging using single-photon emission computed tomography (SPECT and positron emission tomography (PET. The SPECT tracer In-111-oxine is suitable for stem cell labeling, but for studies in small animals, the higher sensitivity and facile quantification that can be obtained with PET are preferred. Here the potential of 2′-[18F]fluoro-2′-deoxy-D-glucose ([18F]-FDG, a PET tracer, for tracking of neural stem cell (NSCs trafficking toward an inflammation site was investigated. [18F]-FDG turns out to be a poor radiopharmaceutical to label NSCs owing to the low labeling efficiency and substantial release of radioactivity from these cells. Efflux of [18F]-FDG from NSCs can be effectively reduced by phloretin in vitro, but inhibition of tracer release is insufficient in vivo for accurate monitoring of stem cell trafficking.

  15. Coatomer subunit beta 2 (COPB2), identified by label-free quantitative proteomics, regulates cell proliferation and apoptosis in human prostate carcinoma cells.

    Science.gov (United States)

    Mi, Yuanyuan; Sun, Chuanyu; Wei, Bingbing; Sun, Feiyu; Guo, Yijun; Hu, Qingfeng; Ding, Weihong; Zhu, Lijie; Xia, Guowei

    2018-01-01

    Label-free quantitative proteomics has broad applications in the identification of differentially expressed proteins. Here, we applied this method to identify differentially expressed proteins (such as coatomer subunit beta 2 [COPB2]) and evaluated the functions and molecular mechanisms of these proteins in prostate cancer (PCA) cell proliferation. Proteins extracted from surgically resected PCA tissues and adjacent tissues of 3 patients were analyzed by label-free quantitative proteomics. The target protein was confirmed by bioinformatics and GEO dataset analyses. To investigate the role of the target protein in PCA, we used lentivirus-mediated small-interfering RNA (siRNA) to knockdown protein expression in the prostate carcinoma cell line, CWR22RV1 cells and assessed gene and protein expression by reverse transcription quantitative polymerase chain reaction and western blotting. CCK8 and colony formation assays were conducted to evaluate cell proliferation. Cell cycle distributions and apoptosis were assayed by flow cytometry. We selected the differentiation-related protein COPB2 as our target protein based on the results of label-free quantitative proteomics. High expression of COPB2 was found in PCA tissue and was related to poor overall survival based on a public dataset. Cell proliferation was significantly inhibited in COPB2-knockdown CWR22RV1 cells, as demonstrated by CCK8 and colony formation assays. Additionally, the apoptosis rate and percentage of cells in the G 1 phase were increased in COPB2-knockdown cells compared with those in control cells. CDK2, CDK4, and cyclin D1 were downregulated, whereas p21 Waf1/Cip1 and p27 Kip1 were upregulated, affecting the cell cycle signaling pathway. COPB2 significantly promoted CWR22RV1 cell proliferation through the cell cycle signaling pathway. Thus, silencing of COPB2 may have therapeutic applications in PCA. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Next-generation detection of antigen-responsive T cells using DNA barcode-labeled peptidemajor histocompatibility complex I multimers

    DEFF Research Database (Denmark)

    Bentzen, Amalie Kai; Marquard, Andrea Marion; Lyngaa, Rikke Birgitte

    2016-01-01

    diversity of T cell recognition in humans. Consequently it has been impossible to comprehensively analyze T cell responsiveness in cancer, infectious and autoimmune diseases. We present and validate a novel technology that enables parallel detection of numerous different peptide-MHC responsive T cells...... in asingle sample using >1000 different peptide-MHC multimers labeled with individual DNA barcodes. After isolation of MHC multimer binding T cells their recognition are revealed by amplification and sequencing of the MHC multimer-associated DNA barcodes. The relative frequency of the sequenced DNA barcodes...... originating from a given peptide-MHC motif relates to the size of the antigenresponsive T cell population. We have demonstrated the use of large panels of >1000 DNA barcoded MHC multimers for detection of rare T cell populations of virus and cancer-restricted origin in various tissues and compared...

  17. 3 CFR - Guidelines for Human Stem Cell Research

    Science.gov (United States)

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Guidelines for Human Stem Cell Research Presidential Documents Other Presidential Documents Memorandum of July 30, 2009 Guidelines for Human Stem Cell Research..., scientifically worthy human stem cell research, including human embryonic stem cell research, to the extent...

  18. Macromolecular synthesis in algal cells. A review on the kinetics of incorporation in vivo of radioisotope-labelled compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, M.R.; Kikuchi, T. (Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.)

    1980-11-01

    The present paper is a review of our experimental results obtained previously on the macromolecular biosyntheses in the cells of blue-green alga Anacystis nidulans as a representative species of prokaryote, and also in those of three species of eukaryotic algae, i.e. Euglena gracilis strain Z, Chlamydomonas reinhardi, and Cyanidium caldarium. In these algal cells, the combined methods consisting of pulse-labelling using /sup 32/P, /sup 3/H- and /sup 14/C-labelled precursors for macromolecules, of their chasing and of the use of inhibitors which block specifically the syntheses of macromolecules such as proteins, RNA and DNA in living cells were very effectively applied for the analyses of the regulatory mechanism in biosyntheses of macromolecules and of the mode of their assembly into the cell structure, especially organelle constituents. Rased on the results obtained thus, the following conclusions are reached: (1) the metabolic pool for syntheses of macromolecules in the cells of prokaryotic blue-green alga is limited to the small extent and such activities couple largely with the photosynthetic mechanism; (2) 70 S ribosomes in the blue-green algal cells are assembled on the surface of thylakoid membranes widely distributed in their cytoplasm; and (3) the cells of eukaryotic unicellular algae used here have biochemical characters specific for already differentiated enzyme system involving in transcription and translation machineries as the same as in higher organisms, but the control mechanism concerning with such macromolecule syntheses are different among each species.

  19. Changes in repair competency after 5-bromodeoxyuridine pulse labeling and near-ultraviolet light. [V79 Chinese hamster cells

    Energy Technology Data Exchange (ETDEWEB)

    Hagan, M.P.; Elkind, M.M.

    1979-07-01

    Synchronized V79 Chinese hamster cells, pulse-labeled with 5-bromodeoxyuridine (BrdUrd), show marked changes in the sensitivity to near-ultraviolet light during the cell cycle. Cells are least sensitive during the remainder of the S-phase after the BrdUrd pulse. They become maximally sensitive in the next cell cycle when the BrdUrd-labeled DNA presumably serves as the template for replication. This is followed by a return to relative insensitivity during the remainder of that S-phase. When BrdUrd is given both near the beginning and again near the end of the same S-phase, the increase in survival does not occur until DNA synthesis progresses beyond the time when the DNA made during the second pulse serves as a template. Furthermore, cells in the resistant phases of the cell cycle are sensitized by 1-2 mM caffeine. Survival curves are shown for the various cell ages of interest and are discussed in relation to the observed changes in functional repair capacity. The data support the hypothesis that lesions in the BrdUrd-containing DNA are effectively repaired after semiconservative replication. The data indicate that saturation of repair capacity and not target multiplicity is responsible for the appearance of a shoulder on these survival curves.

  20. Preparation of colloidal gold-labeled agarose-gelatin microspherules for electron microscopic studies of phagocytosis in cultured cells.

    Science.gov (United States)

    Gao, K X; Huang, L

    1987-02-01

    Agarose-gelatin microspherules about 0.5 micron or larger are prepared with emulsification of 4% agarose-gelatin sol containing 0.2 M N-octylglucoside in an organic phase composed of cyclohexane, egg lecithin, Span 80, and ethanol, followed by extraction of lipophilic components with cyclohexane and ether. Colloidal gold particles are then introduced into microspherules using gold chloride reacting at room temperature with tannic acid in a specified concentration range. After they have been coated with bovine serum albumin or mouse IgG, colloidal gold-labeled microspherules can be readily phagocytized by mouse L-cells and P388 cells after incubation for several hours. In addition to their use as a novel marker for phagocytosis, we discuss other potential uses for these colloidal gold-labeled microspherules.

  1. Dye solar cell research: EU delegation presentation

    CSIR Research Space (South Africa)

    Cummings, F

    2009-11-09

    Full Text Available Franscious Cummings Energy and Processes Materials Science and Manufacturing Council for Scientific and Industrial Research P.O. Box 395 Pretoria 0001, South Africa 13 November 2009 © CSIR 2007 www.csir.co.za CONTENT head2right...Background head2rightCSIR Dye Solar Cell Research head2rightCollaborations and Links head2rightAcknowledgements © CSIR 2007 www.csir.co.za BACKGROUND head2rightSA is dry: Annual rainfall average of 450 mm compared with a world average...

  2. Dre - Cre sequential recombination provides new tools for retinal ganglion cell labeling and manipulation in mice.

    Directory of Open Access Journals (Sweden)

    Szilard Sajgo

    Full Text Available BACKGROUND: Genetic targeting methods have greatly advanced our understanding of many of the 20 Retinal Ganglion Cell (RGC types conveying visual information from the eyes to the brain. However, the complexity and partial overlap of gene expression patterns in RGCs call for genetic intersectional or sparse labeling strategies. Loci carrying the Cre recombinase in conjunction with conditional knock-out, reporter or other genetic tools can be used for targeted cell type ablation and functional manipulation of specific cell populations. The three members of the Pou4f family of transcription factors, Brn3a, Brn3b and Brn3c, expressed early during RGC development and in combinatorial pattern amongst RGC types are excellent candidates for such gene manipulations. METHODS AND FINDINGS: We generated conditional Cre knock-in alleles at the Brn3a and Brn3b loci, Brn3a(CKOCre and Brn3b(CKOCre. When crossed to mice expressing the Dre recombinase, the endogenous Brn3 gene expressed by Brn3a(CKOCre or Brn3b(CKOCre is removed and replaced with a Cre recombinase, generating Brn3a(Cre and Brn3b(Cre knock-in alleles. Surprisingly both Brn3a(Cre and Brn3b(Cre knock-in alleles induce early ubiquitous recombination, consistent with germline expression. However in later stages of development, their expression is limited to the expected endogenous pattern of the Brn3a and Brn3b genes. We use the Brn3a(Cre and Brn3b(Cre alleles to target a Cre dependent Adeno Associated Virus (AAV reporter to RGCs and demonstrate its use in morphological characterization, early postnatal gene delivery and tracing the expression of Brn3 genes in RGCs. CONCLUSIONS: Dre recombinase effectively recombines the Brn3a(CKOCre and Brn3b(CKOCre alleles containing its roxP target sites. Sequential Dre to Cre recombination reveals Brn3a and Brn3b expression in early mouse development. The generated Brn3a(Cre and Brn3b(Cre alleles are useful tools that can target exogenously delivered Cre dependent

  3. NK cell imaging by in vitro and in vivo labelling approaches

    International Nuclear Information System (INIS)

    Galli, F.; Histed, S. N.; Aras, O.

    2014-01-01

    Natural killer (NK) cells are a particular lymphocyte subset with a documented cytotoxic activity against cancer cells. Evidence of NK antitumoral effect led researchers to focus on the development of immunotherapies aimed at augmenting NK recruitment and infiltration into tumor and their anti-cancer functions. Studies in animal models proved that the right combination of drugs, cytokines, chemokines and other factors might be used to enhance or suppress tumor targeting by NK cells. Therefore, it would be necessary to have a tool to non-invasively monitor the efficacy of such novel therapies. Available imaging techniques comprise magnetic resonance, optical and nuclear medicine imaging with a pool of compounds that ranges from radiolabelled nanoparticles and radiopharmaceuticals to fluorescent probes. Each tracer and technique has its own pros and cons, but till now, no one emerged as superior among the others.

  4. Fluorescent magnetic nanoparticles for cell labeling: flux synthesis of manganite particles and novel functionalization of silica shell

    Czech Academy of Sciences Publication Activity Database

    Kačenka, Michal; Kaman, Ondřej; Kikerlová, S.; Pavlů, B.; Jirák, Zdeněk; Jirák, D.; Herynek, Vít; Černý, J.; Chaput, F.; Laurent, S.; Lukeš, I.

    2015-01-01

    Roč. 47, Jun (2015), s. 97-106 ISSN 0021-9797 R&D Projects: GA ČR(CZ) GAP108/11/0807; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378271 ; RVO:68378041 Keywords : manganites * magnetic nanoparticles * molten salt synthesis * silica coating * dual probes * MRI * cell labeling Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.782, year: 2015

  5. Inferior vena cava filter thrombus: A possible cause of an unanticipated finding of 99m Tc-labeled red blood cell scintigraphy

    International Nuclear Information System (INIS)

    Song, Hee Sung; Choi, Joon Hyouk; Kim, Young Suk

    2016-01-01

    99m Tc-labeled red blood cell scintigraphy, a sensitive and specific diagnostic test, is useful for patients suspected of suffering from active gastrointestinal bleeding. This study follows a case of a patient who was suspected of gastrointestinal bleeding after an inferior vena cava filter was inserted due to a deep vein thrombosis of the femoral vein. To evaluate an exact focus of bleeding, 99m Tc-labeled red blood cell scintigraphy was executed. Herein, an unanticipated finding of 99m Tc-labeled red blood cell scintigraphy probably due to a thrombus on the inferior vena cava filter is reported

  6. Inferior vena cava filter thrombus: A possible cause of an unanticipated finding of {sup 99m} Tc-labeled red blood cell scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hee Sung; Choi, Joon Hyouk; Kim, Young Suk [Jeju National University School of Medicine, Jeju (Korea, Republic of)

    2016-06-15

    {sup 99m}Tc-labeled red blood cell scintigraphy, a sensitive and specific diagnostic test, is useful for patients suspected of suffering from active gastrointestinal bleeding. This study follows a case of a patient who was suspected of gastrointestinal bleeding after an inferior vena cava filter was inserted due to a deep vein thrombosis of the femoral vein. To evaluate an exact focus of bleeding, {sup 99m}Tc-labeled red blood cell scintigraphy was executed. Herein, an unanticipated finding of {sup 99m}Tc-labeled red blood cell scintigraphy probably due to a thrombus on the inferior vena cava filter is reported.

  7. MR tracking of stem cells labeled with superparamagnetic nanoparticles in injured CNS

    Czech Academy of Sciences Publication Activity Database

    Syková, Eva; Jendelová, Pavla; Růžičková, Kateřina; Urdzíková, Lucia; Herynek, V.; Hájek, M.

    2003-01-01

    Roč. 26, č. 9 (2003), s. 847 ISSN 0391-3988. [World Congress on regenerative Medicine /1./. Lipsko, 22.10.2003-24.10.2003] R&D Projects: GA ČR GA304/03/1189; GA MŠk LN00A065 Institutional research plan: CEZ:AV0Z5039906 Keywords : Stem cells * Nanoparticles Subject RIV: FH - Neurology Impact factor: 0.964, year: 2003

  8. Effect of oligoperoxide coating of magnetic nanoparticles on the efficiency of stem cell labeling

    Czech Academy of Sciences Publication Activity Database

    Šponarová, Daniela; Jendelová, Pavla; Horák, Daniel; Zaichenko, A. S.; Stoika, R.

    2010-01-01

    Roč. 26, č. 2 (2010), s. 113 ISSN 0233-7657. [Bridges in Life Sciences, Annual Scientific Meeting Regional Cooperation for Health, Science and Technology /5./. 09.04.2010-11.04.2010, Lviv] R&D Projects: GA AV ČR(CZ) KAN401220801 Institutional research plan: CEZ:AV0Z40500505 Keywords : magnetic nanoparticles * cell * oligoperoxide Subject RIV: JB - Sensors, Measurment, Regulation

  9. Imaging the Fate of Implanted Bone Marrow Stromal Cells Labeled With Superparamagnetic Nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Jendelová, Pavla; Herynek, V.; DeCroos, Jane; Růžičková, Kateřina; Andersson, Benita; Hájek, M.; Syková, Eva

    č. 50 (2003), s. 767-776 ISSN 0740-3194 R&D Projects: GA AV ČR IPP1050128; GA MŠk LN00A065; GA ČR GA304/03/1189 Institutional research plan: CEZ:AV0Z5039906; CEZ:MSM 11130004; CEZ:MZd:00023001 Keywords : cell transplantation * magnetic resonance Subject RIV: FH - Neurology Impact factor: 3.313, year: 2003

  10. Quantifying the length and variance of the eukaryotic cell cycle phases by a stochastic model and dual nucleoside pulse labelling.

    Science.gov (United States)

    Weber, Tom Serge; Jaehnert, Irene; Schichor, Christian; Or-Guil, Michal; Carneiro, Jorge

    2014-07-01

    A fundamental property of cell populations is their growth rate as well as the time needed for cell division and its variance. The eukaryotic cell cycle progresses in an ordered sequence through the phases G1, S, G2, and M, and is regulated by environmental cues and by intracellular checkpoints. Reflecting this regulatory complexity, the length of each phase varies considerably in different kinds of cells but also among genetically and morphologically indistinguishable cells. This article addresses the question of how to describe and quantify the mean and variance of the cell cycle phase lengths. A phase-resolved cell cycle model is introduced assuming that phase completion times are distributed as delayed exponential functions, capturing the observations that each realization of a cycle phase is variable in length and requires a minimal time. In this model, the total cell cycle length is distributed as a delayed hypoexponential function that closely reproduces empirical distributions. Analytic solutions are derived for the proportions of cells in each cycle phase in a population growing under balanced growth and under specific non-stationary conditions. These solutions are then adapted to describe conventional cell cycle kinetic assays based on pulse labelling with nucleoside analogs. The model fits well to data obtained with two distinct proliferating cell lines labelled with a single bromodeoxiuridine pulse. However, whereas mean lengths are precisely estimated for all phases, the respective variances remain uncertain. To overcome this limitation, a redesigned experimental protocol is derived and validated in silico. The novelty is the timing of two consecutive pulses with distinct nucleosides that enables accurate and precise estimation of both the mean and the variance of the length of all phases. The proposed methodology to quantify the phase length distributions gives results potentially equivalent to those obtained with modern phase-specific biosensor

  11. Quantitative proteomic analysis of Huh-7 cells infected with Dengue virus by label-free LC-MS.

    Science.gov (United States)

    Pando-Robles, Victoria; Oses-Prieto, Juan A; Rodríguez-Gandarilla, Myriam; Meneses-Romero, Erika; Burlingame, Alma L; Batista, Cesar V F

    2014-12-05

    Dengue is an important and growing public health problem worldwide with an estimated 100million new clinical cases annually. Currently, no licensed drug or vaccine is available. During natural infection in humans, liver cells constitute one of the main targets of dengue virus (DENV) replication. However, a clear understanding of dengue pathogenesis remains elusive. In order to gain a better reading of the cross talk between virus and host cell proteins, we used a proteomics approach to analyze the host response to DENV infection in a hepatic cell line Huh-7. Differences in proteome expression were assayed 24h post-infection using label-free LC-MS. Quantitative analysis revealed 155 differentially expressed proteins, 64 of which were up-regulated and 91 down-regulated. These results reveal an important decrease in the expression of enzymes involved in the glycolytic pathway, citrate cycle, and pyruvate metabolism. This study provides large-scale quantitative information regarding protein expression in the early stages of infection that should be useful for better compression of the pathogenesis of dengue. Dengue infection involves alterations in the homeostasis of the host cell. Defining the interactions between virus and cell proteins should provide a better understanding of how viruses propagate and cause disease. Here, we present for the first time the proteomic analysis of hepatocytes (Huh-7 cells) infected with DENV-2 by label-free LC-MS. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Evaluation of In-Situ Magnetic Signals from Iron Oxide Nanoparticle-Labeled PC12 Cells by Atomic Force Microscopy.

