A MODEL FOR POSTRADIATION STEM CELL KINETICS,
In polycythemic rats observed for 17 days postradiation (300 R, 250 KVP X-rays) it was noted that stem cell release diminished to 8 percent of the...correlate these findings with a kinetic model of erythropoiesis. It was suggested that the initial depression in stem cell release might be due to cellular
A flexible multipurpose model for normal and transient cell kinetics
International Nuclear Information System (INIS)
Toivonen, Harri.
1979-07-01
The internal hypothetical compartments within the different phases of the cell cycle have been adopted as the basis of models dealing with various specific problems in cell kinetics. This approach was found to be of more general validity, extending from expanding cell populations to complex maturation processes. The differential equations describing the system were solved with an effective, commercially available library subroutine. Special attention was devoted to analysis of transient and feedback kinetics of cell populations encountered in diverse environmental and exposure conditions, for instance in cases of wounding and radiation damage. (author)
Kinetic modeling of cell metabolism for microbial production.
Costa, Rafael S; Hartmann, Andras; Vinga, Susana
2016-02-10
Kinetic models of cellular metabolism are important tools for the rational design of metabolic engineering strategies and to explain properties of complex biological systems. The recent developments in high-throughput experimental data are leading to new computational approaches for building kinetic models of metabolism. Herein, we briefly survey the available databases, standards and software tools that can be applied for kinetic models of metabolism. In addition, we give an overview about recently developed ordinary differential equations (ODE)-based kinetic models of metabolism and some of the main applications of such models are illustrated in guiding metabolic engineering design. Finally, we review the kinetic modeling approaches of large-scale networks that are emerging, discussing their main advantages, challenges and limitations. Copyright © 2015 Elsevier B.V. All rights reserved.
Kinetic models of cell growth, substrate utilization and bio ...
African Journals Online (AJOL)
Bio-decolorization kinetic studies of distillery effluent in a batch culture were conducted using Aspergillus fumigatus. A simple model was proposed using the Logistic Equation for the growth, Leudeking-Piret kinetics for bio-decolorization, and also for substrate utilization. The proposed models appeared to provide a suitable ...
Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models
Directory of Open Access Journals (Sweden)
Joseph A. Wayman
2015-03-01
Full Text Available Cell-free systems offer many advantages for the study, manipulation and modeling of metabolism compared to in vivo processes. Many of the challenges confronting genome-scale kinetic modeling can potentially be overcome in a cell-free system. For example, there is no complex transcriptional regulation to consider, transient metabolic measurements are easier to obtain, and we no longer have to consider cell growth. Thus, cell-free operation holds several significant advantages for model development, identification and validation. Theoretically, genome-scale cell-free kinetic models may be possible for industrially important organisms, such as E. coli, if a simple, tractable framework for integrating allosteric regulation with enzyme kinetics can be formulated. Toward this unmet need, we present an effective biochemical network modeling framework for building dynamic cell-free metabolic models. The key innovation of our approach is the integration of simple effective rules encoding complex allosteric regulation with traditional kinetic pathway modeling. We tested our approach by modeling the time evolution of several hypothetical cell-free metabolic networks. We found that simple effective rules, when integrated with traditional enzyme kinetic expressions, captured complex allosteric patterns such as ultrasensitivity or non-competitive inhibition in the absence of mechanistic information. Second, when integrated into network models, these rules captured classic regulatory patterns such as product-induced feedback inhibition. Lastly, we showed, at least for the network architectures considered here, that we could simultaneously estimate kinetic parameters and allosteric connectivity from synthetic data starting from an unbiased collection of possible allosteric structures using particle swarm optimization. However, when starting with an initial population that was heavily enriched with incorrect structures, our particle swarm approach could converge
Cell kinetic modelling and the chemotherapy of cancer
Knolle, Helmut
1988-01-01
During the last 30 years, many chemical compounds that are active against tumors have been discovered or developed. At the same time, new methods of testing drugs for cancer therapy have evolved. nefore 1964, drug testing on animal tumors was directed to observation of the incfease in life span of the host after a single dose. A new approach, in which the effects of multiple doses on the proliferation kinetics of the tumor in vivo as well as of cell lines in vitro are investigated, has been outlined by Skipper and his co-workers in a series of papers beginning in 1964 (Skipper, Schabel and Wilcox, 1964 and 1965). They also investigated the influence of the time schedule in the treatment of experimental tumors. Since the publication of those studies, cell population kinetics cannot be left out of any discussion of the rational basis of chemotherapy. When clinical oncologists began to apply cell kinetic concepts in practice about 15 years ago, the theoretical basis was still very poor, in spite of Skipper's pro...
Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models
2015-03-03
based whole-cell models of E. coli [6]. Conversely , highly abstracted kinetic frameworks, such as the cybernetic framework, represented a paradigm shift...metabolic objective function has been the optimization of biomass formation [18], although other metabolic objectives have also been estimated [19...experimental data. Toward these questions, we explored five hypothetical cell-free networks. Each network shared the same enzymatic connectivity, but
MarCell trademark software for modeling bone marrow radiation cell kinetics
International Nuclear Information System (INIS)
Hasan, J.S.; Jones, T.D.; Morris, M.D.
1997-01-01
Differential equations were used to model cellular injury, repair, and compensatory proliferation in the irradiated bone marrow. Recently, that model was implemented as MarCell trademark, a user-friendly MS-DOS computer program that allows users from a variety of technical disciplines to evaluate complex radiation exposure. The software allows menu selections for different sources of ionizing radiation. Choices for cell lineages include progenitor, stroma, and malignant, and the available species include mouse, rat, dog, sheep, swine, burro, and man. An attractive feature is that any protracted irradiation can be compared with an equivalent prompt dose (EPD) in terms of cell kinetics for either the source used or for a reference such as 250 kVp x rays or 60 Co. EPD is used to mean a dose rate for which no meaningful biological recovery occurs during the period of irradiation. For human as species, output from MarCell trademark includes: risk of 30-day mortality; risk of whole-body cancer and leukemia based either on radiation-induced cytopenia or compensatory cell proliferation; cell survival and repopulation plots as functions of time or dose; and 4-week recovery following treatment. copyright 1997 American Association of Physicists in Medicine
Cell kinetics and therapeutic efficiency
International Nuclear Information System (INIS)
Andreeff, M.; Abenhardt, W.; Gruner, B.; Stoffner, D.; Mainz Univ.
1976-01-01
The study shows that cell kinetics effects correlate with the effects of cytostatic drugs in the tumour model investigated here. It should, however, be noted that even genetically related tumour cell types may react differently to the same cytostatic drug, and that the cell kinetics effects, due to the changes in the cell cycle, cannot be predicted but should be followed with a very fast method, e.g. sequential flan fluorescence cytophotometry, for optimal therapeutic results. (orig./GSE) [de
Personalized Whole-Cell Kinetic Models of Metabolism for Discovery in Genomics and Pharmacodynamics
DEFF Research Database (Denmark)
Bordbar, Aarash; McCloskey, Douglas; Zielinski, Daniel C
2015-01-01
Understanding individual variation is fundamental to personalized medicine. Yet interpreting complex phenotype data, such as multi-compartment metabolomic profiles, in the context of genotype data for an individual is complicated by interactions within and between cells and remains an unresolved...... challenge. Here, we constructed multi-omic, data-driven, personalized whole-cell kinetic models of erythrocyte metabolism for 24 healthy individuals based on fasting-state plasma and erythrocyte metabolomics and whole-genome genotyping. We show that personalized kinetic rate constants, rather than...
Kinetic models of cell growth, substrate utilization and bio ...
African Journals Online (AJOL)
STORAGESEVER
2008-05-02
May 2, 2008 ... Aspergillus fumigatus. A simple model was proposed using the Logistic Equation for the growth, ... costs and also involved in less sophisticated fermentation ... apply and they are accurately proved that the model can express ...
Preliminary model and validation of molten carbonate fuel cell kinetics under sulphur poisoning
Audasso, E.; Nam, S.; Arato, E.; Bosio, B.
2017-06-01
MCFC represents an effective technology to deal with CO2 capture and relative applications. If used for these purposes, due to the working conditions and the possible feeding, MCFC must cope with a different number of poisoning gases such as sulphur compounds. In literature, different works deal with the development of kinetic models to describe MCFC performance to help both industrial applications and laboratory simulations. However, in literature attempts to realize a proper model able to consider the effects of poisoning compounds are scarce. The first aim of the present work is to provide a semi-empirical kinetic formulation capable to take into account the effects that sulphur compounds (in particular SO2) have on the MCFC performance. The second aim is to provide a practical example of how to effectively include the poisoning effects in kinetic models to simulate fuel cells performances. To test the reliability of the proposed approach, the obtained formulation is implemented in the kinetic core of the SIMFC (SIMulation of Fuel Cells) code, an MCFC 3D model realized by the Process Engineering Research Team (PERT) of the University of Genova. Validation is performed through data collected at the Korea Institute of Science and Technology in Seoul.
International Nuclear Information System (INIS)
Vu, H.X.; Bezzerides, B.; DuBois, D.F.
1999-01-01
A fully kinetic, reduced-description particle-in-cell (RPIC) model is presented in which deviations from quasineutrality, electron and ion kinetic effects, and nonlinear interactions between low-frequency and high-frequency parametric instabilities are modeled correctly. The model is based on a reduced description where the electromagnetic field is represented by three separate temporal envelopes in order to model parametric instabilities with low-frequency and high-frequency daughter waves. Because temporal envelope approximations are invoked, the simulation can be performed on the electron time scale instead of the time scale of the light waves. The electrons and ions are represented by discrete finite-size particles, permitting electron and ion kinetic effects to be modeled properly. The Poisson equation is utilized to ensure that space-charge effects are included. The RPIC model is fully three dimensional and has been implemented in two dimensions on the Accelerated Strategic Computing Initiative (ASCI) parallel computer at Los Alamos National Laboratory, and the resulting simulation code has been named ASPEN. The authors believe this code is the first particle-in-cell code capable of simulating the interaction between low-frequency and high-frequency parametric instabilities in multiple dimensions. Test simulations of stimulated Raman scattering, stimulated Brillouin scattering, and Langmuir decay instability are presented
Modeling bubble dynamics and radical kinetics in ultrasound induced microalgal cell disruption.
Wang, Meng; Yuan, Wenqiao
2016-01-01
Microalgal cell disruption induced by acoustic cavitation was simulated through solving the bubble dynamics in an acoustical field and their radial kinetics (chemical kinetics of radical species) occurring in the bubble during its oscillation, as well as calculating the bubble wall pressure at the collapse point. Modeling results indicated that increasing ultrasonic intensity led to a substantial increase in the number of bubbles formed during acoustic cavitation, however, the pressure generated when the bubbles collapsed decreased. Therefore, cumulative collapse pressure (CCP) of bubbles was used to quantify acoustic disruption of a freshwater alga, Scenedesmus dimorphus, and a marine alga, Nannochloropsis oculata and compare with experimental results. The strong correlations between CCP and the intracellular lipid fluorescence density, chlorophyll-a fluorescence density, and cell particle/debris concentration were found, which suggests that the developed models could accurately predict acoustic cell disruption, and can be utilized in the scale up and optimization of the process. Copyright © 2015 Elsevier B.V. All rights reserved.
Electrochemical kinetic and mass transfer model for direct ethanol alkaline fuel cell (DEAFC)
Abdullah, S.; Kamarudin, S. K.; Hasran, U. A.; Masdar, M. S.; Daud, W. R. W.
2016-07-01
A mathematical model is developed for a liquid-feed DEAFC incorporating an alkaline anion-exchange membrane. The one-dimensional mass transport of chemical species is modelled using isothermal, single-phase and steady-state assumptions. The anode and cathode electrochemical reactions use the Tafel kinetics approach, with two limiting cases, for the reaction order. The model fully accounts for the mixed potential effects of ethanol oxidation at the cathode due to ethanol crossover via an alkaline anion-exchange membrane. In contrast to a polymer electrolyte membrane model, the current model considers the flux of ethanol at the membrane as the difference between diffusive and electroosmotic effects. The model is used to investigate the effects of the ethanol and alkali inlet feed concentrations at the anode. The model predicts that the cell performance is almost identical for different ethanol concentrations at a low current density. Moreover, the model results show that feeding the DEAFC with 5 M NaOH and 3 M ethanol at specific operating conditions yields a better performance at a higher current density. Furthermore, the model indicates that crossover effects on the DEAFC performance are significant. The cell performance decrease from its theoretical value when a parasitic current is enabled in the model.
Fulfillment of the kinetic Bohm criterion in a quasineutral particle-in-cell model
International Nuclear Information System (INIS)
Ahedo, Eduardo; Santos, Robert; Parra, Felix I.
2010-01-01
Quasineutral particle-in-cell models of ions must fulfill the kinetic Bohm criterion, in its inequality form, at the domain boundary in order to match correctly with solutions of the Debye sheaths tied to the walls. The simple, fluid form of the Bohm criterion is shown to be a bad approximation of the exact, kinetic form when the ion velocity distribution function has a significant dispersion and involves different charge numbers. The fulfillment of the Bohm criterion is measured by a weighting algorithm at the boundary, but linear weighting algorithms have difficulties to reproduce the nonlinear behavior around the sheath edge. A surface weighting algorithm with an extended temporal weighting is proposed and shown to behave better than the standard volumetric weighting. Still, this must be supplemented by a forcing algorithm of the kinetic Bohm criterion. This postulates a small potential fall in a supplementary, thin, transition layer. The electron-wall interaction is shown to be of little relevance in the fulfillment of the Bohm criterion.
Energy Technology Data Exchange (ETDEWEB)
Vogler, Marcel
2009-05-27
In the course of this thesis a model for the prediction of polarisation characteristics of solid oxide fuel cells (SOFC) was developed. The model is based on an elementary kinetic description of electrochemical reactions and the fundamental conservation principles of mass and energy. The model allows to predict the current-voltage relation of an SOFC and offers ideal possibilities for model validation. The aim of this thesis is the identification of rate-limiting processes and the determination of the elementary pathway during charge transfer. The numerical simulation of experiments with model anodes allowed to identify a hydrogen transfer to be the most probable charge-transfer reaction and revealed the influence of diffusive transport. Applying the hydrogen oxidation kinetics to the direct flame fuel cell system (DFFC) showed that electrochemical oxidation of CO is possible based on the same mechanism. Based on the quantification of loss processes in the DFFC system, improvements on cell design, predicting 80% increase of efficiency, were proposed. (orig.)
Modelling of elementary kinetics of H2 and CO oxidation on ceria pattern cells
International Nuclear Information System (INIS)
Patel, HC; Tabish, AN; Aravind, PV
2015-01-01
Elementary kinetic mechanisms of fuel oxidation on ceria have not been dealt with in detail in literature. An elementary kinetic model is developed considering charge transfer and adsorption steps for electrochemical H 2 and CO oxidation on ceria. The reaction chemistry is solved by fitting previously obtained impedance spectra for H 2 and CO oxidation on ceria. The rate determining step is found to be the charge transfer rather than the adsorption for both H 2 and CO. A method is presented to extend the kinetics obtained from pattern anodes to macroscopic simulations in which the activation overvoltage can be calculated on the basis of elementary kinetics.
Hawkins, Roland B
2018-01-01
An expression for the surviving fraction of a replicating population of cells exposed to permanently incorporated radionuclide is derived from the microdosimetric-kinetic model. It includes dependency on total implant dose, linear energy transfer (LET), decay rate of the radionuclide, the repair rate of potentially lethal lesions in DNA and the volume doubling time of the target population. This is used to obtain an expression for the biologically effective dose ( BED α / β ) based on the minimum survival achieved by the implant that is equivalent to, and can be compared and combined with, the BED α / β calculated for a fractionated course of radiation treatment. Approximate relationships are presented that are useful in the calculation of BED α / β for alpha- or beta-emitting radionuclides with half-life significantly greater than, or nearly equal to, the approximately 1-h repair half-life of radiation-induced potentially lethal lesions.
Littel, Rob J.; Versteeg, Geert F.; Swaaij, Wim P.M. van
1992-01-01
Absorption experiments of COS into aqueous solutions of MDEA and DEMEA at 303 K have been carried out in a stirred cell reactor. An absorption model, based on Higbie’s penetration theory, has been developed and applied to interpret the absorption experiments, using the kinetic data obtained in part
International Nuclear Information System (INIS)
Kimpland, R.H.
1996-01-01
A normalized form of the point kinetics equations, a prompt jump approximation, and the Nordheim-Fuchs model are used to model nuclear systems. Reactivity feedback mechanisms considered include volumetric expansion, thermal neutron temperature effect, Doppler effect and void formation. A sample problem of an excursion occurring in a plutonium solution accidentally formed in a glovebox is presented
Directory of Open Access Journals (Sweden)
Panpan Hou
Full Text Available Kv1.3 channel is a delayed rectifier channel abundant in human T lymphocytes. Chronic inflammatory and autoimmune disorders lead to the over-expression of Kv1.3 in T cells. To quantitatively study the regulatory mechanism and physiological function of Kv1.3 in T cells, it is necessary to have a precise kinetic model of Kv1.3. In this study, we firstly established a kinetic model capable to precisely replicate all the kinetic features for Kv1.3 channels, and then constructed a T-cell model composed of ion channels including Ca2+-release activated calcium (CRAC channel, intermediate K+ (IK channel, TASK channel and Kv1.3 channel for quantitatively simulating the changes in membrane potentials and local Ca2+ signaling messengers during activation of T cells. Based on the experimental data from current-clamp recordings, we successfully demonstrated that Kv1.3 dominated the membrane potential of T cells to manipulate the Ca2+ influx via CRAC channel. Our results revealed that the deficient expression of Kv1.3 channel would cause the less Ca2+ signal, leading to the less efficiency in secretion. This was the first successful attempt to simulate membrane potential in non-excitable cells, which laid a solid basis for quantitatively studying the regulatory mechanism and physiological role of channels in non-excitable cells.
Oxidative desulfurization: kinetic modelling.
Dhir, S; Uppaluri, R; Purkait, M K
2009-01-30
Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H(2)O(2) over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel.
Oxidative desulfurization: Kinetic modelling
International Nuclear Information System (INIS)
Dhir, S.; Uppaluri, R.; Purkait, M.K.
2009-01-01
Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H 2 O 2 over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel
Modeling chemical kinetics graphically
Heck, A.
2012-01-01
In literature on chemistry education it has often been suggested that students, at high school level and beyond, can benefit in their studies of chemical kinetics from computer supported activities. Use of system dynamics modeling software is one of the suggested quantitative approaches that could
A Kinetic Modelling of Enzyme Inhibitions in the Central Metabolism of Yeast Cells
Kasbawati; Kalondeng, A.; Aris, N.; Erawaty, N.; Azis, M. I.
2018-03-01
Metabolic regulation plays an important role in the metabolic engineering of a cellular process. It is conducted to improve the productivity of a microbial process by identifying the important regulatory nodes of a metabolic pathway such as fermentation pathway. Regulation of enzymes involved in a particular pathway can be held to improve the productivity of the system. In the central metabolism of yeast cell, some enzymes are known as regulating enzymes that can be inhibited to increase the production of ethanol. In this research we study the kinetic modelling of the enzymes in the central pathway of yeast metabolism by taking into consideration the enzyme inhibition effects to the ethanol production. The existence of positive steady state solution and the stability of the system are also analysed to study the property and dynamical behaviour of the system. One stable steady state of the system is produced if some conditions are fulfilled. The conditions concern to the restriction of the maximum reactions of the enzymes in the pyruvate and acetaldehyde branch points. There exists a certain time of fermentation reaction at which a maximum and a minimum ethanol productions are attained after regulating the system. Optimal ethanol concentration is also produced for a certain initial concentration of inhibitor.
Chapter 22. Cell population kinetics
International Nuclear Information System (INIS)
Tubiana, M.
1975-01-01
The main contribution of radioisotopes to the development of a new discipline, cell population kinetics, was shown. The aim of this science is to establish, for each tissue of the organism, the life span of its component cells and the mechanisms governing its growth, its differentiation and its homeostasis with respect to outside attacks. Labelling techniques have been used to follow the cells during these various processes. The case of non-dividing cells was considered first, taking as example, the red blood cells of which the lifetime was studied, after which the case of proliferating cells was examined using 14 C- or tritium-labelled thymidine. The methods used to measure the cell cycle parameters were described: labelled-mitosis curve method, double-labelling and continuous labelling methods, proliferation coefficient measurement. Cell kinetics were shown to allow an interpretation of radiobiological data. Finally the practical value of cell kinetics research was shown [fr
LLNL Chemical Kinetics Modeling Group
Energy Technology Data Exchange (ETDEWEB)
Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J
2008-09-24
The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.
Kipp, Dylan; Ganesan, Venkat
2013-06-01
We develop a kinetic Monte Carlo model for photocurrent generation in organic solar cells that demonstrates improved agreement with experimental illuminated and dark current-voltage curves. In our model, we introduce a charge injection rate prefactor to correct for the electrode grid-size and electrode charge density biases apparent in the coarse-grained approximation of the electrode as a grid of single occupancy, charge-injecting reservoirs. We use the charge injection rate prefactor to control the portion of dark current attributed to each of four kinds of charge injection. By shifting the dark current between electrode-polymer pairs, we align the injection timescales and expand the applicability of the method to accommodate ohmic energy barriers. We consider the device characteristics of the ITO/PEDOT/PSS:PPDI:PBTT:Al system and demonstrate the manner in which our model captures the device charge densities unique to systems with small injection energy barriers. To elucidate the defining characteristics of our model, we first demonstrate the manner in which charge accumulation and band bending affect the shape and placement of the various current-voltage regimes. We then discuss the influence of various model parameters upon the current-voltage characteristics.
International Nuclear Information System (INIS)
Augusiak, R; Cucchietti, F M; Lewenstein, M; Haake, F
2010-01-01
In this paper, we introduce a quantum generalization of classical kinetic Ising models (KIM), described by a certain class of quantum many-body master equations. Similarly to KIMs with detailed balance that are equivalent to certain Hamiltonian systems, our models reduce to a set of Hamiltonian systems determining the dynamics of the elements of the many-body density matrix. The ground states of these Hamiltonians are well described by the matrix product, or pair entangled projected states. We discuss critical properties of such Hamiltonians, as well as entanglement properties of their low-energy states.
Directory of Open Access Journals (Sweden)
Seung Yeop Myong
2007-01-01
Full Text Available The two-component kinetic model employing “fast” and “slow” metastable defects for the annealing behaviors in pin-type hydrogenated-amorphous-silicon- (a-Si:H- based solar cells is simulated using a normalized fill factor. Reported annealing data on pin-type a-Si:H-based solar cells are revisited and fitted using the model to confirm its validity. It is verified that the two-component model is suitable for fitting the various experimental phenomena. In addition, the activation energy for annealing of the solar cells depends on the definition of the recovery time. From the thermally activated and high electric field annealing behaviors, the plausible microscopic mechanism on the defect removal process is discussed.
Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models
2015-03-16
sensitivity value was the maximum uncertainty in that value estimated by the Sobol method. 2.4. Global Sensitivity Analysis of the Reduced Order Coagulation...sensitivity analysis, using the variance-based method of Sobol , to estimate which parameters controlled the performance of the reduced order model [69]. We...Environment. Comput. Sci. Eng. 2007, 9, 90–95. 69. Sobol , I. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates
Hu, Shaowen; Cucinotta, Francis A.
2009-01-01
Space radiation poses significant challenges to space travel, and it is essential to understand the possible adverse effects from space radiation exposure to the radiosensitive organ systems that are important for immediate survival of human, e.g., the hematopoietic system. In this presentation a biomathematical model of granulocytopoiesis is described and used to analyze the blood granulocyte changes seen in the blood of mammalians under continuous and acute radiation exposure. This is one of a set of hematopoietic models that have been successfully utilized to simulate and interpret the experimental data of acute and chronic radiation on rodents. We discuss the underlying implicit regulation mechanism and the biological relevance of the kinetic parameters estimation method. Extension of the model to predictions in dogs and humans systems indicates that the modeling results are consistent with the cumulative experimental and empirical data from various sources. This implies the potential to integrate the models into one united system for monitoring the hematopoietic response of various species under irradiation. Based on the evidence of threshold responses of dogs to extended periods of low daily dose exposures, we discuss the potential health risks of the space traveler under chronic stress of low-dose irradiation and the possibly encountered Solar Particle Events.
Paini, Alicia; Sala Benito, Jose Vicente; Bessems, Jos; Worth, Andrew P
2017-12-01
Physiologically based kinetic (PBK) models and the virtual cell based assay can be linked to form so called physiologically based dynamic (PBD) models. This study illustrates the development and application of a PBK model for prediction of estragole-induced DNA adduct formation and hepatotoxicity in humans. To address the hepatotoxicity, HepaRG cells were used as a surrogate for liver cells, with cell viability being used as the in vitro toxicological endpoint. Information on DNA adduct formation was taken from the literature. Since estragole induced cell damage is not directly caused by the parent compound, but by a reactive metabolite, information on the metabolic pathway was incorporated into the model. In addition, a user-friendly tool was developed by implementing the PBK/D model into a KNIME workflow. This workflow can be used to perform in vitro to in vivo extrapolation and forward as backward dosimetry in support of chemical risk assessment. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Transient processes in cell proliferation kinetics
Yakovlev, Andrej Yu
1989-01-01
A mathematician who has taken the romantic decision to devote himself to biology will doubtlessly look upon cell kinetics as the most simple and natural field of application for his knowledge and skills. Indeed, the thesaurus he is to master is not so complicated as, say, in molecular biology, the structural elements of the system, i. e. ceils, have been segregated by Nature itself, simple considerations of balance may be used for deducing basic equations, and numerous analogies in other areas of science also superficial add to one"s confidence. Generally speaking, this number of impression is correct, as evidenced by the very great theoretical studies on population kinetics, unmatched in other branches of mathematical biology. This, however, does not mean that mathematical theory of cell systems has traversed in its development a pathway free of difficulties or errors. The seeming ease of formalizing the phenomena of cell kinetics not infrequently led to the appearance of mathematical models lacking in adequ...
Modeling the chemical kinetics of atmospheric plasma for cell treatment in a liquid solution
International Nuclear Information System (INIS)
Kim, H. Y.; Kang, S. K.; Lee, H. Wk.; Lee, H. W.; Kim, G. C.; Lee, J. K.
2012-01-01
Low temperature atmospheric pressure plasmas have been known to be effective for living cell inactivation in a liquid solution but it is not clear yet which species are key factors for the cell treatment. Using a global model, we elucidate the processes through which pH level in the solution is changed from neutral to acidic after plasma exposure and key components with pH and air variation. First, pH level in a liquid solution is changed by He + and He(2 1 S) radicals. Second, O 3 density decreases as pH level in the solution decreases and air concentration decreases. It can be a method of removing O 3 that causes chest pain and damages lung tissue when the density is very high. H 2 O 2 , HO 2 , and NO radicals are found to be key factors for cell inactivation in the solution with pH and air variation.
Ganesh, Karthik
Owing to the perceived decline of the fossil fuel reserves in the world and environmental issues like pollution, conventional fuels may be replaced by cleaner alternative fuels. The potential of hydrogen as a fuel in vehicular applications is being explored. Hydrogen as an energy carrier potentially finds applications in internal combustion engines and fuel cells because it is considered a clean fuel and has high specific energy. However, at 6 to 8 per kilogram, not only is hydrogen produced from conventional methods like steam reforming expensive, but also there are storage and handling issues, safety concerns and lack of hydrogen refilling stations across the country. The purpose of this research is to suggest a cheap and viable system that generates hydrogen on demand through a chemical reaction between an aluminum-water slurry and an aqueous sodium hydroxide solution to power a 2 kW fuel cell on a fuel cell hybrid motorcycle. This reaction is essentially an aluminum-water reaction where sodium hydroxide acts as a reaction promoter or catalyst. The Horizon 2000 fuel cell used for this purpose has a maximum hydrogen intake rate of 28 lpm. The study focuses on studying the exothermic reaction between the reactants and proposes a rate law that best describes the rate of generation of hydrogen in connection to the surface area of aluminum available for the certain reaction and the concentration of the sodium hydroxide solution. Further, the proposed rate law is used in the simulation model of the chemical reactor onboard the hybrid motorcycle to determine the hydrogen flow rate to the fuel cell with time. Based on the simulated rate of production of hydrogen from the chemical system, its feasibility of use on different drive cycles is analyzed. The rate of production of hydrogen with a higher concentration of sodium hydroxide and smaller aluminum powder size was found to enable the installation of the chemical reactor on urban cycles with frequent stops and starts
International Nuclear Information System (INIS)
Tsubouchi, Susumu; Oohara, Hiroshi.
1989-01-01
Several points on the early and late radiation induced-normal tissue damages in terms of LQ model in multifractionation experiments of isoeffect were discussed from two fractors, (1) dose-responses of cell survivals or of tissue damages and (2) principles of the model. Application of the model to the both early and late tissue damages was fairly difficult in several tissues and several experimental conditions. In early damages, cell survival curve of single irradiation did not always fit to LQ model and further more incomlete repair as well as repopulation in multifractionation experiment contradicted the model especially in low dose fractionation. In late damages, the damages themselves did not express directly cell survival but probably indicate the degree of functional cell damage at the level of 10 -1 . As most isoeffects in early damages were taken at the level of 10 -3 , the comparison of two results from early and late tissue damages indicated the lack of coordinations both conceptionally and experimentally. (author)
Crystallization Kinetics within a Generic Modelling Framework
DEFF Research Database (Denmark)
Meisler, Kresten Troelstrup; von Solms, Nicolas; Gernaey, Krist
2013-01-01
An existing generic modelling framework has been expanded with tools for kinetic model analysis. The analysis of kinetics is carried out within the framework where kinetic constitutive models are collected, analysed and utilized for the simulation of crystallization operations. A modelling...... procedure is proposed to gain the information of crystallization operation kinetic model analysis and utilize this for faster evaluation of crystallization operations....
Song, Wei; Zhai, Lin-Feng; Cui, Yu-Zhi; Sun, Min; Jiang, Yuan
2013-06-06
Due to the high redox activity of Fe(II) and its abundance in natural waters, the electro-oxidation of Fe(II) can be found in many air-cathode fuel cell systems, such as acid mine drainage fuel cells and sediment microbial fuel cells. To deeply understand these iron-related systems, it is essential to elucidate the kinetics and mechanisms involved in the electro-oxidation of Fe(II). This work aims to develop a kinetic model that adequately describes the electro-oxidation process of Fe(II) in air-cathode fuel cells. The speciation of Fe(II) is incorporated into the model, and contributions of individual Fe(II) species to the overall Fe(II) oxidation rate are quantitatively evaluated. The results show that the kinetic model can accurately predict the electro-oxidation rate of Fe(II) in air-cathode fuel cells. FeCO3, Fe(OH)2, and Fe(CO3)2(2-) are the most important species determining the electro-oxidation kinetics of Fe(II). The Fe(II) oxidation rate is primarily controlled by the oxidation of FeCO3 species at low pH, whereas at high pH Fe(OH)2 and Fe(CO3)2(2-) are the dominant species. Solution pH, carbonate concentration, and solution salinity are able to influence the electro-oxidation kinetics of Fe(II) through changing both distribution and kinetic activity of Fe(II) species.
Chemical kinetics and combustion modeling
Energy Technology Data Exchange (ETDEWEB)
Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.
Energy Technology Data Exchange (ETDEWEB)
Tomellini, Massimo, E-mail: tomellini@uniroma2.it
2017-03-26
On the basis of the Kolmogorov–Johnson–Mehl–Avrami (KJMA) method for space tessellation the kinetics of Voronoi cell filling, by central grain growth, has been studied as a function of the cell size. This is done by solving an integral equation for which a class of solutions is obtained in closed form, where the cell-size probability density is the Gamma distribution function. The computation gives the time evolution of the mean grain size, as a function of cell volume, which is further employed for describing the grain-size probability density function. The present approach is applied to determine, analytically, the exact grain-size distribution function in 1D and the size distributions in 2D and 3D through approximation. - Highlights: • The kinetics of cell filling is determined for Poisson–Voronoi tessellation in dD. • The kinetics is obtained in closed form by solving an integral equation. • Connection between the evolution of the mean grain and the size distribution is studied. • The exact grain-size distribution function is determined, analytically, in 1D.
International Nuclear Information System (INIS)
Hu, S.; Cucinotta, F. A.
2011-01-01
As significant ionising radiation exposure will occur during prolonged space travel in future, it is essential to understand their adverse effects on the radiosensitive organ systems that are important for immediate survival of humans, e.g. the haematopoietic system. In this paper, a bio-mathematical model of granulopoiesis is used to analyse the granulocyte changes seen in the blood of mammalians under acute and continuous radiation exposure. This is one of a set of haematopoietic models that have been successfully utilised to simulate and interpret the experimental data of acute and chronic radiation on rodents. Extension to canine and human systems indicates that the results of the model are consistent with the cumulative experimental and empirical data from various sources, implying the potential to integrate them into one united model system to monitor the haematopoietic response of various species under irradiation. The suppression of granulocytes' level of a space traveller under chronic stress of low-dose irradiation as well as the granulopoietic response when encountering a historically large solar particle event is also discussed. (authors)
Samadi-Dooki, Aref; Shodja, Hossein M; Malekmotiei, Leila
2015-05-14
In this paper an analytical approach to study the effect of the substrate physical properties on the kinetics of adhesion and motility behavior of cells is presented. Cell adhesion is mediated by the binding of cell wall receptors and substrate's complementary ligands, and tight adhesion is accomplished by the recruitment of the cell wall binders to the adhesion zone. The binders' movement is modeled as their axisymmetric diffusion in the fluid-like cell membrane. In order to preserve the thermodynamic consistency, the energy balance for the cell-substrate interaction is imposed on the diffusion equation. Solving the axisymmetric diffusion-energy balance coupled equations, it turns out that the physical properties of the substrate (substrate's ligand spacing and stiffness) have considerable effects on the cell adhesion and motility kinetics. For a rigid substrate with uniform distribution of immobile ligands, the maximum ligand spacing which does not interrupt adhesion growth is found to be about 57 nm. It is also found that as a consequence of the reduction in the energy dissipation in the isolated adhesion system, cell adhesion is facilitated by increasing substrate's stiffness. Moreover, the directional movement of cells on a substrate with gradients in mechanical compliance is explored with an extension of the adhesion formulation. It is shown that cells tend to move from soft to stiff regions of the substrate, but their movement is decelerated as the stiffness of the substrate increases. These findings based on the proposed theoretical model are in excellent agreement with the previous experimental observations.
Modeling the isochronal crystallization kinetics
International Nuclear Information System (INIS)
Sahay, S.S.; Krishnan, Karthik
2004-01-01
The classical Johnson-Mehl-Avrami-Kolmogorov (JMAK) model, originally formulated for the isothermal condition, is often used in conjunction with additivity principle for modeling the non-isothermal crystallization kinetics. This approach at times results in significant differences between the model prediction and experimental data. In this article, a modification to this approach has been imposed via an additional functional relationship between the activation energy and heating rate. The methodology has been validated with experimental isochronal crystallization kinetic data in Se 71 Te 20 Sb 9 glass and Ge 20 Te 80 systems. It has been shown that the functional relationship between heating rate and activation energy, ascribed to the reduction in apparent activation energy due to increasing non-isothermality, provides better phenomenological description and therefore improves the prediction capability of the JMAK model under isochronal condition
A kinetic model for hydrodesulfurisation
Energy Technology Data Exchange (ETDEWEB)
Sau, M.; Narasimhan, C.S.L.; Verma, R.P. [Indian Oil Corporation Limited, Research and Development Centre, Faridabad (India)
1997-07-01
Due to stringent environmental considerations and related insistence on low sulfur fuels, hydrodesulfurisation has emerged as an important component of any refining scheme globally. The process is used ranging from Naphta/Kerosine hydrotreating to heavy oil hydrotreating. Processes such as Deep gas oil desulfurisation aiming at reduction of sulfur levels to less than 500 ppm have emerged as major players in the scenario. Hydrodesulfurisation (HDS) involves parallel desulfurisation of different organo-sulfur compounds present in the complex petroleum mixtures. In order to design, monitor, optimise and control the HDS reactor, it is necessary to have a detailed, yet simple model which follows the reaction chemistry accurately. In the present paper, a kinetic model is presented for HDS using continuum theory of lumping. The sulfur distribution in the reaction mixture is treated as continuum and parallel reaction networks are devised for kinetic modelling using continuum theory of lumping approach. The model based on the above approach follows the HDS chemistry reasonably well and hence the model parameters are almost feed invariant. Methods are also devised to incorporate heat and pressure effects into the model. The model has been validated based on commercial kero-HDS data. It is found that the model predictions agree with the experimental/commercial data. 17 refs.
Kinetic modelling of enzymatic starch hydrolysis
Bednarska, K.A.
2015-01-01
Kinetic modelling of enzymatic starch hydrolysis – a summary
K.A. Bednarska
The dissertation entitled ‘Kinetic modelling of enzymatic starch hydrolysis’ describes the enzymatic hydrolysis and kinetic modelling of liquefaction and saccharification of wheat starch.
Hydrocarbon fermentation: kinetics of microbial cell growth
Energy Technology Data Exchange (ETDEWEB)
Goma, G [Institut National des Sciences Appliquees, Toulouse; Ribot, D
1978-11-01
Modeling of microbial growth using nonmiscible substrate is studied when kinetics of substrate dissolution is rate limiting. When the substrate concentration is low, the growth rate is described by an analytical relation that can be identified as a Contois relationship. If the substrate concentration is greater than a critical value S/sub crit/, the potentially useful hydrocarbon S* concentration is described by S* = S/sub crit//(1 + S/sub crit//S). A relationship was found between S/sub crit/ and the biomass concentration X. When X increased, S/sub crit/ decreased. The cell growth rate is related to a relation ..mu.. = ..mu../sub m/(A(X/S/sub crit/)(1 + S/sub crit//S) + 1)/sup -1/. This model describes the evolution of the growth rate when exponential or linear growth occurs, which is related to physico-chemical properties and hydrodynamic fermentation conditions. Experimental data to support the model are presented.
Miara, Lincoln James
Solid oxide fuel cells (SOFCs) have the potential to replace conventional stationary power generation technologies; however, there are major obstacles to commercialization, the most problematic of which is poor cathode performance. Commercialization of SOFCs will follow when the mechanisms occurring at the cathode are more thoroughly understood and adapted for market use. The catalytic reduction of oxygen occurring in SOFC cathodes consists of many elementary steps such as gas phase diffusion, chemical and/or electrochemical reactions which lead to the adsorption and dissociation of molecular oxygen onto the cathode surface, mass transport of oxygen species along the surface and/or through the bulk of the cathode, and full reduction and incorporation of the oxygen at the cathode/electrolyte two or three phase boundary. Electrochemical impedance spectroscopy (EIS) is the main technique used to identify the occurrence of these different processes, but when this technique is used without an explicit model describing the kinetics it is difficult to unravel the interdependence of each of these processes. The purpose of this dissertation is to identify the heterogeneous reactions occurring at the cathode of an SOFC by combining experimental EIS results with mathematical models describing the time dependent behavior of the system. This analysis is performed on two different systems. In the first case, experimental EIS results from patterned half cells composed of Ca-doped lanthanum manganite (LCM)| yttria-doped ZrO2 (YSZ) are modeled to investigate the temperature and partial pressure of oxygen, pO2, dependence of oxygen adsorption/dissociation onto the LCM surface, surface diffusion of atomic oxygen, and electrochemical reduction and incorporation of the oxygen into the electrolyte in the vicinity of the triple phase boundary (TPB). This model determines the time-independent state-space equations from which the Faradaic admittance transfer function is obtained. The
Study of growth kinetic and modeling of ethanol production by ...
African Journals Online (AJOL)
... coefficient (0.96299). Based on Leudking-Piret model, it could be concluded that ethanol batch fermentation is a non-growth associated process. Key words: Kinetic parameters, simulation, cell growth, ethanol, Saccharomyces cerevisiae.
Kinetics model for lutate dosimetry
International Nuclear Information System (INIS)
Lima, M.F.; Mesquita, C.H.
2013-01-01
The use of compartmental analysis to predict the behavior of drugs in the organism is considered the better option among numerous methods employed in pharmacodynamics. A six compartments model was developed to determinate the kinetic constants of 177Lu-DOTATATO biodistribution using data from one published study with 67 patients treated by PRRT (Peptide receptor radionuclide therapy) and followed by CT during 68,25 hours. The compartmental analysis was made using the software AnaComp®. The influence of the time pos-injection over the dose assessment was studied taking into account the renal excretion management by aminoacid coinfusion, whose direct effects persist in the first day. The biodistribution curve was split in five sectors: 0-0.25h; 0-3.25h; 3.25-24.25h; 24.25-68.25h and 3.25-68.25h. After the examination of that influence, the study was concentrated in separate the biodistribution curve in two phases. Phase 1: governed by uptake from the blood, considering the time pos-injection until 3.25h and phase 2: governed by renal excretion, considering the time pos-injection from 3.25h to 68.25h. The model considered the organs and tissues superposition in the CT image acquisition by sampling parameters as the contribution of the the activity concentration in blood and relation between the sizes of the whole body and measured organs. The kinetic constants obtained from each phase (1 and 2) were used in dose assessment to patients in 26 organs and tissues described by MIRD. Dosimetry results were in agreement with the available results from literature, restrict to whole body, kidneys, bone marrow, spleen and liver. The advantage of the proposed model is the compartmental method quickness and power to estimate dose in organs and tissues, including tumor that, in the most part, were not discriminate by voxels of phantoms built using CT images. (author)
Kinetics model for lutate dosimetry
Energy Technology Data Exchange (ETDEWEB)
Lima, M.F.; Mesquita, C.H., E-mail: mflima@ipen.br, E-mail: chmesqui@ipen.br [Instituto de Pesquisas Energeticas (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2013-11-01
The use of compartmental analysis to predict the behavior of drugs in the organism is considered the better option among numerous methods employed in pharmacodynamics. A six compartments model was developed to determinate the kinetic constants of 177Lu-DOTATATO biodistribution using data from one published study with 67 patients treated by PRRT (Peptide receptor radionuclide therapy) and followed by CT during 68,25 hours. The compartmental analysis was made using the software AnaComp Registered-Sign . The influence of the time pos-injection over the dose assessment was studied taking into account the renal excretion management by aminoacid coinfusion, whose direct effects persist in the first day. The biodistribution curve was split in five sectors: 0-0.25h; 0-3.25h; 3.25-24.25h; 24.25-68.25h and 3.25-68.25h. After the examination of that influence, the study was concentrated in separate the biodistribution curve in two phases. Phase 1: governed by uptake from the blood, considering the time pos-injection until 3.25h and phase 2: governed by renal excretion, considering the time pos-injection from 3.25h to 68.25h. The model considered the organs and tissues superposition in the CT image acquisition by sampling parameters as the contribution of the the activity concentration in blood and relation between the sizes of the whole body and measured organs. The kinetic constants obtained from each phase (1 and 2) were used in dose assessment to patients in 26 organs and tissues described by MIRD. Dosimetry results were in agreement with the available results from literature, restrict to whole body, kidneys, bone marrow, spleen and liver. The advantage of the proposed model is the compartmental method quickness and power to estimate dose in organs and tissues, including tumor that, in the most part, were not discriminate by voxels of phantoms built using CT images. (author)
Makino, Nobuo; Mise, Takeshi; Sagara, Jun-Ichi
2008-06-01
Oxidative stress is implicated in a variety of disorders including neurodegenerative diseases, and H(2)O(2) is important in the generation of reactive oxygen and oxidative stress. In this study, we have examined the rate of extracellular H(2)O(2) elimination and relevant enzyme activities in cultured astrocytes and C6 glioma cells and have analyzed the results based on a mathematical model. As compared with other types of cultured cells, astrocytes showed higher activity of glutathione peroxidase (GPx) but lower activities for GSH recycling. C6 cells showed relatively low GPx activity, and treatment of C6 cells with dibutyryl-cAMP, which induces astrocytic differentiation, increased catalase activity and H(2)O(2) permeation rate but exerted little effect on other enzyme activities. A mathematical model [N. Makino, K. Sasaki, N. Hashida, Y. Sakakura, A metabolic model describing the H(2)O(2) elimination by mammalian cells including H(2)O(2) permeation through cytoplasmic and peroxisomal membranes: comparison with experimental data, Biochim. Biophys. Acta 1673 (2004) 149-159.], which includes relevant enzymes and H(2)O(2) permeation through membranes, was found to be fitted well to the H(2)O(2) concentration dependences of removal reaction with the permeation rate constants as variable parameters. As compared with PC12 cells as a culture model for neuron, H(2)O(2) removal activity of astrocytes was considerably higher at physiological H(2)O(2) concentrations. The details of the mathematical model are presented in Appendix.
Crystallization Kinetics within a Generic Modeling Framework
DEFF Research Database (Denmark)
Meisler, Kresten Troelstrup; von Solms, Nicolas; Gernaey, Krist V.
2014-01-01
of employing a well-structured model library for storage, use/reuse, and analysis of the kinetic models are highlighted. Examples illustrating the application of the modeling framework for kinetic model discrimination related to simulation of specific crystallization scenarios and for kinetic model parameter......A new and extended version of a generic modeling framework for analysis and design of crystallization operations is presented. The new features of this framework are described, with focus on development, implementation, identification, and analysis of crystallization kinetic models. Issues related...... to the modeling of various kinetic phenomena like nucleation, growth, agglomeration, and breakage are discussed in terms of model forms, model parameters, their availability and/or estimation, and their selection and application for specific crystallization operational scenarios under study. The advantages...
Modeling composting kinetics: A review of approaches
Hamelers, H.V.M.
2004-01-01
Composting kinetics modeling is necessary to design and operate composting facilities that comply with strict market demands and tight environmental legislation. Current composting kinetics modeling can be characterized as inductive, i.e. the data are the starting point of the modeling process and
Zhang, Teng; Marinescu, Monica; O'Neill, Laura; Wild, Mark; Offer, Gregory
2015-09-21
Understanding of the complex electrochemical, transport, and phase-change phenomena in Li-S cells requires experimental characterization in tandem with mechanistic modeling. However, existing Li-S models currently contradict some key features of experimental findings, particularly the evolution of cell resistance during discharge. We demonstrate that, by introducing a concentration-dependent electrolyte conductivity, the correct trends in voltage drop due to electrolyte resistance and activation overpotentials are retrieved. In addition, we reveal the existence of an often overlooked potential drop mechanism in the low voltage-plateau which originates from the limited rate of Li2S precipitation.
Sánchez-Monreal, Juan; García-Salaberri, Pablo A.; Vera, Marcos
2017-09-01
A one-dimensional model is proposed for the anode of a liquid-feed direct ethanol fuel cell. The complex kinetics of the ethanol electro-oxidation reaction is described using a multi-step reaction mechanism that considers free and adsorbed intermediate species on Pt-based binary catalysts. The adsorbed species are modeled using coverage factors to account for the blockage of the active reaction sites on the catalyst surface. The reaction rates are described by Butler-Volmer equations that are coupled to a one-dimensional mass transport model, which incorporates the effect of ethanol and acetaldehyde crossover. The proposed kinetic model circumvents the acetaldehyde bottleneck effect observed in previous studies by incorporating CH3CHOHads among the adsorbed intermediates. A multi-objetive genetic algorithm is used to determine the reaction constants using anode polarization and product selectivity data obtained from the literature. By adjusting the reaction constants using the methodology developed here, different catalyst layers could be modeled and their selectivities could be successfully reproduced.
In vivo cell kinetics in breast carcinogenesis
International Nuclear Information System (INIS)
Bai, Maria; Agnantis, Niki J; Kamina, Sevasti; Demou, Asimina; Zagorianakou, Panayiota; Katsaraki, Aphroditi; Kanavaros, Panayiotis
2001-01-01
Disruption of the balance between apoptosis and proliferation is considered to be an important factor in the development and progression of tumours. In the present study we determined the in vivo cell kinetics along the spectrum of apparently normal epithelium, hyperplasia, preinvasive lesions and invasive carcinoma, in breast tissues affected by fibrocystic changes in which preinvasive and/or invasive lesions developed, as a model of breast carcinogenesis. A total of 32 areas of apparently normal epithelium and 135 ductal proliferative and neoplastic lesions were studied. More than one epithelial lesion per case were analyzed. The apoptotic index (AI) and the proliferative index (PI) were expressed as the percentage of TdT-mediated dUTP-nick end-labelling (TUNEL) and Ki-67-positive cells, respectively. The PI/AI (P/A index) was calculated for each case. The AIs and PIs were significantly higher in hyperplasia than in apparently normal epithelium (P = 0.04 and P = 0.0005, respectively), in atypical hyperplasia than in hyperplasia (P = 0.01 and P = 0.04, respectively) and in invasive carcinoma than in in situ carcinoma (P < 0.001 and P < 0.001, respectively). The two indices were similar in atypical hyperplasia and in in situ carcinoma. The P/A index increased significantly from normal epithelium to hyperplasia (P = 0.01) and from preinvasive lesions to invasive carcinoma (P = 0.04) whereas it was decreased (non-significantly) from hyperplasia to preinvasive lesions. A strong positive correlation between the AIs and the PIs was found (r = 0.83, P < 0.001). These findings suggest accelerating cell turnover along the continuum of breast carcinogenesis. Atypical hyperplasias and in situ carcinomas might be kinetically similar lesions. In the transition from normal epithelium to hyperplasia and from preinvasive lesions to invasive carcinoma the net growth of epithelial cells results from a growth imbalance in favour of proliferation. In the transition from hyperplasia
Cell cycle kinetics and radiation therapy
International Nuclear Information System (INIS)
Mendelsohn, M.L.
1975-01-01
Radiation therapy as currently practiced involves the subtle largely empirical art of balancing the recurrence of cancer due to undertreatment against severe damage to local tissues due to overtreatment. Therapeutic results too often fall short of desired success rates; yet, the therapist is continually tantalized to the likelihood that a slight shift of therapeutic ratio favoring normal tissue over cancer would have a profoundly beneficial effect. The application of cell cycle kinetics to radiation therapy is one hope for improving the therapeutic ratio; but, as I will try to show, kinetic approaches are complex, poorly understood, and presently too elusive to elicit confidence or to be used clinically. Their promise lies in their diversity and in the magnitude of our ignorance about how they work and how they should be used. Potentially useful kinetic approaches to therapy can be grouped into three classes. The first class takes advantage of intracyclic differential sensitivity, an effect involving the metabolism and biology of the cell cycle; its strategies are based on synchronization of cells over intervals of hours to days. The second class involves the distinction between cycling and noncycling cells; its strategies are based on the resistance of noncycling cells to cycle-linked radiation sensitizers and chemotherapeutic agents. The third class uses cell repopulation between fractions; its strategies are based on the relative growth rates of tumor and relevant normal tissue before and after perturbation
International Nuclear Information System (INIS)
Ghaznavi, Mahmoudreza; Chen, P.
2014-01-01
Highlights: • The discharge behavior of Li-S cells in wide range of exchange current densities of electrochemical reactions is studied. • Among all reduction reactions, 1/2 S 8(l) +e − ⇌1/2 S 8 2− and 1/2 S 2 2− +e − ⇌2S 2− play the most important role in capacity performance. • Low diffusion increases the precipitation of polysulfides in separator which may block the anode surface. • Large solubility of Li 2 S is needed for the model to be able to simulate the charging process. - Abstract: Sensitivity analysis of a mathematical model of a lithium-sulfur (Li-S) battery was performed by investigating the response of the model to variation of the exchange current densities, diffusion coefficients, and cathode thickness over a wide range; the results of the analysis were used to explain the some aspects of the behavior of the system which may be seen in experiments. In particular, among all the exchange current densities, the exchange current density of the elemental sulfur reduction has the most significant effect on the discharge capacity of the cell. The variation of the diffusion coefficients was also analyzed, providing information on the non-uniformity of precipitants in the cell after discharge. An optimum cathode thickness was presented to gain the highest capacity of the cell. Finally, the simulation of charging was studied, showing that the model needs a large solubility product of di-lithium sulfide to be able to simulate the charge process of a cell
Chemical Kinetic Modeling of 2-Methylhexane Combustion
Mohamed, Samah Y.
2015-03-30
Accurate chemical kinetic combustion models of lightly branched alkanes (e.g., 2-methylalkanes) are important for investigating the combustion behavior of diesel, gasoline, and aviation fuels. Improving the fidelity of existing kinetic models is a necessity, as new experiments and advanced theories show inaccuracy in certain portions of the models. This study focuses on updating thermodynamic data and kinetic model for a gasoline surrogate fuel, 2-methylhexane, with recently published group values and rate rules. These update provides a better agreement with rapid compression machine measurements of ignition delay time, while also strengthening the fundamental basis of the model.
A mathematical model for iodine kinetics
International Nuclear Information System (INIS)
Silva, E.A.T. da.
1976-01-01
A mathematical model for the iodine kinetics in thyroid is presented followed by its analytical solution. An eletroanalogical model is also developed for a simplified stage and another is proposed for the main case [pt
Chemical Kinetic Modeling of 2-Methylhexane Combustion
Mohamed, Samah Y.; Sarathy, Mani
2015-01-01
necessity, as new experiments and advanced theories show inaccuracy in certain portions of the models. This study focuses on updating thermodynamic data and kinetic model for a gasoline surrogate fuel, 2-methylhexane, with recently published group values
International Nuclear Information System (INIS)
Dabli, Djamel
2010-01-01
Hadron-therapy is a cancer treatment method based on the use of heavy charged particles. The physical characteristics of these particles allow more precise targeting of tumours and offer higher biological efficiency than photons and electrons. This thesis addresses the problem of modelling the biological effects induced by such particles. One part of this work is devoted to the analysis of the Monte-Carlo simulation tool-kit 'Geant4' used to simulate the physical stage of the particle interactions with the biological medium. We evaluated the ability of 'Geant4' to simulate the microscopic distribution of energy deposition produced by charged particles and we compared these results with those of another simulation code dedicated to radiobiological applications. The other part of the work is dedicated to the study of two radiobiological models that are the LEM (Local Effect Model) based on an amorphous track structure approach and the MKM (Microdosimetric Kinetic Model) based on microdosimetric approach. A theoretical analysis of both models and a comparison of their concepts are presented. Then we focused on a detailed analysis of the microdosimetric model 'MKM'. Finally, we applied the MKM to reproduce the experimental results obtained at GANIL by irradiation of two tumour cell lines (cell line SCC61 and SQ20B) of different radiosensitivity with carbon and argon ions. (author)
Kinetic equations for the collisional plasma model
International Nuclear Information System (INIS)
Rij, W.I. Van; Meier, H.K.; Beasley, C.O. Jr.; McCune, J.E.
1977-01-01
Using the Collisional Plasma Model (CPM) representation, expressions are derived for the Vlasov operator, both in its general form and in the drift-kinetic approximation following the recursive derivation by Hazeltine. The expressions for the operators give easily calculated couplings between neighbouring components of the CPM representation. Expressions for various macroscopic observables in the drift-kinetics approximation are also given. (author)
Decohesion Kinetics in Polymer Organic Solar Cells
Bruner, Christopher; Novoa, Fernando; Dupont, Stephanie; Dauskardt, Reinhold
2014-01-01
© 2014 American Chemical Society. We investigate the role of molecular weight (MW) of the photoactive polymer poly(3-hexylthiophene) (P3HT) on the temperature-dependent decohesion kinetics of bulk heterojunction (BHJ) organic solar cells (OSCs). The MW of P3HT has been directly correlated to its carrier field effect mobilities and the ambient temperature also affects OSC in-service performance and P3HT arrangement within the BHJ layer. Under inert conditions, time-dependent decohesion readily occurs within the BHJ layer at loads well below its fracture resistance. We observe that by increasing the MW of P3HT, greater resistance to decohesion is achieved. However, failure consistently occurs within the BHJ layer representing the weakest layer within the device stack. Additionally, it was found that at temperatures below the glass transition temperature (∼41-45 °C), decohesion was characterized by brittle failure via molecular bond rupture. Above the glass transition temperature, decohesion growth occurred by a viscoelastic process in the BHJ layer, leading to a significant degree of viscoelastic deformation. We develop a viscoelastic model based on molecular relaxation to describe the resulting behavior. The study has implications for OSC long-term reliability and device performance, which are important for OSC production and implementation.
Decohesion Kinetics in Polymer Organic Solar Cells
Bruner, Christopher
2014-12-10
© 2014 American Chemical Society. We investigate the role of molecular weight (MW) of the photoactive polymer poly(3-hexylthiophene) (P3HT) on the temperature-dependent decohesion kinetics of bulk heterojunction (BHJ) organic solar cells (OSCs). The MW of P3HT has been directly correlated to its carrier field effect mobilities and the ambient temperature also affects OSC in-service performance and P3HT arrangement within the BHJ layer. Under inert conditions, time-dependent decohesion readily occurs within the BHJ layer at loads well below its fracture resistance. We observe that by increasing the MW of P3HT, greater resistance to decohesion is achieved. However, failure consistently occurs within the BHJ layer representing the weakest layer within the device stack. Additionally, it was found that at temperatures below the glass transition temperature (∼41-45 °C), decohesion was characterized by brittle failure via molecular bond rupture. Above the glass transition temperature, decohesion growth occurred by a viscoelastic process in the BHJ layer, leading to a significant degree of viscoelastic deformation. We develop a viscoelastic model based on molecular relaxation to describe the resulting behavior. The study has implications for OSC long-term reliability and device performance, which are important for OSC production and implementation.
Decohesion kinetics in polymer organic solar cells.
Bruner, Christopher; Novoa, Fernando; Dupont, Stephanie; Dauskardt, Reinhold
2014-12-10
We investigate the role of molecular weight (MW) of the photoactive polymer poly(3-hexylthiophene) (P3HT) on the temperature-dependent decohesion kinetics of bulk heterojunction (BHJ) organic solar cells (OSCs). The MW of P3HT has been directly correlated to its carrier field effect mobilities and the ambient temperature also affects OSC in-service performance and P3HT arrangement within the BHJ layer. Under inert conditions, time-dependent decohesion readily occurs within the BHJ layer at loads well below its fracture resistance. We observe that by increasing the MW of P3HT, greater resistance to decohesion is achieved. However, failure consistently occurs within the BHJ layer representing the weakest layer within the device stack. Additionally, it was found that at temperatures below the glass transition temperature (∼41-45 °C), decohesion was characterized by brittle failure via molecular bond rupture. Above the glass transition temperature, decohesion growth occurred by a viscoelastic process in the BHJ layer, leading to a significant degree of viscoelastic deformation. We develop a viscoelastic model based on molecular relaxation to describe the resulting behavior. The study has implications for OSC long-term reliability and device performance, which are important for OSC production and implementation.
Gong, Mingyang
With demand over green energy economy, fuel cells have been developed as a promising energy conversion technology with higher efficiency and less emission. Solid oxide fuel cells (SOFC) can utilize various fuels in addition to hydrogen including coal derived sygas, and thus are favored for future power generation due to dependence on coal in electrical industry. However impurities such as sulfur and phosphorous present in coal syngas in parts per million (p.p.m.) levels can severely poison SOFC anode typically made of Ni/yttria-stabilized-zirconia (Ni-YSZ) and limit SOFC applicability in economically derivable fuels. The focus of the research is to develop strategy for application of high performance SOFC in coal syngas with tolerance against trace impurities such as H2S and PH3. To realize the research goal, the experimental study on sulfur tolerant anode materials and examination of various fuel impurity effects on SOFC anode are combined with electrochemical modeling of SOFC cathode kinetics in order to benefit design of direct-coal-syngas SOFC. Tolerant strategy for SOFC anode against sulfur is studied by using alternative materials which can both mitigate sulfur poisoning and function as active anode components. The Ni-YSZ anode was modified by incorporation of lanthanum doped ceria (LDC) nano-coatings via impregnation. Cell test in coal syngas containing 20 ppm H2S indicated the impregnated LDC coatings inhibited on-set of sulfur poisoning by over 10hrs. Cell analysis via X-ray photon spectroscopy (XPS), X-ray diffraction (XRD) and electrochemistry revealed LDC coatings reacted with H2S via chemisorptions, resulting in less sulfur blocking triple--phase-boundary and minimized performance loss. Meanwhile the effects of PH3 impurity on SOFC anode is examined by using Ni-YSZ anode supported SOFC. Degradation of cell is found to be irreversible due to adsorption of PH3 on TPB and further reaction with Ni to form secondary phases with low melting point. The
Kinetic Model of Growth of Arthropoda Populations
Ershov, Yu. A.; Kuznetsov, M. A.
2018-05-01
Kinetic equations were derived for calculating the growth of crustacean populations ( Crustacea) based on the biological growth model suggested earlier using shrimp ( Caridea) populations as an example. The development cycle of successive stages for populations can be represented in the form of quasi-chemical equations. The kinetic equations that describe the development cycle of crustaceans allow quantitative prediction of the development of populations depending on conditions. In contrast to extrapolation-simulation models, in the developed kinetic model of biological growth the kinetic parameters are the experimental characteristics of population growth. Verification and parametric identification of the developed model on the basis of the experimental data showed agreement with experiment within the error of the measurement technique.
