WorldWideScience

Sample records for cell injury promotes

  1. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Ya-jing Zhou

    2015-01-01

    Full Text Available Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.

  2. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Ya-jing Zhou; Jian-min Liu; Shu-ming Wei; Yun-hao Zhang; Zhen-hua Qu; Shu-bo Chen

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administrationvia the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve ifbers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and lfuorogold-labeled nerve ifbers were increased and hindlimb motor function of spinal cord-injured rats was mark-edly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.

  3. Rat hair follicle stem cells differentiate and promote recovery following spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Nowruz Najafzadeh; Maliheh Nobakht; Bagher Pourheydar; Mohammad Ghasem Golmohammadi

    2013-01-01

    Emerging studies of treating spinal cord injury (SCI) with adult stem cells led us to evaluate the effects of transplantation of hair fol icle stem cells in rats with a compression-induced spinal cord lesion. Here, we proposed a hypothesis that rat hair fol icle stem celltransplantation can promote the recovery of injured spinal cord. Compression-induced spinal cord injury was induced in Wistar rats in this study. The bulge area of the rat vibrissa fol icles was isolated, cultivated and characterized with nestin as a stem cellmarker. 5-Bromo-2′-deoxyuridine (BrdU) labeled bulge stem cells were transplanted into rats with spinal cord injury. Immunohistochemical staining results showed that some of the grafted cells could survive and differentiate into oligodendrocytes (receptor-interacting protein positive cells) and neuronal-like cells (βIII-tubulin positive cells) at 3 weeks after transplantation. In addition, recovery of hind limb locomotor function in spinal cord injury rats at 8 weeks fol owing celltransplantation was assessed using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. The results demon-strate that the grafted hair fol icle stem cells can survive for a long time period in vivo and differentiate into neuronal- and glial-like cells. These results suggest that hair fol icle stem cells can promote the recovery of spinal cord injury.

  4. Hyperbaric oxygen therapy combined with Schwann cell transplantation promotes spinal cord injury recovery

    Directory of Open Access Journals (Sweden)

    Chuan-gang Peng

    2015-01-01

    Full Text Available Schwann cell transplantation and hyperbaric oxygen therapy each promote recovery from spinal cord injury, but it remains unclear whether their combination improves therapeutic results more than monotherapy. To investigate this, we used Schwann cell transplantation via the tail vein, hyperbaric oxygen therapy, or their combination, in rat models of spinal cord contusion injury. The combined treatment was more effective in improving hindlimb motor function than either treatment alone; injured spinal tissue showed a greater number of neurite-like structures in the injured spinal tissue, somatosensory and motor evoked potential latencies were notably shorter, and their amplitudes greater, after combination therapy than after monotherapy. These findings indicate that Schwann cell transplantation combined with hyperbaric oxygen therapy is more effective than either treatment alone in promoting the recovery of spinal cord in rats after injury.

  5. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Fatemeh Anbari; Mohammad Ali Khalili; Ahmad Reza Bahrami; Arezoo Khoradmehr; Fatemeh Sadeghian; Farzaneh Fesahat; Ali Nabi

    2014-01-01

    To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intrave-nous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and ad-ministered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat cerebral cortex and rat neurological function was improved significant-ly. These findings suggest that intravenously administered bone marrow mesenchymal stem cells can promote nerve cell regeneration in injured cerebral cortex, which supplement the lost nerve cells.

  6. Transplantation of olfactory ensheathing cells for promoting regeneration following spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Kaijun Liu

    2007-01-01

    OBJECTIVE: To investigate the status of olfactory ensheathing cells (OECs) transplantation in facilitating the regeneration of spinal cord injury.DATA SOURCES: Articles about OECs transplantation in treating spinal cord injury were searched in Pubmed database published in English from January 1981 to December 2005 by using the keywords of "olfactory ensheathing cells, transplantation, spinal cord injury".STUDY SELECTION: The data were checked primarily, literatures related to OECs transplantation and the regeneration of spinal cord injury were selected, whereas the repetitive studies and reviews were excluded.DATA EXTRACTION: Totally 43 articles about OECs transplantation and the regeneration and repair of spinal cord injury were collected, and the repetitive ones were excluded.DATA SYNTHESIS: There were 35 articles accorded with the criteria. OECs are the olfactory ensheathing glias isolated from olfactory bulb and olfactory nerve tissue. OECs have the characters of both Schwann cells in central nervous system and peripheral astrocytes. The transplanted OECs can migrate in the damaged spinal cord of host, can induce and support the regeneration, growth and extension of damaged neuritis.Besides, transgenic technique can enable it to carry some exogenous genes that promote neuronal regeneration, and express some molecules that can facilitate neural regeneration, so as to ameliorate the internal environment of nerve injury, induce the regeneration of damaged spinal cord neurons, which can stimulate the regeneration potential of the damaged spinal cord to reach the purpose of spinal cord regeneration and functional recovery.CONCLUSION: OECs are the glial cells with the energy for growth at mature phase, they can myelinize axons, secrete various biological nutrition factors, and then protect and support neurons, also facilitate neural regeneration. OECs have been successfully isolated from nasal olfactory mucosa and olfactory nerve.Therefore, autologous transplantation

  7. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, L.P. [Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Iglesias, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Nicola, F.C. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Steffens, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Valentim, L.; Witczak, A.; Zanatta, G. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Achaval, M. [Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Pranke, P. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Netto, C.A. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2011-12-23

    Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 10{sup 6} cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 10{sup 6} cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation.

  8. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    Directory of Open Access Journals (Sweden)

    L.P. Rodrigues

    2012-01-01

    Full Text Available Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a 1 h after surgery, into the injury site at a concentration of 5 x 10(6 cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group; b into the cisterna magna, 9 days after lesion at a concentration of 5 x 10(6 cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group. The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day. The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05. The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation.

  9. Mast cells promote scar remodeling and functional recovery after spinal cord injury via mouse mast cell protease 6.

    Science.gov (United States)

    Vangansewinkel, Tim; Geurts, Nathalie; Quanten, Kirsten; Nelissen, Sofie; Lemmens, Stefanie; Geboes, Lies; Dooley, Dearbhaile; Vidal, Pia M; Pejler, Gunnar; Hendrix, Sven

    2016-05-01

    An important barrier for axon regeneration and recovery after traumatic spinal cord injury (SCI) is attributed to the scar that is formed at the lesion site. Here, we investigated the effect of mouse mast cell protease (mMCP) 6, a mast cell (MC)-specific tryptase, on scarring and functional recovery after a spinal cord hemisection injury. Functional recovery was significantly impaired in both MC-deficient and mMCP6-knockout (mMCP6(-/-)) mice after SCI compared with wild-type control mice. This decrease in locomotor performance was associated with an increased lesion size and excessive scarring at the injury site. Axon growth-inhibitory chondroitin sulfate proteoglycans and the extracellular matrix components fibronectin, laminin, and collagen IV were significantly up-regulated in MC-deficient and mMCP6(-/-) mice, with an increase in scar volume between 23 and 32%. A degradation assay revealed that mMCP6 directly cleaves fibronectin and collagen IV in vitro In addition, gene expression levels of the scar components fibronectin, aggrecan, and collagen IV were increased up to 6.8-fold in mMCP6(-/-) mice in the subacute phase after injury. These data indicate that endogenous mMCP6 has scar-suppressing properties after SCI via indirect cleavage of axon growth-inhibitory scar components and alteration of the gene expression profile of these factors.-Vangansewinkel, T., Geurts, N., Quanten, K., Nelissen, S., Lemmens, S., Geboes, L., Dooley, D., Vidal, P. M., Pejler, G., Hendrix, S. Mast cells promote scar remodeling and functional recovery after spinal cord injury via mouse mast cell protease 6.

  10. Electroacupuncture in the repair of spinal cord injury: inhibiting the Notch signaling pathway and promoting neural stem cell proliferation

    Directory of Open Access Journals (Sweden)

    Xin Geng

    2015-01-01

    Full Text Available Electroacupuncture for the treatment of spinal cord injury has a good clinical curative effect, but the underlying mechanism is unclear. In our experiments, the spinal cord of adult Sprague-Dawley rats was clamped for 60 seconds. Dazhui (GV14 and Mingmen (GV4 acupoints of rats were subjected to electroacupuncture. Enzyme-linked immunosorbent assay revealed that the expression of serum inflammatory factors was apparently downregulated in rat models of spinal cord injury after electroacupuncture. Hematoxylin-eosin staining and immunohistochemistry results demonstrated that electroacupuncture contributed to the proliferation of neural stem cells in rat injured spinal cord, and suppressed their differentiation into astrocytes. Real-time quantitative PCR and western blot assays showed that electroacupuncture inhibited activation of the Notch signaling pathway induced by spinal cord injury. These findings indicate that electroacupuncture repaired the injured spinal cord by suppressing the Notch signaling pathway and promoting the proliferation of endogenous neural stem cells.

  11. 17β-Estradiol Promotes Schwann Cell Proliferation and Differentiation, Accelerating Early Remyelination in a Mouse Peripheral Nerve Injury Model

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2016-01-01

    Full Text Available Estrogen induces oligodendrocyte remyelination in response to demyelination in the central nervous system. Our objective was to determine the effects of 17β-estradiol (E2 on Schwann cell function and peripheral nerve remyelination after injury. Adult male C57BL/6J mice were used to prepare the sciatic nerve transection injury model and were randomly categorized into control and E2 groups. To study myelination in vitro, dorsal root ganglion (DRG explant culture was prepared using 13.5-day-old mouse embryos. Primary Schwann cells were isolated from the sciatic nerves of 1- to 3-day-old Sprague–Dawley rats. Immunostaining for myelin basic protein (MBP expression and toluidine blue staining for myelin sheaths demonstrated that E2 treatment accelerates early remyelination in the “nerve bridge” region between the proximal and distal stumps of the transection injury site in the mouse sciatic nerve. The 5-bromo-2′-deoxyuridine incorporation assay revealed that E2 promotes Schwann cell proliferation in the bridge region and in the primary culture, which is blocked using AKT inhibitor MK2206. The in vitro myelination in the DRG explant culture determined showed that the MBP expression in the E2-treated group is higher than that in the control group. These results show that E2 promotes Schwann cell proliferation and myelination depending on AKT activation.

  12. Stem cells modified by brain-derived neurotrophic fac-tor to promote stem cells differentiation into neurons and enhance neuromotor function after brain injury

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sai; LIU Xiao-zhi; LIU Zhen-lin; WANG Yan-min; HU Qun-liang; MA Tie-zhu; SUN Shi-zhong

    2009-01-01

    Objective: To promote stem cells differentiation into neurons and enhance neuromotor function after brain in-jury through brain-derived neurotrophic factor (BDNF) induction.Methods: Recombinant adenovirus vector was ap-plied to the transfection of BDNF into human-derived um-bilical cord mesenchymal stem cells (UCMSCs). Enzyme linked immunosorbent assay (ELISA) was used to deter-mine the secretion phase of BDNF. The brain injury model of athymic mice induced by hydraulic pressure percussion was established for transplantation of stem cells into the edge of injury site. Nerve function scores were obtained, and the expression level of transfected and non-transfected BDNF, proportion of neuron specific enolase (NSE) andglial fibrillary acidic protein (GFAP), and the number of apoptosis cells were compared respectively. Results: The BDNF expression achieved its stabiliza-tion at a high level 72 hours after gene transfection. The mouse obtained a better score of nerve function, and the proportion of the NSE-positive cells increased significantly (P<0.05), but GFAP-positive cells decreased in BDNF-UCMSCs group compared with the other two groups (P<0.05). At the site of high expression of BDNF, the number of apoptosis cells decreased markedly.Conclusion: BDNF gene can promote the differentia-tion of the stem cells into neurons rather than gliai cells, and enhance neuromotor function after brain injury.

  13. SDF1 in the dorsal corticospinal tract promotes CXCR4+ cell migration after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Jung Hosung

    2011-02-01

    Full Text Available Abstract Background Stromal cell-derived factor-1 (SDF1 and its major signaling receptor, CXCR4, were initially described in the immune system; however, they are also expressed in the nervous system, including the spinal cord. After spinal cord injury, the blood brain barrier is compromised, opening the way for chemokine signaling between these two systems. These experiments clarified prior contradictory findings on normal expression of SDF1 and CXCR4 as well as examined the resulting spinal cord responses resulting from this signaling. Methods These experiments examined the expression and function of SDF1 and CXCR4 in the normal and injured adult mouse spinal cord primarily using CXCR4-EGFP and SDF1-EGFP transgenic reporter mice. Results In the uninjured spinal cord, SDF1 was expressed in the dorsal corticospinal tract (dCST as well as the meninges, whereas CXCR4 was found only in ependymal cells surrounding the central canal. After spinal cord injury (SCI, the pattern of SDF1 expression did not change rostral to the lesion but it disappeared from the degenerating dCST caudally. By contrast, CXCR4 expression changed dramatically after SCI. In addition to the CXCR4+ cells in the ependymal layer, numerous CXCR4+ cells appeared in the peripheral white matter and in the dorsal white matter localized between the dorsal corticospinal tract and the gray matter rostral to the lesion site. The non-ependymal CXCR4+ cells were found to be NG2+ and CD11b+ macrophages that presumably infiltrated through the broken blood-brain barrier. One population of macrophages appeared to be migrating towards the dCST that contains SDF1 rostral to the injury but not towards the caudal dCST in which SDF1 is no longer present. A second population of the CXCR4+ macrophages was present near the SDF1-expressing meningeal cells. Conclusions These observations suggest that attraction of CXCR4+ macrophages is part of a programmed response to injury and that modulation of the

  14. Schwann Cells Transplantation Promoted and the Repair of Brain Stem Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    HONG WAN; YI-HUA AN; MEI-ZHEN SUN; YA-ZHUO ZHANG; ZHONG-CHENG WANG

    2003-01-01

    To explore the possibility of Schwann cells transplantation to promote the repair of injured brain stem reticular structure in rats. Methods Schwann cells originated from sciatic nerves of 1 to 2-day-old rats were expanded and labelled by BrdU in vitro, transplanted into rat brain stem reticular structure that was pre-injured by electric needle stimulus. Immunohistochemistry and myelin-staining were used to investigate the expression of BrdU, GAP-43 and new myelination respectively. Results BrdU positive cells could be identified for up to 8 months and their number increased by about 23%, which mainly migrated toward injured ipsilateral cortex. The GAP-43expression reached its peak in 1 month after transplantation and was significantly higher than that in the control group. New myelination could be seen in destructed brain stem areas. Conclusion The transplantation of Schwann cells can promote the restoration of injured brain stem reticular structure.

  15. Human mesenchymal stem cells alter macrophage phenotype and promote regeneration via homing to the kidney following ischemia-reperfusion injury.

    Science.gov (United States)

    Wise, Andrea F; Williams, Timothy M; Kiewiet, Mensiena B G; Payne, Natalie L; Siatskas, Christopher; Samuel, Chrishan S; Ricardo, Sharon D

    2014-05-15

    Mesenchymal stem cells (MSCs) ameliorate injury and accelerate repair in many organs, including the kidney, although the reparative mechanisms and interaction with macrophages have not been elucidated. This study investigated the reparative potential of human bone marrow-derived MSCs and traced their homing patterns following administration to mice with ischemia-reperfusion (IR) injury using whole body bioluminescence imaging. The effect of MSCs on macrophage phenotype following direct and indirect coculture was assessed using qPCR. Human cytokine production was measured using multiplex arrays. After IR, MSCs homed to injured kidneys where they afforded protection indicated by decreased proximal tubule kidney injury molecule-1 expression, blood urea nitrogen, and serum creatinine levels. SDS-PAGE and immunofluorescence labeling revealed MSCs reduced collagen α1(I) and IV by day 7 post-IR. Gelatin zymography confirmed that MSC treatment significantly increased matrix metalloproteinase-9 activity in IR kidneys, which contributed to a reduction in total collagen. Following direct and indirect coculture, macrophages expressed genes indicative of an anti-inflammatory "M2" phenotype. MSC-derived human GM-CSF, EGF, CXCL1, IL-6, IL-8, MCP-1, PDGF-AA, and CCL5 were identified in culture supernatants. In conclusion, MSCs home to injured kidneys and promote repair, which may be mediated by their ability to promote M2 macrophage polarization.

  16. Erythropoietin can promote survival of cerebral cells by downregulating Bax gene after traumatic brain injury in rats

    Directory of Open Access Journals (Sweden)

    Liao Z

    2009-01-01

    Full Text Available Background : Traumatic brain injury (TBI is an important cause of adult mortality and morbidity. Erythropoietin (Epo has been shown to promote the viability of cerebral cells by upregulating Bcl-2 gene; however, Epo may exert its antiapoptotic effect via the differential regulation of the expression of genes involved in the apoptotic process. Aim : The present study examined the neuroprotective effect of Epo as a survival factor through the regulation of the Bax. Materials and Methods : Wistar rats were randomly divided into three groups: Recombinant human EPO treated (rhEPO TBI, vehicle-treated TBI, and sham-operated. Traumatic brain injury was induced by the Feeney free-falling model. Rats were killed 5, 12, 24, 72, 120, or 168 h after TBI. Regulation of Bcl-2 was detected by reverse transcription-polymerase chain reaction (RT-PCR, western blotting and immunofluorescence. Results : Bax mRNA and protein levels were lower in the rhEPO-treated rat brains than in the vehicle-treated rat brains. Induction of Bax expression peaked at 24 h and remained stable for 72-120 h in vehicle-treated rat brains, whereas induction of Bax expression was only slightly elevated in rhEPO-treated rat brains. The number of TdT-mediated dUTP Nick-End Labeling(TUNEL-positive cells in the rhEPO-treated rat brains was far fewer than in the vehicle-treated rat brains. Conclusions : Epo exerts neuroprotective effect against traumatic brain injury via reducing Bax gene expression involved in inhibiting TBI-induced neuronal cell death.

  17. Transplantation of PDGF-AA-Overexpressing Oligodendrocyte Precursor Cells Promotes Recovery in Rat Following Spinal Cord Injury

    Science.gov (United States)

    Yao, Zong-Feng; Wang, Ying; Lin, Yu-Hong; Wu, Yan; Zhu, An-You; Wang, Rui; Shen, Lin; Xi, Jin; Qi, Qi; Jiang, Zhi-Quan; Lü, He-Zuo; Hu, Jian-Guo

    2017-01-01

    Our previous study showed that Schwann cells (SCs) promote survival, proliferation and migration of co-transplanted oligodendrocyte progenitor cells (OPCs) and neurological recovery in rats with spinal cord injury (SCI). A subsequent in vitro study confirmed that SCs modulated OPC proliferation and migration by secreting platelet-derived growth factor (PDGF)-AA and fibroblast growth factor-2 (FGF)-2. We also found that PDGF-AA stimulated OPC proliferation and their differentiation into oligodendrocytes (OLs) at later stages. We therefore speculated that PDGF-AA administration can exert the same effect as SC co-transplantation in SCI repair. To test this hypothesis, in this study we investigated the effect of transplanting PDGF-AA-overexpressing OPCs in a rat model of SCI. We found that PDGF-AA overexpression in OPCs promoted their survival, proliferation, and migration and differentiation into OLs in vivo. OPCs overexpressing PDGF-AA were also associated with increased myelination and tissue repair after SCI, leading to the recovery of neurological function. These results indicate that PDGF-AA-overexpressing OPCs may be an effective treatment for SCI.

  18. Bone marrow-derived mesenchymal stem cells expressing the Shh transgene promotes functional recovery after spinal cord injury in rats.

    Science.gov (United States)

    Jia, Yijia; Wu, Dou; Zhang, Ruiping; Shuang, Weibing; Sun, Jiping; Hao, Haihu; An, Qijun; Liu, Qiang

    2014-06-24

    Spinal cord injury (SCI) is one of the most disabling diseases. Cell-based gene therapy is becoming a major focus for the treatment of SCI. Bone marrow-derived mesenchymal stem cells (BMSCs) are a promising stem cell type useful for repairing SCI. However, the effects of BMSCs transplants are likely limited because of low transplant survival after SCI. Sonic hedgehog (Shh) is a multifunctional growth factor which can facilitate neuronal and BMSCs survival, promote axonal growth, prevent activation of the astrocyte lineage, and enhance the delivery of neurotrophic factors in BMSCs. However, treatment of SCI with Shh alone also has limited effects on recovery, because the protein is cleared quickly. In this study, we investigated the use of BMSCs overexpressing the Shh transgene (Shh-BMSCs) in the treatment of rats with SCI, which could stably secrete Shh and thereby enhance the effects of BMSCs, in an attempt to combine the advantages of Shh and BMSCs and so to promote functional recovery. After Shh-BMSCs treatment of SCI via the subarachnoid, we detected significantly greater damage recovery compared with that seen in rats treated with phosphate-buffered saline (PBS) and BMSCs. Use of Shh-BMSCs increased the expression and secretion of Shh, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), improved the behavioral function, enhanced the BMSCs survival, promoted the expression level of neurofilament 200 (NF200), and reduced the expression of glial fibrillary acidic protein (GFAP). Thus, our results indicated that Shh-BMSCs enhanced recovery of neurological function after SCI in rats and could be a potential valuable therapeutic intervention for SCI in humans.

  19. Transplantation of low-power laser-irradiated olfactory ensheathing cells to promote repair of spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    Haoxian Chen; Xinfeng Zheng; Weibin Sheng; Qin Wei; Tao Jiang; Gele Jin

    2009-01-01

    BACKGROUND: Previous studies have demonstrated that low-power laser (LPL) irradiation can promote the regeneration of peripheral nerves and central nerves, as well as influence cellular proliferation. Therefore, it is thought to be a potential treatment for spinal cord injury.OBJECTIVE: Utilizing histological observations and behavioral evaluations, the aim of this study was to investigate the influence of transplanted olfactory ensheathing cells (OECs), irradiated by LPL, on functional repair of rats following transversal spinal cord injury.DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the animal experimental center in the First Affiliated Hospital of Xinjiang Medical University between January 2007 and February 2008.MATERIALS: A total of 52 Sprague Dawley rats were included in this experiment. Twelve rats were used to harvest OECs, some of which were irradiated by LPL on days 3, 5, and 7 in culture.The remaining 40 rats were used to establish T12 complete spinal cord transection injury.DMEM/F12 medium was purchased from Sigma, USA, Fluorogold was provided by Chemicon,USA, and the LY/JG650-D500-16 low-power laser was produced by Xi'an Lingyue Electromechanical Science And Technology Co., Ltd., China.METHODS: The successful rat models were randomly divided into three groups: OEC transplantation, LPL-irradiated OEC transplantation, and control. These animals were microinjected with OEC suspension, LPL-irradiated OEC suspension, and DMEM/F12 medium(10 μL) respectively 4 weeks after spinal cord was completely transected at the T12 level.MAIN OUTCOME MEASURES: Spinal cord injury was observed using hematoxylin-eosin staining.Expression of nerve growth factor receptor p75 and glial fibrillary acidic protein were determined using immunohistochemical staining. Regeneration of spinal nerve fibers in rats was assayed by Fluorogold retrograde labeling method. Basso, Beattie and Bresnahan (BBB) scores were used to evaluate motor

  20. Injectable hydrogel promotes early survival of induced pluripotent stem cell-derived oligodendrocytes and attenuates longterm teratoma formation in a spinal cord injury model.

    Science.gov (United States)

    Führmann, T; Tam, R Y; Ballarin, B; Coles, B; Elliott Donaghue, I; van der Kooy, D; Nagy, A; Tator, C H; Morshead, C M; Shoichet, M S

    2016-03-01

    Transplantation of pluripotent stem cells and their differentiated progeny has the potential to preserve or regenerate functional pathways and improve function after central nervous system injury. However, their utility has been hampered by poor survival and the potential to form tumors. Peptide-modified biomaterials influence cell adhesion, survival and differentiation in vitro, but their effectiveness in vivo remains uncertain. We synthesized a peptide-modified, minimally invasive, injectable hydrogel comprised of hyaluronan and methylcellulose to enhance the survival and differentiation of human induced pluripotent stem cell-derived oligodendrocyte progenitor cells. Cells were transplanted subacutely after a moderate clip compression rat spinal cord injury. The hydrogel, modified with the RGD peptide and platelet-derived growth factor (PDGF-A), promoted early survival and integration of grafted cells. However, prolific teratoma formation was evident when cells were transplanted in media at longer survival times, indicating that either this cell line or the way in which it was cultured is unsuitable for human use. Interestingly, teratoma formation was attenuated when cells were transplanted in the hydrogel, where most cells differentiated to a glial phenotype. Thus, this hydrogel promoted cell survival and integration, and attenuated teratoma formation by promoting cell differentiation.

  1. Mature adipocyte-derived cells, dedifferentiated fat cells (DFAT), promoted functional recovery from spinal cord injury-induced motor dysfunction in rats.

    Science.gov (United States)

    Ohta, Yuki; Takenaga, Mitsuko; Tokura, Yukie; Hamaguchi, Akemi; Matsumoto, Taro; Kano, Koichiro; Mugishima, Hideo; Okano, Hideyuki; Igarashi, Rie

    2008-01-01

    Transplantation of mature adipocyte-derived cells (dedifferentiated fat cells) led to marked functional recovery from spinal cord injury (SCI)-induced motor dysfunction in rats. When mature adipocytes were isolated from rat adipose tissue and grown in ceiling culture, transformation into fibroblast-like cells without lipid droplets occurred. These fibroblast-like cells, termed dedifferentiated fat cells (DFAT), could proliferate and could also differentiate back into adipocytes. DFAT expressed neural markers such as nestin, betaIII tubulin, and GFAP. Allografting of DFAT into SCI-induced rats led to significant recovery from hindlimb dysfunction. Grafted cells were detected at the injection site, and some of these cells expressed betaIII tubulin. DFAT expressed neurotrophic factors such as BDNF and GDNF prior to transplantation, and grafted cells were also positive for these factors. Therefore, these neurotrophic factors derived from grafted DFAT might have contributed to the promotion of functional recovery. These findings also suggest that mature adipocytes could become a new source for cell replacement therapy to treat central nervous system disorders.

  2. Combination of melatonin and Wnt-4 promotes neural cell differentiation in bovine amniotic epithelial cells and recovery from spinal cord injury.

    Science.gov (United States)

    Gao, Yuhua; Bai, Chunyu; Zheng, Dong; Li, Changli; Zhang, Wenxiu; Li, Mei; Guan, Weijun; Ma, Yuehui

    2016-04-01

    Although melatonin has been shown to exhibit a wide variety of biological functions, its effects on promoting differentiation of neural cells remain unknown. Wnt signaling mediates major developmental processes during embryogenesis and regulates maintenance, self-renewal, and differentiation of adult mammalian stem cells. However, the role of the noncanonical Wnt pathway during neurogenesis remains poorly understood. In this study, the amniotic epithelial cells ( AECs) were isolated from bovine amnion and incubated with various melatonin concentrations (0.01, 0.1, 1, 10, or 100 μm) and 5 × 10(-5) m all-trans retinoic acid (RA) for screening optimum culture medium of neural differentiation, compared with each groups, 1 μm melatonin and 5 × 10(-5) m RA were selected to induce neural differentiation of AECs, and then siMT1, siMT2, oWnt-4, and siWnt-4 were expressed in AECs to research role of these genes in neural differentiation. Efficiency of neural differentiation was evaluated after expressed above genes using flow cytometry. Cell function of neural cells was demonstrated in vivo using spinal cord injury model after cell transplantation, and damage repair of spinal cord was assessed using cell tracking and Basso, Beattie, Bresnahan Locomotor Rating Scale scores. Results demonstrated that melatonin stimulated melatonin receptor 1, which subsequently increased bovine amniotic epithelial cell vitality and promoted differentiation into neural cells. This took place through cooperation with Wnt-4. Additionally, following cotreatment with melatonin and Wnt-4, neurogenesis gene expression was significantly altered. Furthermore, single inhibition of melatonin receptor 1 or Wnt-4 expression decreased expression of neurogenesis-related genes, and bovine amniotic epithelial cell-derived neural cells were successfully colonized into injured spinal cord, which suggested participation in tissue repair.

  3. Human mesenchymal stem cells alter macrophage phenotype and promote regeneration via homing to the kidney following ischemia-reperfusion injury

    NARCIS (Netherlands)

    Wise, Andrea F; Williams, Timothy M; Kiewiet, Mensiena B G; Payne, Natalie L; Siatskas, Christopher; Samuel, Chrishan S; Ricardo, Sharon D

    2014-01-01

    Mesenchymal stem cells (MSCs) ameliorate injury and accelerate repair in many organs, including the kidney, although the reparative mechanisms and interaction with macrophages have not been elucidated. This study investigated the reparative potential of human bone marrow-derived MSCs and traced thei

  4. Human olfactory mesenchymal stromal cell transplants promote remyelination and earlier improvement in gait co‐ordination after spinal cord injury

    Science.gov (United States)

    Lindsay, Susan L.; Toft, Andrew; Griffin, Jacob; M. M. Emraja, Ahmed

    2017-01-01

    Autologous cell transplantation is a promising strategy for repair of the injured spinal cord. Here we have studied the repair potential of mesenchymal stromal cells isolated from the human olfactory mucosa after transplantation into a rodent model of incomplete spinal cord injury. Investigation of peripheral type remyelination at the injury site using immunocytochemistry for P0, showed a more extensive distribution in transplanted compared with control animals. In addition to the typical distribution in the dorsal columns (common to all animals), in transplanted animals only, P0 immunolabelling was consistently detected in white matter lateral and ventral to the injury site. Transplanted animals also showed reduced cavitation. Several functional outcome measures including end‐point electrophysiological testing of dorsal column conduction and weekly behavioural testing of BBB, weight bearing and pain, showed no difference between transplanted and control animals. However, gait analysis revealed an earlier recovery of co‐ordination between forelimb and hindlimb stepping in transplanted animals. This improvement in gait may be associated with the enhanced myelination in ventral and lateral white matter, where fibre tracts important for locomotion reside. Autologous transplantation of mesenchymal stromal cells from the olfactory mucosa may therefore be therapeutically beneficial in the treatment of spinal cord injury. GLIA 2017 GLIA 2017;65:639–656 PMID:28144983

  5. Hypoxia-Induced Upregulation of miR-132 Promotes Schwann Cell Migration After Sciatic Nerve Injury by Targeting PRKAG3.

    Science.gov (United States)

    Yao, Chun; Shi, Xiangxiang; Zhang, Zhanhu; Zhou, Songlin; Qian, Tianmei; Wang, Yaxian; Ding, Fei; Gu, Xiaosong; Yu, Bin

    2016-10-01

    Following peripheral nerve injury, hypoxia is formed as a result of defects in blood supply at the injury site. Despite accumulating evidence on the effects of microRNAs (miRNAs) on phenotype modulation of Schwann cells (SCs) after peripheral nerve injury, the impact of hypoxia on SC behaviors through miRNAs during peripheral nerve regeneration has not been estimated. In this study, we confirmed our previous microarray data on the upregulation of miR-132 after sciatic nerve injury in rats and observed that overexpression of miR-132 significantly promoted cell migration of primary cultured SCs. Interestingly, hypoxia-increased expression of miR-132 also enhanced SC migration while inhibition of miR-132 suppressed hypoxia-induced increase in SC migration. miR-132 downregulated PRKAG3 through binding to its 3'-UTR, and PRKAG3 knockdown compromised the reducing effect of miR-132 inhibition on SC migration under normal or hypoxia condition. Moreover, in vivo injection of miR-132 agomir into rats with sciatic nerve transection accelerated SC migration from the proximal to distal stump. Overall, our results suggest that the hypoxia-induced upregulation of miR-132 could promote SC migration and facilitate peripheral nerve regeneration.

  6. Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model.

    Directory of Open Access Journals (Sweden)

    Desirée L Salazar

    Full Text Available BACKGROUND: Traumatic spinal cord injury (SCI results in partial or complete paralysis and is characterized by a loss of neurons and oligodendrocytes, axonal injury, and demyelination/dysmyelination of spared axons. Approximately 1,250,000 individuals have chronic SCI in the U.S.; therefore treatment in the chronic stages is highly clinically relevant. Human neural stem cells (hCNS-SCns were prospectively isolated based on fluorescence-activated cell sorting for a CD133(+ and CD24(-/lo population from fetal brain, grown as neurospheres, and lineage restricted to generate neurons, oligodendrocytes and astrocytes. hCNS-SCns have recently been transplanted sub-acutely following spinal cord injury and found to promote improved locomotor recovery. We tested the ability of hCNS-SCns transplanted 30 days post SCI to survive, differentiate, migrate, and promote improved locomotor recovery. METHODS AND FINDINGS: hCNS-SCns were transplanted into immunodeficient NOD-scid mice 30 days post spinal cord contusion injury. hCNS-SCns transplanted mice demonstrated significantly improved locomotor recovery compared to vehicle controls using open field locomotor testing and CatWalk gait analysis. Transplanted hCNS-SCns exhibited long-term engraftment, migration, limited proliferation, and differentiation predominantly to oligodendrocytes and neurons. Astrocytic differentiation was rare and mice did not exhibit mechanical allodynia. Furthermore, differentiated hCNS-SCns integrated with the host as demonstrated by co-localization of human cytoplasm with discrete staining for the paranodal marker contactin-associated protein. CONCLUSIONS: The results suggest that hCNS-SCns are capable of surviving, differentiating, and promoting improved locomotor recovery when transplanted into an early chronic injury microenvironment. These data suggest that hCNS-SCns transplantation has efficacy in an early chronic SCI setting and thus expands the "window of opportunity" for

  7. Postconditioning with inhaled hydrogen promotes survival of retinal ganglion cells in a rat model of retinal ischemia/reperfusion injury.

    Science.gov (United States)

    Wang, Ruobing; Wu, Jiangchun; Chen, Zeli; Xia, Fangzhou; Sun, Qinglei; Liu, Lin

    2016-02-01

    Retinal ischemia/reperfusion (I/R) injury plays a crucial role in the pathophysiology of various ocular diseases. Intraperitoneal injection or ocular instillation with hydrogen (H2)-rich saline was recently shown to be neuroprotective in the retina due to its anti-oxidative and anti-inflammatory effects. Our study aims to explore whether postconditioning with inhaled H2 can protect retinal ganglion cells (RGCs) in a rat model of retinal I/R injury. Retinal I/R injury was performed on the right eyes of rats and was followed by inhalation of 67% H2 mixed with 33% oxygen immediately after ischemia for 1h daily for one week. RGC density was counted using haematoxylin and eosin (HE) staining and retrograde labeling with cholera toxin beta (CTB). Visual function was assessed using flash visual evoked potentials (FVEP) and pupillary light reflex (PLR). Potential biomarkers of retinal oxidative stress and inflammatory responses were measured, including the expression of 4-Hydroxynonenalv (4-HNE), interleukin-1 beta (IL1-β) and tumor necrosis factor alpha (TNF-α). HE and CTB tracing showed that the survival rate of RGCs in the H2-treated group was significantly higher than the rate in the I/R group. Rats with H2 inhalation showed better visual function in assessments of FVEP and PLR. Moreover, H2 treatment significantly decreased the number of 4-HNE-stained cells in the ganglion cell layer and inhibited the retinal overexpression of IL1-β and TNF-α that was induced by retinal I/R injury. Our results demonstrate that postconditioning with inhaled high-dose H2 appears to confer neuroprotection against retinal I/R injury via anti-oxidative, anti-inflammatory and anti-apoptosis pathways.

  8. Brain-derived neurotrophic factor from bone marrow-derived cells promotes post-injury repair of peripheral nerve.

    Directory of Open Access Journals (Sweden)

    Yoshinori Takemura

    Full Text Available Brain-derived neurotrophic factor (BDNF stimulates peripheral nerve regeneration. However, the origin of BNDF and its precise effect on nerve repair have not been clarified. In this study, we examined the role of BDNF from bone marrow-derived cells (BMDCs in post-injury nerve repair. Control and heterozygote BDNF knockout mice (BDNF+/- received a left sciatic nerve crush using a cerebral blood clip. Especially, for the evaluation of BDNF from BMDCs, studies with bone marrow transplantation (BMT were performed before the injury. We evaluated nerve function using a rotarod test, sciatic function index (SFI, and motor nerve conduction velocity (MNCV simultaneously with histological nerve analyses by immunohistochemistry before and after the nerve injury until 8 weeks. BDNF production was examined by immunohistochemistry and mRNA analyses. After the nerve crush, the controls showed severe nerve dysfunction evaluated at 1 week. However, nerve function was gradually restored and reached normal levels by 8 weeks. By immunohistochemistry, BDNF expression was very faint before injury, but was dramatically increased after injury at 1 week in the distal segment from the crush site. BDNF expression was mainly co-localized with CD45 in BMDCs, which was further confirmed by the appearance of GFP-positive cells in the BMT study. Variant analysis of BDNF mRNA also confirmed this finding. BDNF+/- mice showed a loss of function with delayed histological recovery and BDNF+/+→BDNF+/- BMT mice showed complete recovery both functionally and histologically. These results suggested that the attenuated recovery of the BDNF+/- mice was rescued by the transplantation of BMCs and that BDNF from BMDCs has an essential role in nerve repair.

  9. Transplantation of mature adipocyte-derived dedifferentiated fat cells promotes locomotor functional recovery by remyelination and glial scar reduction after spinal cord injury in mice.

    Science.gov (United States)

    Yamada, Hiromi; Ito, Daisuke; Oki, Yoshinao; Kitagawa, Masato; Matsumoto, Taro; Watari, Tosihiro; Kano, Koichiro

    2014-11-14

    Mature adipocyte-derived dedifferentiated fat cells (DFAT) have a potential to be useful as new cell-source for cell-based therapy for spinal cord injury (SCI), but the mechanisms remain unclear. The objective of this study was to examine whether DFAT-induced functional recovery is achieved through remyelination and/or glial scar reduction in a mice model of SCI. To accomplish this we subjected adult female mice (n=22) to SCI. On the 8th day post-injury locomotor tests were performed, and the mice were randomly divided into two groups (control and DFAT). The DFAT group received stereotaxic injection of DFAT, while the controls received DMEM medium. Functional tests were conducted at repeated intervals, until the 36th day, and immunohistochemistry or staining was performed on the spinal cord sections. DFAT transplantation significantly improved locomotor function of their hindlimbs, and promoted remyelination and glial scar reduction, when compared to the controls. There were significant and positive correlations between promotion of remyelination or/and reduction of glial scar, and recovery of locomotor function. Furthermore, transplanted DFAT expressed markers for neuron, astrocyte, and oligodendrocyte, along with neurotrophic factors, within the injured spinal cord. In conclusion, DFAT-induced functional recovery in mice after SCI is probably mediated by both cell-autonomous and cell-non-autonomous effects on remyelination of the injured spinal cord.

  10. Combination of chondroitinase ABC, glial cell line-derived neurotrophic factor and Nogo A antibody delayed-release microspheres promotes the functional recovery of spinal cord injury.

    Science.gov (United States)

    Zhang, Yu; Gu, Zuchao; Qiu, Guixing; Song, Yueming

    2013-11-01

    Spinal cord injury (SCI) is one of the most devastating injuries for patients. Glial cell line-derived neurotrophic factor (GDNF) is an important neurotrophic factor for the regeneration of the spinal neuraxial bundle, but GDNF would degrade rapidly if the protein was injected into the site of injury; thus, it cannot exert its fullest effects. Therefore, we introduced a delivery system of GDNF, poly(lactide-co-glycolic acid) (PLGA) delayed-release microspheres, in the current study and observed the effect of PLGA-GDNF and the combination of PLGA-GDNF and another 2 agents PLGA-chondroitinase ABC (ChABC) and PLGA-Nogo A antibody in the treatment of SCI rats. Our results showed that PLGA-GDNF and the combination of chABC, GDNF, and Nogo A antibody microspheres could elevate the locomotor scores of SCI rats. The effect of PLGA-GDNF was much better than that of GDNF. The cortical somatosensory evoked potential was also improved by PLGA-GDNF and the combination of chABC, GDNF, and Nogo A antibody microspheres. Our results suggest that PLGA delayed-release microsphere may be a useful and effective tool in delivering protein agents into the injury sites of patients with SCI. This novel combination therapy may provide a new idea in promoting the functional recovery of the damaged spinal cord.

  11. Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity.

    Directory of Open Access Journals (Sweden)

    Yoshiomi Kobayashi

    Full Text Available Murine and human iPSC-NS/PCs (induced pluripotent stem cell-derived neural stem/progenitor cells promote functional recovery following transplantation into the injured spinal cord in rodents. However, for clinical applicability, it is critical to obtain proof of the concept regarding the efficacy of grafted human iPSC-NS/PCs (hiPSC-NS/PCs for the repair of spinal cord injury (SCI in a non-human primate model. This study used a pre-evaluated "safe" hiPSC-NS/PC clone and an adult common marmoset (Callithrix jacchus model of contusive SCI. SCI was induced at the fifth cervical level (C5, followed by transplantation of hiPSC-NS/PCs at 9 days after injury. Behavioral analyses were performed from the time of the initial injury until 12 weeks after SCI. Grafted hiPSC-NS/PCs survived and differentiated into all three neural lineages. Furthermore, transplantation of hiPSC-NS/PCs enhanced axonal sparing/regrowth and angiogenesis, and prevented the demyelination after SCI compared with that in vehicle control animals. Notably, no tumor formation occurred for at least 12 weeks after transplantation. Quantitative RT-PCR showed that mRNA expression levels of human neurotrophic factors were significantly higher in cultured hiPSC-NS/PCs than in human dermal fibroblasts (hDFs. Finally, behavioral tests showed that hiPSC-NS/PCs promoted functional recovery after SCI in the common marmoset. Taken together, these results indicate that pre-evaluated safe hiPSC-NS/PCs are a potential source of cells for the treatment of SCI in the clinic.

  12. Neural progenitor cell transplantation promotes neuroprotection, enhances hippocampal neurogenesis, and improves cognitive outcomes after traumatic brain injury.

    Science.gov (United States)

    Blaya, Meghan O; Tsoulfas, Pantelis; Bramlett, Helen M; Dietrich, W Dalton

    2015-02-01

    Transplantation of neural progenitor cells (NPCs) may be a potential treatment strategy for traumatic brain injury (TBI) due to their intrinsic advantages, including the secretion of neurotrophins. Neurotrophins are critical for neuronal survival and repair, but their clinical use is limited. In this study, we hypothesized that pericontusional transplantation of NPCs genetically modified to secrete a synthetic, human multineurotrophin (MNTS1) would overcome some of the limitations of traditional neurotrophin therapy. MNTS1 is a multifunctional neurotrophin that binds all three tropomyosin-related kinase (Trk) receptors, recapitulating the prosurvival activity of 3 endogenous mature neurotrophins. NPCs obtained from rat fetuses at E15 were transduced with lentiviral vectors containing MNTS1 and GFP constructs (MNTS1-NPCs) or fluorescent constructs alone (control GFP-NPCs). Adult rats received fluid percussion-induced TBI or sham surgery. Animals were transplanted 1week later with control GFP-NPCs, MNTS1-NPCs, or injected with saline (vehicle). At five weeks, animals were evaluated for hippocampal-dependent spatial memory. Six weeks post-surgery, we observed significant survival and neuronal differentiation of MNTS1-NPCs and injury-activated tropism toward contused regions. NPCs displayed processes that extended into several remote structures, including the hippocampus and contralateral cortex. Both GFP- and MNTS1-NPCs conferred significant preservation of pericontusional host tissues and enhanced hippocampal neurogenesis. NPC transplantation improved spatial memory capacity on the Morris water maze (MWM) task. Transplant recipients exhibited escape latencies approximately half that of injured vehicle controls. While we observed greater transplant survival and neuronal differentiation of MNTS1-NPCs, our collective findings suggest that MNTS1 may be superfluous in terms of preserving the cytoarchitecture and rescuing behavioral deficits given the lack of significant

  13. Mesenchymal stem cells in a polycaprolactone conduit promote sciatic nerve regeneration and sensory neuron survival after nerve injury.

    Science.gov (United States)

    Frattini, Flávia; Lopes, Fatima Rosalina Pereira; Almeida, Fernanda Martins; Rodrigues, Rafaela Fintelman; Boldrini, Leonardo Cunha; Tomaz, Marcelo A; Baptista, Abrahão Fontes; Melo, Paulo A; Martinez, Ana Maria Blanco

    2012-10-01

    Despite the fact that the peripheral nervous system is able to regenerate after traumatic injury, the functional outcomes following damage are limited and poor. Bone marrow mesenchymal stem cells (MSCs) are multipotent cells that have been used in studies of peripheral nerve regeneration and have yielded promising results. The aim of this study was to evaluate sciatic nerve regeneration and neuronal survival in mice after nerve transection followed by MSC treatment into a polycaprolactone (PCL) nerve guide. The left sciatic nerve of C57BL/6 mice was transected and the nerve stumps were placed into a biodegradable PCL tube leaving a 3-mm gap between them; the tube was filled with MSCs obtained from GFP+ animals (MSC-treated group) or with a culture medium (Dulbecco's modified Eagle's medium group). Motor function was analyzed according to the sciatic functional index (SFI). After 6 weeks, animals were euthanized, and the regenerated sciatic nerve, the dorsal root ganglion (DRG), the spinal cord, and the gastrocnemius muscle were collected and processed for light and electron microscopy. A quantitative analysis of regenerated nerves showed a significant increase in the number of myelinated fibers in the group that received, within the nerve guide, stem cells. The number of neurons in the DRG was significantly higher in the MSC-treated group, while there was no difference in the number of motor neurons in the spinal cord. We also found higher values of trophic factors expression in MSC-treated groups, especially a nerve growth factor. The SFI revealed a significant improvement in the MSC-treated group. The gastrocnemius muscle showed an increase in weight and in the levels of creatine phosphokinase enzyme, suggesting an improvement of reinnervation and activity in animals that received MSCs. Immunohistochemistry documented that some GFP+ -transplanted cells assumed a Schwann-cell-like phenotype, as evidenced by their expression of the S-100 protein, a Schwann cell

  14. PAMAM Nanoparticles Promote Acute Lung Injury by Inducing Autophagic Cell Death through the Akt-TSC2-mTOR Signaling Pathway

    Institute of Scientific and Technical Information of China (English)

    Chenggang Li; Haolin Liu; Yang Sun; Hongliang Wang; Feng Guo; Shuan Rao; Jiejie Deng; Yanli Zhang; Yufa Miao; Chenying Guo; Jie Meng; Xiping Chen; Limin Li; Dangsheng Li; Haiyan Xu; Heng Wang; Bo Li; Chengyu Jiang

    2009-01-01

    Nanotechnology is an important and emerging industry with a projected annual market of around one trillion US dollars by 2011–2015. Concerns about the toxicity of nanomaterials in humans, however, have recently been raised. Although studies of nanoparticle toxicity have focused on lung disease the molecular link between nanoparticle exposure and lung injury remained unclear. In this report, we show that cationic Starburst polyamidoamine dendrimer (PAMAM), a class of nanomaterials that are being widely developed for clinical applications can induce acute lung injury in vivo. PAMAM triggers autophagic cell death by deregulating the Akt-TSC2-mTOR signaling pathway. The autophagy inhibitor 3-methyladenine rescued PAMAM dendrimer-induced cell death and ameliorated acute lung injury caused by PAMAM in mice. Our data provide a molecular explanation for nanoparticle-induced lung injury, and suggest potential remedies to address the growing concerns of nanotechnology safety.

  15. Cdc42 Promotes Schwann Cell Proliferation and Migration Through Wnt/β-Catenin and p38 MAPK Signaling Pathway After Sciatic Nerve Injury.

    Science.gov (United States)

    Han, Bin; Zhao, Jun-Ying; Wang, Wu-Tao; Li, Zheng-Wei; He, Ai-Ping; Song, Xiao-Yang

    2017-01-17

    Schwann cells (SCs) are unique glial cells in the peripheral nerve and may secrete multiple neurotrophic factors, adhesion molecules, extracellular matrix molecules to form the microenvironment of peripheral nerve regeneration, guiding and supporting nerve proliferation and migration. Cdc42 plays an important regulatory role in dynamic changes of the cytoskeleton. However, there is a little study referred to regulation and mechanism of Cdc42 on glial cells after peripheral nerve injury. The present study investigated the role of Cdc42 in the proliferation and migration of SCs after sciatic nerve injury. Cdc42 expression was tested, showing that the mRNA and protein expression levels of Cdc42 were significantly up-regulated after sciatic nerve injury. Then, we isolated and purified SCs from injuried sciatic nerve at day 7. The purified SCs were transfected with Cdc42 siRNA and pcDNA3.1-Cdc42, and the cell proliferation, cell cycle and migration were assessed. The results implied that Cdc42 siRNA remarkably inhibited Schwann cell proliferation and migration, and resulted in S phase arrest. While pcDNA3.1-Cdc42 showed a contrary effect. Besides, we also observed that Cdc42 siRNA down-regulated the protein expression of β-catenin, Cyclin D1, c-myc and p-p38, which were up-regulated by pcDNA3.1-Cdc42. Meanwhile, the inhibitor of Wnt/β-catenin and p38 MAPK signaling pathway IWP-2 and SB203580 significantly inhibited the effect of pcDNA3.1-Cdc42 on cell proliferation and migration. Overall, our data indicate that Cdc42 regulates Schwann cell proliferation and migration through Wnt/β-catenin and p38 MAPK signaling pathway after sciatic nerve injury, which provides further insights into the therapy of the sciatic nerve injury.

  16. Spinal cord injury reveals multilineage differentiation of ependymal cells.

    OpenAIRE

    Konstantinos Meletis; Fanie Barnabé-Heider; Marie Carlén; Emma Evergren; Nikolay Tomilin; Oleg Shupliakov; Jonas Frisén

    2008-01-01

    Author Summary Spinal cord injuries occur in more than 30.000 individuals each year worldwide and result in significant morbidity, with patients requiring long physical and medical care. The recent identification of resident stem cells in the adult spinal cord has opened up for the possibility of pharmacological manipulation of these cells to produce cell types promoting recovery after injury. We have employed genetic tools to specifically address the identity and reaction to injury of a spin...

  17. Schwann Cells Overexpressing FGF-2 Alone or Combined with Manual Stimulation Do Not Promote Functional Recovery after Facial Nerve Injury

    Directory of Open Access Journals (Sweden)

    Kirsten Haastert

    2009-01-01

    Full Text Available Purpose. To determine whether transplantation of Schwann cells (SCs overexpressing different isoforms of fibroblast growth factor 2 (FGF-2 combined with manual stimulation (MS of vibrissal muscles improves recovery after facial nerve transection in adult rat. Procedures. Transected facial nerves were entubulated with collagen alone or collagen plus naïve SCs or transfected SCs. Half of the rats received daily MS. Collateral branching was quantified from motoneuron counts after retrograde labeling from 3 facial nerve branches. Quality assessment of endplate reinnervation was combined with video-based vibrissal function analysis. Results. There was no difference in the extent of collateral axonal branching. The proportion of polyinnervated motor endplates for either naïve SCs or FGF-2 over-expressing SCs was identical. Postoperative MS also failed to improve recovery. Conclusions. Neither FGF-2 isoform changed the extent of collateral branching or polyinnervation of motor endplates; furthermore, this motoneuron response could not be overridden by MS.

  18. Lactobacillus rhamnosus GG supernatant promotes intestinal barrier function, balances Treg and TH17 cells and ameliorates hepatic injury in a mouse model of chronic-binge alcohol feeding.

    Science.gov (United States)

    Chen, Rui-Cong; Xu, Lan-Man; Du, Shan-Jie; Huang, Si-Si; Wu, He; Dong, Jia-Jia; Huang, Jian-Rong; Wang, Xiao-Dong; Feng, Wen-Ke; Chen, Yong-Ping

    2016-01-22

    Impaired intestinal barrier function plays a critical role in alcohol-induced hepatic injury, and the subsequent excessive absorbed endotoxin and bacterial translocation activate the immune response that aggravates the liver injury. Lactobacillus rhamnosus GG supernatant (LGG-s) has been suggested to improve intestinal barrier function and alleviate the liver injury induced by chronic and binge alcohol consumption, but the underlying mechanisms are still not clear. In this study, chronic-binge alcohol fed model was used to determine the effects of LGG-s on the prevention of alcoholic liver disease in C57BL/6 mice and investigate underlying mechanisms. Mice were fed Lieber-DeCarli diet containing 5% alcohol for 10 days, and one dose of alcohol was gavaged on Day 11. In one group, LGG-s was supplemented along with alcohol. Control mice were fed isocaloric diet. Nine hours later the mice were sacrificed for analysis. Chronic-binge alcohol exposure induced an elevation in liver enzymes, steatosis and morphology changes, while LGG-s supplementation attenuated these changes. Treatment with LGG-s significantly improved intestinal barrier function reflected by increased mRNA expression of tight junction (TJ) proteins and villus-crypt histology in ileum, and decreased Escherichia coli (E. coli) protein level in liver. Importantly, flow cytometry analysis showed that alcohol reduced Treg cell population while increased TH17 cell population as well as IL-17 secretion, which was reversed by LGG-s administration. In conclusion, our findings indicate that LGG-s is effective in preventing chronic-binge alcohol exposure-induced liver injury and shed a light on the importance of the balance of Treg and TH17 cells in the role of LGG-s application.