    Science.gov (United States)

    Wang, Lijun; Min, Yue; Wang, Zhigang; Riggio, Cristina; Calatayud, M Pilar; Pinkernelle, Josephine; Raffa, Vittoria; Goya, Gerardo F; Keilhoff, Gerburg; Cuschieri, Alfred

    2015-03-01

    The magnetic signals from magnetite nanoparticle-labeled PC12 cells were assessed by magnetic force microscopy by deploying a localized external magnetic field to magnetize the nanoparticles and the magnetic tip simultaneously so that the interaction between the tip and PC12 cell-associated Fe3O4 nanoparticles could be detected at lift heights (the distance between the tip and the sample) larger than 100 nm. The use of large lift heights during the raster scanning of the probe eliminates the non-magnetic interference from the complex and rugged cell surface and yet maintains the sufficient sensitivity for magnetic detection. The magnetic signals of the cell-bound nanoparticles were semi-quantified by analyzing cell surface roughness upon three-dimensional reconstruction generated by the phase shift of the cantilever oscillation. The obtained data can be used for the evaluation of the overall cellular magnetization as well as the maximum magnetic forces from magnetic nanoparticle-labeled cells which is crucial for the biomedical application of these nanomaterials.

  13. Labelling of the thymidine and deoxyctidine bases of DNA by (2-14C) deoxycytidine in cultured L1210 cells

    International Nuclear Information System (INIS)

    Karle, J.M.; Hoeraut, R.M.; Cysyk, R.L.

    1983-01-01

    Exposure of cultured L1210 cells to (2- 14 C) deoxycytidine and analysis of radioactivity incorporated into DNA-pyrimidines revealed that 2.7-5.5-fold more radioactivity is incorporated into DNA-thymine than into cytosine bases. Thus, the pathway involving deamination of deoxycytidylate to deoxyuridylate and methylation to thymidylate is highly favoured over successive phosphorlation to dCTP. Several modified and endogenous pyrimidines altered the labelling of DNA-thymine and DNA-cytosine with (2- 14 C)-deoxycytidine. 3-deazauridine at 0.1 mM caused a 56% increase in the labelling of DNA-thymine. Both thymidine and 3-deazauridine (>=10 μM) increased the specific activity to DNA-cytosine by 4-fold. Cytosine arabinoside (ara-C) (>= 10 μM) reduced the labelling of both DNA-cytosine and DNA-thymine. Excess cytidine (0.1 mM) reduced the labelling of DNA-cytosine by 40%. Tetrahydrouridine at concentrations up to 1 mM had no effect. (author)

  14. Assessment of the effect of phytic acid on the labeling of blood cells and plasma proteins with Technetium-99m

    Energy Technology Data Exchange (ETDEWEB)

    Lima-Filho, Guilherme L.; Freitas, Rosimeire S.; Moreno, Silvana R.F.; Boasquevisque, Edson M.; Bernardo-Filho, Mario [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Biologia. Dept. de Biofisica e Biometria]. E-mail: gllf@hotmail.com; Lima, Glaydes M.T. [Pernambuco Univ., Recife, PE (Brazil). Hospital das Clinicas; Catanho, Maria T.J.A. [Pernambuco Univ., Recife, PE (Brazil). Dept. de Biofisica e Radiobiologia

    2002-07-01

    Blood elements labeled with technetium-99m ({sup 99m} Tc) have been used in various procedures in nuclear medicine. We have investigated if phytic acid (PHY) could alter the labeling of blood elements with {sup 99m} Tc. Blood was incubated with different concentrations of PHY. Stannous chloride and {sup 99m}Tc, as sodium pertechnetate, were added. Blood was centrifuged and plasma (P) and blood cell (BC) were isolated. Samples of P and BC were also precipitated with trichloroacetic acid and centrifuged, and insoluble (IF) and soluble (SF) fractions were separated. The percentages of radioactivity (%ATI) in BC, IF-P and IF-BC were calculated. The %ATI decreased significantly (p < 0.05) in BC (95.08 {+-}1.94 to 80.68 {+-} 3.35), in IF-P (74.42 {+-}4.50 to 39.94{+-} 5.51) and in IF-BC (89.91{+-} 3.91 to 79.54 {+-} 5.42) in presence of PHY. These results suggest that the chelating property of PHY can modify the labeling of the BC, although other effects of PHY could be responsible. As PHY is found in many food and it could alter the labeling of blood elements with {sup 99m} Tc with possible undesirable effects, it is relevant to verify the necessity to repeat the examination and to evaluate the increase of the radiation dose to the patient. (author)

  15. TRANSPARENT COATINGS FOR SOLAR CELLS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Glatkowski, P. J.; Landis, D. A.

    2013-04-16

    Todays solar cells are fabricated using metal oxide based transparent conductive coatings (TCC) or metal wires with optoelectronic performance exceeding that currently possible with Carbon Nanotube (CNT) based TCCs. The motivation for replacing current TCC is their inherent brittleness, high deposition cost, and high deposition temperatures; leading to reduced performance on thin substrates. With improved processing, application and characterization techniques Nanofiber and/or CNT based TCCs can overcome these shortcomings while offering the ability to be applied in atmospheric conditions using low cost coating processes At todays level of development, CNT based TCC are nearing commercial use in touch screens, some types of information displays (i.e. electronic paper), and certain military applications. However, the resistivity and transparency requirements for use in current commercial solar cells are more stringent than in many of these applications. Therefore, significant research on fundamental nanotube composition, dispersion and deposition are required to reach the required performance commanded by photovoltaic devices. The objective of this project was to research and develop transparent conductive coatings based on novel nanomaterial composite coatings, which comprise nanotubes, nanofibers, and other nanostructured materials along with binder materials. One objective was to show that these new nanomaterials perform at an electrical resistivity and optical transparency suitable for use in solar cells and other energy-related applications. A second objective was to generate new structures and chemistries with improved resistivity and transparency performance. The materials also included the binders and surface treatments that facilitate the utility of the electrically conductive portion of these composites in solar photovoltaic devices. Performance enhancement venues included: CNT purification and metallic tube separation techniques, chemical doping, CNT

  16. Influence of Momordica charantia L. on the red and white blood cells labeling with 99mTc

    International Nuclear Information System (INIS)

    Brandao, Jose Odinilson de Caldas; Souza, Grace M. Lima de; Catanho, Maria T. Jansem de Almeida

    2008-01-01

    Full text: Momordica charantia L. is popularly known in Brazil as bitter melon and it's commonly used to treat several diseases as cancer, diabetes and to heal skin injuries. Many papers have been published showing the potential radio pharmacological activity of this plant due to its linkage with 99m Tc through some protein fractions of the extract. In this study, it was evaluated the influence of Momordica charantia L extract , labeling ( in vitro) of blood elements with sodium pertechnetate (Na 99m TcO 4 ). In the labeling of red blood cells (in vitro), blood samples were obtained from Wistar rats and incubated with different concentrations of M. charantia, for control group was used NaCl 0.9% and added stannous chloride (SnCl 2 ) and 99m Tc. The plasma fractions (P) and the cells (C) were separated and, also, precipitated with trichloroacetic acid at 5%, obtaining the soluble (SF) and insoluble (IF) fractions. The radioactivity rate (%ATl) of each fraction was calculated. The same methodology was applied for white blood cells but these cells were separated in advance by centrifugation at 1800 rpm during 15 minutes. There weren't alterations in the labeling of red blood cells in the concentrations tested of the extract when compared with the rate of the control group neither in the insoluble fractions. However, on the white blood cells it was noticed an increase in 99m Tc uptake in the presence of M. charantia extract. So its possible to conclude, based on previous results obtained by our group, that the M. charantia L. could be used to evaluate inflammatory processes. (author)

  17. The Mesoaccumbens Pathway: A Retrograde Labeling and Single-Cell Axon Tracing Analysis in the Mouse.

    Science.gov (United States)

    Rodríguez-López, Claudia; Clascá, Francisco; Prensa, Lucía

    2017-01-01

    labeling (Sindbis-pal-eGFP vector) of a limited sample of neurons revealed that mesoaccumbens neurons form profuse terminal arborizations to cover large volumes of either the Acb core or shell, and, unlike other VTA projection neuron populations, they do not branch to other striatal or extrastriatal structures. These anatomical observations are consistent with reports of an intense response in many Acb neurons after stimulation of very few VTA cells.

  18. Dataset of differential lipid raft and global proteomes of SILAC-labeled cystic fibrosis cells upon TNF -α stimulation

    Directory of Open Access Journals (Sweden)

    C. Chhuon

    2016-12-01

    We used the Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC approach to quantify and identify 332 proteins in LRM upon TNF-a stimulation in CF cells and 1381 for the global proteome. We report two detailed tables containing lists of proteins obtained by mass spectrometry and the immunofluorescence validation results for one of these proteins, the G-protein coupled receptor 5A. These results are associated with the article “Changes in lipid raft proteome upon TNF-α stimulation of cystic fibrosis cells” (Chhuon et al., in press [1].

  19. The long-term fate of mesenchymal stem cells labeled with magnetic resonance imaging-visible polymersomes in cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Duan X

    2017-09-01

    Full Text Available Xiaohui Duan,1,* Liejing Lu,1,* Yong Wang,2 Fang Zhang,1 Jiaji Mao,1 Minghui Cao,1 Bingling Lin,1 Xiang Zhang,1 Xintao Shuai,2,3 Jun Shen1 1Department of Radiology, Sun Yat-Sen Memorial Hospital, 2PCFM Lab of Ministry of Education, School of Materials Science and Engineering, 3BME Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Understanding the long-term fate and potential mechanisms of mesenchymal stem cells (MSCs after transplantation is essential for improving functional benefits of stem cell-based stroke treatment. Magnetic resonance imaging (MRI is considered an attractive and clinically translatable tool for longitudinal tracking of stem cells, but certain controversies have arisen in this regard. In this study, we used SPION-loaded cationic polymersomes to label green fluorescent protein (GFP-expressing MSCs to determine whether MRI can accurately reflect survival, long-term fate, and potential mechanisms of MSCs in ischemic stroke therapy. Our results showed that MSCs could improve the functional outcome and reduce the infarct volume of stroke in the brain. In vivo MRI can verify the biodistribution and migration of grafted cells when pre-labeled with SPION-loaded polymersome. The dynamic change of low signal volume on MRI can reflect the tendency of cell survival and apoptosis, but may overestimate long-term survival owing to the presence of iron-laden macrophages around cell graft. Only a small fraction of grafted cells survived up to 8 weeks after transplantation. A minority of these surviving cells were differentiated into astrocytes, but not into neurons. MSCs might exert their therapeutic effect via secreting paracrine factors rather than directing cell replacement through differentiation into neuronal and/or glial phenotypes. Keywords: mesenchymal stem cells, magnetic resonance imaging, superparamagnetic iron oxide

  20. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells

    Science.gov (United States)

    Liao, Naishun; Wu, Ming; Pan, Fan; Lin, Jiumao; Li, Zuanfang; Zhang, Da; Wang, Yingchao; Zheng, Youshi; Peng, Jun; Liu, Xiaolong; Liu, Jingfeng

    2016-01-01

    Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such as potential toxicity, low labeling efficiency, and low contrast enhancing. Herein, the adipose tissue-derived stem cells (ADSCs) were efficiently labeled with SPIONs coated with poly (dopamine) (SPIONs cluster@PDA), without affecting their viability, proliferation, apoptosis, surface marker expression, as well as their self-renew ability and multi-differentiation potential. The labeled cells transplanted into the mice through tail intravenous injection exhibited a negative enhancement of the MRI signal in the damaged liver-induced by carbon tetrachloride, and subsequently these homed ADSCs with SPIONs cluster@PDA labeling exhibited excellent repair effects to the damaged liver. Moreover, the enhanced target-homing to tissue of interest and repair effects of SPIONs cluster@PDA-labeled ADSCs could be achieved by use of external magnetic field in the excisional skin wound mice model. Therefore, we provide a facile, safe, noninvasive and sensitive method for external magnetic field targeted delivery and MRI based tracking of transplanted cells in vivo.

  1. Isotopic labeling with cellular O-glycome reporter/amplification (ICORA) for comparative O-glycomics of cultured cells.

    Science.gov (United States)

    Kudelka, Matthew R; Nairn, Alison V; Sardar, Mohammed Y; Sun, Xiaodong; Chaikof, Elliot L; Ju, Tongzhong; Moremen, Kelley W; Cummings, Richard D

    2018-04-01

    Mucin-type O-glycans decorate >80% of secretory and cell surface proteins and contribute to health and disease. However, dynamic alterations in the O-glycome are poorly understood because current O-glycomic methodologies are not sufficiently sensitive nor quantitative. Here we describe a novel isotope labeling approach termed Isotope-Cellular O-glycome Reporter Amplification (ICORA) to amplify and analyze the O-glycome from cells. In this approach, cells are incubated with Ac3GalNAc-Bn (Ac3GalNAc-[1H7]Bn) or a heavy labeled Ac3GalNAc-BnD7 (Ac3GalNAc-[2D7]Bn) O-glycan precursor (7 Da mass difference), which enters cells and upon de-esterification is modified by Golgi enzymes to generate Bn-O-glycans secreted into the culture media. After recovery, heavy and light Bn-O-glycans from two separate conditions are mixed, analyzed by MS, and statistically interrogated for changes in O-glycan abundance using a semi-automated approach. ICORA enables ~100-1000-fold enhanced sensitivity and increased throughput compared to traditional O-glycomics. We validated ICORA with model cell lines and used it to define alterations in the O-glycome in colorectal cancer. ICORA is a useful tool to explore the dynamic regulation of the O-glycome in health and disease.

  2. On Orbit Immuno-Based, Label-Free, White Blood Cell Counting System with MicroElectroMechanical Sensor (MEMS) Technology (OILWBCS-MEMS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences Corporation and partner, Draper Laboratory, propose to develop an on-orbit immuno-based label-free white blood cell counting system using MEMS...

  3. On Orbit Immuno-Based, Label-Free, White Blood Cell Counting System with MicroElectroMechanical Sensor (MEMS) Technology (OILWBCS-MEMS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences Corporation and our partner, Draper Laboratory, propose to develop an on orbit immuno-based, label-free, white blood cell counting system for...

  4. On Orbit Immuno-Based, Label-Free, White Blood Cell Counting System with MicroElectroMechanical Sensor (MEMS) Technology (OILWBCS-MEMS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences Corporation and partner, Draper Laboratory, propose to develop an on-orbit immuno-based label-free white blood cell counting system using MEMS...

  5. Evaluation of umbilical cord mesenchymal stem cells labeling with superparamagnetic iron oxide nanoparticles coated with dextran and complexed with Poly-L-Lysine

    International Nuclear Information System (INIS)

    Sibov, Tatiana Tais; Mamani, Javier Bustamante; Pavon, Lorena Favaro; Cardenas, Walter Humberto; Gamarra, Lionel Fernel; Miyaki, Liza Aya Mabuchi; Marti, Luciana Cavalheiro; Sardinha, Luiz Roberto; Oliveira, Daniela Mara de

    2012-01-01

    Objective: The objective of this study was to evaluate the effect of the labeling of umbilical cord vein derived mesenchymal stem cells with superparamagnetic iron oxide nanoparticles coated with dextran and complexed to a non-viral transfector agent transfector poly-L-lysine. Methods: The labeling of mesenchymal stem cells was performed using the superparamagnetic iron oxide nanoparticles/dextran complexed and not complexed to poly-L-lysine. Superparamagnetic iron oxide nanoparticles/dextran was incubated with poly-L-lysine in an ultrasonic sonicator at 37 deg C for 10 minutes for complex formation superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine by electrostatic interaction. Then, the mesenchymal stem cells were incubated overnight with the complex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine and superparamagnetic iron oxide nanoparticles/dextran. After the incubation period the mesenchymal stem cells were evaluated by internalization of the complex superparamagnetic iron oxide nanoparticles/dextran/polyL-lysine and superparamagnetic iron oxide nanoparticles/dextran by Prussian Blue stain. Cellular viability of labeled mesenchymal stem cells was evaluated by cellular proliferation assay using 5,6-carboxyfluorescein-succinimidyl ester method and apoptosis detection by Annexin V- Propidium Iodide assay. Results: mesenchymal stem cells labeled with superparamagnetic iron oxide nanoparticles/ dextran without poly-L-lysine not internalized efficiently the superparamagnetic iron oxide nanoparticles due to its low presence detected within cells. Mesenchymal stem cells labeled with the complex superparamagnetic iron oxide nanoparticles/dextran/polyL-lysine efficiently internalized the superparamagnetic iron oxide nanoparticles due to greater presence in the cells interior. The viability and apoptosis assays demonstrated that the mesenchymal stem cells labeled and not labeled respectively with the superparamagnetic iron oxide

  6. Nanoparticle Labeling of Bone Marrow-Derived Rat Mesenchymal Stem Cells: Their Use in Differentiation and Tracking

    Directory of Open Access Journals (Sweden)

    Ece Akhan

    2015-01-01

    Full Text Available Mesenchymal stem cells (MSCs are promising candidates for cellular therapies due to their ability to migrate to damaged tissue without inducing immune reaction. Many techniques have been developed to trace MSCs and their differentiation efficacy; however, all of these methods have limitations. Conjugated polymer based water-dispersible nanoparticles (CPN represent a new class of probes because they offer high brightness, improved photostability, high fluorescent quantum yield, and noncytotoxicity comparing to conventional dyes and quantum dots. We aimed to use this tool for tracing MSCs’ fate in vitro and in vivo. MSC marker expression, survival, and differentiation capacity were assessed upon CPN treatment. Our results showed that after CPN labeling, MSC markers did not change and significant number of cells were found to be viable as revealed by MTT. Fluorescent signals were retained for 3 weeks after they were differentiated into osteocytes, adipocytes, and chondrocytes in vitro. We also showed that the labeled MSCs migrated to the site of injury and retained their labels in an in vivo liver regeneration model. The utilization of nanoparticle could be a promising tool for the tracking of MSCs in vivo and in vitro and therefore can be a useful tool to understand differentiation and homing mechanisms of MSCs.

  7. Center for Cell Research, Pennsylvania State University

    Science.gov (United States)

    Cronin, Mike

    1991-01-01

    A brief review of Genentech, Inc., is presented. Additionally, the Physiological Systems Experiment (PSE-01) is discussed in terms of its development history. The PSE-01 was developed to investigate the bone wasting, muscle wasting, and immune cell dysfunction that occur in microgravity conditions. Specifically, a number of human disorders are associated with maladaptive changes in bone, muscle, and immune function. The physiological adjustments that the body makes in response to space flight can be monitored and may aid in the discovery of new protein forms and patterns. This research may also provide strategies for protecting the health of flight crews enduring prolonged space flight. Results are discussed.