Directory of Open Access Journals (Sweden)
Ying Hou
Full Text Available Phenylpyruvic acid (PPA is widely used in the pharmaceutical, food, and chemical industries. Here, a two-step bioconversion process, involving growing and resting cells, was established to produce PPA from l-phenylalanine using the engineered Escherichia coli constructed previously. First, the biotransformation conditions for growing cells were optimized (l-phenylalanine concentration 20.0 g·L-1, temperature 35°C and a two-stage temperature control strategy (keep 20°C for 12 h and increase the temperature to 35°C until the end of biotransformation was performed. The biotransformation conditions for resting cells were then optimized in 3-L bioreactor and the optimized conditions were as follows: agitation speed 500 rpm, aeration rate 1.5 vvm, and l-phenylalanine concentration 30 g·L-1. The total maximal production (mass conversion rate reached 29.8 ± 2.1 g·L-1 (99.3% and 75.1 ± 2.5 g·L-1 (93.9% in the flask and 3-L bioreactor, respectively. Finally, a kinetic model was established, and it was revealed that the substrate and product inhibition were the main limiting factors for resting cell biotransformation.
Hou, Ying; Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng; Chen, Jian
2016-01-01
Phenylpyruvic acid (PPA) is widely used in the pharmaceutical, food, and chemical industries. Here, a two-step bioconversion process, involving growing and resting cells, was established to produce PPA from l-phenylalanine using the engineered Escherichia coli constructed previously. First, the biotransformation conditions for growing cells were optimized (l-phenylalanine concentration 20.0 g·L-1, temperature 35°C) and a two-stage temperature control strategy (keep 20°C for 12 h and increase the temperature to 35°C until the end of biotransformation) was performed. The biotransformation conditions for resting cells were then optimized in 3-L bioreactor and the optimized conditions were as follows: agitation speed 500 rpm, aeration rate 1.5 vvm, and l-phenylalanine concentration 30 g·L-1. The total maximal production (mass conversion rate) reached 29.8 ± 2.1 g·L-1 (99.3%) and 75.1 ± 2.5 g·L-1 (93.9%) in the flask and 3-L bioreactor, respectively. Finally, a kinetic model was established, and it was revealed that the substrate and product inhibition were the main limiting factors for resting cell biotransformation.
Hou, Ying; Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-dong; Liu, Long; Du, Guocheng; Chen, Jian
2016-01-01
Phenylpyruvic acid (PPA) is widely used in the pharmaceutical, food, and chemical industries. Here, a two-step bioconversion process, involving growing and resting cells, was established to produce PPA from l-phenylalanine using the engineered Escherichia coli constructed previously. First, the biotransformation conditions for growing cells were optimized (l-phenylalanine concentration 20.0 g·L−1, temperature 35°C) and a two-stage temperature control strategy (keep 20°C for 12 h and increase the temperature to 35°C until the end of biotransformation) was performed. The biotransformation conditions for resting cells were then optimized in 3-L bioreactor and the optimized conditions were as follows: agitation speed 500 rpm, aeration rate 1.5 vvm, and l-phenylalanine concentration 30 g·L−1. The total maximal production (mass conversion rate) reached 29.8 ± 2.1 g·L−1 (99.3%) and 75.1 ± 2.5 g·L−1 (93.9%) in the flask and 3-L bioreactor, respectively. Finally, a kinetic model was established, and it was revealed that the substrate and product inhibition were the main limiting factors for resting cell biotransformation. PMID:27851793
International Nuclear Information System (INIS)
Rose, D. V.; Welch, D. R.; Clark, R. E.; Thoma, C.; Zimmerman, W. R.; Bruner, N.; Rambo, P. K.; Atherton, B. W.
2011-01-01
Streamer and leader formation in high pressure devices is dynamic process involving a broad range of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. Accurate modeling of these physical processes is essential for a number of applications, including high-current, laser-triggered gas switches. Towards this end, we present a new 3D implicit particle-in-cell simulation model of gas breakdown leading to streamer formation in electronegative gases. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge [D. R. Welch, T. C. Genoni, R. E. Clark, and D. V. Rose, J. Comput. Phys. 227, 143 (2007)]. The simulation model is fully electromagnetic, making it capable of following, for example, the evolution of a gas switch from the point of laser-induced localized breakdown of the gas between electrodes through the successive stages of streamer propagation, initial electrode current connection, and high-current conduction channel evolution, where self-magnetic field effects are likely to be important. We describe the model details and underlying assumptions used and present sample results from 3D simulations of streamer formation and propagation in SF 6 .
Rose, D. V.; Welch, D. R.; Clark, R. E.; Thoma, C.; Zimmerman, W. R.; Bruner, N.; Rambo, P. K.; Atherton, B. W.
2011-09-01
Streamer and leader formation in high pressure devices is dynamic process involving a broad range of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. Accurate modeling of these physical processes is essential for a number of applications, including high-current, laser-triggered gas switches. Towards this end, we present a new 3D implicit particle-in-cell simulation model of gas breakdown leading to streamer formation in electronegative gases. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge [D. R. Welch, T. C. Genoni, R. E. Clark, and D. V. Rose, J. Comput. Phys. 227, 143 (2007)]. The simulation model is fully electromagnetic, making it capable of following, for example, the evolution of a gas switch from the point of laser-induced localized breakdown of the gas between electrodes through the successive stages of streamer propagation, initial electrode current connection, and high-current conduction channel evolution, where self-magnetic field effects are likely to be important. We describe the model details and underlying assumptions used and present sample results from 3D simulations of streamer formation and propagation in SF6.
Energy Technology Data Exchange (ETDEWEB)
Rose, D. V.; Welch, D. R.; Clark, R. E.; Thoma, C.; Zimmerman, W. R.; Bruner, N. [Voss Scientific, LLC, Albuquerque, New Mexico 87108 (United States); Rambo, P. K.; Atherton, B. W. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)
2011-09-15
Streamer and leader formation in high pressure devices is dynamic process involving a broad range of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. Accurate modeling of these physical processes is essential for a number of applications, including high-current, laser-triggered gas switches. Towards this end, we present a new 3D implicit particle-in-cell simulation model of gas breakdown leading to streamer formation in electronegative gases. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge [D. R. Welch, T. C. Genoni, R. E. Clark, and D. V. Rose, J. Comput. Phys. 227, 143 (2007)]. The simulation model is fully electromagnetic, making it capable of following, for example, the evolution of a gas switch from the point of laser-induced localized breakdown of the gas between electrodes through the successive stages of streamer propagation, initial electrode current connection, and high-current conduction channel evolution, where self-magnetic field effects are likely to be important. We describe the model details and underlying assumptions used and present sample results from 3D simulations of streamer formation and propagation in SF{sub 6}.
Ikuta, Yasunari; Kamei, Naosuke; Ishikawa, Masakazu; Adachi, Nobuo; Ochi, Mitsuo
2015-10-01
We have developed a magnetic system for targeting cells in minimally invasive cell transplantation. Magnetically labeled MSCs (m-MSCs) with nanoscale iron particles can be guided into the desired region by magnetic force from an extracorporeal device. We reported that magnetic targeting of m-MSCs enhances cartilage repair in a mini-pig model. However, the detailed kinetics of these magnetically targeted m-MSCs remain unknown. For clinical use, this aspect should be clarified from a safety standpoint. We therefore investigated the spatial and temporal distribution of the fluorescently-labeled m-MSCs transplanted into the knee joint using in vivo fluorescence combined with three-dimensional computed tomographic imaging in a rat model. Although the intraarticularly injected m-MSCs were spread throughout the joint cavity in the absence of magnetic force, the magnetic force caused the injected m-MSCs to accumulate around the chondral lesion. Further examinations including ex vivo imaging, histological assessments and reverse transcription polymerase chain reaction revealed that transplanted MSCs were not present in any major organs after intraarticular administration, regardless of magnetic targeting. Our data suggest that m-MSCs can be accumulated efficiently into a chondral lesion using our magnetic targeting system, while none of the intraarticularly transplanted MSCs migrate to other major organs. © 2015 Wiley Periodicals, Inc.
Computer models for kinetic equations of magnetically confined plasmas
International Nuclear Information System (INIS)
Killeen, J.; Kerbel, G.D.; McCoy, M.G.; Mirin, A.A.; Horowitz, E.J.; Shumaker, D.E.
1987-01-01
This paper presents four working computer models developed by the computational physics group of the National Magnetic Fusion Energy Computer Center. All of the models employ a kinetic description of plasma species. Three of the models are collisional, i.e., they include the solution of the Fokker-Planck equation in velocity space. The fourth model is collisionless and treats the plasma ions by a fully three-dimensional particle-in-cell method
Modeling the degradation kinetics of ascorbic acid.
Peleg, Micha; Normand, Mark D; Dixon, William R; Goulette, Timothy R
2018-06-13
Most published reports on ascorbic acid (AA) degradation during food storage and heat preservation suggest that it follows first-order kinetics. Deviations from this pattern include Weibullian decay, and exponential drop approaching finite nonzero retention. Almost invariably, the degradation rate constant's temperature-dependence followed the Arrhenius equation, and hence the simpler exponential model too. A formula and freely downloadable interactive Wolfram Demonstration to convert the Arrhenius model's energy of activation, E a , to the exponential model's c parameter, or vice versa, are provided. The AA's isothermal and non-isothermal degradation can be simulated with freely downloadable interactive Wolfram Demonstrations in which the model's parameters can be entered and modified by moving sliders on the screen. Where the degradation is known a priori to follow first or other fixed order kinetics, one can use the endpoints method, and in principle the successive points method too, to estimate the reaction's kinetic parameters from considerably fewer AA concentration determinations than in the traditional manner. Freeware to do the calculations by either method has been recently made available on the Internet. Once obtained in this way, the kinetic parameters can be used to reconstruct the entire degradation curves and predict those at different temperature profiles, isothermal or dynamic. Comparison of the predicted concentration ratios with experimental ones offers a way to validate or refute the kinetic model and the assumptions on which it is based.
Development of simple kinetic models and parameter estimation for ...
African Journals Online (AJOL)
In order to describe and predict the growth and expression of recombinant proteins by using a genetically modified Pichia pastoris, we developed a number of unstructured models based on growth kinetic equation, fed-batch mass balance and the assumptions of constant cell and protein yields. The growth of P. pastoris on ...
Thermodynamic and kinetic modelling: creep resistant materials
DEFF Research Database (Denmark)
Hald, John; Korcakova, L.; Danielsen, Hilmar Kjartansson
2008-01-01
The use of thermodynamic and kinetic modelling of microstructure evolution in materials exposed to high temperatures in power plants is demonstrated with two examples. Precipitate stability in martensitic 9–12%Cr steels is modelled including equilibrium phase stability, growth of Laves phase part...
Conings, B.S.T.; Bertho, S.; Vandewal, K.; Senes, A.; D'Haen, J.; Manca, J.V.; Janssen, R.A.J.
2010-01-01
In organic bulk heterojunction solar cells, the nanoscale morphology of interpenetrating donor-acceptor materials and the resulting photovoltaic parameters alter as a consequence of prolonged operation at temperatures above the glass transition temperature. Thermal annealing induces clustering of
DEFF Research Database (Denmark)
Mogensen, David; Grunwaldt, J.-D.; Hendriksen, Peter Vang
2011-01-01
Solid oxide fuel cells (SOFC) systems with internal steam reforming have the potential to become an economically competitive technology for cogeneration power plants, exploiting its significantly higher electrical efficiency compared to existing technologies. Optimal design and operation of such ......Solid oxide fuel cells (SOFC) systems with internal steam reforming have the potential to become an economically competitive technology for cogeneration power plants, exploiting its significantly higher electrical efficiency compared to existing technologies. Optimal design and operation...
Kinetics model of bainitic transformation with stress
Zhou, Mingxing; Xu, Guang; Hu, Haijiang; Yuan, Qing; Tian, Junyu
2018-01-01
Thermal simulations were conducted on a Gleeble 3800 simulator. The main purpose is to investigate the effects of stress on the kinetics of bainitic transformation in a Fe-C-Mn-Si advanced high strength bainitic steel. Previous studies on modeling the kinetics of stress affected bainitic transformation only considered the stress below the yield strength of prior austenite. In the present study, the stress above the yield strength of prior austenite is taken into account. A new kinetics model of bainitic transformation dependent on the stress (including the stresses below and above the yield strength of prior austenite) and the transformation temperature is proposed. The new model presents a good agreement with experimental results. In addition, it is found that the acceleration degree of stress on bainitic transformation increases with the stress whether its magnitude is below or above the yield strength of austenite, but the increasing rate gradually slows down when the stress is above the yield strength of austenite.
The effect of fractionated irradiation on cell kinetics
International Nuclear Information System (INIS)
Laasonen, A.; Pyrhoenen, S.; Kouri, M.; Raety, J.; Holsti, L.R.
1991-01-01
The effects of single and split-dose irradiation were compared by in vitro experiments on HeLa cells. Changes in rate of cell proliferation were detected by flow cytometry, simultaneously determining the DNA content and the bromodeoxyuridine incorporation of individual cells. Cell cultures were irradiated with either a single dose of 1-6 Gy or with a corresponding dose divided into multiple fractions given at 1-6-h intervals. A dose-dependent accumulation of cells in G2/M phase was observed. The method was sensitive enough for the detection of G2/M block even after 1 Gy. The block disappeared completely within a 24-h follow-up time at dose levels up to 3 Gy. Interestingly, no differences in cell kinetics were observed between the single and split-dose regiments. This approach proves to be valuable in evaluating novel fractionation models and the effects of radiation on the cell kinetics of human tumor cells. (orig.)
Chemical Kinetic Models for Advanced Engine Combustion
Energy Technology Data Exchange (ETDEWEB)
Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2014-10-22
The objectives for this project are as follows: Develop detailed chemical kinetic models for fuel components used in surrogate fuels for compression ignition (CI), homogeneous charge compression ignition (HCCI) and reactivity-controlled compression-ignition (RCCI) engines; and Combine component models into surrogate fuel models to represent real transportation fuels. Use them to model low-temperature combustion strategies in HCCI, RCCI, and CI engines that lead to low emissions and high efficiency.
Kinetic modeling of reactions in Foods
Boekel, van M.A.J.S.
2008-01-01
The level of quality that food maintains as it travels down the production-to-consumption path is largely determined by the chemical, biochemical, physical, and microbiological changes that take place during its processing and storage. Kinetic Modeling of Reactions in Foods demonstrates how to
Kinetic mechanism for modeling of electrochemical reactions.
Cervenka, Petr; Hrdlička, Jiří; Přibyl, Michal; Snita, Dalimil
2012-04-01
We propose a kinetic mechanism of electrochemical interactions. We assume fast formation and recombination of electron donors D- and acceptors A+ on electrode surfaces. These mediators are continuously formed in the electrode matter by thermal fluctuations. The mediators D- and A+, chemically equivalent to the electrode metal, enter electrochemical interactions on the electrode surfaces. Electrochemical dynamics and current-voltage characteristics of a selected electrochemical system are studied. Our results are in good qualitative agreement with those given by the classical Butler-Volmer kinetics. The proposed model can be used to study fast electrochemical processes in microsystems and nanosystems that are often out of the thermal equilibrium. Moreover, the kinetic mechanism operates only with the surface concentrations of chemical reactants and local electric potentials, which facilitates the study of electrochemical systems with indefinable bulk.
Kinetics model development of cocoa bean fermentation
Kresnowati, M. T. A. P.; Gunawan, Agus Yodi; Muliyadini, Winny
2015-12-01
Although Indonesia is one of the biggest cocoa beans producers in the world, Indonesian cocoa beans are oftenly of low quality and thereby frequently priced low in the world market. In order to improve the quality, adequate post-harvest cocoa processing techniques are required. Fermentation is the vital stage in series of cocoa beans post harvest processing which could improve the quality of cocoa beans, in particular taste, aroma, and colours. During the fermentation process, combination of microbes grow producing metabolites that serve as the precursors for cocoa beans flavour. Microbial composition and thereby their activities will affect the fermentation performance and influence the properties of cocoa beans. The correlation could be reviewed using a kinetic model that includes unstructured microbial growth, substrate utilization and metabolic product formation. The developed kinetic model could be further used to design cocoa bean fermentation process to meet the expected quality. Further the development of kinetic model of cocoa bean fermentation also serve as a good case study of mixed culture solid state fermentation, that has rarely been studied. This paper presents the development of a kinetic model for solid-state cocoa beans fermentation using an empirical approach. Series of lab scale cocoa bean fermentations, either natural fermentations without starter addition or fermentations with mixed yeast and lactic acid bacteria starter addition, were used for model parameters estimation. The results showed that cocoa beans fermentation can be modelled mathematically and the best model included substrate utilization, microbial growth, metabolites production and its transport. Although the developed model still can not explain the dynamics in microbial population, this model can sufficiently explained the observed changes in sugar concentration as well as metabolic products in the cocoa bean pulp.
Modeling inhomogeneous DNA replication kinetics.
Directory of Open Access Journals (Sweden)
Michel G Gauthier
Full Text Available In eukaryotic organisms, DNA replication is initiated at a series of chromosomal locations called origins, where replication forks are assembled proceeding bidirectionally to replicate the genome. The distribution and firing rate of these origins, in conjunction with the velocity at which forks progress, dictate the program of the replication process. Previous attempts at modeling DNA replication in eukaryotes have focused on cases where the firing rate and the velocity of replication forks are homogeneous, or uniform, across the genome. However, it is now known that there are large variations in origin activity along the genome and variations in fork velocities can also take place. Here, we generalize previous approaches to modeling replication, to allow for arbitrary spatial variation of initiation rates and fork velocities. We derive rate equations for left- and right-moving forks and for replication probability over time that can be solved numerically to obtain the mean-field replication program. This method accurately reproduces the results of DNA replication simulation. We also successfully adapted our approach to the inverse problem of fitting measurements of DNA replication performed on single DNA molecules. Since such measurements are performed on specified portion of the genome, the examined DNA molecules may be replicated by forks that originate either within the studied molecule or outside of it. This problem was solved by using an effective flux of incoming replication forks at the model boundaries to represent the origin activity outside the studied region. Using this approach, we show that reliable inferences can be made about the replication of specific portions of the genome even if the amount of data that can be obtained from single-molecule experiments is generally limited.
A stochastic model of enzyme kinetics
Stefanini, Marianne; Newman, Timothy; McKane, Alan
2003-10-01
Enzyme kinetics is generally modeled by deterministic rate equations, and in the simplest case leads to the well-known Michaelis-Menten equation. It is plausible that stochastic effects will play an important role at low enzyme concentrations. We have addressed this by constructing a simple stochastic model which can be exactly solved in the steady-state. Throughout a wide range of parameter values Michaelis-Menten dynamics is replaced by a new and simple theoretical result.
Compartmental modeling and tracer kinetics
Anderson, David H
1983-01-01
This monograph is concerned with mathematical aspects of compartmental an alysis. In particular, linear models are closely analyzed since they are fully justifiable as an investigative tool in tracer experiments. The objective of the monograph is to bring the reader up to date on some of the current mathematical prob lems of interest in compartmental analysis. This is accomplished by reviewing mathematical developments in the literature, especially over the last 10-15 years, and by presenting some new thoughts and directions for future mathematical research. These notes started as a series of lectures that I gave while visiting with the Division of Applied ~1athematics, Brown University, 1979, and have developed in to this collection of articles aimed at the reader with a beginning graduate level background in mathematics. The text can be used as a self-paced reading course. With this in mind, exercises have been appropriately placed throughout the notes. As an aid in reading the material, the e~d of a ...
Gering, Kevin L.
2013-01-01
A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics. The computing system also analyzes the cell information of the electrochemical cell with a Butler-Volmer (BV) expression modified to determine exchange current density of the electrochemical cell by including kinetic performance information related to pulse-time dependence, electrode surface availability, or a combination thereof. A set of sigmoid-based expressions may be included with the modified-BV expression to determine kinetic performance as a function of pulse time. The determined exchange current density may be used with the modified-BV expression, with or without the sigmoid expressions, to analyze other characteristics of the electrochemical cell. Model parameters can be defined in terms of cell aging, making the overall kinetics model amenable to predictive estimates of cell kinetic performance along the aging timeline.
MODELING STYRENE HYDROGENATION KINETICS USING PALLADIUM CATALYSTS
Directory of Open Access Journals (Sweden)
G. T. Justino
Full Text Available Abstract The high octane number of pyrolysis gasoline (PYGAS explains its insertion in the gasoline pool. However, its use is troublesome due to the presence of gum-forming chemicals which, in turn, can be removed via hydrogenation. The use of Langmuir-Hinshelwood kinetic models was evaluated for hydrogenation of styrene, a typical gum monomer, using Pd/9%Nb2O5-Al2O3 as catalyst. Kinetic models accounting for hydrogen dissociative and non-dissociative adsorption were considered. The availability of one or two kinds of catalytic sites was analyzed. Experiments were carried out in a semi-batch reactor at constant temperature and pressure in the absence of transport limitations. The conditions used in each experiment varied between 16 - 56 bar and 60 - 100 ºC for pressure and temperature, respectively. The kinetic models were evaluated using MATLAB and EMSO software. Models using adsorption of hydrogen and organic molecules on the same type of site fitted the data best.
A kinetic model for chemical neurotransmission
Ramirez-Santiago, Guillermo; Martinez-Valencia, Alejandro; Fernandez de Miguel, Francisco
Recent experimental observations in presynaptic terminals at the neuromuscular junction indicate that there are stereotyped patterns of cooperativeness in the fusion of adjacent vesicles. That is, a vesicle in hemifusion process appears on the side of a fused vesicle and which is followed by another vesicle in a priming state while the next one is in a docking state. In this talk we present a kinetic model for this morphological pattern in which each vesicle state previous to the exocytosis is represented by a kinetic state. This chain states kinetic model can be analyzed by means of a Master equation whose solution is simulated with the stochastic Gillespie algorithm. With this approach we have reproduced the responses to the basal release in the absence of stimulation evoked by the electrical activity and the phenomena of facilitation and depression of neuromuscular synapses. This model offers new perspectives to understand the underlying phenomena in chemical neurotransmission based on molecular interactions that result in the cooperativity between vesicles during neurotransmitter release. DGAPA Grants IN118410 and IN200914 and Conacyt Grant 130031.
Kinetic modeling in PET imaging of hypoxia
Li, Fan; Joergensen, Jesper T; Hansen, Anders E; Kjaer, Andreas
2014-01-01
Tumor hypoxia is associated with increased therapeutic resistance leading to poor treatment outcome. Therefore the ability to detect and quantify intratumoral oxygenation could play an important role in future individual personalized treatment strategies. Positron Emission Tomography (PET) can be used for non-invasive mapping of tissue oxygenation in vivo and several hypoxia specific PET tracers have been developed. Evaluation of PET data in the clinic is commonly based on visual assessment together with semiquantitative measurements e.g. standard uptake value (SUV). However, dynamic PET contains additional valuable information on the temporal changes in tracer distribution. Kinetic modeling can be used to extract relevant pharmacokinetic parameters of tracer behavior in vivo that reflects relevant physiological processes. In this paper, we review the potential contribution of kinetic analysis for PET imaging of hypoxia. PMID:25250200
MATHEMATICAL MODELING OF ORANGE SEED DRYING KINETICS
Directory of Open Access Journals (Sweden)
Daniele Penteado Rosa
2015-06-01
Full Text Available Drying of orange seeds representing waste products from juice processing was studied in the temperatures of 40, 50, 60 and 70 °C and drying velocities of 0.6, 1.0 and 1.4 m/s. Experimental drying kinetics of orange seeds were obtained using a convective air forced dryer. Three thin-layer models: Page model, Lewis model, and the Henderson-Pabis model and the diffusive model were used to predict the drying curves. The Henderson-Pabis and the diffusive models show the best fitting performance and statistical evaluations. Moreover, the temperature dependence on the effective diffusivity followed an Arrhenius relationship, and the activation energies ranging from 16.174 to 16.842 kJ/mol
Kinetic electron model for plasma thruster plumes
Merino, Mario; Mauriño, Javier; Ahedo, Eduardo
2018-03-01
A paraxial model of an unmagnetized, collisionless plasma plume expanding into vacuum is presented. Electrons are treated kinetically, relying on the adiabatic invariance of their radial action integral for the integration of Vlasov's equation, whereas ions are treated as a cold species. The quasi-2D plasma density, self-consistent electric potential, and electron pressure, temperature, and heat fluxes are analyzed. In particular, the model yields the collisionless cooling of electrons, which differs from the Boltzmann relation and the simple polytropic laws usually employed in fluid and hybrid PIC/fluid plume codes.
Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism.
Fleming, R M T; Thiele, I; Provan, G; Nasheuer, H P
2010-06-07
The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in Escherichia coli and compare favourably with in silico prediction by flux balance analysis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Chemical kinetics and modeling of planetary atmospheres
Yung, Yuk L.
1990-01-01
A unified overview is presented for chemical kinetics and chemical modeling in planetary atmospheres. The recent major advances in the understanding of the chemistry of the terrestrial atmosphere make the study of planets more interesting and relevant. A deeper understanding suggests that the important chemical cycles have a universal character that connects the different planets and ultimately link together the origin and evolution of the solar system. The completeness (or incompleteness) of the data base for chemical kinetics in planetary atmospheres will always be judged by comparison with that for the terrestrial atmosphere. In the latter case, the chemistry of H, O, N, and Cl species is well understood. S chemistry is poorly understood. In the atmospheres of Jovian planets and Titan, the C-H chemistry of simple species (containing 2 or less C atoms) is fairly well understood. The chemistry of higher hydrocarbons and the C-N, P-N chemistry is much less understood. In the atmosphere of Venus, the dominant chemistry is that of chlorine and sulfur, and very little is known about C1-S coupled chemistry. A new frontier for chemical kinetics both in the Earth and planetary atmospheres is the study of heterogeneous reactions. The formation of the ozone hole on Earth, the ubiquitous photochemical haze on Venus and in the Jovian planets and Titan all testify to the importance of heterogeneous reactions. It remains a challenge to connect the gas phase chemistry to the production of aerosols.
Kinetic modelling of the Maillard reaction between proteins and sugars
Brands, C.M.J.
2002-01-01
Keywords: Maillard reaction, sugar isomerisation, kinetics, multiresponse modelling, brown colour formation, lysine damage, mutagenicity, casein, monosaccharides, disaccharides, aldoses, ketoses
The aim of this thesis was to determine the kinetics of the Maillard reaction between
Kinetic models of gene expression including non-coding RNAs
Energy Technology Data Exchange (ETDEWEB)
Zhdanov, Vladimir P., E-mail: zhdanov@catalysis.r
2011-03-15
In cells, genes are transcribed into mRNAs, and the latter are translated into proteins. Due to the feedbacks between these processes, the kinetics of gene expression may be complex even in the simplest genetic networks. The corresponding models have already been reviewed in the literature. A new avenue in this field is related to the recognition that the conventional scenario of gene expression is fully applicable only to prokaryotes whose genomes consist of tightly packed protein-coding sequences. In eukaryotic cells, in contrast, such sequences are relatively rare, and the rest of the genome includes numerous transcript units representing non-coding RNAs (ncRNAs). During the past decade, it has become clear that such RNAs play a crucial role in gene expression and accordingly influence a multitude of cellular processes both in the normal state and during diseases. The numerous biological functions of ncRNAs are based primarily on their abilities to silence genes via pairing with a target mRNA and subsequently preventing its translation or facilitating degradation of the mRNA-ncRNA complex. Many other abilities of ncRNAs have been discovered as well. Our review is focused on the available kinetic models describing the mRNA, ncRNA and protein interplay. In particular, we systematically present the simplest models without kinetic feedbacks, models containing feedbacks and predicting bistability and oscillations in simple genetic networks, and models describing the effect of ncRNAs on complex genetic networks. Mathematically, the presentation is based primarily on temporal mean-field kinetic equations. The stochastic and spatio-temporal effects are also briefly discussed.
A study on the potential of cell kinetically directed fractionation schemes in radiotherapy
International Nuclear Information System (INIS)
Oostrum, I.E.A. van.
1990-01-01
In this thesis, the phenomenon of radiation-induced synchronization of cells into the radiosensitive G 2 phase of the cell cycle and the exploitation of this phenomenon to enhance the efficacy of frationated radiotherapy was investigated. A nude mouse model was used to investigate the cell kinetics of 6 human xenotransplanted tumours before and after irradiation. In the second part of the investigation it was tested whether split dose irradiation intervals, based on cell kinetic data of the tumours (i.e. timing of maximal accumulation of cells in G 2 ) would result in an enhanced response compared with those at non optimal intervals (author), 297 refs.; 35 figs.; 25 tabs
Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration.
Wang, Fen; Wang, Yong; Ji, Min
2005-08-31
Ultrasonic energy can be applied as pre-treatment to disintegrate sludge flocs and disrupt bacterial cells' walls, and the hydrolysis can be improved, so that the rate of sludge digestion and methane production is improved. In this paper, by adding NaHCO3 to mask the oxidizing effect of OH, the mechanisms of disintegration are investigated. In addition, kinetics models for ultrasonic sludge disintegration are established by applying multi-variable linear regression method. It has been found that hydro-mechanical shear forces predominantly responsible for the disintegration, and the contribution of oxidizing effect of OH increases with the amount of the ultrasonic density and ultrasonic intensity. It has also been inferred from the kinetics model which dependent variable is SCOD+ that both sludge pH and sludge concentration significantly affect the disintegration.
Thermodynamically consistent model calibration in chemical kinetics
Directory of Open Access Journals (Sweden)
Goutsias John
2011-05-01
Full Text Available Abstract Background The dynamics of biochemical reaction systems are constrained by the fundamental laws of thermodynamics, which impose well-defined relationships among the reaction rate constants characterizing these systems. Constructing biochemical reaction systems from experimental observations often leads to parameter values that do not satisfy the necessary thermodynamic constraints. This can result in models that are not physically realizable and may lead to inaccurate, or even erroneous, descriptions of cellular function. Results We introduce a thermodynamically consistent model calibration (TCMC method that can be effectively used to provide thermodynamically feasible values for the parameters of an open biochemical reaction system. The proposed method formulates the model calibration problem as a constrained optimization problem that takes thermodynamic constraints (and, if desired, additional non-thermodynamic constraints into account. By calculating thermodynamically feasible values for the kinetic parameters of a well-known model of the EGF/ERK signaling cascade, we demonstrate the qualitative and quantitative significance of imposing thermodynamic constraints on these parameters and the effectiveness of our method for accomplishing this important task. MATLAB software, using the Systems Biology Toolbox 2.1, can be accessed from http://www.cis.jhu.edu/~goutsias/CSS lab/software.html. An SBML file containing the thermodynamically feasible EGF/ERK signaling cascade model can be found in the BioModels database. Conclusions TCMC is a simple and flexible method for obtaining physically plausible values for the kinetic parameters of open biochemical reaction systems. It can be effectively used to recalculate a thermodynamically consistent set of parameter values for existing thermodynamically infeasible biochemical reaction models of cellular function as well as to estimate thermodynamically feasible values for the parameters of new
Modeling in applied sciences a kinetic theory approach
Pulvirenti, Mario
2000-01-01
Modeling complex biological, chemical, and physical systems, in the context of spatially heterogeneous mediums, is a challenging task for scientists and engineers using traditional methods of analysis Modeling in Applied Sciences is a comprehensive survey of modeling large systems using kinetic equations, and in particular the Boltzmann equation and its generalizations An interdisciplinary group of leading authorities carefully develop the foundations of kinetic models and discuss the connections and interactions between model theories, qualitative and computational analysis and real-world applications This book provides a thoroughly accessible and lucid overview of the different aspects, models, computations, and methodology for the kinetic-theory modeling process Topics and Features * Integrated modeling perspective utilized in all chapters * Fluid dynamics of reacting gases * Self-contained introduction to kinetic models * Becker–Doring equations * Nonlinear kinetic models with chemical reactions * Kinet...
A neural model of border-ownership from kinetic occlusion.
Layton, Oliver W; Yazdanbakhsh, Arash
2015-01-01
Camouflaged animals that have very similar textures to their surroundings are difficult to detect when stationary. However, when an animal moves, humans readily see a figure at a different depth than the background. How do humans perceive a figure breaking camouflage, even though the texture of the figure and its background may be statistically identical in luminance? We present a model that demonstrates how the primate visual system performs figure-ground segregation in extreme cases of breaking camouflage based on motion alone. Border-ownership signals develop as an emergent property in model V2 units whose receptive fields are nearby kinetically defined borders that separate the figure and background. Model simulations support border-ownership as a general mechanism by which the visual system performs figure-ground segregation, despite whether figure-ground boundaries are defined by luminance or motion contrast. The gradient of motion- and luminance-related border-ownership signals explains the perceived depth ordering of the foreground and background surfaces. Our model predicts that V2 neurons, which are sensitive to kinetic edges, are selective to border-ownership (magnocellular B cells). A distinct population of model V2 neurons is selective to border-ownership in figures defined by luminance contrast (parvocellular B cells). B cells in model V2 receive feedback from neurons in V4 and MT with larger receptive fields to bias border-ownership signals toward the figure. We predict that neurons in V4 and MT sensitive to kinetically defined figures play a crucial role in determining whether the foreground surface accretes, deletes, or produces a shearing motion with respect to the background. Copyright © 2014 Elsevier Ltd. All rights reserved.
Acceleration transforms and statistical kinetic models
International Nuclear Information System (INIS)
LuValle, M.J.; Welsher, T.L.; Svoboda, K.
1988-01-01
For a restricted class of problems a mathematical model of microscopic degradation processes, statistical kinetics, is developed and linked through acceleration transforms to the information which can be obtained from a system in which the only observable sign of degradation is sudden and catastrophic failure. The acceleration transforms were developed in accelerated life testing applications as a tool for extrapolating from the observable results of an accelerated life test to the dynamics of the underlying degradation processes. A particular concern of a physicist attempting to interpreted the results of an analysis based on acceleration transforms is determining the physical species involved in the degradation process. These species may be (a) relatively abundant or (b) relatively rare. The main results of this paper are a theorem showing that for an important subclass of statistical kinetic models, acceleration transforms cannot be used to distinguish between cases a and b, and an example showing that in some cases falling outside the restrictions of the theorem, cases a and b can be distinguished by their acceleration transforms
Weikl, Thomas R.; Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard
2016-01-01
ABSTRACT The adhesion of cell membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. In this article, we review recent results from simulations and theory that lead to novel insights on how the binding equilibrium and kinetics of these proteins is affected by the membranes and by the membrane anchoring and molecular properties of the proteins. Simulations and theory both indicate that the binding equilibrium constant K2D and the on- and off-rate constants of anchored receptors and ligands in their 2-dimensional (2D) membrane environment strongly depend on the membrane roughness from thermally excited shape fluctuations on nanoscales. Recent theory corroborated by simulations provides a general relation between K2D and the binding constant K3D of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in 3 dimensions (3D). PMID:27294442
MODELLING OF KINETICS OF FLUORINE ADSORPTION ONTO MODIFIED DIATOMITE
Directory of Open Access Journals (Sweden)
VEACESLAV ZELENTSOV
2017-03-01
Full Text Available The paper presents kinetics modelling of adsorption of fluorine onto modified diatomite, its fundamental characteristics and mathematical derivations. Three models of defluoridation kinetics were used to fit the experimental results on adsorption fluorine onto diatomite: the pseudo-first order model Lagergren, the pseudo-second order model G. McKay and H.S. Ho and intraparticle diffusion model of W.J. Weber and J.C. Morris. Kinetics studies revealed that the adsorption of fluorine followed second-order rate model, complimented by intraparticle diffusion kinetics. The adsorption mechanism of fluorine involved three stages – external surface adsorption, intraparticle diffusion and the stage of equilibrium.
Holographic kinetic k-essence model
Energy Technology Data Exchange (ETDEWEB)
Cruz, Norman [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail: ncruz@lauca.usach.cl; Gonzalez-Diaz, Pedro F.; Rozas-Fernandez, Alberto [Colina de los Chopos, Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain)], E-mail: a.rozas@cfmac.csic.es; Sanchez, Guillermo [Departamento de Matematica y Ciencia de la Computacion, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail: gsanchez@usach.cl
2009-08-31
We consider a connection between the holographic dark energy density and the kinetic k-essence energy density in a flat FRW universe. With the choice c{>=}1, the holographic dark energy can be described by a kinetic k-essence scalar field in a certain way. In this Letter we show this kinetic k-essential description of the holographic dark energy with c{>=}1 and reconstruct the kinetic k-essence function F(X)
Kinetic depletion model for pellet ablation
International Nuclear Information System (INIS)
Kuteev, Boris V.
2001-11-01
A kinetic model for depletion effect, which determines pellet ablation when the pellet passes a rational magnetic surface, is formulated. The model predicts a moderate decrease of the ablation rate compared with the earlier considered monoenergy versions [1, 2]. For typical T-10 conditions the ablation rate reduces by a reactor of 2.5 when the 1-mm pellet penetrates through the plasma center. A substantial deceleration of pellets -about 15% per centimeter of low shire rational q region; is predicted. Penetration for Low Field Side and High Field Side injections is considered taking into account modification of the electron distribution function by toroidal magnetic field. It is shown that Shafranov shift and toroidal effects yield the penetration length for HFS injection higher by a factor of 1.5. This fact should be taken into account when plasma-shielding effects on penetration are considered. (author)
Cell kinetics of GM-CFC in the steady state
International Nuclear Information System (INIS)
Hagan, M.P.; MacVittie, T.J.; Dodgen, D.P.
1985-01-01
The kinetics of cell turnover for myeloid/monocyte cells that form colonies in agar (GM-CFC) were measured through the progressive increase in their sensitivity to 313-nm light during a period of cell labeling with BrdCyd. Two components of cell killing with distinctly separate labeling kinetics revealed both the presence of two generations within the GM-CFC compartment and the properties of the kinetics of the precursors of the GM-CFC. These precursors of the GM-CFC were not assayable in a routine GM-CFC assay when pregnant mouse uterus extract and mouse L-cell-conditioned medium were used to stimulate colony formation but were revealed by the labeling kinetics of the assayable GM-CFC. Further, these precursor cells appeared to enter the assayable GM-CFC population from a noncycling state. This was evidenced by the failure of the majority of these cells to incorporate BrdCyd during five days of infusion. The half-time for cell turnover within this precursor compartment was measured to be approximately 5.5 days. Further, these normally noncycling cells proliferated rapidly in response to endotoxin. High-proliferative-potential colony-forming cells (HPP-CFC) were tested as a candidate for this precursor population. The results of the determination of the kinetics for these cells showed that the HPP-CFC exist largely in a Go state, existing at an average rate of once every four days. The slow turnover time for these cells and their response to endotoxin challenge are consistent with a close relationship between the HPP-CFC and the Go pool of cells that is the direct precursor of the GM-CFC
An experimental and kinetic modeling study of glycerol pyrolysis
International Nuclear Information System (INIS)
Fantozzi, F.; Frassoldati, A.; Bartocci, P.; Cinti, G.; Quagliarini, F.; Bidini, G.; Ranzi, E.M.
2016-01-01
Highlights: • Glycerol pyrolysis can produce about 44–48%v hydrogen at 750–800 °C. • A simplified 452 reactions kinetic model of glycerol pyrolysis has been developed. • The model has good agreement with experimental data. • Non condensable gas yields can reach 70%. - Abstract: Pyrolysis of glycerol, a by-product of the biodiesel industry, is an important potential source of hydrogen. The obtained high calorific value gas can be used either as a fuel for combined heat and power (CHP) generation or as a transportation fuel (for example hydrogen to be used in fuel cells). Optimal process conditions can improve glycerol pyrolysis by increasing gas yield and hydrogen concentration. A detailed kinetic mechanism of glycerol pyrolysis, which involves 137 species and more than 4500 reactions, was drastically simplified and reduced to a new skeletal kinetic scheme of 44 species, involved in 452 reactions. An experimental campaign with a batch pyrolysis reactor was properly designed to further validate the original and the skeletal mechanisms. The comparisons between model predictions and experimental data strongly suggest the presence of a catalytic process promoting steam reforming of methane. High pyrolysis temperatures (750–800 °C) improve process performances and non-condensable gas yields of 70%w can be achieved. Hydrogen mole fraction in pyrolysis gas is about 44–48%v. The skeletal mechanism developed can be easily used in Computational Fluid Dynamic software, reducing the simulation time.
Kinetic model of excess activated sludge thermohydrolysis.
Imbierowicz, Mirosław; Chacuk, Andrzej
2012-11-01
Thermal hydrolysis of excess activated sludge suspensions was carried at temperatures ranging from 423 K to 523 K and under pressure 0.2-4.0 MPa. Changes of total organic carbon (TOC) concentration in a solid and liquid phase were measured during these studies. At the temperature 423 K, after 2 h of the process, TOC concentration in the reaction mixture decreased by 15-18% of the initial value. At 473 K total organic carbon removal from activated sludge suspension increased to 30%. It was also found that the solubilisation of particulate organic matter strongly depended on the process temperature. At 423 K the transfer of TOC from solid particles into liquid phase after 1 h of the process reached 25% of the initial value, however, at the temperature of 523 K the conversion degree of 'solid' TOC attained 50% just after 15 min of the process. In the article a lumped kinetic model of the process of activated sludge thermohydrolysis has been proposed. It was assumed that during heating of the activated sludge suspension to a temperature in the range of 423-523 K two parallel reactions occurred. One, connected with thermal destruction of activated sludge particles, caused solubilisation of organic carbon and an increase of dissolved organic carbon concentration in the liquid phase (hydrolysate). The parallel reaction led to a new kind of unsolvable solid phase, which was further decomposed into gaseous products (CO(2)). The collected experimental data were used to identify unknown parameters of the model, i.e. activation energies and pre-exponential factors of elementary reactions. The mathematical model of activated sludge thermohydrolysis appropriately describes the kinetics of reactions occurring in the studied system. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ren, Xiu'e; Chen, Jianbiao; Li, Gang; Wang, Yanhong; Lang, Xuemei; Fan, Shuanshi
2018-08-01
The study concerned the thermal oxidative degradation kinetics of agricultural residues, peanut shell (PS) and sunflower shell (SS). The thermal behaviors were evaluated via thermogravimetric analysis and the kinetic parameters were determined by using distributed activation energy model (DAEM) and global kinetic model (GKM). Results showed that thermal oxidative decomposition of two samples processed in three zones; the ignition, burnout, and comprehensive combustibility between two agricultural residues were of great difference; and the combustion performance could be improved by boosting heating rate. The activation energy ranges calculated by the DAEM for the thermal oxidative degradation of PS and SS were 88.94-145.30 kJ mol -1 and 94.86-169.18 kJ mol -1 , respectively. The activation energy obtained by the GKM for the oxidative decomposition of hemicellulose and cellulose was obviously lower than that for the lignin oxidation at identical heating rate. To some degree, the determined kinetic parameters could acceptably simulate experimental data. Copyright © 2018 Elsevier Ltd. All rights reserved.
A discontinuous Galerkin method on kinetic flocking models
Tan, Changhui
2014-01-01
We study kinetic representations of flocking models. They arise from agent-based models for self-organized dynamics, such as Cucker-Smale and Motsch-Tadmor models. We prove flocking behavior for the kinetic descriptions of flocking systems, which indicates a concentration in velocity variable in infinite time. We propose a discontinuous Galerkin method to treat the asymptotic $\\delta$-singularity, and construct high order positive preserving scheme to solve kinetic flocking systems.
Kinetic modeling and exploratory numerical simulation of chloroplastic starch degradation
Directory of Open Access Journals (Sweden)
Nag Ambarish
2011-06-01
Full Text Available Abstract Background Higher plants and algae are able to fix atmospheric carbon dioxide through photosynthesis and store this fixed carbon in large quantities as starch, which can be hydrolyzed into sugars serving as feedstock for fermentation to biofuels and precursors. Rational engineering of carbon flow in plant cells requires a greater understanding of how starch breakdown fluxes respond to variations in enzyme concentrations, kinetic parameters, and metabolite concentrations. We have therefore developed and simulated a detailed kinetic ordinary differential equation model of the degradation pathways for starch synthesized in plants and green algae, which to our knowledge is the most complete such model reported to date. Results Simulation with 9 internal metabolites and 8 external metabolites, the concentrations of the latter fixed at reasonable biochemical values, leads to a single reference solution showing β-amylase activity to be the rate-limiting step in carbon flow from starch degradation. Additionally, the response coefficients for stromal glucose to the glucose transporter kcat and KM are substantial, whereas those for cytosolic glucose are not, consistent with a kinetic bottleneck due to transport. Response coefficient norms show stromal maltopentaose and cytosolic glucosylated arabinogalactan to be the most and least globally sensitive metabolites, respectively, and β-amylase kcat and KM for starch to be the kinetic parameters with the largest aggregate effect on metabolite concentrations as a whole. The latter kinetic parameters, together with those for glucose transport, have the greatest effect on stromal glucose, which is a precursor for biofuel synthetic pathways. Exploration of the steady-state solution space with respect to concentrations of 6 external metabolites and 8 dynamic metabolite concentrations show that stromal metabolism is strongly coupled to starch levels, and that transport between compartments serves to
Single-cell analysis of transcription kinetics across the cell cycle
Skinner, Samuel O; Xu, Heng; Nagarkar-Jaiswal, Sonal; Freire, Pablo R; Zwaka, Thomas P; Golding, Ido
2016-01-01
Transcription is a highly stochastic process. To infer transcription kinetics for a gene-of-interest, researchers commonly compare the distribution of mRNA copy-number to the prediction of a theoretical model. However, the reliability of this procedure is limited because the measured mRNA numbers represent integration over the mRNA lifetime, contribution from multiple gene copies, and mixing of cells from different cell-cycle phases. We address these limitations by simultaneously quantifying nascent and mature mRNA in individual cells, and incorporating cell-cycle effects in the analysis of mRNA statistics. We demonstrate our approach on Oct4 and Nanog in mouse embryonic stem cells. Both genes follow similar two-state kinetics. However, Nanog exhibits slower ON/OFF switching, resulting in increased cell-to-cell variability in mRNA levels. Early in the cell cycle, the two copies of each gene exhibit independent activity. After gene replication, the probability of each gene copy to be active diminishes, resulting in dosage compensation. DOI: http://dx.doi.org/10.7554/eLife.12175.001 PMID:26824388
Solid KHT tumor dispersal for flow cytometric cell kinetic analysis
International Nuclear Information System (INIS)
Pallavicini, M.G.; Folstad, L.J.; Dunbar, C.
1981-01-01
A bacterial neutral protease was used to disperse KHT solid tumors into single cell suspensions suitable for routine cell kinetic analysis by flow cytometry and for clonogenic cell survival. Neutral protease disaggregation under conditions which would be suitable for routine tumor dispersal was compared with a trypsin/DNase procedure. Cell yield, clonogenic cell survival, DNA distributions of untreated and drug-perturbed tumors, rates of radioactive precursor incorporation during the cell cycle, and preferential cell cycle phase-specific cell loss were investigated. Tumors dispersed with neutral protease yielded approximately four times more cells than those dispersed with trypsin/DNase and approximately a 1.5-fold higher plating efficiency in a semisolid agar system. Quantitative analysis of DNA distributions obtained from untreated and cytosine-arabinoside-perturbed tumors produced similar results with both dispersal procedures. The rates of incorporation of tritiated thymidine during the cell cycle were also similar with neutral protease and trypsin/DNase dispersal. Preferential phase-specific cell loss was not obseved with either technique. We find that neutral protease provides good single cell suspensions of the KHT tumor for cell survival measurements and for cell kinetic analysis of drug-induced perturbations by flow cytometry. In addition, the high cell yields facilitate electronic cell sorting where large numbers of cells are often required
Thermoluminescence of zircon: a kinetic model
Turkin, A A; Vainshtein, D I; Hartog, H W D
2003-01-01
The mineral zircon, ZrSiO sub 4 , belongs to a class of promising materials for geochronometry by means of thermoluminescence (TL) dating. The development of a reliable and reproducible method for TL dating with zircon requires detailed knowledge of the processes taking place during exposure to ionizing radiation, long-term storage, annealing at moderate temperatures and heating at a constant rate (TL measurements). To understand these processes one needs a kinetic model of TL. This paper is devoted to the construction of such a model. The goal is to study the qualitative behaviour of the system and to determine the parameters and processes controlling TL phenomena of zircon. The model considers the following processes: (i) Filling of electron and hole traps at the excitation stage as a function of the dose rate and the dose for both (low dose rate) natural and (high dose rate) laboratory irradiation. (ii) Time dependence of TL fading in samples irradiated under laboratory conditions. (iii) Short time anneali...
Reflected kinetics model for nuclear space reactor kinetics and control scoping calculations
Energy Technology Data Exchange (ETDEWEB)
Washington, K.E.
1986-05-01
The objective of this research is to develop a model that offers an alternative to the point kinetics (PK) modelling approach in the analysis of space reactor kinetics and control studies. Modelling effort will focus on the explicit treatment of control drums as reactivity input devices so that the transition to automatic control can be smoothly done. The proposed model is developed for the specific integration of automatic control and the solution of the servo mechanism problem. The integration of the kinetics model with an automatic controller will provide a useful tool for performing space reactor scoping studies for different designs and configurations. Such a tool should prove to be invaluable in the design phase of a space nuclear system from the point of view of kinetics and control limitations.
Reflected kinetics model for nuclear space reactor kinetics and control scoping calculations
International Nuclear Information System (INIS)
Washington, K.E.
1986-05-01
The objective of this research is to develop a model that offers an alternative to the point kinetics (PK) modelling approach in the analysis of space reactor kinetics and control studies. Modelling effort will focus on the explicit treatment of control drums as reactivity input devices so that the transition to automatic control can be smoothly done. The proposed model is developed for the specific integration of automatic control and the solution of the servo mechanism problem. The integration of the kinetics model with an automatic controller will provide a useful tool for performing space reactor scoping studies for different designs and configurations. Such a tool should prove to be invaluable in the design phase of a space nuclear system from the point of view of kinetics and control limitations
The Particle-in-Cell and Kinetic Simulation Software Center
Mori, W. B.; Decyk, V. K.; Tableman, A.; Fonseca, R. A.; Tsung, F. S.; Hu, Q.; Winjum, B. J.; An, W.; Dalichaouch, T. N.; Davidson, A.; Hildebrand, L.; Joglekar, A.; May, J.; Miller, K.; Touati, M.; Xu, X. L.
2017-10-01
The UCLA Particle-in-Cell and Kinetic Simulation Software Center (PICKSC) aims to support an international community of PIC and plasma kinetic software developers, users, and educators; to increase the use of this software for accelerating the rate of scientific discovery; and to be a repository of knowledge and history for PIC. We discuss progress towards making available and documenting illustrative open-source software programs and distinct production programs; developing and comparing different PIC algorithms; coordinating the development of resources for the educational use of kinetic software; and the outcomes of our first sponsored OSIRIS users workshop. We also welcome input and discussion from anyone interested in using or developing kinetic software, in obtaining access to our codes, in collaborating, in sharing their own software, or in commenting on how PICKSC can better serve the DPP community. Supported by NSF under Grant ACI-1339893 and by the UCLA Institute for Digital Research and Education.
Supercritical kinetic analysis in simplified system of fuel debris using integral kinetic model
International Nuclear Information System (INIS)
Tuya, Delgersaikhan; Obara, Toru
2016-01-01
Highlights: • Kinetic analysis in simplified weakly coupled fuel debris system was performed. • The integral kinetic model was used to simulate criticality accidents. • The fission power and released energy during simulated accident were obtained. • Coupling between debris regions and its effect on the fission power was obtained. - Abstract: Preliminary prompt supercritical kinetic analyses in a simplified coupled system of fuel debris designed to roughly resemble a melted core of a nuclear reactor were performed using an integral kinetic model. The integral kinetic model, which can describe region- and time-dependent fission rate in a coupled system of arbitrary geometry, was used because the fuel debris system is weakly coupled in terms of neutronics. The results revealed some important characteristics of coupled systems, such as the coupling between debris regions and the effect of the coupling on the fission rate and released energy in each debris region during the simulated criticality accident. In brief, this study showed that the integral kinetic model can be applied to supercritical kinetic analysis in fuel debris systems and also that it can be a useful tool for investigating the effect of the coupling on consequences of a supercritical accident.
Fully implicit kinetic modelling of collisional plasmas
International Nuclear Information System (INIS)
Mousseau, V.A.
1996-05-01
This dissertation describes a numerical technique, Matrix-Free Newton Krylov, for solving a simplified Vlasov-Fokker-Planck equation. This method is both deterministic and fully implicit, and may not have been a viable option before current developments in numerical methods. Results are presented that indicate the efficiency of the Matrix-Free Newton Krylov method for these fully-coupled, nonlinear integro-differential equations. The use and requirement for advanced differencing is also shown. To this end, implementations of Chang-Cooper differencing and flux limited Quadratic Upstream Interpolation for Convective Kinematics (QUICK) are presented. Results are given for a fully kinetic ion-electron problem with a self consistent electric field calculated from the ion and electron distribution functions. This numerical method, including advanced differencing, provides accurate solutions, which quickly converge on workstation class machines. It is demonstrated that efficient steady-state solutions can be achieved to the non-linear integro-differential equation, obtaining quadratic convergence, without incurring the large memory requirements of an integral operator. Model problems are presented which simulate plasma impinging on a plate with both high and low neutral particle recycling typical of a divertor in a Tokamak device. These model problems demonstrate the performance of the new solution method
Kinetic modeling in pre-clinical positron emission tomography
Energy Technology Data Exchange (ETDEWEB)
Kuntner, Claudia [AIT Austrian Institute of Technology GmbH, Seibersdorf (Austria). Biomedical Systems, Health and Environment Dept.
2014-07-01
Pre-clinical positron emission tomography (PET) has evolved in the last few years from pure visualization of radiotracer uptake and distribution towards quantification of the physiological parameters. For reliable and reproducible quantification the kinetic modeling methods used to obtain relevant parameters of radiotracer tissue interaction are important. Here we present different kinetic modeling techniques with a focus on compartmental models including plasma input models and reference tissue input models. The experimental challenges of deriving the plasma input function in rodents and the effect of anesthesia are discussed. Finally, in vivo application of kinetic modeling in various areas of pre-clinical research is presented and compared to human data.
Pulmonary toxicity of cytostatic drugs: cell kinetics
International Nuclear Information System (INIS)
Witschi, H.; Godfrey, G.; Frome, E.; Lindenschmidt, R.C.
1987-01-01
Mice were treated with three cytostatic drugs: cyclophosphamide, busulfan, or 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). The alveolar labeling index was measured following drug administration with a pulse of 3 H-labeled thymidine and autoradiography. In cyclophosphamide-treated animals, peak alveolar cell proliferation was seen 5 days after injection of the drug. In animals treated with busulfan or BCNU, proliferation was even more delayed (occurring 2-3 weeks after administration). In contrast, with oleic acid, the highest alveolar cell labeling was found 2 days after intravenous administration. In animals exposed to a cytostatic drug, proliferation of type II alveolar cells was never a prominent feature whereas in animals treated with oleic acid there was an initial burst of type II cell proliferation. It is concluded that the patterns of pulmonary repair vary between chemicals designed to interfere with DNA replication as compared to agents which produce acute lung damage such as oleic acid
Cell kinetics and acute lung injury
International Nuclear Information System (INIS)
Witschi, H.P.; Whitaker, M.S.
1987-01-01
In order to estimate whether acute lung injury is followed by a stereotype pattern of cell proliferation in the lungs, mice were treated with three cytostatic drugs: cyclophosphamide, busulfan, or 1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU). The alveolar labeling index was measured following drug administration with a pulse of 3 H-labeled thymidine and autoradiography. In cyclophosphamide treated animals, peak alveolar cell proliferation was seen 5 days after injection of the drug. In animals treated with busulfan or BCNU, proliferation was even more delayed (occurring 2 to 3 wks after administration). In contrast, with oleic acid, the highest alveolar cell labeling was found 2 days after intravenous administration. In animals exposed to a cytostatic drug, proliferation of type II alveolar cells was never a prominent feature; whereas, in animals treated with oleic acid there was an initial burst of type II cell proliferation. It was concluded that the patterns of pulmonary repair vary between chemical designed to interfere with DNA replication as compared to agents which produce acute lung damage such as oleic acid
Performance of neutron kinetics models for ADS transient analyses
International Nuclear Information System (INIS)
Rineiski, A.; Maschek, W.; Rimpault, G.
2002-01-01
Within the framework of the SIMMER code development, neutron kinetics models for simulating transients and hypothetical accidents in advanced reactor systems, in particular in Accelerator Driven Systems (ADSs), have been developed at FZK/IKET in cooperation with CE Cadarache. SIMMER is a fluid-dynamics/thermal-hydraulics code, coupled with a structure model and a space-, time- and energy-dependent neutronics module for analyzing transients and accidents. The advanced kinetics models have also been implemented into KIN3D, a module of the VARIANT/TGV code (stand-alone neutron kinetics) for broadening application and for testing and benchmarking. In the paper, a short review of the SIMMER and KIN3D neutron kinetics models is given. Some typical transients related to ADS perturbations are analyzed. The general models of SIMMER and KIN3D are compared with more simple techniques developed in the context of this work to get a better understanding of the specifics of transients in subcritical systems and to estimate the performance of different kinetics options. These comparisons may also help in elaborating new kinetics models and extending existing computation tools for ADS transient analyses. The traditional point-kinetics model may give rather inaccurate transient reaction rate distributions in an ADS even if the material configuration does not change significantly. This inaccuracy is not related to the problem of choosing a 'right' weighting function: the point-kinetics model with any weighting function cannot take into account pronounced flux shape variations related to possible significant changes in the criticality level or to fast beam trips. To improve the accuracy of the point-kinetics option for slow transients, we have introduced a correction factor technique. The related analyses give a better understanding of 'long-timescale' kinetics phenomena in the subcritical domain and help to evaluate the performance of the quasi-static scheme in a particular case. One
Bayesian inference of chemical kinetic models from proposed reactions
Galagali, Nikhil; Marzouk, Youssef M.
2015-01-01
© 2014 Elsevier Ltd. Bayesian inference provides a natural framework for combining experimental data with prior knowledge to develop chemical kinetic models and quantify the associated uncertainties, not only in parameter values but also in model
Cell kinetic and radiosensitivity of PHA stimulated goat lymphocytes
International Nuclear Information System (INIS)
Debuyst, B.; Rosenthal, M.; Leonard, A.
1982-01-01
The harlequin-staining method has been used to study the cell kinetic of goat peripheral blood lymphocytes stimulated by phytohemagglutinin and to assess their radiosensitivity. At 48 h, the standardized culture time employed for human lymphocytes, 71% of the goat lymphocytes are in first mitosis, 23% are in second mitosis and 5% in third. Irradiation with 200 rads X-rays induces an average of 24,5 dicentric chromosomes per hundred cells in first mitosis [fr
Cell kinetic parameters of a solid mammary adenocarcinoma
International Nuclear Information System (INIS)
Porschen, R.; Feinendegen, L.E.
1978-01-01
Several cell kinetic parameters of the mammary adenocarcinoma EO 771 were evaluated by means of tumor volume measurements and of 125 I-UdR. The in-situ measured activity loss rate is disturbed by a slow elimination of labelled necrotic cells and by reutilization of 125 I-UdR. The restrictions of the I-UdR method are mentioned and the measured activity loss rates are compared with calculated volume loss rates. (orig./MG) [de
Energy Technology Data Exchange (ETDEWEB)
Prothero, J; Starling, M; Rosse, C
1978-01-01
A model of steady-state erythropoiesis in the guinea pig is described. The model incorporates an unidentified progenitor compartment, as well as compartments representing proerythroblasts, basophilic polychromatic and orthochromatic cells. A computer representation of the model permits a simulation of the labeling curves obtained in pulse and intermittent labeling regimes. It was found that a reasonable fit to the data can be achieved when the parameters for the various compartments are essentially identical. The results of a preliminary sensitivity analysis, carried out by perturbing the duration of S phase from the best fit value, are reported. The fit achieved to the data supports the hypothesis underlying the model that each compartment corresponds to one generation and that the flux within and between compartments is sequential.
Energy Technology Data Exchange (ETDEWEB)
Prothero, J; Starling, M; Rosse, C [Washington Univ., Seattle (USA). Dept. of Biological Structure
1978-05-01
A model of steady state erythropoiesis in the guinea pig is described. The model incorporates an unidentified progenitor compartment, as well as compartments representing proerythroblasts, basophilic, polychromatic and orthochromatic cells. A computer representation of the model permits a simulation of the labelling curves obtained in pulse and intermittent labelling regimes. It was found that a reasonable fit to the data can be achieved when the parameters for the various compartments are essentially identical. The results of a preliminary sensitivity analysis, carried out by perturbing the duration of S phase from the best fit value, are reported. The fit achieved to the data supports the hypothesis underlying the model that each compartment corresponds to one generation and that the flux within and between compartments is sequential.
A kinetic model for the penicillin biosynthetic pathway in
DEFF Research Database (Denmark)
Nielsen, Jens; Jørgensen, Henrik
1996-01-01
A kinetic model for the first two steps in the penicillin biosynthetic pathway, i.e. the ACV synthetase (ACVS) and the isopenicillin N synthetase (IPNS) is proposed. The model is based on Michaelis-Menten type kinetics with non-competitive inhibition of the ACVS by ACV, and competitive inhibition...... of the IPNS by glutathione. The model predicted flux through the pathway corresponds well with the measured rate of penicillin biosynthesis. From the kinetic model the elasticity coefficients and the flux control coefficients are calculated throughout a fed-batch cultivation, and it is found...