  19. Bacterial melanin promotes recovery after sciatic nerve injury in rats

    Institute of Scientific and Technical Information of China (English)

    Olga V Gevorkyan; Irina B Meliksetyan; Tigran R Petrosyan; Anichka S Hovsepyan

    2015-01-01

    Bacterial melanin, obtained from the mutant strain ofBacillus Thuringiensis, has been shown to promote recovery after central nervous system injury. It is hypothesized, in this study, that bacterial melanin can promote structural and functional recovery after peripheral nerve injury. Rats subjected to sciatic nerve transection were intramuscularly administered bacterial melanin. The sciatic nerve transected rats that did not receive intramuscular administration of bacterial melanin served as controls. Behavior tests showed that compared to control rats, the time taken for instrumental conditioned relfex recovery was signiifcantly shorter and the ability to keep the balance on the rotating bar was signiifcantly better in bacterial melanin-treated rats. Histomor-phological tests showed that bacterial melanin promoted axon regeneration after sciatic nerve injury. These ifndings suggest that bacterial melanin exhibits neuroprotective effects on injured sciatic nerve, contributes to limb motor function recovery, and therefore can be used for rehabil-itation treatment of peripheral nerve injury.

  20. Simvastatin mobilizes bone marrow stromal cells migrating to injured areas and promotes functional recovery after spinal cord injury in the rat.

    Science.gov (United States)

    Han, Xiaoguang; Yang, Ning; Cui, Yueyi; Xu, Yingsheng; Dang, Gengting; Song, Chunli

    2012-07-19

    This study investigated the therapeutic effects of simvastatin administered by subarachnoid injection after spinal cord injury (SCI) in rats; explored the underlying mechanism from the perspective of mobilization, migration and homing of bone marrow stromal cells (BMSCs) to the injured area induced by simvastatin. Green fluorescence protein labeled-bone marrow stromal cells (GFP-BMSCs) were transplanted into rats through the tail vein for stem cell tracing. Twenty-four hours after transplantation, spinal cord injury (SCI) was produced using weight-drop method (10g 4cm) at the T10 level. Simvastatin (5mg/kg) or vehicle was administered by subarachnoid injection at lumbar level 4 after SCI. Locomotor functional recovery was assessed in the 4 weeks following surgery using the open-field test and inclined-plane test. At the end of the study, MRI was used to evaluate the reparation of the injured spinal cord. Animals were then euthanized, histological evaluation was used to measure lesion cavity volumes. Immunofluorescence for GFP and cell lineage markers (NeuN and GFAP) was used to evaluate simvastatin-mediated mobilization and differentiation of transplanted BMSCs. Western blot and immunohistochemistry were used to assess the expression of vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF). Simvastatin-treated animals showed significantly better locomotor recovery, less signal abnormality in MRI and a smaller cavity volume compared to the control group. Immunofluorescence revealed that simvastatin increased the number of GFP-positive cells in the injured spinal cord, and the number of cells double positive for GFP/NeuN or GFP/GFAP was larger in the simvastatin treated group than the control group. Western blot and immunohistochemistry showed higher expression of BDNF and VEGF in the simvastatin treated group than the control group. In conclusion, simvastatin can help to repair spinal cord injury in rat, where the underlying

  1. Spinal cord injury reveals multilineage differentiation of ependymal cells.

    Science.gov (United States)

    Meletis, Konstantinos; Barnabé-Heider, Fanie; Carlén, Marie; Evergren, Emma; Tomilin, Nikolay; Shupliakov, Oleg; Frisén, Jonas

    2008-07-22

    Spinal cord injury often results in permanent functional impairment. Neural stem cells present in the adult spinal cord can be expanded in vitro and improve recovery when transplanted to the injured spinal cord, demonstrating the presence of cells that can promote regeneration but that normally fail to do so efficiently. Using genetic fate mapping, we show that close to all in vitro neural stem cell potential in the adult spinal cord resides within the population of ependymal cells lining the central canal. These cells are recruited by spinal cord injury and produce not only scar-forming glial cells, but also, to a lesser degree, oligodendrocytes. Modulating the fate of ependymal progeny after spinal cord injury may offer an alternative to cell transplantation for cell replacement therapies in spinal cord injury.

  2. Spinal cord injury reveals multilineage differentiation of ependymal cells.

    Directory of Open Access Journals (Sweden)

    Konstantinos Meletis

    2008-07-01

    Full Text Available Spinal cord injury often results in permanent functional impairment. Neural stem cells present in the adult spinal cord can be expanded in vitro and improve recovery when transplanted to the injured spinal cord, demonstrating the presence of cells that can promote regeneration but that normally fail to do so efficiently. Using genetic fate mapping, we show that close to all in vitro neural stem cell potential in the adult spinal cord resides within the population of ependymal cells lining the central canal. These cells are recruited by spinal cord injury and produce not only scar-forming glial cells, but also, to a lesser degree, oligodendrocytes. Modulating the fate of ependymal progeny after spinal cord injury may offer an alternative to cell transplantation for cell replacement therapies in spinal cord injury.

  3. Bone Marrow Stromal Cells Promote Neuronal Restoration in Rats with Traumatic Brain Injury: Involvement of GDNF Regulating BAD and BAX Signaling

    Directory of Open Access Journals (Sweden)

    Qin Shen

    2016-02-01

    Full Text Available Background/Aims: To investigate the effects of bone marrow stromal cells (BMSCs and underlying mechanisms in traumatic brain injury (TBI. Methods: Cultured BMSCs from green fluorescent protein-transgenic mice were isolated and confirmed. Cultured BMSCs were immediately transplanted into the regions surrounding the injured-brain site to test their function in rat models of TBI. Neurological function was evaluated by a modified neurological severity score on the day before, and on days 7 and 14 after transplantation. After 2 weeks of BMSC transplantation, the brain tissue was harvested and analyzed by microarray assay. And the coronal brain sections were determined by immunohistochemistry with mouse anti-growth-associated protein-43 kDa (anti-GAP-43 and anti-synaptophysin to test the effects of transplanted cells on the axonal regeneration in the host brain. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL assay and Western blot were used to detect the apoptosis and expression of BAX and BAD. Results: Microarray analysis showed that BMSCs expressed growth factors such as glial cell-line derived neurotrophic factor (GDNF. The cells migrated around the injury sites in rats with TBI. BMSC grafts resulted in an increased number of GAP-43-immunopositive fibers and synaptophysin-positive varicosity, with suppressed apoptosis. Furthermore, BMSC transplantation significantly downregulated the expression of BAX and BAD signaling. Moreover, cultured BMSC transplantation significantly improved rat neurological function and survival. Conclusion: Transplanted BMSCs could survive and improve neuronal behavior in rats with TBI. Mechanisms of neuroprotection and regeneration were involved, which could be associated with the GDNF regulating the apoptosis signals through BAX and BAD.

  4. Combined transplantation of bone marrow mesenchymal stem cells and pedicled greater omentum promotes locomotor function and regeneration of axons after spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    Liang Li; Zhiying Zhang; Haiyan Lin; Congli Ren; Chuansen Zhang

    2008-01-01

    BACKGROUND: According to previous studies, the neuroprotective effect of the pedicled greater omentum may be attributed to the secretion of neurotrophic factors and stimulation of angiogenesis. The neurotrophic factors released from the pedicled greater omentum, such as brain-derived neurotrophic factor and neurotrophin 3/4/5 could exert a neuroprotective effect on the damaged host neural and glial cells, and also could induce the transdifferentiation of transplanted bone marrow mesenchymal stem cells (BMSCs) into neural cells. OBJECTIVE: Based on the functions of the omentum of neuro-protection and vascularization, we hypothesize that the transplantation of BMSCs and pedicled greater omentum into injured rat spinal cord might improve the survival rate and neural differentiation of transplanted BMSCs and consequently gain a better functional outcome. DESIGN, TIME AND SETTING: A randomized, controlled animal experiment. The experiments were carried out at the Department of Anatomy, the Secondary Military Medical University of Chinese PLA between June 2005 and June 2007.MATERIALS: Fifteen male inbred Wistar rats, weighing (200±20) g, provided by the Experimental Animal Center of the Secondary Military Medical University of Chinese PLA were used and met the animal ethical standards. Mouse anti-BrdU and mouse anti-NF200 monoclonal antibody were purchased from Boster, China. METHODS: Cell culture: We used inbred Sprague-Dawley rats to harvest bone marrow for culture of BMSCs and transplantation to avoid possible immune rejection. BMSCs were cultured via total bone marrow adherence. Experimental grouping and intervention: The rats were randomly divided into a control group, cell group and combined group, five rats per group. Rats in the control group underwent spinal cord injury (SCI) only, during which an artery clamp with pressure force of 30 g was employed to compress the spinal cord at the T10 level for 30 seconds to produce the SCI model. 5 μL PBS containing 105

  5. Resveratrol Protects against TNF-α-Induced Injury in Human Umbilical Endothelial Cells through Promoting Sirtuin-1-Induced Repression of NF-KB and p38 MAPK.

    Directory of Open Access Journals (Sweden)

    Wei Pan

    Full Text Available Inflammation and reactive oxygen species (ROS play important roles in the pathogenesis of atherosclerosis. Resveratrol has been shown to possess anti-inflammatory and antioxidative stress activities, but the underlying mechanisms are not fully understood. In the present study, we investigated the molecular basis associated with the protective effects of resveratrol on tumor necrosis factor-alpha (TNF-α-induced injury in human umbilical endothelial cells (HUVECs using a variety of approaches including a cell viability assay, reverse transcription and quantitative polymerase chain reaction, western blot, and immunofluorescence staining. We showed that TNF-α induced CD40 expression and ROS production in cultured HUVECs, which were attenuated by resveratrol treatment. Also, resveratrol increased the expression of sirtuin 1 (SIRT1; and repression of SIRT1 by small-interfering RNA (siRNA and the SIRT1 inhibitor Ex527 reduced the inhibitory effects of resveratrol on CD40 expression and ROS generation. In addition, resveratrol downregulated the levels of p65 and phospho-p38 MAPK, but this inhibitory effect was attenuated by the suppression of SIRT1 activity. Moreover, the p38 MAPK inhibitor SD203580 and the nuclear factor (NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC achieved similar repressive effects as resveratrol on TNF-α-induced ROS generation and CD40 expression. Thus, our study provides a mechanistic link between resveratrol and the activation of SIRT1, the latter of which is involved in resveratrol-mediated repression of the p38 MAPK/NF-κB pathway and ROS production in TNF-α-treated HUVECs.

  6. Activation of the Notch signaling pathway promotes neurovascular repair after traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Qi-shan Ran; Yun-hu Yu; Xiao-hong Fu; Yuan-chao Wen

    2015-01-01

    The Notch signaling pathway plays a key role in angiogenesis and endothelial cell formation, but it remains unclear whether it is involved in vascular repair by endothelial progenitor cells after traumatic brain injury. Therefore, in the present study, we controlled the Notch signaling path-way using overexpression and knockdown constructs. Activation of the Notch signaling pathway by Notch1 or Jagged1 overexpression enhanced the migration, invasiveness and angiogenic ability of endothelial progenitor cells. Suppression of the Notch signaling pathway with Notch1 or Jagged1 siRNAs reduced the migratory capacity, invasiveness and angiogenic ability of endo-thelial progenitor cells. Activation of the Notch signaling pathwayin vivo in a rat model of mild traumatic brain injury promoted neurovascular repair. These ifndings suggest that the activation of the Notch signaling pathway promotes blood vessel formation and tissue repair after brain trauma.

  7. Neuroprotection of lipoic acid treatment promotes angiogenesis and reduces the glial scar formation after brain injury.

    Science.gov (United States)

    Rocamonde, B; Paradells, S; Barcia, J M; Barcia, C; García Verdugo, J M; Miranda, M; Romero Gómez, F J; Soria, J M

    2012-11-01

    After trauma brain injury, a large number of cells die, releasing neurotoxic chemicals into the extracellular medium, decreasing cellular glutathione levels and increasing reactive oxygen species that affect cell survival and provoke an enlargement of the initial lesion. Alpha-lipoic acid is a potent antioxidant commonly used as a treatment of many degenerative diseases such as multiple sclerosis or diabetic neuropathy. Herein, the antioxidant effects of lipoic acid treatment after brain cryo-injury in rat have been studied, as well as cell survival, proliferation in the injured area, gliogenesis and angiogenesis. Thus, it is shown that newborn cells, mostly corresponded with blood vessels and glial cells, colonized the damaged area 15 days after the lesion. However, lipoic acid was able to stimulate the synthesis of glutathione, decrease cell death, promote angiogenesis and decrease the glial scar formation. All those facts allow the formation of new neural tissue. In view of the results herein, lipoic acid might be a plausible pharmacological treatment after brain injury, acting as a neuroprotective agent of the neural tissue, promoting angiogenesis and reducing the glial scar formation. These findings open new possibilities for restorative strategies after brain injury, stroke or related disorders.

  8. Cell Delivery System for Traumatic Brain Injury

    Science.gov (United States)

    2008-03-21

    REPORT Cell Delivery System for Traumatic Brain Injury 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We have met all of the milestones outlined in this...COVERED (From - To) 18-Sep-2006 Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 17-Mar-2008 Cell Delivery System for Traumatic Brain Injury Report...Manassero*, Justin Kim*, Maureen St Georges*, Nicole Esclamado* and Elizabeth Orwin. “Development of a Cell Delivery System for Traumatic Brain Injury Using

  9. Locally Produced BDNF Promotes Sclerotic Change in Alveolar Bone after Nerve Injury

    Science.gov (United States)

    Ida-Yonemochi, Hiroko; Yamada, Yurie; Yoshikawa, Hiroyuki

    2017-01-01

    Brain-derived neurotrophic factor (BDNF), which is released due to nerve injury, is known to promote the natural healing of injured nerves. It is often observed that damage of mandibular canal induces local sclerotic changes in alveolar bone. We reported that peripheral nerve injury promotes the local production of BDNF; therefore, it was possible to hypothesize that peripheral nerve injury affects sclerotic changes in the alveolar bone. This study aimed to evaluate the effect of BDNF on osteogenesis using in vitro osteoblast-lineage cell culture and an in vivo rat osteotomy model. MC3T3-E1 cells were cultured with BDNF and were examined for cell proliferative activity, chemotaxis and mRNA expression levels of osteoblast differentiation markers. For in vivo study, inferior alveolar nerve (IAN) injury experiments and mandibular cortical osteotomy were performed using a rat model. In the osteotomy model, exogenous BDNF was applied to bone surfaces after corticotomy of the mandible, and we morphologically analyzed the new bone formation. As a result, mRNA expression of osteoblast differentiation marker, osteocalcin, was significantly increased by BDNF, although cell proliferation and migration were not affected. In the in vivo study, osteopontin-positive new bone formation was significantly accelerated in the BDNF-grafted groups, and active bone remodeling, involving trkB-positive osteoblasts and osteocytes, continued after 28 days. In conclusion, BDNF stimulated the differentiation of MC3T3-E1 cells and it promoted new bone formation and maturation. These results suggested that local BDNF produced by peripheral nerve injury contributes to accelerating sclerotic changes in the alveolar bone. PMID:28072837

  10. Stem cell-based therapies for spinal cord injury.

    Science.gov (United States)

    Nandoe Tewarie, Rishi S; Hurtado, Andres; Bartels, Ronald H; Grotenhuis, Andre; Oudega, Martin

    2009-01-01

    Spinal cord injury (SCI) results in loss of nervous tissue and consequently loss of motor and sensory function. There is no treatment available that restores the injury-induced loss of function to a degree that an independent life can be guaranteed. Transplantation of stem cells or progenitors may support spinal cord repair. Stem cells are characterized by self-renewal and their ability to become any cell in an organism. Promising results have been obtained in experimental models of SCI. Stem cells can be directed to differentiate into neurons or glia in vitro, which can be used for replacement of neural cells lost after SCI. Neuroprotective and axon regeneration-promoting effects have also been credited to transplanted stem cells. There are still issues related to stem cell transplantation that need to be resolved, including ethical concerns. This paper reviews the current status of stem cell application for spinal cord repair.

  11. Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Stephen J A Davies

    Full Text Available Repairing trauma to the central nervous system by replacement of glial support cells is an increasingly attractive therapeutic strategy. We have focused on the less-studied replacement of astrocytes, the major support cell in the central nervous system, by generating astrocytes from embryonic human glial precursor cells using two different astrocyte differentiation inducing factors. The resulting astrocytes differed in expression of multiple proteins thought to either promote or inhibit central nervous system homeostasis and regeneration. When transplanted into acute transection injuries of the adult rat spinal cord, astrocytes generated by exposing human glial precursor cells to bone morphogenetic protein promoted significant recovery of volitional foot placement, axonal growth and notably robust increases in neuronal survival in multiple spinal cord laminae. In marked contrast, human glial precursor cells and astrocytes generated from these cells by exposure to ciliary neurotrophic factor both failed to promote significant behavioral recovery or similarly robust neuronal survival and support of axon growth at sites of injury. Our studies thus demonstrate functional differences between human astrocyte populations and suggest that pre-differentiation of precursor cells into a specific astrocyte subtype is required to optimize astrocyte replacement therapies. To our knowledge, this study is the first to show functional differences in ability to promote repair of the injured adult central nervous system between two distinct subtypes of human astrocytes derived from a common fetal glial precursor population. These findings are consistent with our previous studies of transplanting specific subtypes of rodent glial precursor derived astrocytes into sites of spinal cord injury, and indicate a remarkable conservation from rat to human of functional differences between astrocyte subtypes. In addition, our studies provide a specific population of human

  12. Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury.

    Science.gov (United States)

    Davies, Stephen J A; Shih, Chung-Hsuan; Noble, Mark; Mayer-Proschel, Margot; Davies, Jeannette E; Proschel, Christoph

    2011-03-02

    Repairing trauma to the central nervous system by replacement of glial support cells is an increasingly attractive therapeutic strategy. We have focused on the less-studied replacement of astrocytes, the major support cell in the central nervous system, by generating astrocytes from embryonic human glial precursor cells using two different astrocyte differentiation inducing factors. The resulting astrocytes differed in expression of multiple proteins thought to either promote or inhibit central nervous system homeostasis and regeneration. When transplanted into acute transection injuries of the adult rat spinal cord, astrocytes generated by exposing human glial precursor cells to bone morphogenetic protein promoted significant recovery of volitional foot placement, axonal growth and notably robust increases in neuronal survival in multiple spinal cord laminae. In marked contrast, human glial precursor cells and astrocytes generated from these cells by exposure to ciliary neurotrophic factor both failed to promote significant behavioral recovery or similarly robust neuronal survival and support of axon growth at sites of injury. Our studies thus demonstrate functional differences between human astrocyte populations and suggest that pre-differentiation of precursor cells into a specific astrocyte subtype is required to optimize astrocyte replacement therapies. To our knowledge, this study is the first to show functional differences in ability to promote repair of the injured adult central nervous system between two distinct subtypes of human astrocytes derived from a common fetal glial precursor population. These findings are consistent with our previous studies of transplanting specific subtypes of rodent glial precursor derived astrocytes into sites of spinal cord injury, and indicate a remarkable conservation from rat to human of functional differences between astrocyte subtypes. In addition, our studies provide a specific population of human astrocytes that

  13. S-Nitrosoglutathione reduces oxidative injury and promotes mechanisms of neurorepair following traumatic brain injury in rats

    Directory of Open Access Journals (Sweden)

    Gilg Anne G

    2011-07-01

    Full Text Available Abstract Background Traumatic brain injury (TBI induces primary and secondary damage in both the endothelium and the brain parenchyma, collectively termed the neurovascular unit. While neurons die quickly by necrosis, a vicious cycle of secondary injury in endothelial cells exacerbates the initial injury in the neurovascular unit following TBI. In activated endothelial cells, excessive superoxide reacts with nitric oxide (NO to form peroxynitrite. Peroxynitrite has been implicated in blood brain barrier (BBB leakage, altered metabolic function, and neurobehavioral impairment. S-nitrosoglutathione (GSNO, a nitrosylation-based signaling molecule, was reported not only to reduce brain levels of peroxynitrite and oxidative metabolites but also to improve neurological function in TBI, stroke, and spinal cord injury. Therefore, we investigated whether GSNO promotes the neurorepair process by reducing the levels of peroxynitrite and the degree of oxidative injury. Methods TBI was induced by controlled cortical impact (CCI in adult male rats. GSNO or 3-Morpholino-sydnonimine (SIN-1 (50 μg/kg body weight was administered orally two hours following CCI. The same dose was repeated daily until endpoints. GSNO-treated (GSNO group or SIN-1-treated (SIN-1 group injured animals were compared with vehicle-treated injured animals (TBI group and vehicle-treated sham-operated animals (Sham group in terms of peroxynitrite, NO, glutathione (GSH, lipid peroxidation, blood brain barrier (BBB leakage, edema, inflammation, tissue structure, axon/myelin integrity, and neurotrophic factors. Results SIN-1 treatment of TBI increased whereas GSNO treatment decreased peroxynitrite, lipid peroxides/aldehydes, BBB leakage, inflammation and edema in a short-term treatment (4-48 hours. GSNO also reduced brain infarctions and enhanced the levels of NO and GSH. In a long-term treatment (14 days, GSNO protected axonal integrity, maintained myelin levels, promoted synaptic plasticity

  14. Oligodendrocyte-like cell transplantation for acute spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Yongtao Xu; Anmin Chen; Feng Li; Hougeng Lu

    2011-01-01

    In this study, we used insulin-like growth factor-1 to induce bone marrow mesenchymal stem cells (MSCs) to differentiate into oligodendrocyte-like cells. Cell surface marker identification showed that they expressed myelin basic protein and galactosylceramide, two specific markers of oligodendrocytes. These cells were transplanted into rats with acute spinal cord injury at T10. At 8 weeks post-implantation, oligodendrocyte-like cells were observed to have survived at the injury site. The critical angle of the inclined plane, and Basso, Beattie and Bresnahan scores were all increased. Furthermore, latencies of motion-evoked and somatosensory-evoked potentials were decreased. These results demonstrate that transplantation of oligodendrocytic-induced MSCs promote functional recovery of injured spinal cord.

  15. Transcranial amelioration of inflammation and cell death after brain injury

    Science.gov (United States)

    Roth, Theodore L.; Nayak, Debasis; Atanasijevic, Tatjana; Koretsky, Alan P.; Latour, Lawrence L.; McGavern, Dorian B.

    2014-01-01

    Traumatic brain injury (TBI) is increasingly appreciated to be highly prevalent and deleterious to neurological function. At present, no effective treatment options are available, and little is known about the complex cellular response to TBI during its acute phase. To gain insights into TBI pathogenesis, we developed a novel murine closed-skull brain injury model that mirrors some pathological features associated with mild TBI in humans and used long-term intravital microscopy to study the dynamics of the injury response from its inception. Here we demonstrate that acute brain injury induces vascular damage, meningeal cell death, and the generation of reactive oxygen species (ROS) that ultimately breach the glial limitans and promote spread of the injury into the parenchyma. In response, the brain elicits a neuroprotective, purinergic-receptor-dependent inflammatory response characterized by meningeal neutrophil swarming and microglial reconstitution of the damaged glial limitans. We also show that the skull bone is permeable to small-molecular-weight compounds, and use this delivery route to modulate inflammation and therapeutically ameliorate brain injury through transcranial administration of the ROS scavenger, glutathione. Our results shed light on the acute cellular response to TBI and provide a means to locally deliver therapeutic compounds to the site of injury.

  16. Bile-acid-induced cell injury and protection

    Institute of Scientific and Technical Information of China (English)

    Maria J Perez; Oscar Briz

    2009-01-01

    Several studies have characterized the cellular and molecular mechanisms of hepatocyte injury caused by the retention of hydrophobic bile acids (BAs) in cholestatic diseases. BAs may disrupt cell membranes through their detergent action on lipid components and can promote the generation of reactive oxygen species that, in turn, oxidatively modify lipids, proteins, and nucleic acids, and eventually cause hepatocyte necrosis and apoptosis. Several pathways are involved in triggering hepatocyte apoptosis. Toxic BAs can activate hepatocyte death receptors directly and induce oxidative damage, thereby causing mitochondrial dysfunction, and induce endoplasmic reticulum stress. When these compounds are taken up and accumulate inside biliary cells, they can also cause apoptosis. Regarding extrahepatic tissues, the accumulation of BAs in the systemic circulation may contribute to endothelial injury in the kidney and lungs. In gastrointestinal cells, BAs may behave as cancer promoters through an indirect mechanism involving oxidative stress and DNA damage, as well as acting as selection agents for apoptosis-resistant cells. The accumulation of BAs may have also deleterious effects on placental and fetal cells. However, other BAs, such as ursodeoxycholic acid, have been shown to modulate BA-induced injury in hepatocytes. The major beneficial effects of treatment with ursodeoxycholic acid are protection against cytotoxicity due to more toxic BAs; the stimulation of hepatobiliary secretion; antioxidant activity, due in part to an enhancement in glutathione levels; and the inhibition of liver cell apoptosis. Other natural BAs or their derivatives, such as cholyl-Nmethylglycine or cholylsarcosine, have also aroused pharmacological interest owing to their protective properties.

  17. The SDF-1/CXCR4 axis promotes recovery after spinal cord injury by mediating bone marrow-derived from mesenchymal stem cells.

    Science.gov (United States)

    Wang, Guo-Dong; Liu, Yi-Xun; Wang, Xiao; Zhang, Yong-Le; Zhang, Ya-Dong; Xue, Feng

    2017-01-13

    This study aims to explore the role of the SDF-1/CXCR4 axis in mediating BMSCs and SCI recovery. BMSCs were collected and SCI rat models were established. Wistar rats were assigned into the blank control, sham, SCI, SCI + BMSCs, SCI + BMSCs + SDF-1, SCI + BMSCs + AMD3100 (an inhibitor of SDF-1/CXCR4 axis) and SCI + BMSCs + SDF-1 + AMD3100 groups. Hind limb motor function was measured 7, 14, 21 and 28 days after operation. qRT-PCR, western blotting and ELISA was performed to determine the expressions of SDF-1, CXCR4, NGF, BDNF, GFAP and GAP-43, TNF-α, IL-1β, L-6 and IFN-γ. Hind limb motor function scores 7 days after the operation were reduced in the SCI rats of the blank control and sham groups. Hind limb function was found to be better in the SCI + BMSCs and SCI + BMSCs + SDF-1 groups than in the SCI, SCI + BMSCs + AMD3100 and SCI + BMSCs + SDF-1 + AMD3100 groups 14, 21 and 28 days after operation. Furthermore, the SCI group had lower SDF-1, CXCR4, NGF, BDNF and GAP-43 expressions but higher GFAP, TNF-α, IL-1β, IL-6 and IFN-γ than the blank control and sham groups 28 days after operation. While, the SCI + BMSCs, SCI + BMSCs + SDF-1 and SCI + BMSCs + SDF-1 + AMD3100 groups displayed opposite trends to the SCI and SCI + BMSCs + AMD3100 groups. In conclusion, SDF-1/CXCR4 axis promotes recovery after SCI by mediating BMSCs.

  18. [Advances in the mechanism of mesenchymal stem cells in promoting wound healing].

    Science.gov (United States)

    Zhu, Wenjing; Sun, Haobo; Lyu, Guozhong

    2015-12-01

    Mesenchymal stem cells possess the ability of self-renewal and multiple differentiation potential, thus exert immunomodulatory effect during tissue repair. Mesenchymal stem cells can stimulate angiogenesis and promote tissue repair through transdifferentiation and secreting a variety of growth factors and cytokines. This review outlines the advances in the mechanism of mesenchymal stem cells in promoting wound healing, including alleviation of inflammatory response, induction of angiogenesis, and promotion of migration of mesenchymal stem cells to the site of tissue injury.

  19. Mesenchymal stromal cells for traumatic brain injury

    OpenAIRE

    Pischiutta,

    2014-01-01

    The multiple pathological cascades activated after traumatic brain injury (TBI) and their extended nature offer the possibility for therapeutic interventions possibly affecting multiple injury mechanisms simultaneously. Mesenchymal stromal cell (MSC) therapy matches this need, being a bioreactor of a variety of molecules able to interact and modify the injured brain microenvironment. Compared to autologous MSCs, bank stored GMP-graded allogenic MSCs appear to be a realistic choice for TBI ...

  20. Mesenchymal Stromal Cell-Derived Factors Promote Tissue Repair in a Small-for-Size Ischemic Liver Model but Do Not Protect against Early Effects of Ischemia and Reperfusion Injury

    NARCIS (Netherlands)

    S.M.G. Fouraschen (Suomi M. G.); J.H. Wolf (Joshua H.); L.J.W. van der Laan (Luc); P.E. de Ruiter (Petra E.); W. Hancock; J.P. Van Kooten (Job P.); M.M.A. Verstegen (Monique); K.M. Olthoff (Kim); J. de Jonge (Jeroen)

    2015-01-01

    textabstractLoss of liver mass and ischemia/reperfusion injury (IRI) are major contributors to postresectional liver failure and small-for-size syndrome. Mesenchymal stromal cell-(MSC-) secreted factors are described to stimulate regeneration after partial hepatectomy. This study investigates if liv

  1. TLR4 activation promotes podocyte injury and interstitial fibrosis in diabetic nephropathy.

    Directory of Open Access Journals (Sweden)

    Jin Ma

    Full Text Available Toll like receptor (TLR 4 has been reported to promote inflammation in diabetic nephropathy. However the role of TLR4 in the complicated pathophysiology of diabetic nephropathy is not understood. In this study, we report elevated expression of TLR4, its endogenous ligands and downstream cytokines, chemokines and fibrogenic genes in diabetic nephropathy in WT mice with streptozotocin (STZ diabetes. Subsequently, we demonstrated that TLR4-/- mice were protected against the development of diabetic nephropathy, exhibiting less albuminuria, inflammation, glomerular hypertrophy and hypercellularity, podocyte and tubular injury as compared to diabetic wild-type controls. Marked reductions in interstitial collagen deposition, myofibroblast activation (α-SMA and expression of fibrogenic genes (TGF-β and fibronectin were also evident in TLR4 deficient mice. Consistent with our in vivo results, high glucose directly promoted TLR4 activation in podocytes and tubular epithelial cells in vitro, resulting in NF-κB activation and consequent inflammatory and fibrogenic responses. Our data indicate that TLR4 activation may promote inflammation, podocyte and tubular epithelial cell injury and interstitial fibrosis, suggesting TLR4 is a potential therapeutic target for diabetic nephropathy.

  2. The Influence of Copper (Cu) Deficiency in a Cardiomyocyte Cell Model (HL-1 Cell) of Ischemia/Reperfusion Injury

    Science.gov (United States)

    Mitochondria are important mediators of cell death and this study examines whether mitochondrial dysfunction caused by Cu deprivation promotes cell death in a cell culture model for ischemia/reperfusion injury in cardiomyocytes. HL-1 cells (kindly donated by Dr. William C. Claycomb, LSU Health Scien...

  3. Co-ultramicronized palmitoylethanolamide/luteolin promotes neuronal regeneration after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Rosalia eCrupi

    2016-03-01

    Full Text Available Spinal cord injury (SCI stimulates activation of astrocytes and infiltration of immune cells at the lesion site; however, the mechanism that promotes the birth of new neurons is still under debate. Neuronal regeneration is restricted after spinal cord injury, but can be stimulated by experimental intervention. Previously we demonstrated that treatment co-ultramicronized palmitoylethanolamide and luteolin, namely co-ultraPEALut, reduced inflammation. The present study was designed to explore the neuroregenerative properties of co-ultra PEALut in an estabished murine model of SCI. A vascular clip was applied to the spinal cord dura at T5 to T8 to provoke injury. Mice were treated with co-ultraPEALut (1 mg/kg, intraperitoneally daily for 72 h after SCI. Co-ultraPEALut increased the numbers of both bromodeoxyuridine-positive nuclei and doublecortin-immunoreactive cells in the spinal cord of injured mice. To correlate neuronal development with synaptic plasticity a Golgi method was employed to analyze dendritic spine density. Co-ultraPEALut administration stimulated expression of the neurotrophic factors brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, nerve growth factor and neurotrophin-3. These findings show a prominent effect of co-ultraPEALut administration in the management of survival and differentiation of new neurons and spine maturation, and may represent a therapeutic treatment for spinal cord and other traumatic diseases.

  4. DAP12 expression in lung macrophages mediates ischemia/reperfusion injury by promoting neutrophil extravasation.

    Science.gov (United States)

    Spahn, Jessica H; Li, Wenjun; Bribriesco, Alejandro C; Liu, Jie; Shen, Hua; Ibricevic, Aida; Pan, Jie-Hong; Zinselmeyer, Bernd H; Brody, Steven L; Goldstein, Daniel R; Krupnick, Alexander S; Gelman, Andrew E; Miller, Mark J; Kreisel, Daniel

    2015-04-15

    Neutrophils are critical mediators of innate immune responses and contribute to tissue injury. However, immune pathways that regulate neutrophil recruitment to injured tissues during noninfectious inflammation remain poorly understood. DAP12 is a cell membrane-associated protein that is expressed in myeloid cells and can either augment or dampen innate inflammatory responses during infections. To elucidate the role of DAP12 in pulmonary ischemia/reperfusion injury (IRI), we took advantage of a clinically relevant mouse model of transplant-mediated lung IRI. This technique allowed us to dissect the importance of DAP12 in tissue-resident cells and those that infiltrate injured tissue from the periphery during noninfectious inflammation. Macrophages in both mouse and human lungs that have been subjected to cold ischemic storage express DAP12. We found that donor, but not recipient, deficiency in DAP12 protected against pulmonary IRI. Analysis of the immune response showed that DAP12 promotes the survival of tissue-resident alveolar macrophages and contributes to local production of neutrophil chemoattractants. Intravital imaging demonstrated a transendothelial migration defect into DAP12-deficient lungs, which can be rescued by local administration of the neutrophil chemokine CXCL2. We have uncovered a previously unrecognized role for DAP12 expression in tissue-resident alveolar macrophages in mediating acute noninfectious tissue injury through regulation of neutrophil trafficking.

  5. Neutrophil-induced injury of rat pulmonary alveolar epithelial cells.

    Science.gov (United States)

    Simon, R H; DeHart, P D; Todd, R F

    1986-11-01

    The damage to pulmonary alveolar epithelial cells that occurs in many inflammatory conditions is thought to be caused in part by phagocytic neutrophils. To investigate this process, we exposed monolayers of purified rat alveolar epithelial cells to stimulated human neutrophils and measured cytotoxicity using a 51Cr-release assay. We found that stimulated neutrophils killed epithelial cells by a process that did not require neutrophil-generated reactive oxygen metabolites. Pretreatment of neutrophils with an antibody (anti-Mo1) that reduced neutrophil adherence to epithelial cells limited killing. Although a variety of serine protease inhibitors partially inhibited cytotoxicity, we found that neutrophil cytoplasts, neutrophil lysates, neutrophil-conditioned medium, purified azurophilic or specific granule contents, and purified human neutrophil elastase did not duplicate the injury. We conclude that stimulated neutrophils can kill alveolar epithelial cells in an oxygen metabolite-independent manner. Tight adherence of stimulated neutrophils to epithelial cell monolayers appears to promote epithelial cell killing.

  6. Diazoxide promotes oligodendrocyte precursor cell proliferation and myelination.

    Directory of Open Access Journals (Sweden)

    Birgit Fogal

    Full Text Available BACKGROUND: Several clinical conditions are associated with white matter injury, including periventricular white matter injury (PWMI, which is a form of brain injury sustained by preterm infants. It has been suggested that white matter injury in this condition is due to altered oligodendrocyte (OL development or death, resulting in OL loss and hypomyelination. At present drugs are not available that stimulate OL proliferation and promote myelination. Evidence suggests that depolarizing stimuli reduces OL proliferation and differentiation, whereas agents that hyperpolarize OLs stimulate OL proliferation and differentiation. Considering that the drug diazoxide activates K(ATP channels to hyperpolarize cells, we tested if this compound could influence OL proliferation and myelination. METHODOLOGY/FINDINGS: Studies were performed using rat oligodendrocyte precursor cell (OPC cultures, cerebellar slice cultures, and an in vivo model of PWMI in which newborn mice were exposed to chronic sublethal hypoxia (10% O(2. We found that K(ATP channel components Kir 6.1 and 6.2 and SUR2 were expressed in oligodendrocytes. Additionally, diazoxide potently stimulated OPC proliferation, as did other K(ATP activators. Diazoxide also stimulated myelination in cerebellar slice cultures. We also found that diazoxide prevented hypomyelination and ventriculomegaly following chronic sublethal hypoxia. CONCLUSIONS: These results identify KATP channel components in OLs and show that diazoxide can stimulate OL proliferation in vitro. Importantly we find that diazoxide can promote myelination in vivo and prevent hypoxia-induced PWMI.

  7. Brain Injury with Sickle Cell Disease

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2003-11-01

    Full Text Available The relationship between brain injury and vasculopathy in 146 sickle cell (SCD patients with hemoglobin SS, the most serious form of SCD, was evaluated by MRI and MRA at St Jude Children’s Research Hospital, Memphis, TN.

  8. Airway epithelial cell responses to ozone injury

    Energy Technology Data Exchange (ETDEWEB)

    Leikauf, G.D.; Simpson, L.G.; Zhao, Qiyu [Univ. of Cincinnati Medical Center, OH (United States)] [and others

    1995-03-01

    The airway epithelial cell is an important target in ozone injury. Once activated, the airway epithelium responds in three phases. The initial, or immediate phase, involves activation of constitutive cells, often through direct covalent interactions including the formation of secondary ozonolysis products-hydroxyhydroperoxides, aldehydes, and hydrogen peroxide. Recently, we found hydroxyhydroperoxides to be potent agonists; of bioactive eicosanoid formation by human airway epithelial cells in culture. Other probable immediate events include activation and inactivation of enzymes present on the epithelial surface (e.g., neutral endopeptidase). During the next 2 to 24 hr, or early phase, epithelial cells respond by synthesis and release of chemotactic factors, including chemokines-macrophage inflammatory protein-2, RANTES, and interleukin-8. Infiltrating leukocytes during this period also release elastase, an important agonist of epithelial cell mucus secretion and additional chemokine formation. The third (late) phase of ozone injury is characterized by eosinophil or monocyte infiltration. Cytokine expression leads to alteration of structural protein synthesis, with increases in fibronectin evident by in situ hybridization. Synthesis of epithelial antiproteases, e.g., secretary leukocyte protease inhibitor, may also increase locally 24 to 48 hr after elastase concentrations become excessive. Thus, the epithelium is not merely a passive barrier to ozone injury but has a dynamic role in directing the migration, activating, and then counteracting inflammatory cells. Through these complex interactions, epithelial cells can be viewed as the initiators (alpha) and the receptors (omega) of ozone-induced airway disease. 51 refs., 2 figs., 3 tabs.

  9. Human periodontal ligament stem cells repair mental nerve injury*

    Institute of Scientific and Technical Information of China (English)

    Bohan Li; Hun-Jong Jung; Soung-Min Kim; Myung-Jin Kim; Jeong Won Jahng; Jong-Ho Lee

    2013-01-01

    Human periodontal ligament stem cells are easily accessible and can differentiate into Schwann cells. We hypothesized that human periodontal ligament stem cells can be used as an alternative source for the autologous Schwann cells in promoting the regeneration of injured peripheral nerve. To validate this hypothesis, human periodontal ligament stem cells (1 × 106) were injected into the crush-injured left mental nerve in rats. Simultaneously, autologous Schwann cells (1 × 106) and PBS were also injected as controls. Real-time reverse transcriptase polymerase chain reaction showed that at 5 days after injection, mRNA expression of low affinity nerve growth factor receptor was sig-nificantaly increased in the left trigeminal ganglion of rats with mental nerve injury. Sensory tests, histomorphometric evaluation and retrograde labeling demonstrated that at 2 and 4 weeks after in-jection, sensory function was significantly improved, the numbers of retrograde labeled sensory neurons and myelinated axons were significantly increased, and human periodontal ligament stem cells and autologous Schwann cells exhibited similar therapeutic effects. These findings suggest that transplantation of human periodontal ligament stem cells show a potential value in repair of mental nerve injury.

  10. Study of bone marrow stromal cells labered transplantation in promoting ligamentum cruciatum anterius injury healing%骨髓基质干细胞移植促进兔交叉韧带损伤愈合的研究

    Institute of Scientific and Technical Information of China (English)

    齐勇; 李晓燕; 李东卿; 孙鸿涛; 徐汪洋; 李贵涛

    2012-01-01

    into two groups:Group A was selected as treatment group to undergo BMSCs transplantation for treatment, Group B was only injected with saline solution as the control one. Outcome measures included: collagen immuno-histochemical analysis,histological analysis, reverse transcript inn polym erase chain reaction to detect the transforming growth factor-beta and vascular epithelial growth factor ( VEGF ) expression, and resistance to traction machine for axial load test. Results Group A demonstrated stronger staining for type-IH collagen at seven days after incision and stronger staining for type- I collagen at 4 weeks than did the control group; Expression of TGF-p and VEGF in the experiment group was significant increased compared with control group at 7 days after the injection of BMCs ( TGF-p: 1. 3 vs. 0. 6, P < 0. 01 ; VEGF: 1.5 vs. Or 0. 9, P < 0.01 ). Extreme load testing showed that the group A, which underwent BMSC transplantation, was significantly stronger than the control group at 4 and 6 weeks after the treatment. At 8 weeks after the treatment, the strength of ligamentum criiciatum anterius of the group A was close to that of the normal ligament. Conclusions By migrating to the ligament injury,BMSCs can divide into fibroblast cells, produce cytokine and synthesis of types I , IH collagen fibers, and then promote the ligamentiim criiciatum anterius injury healing. Transplantation of BMSCs may be a potentially effective treatment method for ligamentiim criiciatum anterius injury.

  11. Stem cells and repair of lung injuries

    Directory of Open Access Journals (Sweden)

    Randell Scott H

    2004-07-01

    Full Text Available Abstract Fueled by the promise of regenerative medicine, currently there is unprecedented interest in stem cells. Furthermore, there have been revolutionary, but somewhat controversial, advances in our understanding of stem cell biology. Stem cells likely play key roles in the repair of diverse lung injuries. However, due to very low rates of cellular proliferation in vivo in the normal steady state, cellular and architectural complexity of the respiratory tract, and the lack of an intensive research effort, lung stem cells remain poorly understood compared to those in other major organ systems. In the present review, we concisely explore the conceptual framework of stem cell biology and recent advances pertinent to the lungs. We illustrate lung diseases in which manipulation of stem cells may be physiologically significant and highlight the challenges facing stem cell-related therapy in the lung.

  12. Mitofusin-2 protects against cold stress-induced cell injury in HEK293 cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenbin; Chen, Yaomin; Yang, Qun; Che, Honglei; Chen, Xiangjun; Yao, Ting; Zhao, Fang; Liu, Mingchao; Ke, Tao [Department of Occupational and Environmental Health, School of Public Health, Fourth Military Medical University, Xi' an 710032 (China); Chen, Jingyuan, E-mail: jy_chen@fmmu.edu.cn [Department of Occupational and Environmental Health, School of Public Health, Fourth Military Medical University, Xi' an 710032 (China); Luo, Wenjing, E-mail: luowenj@fmmu.edu.cn [Department of Occupational and Environmental Health, School of Public Health, Fourth Military Medical University, Xi' an 710032 (China)

    2010-06-25

    Mitochondrial impairment is hypothesized to contribute to cell injury during cold stress. Mitochondria fission and fusion are closely related in the function of the mitochondria, but the precise mechanisms whereby these processes regulate cell injury during cold stress remain to be determined. HEK293 cells were cultured in a cold environment (4.0 {+-} 0.1 {sup o}C) for 2, 4, 8, or 12 h. Western blot analyses showed that these cells expressed decreased fission-related protein Drp1 and increased fusion-related protein Mfn2 at 4 h; meanwhile, electron microscopy analysis revealed large and long mitochondrial morphology within these cells, indicating increased mitochondrial fusion. With silencing of Mfn2 but not of Mfn1 by siRNA promoted cold-stress-induced cell death with decreased ATP production in HEK293 cells. Our results show that increased expression of Mfn2 and mitochondrial fusion are important for mitochondrial function as well as cell survival during cold stress. These findings have important implications for understanding the mechanisms of mitochondrial fusion and fission in cold-stress-induced cell injury.

  13. Skeletal muscle cell apoptosis following motornerve injury versus sensory nerve injury

    Institute of Scientific and Technical Information of China (English)

    Lei Zhao; Ruisheng Xu; Shenyang Jiang; Guangming Lü; Zhiqiang Yan; Junming Sun; Ling Wang; Ye Xue; Donglin Jiang

    2011-01-01

    Skeletal muscle atrophy inevitably occurs in denervated skeletal muscle, and cell apoptosis plays an important role in skeletal muscle atrophy and degeneration. The present study established rat models of simple nerve injury by transecting the ventral or dorsal spinal nerve root and observed rat skeletal muscle cell apoptosis following simple motor nerve injury versus simple sensory nerve injury. Following skeletal muscle denervation for 10 weeks, cell apoptosis was detected in skeletal muscle, which was accompanied by obvious changes in rat behavior and electrophysiological responses. In addition, changes in cross-sectional area and average gray-scale of motor endplates of the gastrocnemius muscle were analyzed following sciatic nerve injury and motor nerve injury.Cell nuclei in denervated skeletal muscle tissue were more densely arranged than in normal skeletal muscle tissue. Cell nuclei were most dense in the sciatic nerve injury group, followed by the motor nerve injury group and the sensory nerve injury group. Fas/Fast expression and the number of apoptotic cells increased in denervated skeletal muscle, and apoptosis-related changes were observed. These findings suggested that motor and sensory nerves provided trophic actions following skeletal muscle and motor nerve injury, resulting in a greater influence on skeletal muscle atrophy than sensory nerve injury. Therefore, reconstruction of motor nerves should be preferentially considered for treating denervation-induced skeletal muscle atrophy.

  14. Promoting Statistical Thinking in Schools with Road Injury Data

    Science.gov (United States)

    Woltman, Marie

    2017-01-01

    Road injury is an immediately relevant topic for 9-19 year olds. Current availability of Open Data makes it increasingly possible to find locally relevant data. Statistical lessons developed from these data can mutually reinforce life lessons about minimizing risk on the road. Devon County Council demonstrate how a wide array of statistical…

  15. Hydrogen-rich saline injection into the subarachnoid cavity within 2 weeks promotes recovery after acute spinal cord injury

    Directory of Open Access Journals (Sweden)

    Jian-long Wang

    2015-01-01

    Full Text Available Hydrogen can relieve tissue-damaging oxidative stress, inflammation and apoptosis. Injection of hydrogen-rich saline is an effective method for transporting molecular hydrogen. We hypothesized that hydrogen-rich saline would promote the repair of spinal cord injury induced by Allen′s method in rats. At 0.5, 1, 2, 4, 8, 12 and 24 hours after injury, then once daily for 2 weeks, 0.25 mL/kg hydrogen-rich saline was infused into the subarachnoid space through a catheter. Results at 24 hours, 48 hours, 1 week and 2 weeks after injury showed that hydrogen-rich saline markedly reduced cell death, inflammatory cell infiltration, serum malondialdehyde content, and caspase-3 immunoreactivity, elevated serum superoxide dismutase activity and calcitonin gene-related peptide immunoreactivity, and improved motor function in the hindlimb. The present study confirms that hydrogen-rich saline injected within 2 weeks of injury effectively contributes to the repair of spinal cord injury in the acute stage.

  16. Transplantation of neural progenitor cells differentiated from adipose tissue-derived stem cells for treatment of sciatic nerve injury

    Institute of Scientific and Technical Information of China (English)

    Shasha Dong§; Na Liu§; Yang Hu ; Ping Zhang; Chao Pan; Youping Zhang; Yingxin Tang; Zhouping Tang 

    2016-01-01

    Objectives: Currently, the clinical repair of sciatic nerve injury remains difficult. Previous studies have confirmed that transplantation of adipose tissue-derived stem cells promotes nerve regeneration and restoration at peripheral nerve injury sites. Methods:In this study, adipose tissue-derived stem cells were induced to differentiate into neural progenitor cells, transfected with a green fluorescent protein-containing lentivirus, and then transplanted into the lesions of rats with sciatic nerve compression injury. Results: Fluorescence microscopy revealed that the transplanted cells survived, migrated, and differentiated in rats. At two weeks post-operation, a large number of transplanted cells had migrated to the injured lesions; at six weeks post-operation, transplanted cells were visible around the injured nerve and several cells were observed to express a Schwann cell marker. Sciatic function index and electrophysiological outcomes of the transplantation group were better than those of the control group. Cell transplantation promoted the recovery of motor nerve conduction velocity and com-pound muscle action potential amplitude, and reduced gastrocnemius muscle atrophy. Conclusions: Our experimental findings indicate that neural progenitor cells, differentiated from adipose tissue-derived stem cells, are potential seed stem cells that can be transplanted into lesions to treat sciatic nerve injury. This provides a theoretical basis for their use in clinical applications.

  17. The Role of Mesenchymal Stem Cells in Promoting Ovarian Cancer Growth and Spread

    Science.gov (United States)

    2014-12-01

    home to tissue injury. Monocyte polarization into the classically activated pro- inflam - matory macrophages (M1) occurs early on in tissue repair, whereas...AWARD NUMBER: W81XWH-12-1-0438 TITLE: The Role of Mesenchymal Stem Cells in Promoting Ovarian Cancer Growth and Spread PRINCIPAL INVESTIGATOR...SUBTITLE The Role of Mesenchymal Stem Cells in Promoting Ovarian Cancer Growth and Spread 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0438 5c

  18. Edaravone combined with Schwann cell transplantation may repair spinal cord injury in rats

    Directory of Open Access Journals (Sweden)

    Shu-quan Zhang

    2015-01-01

    Full Text Available Edaravone has been shown to delay neuronal apoptosis, thereby improving nerve function and the microenvironment after spinal cord injury. Edaravone can provide a favorable environment for the treatment of spinal cord injury using Schwann cell transplantation. This study used rat models of complete spinal cord transection at T 9. Six hours later, Schwann cells were transplanted in the head and tail ends of the injury site. Simultaneously, edaravone was injected through the caudal vein. Eight weeks later, the PKH-26-labeled Schwann cells had survived and migrated to the center of the spinal cord injury region in rats after combined treatment with edaravone and Schwann cells. Moreover, the number of PKH-26-labeled Schwann cells in the rat spinal cord was more than that in rats undergoing Schwann cell transplantation alone or rats without any treatment. Horseradish peroxidase retrograde tracing revealed that the number of horseradish peroxidase-positive nerve fibers was greater in rats treated with edaravone combined withSchwann cells than in rats with Schwann cell transplantation alone. The results demonstrated that lower extremity motor function and neurophysiological function were better in rats treated with edaravone and Schwann cells than in rats with Schwann cell transplantation only. These data confirmed that Schwann cell transplantation combined with edaravone injection promoted the regeneration of nerve fibers of rats with spinal cord injury and improved neurological function.