  8. Raman-Activated Droplet Sorting (RADS) for Label-Free High-Throughput Screening of Microalgal Single-Cells.

    Science.gov (United States)

    Wang, Xixian; Ren, Lihui; Su, Yetian; Ji, Yuetong; Liu, Yaoping; Li, Chunyu; Li, Xunrong; Zhang, Yi; Wang, Wei; Hu, Qiang; Han, Danxiang; Xu, Jian; Ma, Bo

    2017-11-21

    Raman-activated cell sorting (RACS) has attracted increasing interest, yet throughput remains one major factor limiting its broader application. Here we present an integrated Raman-activated droplet sorting (RADS) microfluidic system for functional screening of live cells in a label-free and high-throughput manner, by employing AXT-synthetic industrial microalga Haematococcus pluvialis (H. pluvialis) as a model. Raman microspectroscopy analysis of individual cells is carried out prior to their microdroplet encapsulation, which is then directly coupled to DEP-based droplet sorting. To validate the system, H. pluvialis cells containing different levels of AXT were mixed and underwent RADS. Those AXT-hyperproducing cells were sorted with an accuracy of 98.3%, an enrichment ratio of eight folds, and a throughput of ∼260 cells/min. Of the RADS-sorted cells, 92.7% remained alive and able to proliferate, which is equivalent to the unsorted cells. Thus, the RADS achieves a much higher throughput than existing RACS systems, preserves the vitality of cells, and facilitates seamless coupling with downstream manipulations such as single-cell sequencing and cultivation.

  9. Permeability changes and incorporation of labelled thymidine into DNA and whole cells of the fibroblast culture of Chinese hamsters affected by MEA and low temperature

    International Nuclear Information System (INIS)

    Ermekova, V.M.; Kondakova, N.V.; Levitman, M.Kh.; Saugabaeva, K.M.; Ehjdus, L.Kh.

    1976-01-01

    Action of MEA and low temperature (20degC) on the incorporation of labelled thymidine into DNA and whole cells of the fibroblast culture of chinese hamsters has been studied. It has been found that each of the above-mentioned factors equally decreases the label uptake into the cell and DNA. It is concluded that MEA and low temperature do not substantially influence the rate of DNA synthesis

  10. Low molecular weight poly (2-dimethylamino ethylmethacrylate) polymers with controlled.positioned fluorescent labeling: Synthesis, characterization and in vitro interaction with human endothelial cells

    DEFF Research Database (Denmark)

    Flebus, Luca; Lombart, Francois; Sevrin, Chantal

    2015-01-01

    ) fluorescent labeled PDMAEMA of low molecular weight (Mw) (below 15 kDa), controlling the position and density of fluorescein.The second goal was to analyze the possible difference in uptake and subcellular distribution of this labeled FF polycation between human umbilical vein endothelial cells (HUVEC) and h...... to a minor cytotoxicity compared to the higher ones.As main conclusion this study highlights the similitude in cell trafficking of FF PDMAEMA and data previously reported for PDMAEMA/DNA complexes....

  11. Assessment of the effect of phytic acid on the labeling of blood cells and plasma proteins with Technetium-99m

    International Nuclear Information System (INIS)

    Lima-Filho, Guilherme L.; Freitas, Rosimeire S.; Moreno, Silvana R.F.; Boasquevisque, Edson M.; Bernardo-Filho, Mario; Lima, Glaydes M.T.; Catanho, Maria T.J.A.

    2002-01-01

    Blood elements labeled with technetium-99m ( 99m Tc) have been used in various procedures in nuclear medicine. We have investigated if phytic acid (PHY) could alter the labeling of blood elements with 99m Tc. Blood was incubated with different concentrations of PHY. Stannous chloride and 99m Tc, as sodium pertechnetate, were added. Blood was centrifuged and plasma (P) and blood cell (BC) were isolated. Samples of P and BC were also precipitated with trichloroacetic acid and centrifuged, and insoluble (IF) and soluble (SF) fractions were separated. The percentages of radioactivity (%ATI) in BC, IF-P and IF-BC were calculated. The %ATI decreased significantly (p 99m Tc with possible undesirable effects, it is relevant to verify the necessity to repeat the examination and to evaluate the increase of the radiation dose to the patient. (author)

  12. The use of oligoperoxide-coated magnetic nanoparticles to label stem cells

    Czech Academy of Sciences Publication Activity Database

    Šponarová, Daniela; Horák, Daniel; Trchová, Miroslava; Jendelová, Pavla; Herynek, V.; Mitina, N.; Zaichenko, A.; Stoika, R.; Lesný, Petr; Syková, Eva

    2011-01-01

    Roč. 7, č. 3 (2011), s. 384-394 ISSN 1550-7033 R&D Projects: GA ČR GA203/09/1242; GA ČR GAP503/10/0664; GA MŠk 1M0538; GA AV ČR KAN201110651; GA AV ČR(CZ) KAN401220801 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50390703 Keywords : magnetic * nanoparticles * stem cells Subject RIV: FH - Neurology Impact factor: 4.216, year: 2011

  13. Human Endothelial Cell Models in Biomaterial Research.

    Science.gov (United States)

    Hauser, Sandra; Jung, Friedrich; Pietzsch, Jens

    2017-03-01

    Endothelial cell (EC) models have evolved as important tools in biomaterial research due to ubiquitously occurring interactions between implanted materials and the endothelium. However, screening the available literature has revealed a gap between material scientists and physiologists in terms of their understanding of these biomaterial-endothelium interactions and their relative importance. Consequently, EC models are often applied in nonphysiological experimental setups, or too extensive conclusions are drawn from their results. The question arises whether this might be one reason why, among the many potential biomaterials, only a few have found their way into the clinic. In this review, we provide an overview of established EC models and possible selection criteria to enable researchers to determine the most reliable and relevant EC model to use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Hyperemic peripheral red marrow in a patient with sickle cell anemia demonstrated on Tc-99m labeled red blood cell venography

    International Nuclear Information System (INIS)

    Heiden, R.A.; Locko, R.C.; Stent, T.R.

    1991-01-01

    A 25-year-old gravid woman, homozygous for sickle cell anemia, with a history of recent deep venous thrombosis, was examined using Tc-99m labeled red blood cell venography for recurrent thrombosis. Although negative for thrombus, the study presented an unusual incidental finding: the patient's peripheral bone marrow was hyperemic in a distribution consistent with peripheral red bone marrow expansion. Such a pattern has not been documented before using this technique. This report supports other literature that has demonstrated hyperemia of peripheral red bone marrow in other hemolytic anemias. This finding may ultimately define an additional role of scintigraphy in assessing the pathophysiologic status of the sickle cell patient

  15. Paramagnetic particles carried by cell-penetrating peptide tracking of bone marrow mesenchymal stem cells, a research in vitro

    International Nuclear Information System (INIS)

    Liu Min; Guo Youmin; Wu Qifei; Yang Junle; Wang Peng; Wang Sicen; Guo Xiaojuan; Qiang Yongqian; Duan Xiaoyi

    2006-01-01

    The ability to track the distribution and differentiation of stem cells by high-resolution imaging techniques would have significant clinical and research implications. In this study, a model cell-penetrating peptide was used to carry gadolinium particles for magnetic resonance imaging of the mesenchymal stem cells. The mesenchymal stem cells were isolated from rat bone marrow by Percoll and identified by osteogenic differentiation in vitro. The cell-penetrating peptides labeled with fluorescein-5-isothiocyanate and gadolinium were synthesized by a solid-phase peptide synthesis method and the relaxivity of cell-penetrating peptide-gadolinium paramagnetic conjugate on 400 MHz nuclear magnetic resonance was 5.7311 ± 0.0122 mmol -1 s -1 , higher than that of diethylenetriamine pentaacetic acid gadolinium (p < 0.05). Fluorescein imaging confirmed that this new peptide could internalize into the cytoplasm and nucleus. Gadolinium was efficiently internalized into mesenchymal stem cells by the peptide in a time- or concentration-dependent fashion, resulting in intercellular T1 relaxation enhancement, which was obviously detected by 1.5 T magnetic resonance imaging. Cytotoxicity assay and flow cytometric analysis showed the intercellular contrast medium incorporation did not affect cell viability and membrane potential gradient. The research in vitro suggests that the newly constructed peptides could be a vector for tracking mesenchymal stem cells

  16. Exofacial protein thiols as a route for the internalization of Gd(III)-based complexes for magnetic resonance imaging cell labeling.

    Science.gov (United States)

    Digilio, Giuseppe; Menchise, Valeria; Gianolio, Eliana; Catanzaro, Valeria; Carrera, Carla; Napolitano, Roberta; Fedeli, Franco; Aime, Silvio

    2010-07-08

    Four novel MRI Gd(III)-based probes have been synthesized and evaluated for their labeling properties on cultured cell lines K562, C6, and B16. The labeling strategy relies upon the fact that cells display a large number of reactive exofacial protein thiols (EPTs) that can be exploited as anchorage points for suitably activated MRI probes. The probes are composed of a Gd(III) chelate (based on either DO3A or DTPA) connected through a flexible linker to the 2-pyridyldithio chemical function for binding to EPTs. GdDO3A-based chelates could efficiently label cells (up to a level of 1.2 x 10(10) Gd(III) atoms/cell), whereas GdDTPA-based chelates showed poor or no cell labeling ability at all. Among the GdDO3A based compounds, that having the longest spacer (compound GdL1A) showed the best labeling efficacy. The mechanism of EPT mediated cell labeling by GdL1A involves probe internalization without sequestration of the Gd(III) chelate within subcellular structures such as endosomes.

  17. Engineered cell lines for fish health research.

    Science.gov (United States)

    Collet, Bertrand; Collins, Catherine; Lester, Katherine

    2018-03-01

    As fish farming continues to increase worldwide, the related research areas of fish disease and immunology are also expanding, aided by the revolution in access to genomic information and molecular technology. The genomes of most fish species of economic importance are now available and annotation based on sequence homology with characterised genomes is underway. However, while useful, functional homology is more difficult to determine, there being a lack of widely distributed and well characterised reagents such as monoclonal antibodies, traditionally used in mammalian studies, to help with confirming functions and cellular interactions of fish molecules. In this context, fish cell lines and the possibility of their genetic engineering offer good prospects for studying functional genomics with respect to fish diseases. In this review, we will give an overview of available permanently genetically engineered fish cell lines, as cell-based reporter systems or platforms for expression of endogenous immune or pathogen genes, to investigate interactions and function. The advantages of such systems and the technical challenge for their development will be discussed. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  18. In vivo migration of labeled autologous natural killer cells to liver metastases in patients with colon carcinoma

    Directory of Open Access Journals (Sweden)

    Satolli Maria A

    2006-11-01

    Full Text Available Abstract Background Besides being the effectors of native anti-tumor cytotoxicity, NK cells participate in T-lymphocyte responses by promoting the maturation of dendritic cells (DC. Adherent NK (A-NK cells constitute a subset of IL-2-stimulated NK cells which show increased expression of integrins and the ability to adhere to solid surface and to migrate, infiltrate, and destroy cancer. A critical issue in therapy of metastatic disease is the optimization of NK cell migration to tumor tissues and their persistence therein. This study compares localization to liver metastases of autologous A-NK cells administered via the systemic (intravenous, i.v. versus locoregional (intraarterial, i.a. routes. Patients and methods A-NK cells expanded ex-vivo with IL-2 and labeled with 111In-oxine were injected i.a. in the liver of three colon carcinoma patients. After 30 days, each patient had a new preparation of 111In-A-NK cells injected i.v. Migration of these cells to various organs was evaluated by SPET and their differential localization to normal and neoplastic liver was demonstrated after i.v. injection of 99mTc-phytate. Results A-NK cells expressed a donor-dependent CD56+CD16+CD3- (NK or CD56+CD16+CD3+ (NKT phenotype. When injected i.v., these cells localized to the lung before being visible in the spleen and liver. By contrast, localization of i.a. injected A-NK cells was virtually confined to the spleen and liver. Binding of A-NK cells to liver neoplastic tissues was observed only after i.a. injections. Conclusion This unique study design demonstrates that A-NK cells adoptively transferred to the liver via the intraarterial route have preferential access and substantial accumulation to the tumor site.

  19. Fluorescently Labeled Branched Polymers and Thermal Responsive Nanoparticles for Live Cell Imaging

    NARCIS (Netherlands)

    Zhou, D.; Ma, Y.; Poot, Andreas A.; Dijkstra, Pieter J.; Feijen, Jan

    2012-01-01

    Branched poly(methoxy-PEG acrylate) and thermally responsive poly(methoxy-PEG acrylate)-block-poly(N-isopropylacrylamide) are synthesized by RAFT polymerization. After reduction, these polymers are fluorescently labeled by reacting the free thiol groups with N-(5-fluoresceinyl)maleimide. As shown by

  20. Commercial speech and off-label drug uses: what role for wide acceptance, general recognition and research incentives?

    Science.gov (United States)

    Gilhooley, Margaret

    2011-01-01

    approval. Distributions of information about unapproved uses should not be acceptable unless experts consider the expanded use to be generally recognized as safe and effective based on adequate studies. The last part of this paper considers the need to develop better research incentives to encourage more testing and post-market risk surveillance by drug makers on off-label uses of their drugs. Violations of the Federal Food Drug and Cosmetic Act (FFDCA) can be considered violations of the False Claims Act, which opens the way to fraud and abuse suits. The scale of penalties involved in these suits may lead to more examination of the scope of FDA regulation and commercial speech protections. Thus this symposium's consideration of these issues is timely and important.

  1. Ground Zero in the Debate over Stem-Cell Research.

    Science.gov (United States)

    Southwick, Ron

    2001-01-01

    Describes how political, legal, and ethical battles over embryonic stem-cell research are focused on the University of Wisconsin at Madison, where the cells were first isolated. Addresses the issue of access to the university's stem cells and a recent presidential decision regarding funding for stem-cell research.(EV)

  2. The role of long-term label-retaining cells in the regeneration of adult mouse kidney after ischemia/reperfusion injury.

    Science.gov (United States)

    Liu, Xiangchun; Liu, Haiying; Sun, Lina; Chen, Zhixin; Nie, Huibin; Sun, Aili; Liu, Gang; Guan, Guangju

    2016-04-30

    Label-retaining cells (LRCs) have been recognized as rare stem and progenitor-like cells, but their complex biological features in renal repair at the cellular level have never been reported. This study was conducted to evaluate whether LRCs in kidney are indeed renal stem/progenitor cells and to delineate their potential role in kidney regeneration. We utilized a long-term pulse chase of 5-bromo-2'-deoxyuridine (BrdU)-labeled cells in C57BL/6J mice to identify renal LRCs. We tracked the precise morphological characteristics and locations of BrdU(+)LRCs by both immunohistochemistry and immunofluorescence. To examine whether these BrdU(+)LRCs contribute to the repair of acute kidney injury, we analyzed biological characteristics of BrdU(+)LRCs in mice after ischemia/reperfusion (I/R) injury. The findings revealed that the nuclei of BrdU(+) LRCs exhibited different morphological characteristics in normal adult kidneys, including nuclei in pairs or scattered, fragmented or intact, strongly or weakly positive. Only 24.3 ± 1.5 % of BrdU(+) LRCs co-expressed with Ki67 and 9.1 ± 1.4 % of BrdU(+) LRCs were positive for TUNEL following renal I/R injury. Interestingly, we found that newly regenerated cells formed a niche-like structure and LRCs in pairs tended to locate in this structure, but the number of those LRCs was very low. We found a few scattered LRCs co-expressed Lotus tetragonolobus agglutinin (LTA) in the early phase of injury, suggesting differentiation of those LRCs in mouse kidney. Our findings suggest that LRCs are not a simple type of slow-cycling cells in adult kidneys, indicating a limited role of these cells in the regeneration of I/R injured kidney. Thus, LRCs cannot reliably be considered stem/progenitor cells in the regeneration of adult mouse kidney. When researchers use this technique to study the cellular basis of renal repair, these complex features of renal LRCs and the purity of real stem cells among renal LRCs should be considered.

  3. [Ferumoxide labeled Flk1+ CD31- CD34- human bone marrow mesenchymal stem cells and its in vivo tracing in the brains of Macaca Fascicularis].

    Science.gov (United States)

    Feng, Ming; Wang, Ren-Zhi; Zhu, Hua; Zhang, Nan; Wang, Chang-Jun; Wei, Jun-Ji; Lu, Shan; Li, Qin; Yin, Xiao-Ming; Han, Qin; Ma, Wen-Bin; Qin, Chuang; Zhao, Chun-Hua; An, Yi-Hua; Kong, Yan-Guo

    2008-10-01

    To explore the method for labeling Flk1+ CD31- CD34- human bone marrow mesenchymal stem cells (hBMSCs) with ferumoxide-PLL and evaluate the feasibility of its tracing after transplantation into the brains of Macaca Fascicularis. The hBMSCs were incubated with ferumoxide-PLL. Trypan blue staining, Prussian blue staining, and transmission electron microscope were performed to show intracellular iron, marking efficiency, and the vigor of the labeled cells. After the hBMSCs were transplanted into the brains of cynomolgus monkeys by stereotaxis, magnetic resonance imaging (MRI) was performed to trace the cells in vivo. Cell survival and differentiation were studied with immunohistochemistry, Prussian blue staining, and HE staining. The marking efficiency of the ferumoxide-PLL was 96%. Iron particles were found intracytoplasmic of the hBMSCs by Prussian blue staining and transmission electron microscopy. The relaxation rates of labeled cells in MRI were 4.4 and 4.2 times higher than those of the unlabeled cells. Hypointensity area was found by MRI three weeks after transplantation. Many hBMSCs and new vessels were found in the transplantation zone by pathological and immunofluorescence methods. Ferumoxide-PLL can effectively label hBMSCs and thus increase its contrast in MRI results. The cells can survive in the brains of cynomolgus monkeys. The labeled hBMSCs can be traced in vivo by MRI.

  4. Detection of miRNA in Cell Cultures by Using Microchip Electrophoresis with a Fluorescence-Labeled Riboprobe

    OpenAIRE

    Yamamura, Shohei; Yatsushiro, Shouki; Yamaguchi, Yuka; Abe, Kaori; Shinohara, Yasuo; Kataoka, Masatoshi

    2012-01-01

    The analysis of a microRNA (miRNA), miR-222 isolated from the PC12 cell line, was performed by use of the ribonuclease (RNase) protection assay, cyanine 5 (Cy5)-labeled miR-222 riboprobe, and a Hitachi SV1210 microchip electrophoresis system, which can be used to evaluate the integrity of total RNA. The fluorescence intensity corresponding to the protected RNA fragment increased in a dose-dependent manner with respect to the complementary-strand RNA. More highly sensitive detection of miRNA b...

  5. Glucagon in the scintigraphic diagnosis of small-bowel hemorrhage by Tc-99m-labeled red blood cells

    International Nuclear Information System (INIS)

    Froelich, J.W.; Juni, J.