Kinetics and hybrid kinetic-fluid models for nonequilibrium gas and plasmas
International Nuclear Information System (INIS)
Crouseilles, N.
2004-12-01
For a few decades, the application of the physics of plasmas has appeared in different fields like laser-matter interaction, astrophysics or thermonuclear fusion. In this thesis, we are interested in the modeling and the numerical study of nonequilibrium gas and plasmas. To describe such systems, two ways are usually used: the fluid description and the kinetic description. When we study a nonequilibrium system, fluid models are not sufficient and a kinetic description have to be used. However, solving a kinetic model requires the discretization of a large number of variables, which is quite expensive from a numerical point of view. The aim of this work is to propose a hybrid kinetic-fluid model thanks to a domain decomposition method in the velocity space. The derivation of the hybrid model is done in two different contexts: the rarefied gas context and the more complicated plasmas context. The derivation partly relies on Levermore's entropy minimization approach. The so-obtained model is then discretized and validated on various numerical test cases. In a second stage, a numerical study of a fully kinetic model is presented. A collisional plasma constituted of electrons and ions is considered through the Vlasov-Poisson-Fokker-Planck-Landau equation. Then, a numerical scheme which preserves total mass and total energy is presented. This discretization permits in particular a numerical study of the Landau damping. (author)
A balance principle approach for modeling phase transformation kinetics
International Nuclear Information System (INIS)
Lusk, M.; Krauss, G.; Jou, H.J.
1995-01-01
A balance principle is offered to model volume fraction kinetics of phase transformation kinetics at a continuum level. This microbalance provides a differential equation for transformation kinetics which is coupled to the differential equations governing the mechanical and thermal aspects of the process. Application here is restricted to diffusive transformations for the sake of clarity, although the principle is discussed for martensitic phase transitions as well. Avrami-type kinetics are shown to result from a special class of energy functions. An illustrative example using a 0.5% C Chromium steel demonstrates how TTT and CCT curves can be generated using a particularly simple effective energy function. (orig.)
Cell kinetics of the marine sponge Halisarca caerulea reveal rapid cell turnover and shedding
Goeij, de J.M.; Kluijver, de A.; Duyl, van F.C.; Vacelet, J.; Wijffels, R.H.; Goeij, de A.F.P.M.; Cleutjens, J.P.M.; Schutte, B.
2009-01-01
This study reveals the peculiar in vivo cell kinetics and cell turnover of the marine sponge Halisarca caerulea under steady-state conditions. The tropical coral reef sponge shows an extremely high proliferation activity, a short cell cycle duration and massive cell shedding. Cell turnover is
Dikshit, Pritam Kumar; Moholkar, Vijayanand S
2016-09-01
The present study has investigated kinetic features of bioconversion of biodiesel-derived crude glycerol to dihydroxyacetone with immobilized Gluconobacter oxydans cells using modified Haldane substrate-inhibition model. The results have been compared against free cells and pure glycerol. Relative variations in the kinetic parameters KS, KI, Vmax, n and X reveal that immobilized G. oxydans cells (on PU foam substrate) with crude glycerol as substrate give higher order of inhibition (n) and lower maximum reaction velocities (Vmax). These results are essentially implications of substrate transport restrictions across immobilization matrix, which causes retention of substrate in the matrix and reduction in fractional available substrate (X) for the cells. This causes reduction in both KS (substrate concentration at Vmax/2) and KI (inhibition constant) as compared to free cells. For immobilized cells, substrate concentration (Smax) corresponding to Vmax is practically same for both pure and crude glycerol as substrate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kinetic models in spin chemistry. 1. The hyperfine interaction
DEFF Research Database (Denmark)
Mojaza, M.; Pedersen, J. B.
2012-01-01
Kinetic models for quantum systems are quite popular due to their simplicity, although they are difficult to justify. We show that the transformation from quantum to kinetic description can be done exactly for the hyperfine interaction of one nuclei with arbitrary spin; more spins are described w...... induced enhancement of the reaction yield. (C) 2012 Elsevier B.V. All rights reserved....
One-dimensional reactor kinetics model for RETRAN
International Nuclear Information System (INIS)
Gose, G.C.; Peterson, C.E.; Ellis, N.L.; McClure, J.A.
1981-01-01
This paper describes a one-dimensional spatial neutron kinetics model that was developed for the RETRAN code. The RETRAN -01 code has a point kinetics model to describe the reactor core behavior during thermal-hydraulic transients. A one-dimensional neutronics model has been developed for RETRAN-02. The ability to account for flux shape changes will permit an improved representation of the thermal and hydraulic feedback effects for many operational transients. 19 refs
Lumping procedure for a kinetic model of catalytic naphtha reforming
Directory of Open Access Journals (Sweden)
H. M. Arani
2009-12-01
Full Text Available A lumping procedure is developed for obtaining kinetic and thermodynamic parameters of catalytic naphtha reforming. All kinetic and deactivation parameters are estimated from industrial data and thermodynamic parameters are calculated from derived mathematical expressions. The proposed model contains 17 lumps that include the C6 to C8+ hydrocarbon range and 15 reaction pathways. Hougen-Watson Langmuir-Hinshelwood type reaction rate expressions are used for kinetic simulation of catalytic reactions. The kinetic parameters are benchmarked with several sets of plant data and estimated by the SQP optimization method. After calculation of deactivation and kinetic parameters, plant data are compared with model predictions and only minor deviations between experimental and calculated data are generally observed.
Tumor cell proliferation kinetics and tumor growth rate
Energy Technology Data Exchange (ETDEWEB)
Tubiana, M
1989-01-01
The present knowledge on the growth rate and the proliferation kinetics of human tumor is based on the measurement of the tumor doubling times (DT) in several hundred patients and on the determination of the proportion of proliferating cells with radioactive thymidine or by flow cytometry in large numbers of patients. The results show that the DT of human tumor varies widely, from less than one week to over one year with a median value of approximately 2 months. The DTs are significantly correlated with the histological type. They depend upon (1) the duration of the cell cycle whose mean duration is 2 days with small variations from tumor to tumor, (2) the proportion of proliferating cells and consequently the cell birth rate which varies widely among tumors and which is significantly correlated to the DT, (3) the cell loss factors which also vary widely and which are the greatest when proliferation is most intensive. These studies have several clinical implications: (a) they have further increased our understanding of the natural history of human tumor, (b) they have therapeutic implications since tumor responsiveness and curability by radiation and drugs are strongly influenced by the cell kinetic parameters of the tumor, (c) the proportion of proliferating cells is of great prognostic value in several types of human cancers. The investigation of the molecular defects, which are correlated with the perturbation of control of cell proliferation, should lead to significant fundamental and therapeutic advances. (orig.).
COMPARATIVE ANALYSIS OF SOME EXISTING KINETIC MODELS ...
African Journals Online (AJOL)
The biosorption of three heavy metal ions namely; Zn2+, Cu2+ and Mn2+ using five microorganisms namely; Bacillus circulans, Pseudomonas aeruginosa, Staphylococcus xylosus, Streptomyces rimosus and Yeast (Saccharomyces sp.) were studied. In this paper, the effectiveness of six existing and two proposed kinetic ...
Cell kinetic studies on radiation induced leukemogenesis
International Nuclear Information System (INIS)
Nakao, Isamu; Suzuki, Gen; Imai, Yasufumi; Kawase, Yoshiko; Nose, Masako; Hirashima, Kunitake; Bessho, Masami
1989-01-01
The purpose of this study was threefold: (1) to determine the clonal origin of radiation-induced thymic lymphoma in mice with cellular mosaicism for phosphoglycerate kinase; (2) to determine the incidence and latent period of myeloid leukemia and thymic lymphoma induced by whole-body exposure to median doses (3.0 Gy or less) in RFM/MsNrs-2 mice; and (3) to examine the influence of human recombinant interleukin-2 (hrIL-2). Thymic lymphoma was of a single cell origin. The incidence of radiation-induced myeloid leukemia and thymic lymphoma in RFM mice increased in a dose dependent fashion. Mean latent periods of both myeloid leukemia and thymic lymphoma after irradiation became shorter in proportion to radiation doses. When hrIL-2 was injected to RFM mice receiving 3.0 Gy, mean survivals were shorter in thymoma-bearing mice than the control mice. This suggested that hrIL-2 shortens the promotion step of thymoma. Administration of hrIL-2 failed to alter the incidence of myeloid leukemia or the mean survival of mice having myeloid leukemia, indicating that the protocol of hrIL-2 administration was not so sufficient as to alter the myeloid leukemogenesis. (Namekawa, K)
Electrode Kinetics in High Temperature Fuel Cells
DEFF Research Database (Denmark)
Bay, Lasse
1998-01-01
^3s and 10^5s for a cathodic current. For the deactivation is the time constant about 10^4s. The origin for the hysteresis is not clear, but expansion of the three phase boundary (TPB) or change of the catalytic properties due to surface segregation are suggested.The hysteresis phenomenon is also......-electrolyte interface show dynamics of the YSZ surface and formation of a bank of YSZ along the TPB. These changes are induced by passage of current. The origin of the dynamics behaviour may be a localised temperature increase or it might be driven by segregation. The dynamics of the YSZ surface seems...... to be irreversible to annealing at 1000^oC.A separated part of the project was performed at National Institute of Materials and Chemical Research, Tsukuba, Japan. Here YSZ, Pr doped YSZ and Y doped SrCeO_3 were tested as electrolytes in a one chamber fuel cell. Electrochemical measurements and SIMS analysis...
A critical look at the kinetic models of thermoluminescence-II. Non-first order kinetics
International Nuclear Information System (INIS)
Sunta, C M; Ayta, W E F; Chubaci, J F D; Watanabe, S
2005-01-01
Non-first order (FO) kinetics models are of three types; second order (SO), general order (GO) and mixed order (MO). It is shown that all three of these have constraints in their energy level schemes and their applicable parameter values. In nature such restrictions are not expected to exist. The thermoluminescence (TL) glow peaks produced by these models shift their position and change their shape as the trap occupancies change. Such characteristics are very unlike those found in samples of real materials. In these models, in general, retrapping predominates over recombination. It is shown that the quasi-equilibrium (QE) assumption implied in the derivation of the TL equation of these models is quite valid, thus disproving earlier workers' conclusion that QE cannot be held under retrapping dominant conditions. However notwithstanding their validity, they suffer from the shortcomings as stated above and have certain lacunae. For example, the kinetic order (KO) parameter and the pre-exponential factor which are assumed to be the constant parameters of the GO kinetics expression turn out to be variables when this expression is applied to plausible physical models. Further, in glow peak characterization using the GO expression, the quality of fit is found to deteriorate when the best fitted value of KO parameter is different from 1 and 2. This means that the found value of the basic parameter, namely the activation energy, becomes subject to error. In the MO kinetics model, the value of the KO parameter α would change with dose, and thus in this model also, as in the GO model, no single value of KO can be assigned to a given glow peak. The paper discusses TL of real materials having characteristics typically like those of FO kinetics. Theoretically too, a plausible physical model of TL emission produces glow peaks which have characteristics of FO kinetics under a wide variety of parametric combinations. In the background of the above findings, it is suggested that
comparative analysis of some existing kinetic models with proposed
African Journals Online (AJOL)
IGNATIUS NWIDI
two statistical parameters namely; linear regression coefficient of correlation (R2) and ... Keynotes: Heavy metals, Biosorption, Kinetics Models, Comparative analysis, Average Relative Error. 1. ... If the flow rate is low, a simple manual batch.
Improved Kinetic Models for High-Speed Combustion Simulation
National Research Council Canada - National Science Library
Montgomery, C. J; Tang, Q; Sarofim, A. F; Bockelie, M. J; Gritton, J. K; Bozzelli, J. W; Gouldin, F. C; Fisher, E. M; Chakravarthy, S
2008-01-01
Report developed under an STTR contract. The overall goal of this STTR project has been to improve the realism of chemical kinetics in computational fluid dynamics modeling of hydrocarbon-fueled scramjet combustors...
Physical characterization and kinetic modelling of matrix tablets of ...
African Journals Online (AJOL)
release mechanisms were characterized by kinetic modeling. Analytical ... findings demonstrate that both the desired physical characteristics and drug release profiles were obtained ..... on the compression, mechanical, and release properties.
Analysis of a kinetic multi-segment foot model part II: kinetics and clinical implications.
Bruening, Dustin A; Cooney, Kevin M; Buczek, Frank L
2012-04-01
Kinematic multi-segment foot models have seen increased use in clinical and research settings, but the addition of kinetics has been limited and hampered by measurement limitations and modeling assumptions. In this second of two companion papers, we complete the presentation and analysis of a three segment kinetic foot model by incorporating kinetic parameters and calculating joint moments and powers. The model was tested on 17 pediatric subjects (ages 7-18 years) during normal gait. Ground reaction forces were measured using two adjacent force platforms, requiring targeted walking and the creation of two sub-models to analyze ankle, midtarsal, and 1st metatarsophalangeal joints. Targeted walking resulted in only minimal kinematic and kinetic differences compared with walking at self selected speeds. Joint moments and powers were calculated and ensemble averages are presented as a normative database for comparison purposes. Ankle joint powers are shown to be overestimated when using a traditional single-segment foot model, as substantial angular velocities are attributed to the mid-tarsal joint. Power transfer is apparent between the 1st metatarsophalangeal and mid-tarsal joints in terminal stance/pre-swing. While the measurement approach presented here is limited to clinical populations with only minimal impairments, some elements of the model can also be incorporated into routine clinical gait analysis. Copyright © 2011 Elsevier B.V. All rights reserved.
Molecular Dynamics Simulations of Kinetic Models for Chiral Dominance in Soft Condensed Matter
DEFF Research Database (Denmark)
Toxvaerd, Søren
2001-01-01
Molecular dynamics simulation, models for isomerization kinetics, origin of biomolecular chirality......Molecular dynamics simulation, models for isomerization kinetics, origin of biomolecular chirality...
Bone cell kinetics in the metaphysis of the growing long bone of the rat
International Nuclear Information System (INIS)
Kimmel, D.B.; Jee, W.S.
1976-01-01
The growing long bone metaphysis of rats was studied in a cell kinetic and morphometric analysis using tritiated thymidine as a tracer of cells. The results showed striking differences in the distribution and movements of osteoprogenitor and osteoblasts as compared to the osteoclasts. The results also showed a deficiency in cell production in the proliferating bone cells in the metaphysis. A new model of bone cell origin, proliferation, and movements in the metaphysis is proposed; osteoblasts and osteoprogenitor cells, the bone surface cells endemic to the metaphysis, are a continuum in adding bone forming cells and forming new bone on the calcified cartilage cores of the metaphysis. The osteoclasts, on the other hand, arise from mononuclear blood cells brought to the metaphysis through metaphyseal blood vessel spaces near the growth cartilage-metaphyseal junction
Directory of Open Access Journals (Sweden)
Krivtcova Nadezhda
2016-01-01
Full Text Available Modelling of sulfur compounds kinetics was performed, including kinetics of benzothiophene and dibenzothiophene homologues. Modelling is based on experimental data obtained from monitoring of industrial hydrotreating set. Obtained results include kinetic parameters of reactions.
Krivtsova, Nadezhda Igorevna; Tataurshikov, A.; Kotkova, Elena
2016-01-01
Modelling of sulfur compounds kinetics was performed, including kinetics of benzothiophene and dibenzothiophene homologues. Modelling is based on experimental data obtained from monitoring of industrial hydrotreating set. Obtained results include kinetic parameters of reactions.
You, Benoit; Fronton, Ludivine; Boyle, Helen; Droz, Jean-Pierre; Girard, Pascal; Tranchand, Brigitte; Ribba, Benjamin; Tod, Michel; Chabaud, Sylvie; Coquelin, Henri; Fléchon, Aude
2010-08-01
The early decline profile of alpha-fetoprotein (AFP) and human chorionic gonadotropin (hCG) in patients with nonseminomatous germ cell tumors (NSGCT) treated with chemotherapy may be related to the risk of relapse. We assessed the predictive values of areas under the curve of hCG (AUC(hCG)) and AFP (AUC(AFP)) of modeled concentration-time equations on progression-free survival (PFS). Single-center retrospective analysis of hCG and AFP time-points from 65 patients with IGCCCG intermediate-poor risk NSGCT treated with 4 cycles of bleomycin-etoposide-cisplatin (BEP). To determine AUC(hCG) and AUC(AFP) for D0-D42, AUCs for D0-D7 were calculated using the trapezoid rule and AUCs for D7-D42 were calculated using the mathematic integrals of equations modeled with NONMEM. Combining AUC(AFP) and AUC(hCG) enabled us to define 2 predictive groups: namely, patients with favorable and unfavorable AUC(AFP-hCG). Survival analyses and ROC curves assessed the predictive values of AUC(AFP-hCG) groups regarding progression-free survival (PFS) and compared them with those of half-life (HL) and time-to-normalization (TTN). Mono-exponential models best fit the patterns of marker decreases. Patients with a favorable AUC(AFP-hCG) had a significantly better PFS (100% vs 71.5%, P = .014). ROC curves confirmed the encouraging predictive accuracy of AUC(AFP-hCG) against HL or TTN regarding progression risk (ROC AUCs = 79.6 vs 71.9 and 70.2 respectively). Because of the large number of patients with missing data, multivariate analysis could not be performed. AUC(AFP-hCG) is a dynamic parameter characterizing tumor marker decline in patients with NSGCT during BEP treatment. Its value as a promising predictive factor should be validated. Copyright 2010 Elsevier Inc. All rights reserved.
Wang, Zhandong; Zhao, Long; Wang, Yu; Bian, Huiting; Zhang, Lidong; Zhang, Feng; Li, Yuyang; Sarathy, Mani; Qi, Fei
2015-01-01
species were evaluated, and good agreement was observed between the PIMS and GC data sets. Furthermore, a fuel-rich burner-stabilized laminar premixed ECH/O2/Ar flame at 30Torr was studied using synchrotron VUV PIMS. A detailed kinetic model for ECH high
A Global Modeling Framework for Plasma Kinetics: Development and Applications
Parsey, Guy Morland
The modern study of plasmas, and applications thereof, has developed synchronously with com- puter capabilities since the mid-1950s. Complexities inherent to these charged-particle, many- body, systems have resulted in the development of multiple simulation methods (particle-in-cell, fluid, global modeling, etc.) in order to both explain observed phenomena and predict outcomes of plasma applications. Recognizing that different algorithms are chosen to best address specific topics of interest, this thesis centers around the development of an open-source global model frame- work for the focused study of non-equilibrium plasma kinetics. After verification and validation of the framework, it was used to study two physical phenomena: plasma-assisted combustion and the recently proposed optically-pumped rare gas metastable laser. Global models permeate chemistry and plasma science, relying on spatial averaging to focus attention on the dynamics of reaction networks. Defined by a set of species continuity and energy conservation equations, the required data and constructed systems are conceptually similar across most applications, providing a light platform for exploratory and result-search parameter scan- ning. Unfortunately, it is common practice for custom code to be developed for each application-- an enormous duplication of effort which negatively affects the quality of the software produced. Presented herein, the Python-based Kinetic Global Modeling framework (KGMf) was designed to support all modeling phases: collection and analysis of reaction data, construction of an exportable system of model ODEs, and a platform for interactive evaluation and post-processing analysis. A symbolic ODE system is constructed for interactive manipulation and generation of a Jacobian, both of which are compiled as operation-optimized C-code. Plasma-assisted combustion and ignition (PAC/PAI) embody the modernization of burning fuel by opening up new avenues of control and optimization
Detailed Chemical Kinetic Modeling of Hydrazine Decomposition
Meagher, Nancy E.; Bates, Kami R.
2000-01-01
The purpose of this research project is to develop and validate a detailed chemical kinetic mechanism for gas-phase hydrazine decomposition. Hydrazine is used extensively in aerospace propulsion, and although liquid hydrazine is not considered detonable, many fuel handling systems create multiphase mixtures of fuels and fuel vapors during their operation. Therefore, a thorough knowledge of the decomposition chemistry of hydrazine under a variety of conditions can be of value in assessing potential operational hazards in hydrazine fuel systems. To gain such knowledge, a reasonable starting point is the development and validation of a detailed chemical kinetic mechanism for gas-phase hydrazine decomposition. A reasonably complete mechanism was published in 1996, however, many of the elementary steps included had outdated rate expressions and a thorough investigation of the behavior of the mechanism under a variety of conditions was not presented. The current work has included substantial revision of the previously published mechanism, along with a more extensive examination of the decomposition behavior of hydrazine. An attempt to validate the mechanism against the limited experimental data available has been made and was moderately successful. Further computational and experimental research into the chemistry of this fuel needs to be completed.
An Evaluation of Kinetic Parameters of Cadmium and Copper Biosorption by Immobilized Cells
Directory of Open Access Journals (Sweden)
Nelly Georgieva
2007-10-01
Full Text Available Bioremediation is the use of living organisms to reduce or eliminate environmental hazards resulting from the accumulation of toxic chemicals and other hazardous wastes. This technology is based on the utilization of microorganisms to transform organic and inorganic compounds. The filamentous yeast Trichosporon cutaneum strain R57, immobilized and free cells was cultivated as batch culture on a liquid medium in the presence of various concentrations of cadmium and copper ions. The simultaneous uptake and accumulation of Cd2+ and Cu2+ ions by Tr. cutaneum cells depending on the initial concentration of Cd2+ and Cu2+ in the medium were studied. The potential use of the free and immobilized cells of Trichosporon cutaneum to remove cadmium and copper ions, from aqueous solutions was evaluated. Two important physicochemical aspects for the evaluation of the sorption process as a unit operation are the equilibrium of sorption and the kinetics. The Cd2+ and Cu2+ ions biosorption capacities of all tested adsorbent were presented as a function of the initial concentration of metal ions within the aqueous biosorption medium. The individual, as well as bicomponent sorption kinetics of copper and cadmium ions by immobilised cells of Trichosporon cutaneum R57 is presented. A second order kinetic model obtains kinetic parameters for the copper and cadmium ions.
A new mathematical model for coal flotation kinetics
Guerrero-Pérez, Juan Sebastián; Barraza-Burgos, Juan Manuel
2017-01-01
Abstract This study describes the development and formulation of a novel mathematical model for coal flotation kinetic. The flotation rate was considered as a function of chemical, operating and petrographic parameters for a global flotation order n. The equation for flotation rate was obtained by dimensional analysis using the Rayleigh method. It shows the dependency of flotation kinetic on operating parameters, such as air velocity and particle size; chemical parameters, such as reagents do...
Modelling opinion formation by means of kinetic equations
Boudin , Laurent; Salvarani , Francesco
2010-01-01
In this chapter, we review some mechanisms of opinion dynamics that can be modelled by kinetic equations. Beside the sociological phenomenon of compromise, naturally linked to collisional operators of Boltzmann kind, many other aspects, already mentioned in the sociophysical literature or no, can enter in this framework. While describing some contributions appeared in the literature, we enlighten some mathematical tools of kinetic theory that can be useful in the context of sociophysics.
Wang, Zhandong
2015-07-01
Ethylcyclohexane (ECH) is a model compound for cycloalkanes with long alkyl side-chains. A preliminary investigation on ECH (Wang et al., Proc. Combust. Inst., 35, 2015, 367-375) revealed that an accurate ECH kinetic model with detailed fuel consumption mechanism and aromatic growth pathways, as well as additional ECH pyrolysis and oxidation data with detailed species concentration covering a wide pressure and temperature range are required to understand the ECH combustion kinetics. In this work, the flow reactor pyrolysis of ECH at various pressures (30, 150 and 760Torr) was studied using synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (PIMS) and gas chromatography (GC). The mole fraction profiles of numerous major and minor species were evaluated, and good agreement was observed between the PIMS and GC data sets. Furthermore, a fuel-rich burner-stabilized laminar premixed ECH/O2/Ar flame at 30Torr was studied using synchrotron VUV PIMS. A detailed kinetic model for ECH high temperature pyrolysis and oxidation was developed and validated against the pyrolysis and flame data performed in this work. Further validation of the kinetic model is presented against literature data including species concentrations in jet-stirred reactor oxidation, ignition delay times in a shock tube, and laminar flame speeds at various pressures and equivalence ratios. The model well predicts the consumption of ECH, the growth of aromatics, and the global combustion properties. Reaction flux and sensitivity analysis were utilized to elucidate chemical kinetic features of ECH combustion under various reaction conditions. © 2015 The Combustion Institute.
Chemical kinetic modeling of H{sub 2} applications
Energy Technology Data Exchange (ETDEWEB)
Marinov, N.M.; Westbrook, C.K.; Cloutman, L.D. [Lawrence Livermore National Lab., CA (United States)] [and others
1995-09-01
Work being carried out at LLNL has concentrated on studies of the role of chemical kinetics in a variety of problems related to hydrogen combustion in practical combustion systems, with an emphasis on vehicle propulsion. Use of hydrogen offers significant advantages over fossil fuels, and computer modeling provides advantages when used in concert with experimental studies. Many numerical {open_quotes}experiments{close_quotes} can be carried out quickly and efficiently, reducing the cost and time of system development, and many new and speculative concepts can be screened to identify those with sufficient promise to pursue experimentally. This project uses chemical kinetic and fluid dynamic computational modeling to examine the combustion characteristics of systems burning hydrogen, either as the only fuel or mixed with natural gas. Oxidation kinetics are combined with pollutant formation kinetics, including formation of oxides of nitrogen but also including air toxics in natural gas combustion. We have refined many of the elementary kinetic reaction steps in the detailed reaction mechanism for hydrogen oxidation. To extend the model to pressures characteristic of internal combustion engines, it was necessary to apply theoretical pressure falloff formalisms for several key steps in the reaction mechanism. We have continued development of simplified reaction mechanisms for hydrogen oxidation, we have implemented those mechanisms into multidimensional computational fluid dynamics models, and we have used models of chemistry and fluid dynamics to address selected application problems. At the present time, we are using computed high pressure flame, and auto-ignition data to further refine the simplified kinetics models that are then to be used in multidimensional fluid mechanics models. Detailed kinetics studies have investigated hydrogen flames and ignition of hydrogen behind shock waves, intended to refine the detailed reactions mechanisms.
RELAP5 kinetics model development for the Advanced Test Reactor
International Nuclear Information System (INIS)
Judd, J.L.; Terry, W.K.
1990-01-01
A point-kinetics model of the Advanced Test Reactor has been developed for the RELAP5 code. Reactivity feedback parameters were calculated by a three-dimensional analysis with the PDQ neutron diffusion code. Analyses of several hypothetical reactivity insertion events by the new model and two earlier models are discussed. 3 refs., 10 figs., 6 tabs
A tool model for predicting atmospheric kinetics with sensitivity analysis
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A package( a tool model) for program of predicting atmospheric chemical kinetics with sensitivity analysis is presented. The new direct method of calculating the first order sensitivity coefficients using sparse matrix technology to chemical kinetics is included in the tool model, it is only necessary to triangularize the matrix related to the Jacobian matrix of the model equation. The Gear type procedure is used to integrate amodel equation and its coupled auxiliary sensitivity coefficient equations. The FORTRAN subroutines of the model equation, the sensitivity coefficient equations, and their Jacobian analytical expressions are generated automatically from a chemical mechanism. The kinetic representation for the model equation and its sensitivity coefficient equations, and their Jacobian matrix is presented. Various FORTRAN subroutines in packages, such as SLODE, modified MA28, Gear package, with which the program runs in conjunction are recommended.The photo-oxidation of dimethyl disulfide is used for illustration.
High fidelity kinetic modeling of magnetic reconnection in laboratory plasma
Stanier, A.; Daughton, W. S.
2017-12-01
Over the past decade, a great deal of progress has been made towards understanding the physics of magnetic reconnection in weakly collisional regimes of relevance to both fusion devices, and to space and astrophysical plasmas. However, there remain some outstanding unsolved problems in reconnection physics, such as the generation and influence of plasmoids (flux ropes) within reconnection layers, the development of magnetic turbulence, the role of current driven and streaming instabilities, and the influence of electron pressure anisotropy on the layer structure. Due to the importance of these questions, new laboratory reconnection experiments are being built to allow controlled and reproducible study of such questions with the simultaneous acquisition of high time resolution measurements at a large number of spatial points. These experiments include the FLARE facility at Princeton University and the T-REX experiment at the University of Wisconsin. To guide and interpret these new experiments, and to extrapolate the results to space applications, new investments in kinetic modeling tools are required. We have recently developed a cylindrical version of the VPIC Particle-In-Cell code with the capability to perform first-principles kinetic simulations that approach experimental device size with more realistic geometry and drive coils. This cylindrical version inherits much of the optimization work that has been done recently for the next generation many-cores architectures with wider vector registers, and achieves comparable conservation properties as the Cartesian code. Namely it features exact discrete charge conservation, and a so-called "energy-conserving" scheme where the energy is conserved in the limit of continuous time, i.e. without contribution from spatial discretization (Lewis, 1970). We will present initial results of modeling magnetic reconnection in the experiments mentioned above. Since the VPIC code is open source (https
Reactor kinetics revisited: a coefficient based model (CBM)
International Nuclear Information System (INIS)
Ratemi, W.M.
2011-01-01
In this paper, a nuclear reactor kinetics model based on Guelph expansion coefficients calculation ( Coefficients Based Model, CBM), for n groups of delayed neutrons is developed. The accompanying characteristic equation is a polynomial form of the Inhour equation with the same coefficients of the CBM- kinetics model. Those coefficients depend on Universal abc- values which are dependent on the type of the fuel fueling a nuclear reactor. Furthermore, such coefficients are linearly dependent on the inserted reactivity. In this paper, the Universal abc- values have been presented symbolically, for the first time, as well as with their numerical values for U-235 fueled reactors for one, two, three, and six groups of delayed neutrons. Simulation studies for constant and variable reactivity insertions are made for the CBM kinetics model, and a comparison of results, with numerical solutions of classical kinetics models for one, two, three, and six groups of delayed neutrons are presented. The results show good agreements, especially for single step insertion of reactivity, with the advantage of the CBM- solution of not encountering the stiffness problem accompanying the numerical solutions of the classical kinetics model. (author)
Mathematical modeling provides kinetic details of the human immune response to vaccination
Directory of Open Access Journals (Sweden)
Dustin eLe
2015-01-01
Full Text Available With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combine mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response is determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increases slowly, the slow increase can still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model describes well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization are derived from the population of circulating antibody-secreting cells. Taken together, our analysis provides novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlight challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data.
Mathematical modeling provides kinetic details of the human immune response to vaccination.
Le, Dustin; Miller, Joseph D; Ganusov, Vitaly V
2014-01-01
With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combined mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response was determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increased slowly, the slow increase could still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model described well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization were derived from the population of circulating antibody-secreting cells. Taken together, our analysis provided novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlighted challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data.
International Nuclear Information System (INIS)
Santos, Rubens Souza dos; Martinez, Aquilino Senra; Alvim, Antonio Carlos Marques
2002-01-01
In this work is presented a methodology which focuses the distribution of neutron absorber rods in nuclear reactor power plants, for utilizing in space kinetic calculations, principally in the cluster ejection transients of control rods. A numerical model for macroscopic constant calculations based on the knowledge of the neutron flux without the control rods is proposed, as alternative to the analytical models, based on the hypothesis of the null current on the cell super boundaries. The proposed model in this work has itself showed adequate to deal with problems with strong space dependence, once that the model showed consistence in the global average built in the analytical model. (author)
Kinetic computer modeling of microwave surface-wave plasma production
International Nuclear Information System (INIS)
Ganachev, Ivan P.
2004-01-01
Kinetic computer plasma modeling occupies an intermediate position between the time consuming rigorous particle dynamic simulation and the fast but rather rough cold- or warm-plasma fluid models. The present paper reviews the kinetic modeling of microwave surface-wave discharges with accent on recent kinetic self-consistent models, where the external input parameters are reduced to the necessary minimum (frequency and intensity of the applied microwave field and pressure and geometry of the discharge vessel). The presentation is limited to low pressures, so that Boltzmann equation is solved in non-local approximation and collisional electron heating is neglected. The numerical results reproduce correctly the bi-Maxwellian electron energy distribution functions observed experimentally. (author)
Model of SNARE-mediated membrane adhesion kinetics.
Directory of Open Access Journals (Sweden)
Jason M Warner
Full Text Available SNARE proteins are conserved components of the core fusion machinery driving diverse membrane adhesion and fusion processes in the cell. In many cases micron-sized membranes adhere over large areas before fusion. Reconstituted in vitro assays have helped isolate SNARE mechanisms in small membrane adhesion-fusion and are emerging as powerful tools to study large membrane systems by use of giant unilamellar vesicles (GUVs. Here we model SNARE-mediated adhesion kinetics in SNARE-reconstituted GUV-GUV or GUV-supported bilayer experiments. Adhesion involves many SNAREs whose complexation pulls apposing membranes into contact. The contact region is a tightly bound rapidly expanding patch whose growth velocity v(patch increases with SNARE density Gamma(snare. We find three patch expansion regimes: slow, intermediate, fast. Typical experiments belong to the fast regime where v(patch ~ (Gamma(snare(2/3 depends on SNARE diffusivities and complexation binding constant. The model predicts growth velocities ~10 - 300 microm/s. The patch may provide a close contact region where SNAREs can trigger fusion. Extending the model to a simple description of fusion, a broad distribution of fusion times is predicted. Increasing SNARE density accelerates fusion by boosting the patch growth velocity, thereby providing more complexes to participate in fusion. This quantifies the notion of SNAREs as dual adhesion-fusion agents.
RETRAN-02 one-dimensional kinetics model: a review
International Nuclear Information System (INIS)
Gose, G.C.; McClure, J.A.
1986-01-01
RETRAN-02 is a modular code system that has been designed for one-dimensional, transient thermal-hydraulics analysis. In RETRAN-02, core power behavior may be treated using a one-dimensional reactor kinetics model. This model allows the user to investigate the interaction of time- and space-dependent effects in the reactor core on overall system behavior for specific LWR operational transients. The purpose of this paper is to review the recent analysis and development activities related to the one dimensional kinetics model in RETRAN-02
Vibrational kinetics in CO electric discharge lasers - Modeling and experiments
Stanton, A. C.; Hanson, R. K.; Mitchner, M.
1980-01-01
A model of CO laser vibrational kinetics is developed, and predicted vibrational distributions are compared with measurements. The experimental distributions were obtained at various flow locations in a transverse CW discharge in supersonic (M = 3) flow. Good qualitative agreement is obtained in the comparisons, including the prediction of a total inversion at low discharge current densities. The major area of discrepancy is an observed loss in vibrational energy downstream of the discharge which is not predicted by the model. This discrepancy may be due to three-dimensional effects in the experiment which are not included in the model. Possible kinetic effects which may contribute to vibrational energy loss are also examined.
A two-point kinetic model for the PROTEUS reactor
International Nuclear Information System (INIS)
Dam, H. van.
1995-03-01
A two-point reactor kinetic model for the PROTEUS-reactor is developed and the results are described in terms of frequency dependent reactivity transfer functions for the core and the reflector. It is shown that at higher frequencies space-dependent effects occur which imply failure of the one-point kinetic model. In the modulus of the transfer functions these effects become apparent above a radian frequency of about 100 s -1 , whereas for the phase behaviour the deviation from a point model already starts at a radian frequency of 10 s -1 . (orig.)
Modeling Kinetics of Distortion in Porous Bi-layered Structures
DEFF Research Database (Denmark)
Tadesse Molla, Tesfaye; Frandsen, Henrik Lund; Bjørk, Rasmus
2013-01-01
because of different sintering rates of the materials resulting in undesired distortions of the component. An analytical model based on the continuum theory of sintering has been developed to describe the kinetics of densification and distortion in the sintering processes. A new approach is used...... to extract the material parameters controlling shape distortion through optimizing the model to experimental data of free shrinkage strains. The significant influence of weight of the sample (gravity) on the kinetics of distortion is taken in to consideration. The modeling predictions indicate good agreement...
Prospects in the Study of Stem-Cell Kinetics
Energy Technology Data Exchange (ETDEWEB)
Till, J. E. [Department of Medical Biophysics, University of Toronto (Canada); Ontario Cancer Instute, Toronto, ON (Canada)
1968-08-15
The recent rapid progress in the field of stem-cell kinetics has been due in large part to the development of reliable in-vivo assays for the functions of haemopoietic stem cells. As a direct result of the availability of these assays, several novel and interesting phenomena have been described. What is now needed is not so much further search for new phenomena as an understanding of the phenomena that have already been uncovered. It is postulated that new approaches will be required for the analysis of these phenomena, and that future progress in the field will be strongly dependent on the development of methods suitable for the detailed study of the growth and differentiation of populations of haemopoietic cells in culture systems. (author)
Evaluation of rate law approximations in bottom-up kinetic models of metabolism
DEFF Research Database (Denmark)
Du, Bin; Zielinski, Daniel C.; Kavvas, Erol S.
2016-01-01
mass action rate law that removes the role of the enzyme from the reaction kinetics. We utilized in vivo data for the human red blood cell to compare the effect of rate law choices against the backdrop of physiological flux and concentration differences. We found that the Michaelis-Menten rate law......Background: The mechanistic description of enzyme kinetics in a dynamic model of metabolism requires specifying the numerical values of a large number of kinetic parameters. The parameterization challenge is often addressed through the use of simplifying approximations to form reaction rate laws....... These approximate rate laws were: 1) a Michaelis-Menten rate law with measured enzyme parameters, 2) a Michaelis-Menten rate law with approximated parameters, using the convenience kinetics convention, 3) a thermodynamic rate law resulting from a metabolite saturation assumption, and 4) a pure chemical reaction...
A multi water bag model of drift kinetic electron plasma
International Nuclear Information System (INIS)
Morel, P.; Dreydemy Ghiro, F.; Berionni, V.; Gurcan, O.D.; Coulette, D.; Besse, N.
2014-01-01
A Multi Water Bag model is proposed for describing drift kinetic plasmas in a magnetized cylindrical geometry, relevant for various experimental devices, solar wind modeling... The Multi Water Bag (MWB) model is adapted to the description of a plasma with kinetic electrons as well as an arbitrary number of kinetic ions. This allows to describe the kinetic dynamics of the electrons, making possible the study of electron temperature gradient (ETG) modes, in addition to the effects of non adiabatic electrons on the ion temperature gradient (ITG) modes, that are of prime importance in the magnetized plasmas micro-turbulence [X. Garbet, Y. Idomura, L. Villard, T.H. Watanabe, Nucl. Fusion 50, 043002 (2010); J.A. Krommes, Ann. Rev. Fluid Mech. 44, 175 (2012)]. The MWB model is shown to link kinetic and fluid descriptions, depending on the number of bags considered. Linear stability of the ETG modes is presented and compared to the existing results regarding cylindrical ITG modes [P. Morel, E. Gravier, N. Besse, R. Klein, A. Ghizzo, P. Bertrand, W. Garbet, Ph. Ghendrih, V. Grandgirard, Y. Sarazin, Phys. Plasmas 14, 112109 (2007)]. (authors)
Viral kinetics of Enterovirus 71 in human abdomyosarcoma cells
Lu, Jing; He, Ya-Qing; Yi, Li-Na; Zan, Hong; Kung, Hsiang-Fu; He, Ming-Liang
2011-01-01
AIM: To characterise the viral kinetics of enterovirus 71 (EV71). METHODS: In this study, human rhabdomyosarcoma (RD) cells were infected with EV71 at different multiplicity of infection (MOI). After infection, the cytopathic effect (CPE) was monitored and recorded using a phase contrast microscope associated with a CCD camera at different time points post viral infection (0, 6, 12, 24 h post infection). Cell growth and viability were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in both EV71 infected and mock infected cells at each time point. EV71 replication kinetics in RD cells was determined by measuring the total intracellular viral RNA with real-time reverse-transcription polymerase chain reaction (qRT-PCR). Also, the intracellular and extracellular virion RNA was isolated and quantified at different time points to analyze the viral package and secretion. The expression of viral protein was determined by analyze the levels of viral structure protein VP1 with Western blotting. RESULTS: EV71 infection induced a significant CPE as early as 6 h post infection (p.i.) in both RD cells infected with high ratio of virus (MOI 10) and low ratio of virus (MOI 1). In EV71 infected cells, the cell growth was inhibited and the number of viable cells was rapidly decreased in the later phase of infection. EV71 virions were uncoated immediately after entry. The intracellular viral RNA began to increase at as early as 3 h p.i. and the exponential increase was found between 3 h to 6 h p.i. in both infected groups. For viral structure protein synthesis, results from western-blot showed that intracellular viral protein VP1 could not be detected until 6 h p.i. in the cells infected at either MOI 1 or MOI 10; and reached the peak at 9 h p.i. in the cells infected with EV71 at both MOI 1 and MOI 10. Simultaneously, the viral package and secretion were also actively processed as the virus underwent rapid replication. The viral package kinetics
Computer-Aided Construction of Chemical Kinetic Models
Energy Technology Data Exchange (ETDEWEB)
Green, William H. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2014-12-31
The combustion chemistry of even simple fuels can be extremely complex, involving hundreds or thousands of kinetically significant species. The most reasonable way to deal with this complexity is to use a computer not only to numerically solve the kinetic model, but also to construct the kinetic model in the first place. Because these large models contain so many numerical parameters (e.g. rate coefficients, thermochemistry) one never has sufficient data to uniquely determine them all experimentally. Instead one must work in “predictive” mode, using theoretical rather than experimental values for many of the numbers in the model, and as appropriate refining the most sensitive numbers through experiments. Predictive chemical kinetics is exactly what is needed for computer-aided design of combustion systems based on proposed alternative fuels, particularly for early assessment of the value and viability of proposed new fuels before those fuels are commercially available. This project was aimed at making accurate predictive chemical kinetics practical; this is a challenging goal which requires a range of science advances. The project spanned a wide range from quantum chemical calculations on individual molecules and elementary-step reactions, through the development of improved rate/thermo calculation procedures, the creation of algorithms and software for constructing and solving kinetic simulations, the invention of methods for model-reduction while maintaining error control, and finally comparisons with experiment. Many of the parameters in the models were derived from quantum chemistry calculations, and the models were compared with experimental data measured in our lab or in collaboration with others.
Ab initio and kinetic modeling studies of formic acid oxidation
DEFF Research Database (Denmark)
Marshall, Paul; Glarborg, Peter
2015-01-01
A detailed chemical kinetic model for oxidation of formic acid (HOCHO) in flames has been developed, based on theoretical work and data from literature. Ab initio calculations were used to obtain rate coefficients for reactions of HOCHO with H, O, and HO2. Modeling predictions with the mechanism...
Modeling the kinetics of volatilization from glass melts
Beerkens, R.G.C.
2001-01-01
A model description for the evaporation kinetics from glass melts in direct contact with static atmospheres or flowing gas phases is presented. The derived models and equations are based on the solution of the second Ficks' diffusion law and quasi-steady-state mass transfer relations, taking into
A mathematical model of combustion kinetics of municipal solid ...
African Journals Online (AJOL)
Municipal Solid Waste has become a serious environmental problem troubling many cities. In this paper, a mathematical model of combustion kinetics of municipal solid waste with focus on plastic waste was studied. An analytical solution is obtained for the model. From the numerical simulation, it is observed that the ...
Simplified kinetic models of methanol oxidation on silver
DEFF Research Database (Denmark)
Andreasen, A.; Lynggaard, H.; Stegelmann, C.
2005-01-01
Recently the authors developed a microkinetic model of methanol oxidation on silver [A. Andreasen, H. Lynggaard, C. Stegelmann, P. Stoltze, Surf. Sci. 544 (2003) 5-23]. The model successfully explains both surface science experiments and kinetic experiments at industrial conditions applying...
A Study of the Optimal Model of the Flotation Kinetics of Copper Slag from Copper Mine BOR
Stanojlović, Rodoljub D.; Sokolović, Jovica M.
2014-10-01
In this study the effect of mixtures of copper slag and flotation tailings from copper mine Bor, Serbia on the flotation results of copper recovery and flotation kinetics parameters in a batch flotation cell has been investigated. By simultaneous adding old flotation tailings in the ball mill at the rate of 9%, it is possible to increase copper recovery for about 20%. These results are compared with obtained copper recovery of pure copper slag. The results of batch flotation test were fitted by MatLab software for modeling the first-order flotation kinetics in order to determine kinetics parameters and define an optimal model of the flotation kinetics. Six kinetic models are tested on the batch flotation copper recovery against flotation time. All models showed good correlation, however the modified Kelsall model provided the best fit.
Kinetic modelling for zinc (II) ions biosorption onto Luffa cylindrica
International Nuclear Information System (INIS)
Oboh, I.; Aluyor, E.; Audu, T.
2015-01-01
The biosorption of Zinc (II) ions onto a biomaterial - Luffa cylindrica has been studied. This biomaterial was characterized by elemental analysis, surface area, pore size distribution, scanning electron microscopy, and the biomaterial before and after sorption, was characterized by Fourier Transform Infra Red (FTIR) spectrometer. The kinetic nonlinear models fitted were Pseudo-first order, Pseudo-second order and Intra-particle diffusion. A comparison of non-linear regression method in selecting the kinetic model was made. Four error functions, namely coefficient of determination (R 2 ), hybrid fractional error function (HYBRID), average relative error (ARE), and sum of the errors squared (ERRSQ), were used to predict the parameters of the kinetic models. The strength of this study is that a biomaterial with wide distribution particularly in the tropical world and which occurs as waste material could be put into effective utilization as a biosorbent to address a crucial environmental problem
Sum rule limitations of kinetic particle-production models
International Nuclear Information System (INIS)
Knoll, J.; CEA Centre d'Etudes Nucleaires de Grenoble, 38; Guet, C.
1988-04-01
Photoproduction and absorption sum rules generalized to systems at finite temperature provide a stringent check on the validity of kinetic models for the production of hard photons in intermediate energy nuclear collisions. We inspect such models for the case of nuclear matter at finite temperature employed in a kinetic regime which copes those encountered in energetic nuclear collisions, and find photon production rates which significantly exceed the limits imposed by the sum rule even under favourable concession. This suggests that coherence effects are quite important and the production of photons cannot be considered as an incoherent addition of individual NNγ production processes. The deficiencies of present kinetic models may also apply for the production of probes such as the pion which do not couple perturbatively to the nuclear currents. (orig.)
A kinetic approach to magnetospheric modeling
International Nuclear Information System (INIS)
Whipple, E.C. Jr.
1979-01-01
The earth's magnetosphere is caused by the interaction between the flowing solar wind and the earth's magnetic dipole, with the distorted magnetic field in the outer parts of the magnetosphere due to the current systems resulting from this interaction. It is surprising that even the conceptually simple problem of the collisionless interaction of a flowing plasma with a dipole magnetic field has not been solved. A kinetic approach is essential if one is to take into account the dispersion of particles with different energies and pitch angles and the fact that particles on different trajectories have different histories and may come from different sources. Solving the interaction problem involves finding the various types of possible trajectories, populating them with particles appropriately, and then treating the electric and magnetic fields self-consistently with the resulting particle densities and currents. This approach is illustrated by formulating a procedure for solving the collisionless interaction problem on open field lines in the case of a slowly flowing magnetized plasma interacting with a magnetic dipole
A kinetic approach to magnetospheric modeling
Whipple, E. C., Jr.
1979-01-01
The earth's magnetosphere is caused by the interaction between the flowing solar wind and the earth's magnetic dipole, with the distorted magnetic field in the outer parts of the magnetosphere due to the current systems resulting from this interaction. It is surprising that even the conceptually simple problem of the collisionless interaction of a flowing plasma with a dipole magnetic field has not been solved. A kinetic approach is essential if one is to take into account the dispersion of particles with different energies and pitch angles and the fact that particles on different trajectories have different histories and may come from different sources. Solving the interaction problem involves finding the various types of possible trajectories, populating them with particles appropriately, and then treating the electric and magnetic fields self-consistently with the resulting particle densities and currents. This approach is illustrated by formulating a procedure for solving the collisionless interaction problem on open field lines in the case of a slowly flowing magnetized plasma interacting with a magnetic dipole.
Global fully kinetic models of planetary magnetospheres with iPic3D
Gonzalez, D.; Sanna, L.; Amaya, J.; Zitz, A.; Lembege, B.; Markidis, S.; Schriver, D.; Walker, R. J.; Berchem, J.; Peng, I. B.; Travnicek, P. M.; Lapenta, G.
2016-12-01
We report on the latest developments of our approach to model planetary magnetospheres, mini magnetospheres and the Earth's magnetosphere with the fully kinetic, electromagnetic particle in cell code iPic3D. The code treats electrons and multiple species of ions as full kinetic particles. We review: 1) Why a fully kinetic model and in particular why kinetic electrons are needed for capturing some of the most important aspects of the physics processes of planetary magnetospheres. 2) Why the energy conserving implicit method (ECIM) in its newest implementation [1] is the right approach to reach this goal. We consider the different electron scales and study how the new IECIM can be tuned to resolve only the electron scales of interest while averaging over the unresolved scales preserving their contribution to the evolution. 3) How with modern computing planetary magnetospheres, mini magnetosphere and eventually Earth's magnetosphere can be modeled with fully kinetic electrons. The path from petascale to exascale for iPiC3D is outlined based on the DEEP-ER project [2], using dynamic allocation of different processor architectures (Xeon and Xeon Phi) and innovative I/O technologies.Specifically results from models of Mercury are presented and compared with MESSENGER observations and with previous hybrid (fluid electrons and kinetic ions) simulations. The plasma convection around the planets includes the development of hydrodynamic instabilities at the flanks, the presence of the collisionless shocks, the magnetosheath, the magnetopause, reconnection zones, the formation of the plasma sheet and the magnetotail, and the variation of ion/electron plasma flows when crossing these frontiers. Given the full kinetic nature of our approach we focus on detailed particle dynamics and distribution at locations that can be used for comparison with satellite data. [1] Lapenta, G. (2016). Exactly Energy Conserving Implicit Moment Particle in Cell Formulation. arXiv preprint ar
Staiano-Coico, L; Steinberg, M; Higgins, P J
1990-10-15
Recent data indicate that malignant human epidermal cells may be appropriate targets for sodium butyrate (NaB)-mediated differentiation therapy. The response of pre- and post-crisis populations of SV40-transformed human keratinocytes (SVKs) to this differentiation-inducing agent was assessed, therefore, within the framework of NaB-directed normal human keratinocyte (NHK) maturation. NaB augmented cornified envelope (CE) production in NHK and pre-crisis SVK cultures; the time-course and efficiency of induced maturation were similar in the 2 cell systems. In NHKs, the percentage of amplifying ("B" substate) cells decreased with time in NaB correlating with increases in both "C" stage keratinocytes and CEs. The latter formed over one or 2 layers of nucleated basal-like cells. Inductions were accompanied by immediate cell cycle blocks (in both the G1 and G2/M phases), reorganization within the actin cytoskeleton, and transient early increases in cellular actin content. Increased NHK and pre-crisis SVK cytoskeletal-associated actin reached a maximum approximately 48 hr after NaB addition and preceded development of CEs. The CE precursors, thus, probably reside in the "B" substate. Post-crisis SVKs, in contrast, were refractive to NaB-induced terminal maturation or cell-cycle perturbation, failed to initiate actin filament rearrangements, and retained a basal cell-like phenotype. Stable transformation of human SVKs in post-crisis phase, therefore, appears to be associated with loss of maturation "competence" within the "B" keratinocyte subpopulation.
Kinetic models for irreversible processes on a lattice
International Nuclear Information System (INIS)
Wolf, N.O.
1979-04-01
The development and application of kinetic lattice models are considered. For the most part, the discussions are restricted to lattices in one-dimension. In Chapter 1, a brief overview of kinetic lattice model formalisms and an extensive literature survey are presented. A review of the kinetic models for non-cooperative lattice events is presented in Chapter 2. The development of cooperative lattice models and solution of the resulting kinetic equations for an infinite and a semi-infinite lattice are thoroughly discussed in Chapters 3 and 4. The cooperative models are then applied to the problem of theoretically dtermining the sticking coefficient for molecular chemisorption in Chapter 5. In Chapter 6, other possible applications of these models and several model generalizations are considered. Finally, in Chapter 7, an experimental study directed toward elucidating the mechanistic factors influencing the chemisorption of methane on single crystal tungsten is reported. In this it differs from the rest of the thesis which deals with the statistical distributions resulting from a given mechanism
Kinetic models for irreversible processes on a lattice
Energy Technology Data Exchange (ETDEWEB)
Wolf, N.O.
1979-04-01
The development and application of kinetic lattice models are considered. For the most part, the discussions are restricted to lattices in one-dimension. In Chapter 1, a brief overview of kinetic lattice model formalisms and an extensive literature survey are presented. A review of the kinetic models for non-cooperative lattice events is presented in Chapter 2. The development of cooperative lattice models and solution of the resulting kinetic equations for an infinite and a semi-infinite lattice are thoroughly discussed in Chapters 3 and 4. The cooperative models are then applied to the problem of theoretically dtermining the sticking coefficient for molecular chemisorption in Chapter 5. In Chapter 6, other possible applications of these models and several model generalizations are considered. Finally, in Chapter 7, an experimental study directed toward elucidating the mechanistic factors influencing the chemisorption of methane on single crystal tungsten is reported. In this it differs from the rest of the thesis which deals with the statistical distributions resulting from a given mechanism.
Transperitoneal transport of creatinine. A comparison of kinetic models
DEFF Research Database (Denmark)
Fugleberg, S; Graff, J; Joffe, P
1994-01-01
Six kinetic models of transperitoneal creatinine transport were formulated and validated on the basis of experimental results obtained from 23 non-diabetic patients undergoing peritoneal dialysis. The models were designed to elucidate the presence or absence of diffusive, non-lymphatic convective...... including all three forms of transport is superior to other models. We conclude that the best model of transperitoneal creatinine transport includes diffusion, non-lymphatic convective transport and lymphatic convective transport....
Gyrofluid Modeling of Turbulent, Kinetic Physics
Despain, Kate Marie
2011-12-01
Gyrofluid models to describe plasma turbulence combine the advantages of fluid models, such as lower dimensionality and well-developed intuition, with those of gyrokinetics models, such as finite Larmor radius (FLR) effects. This allows gyrofluid models to be more tractable computationally while still capturing much of the physics related to the FLR of the particles. We present a gyrofluid model derived to capture the behavior of slow solar wind turbulence and describe the computer code developed to implement the model. In addition, we describe the modifications we made to a gyrofluid model and code that simulate plasma turbulence in tokamak geometries. Specifically, we describe a nonlinear phase mixing phenomenon, part of the E x B term, that was previously missing from the model. An inherently FLR effect, it plays an important role in predicting turbulent heat flux and diffusivity levels for the plasma. We demonstrate this importance by comparing results from the updated code to studies done previously by gyrofluid and gyrokinetic codes. We further explain what would be necessary to couple the updated gyrofluid code, gryffin, to a turbulent transport code, thus allowing gryffin to play a role in predicting profiles for fusion devices such as ITER and to explore novel fusion configurations. Such a coupling would require the use of Graphical Processing Units (GPUs) to make the modeling process fast enough to be viable. Consequently, we also describe our experience with GPU computing and demonstrate that we are poised to complete a gryffin port to this innovative architecture.
CELL POPULATION KINETICS OF EXCISED ROOTS OF PISUM SATIVUM
Van't Hof, Jack
1965-01-01
The cell population kinetics of excised, cultured pea roots was studied with the use of tritiated thymidine and colchicine to determine (1) the influence of excision, (2) the influence of sucrose concentration, (3) the average mitotic cycle duration, and (4) the duration of mitosis and the G 1, S, and G 2 periods of interphase.1 The results indicate that the process of excision causes a drop in the frequency of mitotic figures when performed either at the beginning of the culture period or after 100 hours in culture. This initial decrease in frequency of cell division is independent of sucrose concentration, but the subsequent rise in frequency of division, after 12 hours in culture, is dependent upon sucrose concentration. Two per cent sucrose maintains the shortest mitotic cycle duration. The use of colchicine indicated an average cycle duration of 20 hours, whereas the use of tritiated thymidine produced an average cycle duration of 17 hours. PMID:5857253
Kinetic k-essence ghost dark energy model
International Nuclear Information System (INIS)
Rozas-Fernández, Alberto
2012-01-01
A ghost dark energy model has been recently put forward to explain the current accelerated expansion of the Universe. In this model, the energy density of ghost dark energy, which comes from the Veneziano ghost of QCD, is proportional to the Hubble parameter, ρ D =αH. Here α is a constant of order Λ QCD 3 where Λ QCD ∼100 MeV is the QCD mass scale. We consider a connection between ghost dark energy with/without interaction between the components of the dark sector and the kinetic k-essence field. It is shown that the cosmological evolution of the ghost dark energy dominated Universe can be completely described a kinetic k-essence scalar field. We reconstruct the kinetic k-essence function F(X) in a flat Friedmann-Robertson-Walker Universe according to the evolution of ghost dark energy density.
Bayesian inference of chemical kinetic models from proposed reactions
Galagali, Nikhil
2015-02-01
© 2014 Elsevier Ltd. Bayesian inference provides a natural framework for combining experimental data with prior knowledge to develop chemical kinetic models and quantify the associated uncertainties, not only in parameter values but also in model structure. Most existing applications of Bayesian model selection methods to chemical kinetics have been limited to comparisons among a small set of models, however. The significant computational cost of evaluating posterior model probabilities renders traditional Bayesian methods infeasible when the model space becomes large. We present a new framework for tractable Bayesian model inference and uncertainty quantification using a large number of systematically generated model hypotheses. The approach involves imposing point-mass mixture priors over rate constants and exploring the resulting posterior distribution using an adaptive Markov chain Monte Carlo method. The posterior samples are used to identify plausible models, to quantify rate constant uncertainties, and to extract key diagnostic information about model structure-such as the reactions and operating pathways most strongly supported by the data. We provide numerical demonstrations of the proposed framework by inferring kinetic models for catalytic steam and dry reforming of methane using available experimental data.
Continuum-Kinetic Models and Numerical Methods for Multiphase Applications
Nault, Isaac Michael
This thesis presents a continuum-kinetic approach for modeling general problems in multiphase solid mechanics. In this context, a continuum model refers to any model, typically on the macro-scale, in which continuous state variables are used to capture the most important physics: conservation of mass, momentum, and energy. A kinetic model refers to any model, typically on the meso-scale, which captures the statistical motion and evolution of microscopic entitites. Multiphase phenomena usually involve non-negligible micro or meso-scopic effects at the interfaces between phases. The approach developed in the thesis attempts to combine the computational performance benefits of a continuum model with the physical accuracy of a kinetic model when applied to a multiphase problem. The approach is applied to modeling a single particle impact in Cold Spray, an engineering process that intimately involves the interaction of crystal grains with high-magnitude elastic waves. Such a situation could be classified a multiphase application due to the discrete nature of grains on the spatial scale of the problem. For this application, a hyper elasto-plastic model is solved by a finite volume method with approximate Riemann solver. The results of this model are compared for two types of plastic closure: a phenomenological macro-scale constitutive law, and a physics-based meso-scale Crystal Plasticity model.
Modeling uptake kinetics of cadmium by field-grown lettuce
Energy Technology Data Exchange (ETDEWEB)
Chen Weiping [Department of Environmental Sciences, University of California, 900 University Avenue, Riverside, CA 92521 (United States)], E-mail: chenweip@yahoo.com.cn; Li Lianqing [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095 (China); Chang, Andrew C.; Wu Laosheng [Department of Environmental Sciences, University of California, 900 University Avenue, Riverside, CA 92521 (United States); Kwon, Soon-Ik [Agricultural Environmental and Ecology Division, National Institute of Agricultural Science and Technology, Suwon 441-707 (Korea, Republic of); Bottoms, Rick [Desert Research and Extension Center, 1004 East Holton Road, El Centro, CA 92243 (United States)
2008-03-15
Cadmium uptake by field grown Romaine lettuce treated with P-fertilizers of different Cd levels was investigated over an entire growing season. Results indicated that the rate of Cd uptake at a given time of the season can be satisfactorily described by the Michaelis-Menten kinetics, that is, plant uptake increases as the Cd concentration in soil solution increases, and it gradually approaches a saturation level. However, the rate constant of the Michaelis-Menten kinetics changes over the growing season. Under a given soil Cd level, the cadmium content in plant tissue decreases exponentially with time. To account for the dynamic nature of Cd uptake, a kinetic model integrating the time factor was developed to simulate Cd plant uptake over the growing season: C{sub Plant} = C{sub Solution} . PUF{sub max} . exp[-b . t], where C{sub Plant} and C{sub Solution} refer to the Cd content in plant tissue and soil solution, respectively, PUF{sub max} and b are kinetic constants. - A kinetic model was developed to evaluate the uptake of Cd under field conditions.