  19. Cell Transplantation for Spinal Cord Injury: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Jun Li

    2013-01-01

    Full Text Available Cell transplantation, as a therapeutic intervention for spinal cord injury (SCI, has been extensively studied by researchers in recent years. A number of different kinds of stem cells, neural progenitors, and glial cells have been tested in basic research, and most have been excluded from clinical studies because of a variety of reasons, including safety and efficacy. The signaling pathways, protein interactions, cellular behavior, and the differentiated fates of experimental cells have been studied in vitro in detail. Furthermore, the survival, proliferation, differentiation, and effects on promoting functional recovery of transplanted cells have also been examined in different animal SCI models. However, despite significant progress, a “bench to bedside” gap still exists. In this paper, we comprehensively cover publications in the field from the last years. The most commonly utilized cell lineages were covered in this paper and specific areas covered include survival of grafted cells, axonal regeneration and remyelination, sensory and motor functional recovery, and electrophysiological improvements. Finally we also review the literature on the in vivo tracking techniques for transplanted cells.

  20. Galectin-3 released in response to traumatic brain injury acts as an alarmin orchestrating brain immune response and promoting neurodegeneration

    Science.gov (United States)

    Yip, Ping Kei; Carrillo-Jimenez, Alejandro; King, Paul; Vilalta, Anna; Nomura, Koji; Chau, Chi Cheng; Egerton, Alexander Michael Scott; Liu, Zhuo-Hao; Shetty, Ashray Jayaram; Tremoleda, Jordi L.; Davies, Meirion; Deierborg, Tomas; Priestley, John V.; Brown, Guy Charles; Michael-Titus, Adina Teodora; Venero, Jose Luis; Burguillos, Miguel Angel

    2017-01-01

    Traumatic brain injury (TBI) is currently a major cause of morbidity and poor quality of life in Western society, with an estimate of 2.5 million people affected per year in Europe, indicating the need for advances in TBI treatment. Within the first 24 h after TBI, several inflammatory response factors become upregulated, including the lectin galectin-3. In this study, using a controlled cortical impact (CCI) model of head injury, we show a large increase in the expression of galectin-3 in microglia and also an increase in the released form of galectin-3 in the cerebrospinal fluid (CSF) 24 h after head injury. We report that galectin-3 can bind to TLR-4, and that administration of a neutralizing antibody against galectin-3 decreases the expression of IL-1β, IL-6, TNFα and NOS2 and promotes neuroprotection in the cortical and hippocampal cell populations after head injury. Long-term analysis demonstrated a significant neuroprotection in the cortical region in the galectin-3 knockout animals in response to TBI. These results suggest that following head trauma, released galectin-3 may act as an alarmin, binding, among other proteins, to TLR-4 and promoting inflammation and neuronal loss. Taking all together, galectin-3 emerges as a clinically relevant target for TBI therapy. PMID:28128358

  1. Baculovirus ETL promoter acts as a shuttle promoter between insect cells and mammalian cells

    Institute of Scientific and Technical Information of China (English)

    Yu-kou LIU; Chih-chieh CHU; Tzong-yuan WU

    2006-01-01

    Aim:To identify a shuttle promoter that can mediate gene expression in both insect cells and mammalian cells to facilitate the development of a baculovirus vector-based mammalian cell gene delivery vehicle.Methods:Recombinant baculoviruses carrying the β-galactosidase reporter gene under the control of an early to late(ETL)promoter of the Autographa califomica multiple nuclear polyhedrosis virus(AcMNPV)or a cytomegalovirus immediate early promoter (CMV promoter)were constructed.COS1,HeLa,CHO-K1,hFob1.19,and MCF-7 mammalian cells were tested for the expression of β-galactosidase.Results:ETL promoter activity was higher in bone-derived hFob1.19 than in COS1,HeLa,CHOK1,or MCF-7 mammalian cells.The transient plasmid transfection assay indicated that ETL promoter activity in mammalian cells was dependent on baculovirus gene expression.Conclusion:ETL promoter activity in mammalian cells is baculovirus gene expression-dependent,and the shuttle promoter will facilitate the application of baculovirus expression vectors in mammalian cell expression systems and for gene therapy.

  2. Repressor and activator protein accelerates hepatic ischemia reperfusion injury by promoting neutrophil inflammatory response.

    Science.gov (United States)

    Li, Chang Xian; Lo, Chung Mau; Lian, Qizhou; Ng, Kevin Tak-Pan; Liu, Xiao Bing; Ma, Yuen Yuen; Qi, Xiang; Yeung, Oscar Wai Ho; Tergaonkar, Vinay; Yang, Xin Xiang; Liu, Hui; Liu, Jiang; Shao, Yan; Man, Kwan

    2016-05-10

    Repressor and activator protein (Rap1) directly regulates nuclear factor-κB (NF-κB) dependent signaling, which contributes to hepatic IRI. We here intended to investigate the effect of Rap1 in hepatic ischemia reperfusion injury (IRI) and to explore the underlying mechanisms. The association of Rap1 expression with hepatic inflammatory response were investigated in both human and rat liver transplantation. The effect of Rap1 in hepatic IRI was studied in Rap1 knockout mice IRI model in vivo and primary cells in vitro. Our results showed that over expression of Rap1 was associated with severe liver graft inflammatory response, especially in living donor liver transplantation. The results were also validated in rat liver transplantation model. In mice hepatic IRI model, the knockout of Rap1 reduced hepatic damage and hepatic inflammatory response. In primary cells, the knockout of Rap1 suppressed neutrophils migration activity and adhesion in response to liver sinusoidal endothelial cells through down-regulating neutrophils F-Actin expression and CXCL2/CXCR2 pathway. In addition, the knockout of Rap1 also decreased production of pro-inflammatory cytokines/chemokines in primary neutrophils and neutrophils-induced hepatocyte damage. In conclusion, Rap1 may induce hepatic IRI through promoting neutrophils inflammatory response. Rap1 may be the potential therapeutic target of attenuating hepatic IRI.

  3. Renin Lineage Cells Repopulate the Glomerular Mesangium after Injury

    OpenAIRE

    Starke, Charlotte; Betz, Hannah; Hickmann, Linda; Lachmann, Peter; Neubauer, Björn; Kopp, Jeffrey B.; Sequeira-Lopez, Maria Luisa S; Gomez, R. Ariel; Hohenstein, Bernd; Todorov, Vladimir T.; Hugo, Christian P. M.

    2014-01-01

    Mesangial cell injury has a major role in many CKDs. Because renin-positive precursor cells give rise to mesangial cells during nephrogenesis, this study tested the hypothesis that the same phenomenon contributes to glomerular regeneration after murine experimental mesangial injury. Mesangiolysis was induced by administration of an anti-mesangial cell serum in combination with LPS. In enhanced green fluorescent protein–reporter mice with constitutively labeled renin lineage cells, the size of...

  4. Erythropoietin promotes oligodendrogenesis and myelin repair following lysolecithin-induced injury in spinal cord slice culture

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yun Kyung; Kim, Gunha; Park, Serah; Sim, Ju Hee; Won, You Jin [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736 (Korea, Republic of); Hwang, Chang Ho [Department of Physical Medicine and Rehabilitation, Ulsan University Hospital, University of Ulsan College of Medicine, 290-3 Jeonha-dong, Dong-gu, Ulsan 682-714 (Korea, Republic of); Yoo, Jong Yoon, E-mail: jyyoo@amc.seoul.kr [Department of Rehabilitation Medicine, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736 (Korea, Republic of); Hong, Hea Nam, E-mail: hnhong@amc.seoul.kr [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736 (Korea, Republic of)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Lysolecithin-induced demyelination elevated EpoR expression in OPCs. Black-Right-Pointing-Pointer In association with elevated EpoR, EPO increased OPCs proliferation. Black-Right-Pointing-Pointer EPO enhanced the oligodendrogenesis via activation of JAK2 pathway. Black-Right-Pointing-Pointer EPO promoted myelin repair following lysolecithin-induced demyelination. -- Abstract: Here, we sought to delineate the effect of EPO on the remyelination processes using an in vitro model of demyelination. We report that lysolecithin-induced demyelination elevated EPO receptor (EpoR) expression in oligodendrocyte progenitor cells (OPCs), facilitating the beneficial effect of EPO on the formation of oligodendrocytes (oligodendrogenesis). In the absence of EPO, the resultant remyelination was insufficient, possibly due to a limiting number of oligodendrocytes rather than their progenitors, which proliferate in response to lysolecithin-induced injury. By EPO treatment, lysolecithin-induced proliferation of OPCs was accelerated and the number of myelinating oligodendrocytes and myelin recovery was increased. EPO also enhanced the differentiation of neural progenitor cells expressing EpoR at high level toward the oligodendrocyte-lineage cells through activation of cyclin E and Janus kinase 2 pathways. Induction of myelin-forming oligodendrocytes by high dose of EPO implies that EPO might be the key factor influencing the final differentiation of OPCs. Taken together, our data suggest that EPO treatment could be an effective way to enhance remyelination by promoting oligodendrogenesis in association with elevated EpoR expression in spinal cord slice culture after lysolecithin-induced demyelination.

  5. Schwann cells express erythropoietin receptor and represent a major target for Epo in peripheral nerve injury.

    Science.gov (United States)

    Li, Xiaoqing; Gonias, Steven L; Campana, W Marie

    2005-09-01

    Erythropoietin (Epo) expresses potent neuroprotective activity in the peripheral nervous system; however, the underlying mechanism remains incompletely understood. In this study, we demonstrate that Epo is upregulated in sciatic nerve after chronic constriction injury (CCI) and crush injury in rats, largely due to local Schwann cell production. In uninjured and injured nerves, Schwann cells also express Epo receptor (EpoR), and its expression is increased during Wallerian degeneration. CCI increased the number of Schwann cells at the injury site and the number was further increased by exogenously administered recombinant human Epo (rhEpo). To explore the activity of Epo in Schwann cells, primary cultures were established. These cells expressed cell-surface Epo receptors, with masses of 71 and 62 kDa, as determined by surface protein biotinylation and affinity precipitation. The 71-kDa species was rapidly but transiently tyrosine-phosphorylated in response to rhEpo. ERK/MAP kinase was also activated in rhEpo-treated Schwann cells; this response was blocked by pharmacologic antagonism of JAK-2. RhEpo promoted Schwann cell proliferation, as determined by BrdU incorporation. Cell proliferation was ERK/MAP kinase-dependent. These results support a model in which Schwann cells are a major target for Epo in injured peripheral nerves, perhaps within the context of an autocrine signaling pathway. EpoR-induced cell signaling and Schwann cell proliferation may protect injured peripheral nerves and promote regeneration.

  6. The protective effect of dopamine against OGD/R injury-induced cell death in HT22 mouse hippocampal cells.

    Science.gov (United States)

    Wang, Wenzhu; Zhao, Lixi; Bai, Fan; Zhang, Tong; Dong, Hao; Liu, Lixu

    2016-03-01

    Previous studies have shown that levo-dopamine (L-dopa) can improve the consciousness of certain patients with prolonged coma after cerebral ischemia-reperfusion injury, and promote cell growth in vivo. This study aimed to investigate whether L-dopa, which is used clinically to treat Parkinson's disease, might also ameliorate ischemia-reperfusion injury-induced cell death. The oxygen-glucose deprivation and re-oxygenation (OGD/R) model was used to mimic the ischemia-reperfusion pathological process in vitro. HT22 cells were treated with dopamine hydrochloride at different times (i.e., 2 h prior to OGD, during the period of OGD, during the period of R, and throughout the period of OGD/R) and at different concentrations (i.e., 25 μM, 50 μM, 100 μM). Lactate dehydrogenase (LDH) release, flow cytometry-annexin V, and propidium iodide staining with light microscopy showed that dopamine hydrochloride (added during re-oxygenation) promoted cell proliferation and facilitated maintenance of normal cell morphology. However, when present during oxygen-glucose deprivation for 18 h and present throughout OGD/R, dopamine hydrochloride increased cell damage as manifested by shrinkage, rounding up, and reduced viability. In conclusion, dopamine protected HT22 cells from OGD/R injury-induced cell death only at a particular point in time, suggesting that it may be useful for treating severe ischemia-reperfusion brain injury.

  7. Activation of MTOR in pulmonary epithelium promotes LPS-induced acute lung injury.

    Science.gov (United States)

    Hu, Yue; Lou, Jian; Mao, Yuan-Yuan; Lai, Tian-Wen; Liu, Li-Yao; Zhu, Chen; Zhang, Chao; Liu, Juan; Li, Yu-Yan; Zhang, Fan; Li, Wen; Ying, Song-Min; Chen, Zhi-Hua; Shen, Hua-Hao

    2016-12-01

    MTOR (mechanistic target of rapamycin [serine/threonine kinase]) plays a crucial role in many major cellular processes including metabolism, proliferation and macroautophagy/autophagy induction, and is also implicated in a growing number of proliferative and metabolic diseases. Both MTOR and autophagy have been suggested to be involved in lung disorders, however, little is known about the role of MTOR and autophagy in pulmonary epithelium in the context of acute lung injury (ALI). In the present study, we observed that lipopolysaccharide (LPS) stimulation induced MTOR phosphorylation and decreased the expression of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β)-II, a hallmark of autophagy, in mouse lung epithelium and in human bronchial epithelial (HBE) cells. The activation of MTOR in HBE cells was mediated by TLR4 (toll-like receptor 4) signaling. Genetic knockdown of MTOR or overexpression of autophagy-related proteins significantly attenuated, whereas inhibition of autophagy further augmented, LPS-induced expression of IL6 (interleukin 6) and IL8, through NFKB signaling in HBE cells. Mice with specific knockdown of Mtor in bronchial or alveolar epithelial cells exhibited significantly attenuated airway inflammation, barrier disruption, and lung edema, and displayed prolonged survival in response to LPS exposure. Taken together, our results demonstrate that activation of MTOR in the epithelium promotes LPS-induced ALI, likely through downregulation of autophagy and the subsequent activation of NFKB. Thus, inhibition of MTOR in pulmonary epithelial cells may represent a novel therapeutic strategy for preventing ALI induced by certain bacteria.

  8. Obesity and the aging adult: ideas for promoting patient safety and preventing caregiver injury.

    Science.gov (United States)

    Gallagher, Susan

    2005-11-01

    Some experts contend that the increasing prevalence of obesity among patients and caregivers leads to more frequent and serious musculoskeletal injuries among caregivers. Others believe that failure to ensure safe, appropriate equipment and supporting policies leads to the increasing prevalence of caregiver injuries. Health facilities best serve residents, caregivers, and institutions when there is preplanning for extra care and resources; size-appropriate equipment; larger, heavier furniture; and adequate space to accomplish tasks. The challenge to stakeholders is to find ways to prevent injuries that pose direct and indirect cost liabilities to caregivers, institutions, policy makers, and others. Several strategies are available to reduce or prevent caregiver injury and to promote patient safety. Physical environment, equipment, lift team, and necessary policy changes are discussed as possible strategies.

  9. Antioxidative mechanism of Lycium barbarum polysaccharides promotes repair and regeneration following cavernous nerve injury

    Institute of Scientific and Technical Information of China (English)

    Zhan-kui Zhao; Hong-lian Yu; Bo Liu; Hui Wang; Qiong Luo; Xie-gang Ding

    2016-01-01

    Polysaccharides extracted from Lycium barbarum exhibit antioxidant properties. We hypothesized that these polysaccharides resist oxida-tive stress-induced neuronal damage following cavernous nerve injury. In this study, rat models were intragastrically administered Lycium barbarum polysaccharides for 2 weeks at 1, 7, and 14 days after cavernous nerve injury. Serum superoxide dismutase and glutathione peroxidase activities signiifcantly increased at 1 and 2 weeks post-injury. Serum malondialdehyde levels decreased at 2 and 4 weeks. At 12 weeks, peak intracavernous pressure, the number of myelinated axons and nicotinamide adenine dinucleotide phosphate-diaphorase-pos-itive nerve ifbers, levels of phospho-endothelial nitric oxide synthase protein and 3-nitrotyrosine were higher in rats administered at 1 day post-injury compared with rats administered at 7 and 14 days post-injury. These ifndings suggest that application of Lycium barbarum polysaccharides following cavernous nerve crush injury effectively promotes nerve regeneration and erectile functional recovery. This neu-roregenerative effect was most effective in rats orally administered Lycium barbarum polysaccharides at 1 day after cavernous nerve crush injury.

  10. CNTF promotes the survival and differentiation of adult spinal cord-derived oligodendrocyte precursor cells in vitro but fails to promote remyelination in vivo.

    Science.gov (United States)

    Talbott, Jason F; Cao, Qilin; Bertram, James; Nkansah, Michael; Benton, Richard L; Lavik, Erin; Whittemore, Scott R

    2007-03-01

    Delivery of factors capable of promoting oligodendrocyte precursor cell (OPC) survival and differentiation in vivo is an important therapeutic strategy for a variety of pathologies in which demyelination is a component, including multiple sclerosis and spinal cord injury. Ciliary neurotrophic factor (CNTF) is a neuropoietic cytokine that promotes both survival and maturation of a variety of neuronal and glial cell populations, including oligodendrocytes. Present results suggest that, although CNTF has a potent survival and differentiation promoting effect in vitro on OPCs isolated from the adult spinal cord, CNTF administration in vivo is not sufficient to promote oligodendrocyte remyelination in the glial-depleted environment of unilateral ethidium bromide (EB) lesions.

  11. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews.

    Science.gov (United States)

    Xiong, Liu-Lin; Chen, Zhi-Wei; Wang, Ting-Hua

    2016-04-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.

  12. Dynamic membrane depolarization is an early regulator of ependymoglial cell response to spinal cord injury in axolotl.

    Science.gov (United States)

    Sabin, Keith; Santos-Ferreira, Tiago; Essig, Jaclyn; Rudasill, Sarah; Echeverri, Karen

    2015-12-01

    Salamanders, such as the Mexican axolotl, are some of the few vertebrates fortunate in their ability to regenerate diverse structures after injury. Unlike mammals they are able to regenerate a fully functional spinal cord after injury. However, the molecular circuitry required to initiate a pro-regenerative response after spinal cord injury is not well understood. To address this question we developed a spinal cord injury model in axolotls and used in vivo imaging of labeled ependymoglial cells to characterize the response of these cells to injury. Using in vivo imaging of ion sensitive dyes we identified that spinal cord injury induces a rapid and dynamic change in the resting membrane potential of ependymoglial cells. Prolonged depolarization of ependymoglial cells after injury inhibits ependymoglial cell proliferation and subsequent axon regeneration. Using transcriptional profiling we identified c-Fos as a key voltage sensitive early response gene that is expressed specifically in the ependymoglial cells after injury. This data establishes that dynamic changes in the membrane potential after injury are essential for regulating the specific spatiotemporal expression of c-Fos that is critical for promoting faithful spinal cord regeneration in axolotl.

  13. Human amniotic epithelial cells combined with silk ifbroin scaffold in the repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Ting-gang Wang; Jie Xu; Ai-hua Zhu; Hua Lu; Zong-ning Miao; Peng Zhao; Guo-zhen Hui; Wei-jiangWu

    2016-01-01

    Treatment and functional reconstruction atfer central nervous system injury is a major medical and social challenge. An increasing number of researchers are attempting to use neural stem cells combined with artiifcial scaffold materials, such as ifbroin, for nerve repair. However, such approaches are challenged by ethical and practical issues. Amniotic tissue, a clinical waste product, is abundant, and amniotic epithe-lial cells are pluripotent, have low immunogenicity, and are not the subject of ethical debate. We hypothesized that amniotic epithelial cells combined with silk ifbroin scaffolds would be conducive to the repair of spinal cord injury. To test this, we isolated and cultured amniotic epithelial cells, and constructed complexes of these cells and silk ifbroin scaffolds. Implantation of the cell-scaffold complex into a rat model of spinal cord injury resulted in a smaller glial scar in the damaged cord tissue than in model rats that received a blank scaffold, or amniotic epithelial cells alone. In addition to a milder local immunological reaction, the rats showed less inlfammatory cell inifltration at the trans-plant site, milder host-versus-gratf reaction, and a marked improvement in motor function. hTese ifndings conifrm that the transplantation of amniotic epithelial cells combined with silk ifbroin scaffold can promote the repair of spinal cord injury. Silk ifbroin scaffold can provide a good nerve regeneration microenvironment for amniotic epithelial cells.

  14. GATA4 regulates Fgf16 to promote heart repair after injury.

    Science.gov (United States)

    Yu, Wei; Huang, Xiuzhen; Tian, Xueying; Zhang, Hui; He, Lingjuan; Wang, Yue; Nie, Yu; Hu, Shengshou; Lin, Zhiqiang; Zhou, Bin; Pu, William; Lui, Kathy O; Zhou, Bin

    2016-03-15

    Although the mammalian heart can regenerate during the neonatal stage, this endogenous regenerative capacity is lost with age. Importantly, replication of cardiomyocytes has been found to be the key mechanism responsible for neonatal cardiac regeneration. Unraveling the transcriptional regulatory network for inducing cardiomyocyte replication will, therefore, be crucial for the development of novel therapies to drive cardiac repair after injury. Here, we investigated whether the key cardiac transcription factor GATA4 is required for neonatal mouse heart regeneration. Using the neonatal mouse heart cryoinjury and apical resection models with an inducible loss of GATA4 specifically in cardiomyocytes, we found severely depressed ventricular function in the Gata4-ablated mice (mutant) after injury. This was accompanied by reduced cardiomyocyte replication. In addition, the mutant hearts displayed impaired coronary angiogenesis and increased hypertrophy and fibrosis after injury. Mechanistically, we found that the paracrine factor FGF16 was significantly reduced in the mutant hearts after injury compared with littermate controls and was directly regulated by GATA4. Cardiac-specific overexpression of FGF16 via adeno-associated virus subtype 9 (AAV9) in the mutant hearts partially rescued the cryoinjury-induced cardiac hypertrophy, promoted cardiomyocyte replication and improved heart function after injury. Altogether, our data demonstrate that GATA4 is required for neonatal heart regeneration through regulation of Fgf16, suggesting that paracrine factors could be of potential use in promoting myocardial repair.

  15. Renin Lineage Cells Repopulate the Glomerular Mesangium after Injury

    Science.gov (United States)

    Starke, Charlotte; Betz, Hannah; Hickmann, Linda; Lachmann, Peter; Neubauer, Björn; Kopp, Jeffrey B.; Sequeira-Lopez, Maria Luisa S.; Gomez, R. Ariel; Hohenstein, Bernd; Hugo, Christian P.M.

    2015-01-01

    Mesangial cell injury has a major role in many CKDs. Because renin-positive precursor cells give rise to mesangial cells during nephrogenesis, this study tested the hypothesis that the same phenomenon contributes to glomerular regeneration after murine experimental mesangial injury. Mesangiolysis was induced by administration of an anti-mesangial cell serum in combination with LPS. In enhanced green fluorescent protein–reporter mice with constitutively labeled renin lineage cells, the size of the enhanced green fluorescent protein–positive area in the glomerular tufts increased after mesangial injury. Furthermore, we generated a novel Tet-on inducible triple-transgenic LacZ reporter line that allowed selective labeling of renin cells along renal afferent arterioles of adult mice. Although no intraglomerular LacZ expression was detected in healthy mice, about two-thirds of the glomerular tufts became LacZ positive during the regenerative phase after severe mesangial injury. Intraglomerular renin descendant LacZ-expressing cells colocalized with mesangial cell markers α8-integrin and PDGF receptor-β but not with endothelial, podocyte, or parietal epithelial cell markers. In contrast with LacZ-positive cells in the afferent arterioles, LacZ-positive cells in the glomerular tuft did not express renin. These data demonstrate that extraglomerular renin lineage cells represent a major source of repopulating cells for reconstitution of the intraglomerular mesangium after injury. PMID:24904091

  16. Dazl Promotes Germ Cell Differentiation from Embryonic Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Zhuo Yu; Ping Ji; Jinping Cao; Shu Zhu; Yao Li; Lin Zheng; Xuejin Chen; Lixin Feng

    2009-01-01

    It has been demonstrated that through the formation of embryoid bodies (Ebs) germ cells can be derived from embryonic stem (ES) cells. Here, we describe a transgene expression approach to derive germ cells directly from ES cells in vitro without EB formation. Through the ectopic expression of Deleted in Azoospermia-Like (Dazl), a germ cell-specific RNA-binding protein,both motile tailed-sperm and oocytes were induced from mouse ES (mES) cells in culture. Furthermore, transient overexpression of Dazl led to suppression of Nanog but induced germ cell nuclear antigen in mES cells. Dazl knockdown resulted in reduction in the expression of germ cell markers including Stella, MVH and Prdm1. Our study indicates that Dazl is a master gene controlling germ cell differentiation and that ectopic expression of Dazl promotes the dynamic differentiation of mouse ES cells into gametes in vitro.

  17. Apigenin Attenuates Oxidative Injury in ARPE-19 Cells thorough Activation of Nrf2 Pathway

    OpenAIRE

    Xinrong Xu; Min Li; Weiwei Chen; Haitao Yu; Yan Yang; Li Hang

    2016-01-01

    The current study was aimed at evaluating the therapeutic implication of apigenin and to elucidate the underlying mechanism. The tert-butyl hydroperoxide (t-BHP) at 200 μM was used to induce oxidative stress-associated injury in ARPE-19 cells. Apigenin at concentrations less than 800 μM did not cause cytotoxic effects on ARPE-19 cells. Cell viability assay showed that apigenin at 200 μM significantly promoted cell survival in t-BHP-treated ARPE-19 cells. Additionally, apigenin at 100 μM signi...

  18. Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Jindou Jiang; Xingyao Bu; Meng Liu; Peixun Cheng

    2012-01-01

    Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury.

  19. Repeated mild injury causes cumulative damage to hippocampal cells

    NARCIS (Netherlands)

    E.J. Matser (Amy); C.I. de Zeeuw (Chris); J.T. Weber (John)

    2002-01-01

    textabstractAn interesting hypothesis in the study of neurotrauma is that repeated traumatic brain injury may result in cumulative damage to cells of the brain. However, post-injury sequelae are difficult to address at the cellular level in vivo. Therefore, it is necessary to compl

  20. Mesenchymal Stem Cell Transplantation Attenuates Brain Injury After Neonatal Stroke

    NARCIS (Netherlands)

    van Velthoven, Cindy T. J.; Sheldon, R. Ann; Kavelaars, Annemieke; Derugin, Nikita; Vexler, Zinaida S.; Willemen, Hanneke L. D. M.; Maas, Mirjam; Heijnen, Cobi J.; Ferriero, Donna M.

    2013-01-01

    Background and Purpose-Brain injury caused by stroke is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. Mesenchymal stem cells (MSC) have been shown to improve outcome after neonatal hypoxic-ischemic brain injury mainly by secretion of growth factors stimulati

  1. Stem cell-based therapies for spinal cord injury.

    NARCIS (Netherlands)

    Nandoe, R.D.S.; Hurtado, A.; Bartels, R.H.M.A.; Grotenhuis, A.; Oudega, M.

    2009-01-01

    Spinal cord injury (SCI) results in loss of nervous tissue and consequently loss of motor and sensory function. There is no treatment available that restores the injury-induced loss of function to a degree that an independent life can be guaranteed. Transplantation of stem cells or progenitors may s

  2. Activation of P2X7 promotes cerebral edema and neurological injury after traumatic brain injury in mice.

    Science.gov (United States)

    Kimbler, Donald E; Shields, Jessica; Yanasak, Nathan; Vender, John R; Dhandapani, Krishnan M

    2012-01-01

    Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Cerebral edema, the abnormal accumulation of fluid within the brain parenchyma, contributes to elevated intracranial pressure (ICP) and is a common life-threatening neurological complication following TBI. Unfortunately, neurosurgical approaches to alleviate increased ICP remain controversial and medical therapies are lacking due in part to the absence of viable drug targets. In the present study, genetic inhibition (P2X7-/- mice) of the purinergic P2x7 receptor attenuated the expression of the pro-inflammatory cytokine, interleukin-1β (IL-1β) and reduced cerebral edema following controlled cortical impact, as compared to wild-type mice. Similarly, brilliant blue G (BBG), a clinically non-toxic P2X7 inhibitor, inhibited IL-1β expression, limited edemic development, and improved neurobehavioral outcomes after TBI. The beneficial effects of BBG followed either prophylactic administration via the drinking water for one week prior to injury or via an intravenous bolus administration up to four hours after TBI, suggesting a clinically-implementable therapeutic window. Notably, P2X7 localized within astrocytic end feet and administration of BBG decreased the expression of glial fibrillary acidic protein (GFAP), a reactive astrocyte marker, and attenuated the expression of aquaporin-4 (AQP4), an astrocytic water channel that promotes cellular edema. Together, these data implicate P2X7 as a novel therapeutic target to prevent secondary neurological injury after TBI, a finding that warrants further investigation.

  3. Activation of P2X7 promotes cerebral edema and neurological injury after traumatic brain injury in mice.

    Directory of Open Access Journals (Sweden)

    Donald E Kimbler

    Full Text Available Traumatic brain injury (TBI is a leading cause of death and disability worldwide. Cerebral edema, the abnormal accumulation of fluid within the brain parenchyma, contributes to elevated intracranial pressure (ICP and is a common life-threatening neurological complication following TBI. Unfortunately, neurosurgical approaches to alleviate increased ICP remain controversial and medical therapies are lacking due in part to the absence of viable drug targets. In the present study, genetic inhibition (P2X7-/- mice of the purinergic P2x7 receptor attenuated the expression of the pro-inflammatory cytokine, interleukin-1β (IL-1β and reduced cerebral edema following controlled cortical impact, as compared to wild-type mice. Similarly, brilliant blue G (BBG, a clinically non-toxic P2X7 inhibitor, inhibited IL-1β expression, limited edemic development, and improved neurobehavioral outcomes after TBI. The beneficial effects of BBG followed either prophylactic administration via the drinking water for one week prior to injury or via an intravenous bolus administration up to four hours after TBI, suggesting a clinically-implementable therapeutic window. Notably, P2X7 localized within astrocytic end feet and administration of BBG decreased the expression of glial fibrillary acidic protein (GFAP, a reactive astrocyte marker, and attenuated the expression of aquaporin-4 (AQP4, an astrocytic water channel that promotes cellular edema. Together, these data implicate P2X7 as a novel therapeutic target to prevent secondary neurological injury after TBI, a finding that warrants further investigation.

  4. What is the potential of oligodendrocyte progenitor cells to successfully treat human spinal cord injury?

    Directory of Open Access Journals (Sweden)

    Yeung Trevor M

    2011-09-01

    Full Text Available Abstract Background Spinal cord injury is a serious and debilitating condition, affecting millions of people worldwide. Long seen as a permanent injury, recent advances in stem cell research have brought closer the possibility of repairing the spinal cord. One such approach involves injecting oligodendrocyte progenitor cells, derived from human embryonic stem cells, into the injured spinal cord in the hope that they will initiate repair. A phase I clinical trial of this therapy was started in mid 2010 and is currently underway. Discussion The theory underlying this approach is that these myelinating progenitors will phenotypically replace myelin lost during injury whilst helping to promote a repair environment in the lesion. However, the importance of demyelination in the pathogenesis of human spinal cord injury is a contentious issue and a body of literature suggests that it is only a minor factor in the overall injury process. Summary This review examines the validity of the theory underpinning the on-going clinical trial as well as analysing published data from animal models and finally discussing issues surrounding safety and purity in order to assess the potential of this approach to successfully treat acute human spinal cord injury.

  5. Over-starvation aggravates intestinal injury and promotes bacterial and endotoxin translocation under high-altitude hypoxic environment

    Institute of Scientific and Technical Information of China (English)

    Qi-Quan Zhou; Ding-Zhou Yang; Yong-Jun Luo; Su-Zhi Li; Fu-Yu Liu; Guan-Song Wang

    2011-01-01

    AIM: To study whether over-starvation aggravates intestinal mucosal injury and promotes bacterial and endotoxin translocation in a high-altitude hypoxic environment. METHODS: Sprague-Dawley rats were exposed to hypobaric hypoxia at a simulated altitude of 7000 m for 72 h. Lanthanum nitrate was used as a tracer to detect intestinal injury. Epithelial apoptosis was observed with terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Serum levels of diamino oxidase (DAO), malondialdehyde (MDA), glutamine (Gln), superoxide dismutase (SOD) and endotoxin were measured in intestinal mucosa. Bacterial translocation was detected in blood culture and intestinal homogenates. In addition, rats were given Gln intragastrically to observe its protective effect on intestinal injury. RESULTS: Apoptotic epithelial cells, exfoliated villi and inflammatory cells in intestine were increased with edema in the lamina propria accompanying effusion of red blood cells. Lanthanum particles were found in the intercellular space and intracellular compartment. Bacterial translocation to mesenteric lymph nodes (MLN) and spleen was evident. The serum endotoxin, DAO and MDA levels were significantly higher while the serum SOD, DAO and Gln levels were lower in intestine (P < 0.05). The bacterial translocation number was lower in the high altitude hypoxic group than in the high altitude starvation group (0.47 ± 0.83 vs 2.38 ± 1.45, P < 0.05). The bacterial translocation was found in each organ, especially in MLN and spleen but not in peripheral blood. The bacterial and endotoxin translocations were both markedly improved in rats after treatment with Gln. CONCLUSION: High-altitude hypoxia and starvation cause severe intestinal mucosal injury and increase bacterial and endotoxin translocation, which can be treated with Gln.

  6. Nonlinear Dynamic Theory of Acute Cell Injuries and Brain Ischemia

    Science.gov (United States)

    Taha, Doaa; Anggraini, Fika; Degracia, Donald; Huang, Zhi-Feng

    2015-03-01

    Cerebral ischemia in the form of stroke and cardiac arrest brain damage affect over 1 million people per year in the USA alone. In spite of close to 200 clinical trials and decades of research, there are no treatments to stop post-ischemic neuron death. We have argued that a major weakness of current brain ischemia research is lack of a deductive theoretical framework of acute cell injury to guide empirical studies. A previously published autonomous model based on the concept of nonlinear dynamic network was shown to capture important facets of cell injury, linking the concept of therapeutic to bistable dynamics. Here we present an improved, non-autonomous formulation of the nonlinear dynamic model of cell injury that allows multiple acute injuries over time, thereby allowing simulations of both therapeutic treatment and preconditioning. Our results are connected to the experimental data of gene expression and proteomics of neuron cells. Importantly, this new model may be construed as a novel approach to pharmacodynamics of acute cell injury. The model makes explicit that any pro-survival therapy is always a form of sub-lethal injury. This insight is expected to widely influence treatment of acute injury conditions that have defied successful treatment to date. This work is supported by NIH NINDS (NS081347) and Wayne State University President's Research Enhancement Award.

  7. Electroacupuncture promotes the proliferation of endogenous neural stem cells and oligodendrocytes in the injured spinal cord of adult rats

    Institute of Scientific and Technical Information of China (English)

    Haiying Wu; Min Hu; Dekai Yuan; Yunhui Wang; Jing Wang; Tao Li; Chuanyun Qian

    2012-01-01

    A contusive model of spinal cord injury at spinal segment T8-9 was established in rats. Huantiao (GB30) and Huatuojiaji (Ex-B05) were punctured with needles, and endogenous neural stem cells were labeled with 5-bromo-2'-deoxyuridine (BrdU) and NG2. Double immunofluorescence staining showed that electroacupuncture markedly increased the numbers of BrdU+/NG2+ cells at spinal cord tissue 15 mm away from the injury center in the rostral and caudal directions. The results suggest that electroacupuncture promotes the proliferation of endogenous neural stem cells and oligodendrocytes in rats with spinal cord injury.

  8. Inhibition of TROY promotes OPC differentiation and increases therapeutic efficacy of OPC graft for spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Sun Liang; Feng Xiaoling; Duan Yongshun; Zhang Yafang; Wu Shuliang; Liu Shengliang; Sun Qi; Li Zhuying; Xu Fengyan; Hou Chunmei; Harada Toshihide; Chu Ming; Xu Kun

    2015-01-01

    Objective:To observe the regulatory effects of TROY on neural myelination in central nervous system ( CNS ) and remyelination in response to spinal cord injury ( SCI ) by oligodendrocyte precursor cell ( OPC) . Results:TROY expression was detected by RT-PCR and Western blotting in OPCs as well as in differen-tiated premature and mature oligodendrocytes of postnatal mice. Pharmacological inhibition or RNAi-induced knockdown of TROY promotes OPC differentiation, whereas overexpression of TROY dampens oligodendrocyte mat-uration. Furthermore, treatment of co-cultures of DRG neurons and OPCs with TROY inhibitors promotes myelina-tion and myelin sheath-like structures. Mechanically, protein kinase C ( PKC) signaling is involved in the regula-tion of the inhibitory effects of TROY. Moreover, in situ transplantation of OPCs with TROY knockdown leads to notably enhanced remyelination as well as augmented recovery of motor function and nervous conduction in rats with SCI. Conclusions:Our results indicate that TROY negatively modulates remyelination in the CNS, and thus may be a suitable target for improving the therapeutic efficacy of cell transplantation for CNS injury.

  9. Evaluation of stem cell administration in a model of kidney ischemia-reperfusion injury.

    Science.gov (United States)

    da Silva, Léa Bueno Lucas; Palma, Patrícia Viana Bonini; Cury, Patrícia Maluf; Bueno, Valquiria

    2007-12-15

    Ischemia-reperfusion injury is a common early event in kidney transplantation and contributes to a delay in organ function. Acute tubular necrosis, impaired kidney function and organ leukocyte infiltration are the major findings. The therapeutic potential of stem cells has been the focus of recent research as these cells possess capabilities such as self-renewal, multipotent differentiation and aid in regeneration after organ injury. FTY720 is a new synthetic compound that has been associated with preferential migration of blood lymphocytes to peripheral lymph nodes instead of inflammatory sites. Bone marrow stem cells (BMSC) and/or FTY720 were used as therapy to promote recovery of tubule cells and avoid inflammation at the renal site, respectively. Mice were submitted to renal ischemia-reperfusion injury and were either treated with two doses of FTY720, 10x10(6) BMSC, or both in order to compare the therapeutic effect with non-treated and control animals. Renal function and structure were investigated as were cell numbers in peripheral blood and spleen. Activation and apoptosis markers were also evaluated in splenocytes using flow cytometry. We found that the combined therapy (FTY720+BMSC) was associated with more significant changes in renal function and structure after ischemia-reperfusion injury when compared with the other groups. Also a decrease at cell numbers and prevention of spleen cells activation and apoptosis was observed. In conclusion, in our model it was not possible to demonstrate the potential of stem cells alone or in combination with FTY720 to promote early kidney recovery after ischemia-reperfusion injury.

  10. Ginsenoside Rg1 promotes peripheral nerve regeneration in rat model of nerve crush injury.

    Science.gov (United States)

    Ma, Junxiong; Li, Wenxian; Tian, Ruifeng; Lei, Wei

    2010-07-05

    Searching for effective drugs which are capable of promoting nerve regeneration after nerve injuries has gained extensive attention. Ginsenoside Rg1 (GRg1) is one of the bioactive compounds extracted from ginseng. GRg1 has been shown to be neuroprotective in many in vitro studies, which raises the possibility of using GRg1 as a neuroprotective agent after nerve injuries. However, such a possibility has never been tested in in vivo studies. The present study was designed to investigate the efficacy of GRg1 in promoting nerve regeneration after nerve crush injury in rats. All rats were randomly divided into four groups (n=8 in each group) after crush injury and were intraperitoneally administrated daily for 4 weeks with 1mg/kg, or 5mg/kg GRg1 (low or high dose GRg1 groups), or 100mug/kg mecobalamin or normal saline, respectively. The axonal regeneration was investigated by retrograde labeling and morphometric analysis. The motor functional recovery was evaluated by electrophysiological studies, behavioral tests and histological appearance of the target muscles. Our data showed that high dose GRg1 achieved better axonal regeneration and functional recovery than those achieved by low dose GRg1 and mecobalamin. The final outcome of low dose GRg1 and mecobalamin was similar in both morphological and functional items, which was significantly better than that in saline group. These findings show that GRg1 is capable of promoting nerve regeneration after nerve injuries, suggesting the possibility of developing GRg1 a neuroprotective drug for peripheral nerve repair applications.

  11. IL-33-Dependent Group 2 Innate Lymphoid Cells Promote Cutaneous Wound Healing.

    Science.gov (United States)

    Rak, Gregory D; Osborne, Lisa C; Siracusa, Mark C; Kim, Brian S; Wang, Kelvin; Bayat, Ardeshir; Artis, David; Volk, Susan W

    2016-02-01

    Breaches in the skin barrier initiate an inflammatory immune response that is critical for successful wound healing. Innate lymphoid cells (ILCs) are a recently identified population of immune cells that reside at epithelial barrier surfaces such as the skin, lung, and gut, and promote proinflammatory or epithelial repair functions after exposure to allergens, pathogens, or chemical irritants. However, the potential role of ILCs in regulating cutaneous wound healing remains undefined. Here, we demonstrate that cutaneous injury promotes an IL-33-dependent group 2 ILC (ILC2) response and that abrogation of this response impairs re-epithelialization and efficient wound closure. In addition, we provide evidence suggesting that an analogous ILC2 response is operational in acute wounds of human skin. Together, these results indicate that IL-33-responsive ILC2s are an important link between the cutaneous epithelium and the immune system, acting to promote the restoration of skin integrity after injury.

  12. Activation of SHH signaling pathway promotes vasculogenesis in post-myocardial ischemic-reperfusion injury

    OpenAIRE

    Guo, Wei; YI, XIN; Ren, Faxin; Liu, Liwen; WU, SUNING; Yang, Jun

    2015-01-01

    This study aimed to investigate the potential roles of sonic Hedgehog (SHH) expression in vasculogenesis in post-myocardial ischemic-reperfusion injury (MIRI) and its underlying mechanism. Cardiac microvascular endothelial cells (CMECs) isolated from the SD rat hearts tissues were used to construct the MIRI model. mRNA level of SHH in control cells and MIRI cells was detected using RT-PCR analysis. Furthermore, effects of SHH expression on CMECs viability and apoptosis were analyzed using MTT...

  13. VEGF‐D promotes pulmonary oedema in hyperoxic acute lung injury

    OpenAIRE

    Sato, Teruhiko; Paquet‐Fifield, Sophie; Harris, Nicole C; Roufail, Sally; Turner, Debra J.; Yuan, Yinan; Zhang, You‐Fang; Fox, Stephen B; Hibbs, Margaret L.; Wilkinson‐Berka, Jennifer L; Williams, Richard A.; Stacker, Steven A.; Peter D Sly; Achen, Marc G.

    2016-01-01

    Abstract Leakage of fluid from blood vessels, leading to oedema, is a key feature of many diseases including hyperoxic acute lung injury (HALI), which can occur when patients are ventilated with high concentrations of oxygen (hyperoxia). The molecular mechanisms driving vascular leak and oedema in HALI are poorly understood. VEGF‐D is a protein that promotes blood vessel leak and oedema when overexpressed in tissues, but the role of endogenous VEGF‐D in pathological oedema was unknown. To add...

  14. Dynamic regulation of Schwann cell enhancers after peripheral nerve injury.

    Science.gov (United States)

    Hung, Holly A; Sun, Guannan; Keles, Sunduz; Svaren, John

    2015-03-13

    Myelination of the peripheral nervous system is required for axonal function and long term stability. After peripheral nerve injury, Schwann cells transition from axon myelination to a demyelinated state that supports neuronal survival and ultimately remyelination of axons. Reprogramming of gene expression patterns during development and injury responses is shaped by the actions of distal regulatory elements that integrate the actions of multiple transcription factors. We used ChIP-seq to measure changes in histone H3K27 acetylation, a mark of active enhancers, to identify enhancers in myelinating rat peripheral nerve and their dynamics after demyelinating nerve injury. Analysis of injury-induced enhancers identified enriched motifs for c-Jun, a transcription factor required for Schwann cells to support nerve regeneration. We identify a c-Jun-bound enhancer in the gene for Runx2, a transcription factor induced after nerve injury, and we show that Runx2 is required for activation of other induced genes. In contrast, enhancers that lose H3K27ac after nerve injury are enriched for binding sites of the Sox10 and early growth response 2 (Egr2/Krox20) transcription factors, which are critical determinants of Schwann cell differentiation. Egr2 expression is lost after nerve injury, and many Egr2-binding sites lose H3K27ac after nerve injury. However, the majority of Egr2-bound enhancers retain H3K27ac, indicating that other transcription factors maintain active enhancer status after nerve injury. The global epigenomic changes in H3K27ac deposition pinpoint dynamic changes in enhancers that mediate the effects of transcription factors that control Schwann cell myelination and peripheral nervous system responses to nerve injury.

  15. Mediation of calcium oxalate crystal growth on human kidney epithelial cells with different degrees of injury

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shen [Graduate School of Southern Medical University, Guangzhou 510515 (China); Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Su Zexuan, E-mail: suz2008@126.com [The First Affiliated Hospital, Jinan University, Guangzhou 510632 (China); Yao Xiuqiong; Peng Hua; Deng Suiping [Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Ouyang Jianming, E-mail: toyjm@jnu.edu.cn [Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China)

    2012-05-01

    The current study examined the role of injured human kidney tubular epithelial cell (HKC) in the mediation of formation of calcium oxalate (CaOxa) crystals by means of scanning electronic microscopy and X-ray diffraction. HKC was injured using different concentrations of H{sub 2}O{sub 2}. Cell injury resulted in a significant decrease in cell viability and superoxide dismutase (SOD) concentration and an increase in the level of malondialdehyde (MDA) and expression of osteopontin (OPN). Injured cells not only promote nucleation and aggregation of CaOxa crystals, but also induce the formation of calcium oxalate monohydrate (COM) crystals that strongly adhere to cells. These results imply that injured HKCs promote stone formation by providing more nucleating sites for crystals, promoting the aggregation of crystals, and inducing the formation of COM crystals. - Graphical abstract: Injured cells promote nucleation and aggregation of CaOxa crystals, induce the formation of calcium oxalate monohydrate (COM) crystals. Highlights: Black-Right-Pointing-Pointer A direct nucleation and growth of CaOxa crystals on both normal and injured cells. Black-Right-Pointing-Pointer Stronger green fluorescence, i.e. OPN expression, was seen on the injury cell surface Black-Right-Pointing-Pointer Injured cells promote nucleation and aggregation of CaOxa crystals. Black-Right-Pointing-Pointer Injured cells induce the formation of calcium oxalate monohydrate crystals. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} decrease cell viability in a dose-dependent manner at 0.1-1 mmol/L.

  16. Treadmill exercise promotes neuroprotection against cerebral ischemia–reperfusion injury via downregulation of pro-inflammatory mediators

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2016-12-01

    Full Text Available Ying Zhang,1,* Richard Y Cao,2,* Xinling Jia,3,* Qing Li,1 Lei Qiao,1 Guofeng Yan,4 Jian Yang1 1Department of Rehabilitation, 2Laboratory of Immunology, Shanghai Xuhui Central Hospital, Shanghai Clinical Research Center, Chinese Academy of Sciences, 3School of Life sciences, Shanghai University, 4School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China *These authors contributed equally to this work Background: Stroke is one of the major causes of morbidity and mortality worldwide, which is associated with serious physical deficits that affect daily living and quality of life and produces immense public health and economic burdens. Both clinical and experimental data suggest that early physical training after ischemic brain injury may reduce the extent of motor dysfunction. However, the exact mechanisms have not been fully elucidated. The aim of this study was to investigate the effects of aerobic exercise on neuroprotection and understand the underlying mechanisms.Materials and methods: Middle cerebral artery occlusion (MCAO was conducted to establish a rat model of cerebral ischemia–reperfusion injury to mimic ischemic stroke. Experimental animals were divided into the following three groups: sham (n=34, MCAO (n=39, and MCAO plus treadmill exercise (n=28. The effects of aerobic exercise intervention on ischemic brain injury were evaluated using functional scoring, histological analysis, and Bio-Plex Protein Assays.Results: Early aerobic exercise intervention was found to improve motor function, prevent death of neuronal cells, and suppress the activation of microglial cells and astrocytes. Furthermore, it was observed that aerobic exercise downregulated the expression of the cytokine interleukin-1β and the chemokine monocyte chemotactic protein-1 after transient MCAO in experimental rats.Conclusion: This study demonstrates that treadmill exercise rehabilitation promotes neuroprotection against cerebral

  17. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews

    Institute of Scientific and Technical Information of China (English)

    Liu-lin Xiong; Zhi-wei Chen; Ting-hua Wang

    2016-01-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promotein vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, lfuorescence mi-croscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These ifndings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.

  18. Molecular response of chorioretinal endothelial cells to complement injury: implications for macular degeneration.

    Science.gov (United States)

    Zeng, Shemin; Whitmore, S Scott; Sohn, Elliott H; Riker, Megan J; Wiley, Luke A; Scheetz, Todd E; Stone, Edwin M; Tucker, Budd A; Mullins, Robert F

    2016-02-01

    Age-related macular degeneration (AMD) is a common, blinding disease of the elderly in which macular photoreceptor cells, retinal pigment epithelium and choriocapillaris endothelial cells ultimately degenerate. Recent studies have found that degeneration of the choriocapillaris occurs early in this disease and that endothelial cell drop-out is concomitant with increased deposition of the complement membrane attack complex (MAC) at the choroidal endothelium. However, the impact of MAC injury to choroidal endothelial cells is poorly understood. To model this event in vitro, and to study the downstream consequences of MAC injury, endothelial cells were exposed to complement from human serum, compared to heat-inactivated serum, which lacks complement components. Cells exposed to complement components in human serum showed increased labelling with antibodies directed against the MAC, time- and dose-dependent cell death, as assessed by lactate dehydrogenase assay and increased permeability. RNA-Seq analysis following complement injury revealed increased expression of genes associated with angiogenesis including matrix metalloproteinase (MMP)-3 and -9, and VEGF-A. The MAC-induced increase in MMP9 RNA expression was validated using C5-depleted serum compared to C5-reconstituted serum. Increased levels of MMP9 were also established, using western blot and zymography. These data suggest that, in addition to cell lysis, complement attack on choroidal endothelial cells promotes an angiogenic phenotype in surviving cells.

  19. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Kazuya Kitamura

    Full Text Available Many therapeutic interventions for spinal cord injury (SCI using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF, which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI.

  20. Chemokine Receptor Ccr6 Deficiency Alters Hepatic Inflammatory Cell Recruitment and Promotes Liver Inflammation and Fibrosis

    Science.gov (United States)

    Blaya, Delia; Morales-Ibanez, Oriol; Coll, Mar; Millán, Cristina; Altamirano, José; Arroyo, Vicente; Caballería, Joan; Bataller, Ramón; Ginès, Pere; Sancho-Bru, Pau

    2015-01-01

    Chronic liver diseases are characterized by a sustained inflammatory response in which chemokines and chemokine-receptors orchestrate inflammatory cell recruitment. In this study we investigated the role of the chemokine receptor CCR6 in acute and chronic liver injury. In the absence of liver injury Ccr6-/- mice presented a higher number of hepatic macrophages and increased expression of pro-inflammatory cytokines and M1 markers Tnf-α, Il6 and Mcp1. Inflammation and cell recruitment were increased after carbon tetrachloride-induced acute liver injury in Ccr6-/- mice. Moreover, chronic liver injury by carbon tetrachloride in Ccr6-/- mice was associated with enhanced inflammation and fibrosis, altered macrophage recruitment, enhanced CD4+ cells and a reduction in Th17 (CD4+IL17+) and mature dendritic (MHCII+CD11c+) cells recruitment. Clodronate depletion of macrophages in Ccr6-/- mice resulted in a reduction of hepatic pro-inflammatory and pro-fibrogenic markers in the absence and after liver injury. Finally, increased CCR6 hepatic expression in patients with alcoholic hepatitis was found to correlate with liver expression of CCL20 and severity of liver disease. In conclusion, CCR6 deficiency affects hepatic inflammatory cell recruitment resulting in the promotion of hepatic inflammation and fibrosis. PMID:26691857

  1. Chemokine Receptor Ccr6 Deficiency Alters Hepatic Inflammatory Cell Recruitment and Promotes Liver Inflammation and Fibrosis.