    1984-01-01

    Twelve patients undergoing scintigraphy with Tc-99m-labeled red blood cells (RBC) exhibited abnormal small-bowel activity and were given glucagon to assess its role in detecting bleeding from the small bowel. Six demonstrated focal accumulation of activity which was not identified prior to glucagon. Endoscopy, barium studies, angiography, and colonoscopy located the small-bowel bleeding site in 4 patients; in the other 2, studies of the colon failed to show the bleeding site and the origin was presumed to be the small bowel. The authors suggest that intravenous glucagon can be beneficial as an adjuvant to Tc-99m-RBC when diagnosing bleeding from the small bowel

  6. The Cerebral Blood Flow Biomedical Informatics Research Network (CBFBIRN Database and Analysis Pipeline for Arterial Spin Labeling MRI Data

    Directory of Open Access Journals (Sweden)

    David D. Shin

    2013-10-01

    Full Text Available Arterial spin labeling (ASL is a MRI technique that provides a noninvasive and quantitative measure of cerebral blood flow (CBF. After more than a decade of active research, ASL is now emerging as a robust and reliable CBF measurement technique with increased availability and ease of use. There is a growing number of research and clinical sites using ASL for neuroscience research and clinical care. In this paper, we present an online CBF Database and Analysis Pipeline, collectively called the CBFBIRN that allows researchers to upload and share ASL and clinical data. In addition to serving the role as a central data repository, the CBFBIRN provides a streamlined data processing infrastructure for CBF quantification and group analysis, which has the potential to accelerate the discovery of new scientific and clinical knowledge. All capabilities and features built into the CBFBIRN are accessed online using a web browser through a secure login. In this work, we begin with a general description of the CBFBIRN system data model and its architecture, then devote the remainder of the paper to the CBFBIRN capabilities. The latter part of our work is divided into two processing modules: 1 Data Upload and CBF Quantification Module; 2 Group Analysis Module that supports three types of analysis commonly used in neuroscience research. To date, the CBFBIRN hosts CBF maps and associated clinical data from more than 1300 individual subjects. The data have been contributed by more than 20 different research studies, investigating the effect of various conditions on CBF including Alzheimer’s, schizophrenia, bipolar disorder, depression, traumatic brain injury, HIV, caffeine usage and Methamphetamine abuse. Several example results, generated by the CBFBIRN processing modules, are presented. We conclude with the lessons learned during implementation and deployment of the CBFBIRN and our experience in promoting data sharing.

  7. A dynamic cell entry pathway of respiratory syncytial virus revealed by tracking the quantum dot-labeled single virus.

    Science.gov (United States)

    Zheng, Lin Ling; Li, Chun Mei; Zhen, Shu Jun; Li, Yuan Fang; Huang, Cheng Zhi

    2017-06-14

    Studying the cell entry pathway at the single-particle level can provide detailed and quantitative information for the dynamic events involved in virus entry. Indeed, the viral entry dynamics cannot be monitored by static staining methods used in cell biology, and thus virus dynamic tracking could be useful in the development of effective antiviral strategies. Therefore, the aim of this work was to use a quantum dot-based single-particle tracking approach to monitor the cell entry behavior of the respiratory syncytial virus (RSV) in living cells. The time-lapse fluorescence imaging and trajectory analysis of the quantum dot-labeled RSV showed that RSV entry into HEp-2 cells consisted of a typical endocytosis trafficking process. Three critical events during RSV entry were observed according to entry dynamic and fluorescence colocalization analysis. Firstly, RSV was attached to lipid rafts of the cell membrane, and then it was efficiently delivered into the perinuclear region within 2 h post-infection, mostly moving and residing into the lysosome compartment. Moreover, the relatively slow velocity of RSV transport across the cytoplasm and the formation of the actin tail indicated actin-based RSV motility, which was also confirmed by the effects of cytoskeletal inhibitors. Taken together, these findings provided new insights into the RSV entry mechanism and virus-cell interactions in RSV infection that could be beneficial in the development of antiviral drugs and vaccines.

  8. Imaging of VSOP labeled stem cells in agarose phantoms with susceptibility weighted and T2* weighted MR Imaging at 3T: determination of the detection limit.

    Directory of Open Access Journals (Sweden)

    Donald Lobsien

    Full Text Available OBJECTIVES: This study aimed to evaluate the detectability of stem cells labeled with very small iron oxide particles (VSOP at 3T with susceptibility weighted (SWI and T2* weighted imaging as a methodological basis for subsequent examinations in a large animal stroke model (sheep. MATERIALS AND METHODS: We examined ovine mesenchymal stem cells labeled with VSOP in agarose layer phantoms. The experiments were performed in 2 different groups, with quantities of 0-100,000 labeled cells per layer. 15 different SWI- and T2*-weighted sequences and 3 RF coils were used. All measurements were carried out on a clinical 3T MRI. Images of Group A were analyzed by four radiologists blinded for the number of cells, and rated for detectability according to a four-step scale. Images of Group B were subject to a ROI-based analysis of signal intensities. Signal deviations of more than the 0.95 confidence interval in cell containing layers as compared to the mean of the signal intensity of non cell bearing layers were considered significant. RESULTS: GROUP A: 500 or more labeled cells were judged as confidently visible when examined with a SWI-sequence with 0.15 mm slice thickness. Group B: 500 or more labeled cells showed a significant signal reduction in SWI sequences with a slice thickness of 0.25 mm. Slice thickness and cell number per layer had a significant influence on the amount of detected signal reduction. CONCLUSION: 500 VSOP labeled stem cells could be detected with SWI imaging at 3 Tesla using an experimental design suitable for large animal models.

  9. Magnetic Resonance Tracking of Endothelial Progenitor Cells Labeled with Alkyl-Polyethylenimine 2 kDa/Superparamagnetic Iron Oxide in a Mouse Lung Carcinoma Xenograft Model

    Directory of Open Access Journals (Sweden)

    Cong Chen

    2014-11-01

    Full Text Available The potential of using endothelial progenitor cells (EPCs in novel anticancer therapy and the repair of vascular injury has been increasingly recognized. In the present study, EPCs were labeled with N-alkyl-polyethylenimine 2 kDa (PEI2k-stabilized superparamagnetic iron oxide (SPIO to facilitate magnetic resonance imaging (MRI of EPCs in a mouse lung carcinoma xenograft model. EPCs derived from human peripheral blood were labeled with alkyl-PEI2k/SPIO. The viability and activity of labeled cells were evaluated using proliferation, migration, and tubulogenesis assays. Alkyl-PEI2k/SPIO-labeled EPCs were injected intravenously (group 1 or mixed and injected together with A549 cells subcutaneously (group 2 into groups of six mice with severe combined immunodeficiency. The labeling efficiency with alkyl-PEI2k/SPIO at 7 mg Fe/mL concentration was approximately 100%. Quantitative analysis of cellular iron was 6.062 ± 0.050 pg/cell. No significant effects on EPC proliferation, migration, or tubulogenesis were seen after labeling. Seventesla micro-MRI showed the presence of schistic or linear hypointense regions at the tumor margins starting from days 7 to 8 after EPC administration. This gradually extended into the inner tumor layers in group 1. In group 2, tumor growth was accompanied by dispersion of low-signal intensity regions inside the tumor. Iron-positive cells identified by Prussian blue dye were seen at the sites identified using MRI. Human CD31-positive cells and mouse CD31-positive cells were present in both groups. Labeling EPCs with alkyl-PEI2k/SPIO allows noninvasive magnetic resonance investigation of EPC involvement in tumor neovasculature and is associated with excellent biocompatibility and MRI sensitivity.

  10. Applications and technical challenges of fluorescence in situhybridization in stem cell research

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Heinz-Ulli G.; Chu, Lisa W.; Murnane, John P.; Weier,Jingly F.

    2003-07-02

    Stem cell research, maintenance and manipulations have advanced significantly in recent years, and we now witness successful clinical applications of stem therapies. However, challenges in regard to karyotypic stability and the ploidy status of stem cell lines have been addressed only marginally. Our approach to develop technology to address these highly relevant issues is based on fluorescence in situ hybridization (FISH) using non-isotopically labeled DNA probes. As a single cell analysis technique, FISH is expected to be applicable to a variety of cells and tissues including interphase and metaphase cell preparations as well as tissue sections and biopsy material. Over the last decade, our laboratories generated a large number of probes and probe sets for the molecular cytogenetic analyses of stem cells derived from different species. These probes and the introduction of Spectral Imaging bring us close to be able to perform a comprehensive karyotype analysis of single interphase cell nuclei. It should furthermore be possible to couple cytogenetic investigations of the cellular genotype with analysis of gene expression. This report summarizes our technical achievements relevant to stem cell research, and outlines plans for future research and developments.

  11. A novel immuno-gold labeling protocol for nanobody-based detection of HER2 in breast cancer cells using immuno-electron microscopy.

    Science.gov (United States)

    Kijanka, M; van Donselaar, E G; Müller, W H; Dorresteijn, B; Popov-Čeleketić, D; El Khattabi, M; Verrips, C T; van Bergen En Henegouwen, P M P; Post, J A

    2017-07-01

    Immuno-electron microscopy is commonly performed with the use of antibodies. In the last decade the antibody fragment indicated as nanobody (VHH or single domain antibody) has found its way to different applications previously done with conventional antibodies. Nanobodies can be selected to bind with high affinity and specificity to different antigens. They are small (molecular weight ca. 15kDa) and are usually easy to produce in microorganisms. Here we have evaluated the feasibility of a nanobody binding to HER2 for application in immuno-electron microscopy. To obtain highest labeling efficiency combined with optimal specificity, different labeling conditions were analysed, which included nanobody concentration, fixation and blocking conditions. The obtained optimal protocol was applied for post-embedment labeling of Tokuyasu cryosections and for pre-embedment labeling of HER2 for fluorescence microscopy and both transmission and scanning electron microscopy. We show that formaldehyde fixation after incubation with the anti-HER2 nanobody, improves labeling intensity. Among all tested blocking agents the best results were obtained with a mixture of cold water fish gelatine and acetylated bovine serum albumin, which prevented a-specific interactions causing background labeling while preserving specific interactions at the same time. In conclusion, we have developed a nanobody-based protocol for immuno-gold labeling of HER2 for Tokuyasu cryosections in TEM as well as for pre-embedment gold labeling of cells for both TEM and SEM. Copyright © 2017. Published by Elsevier Inc.

  12. Morphologic alterations on red blood cells labeled with technetium-99m: the effect of Mentha crispa L. (hortela) extract

    International Nuclear Information System (INIS)

    Santos-Filho, S.D.; Dire, G.L.; Lima, E.; Pereira, M.; Bernardo-Filho, M.

    2002-01-01

    The use of natural products, as medicinal plants, is very frequent in the world. Mentha crispa L. (M. crispa) is utilized in herbal medicine. Blood elements labeled with technetium-99m (99mTc) are used in nuclear medicine procedures and this labeling process may be altered by drugs. We have investigated the possibility of M. crispa extract being capable to alter the labeling of blood elements with 99mTc. Blood was incubated with M. crispa extract in various concentrations (6.25, 12.5, 25, 50 and 100%). Stannous chloride solution and Tc-99m, as sodium pertechnetate, were added. Blood was centrifuged and plasma (P) and blood cells (BC) were isolated. Samples of P and BC were also precipitated, centrifuged and insoluble (IF) and soluble (SF) separated. The percentage of radioactivity (%ATI) in BC, IF-P and IF-BC was calculated. Histological evaluations of the red blood cells (RBC) were performed with blood samples treated with various concentrations of M. Crispa L. and the morphology of the RBC was observed under optical microscope. Important morphological alterations expressed by mean of the perimeter/area of the RBC treated with M. crispa: 6.25% (0.67 ± 0.02), 12.5% (0.77 ± 0.03), 25% (0.73 ± 0.04), 50% (0.76 ± 0.04), 100% (0.69 ± 0.08) and the control cells (0.67 ± 0.05). The %ATI decreased: (i) on BC from 97.3 ± 1.92 to 60.0 ± 2.44; (ii) on IF-P from 74.8 ± 3.78 to 9.99 ± 3.61; (iii) on IF-BC from 88.6 ± 5.41 to 58.4 ± 11.55. The perimeter/area of the RBC showed significant differences (P>0.01) when compared 6.25% and 12.5%, and when compared 6.25% and 50% of M. Crispa L. extract. These findings could also justify the decrease of the labeling of BC with 99mTc in presence of M. Crispa extract

  13. In vitro detection of mdr1 mRNA in murine leukemia cells with 111In-labeled oligonucleotide

    International Nuclear Information System (INIS)

    Bai Jingming; Yokoyama, Kunihiko; Kinuya, Seigo; Michigishi, Takatoshi; Tonami, Norihisa; Shiba, Kazuhiro; Matsushita, Ryo; Nomura, Masaaki

    2004-01-01

    The feasibility of intracellular mdr1 mRNA expression detection with radiolabeled antisense oligonucleotide (ODN) was investigated in the murine leukemia cell line, P388/S, and its subclonal, adriamycin-resistant cell line, P388/R. The expression level of mdr1 mRNA was analyzed by reverse transcription-polymerase chain reaction (RT-PCR). Existence of the multidrug resistance (MDR) phenomenon was assessed via cellular uptake of 99m Tc-sestamibi (MIBI), a known substrate for P-glycoprotein. A 15-mer phosphorothioate antisense ODN complementary to the sequences located at -1 to 14 of mdr1 mRNA and its corresponding sense ODN were conjugated with the cyclic anhydride of diethylene triamine penta-acetic acid (cDTPA) via an amino group linked to the terminal phosphate at the 5' end at pH 8-9. The DTPA-ODN complexes at concentrations of 0.1-17.4 μMwere reacted with 111 InCl 3 at pH 5 for 1 h. The hybridization affinity of labeled ODN was evaluated with size-exclusion high-performance liquid chromatography following incubation with the complementary sequence. Cellular uptake of labeled ODN was examined in vitro. Furthermore, enhancing effects of synthetic lipid carriers (Transfast) on transmembrane delivery of ODN were assessed. P388/R cells displayed intense mdr1 mRNA expression in comparison with P388/S cells. 99m Tc-MIBI uptake in P388/S cells was higher than that in P388/R cells. Specific radioactivity up to 1,634 MBq/nmol was achieved via elevation of added radioactivity relative to ODN molar amount. The hybridization affinity of antisense 111 In-ODN was preserved at approximately 85% irrespective of specific activity. Cellular uptake of antisense 111 In-ODN did not differ from that of sense 111 In-ODN in either P388/S cells or P388/R cells. However, lipid carrier incorporation significantly increased transmembrane delivery of 111 In-ODN; moreover, specific uptake of antisense 111 In-ODN was demonstrated in P388/R cells. Radiolabeling of ODN at high specific

  14. European stem cell research in legal shackles

    NARCIS (Netherlands)

    Nielen, M.G.; de Vries, S.A.; Geijsen, N.

    2013-01-01

    Advances in stem cell biology have raised legal challenges to the patentability of stem cells and any derived technologies and processes. In 1999, Oliver Brustle was granted a patent for the generation and therapeutic use of neural cells derived from human embryonic stem cells (hESCs). The patent

  15. CellTracker Green labelling vs. rose bengal staining: CTG wins by points in distinguishing living from dead anoxia-impacted copepods and nematodes

    Directory of Open Access Journals (Sweden)

    M. Grego

    2013-07-01

    Full Text Available Hypoxia and anoxia have become a key threat to shallow coastal seas. Much is known about their impact on macrofauna, less on meiofauna. In an attempt to shed more light on the latter group, in particular from a process-oriented view, we experimentally induced short-term anoxia (1 week in the northern Adriatic Sea (Mediterranean and examined the two most abundant meiofauna taxa – harpacticoid copepods and nematodes. Both taxa also represent different ends of the tolerance spectrum, with copepods being the most sensitive and nematodes among the most tolerant. We compared two methods: CellTracker Green (CTG – new labelling approach for meiofauna – with the traditional rose bengal (RB staining method. CTG binds to active enzymes and therefore colours live organisms only. The two methods show considerable differences in the number of living and dead individuals of both meiofauna taxa. Generally, RB will stain dead but not yet decomposed copepods and nematodes equally as it does live ones. Specifically, RB significantly overestimated the number of living copepods in all sediment layers in anoxic samples, but not in any normoxic samples. In contrast, for nematodes, the methods did not show such a clear difference between anoxia and normoxia. RB overestimated the number of living nematodes in the top sediment layer of normoxic samples, which implies an overestimation of the overall live nematofauna. For monitoring and biodiversity studies, the RB method might be sufficient, but for more precise quantification of community degradation, especially after an oxygen depletion event, CTG labelling is a better tool. Moreover, it clearly highlights the surviving species within the copepod or nematode community. As already accepted for foraminiferal research, we demonstrate that the CTG labelling is also valid for other meiofauna groups.

  16. Comparison of 99Tcm-HMPAO-labelled white blood cells and 67Ga citrate scans to detect myocarditis in the acute phase of Kawasaki disease

    International Nuclear Information System (INIS)

    Kao, C.H.; Hsieh, K.S.; Wang, Y.L.; Chen, C.W.; Liao, S.Q.; Wang, S.J.; Yeh, S.H.

    1991-01-01

    Myocardial imaging with 99 Tc m -HMPAO-labelled white blood cells (WBC) and 67 Ga citrate was used to detect myocarditis in the acute phase of Kawasaki disease among 22 infants and children; 18 cases of myocarditis were detected by 99 Tc m -HMPAO-labelled WBC heart scans, but only one case was detected by 67 Ga citrate heart scans. In conclusion, 99 Tc m -HMPAO-labelled WBC scanning provides a more sensitive method than 67 Ga citrate scanning in the detection of myocarditis in Kawasaki disease. (author)

  17. Localization of Label-Retaining Cells in Murine Vocal Fold Epithelium

    Science.gov (United States)

    Leydon, Ciara; Bartlett, Rebecca S.; Roenneburg, Drew A.; Thibeault, Susan L.

    2011-01-01

    Purpose: Epithelial homeostasis is critical for vocal fold health, yet little is known about the cells that support epithelial self-renewal. As a known characteristic of stem cells is that they are slow-cycling in vivo, the purpose of this prospective controlled study was to identify and quantify slow-cycling cells or putative stem cells in murine…

  18. Resolution of heterogeneous fluorescence emission signals and decay lifetime measurement on fluorochrome-labeled cells by phase-sensitive FCM

    Energy Technology Data Exchange (ETDEWEB)

    Steinkamp, J.A.; Crissman, H.A.