Modeling uptake kinetics of cadmium by field-grown lettuce
International Nuclear Information System (INIS)
Chen Weiping; Li Lianqing; Chang, Andrew C.; Wu Laosheng; Kwon, Soon-Ik; Bottoms, Rick
2008-01-01
Cadmium uptake by field grown Romaine lettuce treated with P-fertilizers of different Cd levels was investigated over an entire growing season. Results indicated that the rate of Cd uptake at a given time of the season can be satisfactorily described by the Michaelis-Menten kinetics, that is, plant uptake increases as the Cd concentration in soil solution increases, and it gradually approaches a saturation level. However, the rate constant of the Michaelis-Menten kinetics changes over the growing season. Under a given soil Cd level, the cadmium content in plant tissue decreases exponentially with time. To account for the dynamic nature of Cd uptake, a kinetic model integrating the time factor was developed to simulate Cd plant uptake over the growing season: C Plant = C Solution . PUF max . exp[-b . t], where C Plant and C Solution refer to the Cd content in plant tissue and soil solution, respectively, PUF max and b are kinetic constants. - A kinetic model was developed to evaluate the uptake of Cd under field conditions
International Nuclear Information System (INIS)
Kaida, Atsushi; Miura, Masahiko
2013-01-01
Highlights: •We visualized radiation-induced cell kinetics in spheroids. •HeLa-Fucci cells were used for detection of cell-cycle changes. •Radiation-induced G2 arrest was prolonged in the spheroid. •The inner and outer cell fractions behaved differently. -- Abstract: In this study, we visualized the effect of tumor microenvironments on radiation-induced tumor cell kinetics. For this purpose, we utilized a multicellular spheroid model, with a diameter of ∼500 μm, consisting of HeLa cells expressing the fluorescent ubiquitination-based cell-cycle indicator (Fucci). In live spheroids, a confocal laser scanning microscope allowed us to clearly monitor cell kinetics at depths of up to 60 μm. Surprisingly, a remarkable prolongation of G2 arrest was observed in the outer region of the spheroid relative to monolayer-cultured cells. Scale, an aqueous reagent that renders tissues optically transparent, allowed visualization deeper inside spheroids. About 16 h after irradiation, a red fluorescent cell fraction, presumably a quiescent G0 cell fraction, became distinct from the outer fraction consisting of proliferating cells, most of which exhibited green fluorescence indicative of G2 arrest. Thereafter, the red cell fraction began to emit green fluorescence and remained in prolonged G2 arrest. Thus, for the first time, we visualized the prolongation of radiation-induced G2 arrest in spheroids and the differences in cell kinetics between the outer and inner fractions
Experimental and modeling investigation on structure H hydrate formation kinetics
International Nuclear Information System (INIS)
Mazraeno, M. Seyfi; Varaminian, F.; Vafaie sefti, M.
2013-01-01
Highlights: • Applying affinity model for the formation kinetics of sH hydrate and two stage kinetics. • Performing the experiments of hydrate formation of sH with MCP. • A unique path for the SH hydrate formation. - Abstract: In this work, the kinetics of crystal H hydrate and two stage kinetics formation is modeled by using the chemical affinity model for the first time. The basic idea is that there is a unique path for each experiment by which the crystallization process decays the affinity. The experiments were performed at constant temperatures of 274.15, 275.15, 275.65, 276.15 and 277.15 K. The initial pressure of each experiment is up to 25 bar above equilibrium pressure of sI. Methylcyclohexane (MCH), methylcyclopentane (MCP) and tert-butyl methyl ether (TBME) are used as sH former and methane is used as a help gas. The parameters of the affinity model (A r and t k ) are determined and the results show that the parameter of (A r )/(RT) has not a constant value when temperature changes in each group of experiments. The results indicate that this model can predict experimental data very well at several conditions
Kinetics of steel slag leaching: Batch tests and modeling
International Nuclear Information System (INIS)
De Windt, Laurent; Chaurand, Perrine; Rose, Jerome
2011-01-01
Reusing steel slag as an aggregate for road construction requires to characterize the leaching kinetics and metal releases. In this study, basic oxygen furnace (BOF) steel slag were subjected to batch leaching tests at liquid to solid ratios (L/S) of 10 and 100 over 30 days; the leachate chemistry being regularly sampled in time. A geochemical model of the steel slag is developed and validated from experimental data, particularly the evolution with leaching of mineralogical composition of the slag and trace element speciation. Kinetics is necessary for modeling the primary phase leaching, whereas a simple thermodynamic equilibrium approach can be used for secondary phase precipitation. The proposed model simulates the kinetically-controlled dissolution (hydrolysis) of primary phases, the precipitation of secondary phases (C-S-H, hydroxide and spinel), the pH and redox conditions, and the progressive release of major elements as well as the metals Cr and V. Modeling indicates that the dilution effect of the L/S ratio is often coupled to solubility-controlled processes, which are sensitive to both the pH and the redox potential. A sensitivity analysis of kinetic uncertainties on the modeling of element releases is performed.
Czech Academy of Sciences Publication Activity Database
Indrová, Marie; Bieblová, Jana; Bubeník, Jan; Reiniš, Milan
2008-01-01
Roč. 32, č. 2 (2008), s. 499-507 ISSN 1019-6439 R&D Projects: GA ČR GA301/06/0774 EU Projects: European Commission(XE) 18933 - CLINIGENE Institutional research plan: CEZ:AV0Z50520514 Keywords : HPV 16 * MHC class I-positive and -deficient tumours * immature myeloid cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.234, year: 2008
Modeling intrinsic kinetics in immobilized photocatalytic microreactors
Visan, Aura; Rafieian Boroujeni, Damon; Ogieglo, Wojciech; Lammertink, Rob G.H.
2014-01-01
The article presents a simple model for immobilized photocatalytic microreactors following a first order reaction rate with either light independency or light dependency described by photon absorption carrier generation semiconductor physics. Experimental data obtained for various residence times,
Kinetic and thermodynamic modelling of TBP synthesis processes
International Nuclear Information System (INIS)
Azzouz, A.; Attou, M.
1989-02-01
The present paper deals with kinetic and thermodynamic modellisation of tributylphosphate (TBP) synthesis processes. Its aim consists in a purely comparative study of two different synthesis ways i.e. direct and indirect estirification of butanol. The methodology involves two steps. The first step consists in approximating curves which describe the process evolution and their dependence on the main parameters. The results gave a kinetic model of the process rate yielding in TBP. Further, on the basis of thermodynamic data concerning the various involved compounds a theoretical model was achieved. The calculations were carried out in Basic language and an interpolation mathematical method was applied to approximate the kinetic curves. The thermodynamic calculations were achieved on the basis of GIBBS' free energy using a VAX type computer and a VT240 terminal. The calculations accuracy was reasonable and within the norms. For each process, the confrontation of both models leads to an appreciable accord. In the two processes, the thermodynamic models were similar although the kinetic equations present different reaction orders. Hence the reaction orders were determined by a mathematical method which conists in searching the minimal difference between an empiric relation and a kinetic model with fixed order. This corresponds in fact in testing the model proposed at various reaction order around the suspected value. The main idea which results from such a work is that this kind of processes is well fitting with the model without taking into account the side chain reactions. The process behaviour is like that of a single reaction having a quasi linear dependence of the rate yielding and the reaction time for both processes
Hoyermann, Karlheinz; Mauß, Fabian; Olzmann, Matthias; Welz, Oliver; Zeuch, Thomas
2017-07-19
Partially oxidized intermediates play a central role in combustion and atmospheric chemistry. In this perspective, we focus on the chemical kinetics of alkoxy radicals, peroxy radicals, and Criegee intermediates, which are key species in both combustion and atmospheric environments. These reactive intermediates feature a broad spectrum of chemical diversity. Their reactivity is central to our understanding of how volatile organic compounds are degraded in the atmosphere and converted into secondary organic aerosol. Moreover, they sensitively determine ignition timing in internal combustion engines. The intention of this perspective article is to provide the reader with information about the general mechanisms of reactions initiated by addition of atomic and molecular oxygen to alkyl radicals and ozone to alkenes. We will focus on critical branching points in the subsequent reaction mechanisms and discuss them from a consistent point of view. As a first example of our integrated approach, we will show how experiment, theory, and kinetic modeling have been successfully combined in the first infrared detection of Criegee intermediates during the gas phase ozonolysis. As a second example, we will examine the ignition timing of n-heptane/air mixtures at low and intermediate temperatures. Here, we present a reduced, fuel size independent kinetic model of the complex chemistry initiated by peroxy radicals that has been successfully applied to simulate standard n-heptane combustion experiments.
Kinetic modelling and thermodynamic studies on purification of ...
African Journals Online (AJOL)
Adsorbent capacities have been determined by mathematical fitting of equilibrium data using the most common isotherms: Freundlich isotherm and Langmuir isotherm. Several kinetic models have been applied to the process. Thermodynamic parameters: △So, △Ho, △Go and Ea (kJ/mol) have been determined.
Modelling of thermal degradation kinetics of ascorbic acid in ...
African Journals Online (AJOL)
Ascorbic acid (vitamin C) loss in thermally treated pawpaw and potato was modelled mathematically. Isothermal experiments in the temperature range of 50 -80 oC for the drying of pawpaw and 60 -100 oC for the blanch-drying of potato were utilized to determine the kinetics of ascorbic acid loss in both fruit and vegetable.
DEFF Research Database (Denmark)
Saa, Pedro A.; Nielsen, Lars K.
2017-01-01
Kinetic models are critical to predict the dynamic behaviour of metabolic networks. Mechanistic kinetic models for large networks remain uncommon due to the difficulty of fitting their parameters. Recent modelling frameworks promise new ways to overcome this obstacle while retaining predictive ca...
Chemical kinetics and combustion modelling with CFX 4
Energy Technology Data Exchange (ETDEWEB)
Stopford, P [AEA Technology, Computational Fluid Dynamics Services Harwell, Oxfordshire (United Kingdom)
1998-12-31
The presentation describes some recent developments in combustion and kinetics models used in the CFX software of AEA Technology. Three topics are highlighted: the development of coupled solvers in a traditional `SIMPLE`-based CFD code, the use of detailed chemical kinetics mechanism via `look-up` tables and the application of CFD to large-scale multi-burner combustion plant. The aim is identify those physical approximations and numerical methods that are likely to be most useful in the future and those areas where further developments are required. (author) 6 refs.
Chemical kinetics and combustion modelling with CFX 4
Energy Technology Data Exchange (ETDEWEB)
Stopford, P. [AEA Technology, Computational Fluid Dynamics Services Harwell, Oxfordshire (United Kingdom)
1997-12-31
The presentation describes some recent developments in combustion and kinetics models used in the CFX software of AEA Technology. Three topics are highlighted: the development of coupled solvers in a traditional `SIMPLE`-based CFD code, the use of detailed chemical kinetics mechanism via `look-up` tables and the application of CFD to large-scale multi-burner combustion plant. The aim is identify those physical approximations and numerical methods that are likely to be most useful in the future and those areas where further developments are required. (author) 6 refs.
Kinetics and modeling of anaerobic digestion process
DEFF Research Database (Denmark)
Gavala, Hariklia N.; Angelidaki, Irini; Ahring, Birgitte Kiær
2003-01-01
Anaerobic digestion modeling started in the early 1970s when the need for design and efficient operation of anaerobic systems became evident. At that time not only was the knowledge about the complex process of anaerobic digestion inadequate but also there were computational limitations. Thus...
Laplace transform in tracer kinetic modeling
Energy Technology Data Exchange (ETDEWEB)
Hauser, Eliete B., E-mail: eliete@pucrs.br [Instituto do Cerebro (InsCer/FAMAT/PUC-RS), Porto Alegre, RS, (Brazil). Faculdade de Matematica
2013-07-01
The main objective this paper is to quantify the pharmacokinetic processes: absorption, distribution and elimination of radiopharmaceutical(tracer), using Laplace transform method. When the drug is administered intravenously absorption is complete and is available in the bloodstream to be distributed throughout the whole body in all tissues and fluids, and to be eliminated. Mathematical modeling seeks to describe the processes of distribution and elimination through compartments, where distinct pools of tracer (spatial location or chemical state) are assigned to different compartments. A compartment model is described by a system of differential equations, where each equation represents the sum of all the transfer rates to and from a specific compartment. In this work a two-tissue irreversible compartment model is used for description of tracer, [{sup 18}F]2-fluor-2deoxy-D-glucose. In order to determine the parameters of the model, it is necessary to have information about the tracer delivery in the form of an input function representing the time-course of tracer concentration in arterial blood or plasma. We estimate the arterial input function in two stages and apply the Levenberg-Marquardt Method to solve nonlinear regressions. The transport of FDG across de arterial blood is very fast in the first ten minutes and then decreases slowly. We use de Heaviside function to represent this situation and this is the main contribution of this study. We apply the Laplace transform and the analytical solution for two-tissue irreversible compartment model is obtained. The only approach is to determinate de arterial input function. (author)
Ensemble Kinetic Modeling of Metabolic Networks from Dynamic Metabolic Profiles
Directory of Open Access Journals (Sweden)
Gengjie Jia
2012-11-01
Full Text Available Kinetic modeling of metabolic pathways has important applications in metabolic engineering, but significant challenges still remain. The difficulties faced vary from finding best-fit parameters in a highly multidimensional search space to incomplete parameter identifiability. To meet some of these challenges, an ensemble modeling method is developed for characterizing a subset of kinetic parameters that give statistically equivalent goodness-of-fit to time series concentration data. The method is based on the incremental identification approach, where the parameter estimation is done in a step-wise manner. Numerical efficacy is achieved by reducing the dimensionality of parameter space and using efficient random parameter exploration algorithms. The shift toward using model ensembles, instead of the traditional “best-fit” models, is necessary to directly account for model uncertainty during the application of such models. The performance of the ensemble modeling approach has been demonstrated in the modeling of a generic branched pathway and the trehalose pathway in Saccharomyces cerevisiae using generalized mass action (GMA kinetics.
Competition kinetics - Considerations for their use with mammalian cells
International Nuclear Information System (INIS)
Koch, C.J.
1987-01-01
The mechanism of radiation protection and sensitization is thought to be based on the reaction of (DNA) target radicals with oxidizing agents, leading to damage fixation, versus reducing agents, leading to damage repair. If these reactions occur in parallel, and are pseudo-first-order, then it is very easy to develop a kinetic model which predicts a direct correspondence between the reaction rate constants and the amount of reactant (i.e. target radicals) changed along each pathway. This talk focuses on the results of direct tests of this model and concentrates on the possible reasons for its failure under several circumstances. The talk concludes with a discussion of precautions necessary for further development of the modelling process
Gyrofluid turbulence models with kinetic effects
International Nuclear Information System (INIS)
Dorland, W.; Hammett, G.W.
1992-12-01
Nonlinear gyrofluid equations are derived by taking moments of the nonlinear, electrostatic gyrokinetic equation. The principal model presented includes evolution equations for the guiding center n, u parallel, T parallel, and T perpendicular along with an equation expressing the quasineutrality constraint. Additional evolution equations for higher moments are derived which may be used if greater accuracy is desired. The moment hierarchy is closed with a Landau-damping model which is equivalent to a multi-pole approximation to the plasma dispersion function, extended to include finite Larmor radius effects. In particular, new dissipative, nonlinear terms are found which model the perpendicular phase-mixing of the distribution function along contours of constant electrostatic potential. These ''FLR phase-mixing'' terms introduce a hyperviscosity-like damping ∝ k perpendicular 2 |Φ rvec k rvec k x rvec k'| which should provide a physics-based damping mechanism at high k perpendicular ρ which is potentially as important as the usual polarization drift nonlinearity. The moments are taken in guiding center space to pick up the correct nonlinear FLR terms and the gyroaveraging of the shear. The equations are solved with a nonlinear, three dimensional initial value code. Linear results are presented, showing excellent agreement with linear gyrokinetic theory
Effect of x-irradiation on cell kinetics of esophageal membrane cells in mice
International Nuclear Information System (INIS)
Ando, Koichi; Tsunemoto, Hiroshi; Urano, Muneyasu; Koike, Sachiko
1977-01-01
Effect of x-irradiation on the cell kinetics of esophageal membrane cells was studied in C3Hf/He male mice. Experimental methods include; counting the number of basal and superficial cells, and pulse or continuous labelling by tritiated thymidine. Esophageal area was irradiated with 1000 rad of 200 kVp x-rays and cell kinetics were studied on the 5th post-irradiation day. Autoradiography revealed the shortening of the cell cycle time, specifically in G- and G- phases. Numbers of basal cells and of superficial cells were found to increase for 5 days after irradiation. Continuous labelling experiments using infusion technique demonstrated than growth fraction of irradiated basal cells was 1.0 as well as that of non-irradiated cells. It was of interest that the migration time, i.e., the time required for labelled cells to migrate from basal cell layer to superficial cell layer, was shortened approximately 1/3 of that of non-irradiated control after irradiation. Diurnal variation was observed not only in normal basal cells but also in irradiated ones, and the rate of increase of labelling index after continuous labelling was independent of the time when the labelling was started. (auth.)
Effect of x irradiation on cell kinetics of esophageal membrane cells in mice
Energy Technology Data Exchange (ETDEWEB)
Ando, K; Tsunemoto, H; Urano, M; Koike, S [National Inst. of Radiological Sciences, Chiba (Japan)
1977-05-01
Effect of x irradiation on the cell kinetics of esophageal membrane cells was studied in C3Hf/He male mice. Experimental methods include; counting the number of basal and superficial cells, and pulse or continuous labelling by tritiated thymidine. Esophageal area was irradiated with 1000 rad of 200 kVp x rays and cell kinetics were studied on the 5th post-irradiation day. Autoradiography revealed the shortening of the cell cycle time, specifically in G- and G- phases. Numbers of basal cells and of superficial cells were found to increase for 5 days after irradiation. Continuous labelling experiments using infusion technique demonstrated than growth fraction of irradiated basal cells was 1.0 as well as that of non-irradiated cells. It was of interest that the migration time, i.e., the time required for labelled cells to migrate from basal cell layer to superficial cell layer, was shortened approximately 1/3 of that of non-irradiated control after irradiation. Diurnal variation was observed not only in normal basal cells but also in irradiated ones, and the rate of increase of labelling index after continuous labelling was independent of the time when the labelling was started.
A Kinetic Model Describing Injury-Burden in Team Sports.
Fuller, Colin W
2017-12-01
Injuries in team sports are normally characterised by the incidence, severity, and location and type of injuries sustained: these measures, however, do not provide an insight into the variable injury-burden experienced during a season. Injury burden varies according to the team's match and training loads, the rate at which injuries are sustained and the time taken for these injuries to resolve. At the present time, this time-based variation of injury burden has not been modelled. To develop a kinetic model describing the time-based injury burden experienced by teams in elite team sports and to demonstrate the model's utility. Rates of injury were quantified using a large eight-season database of rugby injuries (5253) and exposure (60,085 player-match-hours) in English professional rugby. Rates of recovery from injury were quantified using time-to-recovery analysis of the injuries. The kinetic model proposed for predicting a team's time-based injury burden is based on a composite rate equation developed from the incidence of injury, a first-order rate of recovery from injury and the team's playing load. The utility of the model was demonstrated by examining common scenarios encountered in elite rugby. The kinetic model developed describes and predicts the variable injury-burden arising from match play during a season of rugby union based on the incidence of match injuries, the rate of recovery from injury and the playing load. The model is equally applicable to other team sports and other scenarios.
Developments in kinetic modelling of chalcocite particle oxidation
Energy Technology Data Exchange (ETDEWEB)
Jaervi, J; Ahokainen, T; Jokilaakso, A [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy
1998-12-31
A mathematical model for simulating chalcocite particle oxidation is presented. Combustion of pure chalcocite with oxygen is coded as a kinetic module which can be connected as a separate part of commercial CFD-package, PHOENICS. Heat transfer, fluid flow and combustion phenomena can be simulated using CFD-calculation together with the kinetic model. Interaction between gas phase and particles are taken into account by source terms. The aim of the kinetic model is to calculate the particle temperature, contents of species inside the particle, oxygen consumption and formation of sulphur dioxide. Four oxidation reactions are considered and the shrinking core model is used to describe the rate of the oxidation reactions. The model is verified by simulating the particle oxidation reactions in a laboratory scale laminar-flow furnace under different conditions and the model predicts the effects of charges correctly. In the future, the model validation will be done after experimental studies in the laminar flow-furnace. (author) 18 refs.
Developments in kinetic modelling of chalcocite particle oxidation
Energy Technology Data Exchange (ETDEWEB)
Jaervi, J.; Ahokainen, T.; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy
1997-12-31
A mathematical model for simulating chalcocite particle oxidation is presented. Combustion of pure chalcocite with oxygen is coded as a kinetic module which can be connected as a separate part of commercial CFD-package, PHOENICS. Heat transfer, fluid flow and combustion phenomena can be simulated using CFD-calculation together with the kinetic model. Interaction between gas phase and particles are taken into account by source terms. The aim of the kinetic model is to calculate the particle temperature, contents of species inside the particle, oxygen consumption and formation of sulphur dioxide. Four oxidation reactions are considered and the shrinking core model is used to describe the rate of the oxidation reactions. The model is verified by simulating the particle oxidation reactions in a laboratory scale laminar-flow furnace under different conditions and the model predicts the effects of charges correctly. In the future, the model validation will be done after experimental studies in the laminar flow-furnace. (author) 18 refs.
One-dimensional reactor kinetics model for RETRAN
International Nuclear Information System (INIS)
Gose, G.C.; Peterson, C.E.; Ellis, N.L.; McClure, J.A.
1981-01-01
Previous versions of RETRAN have had only a point kinetics model to describe the reactor core behavior during thermal-hydraulic transients. The principal assumption in deriving the point kinetics model is that the neutron flux may be separated into a time-dependent amplitude funtion and a time-independent shape function. Certain types of transients cannot be correctly analyzed under this assumption, since proper definitions for core average quantities such as reactivity or lifetime include the inner product of the adjoint flux with the perturbed flux. A one-dimensional neutronics model has been included in a preliminary version of RETRAN-02. The ability to account for flux shape changes will permit an improved representation of the thermal and hydraulic feedback effects. This paper describes the neutronics model and discusses some of the analyses
Kinetic modeling of Nernst effect in magnetized hohlraums
Joglekar, A. S.; Ridgers, Christopher Paul; Kingham, R J; Thomas, A. G. R.
2016-01-01
We present nanosecond time-scale Vlasov-Fokker-Planck-Maxwell modeling of magnetized plasma transport and dynamics in a hohlraum with an applied external magnetic field, under conditions similar to recent experiments. Self-consistent modeling of the kinetic electron momentum equation allows for a complete treatment of the heat flow equation and Ohm's law, including Nernst advection of magnetic fields. In addition to showing the prevalence of nonlocal behavior, we demonstrate that effects such...
Kinetics of transmembrane transport of small molecules into electropermeabilized cells.
Pucihar, Gorazd; Kotnik, Tadej; Miklavcic, Damijan; Teissié, Justin
2008-09-15
The transport of propidium iodide into electropermeabilized Chinese hamster ovary cells was monitored with a photomultiplier tube during and after the electric pulse. The influence of pulse amplitude and duration on the transport kinetics was investigated with time resolutions from 200 ns to 4 ms in intervals from 400 micros to 8 s. The transport became detectable as early as 60 micros after the start of the pulse, continued for tens of seconds after the pulse, and was faster and larger for higher pulse amplitudes and/or longer pulse durations. With fixed pulse parameters, transport into confluent monolayers of cells was slower than transport into suspended cells. Different time courses of fluorescence increase were observed during and at various times after the pulse, reflecting different transport mechanisms and ongoing membrane resealing. The data were compared to theoretical predictions of the Nernst-Planck equation. After a delay of 60 micros, the time course of fluorescence during the pulse was approximately linear, supporting a mainly electrophoretic solution of the Nernst-Planck equation. The time course after the pulse agreed with diffusional solution of the Nernst-Planck equation if the membrane resealing was assumed to consist of three distinct components, with time constants in the range of tens of microseconds, hundreds of microseconds, and tens of seconds, respectively.
A kinetic-MHD model for low frequency phenomena
International Nuclear Information System (INIS)
Cheng, C.Z.
1991-07-01
A hybrid kinetic-MHD model for describing low-frequency phenomena in high beta anisotropic plasmas that consist of two components: a low energy core component and an energetic component with low density. The kinetic-MHD model treats the low energy core component by magnetohydrodynamic (MHD) description, the energetic component by kinetic approach such as the gyrokinetic equation, and the coupling between the dynamics of these two components through plasma pressure in the momentum equation. The kinetic-MHD model optimizes both the physics contents and the theoretical efforts in studying low frequency MHD waves and transport phenomena in general magnetic field geometries, and can be easily modified to include the core plasma kinetic effects if necessary. It is applicable to any magnetized collisionless plasma system where the parallel electric field effects are negligibly small. In the linearized limit two coupled eigenmode equations for describing the coupling between the transverse Alfven type and the compressional Alfven type waves are derived. The eigenmode equations are identical to those derived from the full gyrokinetic equation in the low frequency limit and were previously analyzed both analytically nd numerically to obtain the eigenmode structure of the drift mirror instability which explains successfully the multi-satellite observation of antisymmetric field-aligned structure of the compressional magnetic field of Pc 5 waves in the magnetospheric ring current plasma. Finally, a quadratic form is derived to demonstrate the stability of the low-frequency transverse and compressional Alfven type instabilities in terms of the pressure anisotropy parameter τ and the magnetic field curvature-pressure gradient parameter. A procedure for determining the stability of a marginally stable MHD wave due to wave-particle resonances is also presented
Kinetic modeling of Nernst effect in magnetized hohlraums.
Joglekar, A S; Ridgers, C P; Kingham, R J; Thomas, A G R
2016-04-01
We present nanosecond time-scale Vlasov-Fokker-Planck-Maxwell modeling of magnetized plasma transport and dynamics in a hohlraum with an applied external magnetic field, under conditions similar to recent experiments. Self-consistent modeling of the kinetic electron momentum equation allows for a complete treatment of the heat flow equation and Ohm's law, including Nernst advection of magnetic fields. In addition to showing the prevalence of nonlocal behavior, we demonstrate that effects such as anomalous heat flow are induced by inverse bremsstrahlung heating. We show magnetic field amplification up to a factor of 3 from Nernst compression into the hohlraum wall. The magnetic field is also expelled towards the hohlraum axis due to Nernst advection faster than frozen-in flux would suggest. Nonlocality contributes to the heat flow towards the hohlraum axis and results in an augmented Nernst advection mechanism that is included self-consistently through kinetic modeling.
Kinetic models for historical processes of fast invasion and aggression
Aristov, Vladimir V.; Ilyin, Oleg V.
2015-04-01
In the last few decades many investigations have been devoted to theoretical models in new areas concerning description of different biological, sociological, and historical processes. In the present paper we suggest a model of the Nazi Germany invasion of Poland, France, and the USSR based on kinetic theory. We simulate this process with the Cauchy boundary problem for two-element kinetic equations. The solution of the problem is given in the form of a traveling wave. The propagation velocity of a front line depends on the quotient between initial forces concentrations. Moreover it is obtained that the general solution of the model can be expressed in terms of quadratures and elementary functions. Finally it is shown that the front-line velocities agree with the historical data.
Reproducing Phenomenology of Peroxidation Kinetics via Model Optimization
Ruslanov, Anatole D.; Bashylau, Anton V.
2010-06-01
We studied mathematical modeling of lipid peroxidation using a biochemical model system of iron (II)-ascorbate-dependent lipid peroxidation of rat hepatocyte mitochondrial fractions. We found that antioxidants extracted from plants demonstrate a high intensity of peroxidation inhibition. We simplified the system of differential equations that describes the kinetics of the mathematical model to a first order equation, which can be solved analytically. Moreover, we endeavor to algorithmically and heuristically recreate the processes and construct an environment that closely resembles the corresponding natural system. Our results demonstrate that it is possible to theoretically predict both the kinetics of oxidation and the intensity of inhibition without resorting to analytical and biochemical research, which is important for cost-effective discovery and development of medical agents with antioxidant action from the medicinal plants.
Chemistry resolved kinetic flow modeling of TATB based explosives
Vitello, Peter; Fried, Laurence E.; William, Howard; Levesque, George; Souers, P. Clark
2012-03-01
Detonation waves in insensitive, TATB-based explosives are believed to have multiple time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. We use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. We term our model chemistry resolved kinetic flow, since CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculates EOS values based on the concentrations. We present here two variants of our new rate model and comparison with hot, ambient, and cold experimental data for PBX 9502.
Oxygen reduction kinetics on graphite cathodes in sediment microbial fuel cells.
Renslow, Ryan; Donovan, Conrad; Shim, Matthew; Babauta, Jerome; Nannapaneni, Srilekha; Schenk, James; Beyenal, Haluk
2011-12-28
Sediment microbial fuel cells (SMFCs) have been used as renewable power sources for sensors in fresh and ocean waters. Organic compounds at the anode drive anodic reactions, while oxygen drives cathodic reactions. An understanding of oxygen reduction kinetics and the factors that determine graphite cathode performance is needed to predict cathodic current and potential losses, and eventually to estimate the power production of SMFCs. Our goals were to (1) experimentally quantify the dependence of oxygen reduction kinetics on temperature, electrode potential, and dissolved oxygen concentration for the graphite cathodes of SMFCs and (2) develop a mechanistic model. To accomplish this, we monitored current on polarized cathodes in river and ocean SMFCs. We found that (1) after oxygen reduction is initiated, the current density is linearly dependent on polarization potential for both SMFC types; (2) current density magnitude increases linearly with temperature in river SMFCs but remains constant with temperature in ocean SMFCs; (3) the standard heterogeneous rate constant controls the current density temperature dependence; (4) river and ocean SMFC graphite cathodes have large potential losses, estimated by the model to be 470 mV and 614 mV, respectively; and (5) the electrochemical potential available at the cathode is the primary factor controlling reduction kinetic rates. The mechanistic model based on thermodynamic and electrochemical principles successfully fit and predicted the data. The data, experimental system, and model can be used in future studies to guide SMFC design and deployment, assess SMFC current production, test cathode material performance, and predict cathode contamination.
Comparisons of hydrodynamic beam models with kinetic treatments
International Nuclear Information System (INIS)
Boyd, J.K.; Mark, J.W.; Sharp, W.M.; Yu, S.S.
1983-01-01
Hydrodynamic models have been derived by Mark and Yu and by others to describe energetic self-pinched beams, such as those used in ion-beam fusion. The closure of the Mark-Yu model is obtained with adiabatic assumptions mathematically analogous to those of Chew, Goldberger, and Low for MHD. The other models treated here use an ideal gas closure and a closure by Newcomb based on an expansion in V/sub th//V/sub z/. Features of these hydrodynamic beam models are compared with a kinetic treatment
Focuss algorithm application in kinetic compartment modeling for PET tracer
International Nuclear Information System (INIS)
Huang Xinrui; Bao Shanglian
2004-01-01
Molecular imaging is in the process of becoming. Its application mostly depends on the molecular discovery process of imaging probes and drugs, from the mouse to the patient, from research to clinical practice. Positron emission tomography (PET) can non-invasively monitor . pharmacokinetic and functional processes of drugs in intact organisms at tracer concentrations by kinetic modeling. It has been known that for all biological systems, linear or nonlinear, if the system is injected by a tracer in a steady state, the distribution of the tracer follows the kinetics of a linear compartmental system, which has sums of exponential solutions. Based on the general compartmental description of the tracer's fate in vivo, we presented a novel kinetic modeling approach for the quantification of in vivo tracer studies with dynamic positron emission tomography (PET), which can determine a parsimonious model consisting with the measured data. This kinetic modeling technique allows for estimation of parametric images from a voxel based analysis and requires no a priori decision about the tracer's fate in vivo, instead determining the most appropriate model from the information contained within the kinetic data. Choosing a set of exponential functions, convolved with the plasma input function, as basis functions, the time activity curve of a region or a pixel can be written as a linear combination of the basis functions with corresponding coefficients. The number of non-zero coefficients returned corresponds to the model order which is related to the number of tissue compartments. The system macro parameters are simply determined using the focal underdetermined system solver (FOCUSS) algorithm. The FOCUSS algorithm is a nonparametric algorithm for finding localized energy solutions from limited data and is a recursive linear estimation procedure. FOCUSS algorithm usually converges very fast, so demands a few iterations. The effectiveness is verified by simulation and clinical
International Nuclear Information System (INIS)
Schneiderman, M.H.
1979-01-01
Mitotic selection of Chinese hamster ovary (CHO) cells, at 10 min intervals after the initiation of Adriamycin and/or x-ray treatment was used to measure the kinetics and survival of cells which progressed without delay, the ''refractory'' cells, the cells that reached mitosis only after recovery from the treatment-induced delay, the ''recovered'' cells, and the survival of the cells remaining attached to the flask 5 h after treatment. The cell kinetics were determined from the rate at which cells entered mitosis, and the reproductive integrity from the survival of the selected refractory, recovered and remaining (unselected) cells
Stepwise kinetic equilibrium models of quantitative polymerase chain reaction
Directory of Open Access Journals (Sweden)
Cobbs Gary
2012-08-01
Full Text Available Abstract Background Numerous models for use in interpreting quantitative PCR (qPCR data are present in recent literature. The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing phase with kinetic theory offer the most potential for accurate interpretation of qPCR data. Even so, they have not been thoroughly investigated and are rarely used for interpretation of qPCR data. New results for kinetic modeling of qPCR are presented. Results Two models are presented in which the efficiency of amplification is based on equilibrium solutions for the annealing phase of the qPCR process. Model 1 assumes annealing of complementary targets strands and annealing of target and primers are both reversible reactions and reach a dynamic equilibrium. Model 2 assumes all annealing reactions are nonreversible and equilibrium is static. Both models include the effect of primer concentration during the annealing phase. Analytic formulae are given for the equilibrium values of all single and double stranded molecules at the end of the annealing step. The equilibrium values are then used in a stepwise method to describe the whole qPCR process. Rate constants of kinetic models are the same for solutions that are identical except for possibly having different initial target concentrations. Analysis of qPCR curves from such solutions are thus analyzed by simultaneous non-linear curve fitting with the same rate constant values applying to all curves and each curve having a unique value for initial target concentration. The models were fit to two data sets for which the true initial target concentrations are known. Both models give better fit to observed qPCR data than other kinetic models present in the
Stepwise kinetic equilibrium models of quantitative polymerase chain reaction.
Cobbs, Gary
2012-08-16
Numerous models for use in interpreting quantitative PCR (qPCR) data are present in recent literature. The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing phase with kinetic theory offer the most potential for accurate interpretation of qPCR data. Even so, they have not been thoroughly investigated and are rarely used for interpretation of qPCR data. New results for kinetic modeling of qPCR are presented. Two models are presented in which the efficiency of amplification is based on equilibrium solutions for the annealing phase of the qPCR process. Model 1 assumes annealing of complementary targets strands and annealing of target and primers are both reversible reactions and reach a dynamic equilibrium. Model 2 assumes all annealing reactions are nonreversible and equilibrium is static. Both models include the effect of primer concentration during the annealing phase. Analytic formulae are given for the equilibrium values of all single and double stranded molecules at the end of the annealing step. The equilibrium values are then used in a stepwise method to describe the whole qPCR process. Rate constants of kinetic models are the same for solutions that are identical except for possibly having different initial target concentrations. Analysis of qPCR curves from such solutions are thus analyzed by simultaneous non-linear curve fitting with the same rate constant values applying to all curves and each curve having a unique value for initial target concentration. The models were fit to two data sets for which the true initial target concentrations are known. Both models give better fit to observed qPCR data than other kinetic models present in the literature. They also give better estimates of
Tracer kinetic modelling of receptor data with mathematical metabolite correction
International Nuclear Information System (INIS)
Burger, C.; Buck, A.
1996-01-01
Quantitation of metabolic processes with dynamic positron emission tomography (PET) and tracer kinetic modelling relies on the time course of authentic ligand in plasma, i.e. the input curve. The determination of the latter often requires the measurement of labelled metabilites, a laborious procedure. In this study we examined the possibility of mathematical metabolite correction, which might obviate the need for actual metabolite measurements. Mathematical metabilite correction was implemented by estimating the input curve together with kinetic tissue parameters. The general feasibility of the approach was evaluated in a Monte Carlo simulation using a two tissue compartment model. The method was then applied to a series of five human carbon-11 iomazenil PET studies. The measured cerebral tissue time-activity curves were fitted with a single tissue compartment model. For mathematical metabolite correction the input curve following the peak was approximated by a sum of three decaying exponentials, the amplitudes and characteristic half-times of which were then estimated by the fitting routine. In the simulation study the parameters used to generate synthetic tissue time-activity curves (K 1 -k 4 ) were refitted with reasonable identifiability when using mathematical metabolite correciton. Absolute quantitation of distribution volumes was found to be possible provided that the metabolite and the kinetic models are adequate. If the kinetic model is oversimplified, the linearity of the correlation between true and estimated distribution volumes is still maintained, although the linear regression becomes dependent on the input curve. These simulation results were confirmed when applying mathematical metabolite correction to the 11 C iomazenil study. Estimates of the distribution volume calculated with a measured input curve were linearly related to the estimates calculated using mathematical metabolite correction with correlation coefficients >0.990. (orig./MG)
Comparison of kinetic model for biogas production from corn cob
Shitophyta, L. M.; Maryudi
2018-04-01
Energy demand increases every day, while the energy source especially fossil energy depletes increasingly. One of the solutions to overcome the energy depletion is to provide renewable energies such as biogas. Biogas can be generated by corn cob and food waste. In this study, biogas production was carried out by solid-state anaerobic digestion. The steps of biogas production were the preparation of feedstock, the solid-state anaerobic digestion, and the measurement of biogas volume. This study was conducted on TS content of 20%, 22%, and 24%. The aim of this research was to compare kinetic models of biogas production from corn cob and food waste as a co-digestion using the linear, exponential equation, and first-kinetic models. The result showed that the exponential equation had a better correlation than the linear equation on the ascending graph of biogas production. On the contrary, the linear equation had a better correlation than the exponential equation on the descending graph of biogas production. The correlation values on the first-kinetic model had the smallest value compared to the linear and exponential models.
Modelling reveals kinetic advantages of co-transcriptional splicing.
Directory of Open Access Journals (Sweden)
Stuart Aitken
2011-10-01
Full Text Available Messenger RNA splicing is an essential and complex process for the removal of intron sequences. Whereas the composition of the splicing machinery is mostly known, the kinetics of splicing, the catalytic activity of splicing factors and the interdependency of transcription, splicing and mRNA 3' end formation are less well understood. We propose a stochastic model of splicing kinetics that explains data obtained from high-resolution kinetic analyses of transcription, splicing and 3' end formation during induction of an intron-containing reporter gene in budding yeast. Modelling reveals co-transcriptional splicing to be the most probable and most efficient splicing pathway for the reporter transcripts, due in part to a positive feedback mechanism for co-transcriptional second step splicing. Model comparison is used to assess the alternative representations of reactions. Modelling also indicates the functional coupling of transcription and splicing, because both the rate of initiation of transcription and the probability that step one of splicing occurs co-transcriptionally are reduced, when the second step of splicing is abolished in a mutant reporter.
Modelling reveals kinetic advantages of co-transcriptional splicing.
Aitken, Stuart; Alexander, Ross D; Beggs, Jean D
2011-10-01
Messenger RNA splicing is an essential and complex process for the removal of intron sequences. Whereas the composition of the splicing machinery is mostly known, the kinetics of splicing, the catalytic activity of splicing factors and the interdependency of transcription, splicing and mRNA 3' end formation are less well understood. We propose a stochastic model of splicing kinetics that explains data obtained from high-resolution kinetic analyses of transcription, splicing and 3' end formation during induction of an intron-containing reporter gene in budding yeast. Modelling reveals co-transcriptional splicing to be the most probable and most efficient splicing pathway for the reporter transcripts, due in part to a positive feedback mechanism for co-transcriptional second step splicing. Model comparison is used to assess the alternative representations of reactions. Modelling also indicates the functional coupling of transcription and splicing, because both the rate of initiation of transcription and the probability that step one of splicing occurs co-transcriptionally are reduced, when the second step of splicing is abolished in a mutant reporter.
Progress in Chemical Kinetic Modeling for Surrogate Fuels
Energy Technology Data Exchange (ETDEWEB)
Pitz, W J; Westbrook, C K; Herbinet, O; Silke, E J
2008-06-06
Gasoline, diesel, and other alternative transportation fuels contain hundreds to thousands of compounds. It is currently not possible to represent all these compounds in detailed chemical kinetic models. Instead, these fuels are represented by surrogate fuel models which contain a limited number of representative compounds. We have been extending the list of compounds for detailed chemical models that are available for use in fuel surrogate models. Detailed models for components with larger and more complicated fuel molecular structures are now available. These advancements are allowing a more accurate representation of practical and alternative fuels. We have developed detailed chemical kinetic models for fuels with higher molecular weight fuel molecules such as n-hexadecane (C16). Also, we can consider more complicated fuel molecular structures like cyclic alkanes and aromatics that are found in practical fuels. For alternative fuels, the capability to model large biodiesel fuels that have ester structures is becoming available. These newly addressed cyclic and ester structures in fuels profoundly affect the reaction rate of the fuel predicted by the model. Finally, these surrogate fuel models contain large numbers of species and reactions and must be reduced for use in multi-dimensional models for spark-ignition, HCCI and diesel engines.
A kinetic model for the first stage of pygas upgrading
Directory of Open Access Journals (Sweden)
J. L. de Medeiros
2007-03-01
Full Text Available Pyrolysis gasoline - PYGAS - is an intermediate boiling product of naphtha steam cracking with a high octane number and high aromatic/unsaturated contents. Due to stabilization concerns, PYGAS must be hydrotreated in two stages. The first stage uses a mild trickle-bed conversion for removing extremely reactive species (styrene, dienes and olefins prior to the more severe second stage where sulfured and remaining olefins are hydrogenated in gas phase. This work addresses the reaction network and two-phase kinetic model for the first stage of PYGAS upgrading. Nonlinear estimation was used for model tuning with kinetic data obtained in bench-scale trickle-bed hydrogenation with a commercial Pd/Al2O3 catalyst. On-line sampling experiments were designed to study the influence of variables - temperature and spatial velocity - on the conversion of styrene, dienes and olefins.
Polar Coordinate Lattice Boltzmann Kinetic Modeling of Detonation Phenomena
International Nuclear Information System (INIS)
Lin Chuan-Dong; Li Ying-Jun; Xu Ai-Guo; Zhang Guang-Cai
2014-01-01
A novel polar coordinate lattice Boltzmann kinetic model for detonation phenomena is presented and applied to investigate typical implosion and explosion processes. In this model, the change of discrete distribution function due to local chemical reaction is dynamically coupled into the modified lattice Boltzmann equation which could recover the Navier—Stokes equations, including contribution of chemical reaction, via the Chapman—Enskog expansion. For the numerical investigations, the main focuses are the nonequilibrium behaviors in these processes. The system at the disc center is always in its thermodynamic equilibrium in the highly symmetric case. The internal kinetic energies in different degrees of freedom around the detonation front do not coincide. The dependence of the reaction rate on the pressure, influences of the shock strength and reaction rate on the departure amplitude of the system from its local thermodynamic equilibrium are probed. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Kinetics approach to modeling of polymer additive degradation in lubricants
Institute of Scientific and Technical Information of China (English)
llyaI.KUDISH; RubenG.AIRAPETYAN; Michael; J.; COVITCH
2001-01-01
A kinetics problem for a degrading polymer additive dissolved in a base stock is studied.The polymer degradation may be caused by the combination of such lubricant flow parameters aspressure, elongational strain rate, and temperature as well as lubricant viscosity and the polymercharacteristics (dissociation energy, bead radius, bond length, etc.). A fundamental approach tothe problem of modeling mechanically induced polymer degradation is proposed. The polymerdegradation is modeled on the basis of a kinetic equation for the density of the statistical distribu-tion of polymer molecules as a function of their molecular weight. The integrodifferential kineticequation for polymer degradation is solved numerically. The effects of pressure, elongational strainrate, temperature, and lubricant viscosity on the process of lubricant degradation are considered.The increase of pressure promotes fast degradation while the increase of temperature delaysdegradation. A comparison of a numerically calculated molecular weight distribution with an ex-perimental one obtained in bench tests showed that they are in excellent agreement with eachother.
Kinetic modelling of radiochemical ageing of ethylene-propylene copolymers
International Nuclear Information System (INIS)
Colin, Xavier; Richaud, Emmanuel; Verdu, Jacques; Monchy-Leroy, Carole
2010-01-01
A non-empirical kinetic model has been built for describing the general trends of radiooxidation kinetics of ethylene-propylene copolymers (EPR) at low γ dose rate and low temperature. It is derived from a radical chain oxidation mechanism composed of 30 elementary reactions: 19 relative to oxidation of methylene and methyne units plus 11 relative to their eventual cooxidation. The validity of this model has been already checked successfully elsewhere for one homopolymer: polyethylene (PE) (; ). In the present study, it is now checked for polypropylene (PP) and a series of three EPR differing essentially by their mole fraction of ethylene (37%, 73% and 86%) and their crystallinity degree (0%, 5% and 26%). Predicted values of radiation-chemical yields are in good agreement with experimental ones published in the last half past century.
Sutton, Jonathan E.; Guo, Wei; Katsoulakis, Markos A.; Vlachos, Dionisios G.
2016-04-01
Kinetic models based on first principles are becoming common place in heterogeneous catalysis because of their ability to interpret experimental data, identify the rate-controlling step, guide experiments and predict novel materials. To overcome the tremendous computational cost of estimating parameters of complex networks on metal catalysts, approximate quantum mechanical calculations are employed that render models potentially inaccurate. Here, by introducing correlative global sensitivity analysis and uncertainty quantification, we show that neglecting correlations in the energies of species and reactions can lead to an incorrect identification of influential parameters and key reaction intermediates and reactions. We rationalize why models often underpredict reaction rates and show that, despite the uncertainty being large, the method can, in conjunction with experimental data, identify influential missing reaction pathways and provide insights into the catalyst active site and the kinetic reliability of a model. The method is demonstrated in ethanol steam reforming for hydrogen production for fuel cells.
Flynn, Kevin J; Skibinski, David O F; Lindemann, Christian
2018-04-01
Nutrient acquisition is a critical determinant for the competitive advantage for auto- and osmohetero- trophs alike. Nutrient limited growth is commonly described on a whole cell basis through reference to a maximum growth rate (Gmax) and a half-saturation constant (KG). This empirical application of a Michaelis-Menten like description ignores the multiple underlying feedbacks between physiology contributing to growth, cell size, elemental stoichiometry and cell motion. Here we explore these relationships with reference to the kinetics of the nutrient transporter protein, the transporter rate density at the cell surface (TRD; potential transport rate per unit plasma-membrane area), and diffusion gradients. While the half saturation value for the limiting nutrient increases rapidly with cell size, significant mitigation is afforded by cell motion (swimming or sedimentation), and by decreasing the cellular carbon density. There is thus potential for high vacuolation and high sedimentation rates in diatoms to significantly decrease KG and increase species competitive advantage. Our results also suggest that Gmax for larger non-diatom protists may be constrained by rates of nutrient transport. For a given carbon density, cell size and TRD, the value of Gmax/KG remains constant. This implies that species or strains with a lower Gmax might coincidentally have a competitive advantage under nutrient limited conditions as they also express lower values of KG. The ability of cells to modulate the TRD according to their nutritional status, and hence change the instantaneous maximum transport rate, has a very marked effect upon transport and growth kinetics. Analyses and dynamic models that do not consider such modulation will inevitably fail to properly reflect competitive advantage in nutrient acquisition. This has important implications for the accurate representation and predictive capabilities of model applications, in particular in a changing environment.
A model for recovery kinetics of aluminum after large strain
DEFF Research Database (Denmark)
Yu, Tianbo; Hansen, Niels
2012-01-01
A model is suggested to analyze recovery kinetics of heavily deformed aluminum. The model is based on the hardness of isothermal annealed samples before recrystallization takes place, and it can be extrapolated to longer annealing times to factor out the recrystallization component of the hardness...... for conditions where recovery and recrystallization overlap. The model is applied to the isothermal recovery at temperatures between 140 and 220°C of commercial purity aluminum deformed to true strain 5.5. EBSD measurements have been carried out to detect the onset of discontinuous recrystallization. Furthermore...
International Nuclear Information System (INIS)
Liu, Chongxuan; Shi, Zhenqing; Zachara, John M.
2009-01-01
Stirred-flow cell experiments were performed to investigate the kinetics of uranyl (U(VI)) desorption from a contaminated sediment collected from the Hanford 300 Area at the US Department of Energy (DOE) Hanford Site, Washington. Three influent solutions of variable pH, Ca and carbonate concentrations that affected U(VI) aqueous and surface speciation were used under dynamic flow conditions to evaluate the effect of geochemical conditions on the rate of U(VI) desorption. The measured rate of U(VI) desorption varied with solution chemical composition that evolved as a result of thermodynamic and kinetic interactions between the influent solutions and sediment. The solution chemical composition that led to a lower equilibrium U(VI) sorption to the solid phase yielded a faster desorption rate. The experimental results were used to evaluate a multi-rate, surface complexation model (SCM) that has been proposed to describe U(VI) desorption kinetics in the Hanford sediment that contained complex sorbed U(VI) species in mass transfer limited domains. The model was modified and supplemented by including multi-rate, ion exchange reactions to describe the geochemical interactions between the solutions and sediment. With the same set of model parameters, the modified model reasonably well described the evolution of major ions and the rates of U(VI) desorption under variable geochemical and flow conditions, implying that the multi-rate SCM is an effective way to describe U(VI) desorption kinetics in subsurface sediments
Bakker, Barbara M; van Eunen, Karen; Jeneson, Jeroen A L; van Riel, Natal A W; Bruggeman, Frank J; Teusink, Bas
2010-10-01
Human metabolic diseases are typically network diseases. This holds not only for multifactorial diseases, such as metabolic syndrome or Type 2 diabetes, but even when a single gene defect is the primary cause, where the adaptive response of the entire network determines the severity of disease. The latter may differ between individuals carrying the same mutation. Understanding the adaptive responses of human metabolism naturally requires a systems biology approach. Modelling of metabolic pathways in micro-organisms and some mammalian tissues has yielded many insights, qualitative as well as quantitative, into their control and regulation. Yet, even for a well-known pathway such as glycolysis, precise predictions of metabolite dynamics from experimentally determined enzyme kinetics have been only moderately successful. In the present review, we compare kinetic models of glycolysis in three cell types (African trypanosomes, yeast and skeletal muscle), evaluate their predictive power and identify limitations in our understanding. Although each of these models has its own merits and shortcomings, they also share common features. For example, in each case independently measured enzyme kinetic parameters were used as input. Based on these 'lessons from glycolysis', we will discuss how to make best use of kinetic computer models to advance our understanding of human metabolic diseases.
Modelling of individual subject ozone exposure response kinetics.
Schelegle, Edward S; Adams, William C; Walby, William F; Marion, M Susan
2012-06-01
A better understanding of individual subject ozone (O(3)) exposure response kinetics will provide insight into how to improve models used in the risk assessment of ambient ozone exposure. To develop a simple two compartment exposure-response model that describes individual subject decrements in forced expiratory volume in one second (FEV(1)) induced by the acute inhalation of O(3) lasting up to 8 h. FEV(1) measurements of 220 subjects who participated in 14 previously completed studies were fit to the model using both particle swarm and nonlinear least squares optimization techniques to identify three subject-specific coefficients producing minimum "global" and local errors, respectively. Observed and predicted decrements in FEV(1) of the 220 subjects were used for validation of the model. Further validation was provided by comparing the observed O(3)-induced FEV(1) decrements in an additional eight studies with predicted values obtained using model coefficients estimated from the 220 subjects used in cross validation. Overall the individual subject measured and modeled FEV(1) decrements were highly correlated (mean R(2) of 0.69 ± 0.24). In addition, it was shown that a matrix of individual subject model coefficients can be used to predict the mean and variance of group decrements in FEV(1). This modeling approach provides insight into individual subject O(3) exposure response kinetics and provides a potential starting point for improving the risk assessment of environmental O(3) exposure.
On the Discrete Kinetic Theory for Active Particles. Modelling the Immune Competition
Directory of Open Access Journals (Sweden)
I. Brazzoli
2006-01-01
Full Text Available This paper deals with the application of the mathematical kinetic theory for active particles, with discrete activity states, to the modelling of the immune competition between immune and cancer cells. The first part of the paper deals with the assessment of the mathematical framework suitable for the derivation of the models. Two specific models are derived in the second part, while some simulations visualize the applicability of the model to the description of biological events characterizing the immune competition. A final critical outlines some research perspectives.
Dechlorination kinetics of TCE at toxic TCE concentrations: Assessment of different models.
Haest, P J; Springael, D; Smolders, E
2010-01-01
The reductive dechlorination of trichloroethene (TCE) in a TCE source zone can be self-inhibited by TCE toxicity. A study was set up to examine the toxicity of TCE in terms of species specific degradation kinetics and microbial growth and to evaluate models that describe this self-inhibition. A batch experiment was performed using the TCE dechlorinating KB-1 culture at initial TCE concentrations ranging from 0.04mM to saturation (8.4mM). Biodegradation activity was highest at 0.3mM TCE and no activity was found at concentrations from 4 to 8mM. Species specific TCE and cis-DCE (cis-dichloroethene) degradation rates and Dehalococcoides numbers were modeled with Monod kinetics combined with either Haldane inhibition or a log-logistic dose-response inhibition on these rates. The log-logistic toxicity model appeared the most appropriate model and predicts that the species specific degradation activities are reduced by a factor 2 at about 1mM TCE, respectively cis-DCE. However, the model showed that the inhibitive effects on the time for TCE to ethene degradation are a complex function of degradation kinetics and the initial cell densities of the dechlorinating species. Our analysis suggests that the self-inhibition on biodegradation cannot be predicted by a single concentration threshold without information on the cell densities.
New types of experimental data shape the use of enzyme kinetics for dynamic network modeling.
Tummler, Katja; Lubitz, Timo; Schelker, Max; Klipp, Edda
2014-01-01
Since the publication of Leonor Michaelis and Maude Menten's paper on the reaction kinetics of the enzyme invertase in 1913, molecular biology has evolved tremendously. New measurement techniques allow in vivo characterization of the whole genome, proteome or transcriptome of cells, whereas the classical enzyme essay only allows determination of the two Michaelis-Menten parameters V and K(m). Nevertheless, Michaelis-Menten kinetics are still commonly used, not only in the in vitro context of enzyme characterization but also as a rate law for enzymatic reactions in larger biochemical reaction networks. In this review, we give an overview of the historical development of kinetic rate laws originating from Michaelis-Menten kinetics over the past 100 years. Furthermore, we briefly summarize the experimental techniques used for the characterization of enzymes, and discuss web resources that systematically store kinetic parameters and related information. Finally, describe the novel opportunities that arise from using these data in dynamic mathematical modeling. In this framework, traditional in vitro approaches may be combined with modern genome-scale measurements to foster thorough understanding of the underlying complex mechanisms. © 2013 FEBS.
Dana, Saswati; Nakakuki, Takashi; Hatakeyama, Mariko; Kimura, Shuhei; Raha, Soumyendu
2011-01-01
Mutation and/or dysfunction of signaling proteins in the mitogen activated protein kinase (MAPK) signal transduction pathway are frequently observed in various kinds of human cancer. Consistent with this fact, in the present study, we experimentally observe that the epidermal growth factor (EGF) induced activation profile of MAP kinase signaling is not straightforward dose-dependent in the PC3 prostate cancer cells. To find out what parameters and reactions in the pathway are involved in this departure from the normal dose-dependency, a model-based pathway analysis is performed. The pathway is mathematically modeled with 28 rate equations yielding those many ordinary differential equations (ODE) with kinetic rate constants that have been reported to take random values in the existing literature. This has led to us treating the ODE model of the pathways kinetics as a random differential equations (RDE) system in which the parameters are random variables. We show that our RDE model captures the uncertainty in the kinetic rate constants as seen in the behavior of the experimental data and more importantly, upon simulation, exhibits the abnormal EGF dose-dependency of the activation profile of MAP kinase signaling in PC3 prostate cancer cells. The most likely set of values of the kinetic rate constants obtained from fitting the RDE model into the experimental data is then used in a direct transcription based dynamic optimization method for computing the changes needed in these kinetic rate constant values for the restoration of the normal EGF dose response. The last computation identifies the parameters, i.e., the kinetic rate constants in the RDE model, that are the most sensitive to the change in the EGF dose response behavior in the PC3 prostate cancer cells. The reactions in which these most sensitive parameters participate emerge as candidate drug targets on the signaling pathway. 2011 Elsevier Ireland Ltd. All rights reserved.
Cell proliferation kinetics and radiation response in 9L tumor spheroids
Energy Technology Data Exchange (ETDEWEB)
Sweigert, S.E.
1984-05-01
Cell kinetic parameters, including population doubling-time, cell cycle time, and growth fraction, were measured in 9L gliosarcoma spheroids. These parameters were studied as the spheroids grew from 50 ..mu..m to over 900 ..mu..m in diameter. Experiments relating the cell kinetic parameters to the radiation response of 9L spheroids were also carried out. The major findings were that the average cell cycle time (T/sub c/), is considerably longer in large spheroids than in exponentially-growing monolayers, the radiosensitivity of noncycling (but still viable) cells in spheroids is not significantly different from that of cycling spheroid cells, and the radiation-induced division delay is approximately twice as long in spheroid cells as in monolayer cells given equal radiation doses. The cell loss factor for spheroids of various sizes was calculated, by using the measured kinetic parameters in the basic equations for growth of a cell population. 157 references, 6 figures, 3 tables.
Cell proliferation kinetics and radiation response in 9L tumor spheroids
International Nuclear Information System (INIS)
Sweigert, S.E.
1984-05-01
Cell kinetic parameters, including population doubling-time, cell cycle time, and growth fraction, were measured in 9L gliosarcoma spheroids. These parameters were studied as the spheroids grew from 50 μm to over 900 μm in diameter. Experiments relating the cell kinetic parameters to the radiation response of 9L spheroids were also carried out. The major findings were that the average cell cycle time (T/sub c/), is considerably longer in large spheroids than in exponentially-growing monolayers, the radiosensitivity of noncycling (but still viable) cells in spheroids is not significantly different from that of cycling spheroid cells, and the radiation-induced division delay is approximately twice as long in spheroid cells as in monolayer cells given equal radiation doses. The cell loss factor for spheroids of various sizes was calculated, by using the measured kinetic parameters in the basic equations for growth of a cell population. 157 references, 6 figures, 3 tables
Kinetic modeling of ethylbenzene dehydrogenation over hydrotalcite catalysts
Atanda, Luqman
2011-07-01
Kinetics of ethylbenzene dehydrogenation to styrene was investigated over a series of quaternary mixed oxides of Mg3Fe0.25Me0.25Al0.5 (Me=Co, Mn and Ni) catalysts prepared by calcination of hydrotalcite-like compounds and compared with commercial catalyst. The study was carried out in the absence of steam using a riser simulator at 400, 450, 500 and 550°C for reaction times of 5, 10, 15 and 20s. Mg3Fe0.25Mn0.25Al0.5 afforded the highest ethylbenzene conversion of 19.7% at 550°C. Kinetic parameters for the dehydrogenation process were determined using the catalyst deactivation function based on reactant conversion model. The apparent activation energies for styrene production were found to decrease as follows: E1-Ni>E1-Co>E1-Mn. © 2011 Elsevier B.V.
Kinetic modelling and mechanism of dye adsorption on unburned carbon
Energy Technology Data Exchange (ETDEWEB)
Wang, S.B.; Li, H.T. [Curtin University of Technology, Perth, WA (Australia). Dept. of Chemical Engineering
2007-07-01
Textile dyeing processes are among the most environmentally unfriendly industrial processes by producing coloured wastewaters. The adsorption method using unburned carbon from coal combustion residue was studied for the decolourisation of typical acidic and basic dyes. It was discovered that the unburned carbon showed high adsorption capacity at 1.97 x 10{sup -4} and 5.27 x 10{sup -4} mol/g for Basic Violet 3 and Acid Black 1, respectively. The solution pH, particle size and temperature significantly influenced the adsorption capacity. Higher solution pH favoured the adsorption of basic dye while reduced the adsorption of acid dye. The adsorption of dye increased with increasing temperature but decreased with increasing particle size. Sorption kinetic data indicated that the adsorption kinetics followed the pseudo-second-order model. The adsorption mechanism consisted of two processes, external diffusion and intraparticle diffusion, and the external diffusion was the dominating process.
The modelling of direct chemical kinetic effects in turbulent flames
Energy Technology Data Exchange (ETDEWEB)
Lindstet, R.P. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Dept. of Mechanical Engineering
2000-06-01
Combustion chemistry-related effects have traditionally been of secondary importance in the design of gas turbine combustors. However, the need to deal with issues such as flame stability, relight and pollutant emissions has served to bring chemical kinetics and the coupling of finite rate chemistry with turbulent flow fields to the centre of combustor design. Indeed, improved cycle efficiency and more stringent environmental legislation, as defined by the ICAO, are current key motivators in combustor design. Furthermore, lean premixed prevaporized (LPP) combustion systems, increasingly used for power generation, often operate close to the lean blow-off limit and are prone to extinction/reignition type phenomena. Thus, current key design issues require that direct chemical kinetic effects be accounted for accurately in any simulation procedure. The transported probability density function (PDF) approach uniquely offers the potential of facilitating the accurate modelling of such effects. The present paper thus assesses the ability of this technique to model kinetically controlled phenomena, such as carbon monoxide emissions and flame blow-off, through the application of a transported PDF method closed at the joint scalar level. The closure for the velocity field is at the second moment level, and a key feature of the present work is the use of comprehensive chemical kinetic mechanisms. The latter are derived from recent work by Lindstedt and co-workers that has resulted in a compact 141 reactions and 28 species mechanism for LNG combustion. The systematically reduced form used here features 14 independent C/H/O scalars, with the remaining species incorporated via steady state approximations. Computations have been performed for hydrogen/carbon dioxide and methane flames. The former (high Reynolds number) flames permit an assessment of the modelling of flame blow-off, and the methane flame has been selected to obtain an indication of the influence of differential
Enrichment of tumor cells for cell kinetic analysis in human tumor biopsies using cytokeratin gating
International Nuclear Information System (INIS)
Haustermans, K.; Hofland, I.; Ramaekers, M.; Ivanyi, D.; Balm, A.J.M.; Geboes, K.; Lerut, T.; Schueren, E. van der; Begg, A.C.