    Directory of Open Access Journals (Sweden)

    Silvia Affò

    Full Text Available Chronic liver diseases are characterized by a sustained inflammatory response in which chemokines and chemokine-receptors orchestrate inflammatory cell recruitment. In this study we investigated the role of the chemokine receptor CCR6 in acute and chronic liver injury. In the absence of liver injury Ccr6-/- mice presented a higher number of hepatic macrophages and increased expression of pro-inflammatory cytokines and M1 markers Tnf-α, Il6 and Mcp1. Inflammation and cell recruitment were increased after carbon tetrachloride-induced acute liver injury in Ccr6-/- mice. Moreover, chronic liver injury by carbon tetrachloride in Ccr6-/- mice was associated with enhanced inflammation and fibrosis, altered macrophage recruitment, enhanced CD4+ cells and a reduction in Th17 (CD4+IL17+ and mature dendritic (MHCII+CD11c+ cells recruitment. Clodronate depletion of macrophages in Ccr6-/- mice resulted in a reduction of hepatic pro-inflammatory and pro-fibrogenic markers in the absence and after liver injury. Finally, increased CCR6 hepatic expression in patients with alcoholic hepatitis was found to correlate with liver expression of CCL20 and severity of liver disease. In conclusion, CCR6 deficiency affects hepatic inflammatory cell recruitment resulting in the promotion of hepatic inflammation and fibrosis.

  2. Chemokine Receptor Ccr6 Deficiency Alters Hepatic Inflammatory Cell Recruitment and Promotes Liver Inflammation and Fibrosis.

    Science.gov (United States)

    Affò, Silvia; Rodrigo-Torres, Daniel; Blaya, Delia; Morales-Ibanez, Oriol; Coll, Mar; Millán, Cristina; Altamirano, José; Arroyo, Vicente; Caballería, Joan; Bataller, Ramón; Ginès, Pere; Sancho-Bru, Pau

    2015-01-01

    Chronic liver diseases are characterized by a sustained inflammatory response in which chemokines and chemokine-receptors orchestrate inflammatory cell recruitment. In this study we investigated the role of the chemokine receptor CCR6 in acute and chronic liver injury. In the absence of liver injury Ccr6-/- mice presented a higher number of hepatic macrophages and increased expression of pro-inflammatory cytokines and M1 markers Tnf-α, Il6 and Mcp1. Inflammation and cell recruitment were increased after carbon tetrachloride-induced acute liver injury in Ccr6-/- mice. Moreover, chronic liver injury by carbon tetrachloride in Ccr6-/- mice was associated with enhanced inflammation and fibrosis, altered macrophage recruitment, enhanced CD4+ cells and a reduction in Th17 (CD4+IL17+) and mature dendritic (MHCII+CD11c+) cells recruitment. Clodronate depletion of macrophages in Ccr6-/- mice resulted in a reduction of hepatic pro-inflammatory and pro-fibrogenic markers in the absence and after liver injury. Finally, increased CCR6 hepatic expression in patients with alcoholic hepatitis was found to correlate with liver expression of CCL20 and severity of liver disease. In conclusion, CCR6 deficiency affects hepatic inflammatory cell recruitment resulting in the promotion of hepatic inflammation and fibrosis.

  3. Activation of the Notch signaling pathway promotes neurovascular repair after traumatic brain injury

    OpenAIRE

    2015-01-01

    The Notch signaling pathway plays a key role in angiogenesis and endothelial cell formation, but it remains unclear whether it is involved in vascular repair by endothelial progenitor cells after traumatic brain injury. Therefore, in the present study, we controlled the Notch signaling pathway using overexpression and knockdown constructs. Activation of the Notch signaling pathway by Notch1 or Jagged1 overexpression enhanced the migration, invasiveness and angiogenic ability of endothelial pr...

  4. Neuromuscular stimulation therapy after incomplete spinal cord injury promotes recovery of interlimb coordination during locomotion

    Science.gov (United States)

    Jung, R.; Belanger, A.; Kanchiku, T.; Fairchild, M.; Abbas, J. J.

    2009-10-01

    The mechanisms underlying the effects of neuromuscular electrical stimulation (NMES) induced repetitive limb movement therapy after incomplete spinal cord injury (iSCI) are unknown. This study establishes the capability of using therapeutic NMES in rodents with iSCI and evaluates its ability to promote recovery of interlimb control during locomotion. Ten adult female Long Evans rats received thoracic spinal contusion injuries (T9; 156 ± 9.52 Kdyne). 7 days post-recovery, 6/10 animals received NMES therapy for 15 min/day for 5 days, via electrodes implanted bilaterally into hip flexors and extensors. Six intact animals served as controls. Motor function was evaluated using the BBB locomotor scale for the first 6 days and on 14th day post-injury. 3D kinematic analysis of treadmill walking was performed on day 14 post-injury. Rodents receiving NMES therapy exhibited improved interlimb coordination in control of the hip joint, which was the specific NMES target. Symmetry indices improved significantly in the therapy group. Additionally, injured rodents receiving therapy more consistently displayed a high percentage of 1:1 coordinated steps, and more consistently achieved proper hindlimb touchdown timing. These results suggest that NMES techniques could provide an effective therapeutic tool for neuromotor treatment following iSCI.

  5. Cell therapy for spinal cord injury informed by electromagnetic waves.

    Science.gov (United States)

    Finnegan, Jack; Ye, Hui

    2016-10-01

    Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments.

  6. Rebamipide Promotes the Regeneration of Aspirin-Induced Small-Intestine Mucosal Injury through Accumulation of β-Catenin.

    Directory of Open Access Journals (Sweden)

    Yu Lai

    Full Text Available The effect of rebamipide on repairing intestinal mucosal damage induced by nonsteroidal anti-inflammatory drugs and its mechanism remain unclear. In this study, we sought to explore the mechanism whereby rebamipide could promote the regeneration of aspirin-induced intestinal mucosal damage.BALB/c mice were administered aspirin (200 mg/kg/d for 5 days to induce acute small intestinal injury (SII. Subsequently, SII mice were treated with rebamipide (320 mg/kg/d for 5 days. The structure of intestinal barrier was observed with transmission electron microscope, and Zo-1 and occludin expressions were detected. The proliferative index was indicated by the percentage of proliferating cell nuclear antigen positive cells. The prostaglandin E2 (PGE2 levels in the small intestine tissues were measured by an enzyme immunoassay. The mRNA and protein expression levels of cyclooxygenase (COX and β-catenin signal were detected in the small intestine using quantitative PCR and Western blot, respectively.COX expression was significantly down-regulated in aspirin induced SII (P < 0.05. In SII mice treated with rebamipide, histopathological findings of aspirin-induced intestinal inflammation were significantly milder and tight junctions between intestinal epithelial cells were improved significantly. The proliferative index increased after rebamipide treatment when compared with that in the control mice. The expressions of COX-2, β-catenin, and c-myc and the PGE2 concentrations in small intestinal tissues were significantly increased in mice with rebamipide treatments (P < 0.05.Rebamipide administration in aspirin-induced SII mice could improve the intestinal barrier structure and promote the regeneration of small intestinal epithelial injury through up-regulating COX-2 expression and the accumulation of β-catenin.

  7. Harnessing neural activity to promote repair of the damaged corticospinal system after spinal cord injury

    Directory of Open Access Journals (Sweden)

    John H Martin

    2016-01-01

    Full Text Available As most spinal cord injuries (SCIs are incomplete, an important target for promoting neural repair and recovery of lost motor function is to promote the connections of spared descending spinal pathways with spinal motor circuits. Among the pathways, the corticospinal tract (CST is most associated with skilled voluntary functions in humans and many animals. CST loss, whether at its origin in the motor cortex or in the white matter tracts subcortically and in the spinal cord, leads to movement impairments and paralysis. To restore motor function after injury will require repair of the damaged CST. In this review, I discuss how knowledge of activity-dependent development of the CST-which establishes connectional specificity through axon pruning, axon outgrowth, and synaptic competition among CST terminals-informed a novel activity-based therapy for promoting sprouting of spared CST axons after injur in mature animals. This therapy, which comprises motor cortex electrical stimulation with and without concurrent trans-spinal direct current stimulation, leads to an increase in the gray matter axon length of spared CST axons in the rat spinal cord and, after a pyramidal tract lesion, restoration of skilled locomotor movements. I discuss how this approach is now being applied to a C 4 contusion rat model.

  8. Harnessing neural activity to promote repair of the damaged corticospinal system after spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    John H. Martin

    2016-01-01

    As most spinal cord injuries (SCIs) are incomplete, an important target for promoting neural repair and recovery of lost motor function is to promote the connections of spared descending spinal pathways with spinal motor circuits. Among the pathways, the corticospinal tract (CST) is most associated with skilled voluntary functions in humans and many animals. CST loss, whether at its origin in the motor cortex or in the white matter tracts subcortically and in the spinal cord, leads to movement impairments and paraly-sis. To restore motor function after injury will require repair of the damaged CST. In this review, I discuss how knowledge of activity-dependent development of the CST—which establishes connectional speci-ifcity through axon pruning, axon outgrowth, and synaptic competition among CST terminals—informed a novel activity-based therapy for promoting sprouting of spared CST axons after injur in mature animals. This therapy, which comprises motor cortex electrical stimulation with and without concurrent trans-spi-nal direct current stimulation, leads to an increase in the gray matter axon length of spared CST axons in the rat spinal cord and, after a pyramidal tract lesion, restoration of skilled locomotor movements. I discuss how this approach is now being applied to a C4 contusion rat model.

  9. Nanoparticles carrying neurotrophin-3-modified Schwann cells promote repair of sciatic nerve defects

    Institute of Scientific and Technical Information of China (English)

    Haibin Zong; Hongxing Zhao; Yilei Zhao; Jingling Jia; Libin Yang; Chao Ma; Yang Zhang; Yuzhen Dong

    2013-01-01

    Schwann cells and neurotrophin-3 play an important role in neural regeneration, but the secretion of neurotrophin-3 from Schwann cells is limited, and exogenous neurotrophin-3 is inactived easily in vivo. In this study, we have transfected neurotrophin-3 into Schwann cells cultured in vitro using nanoparticle liposomes. Results showed that neurotrophin-3 was successfully transfected into Schwann cells, where it was expressed effectively and steadily. A composite of Schwann cells transfected with neurotrophin-3 and poly(lactic-co-glycolic acid) biodegradable conduits was transplanted into rats to repair 10-mm sciatic nerve defects. Transplantation of the composite scaffold could restore the myoelectricity and wave amplitude of the sciatic nerve by electrophysiological examination, promote nerve axonal and myelin regeneration, and delay apoptosis of spinal motor neurons. Experimental findings indicate that neurotrophin-3 transfected Schwann cells combined with bridge grafting can promote neural regeneration and functional recovery after nerve injury.

  10. ROCK inhibition with fasudil promotes early functional recovery of spinal cord injury in rats by enhancing microglia phagocytosis.

    Science.gov (United States)

    Fu, Pei-cai; Tang, Rong-hua; Wan, Yue; Xie, Min-jie; Wang, Wei; Luo, Xiang; Yu, Zhi-yuan

    2016-02-01

    Emerging evidence indicates that microglia activation plays an important role in spinal cord injury (SCI) caused by trauma. Studies have found that inhibiting the Rho/Rho-associated protein kinase (ROCK) signaling pathway can reduce inflammatory cytokine production by microglia. In this study, Western blotting was conducted to detect ROCK2 expression after the SCI; the ROCK Activity Assay kit was used for assay of ROCK pathway activity; microglia morphology was examined using the CD11b antibody; electron microscopy was used to detect microglia phagocytosis; TUNEL was used to detect tissue cell apoptosis; myelin staining was performed using an antibody against myelin basic protein (MBP); behavioral outcomes were evaluated according to the methods of Basso, Beattie, and Bresnahan (BBB). We observed an increase in ROCK activity and microglial activation after SCI. The microglia became larger and rounder and contained myelin-like substances. Furthermore, treatment with fasudil inhibited neuronal cells apoptosis, alleviated demyelination and the formation of cavities, and improved motor recovery. The experimental evidence reveals that the ROCK inhibitor fasudil can regulate microglial activation, promote cell phagocytosis, and improve the SCI microenvironment to promote SCI repair. Thus, fasudil may be useful for the treatment of SCI.

  11. Cell transplantation for the treatment of spinal cord injury- bone marrow stromal cells and choroid plexus epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Chizuka Ide; Norihiko Nakano; Kenji Kanekiyo

    2016-01-01

    Transplantation of bone marrow stromal cells (BMSCs) enhanced the outgrowth of regenerating axons and promoted locomotor improvements of rats with spinal cord injury (SCI). BMSCs did not survive long-term, disappearing from the spinal cord within 2–3 weeks after transplantation. Astrocyte-devoid areas, in which no astrocytes or oligodendrocytes were found, formed at the epicenter of the lesion. It was remarkable that numerous regenerating axons extended through such astrocyte-devoid areas. Regenerating axons were associated with Schwann cells embedded in extracellular matrices. Transplantation of choroid plexus epithelial cells (CPECs) also enhanced axonal regeneration and locomotor improvements in rats with SCI. Although CPECs disappeared from the spinal cord shortly after transplantation, an extensive outgrowth of regenerating axons occurred through astrocyte-devoid areas, as in the case of BMSC transplantation. These ifndings suggest that BMSCs and CPECs secret neurotrophic factors that promote tissue repair of the spinal cord, including axonal regeneration and reduced cavity formation. This means that transplantation of BMSCs and CPECs promotes “intrinsic” ability of the spinal cord to regenerate. The treatment to stimu-late the intrinsic regeneration ability of the spinal cord is the safest method of clinical application for SCI. It should be emphasized that the generally anticipated long-term survival, proliferation and differentiation of transplanted cells are not necessarily desirable from the clinical point of view of safety.

  12. Effect of valproic acid on endogenous neural stem cell proliferation in a rat model of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Guoxin Nan; Ming Li; Weihong Liao; Jiaqiang Qin; Yujiang Cao; Youqiong Lu

    2009-01-01

    BACKGROUND: Valproic acid has been reported to decrease apoptosis, promote neuronal differentiation of brain-derived neural stem cells, and inhibit glial differentiation of brain-derived neural stem cells.OBJECTIVE: To investigate the effects of valproic acid on proliferation of endogenous neural sterm cells in a rat model of spinal cord injury.DESIGN, TIME AND SETTING: A randomized, controlled, neuropathological study was performed at Key Laboratory of Trauma, Buming, and Combined Injury, Research Institute of Surgery, Daping Hospital, the Third Military Medical University of Chinese PLA between November 2005 and February 2007.MATERIALS: A total of 45 adult, Wistar rats were randomly divided into sham surgery (n=5), injury(n=20), and valproic acid (n=20) groups. Valproic acid was provided by Sigma, USA.METHODS: Injury was induced to the T10 segment in the injury and valproic acid groups using the metal weight-dropping method. The spinal cord was exposed without contusion in the sham surgery group. Rats in the valproic acid group were intraperitoneally injected with 150 mg/kg valproic acid every 12 hours (twice in total).MAIN OUTCOME MEASURES: Nestin expression (5 mm from injured center) was detected using immunohistochemistry at 1, 3 days, 1, 4, and 8 weeks post-injury.RESULTS: Low expression of nestin was observed in the cytoplasm, but rarely in the white matter of the spinal cord in the sham surgery group. In the injury group, nestin expression was observed in the ependyma and pia mater one day after injury, and expression reached a peak at 1 week (P<0.05).Expression was primarily observed in the ependymal cells, which expanded towards the white and gray matter of the spinal cord. Nestin expression rapidly decreased by 4 weeks post-injury, and had almost completely disappeared by 8 weeks. At 24 hours after spinal cord injury, there was nosignificant difference in nestin expression between the valproic acid and injury groups. At 1 week,there was a significant

  13. Fluoxetine treatment promotes functional recovery in a rat model of cervical spinal cord injury

    Science.gov (United States)

    Scali, Manuela; Begenisic, Tatjana; Mainardi, Marco; Milanese, Marco; Bonifacino, Tiziana; Bonanno, Giambattista; Sale, Alessandro; Maffei, Lamberto

    2013-01-01

    Spinal cord injury (SCI) is a severe condition leading to enduring motor deficits. When lesions are incomplete, promoting spinal cord plasticity might be a useful strategy to elicit functional recovery. Here we investigated whether long-term fluoxetine administration in the drinking water, a treatment recently demonstrated to optimize brain plasticity in several pathological conditions, promotes motor recovery in rats that received a C4 dorsal funiculus crush. We show that fluoxetine administration markedly improved motor functions compared to controls in several behavioral paradigms. The improved functional effects correlated positively with significant sprouting of intact corticospinal fibers and a modulation of the excitation/inhibition balance. Our results suggest a potential application of fluoxetine treatment as a non invasive therapeutic strategy for SCI-associated neuropathologies. PMID:23860568

  14. Major vault protein promotes locomotor recovery and regeneration after spinal cord injury in adult zebrafish.

    Science.gov (United States)

    Pan, Hong-Chao; Lin, Jin-Fei; Ma, Li-Ping; Shen, Yan-Qin; Schachner, Melitta

    2013-01-01

    In contrast to mammals, adult zebrafish recover locomotor functions after spinal cord injury (SCI), in part due to axonal regrowth and regeneration permissivity of the central nervous system. Upregulation of major vault protein (MVP) expression after spinal cord injury in the brainstem of the adult zebrafish prompted us to probe for its contribution to recovery after SCI. MVP is a multifunctional protein expressed not only in many types of tumours but also in the nervous system, where its importance for regeneration is, however, unclear. Using an established zebrafish SCI model, we found that MVP mRNA and protein expression levels were increased in ependymal cells in the spinal cord caudal to the lesion site at 6 and 11 days after SCI. Double immunolabelling showed that MVP was co-localised with Islet-1 or tyrosine hydroxylase around the central canal of the spinal cord in sham-injured control fish and injured fish 11 days after surgery. MVP co-localised with the neural stem cell marker nestin in ependymal cells after injury. By using an in vivo morpholino-based knock-down approach, we found that the distance moved by MVP morpholino-treated fish was reduced at 4, 5 and 6 weeks after SCI when compared to fish treated with standard control morpholino. Knock-down of MVP resulted in reduced regrowth of axons from brainstem neurons into the spinal cord caudal to the lesion site. These results indicate that MVP supports locomotor recovery and axonal regrowth after SCI in adult zebrafish.

  15. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Huang, Xiaohua [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Biochemistry, College of Laboratory Medicine, Dalian Medical University, Dalian 116044 (China); An, Yue [Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Ren, Feng [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); He, Xiaowen; Schachner, Melitta [Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ (United States); Xiao, Zhicheng, E-mail: zhicheng.xiao@monash.edu [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); Ma, Keli, E-mail: makeli666@aliyun.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Li, Yali, E-mail: yalilipaper@gmail.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Anatomy, National University of Singapore, Singapore 119078 (Singapore)

    2013-10-25

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression.

  16. Propylthiouracil, independent of its antithyroid effect, promotes vascular smooth muscle cells differentiation via PTEN induction.

    Science.gov (United States)

    Chen, Wei-Jan; Pang, Jong-Hwei S; Lin, Kwang-Huei; Lee, Dany-Young; Hsu, Lung-An; Kuo, Chi-Tai

    2010-01-01

    Propylthiouracil (PTU), independent of its antithyroid effect, is recently found to have an antiatherosclerotic effect. The aim of this study is to determine the impact of PTU on phenotypic modulation of vascular smooth muscle cells (VSMCs), as phenotypic modulation may contribute to the growth of atherosclerotic lesions and neointimal formation after arterial injury. Propylthiouracil reduced neointimal formation in balloon-injured rat carotid arteries. In vitro, PTU may convert VSMCs from a serum-induced dedifferentiation state to a differentiated state, as indicated by a spindle-shaped morphology and an increase in the expression of SMC differentiation marker contractile proteins, including calponin and smooth muscle (SM)-myosin heavy chain (SM-MHC). Transient transfection studies in VSMCs demonstrated that PTU induced the activity of SMC marker genes (calponin and SM-MHC) promoters, indicating that PTU up-regulates these genes expression predominantly at the transcriptional level. Furthermore, PTU enhanced the expression of PTEN and inhibition of PTEN by siRNA knockdown blocked PTU-induced activation of contractile proteins expression and promoter activity. In the rat carotid injury model, PTU reversed the down-regulation of contractile proteins and up-regulated PTEN in the neointima induced by balloon injury. Propylthiouracil promotes VSMC differentiation, at lest in part, via induction of the PTEN-mediated pathway. These findings suggest a possible mechanism by which PTU may contribute to its beneficial effects on atherogenesis and neointimal formation after arterial injury.

  17. Exercise promotes motor functional recovery in rats with corticospinal tract injury: anti-apoptosis mechanism

    Directory of Open Access Journals (Sweden)

    Ting-ting Hou

    2015-01-01

    Full Text Available Studies have shown that exercise interventions can improve functional recovery after spinal cord injury, but the mechanism of action remains unclear. To investigate the mechanism, we established a unilateral corticospinal tract injury model in rats by pyramidotomy, and used a single pellet reaching task and horizontal ladder walking task as exercise interventions postoperatively. Functional recovery of forelimbs and forepaws in the rat models was noticeably enhanced after the exercises. Furthermore, TUNEL staining revealed significantly fewer apoptotic cells in the spinal cord of exercised rats, and western blot analysis showed that spinal cord expression of the apoptosis-related protein caspase-3 was significantly lower, and the expression of Bcl-2 was significantly higher, while the expression of Bax was not signifiantly changed after exercise, compared with the non-exercised group. Expression of these proteins decreased with time after injury, towards the levels observed in sham-operated rats, however at 4 weeks postoperatively, caspase-3 expression remained significantly greater than in sham-operated rats. The present findings indicate that a reduction in apoptosis is one of the mechanisms underlying the improvement of functional recovery by exercise interventions after corticospinal tract injury.

  18. Human umbilical cord blood stem cell transplantation for the treatment of chronic spinal cord injury Electrophysiological changes and long-term efficacy

    Institute of Scientific and Technical Information of China (English)

    Liqing Yao; Chuan He; Ying Zhao; Jirong Wang; Mei Tang; Jun Li; Ying Wu; Lijuan Ao; Xiang Hu

    2013-01-01

    Stem cell transplantation can promote functional restoration following acute spinal cord injury (injury time 6 months) were treated with human umbilical cord blood stem cells via intravenous and intrathecal injection. The follow-up period was 12 months after transplantation. Results found that autonomic nerve functions were restored and the latent period of somatosensory evoked potentials was reduced. There were no severe adverse reactions in patients following stem cell transplantation. These experimental findings suggest that the transplantation of human umbilical cord blood stem cells is a safe and effective treatment for patients with traumatic spinal cord injury.

  19. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway.

    Science.gov (United States)

    Zhu, Yao; Zhang, Ya-Jie; Liu, Wei-Wei; Shi, Ai-Wu; Gu, Ning

    2016-08-09

    Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL), one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2)-regulated genes such as heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase (quinone1) (NQO1). However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS) and malondialdehyde (MDA), and improved the activities of superoxide dismutase (SOD) and catalase (CAT), resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  20. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yao Zhu

    2016-08-01

    Full Text Available Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL, one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2-regulated genes such as heme oxygenase-1 (HO-1 and NAD(PH dehydrogenase (quinone1 (NQO1. However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS and malondialdehyde (MDA, and improved the activities of superoxide dismutase (SOD and catalase (CAT, resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  1. The role of hSCs in promoting neural differentiation of hUC-MSCs in spinal cord injury

    Directory of Open Access Journals (Sweden)

    Wu QL

    2013-11-01

    Full Text Available Qiuli Wu,1,* You Chen,1,* Guangzhi Ning,1 Shiqing Feng,1 Junling Han,2 Qiang Wu,1 Yulin LI,1 Hong Wu,1 Hongyu Shi1 1Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China; 2Tianjin Union Stem Cell and Gene Engineering Co., Ltd, Tianjin, People's Republic of China * These authors contributed equally to this paper Abstract: Cell therapy is a promising approach to treating spinal cord injury (SCI. Previous studies demonstrated that co-transplantation of human umbilical cord mesenchymal stem cells (hUC-MSCs and human Schwann cells (hSCs was an effective strategy by which to promote the regeneration of corticospinal fibers and locomotor recovery after SCI in rats. However, the neural differentiation potential of hUC-MSCs was not fully understood. In the present study, we examined the influence of hSCs on the survival and differentiation of hUC-MSCs in SCI rats. Four groups of rats were implanted with Dulbecco's Modified Eagle's Medium (DMEM, hSCs, hUC-MSCs, or a combination of hSCs and hUC-MSCs, respectively. Our results demonstrated that MAB1281 immunopositive cells appeared in the injured site of the transplanted cell groups, while myelin basic protein and high-molecular-weight neurofilament immunopositive cells were detected only in the co-transplantation group under the positive background of MAB1281. Furthermore, polymerase chain reaction (PCR and Western blot showed significantly higher expression of myelin basic protein and high-molecular-weight neurofilament and lower expression of glial fibrillary acidic protein in the co-transplantation group (P < 0.05, which correlated strongly with immunofluorescence findings. These results suggest that hSCs could induce hUC-MSC differentiation into neurons and oligodendrocytes and inhibit the formation of glial scarring after SCI. The neural differentiation of hUC-MSCs is likely induced by soluble factors provided by hSCs. Keywords: spinal cord injury

  2. Health promotion through fitness for adolescents and young adults following spinal cord injury.

    Science.gov (United States)

    Edwards, P A

    1996-09-01

    A study by Warms (1987) sought to determine both the health care actually received by individuals following a spinal cord injury and the services they desired but did not obtain. The findings suggest that the general health promotion needs of these individuals are the same as for the general population and, though disability related topics are discussed with health care providers, information on health promotion is not received. The leading two services desired by the respondents but not obtained were planning an exercise program (43%) and referral to a fitness center (26%). A plan for health promotion through fitness was designed for individuals with physical disabilities to assist in meeting the identified needs. The program provides several benefits which include: improved function, a positive impact on lifestyle, and a decrease in the risk of complications. The plan includes a general health appraisal and fitness assessment as well as an exercise and fitness prescription with adapted physical activity and sports participation as integral parts. Evaluation methodology is incorporated to demonstrate that health promotion activities positively effect function and lifestyle and decrease severity of complications.

  3. Molecular Imaging in Stem Cell Therapy for Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Fahuan Song

    2014-01-01

    Full Text Available Spinal cord injury (SCI is a serious disease of the center nervous system (CNS. It is a devastating injury with sudden loss of motor, sensory, and autonomic function distal to the level of trauma and produces great personal and societal costs. Currently, there are no remarkable effective therapies for the treatment of SCI. Compared to traditional treatment methods, stem cell transplantation therapy holds potential for repair and functional plasticity after SCI. However, the mechanism of stem cell therapy for SCI remains largely unknown and obscure partly due to the lack of efficient stem cell trafficking methods. Molecular imaging technology including positron emission tomography (PET, magnetic resonance imaging (MRI, optical imaging (i.e., bioluminescence imaging (BLI gives the hope to complete the knowledge concerning basic stem cell biology survival, migration, differentiation, and integration in real time when transplanted into damaged spinal cord. In this paper, we mainly review the molecular imaging technology in stem cell therapy for SCI.

  4. Renal tubular injury induced by ischemia promotes the formation of calcium oxalate crystals in rats with hyperoxaluria.

    Science.gov (United States)

    Cao, Yanwei; Liu, Wanpeng; Hui, Limei; Zhao, Jianjun; Yang, Xuecheng; Wang, Yonghua; Niu, Haitao

    2016-10-01

    Hyperoxaluria and cell injury are key factors in urolithiasis. Oxalate metabolism may be altered by renal dysfunction and therefore, impact the deposition of calcium oxalate (CaOx) crystals. We investigated the relationship of renal function, oxalate metabolism and CaOx crystal deposition in renal ischemia. One hundred male Sprague-Dawley rats were randomly divided into four groups. Hyperoxaluria model (Group A and B) was established by feeding rats with 0.75 % ethylene glycol (EG). The left renal pedicle was clamped for 30 min to establish renal ischemia Groups (B and C), while Groups A and D underwent sham operation. Then, serum and urine oxalate (Ox), creatinine (Cr) and urea nitrogen (UN) levels were evaluated by liquid chromatography mass spectrometry (LCMS) and ion mass spectrum (IMS) at days 0, 2, 4, 7, and 14. CaOx crystallization was assessed by transmission electron microscope (TEM). A temporal and significant increase of serum Cr and UN levels was observed in Groups B and C compared to values obtained for Groups A and D (P renal tissue. Our results indicated that renal tubular injury induced by renal ischemia might not affect Ox levels but could promote CaOx crystal retention under hyperoxaluria.

  5. The Role of Cytokines and Inflammatory Cells in Perinatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Ryan M. McAdams

    2012-01-01

    Full Text Available Perinatal brain injury frequently complicates preterm birth and leads to significant long-term morbidity. Cytokines and inflammatory cells are mediators in the common pathways associated with perinatal brain injury induced by a variety of insults, such as hypoxic-ischemic injury, reperfusion injury, toxin-mediated injury, and infection. This paper examines our current knowledge regarding cytokine-related perinatal brain injury and specifically discusses strategies for attenuating cytokine-mediated brain damage.

  6. Erlotinib promotes endoplasmic reticulum stress-mediated injury in the intestinal epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Lu; Hu, Lingna; Yang, Baofang; Fang, Xianying; Gao, Zhe; Li, Wanshuai; Sun, Yang; Shen, Yan; Wu, Xuefeng [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Shu, Yongqian [Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029 (China); Gu, Yanhong, E-mail: guluer@163.com [Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029 (China); Wu, Xudong, E-mail: xudongwu@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Xu, Qiang, E-mail: molpharm@163.com [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)

    2014-07-01

    Erlotinib, a popular drug for treating non-small cell lung cancer (NSCLC), causes diarrhea in approximately 55% of patients receiving this drug. In the present study, we found that erlotinib induced barrier dysfunction in rat small intestine epithelial cells (IEC-6) by increasing epithelial permeability and down-regulating E-cadherin. The mRNA levels of various pro-inflammatory cytokines (Il-6, Il-25 and Il-17f) were increased after erlotinib treatment in IEC-6 cells. Erlotinib concentration- and time-dependently induced apoptosis and endoplasmic reticulum (ER) stress in both IEC-6 and human colon epithelial cells (CCD 841 CoN). Intestinal epithelial injury was also observed in male C57BL/6J mice administrated with erlotinib. Knockdown of C/EBP homologous protein (CHOP) with small interference RNA partially reversed erlotinib-induced apoptosis, production of IL-6 and down-regulation of E-cadherin in cultured intestinal epithelial cells. In conclusion, erlotinib caused ER stress-mediated injury in the intestinal epithelium, contributing to its side effects of diarrhea in patients. - Highlights: • Erlotinib destroyed barrier integrity both in vitro and in vivo. • Erlotinib induced inflammation both in vitro and in vivo. • Erlotinib induced apoptosis both in vitro and in vivo. • ER stress contributed to erlotinib-induced barrier dysfunction.

  7. Neural stem cell transplantation with Nogo-66 receptor gene silencing to treat severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Dong Wang; Jianjun Zhang; Jingjian Ma; Yuan Mu; Yinghui Zhuang

    2011-01-01

    Inhibition of neurite growth, which is mediated by the Nogo-66 receptor (NgR), affects nerve regeneration following neural stem cell (NSC) transplantation. The present study utilized RNA interference to silence NgR gene expression in NSCs, which were subsequently transplanted into rats with traumatic brain injury. Following transplantation of NSCs transfected with small interfering RNA,typical neural cell-like morphology was detected in injured brain tissues, and was accompanied by absence of brain tissue cavity, increased growth-associated protein 43 mRNA and protein expression,and improved neurological function compared with NSC transplantation alone. Results demonstrated that NSC transplantation with silenced NgR gene promoted functional recovery following brain injury.

  8. Cancer specificity of promoters of the genes controlling cell proliferation.

    Science.gov (United States)

    Kashkin, Kirill; Chernov, Igor; Stukacheva, Elena; Monastyrskaya, Galina; Uspenskaya, Natalya; Kopantzev, Eugene; Sverdlov, Eugene

    2015-02-01

    Violation of proliferation control is a common feature of cancer cells. We put forward the hypothesis that promoters of genes involved in the control of cell proliferation should possess intrinsic cancer specific activity. We cloned promoter regions of CDC6, POLD1, CKS1B, MCM2, and PLK1 genes into pGL3 reporter vector and studied their ability to drive heterologous gene expression in transfected cancer cells of different origin and in normal human fibroblasts. Each promoter was cloned in short (335-800 bp) and long (up to 2.3 kb) variants to cover probable location of core and whole promoter regulatory elements. Cloned promoters were significantly more active in cancer cells than in normal fibroblasts that may indicate their cancer specificity. Both versions of CDC6 promoters were shown to be most active while the activities of others were close to that of BIRC5 gene (survivin) gene promoter. Long and short variants of each cloned promoter demonstrated very similar cancer specificity with the exception of PLK1-long promoter that was substantially more specific than its short variant and other promoters under study. The data indicate that most of the important cis-regulatory transcription elements responsible for intrinsic cancer specificity are located in short variants of the promoters under study. CDC6 short promoter may serve as a promising candidate for transcription targeted cancer gene therapy.

  9. Potential advantages of acute kidney injury management by mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Francesca; Bianchi; Elisa; Sala; Chiara; Donadei; Irene; Capelli; Gaetano; La; Manna

    2014-01-01

    Mesenchymal stem cells are currently considered as a promising tool for therapeutic application in acute kidney injury(AKI) management. AKI is characterized by acute tubular injury with rapid loss of renal function. After AKI, inflammation, oxidative stress and excessive deposition of extracellular matrix are the molecular events that ultimately cause the end-stage renal disease. Despite numerous improvement of supportive therapy, the mortality and morbidity among patients remain high. Therefore, exploring novel therapeutic options to treat AKI is mandatory. Numerous evidence in animal models has demonstrated the capability of mesenchymal stem cells(MSCs) to restore kidney function after induced kidney injury. After infusion, MSCs engraft in the injured tissue and release soluble factors and microvesicles that promote cell survival and tissue repairing. Indeed, the main mechanism of action of MSCs in tissue regeneration is the paracrine/endocrine secretion of bioactive molecules. MSCs can be isolated from several tissues, including bone marrow, adipose tissue, and blood cord; pre-treatment procedures to improve MSCs homing and their paracrine function have been also described. This review will focus on the application of cell therapy in AKI and it will summarize preclinical studies in animal models and clinical trials currently ongoing about the use of mesenchymal stem cells after AKI.

  10. Aging promotes pro-fibrotic matrix production and increases fibrocyte recruitment during acute lung injury.

    Science.gov (United States)

    Sueblinvong, Viranuj; Neveu, Wendy A; Neujahr, David C; Mills, Stephen T; Rojas, Mauricio; Roman, Jesse; Guidot, David M

    2014-01-01

    Fibrotic lung diseases increase with age. Previously we determined that senescence increases tissue expression of fibronectin EDA (Fn-EDA) and decreases fibroblast expression of Thy-1, and that fibrocytes contribute to fibrosis following bleomycin-induced lung injury in mice. In this study we hypothesized that fibroblasts lacking Thy-1 expression produce an extracellular matrix that promotes fibrocyte retention and myofibroblast transdifferentiation, thereby promoting fibrogenesis. Young and old mice were treated with bleomycin intratracheally; fibrocytes in the bone marrow, blood, and lungs were quantified, and lung fibroblast Thy-1 expression assessed. Bone marrow-derived fibrocytes were cultured on matrices derived from Thy-1(+) or Thy-1(-) fibroblasts ± the pro-fibrotic cytokine TGFβ1. Older mice had more fibrocytes in their bone marrows at baseline and more fibrocytes in their lungs following bleomycin treatment. In parallel, lung fibroblasts in older mice had lower expression of Thy-1 at baseline that increased transiently 7 days after bleomycin treatment but then rapidly waned such that 14 days after bleomycin treatment Thy-1 expression was again markedly lower. Fibrocytes cultured on matrices derived from Thy-1(-) fibroblasts + TGFβ1 had increased gene expression for collagen type 1, fibronectin, Fn-EDA, and α-smooth muscle actin. In parallel, whereas the matrices derived from Thy-1(-) fibroblasts stimulated phosphorylation of Akt in cultured fibrocytes, the matrices derived from Thy-1(+) fibroblasts induced apoptosis. These findings suggest that senescence increases fibrocyte recruitment to the lung following injury and that loss of Thy-1 expression by lung fibroblasts promotes fibrocyte retention and myofibroblast trans-differentiation that renders the "aging lung" susceptible to fibrosis.

  11. Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity

    Directory of Open Access Journals (Sweden)

    Michael J. Molumby

    2016-05-01

    Full Text Available Growth of a properly complex dendrite arbor is a key step in neuronal differentiation and a prerequisite for neural circuit formation. Diverse cell surface molecules, such as the clustered protocadherins (Pcdhs, have long been proposed to regulate circuit formation through specific cell-cell interactions. Here, using transgenic and conditional knockout mice to manipulate γ-Pcdh repertoire in the cerebral cortex, we show that the complexity of a neuron’s dendritic arbor is determined by homophilic interactions with other cells. Neurons expressing only one of the 22 γ-Pcdhs can exhibit either exuberant or minimal dendrite complexity, depending only on whether surrounding cells express the same isoform. Furthermore, loss of astrocytic γ-Pcdhs, or disruption of astrocyte-neuron homophilic matching, reduces dendrite complexity cell non-autonomously. Our data indicate that γ-Pcdhs act locally to promote dendrite arborization via homophilic matching, and they confirm that connectivity in vivo depends on molecular interactions between neurons and between neurons and astrocytes.

  12. Autophagic Cell Death and Apoptosis Jointly Mediate Cisatracurium Besylate-Induced Cell Injury

    Directory of Open Access Journals (Sweden)

    Haixia Zhuang

    2016-04-01

    Full Text Available Cisatracurium besylate is an ideal non-depolarizing muscle relaxant which is widely used in clinical application. However, some studies have suggested that cisatracurium besylate can affect cell proliferation. Moreover, its specific mechanism of action remains unclear. Here, we found that the number of GFP-LC3 (green fluoresent protein-light chain 3 positive autophagosomes and the rate of mitochondria fracture both increased significantly in drug-treated GFP-LC3 and MitoDsRed stable HeLa cells. Moreover, cisatracurium promoted the co-localization of LC3 and mitochondria and induced formation of autolysosomes. Levels of mitochondrial proteins decreased, which were reversed by the lysosome inhibitor Bafinomycin A1. Similar results with evidence of dose-dependent effects were found in both HeLa and Human Umbilical Vein Endothelial Cells (HUVECs. Cisatracurium lowered HUVEC viability to 0.16 (OD490 at 100 µM and to 0.05 (OD490 after 48 h in vitro; it increased the cell death rate to 56% at 100 µM and to 60% after 24 h in a concentration- and time-dependent manner (p < 0.01. Cell proliferation decreased significantly by four fold in Atg5 WT (wildtype MEF (mouse embryonic fibroblast (p < 0.01 but was unaffected in Atg5 KO (Knockout MEF, even upon treatment with a high dose of cisatracurium. Cisatracurium induced significant increase in cell death of wild-type MEFs even in the presence of the apoptosis inhibitor zVAD. Thus, we conclude that activation of both the autophagic cell death and cell apoptosis pathways contributes to cisatracurium-mediated cell injury.

  13. Macrophage Recruitment and Epithelial Repair Following Hair Cell Injury in the Mouse Utricle

    Directory of Open Access Journals (Sweden)

    Tejbeer eKaur

    2015-04-01

    Full Text Available The sensory organs of the inner ear possess resident populations of macrophages, but the function of those cells is poorly understood. In many tissues, macrophages participate in the removal of cellular debris after injury and can also promote tissue repair. The present study examined injury-evoked macrophage activity in the mouse utricle. Experiments used transgenic mice in which the gene for the human diphtheria toxin receptor (huDTR was inserted under regulation of the Pou4f3 promoter. Hair cells in such mice can be selectively lesioned by systemic treatment with diphtheria toxin (DT. In order to visualize macrophages, Pou4f3-huDTR mice were crossed with a second transgenic line, in which one or both copies of the gene for the fractalkine receptor CX3CR1 were replaced with a gene for GFP. Such mice expressed GFP in all macrophages, and mice that were CX3CR1GFP/GFP lacked the necessary receptor for fractalkine signaling. Treatment with DT resulted in the death of ~70% of utricular hair cells within seven days, which was accompanied by increased numbers of macrophages within the utricular sensory epithelium. Many of these macrophages appeared to be actively engulfing hair cell debris, indicating that macrophages participate in the process of ‘corpse removal’ in the mammalian vestibular organs. However, we observed no apparent differences in injury-evoked macrophage numbers in the utricles of CX3CR1+/GFP mice vs. CX3CR1GFP/GFP mice, suggesting that fractalkine signaling is not necessary for macrophage recruitment in these sensory organs. Finally, we found that repair of sensory epithelia at short times after DT-induced hair cell lesions was mediated by relatively thin cables of F-actin. After 56 days recovery, however, all cell-cell junctions were characterized by very thick actin cables.

  14. Macrophages in cardiac homeostasis, injury responses and progenitor cell mobilisation

    Directory of Open Access Journals (Sweden)

    Alexander R. Pinto

    2014-11-01

    Full Text Available Macrophages are an immune cell type found in every organ of the body. Classically, macrophages are recognised as housekeeping cells involved in the detection of foreign antigens and danger signatures, and the clearance of tissue debris. However, macrophages are increasingly recognised as a highly versatile cell type with a diverse range of functions that are important for tissue homeostasis and injury responses. Recent research findings suggest that macrophages contribute to tissue regeneration and may play a role in the activation and mobilisation of stem cells. This review describes recent advances in our understanding of the role played by macrophages in cardiac tissue maintenance and repair following injury. We examine the involvement of exogenous and resident tissue macrophages in cardiac inflammatory responses and their potential activity in regulating cardiac regeneration.

  15. Mesenchymal stem cell conditioning promotes rat oligodendroglial cell maturation.

    Directory of Open Access Journals (Sweden)

    Janusz Joachim Jadasz

    Full Text Available Oligodendroglial progenitor/precursor cells (OPCs represent the main cellular source for the generation of new myelinating oligodendrocytes in the adult central nervous system (CNS. In demyelinating diseases such as multiple sclerosis (MS myelin repair activities based on recruitment, activation and differentiation of resident OPCs can be observed. However, the overall degree of successful remyelination is limited and the existence of an MS-derived anti-oligodendrogenic milieu prevents OPCs from contributing to myelin repair. It is therefore of considerable interest to understand oligodendroglial homeostasis and maturation processes in order to enable the development of remyelination therapies. Mesenchymal stem cells (MSC have been shown to exert positive immunomodulatory effects, reduce demyelination, increase neuroprotection and to promote adult neural stem cell differentiation towards the oligodendroglial lineage. We here addressed whether MSC secreted factors can boost the OPC's oligodendrogenic capacity in a myelin non-permissive environment. To this end, we analyzed cellular morphologies, expression and regulation of key factors involved in oligodendroglial fate and maturation of primary rat cells upon incubation with MSC-conditioned medium. This demonstrated that MSC-derived soluble factors promote and accelerate oligodendroglial differentiation, even under astrocytic endorsing conditions. Accelerated maturation resulted in elevated levels of myelin expression, reduced glial fibrillary acidic protein expression and was accompanied by downregulation of prominent inhibitory differentiation factors such as Id2 and Id4. We thus conclude that apart from their suggested application as potential anti-inflammatory and immunomodulatory MS treatment, these cells might also be exploited to support endogenous myelin repair activities.

  16. Blockade of transient receptor potential cation channel subfamily V member 1 promotes regeneration after sciatic nerve injury

    Institute of Scientific and Technical Information of China (English)

    Fei Ren; Hong Zhang; Chao Qi; Mei-ling Gao; Hong Wang; Xia-qing Li

    2015-01-01

    The transient receptor potential cation channel subfamily V member 1 (TRPV1) provides the sensation of pain (nociception). However, it remains unknown whether TRPV1 is activated after peripheral nerve injury, or whether activation of TRPV1 affects neural regeneration. In the present study, we established rat models of unilateral sciatic nerve crush injury, with or without pretreatment with AMG517 (300 mg/kg), a TRPV1 antagonist, injected subcutaneously into the ipsilateral paw 60 minutes before injury. At 1 and 2 weeks after injury, we performed immuno-lfuorescence staining of the sciatic nerve at the center of injury, at 0.3 cm proximal and distal to the injury site, and in the dorsal root ganglia. Our results showed that Wallerian degeneration occurred distal to the injury site, and neurite outgrowth and Schwann cell regeneration occurred proximal to the injury. The number of regenerating myelinated and unmyelinated nerve clus-ters was greater in the AMG517-pretreated rats than in the vehicle-treated group, most notably 2 weeks after injury. TRPV1 expression in the injured sciatic nerve and ipsilateral dorsal root ganglia was markedly greater than on the contralateral side. Pretreatment with AMG517 blocked this effect. These data indicate that TRPV1 is activated or overexpressed after sciatic nerve crush injury, and that blockade of TRPV1 may accelerate regeneration of the injured sciatic nerve.

  17. The Healing of Bone Marrow-Derived Stem Cells on Motor Functions in Acute Spinal Cord Injury of Mice

    Directory of Open Access Journals (Sweden)

    N Gashmardi

    2016-10-01

    Full Text Available Background & aim: Spinal cord injury is a devastating damage that can cause motor and sensory deficits reducing quality of life and life expectancy of patients. Stem cell transplantation can be one of the promising therapeutic strategies. Bone marrow is a rich source of stem cells that is able to differentiate into various cell types. In this study, bone marrow stem cells were transplanted into mice spinal cord injury model to evaluate the motor function test. Methods: Bone marrow stem cells were isolated from 3 mice. Thirty six mice were randomly divided into 3 groups: the control, sham and experimental. In sham group, mice were subjected to spinal cord compression. In experimental group, one day after lesion, isolated stem cells (200,000 were injected intravenously. Assessment of locomotor function was done by Toyama Mouse Score (TMS after 1, 2, 3, 4, 5 week post-injury. The data were analyzed using one-way Analysis of Variance and Tukey tests and statistical software Graph Pad and SPSS.P > 0/05 was considered as significant difference.  Results: The score of TMS after cell transplantation was higher in cell transplantation group (experimental, while it was significantly higher after fifth week when compared to other groups. Conclusion: The increase in TMS score in cell transplantation group showed that injection of stem cells in acute spinal cord injury can have a therapeutic effect and promote locomotor function.

  18. Utilizing pharmacotherapy and mesenchymal stem cell therapy to reduce inlfammation following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Sherwin Mashkouri; Marci G. Crowley; Michael G. Liska; Sydney Corey; Cesar V. Borlongan

    2016-01-01

    The pathologic process of chronic phase traumatic brain injury is associated with spreading inlfamma-tion, cell death, and neural dysfunction. It is thought that sequestration of inlfammatory mediators can facilitate recovery and promote an environment that fosters cellular regeneration. Studies have targeted post-traumatic brain injury inlfammation with the use of pharmacotherapy and cell therapy. These thera-peutic options are aimed at reducing the edematous and neurodegenerative inlfammation that have been associated with compromising the integrity of the blood-brain barrier. Although studies have yielded posi-tive results from anti-inlfammatory pharmacotherapy and cell therapy individually, emerging research has begun to target inlfammation using combination therapy. The joint use of anti-inlfammatory drugs along-side stem cell transplantation may provide better clinical outcomes for traumatic brain injury patients. Despite the promising results in this ifeld of research, it is important to note that most of the studies men-tioned in this review have completed their studies using animal models. Translation of this research into a clinical setting will require additional laboratory experiments and larger preclinical trials.

  19. Macrophage micro-RNA-155 promotes lipopolysaccharide-induced acute lung injury in mice and rats.

    Science.gov (United States)

    Wang, Wen; Liu, Zhi; Su, Jie; Chen, Wen-Sheng; Wang, Xiao-Wu; Bai, San-Xing; Zhang, Jin-Zhou; Yu, Shi-Qiang

    2016-08-01

    Micro-RNA (miR)-155 is a novel gene regulator with important roles in inflammation. Herein, our study aimed to explore the role of miR-155 in LPS-induced acute lung injury(ALI). ALI in mice was induced by intratracheally delivered LPS. Loss-of-function experiments performed on miR-155 knockout mice showed that miR-155 gene inactivation protected mice from LPS-induced ALI, as manifested by preserved lung permeability and reduced lung inflammation compared with wild-type controls. Bone marrow transplantation experiments identified leukocytes, but not lung parenchymal-derived miR-155-promoted acute lung inflammation. Real-time PCR analysis showed that the expression of miR-155 in lung tissue was greatly elevated in wild-type mice after LPS stimulation. In situ hybridization showed that miR-155 was mainly expressed in alveolar macrophages. In vitro experiments performed in isolated alveolar macrophages and polarized bone marrow-derived macrophages confirmed that miR-155 expression in macrophages was increased in response to LPS stimulation. Conversely, miR-155 gain-of-function in alveolar macrophages remarkably exaggerated LPS-induced acute lung injury. Molecular studies identified the inflammation repressor suppressor of cytokine signaling (SOCS-1) as the downstream target of miR-155. By binding to the 3'-UTR of the SOCS-1 mRNA, miR-155 downregulated SOCS-1 expression, thus, permitting the inflammatory response during lung injury. Finally, we generated a novel miR-155 knockout rat strain and showed that the proinflammatory role of miR-155 was conserved in rats. Our study identified miR-155 as a proinflammatory factor after LPS stimulation, and alveolar macrophages-derived miR-155 has an important role in LPS-induced ALI.

  20. Mesenchymal Stem Cells in the Treatment of Traumatic Brain Injury

    Science.gov (United States)

    Hasan, Anwarul; Deeb, George; Rahal, Rahaf; Atwi, Khairallah; Mondello, Stefania; Marei, Hany Elsayed; Gali, Amr; Sleiman, Eliana

    2017-01-01

    Traumatic brain injury (TBI) is characterized by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. The primary insult to the brain initiates secondary injury cascades consisting of multiple complex biochemical responses of the brain that significantly influence the overall severity of the brain damage and clinical sequelae. The use of mesenchymal stem cells (MSCs) offers huge potential for application in the treatment of TBI. MSCs have immunosuppressive properties that reduce inflammation in injured tissue. As such, they could be used to modulate the secondary mechanisms of injury and halt the progression of the secondary insult in the brain after injury. Particularly, MSCs are capable of secreting growth factors that facilitate the regrowth of neurons in the brain. The relative abundance of harvest sources of MSCs also makes them particularly appealing. Recently, numerous studies have investigated the effects of infusion of MSCs into animal models of TBI. The results have shown significant improvement in the motor function of the damaged brain tissues. In this review, we summarize the recent advances in the application of MSCs in the treatment of TBI. The review starts with a brief introduction of the pathophysiology of TBI, followed by the biology of MSCs, and the application of MSCs in TBI treatment. The challenges associated with the application of MSCs in the treatment of TBI and strategies to address those challenges in the future have also been discussed.

  1. Pathogenesis of Cell Injury by Rickettsia conorii.

    Science.gov (United States)

    1984-06-15

    Yalaysia; Rhipicephalus simus, Amblyomma varieqatum, A. cohaerens, and A. gemma in Ethiopia; and Rhipicephalus bursa, Hyallomma marqinatum, H. lusitanicum...collected prior to the start of this contract presents a study of infection of genetically immunodeficient mice with R. conorii. In order to determine...the definitive importance of T- and B-lymphocytes in immunity to Rickettsa conor’i, mice genetically deficient in T-cells, B-cells, or both T- and B

  2. Obstructive renal injury: from fluid mechanics to molecular cell biology.

    Science.gov (United States)

    Ucero, Alvaro C; Gonçalves, Sara; Benito-Martin, Alberto; Santamaría, Beatriz; Ramos, Adrian M; Berzal, Sergio; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto

    2010-04-22

    Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1) and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.

  3. Polylactic-co-glycolic acid microspheres containing three neurotrophic factors promote sciatic nerve repair after injury

    Institute of Scientific and Technical Information of China (English)

    Qun Zhao; Zhi-yue Li; Ze-peng Zhang; Zhou-yun Mo; Shi-jie Chen; Si-yu Xiang; Qing-shan Zhang; Min Xue

    2015-01-01

    A variety of neurotrophic factors have been shown to repair the damaged peripheral nerve. However, in clinical practice, nerve growth factor, neurotrophin-3 and brain-derived neuro-trophic factor are all peptides or proteins that may be rapidly deactivated at the focal injury site;their local effective concentration time following a single medication cannot meet the required time for spinal axons to regenerate and cross the glial scar. In this study, we produced polymer sustained-release microspheres based on the polylactic-co-glycolic acid copolymer; the micro-spheres at 300-µm diameter contained nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor. Six microspheres were longitudinally implanted into the sciatic nerve at the anastomosis site, serving as the experimental group; while the sciatic nerve in the control group was subjected to the end-to-end anastomosis using 10/0 suture thread. At 6 weeks after implanta-tion, the lower limb activity, weight of triceps surae muscle, sciatic nerve conduction velocity and the maximum amplitude were obviously better in the experimental group than in the control group. Compared with the control group, more regenerating nerve ifbers were observed and dis-tributed in a dense and ordered manner with thicker myelin sheaths in the experimental group. More angiogenesis was also visible. Experimental findings indicate that polylactic-co-glycolic acid composite microspheres containing nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor can promote the restoration of sciatic nerve in rats after injury.