    1993-01-01

    A phase-sensitive flow cytometer has been developed to resolve signals from heterogeneous fluorescence emission spectra and quantify fluorescence decay times on cells labeled with fluorescent dyes. This instrument combines flow cytometry (FCM) and fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved measurements on single cells in flow, while preserving conventional FCM measurement capabilities. Stained cells are analyzed as they pass through an intensity-modulated (sinusoid) laser excitation beam. Fluorescence is measured orthogonally using a s barrier filter to block scattered laser excitation light, and a photomultiplier tube detector output signals, which are shifted in phase from a reference signal and amplitude demodulated, are processed by phase-sensitive detection electronics to resolve signals from heterogeneous emissions and quantify decay lifetimes directly. The output signals are displayed as frequency distribution histograms and bivariate diagrams using a computer-based data acquisition system. Results have demonstrated signal phase shift, amplitude demodulation, and average measurement of fluorescence lifetimes on stained cells; a detection limit threshold of 300 to 500 fluorescein isothiocyanate (FITC); fluorescence measurement precision of 1.3% on alignment fluorospheres and 3.4% on propidium iodide (PI)-stained cells; the resolution of PI and FITC signals from cells stainedin combination with PI and FITC, based on differences in their decay lifetimes; and the ability to measure single decay nines by the two-phase, phase comparator, method.

  19. Resolution of heterogeneous fluorescence emission signals and decay lifetime measurement on fluorochrome-labeled cells by phase-sensitive FCM

    Energy Technology Data Exchange (ETDEWEB)

    Steinkamp, J.A.; Crissman, H.A.

    1993-02-01

    A phase-sensitive flow cytometer has been developed to resolve signals from heterogeneous fluorescence emission spectra and quantify fluorescence decay times on cells labeled with fluorescent dyes. This instrument combines flow cytometry (FCM) and fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved measurements on single cells in flow, while preserving conventional FCM measurement capabilities. Stained cells are analyzed as they pass through an intensity-modulated (sinusoid) laser excitation beam. Fluorescence is measured orthogonally using a s barrier filter to block scattered laser excitation light, and a photomultiplier tube detector output signals, which are shifted in phase from a reference signal and amplitude demodulated, are processed by phase-sensitive detection electronics to resolve signals from heterogeneous emissions and quantify decay lifetimes directly. The output signals are displayed as frequency distribution histograms and bivariate diagrams using a computer-based data acquisition system. Results have demonstrated signal phase shift, amplitude demodulation, and average measurement of fluorescence lifetimes on stained cells; a detection limit threshold of 300 to 500 fluorescein isothiocyanate (FITC); fluorescence measurement precision of 1.3% on alignment fluorospheres and 3.4% on propidium iodide (PI)-stained cells; the resolution of PI and FITC signals from cells stainedin combination with PI and FITC, based on differences in their decay lifetimes; and the ability to measure single decay nines by the two-phase, phase comparator, method.

  20. Cytotoxic effects of 125I-labeled PBZr ligand PK 11195 in prostatic tumor cells: therapeutic implications

    International Nuclear Information System (INIS)

    Alenfall, J.; Kant, R.; Batra, S.

    1998-01-01

    The effect of [ 125 I]PK 11195 was examined in human prostatic tumor cells (DU 145) in culture and compared with Na[ 125 I] and non-radioactive PK 11195. [ 125 I]PK 11195 was clearly cytocidal. The data for dose-related cell survival with [ 125 I]PK 11195 showed a linear relationship. Na[ 125 I] or non-labeled PK 11195 at similar concentrations did not lead to any cell killing. The uptake of [ 125 I]PK 11195 and [ 3 H]PK 11195 in cells was very similar. Fragmentation of DNA measured by agarose gel electrophoresis showed that exposure of DU 145 cells to [ 125 I]PK 11195 for 1, 4 or 24 h caused no fragmentation. These results indicate that nuclear DNA is not the prime binding site for [ 125 I]PK 11195, which is consistent with the presence of specific peripheral benzodiazepine receptors (PBZr) in the mitochondria. The cell killing effect of [ 125 I]PK 11195 suggests the use of PBZr ligand for radiotherapy

  1. Mobile Application for Pesticide Label Matching

    Science.gov (United States)

    The label matching application will give inspectors the ability to instantly compare pesticide product labels against state and federal label databases via their cell phone, tablet or other mobile device.

  2. A Radiochemical Biotechnological Approach: Preliminary Study of Lactose Uptake Rate by Kefir Cells, Using 14C-labeled Lactose, in Anaerobic Fermentation

    International Nuclear Information System (INIS)

    Golfinopoulos, A.; Soupioni, M.; Kanellaki, M.; Koutinas, A. A.

    2008-01-01

    The effect of initial lactose concentration on lactose uptake rate by kefir free cells, during the lactose fermentation, was studied in this work. For the investigation 14 C-labelled lactose was used due to the fact that labeled and unlabeled molecules are fermented in the same way. The results illustrated lactose uptake rates are about up to two fold higher at lower initial (convolution sign)Be densities as compared with higher initial (convolution sign)Be densities

  3. A Radiochemical Biotechnological Approach: Preliminary Study of Lactose Uptake Rate by Kefir Cells, Using 14C-labeled Lactose, in Anaerobic Fermentation

    Science.gov (United States)

    Golfinopoulos, A.; Soupioni, M.; Kanellaki, M.; Koutinas, A. A.

    2008-08-01

    The effect of initial lactose concentration on lactose uptake rate by kefir free cells, during the lactose fermentation, was studied in this work. For the investigation 14C-labelled lactose was used due to the fact that labeled and unlabeled molecules are fermented in the same way. The results illustrated lactose uptake rates are about up to two fold higher at lower initial ∘Bé densities as compared with higher initial ∘Bé densities.

  4. Clinical evaluation of a 51Cr-labeled red blood cell survival test for in vivo blood compatibility testing

    International Nuclear Information System (INIS)

    Pineda, A.A.; Dharkar, D.D.; Wahner, H.W.

    1984-01-01

    Modified red blood cell survival studies with use of 51Cr were performed in three groups of subjects. Group 1 consisted of normal subjects who were given labeled autologous blood, group 2 were subjects in need of blood transfusions and given labeled ABO and Rh crossmatch-compatible blood, and group 3 were patients in need of blood transfusion but in whom problems arose in finding compatible blood. The results of the studies suggest that for patients with blood compatibility problems, normal red blood cell survival values at 1 hour do not exclude the possibility of severe hemolysis 24 hours later. Thus, if a 1-hour test result is normal, the procedure should be extended routinely to 24 hours. Moreover, the test can be used to evaluate the clinical importance of antibodies. We showed that anti-Yka and anti-Lan were clinically significant, but high-titer, low-avidity antibodies, anti-Kna, anti-I, and anti-HI were clinically insignificant in the cases studied. This finding emphasizes the importance of an in vivo test for the final compatibility evaluation in complicated blood replacement problems

  5. Quantitative assessment of limb blood flow using Tc-99m labeled red blood cells. Radionuclide venous occlusion plethysmography (RAVOP)

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kazuo; Shougase, Takashi; Kawamura, Naoyuki; Tsukamoto, Eriko; Nakada, Kunihiro; Sakuma, Makoto; Furudate, Masayori

    1987-10-01

    A quantitative assessment of limb blood flow using a non-diffusible radioindicator, Tc-99m labeled red blood cells, was reported. This was an application of venous occlusion plethysmography using radionuclide which was originally proposed by M. Fukuoka et al. The peripheral blood flow (mean +- s.e.) of 30 legs in a normal control group was 1.87 +- 0.08 ml/100 ml/min. In heart diseases (46 legs), it was 1.49 +- 0.13 ml/100 ml/min. The limb blood flow between a control group and heart diseases was statistically significant (p < 0.01) in the t-test. The peripheral blood flow at rest between diseased legs and normal legs in occlusive arterial disorders was also statistically significant (p < 0.01) in a paired t-test. RAVOP was done after the completion of objective studies such as radionuclide angiography or ventriculography. Technique and calculation of a blood flow were very easy and simple. RAVOP study which was originally proposed by Fukuoka et al. was reappraised to be hopeful for quantitative measurement of limb blood flow as a non-invasive technique using Tc-99m labeled red blood cells.

  6. Effect of exercise on erythrocyte count and blood activity concentration after technetium-99m in vivo red blood cell labeling

    International Nuclear Information System (INIS)

    Konstom, M.A.; Tu'meh, S.; Wynne, J.; Beck, J.R.; Kozlowski, J.; Holman, B.L.

    1982-01-01

    The effects of exercise on blood radiotracer concentration after technetium-99m in vivo red blood cell labeling was studied. After red blood cell labeling, 13 subjects underwent maximal supine bicycle exercise. Radioactivity, analyzed with a well counter, was measured in heparinized venous blood samples drawn at rest and during peak exercise. Changes in activity were compared with changes in erythrocyte count. Activity and erythrocyte counts increased in erythrocyte count (r=0.78), but did not correlate with either duration of exercise or maximal heart rate. Twenty minutes after termination of exercise, activity and erythrocyte count had decreased from peak exercise values but remained higher than preexercise values. In nine nonexercised control subjects, samples drawn 20 minutes apart showed no change in activity or in erythrocyte count. It was concluded that exercise increases blood activity, primarily because of an increase in erythrocyte count. During radionuclide ventriculography, blood activity must be measured before and after any intervention, particularly exercise, before a change in left ventricular activity can be attributed to a change in left ventricular volume

  7. Quantitative Proteomic Analysis of Mouse Embryonic Fibroblasts and Induced Pluripotent Stem Cells Using 16O /18O labeling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xin; Tian, Changhai; Liu, Miao; Wang, Yongxiang; Tolmachev, Aleksey V.; Sharma, Seema; Yu, Fang; Fu, Kai; Zheng, Jialin; Ding, Shi-Jian

    2012-04-06

    Induced pluripotent stem cells (iPSC) hold great promise for regenerative medicine as well as for investigations into the pathogenesis and treatment of various diseases. Understanding of key intracellular signaling pathways and protein targets that control development of iPSC from somatic cells is essential for designing new approaches to improve reprogramming efficiency. Here we report the development and application of an integrated quantitative proteomics platform for investigating differences in protein expressions between mouse embryonic fibroblasts (MEF) and MEF-derived iPSC. This platform consists of 16O/18O labeling, multidimensional peptide separation coupled with tandem mass spectrometry, and data analysis with UNiquant software. Using this platform a total of 2,481 proteins were identified and quantified from the 16O/18O-labeled MEF-iPSC proteome mixtures with a false discovery rate of 0.01. Among them, 218 proteins were significantly upregulated, while 247 proteins were significantly downregulated in iPSC compared to MEF. Many nuclear proteins, including Hdac1, Dnmt1, Pcna, Ccnd1, Smarcc1, and subunits in DNA replication and RNA polymerase II complex were found to be enhanced in iPSC. Protein network analysis revealed that Pcna functions as a hub orchestrating complicated mechanisms including DNA replication, epigenetic inheritance (Dnmt1) and chromatin remodeling (Smarcc1) to reprogram MEF and maintain stemness of iPSC.

  8. Identification of the glucose transporter in mammalian cell membranes using an /sup 125/(I)-forskolin photoaffinity label

    Energy Technology Data Exchange (ETDEWEB)

    Ruoho, A.; Wadzinski, B.; Shanahan, M.

    1987-05-01

    The glucose transporter has been identified in a variety of mammlian cell membranes using a carrier-free photoactivatable radioiodinated derivative of forskolin, 3-iodo-4-azidophenethylamido-7-0-succinyldeacetyl-forskolin, (I-125)IAPS-Fsk, at 1-10 nM. The membranes which have been photolabeled with (I-125)IAPS-Fsk are: rat cardiac sarcolemmal membranes, rat cortex and cerebellum synaptic membranes, human placental membranes, and wild type S49 lymphoma cell membranes. The glucose transporter in rat cardiac sarcolemmal membranes and rat cortex and cerebellum synaptic membranes was determined to be 45 kDa by SDS-PAGE. Photolysis of human placental membranes and S49 lymphoma membranes with (I-125)IAPS-Fsk followed by SDS-PAGE indicated specific derivatization of a broad band (45-55 kDa) in placental membranes and a narrower band (45 kDa) in the S49 lymphoma membranes. Digestion of the (I-125)IPAS-Fsk labelled placental and S49 lymphoma membranes with endo-B-galactosidase showed a reduction in the apparent molecular weight of the radiolabelled band to 40 kDa. Trypsinization of labelled placental and lymphoma membranes produced an 18 kDa radiolabelled proteolytic fragment. (I-125)IAPS-Fsk is a highly effective probe for identifying low levels of glucose transporters in mammalian tissues.

  9. Identification of the glucose transporter in mammalian cell membranes using an 125(I)-forskolin photoaffinity label

    International Nuclear Information System (INIS)

    Ruoho, A.; Wadzinski, B.; Shanahan, M.

    1987-01-01

    The glucose transporter has been identified in a variety of mammlian cell membranes using a carrier-free photoactivatable radioiodinated derivative of forskolin, 3-iodo-4-azidophenethylamido-7-0-succinyldeacetyl-forskolin, [I-125]IAPS-Fsk, at 1-10 nM. The membranes which have been photolabeled with [I-125]IAPS-Fsk are: rat cardiac sarcolemmal membranes, rat cortex and cerebellum synaptic membranes, human placental membranes, and wild type S49 lymphoma cell membranes. The glucose transporter in rat cardiac sarcolemmal membranes and rat cortex and cerebellum synaptic membranes was determined to be 45 kDa by SDS-PAGE. Photolysis of human placental membranes and S49 lymphoma membranes with [I-125]IAPS-Fsk followed by SDS-PAGE indicated specific derivatization of a broad band (45-55 kDa) in placental membranes and a narrower band (45 kDa) in the S49 lymphoma membranes. Digestion of the [I-125]IPAS-Fsk labelled placental and S49 lymphoma membranes with endo-B-galactosidase showed a reduction in the apparent molecular weight of the radiolabelled band to 40 kDa. Trypsinization of labelled placental and lymphoma membranes produced an 18 kDa radiolabelled proteolytic fragment. [I-125]IAPS-Fsk is a highly effective probe for identifying low levels of glucose transporters in mammalian tissues

  10. Whole cell probing with fluorescently labelled probes for in situ analysis of microbial populations

    International Nuclear Information System (INIS)

    Blackall, L.L.

    2005-01-01

    Until 1965, microbiologists struggled with simplicity of bacterial morphology and phenotypic characters in an attempt to construct a phylogenetic division for the prokaryotes. Then, it was found that molecular sequences were the source of much evolutionary information. Consequently, the way from phenotypic to genotypic characteristics for evolutionary inference was clear. Ribosomes within biological cells are the sites of protein synthesis. They are composed of a mixture of nucleic acids [ribosomal RiboNucleic Acids (rRNA)] and proteins and have an average size of 70s in bacteria. Because of their role in cell survival, maintenance and reproduction, rRNAs and their genes are described as being evolutionally conserved. Other genes can also be used to infer evolutionary relationships, and phylogenies inferred from all these molecules tend to concur. Comparative analyses of small subunit rRNA gene sequences were used in the 1980s to create a phylogeny or natural division for life on earth. It is composed of three domains - Bacteria, Archaea and Eucarya. The database of small subunit rRNA sequences is very large and allowed this broad comparative analysis to be done. In addition, the databases of these gene sequences are cumulative and constitute a growing resource available by modern communication channels to all researchers. The phylogenetic information has been used to clarify classification and taxonomic anomalies in the Bacteria and Archaea. Within the Bacteria, the small subunit rRNA is the 16S rRNA and the genes that code for this molecule are 16S rDNAs. In most cases, the 16S rDNA is exactly transcribed to form the 16S rRNA - i.e. the primary nucleic acid sequences of these two molecules are the same. Additionally, ribosomes of Bacteria contain the larger 23S rRNA (genes = 23R rDNAs), and sequence information from 23S rDNAs is also used to address evolutionary relationships between different Bacteria

  11. The production of intrinsically labeled milk and meat protein is feasible and provides functional tools for human nutrition research

    NARCIS (Netherlands)

    Pennings, B.; Pellikaan, W.F.; Senden, J.M.G.; Vuuren, van A.M.; Sikkema, J.; Loon, van L.J.C.

    2011-01-01

    Administration of labeled, free amino acids does not allow direct assessment of in vivo dietary protein digestion and absorption kinetics. Consequently, dietary protein sources with labeled amino acids incorporated within their protein matrix are required. The aim of the present study was to produce

  12. Research and lobbying conflicting on the issue of a front-of-pack nutrition labelling in France.

    Science.gov (United States)

    Julia, Chantal; Hercberg, Serge

    2016-01-01

    Front-of-pack nutrition labelling has been highlighted as a promising strategy to help consumers making healthier food choices at the point of purchase. In France, a simplified front-of-pack nutrition labelling system was proposed in 2014, the 5-Colour Nutrition Label (5-CNL). It is supported by studies evaluating the various dimensions of the validation of both its underlying classification algorithm and its format. Opposed by agro-industry and retailers, multiples lobbying strategies have been deployed to stop or at least delay the implementation of the 5-CNL. Various alternative nutrition labels were proposed, and a full-scale trial was successfully argued for. This paper retraces the various steps of the opposition between public health and agro-industry lobbies on the topic of front-of-pack nutrition labelling in France.

  13. Survey of surface proteins from the pathogenic Mycoplasma hyopneumoniae strain 7448 using a biotin cell surface labeling approach.

    Science.gov (United States)

    Reolon, Luciano Antonio; Martello, Carolina Lumertz; Schrank, Irene Silveira; Ferreira, Henrique Bunselmeyer

    2014-01-01

    The characterization of the repertoire of proteins exposed on the cell surface by Mycoplasma hyopneumoniae (M. hyopneumoniae), the etiological agent of enzootic pneumonia in pigs, is critical to understand physiological processes associated with bacterial infection capacity, survival and pathogenesis. Previous in silico studies predicted that about a third of the genes in the M. hyopneumoniae genome code for surface proteins, but so far, just a few of them have experimental confirmation of their expression and surface localization. In this work, M. hyopneumoniae surface proteins were labeled in intact cells with biotin, and affinity-captured biotin-labeled proteins were identified by a gel-based liquid chromatography-tandem mass spectrometry approach. A total of 20 gel slices were separately analyzed by mass spectrometry, resulting in 165 protein identifications corresponding to 59 different protein species. The identified surface exposed proteins better defined the set of M. hyopneumoniae proteins exposed to the host and added confidence to in silico predictions. Several proteins potentially related to pathogenesis, were identified, including known adhesins and also hypothetical proteins with adhesin-like topologies, consisting of a transmembrane helix and a large tail exposed at the cell surface. The results provided a better picture of the M. hyopneumoniae cell surface that will help in the understanding of processes important for bacterial pathogenesis. Considering the experimental demonstration of surface exposure, adhesion-like topology predictions and absence of orthologs in the closely related, non-pathogenic species Mycoplasma flocculare, several proteins could be proposed as potential targets for the development of drugs, vaccines and/or immunodiagnostic tests for enzootic pneumonia.

  14. Survey of surface proteins from the pathogenic Mycoplasma hyopneumoniae strain 7448 using a biotin cell surface labeling approach.