1996-01-01
Purpose: To determine the feasibility of using cytokeratin antibodies to distinguish normal and malignant cells in human tumors using flow cytometry. The goal was ultimately to increase the accuracy of cell kinetic measurements on human tumor biopsies. Material and methods: A panel of four antibodies was screened on a series of 48 tumors from two centres; 22 head and neck tumors (Amsterdam) and 26 esophagus carcinomas (Leuven). First, screening was carried out by immunohistochemistry on frozen sections to test intensity of staining and the fraction of cytokeratin-positive tumor cells. The antibody showing the most positive staining was then used for flow cytometry on the same tumor. Results: The two broadest spectrum antibodies (AE1/AE3, E3/C4) showed overall the best results with immunohistochemical staining, being positive in over 95% of tumors. Good cell suspensions for DNA flow cytometry could be made from frozen material by a mechanical method, whereas enzymatic methods with trypsin or collagenase were judged failures in almost all cases. >From fresh material, both collagenase and trypsin produced good suspensions for flow cytometry, although the fraction of tumor cells, judged by proportion aneuploid cells, was markedly higher for trypsin. Using the best cytokeratin antibody for each tumor, two parameter flow cytometry was done (cytokeratin versus DNA content). Enrichment of tumor cells was then tested by measuring the fraction of aneuploid cells (the presumed malignant population) of cytokeratin-positive cells versus all cells. An enrichment factor ranging between 0 (no enrichment) and 1 (perfect enrichment, tumor cells only) was then calculated. The average enrichment was 0.60 for head and neck tumors and 0.59 for esophagus tumors. Conclusions: We conclude that this method can substantially enrich the proportion of tumor cells in biopsies from carcinomas. Application of this method could significantly enhance accuracy of tumor cell kinetic measurements
An enhanced Brinson model with modified kinetics for martensite transformation
Energy Technology Data Exchange (ETDEWEB)
Kim, Young-Jin; Lee, Jung Ju [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jeong, Ju-Won [Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Lim, Jae Hyuk [Chonbuk National University, Jeonju (Korea, Republic of)
2017-03-15
We propose an enhanced Brinson model with modified kinetics for martensite transformation. Two additional material constants are considered to follow the stress-temperature diagram above austenite start temperature (As) along with treatment to keep the continuity of the martensite volume fraction and the path dependency of the phase transformation. To demonstrate the performance of the proposed model, we implement this algorithm into ABAQUS user subroutine, then conduct several numerical simulations and compare their results with SMA wire experiments as well as those of three-dimensional SMA constitutive models. From the results, it turns out that the proposed model is as accurate as the three-dimensional models and shows better accuracy over original Brinson model in terms of recovery stress.
A physiologically based kinetic model for bacterial sulfide oxidation.
Klok, Johannes B M; de Graaff, Marco; van den Bosch, Pim L F; Boelee, Nadine C; Keesman, Karel J; Janssen, Albert J H
2013-02-01
In the biotechnological process for hydrogen sulfide removal from gas streams, a variety of oxidation products can be formed. Under natron-alkaline conditions, sulfide is oxidized by haloalkaliphilic sulfide oxidizing bacteria via flavocytochrome c oxidoreductase. From previous studies, it was concluded that the oxidation-reduction state of cytochrome c is a direct measure for the bacterial end-product formation. Given this physiological feature, incorporation of the oxidation state of cytochrome c in a mathematical model for the bacterial oxidation kinetics will yield a physiologically based model structure. This paper presents a physiologically based model, describing the dynamic formation of the various end-products in the biodesulfurization process. It consists of three elements: 1) Michaelis-Menten kinetics combined with 2) a cytochrome c driven mechanism describing 3) the rate determining enzymes of the respiratory system of haloalkaliphilic sulfide oxidizing bacteria. The proposed model is successfully validated against independent data obtained from biological respiration tests and bench scale gas-lift reactor experiments. The results demonstrate that the model is a powerful tool to describe product formation for haloalkaliphilic biomass under dynamic conditions. The model predicts a maximum S⁰ formation of about 98 mol%. A future challenge is the optimization of this bioprocess by improving the dissolved oxygen control strategy and reactor design. Copyright © 2012 Elsevier Ltd. All rights reserved.
Small velocity and finite temperature variations in kinetic relaxation models
Markowich, Peter; Jü ngel, Ansgar; Aoki, Kazuo
2010-01-01
A small Knuden number analysis of a kinetic equation in the diffusive scaling is performed. The collision kernel is of BGK type with a general local Gibbs state. Assuming that the flow velocity is of the order of the Knudsen number, a Hilbert expansion yields a macroscopic model with finite temperature variations, whose complexity lies in between the hydrodynamic and the energy-transport equations. Its mathematical structure is explored and macroscopic models for specific examples of the global Gibbs state are presented. © American Institute of Mathematical Sciences.
Norepinephrine metabolism in humans. Kinetic analysis and model
International Nuclear Information System (INIS)
Linares, O.A.; Jacquez, J.A.; Zech, L.A.; Smith, M.J.; Sanfield, J.A.; Morrow, L.A.; Rosen, S.G.; Halter, J.B.
1987-01-01
The present study was undertaken to quantify more precisely and to begin to address the problem of heterogeneity of the kinetics of distribution and metabolism of norepinephrine (NE) in humans, by using compartmental analysis. Steady-state NE specific activity in arterialized plasma during [ 3 H]NE infusion and postinfusion plasma disappearance of [ 3 H]NE were measured in eight healthy subjects in the supine and upright positions. Two exponentials were clearly identified in the plasma [ 3 H]NE disappearance curves of each subject studied in the supine (r = 0.94-1.00, all P less than 0.01) and upright (r = 0.90-0.98, all P less than 0.01) positions. A two-compartment model was the minimal model necessary to simultaneously describe the kinetics of NE in the supine and upright positions. The NE input rate into the extravascular compartment 2, estimated with the minimal model, increased with upright posture (1.87 +/- 0.08 vs. 3.25 +/- 0.2 micrograms/min per m2, P less than 0.001). Upright posture was associated with a fall in the volume of distribution of NE in compartment 1 (7.5 +/- 0.6 vs. 4.7 +/- 0.3 liters, P less than 0.001), and as a result of that, there was a fall in the metabolic clearance rate of NE from compartment 1 (1.80 +/- 0.11 vs. 1.21 +/- 0.08 liters/min per m2, P less than 0.001). We conclude that a two-compartment model is the minimal model that can accurately describe the kinetics of distribution and metabolism of NE in humans
Delayed Activation Kinetics of Th2- and Th17 Cells Compared to Th1 Cells.
Duechting, Andrea; Przybyla, Anna; Kuerten, Stefanie; Lehmann, Paul V
2017-09-12
During immune responses, different classes of T cells arise: Th1, Th2, and Th17. Mobilizing the right class plays a critical role in successful host defense and therefore defining the ratios of Th1/Th2/Th17 cells within the antigen-specific T cell repertoire is critical for immune monitoring purposes. Antigen-specific Th1, Th2, and Th17 cells can be detected by challenging peripheral blood mononuclear cells (PBMC) with antigen, and establishing the numbers of T cells producing the respective lead cytokine, IFN-γ and IL-2 for Th1 cells, IL-4 and IL-5 for Th2, and IL-17 for Th-17 cells, respectively. Traditionally, these cytokines are measured within 6 h in flow cytometry. We show here that 6 h of stimulation is sufficient to detect peptide-induced production of IFN-γ, but 24 h are required to reveal the full frequency of protein antigen-specific Th1 cells. Also the detection of IL-2 producing Th1 cells requires 24 h stimulation cultures. Measurements of IL-4 producing Th2 cells requires 48-h cultures and 96 h are required for frequency measurements of IL-5 and IL-17 secreting T cells. Therefore, accounting for the differential secretion kinetics of these cytokines is critical for the accurate determination of the frequencies and ratios of antigen-specific Th1, Th2, and Th17 cells.
Li, Shan-Shan; Guan, Qi-Yuan; Meng, Gang; Chang, Xiao-Feng; Wei, Ji-Wu; Wang, Peng; Kang, Bin; Xu, Jing-Juan; Chen, Hong-Yuan
2017-05-23
Better understanding the drug action within cells may extend our knowledge on drug action mechanisms and promote new drugs discovery. Herein, we studied the processes of drug induced chemical changes on proteins and nucleic acids in human breast adenocarcinoma (MCF-7) cells via time-resolved plasmonic-enhanced Raman spectroscopy (PERS) in combination with principal component analysis (PCA). Using three popular chemotherapy drugs (fluorouracil, cisplatin and camptothecin) as models, chemical changes during drug action process were clearly discriminated. Reaction kinetics related to protein denaturation, conformational modification, DNA damage and their associated biomolecular events were calculated. Through rate constants and reaction delay times, the different action modes of these drugs could be distinguished. These results may provide vital insights into understanding the chemical reactions associated with drug-cell interactions.
KINETIC STUDY OF PALMITIC ACID ESTERIFICATION CATALYZED BY Rhizopus oryzae RESTING CELLS
Directory of Open Access Journals (Sweden)
JONH J MÉNDEZ
2009-01-01
Full Text Available ABSTRACT In the present study, a kinetic model for the biocatalytic synthesis of esters using Rhizopus oryzae resting cells is proposed. The kinetic study has been made in a range of 30-50 °C and atmospheric pressure. The Influence of operating variables, water content, pH, amount of mycelium was studied. Different values of temperature, initial mycelium concentration and acid/alcohol molar ratio were tested. Initial rates were estimated from the slope of the concentration of palmitic acid, or their corresponding ester at conversions of less than 10%, versus time and reported as mmol l-1 min -1. The values of kinetic constants were computed using the freeware program SIMFIT (http:\\\\www.simfit.man.ac.uk. Key words: bound lipase, esterification, fungal resting cells, Rhizopus oryzae, palmitic acid, propanol. RESUMEN En el presente estudio, un modelo cinético para la síntesis de esteres usando Rhizopus oryzae resting cells es propuesto. El estudio cinético fue realizado en un rango de temperatura de 30-50 ºC a presión atmosférica reducida. La influencia de las variables de operación tales como temperatura, pH y contenido de agua fueron estudiadas. Diferentes valores de concentración de micelio y relación molar de ácido/alcohol son ensayadas, Las velocidades iníciales se estimaron de la curva de concentración de acido palmítico, y su correspondiente conversión a ester en menos del 10%, frente a tiempo y reportadas en mmol I-1 min -1. Los valores de las constantes cinéticas fueron calculados usando el programa freeware SIMFIT (http:\\\\www.simfit.man.ac.uk. Palabras clave: Lipasas, esterificación, resting cells, Rhizopus oryzae, acido palmítico, propanol.
Simultaneous removal of sulfide, nitrate and acetate: Kinetic modeling
International Nuclear Information System (INIS)
Wang Aijie; Liu Chunshuang; Ren Nanqi; Han Hongjun; Lee Duujong
2010-01-01
Biological removal of sulfide, nitrate and chemical oxygen demand (COD) simultaneously from industrial wastewaters to elementary sulfur (S 0 ), N 2 , and CO 2 , or named the denitrifying sulfide (DSR) process, is a cost effective and environmentally friendly treatment process for high strength sulfide and nitrate laden organic wastewater. Kinetic model for the DSR process was established for the first time on the basis of Activated Sludge Model No. 1 (ASM1). The DSR experiments were conducted at influent sulfide concentrations of 200-800 mg/L, whose results calibrate the model parameters. The model correlates well with the DSR process dynamics. By introducing the switch function and the inhibition function, the competition between autotrophic and heterotrophic denitrifiers is quantitatively described and the degree of inhibition of sulfide on heterotrophic denitrifiers is realized. The model output indicates that the DSR reactor can work well at 0.5 1000 mg/L influent sulfide, however, the DSR system will break down.
3D CFD Modeling of the LMF System: Desulfurization Kinetics
Cao, Qing; Pitts, April; Zhang, Daojie; Nastac, Laurentiu; Williams, Robert
A fully transient 3D CFD modeling approach capable of predicting the three phase (gas, slag and steel) fluid flow characteristics and behavior of the slag/steel interface in the argon gas bottom stirred ladle with two off-centered porous plugs (Ladle Metallurgical Furnace or LMF) has been recently developed. The model predicts reasonably well the fluid flow characteristics in the LMF system and the observed size of the slag eyes for both the high-stirring and low-stirring conditions. A desulfurization reaction kinetics model considering metal/slag interface characteristics is developed in conjunction with the CFD modeling approach. The model is applied in this study to determine the effects of processing time, and gas flow rate on the efficiency of desulfurization in the studied LMF system.
Simulation of styrene polymerization reactors: kinetic and thermodynamic modeling
Directory of Open Access Journals (Sweden)
A. S. Almeida
2008-06-01
Full Text Available A mathematical model for the free radical polymerization of styrene is developed to predict the steady-state and dynamic behavior of a continuous process. Special emphasis is given for the kinetic and thermodynamic models, where the most sensitive parameters were estimated using data from an industrial plant. The thermodynamic model is based on a cubic equation of state and a mixing rule applied to the low-pressure vapor-liquid equilibrium of polymeric solutions, suitable for modeling the auto-refrigerated polymerization reactors, which use the vaporization rate to remove the reaction heat from the exothermic reactions. The simulation results show the high predictive capability of the proposed model when compared with plant data for conversion, average molecular weights, polydispersity, melt flow index, and thermal properties for different polymer grades.
Bozkoyunlu, Gaye; Takaç, Serpil
2014-01-01
Olive mill wastewater (OMW) with total phenol (TP) concentration range of 300-1200 mg/L was treated with alginate-immobilized Rhodotorula glutinis cells in batch system. The effects of pellet properties (diameter, alginate concentration and cell loading (CL)) and operational parameters (initial TP concentration, agitation rate and reusability of pellets) on dephenolization of OMW were studied. Up to 87% dephenolization was obtained after 120 h biodegradations. The utilization number of pellets increased with the addition of calcium ions into the biodegradation medium. The overall effectiveness factors calculated for different conditions showed that diffusional limitations arising from pellet size and pellet composition could be neglected. Mass transfer limitations appeared to be more effective at high substrate concentrations and low agitation rates. The parameters of logistic model for growth kinetics of R. glutinis in OMW were estimated at different initial phenol concentrations of OMW by curve-fitting of experimental data with the model.
Experimental kinetic study and modeling of calcium oxide carbonation
International Nuclear Information System (INIS)
Rouchon, L.
2012-01-01
Anthropogenic carbon dioxide (CO 2 ) emissions, major contributors to the greenhouse effect, are considered as the main cause of global warming. So, decrease of CO 2 emitted by large industrial combustion sources or power plants, is an important scientific goal. One of the approaches is based on CO 2 separation and capture from flue gas, followed by sequestration in a wide range of geological formations. In this aim, CO 2 is captured by sorbents like calcium oxide (CaO) in multi-cycle process of carbonation/de-carbonation. However, it was shown that the most important limitations of such process are related to the reversibility of reaction. CaO rapidly loses activity towards CO 2 , so the maximum extent of carbonation decreases as long as the number of cycles increases. In order to well understand the processes and parameters influencing the capture capacity of CaO-based sorbents, it appears important to get details on the kinetic law governing the reaction, which have not been really studied up to now. To investigate this reaction, CaO carbonation kinetics was followed by means of thermogravimetric analysis (TGA) on divided materials. Special care was given to the validation of the usual kinetic assumptions such as steady state and rate-determining step assumptions. The aim was to obtain a model describing the reaction in order to explain the influence of intensive variables such as carbonation temperature and CO 2 partial pressure. TGA curves obtained under isothermal and isobaric conditions showed an induction period linked to the nucleation process and a strong slowing down of the reaction rate once a given fractional conversion was reached. Both phenomena were observed to depend on carbonation temperature and CO 2 partial pressure. To explain these results, the evolution of texture and microstructure of the solid during the reaction was regarded as essential. Reaction at the grain scale induces a volume increase from CaO to CaCO 3 which causes a change in the
Radiobiological modelling with MarCell software
International Nuclear Information System (INIS)
Hasan, J.S.; Jones, T.D.
1996-01-01
Jones introduced a bone marrow radiation cell kinetics model with great potential for application in the fields of health physics, radiation research, and medicine. However, until recently, only the model developers have been able to apply it because of the complex array of biological and physical assignments needed for evaluation of a particular radiation exposure protocol. The purpose of this article is to illustrate the use of MarCell (MARrow CELL Kinetics) software for MS-DOS, a user-friendly computer implementation of that mathematical model that allows almost anyone with an elementary knowledge of radiation physics and/or medical procedures to apply the model. A hands-on demonstration of the software will be given by guiding the user through evaluation of a medical total body irradiation protocol and a nuclear fallout scenario. A brief overview of the software is given in the Appendix
Effect of elevated temperatures on cell cycle kinetics of rat gliosarcoma cells
International Nuclear Information System (INIS)
Ross-Riveros, P.
1978-07-01
9L rat gliosarcoma cells were examined in vitro for survival response to hyperthermic temperatures ranging from 39.0 0 to 45.0 0 C for graded exposure times. At 43.0 0 C, the split exposure response was also studied. Changes in cell cycle kinetics resulting from hyperthermia were compared for isosurvival levels achieved by appropriate exposure time to either 42.5 0 C or 43.0 0 C. After heat treatment, cells were held at 37.0 0 C for varying recovery periods. Cells were then either prepared for flow microfluorometry (FMF), or exposed to tritiated thymidine ( 3 HTdR) for autoradiography. The survival studies indicated that the rate of change in cell killing for each increasing degree centigrade was greater for temperatures below 43.0 0 C than for temperatures above 43.0 0 C. The shoulder width of the survival curves was maximal at 42.5 0 C. The shoulder width represents an important parameter since it describes a threshold time after which significant cell killing occurs. Thus both 43.0 0 C, the temperature at which mortality kinetics changed, and 42.5 0 C, the temperature at which the shoulder width was maximum, represent critical temperatures for the 9L cells. When 9L cells were given an initial conditioning exposure to 43.0 0 C, then returned to 37 0 C for 3 hrs, followed by graded exposure intervals at 43.0 0 , the resulting survival curve indicated that cells required longer times for equal cell killing than for the single exposure condition, suggesting that the cells possess a capability to adapt to the higher temperature
Detailed Modelling of Kinetic Biodegradation Processes in a Laboratory Mmicrocosm
Watson, I.; Oswald, S.; Banwart, S.; Mayer, U.
2003-04-01
Biodegradation of organic contaminants in soil and groundwater usually takes places via different redox processes happening sequentially as well as simultaneously. We used numerical modelling of a long-term lab microcosm experiment to simulate the dynamic behaviour of fermentation and respiration in the aqueous phase in contact with the sandstone material, and to develop a conceptual model describing these processes. Aqueous speciation, surface complexation, mineral dissolution and precipitation were taken into account also. Fermentation can be the first step of the degradation process producing intermediate species, which are subsequently consumed by TEAPs. Microbial growth and substrate utilisation kinetics are coupled via a formulation that also includes aqueous speciation and other geochemical reactions including surface complexation, mineral dissolution and precipitation. Competitive exclusion between TEAPs is integral to the conceptual model of the simulation, and the results indicate that exclusion is not complete, but some overlap is found between TEAPs. The model was used to test approaches like the partial equilibrium approach that currently make use of hydrogen levels to diagnose prevalent TEAPs in groundwater. The observed pattern of hydrogen and acetate concentrations were reproduced well by the simulations, and the results show the relevance of kinetics, lag times and inhibition, and especially that intermediate products play a key role.
Modeling texture kinetics during thermal processing of potato products.
Moyano, P C; Troncoso, E; Pedreschi, F
2007-03-01
A kinetic model based on 2 irreversible serial chemical reactions has been proposed to fit experimental data of texture changes during thermal processing of potato products. The model links dimensionless maximum force F*(MAX) with processing time. Experimental texture changes were obtained during frying of French fries and potato chips at different temperatures, while literature data for blanching/cooking of potato cubes have been considered. A satisfactory agreement between experimental and predicted values was observed, with root mean square values (RMSs) in the range of 4.7% to 16.4% for French fries and 16.7% to 29.3% for potato chips. In the case of blanching/cooking, the proposed model gave RMSs in the range of 1.2% to 17.6%, much better than the 6.2% to 44.0% obtained with the traditional 1st-order kinetics. The model is able to predict likewise the transition from softening to hardening of the tissue during frying.
Modeling of subtle kinetic processes in plasma simulation
International Nuclear Information System (INIS)
Sydora, R.D.; Decyk, V.K.; Dawson, J.M.
1988-01-01
A new diagnostic method for plasma simulation models is presented which enables one to probe the subtle dielectric properties of the plasma medium. The procedure involves the removal of the background plasma response in order to isolate the effects of small perturbing influences which are externally added. We have found the technique accurately describes fundamental kinetic plasma behavior such as the shielding of individual test charges and currents. Wave emission studies and drag of test particles has been carried out in explicit particle algorithms as well as large time step implicit and gyrokinetic models. Accurate plasma behavior is produced and it is possible to investigate in detail, processes which can be compared with plasma kinetic theory. The technique of subtraction is not only limited to particle simulation models but also can be used in MHD or fluid models where resolution is difficult due to the intensity of the background response relative to the phenomena one is interested in measuring, such as a weakly grouwing instability or nonlinear mode coupling effect. (author)
Mathematical Modeling of Conversion Kinetics during Vitrification of Nuclear Waste
International Nuclear Information System (INIS)
Pokorny, Richard; Pierce, David A.; Chun, Jae Hun; Hrma, Pavel
2012-01-01
The last part of the high-level waste (HLW) glass melter that has not yet been fully understood, not to mention mathematically modeled, is the cold cap. Cold cap is a layer of dry melter feed, a mixture of the HLW with glass forming and modifying additives. It floats on the pool of molten glass from which it receives the heat necessary for melting. Mathematical modeling of the cold cap solves differential equations that express the mass and energy balances for the feed-to-glass conversion within the cold cap. The feed-to-glass conversion consists of multiple chemical reactions and phase transitions. Reaction enthalpies and mass losses to gases evolved provide an important input for the cold cap modeling. In this study, we measured the kinetics of cold cap reactions using the non-isothermal thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC). These thermoanalytical techniques show multiple overlapping peaks, necessitating the development of a deconvolution method for the determination of the kinetics of major reactions needed for cold cap modeling. Assuming that the cold cap reactions are independent, we expressed the overall rate as a sum of rates of individual reactions that we treat as Arrheniustype processes with a power-law based kinetics. Accordingly, we fitted to experimental data the following equation: dx/dT=1/Φ N Σ 1 w i A i (1-x i ) ni exp(-B i /T) (1) where x is the fraction of material reacted, T is temperature, Φ is the heating rate, wi the weight of the i th reaction (the fraction of the total mass loss caused by the i th reaction), Ai is the i th reaction pre-exponential factor, B i is the i th reaction activation energy, and n i is the i th reaction (apparent) reaction order. Because HLW melter feeds contain a large number of constituents, such as oxides, acids, hydroxides, oxyhydrates, and ionic salts, the number of cold cap reactions is very large indeed. For example, hydroxides, oxyhydrates, boric acid, and various
Improved point-kinetics model for the BWR control rod drop accident
International Nuclear Information System (INIS)
Neogy, P.; Wakabayashi, T.; Carew, J.F.
1985-01-01
A simple prescription to account for spatial feedback weighting effects in RDA (rod drop accident) point-kinetics analyses has been derived and tested. The point-kinetics feedback model is linear in the core peaking factor, F/sub Q/, and in the core average void fraction and fuel temperature. Comparison with detailed spatial kinetics analyses indicates that the improved point-kinetics model provides an accurate description of the BWR RDA
Barretto, Letícia Siqueira de Sá; Lessio, Camila; Sawaki e Nakamura, Ahy Natally; Lo Turco, Edson Guimarães; da Silva, Camila Gonzaga; Zambon, João Paulo; Gozzo, Fábio César; Pilau, Eduardo Jorge; de Almeida, Fernando Gonçalves
2014-10-01
Human adipose tissue has been described as a potential alternative reservoir for stem cells. Although studies have been performed in rabbits using autologous adipose-derived stem cells (ADSC), these cells have not been well characterized. The primary objectives of this study were to demonstrate the presence of adipose-derived stem cells isolated from rabbit inguinal fat pads and to characterize them through osteogenic and adipogenic in vitro differentiation and lipid fingerprinting analysis. The secondary objective was to evaluate cell behavior through growth kinetics, cell viability, and DNA integrity. Rabbit ADSCs were isolated to determine the in vitro growth kinetics and cell viability. DNA integrity was assessed by an alkaline Comet assay in passages 0 and 5. The osteogenic differentiation was evaluated by Von Kossa, and Alizarin Red S staining and adipogenic differentiation were assessed by Oil Red O staining. Lipid fingerprinting analyses of control, adipogenic, and osteogenic differentiated cells were performed by MALDI-TOF/MS. We demonstrate that rabbit ADSC have a constant growth rate at the early passages, with increased DNA fragmentation at or after passage 5. Rabbit ADSC viability was similar in passages 2 and 5 (90.7% and 86.6%, respectively), but there was a tendency to decreased cellular growth rate after passage 3. The ADSC were characterized by the expression of surface markers such as CD29 (67.4%) and CD44 (89.4%), using CD 45 (0.77%) as a negative control. ADSC from rabbits were successfully isolated form the inguinal region. These cells were capable to differentiate into osteogenic and adipogenic tissue when they were placed in inductive media. After each passage, there was a trend towards decreased cell growth. On the other hand, DNA fragmentation increased at each passage. ADSC had a different lipid profile when placed in control, adipogenic, or osteogenic media.
Gary, S. Peter; Zhao, Yinjian; Hughes, R. Scott; Wang, Joseph; Parashar, Tulasi N.
2018-06-01
Three-dimensional particle-in-cell simulations of the forward cascade of decaying turbulence in the relatively short-wavelength kinetic range have been carried out as initial-value problems on collisionless, homogeneous, magnetized electron-ion plasma models. The simulations have addressed both whistler turbulence at β i = β e = 0.25 and kinetic Alfvén turbulence at β i = β e = 0.50, computing the species energy dissipation rates as well as the increase of the Boltzmann entropies for both ions and electrons as functions of the initial dimensionless fluctuating magnetic field energy density ε o in the range 0 ≤ ε o ≤ 0.50. This study shows that electron and ion entropies display similar rates of increase and that all four entropy rates increase approximately as ε o , consistent with the assumption that the quasilinear premise is valid for the initial conditions assumed for these simulations. The simulations further predict that the time rates of ion entropy increase should be substantially greater for kinetic Alfvén turbulence than for whistler turbulence.
Bona Fide Thermodynamic Temperature in Nonequilibrium Kinetic Ising Models
Sastre, Francisco; Dornic, Ivan; Chaté, Hugues
2003-01-01
We show that a nominal temperature can be consistently and uniquely defined everywhere in the phase diagram of large classes of nonequilibrium kinetic Ising spin models. In addition, we confirm the recent proposal that, at critical points, the large-time ``fluctuation-dissipation ratio'' $X_\\infty$ is a universal amplitude ratio and find in particular $X_\\infty \\approx 0.33(2)$ and $X_\\infty = 1/2$ for the magnetization in, respectively, the two-dimensional Ising and voter universality classes.
Application of Detailed Chemical Kinetics to Combustion Instability Modeling
2016-01-04
Clearance Number 15692 Clearance Date 12/3/2015 14. ABSTRACT A comparison of a single step global reaction and the detailed GRI -Mech 1.2 for combustion...comparison of a single step global reaction and the detailed GRI -Mech 1.2 for com- bustion instability modeling in a methane-fueled longitudinal-mode...methane as the fuel. We use the GRI -Mech 1.2 kinetics mechanism for methane oxidation.11 The GRI -Mech 1.2 was chosen over 2.11 because the only
A new kinetic model for human iodine metabolism
International Nuclear Information System (INIS)
Ficken, V.J.; Allen, E.W.; Adams, G.D.
1985-01-01
A new kinetic model of iodine metabolism incorporating preferential organification of tyrosil (TYR) residues of thyroglobulin is developed and evaluated for euthyroid (n=5) and hyperthyroid (n=11) subjects. Iodine and peripheral T4 metabolims were measured with oral /sup 131/I-NaI and intravenous /sup 125/I-74 respectively. Data (obtained over 10 days) and kinetic model are analyzed using the SAAM27 program developed by Berman (1978). Compartment rate constants (mean rate per hour +- ISD) are tabulated in this paper. Thyroid and renal iodide clearance compare favorably with values reported in the literature. TYR rate constants were not unique; however, values obtained are within the range of rate constants determined from the invitro data reported by others. Intraluminal iodine as coupled TYR is predicted to be 21% for euthyroid and 59% for hyperthyroid subjects compared to analytical chemical methods of 30% and 51% respectively determined elsewhere. The authors plan to evaluate this model as a method of predicting the thyroid radiation dose from orally administered I/sup 131/
Kinetic modeling of ethane pyrolysis at high conversion.
Xu, Chen; Al Shoaibi, Ahmed Sultan; Wang, Chenguang; Carstensen, Hans-Heinrich; Dean, Anthony M
2011-09-29
The primary objective of this study is to develop an improved first-principle-based mechanism that describes the molecular weight growth kinetics observed during ethane pyrolysis. A proper characterization of the kinetics of ethane pyrolysis is a prerequisite for any analysis of hydrocarbon pyrolysis and oxidation. Flow reactor experiments were performed with ~50/50 ethane/nitrogen mixtures with temperatures ranging from 550 to 850 °C at an absolute pressure of ~0.8 atm and a residence time of ~5 s. These conditions result in ethane conversions ranging from virtually no reaction to ~90%. Comparisons of predictions using our original mechanism to these data yielded very satisfactory results in terms of the temperature dependence of ethane conversion and prediction of the major products ethylene and hydrogen. However, there were discrepancies in some of the minor species concentrations that are involved in the molecular weight growth kinetics. We performed a series of CBS-QB3 analyses for the C(3)H(7), C(4)H(7), and C(4)H(9) potential energy surfaces to better characterize the radical addition reactions that lead to molecular weight growth. We also extended a published C(6)H(9) PES to include addition of vinyl to butadiene. The results were then used to calculate pressure-dependent rate constants for the multiple reaction pathways of these addition reactions. Inclusion of the unadjusted rate constants resulting from these analyses in the mechanism significantly improved the description of several of the species involved in molecular weight growth kinetics. We compare the predictions of this improved model to those obtained with a consensus model recently published as well as to ethane steam cracking data. We find that a particularly important reaction is that of vinyl addition to butadiene. Another important observation is that several radical addition reactions are partially equilibrated. Not only does this mean that reliable thermodynamic parameters are essential
Rotational and divergent kinetic energy in the mesoscale model ALADIN
Directory of Open Access Journals (Sweden)
V. Blažica
2013-03-01
Full Text Available Kinetic energy spectra from the mesoscale numerical weather prediction (NWP model ALADIN with horizontal resolution 4.4 km are split into divergent and rotational components which are then compared at horizontal scales below 300 km and various vertical levels. It is shown that about 50% of kinetic energy in the free troposphere in ALADIN is divergent energy. The percentage increases towards 70% near the surface and in the upper troposphere towards 100 hPa. The maximal percentage of divergent energy is found at stratospheric levels around 100 hPa and at scales below 100 km which are not represented by the global models. At all levels, the divergent energy spectra are characterised by shallower slopes than the rotational energy spectra, and the difference increases as horizontal scales become larger. A very similar vertical distribution of divergent energy is obtained by using the standard ALADIN approach for the computation of spectra based on the extension zone and by applying detrending approach commonly used in mesoscale NWP community.
Kinetic Models for Topological Nearest-Neighbor Interactions
Blanchet, Adrien; Degond, Pierre
2017-12-01
We consider systems of agents interacting through topological interactions. These have been shown to play an important part in animal and human behavior. Precisely, the system consists of a finite number of particles characterized by their positions and velocities. At random times a randomly chosen particle, the follower, adopts the velocity of its closest neighbor, the leader. We study the limit of a system size going to infinity and, under the assumption of propagation of chaos, show that the limit kinetic equation is a non-standard spatial diffusion equation for the particle distribution function. We also study the case wherein the particles interact with their K closest neighbors and show that the corresponding kinetic equation is the same. Finally, we prove that these models can be seen as a singular limit of the smooth rank-based model previously studied in Blanchet and Degond (J Stat Phys 163:41-60, 2016). The proofs are based on a combinatorial interpretation of the rank as well as some concentration of measure arguments.
Directory of Open Access Journals (Sweden)
Alborz Mahdavi
2007-07-01
Full Text Available Directing stem cell fate requires knowledge of how signaling networks integrate temporally and spatially segregated stimuli. We developed and validated a computational model of signal transducer and activator of transcription-3 (Stat3 pathway kinetics, a signaling network involved in embryonic stem cell (ESC self-renewal. Our analysis identified novel pathway responses; for example, overexpression of the receptor glycoprotein-130 results in reduced pathway activation and increased ESC differentiation. We used a systematic in silico screen to identify novel targets and protein interactions involved in Stat3 activation. Our analysis demonstrates that signaling activation and desensitization (the inability to respond to ligand restimulation is regulated by balancing the activation state of a distributed set of parameters including nuclear export of Stat3, nuclear phosphatase activity, inhibition by suppressor of cytokine signaling, and receptor trafficking. This knowledge was used to devise a temporally modulated ligand delivery strategy that maximizes signaling activation and leads to enhanced ESC self-renewal.
Thallam Thattai, A.; van Biert, L.; Aravind, P. V.
2017-12-01
Major operating challenges remain to safely operate methane fuelled solid oxide fuel cells due to undesirable temperature gradients across the porous anode and carbon deposition. This article presents an experimental study on methane steam reforming (MSR) global kinetics for single operating SOFCs with Ni-GDC (gadolinium doped ceria) anodes for low steam to carbon (S/C) ratios and moderate current densities. The study points out the hitherto insufficient research on MSR global and intrinsic kinetics for operating SOFCs with complete Ni-ceria anodes. Further, it emphasizes the need to develop readily applicable global kinetic models as a subsequent step from previously reported state-of-art and complex intrinsic models. Two rate expressions of the Power law (PL) and Langmuir-Hinshelwood (LH) type have been compared and based on the analysis, limitations of using previously proposed rate expressions for Ni catalytic beds to study MSR kinetics for complete cermet anodes have been identified. Firstly, it has been shown that methane reforming on metallic (Ni) current collectors may not be always negligible, contrary to literature reports. Both PL and LH kinetic models predict significantly different local MSR reaction rate and species partial pressure distributions along the normalized reactor length, indicating a strong need for further experimental verifications.
Oxygen reduction kinetics on mixed conducting SOFC model cathodes
Energy Technology Data Exchange (ETDEWEB)
Baumann, F.S.
2006-07-01
The kinetics of the oxygen reduction reaction at the surface of mixed conducting solid oxide fuel cell (SOFC) cathodes is one of the main limiting factors to the performance of these promising systems. For ''realistic'' porous electrodes, however, it is usually very difficult to separate the influence of different resistive processes. Therefore, a suitable, geometrically well-defined model system was used in this work to enable an unambiguous distinction of individual electrochemical processes by means of impedance spectroscopy. The electrochemical measurements were performed on dense thin film microelectrodes, prepared by PLD and photolithography, of mixed conducting perovskite-type materials. The first part of the thesis consists of an extensive impedance spectroscopic investigation of La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) microelectrodes. An equivalent circuit was identified that describes the electrochemical properties of the model electrodes appropriately and enables an unambiguous interpretation of the measured impedance spectra. Hence, the dependencies of individual electrochemical processes such as the surface exchange reaction on a wide range of experimental parameters including temperature, dc bias and oxygen partial pressure could be studied. As a result, a comprehensive set of experimental data has been obtained, which was previously not available for a mixed conducting model system. In the course of the experiments on the dc bias dependence of the electrochemical processes a new and surprising effect was discovered: It could be shown that a short but strong dc polarisation of a LSCF microelectrode at high temperature improves its electrochemical performance with respect to the oxygen reduction reaction drastically. The electrochemical resistance associated with the oxygen surface exchange reaction, initially the dominant contribution to the total electrode resistance, can be reduced by two orders of magnitude. This &apos
Generalized kinetic model of reduction of molecular oxidant by metal containing redox
International Nuclear Information System (INIS)
Kravchenko, T.A.
1986-01-01
Present work is devoted to kinetics of reduction of molecular oxidant by metal containing redox. Constructed generalized kinetic model of redox process in the system solid redox - reagent solution allows to perform the general theoretical approach to research and to obtain new results on kinetics and mechanism of interaction of redox with oxidants.
A kinetic model for the burst phase of processive cellulases
DEFF Research Database (Denmark)
Præstgaard, Eigil; Olsen, Jens Elmerdahl; Murphy, Leigh
2011-01-01
. This approach generally accounts well for the initial time course (approximately 1 h) of the hydrolysis. We suggest that the models will be useful in attempts to rationalize the initial kinetics of processive cellulases, and demonstrate their application to some open questions, including the effect of repeated......Cellobiohydrolases (exocellulases) hydrolyze cellulose processively, i.e. by sequential cleaving of soluble sugars from one end of a cellulose strand. Their activity generally shows an initial burst, followed by a pronounced slowdown, even when substrate is abundant and product accumulation...... of the model, which can be solved analytically, shows that the burst and slowdown can be explained by the relative rates of the sequential reactions in the hydrolysis process and the occurrence of obstacles for the processive movement along the cellulose strand. More specifically, the maximum enzyme activity...
Combined kinetic and transport modeling of radiofrequency current drive
International Nuclear Information System (INIS)
Dumont, R.; Giruzzi, G.; Barbato, E.
2000-07-01
A numerical model for predictive simulations of radiofrequency current drive in magnetically confined plasmas is developed. It includes the minimum requirements for a self consistent description of such regimes, i.e., a 3-D ,kinetic equation for the electron distribution function, 1-D heat and current transport equations, and resonant coupling between velocity space and configuration space dynamics, through suitable wave propagation equations. The model finds its full application in predictive studies of complex current profile control scenarios in tokamaks, aiming at the establishment of internal transport barriers by the simultaneous use of various radiofrequency current drive methods. The basic properties of this non-linear numerical system are investigated and illustrated by simulations applied to reversed magnetic shear regimes obtained by Lower Hybrid and Electron Cyclotron current drive for parameters typical of the Tore Supra tokamak. (authors)
Flow cytometric kinetic assay of the activity of Na+/H+ antiporter in mammalian cells.
Dolz, María; O'Connor, José-Enrique; Lequerica, Juan L
2004-10-01
The Na(+)/H(+) exchanger (NHE) of mammalian cells is an integral membrane protein that extrudes H(+) ion in exchange for extracellular Na(+) and plays a crucial role in the regulation of intracellular pH (pHi). Thus, when pHi is lowered, NHE extrudes protons at a rate depending of pHi that can be expressed as pH units/s. To abolish the activity of other cellular pH-restoring systems, cells were incubated in bicarbonate-free Dulbecco's modified Eagle's medium buffered with HEPES. Flow cytometry was used to determine pHi with 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester or 5-(and-6)-carboxy SNARF-1 acetoxymethyl ester acetate, and the appropriate fluorescence ratios were measured. The calibration of fluorescence ratios versus pHi was established by using ionophore nigericin. The activity of NHE was calculated by a kinetic flow cytometric assay as the slope at time 0 of the best-fit curve of pHi recovery versus time after intracellular acidification with a pulse of exogenous sodium propionate. The kinetic method allowed determination of the pHi-dependent activity of NHE in cell lines and primary cell cultures. NHE activity values were demonstrated to be up to 0.016 pH units/s within the pHi range of 7.3 to 6.3. The inhibition of NHE activity by the specific inhibitor ethyl isopropyl amiloride was easily detected by this method. The assay conditions can be used to relate variations in pHi with the activity of NHE and provide a standardized method to compare between different cells, inhibitors, models of ischemia by acidification, and other relevant experimental or clinical situations.
Elementary Processes and Kinetic Modeling for Hydrogen and Helium Plasmas
Directory of Open Access Journals (Sweden)
Roberto Celiberto
2017-05-01
Full Text Available We report cross-sections and rate coefficients for excited states colliding with electrons, heavy particles and walls useful for the description of H 2 /He plasma kinetics under different conditions. In particular, the role of the rotational states in resonant vibrational excitations of the H 2 molecule by electron impact and the calculation of the related cross-sections are illustrated. The theoretical determination of the cross-section for the rovibrational energy exchange and dissociation of H 2 molecule, induced by He atom impact, by using the quasi-classical trajectory method is discussed. Recombination probabilities of H atoms on tungsten and graphite, relevant for the determination of the nascent vibrational distribution, are also presented. An example of a state-to-state plasma kinetic model for the description of shock waves operating in H 2 and He-H 2 mixtures is presented, emphasizing also the role of electronically-excited states in affecting the electron energy distribution function of free electrons. Finally, the thermodynamic properties and the electrical conductivity of non-ideal, high-density hydrogen plasma are finally discussed, in particular focusing on the pressure ionization phenomenon in high-pressure high-temperature plasmas.
Pyrolysis Kinetic Modelling of Wheat Straw from the Pannonian Region
Directory of Open Access Journals (Sweden)
Ivan Pešenjanski
2016-01-01
Full Text Available The pyrolysis/devolatilization is a basic step of thermochemical processes and requires fundamental characterization. In this paper, the kinetic model of pyrolysis is specified as a one-step global reaction. This type of reaction is used to describe the thermal degradation of wheat straw samples by measuring rates of mass loss of solid matter at a linear increase in temperature. The mentioned experiments were carried out using a derivatograph in an open-air environment. The influence of different factors was investigated, such as particle size, humidity levels, and the heating rate in the kinetics of devolatilization. As the measured values of mass loss and temperature functions transform in Arrhenius coordinates, the results are shown in the form of saddle curves. Such characteristics cannot be approximated with one equation in the form of Arrhenius law. For use in numerical applications, transformed functions can be approximated by linear regression for three separate intervals. Analysis of measurement resulting in granulation and moisture content variations shows that these factors have no significant influence. Tests of heating rate variations confirm the significance of this impact, especially in warmer regions. The influence of this factor should be more precisely investigated as a general variable, which should be the topic of further experiments.
Discrete kinetic models from funneled energy landscape simulations.
Directory of Open Access Journals (Sweden)
Nicholas P Schafer
Full Text Available A general method for facilitating the interpretation of computer simulations of protein folding with minimally frustrated energy landscapes is detailed and applied to a designed ankyrin repeat protein (4ANK. In the method, groups of residues are assigned to foldons and these foldons are used to map the conformational space of the protein onto a set of discrete macrobasins. The free energies of the individual macrobasins are then calculated, informing practical kinetic analysis. Two simple assumptions about the universality of the rate for downhill transitions between macrobasins and the natural local connectivity between macrobasins lead to a scheme for predicting overall folding and unfolding rates, generating chevron plots under varying thermodynamic conditions, and inferring dominant kinetic folding pathways. To illustrate the approach, free energies of macrobasins were calculated from biased simulations of a non-additive structure-based model using two structurally motivated foldon definitions at the full and half ankyrin repeat resolutions. The calculated chevrons have features consistent with those measured in stopped flow chemical denaturation experiments. The dominant inferred folding pathway has an "inside-out", nucleation-propagation like character.
Production of lactic acid from sucrose: strain selection, fermentation, and kinetic modeling.
Lunelli, Betânia H; Andrade, Rafael R; Atala, Daniel I P; Wolf Maciel, Maria Regina; Maugeri Filho, Francisco; Maciel Filho, Rubens
2010-05-01
Lactic acid is an important product arising from the anaerobic fermentation of sugars. It is used in the pharmaceutical, cosmetic, chemical, and food industries as well as for biodegradable polymer and green solvent production. In this work, several bacterial strains were isolated from industrial ethanol fermentation, and the most efficient strain for lactic acid production was selected. The fermentation was conducted in a batch system under anaerobic conditions for 50 h at a temperature of 34 degrees C, a pH value of 5.0, and an initial sucrose concentration of 12 g/L using diluted sugarcane molasses. Throughout the process, pulses of molasses were added in order to avoid the cell growth inhibition due to high sugar concentration as well as increased lactic acid concentrations. At the end of the fermentation, about 90% of sucrose was consumed to produce lactic acid and cells. A kinetic model has been developed to simulate the batch lactic acid fermentation results. The data obtained from the fermentation were used for determining the kinetic parameters of the model. The developed model for lactic acid production, growth cell, and sugar consumption simulates the experimental data well.
Radiobilogical cell survival models
International Nuclear Information System (INIS)
Zackrisson, B.
1992-01-01
A central issue in clinical radiobiological research is the prediction of responses to different radiation qualities. The choice of cell survival and dose-response model greatly influences the results. In this context the relationship between theory and model is emphasized. Generally, the interpretations of experimental data depend on the model. Cell survival models are systematized with respect to their relations to radiobiological theories of cell kill. The growing knowlegde of biological, physical, and chemical mechanisms is reflected in the formulation of new models. The present overview shows that recent modelling has been more oriented towards the stochastic fluctuations connected to radiation energy deposition. This implies that the traditional cell surivival models ought to be complemented by models of stochastic energy deposition processes and repair processes at the intracellular level. (orig.)
International Nuclear Information System (INIS)
Chang, De-Wei; Hsieh, Meng-Ling; Chen, Yan-Min; Lin, Tsair-Fuh; Chang, Jo-Shu
2011-01-01
The effect of an algal metabolite, β-cyclocitral, on the cell integrity of two cyanobacteria and one diatom was investigated. The cyanobacteria, Microcystis aeruginosa PCC 7005 and PCC 7820, and the diatom, Nitzschia palea, were exposed to various concentrations of β-cyclocitral. Scanning electron microscope (SEM) results indicate that the cells of tested species were greatly altered after being exposed to β-cyclocitral. A flow cytometer coupled with the SYTOX stain and chlorophyll-a auto-fluorescence was used to quantify the effect of β-cyclocitral on cell integrity for the tested cyanobacteria and diatom. Kinetic experiments show that about 5-10 mg L -1 of β-cyclocitral for the two M. aeruginosa strains and a much lower concentration, 0.1-0.5 mg L -1 , for N. palea were needed to cause 15-20% of cells to rupture. When the β-cyclocitral concentration was increased to 200-1000 mg L -1 for M. aeruginosa and 5-10 mg L -1 for N. palea, almost all the cells ruptured between 8 and 24 h. A first-order kinetic model is able to describe the data of cell integrity over time. The extracted rate constant values well correlate with the applied β-cyclocitral dosages. The obtained kinetic parameters may be used to estimate β-cyclocitral dosage and contact time required for the control of cyanobacteria and diatoms in water bodies.
Kinetic modeling of methyl butanoate in shock tube.
Huynh, Lam K; Lin, Kuang C; Violi, Angela
2008-12-25
An increased necessity for energy independence and heightened concern about the effects of rising carbon dioxide levels have intensified the search for renewable fuels that could reduce our current consumption of petrol and diesel. One such fuel is biodiesel, which consists of the methyl esters of fatty acids. Methyl butanoate (MB) contains the essential chemical structure of the long-chain fatty acids and a shorter, but similar, alkyl chain. This paper reports on a detailed kinetic mechanism for MB that is assembled using theoretical approaches. Thirteen pathways that include fuel decomposition, isomerization, and propagation steps were computed using ab initio calculations [J. Org. Chem. 2008, 73, 94]. Rate constants from first principles for important reactions in CO(2) formation, namely CH(3)OCO=CH(3) + CO(2) (R1) and CH(3)OCO=CH(3)O + CO (R2) reactions, are computed at high levels of theory and implemented in the mechanism. Using the G3B3 potential energy surface together with the B3LYP/6-31G(d) gradient, Hessian and geometries, the rate constants for reactions R1 and R2 are calculated using the Rice-Ramsperger-Kassel-Marcus theory with corrections from treatments for tunneling, hindered rotation, and variational effects. The calculated rate constants of reaction R1 differ from the data present in the literature by at most 20%, while those of reaction R2 are about a factor of 4 lower than the available values. The new kinetic model derived from ab initio simulations is combined with the kinetic mechanism presented by Fisher et al. [Proc. Combust. Inst. 2000, 28, 1579] together with the addition of the newly found six-centered unimolecular elimination reaction that yields ethylene and methyl acetate, MB = C(2)H(4) + CH(3)COOCH(3). This latter pathway requires the inclusion of the CH(3)COOCH(3) decomposition model suggested by Westbrook et al. [Proc. Combust. Inst. 2008, accepted]. The newly composed kinetic mechanism for MB is used to study the CO(2) formation
Murphy, Kelly E.
2012-01-13
Fibroblasts and their activated phenotype, myofibroblasts, are the primary cell types involved in the contraction associated with dermal wound healing. Recent experimental evidence indicates that the transformation from fibroblasts to myofibroblasts involves two distinct processes: The cells are stimulated to change phenotype by the combined actions of transforming growth factor β (TGFβ) and mechanical tension. This observation indicates a need for a detailed exploration of the effect of the strong interactions between the mechanical changes and growth factors in dermal wound healing. We review the experimental findings in detail and develop a model of dermal wound healing that incorporates these phenomena. Our model includes the interactions between TGFβ and collagenase, providing a more biologically realistic form for the growth factor kinetics than those included in previous mechanochemical descriptions. A comparison is made between the model predictions and experimental data on human dermal wound healing and all the essential features are well matched. © 2012 Society for Mathematical Biology.
Murphy, Kelly E.; Hall, Cameron L.; Maini, Philip K.; McCue, Scott W.; McElwain, D. L. Sean
2012-01-01
Fibroblasts and their activated phenotype, myofibroblasts, are the primary cell types involved in the contraction associated with dermal wound healing. Recent experimental evidence indicates that the transformation from fibroblasts to myofibroblasts involves two distinct processes: The cells are stimulated to change phenotype by the combined actions of transforming growth factor β (TGFβ) and mechanical tension. This observation indicates a need for a detailed exploration of the effect of the strong interactions between the mechanical changes and growth factors in dermal wound healing. We review the experimental findings in detail and develop a model of dermal wound healing that incorporates these phenomena. Our model includes the interactions between TGFβ and collagenase, providing a more biologically realistic form for the growth factor kinetics than those included in previous mechanochemical descriptions. A comparison is made between the model predictions and experimental data on human dermal wound healing and all the essential features are well matched. © 2012 Society for Mathematical Biology.
Directory of Open Access Journals (Sweden)
Jan David Kijlstra
2015-12-01
Full Text Available The quantitative analysis of cardiomyocyte function is essential for stem cell-based approaches for the in vitro study of human cardiac physiology and pathophysiology. We present a method to comprehensively assess the function of single human pluripotent stem cell-derived cardiomyocyte (hPSC-CMs through simultaneous quantitative analysis of contraction kinetics, force generation, and electrical activity. We demonstrate that statistical analysis of movies of contracting hPSC-CMs can be used to quantify changes in cellular morphology over time and compute contractile kinetics. Using a biomechanical model that incorporates substrate stiffness, we calculate cardiomyocyte force generation at single-cell resolution and validate this approach with conventional traction force microscopy. The addition of fluorescent calcium indicators or membrane potential dyes allows the simultaneous analysis of contractility and calcium handling or action potential morphology. Accordingly, our approach has the potential for broad application in the study of cardiac disease, drug discovery, and cardiotoxicity screening.
Release kinetics and cell viability of ibuprofen nanocrystals produced by melt-emulsification.
Fernandes, A R; Dias-Ferreira, J; Cabral, C; Garcia, M L; Souto, E B
2018-06-01
The clinical use of poorly water-soluble drugs has become a big challenge in pharmaceutical development due to the compromised bioavailability of the drugs in vivo. Nanocrystals have been proposed as a formulation strategy to improve the dissolution properties of these drugs. The benefits of using nanocrystals in drug delivery, when compared to other nanoparticles, are related to their production facilities, simple structure, and suitability for a variety of administration routes. High pressure homogenization (HPH) is the most promising production process, which can be employed at low or high temperatures. Ibuprofen nanocrystals with a mean size below 175 nm, and polydispersity below 0.18, have been produced by melt-emulsification, followed by HPH. Two nanocrystal formulations, differing on the surfactant composition, have been produced, their in vitro ibuprofen release tested in Franz diffusion cells and adjusted to several kinetic models (zero order, first order, Higuchi, Hixson-Crowell, Korsmeyer-Peppas, Baker-Lonsdale and Weibull model). Cell viability was assessed at 3, 6 and 24 h of incubation on human epithelial colorectal cells (Caco-2) by AlamarBlue ® colorimetric assay. For both formulations, Caco-2 cells viability was dependent on the drug concentration and time of exposure. Copyright © 2018 Elsevier B.V. All rights reserved.
A model of aerosol evaporation kinetics in a thermodenuder
Directory of Open Access Journals (Sweden)
C. D. Cappa
2010-05-01
Full Text Available Aerosol thermodenuders provide a measure of particle volatility. The information provided by a thermodenuder is fundamentally related to the kinetics of evaporation and condensation within the device. Here, a time-dependent, multi-component model of particle and gas-phase mass transfer in a thermodenuder is described. This model empirically accounts for the temperature profile along the length of a typical thermodenuder and distinguishes between the influence of the heating section and of the adsorbent denuder section. It is shown that "semi-volatile" aerosol is particularly sensitive to the inclusion of an adsorbent denuder in the model. As expected, the mass loss from evaporation of particles as they pass through the thermodenuder is directly related to the compound vapor pressure, although the assumptions regarding the enthalpy of vaporization are shown to also have a large influence on the overall calculated mass thermograms. The model has been validated by comparison with previously measured mass thermograms for single-component aerosols and is shown to provide reasonable semi-quantitative agreement. The model that has been developed here can be used to provide quantitative understanding of aerosol volatility measurements of single and multi-component aerosol made using thermodenuders that include adsorbent denuder sections.
Simultaneous removal of sulfide, nitrate and acetate: Kinetic modeling
Energy Technology Data Exchange (ETDEWEB)
Wang Aijie, E-mail: waj0578@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China); Liu Chunshuang; Ren Nanqi; Han Hongjun [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China); Lee Duujong [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China); Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)
2010-06-15
Biological removal of sulfide, nitrate and chemical oxygen demand (COD) simultaneously from industrial wastewaters to elementary sulfur (S{sup 0}), N{sub 2}, and CO{sub 2}, or named the denitrifying sulfide (DSR) process, is a cost effective and environmentally friendly treatment process for high strength sulfide and nitrate laden organic wastewater. Kinetic model for the DSR process was established for the first time on the basis of Activated Sludge Model No. 1 (ASM1). The DSR experiments were conducted at influent sulfide concentrations of 200-800 mg/L, whose results calibrate the model parameters. The model correlates well with the DSR process dynamics. By introducing the switch function and the inhibition function, the competition between autotrophic and heterotrophic denitrifiers is quantitatively described and the degree of inhibition of sulfide on heterotrophic denitrifiers is realized. The model output indicates that the DSR reactor can work well at 0.5 < C/S < 3.0 with influent sulfide concentration of 400-1000 mg/L. At >1000 mg/L influent sulfide, however, the DSR system will break down.
Incorporation of chemical kinetic models into process control
International Nuclear Information System (INIS)
Herget, C.J.; Frazer, J.W.
1981-01-01
An important consideration in chemical process control is to determine the precise rationing of reactant streams, particularly when a large time delay exists between the mixing of the reactants and the measurement of the product. In this paper, a method is described for incorporating chemical kinetic models into the control strategy in order to achieve optimum operating conditions. The system is first characterized by determining a reaction rate surface as a function of all input reactant concentrations over a feasible range. A nonlinear constrained optimization program is then used to determine the combination of reactants which produces the specified yield at minimum cost. This operating condition is then used to establish the nominal concentrations of the reactants. The actual operation is determined through a feedback control system employing a Smith predictor. The method is demonstrated on a laboratory bench scale enzyme reactor
Energetic Mapping of Ni Catalysts by Detailed Kinetic Modeling
DEFF Research Database (Denmark)
Bjørgum, Erlend; Chen, De; Bakken, Mari G.
2005-01-01
Temperature-programmed desorption (TPD) of CO has been performed on supported and unsupported nickel catalysts. The unsupported Ni catalyst consists of a Ni(14 13 13) single crystal which has been studied under ultrahigh vacuum conditions. The desorption energy for CO at low CO surface coverage...... was found to be 119 kJ/mol, and the binding energy of C to the Ni(111) surface of the crystal was 703 kJ/mol. The supported catalysts consist of nickel supported on hydrotalcite-like compounds with three different Mg2+/Al3+ ratios. The experimental results show that for the supported Ni catalysts TPD of CO...... precursor seems to result in more steplike sites, kinks, and defects for carbon monoxide dissociation. A detailed kinetic modeling of the TPO results based on elementary reaction steps has been conducted to give an energetic map of supported Ni catalysts. Experimental results from the ideal Ni surface fit...
Formulation and kinetic modeling of curcumin loaded intranasal mucoadhesive microemulsion
Directory of Open Access Journals (Sweden)
B Mikesh Patel
2012-01-01
Full Text Available It is a challenge to develop the optimum dosage form of poorly water-soluble drugs and to target them due to limited bioavailability, intra and inter subject variability. In this investigation, mucoadhesive microemulsion of curcumin was developed by water titration method taking biocompatible components for intranasal delivery and was characterized. Nasal ciliotoxicity studies were carried out using excised sheep nasal mucosa. in vitro release studies of formulations and PDS were performed. Labrafil M 1944 CS based microemulsion was transparent, stable and nasal non-ciliotoxic having particle size 12.32±0.81nm (PdI=0.223 and from kinetic modeling, the release was found to be Fickian diffusion for mucoadhesive microemulsion.
Effective-field theory on the kinetic Ising model
International Nuclear Information System (INIS)
Shi Xiaoling; Wei Guozhu; Li Lin
2008-01-01
As an analytical method, the effective-field theory (EFT) is used to study the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field. The effective-field equations of motion of the average magnetization are given for the square lattice (Z=4) and the simple cubic lattice (Z=6), respectively. The dynamic order parameter, the hysteresis loop area and the dynamic correlation are calculated. In the field amplitude h 0 /ZJ-temperature T/ZJ plane, the phase boundary separating the dynamic ordered and the disordered phase has been drawn, and the dynamical tricritical point has been observed. We also make the compare results of EFT with that given by using the mean field theory (MFT)
Testing a dissipative kinetic k-essence model
Energy Technology Data Exchange (ETDEWEB)
Cardenas, Victor H.; Villanueva, J.R. [Universidad de Valparaiso, Instituto de Fisica y Astronomia, Valparaiso (Chile); Centro de Astrofisica de Valparaiso, Valparaiso (Chile); Cruz, Norman [Universidad de Santiago de Chile, Departamento de Fisica, Santiago (Chile)
2015-04-01
In thiswork,we present a study of a purely kinetic k-essence model, characterized basically by a parameter α in presence of a bulk dissipative term, whose relationship between viscous pressure Π and energy density ρ of the background follows a polytropic type law, Π ∝ ρ{sup λ+1/2}, where λ, in principle, is a parameter without restrictions. Analytical solutions for the energy density of the k-essence field are found in two specific cases: λ = 1/2 and λ = (1 - α)/2α, and then we show that these solutions possess the same functional form as the non-viscous counterpart. Finally, both approaches are contrasted with observational data from type Ia supernova, and the most recent Hubble parameter measurements, and therefore, the best values for the parameters of the theory are found. (orig.)
Mechanism of nitric acid reduction and kinetic modelling
International Nuclear Information System (INIS)
Sicsic, David; Balbaud-Celerier, Fanny; Tribollet, Bernard
2014-01-01
In France, the recycling of nuclear waste fuels involves the use of hot concentrated nitric acid. The understanding and prediction of the behaviour of the structural materials (mainly austenitic stainless steels) requires the determination and modelling of the nitric acid reduction process. Nitric acid is indirectly reduced by an autocatalytic mechanism depending on the cathodic overpotential and acid concentration. This mechanism has been widely studied. All the authors agree on its autocatalytic nature, characterized by the predominant role of the reduction products. It is also generally admitted that neither nitric acid nor the nitrate ion is the electro-active species. However, the nature of the electro-active species, the place where the catalytic species regenerates and the thermodynamic and kinetic behaviour of the reaction intermediates remain uncertain. The aim of this study was to clarify some of these uncertainties by performing an electrochemical investigation of the reduction of 4 M nitric acid at 40 C at an inert electrode (platinum or gold). An inert electrode was chosen as the working electrode in a first step to avoid its oxidation and focus the research on the reduction mechanism. This experimental work enabled us to suggest a coherent sequence of electrochemical and chemical reactions. Kinetic modelling of this sequence was then carried out for a gold rotating disk electrode. A thermodynamic study at 25 C allowed the composition of the liquid and gaseous phases of nitric acid solutions in the concentration range 0.5-22 M to be evaluated. The kinetics of the reduction of 4 M nitric acid was investigated by cyclic voltammetry and chrono-amperometry at an inert electrode at 40 C. The coupling of chrono-amperometry and FTIR spectroscopy in the gaseous phase led to the identification of the gaseous reduction products as a function of the cathodic overpotential. The results showed that the reduction process is autocatalytic for potentials between 0
Orestes Kinetics Model for the Electra KrF Laser
Giuliani, J. L.; Kepple, P.; Lehmberg, R. H.; Myers, M. C.; Sethian, J. D.; Petrov, G.; Wolford, M.; Hegeler, F.