  4. Polylactic-co-glycolic acid microspheres containing three neurotrophic factors promote sciatic nerve repair after injury

    Directory of Open Access Journals (Sweden)

    Qun Zhao

    2015-01-01

    Full Text Available A variety of neurotrophic factors have been shown to repair the damaged peripheral nerve. However, in clinical practice, nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor are all peptides or proteins that may be rapidly deactivated at the focal injury site; their local effective concentration time following a single medication cannot meet the required time for spinal axons to regenerate and cross the glial scar. In this study, we produced polymer sustained-release microspheres based on the polylactic-co-glycolic acid copolymer; the microspheres at 300-μm diameter contained nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor. Six microspheres were longitudinally implanted into the sciatic nerve at the anastomosis site, serving as the experimental group; while the sciatic nerve in the control group was subjected to the end-to-end anastomosis using 10/0 suture thread. At 6 weeks after implantation, the lower limb activity, weight of triceps surae muscle, sciatic nerve conduction velocity and the maximum amplitude were obviously better in the experimental group than in the control group. Compared with the control group, more regenerating nerve fibers were observed and distributed in a dense and ordered manner with thicker myelin sheaths in the experimental group. More angiogenesis was also visible. Experimental findings indicate that polylactic-co-glycolic acid composite microspheres containing nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor can promote the restoration of sciatic nerve in rats after injury.

  5. Polylactic-co-glycolic acid microspheres containing three neurotrophic factors promote sciatic nerve repair after injury.

    Science.gov (United States)

    Zhao, Qun; Li, Zhi-Yue; Zhang, Ze-Peng; Mo, Zhou-Yun; Chen, Shi-Jie; Xiang, Si-Yu; Zhang, Qing-Shan; Xue, Min

    2015-09-01

    A variety of neurotrophic factors have been shown to repair the damaged peripheral nerve. However, in clinical practice, nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor are all peptides or proteins that may be rapidly deactivated at the focal injury site; their local effective concentration time following a single medication cannot meet the required time for spinal axons to regenerate and cross the glial scar. In this study, we produced polymer sustained-release microspheres based on the polylactic-co-glycolic acid copolymer; the microspheres at 300-μm diameter contained nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor. Six microspheres were longitudinally implanted into the sciatic nerve at the anastomosis site, serving as the experimental group; while the sciatic nerve in the control group was subjected to the end-to-end anastomosis using 10/0 suture thread. At 6 weeks after implantation, the lower limb activity, weight of triceps surae muscle, sciatic nerve conduction velocity and the maximum amplitude were obviously better in the experimental group than in the control group. Compared with the control group, more regenerating nerve fibers were observed and distributed in a dense and ordered manner with thicker myelin sheaths in the experimental group. More angiogenesis was also visible. Experimental findings indicate that polylactic-co-glycolic acid composite microspheres containing nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor can promote the restoration of sciatic nerve in rats after injury.

  6. Caustic esophageal injury by impaction of cell batteries.

    Science.gov (United States)

    García Fernández, Francisco José; León Montañés, Rafael; Bozada Garcia, Juan Manuel

    2016-12-01

    The ingestion of cell batteries can cause serious complications (fistula, perforation or stenosis) at the esophageal level. The damage starts soon after ingestion (approximately 2 hours) and is directly related to the amount of time the battery is lodged in said location, the amount of electrical charge remaining in the battery, and the size of the battery itself. Injury is produced by the combination of electrochemical and chemical mechanisms and pressure necrosis. The ingestion of multiple cells and a size > = 20 mm are related with more severe and clinically significant outcomes. A female patient, 39 years old, with a history of previous suicide attempts, was admitted to the Emergency Room with chest pain and dysphagia after voluntary ingestion of 2 cell batteries. Two cell batteries are easily detected in a routine chest X-ray, presenting a characteristic double-ring shadow, or peripheral halo. Urgent oral endoscopy was performed 10 hours after ingestion, showing a greenish-gray lumpy magma-like consistency due to leakage of battery contents. The 2 batteries were sequentially removed with alligator-jaw forceps. After flushing and aspiration of the chemical material, a broad and circumferential injury with denudation of the mucosa and two deep ulcerations with necrosis were observed where the batteries had been. The batteries' seals were eroded, releasing chemical contents. Despite the severity of the injuries, the patient progressed favorably and there was no esophageal perforation. Esophageal impaction of cell batteries should always be considered an endoscopic urgency.

  7. Fetal liver stromal cells promote hematopoietic cell expansion

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kun; Hu, Caihong [Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Zhou, Zhigang [Shanghai 1st People Hospital, Shanghai Jiao Tong University, Shanghai 201620 (China); Huang, Lifang; Liu, Wenli [Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Sun, Hanying, E-mail: shanhum@163.com [Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China)

    2009-09-25

    Future application of hematopoietic stem and progenitor cells (HSPCs) in clinical therapies largely depends on their successful expansion in vitro. Fetal liver (FL) is a unique hematopoietic organ in which hematopoietic cells markedly expand in number, but the mechanisms involved remain unclear. Stromal cells (StroCs) have been suggested to provide a suitable cellular environment for in vitro expansion of HSPCs. In this study, murine StroCs derived from FL at E14.5, with a high level of Sonic hedgehog (Shh) and Wnt expression, were found to have an increased ability to support the proliferation of HSPCs. This effect was inhibited by blocking Shh signaling. Supplementation with soluble Shh-N promoted the proliferation of hematopoietic cells by activating Wnt signaling. Our findings suggest that FL-derived StroCs support proliferation of HSPCs via Shh inducing an autocrine Wnt signaling loop. The use of FL-derived StroCs and regulation of the Shh pathway might further enhance HPSC expansion.

  8. Expression of nitric oxide synthase in T-cell-dependent liver injury initiated by ConA in Kunming mice

    Institute of Scientific and Technical Information of China (English)

    张修礼; 曲建慧; 万谟彬; 权启镇; 孙自勤; 王要军; 江学良; 李文波

    2004-01-01

    Objective: To investigate whether nitric oxide synthase (NOS) is expressed in T-cell-dependent liver injury initiated by concanavalin A (ConA) in Kunming mice and study the possible effect of nitric oxide(NO) on liver injury models. Methods: Liver injury in Kunming mice was induced by administration of ConA through tail vein. Expression of NOS in the liver was detected by NADPH diaphorase staining method. The possible effect of NO on liver injury models was obtained by L-NAME injection to suppress synthesis of NO. Results: NOS has a strong expression in hepatocytes after ConA injection, especially in those close to the central vein, while only a weak expression was found in the epithelial cells in control group. Liver injury became more serious when NO synthesis was inhibited by L-NAME, accompanied by great malondialdehyde(MDA) increase in serum and severe intrahepatic vascular thrombosis. Conclusion: NOS markedly expressed in ConAinduced liver injury, which may subsequently promote nitric oxide synthesis. Increasement of nitric oxide has a protective effect on ConA-induced liver injury.

  9. Prostaglandin E₂ promotes post-infarction cardiomyocyte replenishment by endogenous stem cells.

    Science.gov (United States)

    Hsueh, Ying-Chang; Wu, Jasmine M F; Yu, Chun-Keung; Wu, Kenneth K; Hsieh, Patrick C H

    2014-04-01

    Although self-renewal ability of adult mammalian heart has been reported, few pharmacological treatments are known to promote cardiomyocyte regeneration after injury. In this study, we demonstrate that the critical period of stem/progenitor cell-mediated cardiomyocyte replenishment is initiated within 7 days and saturates on day 10 post-infarction. Moreover, blocking the inflammatory reaction with COX-2 inhibitors may also reduce the capability of endogenous stem/progenitor cells to repopulate lost cells. Injection of the COX-2 product PGE2 enhances cardiomyocyte replenishment in young mice and recovers cell renewal through attenuating TGF-β1 signaling in aged mice. Further analyses suggest that cardiac stem cells are PGE2-responsive and that PGE2 may regulate stem cell activity directly through the EP2 receptor or indirectly by modulating its micro-environment in vivo. Our findings provide evidence that PGE2 holds great potential for cardiac regeneration.

  10. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews

    Directory of Open Access Journals (Sweden)

    Liu-lin Xiong

    2016-01-01

    Full Text Available Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 µg/L to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.

  11. Induced Pluripotent Stem Cells for Traumatic Spinal Cord Injury

    Science.gov (United States)

    Khazaei, Mohamad; Ahuja, Christopher S.; Fehlings, Michael G.

    2017-01-01

    Spinal cord injury (SCI) is a common cause of mortality and neurological morbidity. Although progress had been made in the last decades in medical, surgical, and rehabilitation treatments for SCI, the outcomes of these approaches are not yet ideal. The use of cell transplantation as a therapeutic strategy for the treatment of SCI is very promising. Cell therapies for the treatment of SCI are limited by several translational road blocks, including ethical concerns in relation to cell sources. The use of iPSCs is particularly attractive, given that they provide an autologous cell source and avoid the ethical and moral considerations of other stem cell sources. In addition, different cell types, that are applicable to SCI, can be created from iPSCs. Common cell sources used for reprogramming are skin fibroblasts, keratinocytes, melanocytes, CD34+ cells, cord blood cells and adipose stem cells. Different cell types have different genetic and epigenetic considerations that affect their reprogramming efficiencies. Furthermore, in SCI the iPSCs can be differentiated to neural precursor cells, neural crest cells, neurons, oligodendrocytes, astrocytes, and even mesenchymal stromal cells. These can produce functional recovery by replacing lost cells and/or modulating the lesion microenvironment.

  12. Obstructive renal injury: from fluid mechanics to molecular cell biology

    Directory of Open Access Journals (Sweden)

    Alvaro C Ucero

    2010-04-01

    Full Text Available Alvaro C Ucero1,*, Sara Gonçalves2,*, Alberto Benito-Martin1, Beatriz Santamaría1, Adrian M Ramos1, Sergio Berzal1, Marta Ruiz-Ortega1, Jesus Egido1, Alberto Ortiz11Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain; 2Nefrologia e Transplantação Renal, Hospital de Santa Maria EPE, Lisbon, Portugal *Both authors contributed equally to the manuscriptAbstract: Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1 and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.Keywords: urinary tract obstruction, renal injury, fluid mechanics, molecular cell biology

  13. Effect of Stem Cell Therapy on Adriamycin Induced Tubulointerstitial Injury

    Science.gov (United States)

    Zickri, Maha Baligh; Zaghloul, Somaya; Farouk, Mira; Fattah, Marwa Mohamed Abdel

    2012-01-01

    Background and Objectives It was postulated that adriamycin (ADR) induce renal tubulointerstitial injury. Clinicians are faced with a challenge in producing response in renal patients and slowing or halting the evolution towards kidney failure. The present study aimed at investigating the relation between the possible therapeutic effect of human mesenchymal stem cells (HMSCs), isolated from cord blood on tubular renal damage and their distribution by using ADR induced nephrotoxicity as a model in albino rat. Methods and Results Thirty three male albino rats were divided into control group, ADR group where rats were given single intraperitoneal (IP) injection of 5 mg/kg adriamycin. The rats were sacrificed 10, 20 and 30 days following confirmation of tubular injury. In stem cell therapy group, rats were injected with HMSCs following confirmation of renal injury and sacrificed 10, 20 and 30 days after HMSCs therapy. Kidney sections were exposed to histological, histochemical, immunohistochemical, morphometric and serological studies. In response to SC therapy, vacuolated cytoplasm, dark nuclei, detached epithelial lining and desquamated nuclei were noticed in few collecting tubules (CT). 10, 20 and 30 days following therapy. The mean count of CT showing desquamated nuclei and mean value of serum creatinine revealed significant difference in ADR group. The mean area% of Prussian blue+ve cells and that of CD105 +ve cells measured in subgroup S1 denoted a significant increase compared to subgroups S2 and S3. Conclusions ADR induced tubulointerstitial damage that regressed in response to cord blood HMSC therapy. PMID:24298366

  14. Mesenchymal stem cells attenuate peritoneal injury through secretion of TSG-6.

    Directory of Open Access Journals (Sweden)

    Nan Wang

    Full Text Available BACKGROUND: Mesothelial cell injury plays an important role in peritoneal fibrosis. Present clinical therapies aimed at alleviating peritoneal fibrosis have been largely inadequate. Mesenchymal stem cells (MSCs are efficient for repairing injuries and reducing fibrosis. This study was designed to investigate the effects of MSCs on injured mesothelial cells and peritoneal fibrosis. METHODOLOGY/PRINCIPAL FINDINGS: Rat bone marrow-derived MSCs (5 × 10(6 were injected into Sprague-Dawley (SD rats via tail vein 24 h after peritoneal scraping. Distinct reductions in adhesion formation; infiltration of neutrophils, macrophage cells; number of fibroblasts; and level of transforming growth factor (TGF-β1 were found in MSCs-treated rats. The proliferation and repair of peritoneal mesothelial cells in MSCs-treated rats were stimulated. Mechanically injured mesothelial cells co-cultured with MSCs in transwells showed distinct increases in migration and proliferation. In vivo imaging showed that MSCs injected intravenously mainly accumulated in the lungs which persisted for at least seven days. No apparent MSCs were observed in the injured peritoneum even when MSCs were injected intraperitoneally. The injection of serum-starved MSCs-conditioned medium (CM intravenously reduced adhesions similar to MSCs. Antibody based protein array of MSCs-CM showed that the releasing of TNFα-stimulating gene (TSG-6 increased most dramatically. Promotion of mesothelial cell repair and reduction of peritoneal adhesion were produced by the administration of recombinant mouse (rm TSG-6, and were weakened by TSG-6-RNA interfering. CONCLUSIONS/SIGNIFICANCE: Collectively, these results indicate that MSCs may attenuate peritoneal injury by repairing mesothelial cells, reducing inflammation and fibrosis. Rather than the engraftment, the secretion of TSG-6 by MSCs makes a major contribution to the therapeutic benefits of MSCs.

  15. Regulation of Injury-Induced Ovarian Regeneration by Activation of Oogonial Stem Cells.

    Science.gov (United States)

    Erler, Piril; Sweeney, Alexandra; Monaghan, James R

    2017-01-01

    Some animals have the ability to generate large numbers of oocytes throughout life. This raises the question whether persistent adult germline stem cell populations drive continuous oogenesis and whether they are capable of mounting a regenerative response after injury. Here we demonstrate the presence of adult oogonial stem cells (OSCs) in the adult axolotl salamander ovary and show that ovarian injury induces OSC activation and functional regeneration of the ovaries to reproductive capability. Cells that have morphological similarities to germ cells were identified in the developing and adult ovaries via histological analysis. Genes involved in germ cell maintenance including Vasa, Oct4, Sox2, Nanog, Bmp15, Piwil1, Piwil2, Dazl, and Lhx8 were expressed in the presumptive OSCs. Colocalization of Vasa protein with H3 mitotic marker showed that both oogonial and spermatogonial adult stem cells were mitotically active. Providing evidence of stemness and viability of adult OSCs, enhanced green fluorescent protein (EGFP) adult OSCs grafted into white juvenile host gonads gave rise to EGFP OSCs, and oocytes. Last, the axolotl ovaries completely regenerated after partial ovariectomy injury. During regeneration, OSC activation resulted in rapid differentiation into new oocytes, which was demonstrated by Vasa(+) /BrdU(+) coexpression. Furthermore, follicle cell proliferation promoted follicle maturation during ovarian regeneration. Overall, these results show that adult oogenesis occurs via proliferation of endogenous OSCs in a tetrapod and mediates ovarian regeneration. This study lays the foundations to elucidate mechanisms of ovarian regeneration that will assist regenerative medicine in treating premature ovarian failure and reduced fertility. Stem Cells 2017;35:236-247.

  16. Static and Dynamic Factors Promoting Resilience following Traumatic Brain Injury: A Brief Review.

    Science.gov (United States)

    Holland, Jessica N; Schmidt, Adam T

    2015-01-01

    Traumatic brain injury (TBI) is the greatest contributing cause of death and disability among children and young adults in the United States. The current paper briefly summarizes contemporary literature on factors that can improve outcomes (i.e., promote resilience) for children and adults following TBI. For the purpose of this paper, the authors divided these factors into static or unmodifiable factors (i.e., age, sex, intellectual abilities/education, and preinjury psychiatric history) and dynamic or modifiable factors (i.e., socioeconomic status, family functioning/social support, nutrition, and exercise). Drawing on human and animal studies, the research reviewed indicated that these various factors can improve outcomes in multiple domains of functioning (e.g., cognition, emotion regulation, health and wellness, behavior, etc.) following a TBI. However, many of these factors have not been studied across populations, have been limited to preclinical investigations, have been limited in their scope or follow-up, or have not involved a thorough evaluation of outcomes. Thus, although promising, continued research is vital in the area of factors promoting resilience following TBI in children and adults.

  17. Static and Dynamic Factors Promoting Resilience following Traumatic Brain Injury: A Brief Review

    Directory of Open Access Journals (Sweden)

    Jessica N. Holland

    2015-01-01

    Full Text Available Traumatic brain injury (TBI is the greatest contributing cause of death and disability among children and young adults in the United States. The current paper briefly summarizes contemporary literature on factors that can improve outcomes (i.e., promote resilience for children and adults following TBI. For the purpose of this paper, the authors divided these factors into static or unmodifiable factors (i.e., age, sex, intellectual abilities/education, and preinjury psychiatric history and dynamic or modifiable factors (i.e., socioeconomic status, family functioning/social support, nutrition, and exercise. Drawing on human and animal studies, the research reviewed indicated that these various factors can improve outcomes in multiple domains of functioning (e.g., cognition, emotion regulation, health and wellness, behavior, etc. following a TBI. However, many of these factors have not been studied across populations, have been limited to preclinical investigations, have been limited in their scope or follow-up, or have not involved a thorough evaluation of outcomes. Thus, although promising, continued research is vital in the area of factors promoting resilience following TBI in children and adults.

  18. Myeloid-Related Protein 14 Promotes Inflammation and Injury in Meningitis

    DEFF Research Database (Denmark)

    Wache, Christina; Klein, Matthias; Andersen, Christian Østergaard;

    2015-01-01

    BACKGROUND:  Neutrophilic inflammation often persists for days despite effective antibiotic treatment and contributes to brain damage in bacterial meningitis. We propose here that myeloid-related protein 14 (MRP14), an abundant cytosolic protein in myeloid cells, acts as an endogenous danger signal......, driving inflammation and aggravating tissue injury. METHODS:  The release pattern of MRP14 was analyzed in human and murine cerebrospinal fluid (CSF), as well as in isolated neutrophils. Its functional role was assessed in a mouse meningitis model, using MRP14-deficient mice. RESULTS:  We detected large...... quantities of MRP14 in CSF specimens from patients and mice with pneumococcal meningitis. Immunohistochemical analyses and a cell-depletion approach indicated neutrophils as the major source of MRP14. In a meningitis model, MRP14-deficient mice showed a better resolution of inflammation during antibiotic...

  19. SIRT IS REQUIRED FOR EDP-MEDIATED PROTECTIVE RESPONSES TOWARD HYPOXIA-REOXYGEANTION INJURY IN CARDIAC CELLS

    Directory of Open Access Journals (Sweden)

    Victor eSamokhvalov

    2016-05-01

    Full Text Available Hypoxia-reoxygenation (H/R injury is known to cause extensive injury to cardiac myocardium promoting development of cardiac dysfunction. Despite the vast number of studies dedicated to studying H/R injury, the molecular mechanisms behind it are multiple, complex and remain very poorly understood, which makes development of novel pharmacological agents challenging. Docosahexaenoic acid (DHA, 22:6n3 is an n-3 polyunsaturated fatty acid (PUFA obtained from dietary sources, which produces numerous effects including regulation of cell survival and death mechanisms. The beneficial effects of DHA toward the cardiovascular system are well documented but the relative role of DHA or one of its more potent metabolites is unresolved. Emerging evidence indicates that cytochrome P450 (CYP epoxygenase metabolites of DHA, epoxydocosapentaenoic acids (EDPs, have more potent biological activity than DHA in cardiac cells. In this study we examined whether EDPs protect HL-1 cardiac cells from H/R injury. Our observations demonstrate that treatment with 19,20-EDP protected HL-1 cardiac cells from H/R damage through a mechanism(s protecting and enhancing mitochondrial quality. EDP treatment increased the relative rates of mitobiogenesis and mitochondrial respiration in control and H/R exposed cardiac cells. The observed EDP protective response toward H/R injury involved SIRT1-dependent pathways.

  20. SIRT Is Required for EDP-Mediated Protective Responses toward Hypoxia-Reoxygenation Injury in Cardiac Cells.

    Science.gov (United States)

    Samokhvalov, Victor; Jamieson, Kristi L; Fedotov, Ilia; Endo, Tomoko; Seubert, John M

    2016-01-01

    Hypoxia-reoxygenation (H/R) injury is known to cause extensive injury to cardiac myocardium promoting development of cardiac dysfunction. Despite the vast number of studies dedicated to studying H/R injury, the molecular mechanisms behind it are multiple, complex, and remain very poorly understood, which makes development of novel pharmacological agents challenging. Docosahexaenoic acid (DHA, 22:6n3) is an n - 3 polyunsaturated fatty acid obtained from dietary sources, which produces numerous effects including regulation of cell survival and death mechanisms. The beneficial effects of DHA toward the cardiovascular system are well documented but the relative role of DHA or one of its more potent metabolites is unresolved. Emerging evidence indicates that cytochrome P450 (CYP) epoxygenase metabolites of DHA, epoxydocosapentaenoic acids (EDPs), have more potent biological activity than DHA in cardiac cells. In this study we examined whether EDPs protect HL-1 cardiac cells from H/R injury. Our observations demonstrate that treatment with 19,20-EDP protected HL-1 cardiac cells from H/R damage through a mechanism(s) protecting and enhancing mitochondrial quality. EDP treatment increased the relative rates of mitobiogenesis and mitochondrial respiration in control and H/R exposed cardiac cells. The observed EDP protective response toward H/R injury involved SIRT1-dependent pathways.

  1. Pathogenesis of Cell Injury by Rickettsia conorii

    Science.gov (United States)

    1985-05-17

    cutaneous dark spot or eschar, was introduced in 1925-’-er- and Boinet in France. A work published by Pieri in 1933 recounts the origin of the...After transfer to Chapel Hill he had hematocrit 37%, platelets 18,000/ul, acute renal failure, seizures, cardiopulmonary arrest, hypotension, and...postarrest hematocrit 19.5%. He was transfused with red blood cells and platelets . Endoscopy revealed a massive amount of blood in the stomach and

  2. Ependymal cell contribution to scar formation after spinal cord injury is minimal, local and dependent on direct ependymal injury

    Science.gov (United States)

    Ren, Yilong; Ao, Yan; O’Shea, Timothy M.; Burda, Joshua E.; Bernstein, Alexander M.; Brumm, Andrew J.; Muthusamy, Nagendran; Ghashghaei, H. Troy; Carmichael, S. Thomas; Cheng, Liming; Sofroniew, Michael V.

    2017-01-01

    Ependyma have been proposed as adult neural stem cells that provide the majority of newly proliferated scar-forming astrocytes that protect tissue and function after spinal cord injury (SCI). This proposal was based on small, midline stab SCI. Here, we tested the generality of this proposal by using a genetic knock-in cell fate mapping strategy in different murine SCI models. After large crush injuries across the entire spinal cord, ependyma-derived progeny remained local, did not migrate and contributed few cells of any kind and less than 2%, if any, of the total newly proliferated and molecularly confirmed scar-forming astrocytes. Stab injuries that were near to but did not directly damage ependyma, contained no ependyma-derived cells. Our findings show that ependymal contribution of progeny after SCI is minimal, local and dependent on direct ependymal injury, indicating that ependyma are not a major source of endogenous neural stem cells or neuroprotective astrocytes after SCI. PMID:28117356

  3. Characterization of nicardipine hydrochloride-induced cell injury in human vascular endothelial cells.

    Science.gov (United States)

    Ochi, Masanori; Kawai, Yoshiko; Tanaka, Yoshiyuki; Toyoda, Hiromu

    2015-02-01

    Nicardipine hydrochloride (NIC), a dihydropyridine calcium-channel blocking agent, has been widely used for the treatment of hypertension. Especially, nicardipine hydrochloride injection is used as first-line therapy for emergency treatment of abnormally high blood pressure. Although NIC has an attractive pharmacological profile, one of the dose-limiting factors of NIC is severe peripheral vascular injury after intravenous injection. The goal of this study was to better understand and thereby reduce NIC-mediated vascular injury. Here, we investigated the mechanism of NIC-induced vascular injury using human dermal microvascular endothelial cells (HMVECs). NIC decreased cell viability and increased percent of dead cells in a dose-dependent manner (10-30 μg/mL). Although cell membrane injury was not significant over 9 hr exposure, significant changes of cell morphology and increases in vacuoles in HMVECs were observed within 30 min of NIC exposure (30 μg/mL). Autophagosome labeling with monodansylcadaverine revealed increased autophagosomes in the NIC-treated cells, whereas caspase 3/7 activity was not increased in the NIC-treated cells (30 μg/mL). Additionally, NIC-induced reduction of cell viability was inhibited by 3-methyladenine, an inhibitor of autophagosome formation. These findings suggest that NIC causes severe peripheral venous irritation via induction of autophagic cell death and that inhibition of autophagy could contribute to the reduction of NIC-induced vascular injury.

  4. Anti-TNF drives regulatory T cell expansion by paradoxically promoting membrane TNF-TNF-RII binding in rheumatoid arthritis

    OpenAIRE

    Nguyen, D. X.; Ehrenstein, M R

    2016-01-01

    The interplay between inflammatory and regulatory pathways orchestrates an effective immune response that provides protection from pathogens while limiting injury to host tissue. Tumor necrosis factor (TNF) is a pivotal inflammatory cytokine, but there is conflicting evidence as to whether it boosts or inhibits regulatory T cells (T reg cells). In this study, we show that the therapeutic anti-TNF antibody adalimumab, but not the soluble TNF receptor etanercept, paradoxically promoted the inte...

  5. Conditional Cripto overexpression in satellite cells promotes myogenic commitment and enhances early regeneration.

    Science.gov (United States)

    Prezioso, Carolina; Iaconis, Salvatore; Andolfi, Gennaro; Zentilin, Lorena; Iavarone, Francescopaolo; Guardiola, Ombretta; Minchiotti, Gabriella

    2015-01-01

    Skeletal muscle regeneration mainly depends on satellite cells, a population of resident muscle stem cells. Despite extensive studies, knowledge of the molecular mechanisms underlying the early events associated with satellite cell activation and myogenic commitment in muscle regeneration remains still incomplete. Cripto is a novel regulator of postnatal skeletal muscle regeneration and a promising target for future therapy. Indeed, Cripto is expressed both in myogenic and inflammatory cells in skeletal muscle after acute injury and it is required in the satellite cell compartment to achieve effective muscle regeneration. A critical requirement to further explore the in vivo cellular contribution of Cripto in regulating skeletal muscle regeneration is the possibility to overexpress Cripto in its endogenous configuration and in a cell and time-specific manner. Here we report the generation and the functional characterization of a novel mouse model for conditional expression of Cripto, i.e., the Tg:DsRed (loxP/loxP) Cripto-eGFP mice. Moreover, by using a satellite cell specific Cre-driver line we investigated the biological effect of Cripto overexpression in vivo, and provided evidence that overexpression of Cripto in the adult satellite cell compartment promotes myogenic commitment and differentiation, and enhances early regeneration in a mouse model of acute injury.

  6. Rapamycin promotes Schwann cell migration and nerve growth factor secretion

    OpenAIRE

    Liu, Fang; Zhang, Haiwei; Zhang, Kaiming; Wang, Xinyu; Li, Shipu; Yin, Yixia

    2014-01-01

    Rapamycin, similar to FK506, can promote neural regeneration in vitro. We assumed that the mechanisms of action of rapamycin and FK506 in promoting peripheral nerve regeneration were similar. This study compared the effects of different concentrations of rapamycin and FK506 on Schwann cells and investigated effects and mechanisms of rapamycin on improving peripheral nerve regeneration. Results demonstrated that the lowest rapamycin concentration (1.53 nmol/L) more significantly promoted Schwa...

  7. Role of stem cells during diabetic liver injury.

    Science.gov (United States)

    Wan, Ying; Garner, Jessica; Wu, Nan; Phillip, Levine; Han, Yuyan; McDaniel, Kelly; Annable, Tami; Zhou, Tianhao; Francis, Heather; Glaser, Shannon; Huang, Qiaobing; Alpini, Gianfranco; Meng, Fanyin

    2016-02-01

    Diabetes mellitus is one of the most severe endocrine metabolic disorders in the world that has serious medical consequences with substantial impacts on the quality of life. Type 2 diabetes is one of the main causes of diabetic liver diseases with the most common being non-alcoholic fatty liver disease. Several factors that may explain the mechanisms related to pathological and functional changes of diabetic liver injury include: insulin resistance, oxidative stress and endoplasmic reticulum stress. The realization that these factors are important in hepatocyte damage and lack of donor livers has led to studies concentrating on the role of stem cells (SCs) in the prevention and treatment of liver injury. Possible avenues that the application of SCs may improve liver injury include but are not limited to: the ability to differentiate into pancreatic β-cells (insulin producing cells), the contribution for hepatocyte regeneration, regulation of lipogenesis, glucogenesis and anti-inflammatory actions. Once further studies are performed to explore the underlying protective mechanisms of SCs and the advantages and disadvantages of its application, there will be a greater understand of the mechanism and therapeutic potential. In this review, we summarize the findings regarding the role of SCs in diabetic liver diseases.

  8. Targeted Type 2 Alveolar Cell Depletion. A Dynamic Functional Model for Lung Injury Repair.

    Science.gov (United States)

    Garcia, Orquidea; Hiatt, Michael J; Lundin, Amber; Lee, Jooeun; Reddy, Raghava; Navarro, Sonia; Kikuchi, Alex; Driscoll, Barbara

    2016-03-01

    Type 2 alveolar epithelial cells (AEC2) are regarded as the progenitor population of the alveolus responsible for injury repair and homeostatic maintenance. Depletion of this population is hypothesized to underlie various lung pathologies. Current models of lung injury rely on either uncontrolled, nonspecific destruction of alveolar epithelia or on targeted, nontitratable levels of fixed AEC2 ablation. We hypothesized that discrete levels of AEC2 ablation would trigger stereotypical and informative patterns of repair. To this end, we created a transgenic mouse model in which the surfactant protein-C promoter drives expression of a mutant SR39TK herpes simplex virus-1 thymidine kinase specifically in AEC2. Because of the sensitivity of SR39TK, low doses of ganciclovir can be administered to these animals to induce dose-dependent AEC2 depletion ranging from mild (50%) to lethal (82%) levels. We demonstrate that specific levels of AEC2 depletion cause altered expression patterns of apoptosis and repair proteins in surviving AEC2 as well as distinct changes in distal lung morphology, pulmonary function, collagen deposition, and expression of remodeling proteins in whole lung that persist for up to 60 days. We believe SPCTK mice demonstrate the utility of cell-specific expression of the SR39TK transgene for exerting fine control of target cell depletion. Our data demonstrate, for the first time, that specific levels of type 2 alveolar epithelial cell depletion produce characteristic injury repair outcomes. Most importantly, use of these mice will contribute to a better understanding of the role of AEC2 in the initiation of, and response to, lung injury.

  9. Proteome Profiling in Lung Injury after Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Bhargava, Maneesh; Viken, Kevin J; Dey, Sanjoy; Steinbach, Michael S; Wu, Baolin; Jagtap, Pratik D; Higgins, LeeAnn; Panoskaltsis-Mortari, Angela; Weisdorf, Daniel J; Kumar, Vipin; Arora, Mukta; Bitterman, Peter B; Ingbar, David H; Wendt, Chris H

    2016-08-01

    Pulmonary complications due to infection and idiopathic pneumonia syndrome (IPS), a noninfectious lung injury in hematopoietic stem cell transplant (HSCT) recipients, are frequent causes of transplantation-related mortality and morbidity. Our objective was to characterize the global bronchoalveolar lavage fluid (BALF) protein expression of IPS to identify proteins and pathways that differentiate IPS from infectious lung injury after HSCT. We studied 30 BALF samples from patients who developed lung injury within 180 days of HSCT or cellular therapy transfusion (natural killer cell transfusion). Adult subjects were classified as having IPS or infectious lung injury by the criteria outlined in the 2011 American Thoracic Society statement. BALF was depleted of hemoglobin and 14 high-abundance proteins, treated with trypsin, and labeled with isobaric tagging for relative and absolute quantification (iTRAQ) 8-plex reagent for two-dimensional capillary liquid chromatography (LC) and data dependent peptide tandem mass spectrometry (MS) on an Orbitrap Velos system in higher-energy collision-induced dissociation activation mode. Protein identification employed a target-decoy strategy using ProteinPilot within Galaxy P. The relative protein abundance was determined with reference to a global internal standard consisting of pooled BALF from patients with respiratory failure and no history of HSCT. A variance weighted t-test controlling for a false discovery rate of ≤5% was used to identify proteins that showed differential expression between IPS and infectious lung injury. The biological relevance of these proteins was determined by using gene ontology enrichment analysis and Ingenuity Pathway Analysis. We characterized 12 IPS and 18 infectious lung injury BALF samples. In the 5 iTRAQ LC-MS/MS experiments 845, 735, 532, 615, and 594 proteins were identified for a total of 1125 unique proteins and 368 common proteins across all 5 LC-MS/MS experiments. When comparing IPS to

  10. Peripherally-derived BDNF promotes regeneration of ascending sensory neurons after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Xing-Yun Song

    Full Text Available BACKGROUND: The blood brain barrier (BBB and truncated trkB receptor on astrocytes prevent the penetration of brain derived neurotrophic factor (BDNF applied into the peripheral (PNS and central nervous system (CNS thus restrict its application in the treatment of nervous diseases. As BDNF is anterogradely transported by axons, we propose that peripherally derived and/or applied BDNF may act on the regeneration of central axons of ascending sensory neurons. METHODOLOGY/PRINCIPAL FINDINGS: The present study aimed to test the hypothesis by using conditioning lesion of the sciatic nerve as a model to increase the expression of endogenous BDNF in sensory neurons and by injecting exogenous BDNF into the peripheral nerve or tissues. Here we showed that most of regenerating sensory neurons expressed BDNF and p-CREB but not p75NTR. Conditioning-lesion induced regeneration of ascending sensory neuron and the increase in the number of p-Erk positive and GAP-43 positive neurons was blocked by the injection of the BDNF antiserum in the periphery. Enhanced neurite outgrowth of dorsal root ganglia (DRG neurons in vitro by conditioning lesion was also inhibited by the neutralization with the BDNF antiserum. The delivery of exogenous BDNF into the sciatic nerve or the footpad significantly increased the number of regenerating DRG neurons and regenerating sensory axons in the injured spinal cord. In a contusion injury model, an injection of BDNF into the footpad promoted recovery of motor functions. CONCLUSIONS/SIGNIFICANCE: Our data suggest that endogenous BDNF in DRG and spinal cord is required for the enhanced regeneration of ascending sensory neurons after conditioning lesion of sciatic nerve and peripherally applied BDNF may have therapeutic effects on the spinal cord injury.

  11. Higenamine promotes M2 macrophage activation and reduces Hmgb1 production through HO-1 induction in a murine model of spinal cord injury.

    Science.gov (United States)

    Zhang, Zhenyu; Li, Mingchao; Wang, Yan; Wu, Jian; Li, Jiaping

    2014-12-01

    Spinal cord injury (SCI) is considered to be primarily associated with loss of motor function and leads to the activation of diverse cellular mechanisms in the central nervous system to attempt to repair the damaged spinal cord tissue. Higenamine (HG) (1-[(4-hydroxyphenyl) methyl]-1,2,3,4-tetrahydroisoquinoline-6,7-diol), an active ingredient of Aconiti Lateralis Radix Praeparata, has been traditionally used as a heart stimulant and anti-inflammatory agent in oriental countries. However, the function and related mechanism of HG on SCI have never been investigated. In our current study, HG treatment displayed increased myelin sparring and enhanced spinal cord repair process. The numbers of CD4(+) T cells, CD8(+) T cells, Ly6G(+) neutrophils and CD11b(+) macrophages were all significantly lower in the HG-treated group than that in the control group after SCI. HG administration increased the expression of IL-4 and IL-10 and promoted M2 macrophage activation. Significantly reduced Hmgb1 expression was also observed in HG-treated mice with SCI. Furthermore, HG treatment promoted HO-1 production. The increased number of M2 macrophages, decreased expression of Hmgb1 and promoted locomotor recovery induced by HG were all reversed with additional HO-1 inhibitor treatment. In conclusion, HG promotes M2 macrophage activation and reduces Hmgb1 expression dependent on HO-1 induction and then promotes locomotor function after SCI.

  12. Increased production of omega-3 fatty acids protects retinal ganglion cells after optic nerve injury in mice.

    Science.gov (United States)

    Peng, Shanshan; Shi, Zhe; Su, Huanxing; So, Kwok-Fai; Cui, Qi

    2016-07-01

    Injury to the central nervous system causes progressive degeneration of injured axons, leading to loss of the neuronal bodies. Neuronal survival after injury is a prerequisite for successful regeneration of injured axons. In this study, we investigated the effects of increased production of omega-3 fatty acids and elevation of cAMP on retinal ganglion cell (RGC) survival and axonal regeneration after optic nerve (ON) crush injury in adult mice. We found that increased production of omega-3 fatty acids in mice enhanced RGC survival, but not axonal regeneration, over a period of 3 weeks after ON injury. cAMP elevation promoted RGC survival in wild type mice, but no significant difference in cell survival was seen in mice over-producing omega-3 fatty acids and receiving intravitreal injections of CPT-cAMP, suggesting that cAMP elevation protects RGCs after injury but does not potentiate the actions of the omega-3 fatty acids. The observed omega-3 fatty acid-mediated neuroprotection is likely achieved partially through ERK1/2 signaling as inhibition of this pathway by PD98059 hindered, but did not completely block, RGC protection. Our study thus enhances our current understanding of neural repair after CNS injury, including the visual system.

  13. Melatonin-mediated cytoprotection against hyperglycemic injury in Muller cells.

    Directory of Open Access Journals (Sweden)

    Tingting Jiang

    Full Text Available Oxidative stress is a contributing factor to the development and progression of diabetic retinopathy, a leading cause of blindness in people at working age worldwide. Recent studies showed that Müller cells play key roles in diabetic retinopathy and produce vascular endothelial growth factor (VEGF that regulates retinal vascular leakage and proliferation. Melatonin is a potent antioxidant capable of protecting variety of retinal cells from oxidative damage. In addition to the pineal gland, the retina produces melatonin. In the current study, we investigated whether melatonin protects against hyperglycemia-induced oxidative injury to Müller cells and explored the potential underlying mechanisms. Our results show that both melatonin membrane receptors, MT1 and MT2, are expressed in cultured primary Müller cells and are upregulated by elevated glucose levels. Both basal and high glucose-induced VEGF production was attenuated by melatonin treatment in a dose-dependent manner. Furthermore, we found that melatonin is a potent activator of Akt in Müller cells. Our findings suggest that in addition to functioning as a direct free radical scavenger, melatonin can elicit cellular signaling pathways that are protective against retinal injury during diabetic retinopathy.

  14. TNFAIP3 promotes survival of CD4 T cells by restricting MTOR and promoting autophagy.

    Science.gov (United States)

    Matsuzawa, Yu; Oshima, Shigeru; Takahara, Masahiro; Maeyashiki, Chiaki; Nemoto, Yasuhiro; Kobayashi, Masanori; Nibe, Yoichi; Nozaki, Kengo; Nagaishi, Takashi; Okamoto, Ryuichi; Tsuchiya, Kiichiro; Nakamura, Tetsuya; Ma, Averil; Watanabe, Mamoru

    2015-01-01

    Autophagy plays important roles in metabolism, differentiation, and survival in T cells. TNFAIP3/A20 is a ubiquitin-editing enzyme that is thought to be a negative regulator of autophagy in cell lines. However, the role of TNFAIP3 in autophagy remains unclear. To determine whether TNFAIP3 regulates autophagy in CD4 T cells, we first analyzed Tnfaip3-deficient naïve CD4 T cells in vitro. We demonstrated that Tnfaip3-deficient CD4 T cells exhibited reduced MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) puncta formation, increased mitochondrial content, and exaggerated reactive oxygen species (ROS) production. These results indicate that TNFAIP3 promotes autophagy after T cell receptor (TCR) stimulation in CD4 T cells. We then investigated the mechanism by which TNFAIP3 promotes autophagy signaling. We found that TNFAIP3 bound to the MTOR (mechanistic target of rapamycin) complex and that Tnfaip3-deficient cells displayed enhanced ubiquitination of the MTOR complex and MTOR activity. To confirm the effects of enhanced MTOR activity in Tnfaip3-deficient cells, we analyzed cell survival following treatment with Torin1, an MTOR inhibitor. Tnfaip3-deficient CD4 T cells exhibited fewer cell numbers than the control cells in vitro and in vivo. In addition, the impaired survival of Tnfaip3-deficient cells was ameliorated with Torin1 treatment in vitro and in vivo. The effect of Torin1 was abolished by Atg5 deficiency. Thus, enhanced MTOR activity regulates the survival of Tnfaip3-deficient CD4 T cells. Taken together, our findings illustrate that TNFAIP3 restricts MTOR signaling and promotes autophagy, providing new insight into the manner in which MTOR and autophagy regulate survival in CD4 T cells.

  15. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Somik [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yin, Hongshan [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Cardiovascular Medicine, Third Affiliated Hospital, Hebei Medical University, Shijiazhuang 050051, Hebei (China); Nam, Deokhwa [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Li, Yong [Department of Pediatric Surgery, Center for Stem Cell Research and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030 (United States); Ma, Ke, E-mail: kma@houstonmethodist.org [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States)

    2015-02-01

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response is observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1{sup −/−} mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation.

  16. The metastasis-promoting S100A4 protein confers neuroprotection in brain injury

    DEFF Research Database (Denmark)

    Dmytriyeva, Oksana; Pankratova, Stanislava; Owczarek, Sylwia

    2012-01-01

    Identification of novel pro-survival factors in the brain is paramount for developing neuroprotective therapies. The multifunctional S100 family proteins have important roles in many human diseases and are also upregulated by brain injury. However, S100 functions in the nervous system remain...... unclear. Here we show that the S100A4 protein, mostly studied in cancer, is overexpressed in the damaged human and rodent brain and released from stressed astrocytes. Genetic deletion of S100A4 exacerbates neuronal loss after brain trauma or excitotoxicity, increasing oxidative cell damage...... and downregulating the neuroprotective protein metallothionein I+II. We identify two neurotrophic motifs in S100A4 and show that these motifs are neuroprotective in animal models of brain trauma. Finally, we find that S100A4 rescues neurons via the Janus kinase/STAT pathway and, partially, the interleukin-10...

  17. Senegenin promotes in vitro proliferation of human neural progenitor cells

    Institute of Scientific and Technical Information of China (English)

    Fang Shi; Zhigang Liang; Zixuan Guo; Ran Li; Fen Yu; Zhanjun Zhang; Xuan Wang; Xiaomin Wang

    2011-01-01

    Senegenin, an effective component of Polygala tenuifolia root extract, promotes proliferation and differentiation of neural progenitor cells in the hippocampus.However, the effects of senegenin on mesencephalon-derived neural progenitor cells remain poorly understood.Cells from a ventral mesencephalon neural progenitor cell line (ReNcell VM) were utilized as models for pharmaceutical screening.The effects of various senegenin concentrations on cell proliferation were analyzed,demonstrating that high senegenin concentrations (5, 10, 50, and 100 pmo/L), particularly 50 pmol/L, significantly promoted proliferation of ReNcell VM cells.In the mitogen-activated protein kinase signal transduction pathway, senegenin significantly increased phosphorylation levels of extracellular signal-regulated kinases.Moreover, cell proliferation was suppressed by extracellular signal-regulated kinase inhibitors.Results suggested that senegenin contributed to in vitro proliferation of human neural progenitor cells by upregulating phosphorylation of extracellular signal-regulated kinase.

  18. Induced pluripotent stem cell-derived neural stem cell therapies for spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Corinne A Lee-Kubli; Paul Lu

    2015-01-01

    The greatest challenge to successful treatment of spinal cord injury is the limited regenerative capacity of the central nervous system and its inability to replace lost neurons and severed axons following injury. Neural stem cell grafts derived from fetal central nervous system tissue or embryonic stem cells have shown therapeutic promise by differentiation into neurons and glia that have the potential to form functional neuronal relays across injured spinal cord segments. However, implementation of fetal-derived or embryonic stem cell-derived neural stem cell ther-apies for patients with spinal cord injury raises ethical concerns. Induced pluripotent stem cells can be generated from adult somatic cells and differentiated into neural stem cells suitable for therapeutic use, thereby providing an ethical source of implantable cells that can be made in an autologous fashion to avoid problems of immune rejection. This review discusses the therapeutic potential of human induced pluripotent stem cell-derived neural stem cell transplantation for treatment of spinal cord injury, as well as addressing potential mechanisms, future perspectives and challenges.

  19. Glutathione Reductase Targeted to Type II Cells Does Not Protect Mice from Hyperoxic Lung Injury

    Science.gov (United States)

    Heyob, Kathryn M.; Rogers, Lynette K.; Welty, Stephen E.

    2008-01-01

    Exposure of the lung epithelium to reactive oxygen species without adequate antioxidant defenses leads to airway inflammation, and may contribute to lung injury. Glutathione peroxidase catalyzes the reduction of peroxides by oxidation of glutathione (GSH) to glutathione disulfide (GSSG), which can in turn be reduced by glutathione reductase (GR). Increased levels of GSSG have been shown to correlate negatively with outcome after oxidant exposure, and increased GR activity has been protective against hyperoxia in lung epithelial cells in vitro. We tested the hypothesis that increased GR expression targeted to type II alveolar epithelial cells would improve outcome in hyperoxia-induced lung injury. Human GR with a mitochondrial targeting sequence was targeted to mouse type II cells using the SPC promoter. Two transgenic lines were identified, with Line 2 having higher lung GR activities than Line 1. Both transgenic lines had lower lung GSSG levels and higher GSH/GSSG ratios than wild-type. Six-week-old wild-type and transgenic mice were exposed to greater than 95% O2 or room air (RA) for 84 hours. After exposure, Line 2 mice had higher right lung/body weight ratios and lavage protein concentrations than wild-type mice, and both lines 1 and 2 had lower GSSG levels than wild-type mice. These findings suggest that GSSG accumulation in the lung may not play a significant role in the development of hyperoxic lung injury, or that compensatory responses to unregulated GR expression render animals more susceptible to hyperoxic lung injury. PMID:18566333

  20. 间充质干细胞促进创面愈合机制的研究进展%Advances in the mechanism of mesenchymal stem cells in promoting wound healing

    Institute of Scientific and Technical Information of China (English)

    朱文静; 孙浩博; 吕国忠

    2015-01-01

    Mesenchymal stem cells possess the ability of self-renewal and multiple differentiation potential, thus exert immunomodulatory effect during tissue repair.Mesenchymal stem cells can stimulate angiogenesis and promote tissue repair through transdifferentiation and secreting a variety of growth factors and cytokines.This review outlines the advances in the mechanism of mesenchymal stem cells in promoting wound healing, including alleviation of inflammatory response, induction of angiogenesis, and promotion of migration of mesenchymal stem cells to the site of tissue injury.

  1. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury

    Science.gov (United States)

    Di Siena, S; Gimmelli, R; Nori, S L; Barbagallo, F; Campolo, F; Dolci, S; Rossi, P; Venneri, M A; Giannetta, E; Gianfrilli, D; Feigenbaum, L; Lenzi, A; Naro, F; Cianflone, E; Mancuso, T; Torella, D; Isidori, A M; Pellegrini, M

    2016-01-01

    The role of endogenous c-Kit receptor activation on cardiac cell homeostasis and repair remains largely unexplored. Transgenic mice carrying an activating point mutation (TgD814Y) in the kinase domain of the c-Kit gene were generated. c-KitTgD814Y receptor was expressed in the heart during embryonic development and postnatal life, in a similar timing and expression pattern to that of the endogenous gene, but not in the hematopoietic compartment allowing the study of a cardiac-specific phenotype. c-KitTgD814Y mutation produced a constitutive active c-Kit receptor in cardiac tissue and cells from transgenic mice as demonstrated by the increased phosphorylation of ERK1/2 and AKT, which are the main downstream molecular effectors of c-Kit receptor signaling. In adult transgenic hearts, cardiac morphology, size and total c-Kit+ cardiac cell number was not different compared with wt mice. However, when c-KitTgD814Y mice were subjected to transmural necrotic heart damage by cryoinjury (CI), all transgenic survived, compared with half of wt mice. In the sub-acute phase after CI, transgenic and wt mice showed similar heart damage. However, 9 days after CI, transgenic mice exhibited an increased number of c-Kit+CD31+ endothelial progenitor cells surrounding the necrotic area. At later follow-up, a consistent reduction of fibrotic area, increased capillary density and increased cardiomyocyte replenishment rate (as established by BrdU incorporation) were observed in transgenic compared with wt mice. Consistently, CD45−c-Kit+ cardiac stem cells isolated from transgenic c-KitTgD814Y mice showed an enhanced endothelial and cardiomyocyte differentiation potential compared with cells isolated from the wt. Constitutive activation of c-Kit receptor in mice is associated with an increased cardiac myogenic and vasculogenic reparative potential after injury, with a significant improvement of survival. PMID:27468693

  2. Tegaserod, a small compound mimetic of polysialic acid, promotes functional recovery after spinal cord injury in mice.

    Science.gov (United States)

    Pan, H-C; Shen, Y-Q; Loers, G; Jakovcevski, I; Schachner, M

    2014-09-26

    In a previous study, we have shown that the small organic compound tegaserod, a drug approved for clinical application in an unrelated condition, is a mimic of the regeneration-beneficial glycan polysialic acid (PSA) in a mouse model of femoral nerve injury. Several independent observations have shown positive effects of PSA and its mimetic peptides in different paradigms of injury of the central and peripheral mammalian nervous systems. Since small organic compounds generally have advantages over metabolically rapidly degraded glycans and the proteolytically vulnerable mimetic peptides, a screen for a small PSA mimetic compound was successfully carried out, and the identified molecule proved to be beneficial in neurite outgrowth in vitro, independent of its originally described function as a 5-HT4 receptor agonist. In the present study, a mouse spinal cord compression device was used to elicit severe compression injury. We show that tegaserod promotes hindlimb motor function at 6 weeks after spinal cord injury compared to the control group receiving vehicle only. Immunohistology of the spinal cord rostral and caudal to the lesion site showed increased numbers of neurons, and a reduced area and intensity of glial fibrillary acidic protein immunoreactivity. Quantification of regrowth/sprouting of axons immunoreactive for tyrosine hydroxylase and serotonin showed increased axonal density rostral and caudal to the injury site in the ventral horns of mice treated with tegaserod. The combined observations suggest that tegaserod has the potential for treatment of spinal cord injuries in higher vertebrates.

  3. Notch Promotes Radioresistance of Glioma Stem Cells

    OpenAIRE

    Wang, Jialiang; Wakeman, Timothy P.; Latha, Justin D.; Hjelmeland, Anita B.; Wang, Xiao-Fan; White, Rebekah R.; Rich, Jeremy N.; Sullenger, Bruce A.