    Directory of Open Access Journals (Sweden)

    Luciano Antonio Reolon

    Full Text Available The characterization of the repertoire of proteins exposed on the cell surface by Mycoplasma hyopneumoniae (M. hyopneumoniae, the etiological agent of enzootic pneumonia in pigs, is critical to understand physiological processes associated with bacterial infection capacity, survival and pathogenesis. Previous in silico studies predicted that about a third of the genes in the M. hyopneumoniae genome code for surface proteins, but so far, just a few of them have experimental confirmation of their expression and surface localization. In this work, M. hyopneumoniae surface proteins were labeled in intact cells with biotin, and affinity-captured biotin-labeled proteins were identified by a gel-based liquid chromatography-tandem mass spectrometry approach. A total of 20 gel slices were separately analyzed by mass spectrometry, resulting in 165 protein identifications corresponding to 59 different protein species. The identified surface exposed proteins better defined the set of M. hyopneumoniae proteins exposed to the host and added confidence to in silico predictions. Several proteins potentially related to pathogenesis, were identified, including known adhesins and also hypothetical proteins with adhesin-like topologies, consisting of a transmembrane helix and a large tail exposed at the cell surface. The results provided a better picture of the M. hyopneumoniae cell surface that will help in the understanding of processes important for bacterial pathogenesis. Considering the experimental demonstration of surface exposure, adhesion-like topology predictions and absence of orthologs in the closely related, non-pathogenic species Mycoplasma flocculare, several proteins could be proposed as potential targets for the development of drugs, vaccines and/or immunodiagnostic tests for enzootic pneumonia.

  15. Mapping of BrdU label-retaining dental pulp cells in growing teeth and their regenerative capacity after injuries.

    Science.gov (United States)

    Ishikawa, Yuko; Ida-Yonemochi, Hiroko; Suzuki, Hironobu; Nakakura-Ohshima, Kuniko; Jung, Han-Sung; Honda, Masaki J; Ishii, Yumiko; Watanabe, Nobukazu; Ohshima, Hayato

    2010-09-01

    Recent studies have demonstrated that human dental pulp contains adult stem cells. A pulse of the thymidine analog BrdU given to young animals at the optimal time could clarify where slow-cycling long-term label-retaining cells (LRCs), putative adult stem cells, reside in the pulp tissue. This study focuses on the mapping of LRCs in growing teeth and their regenerative capacity after tooth injuries. Two to seven peritoneal injections of BrdU into pregnant Wistar rats revealed slow-cycling long-term dense LRCs in the mature tissues of born animals. Numerous dense LRCs were postnatally decreased in number and reached a plateau at 4 weeks after birth when they mainly resided in the center of the dental pulp, associating with blood vessels. Mature dental pulp cells were stained with Hoechst 33342 and sorted into (<0.76%) side population cells using FACS, which included dense LRCs. Some dense LRCs co-expressed mesenchymal stem cell markers such as STRO-1 or CD146. Tooth injuries caused degeneration of the odontoblast layer, and newly differentiated odontoblast-like cells contained LRCs. Thus, dense LRCs in mature pulp tissues were supposed to be dental pulp stem cells possessing regenerative capacity for forming newly differentiated odontoblast-like cells. The present study proposes the new hypothesis that both granular and dense LRCs are equipped in the dental pulp and that the dense LRCs with proliferative capacity play crucial roles in the pulpal healing process following exogenous stimuli in cooperation with the granular LRCs.

  16. [{sup 131}I]FIAU labeling of genetically transduced, tumor-reactive lymphocytes: cell-level dosimetry and dose-dependent toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Zanzonico, Pat [Memorial Sloan-Kettering Cancer Center, Department of Medical Physics, New York, NY (United States); Koehne, Guenther; Doubrovina, Ekaterina; O' Reilly, Richard J. [Memorial Sloan-Kettering Cancer Center, Allogeneic Transplantation Service, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Immunology Program, New York, NY (United States); Gallardo, Humilidad F. [Memorial Sloan-Kettering Cancer Center, Gene Transfer and Somatic Cell Engineering Facility, New York, NY (United States); Doubrovin, Mikhail; Blasberg, Ronald G. [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Department of Neurology, New York, NY (United States); Finn, Ronald [Memorial Sloan-Kettering Cancer Center, Radiochemistry and Cyclotron Core Facility, New York, NY (United States); Riviere, Isabelle; Sadelain, Michel [Memorial Sloan-Kettering Cancer Center, Immunology Program, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Gene Transfer and Somatic Cell Engineering Facility, New York, NY (United States); Larson, Steven M. [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States)

    2006-09-15

    Donor T cells have been shown to be reactive against and effective in adoptive immunotherapy of Epstein-Barr virus (EBV) lymphomas which develop in some leukemia patients post marrow transplantation. These T cells may be genetically modified by incorporation of a replication-incompetent viral vector (NIT) encoding both an inactive mutant nerve growth factor receptor (LNGFR), as an immunoselectable surface marker, and a herpes simplex virus thymidine kinase (HSV-TK), rendering the cells sensitive to ganciclovir. The current studies are based on the selective HSV-TK-catalyzed trapping (phosphorylation) of the thymidine analog [{sup 131}I]-2'-fluoro-2'-deoxy-1-{beta}-D-arabinofuransyl-5-iodo-uracil (FIAU) as a means of stably labeling such T cells for in vivo trafficking (including tumor targeting) studies. Because of the radiosensitivity of lymphocytes and the potentially high absorbed dose to the nucleus from intracellular {sup 131}I (even at tracer levels), the nucleus absorbed dose (D{sub n}) and dose-dependent immune functionality were evaluated for NIT {sup +} T cells labeled ex vivo in [{sup 131}I ]FIAU-containing medium. Based on in vitro kinetic studies of [{sup 131}I ]FIAU uptake by NIT {sup +} T cells, D{sub n} was calculated using an adaptation of the MIRD formalism and the recently published MIRD cellular S factors. Immune cytotoxicity of [{sup 131}I ]FIAU-labeled cells was assayed against {sup 51}Cr-labeled target cells [B-lymphoblastoid cells (BLCLs) ] in a standard 4-h release assay. At median nuclear absorbed doses up to 830 cGy, a {sup 51}Cr-release assay against BLCLs showed no loss of immune cytotoxicity, thus demonstrating the functional integrity of genetically transduced, tumor-reactive T cells labeled at this dose level for in vivo cell trafficking and tumor targeting studies. (orig.)

  17. College Students' Conceptions of Stem Cells, Stem Cell Research, and Cloning

    Science.gov (United States)

    Concannon, James P.; Siegel, Marcelle A.; Halverson, Kristy; Freyermuth, Sharyn

    2010-01-01

    In this study, we examined 96 undergraduate non-science majors' conceptions of stem cells, stem cell research, and cloning. This study was performed at a large, Midwest, research extensive university. Participants in the study were asked to answer 23 questions relating to stem cells, stem cell research, and cloning in an on-line assessment before…

  18. In vivo visualization of GL261-luc2 mouse glioma cells by use of Alexa Fluor-labeled TRP-2 antibodies.

    Science.gov (United States)

    Fenton, Kathryn E; Martirosyan, Nikolay L; Abdelwahab, Mohammed G; Coons, Stephen W; Preul, Mark C; Scheck, Adrienne C

    2014-02-01

    For patients with glioblastoma multiforme, median survival time is approximately 14 months. Longer progression-free and overall survival times correlate with gross-total resection of tumor. The ability to identify tumor cells intraoperatively could result in an increased percentage of tumor resected and thus increased patient survival times. Available labeling methods rely on metabolic activity of tumor cells; thus, they are more robust in high-grade tumors, and their utility in low-grade tumors and metastatic tumors is not clear. The authors demonstrate intraoperative identification of tumor cells by using labeled tumor-specific antibodies. GL261 mouse glioma cells exhibit high expression of a membrane-bound protein called second tyrosinase-related protein (TRP-2). The authors used these cells to establish an intracranial, immunocompetent model of malignant glioma. Antibodies to TRP-2 were labeled by using Alexa Fluor 488 fluorescent dye and injected into the tail vein of albino C57BL/6 mice. After 24 hours, a craniotomy was performed and the tissue was examined in vivo by using an Optiscan 5.1 handheld portable confocal fiber-optic microscope. Tissue was examined ex vivo by using a Pascal 5 scanning confocal microscope. Labeled tumor cells were visible in vivo and ex vivo under the respective microscopes. Fluorescently labeled tumor-specific antibodies are capable of binding and identifying tumor cells in vivo, accurately and specifically. The development of labeled markers for the identification of brain tumors will facilitate the use of intraoperative fluorescence microscopy as a tool for increasing the extent of resection of a broad variety of intracranial tumors.

  19. Usefulness of PKH fluorescent labelling to study leukemic cell proliferation with various cytostatic drugs or acetyl tetrapeptide – AcSDKP

    International Nuclear Information System (INIS)

    Boutonnat, Jean; Faussat, Anne-Marie; Marie, Jean-Pierre; Bignon, Jérôme; Wdzieczak-Bakala, Johanna; Barbier, Magali; Thierry, Josiane; Ronot, Xavier; Colle, Pierre-Emmanuel

    2005-01-01

    PKH67 labelling was compared for classical proliferation assessment (using S phase evaluation) to analyse the cell proliferation of 29 AML patients treated or not with various drugs. Among these drugs, the effect of tetrapeptide AcSDKP or AcSDKP-NH2 on AML cells, stimulated or not by cytokines, was also evaluated in order to determine (i) if AcSDKP was able to inhibit blast cell proliferation as it inhibits haematopoietic progenitors (ii) if AcSDKP-NH2 was more stable than AcSDKP with FBS. For PKH labeling, cells were suspended in Diluent C, and rapidly admixed with PKH67 solution at 20 μM PKH67. Staining was stopped by addition of FBS. A good correlation between PKH67 labelling and bromodeoxyuridine incorporation was obtained first with 6/9 patients for control cells, then for 11/17 AML patients treated with classical antileukemic drugs (among whom 4 were also treated with AcSDKP). The effect of AcSDKP was also studied on 7 patients. The discrepancy between both methods was essentially due to an accumulation of cells into different cycle phases measured by BrdUrd incorporation secondary to drug action and PKH67 labelling which measured the dynamic proliferation. This last method allows identifying resistant cells which still proliferate. AcSDKP or AcSDKP-NH2 induced a decrease of leukemic cell proliferation in 5/7 patients when cytokines were added (in order to stimulate proliferation) one day after tetrapeptide AcSDKP or AcSDKP-NH2. No effect on proliferation was noted when cytokines were added to AcSDKP-NH2. PKH67 labelling method is a powerful tool for cell proliferation assessment in patients with AML, even in cells treated by various drugs

  20. Native immunogold labeling of cell surface proteins and viral glycoproteins for cryo-electron microscopy and cryo-electron tomography applications.

    Science.gov (United States)

    Yi, Hong; Strauss, Joshua D; Ke, Zunlong; Alonas, Eric; Dillard, Rebecca S; Hampton, Cheri M; Lamb, Kristen M; Hammonds, Jason E; Santangelo, Philip J; Spearman, Paul W; Wright, Elizabeth R

    2015-10-01

    Numerous methods have been developed for immunogold labeling of thick, cryo-preserved biological specimens. However, most of the methods are permutations of chemical fixation and sample sectioning, which select and isolate the immunolabeled region of interest. We describe a method for combining immunogold labeling with cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET) of the surface proteins of intact mammalian cells or the surface glycoproteins of assembling and budding viruses in the context of virus-infected mammalian cells cultured on EM grids. In this method, the cells were maintained in culture media at physiologically relevant temperatures while sequentially incubated with the primary and secondary antibodies. Subsequently, the immunogold-labeled specimens were vitrified and observed under cryo-conditions in the transmission electron microscope. Cryo-EM and cryo-ET examination of the immunogold-labeled cells revealed the association of immunogold particles with the target antigens. Additionally, the cellular structure was unaltered by pre-immunolabeling chemical fixation and retained well-preserved plasma membranes, cytoskeletal elements, and macromolecular complexes. We think this technique will be of interest to cell biologists for cryo-EM and conventional studies of native cells and pathogen-infected cells. © The Author(s) 2015.

  1. Development and experimental basis of local subretinal technique of xenogenic’s injection stem cells labelled by magnetic perticles

    Directory of Open Access Journals (Sweden)

    Yu. A. Belyy

    2014-10-01

    Full Text Available Purpose: is to develop a technique for local subretinal injection of xenogeneic stem cells labeled with magnetic particles and to prove experimentally its effectiveness.Material and methods: We used a line of stem cells HEK-293 GFP,labeled with magnetic particles. The study was made on 84 eyes of 42 chinchilla rabbits 6 months of age, the weight were from 2.5 to 3.5 kg. All right eyes were experimental (42 eyes and all left eyes (42 eyes were the control group. In the experimental group we used original complex of polymer elastic magnetic implant (PEMI with laser probe and fixed it to the sclera, then we made a median vitrectomy and injected HEK-293 GFP under the retina using a specially designed dispenser. In the control group PEMI was not fixed. We examined animals using biomicroscopy, ophthalmoscopy, ultrasound scanning, optical coherence tomography  OCT, computer tomography (CT, morphological study (cryohistological sections in 1, 3, 5, 7, 14 day and 1 month after surgery.Results: According the results of biomicroscopy in observation periods up to 3 days the vascular injection was visualized in the area operation. According the results of ophthalmoscopy and ultrasound scanning in 1 day the local retinal detachment was visualized in the area of local injection of the stem cells, which was not visualized in terms of further observations. CT helped us to confirm the local place of PEMI fixation. The morphological study results showed that cells were located in the subretinal space up to 14 days in the experimental group, and only up 3 days in the control group.Conclusion: The suggested surgical technique enables to control the injection of cells into the subretinal space, reduces the risk of tissue damage and exit cells in the vitreous space. The suggested methodology allows the fixing of the cellular material in the local place of the injection and enables to predict cells`s movement.

  2. Development and experimental basis of local subretinal technique of xenogenic’s injection stem cells labelled by magnetic perticles

    Directory of Open Access Journals (Sweden)

    Yu. A. Belyy

    2014-01-01

    Full Text Available Purpose: is to develop a technique for local subretinal injection of xenogeneic stem cells labeled with magnetic particles and to prove experimentally its effectiveness.Material and methods: We used a line of stem cells HEK-293 GFP,labeled with magnetic particles. The study was made on 84 eyes of 42 chinchilla rabbits 6 months of age, the weight were from 2.5 to 3.5 kg. All right eyes were experimental (42 eyes and all left eyes (42 eyes were the control group. In the experimental group we used original complex of polymer elastic magnetic implant (PEMI with laser probe and fixed it to the sclera, then we made a median vitrectomy and injected HEK-293 GFP under the retina using a specially designed dispenser. In the control group PEMI was not fixed. We examined animals using biomicroscopy, ophthalmoscopy, ultrasound scanning, optical coherence tomography  OCT, computer tomography (CT, morphological study (cryohistological sections in 1, 3, 5, 7, 14 day and 1 month after surgery.Results: According the results of biomicroscopy in observation periods up to 3 days the vascular injection was visualized in the area operation. According the results of ophthalmoscopy and ultrasound scanning in 1 day the local retinal detachment was visualized in the area of local injection of the stem cells, which was not visualized in terms of further observations. CT helped us to confirm the local place of PEMI fixation. The morphological study results showed that cells were located in the subretinal space up to 14 days in the experimental group, and only up 3 days in the control group.Conclusion: The suggested surgical technique enables to control the injection of cells into the subretinal space, reduces the risk of tissue damage and exit cells in the vitreous space. The suggested methodology allows the fixing of the cellular material in the local place of the injection and enables to predict cells`s movement.

  3. Proteomic response to 5,6-dimethylxanthenone 4-acetic acid (DMXAA, vadimezan in human non-small cell lung cancer A549 cells determined by the stable-isotope labeling by amino acids in cell culture (SILAC approach

    Directory of Open Access Journals (Sweden)

    Pan ST

    2015-02-01

    Full Text Available Shu-Ting Pan,1,* Zhi-Wei Zhou,2,3,* Zhi-Xu He,3 Xueji Zhang,4 Tianxin Yang,5 Yin-Xue Yang,6 Dong Wang,7 Jia-Xuan Qiu,1 Shu-Feng Zhou2 1Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 3Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, 4Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of China; 5Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA; 6Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, 7Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China *These two authors contributed equally to this work Abstract: 5,6-Dimethylxanthenone 4-acetic acid (DMXAA, also known as ASA404 and vadimezan, is a potent tumor blood vessel-disrupting agent and cytokine inducer used alone or in combination with other cytotoxic agents for the treatment of non-small cell lung cancer (NSCLC and other cancers. However, the latest Phase III clinical trial has shown frustrating outcomes in the treatment of NSCLC, since the therapeutic targets and underlying mechanism for the anticancer effect of DMXAA are not yet fully understood. This study aimed to examine the proteomic response to DMXAA and unveil the global molecular targets and possible mechanisms for the anticancer effect of DMXAA in NSCLC A549 cells using a stable-isotope labeling by amino acids in cell culture (SILAC approach. The proteomic data showed that treatment with DMXAA

  4. Evaluation of umbilical cord mesenchymal stem cell labeling with superparamagnetic iron oxide nanoparticles coated with dextran and complexed with Poly-L-lysine

    Directory of Open Access Journals (Sweden)

    Tatiana Taís Sibov

    2012-06-01

    Full Text Available Objective: The objective of this study was to evaluate the effect of thelabeling of umbilical cord vein derived mesenchymal stem cells withsuperparamagnetic iron oxide nanoparticles coated with dextran andcomplexed to a non-viral transfector agent transfector poly-L-lysine.Methods: The labeling of mesenchymal stem cells was performedusing the superparamagnetic iron oxide nanoparticles/dextrancomplexed and not complexed to poly-L-lysine. Superparamagneticiron oxide nanoparticles/dextran was incubated with poly-L-lysine inan ultrasonic sonicator at 37°C for 10 minutes for complex formationsuperparamagnetic iron oxide nanoparticles/dextran/poly-L-lysineby electrostatic interaction. Then, the mesenchymal stem cellswere incubated overnight with the complex superparamagnetic ironoxide nanoparticles/dextran/poly-L-lysine and superparamagneticiron oxide nanoparticles/dextran. After the incubation period themesenchymal stem cells were evaluated by internalization of thecomplex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine and superparamagnetic iron oxide nanoparticles/dextran byPrussian Blue stain. Cellular viability of labeled mesenchymal stemcells was evaluated by cellular proliferation assay using 5,6-carboxyfluorescein-succinimidyl ester method and apoptosis detectionby Annexin V- Propidium Iodide assay. Results: mesenchymalstem cells labeled with superparamagnetic iron oxide nanoparticles/dextran without poly-L-lysine not internalized efficiently thesuperparamagnetic iron oxide nanoparticles due to its low presencedetected within cells. Mesenchymal stem cells labeled with thecomplex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine efficiently internalized the superparamagnetic iron oxidenanoparticles due to greater presence in the cells interior. The viabilityand apoptosis assays demonstrated that the mesenchymal stemcells labeled and not labeled respectively with the superparamagneticiron oxide nanoparticles

  5. Hyperemic peripheral red marrow in a patient with sickle cell anemia demonstrated on Tc-99m labeled red blood cell venography

    Energy Technology Data Exchange (ETDEWEB)

    Heiden, R.A.; Locko, R.C.; Stent, T.R. (Columbia Univ. College of Physicians and Surgeons, New York, NY (USA))

    1991-03-01

    A 25-year-old gravid woman, homozygous for sickle cell anemia, with a history of recent deep venous thrombosis, was examined using Tc-99m labeled red blood cell venography for recurrent thrombosis. Although negative for thrombus, the study presented an unusual incidental finding: the patient's peripheral bone marrow was hyperemic in a distribution consistent with peripheral red bone marrow expansion. Such a pattern has not been documented before using this technique. This report supports other literature that has demonstrated hyperemia of peripheral red bone marrow in other hemolytic anemias. This finding may ultimately define an additional role of scintigraphy in assessing the pathophysiologic status of the sickle cell patient.