2003-10-01
Orestes is a first principles simulation code for the electron deposition, plasma chemistry, laser transport, and amplified spontaneous emission (ASE) in an e-beam pumped KrF laser. Orestes has been benchmarked against results from Nike at NRL and the Keio laser facility. The modeling tasks are to support ongoing oscillator experiments on the Electra laser ( 500 J), to predict performance of Electra as an amplifier, and to develop scaling relations for larger systems such as envisioned for an inertial fusion energy power plant. In Orestes the energy deposition of the primary beam electrons is assumed to be spatially uniform, but the excitation and ionization of the Ar/Kr/F2 target gas by the secondary electrons is determined from the energy distribution function as calculated by a Boltzmann code. The subsequent plasma kinetics of 23 species subject to over 100 reactions is followed with 1-D spatial resolution along the lasing axis. In addition, the vibrational relaxation among excited electronic states of the KrF molecule are included in the kinetics since lasing at 248 nm can occur from several vibrational lines of the B state. Transport of the lasing photons is solved by the method of characteristics. The time dependent ASE is calculated in 3-D using a ``local look-back'' scheme with discrete ordinates and includes specular reflection off the side walls and rear mirror. Gain narrowing is treated by multi-frequency transport of the ASE. Calculations for the gain, saturation intensity, extraction efficiency, and laser output from the Orestes model will be presented and compared with available data from Electra operated as an oscillator. Potential implications for the difference in optimal F2 concentration will be discussed along with the effects of window transmissivity at 248 nm.
A gas kinetic scheme for the Baer–Nunziato two-phase flow model
International Nuclear Information System (INIS)
Pan, Liang; Zhao, Guiping; Tian, Baolin; Wang, Shuanghu
2012-01-01
Numerical methods for the Baer–Nunziato (BN) two-phase flow model have attracted much attention in recent years. In this paper, we present a new gas kinetic scheme for the BN two-phase flow model containing non-conservative terms in the framework of finite volume method. In the view of microscopic aspect, a generalized Bhatnagar–Gross–Krook (BGK) model which matches with the BN model is constructed. Based on the integral solution of the generalized BGK model, we construct the distribution functions at the cell interface. Then numerical fluxes can be obtained by taking moments of the distribution functions, and non-conservative terms are explicitly introduced into the construction of numerical fluxes. In this method, not only the complex iterative process of exact solutions is avoided, but also the non-conservative terms included in the equation can be handled well.
Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.
Directory of Open Access Journals (Sweden)
Jinpeng Qi
Full Text Available Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR by using mathematical framework of kinetic theory of active particles (KTAP. Firstly, we focus on illustrating the profile of Cellular Repair System (CRS instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs and Repair Protein (RP generating, DSB-protein complexes (DSBCs synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.
Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.
Qi, Jinpeng; Ding, Yongsheng; Zhu, Ying; Wu, Yizhi
2011-01-01
Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR) by using mathematical framework of kinetic theory of active particles (KTAP). Firstly, we focus on illustrating the profile of Cellular Repair System (CRS) instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs) and Repair Protein (RP) generating, DSB-protein complexes (DSBCs) synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.
Analysis of cell kinetics after gamma ray irradiation using anti-BrdU monoclonal antibody
International Nuclear Information System (INIS)
Akagi, Kiyoshi; Tanaka, Yoshimasa
1989-01-01
The cell cycle was analyzed using anti-BrdU monoclonal antibody, and changes in cell kinetics after gamma ray irradiation as evaluated by this BrdU-PI double staining were compared with those evaluated by the DNA histogram method based on PI staining. The effect of irradiation on the cell kinetics has been studied according primarily to the number of G2 blocked cells. By the present BrdU method, rapid transition of the G1-S phase was observed within 2 hours of irradiation, and then G1 block was observed. Cells in the S phase progressed to the G2 + M cells returned to the G1 phase after 18 or more hours. These initial G1 blocked cells induced by irradiation were confirmed for the fist time by the present BrdU-PI double staining. By the conventional method based on the DNA histogram, accurate determination of S cell fraction was difficult due to overlapping of the DNA contents of G1 cells and early S cells and those of late S cells and G2 cells. On the other hand, BrdU-PI double staining allowed direct differentiation of G1, S, and G2 + M cells, especially between G1-S and S-G2 + M cells. The analysis of cell kinetics using BrdU is advantageous over the conventional autoradiographic methods in that it allowed more rapid assay with very high sensitivity. In addition, BrdU is alrady used clinically as an enhancement agent in radiation therapy for cancer. The present method is considered to be indispensable for evaluation of the percentage of S cells in the tumor tissue and analysis of cell kinetics after irradiation and chemotherapy against cancer. (author)
Mechanistic kinetic models of enzymatic cellulose hydrolysis-A review.
Jeoh, Tina; Cardona, Maria J; Karuna, Nardrapee; Mudinoor, Akshata R; Nill, Jennifer
2017-07-01
Bioconversion of lignocellulose forms the basis for renewable, advanced biofuels, and bioproducts. Mechanisms of hydrolysis of cellulose by cellulases have been actively studied for nearly 70 years with significant gains in understanding of the cellulolytic enzymes. Yet, a full mechanistic understanding of the hydrolysis reaction has been elusive. We present a review to highlight new insights gained since the most recent comprehensive review of cellulose hydrolysis kinetic models by Bansal et al. (2009) Biotechnol Adv 27:833-848. Recent models have taken a two-pronged approach to tackle the challenge of modeling the complex heterogeneous reaction-an enzyme-centric modeling approach centered on the molecularity of the cellulase-cellulose interactions to examine rate limiting elementary steps and a substrate-centric modeling approach aimed at capturing the limiting property of the insoluble cellulose substrate. Collectively, modeling results suggest that at the molecular-scale, how rapidly cellulases can bind productively (complexation) and release from cellulose (decomplexation) is limiting, while the overall hydrolysis rate is largely insensitive to the catalytic rate constant. The surface area of the insoluble substrate and the degrees of polymerization of the cellulose molecules in the reaction both limit initial hydrolysis rates only. Neither enzyme-centric models nor substrate-centric models can consistently capture hydrolysis time course at extended reaction times. Thus, questions of the true reaction limiting factors at extended reaction times and the role of complexation and decomplexation in rate limitation remain unresolved. Biotechnol. Bioeng. 2017;114: 1369-1385. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
[Lectin-binding patterns and cell kinetics of head and neck squamous cell carcinomas].
Gotoh, T
1991-01-01
In order to elucidate the cell characteristics of head and neck squamous cell carcinomas, the cell kinetics and lectin binding patterns were compared with the histological classification and staging of the tumors, using surgically resected materials (maxillary sinus 10, oral cavity 21, pharynx 8, larynx 11). Eight biotinylated lectins (WGA, 1-PHA, ConA, UEA1, RCA1, SBA, DBA, PNA) were applied to the paraffin-embedded sections, and were visualized histochemically by the streptavidin-alkaline phosphatase method. The DNA contents of the isolated carcinoma cells obtained from the adjacent thick sections were evaluated using an epi-illumination cytofluorometer after propidium iodide staining. On lectin histochemistry, the binding pattern of WGA lectin was similar between carcinoma tissues and normal tissues, but the binding was more intense in well differentiated than less differentiated carcinomas. Lymph node metastasis was found to be related to the presence of cells with poor WGA-binding. In the binding patterns of the other lectins, RCA1, SBA and ConA were related to the differentiation of carcinomas, but they were not related to the TNM-classification. DNA cytofluorometry exhibited marked polyploidization, which progressed with the advancement of the clinical and pathological staging of carcinomas. However, the DNA ploidy pattern was not associated with the cell characteristics such as the degree of histological differentiation and the lectin-binding pattern, except that the appearance of aneuploidy had some relationship with the binding-patterns of UEA1 and 1-PHA.
Influence of flotation cell volume and solids mass on kinetics of sulfide ore flotation
Directory of Open Access Journals (Sweden)
Plawski Michal
2016-01-01
Full Text Available The paper presents studies on the influence of flotation cell capacity and mass of solids in the suspension on the flotation kinetics of sulfide copper ore. A sample of copper ore that was collected from the Polkowice Mine of KGHM Polska Miedz S.A. in Poland was used in the experiments. It was determined that neither the volume of flotation cell nor the mass of solids had influence on the type of kinetics equation of flotation. Copper-bearing minerals floated according to the second-order equation, while the remaining components according to the first-order equation. The kinetic rate constants and maximum recovery of the studied components decreased with increasing solids mass in the flotation cell, regardless of the capacity of the cell. The best results were obtained for tests using a 1.0 dm3 cell, while the less favorable kinetics results were observed in the test with the smallest cell of 0.75 dm3 volume. The obtained results can be helpful in choosing the most appropriate methodology of upgrading the sulfide copper ore from Poland in order to obtain the best kinetics results.
Detailed kinetic modeling study of n-pentanol oxidation
Heufer, Karl Alexander; Sarathy, Mani; Curran, Henry J.; Davis, Alexander C.; Westbrook, Charles K.; Pitz, William J.
2012-01-01
To help overcome the world's dependence upon fossil fuels, suitable biofuels are promising alternatives that can be used in the transportation sector. Recent research on internal combustion engines shows that short alcoholic fuels (e.g., ethanol or n-butanol) have reduced pollutant emissions and increased knock resistance compared to fossil fuels. Although higher molecular weight alcohols (e.g., n-pentanol and n-hexanol) exhibit higher reactivity that lowers their knock resistance, they are suitable for diesel engines or advanced engine concepts, such as homogeneous charge compression ignition (HCCI), where higher reactivity at lower temperatures is necessary for engine operation. The present study presents a detailed kinetic model for n-pentanol based on modeling rules previously presented for n-butanol. This approach was initially validated using quantum chemistry calculations to verify the most stable n-pentanol conformation and to obtain C-H and C-C bond dissociation energies. The proposed model has been validated against ignition delay time data, speciation data from a jet-stirred reactor, and laminar flame velocity measurements. Overall, the model shows good agreement with the experiments and permits a detailed discussion of the differences between alcohols and alkanes. © 2012 American Chemical Society.
Bayesian inference for hybrid discrete-continuous stochastic kinetic models
International Nuclear Information System (INIS)
Sherlock, Chris; Golightly, Andrew; Gillespie, Colin S
2014-01-01
We consider the problem of efficiently performing simulation and inference for stochastic kinetic models. Whilst it is possible to work directly with the resulting Markov jump process (MJP), computational cost can be prohibitive for networks of realistic size and complexity. In this paper, we consider an inference scheme based on a novel hybrid simulator that classifies reactions as either ‘fast’ or ‘slow’ with fast reactions evolving as a continuous Markov process whilst the remaining slow reaction occurrences are modelled through a MJP with time-dependent hazards. A linear noise approximation (LNA) of fast reaction dynamics is employed and slow reaction events are captured by exploiting the ability to solve the stochastic differential equation driving the LNA. This simulation procedure is used as a proposal mechanism inside a particle MCMC scheme, thus allowing Bayesian inference for the model parameters. We apply the scheme to a simple application and compare the output with an existing hybrid approach and also a scheme for performing inference for the underlying discrete stochastic model. (paper)
Detailed kinetic modeling study of n-pentanol oxidation
Heufer, Karl Alexander
2012-10-18
To help overcome the world\\'s dependence upon fossil fuels, suitable biofuels are promising alternatives that can be used in the transportation sector. Recent research on internal combustion engines shows that short alcoholic fuels (e.g., ethanol or n-butanol) have reduced pollutant emissions and increased knock resistance compared to fossil fuels. Although higher molecular weight alcohols (e.g., n-pentanol and n-hexanol) exhibit higher reactivity that lowers their knock resistance, they are suitable for diesel engines or advanced engine concepts, such as homogeneous charge compression ignition (HCCI), where higher reactivity at lower temperatures is necessary for engine operation. The present study presents a detailed kinetic model for n-pentanol based on modeling rules previously presented for n-butanol. This approach was initially validated using quantum chemistry calculations to verify the most stable n-pentanol conformation and to obtain C-H and C-C bond dissociation energies. The proposed model has been validated against ignition delay time data, speciation data from a jet-stirred reactor, and laminar flame velocity measurements. Overall, the model shows good agreement with the experiments and permits a detailed discussion of the differences between alcohols and alkanes. © 2012 American Chemical Society.
Directory of Open Access Journals (Sweden)
Alina Żogała
2014-01-01
Originality/value: This paper presents state of art in the field of coal gasification modeling using kinetic and computational fluid dynamics approach. The paper also presents own comparative analysis (concerned with mathematical formulation, input data and parameters, basic assumptions, obtained results etc. of the most important models of underground coal gasification.
Karimi, Safoora; Dadvar, Mitra; Modarress, Hamid; Dabir, Bahram
2013-01-01
Oxidation of low-density lipoprotein (LDL) is one of the major factors in atherogenic process. Trapped oxidized LDL (Ox-LDL) in the subendothelial matrix is taken up by macrophage and leads to foam cell generation creating the first step in atherosclerosis development. Many researchers have studied LDL oxidation using in vitro cell-induced LDL oxidation model. The present study provides a kinetic model for LDL oxidation in intima layer that can be used in modeling of atherosclerotic lesions development. This is accomplished by considering lipid peroxidation kinetic in LDL through a system of elementary reactions. In comparison, characteristics of our proposed kinetic model are consistent with the results of previous experimental models from other researches. Furthermore, our proposed LDL oxidation model is added to the mass transfer equation in order to predict the LDL concentration distribution in intima layer which is usually difficult to measure experimentally. According to the results, LDL oxidation kinetic constant is an important parameter that affects LDL concentration in intima layer so that existence of antioxidants that is responsible for the reduction of initiating rates and prevention of radical formations, have increased the concentration of LDL in intima by reducing the LDL oxidation rate. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Water renewal in Montevideo's bay: a two compartments model for tritium kinetics
International Nuclear Information System (INIS)
Suarez-Antola, Roberto
2013-01-01
During field work about dynamics and renewal of water in Montevideo's Bay, 100 Ci of tritiated water were evenly distributed in the north-east region of the bay, by a continuous injection of a solution, during 5 hours, from a 200 litres tank, using a peristaltic pump. The whole bay was divided in 20 concentration cells, taking into account available bathymetric charts and corrections from field data obtained in situ. Tritium concentrations (activities per unit volume) and other relevant parameters (temperature, electrical conductivity, etc.) were measured in vertical profiles during three weeks, in the mid-point of each cell, first twice a day and the on a daily basis. Remnant total tritium activity was estimated from cells volumes and midpoint cells activity concentrations. Consistency checks were done. A one compartment model was used to estimate a global renewal time of circa 29 hours. However, the details of the measured tritium kinetics, a careful consideration of bathymetric data, water movements in a tidal environment (measured with drogues, fluorescent tracers and current meters), as well as the results of computer fluid dynamics modelling (in depth averaged) suggests that the bay can be meaningfully divided in two main compartments: a North-East and a South-West compartment. The purpose of this paper is threefold: (1) to describe the construction of a two compartments model for water renewal in Montevideo's Bay, (2) to apply experimental data of tritium kinetics to estimate the parameters of the model, and (3) to discuss the validity of the model and its practical applicability. The meaning of the renewal time of each compartment and its relation with the measured tritium kinetics in each cell is discussed. The perturbations in water circulation and renewal produced by civil works already done or the perturbations that could be expected due to civil works to be done, in relation with Montevideo's harbour, is discussed. The tracer model, jointly with other
Treatment of polymer surfaces in plasma Part I. Kinetic model
International Nuclear Information System (INIS)
Tabaliov, N A; Svirachev, D M
2006-01-01
The surface tension of the polymer materials depends on functional groups over its surface. As a result from the plasma treatment the kind and concentration of the functional groups can be changed. In the present work, the possible kinetic reactions are defined. They describe the interaction between the plasma and the polymer surface of polyethylene terephthalate (PET). Basing on these reactions, the systems of differential kinetic equations are suggested. The solutions are obtained analytically for the system kinetic equations at defined circumstances
Elzenga, J.T.M.; van Volkenburgh, E.
Whole-cell patch-clamp techniques were used to measure anion currents through the plasma membrane of protoplasts of mesophyll cells of expanding pea (Pisum sativum L.) leaves. Voltage-induced changes of the currents could be modelled with single exponential activation and deactivation kinetics. The
Hot kinetic model as a guide to improve organic photovoltaic materials.
Sosorev, Andrey Yu; Godovsky, Dmitry Yu; Paraschuk, Dmitry Yu
2018-01-31
The modeling of organic solar cells (OSCs) can provide a roadmap for their further improvement. Many OSC models have been proposed in recent years; however, the impact of the key intermediates from photons to electricity-hot charge-transfer (CT) states-on the OSC efficiency is highly ambiguous. In this study, we suggest an analytical kinetic model for OSC that considers a two-step charge generation via hot CT states. This hot kinetic model allowed us to evaluate the impact of different material parameters on the OSC performance: the driving force for charge separation, optical bandgap, charge mobility, geminate recombination rate, thermalization rate, average electron-hole separation distance in the CT state, dielectric permittivity, reorganization energy and charge delocalization. In contrast to a widespread trend of lowering the material bandgap, the model predicts that this approach is only efficient along with improvement of the other material properties. The most promising ways to increase the OSC performance are decreasing the reorganization energy, i.e., an energy change accompanying CT from the donor molecule to the acceptor, increasing the dielectric permittivity and charge delocalization. The model suggests that there are no fundamental limitations that can prevent achieving the OSC efficiency above 20%.
Modelling and parallel calculation of a kinetic boundary layer
International Nuclear Information System (INIS)
Perlat, Jean Philippe
1998-01-01
This research thesis aims at addressing reliability and cost issues in the calculation by numeric simulation of flows in transition regime. The first step has been to reduce calculation cost and memory space for the Monte Carlo method which is known to provide performance and reliability for rarefied regimes. Vector and parallel computers allow this objective to be reached. Here, a MIMD (multiple instructions, multiple data) machine has been used which implements parallel calculation at different levels of parallelization. Parallelization procedures have been adapted, and results showed that parallelization by calculation domain decomposition was far more efficient. Due to reliability issue related to the statistic feature of Monte Carlo methods, a new deterministic model was necessary to simulate gas molecules in transition regime. New models and hyperbolic systems have therefore been studied. One is chosen which allows thermodynamic values (density, average velocity, temperature, deformation tensor, heat flow) present in Navier-Stokes equations to be determined, and the equations of evolution of thermodynamic values are described for the mono-atomic case. Numerical resolution of is reported. A kinetic scheme is developed which complies with the structure of all systems, and which naturally expresses boundary conditions. The validation of the obtained 14 moment-based model is performed on shock problems and on Couette flows [fr
Jahid, Iqbal Kabir; Ha, Sang-Do
2014-05-01
The present article focuses on the inactivation kinetics of various disinfectants including ethanol, sodium hypochlorite, hydrogen peroxide, peracetic acid, and benzalkonium chloride against Aeromonas hydrophila biofilms and planktonic cells. Efficacy was determined by viable plate count and compared using a modified Weibull model. The removal of the biofilms matrix was determined by the crystal violet assay and was confirmed by field-emission scanning electron microscope. The results revealed that all the experimental data and calculated Weibull α (scale) and β (shape) parameters had a good fit, as the R(2) values were between 0.88 and 0.99. Biofilms are more resistant to disinfectants than planktonic cells. Ethanol (70%) was the most effective in killing cells in the biofilms and significantly reduced (preduction as well as the effectiveness of chemical disinfectants on biofilms. The study showed that the Weibull model could successfully be used on food and food contact surfaces to determine the exact contact time for killing biofilms-forming foodborne pathogens.
A single-phase model for liquid-feed DMFCs with non-Tafel kinetics
Energy Technology Data Exchange (ETDEWEB)
Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes (Spain)
2007-09-27
An isothermal single-phase 3D/1D model for liquid-feed direct methanol fuel cells (DMFC) is presented. Three-dimensional (3D) mass, momentum and species transport in the anode channels and gas diffusion layer is modeled using a commercial, finite-volume based, computational fluid dynamics (CFD) software complemented with user supplied subroutines. The 3D model is locally coupled to a one-dimensional (1D) model accounting for the electrochemical reactions in both the anode and the cathode, which provides a physically sound boundary condition for the velocity and methanol concentration fields at the anode gas diffusion layer/catalyst interface. The 1D model - comprising the membrane-electrode assembly, cathode gas diffusion layer, and cathode channel - assumes non-Tafel kinetics to describe the complex kinetics of the multi-step methanol oxidation reaction at the anode, and accounts for the mixed potential associated with methanol crossover, induced both by diffusion and electro-osmotic drag. Polarization curves computed for various methanol feed concentrations, temperatures, and methanol feed velocities show good agreement with recent experimental results. The spatial distribution of methanol in the anode channels, together with the distributions of current density, methanol crossover and fuel utilization at the anode catalyst layer, are also presented for different opperating conditions. (author)
Time-dependent cell disintegration kinetics in lung tumors after irradiation
International Nuclear Information System (INIS)
Chvetsov, Alexei V; Palta, Jatinder J; Nagata, Yasushi
2008-01-01
We study the time-dependent disintegration kinetics of tumor cells that did not survive radiotherapy treatment. To evaluate the cell disintegration rate after irradiation, we studied the volume changes of solitary lung tumors after stereotactic radiotherapy. The analysis is performed using two approximations: (1) tumor volume is a linear function of the total cell number in the tumor and (2) the cell disintegration rate is governed by the exponential decay with constant risk, which is defined by the initial cell number and a half-life T 1/2 . The half-life T 1/2 is determined using the least-squares fit to the clinical data on lung tumor size variation with time after stereotactic radiotherapy. We show that the tumor volume variation after stereotactic radiotherapy of solitary lung tumors can be approximated by an exponential function. A small constant component in the volume variation does not change with time; however, this component may be the residual irregular density due to radiation fibrosis and was, therefore, subtracted from the total volume variation in our computations. Using computerized fitting of the exponent function to the clinical data for selected patients, we have determined that the average half-life T 1/2 of cell disintegration is 28.2 days for squamous cell carcinoma and 72.4 days for adenocarcinoma. This model is needed for simulating the tumor volume variation during radiotherapy, which may be important for time-dependent treatment planning of proton therapy that is sensitive to density variations
Time-dependent cell disintegration kinetics in lung tumors after irradiation
Energy Technology Data Exchange (ETDEWEB)
Chvetsov, Alexei V; Palta, Jatinder J [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Nagata, Yasushi [Department of Therapeutic Radiology and Oncology, Kyoto University, Kyoto (Japan)], E-mail: chvetsov@ufl.edu
2008-05-07
We study the time-dependent disintegration kinetics of tumor cells that did not survive radiotherapy treatment. To evaluate the cell disintegration rate after irradiation, we studied the volume changes of solitary lung tumors after stereotactic radiotherapy. The analysis is performed using two approximations: (1) tumor volume is a linear function of the total cell number in the tumor and (2) the cell disintegration rate is governed by the exponential decay with constant risk, which is defined by the initial cell number and a half-life T{sub 1/2}. The half-life T{sub 1/2} is determined using the least-squares fit to the clinical data on lung tumor size variation with time after stereotactic radiotherapy. We show that the tumor volume variation after stereotactic radiotherapy of solitary lung tumors can be approximated by an exponential function. A small constant component in the volume variation does not change with time; however, this component may be the residual irregular density due to radiation fibrosis and was, therefore, subtracted from the total volume variation in our computations. Using computerized fitting of the exponent function to the clinical data for selected patients, we have determined that the average half-life T{sub 1/2} of cell disintegration is 28.2 days for squamous cell carcinoma and 72.4 days for adenocarcinoma. This model is needed for simulating the tumor volume variation during radiotherapy, which may be important for time-dependent treatment planning of proton therapy that is sensitive to density variations.
Heterogeneous kinetic modeling of the catalytic conversion of cycloparaffins
Al-Sabawi, Mustafa N.
catalytic conversions respectively, are reported. Using these data, heterogeneous kinetic models accounting for intracrystallite molecular transport, adsorption and thermal and catalytic cracking of both cycloparaffin reactants are established. Results show that undesirable hydrogen transfer reactions are more pronounced and selectively favoured against other reactions at lower reaction temperatures, while the desirable ring-opening and cracking reactions predominate at the higher reaction temperatures. Moreover, results of the present work show that while crystallite size may have an effect on the overall conversion in some situations, there is a definite effect on the selectivity of products obtained during the cracking of MCH and decalin and the cracking of MCH in a mixture with co-reactants such as 1,3,5-triisopropylbenzene. Keywords. cycloparaffins, naphthenes, fluid catalytic cracking, kinetic modeling, Y-zeolites, diffusion, adsorption, ring-opening, hydrogen transfer, catalyst selectivity.
Satl model lesson in chemical kinetics | Nazir | African Journal of ...
African Journals Online (AJOL)
Studies in order to pursue kinetics and mechanism of chemical reactions are a vital component of chemical literature. SATL literature is still not available for promoting this vital aspect of chemistry teaching. A lesson pertaining to this important issue has been developed and various parameters of kinetic studies are ...
Chemical kinetic model uncertainty minimization through laminar flame speed measurements
Park, Okjoo; Veloo, Peter S.; Sheen, David A.; Tao, Yujie; Egolfopoulos, Fokion N.; Wang, Hai
2016-01-01
Laminar flame speed measurements were carried for mixture of air with eight C3-4 hydrocarbons (propene, propane, 1,3-butadiene, 1-butene, 2-butene, iso-butene, n-butane, and iso-butane) at the room temperature and ambient pressure. Along with C1-2 hydrocarbon data reported in a recent study, the entire dataset was used to demonstrate how laminar flame speed data can be utilized to explore and minimize the uncertainties in a reaction model for foundation fuels. The USC Mech II kinetic model was chosen as a case study. The method of uncertainty minimization using polynomial chaos expansions (MUM-PCE) (D.A. Sheen and H. Wang, Combust. Flame 2011, 158, 2358–2374) was employed to constrain the model uncertainty for laminar flame speed predictions. Results demonstrate that a reaction model constrained only by the laminar flame speed values of methane/air flames notably reduces the uncertainty in the predictions of the laminar flame speeds of C3 and C4 alkanes, because the key chemical pathways of all of these flames are similar to each other. The uncertainty in model predictions for flames of unsaturated C3-4 hydrocarbons remain significant without considering fuel specific laminar flames speeds in the constraining target data set, because the secondary rate controlling reaction steps are different from those in the saturated alkanes. It is shown that the constraints provided by the laminar flame speeds of the foundation fuels could reduce notably the uncertainties in the predictions of laminar flame speeds of C4 alcohol/air mixtures. Furthermore, it is demonstrated that an accurate prediction of the laminar flame speed of a particular C4 alcohol/air mixture is better achieved through measurements for key molecular intermediates formed during the pyrolysis and oxidation of the parent fuel. PMID:27890938
Modeling turbulence structure. Chemical kinetics interaction in turbulent reactive flows
Energy Technology Data Exchange (ETDEWEB)
Magnussen, B F [The Norwegian Univ. of Science and Technology, Trondheim (Norway)
1998-12-31
The challenge of the mathematical modelling is to transfer basic physical knowledge into a mathematical formulation such that this knowledge can be utilized in computational simulation of practical problems. The combustion phenomena can be subdivided into a large set of interconnected phenomena like flow, turbulence, thermodynamics, chemical kinetics, radiation, extinction, ignition etc. Combustion in one application differs from combustion in another area by the relative importance of the various phenomena. The difference in fuel, geometry and operational conditions often causes the differences. The computer offers the opportunity to treat the individual phenomena and their interactions by models with wide operational domains. The relative magnitude of the various phenomena therefore becomes the consequence of operational conditions and geometry and need not to be specified on the basis of experience for the given problem. In mathematical modelling of turbulent combustion, one of the big challenges is how to treat the interaction between the chemical reactions and the fluid flow i.e. the turbulence. Different scientists adhere to different concepts like the laminar flamelet approach, the pdf approach of the Eddy Dissipation Concept. Each of these approaches offers different opportunities and problems. All these models are based on a sound physical basis, however none of these have general validity in taking into consideration all detail of the physical chemical interaction. The merits of the models can only be judged by their ability to reproduce physical reality and consequences of operational and geometric conditions in a combustion system. The presentation demonstrates and discusses the development of a coherent combustion technology for energy conversion and safety based on the Eddy Dissipation Concept by Magnussen. (author) 30 refs.
Modeling turbulence structure. Chemical kinetics interaction in turbulent reactive flows
Energy Technology Data Exchange (ETDEWEB)
Magnussen, B.F. [The Norwegian Univ. of Science and Technology, Trondheim (Norway)
1997-12-31
The challenge of the mathematical modelling is to transfer basic physical knowledge into a mathematical formulation such that this knowledge can be utilized in computational simulation of practical problems. The combustion phenomena can be subdivided into a large set of interconnected phenomena like flow, turbulence, thermodynamics, chemical kinetics, radiation, extinction, ignition etc. Combustion in one application differs from combustion in another area by the relative importance of the various phenomena. The difference in fuel, geometry and operational conditions often causes the differences. The computer offers the opportunity to treat the individual phenomena and their interactions by models with wide operational domains. The relative magnitude of the various phenomena therefore becomes the consequence of operational conditions and geometry and need not to be specified on the basis of experience for the given problem. In mathematical modelling of turbulent combustion, one of the big challenges is how to treat the interaction between the chemical reactions and the fluid flow i.e. the turbulence. Different scientists adhere to different concepts like the laminar flamelet approach, the pdf approach of the Eddy Dissipation Concept. Each of these approaches offers different opportunities and problems. All these models are based on a sound physical basis, however none of these have general validity in taking into consideration all detail of the physical chemical interaction. The merits of the models can only be judged by their ability to reproduce physical reality and consequences of operational and geometric conditions in a combustion system. The presentation demonstrates and discusses the development of a coherent combustion technology for energy conversion and safety based on the Eddy Dissipation Concept by Magnussen. (author) 30 refs.
Kinetic Modeling of a Heterogeneous Fenton Oxidative Treatment of Petroleum Refining Wastewater
Basheer Hasan, Diya'uddeen; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri
2014-01-01
The mineralisation kinetics of petroleum refinery effluent (PRE) by Fenton oxidation were evaluated. Within the ambit of the experimental data generated, first-order kinetic model (FKM), generalised lumped kinetic model (GLKM), and generalized kinetic model (GKM) were tested. The obtained apparent kinetic rate constants for the initial oxidation step (k 2′), their final oxidation step (k 1′), and the direct conversion to endproducts step (k 3′) were 10.12, 3.78, and 0.24 min−1 for GKM; 0.98, 0.98, and nil min−1 for GLKM; and nil, nil, and >0.005 min−1 for FKM. The findings showed that GKM is superior in estimating the mineralization kinetics. PMID:24592152
Electron kinetics modeling in a weakly ionized gas
International Nuclear Information System (INIS)
Boeuf, Jean-Pierre
1985-01-01
This work presents some features of electron kinetics in a weakly ionized gas. After a summary of the basis and recent developments of the kinetic theory, and a review of the most efficient numerical techniques for solving the Boltzmann equation, several aspects of electron motion in gases are analysed. Relaxation phenomena toward equilibrium under a uniform electric field, and the question of the existence of the hydrodynamic regime are first studied. The coupling between electron kinetics and chemical kinetics due to second kind collisions in Nitrogen is then analysed; a quantitative description of the evolution of the energy balance, accounting for electron-molecule as well as molecule-molecule energy transfer is also given. Finally, electron kinetics in space charge distorted, highly non uniform electric fields (glow discharges, streamers propagation) is investigated with microscopic numerical methods based on Boltzmann and Poisson equations. (author) [fr
Kong, F; Singh, R P
2008-06-01
Knowledge of the disintegration kinetics of food particulates in the human stomach is essential for assessing the bioaccessibility of nutrients in solid foods and understanding stomach emptying. The objective of this study was to develop a model stomach system and to investigate the kinetics of food disintegration. Our system consisted mainly of a turntable and a jacketed glass chamber containing simulated gastric juice in which plastic beads were added to simulate food particulates as well as provide a suitable mechanical destructive force on food samples. The mechanical force on the samples was simultaneously measured using the load cell of a TA-XT2 texture analyzer. Cylindrical carrots and ham samples were used as representative foods. The system is capable of simulating the in vivo stomach in terms of providing a wide range of continuous and periodic forces comparable to those measured in vivo. The modified power exponential function of the form y(t)= 1 - (1 -e(-kt))(beta), where y(t) is the mass retention ratio at time t, provided a reasonable description for the disintegration performance of tested foods. The mass retention curve can be either a sigmoidal decay with an initial delay or an exponential decay, which are decided largely by the hardness of the foods during digestion and the extent of physical force acting on the foods. A good match was observed between the kinetics of food disintegration and in vivo stomach emptying.
Kinetic study and modeling of biosurfactant production using Bacillus sp.
Directory of Open Access Journals (Sweden)
Hesty Heryani
2017-05-01
Conclusions: For further development and industrial applications, the modified Gompertz equation is proposed to predict the cell mass and biosurfactant production as a goodness of fit was obtained with this model. The modified Gompertz equation was also extended to enable the excellent prediction of the surface tension.
Ueki, H
1987-11-01
We tried to demonstrate that the cell kinetics-directed chemoendocrine therapy is more effective on hormone dependent breast cancer than empirical combination of the endocrine therapy and chemotherapy. Cell kinetics of each tumor was measured by flow cytometric analysis. Estrogen dependent human breast cancer cell line MCF-7 was used in vitro. In vivo, androgen dependent SC-115 carcinoma was transplanted to DDS mice. In vitro, tamoxifen was administered as the endocrine therapy. In vivo, we carried out testectomy on DDS mice. Effect of the endocrine therapy on the cell kinetics of the tumor was thought to be G1-S depression. High density 5FU was administered as the chemotherapeutic agents, whose content was 1 microgram/ml in vitro and 40 mg/kg in vivo. 5FU brought temporary decrease of cells in S phase. Only anteceding 5FU administration had synergistic effect in combination of 5FU and the endocrine therapy. 5FU was convinced to act more effectively on cells in S phase, so it was shown that cell kinetics-directed schedule was superior to the empirical treatment schedule in chemoendocrine therapy.
Water sorption kinetics of damaged beans: GAB model
Directory of Open Access Journals (Sweden)
Fernanda M. Baptestini
Full Text Available ABSTRACT The objective of this study was to model the water sorption kinetics of damaged beans. Grains with initial moisture content of 53.85%, dry basis (d.b., were used. One portion of the grains was used to obtain desorption isotherms, while the other was subjected to drying until the moisture content of 5.26% (d.b., so that it was subjected to the adsorption. For the induction of damage, a Stein Breakage Tester was used. To obtain the equilibrium moisture content, grains were placed in a climatic chamber at 20, 30, 40 and 50 ± 1 °C combined with relative humidity of 30, 40, 50, 70 and 90 ± 3%. The GAB model fitted well to the equilibrium moisture experimental data of damaged grains and control. With increasing temperature, the monolayer moisture contents decreased in adsorption and desorption processes, ranging from 9.84 to 5.10% d.b. The lower moisture content in the monolayer in damaged grains indicates that lower moisture content is necessary to ensure their conservation.
A Kinetics Model for KrF Laser Amplifiers
Giuliani, J. L.; Kepple, P.; Lehmberg, R.; Obenschain, S. P.; Petrov, G.
1999-11-01
A computer kinetics code has been developed to model the temporal and spatial behavior of an e-beam pumped KrF laser amplifier. The deposition of the primary beam electrons is assumed to be spatially uniform and the energy distribution function of the nascent electron population is calculated to be near Maxwellian below 10 eV. For an initial Kr/Ar/F2 composition, the code calculates the densities of 24 species subject to over 100 reactions with 1-D spatial resolution (typically 16 zones) along the longitudinal lasing axis. Enthalpy accounting for each process is performed to partition the energy into internal, thermal, and radiative components. The electron as well as the heavy particle temperatures are followed for energy conservation and excitation rates. Transport of the lasing photons is performed along the axis on a dense subgrid using the method of characteristics. Amplified spontaneous emission is calculated using a discrete ordinates approach and includes contributions to the local intensity from the whole amplifier volume. Specular reflection off side walls and the rear mirror are included. Results of the model will be compared with data from the NRL NIKE laser and other published results.
Challenges for the kinetic unified dark matter model
International Nuclear Information System (INIS)
Giannakis, Dimitrios; Hu, Wayne
2005-01-01
Given that the dark matter and dark energy in the Universe affect cosmological observables only gravitationally, their phenomenology may be described by a single stress-energy tensor. True unification however requires a theory that reproduces the successful phenomenology of ΛCDM and that requirement places specific constraints on the stress structure of the matter. We show that a recently proposed unification through an offset quadratic kinetic term for a scalar field is exactly equivalent to a fluid with a closed-form barotropic equation of state plus cosmological constant. The finite pressure at high densities introduces a cutoff in the linear power spectrum, which may alleviate the dark matter substructure problem; we provide a convenient fitting function for such studies. Given that sufficient power must remain to reionize the Universe, the equation of state today is nonrelativistic with p∝ρ 2 and a Jeans scale in the parsec regime for all relevant densities. Structure may then be evolved into the nonlinear regime with standard hydrodynamic techniques. In fact, the model is equivalent to the well-studied collisional dark matter with negligible mean free path. If recent observations of the triaxiality of dark matter halos and ram pressure stripping in galaxy clusters are confirmed, this model will be ruled out
International Nuclear Information System (INIS)
Eicheler, Wolfgang; Krause, Mechthild; Hessel, Franziska; Zips, Daniel; Baumann, Michael
2005-01-01
Background and purpose: Preclinical and clinical data indicate that high pretherapeutic EGFR expression is associated with poor local tumour control, possibly caused by a high repopulation rate of clonogenic cells during radiotherapy in these tumours. Previous data reported from our laboratory showed a correlation between EGFR expression and acceleration of repopulation in poorly differentiated FaDu human squamous cell carcinoma (SCC) during fractionated irradiation. To test whether this is a general phenomenon, two further SCC were investigated in the present study. Patients and methods: GL and UT-SCC-14, two moderately well differentiated and keratinising hSCC, were grown as xenografts in nude mice. Functional data on the repopulation kinetics during fractionated irradiation for these tumour models have been previously determined. The expression of EGFR during fractionation was analysed by immunohistochemistry. Endpoints were the membrane-staining score and the proportion of EGFR-positive cells (EGFR labelling index). Results: Different kinetics of EGFR expression during fractionated RT were found. In UT-SCC-14, EGFR staining score and labelling index increased significantly during radiotherapy. In GL SCC, the EGFR expression was unchanged. Both tumours are characterized by a small but significant repopulation rate during radiotherapy. Conclusions: The expression of EGFR may change significantly during fractionated irradiation. No clear correlation between EGFR expression and the repopulation kinetics of clonogenic tumour cells during fractionated irradiation was found. The changes in EGFR expression during irradiation warrant further investigation on their prognostic implications and on their importance for therapeutic interventions
Mathematical models in cell biology and cancer chemotherapy
Eisen, Martin
1979-01-01
The purpose of this book is to show how mathematics can be applied to improve cancer chemotherapy. Unfortunately, most drugs used in treating cancer kill both normal and abnormal cells. However, more cancer cells than normal cells can be destroyed by the drug because tumor cells usually exhibit different growth kinetics than normal cells. To capitalize on this last fact, cell kinetics must be studied by formulating mathematical models of normal and abnormal cell growth. These models allow the therapeutic and harmful effects of cancer drugs to be simulated quantitatively. The combined cell and drug models can be used to study the effects of different methods of administering drugs. The least harmful method of drug administration, according to a given criterion, can be found by applying optimal control theory. The prerequisites for reading this book are an elementary knowledge of ordinary differential equations, probability, statistics, and linear algebra. In order to make this book self-contained, a chapter on...
Mesoscopic kinetic Monte Carlo modeling of organic photovoltaic device characteristics
Kimber, Robin G. E.; Wright, Edward N.; O'Kane, Simon E. J.; Walker, Alison B.; Blakesley, James C.
2012-12-01
Measured mobility and current-voltage characteristics of single layer and photovoltaic (PV) devices composed of poly{9,9-dioctylfluorene-co-bis[N,N'-(4-butylphenyl)]bis(N,N'-phenyl-1,4-phenylene)diamine} (PFB) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) have been reproduced by a mesoscopic model employing the kinetic Monte Carlo (KMC) approach. Our aim is to show how to avoid the uncertainties common in electrical transport models arising from the need to fit a large number of parameters when little information is available, for example, a single current-voltage curve. Here, simulation parameters are derived from a series of measurements using a self-consistent “building-blocks” approach, starting from data on the simplest systems. We found that site energies show disorder and that correlations in the site energies and a distribution of deep traps must be included in order to reproduce measured charge mobility-field curves at low charge densities in bulk PFB and F8BT. The parameter set from the mobility-field curves reproduces the unipolar current in single layers of PFB and F8BT and allows us to deduce charge injection barriers. Finally, by combining these disorder descriptions and injection barriers with an optical model, the external quantum efficiency and current densities of blend and bilayer organic PV devices can be successfully reproduced across a voltage range encompassing reverse and forward bias, with the recombination rate the only parameter to be fitted, found to be 1×107 s-1. These findings demonstrate an approach that removes some of the arbitrariness present in transport models of organic devices, which validates the KMC as an accurate description of organic optoelectronic systems, and provides information on the microscopic origins of the device behavior.
Disposition of smoked cannabis with high [Delta]9-tetrahydrocannabinol content: A kinetic model.
Hunault, C.C.; van Eijkeren, J.C.; Mensinga, T.T.; de Vries, I.; Leenders, M.E.C.; Meulenbelt, J.
2010-01-01
Introduction No model exists to describe the disposition and kinetics of inhaled cannabis containing a high THC dose. We aimed to develop a kinetic model providing estimates of the THC serum concentrations after smoking cannabis cigarettes containing high THC doses (up to 69 mg THC).Methods
A kinetic model for the glucose/glycine Maillard reaction pathways
Martins, S.I.F.S.; Boekel, van M.A.J.S.
2005-01-01
A comprehensive kinetic model for the glucose/glycine Maillard reaction is proposed based on an approach called multiresponse kinetic modelling. Special attention was paid to reactants, intermediates and end products: -fructose, N-(1-deoxy--fructos-1-yl)-glycine (DFG), 1-deoxy-2,3-hexodiulose and
Electrocatalysis and kinetics of the direct alcohol fuel cells. DEMS and ac voltammetry studies
Energy Technology Data Exchange (ETDEWEB)
Othman Mostafa, Ehab Mostafa
2013-01-11
For the direct methanol fuel cell (DMFC) operating at low temperature, the main problem that arises at the anode is its poisoning (deactivation) due to the accumulation of the fuel adsorption product (CO{sub ad}) which can only be oxidized at high potentials (> 0.7 V). For low temperature direct ethanol fuel cells (DEFCs), the main problem that arises at the anode, beside its poisoning by ethanol adsorption products (CO{sub ad} and CH{sub x,ad}), is the incomplete ethanol oxidation due to the difficulty of (C-C) bond breaking. In the previous types of fuel cells, a sluggish oxygen reduction reaction (ORR) kinetics was observed at the cathode which results in a large voltage drop. Such behavior is due to strong inhibition of the cathodic ORR, resulting in high overpotentials and therefore, significant deterioration in the energy conversion efficiency of the cell. The slow kinetic behavior stems from the difficulty of (O=O) bond breaking. In order to model the conditions of continuous oxidation/reduction in a fuel cell, the continuous mass transfer to the electrode surface is necessary. Therefore, mass spectrometry and AC voltammetry measurements presented here were done using the thin layer flow through cell. This thesis aims at a determination of the rate constant of single reaction steps during the oxidation of CO, methanol and ethanol at different platinum surfaces. Towards that aim, I investigated the electrocatalytic oxidation and adsorption rate of methanol (chapter 3) and the electrocatalytic oxidation of ethanol (chapter 4) at different Pt surfaces, using DEMS. In chapter 5, the potential dependence of the bulk and adsorbed methanol oxidation reaction rate (presented by the apparent transfer coefficient, {alpha}') and the corresponding Tafel slope of the reaction have been determined under convection conditions using a potential modulation ac voltammetry technique. Finally, as an application of the method presented in chapter 5, my work in chapter 6
Dsc cure kinetics of an unsaturated polyester resin using empirical kinetic model
International Nuclear Information System (INIS)
Abdullah, I.
2015-01-01
In this paper, the kinetics of curing of unsaturated polyester resin initiated with benzoyl peroxide was studied. In case of unsaturated polyester (UP) resin, isothermal test alone could not predict correctly the curing time of UP resin. Therefore, isothermal kinetic analysis through isoconventional adjustment was used to correctly predict the curing time and temperature of UP resin. Isothermal kinetic analysis through isoconversional adjustment indicated that 97% of UP resin cures in 33 min at 120 degree C. Curing of UP resin through microwaves was also studied and found that 67% of UP resin cures in 1 min at 120 degree C. The crosslinking reaction of UP resin is so fast at 120 degree C that it becomes impossible to predict correctly the curing time of UP resin using isothermal test and the burial of C=C bonds in microgels makes it impossible to be fully cured by microwaves at 120 degree C. The rheological behaviour of unsaturated polyester resin was also studied to observe the change in viscosity with respect to time and temperature. (author)
Energy Technology Data Exchange (ETDEWEB)
Manley, N.B.; Fabrikant, J.I.; Alpen, E.L.
1988-12-01
The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. This study concerns the cell population and cell cycle kinetics of the subependymal layer in the mouse brain, and the effects of charged particle irradiations on this cell population. Quantitative high resolution autoradiography was used to study the kinetic parameters in this cell layer. This study should help in understanding the effects of these high-energy heavy ions on normal mammalian brain tissue. The response of the mammalian brain exposure to charged particle ionizing radiation may be extremely variable. It varies from minimal physiological changes to overt tissue necrosis depending on a number of factors such as: the administered dose, dose-rate, the volume of the irradiated tissue, and the biological end-point being examined.
Electrode Kinetics and Gas Conversion in Solid Oxide Cells
DEFF Research Database (Denmark)
Njodzefon, Jean-Claude
The solid oxide fuel cell (SOFC) converts hydrogen, carbon monoxide and hydrocarbon fuels (directly) into electricity with very high efficiencies and has demonstrated almost comparable performance when operated in reverse mode as a solid oxide electrolysis cell (SOEC). In this case electrical (and...... thermal) energy is stored as chemical energy of reaction products. To this end, the cells are fed with steam (H2O electrolysis), carbon dioxide (CO2 electrolysis) or a mixture of both (H2O/CO2 co-electrolysis) and of course electrical (ΔG) and thermal (TΔS) energies for the splitting of reactant compounds...... of the solid oxide cell (SOC) and independent of polarization mode (fuel cell mode or electrolysis mode), the current flowing through the cell is limited by processes such as adsorption and desorption of reactants or products, diffusion through the porous electrodes, activation or charge transfer...
A study of charge transfer kinetics in dye-sensitized surface conductivity solar cells
Energy Technology Data Exchange (ETDEWEB)
Friedrich, Dennis
2011-05-15
The efficiency of the quasi-solid-state dye-sensitized solar cell developed by Junghaenel and Tributsch, the so-called Nano Surface Conductivity Solar Cell (NSCSC), was improved from 2% to 3.5% introducing a compact TiO{sub 2} underlayer, modifying the surface of the mesoporous TiO{sub 2} electrode, optimizing the deposition process of the electrolyte film, and replacing the platinum counter electrode by a carbon layer. Space-resolved photocurrent images revealed the importance of a homogeneous distribution of the electrolyte film. An uneven dispersion led to localized areas of high and low photocurrents, whereas the latter were attributed to an insufficient concentration of the redox couple. Impedance spectroscopy was performed on cells containing different concentrations of the redox couple. By modeling the spectra using an equivalent circuit with a transmission line of resistive and capacitive elements, the characteristic parameters of electron transport in the TiO{sub 2}, such as diffusion length and electron lifetime were obtained. The measurements indicated that the transport of the positive charge to the counter electrode is the main process limiting the efficiency of the cells. Excess charge carrier decay in functioning devices was analyzed by contactless transient photoconductance measurements in the microwave frequency range (TRMC). The lifetime of the photogenerated charge carriers was observed to decrease with increasing applied potential, reaching its maximum close to the opencircuit potential of the cell, where the photocurrent density was minimal, i.e. the potential dependent decay observed was limited by the injection of electrons into the front contact. The functioning of this NSCSC indicated that the transport of the positive charge occurs by solid-state diffusion at the surface of the TiO{sub 2} particles. TRMC measurements on subset devices in the form of sensitized TiO{sub 2} layers revealed charge carrier kinetics strongly dependent on the
Directory of Open Access Journals (Sweden)
M. S. M. Annuar
2008-06-01
Full Text Available A kinetic model is presented giving a mathematical description of batch culture of Pseudomonas putida PGA1 grown using saponified palm kernel oil as carbon source and ammonium as the limiting nutrient. The growth of the micro-organism is well-described using Tessier-type model which takes into account the inhibitory effect of ammonium at high concentrations. The ammonium consumption rate by the cells is related in proportion to the rate of growth. The intracellular production of medium-chain-length poly-(3-hydroxyalkanoates (PHA MCL by P. putida PGA1 cells is reasonably modeled by the modified Luedeking-Piret kinetics, which incorporate a function of product synthesis inhibition (or reduction by ammonium above a threshold level.
A kinetic model for runaway electrons in the ionosphere
Directory of Open Access Journals (Sweden)
G. Garcia
2006-09-01
Full Text Available Electrodynamic models and measurements with satellites and incoherent scatter radars predict large field aligned current densities on one side of the auroral arcs. Different authors and different kinds of studies (experimental or modeling agree that the current density can reach up to hundreds of µA/m2. This large current density could be the cause of many phenomena such as tall red rays or triggering of unstable ion acoustic waves. In the present paper, we consider the issue of electrons moving through an ionospheric gas of positive ions and neutrals under the influence of a static electric field. We develop a kinetic model of collisions including electrons/electrons, electrons/ions and electrons/neutrals collisions. We use a Fokker-Planck approach to describe binary collisions between charged particles with a long-range interaction. We present the essential elements of this collision operator: the Langevin equation for electrons/ions and electrons/electrons collisions and the Monte-Carlo and null collision methods for electrons/neutrals collisions. A computational example is given illustrating the approach to equilibrium and the impact of the different terms (electrons/electrons and electrons/ions collisions on the one hand and electrons/neutrals collisions on the other hand. Then, a parallel electric field is applied in a new sample run. In this run, the electrons move in the z direction parallel to the electric field. The first results show that all the electron distribution functions are non-Maxwellian. Furthermore, runaway electrons can carry a significant part of the total current density, up to 20% of the total current density.
A kinetic model for runaway electrons in the ionosphere
Directory of Open Access Journals (Sweden)
G. Garcia
2006-09-01
Full Text Available Electrodynamic models and measurements with satellites and incoherent scatter radars predict large field aligned current densities on one side of the auroral arcs. Different authors and different kinds of studies (experimental or modeling agree that the current density can reach up to hundreds of µA/m^{2}. This large current density could be the cause of many phenomena such as tall red rays or triggering of unstable ion acoustic waves. In the present paper, we consider the issue of electrons moving through an ionospheric gas of positive ions and neutrals under the influence of a static electric field. We develop a kinetic model of collisions including electrons/electrons, electrons/ions and electrons/neutrals collisions. We use a Fokker-Planck approach to describe binary collisions between charged particles with a long-range interaction. We present the essential elements of this collision operator: the Langevin equation for electrons/ions and electrons/electrons collisions and the Monte-Carlo and null collision methods for electrons/neutrals collisions. A computational example is given illustrating the approach to equilibrium and the impact of the different terms (electrons/electrons and electrons/ions collisions on the one hand and electrons/neutrals collisions on the other hand. Then, a parallel electric field is applied in a new sample run. In this run, the electrons move in the z direction parallel to the electric field. The first results show that all the electron distribution functions are non-Maxwellian. Furthermore, runaway electrons can carry a significant part of the total current density, up to 20% of the total current density.
Comparison of kinetic and fluid neutral models for attached and detached state
International Nuclear Information System (INIS)
Furubayashi, M.; Hoshino, K.; Toma, M.; Hatayama, A.; Coster, D.; Schneider, R.; Bonnin, X.; Kawashima, H.; Asakura, N.; Suzuki, Y.
2009-01-01
Neutral behavior has an important role in the transport simulations of the edge plasma. Most of the edge plasma transport codes treat neutral particles by a simple fluid model or a kinetic model. The fluid model allows faster calculations. However, the applicability of the fluid model is limited. In this study, simulation results of JT-60U from kinetic neutral model and fluid neutral model are compared under the attached and detached state, using the 2D edge plasma code package, SOLPS5.0. In the SOL region, no significant differences are observed in the upstream plasma profiles between kinetic and fluid neutral models. However, in the divertor region, large differences are observed in plasma and neutral profiles. Therefore, further optimization of the fluid neutral model should be performed. Otherwise kinetic neutral model should be used to analyze the divertor region.
Kinetic transport model for the ELMO Bumpy Torus
International Nuclear Information System (INIS)
Jaeger, E.F.; Hedrick, C.L.; Tolliver, J.S.
1978-05-01
A bounce-averaged drift kinetic equation is solved for the toroidal plasma in the ELMO Bumpy Torus (EBT). The distribution function is assumed isotropic in pitch angle and calculated as a function of radius and speed using finite differences on a two-dimensional grid. A Fokker-Planck representation of the collision operator includes Coulomb, microwave, ionizing, and charge-exchange collisions. Ion and electron fluxes, computed as integrals of the distribution function, are of comparable magnitude for ambipolar potentials which are approximately self-consistent. Initial results assume an unperturbed distribution function which is Maxwellian; however, this is not a necessary assumption in the model. Careful accounting of loss regions where electric and magnetic poloidal drifts cancel (super banana particle orbits) leads to ion loss rates which are in some cases two orders of magnitude greater than electron rates. In these cases, radially inward pointing self-consistent electric fields occur with potentials on the order of a few times the ion temperature. These negative field results are in approximate agreement with experiment and appear to be stable to the electric field runaway encountered in positive field cases
Kinetic model of the bichromatic dark trap for atoms
Krasnov, I. V.
2017-08-01
A kinetic model of atom confinement in a bichromatic dark trap (BDT) is developed with the goal of describing its dissipative properties. The operating principle of the deep BDT is based on using the combination of multiple bichromatic cosine-Gaussian optical beams (CGBs) for creating high-potential barriers, which is described in our previous work (Krasnov 2016 Laser Phys. 26 105501). In the indicated work, particle motion in the BDT is described in terms of classical trajectories. In the present study, particle motion is analyzed by means of the Wigner function (phase-space distribution function (DF)), which allows one to properly take into account the quantum fluctuations of optical forces. Besides, we consider an improved scheme of the BDT, where CGBs create, apart from plane potential barriers, a narrow cooling layer. We find an asymptotic solution of the Fokker-Planck equation for the DF and show that the DF of particles deeply trapped in a BDT with a cooling layer is the Tsallis distribution with the effective temperature, which can be considerably lower than in a BDT without a cooling layer. Moreover, it can be adjusted by slightly changing the CGBs’ radii. We also study the effect of particle escape from the trap due to the scattering of resonant photons and show that the particle lifetime in a BDT can exceed several tens of hours when it is limited by photon scattering.
KINETIC MODELS STUDY OF HYDRODESULPHURIZATION VACUUM DISTILLATE REACTION
Directory of Open Access Journals (Sweden)
AbdulMunem A. Karim
2013-05-01
Full Text Available This study deals with kinetics of hydrodesulphurization (HDS reaction of vacuum gas oil (611-833 K which was distillated from Kirkuk crude oil and which was obtained by blending the fractions, light vacuum gas oil (611 - 650 K, medium vacuum gas oil (650-690 K, heavy vacuum gas oil (690-727 K and very heavy vacuum gas oil (727-833 K. The vacuum gas oil was hydrotreated on a commercial cobalt-molybdenum alumina catalyst presulfied at specified conditions in a laboratory trickle bed reactor. The reaction temperature range (583-643 K,liquid hourly space velocity range (1.5-3.75 h-1 and hydrogen pressure was kept constant at 3.5 MPa with hydrogen to oil ratio about 250 lt/lt. The conversion results for desulphurization reaction appeared to obey the second order reaction. According to this model, the rate constants for desulphurization reaction were determined. Finally, the apparent activation energy (Ea, enthalpy of activation ( H* and entropy ( S* were calculated based on the values of rate constant (k2 and were equal 80.3792 KJ/mole, 75.2974 KJ/mole and 197.493 J/mole, respectively.
MIDAS/PK code development using point kinetics model
International Nuclear Information System (INIS)
Song, Y. M.; Park, S. H.
1999-01-01
In this study, a MIDAS/PK code has been developed for analyzing the ATWS (Anticipated Transients Without Scram) which can be one of severe accident initiating events. The MIDAS is an integrated computer code based on the MELCOR code to develop a severe accident risk reduction strategy by Korea Atomic Energy Research Institute. In the mean time, the Chexal-Layman correlation in the current MELCOR, which was developed under a BWR condition, is appeared to be inappropriate for a PWR. So as to provide ATWS analysis capability to the MIDAS code, a point kinetics module, PKINETIC, has first been developed as a stand-alone code whose reference model was selected from the current accident analysis codes. In the next step, the MIDAS/PK code has been developed via coupling PKINETIC with the MIDAS code by inter-connecting several thermal hydraulic parameters between the two codes. Since the major concern in the ATWS analysis is the primary peak pressure during the early few minutes into the accident, the peak pressure from the PKINETIC module and the MIDAS/PK are compared with the RETRAN calculations showing a good agreement between them. The MIDAS/PK code is considered to be valuable for analyzing the plant response during ATWS deterministically, especially for the early domestic Westinghouse plants which rely on the operator procedure instead of an AMSAC (ATWS Mitigating System Actuation Circuitry) against ATWS. This capability of ATWS analysis is also important from the view point of accident management and mitigation
Kinetic modeling of formic acid pulping of bagasse.
Tu, Qiliang; Fu, Shiyu; Zhan, Huaiyu; Chai, Xinsheng; Lucia, Lucian A
2008-05-14
Organic solvent or organosolv pulping processes are alternatives to soda or kraft pulping to delignify lignocellulosic materials for the production of paper pulp. Formic acid, a typical organosolv system, has been presently examined under atmospheric pressure to pulp bagasse fibers. It was shown that efficient bagasse pulping was achieved when the formic acid concentration was limited to 90% (v/v). A statistical kinetic model based on the experimental results for the delignification of bagasse during formic acid pulping was developed that can be described as follows: D (delignification) = 0.747 x C(formicacid) (1.688) x (1 - e(-0.05171t)), an equation that can be used to predict the lignin content in formic acid during the pulping process. The delignification of bagasse by 90% formic acid was almost completed after approximately 80 min, while extended pulping did not improve the delignification but tended to degrade the carbohydrates in bagasse, especially the hemicelluloses, which were rapidly hydrolyzed at the onset of pulping.
Kinetic modelling of runaway electron avalanches in tokamak plasmas
International Nuclear Information System (INIS)
Nilsson, E; Peysson, Y; Saint-Laurent, F; Decker, J; Granetz, R S; Vlainic, M
2015-01-01
Runaway electrons can be generated in tokamak plasmas if the accelerating force from the toroidal electric field exceeds the collisional drag force owing to Coulomb collisions with the background plasma. In ITER, disruptions are expected to generate runaway electrons mainly through knock-on collisions (Hender et al 2007 Nucl. Fusion 47 S128–202), where enough momentum can be transferred from existing runaways to slow electrons to transport the latter beyond a critical momentum, setting off an avalanche of runaway electrons. Since knock-on runaways are usually scattered off with a significant perpendicular component of the momentum with respect to the local magnetic field direction, these particles are highly magnetized. Consequently, the momentum dynamics require a full 3D kinetic description, since these electrons are highly sensitive to the magnetic non-uniformity of a toroidal configuration. For this purpose, a bounce-averaged knock-on source term is derived. The generation of runaway electrons from the combined effect of Dreicer mechanism and knock-on collision process is studied with the code LUKE, a solver of the 3D linearized bounce-averaged relativistic electron Fokker–Planck equation (Decker and Peysson 2004 DKE: a fast numerical solver for the 3D drift kinetic equation Report EUR-CEA-FC-1736, Euratom-CEA), through the calculation of the response of the electron distribution function to a constant parallel electric field. The model, which has been successfully benchmarked against the standard Dreicer runaway theory now describes the runaway generation by knock-on collisions as proposed by Rosenbluth (Rosenbluth and Putvinski 1997 Nucl. Fusion 37 1355–62). This paper shows that the avalanche effect can be important even in non-disruptive scenarios. Runaway formation through knock-on collisions is found to be strongly reduced when taking place off the magnetic axis, since trapped electrons can not contribute to the runaway electron population. Finally
Kinetic modeling of particle acceleration in a solar null point reconnection region
DEFF Research Database (Denmark)
Baumann, Gisela; Haugbølle, Troels; Nordlund, Åke
2013-01-01
The primary focus of this paper is on the particle acceleration mechanism in solar coronal 3D reconnection null-point regions. Starting from a potential field extrapolation of a SOHO magnetogram taken on 2002 November 16, we first performed MHD simulations with horizontal motions observed by SOHO...... particles and 3.5 billion grid cells of size 17.5\\,km --- these simulations offer a new opportunity to study particle acceleration in solar-like settings....... applied to the photospheric boundary of the computational box. After a build-up of electric current in the fan-plane of the null-point, a sub-section of the evolved MHD data was used as initial and boundary conditions for a kinetic particle-in-cell model of the plasma. We find that sub...