    2010-01-01

    Radiotherapy represents the most effective nonsurgical treatments for gliomas. Yet, gliomas are highly radioresistant and recurrence is nearly universal. Results from our laboratory and other groups suggest that cancer stem cells contribute to radioresistance in gliomas and breast cancers. The Notch pathway is critically implicated in stem cell fate determination and cancer. In this study, we showed that inhibition of Notch pathway with gamma-secretase inhibitors (GSIs) rendered the glioma st...

  4. GLUL Promotes Cell Proliferation in Breast Cancer.

    Science.gov (United States)

    Wang, Yanyan; Fan, Shaohua; Lu, Jun; Zhang, Zifeng; Wu, Dongmei; Wu, Zhiyong; Zheng, Yuanlin

    2016-10-28

    Glutamate-ammonia ligase (GLUL) belongs to the glutamine synthetase family. It catalyzes the synthesis of glutamine from glutamate and ammonia in an ATP-dependent reaction. Here, we found higher expression of GLUL in the breast cancer patients was associated with larger tumor size and higher level of HER2 expression. In addition, GLUL was heterogeneously expressed in various breast cancer cells. The mRNA and protein expression levels of GLUL in SK-BR-3 cells were obviously higher than that in the other types of breast cancer cells. Results showed GLUL knockdown in SK-BR-3 cells could significantly decrease the proliferation ability. Furthermore, GLUL knockdown markedly inhibited the p38 MAPK and ERK1/ERK2 signaling pathways in SK-BR-3 cells. Thus, GLUL may represent a novel target for selectively inhibiting p38 MAPK and ERK1/ERK2 signaling pathways and the proliferation potential of breast cancer cells. This article is protected by copyright. All rights reserved.

  5. Simple and sensitive method for monitoring drug-induced cell injury in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Shirhatti, V.; Krishna, G.

    1985-06-01

    A simple, sensitive method has been developed for evaluating cell injury noninvasively in monolayer cells in culture. The cell ATP pool was radiolabeled by incubating the cells with (/sup 14/C)adenine. The uptake and incorporation of (/sup 14/C)adenine was shown to proportional to the number of cells. As determined by HPLC, about 65-70% of the incorporated /sup 14/C label was in the ATP pool, 15-20% was in the ADP pool, and the rest was in the 5'-AMP pool. When prelabeled cells were exposed to toxic drugs (acetaminophen, calcium ionophore A-23187, or daunomycin) there was a marked decrease in cell ATP with a concomitant increase in leakage of labeled nucleotides, mainly 5'-AMP and 5'IMP. The authors have shown that leakage of /sup 14/C label into the medium from the prelabeled cells may be employed for quantitation of cell injury. This new measure of toxicity was shown to correlate very well with LDH leakage from the cells, which is a well accepted measure of cell injury. The leakage of 5'-(/sup 14/C)AMP also correlated very well with the reduction of cell ATP in cardiac myocytes. This method has been used for monitoring drug-induced toxicity in liver cells, cardiac myocytes, and LB cells.

  6. Activation of SHH signaling pathway promotes vasculogenesis in post-myocardial ischemic-reperfusion injury.

    Science.gov (United States)

    Guo, Wei; Yi, Xin; Ren, Faxin; Liu, Liwen; Wu, Suning; Yang, Jun

    2015-01-01

    This study aimed to investigate the potential roles of sonic Hedgehog (SHH) expression in vasculogenesis in post-myocardial ischemic-reperfusion injury (MIRI) and its underlying mechanism. Cardiac microvascular endothelial cells (CMECs) isolated from the SD rat hearts tissues were used to construct the MIRI model. mRNA level of SHH in control cells and MIRI cells was detected using RT-PCR analysis. Furthermore, effects of SHH expression on CMECs viability and apoptosis were analyzed using MTT assay and Annexin-V-FITC kit respectively. Moreover, effects of SHH expression on the pathway signal proteins expression was analyzed using ELISA and western blotting. mRNA level of SHH was significantly decreased compared to the controls (PSHH application compared with the controls (PSHH application, as well as the SHH signal proteins including Patch-1, Gli1, Gli2 and SMO (PSHH application on biological factors levels were reversed by the SHH inhibitor application. This study suggested that SHH over expression may play a pivotal contribute role in vasculogenesis through activating the SHH signals in post-MIRI.

  7. LINGO-1 antagonist promotes functional recovery and axonal sprouting after spinal cord injury.

    Science.gov (United States)

    Ji, Benxiu; Li, Mingwei; Wu, Wu-Tian; Yick, Leung-Wah; Lee, Xinhua; Shao, Zhaohui; Wang, Joy; So, Kwok-Fai; McCoy, John M; Pepinsky, R Blake; Mi, Sha; Relton, Jane K

    2006-11-01

    LINGO-1 is a CNS-specific protein and a functional component of the NgR1/p75/LINGO-1 and NgR1/TAJ(TROY)/LINGO-1 signaling complexes that mediate inhibition of axonal outgrowth. These receptor complexes mediate the axonal growth inhibitory effects of Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte-myelin glycoprotein (OMgp) via RhoA activation. Soluble LINGO-1 (LINGO-1-Fc), which acts as an antagonist of these pathways by blocking LINGO-1 binding to NgR1, was administered to rats after dorsal or lateral hemisection of the spinal cord. LINGO-1-Fc treatment significantly improved functional recovery, promoted axonal sprouting and decreased RhoA activation and increased oligodendrocyte and neuronal survival after either rubrospinal or corticospinal tract transection. These experiments demonstrate an important role for LINGO-1 in modulating axonal outgrowth in vivo and that treatment with LINGO-1-Fc can significantly enhance recovery after spinal cord injury.

  8. Fibrogenic Lung Injury Induces Non-Cell-Autonomous Fibroblast Invasion.

    Science.gov (United States)

    Ahluwalia, Neil; Grasberger, Paula E; Mugo, Brian M; Feghali-Bostwick, Carol; Pardo, Annie; Selman, Moisés; Lagares, David; Tager, Andrew M

    2016-06-01

    Pathologic accumulation of fibroblasts in pulmonary fibrosis appears to depend on their invasion through basement membranes and extracellular matrices. Fibroblasts from the fibrotic lungs of patients with idiopathic pulmonary fibrosis (IPF) have been demonstrated to acquire a phenotype characterized by increased cell-autonomous invasion. Here, we investigated whether fibroblast invasion is further stimulated by soluble mediators induced by lung injury. We found that bronchoalveolar lavage fluids from bleomycin-challenged mice or patients with IPF contain mediators that dramatically increase the matrix invasion of primary lung fibroblasts. Further characterization of this non-cell-autonomous fibroblast invasion suggested that the mediators driving this process are produced locally after lung injury and are preferentially produced by fibrogenic (e.g., bleomycin-induced) rather than nonfibrogenic (e.g., LPS-induced) lung injury. Comparison of invasion and migration induced by a series of fibroblast-active mediators indicated that these two forms of fibroblast movement are directed by distinct sets of stimuli. Finally, knockdown of multiple different membrane receptors, including platelet-derived growth factor receptor-β, lysophosphatidic acid 1, epidermal growth factor receptor, and fibroblast growth factor receptor 2, mitigated the non-cell-autonomous fibroblast invasion induced by bronchoalveolar lavage from bleomycin-injured mice, suggesting that multiple different mediators drive fibroblast invasion in pulmonary fibrosis. The magnitude of this mediator-driven fibroblast invasion suggests that its inhibition could be a novel therapeutic strategy for pulmonary fibrosis. Further elaboration of the molecular mechanisms that drive non-cell-autonomous fibroblast invasion consequently may provide a rich set of novel drug targets for the treatment of IPF and other fibrotic lung diseases.

  9. Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury

    Directory of Open Access Journals (Sweden)

    Quan Jiang

    2016-01-01

    Full Text Available Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury, substantially improve functional outcome. We discuss and review state of the art magnetic resonance imaging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic.

  10. Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury

    Institute of Scientific and Technical Information of China (English)

    Quan Jiang

    2016-01-01

    Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury, substantially improve functional outcome. We discuss and review state of the art magnetic resonance im-aging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic.

  11. Overexpression of the human ubiquitin E3 ligase CUL4A alleviates hypoxia-reoxygenation injury in pheochromocytoma (PC12) cells

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Can [Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, 172 Tong Zipo Road, Changsha 410013 (China); Zhang, Li-Yang [Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, 110 Xiang Ya Road, Changsha 410078 (China); Chen, Hong [Department of Developmental Biology, School of Biological Science and Technology, Central South University, 172 Tong Zipo Road, Changsha 410013 (China); Xiao, Ling [Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, 172 Tong Zipo Road, Changsha 410013 (China); Liu, Xian-Peng, E-mail: xliu@lsuhsc.edu [Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932 (United States); Zhang, Jian-Xiang, E-mail: jianxiangzhang@yahoo.cn [Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, 172 Tong Zipo Road, Changsha 410013 (China); Department of Developmental Biology, School of Biological Science and Technology, Central South University, 172 Tong Zipo Road, Changsha 410013 (China)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Overexpression of human CUL4A (hCUL4A) in PC12 cells. Black-Right-Pointing-Pointer The effects of hCUL4A on hypoxia-reoxygenation injury were investigated. Black-Right-Pointing-Pointer hCUL4A suppresses apoptosis and DNA damage and thus promotes cell survival. Black-Right-Pointing-Pointer hCUL4A regulates apoptosis-related proteins and cell cycle regulators. -- Abstract: The ubiquitin E3 ligase CUL4A plays important roles in diverse cellular processes including carcinogenesis and proliferation. It has been reported that the expression of CUL4A can be induced by hypoxic-ischemic injury. However, the effect of elevated expression of CUL4A on hypoxia-reoxygenation injury is currently unclear. In this study, human CUL4A (hCUL4A) was expressed in rat pheochromocytoma (PC12) cells using adenoviral vector-mediated gene transfer, and the effects of hCUL4A expression on hypoxia-reoxygenation injury were investigated. In PC12 cells subjected to hypoxia and reoxygenation, we found that hCUL4A suppresses apoptosis and DNA damage by regulating apoptosis-related proteins and cell cycle regulators (Bcl-2, caspase-3, p53 and p27); consequently, hCUL4A promotes cell survival. Taken together, our results reveal the beneficial effects of hCUL4A in PC12 cells upon hypoxia-reoxygenation injury.

  12. Up-regulation of P2X7 receptors mediating proliferation of Schwann cells after sciatic nerve injury.

    Science.gov (United States)

    Song, Xian-min; Xu, Xiao-hui; Zhu, Jiao; Guo, Zhili; Li, Jian; He, Cheng; Burnstock, Geoffrey; Yuan, Hongbin; Xiang, Zhenghua

    2015-06-01

    Peripheral nerve injury (PNI) is a common disease, which results in a partial or total loss of motor, sensory and autonomic functions, leading to a decrease in quality of life. Schwann cells play a vital role in maintaining the peripheral nervous system and in injury and repair. Using immunohistochemistry, Western blot, calcium assay and bromodeoxyuridine (BrdU) proliferation assay, the present study clearly demonstrated that P2X7 receptors (R) were expressed in myelinating and non-myelinating Schwann cells in longitudinal sections of sciatic nerves. After sciatic nerve injury (SNI), P2X7R expression in Schwann cells of injured sciatic nerves was significantly up-regulated during the early days of SNI. Double immunofluorescence of proliferating cell nuclear antigen (PCNA) and P2X7R implied that P2X7R may be involved in proliferation of Schwann cells. Further experiments on primary cultures of Schwann cells showed that P2X7R are functionally expressed in Schwann cells of rat sciatic nerves; ATP via P2X7R can promote Schwann cell proliferation, possibly via the MAPK/ERK intracellular signalling pathway. Other possible roles of P2X7R on Schwann cells are discussed.

  13. Osteoactivin Promotes Migration of Oral Squamous Cell Carcinomas.

    Science.gov (United States)

    Arosarena, Oneida A; Dela Cadena, Raul A; Denny, Michael F; Bryant, Evan; Barr, Eric W; Thorpe, Ryan; Safadi, Fayez F

    2016-08-01

    Nearly 50% of patients with oral squamous cell carcinoma (OSCC) die of metastases or locoregional recurrence. Metastasis is mediated by cancer cell adhesion, migration, and invasion. Osteoactivin (OA) overexpression plays a role in metastases in several malignancies. The aims were to determine how integrin interactions modulate OA-induced OSCC cell migration; and to investigate OA effects on cell survival and proliferation. We confirmed OA mRNA and protein overexpression in OSCC cell lines. We assessed OA's interactions with integrins using adhesion inhibition assays, fluorescent immunocytochemistry and co-immunoprecipitation. We investigated OA-mediated activation of mitogen-activated protein kinases (MAPKs) and cell survival. Integrin inhibition effects on OA-mediated cell migration were determined. We assessed effects of OA knock-down on cell migration and proliferation. OA is overexpressed in OSCC cell lines, and serves as a migration-promoting adhesion molecule. OA co-localized with integrin subunits, and co-immunoprecipitated with the subunits. Integrin blocking antibodies, especially those directed against the β1 subunit, inhibited cell adhesion (P = 0.03 for SCC15 cells). Adhesion to OA activated MAPKs in UMSCC14a cells and OA treatment promoted survival of SCC15 cells. Integrin-neutralizing antibodies enhanced cell migration with OA in the extracellular matrix. OA knock-down resulted in decreased proliferation of SCC15 and SCC25 cells, but did not inhibit cell migration. OA in the extracellular matrix promotes OSCC cell adhesion and migration, and may be a novel target in the prevention of HNSCC spread. J. Cell. Physiol. 231: 1761-1770, 2016. © 2015 Wiley Periodicals, Inc.

  14. Intraspinal transplantation of motoneuron-like cell combined with delivery of polymer-based glial cell line-derived neurotrophic factor for repair of spinal cord contusion injury

    Institute of Scientific and Technical Information of China (English)

    Alireza Abdanipour; Taki Tiraihi; Taher Taheri

    2014-01-01

    To evaluate the effects of glial cell line-derived neurotrophic factor transplantation combined with adipose-derived stem cells-transdifferentiated motoneuron delivery on spinal cord con-tusion injury, we developed rat models of spinal cord contusion injury, 7 days later, injected adipose-derived stem cells-transdifferentiated motoneurons into the epicenter, rostral and caudal regions of the impact site and simultaneously transplanted glial cell line-derived neuro-trophic factor-gelfoam complex into the myelin sheath. Motoneuron-like cell transplantation combined with glial cell line-derived neurotrophic factor delivery reduced cavity formations and increased cell density in the transplantation site. The combined therapy exhibited superior promoting effects on recovery of motor function to transplantation of glial cell line-derived neurotrophic factor, adipose-derived stem cells or motoneurons alone. These ifndings suggest that motoneuron-like cell transplantation combined with glial cell line-derived neurotrophic factor delivery holds a great promise for repair of spinal cord injury.

  15. Collective cell movement promotes synchronization of coupled genetic oscillators.

    Science.gov (United States)

    Uriu, Koichiro; Morelli, Luis G

    2014-07-15

    Collective cell movement is a crucial component of embryonic development. Intercellular interactions regulate collective cell movement by allowing cells to transfer information. A key question is how collective cell movement itself influences information flow produced in tissues by intercellular interactions. Here, we study the effect of collective cell movement on the synchronization of locally coupled genetic oscillators. This study is motivated by the segmentation clock in zebrafish somitogenesis, where short-range correlated movement of cells has been observed. We describe the segmentation clock tissue by a Voronoi diagram, cell movement by the force balance of self-propelled and repulsive forces between cells, the dynamics of the direction of self-propelled motion, and the synchronization of genetic oscillators by locally coupled phase oscillators. We find that movement with a correlation length of about 2 ∼ 3 cell diameters is optimal for the synchronization of coupled oscillators. Quantification of cell mixing reveals that this short-range correlation of cell movement allows cells to exchange neighbors most efficiently. Moreover, short-range correlated movement strongly destabilizes nonuniform spatial phase patterns, further promoting global synchronization. Our theoretical results suggest that collective cell movement may enhance the synchronization of the segmentation clock in zebrafish somitogenesis. More generally, collective cell movement may promote information flow in tissues by enhancing cell mixing and destabilizing spurious patterns.

  16. Neural Progenitor Cells Promote Axonal Growth and Alter Axonal mRNA Localization in Adult Neurons

    Science.gov (United States)

    Merianda, Tanuja T.; Jin, Ying

    2017-01-01

    Abstract The inhibitory environment of the spinal cord and the intrinsic properties of neurons prevent regeneration of axons following CNS injury. However, both ascending and descending axons of the injured spinal cord have been shown to regenerate into grafts of embryonic neural progenitor cells (NPCs). Previous studies have shown that grafts composed of glial-restricted progenitors (GRPs) and neural-restricted progenitors (NRPs) can provide a permissive microenvironment for axon growth. We have used cocultures of adult rat dorsal root ganglion (DRG) neurons together with NPCs, which have shown significant enhancement of axon growth by embryonic rat GRP and GRPs/NRPs, both in coculture conditions and when DRGs are exposed to conditioned medium from the NPC cultures. This growth-promoting effect of NPC-conditioned medium was also seen in injury-conditioned neurons. DRGs cocultured with GRPs/NRPs showed altered expression of regeneration-associated genes at transcriptional and post-transcriptional levels. We found that levels of GAP-43 mRNA increased in DRG cell bodies and axons. However, hepcidin antimicrobial peptide (HAMP) mRNA decreased in the cell bodies of DRGs cocultured with GRPs/NRPs, which is distinct from the increase in cell body HAMP mRNA levels seen in DRGs after injury conditioning. Endogenous GAP-43 and β-actin mRNAs as well as reporter RNAs carrying axonally localizing 3'UTRs of these transcripts showed significantly increased levels in distal axons in the DRGs cocultured with GRPs/NRPs. These results indicate that axon growth promoted by NPCs is associated not only with enhanced transcription of growth-associated genes but also can increase localization of some mRNAs into growing axons. PMID:28197547

  17. Commensal bacteria promote migration of mast cells into the intestine.

    Science.gov (United States)

    Kunii, Junichi; Takahashi, Kyoko; Kasakura, Kazumi; Tsuda, Masato; Nakano, Kou; Hosono, Akira; Kaminogawa, Shuichi

    2011-06-01

    Mast cells differentiate from hematopoietic stem cells in the bone marrow and migrate via the circulation to peripheral tissues, where they play a pivotal role in induction of both innate and adaptive immune responses. In this study, the effect of intestinal commensal bacteria on the migration of mast cells into the intestine was investigated. Histochemical analyses showed that germ-free (GF) mice had lower mast cell densities in the small intestine than normal mice. It was also shown that GF mice had lower mast cell proportion out of lamina propria leukocytes in the small intestine and higher mast cell percentages in the blood than normal mice by flow cytometry. These results indicate that migration of mast cells from the blood to the intestine is promoted by intestinal commensal bacteria. In addition, MyD88⁻/⁻ mice had lower densities of intestinal mast cells than CV mice, suggesting that the promotive effect of commensals is, at least in part, TLR-dependent. The ligands of CXC chemokine receptor 2 (CXCR2), which is critical for homing of mast cells to the intestine, were expressed higher in intestinal tissues and in intestinal epithelial cells (IECs) of normal mice than in those of GF or MyD88⁻/⁻ mice. Collectively, it is suggested that commensals promote migration of mast cells into the intestine through the induction of CXCR2 ligands from IECs in a TLR-dependent manner.

  18. Electroacupuncture in the repair of spinal cord injury:inhibiting the Notch signaling pathway and promoting neural stem cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Xin Geng; Tao Sun; Jing-hui Li; Ning Zhao; Yong Wang; Hua-lin Yu

    2015-01-01

    Electroacupuncture for the treatment of spinal cord injury has a good clinical curative effect, but the underlying mechanism is unclear. In our experiments, the spinal cord of adult Sprague-Daw-ley rats was clamped for 60 seconds.Dazhui (GV14) andMingmen (GV4) acupoints of rats were subjected to electroacupuncture. Enzyme-linked immunosorbent assay revealed that the expres-sion of serum inlfammatory factors was apparently downregulated in rat models of spinal cord injury after electroacupuncture. Hematoxylin-eosin staining and immunohistochemistry results demonstrated that electroacupuncture contributed to the proliferation of neural stem cells in rat injured spinal cord, and suppressed their differentiation into astrocytes. Real-time quantitative PCR and western blot assays showed that electroacupuncture inhibited activation of the Notch signaling pathway induced by spinal cord injury. These ifndings indicate that electroacupuncture repaired the injured spinal cord by suppressing the Notch signaling pathway and promoting the proliferation of endogenous neural stem cells.

  19. p53 and miR-34a Feedback Promotes Lung Epithelial Injury and Pulmonary Fibrosis.

    Science.gov (United States)

    Shetty, Shwetha K; Tiwari, Nivedita; Marudamuthu, Amarnath S; Puthusseri, Bijesh; Bhandary, Yashodhar P; Fu, Jian; Levin, Jeffrey; Idell, Steven; Shetty, Sreerama

    2017-03-05

    Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. The pathogenesis of interstitial lung diseases, including its most common form, IPF, remains poorly understood. Alveolar epithelial cell (AEC) apoptosis, proliferation, and accumulation of myofibroblasts and extracellular matrix deposition results in progressive loss of lung function in IPF. We found induction of tumor suppressor protein, p53, and apoptosis with suppression of urokinase-type plasminogen activator (uPA) and the uPA receptor in AECs from the lungs of IPF patients, and in mice with bleomycin, cigarette smoke, silica, or sepsis-induced lung injury. Treatment with the caveolin-1 scaffolding domain peptide (CSP) reversed these effects. Consistent with induction of p53, AECs from IPF lungs or mice with diverse types of lung injuries showed increased p53 acetylation and miR-34a expression with reduction in Sirt1. This was significantly reduced after treatment of wild-type mice with CSP, and uPA-deficient mice were unresponsive. Bleomycin failed to induce miR-34a in p53- or plasminogen activator inhibitor-1 (PAI-1)-deficient mice. CSP-mediated inhibition of miR-34a restored Sirt1, suppressed p53 acetylation and apoptosis in injured AECs, and prevented pulmonary fibrosis (PF). AEC-specific suppression of miR-34a inhibited bleomycin-induced p53, PAI-1, and apoptosis and prevented PF, whereas overexpression of precursor-miR-34a increased p53, PAI-1, and apoptosis in AECs of mice unexposed to bleomycin. Our study validates p53-miR-34a feedback as a potential therapeutic target in PF.

  20. Concise review: the potential of stromal cell-derived factor 1 and its receptors to promote stem cell functions in spinal cord repair.

    Science.gov (United States)

    Jaerve, Anne; Schira, Jessica; Müller, Hans Werner

    2012-10-01

    Transplanted stem cells provide beneficial effects on regeneration/recovery after spinal cord injury (SCI) by the release of growth-promoting factors, increased tissue preservation, and provision of a permissive environment for axon regeneration. A rise in chemokine stromal cell-derived factor 1 (SDF-1/CXCL12) expression levels in central nervous system (CNS) injury sites has been shown to play a central role in recruiting transplanted stem cells. Although technically more challenging, it has been shown that after SCI few endogenous stem cells are recruited via SDF-1/CXCR4 signaling. Evidence is accumulating that increasing SDF-1 levels at the injury site (e.g., by exogenous application or transfection methods) further enhances stem cell recruitment. Moreover, SDF-1 might, in addition to migration, also influence survival, proliferation, differentiation, and cytokine secretion of stem cells. Here, we discuss the experimental data available on the role of SDF-1 in stem and progenitor cell biology following CNS injury and suggest strategies for how manipulation of the SDF-1 system could facilitate stem cell-based therapeutic approaches in SCI. In addition, we discuss challenges such as how to circumvent off-target effects in order to facilitate the transfer of SDF-1 to the clinic.

  1. LncRNA SNHG12 promotes cell growth and inhibits cell apoptosis in colorectal cancer cells

    Science.gov (United States)

    Wang, J.Z.; Xu, C.L.; Wu, H.; Shen, S.J.

    2017-01-01

    Several long non-coding RNA (lncRNA) might be correlated with the prognosis of colorectal cancer (CRC) and serve as a diagnostic and prognostic biomarker. However, the exact expression pattern of small nucleolar RNA host gene 12 (SNHG12) in colorectal cancer and its clinical significance remains unclear. The level of SNHG12 was detected by qRT-PCR in CRC tissues and CRC cells. MTT assay and colony formation assay were performed to examine the cell proliferation of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. Flow cytometry technology was used to detect cell cycle and cell apoptosis of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. The protein level of cell cycle progression-related molecules, including cyclin-dependent kinases (CDK4, CDK6), cyclin D1 (CCND1) and cell apoptosis-related molecule caspase 3 was detected by western blot. The effect of SNHG12 knockdown was examined in vivo. Increased levels of SNHG12 were observed in CRC tissues and in CRC cells. SNHG12 promoted the cell proliferation of CRC cells. In addition, SNHG12 overexpression boosted the cell cycle progression of SW480 cells transfected with pcDNA-SNHG12 and SNHG12 knockdown inhibited the cell cycle progression of HT29 cells transfected with si-SNHG12. SNHG12 also inhibited the cell apoptosis of CRC cells. We also found that SNHG12 increased the expression of cell cycle-related proteins and suppressed the expression of caspase 3. Our results suggest that SNHG12 promoted cell growth and inhibited cell apoptosis in CRC cells, indicating that SNHG12 might be a useful biomarker for colorectal cancer. PMID:28225893

  2. Interleukin-8 derived from local tissue-resident stromal cells promotes tumor cell invasion.

    Science.gov (United States)

    Welte, Gabriel; Alt, Eckhard; Devarajan, Eswaran; Krishnappa, Srinivasalu; Jotzu, Constantin; Song, Yao-Hua

    2012-11-01

    The aim of this study is to evaluate the role of adipose tissue resident stromal cells on tumor cell invasion. Our data show that a subpopulation of adipose tissue derived stromal cells expressing Nestin, NG2, α-smooth muscle actin and PDGFR-α migrate toward the cancer cells. Microarray analysis revealed the upregulation of IL-8 in the migrated cells. We demonstrated that stromal cell derived IL-8 promote the invasion and the anchorage-independent growth of cancer cells. We conclude that human breast cancer cells attract a subpopulation of stromal cells that secrete IL-8 to promote tumor cell invasion in a paracrine fashion.

  3. Electrophysiological functional recovery in a rat model of spinal cord hemisection injury following bone marrow-derived mesenchymal stem cell transplantation under hypothermia

    Institute of Scientific and Technical Information of China (English)

    Dong Wang; Jianjun Zhang

    2012-01-01

    Following successful establishment of a rat model of spinal cord hemisection injury by resecting right spinal cord tissues, bone marrow stem cells were transplanted into the spinal cord lesions via the caudal vein while maintaining rectal temperature at 34 ± 0.5°C for 6 hours (mild hypothermia). Hematoxylin-eosin staining showed that astrocytes gathered around the injury site and formed scars at 4 weeks post-transplantation. Compared with rats transplanted with bone marrow stem cells under normal temperature, rats transplanted with bone marrow stem cells under hypothermia showed increased numbers of proliferating cells (bromodeoxyuridine-positive cells), better recovery of somatosensory-evoked and motor-evoked potentials, greater Basso, Beattie, and Bresnahan locomotor rating scores, and an increased degree of angle in the incline plate test. These findings suggested that hypothermia combined with bone marrow mesenchymal stem cells transplantation effectively promoted electrical conduction and nerve functional repair in a rat model of spinal cord hemisection injury.

  4. Injury-induced GR-1+ macrophage expansion and activation occurs independently of CD4 T-cell influence.

    Science.gov (United States)

    O'Leary, Fionnuala M; Tajima, Goro; Delisle, Adam J; Ikeda, Kimiko; Dolan, Sinead M; Hanschen, Marc; Mannick, John A; Lederer, James A

    2011-08-01

    Burn injury initiates an enhanced inflammatory condition referred to as the systemic inflammatory response syndrome or the two-hit response phenotype. Prior reports indicated that macrophages respond to injury and demonstrate a heightened reactivity to Toll-like receptor stimulation. Since we and others observed a significant increase in splenic GR-1 F4/80 CD11b macrophages in burn-injured mice, we wished to test if these macrophages might be the primary macrophage subset that shows heightened LPS reactivity. We report here that burn injury promoted higher level TNF-α expression in GR-1, but not GR-1 macrophages, after LPS activation both in vivo and ex vivo. We next tested whether CD4 T cells, which are known to suppress injury-induced inflammatory responses, might control the activation and expansion of GR-1 macrophages. Interestingly, we found that GR-1 macrophage expansion and LPS-induced TNF-α expression were not significantly different between wild-type and CD4 T cell-deficient CD4(-/-) mice. However, further investigations showed that LPS-induced TNF-α production was significantly influenced by CD4 T cells. Taken together, these data indicate that GR-1 F4/80 CD11b macrophages represent the primary macrophage subset that expands in response to burn injury and that CD4 T cells do not influence the GR-1 macrophage expansion process, but do suppress LPS-induced TNF-α production. These data suggest that modulating GR-1 macrophage activation as well as CD4 T cell responses after severe injury may help control the development of systemic inflammatory response syndrome and the two-hit response phenotype.

  5. Human umbilical mesenchymal stem cells conditioned medium promote primary wound healing regeneration

    Directory of Open Access Journals (Sweden)

    Dwi Liliek Kusindarta

    2016-06-01

    Full Text Available Aim: This research was conducted to clarify the capability of human umbilical mesenchymal stem cells conditioned medium (HU-MSCM to promote regenerations of primary wound healing on the incision skin injury. Materials and Methods: In this study, two approaches in vitro and in vivo already done. On in vitro analysis, tube formation was performed using HU vein endothelial cells in the presence of HU-MSCM, in some experiments cells line was incubated prior the presence of lipopolysaccharide and HU-MSCM then apoptosis assay was performed. Furthermore, in vivo experiments 12 female rats (Rattus norvegicus were used after rats anesthetized, 7 mm wound was made by incision on the left side of the body. The wound was treated with HU-MSCM containing cream, povidone iodine was run as a control. Wound healing regenerations on the skin samples were visualized by hematoxylin-eosin staining. Results: In vitro models elucidate HU-MSCM may decreasing inflammation at the beginning of wound healing, promote cell migration and angiogenesis. In addition in vivo models show that the incision length on the skin is decreasing and more smaller, HE staining describe decreasing of inflammation phase, increasing of angiogenesis, accelerate fibroplasia, and maturation phase. Conclusions: Taken together our observation indicates that HU-MSCM could promote the acceleration of skin tissue regenerations in primary wound healing process.

  6. In delicate balance: stem cells and spinal cord injury advocacy.

    Science.gov (United States)

    Parke, Sara; Illes, Judy

    2011-09-01

    Spinal cord injury (SCI) is a major focus for stem cell therapy (SCT). However, the science of SCT has not been well matched with an understanding of perspectives of persons with SCI. The online advocacy community is a key source of health information for primary stakeholders and their caregivers. In this study, we sought to characterize the content of SCI advocacy websites with respect to their discussion of SCT and stem cell tourism. We performed a comprehensive analysis of SCI advocacy websites identified through a web search and verified by expert opinion. Two independent researchers coded the information for major themes (e.g., scientific & clinical facts, research & funding, policy, ethics) and valence (positive, negative, balanced, neutral). Of the 40 SCI advocacy websites that met inclusion criteria, 50% (N=20) contained information about SCT. Less than 18% (N=7) contained information on stem cell tourism. There were more than ten times as many statements about SCT with a positive valence (N=67) as with a negative valence (N=6). Ethics-related SCT information comprised 20% (N=37) of the total content; the largest proportion of ethics-related content was devoted to stem cell tourism (80%, N=30 statements). Of those, the majority focused on the risks of stem cell tourism (N=16). Given the still-developing science behind SCT, the presence of cautionary information about stem cell tourism at advocacy sites is ethically appropriate. The absence of stem cell tourism information at the majority of advocacy sites represents a lost educational opportunity.

  7. Increased CD133+ cell infiltration in the rat brain following fluid percussion injury

    Institute of Scientific and Technical Information of China (English)

    Ming Wei; Ziwei Zhou; Shenghui Li; Chengwei Jing; Dashi Zhi; Jianning Zhang

    2012-01-01

    The prominin-1/CD133 epitope is expressed in undifferentiated cells. Studies have reported that craniocerebral trauma in animal models of fluid percussion injury induces production of a specific stem cell subgroup. It has been hypothesized that fluid percussion injury induces CD133+ cell infiltration in the brain tissue. The present study established a traumatic brain injury model through fluid percussion injury. Immunohistochemical staining showed significantly increased CD133 antigen expression in the rat brain following injury. CD133+ cells were mainly distributed in hippocampal CA1-3 regions, as well as the dentate gyrus and hilus, of the lesioned hemisphere. Occasional cells were also detected in the cortex. In addition, reverse transcription-PCR revealed that no change in CD133 mRNA expression in injured brain tissue. These results suggested that fluid percussion injury induced CD133 antigen expression in the brain tissues as a result of conformational epitope changes, but not transcriptional expression.

  8. Biphasic recruitment of microchimeric fetal mesenchymal cells in fibrosis following acute kidney injury.

    Science.gov (United States)

    Roy, Edwige; Seppanen, Elke; Ellis, Rebecca; Lee, Eddy S; Khosrotehrani, Kiarash; Khosroterani, Kiarash; Fisk, Nicholas M; Bou-Gharios, George

    2014-03-01

    Fetal microchimeric cells (FMCs) enter the maternal circulation and persist in tissue for decades. They have capacity to home to injured maternal tissue and differentiate along that tissue's lineage. This raises the question of the origin(s) of cells transferred to the mother during pregnancy. FMCs with a mesenchymal phenotype have been documented in several studies, which makes mesenchymal stem cells an attractive explanation for their broad plasticity. Here we assessed the recruitment and mesenchymal lineage contribution of FMCs in response to acute kidney fibrosis induced by aristolochic acid injection. Serial in vivo bioluminescence imaging revealed a biphasic recruitment of active collagen-producing FMCs during the repair process of injured kidney in post-partum wild-type mothers that had delivered transgenic pups expressing luciferase under the collagen type I-promoter. The presence of FMCs long-term post injury (day 60) was associated with profibrotic molecules (TGF-β/CTGF), serum urea levels, and collagen deposition. Immunostaining confirmed FMCs at short term (day 15) using post-partum wild-type mothers that had delivered green fluorescent protein-positive pups and suggested a mainly hematopoietic phenotype. We conclude that there is biphasic recruitment to, and activity of, FMCs at the injury site. Moreover, we identified five types of FMC, implicating them all in the reparative process at different stages of induced renal interstitial fibrosis.

  9. HIF-1α Promotes A Hypoxia-Independent Cell Migration.

    Science.gov (United States)

    Li, Liyuan; Madu, Chikezie O; Lu, Andrew; Lu, Yi

    2010-01-01

    Hypoxia-inducible factor-1α (HIF-1α) is known as a transactivator for VEGF gene promoter. It can be induced by hypoxia. However, no study has been done so far to dissect HIF-1α-mediated effects from hypoxia or VEGF-mediated effects. By using a HIF-1α knockout (HIF-1α KO) cell system in mouse embryonic fibroblast (MEF) cells, this study analyzes cell migration and HIF-1α, hypoxia and VEGF activation. A hypoxia-mediated HIF-1α induction and VEGF transactivation were observed: both HIF-1α WT lines had significantly increased VEGF transactivation, as an indicator for HIF-1α induction, in hypoxia compared to normoxia; in contrast, HIF-1α KO line had no increased VEGF transactivation under hypoxia. HIF-1α promotes cell migration: HIF-1α-KO cells had a significantly reduced migration compared to that of the HIF-1α WT cells under both normoxia and hypoxia. The significantly reduced cell migration in HIF-1α KO cells can be partially rescued by the restoration of WT HIF-1α expression mediated by adenoviral-mediated gene transfer. Interestingly, hypoxia has no effect on cell migration: the cells had a similar cell migration rate under hypoxic and normoxic conditions for both HIF-1α WT and HIF-1α KO lines, respectively. Collectively, these data suggest that HIF-1α plays a role in MEF cell migration that is independent from hypoxia-mediated effects.

  10. Promoting justice in stem cell intellectual property.

    Science.gov (United States)

    Regenberg, Alan; Mathews, Debra J H

    2011-11-01

    According to the World Trade Organization, intellectual property rights are "rights given to persons over the creations of their minds. They usually give the creator an exclusive right over the use of his/her creation for a certain period of time." The rationale behind intellectual property rights is to offer a quid pro quo, between creators and the public, intended to spur innovation. Inventors gain exclusivity (and an opportunity for profits) in exchange for publicly disclosing details about their creations. The public gains free access to information - information that can then be used to support further innovation. Innovation is seen as an inherent good in this context, as it can lead to the development of things people need (e.g., treatments for disease, green energy technologies or a better mousetrap). Exclusive rights to intellectual property are managed via patents and licenses, with patenting being primarily regulated at the national level. Intellectual property rights are the dominant mechanism used in innovation policy, particularly in science. However, myriad modifications and alternatives to intellectual property rights have been proposed and utilized, including patent pooling, intellectual property exchanges and clearing houses, innovation prizes and open-source licenses. The challenges related to competing models of innovation policy present in a fairly consistent manner across most fields of science. However, this paper will focus exclusively on intellectual property rights and models of innovation policy in the context of stem cell science. It is not that the issues themselves are unique in this context, but rather that there are a series of factors that make a discussion of intellectual property rights and models of innovation policy particularly important in the context of stem cell science.

  11. Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells.

    Directory of Open Access Journals (Sweden)

    María Berdasco

    Full Text Available Maintaining and acquiring the pluripotent cell state in plants is critical to tissue regeneration and vegetative multiplication. Histone-based epigenetic mechanisms are important for regulating this undifferentiated state. Here we report the use of genetic and pharmacological experimental approaches to show that Arabidopsis cell suspensions and calluses specifically repress some genes as a result of promoter DNA hypermethylation. We found that promoters of the MAPK12, GSTU10 and BXL1 genes become hypermethylated in callus cells and that hypermethylation also affects the TTG1, GSTF5, SUVH8, fimbrin and CCD7 genes in cell suspensions. Promoter hypermethylation in undifferentiated cells was associated with histone hypoacetylation and primarily occurred at CpG sites. Accordingly, we found that the process specifically depends on MET1 and DRM2 methyltransferases, as demonstrated with DNA methyltransferase mutants. Our results suggest that promoter DNA methylation may be another important epigenetic mechanism for the establishment and/or maintenance of the undifferentiated state in plant cells.

  12. Angiogenin Mediates Cell-Autonomous Translational Control under Endoplasmic Reticulum Stress and Attenuates Kidney Injury.

    Science.gov (United States)

    Mami, Iadh; Bouvier, Nicolas; El Karoui, Khalil; Gallazzini, Morgan; Rabant, Marion; Laurent-Puig, Pierre; Li, Shuping; Tharaux, Pierre-Louis; Beaune, Philippe; Thervet, Eric; Chevet, Eric; Hu, Guo-Fu; Pallet, Nicolas

    2016-03-01

    Endoplasmic reticulum (ER) stress is involved in the pathophysiology of kidney disease and aging, but the molecular bases underlying the biologic outcomes on the evolution of renal disease remain mostly unknown. Angiogenin (ANG) is a ribonuclease that promotes cellular adaptation under stress but its contribution to ER stress signaling remains elusive. In this study, we investigated the ANG-mediated contribution to the signaling and biologic outcomes of ER stress in kidney injury. ANG expression was significantly higher in samples from injured human kidneys than in samples from normal human kidneys, and in mouse and rat kidneys, ANG expression was specifically induced under ER stress. In human renal epithelial cells, ER stress induced ANG expression in a manner dependent on the activity of transcription factor XBP1, and ANG promoted cellular adaptation to ER stress through induction of stress granules and inhibition of translation. Moreover, the severity of renal lesions induced by ER stress was dramatically greater in ANG knockout mice (Ang(-/-)) mice than in wild-type mice. These results indicate that ANG is a critical mediator of tissue adaptation to kidney injury and reveal a physiologically relevant ER stress-mediated adaptive translational control mechanism.

  13. Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Hai-xiao Zhou; Zhi-gang Liu; Xiao-jiao Liu; Qian-xue Chen

    2016-01-01

    Transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen (HBO) treatment has long been widely used as an adjunctive therapy for treating traumatic brain injury. UC-MSC transplantation combined with HBO treatment is expected to yield better therapeutic effects on traumatic brain injury. In this study, we established rat models of severe traumatic brain injury by pressurized lfuid (2.5–3.0 atm impact force). The injured rats were then administered UC-MSC transplantationvia the tail vein in combination with HBO treatment. Compared with monotherapy, aquaporin 4 expression decreased in the injured rat brain, but growth-associated protein-43 expression, calaxon-like structures, and CM-Dil-positive cell number increased. Following combination therapy, however, rat cognitive and neurological function signiifcantly improved. UC-MSC transplantation combined with HBO therapyfor repair of traumatic brain injury shows better therapeutic effects than monotherapy and signiifcantly promotes recovery of neurological functions.

  14. Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated Th17 cell-dependent inflammation.

    Science.gov (United States)

    Wang, Jian; Li, Fengqi; Wei, Haiming; Lian, Zhe-Xiong; Sun, Rui; Tian, Zhigang

    2014-11-17

    Influenza in humans is often accompanied by gastroenteritis-like symptoms such as diarrhea, but the underlying mechanism is not yet understood. We explored the occurrence of gastroenteritis-like symptoms using a mouse model of respiratory influenza infection. We found that respiratory influenza infection caused intestinal injury when lung injury occurred, which was not due to direct intestinal viral infection. Influenza infection altered the intestinal microbiota composition, which was mediated by IFN-γ produced by lung-derived CCR9(+)CD4(+) T cells recruited into the small intestine. Th17 cells markedly increased in the small intestine after PR8 infection, and neutralizing IL-17A reduced intestinal injury. Moreover, antibiotic depletion of intestinal microbiota reduced IL-17A production and attenuated influenza-caused intestinal injury. Further study showed that the alteration of intestinal microbiota significantly stimulated IL-15 production from intestinal epithelial cells, which subsequently promoted Th17 cell polarization in the small intestine in situ. Thus, our findings provide new insights into an undescribed mechanism by which respiratory influenza infection causes intestinal disease.

  15. p75 neurotrophin receptor positive dental pulp stem cells: new hope for patients with neurodegenerative disease and neural injury%p75 neurotrophin receptor positive dental pulp stem cells:new hope for patients with neurodegenerative disease and neural injury

    Institute of Scientific and Technical Information of China (English)

    DAI Jie-wen; YUAN Hao; SHEN Shun-yao; LU Jing-ting; ZHU Xiao-fang; YANG Tong; ZHANG Jiang-fei

    2013-01-01

    Neurodegenerative diseases and neural injury are 2 of the most feared disorders that afflict humankind by leading to permanent paralysis and loss of sensation.Cell based treatment for these diseases had gained special interest in recent years.Previous studies showed that dental pulp stem cells (DPSCs) could differentiate toward functionally active neurons both in vitro and in vivo,and could promote neuranagenesis through both cell-autonomous and paracrine neuroregenerative activities.Some of these neuroregenerative activities were unique to tooth-derived stem cells and superior to bone marrow stromal cells.However,DPSCs used in most of these studies were mixed and unfractionated dental pulp cells that contain several types of cells,and most were fibroblast cells while just contain a small portion of DPSCs.Thus,there might be weaker ability of neuranagenesis and more side effects from the fibroblast cells that cannot differentiate into neural cells.p75 neurotrophin receptor (p75NTR) positive DPSCs subpopulation was derived from migrating cranial neural crest cells and had been isolated from DPSCs,which had capacity of differentiation into neurons and repairing neural system.In this article,we hypothesize that p75NTR positive DPSCs simultaneously have greater propensity for neuronal differentiation and fewer side effects from fibroblast,and in vivo transptantation of autologous p75NTR positive DPSCs is a novel method for neuranagenesis.This will bring great hope to patients with neurodegenerative disease and neural injury.

  16. Dclk1 Defines Quiescent Pancreatic Progenitors that Promote Injury-Induced Regeneration and Tumorigenesis | Office of Cancer Genomics

    Science.gov (United States)

    The existence of adult pancreatic progenitor cells has been debated. While some favor the concept of facultative progenitors involved in homeostasis and repair, neither a location nor markers for such cells have been defined. Using genetic lineage tracing, we show that Doublecortin-like kinase-1 (Dclk1) labels a rare population of long-lived, quiescent pancreatic cells. In vitro, Dclk1+ cells proliferate readily and sustain pancreatic organoid growth. In vivo, Dclk1+ cells are necessary for pancreatic regeneration following injury and chronic inflammation.

  17. Withaferin A: a proteasomal inhibitor promotes healing after injury and exerts anabolic effect on osteoporotic bone.

    Science.gov (United States)

    Khedgikar, V; Kushwaha, P; Gautam, J; Verma, A; Changkija, B; Kumar, A; Sharma, S; Nagar, G K; Singh, D; Trivedi, P K; Sangwan, N S; Mishra, P R; Trivedi, R

    2013-01-01

    Withania somnifera or Ashwagandha is a medicinal herb of Ayurveda. Though the extract and purified molecules, withanolides, from this plant have been shown to have different pharmacological activities, their effect on bone formation has not been studied. Here, we show that one of the withanolide, withaferin A (WFA) acts as a proteasomal inhibitor (PI) and binds to specific catalytic β subunit of the 20S proteasome. It exerts positive effect on osteoblast by increasing osteoblast proliferation and differentiation. WFA increased expression of osteoblast-specific transcription factor and mineralizing genes, promoted osteoblast survival and suppressed inflammatory cytokines. In osteoclast, WFA treatment decreased osteoclast number directly by decreasing expression of tartarate-resistant acid phosphatase and receptor activator of nuclear factor kappa-B (RANK) and indirectly by decreasing osteoprotegrin/RANK ligand ratio. Our data show that in vitro treatment of WFA to calvarial osteoblast cells decreased expression of E3 ubiquitin ligase, Smad ubiquitin regulatory factor 2 (Smurf2), preventing degradation of Runt-related transcription factor 2 (RunX2) and relevant Smad proteins, which are phosphorylated by bone morphogenetic protein 2. Increased Smurf2 expression due to exogenous treatment of tumor necrosis factor α (TNFα) to primary osteoblast cells was decreased by WFA treatment. This was corroborated by using small interfering RNA against Smurf2. Further, WFA also blocked nuclear factor kappa-B (NF-kB) signaling as assessed by tumor necrosis factor stimulated nuclear translocation of p65-subunit of NF-kB. Overall data show that in vitro proteasome inhibition by WFA simultaneously promoted osteoblastogenesis by stabilizing RunX2 and suppressed osteoclast differentiation, by inhibiting osteoclastogenesis. Oral administration of WFA to osteopenic ovariectomized mice increased osteoprogenitor cells in the bone marrow and increased expression of osteogenic genes. WFA

  18. Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Masaya Nakamura; Hideyuki Okano

    2013-01-01

    Stimulated by the 2012 Nobel Prize in Physiology or Medicine awarded for Shinya Yamanaka and Sir John Gurdon,there is an increasing interest in the induced pluripotent stem (iPS) cells and reprograming technologies in medical science.While iPS cells are expected to open a new era providing enormous opportunities in biomedical sciences in terms of cell therapies and regenerative medicine,safety-related concerns for iPS cell-based cell therapy should be resolved prior to the clinical application of iPS cells.In this review,the pre-clinical investigations of cell therapy for spinal cord injury (SCI) using neural stem/progenitor cells derived from iPS cells,and their safety issues in vivo,are outlined.We also wish to discuss the strategy for the first human trails of iPS cell-based cell therapy for SCI patients.

  19. Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells.

    Science.gov (United States)

    Nakamura, Masaya; Okano, Hideyuki

    2013-01-01

    Stimulated by the 2012 Nobel Prize in Physiology or Medicine awarded for Shinya Yamanaka and Sir John Gurdon, there is an increasing interest in the induced pluripotent stem (iPS) cells and reprograming technologies in medical science. While iPS cells are expected to open a new era providing enormous opportunities in biomedical sciences in terms of cell therapies and regenerative medicine, safety-related concerns for iPS cell-based cell therapy should be resolved prior to the clinical application of iPS cells. In this review, the pre-clinical investigations of cell therapy for spinal cord injury (SCI) using neural stem/progenitor cells derived from iPS cells, and their safety issues in vivo, are outlined. We also wish to discuss the strategy for the first human trails of iPS cell-based cell therapy for SCI patients.

  20. Tonsil-Derived Mesenchymal Stem Cells Differentiate into a Schwann Cell Phenotype and Promote Peripheral Nerve Regeneration.

    Science.gov (United States)

    Jung, Namhee; Park, Saeyoung; Choi, Yoonyoung; Park, Joo-Won; Hong, Young Bin; Park, Hyun Ho Choi; Yu, Yeonsil; Kwak, Geon; Kim, Han Su; Ryu, Kyung-Ha; Kim, Jae Kwang; Jo, Inho; Choi, Byung-Ok; Jung, Sung-Chul

    2016-11-09

    Schwann cells (SCs), which produce neurotropic factors and adhesive molecules, have been reported previously to contribute to structural support and guidance during axonal regeneration; therefore, they are potentially a crucial target in the restoration of injured nervous tissues. Autologous SC transplantation has been performed and has shown promising clinical results for treating nerve injuries and donor site morbidity, and insufficient production of the cells have been considered as a major issue. Here, we performed differentiation of tonsil-derived mesenchymal stem cells (T-MSCs) into SC-like cells (T-MSC-SCs), to evaluate T-MSC-SCs as an alternative to SCs. Using SC markers such as CAD19, GFAP, MBP, NGFR, S100B, and KROX20 during quantitative real-time PCR we detected the upregulation of NGFR, S100B, and KROX20 and the downregulation of CAD19 and MBP at the fully differentiated stage. Furthermore, we found myelination of axons when differentiated SCs were cocultured with mouse dorsal root ganglion neurons. The application of T-MSC-SCs to a mouse model of sciatic nerve injury produced marked improvements in gait and promoted regeneration of damaged nerves. Thus, the transplantation of human T-MSCs might be suitable for assisting in peripheral nerve regeneration.

  1. Promotion on Nucleation and Aggregation of Calcium Oxalate Crystals by Injured African Green Monkey Renal Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    张燊; 彭花; 姚秀琼; 苏泽轩; 欧阳健明

    2012-01-01

    The purpose of this work was to detect the properties of African green monkey renal epithelial cells (Vero) after oxidative injury and to study the mediation of the injured Vero on aggregation and formation of calcium oxalate crystals. This injury model was induced by 0.15 mmol/L H2O2 according to the pretest evaluation. The results suggested that H2O2 could injure Vero significantly and decrease cell viability in a time-dependent manner for exposure time of 0.5--2 h. After cell injury, the indexes connected with oxidative injury changed. The malondialdehyde (MDA) content and osteopontin (OPN) expression increased, while superoxide dismutase (SOD) level decreased. It resulted in the increase of both the amount of CaOxa crystals and the degree of crystal aggregation on the injured cells. This work indicated that injured cells promoted the formation of calcium oxalate monohydrate (COM) crystals, thus increased the risk of formation of urinary stone.

  2. Progesterone promotes propagation and viability of mouse embryonic stem cells.

    Science.gov (United States)

    Shen, Shan-Wei; Song, Hou-Yan

    2009-10-25

    It has been known that estrogen-17beta stimulates proliferation of mouse embryonic stem (mES) cells. To explore the function of another steroid hormone progesterone, we used MTT method and BrdU incorporation assay to obtain growth curves, clone forming assay to detect the propagation and viability of individual mES cells, Western blot to test the expression of ES cell marker gene Oct-4, fluorescence activated cell sorter (FACS) to test cell cycle, and real-time PCR to detect the expressions of cyclins, cyclin-dependent kinases and proto-oncogenes. The results showed that progesterone promoted proliferation of mES cells. The number of clones was more in progesterone-treated group than that in the control group. The expression of pluripotency-associated transcriptional factor Oct-4 changed little after progesterone treatment as shown by Western blot, indicating that most of mES cells were in undifferentiated state. The results of FACS proved that progesterone promoted DNA synthesis in mES cells. The proportion of mES cells in S+G(2)/M phase was higher in progesterone-treated group than that in the control group. Cyclins and cyclin-dependent kinases, as well as proto-oncogenes (c-myc, c-fos) were up-regulated when cells were treated with progesterone. The results obtained indicate that progesterone promotes propagation and viability of mES cells. The up-regulation of cell cycle-related factors might contribute to the function of progesterone.