  6. Truth in research labelling.

    Science.gov (United States)

    Noble, John H

    2017-01-01

    This report describes the background and context of a currently circulating petition to the US Congress that seeks amendment of Section 801 of the Public Health Services Act (42 U.S.C. 282) to close a loophole in existing law which makes possible post hoc adjustment of randomised controlled trial (RCT) results reported to the Food and Drug Administration that differ from those reported to ClinicalTrials.gov and to medical journals. The report describes the petition's rationale, underlying assumptions, and support for its proposed remedy in deontological, consequentialist, and casuist philosophical ethics theories. It addresses the several reservations of the World Association of Medical Editors (WAME) with citations of evidence for the petition's assertions. The report suggests that some medical journals are not unknowing victims but rather complicit enablers of the post hoc adjusted RCT results that they publish. Its closing remarks dwell on the negative impact that embrace of a neoliberal, anti-regulatory philosophy of government will likely have on any regulatory reform to promote the integrity of biomedical science and the future of evidence-based medicine.

  7. Labelling, quality control and clinical evaluation of monoclonal antibodies for scintigraphy. Final report of a co-ordinated research programme 1991-1996

    International Nuclear Information System (INIS)

    1998-03-01

    Realizing the potential of labelled monoclonal antibodies for in vivo diagnosis and therapy and the interest in many developing Member States for acquiring expertise in this field the IAEA initiated a co-ordinated research programme in 1991 focusing on 99 Tc m labelling of antibodies, their quality control and scintigraphic evaluation. Twelve laboratories from Asia, Latin America, Europe and North America participated in this programme which was concluded in 1996. During this programme the participants investigated the 99 Tc m labelling of a murine anti-CEA antibody using the method of chelating 99 Tc m with the free sulfhydryl groups generated by reaction with reducing agents such as mercapto ethanol. During the later part of the programme this method was also extended to 99 Tc m labelling of hIgG. All the participating laboratories could gain valuable experience in 99 Tc m antibody labelling techniques and formulation of kits. Many of them have been use in patients by collaborating nuclear medicine specialists with satisfactory results. This report is a compilation of the detailed results obtained by the participating laboratories and includes a summary and assessment of the achievement of the CRP

  8. Clinical utility of labeled cells for detection of allograft rejection and myocardial infarction

    International Nuclear Information System (INIS)

    Fawwaz, R.A.

    1984-01-01

    The choice of a specific radiolabeled blood component for use in detection of allograft rejection depends on several factors including the immunosuppressive agents used, the type of organ allografted, and particularly the length of time the allograft resides in the host and the duration of rejection. To date, only the use of 111In-labeled platelets in renal allograft recipients immunosuppressed with azathioprine and corticosteroids has shown clinical promise in the detection of early allograft rejection. Radiolabeled blood components are unlikely to play a significant role in detection of myocardial infarction. The use of these agents for monitoring therapeutic interventions or as indicators of prognosis in patients with myocardial infarction continues to be investigated

  9. Label-free capture of breast cancer cells spiked in buffy coats using carbon nanotube antibody micro-arrays

    Science.gov (United States)

    Khosravi, Farhad; Trainor, Patrick; Rai, Shesh N.; Kloecker, Goetz; Wickstrom, Eric; Panchapakesan, Balaji

    2016-04-01

    We demonstrate the rapid and label-free capture of breast cancer cells spiked in buffy coats using nanotube-antibody micro-arrays. Single wall carbon nanotube arrays were manufactured using photo-lithography, metal deposition, and etching techniques. Anti-epithelial cell adhesion molecule (EpCAM) antibodies were functionalized to the surface of the nanotube devices using 1-pyrene-butanoic acid succinimidyl ester functionalization method. Following functionalization, plain buffy coat and MCF7 cell spiked buffy coats were adsorbed on to the nanotube device and electrical signatures were recorded for differences in interaction between samples. A statistical classifier for the ‘liquid biopsy’ was developed to create a predictive model based on dynamic time warping to classify device electrical signals that corresponded to plain (control) or spiked buffy coats (case). In training test, the device electrical signals originating from buffy versus spiked buffy samples were classified with ˜100% sensitivity, ˜91% specificity and ˜96% accuracy. In the blinded test, the signals were classified with ˜91% sensitivity, ˜82% specificity and ˜86% accuracy. A heatmap was generated to visually capture the relationship between electrical signatures and the sample condition. Confocal microscopic analysis of devices that were classified as spiked buffy coats based on their electrical signatures confirmed the presence of cancer cells, their attachment to the device and overexpression of EpCAM receptors. The cell numbers were counted to be ˜1-17 cells per 5 μl per device suggesting single cell sensitivity in spiked buffy coats that is scalable to higher volumes using the micro-arrays.

  10. In Vivo Magnetic Resonance Imaging and Optical Imaging Comparison of Viable and Nonviable Mesenchymal Stem Cells with a Bifunctional Label

    Directory of Open Access Journals (Sweden)

    Elizabeth Jane Sutton

    2010-09-01

    Full Text Available The purpose of this study was to compare viable and nonviable bilabeled mesenchymal stem cells (MSCs in arthritic joints with magnetic resonance imaging (MRI and optical imaging (OI. MSCs were labeled with ferucarbotran and DiD. MRI and OI of bilabeled cells were compared with controls. Six rats with arthritis received intra-articular injections of bilabeled viable MSCs into the right knee and nonviable MSCs into the left knee. Animals underwent MRI and OI preinjection and at 4, 24, 48, and 72 hours postinjection. The results were analyzed with a mixed random effects model and Fisher probability. Bilabeled MSCs showed increased MRI and OI signals compared to unlabeled controls (p < .0001. After intra-articular injection, bilabeled MSCs caused significant T2 and T2* effect on MRI and fluorescence on OI up to 72 hours postinjection (p < .05. There was no significant difference between viable and nonviable MSC signal in the knee joints; however, some of the viable cells migrated to an adjacent inflamed ankle joint (p < .05. Immunohistochemistry confirmed viable MSCs in right knee and ankle joints and nonviable MSCs in the left knee. Viable and nonviable cells could not be differentiated with MRI or OI signal intensity but were differentiated based on their ability to migrate in vivo.

  11. Effect of epidermal growth factor on the labeling of the various RNA species and of nuclear proteins in primary rat astroglial cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Avola, R.; Condorelli, D.F.; Turpeenoja, L.; Ingrao, F.; Reale, S.; Ragusa, N.; Giuffrida Stella, A.M.

    1988-05-01

    This study investigated the effects of epidermal growth factor (EGF) on the labeling of various RNA species and of nuclear proteins in primary rat astroglial cell cultures. After 12 hours of EGF treatment in serum-free medium or chemically defined medium, significant increase in RNA labeling, and also in acid-soluble radioactivity and RNA content, was observed. The ratio RNA/DNA was significantly higher in EGF-treated cultures compared with controls. Ribosomal RNAs (28S and 18S), polyadenylated, and nonpolyadenylated RNAs showed a higher specific radioactivity in EGF-treated cultures. Among the nuclear proteins, the labeling of basic proteins was enhanced by EGF treatment, whereas that of total nuclear acidic protein (NHPs) was less modified, except for some NHPs separated by gel electrophoresis with a molecular weight (MW) approximately 95-83 and 44 kd, which were significantly more labeled in EGF-treated cultures.

  12. Ethical issues in stem cell research and therapy.

    Science.gov (United States)

    King, Nancy Mp; Perrin, Jacob

    2014-07-07

    Rapid progress in biotechnology has introduced a host of pressing ethical and policy issues pertaining to stem cell research. In this review, we provide an overview of the most significant issues with which the stem cell research community should be familiar. We draw on a sample of the bioethics and scientific literatures to address issues that are specific to stem cell research and therapy, as well as issues that are important for stem cell research and therapy but also for translational research in related fields, and issues that apply to all clinical research and therapy. Although debate about the moral status of the embryo in human embryonic stem cell research continues to have relevance, the discovery of other highly multipotent stem cell types and alternative methods of isolating and creating highly multipotent stem cells has raised new questions and concerns. Induced pluripotent stem cells hold great promise, but care is needed to ensure their safety in translational clinical trials, despite the temptation to move quickly from bench to bedside. A variety of highly multipotent stem cells - such as mesenchymal stem/stromal cells and stem cells derived from amniotic fluid, umbilical cord blood, adipose tissue, or urine - present the opportunity for widespread biobanking and increased access. With these increased opportunities, however, come pressing policy issues of consent, control, and justice. The imperatives to minimize risks of harm, obtain informed consent, reduce the likelihood of the therapeutic misconception, and facilitate sound translation from bench to bedside are not unique to stem cell research; their application to stem cell research and therapy nonetheless merits particular attention. Because stem cell research is both scientifically promising and ethically challenging, both the application of existing ethical frameworks and careful consideration of new ethical implications are necessary as this broad and diverse field moves forward.

  13. In vivo measurement of cell proliferation in canine brain tumor using C-11-labeled FMAU and PET

    International Nuclear Information System (INIS)

    Conti, Peter S.; Bading, James R.; Mouton, Peter P.; Links, Jonathan M.; Alauddin, Mian M.; Fissekis, John D.; Ravert, Hayden T.; Hilton, John; Wong, Dean F.; Anderson, James H.

    2008-01-01

    Introduction: Noncatabolized thymidine analogs are being developed for use in imaging DNA synthesis. We sought to relate a labeling index measured by immunohistochemical staining bromodeoxyuridine (BUdR) technique to the uptake of 11 C 2'-fluoro-5-methyl-1-β-D-arabinofuranosyluracil (FMAU) measured with positron emission tomography (PET) in a brain tumor model. Methods: Adult beagles (n=8) with implanted brain tumors received [ 11 C]FMAU and dynamic imaging with arterial sampling. Six dogs were then infused with BUdR (200 mg/m 2 ) and sacrificed. Tumor time-activity curves (TACs) obtained from computed-tomography-defined regions of interest were corrected for partial volume effects and crosstalk from brain tissue. Tissue was analyzed for the percentage of tumor volume occupied by viable cells and by viable cells in S-phase as identified by BUdR staining. PET/[ 11 C]FMAU and BUdR were compared by linear regression analysis and analysis of variance, as well as by a nonparametric rank correlation test. Results: Tumor standardized uptake values (SUVs) and tumor-to-contralateral-brain uptake ratios at 50 min were 1.6±0.4 and 5.5±1.2 (n=8; mean±S.E.M.), respectively. No 11 C-labeled metabolites were observed in the blood through 60 min. Tumor TACs were well described with a three-compartment/four-parameter model (k 4 =0) and by Patlak analysis. Parametric statistical analysis showed that FMAU clearance from plasma into tumor Compartment 3 (K FMAU ) was significantly correlated with S-phase percent volume (P=.03), while tumor SUV was significantly correlated with both S-phase percent volume and cell percent volume (P=.02 and .03, respectively). Patlak slope, K FMAU and tumor SUV were equivalent with regard to rank correlation analysis, which showed that tumor uptake and trapping of FMAU were correlated with the volume density of dividing cells (P=.0003) rather than nondividing cells (P=.3). Conclusions: Trapping of [ 11 C]FMAU correlated with tumor growth rate, as

  14. Influence of biflorin on the labelling of red blood cells, plasma protein, cell protein, and lymphocytes with technetium-99m: in vitro study

    Directory of Open Access Journals (Sweden)

    Thiago M. Aquino

    Full Text Available In this paper we report the results of an in vitro study involving the influence of biflorin (an o-quinone isolated from Capraria biflora L. that has potent antimicrobial activity on the Tc-99m labeling of red blood cells, plasma protein, cells protein, and lymphocytes. Blood was withdrawn from Wistar rats and incubated with various concentrations of biflorin, and solutions of stannous chloride and Tc-99m were added. Plasma (P and red blood cells (RBC were isolated, precipitated, and centrifuged, and soluble (SF and insoluble (IF fractions were isolated. The results show that the highest concentration (100% of biflorin is able to reduce the uptake of Tc-99m (%ATI on RBC and the fixation on IF-P. To study the influence of biflorin on 99mTc lymphocyte labeling, human blood was submitted to a technique with Ficoll-Hypac and centrifuged, and white cells were isolated. Lymphocytes (2.5 mL; 1.0 x 10(6 cells/mL were obtained and a 0.2 mL solution was incubated with biflorin (0.1 mL. Solutions of stannous chloride and 99mTc were added. Lymphocytes were separated and the %ATI bound in these cells was evaluated. A reduction in %ATI (from 97.85 ± 0.99 to 88.86 ± 5 was observed for RBC and for IF-P (73.24 ± 5.51 to 20.72 ± 6.95. In this case the results showed no decrease in %ATI for the lymphocytes with biflorin.

  15. Monitoring of a new approach of immunotherapy with allogenic 111In-labelled NK cells in patients with renal cell carcinoma

    International Nuclear Information System (INIS)

    Meller, Birgit; Lauer, Isabel; Schelper, Lutz F.; Hof, Katharina von; Richter, Eckart; Baehre, Manfred; Frohn, Christoph; Brand, Joerg-Matthias; Kirchner, Holger

    2004-01-01

    The transfusion of allogenic, in vitro expanded natural killer cells (NKC) is a novel therapy option in oncology. To date, however, the biodistribution and kinetics of allogenic NKC have not been investigated. Therefore, in this study three patients with renal cell carcinoma received 3-7 x 10 8 NKC labelled with indium-111 oxine with a tenfold excess of unlabelled cells during NKC therapy. Whole-body scintigrams were obtained (0.5-144 h) in the anterior and posterior views. Scintigrams were analysed using a region of interest technique, and single-photon emission tomography (SPET) studies of the abdomen were performed. Results were compared to those obtained with polymerase chain reaction (PCR) of the peripheral blood (determination of foreign DNA, nested PCR, limit of detection 0.01%). Shortly after transfusion of NKC, more than 50% of the activity was accumulated in the lungs. We observed redistribution effects from lungs to liver, spleen and bone marrow. No significant loss of activity could be detected. In two of four large metastases, tracer accumulation could be proven by SPET. As confirmed by scintigrams and PCR, the fraction of circulating transfused cells was low at all times. Long-term activity retention might be caused either by survival of the allogenic cells, as confirmed by PCR (up to 3 days p.i.), or by phagocytosis of labelled cellular fragments. However, PCR data and uptake in metastases indicated long survival of a portion of allogenic NKC. Such long survival and low retention of the cells in the lung are requirements for an effective immunotherapeutic approach. (orig.)

  16. Monitoring of a new approach of immunotherapy with allogenic {sup 111}In-labelled NK cells in patients with renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Meller, Birgit; Lauer, Isabel; Schelper, Lutz F.; Hof, Katharina von; Richter, Eckart; Baehre, Manfred [Clinic of Radiotherapy and Nuclear Medicine, University of Luebeck, Ratzeburger Allee 160, 23538, Luebeck (Germany); Frohn, Christoph; Brand, Joerg-Matthias; Kirchner, Holger [Institute of Immunology and Transfusion Medicine, University of Luebeck, Ratzeburger Allee 160, 23538, Luebeck (Germany)

    2004-03-01

    The transfusion of allogenic, in vitro expanded natural killer cells (NKC) is a novel therapy option in oncology. To date, however, the biodistribution and kinetics of allogenic NKC have not been investigated. Therefore, in this study three patients with renal cell carcinoma received 3-7 x 10{sup 8} NKC labelled with indium-111 oxine with a tenfold excess of unlabelled cells during NKC therapy. Whole-body scintigrams were obtained (0.5-144 h) in the anterior and posterior views. Scintigrams were analysed using a region of interest technique, and single-photon emission tomography (SPET) studies of the abdomen were performed. Results were compared to those obtained with polymerase chain reaction (PCR) of the peripheral blood (determination of foreign DNA, nested PCR, limit of detection 0.01%). Shortly after transfusion of NKC, more than 50% of the activity was accumulated in the lungs. We observed redistribution effects from lungs to liver, spleen and bone marrow. No significant loss of activity could be detected. In two of four large metastases, tracer accumulation could be proven by SPET. As confirmed by scintigrams and PCR, the fraction of circulating transfused cells was low at all times. Long-term activity retention might be caused either by survival of the allogenic cells, as confirmed by PCR (up to 3 days p.i.), or by phagocytosis of labelled cellular fragments. However, PCR data and uptake in metastases indicated long survival of a portion of allogenic NKC. Such long survival and low retention of the cells in the lung are requirements for an effective immunotherapeutic approach. (orig.)