Kinetic Studies on State of the Art Solid Oxide Cells
DEFF Research Database (Denmark)
Njodzefon, Jean-Claude; Graves, Christopher R.; Hjelm, Johan
2014-01-01
of the technology, cell optimization and eventual commercialisation requires a sound understanding of the mechanisms that affect performance and stability. These mechanisms depend on operation conditions like temperature, gas composition, fuel utilisation and current load as well as on gradients along cell...
Elimination kinetic model for organic chemicals in earthworms.
Dimitrova, N.; Dimitrov, S.; Georgieva, D.; van Gestel, C.A.M.; Hankard, P.; Spurgeon, D.J.; Li, H.; Mekenyan, O.
2010-01-01
Mechanistic understanding of bioaccumulation in different organisms and environments should take into account the influence of organism and chemical depending factors on the uptake and elimination kinetics of chemicals. Lipophilicity, metabolism, sorption (bioavailability) and biodegradation of
Modelling of the enzymatic kinetically controlled synthesis of cephalexin
Schroën, C.G.P.H.; Fretz, C.B.; Bruin, de V.H.; Berendsen, W.; Moody, H.M.; Roos, E.C.; Roon, van J.L.; Kroon, P.J.; Strubel, M.; Janssen, A.E.M.; Tramper, J.
2002-01-01
In this study the influence of diffusion limitation on enzymatic kinetically controlled cephalexin synthesis from phenylglycine amide and 7-aminodeacetoxycephalosporinic acid (7-ADCA) was investigated systematically. It was found that if diffusion limitation occurred, both the synthesis/hydrolysis
Extended symmetries of the kinetic plasma theory models
International Nuclear Information System (INIS)
Taranov, V.B.
2005-01-01
Symmetry extension of the kinetic theory of collisionless plasma containing particles with equal charge to mass ratio is considered. It is shown that this symmetry allows us to reduce the number of equations. Symmetries obtained for the integro-differential equations of the kinetic theory by the indirect algorithm are compared to those obtained by direct methods. The importance of additional conditions - positiveness and integrability of distribution functions, existence of their moments - is underlined
Energy Technology Data Exchange (ETDEWEB)
Olsen, W.M.; Kirkhus, B. (Oslo Univ. (Norway))
1989-09-01
The cell cycle traverse of epidermal basal cells 24 h after in vivo exposure of ultraviolet B (UVB) irradiation was studied by immunochemical staining of incorporated bromodeoxyuridine (BrdU) and bivariate BrdU/DNA flow cytometric analysis. The results were compared with the cell kinetic patterns following topical application of the skin carcinogen methylnitrosourea (MNU) as well as the skin irritant cantharidin. The cell cycle traverse in hairless mouse epidermis 24 h after in vivo exposure to UVB seemed to be a combination of the cell kinetic effects following chemical skin carcinogens and skin irritants. UVB irradiation induced both a delay in transit time through S phase, probably due to DNA damage and subsequent repair, as well as a reduction in the total cell cycle time consistent with rapid regenerative proliferation. (author).
International Nuclear Information System (INIS)
Lin, Yen-Hui; Wu, Chih-Lung; Hsu, Chih-Hao; Li, Hsin-Lung
2009-01-01
A mathematical model system was derived to describe the simultaneous removal of phenol biodegradation with chromium(VI) reduction in an anaerobic fixed-biofilm reactor. The model system incorporates diffusive mass transport and double Monod kinetics. The model was solved using a combination of the orthogonal collocation method and Gear's method. A laboratory-scale column reactor was employed to validate the kinetic model system. Batch kinetic tests were conducted independently to evaluate the biokinetic parameters used in the model simulation. The removal efficiencies of phenol and chromium(VI) in an anaerobic fixed-biofilm process were approximately 980 mg/g and 910 mg/g, respectively, under a steady-state condition. In the steady state, model-predicted biofilm thickness reached up to 350 μm and suspended cells in the effluent were 85 mg cell/l. The experimental results agree closely with the results of the model simulations.
Energy Technology Data Exchange (ETDEWEB)
Doermer, P [Gesellschaft fuer Strahlen- und Umweltforschung m.b.H., Muenchen (Germany, F.R.). Inst. fuer Haematologie
1981-03-01
Amounts of radio-labelled substances as low as 10/sup -18/ moles incorporated into individual cells can be measured by utilizing techniques of quantitative autoradiography. The principles and application of quantitative carbon-14 autoradiography are reviewed. Silver grain densities can be counted by automated microphotometry allowing on-line data processing by an interfaced computer. Rate measurements of /sup 14/C-thymidine incorporation into individual cells yield values of the DNA synthesis rate and the DNA synthesis time of a cell compartment can be derived. This is an essential time parameter for the evaluation of kinetic events in proliferating cell populations. This method is applicable to human cells without radiation hazard to man and provides an optimal source of detailed information on the kinetics of normal and diseased human haematopoiesis. Examples of application consist of thalassaemia, malaria infection, iron deficiency anaemia and acute myelogenous leukaemia.
International Nuclear Information System (INIS)
Doermer, P.
1981-01-01
Amounts of radio-labelled substances as low as 10 -18 moles incorporated into individual cells can be measured by utilizing techniques of quantitative autoradiography. The principles and application of quantitative carbon-14 autoradiography are reviewed. Silver grain densities can be counted by automated microphotometry allowing on-line data processing by an interfaced computer. Rate measurements of 14 C-thymidine incorporation into individual cells yield values of the DNA synthesis rate and the DNA synthesis time of a cell compartment can be derived. This is an essential time parameter for the evaluation of kinetic events in proliferating cell populations. This method is applicable to human cells without radiation hazard to man and provides an optimal source of detailed information on the kinetics of normal and diseased human haematopoiesis. Examples of application consist of thalassaemia, malaria infection, iron deficiency anaemia and acute myelogenous leukaemia. (author)
Kinetic model of water disinfection using peracetic acid including synergistic effects.
Flores, Marina J; Brandi, Rodolfo J; Cassano, Alberto E; Labas, Marisol D
2016-01-01
The disinfection efficiencies of a commercial mixture of peracetic acid against Escherichia coli were studied in laboratory scale experiments. The joint and separate action of two disinfectant agents, hydrogen peroxide and peracetic acid, were evaluated in order to observe synergistic effects. A kinetic model for each component of the mixture and for the commercial mixture was proposed. Through simple mathematical equations, the model describes different stages of attack by disinfectants during the inactivation process. Based on the experiments and the kinetic parameters obtained, it could be established that the efficiency of hydrogen peroxide was much lower than that of peracetic acid alone. However, the contribution of hydrogen peroxide was very important in the commercial mixture. It should be noted that this improvement occurred only after peracetic acid had initiated the attack on the cell. This synergistic effect was successfully explained by the proposed scheme and was verified by experimental results. Besides providing a clearer mechanistic understanding of water disinfection, such models may improve our ability to design reactors.
DEFF Research Database (Denmark)
Chambon, Julie Claire Claudia; Bjerg, Poul Løgstrup; Scheutz, Charlotte
2013-01-01
Reductive dechlorination is a major degradation pathway of chlorinated ethenes in anaerobic subsurface environments, and reactive kinetic models describing the degradation process are needed in fate and transport models of these contaminants. However, reductive dechlorination is a complex biologi...
Decarboxylation of Δ 9-tetrahydrocannabinol: Kinetics and molecular modeling
Perrotin-Brunel, Helene; Buijs, Wim; van Spronsen, Jaap; van Roosmalen, Maaike J. E.; Peters, Cor J.; Verpoorte, Rob; Witkamp, Geert-Jan
2011-02-01
Efficient tetrahydrocannabinol (Δ 9-THC) production from cannabis is important for its medical application and as basis for the development of production routes of other drugs from plants. This work presents one of the steps of Δ 9-THC production from cannabis plant material, the decarboxylation reaction, transforming the Δ 9-THC-acid naturally present in the plant into the psychoactive Δ 9-THC. Results of experiments showed pseudo-first order reaction kinetics, with an activation barrier of 85 kJ mol -1 and a pre-exponential factor of 3.7 × 10 8 s -1. Using molecular modeling, two options were identified for an acid catalyzed β-keto acid type mechanism for the decarboxylation of Δ 9-THC-acid. Each of these mechanisms might play a role, depending on the actual process conditions. Formic acid proved to be a good model for a catalyst of such a reaction. Also, the computational idea of catalysis by water to catalysis by an acid, put forward by Li and Brill, and Churchev and Belbruno was extended, and a new direct keto-enol route was found. A direct keto-enol mechanism catalyzed by formic acid seems to be the best explanation for the observed activation barrier and the pre-exponential factor of the decarboxylation of Δ 9-THC-acid. Evidence for this was found by performing an extraction experiment with Cannabis Flos. It revealed the presence of short chain carboxylic acids supporting this hypothesis. The presented approach is important for the development of a sustainable production of Δ 9-THC from the plant.
Electrode kinetics of a water vapor electrolysis cell
Jacobs, G.
1974-01-01
The anodic electrochemical behavior of the water vapor electrolysis cell was investigated. A theoretical review of various aspects of cell overvoltage is presented with special emphasis on concentration overvoltage and activation overvoltage. Other sources of overvoltage are described. The experimental apparatus controlled and measured anode potential and cell current. Potentials between 1.10 and 2.60 V (vs NHE) and currents between 0.1 and 3000 mA were investigated. Different behavior was observed between the standard cell and the free electrolyte cell. The free electrolyte cell followed typical Tafel behavior (i.e. activation overvoltage) with Tafel slopes of about 0.15, and the exchange current densities of 10 to the minus 9th power A/sq cm, both in good agreement with literature values. The standard cell exhibitied this same Tafel behavior at lower current densities but deviated toward lower than expected current densities at higher potentials. This behavior and other results were examined to determine their origin.
A neural model of visual figure-ground segregation from kinetic occlusion.
Barnes, Timothy; Mingolla, Ennio
2013-01-01
Freezing is an effective defense strategy for some prey, because their predators rely on visual motion to distinguish objects from their surroundings. An object moving over a background progressively covers (deletes) and uncovers (accretes) background texture while simultaneously producing discontinuities in the optic flow field. These events unambiguously specify kinetic occlusion and can produce a crisp edge, depth perception, and figure-ground segmentation between identically textured surfaces--percepts which all disappear without motion. Given two abutting regions of uniform random texture with different motion velocities, one region appears to be situated farther away and behind the other (i.e., the ground) if its texture is accreted or deleted at the boundary between the regions, irrespective of region and boundary velocities. Consequently, a region with moving texture appears farther away than a stationary region if the boundary is stationary, but it appears closer (i.e., the figure) if the boundary is moving coherently with the moving texture. A computational model of visual areas V1 and V2 shows how interactions between orientation- and direction-selective cells first create a motion-defined boundary and then signal kinetic occlusion at that boundary. Activation of model occlusion detectors tuned to a particular velocity results in the model assigning the adjacent surface with a matching velocity to the far depth. A weak speed-depth bias brings faster-moving texture regions forward in depth in the absence of occlusion (shearing motion). These processes together reproduce human psychophysical reports of depth ordering for key cases of kinetic occlusion displays. Copyright © 2012 Elsevier Ltd. All rights reserved.
Study and discretization of kinetic models and fluid models at low Mach number
International Nuclear Information System (INIS)
Dellacherie, Stephane
2011-01-01
This thesis summarizes our work between 1995 and 2010. It concerns the analysis and the discretization of Fokker-Planck or semi-classical Boltzmann kinetic models and of Euler or Navier-Stokes fluid models at low Mach number. The studied Fokker-Planck equation models the collisions between ions and electrons in a hot plasma, and is here applied to the inertial confinement fusion. The studied semi-classical Boltzmann equations are of two types. The first one models the thermonuclear reaction between a deuterium ion and a tritium ion producing an α particle and a neutron particle, and is also in our case used to describe inertial confinement fusion. The second one (known as the Wang-Chang and Uhlenbeck equations) models the transitions between electronic quantified energy levels of uranium and iron atoms in the AVLIS isotopic separation process. The basic properties of these two Boltzmann equations are studied, and, for the Wang-Chang and Uhlenbeck equations, a kinetic-fluid coupling algorithm is proposed. This kinetic-fluid coupling algorithm incited us to study the relaxation concept for gas and immiscible fluids mixtures, and to underline connections with classical kinetic theory. Then, a diphasic low Mach number model without acoustic waves is proposed to model the deformation of the interface between two immiscible fluids induced by high heat transfers at low Mach number. In order to increase the accuracy of the results without increasing computational cost, an AMR algorithm is studied on a simplified interface deformation model. These low Mach number studies also incited us to analyse on cartesian meshes the inaccuracy at low Mach number of Godunov schemes. Finally, the LBM algorithm applied to the heat equation is justified
Large scale structures in the kinetic gravity braiding model that can be unbraided
International Nuclear Information System (INIS)
Kimura, Rampei; Yamamoto, Kazuhiro
2011-01-01
We study cosmological consequences of a kinetic gravity braiding model, which is proposed as an alternative to the dark energy model. The kinetic braiding model we study is characterized by a parameter n, which corresponds to the original galileon cosmological model for n = 1. We find that the background expansion of the universe of the kinetic braiding model is the same as the Dvali-Turner's model, which reduces to that of the standard cold dark matter model with a cosmological constant (ΛCDM model) for n equal to infinity. We also find that the evolution of the linear cosmological perturbation in the kinetic braiding model reduces to that of the ΛCDM model for n = ∞. Then, we focus our study on the growth history of the linear density perturbation as well as the spherical collapse in the nonlinear regime of the density perturbations, which might be important in order to distinguish between the kinetic braiding model and the ΛCDM model when n is finite. The theoretical prediction for the large scale structure is confronted with the multipole power spectrum of the luminous red galaxy sample of the Sloan Digital Sky survey. We also discuss future prospects of constraining the kinetic braiding model using a future redshift survey like the WFMOS/SuMIRe PFS survey as well as the cluster redshift distribution in the South Pole Telescope survey
Analysis of a kinetic multi-segment foot model. Part I: Model repeatability and kinematic validity.
Bruening, Dustin A; Cooney, Kevin M; Buczek, Frank L
2012-04-01
Kinematic multi-segment foot models are still evolving, but have seen increased use in clinical and research settings. The addition of kinetics may increase knowledge of foot and ankle function as well as influence multi-segment foot model evolution; however, previous kinetic models are too complex for clinical use. In this study we present a three-segment kinetic foot model and thorough evaluation of model performance during normal gait. In this first of two companion papers, model reference frames and joint centers are analyzed for repeatability, joint translations are measured, segment rigidity characterized, and sample joint angles presented. Within-tester and between-tester repeatability were first assessed using 10 healthy pediatric participants, while kinematic parameters were subsequently measured on 17 additional healthy pediatric participants. Repeatability errors were generally low for all sagittal plane measures as well as transverse plane Hindfoot and Forefoot segments (median<3°), while the least repeatable orientations were the Hindfoot coronal plane and Hallux transverse plane. Joint translations were generally less than 2mm in any one direction, while segment rigidity analysis suggested rigid body behavior for the Shank and Hindfoot, with the Forefoot violating the rigid body assumptions in terminal stance/pre-swing. Joint excursions were consistent with previously published studies. Copyright © 2012 Elsevier B.V. All rights reserved.
Chen, Yingying; Wu, Ying; Zhu, Baotong; Zhang, Guanyu; Wei, Na
2018-01-01
Efficient conversion of cellulosic sugars in cellulosic hydrolysates is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge. The present study reports a new approach for simultaneous fermentation of cellobiose and xylose by using the co-culture consisting of recombinant Saccharomyces cerevisiae specialist strains. The co-culture system can provide competitive advantage of modularity compared to the single culture system and can be tuned to deal with fluctuations in feedstock composition to achieve robust and cost-effective biofuel production. This study characterized fermentation kinetics of the recombinant cellobiose-consuming S. cerevisiae strain EJ2, xylose-consuming S. cerevisiae strain SR8, and their co-culture. The motivation for kinetic modeling was to provide guidance and prediction of using the co-culture system for simultaneous fermentation of mixed sugars with adjustable biomass of each specialist strain under different substrate concentrations. The kinetic model for the co-culture system was developed based on the pure culture models and incorporated the effects of product inhibition, initial substrate concentration and inoculum size. The model simulations were validated by results from independent fermentation experiments under different substrate conditions, and good agreement was found between model predictions and experimental data from batch fermentation of cellobiose, xylose and their mixtures. Additionally, with the guidance of model prediction, simultaneous co-fermentation of 60 g/L cellobiose and 20 g/L xylose was achieved with the initial cell densities of 0.45 g dry cell weight /L for EJ2 and 0.9 g dry cell weight /L SR8. The results demonstrated that the kinetic modeling could be used to guide the design and optimization of yeast co-culture conditions for achieving simultaneous fermentation of cellobiose and xylose with improved ethanol productivity, which is
A detailed chemical kinetic model for pyrolysis of the lignin model compound chroman
Directory of Open Access Journals (Sweden)
James Bland
2013-12-01
Full Text Available The pyrolysis of woody biomass, including the lignin component, is emerging as a potential technology for the production of renewable fuels and commodity chemicals. Here we describe the construction and implementation of an elementary chemical kinetic model for pyrolysis of the lignin model compound chroman and its reaction intermediate ortho-quinone methide (o-QM. The model is developed using both experimental and theoretical data, and represents a hybrid approach to kinetic modeling that has the potential to provide molecular level insight into reaction pathways and intermediates while accurately describing reaction rates and product formation. The kinetic model developed here can replicate all known aspects of chroman pyrolysis, and provides new information on elementary reaction steps. Chroman pyrolysis is found to proceed via an initial retro-Diels–Alder reaction to form o-QM + ethene (C2H4, followed by dissociation of o-QM to the C6H6 isomers benzene and fulvene (+ CO. At temperatures of around 1000–1200 K and above fulvene rapidly isomerizes to benzene, where an activation energy of around 270 kJ mol-1 is required to reproduce experimental observations. A new G3SX level energy surface for the isomerization of fulvene to benzene supports this result. Our modeling also suggests that thermal decomposition of fulvene may be important at around 950 K and above. This study demonstrates that theoretical protocols can provide a significant contribution to the development of kinetic models for biomass pyrolysis by elucidating reaction mechanisms, intermediates, and products, and also by supplying realistic rate coefficients and thermochemical properties.
Modeling of hydrogen production methods: Single particle model and kinetics assessment
Energy Technology Data Exchange (ETDEWEB)
Miller, R.S.; Bellan, J. [California Institute of Technology, Pasadena, CA (United States)
1996-10-01
The investigation carried out by the Jet Propulsion Laboratory (JPL) is devoted to the modeling of biomass pyrolysis reactors producing an oil vapor (tar) which is a precursor to hydrogen. This is an informal collaboration with NREL whereby JPL uses the experimentally-generated NREL data both as initial and boundary conditions for the calculations, and as a benchmark for model validation. The goal of this investigation is to find drivers of biomass fast-pyrolysis in the low temperature regime. The rationale is that experimental observations produce sparse discrete conditions for model validation, and that numerical simulations produced with a validated model are an economic way to find control parameters and an optimal operation regime, thereby circumventing costly changes in hardware and tests. During this first year of the investigation, a detailed mathematical model has been formulated for the temporal and spatial accurate modeling of solid-fluid reactions in biomass particles. These are porous particles for which volumetric reaction rate data is known a priori and both the porosity and the permeability of the particle are large enough to allow for continuous gas phase flow. The methodology has been applied to the pyrolysis of spherically symmetric biomass particles by considering previously published kinetics schemes for both cellulose and wood. The results show that models which neglect the thermal and species boundary layers exterior to the particle will generally over predict both the pyrolysis rates and experimentally obtainable tar yields. An evaluation of the simulation results through comparisons with experimental data indicates that while the cellulose kinetics is reasonably accurate, the wood pyrolysis kinetics is not accurate; particularly at high reactor temperatures. Current effort in collaboration with NREL is aimed at finding accurate wood kinetics.
Rout, Bapin Kumar; Brooks, Geoffrey; Akbar Rhamdhani, M.; Li, Zushu; Schrama, Frank N. H.; Overbosch, Aart
2018-03-01
In a previous study by the authors (Rout et al. in Metall Mater Trans B 49:537-557, 2018), a dynamic model for the BOF, employing the concept of multizone kinetics was developed. In the current study, the kinetics of decarburization reaction is investigated. The jet impact and slag-metal emulsion zones were identified to be primary zones for carbon oxidation. The dynamic parameters in the rate equation of decarburization such as residence time of metal drops in the emulsion, interfacial area evolution, initial size, and the effects of surface-active oxides have been included in the kinetic rate equation of the metal droplet. A modified mass-transfer coefficient based on the ideal Langmuir adsorption equilibrium has been proposed to take into account the surface blockage effects of SiO2 and P2O5 in slag on the decarburization kinetics of a metal droplet in the emulsion. Further, a size distribution function has been included in the rate equation to evaluate the effect of droplet size on reaction kinetics. The mathematical simulation indicates that decarburization of the droplet in the emulsion is a strong function of the initial size and residence time. A modified droplet generation rate proposed previously by the authors has been used to estimate the total decarburization rate by slag-metal emulsion. The model's prediction shows that about 76 pct of total carbon is removed by reactions in the emulsion, and the remaining is removed by reactions at the jet impact zone. The predicted bath carbon by the model has been found to be in good agreement with the industrially measured data.
Rout, Bapin Kumar; Brooks, Geoffrey; Akbar Rhamdhani, M.; Li, Zushu; Schrama, Frank N. H.; Overbosch, Aart
2018-06-01
In a previous study by the authors (Rout et al. in Metall Mater Trans B 49:537-557, 2018), a dynamic model for the BOF, employing the concept of multizone kinetics was developed. In the current study, the kinetics of decarburization reaction is investigated. The jet impact and slag-metal emulsion zones were identified to be primary zones for carbon oxidation. The dynamic parameters in the rate equation of decarburization such as residence time of metal drops in the emulsion, interfacial area evolution, initial size, and the effects of surface-active oxides have been included in the kinetic rate equation of the metal droplet. A modified mass-transfer coefficient based on the ideal Langmuir adsorption equilibrium has been proposed to take into account the surface blockage effects of SiO2 and P2O5 in slag on the decarburization kinetics of a metal droplet in the emulsion. Further, a size distribution function has been included in the rate equation to evaluate the effect of droplet size on reaction kinetics. The mathematical simulation indicates that decarburization of the droplet in the emulsion is a strong function of the initial size and residence time. A modified droplet generation rate proposed previously by the authors has been used to estimate the total decarburization rate by slag-metal emulsion. The model's prediction shows that about 76 pct of total carbon is removed by reactions in the emulsion, and the remaining is removed by reactions at the jet impact zone. The predicted bath carbon by the model has been found to be in good agreement with the industrially measured data.
Comparison of micronucleus frequencies and proliferation kinetics in three X-irradiated cell lines
International Nuclear Information System (INIS)
Kaffenberger, W.; Becker, K.; Beuningen, D. van
1990-01-01
The kinetics of the occurrence of micronuclei was correlated with the survival of three mammalian cell lines of human, monkey, and mouse origin after irradiation with 240 kV X-rays. Particular attention was paid to the evaluation of the individual proliferation kinetics of the cell lines as well as to the characterization of micronuclei subpopulation with respect to size and possible biological importance using DNA and BUdR labelling techniques, fluorescence microscopy, and image analysis. The results demonstrate very characteristic size distributions of micronuclei for the three cell lines independent of radiation dose and time after irradiation. A close correlation between cell death and the occurrence of micronuclei (expressed as a calculated 'MN index') after irradiation could be established only when the kinetics of progression of cells through the cell cycle (e.g. the doubling time) and the biological characteristics of micronuclei (e.g. BUdR positivity, the micronucleus frequencies, and the number of micronuclei per main nucleus) were taken into account. Therefore, the micronucleus assay might not be useful as a quantitative perdictive assay in vivo but may allow qualitative estimations of radiation damage only because the necessary proliferation parameters of the cells might not be possible to establish in vivo. (orig.) [de
Modelling fungal solid-state fermentation: The role of inactivation kinetics
Smits, J.P.; Sonsbeek, H.M. van; Knol, W.; Tramper, J.; Geelhoed, W.; Peeters, M.; Rinzema, A.
1999-01-01
The theoretical mathematical models described in this paper are used to evaluate the effects of fungal biomass inactivation kinetics on a non- isothermal tray solid-state fermentation (SSF). The inactivation kinetics, derived from previously reported experiments done under isothermal conditions and
Kinetic model for an up-flow anaerobic packed bed bioreactor: Dairy ...
African Journals Online (AJOL)
Kinetic studies of anaerobic digestion process of cheese whey were conducted in a pilot-scale up-flow anaerobic packed bed bioreactor (UAPB). An influent COD concentration of 59419 mg/l was utilized at steady state condition. Logistic and Monod kinetic models were employed to describe microbial activities of cheese ...
DEFF Research Database (Denmark)
Price, Jason Anthony; Nordblad, Mathias; Woodley, John
2014-01-01
This paper demonstrates the added benefits of using uncertainty and sensitivity analysis in the kinetics of enzymatic biodiesel production. For this study, a kinetic model by Fedosov and co-workers is used. For the uncertainty analysis the Monte Carlo procedure was used to statistically quantify...
Seldam, C.A. ten; Groot, S.R. de
1952-01-01
From Jensen's and Gombás' modification of the statistical Thomas-Fermi atom model, a theory for compressed atoms is developed by changing the boundary conditions. Internal kinetic energy and polarizability of argon are calculated as functions of pressure. At 1000 atm. an internal kinetic energy of
International Nuclear Information System (INIS)
Goehde, W.
The following studies were conducted on Ehrlich ascites tumor cells using the pulse cytophotometer: rate of DNA synthesis during the S phase; the effect of cytostatic drugs, endoxan, bleomycin, and other antibiotics on cell kinetics; and effects of x radiation and 1 to 6 MeV neutrons on cell kinetics
Lee, Eunyoung; Cumberbatch, Jewel; Wang, Meng; Zhang, Qiong
2017-03-01
Anaerobic co-digestion has a potential to improve biogas production, but limited kinetic information is available for co-digestion. This study introduced regression-based models to estimate the kinetic parameters for the co-digestion of microalgae and Waste Activated Sludge (WAS). The models were developed using the ratios of co-substrates and the kinetic parameters for the single substrate as indicators. The models were applied to the modified first-order kinetics and Monod model to determine the rate of hydrolysis and methanogenesis for the co-digestion. The results showed that the model using a hyperbola function was better for the estimation of the first-order kinetic coefficients, while the model using inverse tangent function closely estimated the Monod kinetic parameters. The models can be used for estimating kinetic parameters for not only microalgae-WAS co-digestion but also other substrates' co-digestion such as microalgae-swine manure and WAS-aquatic plants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparative evaluation of kinetic, equilibrium and semi-equilibrium models for biomass gasification
Energy Technology Data Exchange (ETDEWEB)
Buragohain, Buljit [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Chakma, Sankar; Kumar, Peeush [Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Mahanta, Pinakeswar [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Moholkar, Vijayanand S. [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India)
2013-07-01
Modeling of biomass gasification has been an active area of research for past two decades. In the published literature, three approaches have been adopted for the modeling of this process, viz. thermodynamic equilibrium, semi-equilibrium and kinetic. In this paper, we have attempted to present a comparative assessment of these three types of models for predicting outcome of the gasification process in a circulating fluidized bed gasifier. Two model biomass, viz. rice husk and wood particles, have been chosen for analysis, with gasification medium being air. Although the trends in molar composition, net yield and LHV of the producer gas predicted by three models are in concurrence, significant quantitative difference is seen in the results. Due to rather slow kinetics of char gasification and tar oxidation, carbon conversion achieved in single pass of biomass through the gasifier, calculated using kinetic model, is quite low, which adversely affects the yield and LHV of the producer gas. Although equilibrium and semi-equilibrium models reveal relative insensitivity of producer gas characteristics towards temperature, the kinetic model shows significant effect of temperature on LHV of the gas at low air ratios. Kinetic models also reveal volume of the gasifier to be an insignificant parameter, as the net yield and LHV of the gas resulting from 6 m and 10 m riser is same. On a whole, the analysis presented in this paper indicates that thermodynamic models are useful tools for quantitative assessment of the gasification process, while kinetic models provide physically more realistic picture.
International Nuclear Information System (INIS)
Mieussens, Luc
2013-01-01
The unified gas kinetic scheme (UGKS) of K. Xu et al. (2010) [37], originally developed for multiscale gas dynamics problems, is applied in this paper to a linear kinetic model of radiative transfer theory. While such problems exhibit purely diffusive behavior in the optically thick (or small Knudsen) regime, we prove that UGKS is still asymptotic preserving (AP) in this regime, but for the free transport regime as well. Moreover, this scheme is modified to include a time implicit discretization of the limit diffusion equation, and to correctly capture the solution in case of boundary layers. Contrary to many AP schemes, this method is based on a standard finite volume approach, it does neither use any decomposition of the solution, nor staggered grids. Several numerical tests demonstrate the properties of the scheme
International Nuclear Information System (INIS)
Chikkappa, G.; Carsten, A.L.; Chanana, A.D.; Cronkite, E.P.
1979-01-01
Normal human blood leukocytes were cultured in Millipore diffusion chambers implanted into the peritoneal cavities of irradiated mice. The evaluation of survival and proliferation kinetics of cells in lymphyocytic series suggested that the lymphoid cells are formed from transition of small and/or large lymphocytes, and the lymphoblasts from the lymphoid cells. There was also evidence indicating that some of the cells in these two compartments are formed by proliferation. The evaluation of plasmacytic series suggested that the plasma cells are formed from plasmacytoid-lymphocytes by transition, and the latter from the transition of lymphocytes. In addition, relatively a small fraction of cells in these two compartments are formed by proliferation. mature plasma cells do not and immature plasma cells do proliferate. Estimation of magnitude of plasma cells formed in the cultures at day 18 indicated that at least one plasma cell is formed for every 6 normal human blood lymphocytes introduced into the culture
Kinetic and geometric aspects of solid oxide fuel cell electrodes
DEFF Research Database (Denmark)
Mogensen, Mogens Bjerg; Skaarup, Steen
1996-01-01
The paper gives an overview of the main factors controlling the performance of the solid oxide fuel cell (SOFC) electrodes, emphasizing the most widely chosen anodes and cathodes, Ni-YSZ and LSM-YSZ. They are often applied as composites (mixtures) of the electron conducting electrode material...
Evaluation of kinetic uncertainty in numerical models of petroleum generation
Peters, K.E.; Walters, C.C.; Mankiewicz, P.J.
2006-01-01
Oil-prone marine petroleum source rocks contain type I or type II kerogen having Rock-Eval pyrolysis hydrogen indices greater than 600 or 300-600 mg hydrocarbon/g total organic carbon (HI, mg HC/g TOC), respectively. Samples from 29 marine source rocks worldwide that contain mainly type II kerogen (HI = 230-786 mg HC/g TOC) were subjected to open-system programmed pyrolysis to determine the activation energy distributions for petroleum generation. Assuming a burial heating rate of 1??C/m.y. for each measured activation energy distribution, the calculated average temperature for 50% fractional conversion of the kerogen in the samples to petroleum is approximately 136 ?? 7??C, but the range spans about 30??C (???121-151??C). Fifty-two outcrop samples of thermally immature Jurassic Oxford Clay Formation were collected from five locations in the United Kingdom to determine the variations of kinetic response for one source rock unit. The samples contain mainly type I or type II kerogens (HI = 230-774 mg HC/g TOC). At a heating rate of 1??C/m.y., the calculated temperatures for 50% fractional conversion of the Oxford Clay kerogens to petroleum differ by as much as 23??C (127-150??C). The data indicate that kerogen type, as defined by hydrogen index, is not systematically linked to kinetic response, and that default kinetics for the thermal decomposition of type I or type II kerogen can introduce unacceptable errors into numerical simulations. Furthermore, custom kinetics based on one or a few samples may be inadequate to account for variations in organofacies within a source rock. We propose three methods to evaluate the uncertainty contributed by kerogen kinetics to numerical simulations: (1) use the average kinetic distribution for multiple samples of source rock and the standard deviation for each activation energy in that distribution; (2) use source rock kinetics determined at several locations to describe different parts of the study area; and (3) use a weighted
Point kinetics model with one-dimensional (radial) heat conduction formalism
International Nuclear Information System (INIS)
Jain, V.K.
1989-01-01
A point-kinetics model with one-dimensional (radial) heat conduction formalism has been developed. The heat conduction formalism is based on corner-mesh finite difference method. To get average temperatures in various conducting regions, a novel weighting scheme has been devised. The heat conduction model has been incorporated in the point-kinetics code MRTF-FUEL. The point-kinetics equations are solved using the method of real integrating factors. It has been shown by analysing the simulation of hypothetical loss of regulation accident in NAPP reactor that the model is superior to the conventional one in accuracy and speed of computation. (author). 3 refs., 3 tabs
International Nuclear Information System (INIS)
De-Santiago, Josue; Cervantes-Cota, Jorge L.
2011-01-01
We study a unification model for dark energy, dark matter, and inflation with a single scalar field with noncanonical kinetic term. In this model, the kinetic term of the Lagrangian accounts for the dark matter and dark energy, and at early epochs, a quadratic potential accounts for slow roll inflation. The present work is an extension to the work by Bose and Majumdar [Phys. Rev. D 79, 103517 (2009).] with a more general kinetic term that was proposed by Chimento in Phys. Rev. D 69, 123517 (2004). We demonstrate that the model is viable at the background and linear perturbation levels.
Behaviour of defective CANDU fuel: fuel oxidation kinetic and thermodynamic modelling
International Nuclear Information System (INIS)
Higgs, J.
2005-01-01
The thermal performance of operating CANDU fuel under defect conditions is affected by the ingress of heavy water into the fuel element. A mechanistic model has been developed to predict the extent of fuel oxidation in defective fuel and its affect on fuel thermal performance. A thermodynamic treatment of such oxidized fuel has been performed as a basis for the boundary conditions in the kinetic model. Both the kinetic and thermodynamic models have been benchmarked against recent experimental work. (author)
International Nuclear Information System (INIS)
Eberbeck, Dietmar; Bergemann, Christian; Hartwig, Stefan; Steinhoff, Uwe; Trahms, Lutz
2005-01-01
The ion exchange mediated binding of magnetic nanoparticles (MNP) to modified latex spheres and yeast cells was quantified using magnetorelaxometry. By fitting subsequently recorded relaxation curves, the kinetics of the binding reactions was extracted. The signal of MNP with weak ion exchanger groups bound to latex and yeast cells scales linearly with the concentration of latex beads or yeast cells whereas that of MNP with strong ion exchanger groups is proportional to the square root of concentration. The binding of the latter leads to a much stronger aggregation of yeast cells than the former MNP
International Nuclear Information System (INIS)
Manley, N.B.
1988-01-01
The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. The decrease in the values of the labeling indices 1 week after charged particle irradiation was dose- and ion-dependent. Mitotic indices 1 week after 10 and 25 Gy helium and after 10 Gy neon were the same as those seen in the control mice. Analysis of cell kinetics 1 week after 10 Gy helium and 10 Gy neon irradiation suggests the presence of a progenitor subpopulation that is proliferating with a shorter cell cycle. Comparison of the responses to the different charged particle beams indicates that neon ions are more effective in producing direct cellular damage than the helium ions, but the surviving proliferating cells several divisions later continue to maintain active cell renewal. Based on the 1 week post-irradiation H 3 -TdR labeling indices, a rough estimate of the RBE for neon ions is at least 2.5 when compared to helium ions
Energy Technology Data Exchange (ETDEWEB)
Kruse, A.; Keskin, M.; Faquir, M.; Dahmen, N. [Inst. fuer Technische Chemie, Forschungszentrum Karlsruhe (Germany)
2008-07-01
Hydrothermal biomass gasification is a promising technology to produce hydrogen from wet biomass, i.e. a water content of at least 50 %. This process allows the utilization of agricultural wastes or residuals from biochemical conversions. Since the reaction is highly kinetically controlled, it should be possible to optimimize gas yield and composition with respect to a maximum hydrogen yield. The paper describes the simulation of the process using a kinetic reaction model and experimental data from appropriate test facilities. Experiments were performed for several reactor types and a variety of model systems, like glucose, methane and hydroxy methyl furfural, that were identified as intermediate product for the hydrothermal hydrogen production. The influence of different additive 'catalysts' was tested. It was shown that the biomass composition has an important influence on the gas yield. Alkaline salts can be added to increase the yield. A fast heating and agitation of the biomass are also increasing the gas yield.
Radiosensitivity and cell kinetics of the human solid cancer transplanted to nude mouse
International Nuclear Information System (INIS)
Ikeuchi, Shunji
1983-01-01
This study was undertaken to analyse the relationship between radiosensitivity and cell kinetics of human solid cancer in experimental nude mouse system. Four strains of tumors used for the experiment were poorly differentiated squamous cell carcinoma of the lung (Lu-9), oat cell carcinoma of the lung (Lu-24), well differentiated squamous cell carcinoma of the tongue (To-1) and moderately differentiated squamous cell carcinoma of the esophagus (Es-4) which were serially transplantable to BALB/c nude mice. Radiosensitivity was evaluated by tumor growth in terms of inhibition rate, histological change and host reaction after irradiation. Cell kinetics were studied by autoradiography with pulse administration of 3 H-thymidine to mice. Although Lu-24 was most radiosensitive, followed by To-1, Es-4 and Lu-9 in the order of sensitivity, it was suggested that they might be more radioresistant in nude mice without T-cell function than in human. Regarding squamous cell carcinomas, well differentiated type was more radiosensitive than poorly differentiated one. All of these tumors in nude mouse revealed distinct percent labeled mitosis curves with two clear peaks which were quite different from those in human body. Lu-24 showed a characteristic pattern with a long time lag before visible growth, short G 1 , and low growth fraction, compared to other three tumors. Three strains of squamous cell carcinoma demonstrated similar cell kinetic factors which were almost the same as those in human body reported previously. The differences in volume doubling time of tumor, growth fraction and cell loss factor were partially related to those of radiosensitivities among tumors except for Lu-24. The theoretical volume doubling time was proved to be most reliable for estimation of effectiveness of irradiation, but the labeling index was not a valuable indicator for it. (author)
Relations between the kinetic equation and the Langevin models in two-phase flow modelling
International Nuclear Information System (INIS)
Minier, J.P.; Pozorski, J.
1997-05-01
The purpose of this paper is to discuss PDF and stochastic models which are used in two-phase flow modelling. The aim of the present analysis is essentially to try to determine relations and consistency between different models. It is first recalled that different approaches actually correspond to PDF models written either in terms of the process trajectories or in terms of the PDF itself. The main difference lies in the choice of the independent variables which are retained. Two particular models are studied, the Kinetic Equation and the Langevin Equation model. The latter uses a Langevin equation to model the fluid velocities seen along particle trajectories. The Langevin model is more general since it contains an additional variable. It is shown that, in certain cases, this variable can be summed up exactly to retrieve the Kinetic Equation model as a marginal PDF. A joint fluid and solid particle PDF which includes the characteristics of both phases is proposed at the end of the paper. (author)
Energy Technology Data Exchange (ETDEWEB)
Watanabe, Y; Dahlman, E; Leder, K; Hui, S [University of Minnesota, Minneapolis, MN (United States)
2015-06-15
Purpose: To develop and study a kinetic model of tumor growth and its response to stereotactic radiosurgery (SRS) by assuming that the cells in irradiated tumor volume were made of three types. Methods: A set of ordinary differential equations (ODEs) were derived for three types of cells and a tumor growth rate. It is assumed that the cells were composed of actively proliferating cells, lethally damaged-dividing cells, and non-dividing cells. We modeled the tumor volume growth with a time-dependent growth rate to simulate the saturation of growth. After SRS, the proliferating cells were permanently damaged and converted to the lethally damaged cells. The amount of damaged cells were estimated by the LQ-model. The damaged cells gradually stopped dividing/proliferating and died with a constant rate. The dead cells were cleared from their original location with a constant rate. The total tumor volume was the sum of the three components. The ODEs were numerically solved with appropriate initial conditions for a given dosage. The proposed model was used to model an animal experiment, for which the temporal change of a rhabdomyosarcoma tumor volume grown in a rat was measured with time resolution sufficient to test the model. Results: To fit the model to the experimental data, the following characteristics were needed with the model parameters. The α-value in the LQ-model was smaller than the commonly used value; furthermore, it decreased with increasing dose. At the same time, the tumor growth rate after SRS had to increase. Conclusions: The new 3-component model of tumor could simulate the experimental data very well. The current study suggested that the radiation sensitivity and the growth rate of the proliferating tumor cells may change after irradiation and it depended on the dosage used for SRS. These preliminary observations must be confirmed by future animal experiments.
Ordering kinetics in model systems with inhibited interfacial adsorption
DEFF Research Database (Denmark)
Willart, J.-F.; Mouritsen, Ole G.; Naudts, J.
1992-01-01
. The results are related to experimental work on ordering processes in orientational glasses. It is suggested that the experimental observation of very slow ordering kinetics in, e.g., glassy crystals of cyanoadamantane may be a consequence of low-temperature activated processes which ultimately lead...
Calcite growth kinetics: Modeling the effect of solution stoichiometry
Wolthers, M.; Nehrke, G.; Gustafsson, J.P.; Van Cappellen, P.
2012-01-01
Until recently the influence of solution stoichiometry on calcite crystal growth kinetics has attracted little attention, despite the fact that in most aqueous environments calcite precipitates from non-stoichiometric solution. In order to account for the dependence of the calcite crystal growth
Unanimous Model for Describing the Fast Bioluminescence Kinetics of Ca
Eremeeva, Elena V.; Bartsev, Sergey I.; Berkel, van Willem J.H.; Vysotski, Eugene S.
2017-01-01
Upon binding their metal ion cofactors, Ca2+-regulated photoproteins display a rapid increase of light signal, which reaches its peak within milliseconds. In the present study, we investigate bioluminescence kinetics of the entire photoprotein family. All five recombinant hydromedusan Ca2+-regulated
Unravelling the Maillard reaction network by multiresponse kinetic modelling
Martins, S.I.F.S.
2003-01-01
The Maillard reaction is an important reaction in food industry. It is responsible for the formation of colour and aroma, as well as toxic compounds as the recent discovered acrylamide. The knowledge of kinetic parameters, such as rate constants and activation energy, is necessary to predict its
Particle-in-cell Simulations with Kinetic Electrons
International Nuclear Information System (INIS)
Lewandowski, J.L.V.
2004-01-01
A new scheme, based on an exact separation between adiabatic and nonadiabatic electron responses, for particle-in-cell (PIC) simulations of drift-type modes is presented. The (linear and nonlinear) elliptic equations for the scalar fields are solved using a multi-grid solver. The new scheme yields linear growth rates in excellent agreement with theory and it is shown to conserve energy well into the nonlinear regime. It is also demonstrated that simulations with few electrons are reliable and accurate, suggesting that large-scale, PIC simulations with electron dynamics in toroidal geometry (e.g., tokamaks and stellarators plasmas) are within reach of present-day massively parallel supercomputers
Rout, Bapin Kumar; Brooks, Geoff; Rhamdhani, M. Akbar; Li, Zushu; Schrama, Frank N. H.; Sun, Jianjun
2018-04-01
A multi-zone kinetic model coupled with a dynamic slag generation model was developed for the simulation of hot metal and slag composition during the basic oxygen furnace (BOF) operation. The three reaction zones (i) jet impact zone, (ii) slag-bulk metal zone, (iii) slag-metal-gas emulsion zone were considered for the calculation of overall refining kinetics. In the rate equations, the transient rate parameters were mathematically described as a function of process variables. A micro and macroscopic rate calculation methodology (micro-kinetics and macro-kinetics) were developed to estimate the total refining contributed by the recirculating metal droplets through the slag-metal emulsion zone. The micro-kinetics involves developing the rate equation for individual droplets in the emulsion. The mathematical models for the size distribution of initial droplets, kinetics of simultaneous refining of elements, the residence time in the emulsion, and dynamic interfacial area change were established in the micro-kinetic model. In the macro-kinetics calculation, a droplet generation model was employed and the total amount of refining by emulsion was calculated by summing the refining from the entire population of returning droplets. A dynamic FetO generation model based on oxygen mass balance was developed and coupled with the multi-zone kinetic model. The effect of post-combustion on the evolution of slag and metal composition was investigated. The model was applied to a 200-ton top blowing converter and the simulated value of metal and slag was found to be in good agreement with the measured data. The post-combustion ratio was found to be an important factor in controlling FetO content in the slag and the kinetics of Mn and P in a BOF process.
Modeling Of Proton Exchange Membrane Fuel Cell Systems
DEFF Research Database (Denmark)
Nielsen, Mads Pagh
The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...... cell systems. Consequences of indirectly fueling PEM stacks with hydrocarbons using reforming technology were investigated using a PEM stack model including CO poisoning kinetics and a transient Simulink steam reforming system model. Aspects regarding the optimization of PEM fuel cell systems...
Phase-field modeling of corrosion kinetics under dual-oxidants
Wen, You-Hai; Chen, Long-Qing; Hawk, Jeffrey A.
2012-04-01
A phase-field model is proposed to simulate corrosion kinetics under a dual-oxidant atmosphere. It will be demonstrated that the model can be applied to simulate corrosion kinetics under oxidation, sulfidation and simultaneous oxidation/sulfidation processes. Phase-dependent diffusivities are incorporated in a natural manner and allow more realistic modeling as the diffusivities usually differ by many orders of magnitude in different phases. Simple free energy models are then used for testing the model while calibrated free energy models can be implemented for quantitative modeling.
Carlsson, Philip T. M.; Zeuch, Thomas
2018-03-01
We have developed a new model utilizing our existing kinetic gas phase models to simulate experimental particle size distributions emerging in dry supersaturated H2SO4 vapor homogeneously produced by rapid oxidation of SO2 through stabilized Criegee-Intermediates from 2-butene ozonolysis. We use a sectional method for simulating the particle dynamics. The particle treatment in the model is based on first principles and takes into account the transition from the kinetic to the diffusion-limited regime. It captures the temporal evolution of size distributions at the end of the ozonolysis experiment well, noting a slight underrepresentation of coagulation effects for larger particle sizes. The model correctly predicts the shape and the modes of the experimentally observed particle size distributions. The predicted modes show an extremely high sensitivity to the H2SO4 evaporation rates of the initially formed H2SO4 clusters (dimer to pentamer), which were arbitrarily restricted to decrease exponentially with increasing cluster size. In future, the analysis presented in this work can be extended to allow a direct validation of quantum chemically predicted stabilities of small H2SO4 clusters, which are believed to initiate a significant fraction of atmospheric new particle formation events. We discuss the prospects and possible limitations of the here presented approach.
Fast kinetics of the oxygen effect in irradiated mammalian cells
International Nuclear Information System (INIS)
Watts, M.E.; Maughan, R.L.; Michael, B.D.
1978-01-01
A technique using a fast gas transfer with a single pulse of electrons (the gas-explosion technique) has been used to investigate the time-dependence of the dose-modifying action of oxygen in irradiated V79 Chinese hamster cells. Oxygen did not significantly alter the shapes of the survival curves. The dose-modifying factor between the fully oxic and fully hypoxic (oxygen at 9000 ms) curve was 2.6. The dose-modifying factor for the survival curve drawn for oxygen contact at 0.3 ms after irradiation was 1.5 relative to the hypoxic curve. The duration of the post-effect (oxygen contact after irradiation) indicated that oxygen-dependent damage has a lifetime extending into the ms time-range. In the pre-effect time region (oxygen contact before irradiation) 1 to 2 ms oxygen contact was required to achieve the full sensitization. The results are discussed with reference to the diffusion time for oxygen to reach the sensitive site within the cell. (U.K.)
Experimental and Chemical Kinetic Modeling Study of Dimethylcyclohexane Oxidation and Pyrolysis
Eldeeb, Mazen A.; Jouzdani, Shirin; Wang, Zhandong; Sarathy, Mani; Akih-Kumgeh, Benjamin
2016-01-01
A combined experimental and chemical kinetic modeling study of the high-temperature ignition and pyrolysis of 1,3-dimethylcyclohexane (13DMCH) is presented. Ignition delay times are measured behind reflected shock waves over a temperature range
Experimental and Kinetic Modeling Study of Ethyl Levulinate Oxidation in a Jet-Stirred Reactor
Wang, Jui-Yang
2017-01-01
levulinate chemical kinetic model was first developed by Dr. Stephen Dooley, Trinity College Dublin, and simulated under the same conditions, using the Perfect-Stirred Reactor code in Chemkin software. In comparing the simulation results with experimental
Jia, X.; Slavin, J.; Chen, Y.; Poh, G.; Toth, G.; Gombosi, T.
2018-05-01
We present results from state-of-the-art global models of Mercury's space environment capable of self-consistently simulating the induction effect at the core and resolving kinetic physics important for magnetic reconnection.
New Procedure to Develop Lumped Kinetic Models for Heavy Fuel Oil Combustion
Han, Yunqing; Elbaz, Ayman M.; Roberts, William L.; Im, Hong G.
2016-01-01
A new procedure to develop accurate lumped kinetic models for complex fuels is proposed, and applied to the experimental data of the heavy fuel oil measured by thermogravimetry. The new procedure is based on the pseudocomponents representing
Wang, Weicheng; Natelson, Robert H.; Stikeleather, Larry F.; Roberts, William L.
2013-01-01
A chemical kinetic model has been developed for the transient stage of the continuous countercurrent hydrolysis of triglycerides to free fatty acids and glycerol. Departure functions and group contribution methods were applied to determine
Temperature-Dependent Kinetics of Grape Seed Phenolic Compounds Extraction: Experiment and Model
Czech Academy of Sciences Publication Activity Database
Bucic´-Kojic´, A.; Sovová, Helena; Planinic´, M.; Tomas, S.
2013-01-01
Roč. 136, 3-4 (2013), s. 1136-1140 ISSN 0308-8146 Institutional support: RVO:67985858 Keywords : kinetics modelling * temperature * grape seed Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.259, year: 2013
Energy Technology Data Exchange (ETDEWEB)
Doubova, L.; Mengoli, G.; Musiani, M.M.; Valcher, S.
1989-03-01
Oxygen reduction at a polyaniline cathode occurs in aqueous sulfuric acid through a chemical-electrochemical route which involves the intermediate oxidation of leucoemeraldine to emeraldine with the formation of H/sub 2/O/sub 2/. This paper specifically deals with the conversion of leucoemeraldine to emeraldine by H/sub 2/O/sub 2/ whose kinetics, apparently second order on the charge exchange, are similar to those found for the reaction with O/sub 2/, although they occur at lower rate. The catalytic four electron O/sub 2/ reduction mediated by the Fe(III)/Fe(II) couple which decomposes H/sub 2/O/sub 2/ is not fully achieved. However, polyaniline proved to be a reliable cathode for O/sub 2/, sustaining the working of a model H/sub 2//O/sub 2/ fuel cell.
Chu, Khim Hoong
2017-11-09
Surface diffusion coefficients may be estimated by fitting solutions of a diffusion model to batch kinetic data. For non-linear systems, a numerical solution of the diffusion model's governing equations is generally required. We report here the application of the classic Langmuir kinetics model to extract surface diffusion coefficients from batch kinetic data. The use of the Langmuir kinetics model in lieu of the conventional surface diffusion model allows derivation of an analytical expression. The parameter estimation procedure requires determining the Langmuir rate coefficient from which the pertinent surface diffusion coefficient is calculated. Surface diffusion coefficients within the 10 -9 to 10 -6 cm 2 /s range obtained by fitting the Langmuir kinetics model to experimental kinetic data taken from the literature are found to be consistent with the corresponding values obtained from the traditional surface diffusion model. The virtue of this simplified parameter estimation method is that it reduces the computational complexity as the analytical expression involves only an algebraic equation in closed form which is easily evaluated by spreadsheet computation.
Cell labelling. Granule and platelet kinetics. Recent concepts
International Nuclear Information System (INIS)
Najean, Y.; Dresch, C.; Dassin, E.
Some unsolved problems are reviewed concerning the lifetime of blood platelets, with special reference to excessive platelet consumption and its possible correction by anti-aggregation agents, in many vascular diseases. Regarding the production of platelets it is considered that the 75 Se-methionine labelling method alone offers a quantitative approach to the process and could be used for the physiological study of thrombopoietic factors. A short chapter is devoted to a survey of the points of agreement and disagreement regarding the lifetime of polynuclear cells and a tentative analysis of the reasons explaining the quite different results obtained with DFP and radiochromium labelling. Finally the methods used to study granule formation are criticized, though it is acknowledged that certain ideas useful in physiopathology have emerged from these different procedures [fr
Topological and kinetic determinants of the modal matrices of dynamic models of metabolism.
Directory of Open Access Journals (Sweden)
Bin Du
Full Text Available Large-scale kinetic models of metabolism are becoming increasingly comprehensive and accurate. A key challenge is to understand the biochemical basis of the dynamic properties of these models. Linear analysis methods are well-established as useful tools for characterizing the dynamic response of metabolic networks. Central to linear analysis methods are two key matrices: the Jacobian matrix (J and the modal matrix (M-1 arising from its eigendecomposition. The modal matrix M-1 contains dynamically independent motions of the kinetic model near a reference state, and it is sparse in practice for metabolic networks. However, connecting the structure of M-1 to the kinetic properties of the underlying reactions is non-trivial. In this study, we analyze the relationship between J, M-1, and the kinetic properties of the underlying network for kinetic models of metabolism. Specifically, we describe the origin of mode sparsity structure based on features of the network stoichiometric matrix S and the reaction kinetic gradient matrix G. First, we show that due to the scaling of kinetic parameters in real networks, diagonal dominance occurs in a substantial fraction of the rows of J, resulting in simple modal structures with clear biological interpretations. Then, we show that more complicated modes originate from topologically-connected reactions that have similar reaction elasticities in G. These elasticities represent dynamic equilibrium balances within reactions and are key determinants of modal structure. The work presented should prove useful towards obtaining an understanding of the dynamics of kinetic models of metabolism, which are rooted in the network structure and the kinetic properties of reactions.
DEFF Research Database (Denmark)
Chen, B. H.; Micheletti, M.; Baganz, F.
2009-01-01
-erythrulose. Experiments were performed using automated microwell studies at the 150 or 800 mu L scale. The derived kinetic parameters were then verified in a second round of experiments where model predictions showed excellent agreement with experimental data obtained under conditions not included in the original......Reliable models of enzyme kinetics are required for the effective design of bioconversion processes. Kinetic expressions of the enzyme-catalysed reaction rate however, are frequently complex and establishing accurate values of kinetic parameters normally requires a large number of experiments....... These can be both time consuming and expensive when working with the types of non-natural chiral intermediates important in pharmaceutical syntheses. This paper presents ail automated microscale approach to the rapid and cost effective generation of reliable kinetic models useful for bioconversion process...
Kinetic model for transformation from nano-sized amorphous $TiO_2$ to anatase
Madras, Giridhar; McCoy, Benjamin J
2006-01-01
We propose a kinetic model for the transformation of nano-sized amorphous $TiO_2$ to anatase with associated coarsening by coalescence. Based on population balance (distribution kinetics) equations for the size distributions, the model applies a first-order rate expression for transformation combined with Smoluchowski coalescence for the coarsening particles. Size distribution moments (number and mass of particles) lead to dynamic expressions for extent of reaction and average anatase particl...
The quasi-invariant limit for a kinetic model of sociological collective behavior
Boudin , Laurent; Salvarani , Francesco
2009-01-01
International audience; The paper is devoted to the study of the asymptotic behaviour of a kinetic model proposed to forecast the phenomenon of opinion formation, with both effect of self-thinking and compromise between individuals. By supposing that the effects of self-thinking and compromise are very weak, we deduce, asymptotically, some simpler models who lose the kinetic structure. We explicitly characterize the asymptotic state of the limiting equation and study the speed of convergence ...
Slininger, P J; Dien, B S; Lomont, J M; Bothast, R J; Ladisch, M R; Okos, M R
2014-08-01
Scheffersomyces (formerly Pichia) stipitis is a potential biocatalyst for converting lignocelluloses to ethanol because the yeast natively ferments xylose. An unstructured kinetic model based upon a system of linear differential equations has been formulated that describes growth and ethanol production as functions of ethanol, oxygen, and xylose concentrations for both growth and fermentation stages. The model was validated for various growth conditions including batch, cell recycle, batch with in situ ethanol removal and fed-batch. The model provides a summary of basic physiological yeast properties and is an important tool for simulating and optimizing various culture conditions and evaluating various bioreactor designs for ethanol production. © 2014 Wiley Periodicals, Inc.
Investigation of binary solid phases by calorimetry and kinetic modelling
Matovic, M.
2007-01-01
The traditional methods for the determination of liquid-solid phase diagrams are based on the assumption that the overall equilibrium is established between the phases. However, the result of the crystallization of a liquid mixture will typically be a non-equilibrium or metastable state of the solid. For a proper description of the crystallization process the equilibrium approach is insufficient and a kinetic approach is actually required. In this work, we show that during slow crystallizatio...
Semi-continuous and multigroup models in extended kinetic theory
International Nuclear Information System (INIS)
Koller, W.
2000-01-01
The aim of this thesis is to study energy discretization of the Boltzmann equation in the framework of extended kinetic theory. In case that external fields can be neglected, the semi- continuous Boltzmann equation yields a sound basis for various generalizations. Semi-continuous kinetic equations describing a three component gas mixture interacting with monochromatic photons as well as a four component gas mixture undergoing chemical reactions are established and investigated. These equations reflect all major aspects (conservation laws, equilibria, H-theorem) of the full continuous kinetic description. For the treatment of the spatial dependence, an expansion of the distribution function in terms of Legendre polynomials is carried out. An implicit finite differencing scheme is combined with the operator splitting method. The obtained numerical schemes are applied to the space homogeneous study of binary chemical reactions and to spatially one-dimensional laser-induced acoustic waves. In the presence of external fields, the developed overlapping multigroup approach (with the spline-interpolation as its extension) is well suited for numerical studies. Furthermore, two formulations of consistent multigroup approaches to the non-linear Boltzmann equation are presented. (author)
Sazhin, Sergei S.; Xie, Jianfei; Shishkova, Irina N.; Elwardani, Ahmed Elsaid; Heikal, Morgan Raymond
2013-01-01
The previously developed kinetic model for droplet heating and evaporation into a high pressure air is generalised to take into account the combined effects of inelastic collisions between molecules in the kinetic region, a non-unity evaporation
A novel microculture kinetic assay (MiCK assay) for malignant cell growth and chemosensitivity.
Kravtsov, V D
1994-01-01
The THERMOmax microplate reader was adapted for monitoring the growth kinetics of human leukaemic OCI/AML-2 and mouse tumour J-774.1 cell lines in continuous culture. Fluid evaporation from wells, CO2 escape and contamination were prevented by hermetic sealing of the microcultures in wells of a 96-well microplate, thus enabling the cells to grow exponentially for 72 h under the conditions of the incubated microplate reader. For both OCI/AML-2 cells, which grow in suspension, and adherent J-774.1 cells, a linear correlation was demonstrated between the number of unstained cells seeded in a given microplate well and the optical density (OD) of that well. Therefore, the OD/time curve of the culture could be deemed to be its growth curve. By the use of the linear fit equation, the actual number of the cells in the wells was computable at any time point of the assay. In the chemosensitivity test, an inhibitory effect of ARA-C on the growth of the cells could be estimated by viewing of the growth curves plotted on the screen. The maximum kinetic rates (Vmax) of the curves in the control and the ARA-C-treated wells were compared, yielding a growth inhibition index (GII). Comparison of results of the kinetic chemosensitivity assay with those of a [3H]thymidine incorporation assay revealed that the novel assay is suitable for precise quantitation of the cell chemosensitivity, is more informative and has the added technical advantage of performance without recourse to radioactive or chemically hazardous substances.
International Nuclear Information System (INIS)
Lin Feng; Meyer, Christian
2009-01-01
A hydration kinetics model for Portland cement is formulated based on thermodynamics of multiphase porous media. The mechanism of cement hydration is discussed based on literature review. The model is then developed considering the effects of chemical composition and fineness of cement, water-cement ratio, curing temperature and applied pressure. The ultimate degree of hydration of Portland cement is also analyzed and a corresponding formula is established. The model is calibrated against the experimental data for eight different Portland cements. Simple relations between the model parameters and cement composition are obtained and used to predict hydration kinetics. The model is used to reproduce experimental results on hydration kinetics, adiabatic temperature rise, and chemical shrinkage of different cement pastes. The comparisons between the model reproductions and the different experimental results demonstrate the applicability of the proposed model, especially for cement hydration at elevated temperature and high pressure.