  3. p75 neurotrophin receptor positive dental pulp stem cells: new hope for patients with neurodegenerative disease and neural injury.

    Science.gov (United States)

    Dai, Jie-wen; Yuan, Hao; Shen, Shun-yao; Lu, Jing-ting; Zhu, Xiao-fang; Yang, Tong; Zhang, Jiang-fei; Shen, Guo-fang

    2013-08-01

    Neurodegenerative diseases and neural injury are 2 of the most feared disorders that afflict humankind by leading to permanent paralysis and loss of sensation. Cell based treatment for these diseases had gained special interest in recent years. Previous studies showed that dental pulp stem cells (DPSCs) could differentiate toward functionally active neurons both in vitro and in vivo, and could promote neuranagenesis through both cell-autonomous and paracrine neuroregenerative activities. Some of these neuroregenerative activities were unique to tooth-derived stem cells and superior to bone marrow stromal cells. However, DPSCs used in most of these studies were mixed and unfractionated dental pulp cells that contain several types of cells, and most were fibroblast cells while just contain a small portion of DPSCs. Thus, there might be weaker ability of neuranagenesis and more side effects from the fibroblast cells that cannot differentiate into neural cells. p75 neurotrophin receptor (p75NTR) positive DPSCs subpopulation was derived from migrating cranial neural crest cells and had been isolated from DPSCs, which had capacity of differentiation into neurons and repairing neural system. In this article, we hypothesize that p75NTR positive DPSCs simultaneously have greater propensity for neuronal differentiation and fewer side effects from fibroblast, and in vivo transptantation of autologous p75NTR positive DPSCs is a novel method for neuranagenesis. This will bring great hope to patients with neurodegenerative disease and neural injury.

  4. Coniferyl Aldehyde Ameliorates Radiation Intestine Injury via Endothelial Cell Survival

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ye Ji; Jung, Myung Gu; Lee, Yoonjin; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yunsil [Ewha Woman' s Univ., Seoul (Korea, Republic of); Ko, Younggyu [Korea Univ., Seoul (Korea, Republic of)

    2014-05-15

    Cancer treatments related gastrointestinal toxicity has also been recognized as a significant economic burden. Especially, extensive apoptosis of microvascular endothelial cell of the lamina propria is the primary lesion initiating intestinal radiation damage after abdominal radiation therapy. Coniferyl aldehyde (CA) is phenolic compounds isolated from cork stoppers, and one of the major pyrolysis products of lignin. Shi H. was support for the empirical use of CA as a medicinal food for cardiovascular diseases. CA has positive effect in broad way but there is no consequence in radiation induced intestine damage. Here, we investigate effect of CA on small intestine after abdominal IR to mice in this study. In this study, CA increased the survival rate in C3H mice against 13.5 Gy abdominal IR. We found CA protects small intestine via preventing endothelial cell apoptosis and enhancing their angiogenic activity. CA also showed protective effect on crypt cell survival. Endothelial cell survival may affect crypt cell protection against IR. From this data, we concluded that CA is effective for protection against abdominal radiation injury. CA could ameliorate side-effect of radiation therapy.

  5. Identification of a novel temperature sensitive promoter in cho cells

    Directory of Open Access Journals (Sweden)

    Hesse Friedemann

    2011-05-01

    Full Text Available Abstract Background The Chinese hamster ovary (CHO expression system is the leading production platform for manufacturing biopharmaceuticals for the treatment of numerous human diseases. Efforts to optimize the production process also include the genetic construct encoding the therapeutic gene. Here we report about the successful identification of an endogenous highly active gene promoter obtained from CHO cells which shows conditionally inducible gene expression at reduced temperature. Results Based on CHO microarray expression data abundantly transcribed genes were selected as potential promoter candidates. The S100a6 (calcyclin and its flanking regions were identified from a genomic CHO-K1 lambda-phage library. Computational analyses showed a predicted TSS, a TATA-box and several TFBSs within the 1.5 kb region upstream the ATG start signal. Various constructs were investigated for promoter activity at 37°C and 33°C in transient luciferase reporter gene assays. Most constructs showed expression levels even higher than the SV40 control and on average a more than two-fold increase at lower temperature. We identified the core promoter sequence (222 bp comprising two SP1 sites and could show a further increase in activity by duplication of this minimal sequence. Conclusions This novel CHO promoter permits conditionally high-level gene expression. Upon a shift to 33°C, a two to three-fold increase of basal productivity (already higher than SV40 promoter is achieved. This property is of particular advantage for a process with reduced expression during initial cell growth followed by the production phase at low temperature with a boost in expression. Additionally, production of toxic proteins becomes feasible, since cell metabolism and gene expression do not directly interfere. The CHO S100a6 promoter can be characterized as cold-shock responsive with the potential for improving process performance of mammalian expression systems.

  6. Adult spinal cord ependymal layer: A promising pool of quiescent stem cells to treat spinal cord injury

    OpenAIRE

    Stavros eMalas; Elena ePanayiotou

    2013-01-01

    Spinal cord injury is a major health burden and currently there is no effective medical intervention. Research performed over the last decade revealed that cells surrounding the central canal of the adult spinal cord and forming the ependymal layer acquire stem cell properties either in vitro or in response to injury. Following spinal cord injury activated ependymal cells generate progeny cells which migrate to the injury site but fail to produce the appropriate type of cells in sufficient nu...

  7. Myeloid cell-derived HIF attenuates inflammation in UUO-induced kidney injury

    Science.gov (United States)

    Kobayashi, Hanako; Gilbert, Victoria; Liu, Qingdu; Kapitsinou, Pinelopi P.; Unger, Travis L.; Rha, Jennifer; Rivella, Stefano; Schlöndorff, Detlef; Haase, Volker H.

    2012-01-01

    Renal fibrosis and inflammation are associated with hypoxia, and tissue pO2 plays a central role in modulating the progression of chronic kidney disease. Key mediators of cellular adaptation to hypoxia are hypoxia-inducible factor (HIF)-1 and -2. In the kidney they are expressed in a cell type-specific manner; to what degree activation of each homolog modulates renal fibrogenesis and inflammation has not been established. To address this issue, we used Cre-loxP recombination to activate or to delete both Hif-1 and Hif-2 either globally or cell type-specifically in myeloid cells. Global activation of Hif suppressed inflammation and fibrogenesis in mice subjected to unilateral ureteral obstruction, while activation of Hif in myeloid cells suppressed inflammation only. Suppression of inflammatory cell infiltration was associated with down-regulation of CC chemokine receptors in renal macrophages. Conversely, global deletion or myeloid-specific inactivation of Hif promoted inflammation. Furthermore, prolonged hypoxia suppressed the expression of multiple inflammatory molecules in non-injured kidneys. Collectively, we provide experimental evidence that hypoxia and/or myeloid cell-specific HIF activation attenuates renal inflammation associated with chronic kidney injury. PMID:22490864

  8. Bm-TFF2, a toad trefoil factor, promotes cell migration, survival and wound healing.

    Science.gov (United States)

    Zhang, Yong; Yu, Guoyu; Xiang, Yang; Wu, Jianbo; Jiang, Ping; Lee, Wenhui; Zhang, Yun

    2010-07-30

    Toad skin is naked and continually confronted by various injurious factors. Constant skin renewal and repairs occur frequently. However, the mechanisms of the renewal and repair have not clearly elucidated. In our previous work, a trefoil factor (TFF), Bm-TFF2, has been purified from the Bombina maxima skin and characterized as a platelet agonist. The mRNA of TFFs in toad skin was up-regulated greatly during the metamorphosis, indicating a pivotal role of TFFs in amphibian skin. Here, we presented the effects of Bm-TFF2 on the cell migration, apoptosis and proliferation. Bm-TFF2 bound to epithelial cells and showed strong cell motility activity. At the concentrations of 1-100nM, Bm-TFF2-induced migration of human epithelial AGS and HT-29 cells, and rat intestinal epithelial IEC-6 cell lines. The in vitro wound healing assay also verified the activity of Bm-TFF2. Bm-TFF2 could also inhibit cell apoptosis induced by ceramide and sodium butyrate. The cell migration-promoting activity was abolished by MEK1 inhibitors, U0126 and PD98059, suggesting that ERK1/2 activation is crucial for Bm-TFF2 to stimulate cell migration. Taken together, Bm-TFF2 promoted wound healing by stimulating cell migration via MAPK pathway and preventing cell apoptosis. The potent biological activity of Bm-TFF2 makes it a useful molecular tool for further studies of structure-function relationship of the related human TFFs.

  9. Extensive cell migration, axon regeneration, and improved function with polysialic acid-modified Schwann cells after spinal cord injury.

    Science.gov (United States)

    Ghosh, Mousumi; Tuesta, Luis M; Puentes, Rocio; Patel, Samik; Melendez, Kiara; El Maarouf, Abderrahman; Rutishauser, Urs; Pearse, Damien Daniel

    2012-05-01

    Schwann cell (SC) implantation after spinal cord injury (SCI) promotes axonal regeneration, remyelination repair, and functional recovery. Reparative efficacy, however, may be limited because of the inability of SCs to migrate outward from the lesion-implant site. Altering SC cell surface properties by overexpressing polysialic acid (PSA) has been shown to promote SC migration. In this study, a SCI contusion model was used to evaluate the migration, supraspinal axon growth support, and functional recovery associated with polysialyltransferase (PST)-overexpressing SCs [PST-green fluorescent protein (GFP) SCs] or controls (GFP SCs). Compared with GFP SCs, which remained confined to the injection site at the injury center, PST-GFP SCs migrated across the lesion:host cord interface for distances of up to 4.4 mm within adjacent host tissue. In addition, with PST-GFP SCs, there was extensive serotonergic and corticospinal axon in-growth within the implants that was limited in the GFP SC controls. The enhanced migration of PST-GFP SCs was accompanied by significant growth of these axons caudal to lesion. Animals receiving PST-GFP SCs exhibited improved functional outcome, both in the open-field and on the gridwalk test, beyond the modest improvements provided by GFP SC controls. This study for the first time demonstrates that a lack of migration by SCs may hinder their reparative benefits and that cell surface overexpression of PSA enhances the ability of implanted SCs to associate with and support the growth of corticospinal axons. These results provide further promise that PSA-modified SCs will be a potent reparative approach for SCI. © 2012 Wiley Periodicals, Inc.

  10. IL-23 Promotes Myocardial I/R Injury by Increasing the Inflammatory Responses and Oxidative Stress Reactions

    Directory of Open Access Journals (Sweden)

    Xiaorong Hu

    2016-05-01

    Full Text Available Background/Aims: Inflammation and oxidative stress play an important role in myocardial ischemia and reperfusion (I/R injury. We hypothesized that IL-23, a pro-inflammatory cytokine, could promote myocardial I/R injury by increasing the inflammatory response and oxidative stress. Methods: Male Sprague-Dawley rats were randomly assigned into sham operated control (SO group, ischemia and reperfusion (I/R group, (IL-23 + I/R group and (anti-IL-23 + I/R group. At 4 h after reperfusion, the serum concentration of lactate dehydrogenase (LDH, creatine kinase (CK and the tissue MDA concentration and SOD activity were measured. The infarcte size was measured by TTC staining. Apoptosis in heart sections were measured by TUNEL staining. The expression of HMGB1 and IL-17A were detected by Western Blotting and the expression of TNF-α and IL-6 were detected by Elisa. Results: After 4 h reperfusion, compared with the I/R group, IL-23 significantly increased the infarct size, the apoptosis of cardiomyocytes and the levels of LDH and CK (all P 0.05. All these effects were abolished by anti-IL-23 administration. Conclusion: The present study suggested that IL-23 may promote myocardial I/R injury by increasing the inflammatory responses and oxidative stress reaction.

  11. Sesamin protects against renal ischemia reperfusion injury by promoting CD39-adenosine-A2AR signal pathway in mice.

    Science.gov (United States)

    Li, Ke; Gong, Xia; Kuang, Ge; Jiang, Rong; Wan, Jingyuan; Wang, Bin

    2016-01-01

    Ischemia reperfusion injury (IRI) is a leading cause of acute kidney injury with high morbidity and mortality due to limited therapy. Here, we examine whether sesamin attenuates renal IRI in an animal model and explore the underlying mechanisms. Male mice were subjected to right renal ischemia for 30 min followed by reperfusion for 24 h with sesamin (100 mg/kg) during which the left kidney was removed. Renal damage and function were assessed subsequently. The results showed that sesamin reduced kidney ischemia reperfusion injury, as assessed by decreased serum creatinine (Scr) and Blood urea nitrogen (BUN), alleviated tubular damage and apoptosis. In addition, sesamin inhibited neutrophils infiltration and pro-inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-1β production in IR-preformed kidney. Notably, sesamin promoted the expression of CD39, A2A adenosine receptor (A2AAR), and A2BAR mRNA and protein as well as adenosine production. Furthermore, CD39 inhibitor or A2AR antagonist abolished partly the protection of sesamin in kidney IRI. In conclusion, sesamin could effectively protect kidney from IRI by inhibiting inflammatory responses, which might be associated with promoting the adenosine-CD39-A2AR signaling pathway.

  12. CD147 overexpression promotes tumorigenicity in Chinese hamster ovary cells.

    Science.gov (United States)

    Yong, Yu-Le; Liao, Cheng-Gong; Wei, Ding; Chen, Zhi-Nan; Bian, Huijie

    2016-04-01

    CD147 overexpresses in many epithelium-originated tumors and plays an important role in tumor migration and invasion. Most studies aim at the role of CD147 in tumor progression using tumor cell models. However, the influence of abnormal overexpression of CD147 on neoplastic transformation of normal cells is unknown. Here, the role of CD147 in malignant phenotype transformation in CHO cells was investigated. Three CHO cell lines that stably overexpressed CD147 (CHO-CD147), EGFP-CD147 (CHO-EGFP-CD147), and EGFP (CHO-EGFP) were generated by transfection of plasmids containing human CD147, EGFP-human CD147, and EGFP genes into CHO cells. Cell migration and invasion were detected by wound healing and transwell matrix penetration assay. Trypan blue exclusion, MTT, cell cycle analysis, and BrdU cell proliferation assay were used to detect cell viability and cell proliferation. Annexin V-FITC analysis was performed to detect apoptosis. We found that CD147 overexpression promoted the migration and invasion of CHO cells. CD147 accelerated the G1 to S phase transition and enhanced the CHO cell proliferation. Overexpression of CD147 inhibited both early- and late-stages of apoptosis of CHO-CD147 cells, which is caused by serum deprivation. CHO-EGFP-CD147 cells showed an increased anchorage-independent growth compared with CHO-EGFP cells as detected by soft-agar colony formation assay. The tumors formed by CHO-CD147 cells in nude mice were larger and coupled with higher expression of proliferating cell nuclear antigen and Ki-67 than that of CHO cells. In conclusion, human CD147 overexpression induces malignant phenotype in CHO cells.

  13. Potential role of CXCL10 in the induction of cell injury and mitochondrial dysfunction.

    Science.gov (United States)

    Singh, Lipi; Arora, Sunil Kumar; Bakshi, Dapinder K; Majumdar, Siddarth; Wig, Jai Dev

    2010-06-01

    Chemokines have been known to play a critical role in pathogenesis of chronic pancreatitis and acinar cell death. However, the role played by one of the CXC chemokines: CXCL10 in regulation of acinar cell death has remained unexplored. Hence, this study was designed to assess the role of CXCL10 promoting apoptosis in ex vivo cultured acinar cells. Primary human pancreatic acinar cell cultures were established and exposed to varying doses of CXCL10 for different time intervals. Apoptotic induction was evaluated by both qualitative as well as quantitative analyses. Various mediators of apoptosis were also studied by Western blotting, membrane potential (Psim) and ATP depletion in acinar cells. Analysis of apoptosis via DNA ladder and cell death detection - ELISA demonstrated that CXCL10 induced 3.9-fold apoptosis when administrated at an optimal dose of 0.1 mug of recombinant CXCL10 for 8 h. Quantitative analysis using FACS and dual staining by PI-annexin showed increased apoptosis (48.98 and 53.78% respectively). The involvement of upstream apoptotic regulators like pJNK, p38 and Bax was established on the basis of their increased expression of CXCL10. The change of Psim by 50% was observed in the presence of CXCL10 in treated acinar cells along with enhanced expression of Cytochrome C, apaf-1 and caspase 9/3 activation. In addition, ATP depletion was also noticed in CXCL10 stimulated acinar cells. CXCL10 induces cell death in human cultured pancreatic cells leading to apoptosis and DNA fragmentation via CXCR3 signalling. These signalling mechanisms may play an important role in parenchymal cell loss and injury in pancreatitis.

  14. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Kazuya, E-mail: asuno10k@yahoo.co.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Wada, Eiji, E-mail: gacchu1@yahoo.co.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Zammit, Peter S., E-mail: peter.zammit@kcl.ac.uk [Randall Division of Cell and Molecular Biophysics, King' s College London, London SE1 1UL (United Kingdom); Shiozuka, Masataka, E-mail: cmuscle@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Matsuda, Ryoichi, E-mail: cmatsuda@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan)

    2015-05-01

    Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc on differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade. - Highlights: • Zinc has roles for promoting proliferation and inhibition differentiation of C2C12. • Zinc promotes activation of reserve cells. • Insulin and zinc synergize activation of reserve cells. • PI3K/Akt and ERK cascade affect zinc/insulin-mediated activation of reserve cells.

  15. Glutamine analogs promote cytoophidium assembly in human and Drosophila cells

    Institute of Scientific and Technical Information of China (English)

    Kangni Chen; Jing Zhang; (O)mür Yilmaz Tastan; Zillah Anne Deussen; Mayte Yu-Yin Siswick; Ji-Long Liu

    2011-01-01

    CTP synthase is compartmentalized within a subcellular structure,termed the cytoophidium,in a range of organisms including bacteria,yeast,fruit fly and rat.Here we show that CTP synthase is also compartmentalized into cytoophidia in human cells.Surprisingly,the occurrence of cyloophidia in human cells increases upon treatment with a glutamine analog 6-diazo-5-oxo-L-norleucine (DON),an inhibitor of glutaminedependent enzymes including CTP synthase.Experiments in flies confirmned that DON globally promotes cytoophidium assembly.Clonal analysis via CTP synthase RNA interference in somatic cells indicates that CTP synthase expression level is critical for the formation of cytoophidia.Moreover,DON facilitates cytoophidium assembly even when CTP synthase level is low.A second glutamine analog azaserine also promotes cytoophidum formation.Our data demonstrate that glutamine analogs serve as useful tools in the study of cytoophidia.

  16. Fascin promotes the motility and invasiveness of pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yan-Feng Xu; Shuang-Ni Yu; Zhao-Hui Lu; Jian-Ping Liu; Jie Chen

    2011-01-01

    AIM: To explore the role of actin-bundling protein, fascin during the progression of pancreatic cancer. METHODS: The plasmid expressing human fascin-1 was stably transfected into the pancreatic cancer cell line MIA PaCa-2. The proliferation, cell cycle, motility, scattering, invasiveness and organization of the actin filament system in fascin-transfected MIA PaCa-2 cells and control non-transfected cells were determined. RESULTS: Heterogeneous overexpression of fascin markedly enhanced the motility, scattering, and invasiveness of MIA PaCa-2 cells. However, overexpression of fascin had minimal effect on MIA PaCa-2 cell proliferation and cell cycle. In addition, cell morphology and organization of the actin filament system were distinctly altered in fascin overexpressed cells. When transplanted into BALB/c-nu mice, fascin-transfected pancreatic cancer cells developed solid tumors at a slightly slower rate, but these tumors displayed more aggressive behavior in comparison with control tumors. CONCLUSION: Fascin promotes pancreatic cancer cell migration, invasion and scattering, thus contributes to the aggressive behavior of pancreatic cancer cells.

  17. Fascin overexpression promotes neoplastic progression in oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Alam Hunain

    2012-01-01

    Full Text Available Abstract Background Fascin is a globular actin cross-linking protein, which plays a major role in forming parallel actin bundles in cell protrusions and is found to be associated with tumor cell invasion and metastasis in various type of cancers including oral squamous cell carcinoma (OSCC. Previously, we have demonstrated that fascin regulates actin polymerization and thereby promotes cell motility in K8-depleted OSCC cells. In the present study we have investigated the role of fascin in tumor progression of OSCC. Methods To understand the role of fascin in OSCC development and/or progression, fascin was overexpressed along with vector control in OSCC derived cells AW13516. The phenotype was studied using wound healing, Boyden chamber, cell adhesion, Hanging drop, soft agar and tumorigenicity assays. Further, fascin expression was examined in human OSCC samples (N = 131 using immunohistochemistry and level of its expression was correlated with clinico-pathological parameters of the patients. Results Fascin overexpression in OSCC derived cells led to significant increase in cell migration, cell invasion and MMP-2 activity. In addition these cells demonstrated increased levels of phosphorylated AKT, ERK1/2 and JNK1/2. Our in vitro results were consistent with correlative studies of fascin expression with the clinico-pathological parameters of the OSCC patients. Fascin expression in OSCC showed statistically significant correlation with increased tumor stage (P = 0.041, increased lymph node metastasis (P = 0.001, less differentiation (P = 0.005, increased recurrence (P = 0.038 and shorter survival (P = 0.004 of the patients. Conclusion In conclusion, our results indicate that fascin promotes tumor progression and activates AKT and MAPK pathways in OSCC-derived cells. Further, our correlative studies of fascin expression in OSCC with clinico-pathological parameters of the patients indicate that fascin may prove to be useful in prognostication and

  18. Methylation of Gene CHFR Promoter in Acute Leukemia Cells

    Institute of Scientific and Technical Information of China (English)

    GONG Hui; LIU Wengli; ZHOU Jianfeng; XU Huizhen

    2005-01-01

    Summary: In order to explore whether gene CHFR was inactivated by methylation in leukemia cells, the expression of CHFR was examined before and after treatment with demethylation agent in Molt-4, Jurkat and U937 leukemia cell lines by means of RT-PCR. The methylation of promoter in Molt-4, Jurkat and U937 cells as well as 41 acute leukemia patients was analyzed by MS-PCR. The results showed that methylation of CHFR promoter was inactivated and could be reversed by treatment with a demethylating agent in Molt-4, Jurkat and U937. CHFR promoter methylation was detected in 39 % of acute leukemia patients. There was no difference in incidence of CHFR promoter methylation between acute myelocytic leukemia and acute lymphocytic leukemia. In conclusion, CHFR is frequently inactivated in acute leukemia and is a good candidate for the leukemia supper gene. By affecting mitotic checkpoint function, CHFR inactivation likely plays a key role in tumorigenesis in acute leukemia. Moreover, the methylation of gene CHFR appears to be a good index with which to predict the sensitivity of acute leukemia to microtubule inhibitors.

  19. Methylcobalamin promotes the differentiation of Schwann cells and remyelination in lysophosphatidylcholine-induced demyelination of the rat sciatic nerve

    Directory of Open Access Journals (Sweden)

    Shunsuke eNishimoto

    2015-08-01

    Full Text Available Schwann cells (SCs are constituents of the peripheral nervous system. The differentiation of SCs in injured peripheral nerves is critical for regeneration after injury. Methylcobalamin (MeCbl is a vitamin B12 analog that is necessary for the maintenance of the peripheral nervous system. In this study, we estimated the effect of MeCbl on SCs. We showed that MeCbl downregulated the activity of Erk1/2 and promoted the expression of the myelin basic protein in SCs. In a dorsal root ganglion neuron–SC coculture system, myelination was promoted by MeCbl. In a focal demyelination rat model, MeCbl promoted remyelination and motor and sensory functional regeneration. MeCbl promoted the in vitro differentiation of SCs and in vivo myelination in a rat demyelination model and may be a novel therapy for several types of nervous disorders.

  20. Intraportal mesenchymal stem cell transplantation prevents acute liver failure through promoting cell proliferation and inhibiting apoptosis

    Institute of Scientific and Technical Information of China (English)

    Jian-Feng Sang; Xiao-Lei Shi; Bin Han; Tao Huang; Xu Huang; Hao-Zhen Ren; Yi-Tao Ding

    2016-01-01

    BACKGROUND: Transplantation of mesenchymal stem cells (MSCs) has been regarded as a potential treatment for acute liver failure (ALF), but the optimal route was unknown. The present study aimed to explore the most effective MSCs trans-plantation route in a swine ALF model. METHODS: The swine ALF model induced by intravenous injection of D-Gal was treated by the transplantation of swine MSCs through four routes including intraportal injection (InP group), hepatic intra-arterial injection (AH group), pe-ripheral intravenous injection (PV group) and intrahepatic injection (IH group). The living conditions and survival time were recorded. Blood samples before and after MSCs trans-plantation were collected for the analysis of hepatic function. The histology of liver injury was interpreted and scored in terminal samples. Hepatic apoptosis was detected by TUNEL assay. Apoptosis and proliferation related protein expressions including cleaved caspase-3, survivin, AKT, phospho-AKT (Ser473), ERK and phospho-ERK (Tyr204) were analyzed by Western blotting. RESULTS: The average survival time of each group was 10.7 ± 1.6 days (InP), 6.0±0.9 days (AH), 4.7±1.4 days (PV), 4.3± 0.8 days (IH), respectively, when compared with the average survival time of 3.8±0.8 days in the D-Gal group. The sur-vival rates between the InP group and D-Gal group revealed a statistically signiifcant difference (P CONCLUSIONS: Intraportal injection was superior to other pathways for MSC transplantation. Intraportal MSC trans-plantation could improve liver function, inhibit apoptosis and prolong the survival time of swine with ALF. The transplanted MSCs may participate in liver regeneration via promoting cell proliferation and suppressing apoptosis during the initial stage of ALF.

  1. Tracking of Mesenchymal Stem Cells with Fluorescence Endomicroscopy Imaging in Radiotherapy-Induced Lung Injury

    Science.gov (United States)

    Perez, Jessica R.; Ybarra, Norma; Chagnon, Frederic; Serban, Monica; Lee, Sangkyu; Seuntjens, Jan; Lesur, Olivier; El Naqa, Issam

    2017-01-01

    Mesenchymal stem cells (MSCs) have potential for reducing inflammation and promoting organ repair. However, limitations in available techniques to track them and assess this potential for lung repair have hindered their applicability. In this work, we proposed, implemented and evaluated the use of fluorescence endomicroscopy as a novel imaging tool to track MSCs in vivo. MSCs were fluorescently labeled and injected into a rat model of radiation-induced lung injury via endotracheal (ET) or intravascular (IV) administration. Our results show that MSCs were visible in the lungs with fluorescence endomicroscopy. Moreover, we developed an automatic cell counting algorithm to quantify the number of detected cells in each condition. We observed a significantly higher number of detected cells in ET injection compared to IV and a slight increase in the mean number of detected cells in irradiated lungs compared to control, although the latter did not reach statistical significance. Fluorescence endomicroscopy imaging is a powerful new minimally invasive and translatable tool that can be used to track and quantify MSCs in the lungs and help assess their potential in organ repair. PMID:28102237

  2. Tracking of Mesenchymal Stem Cells with Fluorescence Endomicroscopy Imaging in Radiotherapy-Induced Lung Injury

    Science.gov (United States)

    Perez, Jessica R.; Ybarra, Norma; Chagnon, Frederic; Serban, Monica; Lee, Sangkyu; Seuntjens, Jan; Lesur, Olivier; El Naqa, Issam

    2017-01-01

    Mesenchymal stem cells (MSCs) have potential for reducing inflammation and promoting organ repair. However, limitations in available techniques to track them and assess this potential for lung repair have hindered their applicability. In this work, we proposed, implemented and evaluated the use of fluorescence endomicroscopy as a novel imaging tool to track MSCs in vivo. MSCs were fluorescently labeled and injected into a rat model of radiation-induced lung injury via endotracheal (ET) or intravascular (IV) administration. Our results show that MSCs were visible in the lungs with fluorescence endomicroscopy. Moreover, we developed an automatic cell counting algorithm to quantify the number of detected cells in each condition. We observed a significantly higher number of detected cells in ET injection compared to IV and a slight increase in the mean number of detected cells in irradiated lungs compared to control, although the latter did not reach statistical significance. Fluorescence endomicroscopy imaging is a powerful new minimally invasive and translatable tool that can be used to track and quantify MSCs in the lungs and help assess their potential in organ repair.

  3. Caspase inhibitors promote vestibular hair cell survival and function after aminoglycoside treatment in vivo

    Science.gov (United States)

    Matsui, Jonathan I.; Haque, Asim; Huss, David; Messana, Elizabeth P.; Alosi, Julie A.; Roberson, David W.; Cotanche, Douglas A.; Dickman, J. David; Warchol, Mark E.

    2003-01-01

    The sensory hair cells of the inner ear undergo apoptosis after acoustic trauma or aminoglycoside antibiotic treatment, causing permanent auditory and vestibular deficits in humans. Previous studies have demonstrated a role for caspase activation in hair cell death and ototoxic injury that can be reduced by concurrent treatment with caspase inhibitors in vitro. In this study, we examined the protective effects of caspase inhibition on hair cell death in vivo after systemic injections of aminoglycosides. In one series of experiments, chickens were implanted with osmotic pumps that administrated the pan-caspase inhibitor z-Val-Ala-Asp(Ome)-fluoromethylketone (zVAD) into inner ear fluids. One day after the surgery, the animals received a 5 d course of treatment with streptomycin, a vestibulotoxic aminoglycoside. Direct infusion of zVAD into the vestibule significantly increased hair cell survival after streptomycin treatment. A second series of experiments determined whether rescued hair cells could function as sensory receptors. Animals treated with streptomycin displayed vestibular system impairment as measured by a greatly reduced vestibulo-ocular response (VOR). In contrast, animals that received concurrent systemic administration of zVAD with streptomycin had both significantly greater hair cell survival and significantly increased VOR responses, as compared with animals treated with streptomycin alone. These findings suggest that inhibiting the activation of caspases promotes the survival of hair cells and protects against vestibular function deficits after aminoglycoside treatment.

  4. Protective Effect of Electroacupuncture on Neural Myelin Sheaths is Mediated via Promotion of Oligodendrocyte Proliferation and Inhibition of Oligodendrocyte Death After Compressed Spinal Cord Injury.

    Science.gov (United States)

    Huang, Siqin; Tang, Chenglin; Sun, Shanquan; Cao, Wenfu; Qi, Wei; Xu, Jin; Huang, Juan; Lu, Weitian; Liu, Qian; Gong, Biao; Zhang, Yi; Jiang, Jin

    2015-12-01

    Electroacupuncture (EA) has been used worldwide to treat demyelinating diseases, but its therapeutic mechanism is poorly understood. In this study, a custom-designed model of compressed spinal cord injury (CSCI) was used to induce demyelination. Zusanli (ST36) and Taixi (KI3) acupoints of adult rats were stimulated by EA to demonstrate its protective effect. At 14 days after EA, both locomotor skills and ultrastructural features of myelin sheath were significantly improved. Phenotypes of proliferating cells were identified by double immunolabeling of 5-ethynyl-2'-deoxyuridine with antibodies to cell markers: NG2 [oligodendrocyte precursor cell (OPC) marker], 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) (oligodendrocyte marker), and glial fibrillary acidic protein (GFAP) (astrocyte marker). EA enhanced the proliferation of OPCs and CNPase, as well as the differentiation of OPCs by promoting Olig2 (the basic helix-loop-helix protein) and attenuating Id2 (the inhibitor of DNA binding 2). EA could also improve myelin basic protein (MBP) and protect existing oligodendrocytes from apoptosis by inhibiting caspase-12 (a representative of endoplasmic reticulum stress) and cytochrome c (an apoptotic factor and hallmark of mitochondria). Therefore, our results indicate that the protective effect of EA on neural myelin sheaths is mediated via promotion of oligodendrocyte proliferation and inhibition of oligodendrocyte death after CSCI.

  5. Stem cell therapy for central nerve system injuries:glial cells hold the key

    Institute of Scientific and Technical Information of China (English)

    Li Xiao; Chikako Saiki; Ryoji Ide

    2014-01-01

    Mammalian adult central nerve system (CNS) injuries are devastating because of the intrinsic dififculties for effective neuronal regeneration. The greatest problem to be overcome for CNS recovery is the poor regeneration of neurons and myelin-forming cells, oligodendrocytes. En-dogenous neural progenitors and transplanted exogenous neuronal stem cells can be the source for neuronal regeneration. However, because of the harsh local microenvironment, they usually have very low efifcacy for functional neural regeneration which cannot compensate for the loss of neurons and oligodendrocytes. Glial cells (including astrocytes, microglia, oligodendrocytes and NG2 glia) are the majority of cells in CNS that provide support and protection for neurons. Inside the local microenvironment, glial cells largely inlfuence local and transplanted neural stem cells survival and fates. This review critically analyzes current ifnding of the roles of glial cells in CNS regeneration, and highlights strategies for regulating glial cells’ behavior to create a permis-sive microenvironment for neuronal stem cells.

  6. Endothelial cell promotion of early liver and pancreas development.

    Science.gov (United States)

    Freedman, Deborah A; Kashima, Yasushige; Zaret, Kenneth S

    2007-01-01

    Different steps of embryonic pancreas and liver development require inductive signals from endothelial cells. During liver development, interactions between newly specified hepatic endoderm cells and nascent endothelial cells are crucial for the endoderm's subsequent growth and morphogenesis into a liver bud. Reconstitution of endothelial cell stimulation of hepatic cell growth with embryonic tissue explants demonstrated that endothelial signalling occurs independent of the blood supply. During pancreas development, midgut endoderm interactions with aortic endothelial cells induce Ptf1a, a crucial pancreatic determinant. Endothelial cells also have a later effect on pancreas development, by promoting survival of the dorsal mesenchyme, which in turn produces factors supporting pancreatic endoderm. A major goal of our laboratory is to determine the endothelial-derived molecules involved in these inductive events. Our data show that cultured endothelial cells induce Ptf1a in dorsal endoderm explants lacking an endogenous vasculature. We are purifying endothelial cell line product(s) responsible for this effect. We are also identifying endothelial-responsive regulatory elements in genes such as Ptf1a by genetic mapping and chromatin-based assays. These latter approaches will allow us to track endothelial-responsive signal pathways from DNA targets within progenitor cells. The diversity of organogenic steps dependent upon endothelial cell signalling suggests that cross-regulation of tissue development with its vasculature is a general phenomenon.

  7. Renal Impairment with Sublethal Tubular Cell Injury in a Chronic Liver Disease Mouse Model.

    Science.gov (United States)

    Ishida, Tokiko; Kotani, Hirokazu; Miyao, Masashi; Kawai, Chihiro; Jemail, Leila; Abiru, Hitoshi; Tamaki, Keiji

    2016-01-01

    The pathogenesis of renal impairment in chronic liver diseases (CLDs) has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy), autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet-fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the pathophysiological mechanisms of

  8. Renal Impairment with Sublethal Tubular Cell Injury in a Chronic Liver Disease Mouse Model.

    Directory of Open Access Journals (Sweden)

    Tokiko Ishida

    Full Text Available The pathogenesis of renal impairment in chronic liver diseases (CLDs has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy, autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet-fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the

  9. Temporal response of endogenous neural progenitor cells following injury to the adult rat spinal cord

    Directory of Open Access Journals (Sweden)

    Yilin eMao

    2016-03-01

    Full Text Available A pool of endogenous neural progenitor cells found in the ependymal layer and the sub-ependymal area of the spinal cord are reported to upregulate nestin in response to traumatic spinal cord injury. These cells could potentially be manipulated within a critical time period offering one innovative approach to the repair of spinal cord injury. However, little is known about the temporal response of endogenous neural progenitor cells following spinal cord injury. This study used a mild contusion injury in rat spinal cord and immunohistochemistry to determine the temporal response of ependymal neural progenitor cells following injury and their correlation to astrocyte activation at the lesion site. The results from the study demonstrated that Nestin staining intensity at the central canal peaked at 24 hours post-injury and then gradually declined over time. Reactive astrocytes double labelled by Nestin and GFAP were found at the lesion edge and commenced to form the glial scar from 1 week after injury. We conclude that the critical time period for manipulating endogenous neural progenitor cells following a spinal cord injury in rats is between 24 hrs when nestin expression in ependymal cells is increased and 1 week when astrocytes are activated in large numbers.

  10. Activated microglia induce bone marrow mesenchymal stem cells to produce glial cell-derived neurotrophic factor and protect neurons against oxygen-glucose deprivation injury

    Directory of Open Access Journals (Sweden)

    Bingke Lv

    2016-12-01

    Full Text Available In this study, we investigated interactions among microglia (MG, bone marrow mesenchymal stem cells (BMSCs and neurons in cerebral ischemia and the potential mechanisms using an in vitro oxygen-glucose deprivation (OGD model. Rat BMSCs were incubated with conditioned medium (CM from in vitro cultures of OGD-activated rat MG and murine BV2 MG cells. Effects of glial cell-derived neurotrophic factor (GDNF on rat neuron viability, apoptosis, lactate dehydrogenase (LDH leakage and mitochondrial membrane potential (MMP were analyzed in this model. OGD-activated MG promoted GDNF production by BMSCs (P < 0.01. TNFα, but not IL6 or IL1β, promoted GDNF production by BMSCs (P < 0.001. GDNF or CM pre-treated BMSCs elevated neuronal viability and suppressed apoptosis (P < 0.05 or P < 0.01; these effects were inhibited by the RET antibody. GDNF activated MEK/ERK and PI3K/AKT signaling but not JNK/c-JUN. Furthermore, GDNF upregulated B cell lymphoma 2 (BCL2 and heat shock 60 kDa protein 1 (HSP60 levels, suppressed LDH leakage, and promoted MMP. Thus, activated MG produce TNFα to stimulate GDNF production by BMSCs, which prevents and repairs OGD-induced neuronal injury, possibly via regulating MEK/ERK and PI3K/AKT signaling. These findings will facilitate the prevention and treatment of neuronal injury by cerebral ischemia.

  11. Human mesenchymal cells from adipose tissue deposit laminin and promote regeneration of injured spinal cord in rats.

    Science.gov (United States)

    Menezes, Karla; Nascimento, Marcos Assis; Gonçalves, Juliana Pena; Cruz, Aline Silva; Lopes, Daiana Vieira; Curzio, Bianca; Bonamino, Martin; de Menezes, João Ricardo Lacerda; Borojevic, Radovan; Rossi, Maria Isabel Doria; Coelho-Sampaio, Tatiana

    2014-01-01

    Cell therapy is a promising strategy to pursue the unmet need for treatment of spinal cord injury (SCI). Although several studies have shown that adult mesenchymal cells contribute to improve the outcomes of SCI, a description of the pro-regenerative events triggered by these cells is still lacking. Here we investigated the regenerative properties of human adipose tissue derived stromal cells (hADSCs) in a rat model of spinal cord compression. Cells were delivered directly into the spinal parenchyma immediately after injury. Human ADSCs promoted functional recovery, tissue preservation, and axonal regeneration. Analysis of the cord tissue showed an abundant deposition of laminin of human origin at the lesion site and spinal midline; the appearance of cell clusters composed of neural precursors in the areas of laminin deposition, and the appearance of blood vessels with separated basement membranes along the spinal axis. These effects were also observed after injection of hADSCs into non-injured spinal cord. Considering that laminin is a well-known inducer of axonal growth, as well a component of the extracellular matrix associated to neural progenitors, we propose that it can be the paracrine factor mediating the pro-regenerative effects of hADSCs in spinal cord injury.

  12. Targeted and ultrasound-triggered cancer cell injury using perfluorocarbon emulsion-loaded liposomes endowed with cancer cell-targeting and fusogenic capabilities.

    Science.gov (United States)

    Ninomiya, Kazuaki; Yamashita, Takahiro; Tanabe, Yamato; Imai, Miki; Takahashi, Kenji; Shimizu, Nobuaki

    2016-01-01

    This study investigated the targeting and ultrasound-triggered injury of cancer cells using anticancer drug-free liposomes that contained an emulsion of perfluoropentane (ePFC5) and were co-modified with avidin as a targeting ligand for cancer cells and the hemagglutinating virus of Japan (HVJ) envelope to promote liposome fusion with the cells. These liposomes are designated as ePFC5-loaded avidin/HVJ liposomes. ePFC5-loaded liposomes were sensitized to ultrasound irradiation. Liposomes modified with avidin alone (avidin liposomes) showed binding to MCF-7 human breast cancer cells, and liposomes modified with HVJ envelope alone (HVJ liposomes) were found to fuse with MCF-7 cells. The irradiation of MCF-7 cells with 1 MHz ultrasound (30s, 1.2 W/cm(2), duty ratio 30%) combined with ePFC5-loaded avidin/HVJ liposomes resulted in a decrease in cell viability at 1h after irradiation to 43% of that of controls without ultrasound irradiation or liposomes. The cell viability was lower than that of cells treated with ultrasound irradiation with ePFC5-loaded avidin liposomes or ePFC5-loaded HVJ liposomes. This indicates that co-modification of liposome with avidin and HVJ envelope could enhance ultrasound-induced cell injury in the presence of ePFC5-loaded liposomes.

  13. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    Institute of Scientific and Technical Information of China (English)

    Feng Xue; Er-jun Wu; Pei-xun Zhang; Li-ya A; Yu-hui Kou; Xiao-feng Yin; Na Han

    2015-01-01

    We examined the restorative effect of modiifed biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantationin vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial ifbrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve ifbers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our ifndings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvi-ronment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.

  14. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  15. Environmental Enrichment Increases Progenitor Cell Survival in the Dentate Gyrus following Lateral Fluid Percussion Injury

    OpenAIRE

    2005-01-01

    Neurons in the hilus of the dentate gyrus are lost following a lateral fluid percussion injury. Environmental enrichment is known to increase neurogenesis in the dentate in intact rats, suggesting that it might also do so following fluid percussion injury, and potentially provide replacements for lost neurons. We report that 1 hour of daily environmental enrichment for 3 weeks increased the number of progenitor cells in the dentate following fluid percussion injury, but only on the ipsilesion...

  16. Human umbilical cord blood-derived mesenchymal stem cells promote regeneration of crush-injured rat sciatic nerves

    Institute of Scientific and Technical Information of China (English)

    Mi-Ae Sung; Jong-Ho Lee; Hun Jong Jung; Jung-Woo Lee; Jin-Yong Lee; Kang-Mi Pang; Sang Bae Yoo; Mohammad S. Alrashdan; Soung-Min Kim; Jeong Won Jahng

    2012-01-01

    Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells in guiding peripheral nerve regeneration remain poorly understood. This study was designed to investigate the effects of human umbilical cord blood-derived mesenchymal stem cells on neural regeneration using a rat sciatic nerve crush injury model. Human umbilical cord blood-derived mesenchymal stem cells (1 × 106) or a PBS control were injected into the crush-injured segment of the sciatic nerve. Four weeks after cell injection, brain-derived neurotrophic factor and tyrosine kinase receptor B mRNA expression at the lesion site was increased in comparison to control. Furthermore, sciatic function index, Fluoro Gold-labeled neuron counts and axon density were also significantly increased when compared with control. Our results indicate that human umbilical cord blood-derived mesenchymal stem cells promote the functional recovery of crush-injured sciatic nerves.

  17. Antibody-mediated inhibition of Nogo-A signaling promotes neurite growth in PC-12 cells

    Directory of Open Access Journals (Sweden)

    Iman K Yazdi

    2016-01-01

    Full Text Available The use of a monoclonal antibody to block the neurite outgrowth inhibitor Nogo-A has been of great interest for promoting axonal recovery as a treatment for spinal cord injury. While several cellular and non-cellular assays have been developed to quantify the bioactive effects of Nogo-A signaling, demand still exists for the development of a reliable approach to characterize the effectiveness of the anti-Nogo-A antibody. In this study, we developed and validated a novel cell-based approach to facilitate the biological quantification of a Nogo-A antibody using PC-12 cells as an in vitro neuronal cell model. Changes in the mRNA levels of the neuronal differentiation markers, growth-associated protein 43 and neurofilament light-polypeptide, suggest that activation of the Nogo-A pathway suppresses axonal growth and dendrite formation in the tested cell line. We found that application of anti-Nogo-A monoclonal antibody can significantly enhance the neuronal maturity of PC-12 cells by blocking the Nogo-A inhibitory effects, providing enhanced effects on neural maturity at the molecular level. No adverse effects were observed on cell viability.

  18. Dendritic development of hippocampal CA1 pyramidal cells in a neonatal hypoxia-ischemia injury model.

    Science.gov (United States)

    Zhao, Yan Dong; Ou, Shan; Cheng, Sai Yu; Xiao, Zhi; He, Wen Juan; Zhang, Jin Hai; Ruan, Huai Zhen

    2013-09-01

    It is believed that neonatal hypoxia-ischemia (HI) brain injury causes neuron loss and brain functional defects. However, the effect of HI brain injury on dendritic development of the remaining pyramidal cells of the hippocampus and the reaction of contralateral hippocampal neurons require further studies. The Morris water maze and Golgi-Cox staining were used to evaluate the learning and memory and dendritic morphology of pyramidal cells. The results of Golgi-Cox staining showed CA1 pyramidal neurons of HI injury models with fewer bifurcations and shorter dendrite length than the naive control group. The density of dendritic spines of hippocampal CA1 pyramidal neurons was significantly lower in the HI brain injury group than in controls. With respect to hippocampal function, the HI brain injury group presented cognitive deficits in the reference memory task and probe trail. In the HI group, the pyramidal cells of left hippocampus that did not experienced ischemia but did experience hypoxia had more complex dendrites and higher density of spine than the HI injury side and control. The functional implementation of injured hippocampus might depend mainly on the hypertrophy of contralateral hippocampus after HI brain injury. Corticosterone can partially prevent the hippocampal pyramidal cells from HI injury and reduce the difference of the bilateral hippocampus pyramidal cells, but there was no improvement in learning and memory.

  19. Trefoil peptides promote restitution of wounded corneal epithelial cells.

    Science.gov (United States)

    Göke, M N; Cook, J R; Kunert, K S; Fini, M E; Gipson, I K; Podolsky, D K

    2001-04-01

    The ocular surface shares many characteristics with mucosal surfaces. In both, healing is regulated by peptide growth factors, cytokines, and extracellular matrix proteins. However, these factors are not sufficient to ensure most rapid healing. Trefoil peptides are abundantly expressed epithelial cell products which exert protective effects and are key regulators of gastrointestinal epithelial restitution, the critical early phase of cell migration after mucosal injury. To assess the role of trefoil peptides in corneal epithelial wound healing, the effects of intestinal trefoil factor (ITF/TFF3) and spasmolytic polypeptide (SP/TFF2) on migration and proliferation of corneal epithelial cells were analyzed. Both ITF and SP enhanced restitution of primary rabbit corneal epithelial cells in vitro. While the restitution-enhancing effects of TGF-alpha and TGF-beta were both inhibited by neutralizing anti-TGF-beta-antibodies, trefoil peptide stimulation of restitution was not. Neither trefoil peptide significantly affected proliferation of primary corneal epithelial cells. ITF but not SP or pS2 mRNA was present in rabbit corneal and conjunctival tissues. In summary, the data indicate an unanticipated role of trefoil peptides in healing of ocular surface and demand rating their functional actions beyond the gastrointestinal tract.

  20. Polysaccharide hydrogel combined with mesenchymal stem cells promotes the healing of corneal alkali burn in rats.

    Directory of Open Access Journals (Sweden)

    Yifeng Ke

    Full Text Available Corneal chemical burns are common ophthalmic injuries that may result in permanent visual impairment. Although significant advances have been achieved on the treatment of such cases, the structural and functional restoration of a chemical burn-injured cornea remains challenging. The applications of polysaccharide hydrogel and subconjunctival injection of mesenchymal stem cells (MSCs have been reported to promote the healing of corneal wounds. In this study, polysaccharide was extracted from Hardy Orchid and mesenchymal stem cells (MSCs were derived from Sprague-Dawley rats. Supplementation of the polysaccharide significantly enhanced the migration rate of primarily cultured rat corneal epithelial cells. We examined the therapeutic effects of polysaccharide in conjunction with MSCs application on the healing of corneal alkali burns in rats. Compared with either treatment alone, the combination strategy resulted in significantly better recovery of corneal epithelium and reduction in inflammation, neovascularization and opacity of healed cornea. Polysaccharide and MSCs acted additively to increase the expression of anti-inflammatory cytokine (TGF-β, antiangiogenic cytokine (TSP-1 and decrease those promoting inflammation (TNF-α, chemotaxis (MIP-1α and MCP-1 and angiogenesis (VEGF and MMP-2. This study provided evidence that Hardy Orchid derived polysaccharide and MSCs are safe and effective treatments for corneal alkali burns and that their benefits are additive when used in combination. We concluded that combination therapy with polysaccharide and MSCs is a promising clinical treatment for corneal alkali burns and may be applicable for other types of corneal disorder.

  1. Hyperexpressed Netrin-1 Promoted Neural Stem Cells Migration in Mice after Focal Cerebral Ischemia

    Science.gov (United States)

    Lu, Haiyan; Song, Xiaoyan; Wang, Feng; Wang, Guodong; Wu, Yuncheng; Wang, Qiaoshu; Wang, Yongting; Yang, Guo-Yuan; Zhang, Zhijun

    2016-01-01

    Endogenous Netrin-1 (NT-1) protein was significantly increased after cerebral ischemia, which may participate in the repair after transient cerebral ischemic injury. In this work, we explored whether NT-1 can be steadily overexpressed by adeno-associated virus (AAV) and the exogenous NT-1 can promote neural stem cells migration from the subventricular zone (SVZ) region after cerebral ischemia. Adult CD-1 mice were injected stereotacticly with AAV carrying NT-1 gene (AAV-NT-1). Mice underwent 60 min of middle cerebral artery (MCA) occlusion 1 week after injection. We found that NT-1 mainly expressed in neuron and astrocyte, and the expression level of NT-1 significantly increased 1 week after AAV-NT-1 gene transfer and lasted for 28 days, even after transient middle cerebral artery occlusion (tMCAO) as well (p < 0.05). Immunohistochemistry results showed that the number of neural stem cells was greatly increased in the SVZ region of AAV-NT-1-transduced mice compared with control mice. Our study showed that overexpressed NT-1 promoted neural stem cells migration from SVZ. This result suggested that NT-1 is a promising factor for repairing and remodeling after focal cerebral ischemia.

  2. EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells.

    Science.gov (United States)

    Li, Jianhua; Lu, Erick; Yi, Tangsheng; Cyster, Jason G

    2016-05-05

    T follicular helper (Tfh) cells are a subset of T cells carrying the CD4 antigen; they are important in supporting plasma cell and germinal centre responses. The initial induction of Tfh cell properties occurs within the first few days after activation by antigen recognition on dendritic cells, although how dendritic cells promote this cell-fate decision is not fully understood. Moreover, although Tfh cells are uniquely defined by expression of the follicle-homing receptor CXCR5 (refs 1, 2), the guidance receptor promoting the earlier localization of activated T cells at the interface of the B-cell follicle and T zone has been unclear. Here we show that the G-protein-coupled receptor EBI2 (GPR183) and its ligand 7α,25-dihydroxycholesterol mediate positioning of activated CD4 T cells at the interface of the follicle and T zone. In this location they interact with activated dendritic cells and are exposed to Tfh-cell-promoting inducible co-stimulator (ICOS) ligand. Interleukin-2 (IL-2) is a cytokine that has multiple influences on T-cell fate, including negative regulation of Tfh cell differentiation. We demonstrate that activated dendritic cells in the outer T zone further augment Tfh cell differentiation by producing membrane and soluble forms of CD25, the IL-2 receptor α-chain, and quenching T-cell-derived IL-2. Mice lacking EBI2 in T cells or CD25 in dendritic cells have reduced Tfh cells and mount defective T-cell-dependent plasma cell and germinal centre responses. These findings demonstrate that distinct niches within the lymphoid organ T zone support distinct cell fate decisions, and they establish a function for dendritic-cell-derived CD25 in controlling IL-2 availability and T-cell differentiation.

  3. Probiotics promote endocytic allergen degradation in gut epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chun-Hua [Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou (China); Liu, Zhi-Qiang [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Huang, Shelly [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Zheng, Peng-Yuan, E-mail: medp7123@126.com [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Yang, Ping-Chang, E-mail: yangp@mcmaster.ca [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  4. Promotion of noise-induced cochlear injury by toluene and ethylbenzene in the rat.