  17. Fluorescent labelling of intestinal epithelial cells reveals independent long-lived intestinal stem cells in a crypt

    International Nuclear Information System (INIS)

    Horita, Nobukatsu; Tsuchiya, Kiichiro; Hayashi, Ryohei; Fukushima, Keita; Hibiya, Shuji; Fukuda, Masayoshi; Kano, Yoshihito; Mizutani, Tomohiro; Nemoto, Yasuhiro; Yui, Shiro; Okamoto, Ryuichi; Nakamura, Tetsuya; Watanabe, Mamoru

    2014-01-01

    Highlights: • Lentivirus mixed with Matrigel enables direct infection of intestinal organoids. • Our original approach allows the marking of a single stem cell in a crypt. • Time-lapse imaging shows the dynamics of a single stem cell. • Our lentivirus transgene system demonstrates plural long-lived stem cells in a crypt. - Abstract: Background and aims: The dynamics of intestinal stem cells are crucial for regulation of intestinal function and maintenance. Although crypt stem cells have been identified in the intestine by genetic marking methods, identification of plural crypt stem cells has not yet been achieved as they are visualised in the same colour. Methods: Intestinal organoids were transferred into Matrigel® mixed with lentivirus encoding mCherry. The dynamics of mCherry-positive cells was analysed using time-lapse imaging, and the localisation of mCherry-positive cells was analysed using 3D immunofluorescence. Results: We established an original method for the introduction of a transgene into an organoid generated from mouse small intestine that resulted in continuous fluorescence of the mCherry protein in a portion of organoid cells. Three-dimensional analysis using confocal microscopy showed a single mCherry-positive cell in an organoid crypt that had been cultured for >1 year, which suggested the presence of long-lived mCherry-positive and -negative stem cells in the same crypt. Moreover, a single mCherry-positive stem cell in a crypt gave rise to both crypt base columnar cells and transit amplifying cells. Each mCherry-positive and -negative cell contributed to the generation of organoids. Conclusions: The use of our original lentiviral transgene system to mark individual organoid crypt stem cells showed that long-lived plural crypt stem cells might independently serve as intestinal epithelial cells, resulting in the formation of a completely functional villus

  18. Fluorescent labelling of intestinal epithelial cells reveals independent long-lived intestinal stem cells in a crypt

    Energy Technology Data Exchange (ETDEWEB)

    Horita, Nobukatsu [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (Japan); Tsuchiya, Kiichiro, E-mail: kii.gast@tmd.ac.jp [Department of Advanced Therapeutics for Gastrointestinal Diseases, Graduate School, Tokyo Medical and Dental University (Japan); Hayashi, Ryohei [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (Japan); Department of Gastroenterology and Metabolism, Hiroshima University (Japan); Fukushima, Keita; Hibiya, Shuji; Fukuda, Masayoshi; Kano, Yoshihito; Mizutani, Tomohiro; Nemoto, Yasuhiro; Yui, Shiro [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (Japan); Okamoto, Ryuichi; Nakamura, Tetsuya [Department of Advanced Therapeutics for Gastrointestinal Diseases, Graduate School, Tokyo Medical and Dental University (Japan); Watanabe, Mamoru [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (Japan)

    2014-11-28

    Highlights: • Lentivirus mixed with Matrigel enables direct infection of intestinal organoids. • Our original approach allows the marking of a single stem cell in a crypt. • Time-lapse imaging shows the dynamics of a single stem cell. • Our lentivirus transgene system demonstrates plural long-lived stem cells in a crypt. - Abstract: Background and aims: The dynamics of intestinal stem cells are crucial for regulation of intestinal function and maintenance. Although crypt stem cells have been identified in the intestine by genetic marking methods, identification of plural crypt stem cells has not yet been achieved as they are visualised in the same colour. Methods: Intestinal organoids were transferred into Matrigel® mixed with lentivirus encoding mCherry. The dynamics of mCherry-positive cells was analysed using time-lapse imaging, and the localisation of mCherry-positive cells was analysed using 3D immunofluorescence. Results: We established an original method for the introduction of a transgene into an organoid generated from mouse small intestine that resulted in continuous fluorescence of the mCherry protein in a portion of organoid cells. Three-dimensional analysis using confocal microscopy showed a single mCherry-positive cell in an organoid crypt that had been cultured for >1 year, which suggested the presence of long-lived mCherry-positive and -negative stem cells in the same crypt. Moreover, a single mCherry-positive stem cell in a crypt gave rise to both crypt base columnar cells and transit amplifying cells. Each mCherry-positive and -negative cell contributed to the generation of organoids. Conclusions: The use of our original lentiviral transgene system to mark individual organoid crypt stem cells showed that long-lived plural crypt stem cells might independently serve as intestinal epithelial cells, resulting in the formation of a completely functional villus.

  19. Stem Cell Research: Applications In Haematological Conditions ...

    African Journals Online (AJOL)

    Haematopoietic Stem Cell Trans-plantation is a medical procedure in the field of haematology and oncology that involves transplantation of haematopoietic stem cells (HSC). It is most often performed for people with diseases of the blood or bone narrow or certain types of cancers.

  20. Interobserver concordance of Ki67 labeling index in breast cancer: Japan Breast Cancer Research Group Ki67 ring study.

    Science.gov (United States)

    Mikami, Yoshiki; Ueno, Takayuki; Yoshimura, Kenichi; Tsuda, Hitoshi; Kurosumi, Masafumi; Masuda, Shinobu; Horii, Rie; Toi, Masakazu; Sasano, Hironobu

    2013-11-01

    The standardized assessment of Ki67 labeling index (LI) is of clinical importance to identify patients with primary breast cancer who could benefit from chemotherapy. In this study, we evaluated the interobserver concordance of Ki67 LI assessment. Six surgical pathologists participated and all the slides were prepared from archival breast cancer tissues fixed in 10% buffered formalin for 24 h and stained with MIB-1. Three independent studies were conducted. In the first study, 30 stained slides were assessed using two different methods: the scoring system, with a positive rate scored from 1 (0-9%) to 10 (90-100%) by visual estimate; and the counting method, with approximately 1000 cells counted in hot spots. In the second study, 20 tumors with Ki67 LI 5-25% were assessed, and in the third study, 15 printed photographs of stained slides were assessed to avoid variations by selecting different fields. In study 1, the counting system (intraclass correlation coefficient [ICC], 0.66 [95% confidence interval 0.52-0.78]) demonstrated a better correlation than the scoring system (ICC, 0.57 [0.42-0.72]). In study 2, the assessment for Ki67 LI of 5-25% demonstrated a correlation (ICC, 0.68 [0.50-0.81]) similar to that of study 1 (unrestricted range of Ki67 LI). In study 3, the assessment of Ki67 LI by counting yielded a good concordance (ICC, 0.94 [0.88-0.97]). In conclusion, there was better concordance with the counting system, and concordance was high when the assessed field was predetermined, indicating that the selection of the evaluation area is critical for obtaining reproducible Ki67 LI in breast cancer. © 2013 Japanese Cancer Association.

  1. Monitoring virus entry into living cells using DiD-labeled dengue virus particles

    NARCIS (Netherlands)

    Ayala Nunez, Vanesa; Wilschut, Jan; Smit, Jolanda M.

    2011-01-01

    A variety of approaches can be applied to investigate the multiple steps and interactions that occur during virus entry into the host cell. Single-virus tracking is a powerful real-time imaging technique that offers the possibility to monitor virus-cell binding, internalization, intracellular

  2. Temperature-induced labelling of Fluo-3 AM selectively yields brighter nucleus in adherent cells.

    Science.gov (United States)

    Meng, Guixian; Pan, Leiting; Li, Cunbo; Hu, Fen; Shi, Xuechen; Lee, Imshik; Drevenšek-Olenik, Irena; Zhang, Xinzheng; Xu, Jingjun

    2014-01-17

    Fluo-3 is widely used to study cell calcium. Two traditional approaches: (1) direct injection and (2) Fluo-3 acetoxymethyl ester (AM) loading, often bring conflicting results in cytoplasmic calcium ([Ca(2+)]c) and nuclear calcium ([Ca(2+)]n) imaging. AM loading usually yields a darker nucleus than in cytoplasm, while direct injection always induces a brighter nucleus which is more responsive to [Ca(2+)]n detection. In this work, we detailedly investigated the effects of loading and de-esterification temperatures on the fluorescence intensity of Fluo-3 in response to [Ca(2+)]n and [Ca(2+)]c in adherent cells, including osteoblast, HeLa and BV2 cells. Interestingly, it showed that fluorescence intensity of nucleus in osteoblast cells was about two times larger than that of cytoplasm when cells were loaded with Fluo-3 AM at 4 °C and allowed a subsequent step for de-esterification at 20 °C. Brighter nuclei were also acquired in HeLa and BV2 cells using the same experimental condition. Furthermore, loading time and adhesion quality of cells had effect on fluorescence intensity. Taken together, cold loading and room temperature de-esterification treatment of Fluo-3 AM selectively yielded brighter nucleus in adherent cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Labelling of Cells Engaged in DNA Synthesis: Autoradiography and BrdU Staining

    DEFF Research Database (Denmark)

    Madsen, Peder Søndergaard

    2010-01-01

    The cell cycle is divided in four phases: G1 phase, S phase (DNA-synthesis), G2 phase (together termed interphase) and M phase (mitosis). Cells that have ceased proliferation enter a state of quiescence called G0. M phase is itself composed of two tightly coupled processes: mitosis, in which...

  4. Polymer photonic crystal dye lasers as label free evanescent cell sensors

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Lopacinska, Joanna M.; Jakobsen, Mogens Havsteen

    2009-01-01

    the sensitivity of photonic crystal band-edge lasers to partial coverage with HeLa cells. The lasers are chemically activated with a flexible UV activated anthraquinone based linker molecule, which enables selective binding of cells and molecules. When measuring in Phosphate Buffered Saline (PBS), which has...

  5. The radioactive labeling of monocytes

    International Nuclear Information System (INIS)

    Ensing, G.J.

    1985-01-01

    With the aim of studying a possible relationship between circulating monocytes and Sternberg-Reed cells investigations were started on the specific labeling of monocytes. In this thesis the literature on the pertinent data has been reviewed and a series of experiments on the monocyte labeling procedure has been described. The principles of cell labeling with radioactive compounds were discussed. 1. Total separation of the particular cell population to be labeled and subsequent labeling with a non-specific radiopharmaceutical. 2. Specific cell labeling in a mixture of cell types based on a well defined affinity of the cell under study for the radiopharmaceutical used. Next the radionuclides that can be used for cell labeling purposes were discussed with special attention for 111 In and its chelates. The principles of radiodosimetry were also discussed shortly. This section was focussed on the radiation dose the labeled cells receive because of the intracellular localized radioactivity. The radiation burden is high in comparison to amounts of radiation known to affect cell viability. A newly developed method for labeling monocytes specifically by phagocytosis of 111 In-Fe-colloid without apparent loss of cells was described in detail. (Auth.)

  6. Radiation exposure to surgical staff during hyperthermic isolated limb perfusion with 99m Technetium labeled red blood cells

    DEFF Research Database (Denmark)

    Kristoffersen, Ulrik Sloth; Straalman, Kristina; Schmidt, Grethe

    2009-01-01

    HILP with (99m)Technetium labeled red blood cells. MATERIALS AND METHODS: Thirteen patients had HILP performed in 11 lower limbs and two upper limbs at our inpatient clinic between October 2006 and February 2007. The surgeon and nurse had thermoluminescence dosimetry (TLD) chips attached to the finger...... to the limb circuit. This has made HILP safe for the patient. However, the radiation exposure to the surgical staff has never been measured and could be a limiting factor for the use of HILP. The purpose of the present study was to measure and evaluate the radiation exposure to the surgical staff performing...... pulp and to the ring area of the left fourth finger, as well as an electronic dosimeter attached to the anterior lining of the trousers. The anesthesiologist and perfusion technologist also carried electronic dosimeters. RESULTS: The surgeon had the highest radioactive exposure with an average dose per...

  7. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Applied to Quantitative Proteomics of Bacillus subtilis

    DEFF Research Database (Denmark)

    Soufi, Boumediene; Kumar, C.; Gnad, F.

    2010-01-01

    We applied stable isotope labeling by amino acids in cell culture (SILAC) to large-scale quantitative proteomics analyses of the model bacterium Bacillus subtilis in two physiological conditions: growth on succinate and growth under phosphate starvation. Using a B. subtilis strain auxotrophic...... of the most comprehensive quantitative proteomics studies in bacteria, covering more than 75% of the B. subtilis genes expressed in the log phase of growth. Furthermore, we detect and quantify dynamics of 35 Ser/Thr/Tyr phosphorylation sites under growth on succinate, and 10 phosphorylation sites under...... for lysine and high accuracy mass spectrometry for downstream analysis, we identified and quantified changes in the levels of more than 1500 proteins in each of the tested conditions with high biological and technical reproducibility. With a total of 1928 identified proteins, this study presents one...

  8. Food Labels

    Science.gov (United States)

    ... on their food labels. When a food says "light" ("lite") or "low fat" on the label, it ... on this topic for: Teens Nutrition & Fitness Center Smart Supermarket Shopping Figuring Out Fat and Calories How ...

  9. Magnetic Particle Spectroscopy Reveals Dynamic Changes in the Magnetic Behavior of Very Small Superparamagnetic Iron Oxide Nanoparticles During Cellular Uptake and Enables Determination of Cell-Labeling Efficacy.

    Science.gov (United States)

    Poller, Wolfram C; Löwa, Norbert; Wiekhorst, Frank; Taupitz, Matthias; Wagner, Susanne; Möller, Konstantin; Baumann, Gert; Stangl, Verena; Trahms, Lutz; Ludwig, Antje

    2016-02-01

    In vivo tracking of nanoparticle-labeled cells by magnetic resonance imaging (MRI) crucially depends on accurate determination of cell-labeling efficacy prior to transplantation. Here, we analyzed the feasibility and accuracy of magnetic particle spectroscopy (MPS) for estimation of cell-labeling efficacy in living THP-1 cells incubated with very small superparamagnetic iron oxide nanoparticles (VSOP). Cell viability and proliferation capacity were not affected by the MPS measurement procedure. In VSOP samples without cell contact, MPS enabled highly accurate quantification. In contrast, MPS constantly overestimated the amount of cell associated and internalized VSOP. Analyses of the MPS spectrum shape expressed as harmonic ratio A₅/A₃ revealed distinct changes in the magnetic behavior of VSOP in response to cellular uptake. These changes were proportional to the deviation between MPS and actual iron amount, therefore allowing for adjusted iron quantification. Transmission electron microscopy provided visual evidence that changes in the magnetic properties correlated with cell surface interaction of VSOP as well as with alterations of particle structure and arrangement during the phagocytic process. Altogether, A₅/A₃-adjusted MPS enables highly accurate, cell-preserving VSOP quantification and furthermore provides information on the magnetic characteristics of internalized VSOP.

  10. Influence of iron deficiency in the radiopharmaceutical behavior of red blood cells labeled with 99mTc(99mTC-RBC)

    International Nuclear Information System (INIS)

    Calmanovici, G.; Salgueiro, M.J.; Pernas, L.; Collia, N.; Leonardi, N.; Zubillaga, M.

    2005-01-01

    Full text: Red blood cells (RBCs) labeled with 99m Tc are commonly used in the evaluation of cardiac function, gastrointestinal tract bleeding, red blood cell volume or splenic sequestration. Generally stannous ion is used as reducing agent. A proposed mechanism is that once the stannous ion (Sn) and the pertechnetate ( 99m Tc) reach the interior of the RBC, the radionuclide is mainly house in the β-chain of hemoglobin. The aim of this study was to determine if hemoglobin content reduction, an indicator of iron deficiency anemia, could affect the efficiency of RBC labeling and the biological distribution of this radiopharmaceutical. We studied 30 rats fed for 3 weeks after weaning with diets with iron contents of 6.5 ppm (group A), 18 ppm (group B) and 100 ppm (control). For all groups, the labeling yields were always higher than 97%; the percentage of radioactivity was mostly founded in blood with almost negligible radioactivity the rest of the studied organs. We can conclude that the decrease in hemoglobin content, an indicator of iron deficiency anemia, does not interfere neither in the labeling nor in the biodistribution of red blood cells labeled with 99m Tc. (author)

  11. Simple synthesis of carbon-11 labeled styryl dyes as new potential PET RNA-specific, living cell imaging probes.

    Science.gov (United States)

    Wang, Min; Gao, Mingzhang; Miller, Kathy D; Sledge, George W; Hutchins, Gary D; Zheng, Qi-Huang

    2009-05-01

    A new type of styryl dyes have been developed as RNA-specific, live cell imaging probes for fluorescent microscopy technology to study nuclear structure and function. This study was designed to develop carbon-11 labeled styryl dyes as new probes for biomedical imaging technique positron emission tomography (PET) imaging of RNA in living cells. Precursors (E)-2-(2-(1-(triisopropylsilyl)-1H-indol-3-yl)vinyl)quinoline (2), (E)-2-(2,4,6-trimethoxystyryl)quinoline (3) and (E)-4-(2-(6-methoxyquinolin-2-yl)vinyl)-N,N-diemthylaniline (4), and standards styryl dyes E36 (6), E144 (7) and F22 (9) were synthesized in multiple steps with moderate to high chemical yields. Precursor 2 was labeled by [(11)C]CH(3)OTf, trapped on a cation-exchange CM Sep-Pak cartridge following a quick deprotecting reaction by addition of (n-Bu)(4)NF in THF, and isolated by solid-phase extraction (SPE) purification to provide target tracer [(11)C]E36 ([(11)C]6) in 40-50% radiochemical yields, decay corrected to end of bombardment (EOB), based on [(11)C]CO(2). The target tracers [(11)C]E144 ([(11)C]7) and [(11)C]F22 ([(11)C]9) were prepared by N-[(11)C]methylation of the precursors 3 and 4, respectively, using [(11)C]CH(3)OTf and isolated by SPE method in 50-70% radiochemical yields at EOB. The specific activity of the target tracers [(11)C]6, [(11)C]7 and [(11)C]9 was in a range of 74-111GBq/mumol at the end of synthesis (EOS).

  12. Completion of proteomic data sets by Kd measurement using cell-free synthesis of site-specifically labeled proteins.

    Directory of Open Access Journals (Sweden)

    Paul Majkut

    Full Text Available The characterization of phosphotyrosine mediated protein-protein interactions is vital for the interpretation of downstream pathways of transmembrane signaling processes. Currently however, there is a gap between the initial identification and characterization of cellular binding events by proteomic methods and the in vitro generation of quantitative binding information in the form of equilibrium rate constants (Kd values. In this work we present a systematic, accelerated and simplified approach to fill this gap: using cell-free protein synthesis with site-specific labeling for pull-down and microscale thermophoresis (MST we were able to validate interactions and to establish a binding hierarchy based on Kd values as a completion of existing proteomic data sets. As a model system we analyzed SH2-mediated interactions of the human T-cell phosphoprotein ADAP. Putative SH2 domain-containing binding partners were synthesized from a cDNA library using Expression-PCR with site-specific biotinylation in order to analyze their interaction with fluorescently labeled and in vitro phosphorylated ADAP by pull-down. On the basis of the pull-down results, selected SH2's were subjected to MST to determine Kd values. In particular, we could identify an unexpectedly strong binding of ADAP to the previously found binding partner Rasa1 of about 100 nM, while no evidence of interaction was found for the also predicted SH2D1A. Moreover, Kd values between ADAP and its known binding partners SLP-76 and Fyn were determined. Next to expanding data on ADAP suggesting promising candidates for further analysis in vivo, this work marks the first Kd values for phosphotyrosine/SH2 interactions on a phosphoprotein level.

  13. FTA fuel cell bus program : research accomplishments through 2011.

    Science.gov (United States)

    2012-03-01

    Prepared by the Federal Transit Administration (FTA) Office of Research, Demonstration, and Innovation (TRI), this report summarizes the accomplishments of fuel-cell-transit-bus-related research and demonstrations projects supported by FTA through 20...

  14. Electrocatalysis research for fuel cells and hydrogen production

    CSIR Research Space (South Africa)

    Mathe, MK

    2012-01-01

    Full Text Available The CSIR undertakes research in the Electrocatalysis of fuel cells and for hydrogen production. The Hydrogen South Africa (HySA) strategy supports research on electrocatalysts due to their importance to the national beneficiation strategy. The work...

  15. [Stem cell research and science and technology policy in Japan].

    Science.gov (United States)

    Yashiro, Yoshimi

    2011-12-01

    In this paper I review the present condition of the regeneration medicine research using pluripotency and a somatic stem cell, and I describe the subject of the science and technology policy in Japan towards realization of regeneration medicine. The Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) supported research promotion by the prompt action in 2007 when establishment of the iPS cell was reported by Shinya Yamanaka. Although the hospitable support of the Japanese government to an iPS cell is continued still now, there are some problems in respect of the support to other stem cell researches, and industrialization of regeneration medicine. In order to win a place in highly competitive area of investigation, MEXT needs to change policy so that funds may be widely supplied also to stem cell researches other than iPS cell research.