Kinetics of apoptotic markers in exogeneously induced apoptosis of EL4 cells.
Jessel, Robert; Haertel, Steffen; Socaciu, Carmen; Tykhonova, Svetlana; Diehl, Horst A
2002-01-01
We investigated the time-dependence of apoptotic events in EL4 cells by monitoring plasma membrane changes in correlation to DNA fragmentation and cell shrinkage. We applied three apoptosis inducers (staurosporine, tubericidine and X-rays) and we looked at various markers to follow the early-to-late apoptotic events: phospholipid translocation (identified through annexin V-fluorescein assay and propidium iodide), lipid package (via merocyanine assay), membrane fluidity and anisotropy (via fluorescent measurements), DNA fragmentation by the fluorescence-labeling test and cell size measurements. The different apoptotic inducers caused different reactions of the cells: staurosporine induced apoptosis most rapidly in a high number of cells, tubercidine triggered apoptosis only in the S phase cells, while X-rays caused a G2/M arrest and subsequently apoptosis. Loss of lipid asymmetry is promptly detectable after one hour of incubation time. The phosphatidylserine translocation, decrease of lipid package and anisotropy, and the increase of membrane fluidity appeared to be based on the same process of lipid asymmetry loss. Therefore, the DNA fragmentation and the cell shrinkage appear to be parallel and independent processes running on different time scales but which are kinetically inter-related. The results indicate different signal steps to apoptosis dependent on inducer characteristics but the kinetics of "early-to-late" apoptosis appears to be a fixed program.
Tosun, Ismail
2012-03-01
The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R)) and four three-parameter (Redlich-Peterson (R-P), Sips, Toth and Khan) isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E) from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R(2)) of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM) showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients.
Directory of Open Access Journals (Sweden)
İsmail Tosun
2012-03-01
Full Text Available The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R and four three-parameter (Redlich-Peterson (R-P, Sips, Toth and Khan isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R2 of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°, enthalpy (∆H° and entropy (∆S° of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients.
DEFF Research Database (Denmark)
Singla, Mallika; Rasmussen, Morten Lund; Hashemi, Hamid
2018-01-01
. In the present work, the thermal conversion of CH3Cl under gasification conditions was investigated. A detailed chemical kinetic model for pyrolysis and oxidation of methyl chloride was developed and validated against selected experimental data from the literature. Key reactions of CH2Cl with O2 and C2H4......Limitations in current hot gas cleaning methods for chlorine species from biomass gasification may be a challenge for end use such as gas turbines, engines, and fuel cells, all requiring very low levels of chlorine. During devolatilization of biomass, chlorine is released partly as methyl chloride...... in low-temperature gasification. The present work illustrates how ab initio theory and chemical kinetic modeling can help to resolve emission issues for thermal processes in industrial scale....
International Nuclear Information System (INIS)
Brandt, K.L.B.
1974-01-01
Cell proliferation kinetics of Ehrlich ascites carcinoma grown in two strains of mice with different degrees of resistance to this tumor were examined. In the first portion of the study, growth of Ehrlich ascites carcinoma in nonresistant Swiss (Iowa) and slightly resistant CF1 mice was examined by measuring animal weight gain and host survival time after intraperitoneal injection of tumor cells. Since it appeared that CF1 mice were inherently more resistant than Swiss mice to the Ehrlich carcinoma, the second part of this investigation involved attempts to immunize CF1 mice against the tumor. Subcutaneous injections of Ehrlich cells previously exposed in vitro to 5000 R of 250 kVp x rays were utilized. One immunizing inoculation of lethally irradiated tumor cells afforded protection against an intraperitoneal challenge of 40 thousand Ehrlich cells. By varying the number and timing of immunizing inoculations it was possible to induce different degrees of tumor resistance in these mice. The most effective immunizing procedure utilized multiple inoculations of lethally irradiated tumor cells (LITC), followed by challenges with viable tumor cells (less than 1 million) which were rejected. These mice could then resist challenge inocula of 4 million viable tumor cells. In a few animals the immunizing procedures were ineffective; these animals, when challenged, developed even larger tumors than control mice. Tumor cell proliferation kinetics in these animals as well as in mice that were rejecting the tumor were examined in the third phase of the project. A shortening of the cell cycle was observed in almost all LITC-treated mice, whether tumor growth was eventually inhibited or stimulated. Decreased duration of the DNA-synthesis phase (S) of the tumor cell cycle was also a consistent finding. The role of the immune response in stimulating mitosis as well as in killing foreign cells was discussed. (U.S.)
Cell kinetics of gastrointestinal tumors after different nutritional regimens. A preliminary report
International Nuclear Information System (INIS)
Franchi, F.; Rossi-Fanelli, F.; Seminara, P.; Cascino, A.; Barone, C.; Scucchi, L.
1991-01-01
Forty-four cases of different untreated gastrointestinal tumors were studied with regard to cell kinetic activity. As a pilot experiment, the authors also determined the 3H-TdR Labeling Index (LI) in 28 patients in basal conditions and after 15 days of nutritional manipulation with prevalently lipid-based or glucose-based feeding to ascertain whether selective nutritional regimens could affect tumor proliferation. Preliminary results from this study indicate that a kinetic perturbation is induced in tumor cells by nutritional manipulation. Lipid-based feeding seems to produce effects similar to those of chemical or physical anticancer agents, thus suggesting a possible supporting role of nutritional manipulation in cancer treatment strategy
Kinetics of Cu (II) separation by ion flotation techniques, in cells with flexible spargers
International Nuclear Information System (INIS)
Reyes, M.; Tavera, F. J.; Escudero, R.; Patino, F.; Salinas, E.; Rivera, I.
2010-01-01
This research studies and experimentally determines the kinetic parameters and effect of modifying the hydrodynamics and chemical conditions of the air-liquid dispersions during the Cu (II) extraction by ion flotation techniques in cells with porous spargers. Results show that the elimination of Cu (II) from solution can be carried out by ion flotation in one stage, obtaining efficiencies of 68% and 56% for the flat and cylindrical sparger respectively with a xanthate concentration of 0,02 g/l. In multistage systems five cells, recoveries over 92 % were achieved for both sparger geometries. The behavior of the flotation apparent kinetic constant is linear to the parameters that characterize dispersion (Jg, eg y Db), until a point is achieved where the process instability makes the system inoperable. The results show that removing base metal ions by ion flotation is strongly affected by the following factors: collector concentration [C], Jg, eg, Db, Jl and Sb. (Author) 20 refs
Measuring cell cycle progression kinetics with metabolic labeling and flow cytometry.
Fleisig, Helen; Wong, Judy
2012-05-22
Precise control of the initiation and subsequent progression through the various phases of the cell cycle are of paramount importance in proliferating cells. Cell cycle division is an integral part of growth and reproduction and deregulation of key cell cycle components have been implicated in the precipitating events of carcinogenesis. Molecular agents in anti-cancer therapies frequently target biological pathways responsible for the regulation and coordination of cell cycle division. Although cell cycle kinetics tend to vary according to cell type, the distribution of cells amongst the four stages of the cell cycle is rather consistent within a particular cell line due to the consistent pattern of mitogen and growth factor expression. Genotoxic events and other cellular stressors can result in a temporary block of cell cycle progression, resulting in arrest or a temporary pause in a particular cell cycle phase to allow for instigation of the appropriate response mechanism. The ability to experimentally observe the behavior of a cell population with reference to their cell cycle progression stage is an important advance in cell biology. Common procedures such as mitotic shake off, differential centrifugation or flow cytometry-based sorting are used to isolate cells at specific stages of the cell cycle. These fractionated, cell cycle phase-enriched populations are then subjected to experimental treatments. Yield, purity and viability of the separated fractions can often be compromised using these physical separation methods. As well, the time lapse between separation of the cell populations and the start of experimental treatment, whereby the fractionated cells can progress from the selected cell cycle stage, can pose significant challenges in the successful implementation and interpretation of these experiments. Other approaches to study cell cycle stages include the use of chemicals to synchronize cells. Treatment of cells with chemical inhibitors of key
State and Kinetic Parameters Estimation of Bio-Ethanol Production with Immobilized Cells
Mihaylova, Iva; Popova, Silviya; Kostov, Georgi; Ignatova, Maya; Lubenova, Velislava; Naydenova, Vessela; Pircheva, Desislava; Angelov, Mihail
2013-01-01
In this paper, state and kinetic parameters estimation based on extended Kalman filter (EKF) is proposed. Experimental data from alcoholic fermentation process with immobilized cells is used. The measurements of glucose and ethanol concentration are used as on-line measurements for observers design and biomass concentration is used for results verification. Biomass, substrate and product concentrations inside immobilized compounds are estimated using the proposed algorithm. Monitoring of the ...
Modeling capsid kinetics assembly from the steady state distribution of multi-sizes aggregates
Energy Technology Data Exchange (ETDEWEB)
Hozé, Nathanaël; Holcman, David
2014-01-24
The kinetics of aggregation for particles of various sizes depends on their diffusive arrival and fusion at a specific nucleation site. We present here a mean-field approximation and a stochastic jump model for aggregates at equilibrium. This approach is an alternative to the classical Smoluchowski equations that do not have a close form and are not solvable in general. We analyze these mean-field equations and obtain the kinetics of a cluster formation. Our approach provides a simplified theoretical framework to study the kinetics of viral capsid formation, such as HIV from the self-assembly of the structural proteins Gag.
A feasible kinetic model for the hydrogen oxidation on ruthenium electrodes
International Nuclear Information System (INIS)
Rau, M.S.; Gennero de Chialvo, M.R.; Chialvo, A.C.
2010-01-01
The hydrogen oxidation reaction (hor) was studied on a polycrystalline ruthenium electrode in H 2 SO 4 solution at different rotation rates (ω). The experimental polarization curves recorded on steady state show the existence of a maximum current with a non-linear dependence of the current density on ω 1/2 . On the basis of the Tafel-Heyrovsky-Volmer kinetic mechanism, coupled with a process of inhibition of active sites by the reversible electroadsorption of hydroxyl species, it was possible to appropriately describe the origin of the maximum current. The corresponding set of kinetic parameters was also calculated from the correlation of the experimental results with the proposed kinetic model.
A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations
Energy Technology Data Exchange (ETDEWEB)
Liu, Chang, E-mail: cliuaa@ust.hk [Department of Mathematics and Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Xu, Kun, E-mail: makxu@ust.hk [Department of Mathematics and Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Sun, Quanhua, E-mail: qsun@imech.ac.cn [State Key Laboratory of High-temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, No. 15 Beisihuan Xi Rd, Beijing 100190 (China); Cai, Qingdong, E-mail: caiqd@mech.pku.edu.cn [Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China)
2016-06-01
Fluid dynamic equations are valid in their respective modeling scales, such as the particle mean free path scale of the Boltzmann equation and the hydrodynamic scale of the Navier–Stokes (NS) equations. With a variation of the modeling scales, theoretically there should have a continuous spectrum of fluid dynamic equations. Even though the Boltzmann equation is claimed to be valid in all scales, many Boltzmann solvers, including direct simulation Monte Carlo method, require the cell resolution to the order of particle mean free path scale. Therefore, they are still single scale methods. In order to study multiscale flow evolution efficiently, the dynamics in the computational fluid has to be changed with the scales. A direct modeling of flow physics with a changeable scale may become an appropriate approach. The unified gas-kinetic scheme (UGKS) is a direct modeling method in the mesh size scale, and its underlying flow physics depends on the resolution of the cell size relative to the particle mean free path. The cell size of UGKS is not limited by the particle mean free path. With the variation of the ratio between the numerical cell size and local particle mean free path, the UGKS recovers the flow dynamics from the particle transport and collision in the kinetic scale to the wave propagation in the hydrodynamic scale. The previous UGKS is mostly constructed from the evolution solution of kinetic model equations. Even though the UGKS is very accurate and effective in the low transition and continuum flow regimes with the time step being much larger than the particle mean free time, it still has space to develop more accurate flow solver in the region, where the time step is comparable with the local particle mean free time. In such a scale, there is dynamic difference from the full Boltzmann collision term and the model equations. This work is about the further development of the UGKS with the implementation of the full Boltzmann collision term in the region
A kinetic model for the transport of electrons in a graphene layer
Energy Technology Data Exchange (ETDEWEB)
Fermanian Kammerer, Clotilde, E-mail: Clotilde.Fermanian@u-pec.fr [Laboratoire d' Analyse et de Mathématiques Appliquées, Université Paris Est and CNRS, 61, avenue du Général de Gaulle, 94010 Créteil Cedex (France); Méhats, Florian, E-mail: florian.mehats@univ-rennes1.fr [Institut de Recherche Mathématique de Rennes, IPSO Inria team, Université Rennes 1 and CNRS, Campus de Beaulieu, 35042 Rennes cedex (France)
2016-12-15
In this article, we propose a new numerical scheme for the computation of the transport of electrons in a graphene device. The underlying quantum model for graphene is a massless Dirac equation, whose eigenvalues display a conical singularity responsible for non-adiabatic transitions between the two modes. We first derive a kinetic model which takes the form of two Boltzmann equations coupled by a collision operator modeling the non-adiabatic transitions. This collision term includes a Landau–Zener transfer term and a jump operator whose presence is essential in order to ensure a good energy conservation during the transitions. We propose an algorithmic realization of the semi-group solving the kinetic model, by a particle method. We give analytic justification of the model and propose a series of numerical experiments studying the influences of the various sources of errors between the quantum and the kinetic models.
Wang, Weicheng
2013-11-01
A chemical kinetic model has been developed for the transient stage of the continuous countercurrent hydrolysis of triglycerides to free fatty acids and glycerol. Departure functions and group contribution methods were applied to determine the equilibrium constants of the four reversible reactions in the kinetic model. Continuous countercurrent hydrolysis of canola oil in subcritical water was conducted experimentally in a lab-scale reactor over a range of temperatures and the concentrations of all neutral components were quantified. Several of the rate constants in the model were obtained by modeling this experimental data, with the remaining determined from calculated equilibrium constants. Some reactions not included in the present, or previous, hydrolysis modeling efforts were identified from glycerolysis kinetic studies and may explain the slight discrepancy between model and experiment. The rate constants determined in this paper indicate that diglycerides in the feedstock accelerate the transition from "emulsive hydrolysis" to "rapid hydrolysis". © 2013 Elsevier Ltd.
Systematic construction of kinetic models from genome-scale metabolic networks.
Directory of Open Access Journals (Sweden)
Natalie J Stanford
Full Text Available The quantitative effects of environmental and genetic perturbations on metabolism can be studied in silico using kinetic models. We present a strategy for large-scale model construction based on a logical layering of data such as reaction fluxes, metabolite concentrations, and kinetic constants. The resulting models contain realistic standard rate laws and plausible parameters, adhere to the laws of thermodynamics, and reproduce a predefined steady state. These features have not been simultaneously achieved by previous workflows. We demonstrate the advantages and limitations of the workflow by translating the yeast consensus metabolic network into a kinetic model. Despite crudely selected data, the model shows realistic control behaviour, a stable dynamic, and realistic response to perturbations in extracellular glucose concentrations. The paper concludes by outlining how new data can continuously be fed into the workflow and how iterative model building can assist in directing experiments.
Systematic Construction of Kinetic Models from Genome-Scale Metabolic Networks
Smallbone, Kieran; Klipp, Edda; Mendes, Pedro; Liebermeister, Wolfram
2013-01-01
The quantitative effects of environmental and genetic perturbations on metabolism can be studied in silico using kinetic models. We present a strategy for large-scale model construction based on a logical layering of data such as reaction fluxes, metabolite concentrations, and kinetic constants. The resulting models contain realistic standard rate laws and plausible parameters, adhere to the laws of thermodynamics, and reproduce a predefined steady state. These features have not been simultaneously achieved by previous workflows. We demonstrate the advantages and limitations of the workflow by translating the yeast consensus metabolic network into a kinetic model. Despite crudely selected data, the model shows realistic control behaviour, a stable dynamic, and realistic response to perturbations in extracellular glucose concentrations. The paper concludes by outlining how new data can continuously be fed into the workflow and how iterative model building can assist in directing experiments. PMID:24324546
Group-kinetic theory and modeling of atmospheric turbulence
Tchen, C. M.
1989-01-01
A group kinetic method is developed for analyzing eddy transport properties and relaxation to equilibrium. The purpose is to derive the spectral structure of turbulence in incompressible and compressible media. Of particular interest are: direct and inverse cascade, boundary layer turbulence, Rossby wave turbulence, two phase turbulence; compressible turbulence, and soliton turbulence. Soliton turbulence can be found in large scale turbulence, turbulence connected with surface gravity waves and nonlinear propagation of acoustical and optical waves. By letting the pressure gradient represent the elementary interaction among fluid elements and by raising the Navier-Stokes equation to higher dimensionality, the master equation was obtained for the description of the microdynamical state of turbulence.
Statistical approach to LHCD modeling using the wave kinetic equation
International Nuclear Information System (INIS)
Kupfer, K.; Moreau, D.; Litaudon, X.
1993-04-01
Recent work has shown that for parameter regimes typical of many present day current drive experiments, the orbits of the launched LH rays are chaotic (in the Hamiltonian sense), so that wave energy diffuses through the stochastic layer and fills the spectral gap. We have analyzed this problem using a statistical approach, by solving the wave kinetic equation for the coarse-grained spectral energy density. An interesting result is that the LH absorption profile is essentially independent of both the total injected power and the level of wave stochastic diffusion
Döntgen, Malte; Schmalz, Felix; Kopp, Wassja A; Kröger, Leif C; Leonhard, Kai
2018-06-13
An automated scheme for obtaining chemical kinetic models from scratch using reactive molecular dynamics and quantum chemistry simulations is presented. This methodology combines the phase space sampling of reactive molecular dynamics with the thermochemistry and kinetics prediction capabilities of quantum mechanics. This scheme provides the NASA polynomial and modified Arrhenius equation parameters for all species and reactions that are observed during the simulation and supplies them in the ChemKin format. The ab initio level of theory for predictions is easily exchangeable and the presently used G3MP2 level of theory is found to reliably reproduce hydrogen and methane oxidation thermochemistry and kinetics data. Chemical kinetic models obtained with this approach are ready-to-use for, e.g., ignition delay time simulations, as shown for hydrogen combustion. The presented extension of the ChemTraYzer approach can be used as a basis for methodologically advancing chemical kinetic modeling schemes and as a black-box approach to generate chemical kinetic models.
Experimental and Chemical Kinetic Modeling Study of Dimethylcyclohexane Oxidation and Pyrolysis
Eldeeb, Mazen A.
2016-08-30
A combined experimental and chemical kinetic modeling study of the high-temperature ignition and pyrolysis of 1,3-dimethylcyclohexane (13DMCH) is presented. Ignition delay times are measured behind reflected shock waves over a temperature range of 1049–1544 K and pressures of 3.0–12 atm. Pyrolysis is investigated at average pressures of 4.0 atm at temperatures of 1238, 1302, and 1406 K. By means of mid-infrared direct laser absorption at 3.39 μm, fuel concentration time histories are measured under ignition and pyrolytic conditions. A detailed chemical kinetic model for 13DMCH combustion is developed. Ignition measurements show that the ignition delay times of 13DMCH are longer than those of its isomer, ethylcyclohexane. The proposed chemical kinetic model predicts reasonably well the effects of equivalence ratio and pressure, with overall good agreement between predicted and measured ignition delay times, except at low dilution levels and high pressures. Simulated fuel concentration profiles agree reasonably well with the measured profiles, and both highlight the influence of pyrolysis on the overall ignition kinetics at high temperatures. Sensitivity and reaction pathway analyses provide further insight into the kinetic processes controlling ignition and pyrolysis. The work contributes toward improved understanding and modeling of the oxidation and pyrolysis kinetics of cycloalkanes.
Orgovan, Norbert; Peter, Beatrix; Bősze, Szilvia; Ramsden, Jeremy J; Szabó, Bálint; Horvath, Robert
2014-02-07
A novel high-throughput label-free resonant waveguide grating (RWG) imager biosensor, the Epic® BenchTop (BT), was utilized to determine the dependence of cell spreading kinetics on the average surface density (v(RGD)) of integrin ligand RGD-motifs. v(RGD) was tuned over four orders of magnitude by co-adsorbing the biologically inactive PLL-g-PEG and the RGD-functionalized PLL-g-PEG-RGD synthetic copolymers from their mixed solutions onto the sensor surface. Using highly adherent human cervical tumor (HeLa) cells as a model system, cell adhesion kinetic data of unprecedented quality were obtained. Spreading kinetics were fitted with the logistic equation to obtain the spreading rate constant (r) and the maximum biosensor response (Δλmax), which is assumed to be directly proportional to the maximum spread contact area (Amax). r was found to be independent of the surface density of integrin ligands. In contrast, Δλmax increased with increasing RGD surface density until saturation at high densities. Interpreting the latter behavior with a simple kinetic mass action model, a 2D dissociation constant of 1753 ± 243 μm(-2) (corresponding to a 3D dissociation constant of ~30 μM) was obtained for the binding between RGD-specific integrins embedded in the cell membrane and PLL-g-PEG-RGD. All of these results were obtained completely noninvasively without using any labels.
Derieppe, Marc; de Senneville, Baudouin Denis; Kuijf, Hugo; Moonen, Chrit; Bos, Clemens
2014-10-01
Previously, we demonstrated the feasibility to monitor ultrasound-mediated uptake of a cell-impermeable model drug in real time with fibered confocal fluorescence microscopy. Here, we present a complete post-processing methodology, which corrects for cell displacements, to improve the accuracy of pharmacokinetic parameter estimation. Nucleus detection was performed based on the radial symmetry transform algorithm. Cell tracking used an iterative closest point approach. Pharmacokinetic parameters were calculated by fitting a two-compartment model to the time-intensity curves of individual cells. Cells were tracked successfully, improving time-intensity curve accuracy and pharmacokinetic parameter estimation. With tracking, 93 % of the 370 nuclei showed a fluorescence signal variation that was well-described by a two-compartment model. In addition, parameter distributions were narrower, thus increasing precision. Dedicated image analysis was implemented and enabled studying ultrasound-mediated model drug uptake kinetics in hundreds of cells per experiment, using fiber-based confocal fluorescence microscopy.
Energy Transfer Kinetics in Photosynthesis as an Inspiration for Improving Organic Solar Cells.
Nganou, Collins; Lackner, Gerhard; Teschome, Bezu; Deen, M Jamal; Adir, Noam; Pouhe, David; Lupascu, Doru C; Mkandawire, Martin
2017-06-07
Clues to designing highly efficient organic solar cells may lie in understanding the architecture of light-harvesting systems and exciton energy transfer (EET) processes in very efficient photosynthetic organisms. Here, we compare the kinetics of excitation energy tunnelling from the intact phycobilisome (PBS) light-harvesting antenna system to the reaction center in photosystem II in intact cells of the cyanobacterium Acaryochloris marina with the charge transfer after conversion of photons into photocurrent in vertically aligned carbon nanotube (va-CNT) organic solar cells with poly(3-hexyl)thiophene (P3HT) as the pigment. We find that the kinetics in electron hole creation following excitation at 600 nm in both PBS and va-CNT solar cells to be 450 and 500 fs, respectively. The EET process has a 3 and 14 ps pathway in the PBS, while in va-CNT solar cell devices, the charge trapping in the CNT takes 11 and 258 ps. We show that the main hindrance to efficiency of va-CNT organic solar cells is the slow migration of the charges after exciton formation.
Yaniv, Yael; Ganesan, Ambhighainath; Yang, Dongmei; Ziman, Bruce D; Lyashkov, Alexey E; Levchenko, Andre; Zhang, Jin; Lakatta, Edward G
2015-09-01
cAMP-PKA protein kinase is a key nodal signaling pathway that regulates a wide range of heart pacemaker cell functions. These functions are predicted to be involved in regulation of spontaneous action potential (AP) generation of these cells. Here we investigate if the kinetics and stoichiometry of increase in PKA activity match the increase in AP firing rate in response to β-adrenergic receptor (β-AR) stimulation or phosphodiesterase (PDE) inhibition, that alters the AP firing rate of heart sinoatrial pacemaker cells. In cultured adult rabbit pacemaker cells infected with an adenovirus expressing the FRET sensor AKAR3, the EC50 in response to graded increases in the intensity of β-AR stimulation (by Isoproterenol) the magnitude of the increases in PKA activity and the spontaneous AP firing rate were similar (0.4±0.1nM vs. 0.6±0.15nM, respectively). Moreover, the kinetics (t1/2) of the increases in PKA activity and spontaneous AP firing rate in response to β-AR stimulation or PDE inhibition were tightly linked. We characterized the system rate-limiting biochemical reactions by integrating these experimentally derived data into a mechanistic-computational model. Model simulations predicted that phospholamban phosphorylation is a potent target of the increase in PKA activity that links to increase in spontaneous AP firing rate. In summary, the kinetics and stoichiometry of increases in PKA activity in response to a physiological (β-AR stimulation) or pharmacological (PDE inhibitor) stimuli match those of changes in the AP firing rate. Thus Ca(2+)-cAMP/PKA-dependent phosphorylation limits the rate and magnitude of increase in spontaneous AP firing rate. Copyright © 2015 Elsevier Ltd. All rights reserved.
Long-term changes in cell population kinetics of skin tissue after local beta-irradiation
Energy Technology Data Exchange (ETDEWEB)
Yamaguchi, T [National Inst. of Radiological Sciences, Chiba (Japan)
1975-06-01
Using /sup 3/H-thymidine autoradiography, long-term alterations in cell kinetics were studied in guinea pig skin after ..beta..irradiation with 3000 rads. After complete depopulation, epidermal basal cells at the radiation margin became proliferative 10 days postirradiation and spread over the depopulated area. When epithelization (20 days) was complete the cell cycle time of the basal cells reverted to normal, but the differentiation rate was much slower than that in unirradiated skin. This appeared to be a cause of the persistent (acanthotic) hyperplasia. Similar but slower changes were found in dermal tissue. Reparative proliferation of fibroblasts and capillary endothelial cells began at 20 and 30 days, respectively. Active fibroblastic proliferation was found as late as 110 days. This, along with the abortive nature of the reparative angiogenesis, seemed to be a cause of the later fibrosis (150 to 400 days).
Modelling the role of compositional fluctuations in nucleation kinetics
International Nuclear Information System (INIS)
Ženíšek, J.; Kozeschnik, E.; Svoboda, J.; Fischer, F.D.
2015-01-01
The classical nucleation theory of precipitate nucleation in interstitial/substitutional alloys is applied to account for the influence of spatial A–B composition fluctuations in an A–B–C matrix on the kinetics of nucleation of (A,B) 3 C precipitates. A and B are substitutional elements in the matrix and C is an interstitial component, assumed to preferentially bind to B atoms. All lattice sites are considered as potential nucleation sites. The fluctuations of chemical composition result in a local variation of the nucleation probability. The nucleation sites are eliminated from the system if they are located in a C-depleted diffusion zone belonging to an already nucleated and growing precipitate. The chemistry is that of an Fe–Cr–C system, and the specific interface energy is treated as a free parameter. Random, regular and homogeneous A–B distributions in the matrix are simulated and compared for various values of the interface energy. An increasing enhancement of the role of compositional fluctuations on nucleation kinetics with increasing interface energy and decreasing chemical driving force is observed
Modeling physiological processes in plankton on enzyme kinetic principles
Directory of Open Access Journals (Sweden)
Ted Packard
2004-04-01
Full Text Available Many ecologically important chemical transformations in the ocean are controlled by biochemical enzyme reactions in plankton. Nitrogenase regulates the transformation of N2 to ammonium in some cyanobacteria and serves as the entryway for N2 into the ocean biosphere. Nitrate reductase controls the reduction of NO3 to NO2 and hence new production in phytoplankton. The respiratory electron transfer system in all organisms links the carbon oxidation reactions of intermediary metabolism with the reduction of oxygen in respiration. Rubisco controls the fixation of CO2 into organic matter in phytoplankton and thus is the major entry point of carbon into the oceanic biosphere. In addition to these, there are the enzymes that control CO2 production, NH4 excretion and the fluxes of phosphate. Some of these enzymes have been recognized and researched by marine scientists in the last thirty years. However, until recently the kinetic principles of enzyme control have not been exploited to formulate accurate mathematical equations of the controlling physiological expressions. Were such expressions available they would increase our power to predict the rates of chemical transformations in the extracellular environment of microbial populations whether this extracellular environment is culture media or the ocean. Here we formulate from the principles of bisubstrate enzyme kinetics, mathematical expressions for the processes of NO3 reduction, O2 consumption, N2 fixation, total nitrogen uptake.
Radiation Induced G2 Chromatic Break and Repairs Kinetics in Human Lymphoblastoid Cells
International Nuclear Information System (INIS)
Seong, Jin Sil
1993-01-01
In understanding radiosensitivity a new concept of inherent radiosensitivity based on individuality and heterogeneity within a population has recently beer explored. There has been some discussion of possible mechanism underlying differences in radiosensitivity between cells. Ataxia telangiectasia(AT), a rare autosomal recessive genetic disorder, is characterized by hypersensitivity to lonizing radiation and other DNA damaging agents at the cellular level. There have been a lot of efforts to describe the cause of this hypersensitivity to radiation. At the cellular level, chromosome repair kinetics study would be an appropriate approach. The purpose of this study was to better understand radiosensitivity in an approach to investigate kinetics of induction and repair of G2 chromatic breaks using normal, AT heterozygous(ATH), and AT homozygous lymphoblastoid cell lines. In an attempt to estimate initial damage, 9-β-D-arabinosyl-2-fluoroadenine, an inhibitor of DNA synthesis and repair, was used in this study. It was found from this study that radiation induces higher chromatid breaks in AT than in normal and ATH cells. There was no significant differences of initial chromatid breaks between normal and ATH cells. Repair kinetics was the same for all. So the higher level of breaks in AT G2 cells is thought to be a reflection of the increased initial damage. The amount of initial damage correlated well with survival fraction at 2 Gy of cell survival curve following radiation. Therefore, the difference of radiosensitivity in terms of G2 chromosomal sensitivity is thought to result from the difference of initial damage
In silico modelling and analysis of ribosome kinetics and aa-tRNA competition
Bošnački, D.; Pronk, T.E.; de Vink, E.P.
2008-01-01
We present a formal analysis of ribosome kinetics using probabilistic model checking and the tool Prism. We compute different parameters of the model, like probabilities of translation errors and average insertion times per codon. The model predicts strong correlation to the quotient of the
International Nuclear Information System (INIS)
Lietzke, M.H.
1977-01-01
The results of applying a kinetic model to the chlorination data supplied by Commonwealth Edison on the once-through cooling system at the Quad Cities Nuclear Station provide a validation of the model. The two examples given demonstrate that the model may be applied to either once-through cooling systems or to cooling systems involving cooling towers
A two-phase kinetic model for fungal growth in solid-state cultivation
Hamidi-Esfahani, Z.; Hejazi, P.; Abbas Shojaosadati, S.; Hoogschagen, M.J.; Vasheghani-Farahani, E.; Rinzema, A.
2007-01-01
A new two-phase kinetic model including exponential and logistic models was applied to simulate the growth rate of fungi at various temperatures. The model parameters, expressed as a function of temperature, were determined from the oxygen consumption rate of Aspergillus niger during cultivation on
International Nuclear Information System (INIS)
Lim, T.H.
1978-06-01
The purpose of this study is to investigate whether a valid index of chromium (III) nutritional status can be determined with satisfaction through in vivo kinetic analysis. Three normal subjects and three patients suffering from hemochromatosis were periodically scanned with the Donner Laboratory computerized whole body scanners, starting seconds after radiochromium(III) was administered intravenously, up to a period of 84 days. The activity in the liver, adipose and muscle tissues, spleen and bone was quantitated and corrected, by subtraction of the blood circulation activity in that organ; the major concentration was found in the liver and spleen. From the series of scan images, a kinetic model for the radiochromium(III) metabolic pathway was constructed. Computer analysis showed a significant difference between the two classes of subjects in organs as well as whole body radiochromium(III) transfer. Interpretation of these results showed that in patients with excessive iron stores, a smaller amount of chromium bound to plasma protein was found and a corresponding decrease in transfer of chromium into stores in the liver and other tissues was also found
Kinetic study of corn straw pyrolysis: comparison of two different three-pseudocomponent models.
Li, Zhengqi; Zhao, Wei; Meng, Baihong; Liu, Chunlong; Zhu, Qunyi; Zhao, Guangbo
2008-11-01
With heating rates of 20, 50 and 100 K min(-1), the thermal decomposition of corn straw samples (corn stalks skins, corn stalks cores, corn bracts and corn leaves) were studied using thermogravimetric analysis. The maximum pyrolysis rates increased with the heating rate increasing and the temperature at the peak pyrolysis rate also increased. Assuming the addition of three independent parallel reactions, corresponding to three pseudocomponents linked to the hemicellulose, cellulose and lignin, two different three-pseudocomponent models were used to simulate the corn straw pyrolysis. Model parameters of pyrolysis were given. It was found that the three-pseudocomponent model with n-order kinetics was more accurate than the model with first-order kinetics at most cases. It showed that the model with n-order kinetics was more accurate to describe the pyrolysis of the hemicellulose.
Kinetics of oxidation of H2 and reduction of H2O in Ni-YSZ based solid oxide cells
DEFF Research Database (Denmark)
Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg
2012-01-01
Reduction of H2O and oxidation of H2 was studied in a Ni-YSZ electrode supported Solid Oxide Cells produced at DTU Energy conversion (former Risø DTU). Polarisation (i-V) and electrochemical impedance spectroscopic characterisation show that the kinetics for reduction of H 2O is slower compared...... to oxidation of H2. The kinetic differences cannot be explained by the reaction mechanisms which are similar in the two cases but are rather an effect of the thermodynamics. The preliminary analysis performed in this study show that the slow kinetic for reduction is partly related to the endothermic nature...... of the reaction, cooling the active electrode, thereby leading to slower kinetics at low current densities. Likewise, the increased kinetic for oxidation was found to be related to the exothermic nature of the reaction, heating the active electrode, and thereby leading to faster kinetics. At higher current...
Schunk, R. W.; Barakat, A. R.; Eccles, V.; Karimabadi, H.; Omelchenko, Y.; Khazanov, G. V.; Glocer, A.; Kistler, L. M.
2014-12-01
A Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System is being developed in order to provide a rigorous approach to modeling the interaction of hot and cold particle interactions. The framework will include ion and electron kinetic species in the ionosphere, plasmasphere and polar wind, and kinetic ion, super-thermal electron and fluid electron species in the magnetosphere. The framework is ideally suited to modeling ion outflow from the ionosphere and plasmasphere, where a wide range for fluid and kinetic processes are important. These include escaping ion interactions with (1) photoelectrons, (2) cusp/auroral waves, double layers, and field-aligned currents, (3) double layers in the polar cap due to the interaction of cold ionospheric and hot magnetospheric electrons, (4) counter-streaming ions, and (5) electromagnetic wave turbulence. The kinetic ion interactions are particularly strong during geomagnetic storms and substorms. The presentation will provide a brief description of the models involved and discuss the effect that kinetic processes have on the ion outflow.
Kinetic of magnetic nanoparticles uptake evaluated by morphometry of mice peritoneal cells
International Nuclear Information System (INIS)
Silva, L.P.; Kuckelhaus, S.; Guedes, M.H.A.; Lacava, Z.G.M.; Tedesco, A.C.; Morais, P.C.; Azevedo, R.B.
2005-01-01
The development of magnetic fluids (MFs) has led to a wide range of new biomedical applications. Nevertheless, few studies have examined the kinetics of the magnetic nanoparticles (MNPs) internalization by phagocytes. In this study, we present morphometry as a method to quantify the cell surface covered by MNPs. The maximum cell surface covered by MNPs aggregates was 32.5% (8.5 min), 18.3% (24.1 min), and 18.0% (20.2 min) in DMSA, citric acid and dextran-coated MNPs, respectively. We concluded that the phagocytosis process of MNPs is strongly dependent upon the coating species
Fan, Senqing; Chen, Shiping; Tang, Xiaoyu; Xiao, Zeyi; Deng, Qing; Yao, Peina; Sun, Zhaopeng; Zhang, Yan; Chen, Chunyan
2015-02-01
Unstructured kinetic models were proposed to describe the principal kinetics involved in ethanol fermentation in a continuous and closed-circulating fermentation (CCCF) process with a pervaporation membrane bioreactor. After ethanol was removed in situ from the broth by the membrane pervaporation, the secondary metabolites accumulated in the broth became the inhibitors to cell growth. The cell death rate related to the deterioration of the culture environment was described as a function of the cell concentration and fermentation time. In CCCF process, 609.8 g L(-1) and 750.1 g L(-1) of ethanol production were obtained in the first run and second run, respectively. The modified Gompertz model, correlating the ethanol production with the fermentation period, could be used to describe the ethanol production during CCCF process. The fitting results by the models showed good agreement with the experimental data. These models could be employed for the CCCF process technology development for ethanol fermentation. Copyright © 2014 Elsevier Ltd. All rights reserved.
A resource facility for kinetic analysis: modeling using the SAAM computer programs.
Foster, D M; Boston, R C; Jacquez, J A; Zech, L
1989-01-01
Kinetic analysis and integrated system modeling have contributed significantly to understanding the physiology and pathophysiology of metabolic systems in humans and animals. Many experimental biologists are aware of the usefulness of these techniques and recognize that kinetic modeling requires special expertise. The Resource Facility for Kinetic Analysis (RFKA) provides this expertise through: (1) development and application of modeling technology for biomedical problems, and (2) development of computer-based kinetic modeling methodologies concentrating on the computer program Simulation, Analysis, and Modeling (SAAM) and its conversational version, CONversational SAAM (CONSAM). The RFKA offers consultation to the biomedical community in the use of modeling to analyze kinetic data and trains individuals in using this technology for biomedical research. Early versions of SAAM were widely applied in solving dosimetry problems; many users, however, are not familiar with recent improvements to the software. The purpose of this paper is to acquaint biomedical researchers in the dosimetry field with RFKA, which, together with the joint National Cancer Institute-National Heart, Lung and Blood Institute project, is overseeing SAAM development and applications. In addition, RFKA provides many service activities to the SAAM user community that are relevant to solving dosimetry problems.
Borth, N; Heider, R; Assadian, A; Katinger, H
1992-09-01
The growth and production kinetics of a mouse hybridoma cell line and a human-mouse heterohybridoma were analyzed under conditions of reduced temperature and serum content. The mouse hybridoma P24 had a constant cell specific production rate and RNA content, while the heterohybridoma 3D6-LC4 showed growth associated production kinetics and an increased RNA content at higher growth rates. This behaviour of 3D6-LC4 cells can be explained by the unusual cell cycle kinetics of this line, which can be arrested in any phase under growth limiting conditions, so that a low growth rate does not result in a greater portion of high producing G1-phase cells. Substrate limitation changes the cell cycle distribution of this cell line to a greater extent than low temperature or serum content, which indicates that this stress factor exerts a greater physiological control than assumed.
Kornecki, Martin; Strube, Jochen
2018-03-16
Productivity improvements of mammalian cell culture in the production of recombinant proteins have been made by optimizing cell lines, media, and process operation. This led to enhanced titers and process robustness without increasing the cost of the upstream processing (USP); however, a downstream bottleneck remains. In terms of process control improvement, the process analytical technology (PAT) initiative, initiated by the American Food and Drug Administration (FDA), aims to measure, analyze, monitor, and ultimately control all important attributes of a bioprocess. Especially, spectroscopic methods such as Raman or near-infrared spectroscopy enable one to meet these analytical requirements, preferably in-situ. In combination with chemometric techniques like partial least square (PLS) or principal component analysis (PCA), it is possible to generate soft sensors, which estimate process variables based on process and measurement models for the enhanced control of bioprocesses. Macroscopic kinetic models can be used to simulate cell metabolism. These models are able to enhance the process understanding by predicting the dynamic of cells during cultivation. In this article, in-situ turbidity (transmission, 880 nm) and ex-situ Raman spectroscopy (785 nm) measurements are combined with an offline macroscopic Monod kinetic model in order to predict substrate concentrations. Experimental data of Chinese hamster ovary cultivations in bioreactors show a sufficiently linear correlation (R² ≥ 0.97) between turbidity and total cell concentration. PLS regression of Raman spectra generates a prediction model, which was validated via offline viable cell concentration measurement (RMSE ≤ 13.82, R² ≥ 0.92). Based on these measurements, the macroscopic Monod model can be used to determine different process attributes, e.g., glucose concentration. In consequence, it is possible to approximately calculate (R² ≥ 0.96) glucose concentration based on online cell
Directory of Open Access Journals (Sweden)
Martin Kornecki
2018-03-01
Full Text Available Productivity improvements of mammalian cell culture in the production of recombinant proteins have been made by optimizing cell lines, media, and process operation. This led to enhanced titers and process robustness without increasing the cost of the upstream processing (USP; however, a downstream bottleneck remains. In terms of process control improvement, the process analytical technology (PAT initiative, initiated by the American Food and Drug Administration (FDA, aims to measure, analyze, monitor, and ultimately control all important attributes of a bioprocess. Especially, spectroscopic methods such as Raman or near-infrared spectroscopy enable one to meet these analytical requirements, preferably in-situ. In combination with chemometric techniques like partial least square (PLS or principal component analysis (PCA, it is possible to generate soft sensors, which estimate process variables based on process and measurement models for the enhanced control of bioprocesses. Macroscopic kinetic models can be used to simulate cell metabolism. These models are able to enhance the process understanding by predicting the dynamic of cells during cultivation. In this article, in-situ turbidity (transmission, 880 nm and ex-situ Raman spectroscopy (785 nm measurements are combined with an offline macroscopic Monod kinetic model in order to predict substrate concentrations. Experimental data of Chinese hamster ovary cultivations in bioreactors show a sufficiently linear correlation (R2 ≥ 0.97 between turbidity and total cell concentration. PLS regression of Raman spectra generates a prediction model, which was validated via offline viable cell concentration measurement (RMSE ≤ 13.82, R2 ≥ 0.92. Based on these measurements, the macroscopic Monod model can be used to determine different process attributes, e.g., glucose concentration. In consequence, it is possible to approximately calculate (R2 ≥ 0.96 glucose concentration based on online cell
Energy Technology Data Exchange (ETDEWEB)
Lan, Shuiquan [Department of Mechanical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612AZ Eindhoven (Netherlands); Zondag, Herbert [Department of Mechanical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612AZ Eindhoven (Netherlands); Energy research Center of the Netherlands – ECN, P.O. Box 1, 1755ZG Petten (Netherlands); Steenhoven, Anton van [Department of Mechanical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612AZ Eindhoven (Netherlands); Rindt, Camilo, E-mail: c.c.m.rindt@tue.nl [Department of Mechanical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612AZ Eindhoven (Netherlands)
2015-12-10
Highlights: • Kinetics of Li{sub 2}SO{sub 4}·H{sub 2}O single crystals were modeled based on elementary processes. • Kinetics of nucleation and nuclei growth were studied by using optical microscopy. • A novel experiment was designed to visualize the reaction front into crystal bulk. • Fractional conversion was calculated and compared with TGA-experiments. - Abstract: Simulation of gas–solid reactions occurring in industrial processes requires a robust kinetic model to be applicable in a wide range of complicated reaction conditions. However, in literature it is often seen that even the same reaction under specific controlled conditions is interpreted with different kinetic models. In the present work, a phenomenological model based on nucleation and nuclei growth processes is presented to study the kinetics of the dehydration reaction of lithium sulfate monohydrate single crystals. The two elementary processes of the reaction, nucleation and nuclei growth, are characterized and quantified as a function of temperature by using optical microscopy experiments. The in-situ measured characteristics of the dehydration reaction provided confirmatory evidence that the rate of nucleation obeys an exponential law and the rate of nuclei growth is approximately constant. With knowledge acquired from the optical observations as inputs of the kinetic model, the fractional conversion of the dehydration reaction was calculated and compared with experimental results from thermogravimetric analysis (TGA). A satisfactory comparison was found both in isothermal and non-isothermal conditions. It is demonstrated that this knowledge-based model has a great potential to represent the gas–solid reaction kinetics in a wide range of process conditions regarding temperature, pressure and particle geometry.
Energy Technology Data Exchange (ETDEWEB)
Pradhan, Santosh K., E-mail: santosh@aerb.gov.in [Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai 400094 (India); Obaidurrahman, K. [Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai 400094 (India); Iyer, Kannan N. [Department of Mechanical Engineering, IIT Bombay, Mumbai 400076 (India); Gaikwad, Avinash J. [Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai 400094 (India)
2016-04-15
Highlights: • A multi-point kinetics model is developed for RELAP5 system thermal hydraulics code. • Model is validated against extensive 3D kinetics code. • RELAP5 multi-point kinetics formulation is used to investigate critical break for LOCA in PHWR. - Abstract: Point kinetics approach in system code RELAP5 limits its use for many of the reactivity induced transients, which involve asymmetric core behaviour. Development of fully coupled 3D core kinetics code with system thermal-hydraulics is the ultimate requirement in this regard; however coupling and validation of 3D kinetics module with system code is cumbersome and it also requires access to source code. An intermediate approach with multi-point kinetics is appropriate and relatively easy to implement for analysis of several asymmetric transients for large cores. Multi-point kinetics formulation is based on dividing the entire core into several regions and solving ODEs describing kinetics in each region. These regions are interconnected by spatial coupling coefficients which are estimated from diffusion theory approximation. This model offers an advantage that associated ordinary differential equations (ODEs) governing multi-point kinetics formulation can be solved using numerical methods to the desired level of accuracy and thus allows formulation based on user defined control variables, i.e., without disturbing the source code and hence also avoiding associated coupling issues. Euler's method has been used in the present formulation to solve several coupled ODEs internally at each time step. The results have been verified against inbuilt point-kinetics models of RELAP5 and validated against 3D kinetics code TRIKIN. The model was used to identify the critical break in RIH of a typical large PHWR core. The neutronic asymmetry produced in the core due to the system induced transient was effectively handled by the multi-point kinetics model overcoming the limitation of in-built point kinetics model
Determination of Model Kinetics for Forced Unsteady State Operation of Catalytic CH4 Oxidation
Directory of Open Access Journals (Sweden)
Effendy Mohammad
2016-01-01
Full Text Available The catalytic oxidation of methane for abating the emission vented from coal mine or natural gas transportation has been known as most reliable method. A reverse flow reactor operation has been widely used to oxidize this methane emission due to its capability for autothermal operation and heat production. The design of the reverse flow reactor requires a proper kinetic rate expression, which should be developed based on the operating condition. The kinetic rate obtained in the steady state condition cannot be applied for designing the reactor operated under unsteady state condition. Therefore, new approach to develop the dynamic kinetic rate expression becomes indispensable, particularly for periodic operation such as reverse flow reactor. This paper presents a novel method to develop the kinetic rate expression applied for unsteady state operation. The model reaction of the catalytic methane oxidation over Pt/-Al2O3 catalyst was used with kinetic parameter determined from laboratory experiments. The reactor used was a fixed bed, once-through operation, with a composition modulation in the feed gas. The switching time was set at 3 min by varying the feed concentration, feed flow rate, and reaction temperature. The concentrations of methane in the feed and product were measured and analysed using gas chromatography. The steady state condition for obtaining the kinetic rate expression was taken as a base case and as a way to judge its appropriateness to be applied for dynamic system. A Langmuir-Hinshelwood reaction rate model was developed. The time period during one cycle was divided into some segments, depending on the ratio of CH4/O2. The experimental result shows that there were kinetic regimes occur during one cycle: kinetic regime controlled by intrinsic surface reaction and kinetic regime controlled by external diffusion. The kinetic rate obtained in the steady state operation was not appropriate when applied for unsteady state operation
Explicit equilibria in a kinetic model of gambling
Bassetti, F.; Toscani, G.
2010-06-01
We introduce and discuss a nonlinear kinetic equation of Boltzmann type which describes the evolution of wealth in a pure gambling process, where the entire sum of wealths of two agents is up for gambling, and randomly shared between the agents. For this equation the analytical form of the steady states is found for various realizations of the random fraction of the sum which is shared to the agents. Among others, the exponential distribution appears as steady state in case of a uniformly distributed random fraction, while Gamma distribution appears for a random fraction which is Beta distributed. The case in which the gambling game is only conservative-in-the-mean is shown to lead to an explicit heavy tailed distribution.
On coupling fluid plasma and kinetic neutral physics models
Directory of Open Access Journals (Sweden)
I. Joseph
2017-08-01
Full Text Available The coupled fluid plasma and kinetic neutral physics equations are analyzed through theory and simulation of benchmark cases. It is shown that coupling methods that do not treat the coupling rates implicitly are restricted to short time steps for stability. Fast charge exchange, ionization and recombination coupling rates exist, even after constraining the solution by requiring that the neutrals are at equilibrium. For explicit coupling, the present implementation of Monte Carlo correlated sampling techniques does not allow for complete convergence in slab geometry. For the benchmark case, residuals decay with particle number and increase with grid size, indicating that they scale in a manner that is similar to the theoretical prediction for nonlinear bias error. Progress is reported on implementation of a fully implicit Jacobian-free Newton–Krylov coupling scheme. The present block Jacobi preconditioning method is still sensitive to time step and methods that better precondition the coupled system are under investigation.
Nuclear reprogramming: kinetics of cell cycle and metabolic progression as determinants of success.
Directory of Open Access Journals (Sweden)
Sebastian Thomas Balbach
Full Text Available Establishment of totipotency after somatic cell nuclear transfer (NT requires not only reprogramming of gene expression, but also conversion of the cell cycle from quiescence to the precisely timed sequence of embryonic cleavage. Inadequate adaptation of the somatic nucleus to the embryonic cell cycle regime may lay the foundation for NT embryo failure and their reported lower cell counts. We combined bright field and fluorescence imaging of histone H(2b-GFP expressing mouse embryos, to record cell divisions up to the blastocyst stage. This allowed us to quantitatively analyze cleavage kinetics of cloned embryos and revealed an extended and inconstant duration of the second and third cell cycles compared to fertilized controls generated by intracytoplasmic sperm injection (ICSI. Compared to fertilized embryos, slow and fast cleaving NT embryos presented similar rates of errors in M phase, but were considerably less tolerant to mitotic errors and underwent cleavage arrest. Although NT embryos vary substantially in their speed of cell cycle progression, transcriptome analysis did not detect systematic differences between fast and slow NT embryos. Profiling of amino acid turnover during pre-implantation development revealed that NT embryos consume lower amounts of amino acids, in particular arginine, than fertilized embryos until morula stage. An increased arginine supplementation enhanced development to blastocyst and increased embryo cell numbers. We conclude that a cell cycle delay, which is independent of pluripotency marker reactivation, and metabolic restraints reduce cell counts of NT embryos and impede their development.
International Nuclear Information System (INIS)
Njikam, Eloh; Schiewer, Silke
2012-01-01
Graphical abstract: Cadmium was completely and quickly desorbed from grapefruit peels using 0.01 M HNO 3 . The kinetics followed a novel 1st or 2nd order kinetic model, related to the remaining metal bound as the rate-determining reactant concentration. For 0.001 M HNO 3 , desorption was incomplete and the model fit less perfect. Highlights: ► Metal desorption was over 90% complete within 50 min for most desorbents. ► Models for biosorbent desorption kinetics were developed. ► Desorption kinetics best fit a novel first-order model related to remaining metal bound. ► Cd uptake after desorption by HNO 3 was similar to the original uptake. ► The optimal desorbent was 0.1 or 0.01 M acid, being fast, efficient and cheap. - Abstract: Citrus peel biosorbents are efficient in removing heavy metals from wastewater. Heavy metal recovery and sorbent regeneration are important for the financial competitiveness of biosorption with other processes. The desorbing agents HNO 3 , NaNO 3 , Ca(NO 3 ) 2 , EDTA, S, S-EDDS, and Na-Citrate were studied at different concentrations to optimize cadmium elution from orange or grapefruit peels. In most cases, desorption was fast, being over 90% complete within 50 min. However sodium nitrate and 0.001 M nitric acid were less efficient. Several new models for desorption kinetics were developed. While zero-, first- and second-order kinetics are commonly applied for modeling adsorption kinetics, the present study adapts these models to describe desorption kinetics. The proposed models relate to the number of metal-filled binding sites as the rate-determining reactant concentration. A model based on first order kinetics with respect to the remaining metal bound performed best. Cd bound in subsequent adsorption after desorption was similar to the original amount bound for desorption by nitric acid, but considerably lower for calcium nitrate as the desorbent. While complexing agents were effective desorbents, their cost is higher than that
Kumar, B Shiva; Venkateswarlu, Ch
2014-08-01
The complex nature of biological reactions in biofilm reactors often poses difficulties in analyzing such reactors experimentally. Mathematical models could be very useful for their design and analysis. However, application of biofilm reactor models to practical problems proves somewhat ineffective due to the lack of knowledge of accurate kinetic models and uncertainty in model parameters. In this work, we propose an inverse modeling approach based on tabu search (TS) to estimate the parameters of kinetic and film thickness models. TS is used to estimate these parameters as a consequence of the validation of the mathematical models of the process with the aid of measured data obtained from an experimental fixed-bed anaerobic biofilm reactor involving the treatment of pharmaceutical industry wastewater. The results evaluated for different modeling configurations of varying degrees of complexity illustrate the effectiveness of TS for accurate estimation of kinetic and film thickness model parameters of the biofilm process. The results show that the two-dimensional mathematical model with Edward kinetics (with its optimum parameters as mu(max)rho(s)/Y = 24.57, Ks = 1.352 and Ki = 102.36) and three-parameter film thickness expression (with its estimated parameters as a = 0.289 x 10(-5), b = 1.55 x 10(-4) and c = 15.2 x 10(-6)) better describes the biofilm reactor treating the industry wastewater.
International Nuclear Information System (INIS)
LaRochelle, G.G.; Jones, K.H.
1989-01-01
Direct cellular contact between thymocytes and thymus stromal cells within the thymus appears to contribute to the maturation of thymocytes. Thymocyte-stromal cell complexes, formed in vivo, have been isolated by others and postulated to play a role in T-cell differentiation. These previous studies have been hampered, however, by a time-consuming isolation procedure from which only small numbers of these complexes are recovered. We have examined a model to study thymocyte-stromal cell complexes in vitro in which thymocytes are added to primary cultures of thymus stromal cells. In the present study, we found that thymocytes were histotypically selective in their attachment to thymus stromal cells. We also investigated the kinetics of thymocyte attachment to these thymus stromal cells. Cultures were examined at selected time intervals from 5 min through 3 days of incubation. Thymocyte attachment to stromal cells was a biphasic interaction, with maximum surface attachment at 15 min of cocultivation, followed by migration of thymocytes into the cultures. Morphological studies were confirmed by using 3 H-leucine-labeled thymocytes and liquid scintigraphy. With increased time in culture, thymocytes became amoeboid and migrated between the layers of stromal cells where thymocyte mitotic figures were seen at 4 and 8 hr. In some cases it appeared that stromal cells, which often grew two to three cell layers deep, played an active role in enclosing thymocytes within the cultures. Large numbers of viable thymocytes were observed in the cultures at 24 hr. The number of thymocytes then decreased progressively on days 2 and 3, when relatively few were found within the layers of the culture
The instability in the long-time regime of a kinetic model: II
International Nuclear Information System (INIS)
Sanda, F
2003-01-01
The kinetic model of an open system, which embodies an instability in long time regime behaviour, is referred. This result questions some approximations which are standardly used in open system treatments. The deficiency in kinetic treatments was recently referred to as mainly a mathematical curiosity; however, in the present work the application for a physically comprehensive situation is shown. We simplified the previously treated model, which enables us to proceed easily with just pen and paper and to omit numerical modelling whose justification causes difficulties to the reader. We draw some consequences on the found instability, both with respect to the perturbative origin of kinetic equations and also concerning the very philosophy of physical modelling
Stoichio-Kinetic Modeling of Fenton Chemistry in a Meat-Mimetic Aqueous-Phase Medium.
Oueslati, Khaled; Promeyrat, Aurélie; Gatellier, Philippe; Daudin, Jean-Dominique; Kondjoyan, Alain
2018-05-31
Fenton reaction kinetics, which involved an Fe(II)/Fe(III) oxidative redox cycle, were studied in a liquid medium that mimics meat composition. Muscle antioxidants (enzymes, peptides, and vitamins) were added one by one in the medium to determine their respective effects on the formation of superoxide and hydroxyl radicals. A stoichio-kinetic mathematical model was used to predict the formation of these radicals under different iron and H 2 O 2 concentrations and temperature conditions. The difference between experimental and predicted results was mainly due to iron reactivity, which had to be taken into account in the model, and to uncertainties on some of the rate constant values introduced in the model. This stoichio-kinetic model will be useful to predict oxidation during meat processes, providing it can be completed to take into account the presence of myoglobin in the muscle.
Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes
Energy Technology Data Exchange (ETDEWEB)
García-Gen, Santiago [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Sousbie, Philippe; Rangaraj, Ganesh [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Lema, Juan M. [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Rodríguez, Jorge, E-mail: jrodriguez@masdar.ac.ae [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Institute Centre for Water and Environment (iWater), Masdar Institute of Science and Technology, PO Box 54224 Abu Dhabi (United Arab Emirates); Steyer, Jean-Philippe; Torrijos, Michel [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France)
2015-01-15
Highlights: • Fractionation of solid wastes into readily and slowly biodegradable fractions. • Kinetic coefficients estimation from mono-digestion batch assays. • Validation of kinetic coefficients with a co-digestion continuous experiment. • Simulation of batch and continuous experiments with an ADM1-based model. - Abstract: A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowly biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 g VS/L d. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes.
Comparison of the kinetics of different Markov models for ligand binding under varying conditions
International Nuclear Information System (INIS)
Martini, Johannes W. R.; Habeck, Michael
2015-01-01
We recently derived a Markov model for macromolecular ligand binding dynamics from few physical assumptions and showed that its stationary distribution is the grand canonical ensemble [J. W. R. Martini, M. Habeck, and M. Schlather, J. Math. Chem. 52, 665 (2014)]. The transition probabilities of the proposed Markov process define a particular Glauber dynamics and have some similarity to the Metropolis-Hastings algorithm. Here, we illustrate that this model is the stochastic analog of (pseudo) rate equations and the corresponding system of differential equations. Moreover, it can be viewed as a limiting case of general stochastic simulations of chemical kinetics. Thus, the model links stochastic and deterministic approaches as well as kinetics and equilibrium described by the grand canonical ensemble. We demonstrate that the family of transition matrices of our model, parameterized by temperature and ligand activity, generates ligand binding kinetics that respond to changes in these parameters in a qualitatively similar way as experimentally observed kinetics. In contrast, neither the Metropolis-Hastings algorithm nor the Glauber heat bath reflects changes in the external conditions correctly. Both converge rapidly to the stationary distribution, which is advantageous when the major interest is in the equilibrium state, but fail to describe the kinetics of ligand binding realistically. To simulate cellular processes that involve the reversible stochastic binding of multiple factors, our pseudo rate equation model should therefore be preferred to the Metropolis-Hastings algorithm and the Glauber heat bath, if the stationary distribution is not of only interest
Comparison of the kinetics of different Markov models for ligand binding under varying conditions
Energy Technology Data Exchange (ETDEWEB)
Martini, Johannes W. R., E-mail: jmartin2@gwdg.de [Max Planck Institute for Developmental Biology, Tübingen (Germany); Felix Bernstein Institute for Mathematical Statistics in the Biosciences, University of Göttingen, Göttingen (Germany); Habeck, Michael, E-mail: mhabeck@gwdg.de [Felix Bernstein Institute for Mathematical Statistics in the Biosciences, University of Göttingen, Göttingen (Germany); Max Planck Institute for Biophysical Chemistry, Göttingen (Germany)
2015-03-07
We recently derived a Markov model for macromolecular ligand binding dynamics from few physical assumptions and showed that its stationary distribution is the grand canonical ensemble [J. W. R. Martini, M. Habeck, and M. Schlather, J. Math. Chem. 52, 665 (2014)]. The transition probabilities of the proposed Markov process define a particular Glauber dynamics and have some similarity to the Metropolis-Hastings algorithm. Here, we illustrate that this model is the stochastic analog of (pseudo) rate equations and the corresponding system of differential equations. Moreover, it can be viewed as a limiting case of general stochastic simulations of chemical kinetics. Thus, the model links stochastic and deterministic approaches as well as kinetics and equilibrium described by the grand canonical ensemble. We demonstrate that the family of transition matrices of our model, parameterized by temperature and ligand activity, generates ligand binding kinetics that respond to changes in these parameters in a qualitatively similar way as experimentally observed kinetics. In contrast, neither the Metropolis-Hastings algorithm nor the Glauber heat bath reflects changes in the external conditions correctly. Both converge rapidly to the stationary distribution, which is advantageous when the major interest is in the equilibrium state, but fail to describe the kinetics of ligand binding realistically. To simulate cellular processes that involve the reversible stochastic binding of multiple factors, our pseudo rate equation model should therefore be preferred to the Metropolis-Hastings algorithm and the Glauber heat bath, if the stationary distribution is not of only interest.