    Science.gov (United States)

    Fechter, Laurence D; Gearhart, Caroline; Fulton, Sherry; Campbell, Jerry; Fisher, Jeffrey; Na, Kwangsam; Cocker, David; Nelson-Miller, Alisa; Moon, Patrick; Pouyatos, Benoit

    2007-08-01

    Ethylbenzene + toluene are known individually to have ototoxic potential at high exposure levels and with prolonged exposure times generally of 4-16 weeks. Both ethylbenzene + toluene are minor constituents of JP-8 jet fuel; this fuel has recently been determined to promote susceptibility to noise-induced hearing loss. Therefore, the current study evaluates the ototoxic potential of combined exposure to ethylbenzene + toluene exposure in a ratio calculated from the average found in three laboratories. Rats received ethylbenzene + toluene by inhalation and half of them were subjected simultaneously to an octave band of noise (OBN) of 93-95 dB. Another group received only the noise exposure which was designed to produce a small, but permanent auditory impairment while an unexposed control group was also included. In two separate experiments, exposures occurred either repeatedly on 5 successive days for 1 week or for 5 days on 2 successive weeks to 4000 mg/m(3) total hydrocarbons for 6 h based upon initial pilot studies. The concentration of toluene was 400 ppm and the concentration of ethylbenzene was 660 ppm. Impairments in auditory function were assessed using distortion product otoacoustic emissions and compound action potential testing. Following completion of these tests, the organs of Corti were dissected to permit evaluation of hair cell loss. The uptake and elimination of the solvents was assessed by harvesting key organs at two time points following ethylbenzene + toluene exposure from additional rats not used for auditory testing. Similarly, glutathione (GSH) levels were measured in light of suggestions that oxidative stress might result from solvent-noise exposures. Ethylbenzene + toluene exposure by itself at 4000 mg/m(3) for 6 h did not impair cochlear function or yield a loss of hair cells. However, when combined with a 93-dB OBN exposure combined solvent + noise did yield a loss in auditory function and a clear potentiation of outer hair cell death

  5. Mechanical Stress Promotes Cisplatin-Induced Hepatocellular Carcinoma Cell Death

    Directory of Open Access Journals (Sweden)

    Laila Ziko

    2015-01-01

    Full Text Available Cisplatin (CisPt is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2 cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death. Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death.

  6. Role of neural precursor cells in promoting repair following stroke

    Institute of Scientific and Technical Information of China (English)

    Pooya DIBAJNIA; Cindi M MORSHEAD

    2013-01-01

    Stem cell-based therapies for the treatment of stroke have received considerable attention.Two broad approaches to stem cell-based therapies have been taken:the transplantation of exogenous stem cells,and the activation of endogenous neural stem and progenitor cells (together termed neural precursors).Studies examining the transplantation of exogenous cells have demonstrated that neural stem and progenitor cells lead to the most clinically promising results.Endogenous activation of neural precursors has also been explored based on the fact that resident precursor cells have the inherent capacity to proliferate,migrate and differentiate into mature neurons in the uninjured adult brain.Studies have revealed that these neural precursor cell behaviours can be activated following stroke,whereby neural precursors will expand in number,migrate to the infarct site and differentiate into neurons.However,this innate response is insufficient to lead to functional recovery,making it necessary to enhance the activation of endogenous precursors to promote tissue repair and functional recovery.Herein we will discuss the current state of the stem cell-based approaches with a focus on endogenous repair to treat the stroke injured brain.

  7. Cationic Nanocylinders Promote Angiogenic Activities of Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Jung Bok Lee

    2016-01-01

    Full Text Available Polymers have been used extensively taking forms as scaffolds, patterned surface and nanoparticle for regenerative medicine applications. Angiogenesis is an essential process for successful tissue regeneration, and endothelial cell–cell interaction plays a pivotal role in regulating their tight junction formation, a hallmark of angiogenesis. Though continuous progress has been made, strategies to promote angiogenesis still rely on small molecule delivery or nuanced scaffold fabrication. As such, the recent paradigm shift from top-down to bottom-up approaches in tissue engineering necessitates development of polymer-based modular engineering tools to control angiogenesis. Here, we developed cationic nanocylinders (NCs as inducers of cell–cell interaction and investigated their effect on angiogenic activities of human umbilical vein endothelial cells (HUVECs in vitro. Electrospun poly (l-lactic acid (PLLA fibers were aminolyzed to generate positively charged NCs. The aninolyzation time was changed to produce two different aspect ratios of NCs. When HUVECs were treated with NCs, the electrostatic interaction of cationic NCs with negatively charged plasma membranes promoted migration, permeability and tubulogenesis of HUVECs compared to no treatment. This effect was more profound when the higher aspect ratio NC was used. The results indicate these NCs can be used as a new tool for the bottom-up approach to promote angiogenesis.

  8. Methylene blue promotes quiescence of rat neural progenitor cells.

    Science.gov (United States)

    Xie, Luokun; Choudhury, Gourav R; Wang, Jixian; Park, Yong; Liu, Ran; Yuan, Fang; Zhang, Chun-Li; Yorio, Thomas; Jin, Kunlin; Yang, Shao-Hua

    2014-01-01

    Neural stem cell-based treatment holds a new therapeutic opportunity for neurodegenerative disorders. Here, we investigated the effect of methylene blue on proliferation and differentiation of rat neural progenitor cells (NPCs) both in vitro and in vivo. We found that methylene blue inhibited proliferation and promoted quiescence of NPCs in vitro without affecting committed neuronal differentiation. Consistently, intracerebroventricular infusion of methylene blue significantly inhibited NPC proliferation at the subventricular zone (SVZ). Methylene blue inhibited mTOR signaling along with down-regulation of cyclins in NPCs in vitro and in vivo. In summary, our study indicates that methylene blue may delay NPC senescence through enhancing NPCs quiescence.

  9. Light-induced retinal injury enhanced neurotrophins secretion and neurotrophic effect of mesenchymal stem cells in vitro

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2013-04-01

    Full Text Available PURPOSE: To investigate neurotrophins expression and neurotrophic effect change in mesenchymal stem cells (MSCs under different types of stimulation. METHODS: Rats were exposed in 10,000 lux white light to develop light-induced retinal injury. Supernatants of homogenized retina (SHR, either from normal or light-injured retina, were used to stimulate MSCs. Quantitative real time for polymerase chain reaction (RT-PCR and enzyme-linked immunosorbent assay (ELISA were conducted for analysis the expression change in basic fibroblast growth factor (bFGF, brain-derived neurotrophic factor (BDNF and ciliary neurotrophic factor (CNTF in MSCs after stimulation. Conditioned medium from SHR-stimulated MSCs and control MSCs were collected for evaluation their effect on retinal explants. RESULTS: Supernatants of homogenized retina from light-injured rats significantly promoted neurotrophins secretion from MSCs (p<0.01. Conditioned medium from mesenchymal stem cells stimulated by light-injured SHR significantly reduced DNA fragmentation (p<0.01, up-regulated bcl-2 (p<0.01 and down-regulated bax (p<0.01 in retinal explants, displaying enhanced protective effect. CONCLUSIONS: Light-induced retinal injury is able to enhance neurotrophins secretion from mesenchymal stem cells and promote the neurotrophic effect of mesenchymal stem cells.

  10. Aldynoglia cells and modulation of RhoGTPase activity as useful tools for spinal cord injury repair

    Institute of Scientific and Technical Information of China (English)

    Ernesto Doncel-Prez; Manuel Nieto-Sampedro

    2016-01-01

    A combined approach in spinal cord injury (SCI) therapy is the modulation of the cellular and molecular processes involved in glial scarring. Aldaynoglial cells are neural cell precursors with a high capacity to differentiate into neurons, promote axonal growth, wrapping and myelination of resident neurons. These important characteristics of aldaynoglia can be combined with speciifc inhibition of the RhoGTPase ac-tivity in astroglia and microglia that cause reduction of glial proliferation, retraction of glial cell processes and myelin production by oligodendrocytes. Previously we used experimental central nervous system (CNS) injury models, like spinal cord contusion and striatal lacunar infarction and observed that adminis-tration of RhoGTPase glycolipid inhibitor or aldaynoglial cells, respectively, produced a signiifcant gain of functional recovery in treated animals. The combined therapy with neuro-regenerative properties strategy is highly desirable to treat SCI for functional potentiation of neurons and oligodendrocytes, resulting in better locomotor recovery. Here we suggest that treatment of spinal lesions with aldaynoglia from neu-rospheres plus local administration of a RhoGTPase inhibitor could have an additive effect and promote recovery from SCI.

  11. Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Linard Filli

    2015-01-01

    Full Text Available Axonal regeneration and fiber regrowth is limited in the adult central nervous system, but research over the last decades has revealed a high intrinsic capacity of brain and spinal cord circuits to adapt and reorganize after smaller injuries or denervation. Short-distance fiber growth and synaptic rewiring was found in cortex, brain stem and spinal cord and could be associated with restoration of sensorimotor functions that were impaired by the injury. Such processes of structural plasticity were initially observed in the corticospinal system following spinal cord injury or stroke, but recent studies showed an equally high potential for structural and functional reorganization in reticulospinal, rubrospinal or propriospinal projections. Here we review the lesion-induced plastic changes in the propriospinal pathways, and we argue that they represent a key mechanism triggering sensorimotor recovery upon incomplete spinal cord injury. The formation or strengthening of spinal detour pathways bypassing supraspinal commands around the lesion site to the denervated spinal cord were identified as prominent neural substrate inducing substantial motor recovery in different species from mice to primates. Indications for the existence of propriospinal bypasses were also found in humans after cortical stroke. It is mandatory for current research to dissect the biological mechanisms underlying spinal circuit remodeling and to investigate how these processes can be stimulated in an optimal way by therapeutic interventions (e.g., fiber-growth enhancing interventions, rehabilitation. This knowledge will clear the way for the development of novel strategies targeting the remarkable plastic potential of propriospinal circuits to maximize functional recovery after spinal cord injury.

  12. Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Linard Filli; Martin E Schwab

    2015-01-01

    Axonal regeneration and ifber regrowth is limited in the adult central nervous system, but re-search over the last decades has revealed a high intrinsic capacity of brain and spinal cord circuits to adapt and reorganize after smaller injuries or denervation. Short-distance ifber growth and synaptic rewiring was found in cortex, brain stem and spinal cord and could be associated with restoration of sensorimotor functions that were impaired by the injury. Such processes of struc-tural plasticity were initially observed in the corticospinal system following spinal cord injury or stroke, but recent studies showed an equally high potential for structural and functional reorganization in reticulospinal, rubrospinal or propriospinal projections. Here we review the lesion-induced plastic changes in the propriospinal pathways, and we argue that they represent a key mechanism triggering sensorimotor recovery upon incomplete spinal cord injury. The for-mation or strengthening of spinal detour pathways bypassing supraspinal commands around the lesion site to the denervated spinal cord were identiifed as prominent neural substrate inducing substantial motor recovery in different species from mice to primates. Indications for the exis-tence of propriospinal bypasses were also found in humans after cortical stroke. It is mandatory for current research to dissect the biological mechanisms underlying spinal circuit remodeling and to investigate how these processes can be stimulated in an optimal way by therapeutic inter-ventions (e.g., ifber-growth enhancing interventions, rehabilitation). This knowledge will clear the way for the development of novel strategies targeting the remarkable plastic potential of pro-priospinal circuits to maximize functional recovery after spinal cord injury.

  13. Age-specific functional epigenetic changes in p21 and p16 in injury-activated satellite cells.

    Science.gov (United States)

    Li, Ju; Han, Suhyoun; Cousin, Wendy; Conboy, Irina M

    2015-03-01

    The regenerative capacity of muscle dramatically decreases with age because old muscle stem cells fail to proliferate in response to tissue damage. Here, we uncover key age-specific differences underlying this proliferative decline: namely, the genetic loci of cyclin/cyclin-dependent kinase (CDK) inhibitors (CDKIs) p21 and p16 are more epigenetically silenced in young muscle stem cells, as compared to old, both in quiescent cells and those responding to tissue injury. Interestingly, phosphorylated ERK (pERK) induced in these cells by ectopic FGF2 is found in association with p21 and p16 promoters, and moreover, only in the old cells. Importantly, in the old satellite cells, FGF2/pERK silences p21 epigenetically and transcriptionally, which leads to reduced p21 protein levels and enhanced cell proliferation. In agreement with the epigenetic silencing of the loci, young muscle stem cells do not depend as much as old on ectopic FGF/pERK for their myogenic proliferation. In addition, other CDKIs, such asp15(INK4B) and p27(KIP1) , become elevated in satellite cells with age, confirming and explaining the profound regenerative defect of old muscle. This work enhances our understanding of tissue aging, promoting strategies for combating age-imposed tissue degeneration.

  14. Regulation of CCL5 expression in smooth muscle cells following arterial injury.

    Directory of Open Access Journals (Sweden)

    Huan Liu

    Full Text Available Chemokines play a crucial role in inflammation and in the pathophysiology of atherosclerosis by recruiting inflammatory immune cells to the endothelium. Chemokine CCL5 has been shown to be involved in atherosclerosis progression. However, little is known about how CCL5 is regulated in vascular smooth muscle cells. In this study we report that CCL5 mRNA expression was induced and peaked in aorta at day 7 and then declined after balloon artery injury, whereas IP-10 and MCP-1 mRNA expression were induced and peaked at day 3 and then rapidly declined.The expression of CCL5 receptors (CCR1, 3 & 5 were also rapidly induced and then declined except CCR5 which expression was still relatively high at day 14 after balloon injury. In rat smooth muscle cells (SMCs, similar as in aorta CCL5 mRNA expression was induced and kept increasing after LPS plus IFN-gamma stimulation, whereas IP-10 mRNA expression was rapidly induced and then declined. Our data further indicate that induction of CCL5 expression in SMCs was mediated by IRF-1 via binding to the IRF-1 response element in CCL5 promoter. Moreover, p38 MAPK was involved in suppression of CCL5 and IP-10 expression in SMCs through common upstream molecule MKK3. The downstream molecule MK2 was required for p38-mediated CCL5 but not IP-10 inhibition. Our findings indicate that CCL5 induction in aorta and SMCs is mediated by IRF-1 while activation of p38 MAPK signaling inhibits CCL5 and IP-10 expression. Methods targeting MK2 expression could be used to selectively regulate CCL5 but not IP-10 expression in SMCs.

  15. Bridging long gap peripheral nerve injury using skeletal muscle-derived multipotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Tetsuro Tamaki

    2014-01-01

    Long gap peripheral nerve injuries usually reulting in life-changing problems for patients. Skeletal muscle derived-multipotent stem cells (Sk-MSCs) can differentiate into Schwann and perineurial/endoneurial cells, vascular relating pericytes, and endothelial and smooth muscle cells in the damaged peripheral nerve niche. Application of the Sk-MSCs in the bridging conduit for repairing long nerve gap injury resulted favorable axonal regeneration, which showing supe-rior effects than gold standard therapy--healthy nerve autograft. This means that it does not need to sacriifce of healthy nerves or loss of related functions for repairing peripheral nerve injury.

  16. The adult pituitary shows stem/progenitor cell activation in response to injury and is capable of regeneration.

    Science.gov (United States)

    Fu, Qiuli; Gremeaux, Lies; Luque, Raul M; Liekens, Daisy; Chen, Jianghai; Buch, Thorsten; Waisman, Ari; Kineman, Rhonda; Vankelecom, Hugo

    2012-07-01

    The pituitary gland constitutes, together with the hypothalamus, the regulatory core of the endocrine system. Whether the gland is capable of cell regeneration after injury, in particular when suffered at adult age, is unknown. To investigate the adult pituitary's regenerative capacity and the response of its stem/progenitor cell compartment to damage, we constructed a transgenic mouse model to conditionally destroy pituitary cells. GHCre/iDTR mice express diphtheria toxin (DT) receptor after transcriptional activation by Cre recombinase, which is driven by the GH promoter. Treatment with DT for 3 d leads to gradual GH(+) (somatotrope) cell obliteration with a final ablation grade of 80-90% 1 wk later. The stem/progenitor cell-clustering side population promptly expands after injury, concordant with the immediate increase in Sox2(+) stem/progenitor cells. In addition, folliculo-stellate cells, previously designated as pituitary stem/progenitor cells and significantly overlapping with Sox2(+) cells, also increase in abundance. In situ examination reveals expansion of the Sox2(+) marginal-zone niche and appearance of remarkable Sox2(+) cells that contain GH. When mice are left after the DT-provoked lesion, GH(+) cells considerably regenerate during the following months. Double Sox2(+)/GH(+) cells are observed throughout the regenerative period, suggesting recovery of somatotropes from stem/progenitor cells, as further supported by 5-ethynyl-2'-deoxyuridine (EdU) pulse-chase lineage tracing. In conclusion, our study demonstrates that the adult pituitary gland holds regenerative competence and that tissue repair follows prompt activation and plausible involvement of the stem/progenitor cells.

  17. Interleukin-15 Promotes the Commitment of Cord Blood CD34+ Stem Cells into NK Cells

    Institute of Scientific and Technical Information of China (English)

    张建; 夏青; 孙汭; 田志刚

    2004-01-01

    To explore the effect of rhlL-15 on CB-CD34+ stem cells committing to NK cells, CD34+ stem cells were obtained from cord blood (CB) by magnetic-assisted cell sorting (MACS) method. CD3, CD16 and CD56 molecules expressed on cell surface were detected by flow cytometer. MTF method was used to test the cytotoxicity of NK cells. The results were that stem cell factor (SCF) alone has no effect on CD34+ stem cells. IL-15 stimulated CD34+ stem cells commit to NK cells, and SCF showed strong synergistic effect with IL-15. It was concluded that IL-15 and SCF played different roles during NK cell development, llr15 promoted CD34+ stem cells differentiate to NK cell precursor and SCF improved the effectsof IL-15 on NK cell differentiation.

  18. Plant recombinant erythropoietin attenuates inflammatory kidney cell injury.

    Science.gov (United States)

    Conley, Andrew J; Mohib, Kanishka; Jevnikar, Anthony M; Brandle, Jim E

    2009-02-01

    Human erythropoietin (EPO) is a pleiotropic cytokine with remarkable tissue-protective activities in addition to its well-established role in red blood cell production. Unfortunately, conventional mammalian cell cultures are unlikely to meet the anticipated market demands for recombinant EPO because of limited capacity and high production costs. Plant expression systems may address these limitations to enable practical, cost-effective delivery of EPO in tissue injury prevention therapeutics. In this study, we produced human EPO in tobacco and demonstrated that plant-derived EPO had tissue-protective activity. Our results indicated that targeting to the endoplasmic reticulum (ER) provided the highest accumulation levels of EPO, with a yield approaching 0.05% of total soluble protein in tobacco leaves. The codon optimization of the human EPO gene for plant expression had no clear advantage; furthermore, the human EPO signal peptide performed better than a tobacco signal peptide. In addition, we found that glycosylation was essential for the stability of plant recombinant EPO, whereas the presence of an elastin-like polypeptide fusion had a limited positive impact on the level of EPO accumulation. Confocal microscopy showed that apoplast and ER-targeted EPO were correctly localized, and N-glycan analysis demonstrated that complex plant glycans existed on apoplast-targeted EPO, but not on ER-targeted EPO. Importantly, plant-derived EPO had enhanced receptor-binding affinity and was able to protect kidney epithelial cells from cytokine-induced death in vitro. These findings demonstrate that tobacco plants may be an attractive alternative for the production of large amounts of biologically active EPO.

  19. HGF Gene Modification in Mesenchymal Stem Cells Reduces Radiation-Induced Intestinal Injury by Modulating Immunity.

    Directory of Open Access Journals (Sweden)

    Hua Wang

    Full Text Available Effective therapeutic strategies to address intestinal complications after radiation exposure are currently lacking. Mesenchymal stem cells (MSCs, which display the ability to repair the injured intestine, have been considered as delivery vehicles for repair genes. In this study, we evaluated the therapeutic effect of hepatocyte growth factor (HGF-gene-modified MSCs on radiation-induced intestinal injury (RIII.Female 6- to 8-week-old mice were radiated locally at the abdomen with a single 13-Gy dose of radiation and then treated with saline control, Ad-HGF or Ad-Null-modified MSCs therapy. The transient engraftment of human MSCs was detected via real-time PCR and immunostaining. The therapeutic effects of non- and HGF-modified MSCs were evaluated via FACS to determine the lymphocyte immunophenotypes; via ELISA to measure cytokine expression; via immunostaining to determine tight junction protein expression; via PCNA staining to examine intestinal epithelial cell proliferation; and via TUNEL staining to detect intestinal epithelial cell apoptosis.The histopathological recovery of the radiation-injured intestine was significantly enhanced following non- or HGF-modified MSCs treatment. Importantly, the radiation-induced immunophenotypic disorders of the mesenteric lymph nodes and Peyer's patches were attenuated in both MSCs-treated groups. Treatment with HGF-modified MSCs reduced the expression and secretion of inflammatory cytokines, including tumor necrosis factor alpha (TNF-α and interferon-gamma (IFN-γ, increased the expression of the anti-inflammatory cytokine IL-10 and the tight junction protein ZO-1, and promoted the proliferation and reduced the apoptosis of intestinal epithelial cells.Treatment of RIII with HGF-gene-modified MSCs reduces local inflammation and promotes the recovery of small intestinal histopathology in a mouse model. These findings might provide an effective therapeutic strategy for RIII.

  20. Surgical sutures filled with adipose-derived stem cells promote wound healing.

    Directory of Open Access Journals (Sweden)

    Ann Katharin Reckhenrich

    Full Text Available Delayed wound healing and scar formation are among the most frequent complications after surgical interventions. Although biodegradable surgical sutures present an excellent drug delivery opportunity, their primary function is tissue fixation. Mesenchymal stem cells (MSC act as trophic mediators and are successful in activating biomaterials. Here biodegradable sutures were filled with adipose-derived mesenchymal stem cells (ASC to provide a pro-regenerative environment at the injured site. Results showed that after filling, ASCs attach to the suture material, distribute equally throughout the filaments, and remain viable in the suture. Among a broad panel of cytokines, cell-filled sutures constantly release vascular endothelial growth factor to supernatants. Such conditioned media was evaluated in an in vitro wound healing assay and showed a significant decrease in the open wound area compared to controls. After suturing in an ex vivo wound model, cells remained in the suture and maintained their metabolic activity. Furthermore, cell-filled sutures can be cryopreserved without losing their viability. This study presents an innovative approach to equip surgical sutures with pro-regenerative features and allows the treatment and fixation of wounds in one step, therefore representing a promising tool to promote wound healing after injury.

  1. Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lei; Liu, Yi; Zhao, Hua; Zhang, Wen; Guo, Ying-Jun; Nie, Lin, E-mail: chengleiyx@126.com

    2013-10-18

    Highlights: •CDNF was successfully transfected by a lentiviral vector into the distal sciatic nerve. •CDNF improved S-100, NF200 expression and nerve regeneration after sciatic injury. •CDNF improved the remyelination and thickness of the regenerated sciatic nerve. •CDNF improved gastrocnemius muscle weight and sciatic functional recovery. -- Abstract: Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a

  2. Nifedipine promotes the proliferation and migration of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Dong-Qing Guo

    Full Text Available Nifedipine is widely used as a calcium channel blocker (CCB to treat angina and hypertension,but it is controversial with respect the risk of stimulation of cancers. In this study, we demonstrated that nifedipine promoted the proliferation and migration of breast cancer cells both invivo and invitro. However, verapamil, another calcium channel blocker, didn't exert the similar effects. Nifedipine and high concentration KCl failed to alter the [Ca2+]i in MDA-MB-231 cells, suggesting that such nifedipine effect was not related with calcium channel. Moreover, nifedipine decreased miRNA-524-5p, resulting in the up-regulation of brain protein I3 (BRI3. Erk pathway was consequently activated and led to the proliferation and migration of breast cancer cells. Silencing BRI3 reversed the promoting effect of nifedipine on the breast cancer. In a summary, nifedipine stimulated the proliferation and migration of breast cancer cells via the axis of miRNA-524-5p-BRI3-Erk pathway independently of its calcium channel-blocking activity. Our findings highlight that nifedipine but not verapamil is conducive for breast cancer growth and metastasis, urging that the caution should be taken in clinic to prescribe nifedipine to women who suffering both hypertension and breast cancer, and hypertension with a tendency in breast cancers.

  3. Ginsenoside Rg1 promotes endothelial progenitor cell migration and proliferation

    Institute of Scientific and Technical Information of China (English)

    Ai-wu SHI; Xiao-bin WANG; Feng-xiang LU; Min-min ZHU; Xiang-qing KONG; Ke-jiang CAO

    2009-01-01

    Aim: To investigate the effect of ginsenoside Rgl on the migration, adhesion, proliferation, and VEGF expression of endothe-lial progenitor cells (EPCs).Methods: EPCs were isolated from human peripheral blood and incubated with different concentrations of ginsenoside Rgl (0.1, 0.5, 1.0, and 5.0 μmol/L) and vehicle controls. EPC migration was detected with a modified Boyden chamber assay. EPC adhesion was determined by counting adherent cells on fibronectin-coated culture dishes. EPC proliferation was analyzed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In vitro vasculogenesis was assayed using an in vitro vasculogenesis detection kit. A VEGF-ELISA kit was used to measure the amount of VEGF protein in the cell culture medium.Results: Ginsenoside Rgl promoted EPC adhesionp proliferation, migration and in vitro vasculogenesis in a dose- and time-dependent manner. Cell cycle analysis showed that 5.0 μmol/L of ginsenoside Rgl significantly increased the EPC prolifera-tive phase (S phase) and decreased the resting phase (G0/G1 phase). Ginsenoside Rgl increased vascular endothelial growth factor production.Conclusion: The results indicate that ginsenoside Rgl promotes proliferation, migration, adhesion and in vitro vasculogen-esis.

  4. 25-Hydroxycholesterol promotes migration and invasion of lung adenocarcinoma cells.

    Science.gov (United States)

    Chen, Li; Zhang, Lishan; Xian, Guozhe; Lv, Yinping; Lin, Yanliang; Wang, Yibing

    2017-03-18

    25-hydroxycholesterol (25-HC) is enzymatically produced by cholesterol 25-hydorxylase in various organs and is involved in many processes, including lipid metabolism, inflammation and the immune response. However, the role of 25-HC in the migration and invasion of lung adenocarcinoma (ADC) cells remains largely unknown. In this study, we demonstrated that 0.1 μM 25-HC promoted ADC cell migration and invasion without affecting cell proliferation, especially after coculture with THP1-derived macrophages. Further investigation showed that 0.1 μM 25-HC significantly stimulated interleukin-1β (IL-1β) secretion in a coculture system and increased the expression of LXR and Snail. IL-1β also mimicked the effect of 25-HC. LXR knockdown notably blocked the 25-HC-induced Snail expression, migration and invasion in both the monoculture system and the coculture system, but it did not impact the effect of IL-1β, which suggested that IL-1β functioned in an LXR-independent manner. These results suggested that 25-HC promoted ADC cell migration and invasion in an LXR-dependent manner in the monoculture system but that in the coculture system, the 25-HC-induced IL-1β secretion enhanced the effect of 25-HC in an LXR-independent manner.

  5. Mesenchymal stem cell seeding promotes reendothelialization of the endovascular stent.

    Science.gov (United States)

    Wu, Xue; Wang, Guixue; Tang, Chaojun; Zhang, Dechuan; Li, Zhenggong; Du, Dingyuan; Zhang, Zhengcai

    2011-09-01

    This study is designed to make a novel cell seeding stent and to evaluate reendothelialization and anti-restenosis after the stent implantation. In comparison with cell seeding stents utilized in previous studies, Mesenchymal stem cells (MSCs) have advantages on promoting of issue repair. Thus it was employed to improve the reendothelialization effects of endovascular stent in present work. MSCs were isolated by density gradient centrifugation and determined as CD29(+) CD44(+) CD34(-) cells by immunofluorescence and immunocytochemistry; gluten and polylysine coated stents were prepared by ultrasonic atomization spray, and MSCs seeded stents were made through rotation culture according to the optimized conditions that were determined in previous studies. The results from animal experiments, in which male New Zealand white rabbits were used, show that the reendothelialization of MSCs coated stents can be completed within one month; in comparison with 316L stainless steel stents (316L SS stents) and gluten and polylysine coated stents, the intimal hyperplasia and in-stent restenosis are significantly inhibited by MSCs coated stents. Endovascular stent seeded with MSCs promotes reendothelialization and inhibits the intimal hyperplasia and in-stent restenosis compared with the 316L SS stents and the gluten and polylysine coated stents.

  6. Effects of Co-grafts Mesenchymal Stem Cells and Nerve Growth Factor Suspension in the Repair of Spinal Cord Injury

    Institute of Scientific and Technical Information of China (English)

    FANG Huang; WANG Junfang; CHEN Anmin

    2006-01-01

    To investigate effect of the transplantation of mesenchymal stem cells (MSCs) in combination with nerve growth factor (NGF) on the repair of spinal cord injury (SCI) in adult rats, spinal cord of adult rats (n= 32) was injured by using the modified Allen' s method. One week after the injury, the injured cords were injected with Dubecco-modified Eagles medium (DMEM , Group Ⅰ), MSCs (Group Ⅱ), NGF (Group Ⅲ), and MSCs plus NGF (Group Ⅳ). One month and two months after the injury, rats were sacrificed and their injured cord tissues were sectioned for the identification of the transplanted cells. The axonal regeneration and the differentiation of MSCs were examined by immunocytochemical staining. At the same time, rats were subjected to behavioral tests by using the open-field BBB scoring system. Immunocytochemical staining showed that axonal regeneration and the transplanted cells partially expressed neuron-specific nuclear protein (NeuN) and glial fibrillary acidic protein (GFAP). At the same time, significant improvement in BBB locomotor rating scale (P<0.05) were observed in the treatment group. More importantly, further functional improvement were noted in the combined treatment group. MSCs could differentiate into neurons and astrocytes. MSCs and NGF can promote axonal regeneration and improve functional recovery. There might exist a synergistic effect between MSCs and NGF.

  7. Changes in circulating inflammatory cells and the relationship to secondary brain injury in patients with craniocerebral injury

    Institute of Scientific and Technical Information of China (English)

    Xiaoping Tang; Renguo Luo; Tao Zhang; Yuanchuan Wang; Hua Peng; Ling Feng; Jian Qi; Wenguo Tang; Zhangyang Gou; Dingyong Yu

    2008-01-01

    BACKGROUND: Recent studies have indicated that reactive encephalitis plays an important role in secondary tissue damage after craniocerebral injury.OBJECTIVE: To observe changes in white blood cells (WBC) and polymorphonuclear neutrophils (PMN)in peripheral blood, and to determine their role in secondary brain insult in patients with craniocerebral injury.DESIGN, TIME AND SETTING: A case-control study at the Department of Neurosurgery of the Affiliated Hospital North Sichuan University of Medical Sciences between August 2007 and May 2008.PARTICIPANTS: Sixty-three patients, admitted within 24 hours after craniocerebral injury and who received no surgery, were included in the study. The cohort consisted of 41 males and 22 females, aged 9-72years, with an average age of 42 years. Ten healthy volunteers, selected from the Department of Neurosurgery, were designated as the control group.METHODS: WBC and PMN from the peripheral blood were measured 0, 24, 48, 72, and 168 hours after admission to hospital. The Glasgow coma scale, area of cerebral hemorrhage, and degree of brain edema were simultaneously determined. The Glasgow outcome scale was evaluated six months after injury. The relationship between changes in WBC and PMN were analyzed. Sixty-three patients were divided into 0, 24,48, 72, and 168 hours groups, with admission time to hospital as the determining factor. As controls, WBC and PMN of peripheral blood were also detected in 10 healthy volunteers.MAIN OUTCOME MEASURES: The main outcome measures were WBC and PMN counts in the peripheral blood at 0, 24, 48, 72, and 168 hours after admission to hospital, the mutual relationship between GCS, WBC and PMN, and changes in brain hemorrhage volume and edema size.RESULTS: WBC peaked at 24 hours after injury, and PMN peaked at 48 hours after injury (P < 0.01).These measures negatively correlated to the Glasgow coma scale (r = 0.657, -0.541, respectively, P < 0.05).In patients with Glasgow coma sale < 8, WBC and PMN were

  8. Mannoproteins from Cryptococcus neoformans promote dendritic cell maturation and activation.

    Science.gov (United States)

    Pietrella, Donatella; Corbucci, Cristina; Perito, Stefano; Bistoni, Giovanni; Vecchiarelli, Anna

    2005-02-01

    Our previous data show that mannoproteins (MPs) from Cryptococcus neoformans are able to induce protective responses against both C. neoformans and Candida albicans. Here we provide evidence that MPs foster maturation and activation of human dendritic cells (DCs). Maturation was evaluated by the ability of MPs to facilitate expression of costimulatory molecules such as CD40, CD86, CD83, and major histocompatibility complex classes I and II and to inhibit receptors such as CD14, CD16, and CD32. Activation of DCs was measured by the capacity of MPs to promote interleukin-12 and tumor necrosis factor alpha secretion. DC-induced maturation and interleukin-12 induction are largely mediated by engagement of mannose receptors and presume MP internalization and degradation. DC activation leads to IkappaBalpha phosphorylation, which is necessary for nuclear factor kappaB transmigration into the nucleus. MP-loaded DCs are efficient stimulators of T cells and show a remarkable capacity to promote CD4 and CD8 proliferation. In conclusion, we have evidenced a novel regulatory role of MPs that promotes their candidacy as a vaccine against fungi.

  9. Heparin promotes suspension adaptation process of CHO-TS28 cells by eliminating cell aggregation.

    Science.gov (United States)

    Li, Ling; Qin, Jun; Feng, Qiang; Tang, Hao; Liu, Rong; Xu, Liqing; Chen, Zhinan

    2011-01-01

    While heparin has been shown to eliminate cell aggregation in suspension adaptations of insect and HEK293 cells for virus-based cell cultures, the role of heparin in long period serum-free suspension adaptation of the anchorage-dependent Chinese hamster ovary (CHO) cell lines remains inconclusive. In this paper, we explore the potential application of heparin in suspension adaptation of CHO cell line which produces an anti-human chimeric antibody cHAb18. Heparin showed a concentration-dependent inhibition of CHO-TS28 cell-to-cell adhesion, with a significant inhibitory effect occurring when the concentration exceeded 250 μg/ml (P cell aggregation elimination role at all concentrations (P cell growth and antibody secretion, with the highest cell density ((99.83 ± 12.21) × 10(4) cells/ml, P = 0.034) and maximum antibody yield ((9.46 ± 0.94) mg/l, P cell aggregates were effectively dispersed by 250 μg/ml heparin and a single-cell suspension culture process was promoted. In suspension adapted CHO-TS28 cells, cell growth rates and specific antibody productivity were maintained; while antigen-binding activity improved slightly. Together, our results show that heparin may promote suspension adaptation of anchorage-depended CHO cells by resisting cell aggregation without reducing cell growth, antibody secretion, and antigen-binding activity.

  10. Addition of ulinastatin to preservation solution promotes protection against ischemia-reperfusion injury in rabbit lung

    Institute of Scientific and Technical Information of China (English)

    XU Ming; WEN Xiao-hong; CHEN Shu-ping; AN Xiao-xia; XU He-yun

    2011-01-01

    Background The composition of the lung preservation solution used in lung graft procurement has been considered the key to minimize lung injury during the period of ischemia. Low-potassium dextran glucose (LPDG), an extracellular-type solution, has been adopted by most lung transplantation centers, due to the experimental and clinical evidences that LPDG is superior to intracellular-type solutions. Ulinastatin has been shown to attenuate ischemia-reperfusion (I/R) injury in various organs in animals. We supposed that the addition of ulinastatin to LPDG as a flushing solution, would further ameliorate I/R lung injury than LPDG solution alone.Methods Twelve male New Zealand white rabbits were randomly divided into 2 groups. Using an alternative in situ lung I/R model, the left lung in the control group was supplied and preserved with LPDG solution for 120 minutes. In the study group 50 000 U/kg of ulinastatin was added to the LPDG solution for lung preservation. Then re-ventilation and reperfusion of the left lung were performed for 90 minutes. Blood gas analysis (PaO2, PaCO2), mean pulmonary artery pressure (MPAP) and serum TNF-α level were measured intermittently. The pulmonary water index (D/W), tissue myeloperoxidase (MPO) activity, tissue malondialdehyde (MDA) content and morphologic changes were analyzed.Results The study group showed significantly higher PaO2 and lower MPAP at the end of reperfusion. Serum TNF-α level, left lung tissue MPO and MDA in the study group were significantly lower than those in the control group. D/W and pathologic evaluation were also remarkably different between the two groups.Conclusions This study indicated that better lung preservation could be achieved with the use of an ulinastatin modified LPDG solution. Ulinastatin further attenuated lung I/R injury, at least partly by reducing oxidative reactions,inhibiting the release of inflammatory factors and neutrophils immigration.

  11. Luoyutong Treatment Promotes Functional Recovery and Neuronal Plasticity after Cerebral Ischemia-Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Ning-qun Wang

    2015-01-01

    Full Text Available Luoyutong (LYT capsule has been used to treat cerebrovascular diseases clinically in China and is now patented and approved by the State Food and Drug Administration. In this retrospective validation study we investigated the ability of LYT to protect against cerebral ischemia-reperfusion injury in rats. Cerebral ischemia-reperfusion injury was induced by middle cerebral artery occlusion followed by reperfusion. Capsule containing LYT (high dose and medium dose as treatment group and Citicoline Sodium as positive control treatment group were administered daily to rats 30 min after reperfusion. Treatment was continued for either 3 days or 14 days. A saline solution was administered to control animals. Behavior tests were performed after 3 and 14 days of treatment. Our findings revealed that LYT treatment improved the neurological outcome, decreased cerebral infarction volume, and reduced apoptosis. Additionally, LYT improved neural plasticity, as the expression of synaptophysin, microtubule associated protein, and myelin basic protein was upregulated by LYT treatment, while neurofilament 200 expression was reduced. Moreover, levels of brain derived neurotrophic factor and basic fibroblast growth factor were increased. Our results suggest that LYT treatment may protect against ischemic injury and improve neural plasticity.

  12. Injury to the Spinal Cord Niche Alters the Engraftment Dynamics of Human Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Christopher J. Sontag

    2014-05-01

    Full Text Available The microenvironment is a critical mediator of stem cell survival, proliferation, migration, and differentiation. The majority of preclinical studies involving transplantation of neural stem cells (NSCs into the CNS have focused on injured or degenerating microenvironments, leaving a dearth of information as to how NSCs differentially respond to intact versus damaged CNS. Furthermore, single, terminal histological endpoints predominate, providing limited insight into the spatiotemporal dynamics of NSC engraftment and migration. We investigated the early and long-term engraftment dynamics of human CNS stem cells propagated as neurospheres (hCNS-SCns following transplantation into uninjured versus subacutely injured spinal cords of immunodeficient NOD-scid mice. We stereologically quantified engraftment, survival, proliferation, migration, and differentiation at 1, 7, 14, 28, and 98 days posttransplantation, and identified injury-dependent alterations. Notably, the injured microenvironment decreased hCNS-SCns survival, delayed and altered the location of proliferation, influenced both total and fate-specific migration, and promoted oligodendrocyte maturation.

  13. Leflunomide attenuates hepatocyte injury by inhibiting Kupffer cells

    Institute of Scientific and Technical Information of China (English)

    Hong-Wei Yao; Jun Li; Ji-Qiang Chen; Shu-Yun Xu

    2004-01-01

    AIM: To investigate the importance of direct contact between Kupffer cells (KCs) and hepatocytes (HCs) during hepatic inflammatory responses, and the effect of leflunomide′s active metabolite, A771726, on cytokines in KCs, HCs and KC cocultures (DC cocultures).METHODS: KCs and HCs in liver were isolated by digestion with pronase and collagenase. Lipopolysaccharide (LPS)-induced inflammatory response in monocultures of rat HCs and KCs was compared with that in DC cocultures. Tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1)concentrations in different culture supernatants were measured with ELISA. TNF-α mRNA in KCs of inflammatory liver injury was analyzed with reverse transcriptase polymerase chain reaction (RT-PCR).RESULTS: DC cocultures strongly exhibited the production of TNF-α and IL-1 compared with other cultures, and these cytokines were mainly produced by KCs, especially by activated KCs. Time course studies revealed an increased production of TNF-α preceding the IL-1 production,suggesting that increased TNF-α levels could be involved in the increase of IL-1 production. Leflunomide′s active metabolite, A771726, had significantly inhibitory effect on TNF-αand IL-1 at protein and transcription levels, and the reduced production of IL-1 by A771726 was associated with the inhibitory action of A771726 on TNF-α.

  14. Role of endogenous Schwann cells in tissue repair after spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Shu-xin Zhang; Fengfa Huang; Mary Gates; Eric G. Holmberg

    2013-01-01

    Schwann cells are glial cells of peripheral nervous system, responsible for axonal myelination and ensheathing, as well as tissue repair following a peripheral nervous system injury. They are one of several cell types that are widely studied and most commonly used for cell transplantation to treat spinal cord injury, due to their intrinsic characteristics including the ability to secrete a variety of neurotrophic factors. This mini review summarizes the recent findings of endogenous Schwann cells after spinal cord injury and discusses their role in tissue repair and axonal regeneration. After spinal cord injury, numerous endogenous Schwann cells migrate into the lesion site from the nerve roots, involving in the construction of newly formed repaired tissue and axonal myelination. These invading Schwann cells also can move a long distance away from the injury site both rostrally and caudally. In addition, Schwann cells can be induced to migrate by minimal insults (such as scar ablation) within the spinal cord and integrate with astrocytes under certain circumstances. More importantly, the host Schwann cells can be induced to migrate into spinal cord by transplantation of different cell types, such as exogenous Schwann cells, olfactory ensheathing cells, and bone marrow-derived stromal stem cells. Migration of endogenous Schwann cells following spinal cord injury is a common natural phenomenon found both in animal and human, and the myelination by Schwann cells has been examined effective in signal conduction electrophysiologically. Therefore, if the inherent properties of endogenous Schwann cells could be developed and utilized, it would offer a new avenue for the restoration of injured spinal cord.

  15. THE ROLE OF SATELLITE CELLS IN CRUSH INJURY OF RAT SKELETON MUSCLE

    Directory of Open Access Journals (Sweden)

    DilekBURUKOĞLU

    2013-02-01

    Full Text Available The crush type of injury in rat skeletal muscle is often used in tissue degeneration and regeneration. After crush injury muscle tissue begins to regenerate. In this process, it is accepted that satellite cells play an important role which are very sensitive to muscle injury. The aim of this microscopic study was to examine role of satellite cells in muscle regeneration in crush injury. This research was done the department of Histology&Embryology in Eskişehir Osmangazi University in 2008. Ethic approval of this study has been received. During the study, the whole essential and ethics conditionshave been done. In the study 36 Spraque-Dawley rats were used. The rats were separated into 5 groups as test and control groups. Crush type of injury has been applied on muscles of right hind extremitiesof testing group rats by applying 3.5 kg of weight for 6 hours. In according to testing periods rats were anaesthetized intraperitoneally with ketamine 30mg/kg + xylazine 10mg/kg and sacrificied 3, 7, 14 and 21-day intervals. After crush injury, increased satellite cells were particularly observed on day 7. Alsosignificant increased of satellite cells and regenerated myofibrils were detected on day 14. However, satellite cells were seen on day-21 were similar to control group. In crush injuries, number of satellitecells were markedly increased and actively involved into regeneration process of the skeleton muscle.

  16. Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons.

    Science.gov (United States)

    Fortuna, Vitor; Pardanaud, Luc; Brunet, Isabelle; Ola, Roxana; Ristori, Emma; Santoro, Massimo M; Nicoli, Stefania; Eichmann, Anne

    2015-06-23

    The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs) develop in close proximity to the dorsal aorta (DA) and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA) differentiation of SN precursors temporally coincides with vascular mural cell (VMC) recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR) signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation.

  17. beta1-integrin-mediated signaling essentially contributes to cell survival after radiation-induced genotoxic injury

    DEFF Research Database (Denmark)

    Cordes, N; Seidler, J; Durzok, R;

    2006-01-01

    Integrin-mediated adhesion to extracellular matrix proteins confers resistance to radiation- or drug-induced genotoxic injury. To analyse the underlying mechanisms specific for beta1-integrins, wild-type beta1A-integrin-expressing GD25beta1A cells were compared to GD25beta1B cells, which express ...... in tumor cells may promote the development of innovative molecular-targeted therapeutic antitumor strategies.......Integrin-mediated adhesion to extracellular matrix proteins confers resistance to radiation- or drug-induced genotoxic injury. To analyse the underlying mechanisms specific for beta1-integrins, wild-type beta1A-integrin-expressing GD25beta1A cells were compared to GD25beta1B cells, which express...... signaling-incompetent beta1B variants. Cells grown on fibronectin, collagen-III, beta1-integrin-IgG or poly-l-lysine were exposed to 0-6 Gy X-rays in presence or depletion of growth factors and phosphatidylinositol-3 kinase (PI3K) inhibitors (LY294002, wortmannin). In order to test the relevance...

  18. Biotin-Avidin Based Universal Cell-Matrix Interaction for Promoting Three-Dimensional Cell Adhesion.

    Science.gov (United States)

    Dou, Xiao-Qiu; Zhang, Jia; Feng, Chuanliang

    2015-09-23

    To promote cell adhesion in three-dimensional (3D) extracellular matrix (ECM) is crucial for avoiding cell anoikis, which is one of the most important issues for fundamental cell biology. Herein, a biotin-avidin based universal cell-matrix interaction for different types of cells is developed in order to achieve the promoted adhesion in 3D ECM. For the purpose, biotinylated nanofibrous hydrogels are constructed by coassembling 1,4-benzyldicarboxamide (C2) based non-biotinylated and biotinylated supramolecular gelators. The used cells are modified by avidin (AV-cells) through biotinylating cells and then interacting with avidin. After in situ encapsulating AV-cells in the hydrogels, the adhered amount can be increased by tens of percent even with adding several percentages of the biotinylated C2 gelators in the coassembly due to the specific biotin-avidin interaction. Reverse transcription polymerase chain reaction (RT-PCR) confirms that AV-cells can proliferate without varying gene expression and denaturation. Compared with the interaction between RGD and cells, this avidin-biotin interaction should be much more universal and it is feasible to be employed to promote cell adhesion for most types of cells in 3D matrix.

  19. Bone marrow mesenchymal cells improve muscle function in a skeletal muscle re-injury model.

    Directory of Open Access Journals (Sweden)

    Bruno M Andrade

    Full Text Available Skeletal muscle injury is the most common problem in orthopedic and sports medicine, and severe injury leads to fibrosis and muscle dysfunction. Conventional treatment for successive muscle injury is currently controversial, although new therapies, like cell therapy, seem to be promise. We developed a model of successive injuries in rat to evaluate the therapeutic potential of bone marrow mesenchymal cells (BMMC injected directly into the injured muscle. Functional and histological assays were performed 14 and 28 days after the injury protocol by isometric tension recording and picrosirius/Hematoxilin & Eosin staining, respectively. We also evaluated the presence and the fate of BMMC on treated muscles; and muscle fiber regeneration. BMMC treatment increased maximal skeletal muscle contraction 14 and 28 days after muscle injury compared to non-treated group (4.5 ± 1.7 vs 2.5 ± 0.98 N/cm2, p<0.05 and 8.4 ± 2.3 vs. 5.7 ± 1.3 N/cm2, p<0.05 respectively. Furthermore, BMMC treatment increased muscle fiber cross-sectional area and the presence of mature muscle fiber 28 days after muscle injury. However, there was no difference in collagen deposition between groups. Immunoassays for cytoskeleton markers of skeletal and smooth muscle cells revealed an apparent integration of the BMMC within the muscle. These data suggest that BMMC transplantation accelerates and improves muscle function recovery in our extensive muscle re-injury model.

  20. Adult spinal cord ependymal layer: a promising pool of quiescent stem cells to treat spinal cord injury

    OpenAIRE

    Panayiotou, Elena; Malas, Stavros

    2013-01-01

    Spinal cord injury (SCI) is a major health burden and currently there is no effective medical intervention. Research performed over the last decade revealed that cells surrounding the central canal of the adult spinal cord and forming the ependymal layer acquire stem cell properties either in vitro or in response to injury. Following SCI activated ependymal cells generate progeny cells which migrate to the injury site but fail to produce the appropriate type of cells in sufficient number to l...

  1. Bidirectional Promoter Engineering for Single Cell MicroRNA Sensors in Embryonic Stem Cells.

    Science.gov (United States)

    Sladitschek, Hanna L; Neveu, Pierre A

    2016-01-01

    MicroRNAs have emerged as important markers and regulators of cell identity. Precise measurements of cellular miRNA levels rely traditionally on RNA extraction and thus do not allow to follow miRNA expression dynamics at the level of single cells. Non-invasive miRNA sensors present an ideal solution but they critically depend on the performance of suitable ubiquitous promoters that reliably drive expression both in pluripotent and differentiated cell types. Here we describe the engineering of bidirectional promoters that drive the expression of precise ratiometric fluorescent miRNA sensors in single mouse embryonic stem cells (mESCs) and their differentiated derivatives. These promoters are based on combinations of the widely used CAG, EF1α and PGK promoters as well as the CMV and PGK enhancers. miR-142-3p, which is known to be bimodally expressed in mESCs, served as a model miRNA to gauge the precision of the sensors. The performance of the resulting miRNA sensors was assessed by flow cytometry in single stable transgenic mESCs undergoing self-renewal or differentiation. EF1α promoters arranged back-to-back failed to drive the robustly correlated expression of two transgenes. Back-to-back PGK promoters were shut down during mESC differentiation. However, we found that a back-to-back arrangement of CAG promoters with four CMV enhancers provided both robust expression in mESCs undergoing differentiation and the best signal-to-noise for measurement of miRNA activity in single cells among all the sensors we tested. Such a bidirectional promoter is therefore particularly well suited to study the dynamics of miRNA expression during cell fate transitions at the single cell level.

  2. Bidirectional Promoter Engineering for Single Cell MicroRNA Sensors in Embryonic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Hanna L Sladitschek

    Full Text Available MicroRNAs have emerged as important markers and regulators of cell identity. Precise measurements of cellular miRNA levels rely traditionally on RNA extraction and thus do not allow to follow miRNA expression dynamics at the level of single cells. Non-invasive miRNA sensors present an ideal solution but they critically depend on the performance of suitable ubiquitous promoters that reliably drive expression both in pluripotent and differentiated cell types. Here we describe the engineering of bidirectional promoters that drive the expression of precise ratiometric fluorescent miRNA sensors in single mouse embryonic stem cells (mESCs and their differentiated derivatives. These promoters are based on combinations of the widely used CAG, EF1α and PGK promoters as well as the CMV and PGK enhancers. miR-142-3p, which is known to be bimodally expressed in mESCs, served as a model miRNA to gauge the precision of the sensors. The performance of the resulting miRNA sensors was assessed by flow cytometry in single stable transgenic mESCs undergoing self-renewal or differentiation. EF1α promoters arranged back-to-back failed to drive the robustly correlated expression of two transgenes. Back-to-back PGK promoters were shut down during mESC differentiation. However, we found that a back-to-back arrangement of CAG promoters with four CMV enhancers provided both robust expression in mESCs undergoing differentiation and the best signal-to-noise for measurement of miRNA activity in single cells among all the sensors we tested. Such a bidirectional promoter is therefore particularly well suited to study the dynamics of miRNA expression during cell fate transitions at the single cell level.

  3. Human umbilical cord mesenchymal stem cells and the treatment of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    CAO Fu-jiang; FENG Shi-qing

    2009-01-01

    Objective To review the recent studies about human umbilical cord mesenchymal stem cells (hUCMSCs) and advances in the treatment of spinal cord injury, Data sources Published articles (1983-2007) about hUCMSCs and spinal cord injury were selected using Medline. Study selection Articles selected were relevant to development of mesenchymal stem cells (MSCs) for transplantation in spinal cord injury therapy. Of 258 originally identifiied arises 51 were selected that specifically addressed the stated purpose. Results Recent work has revealed that hUCMSCs share most of the characteristics with MSCs derived from bone marrow and are more appropriate to transplantation for cell based therapies. Conclusions Human umbilical cord could be regarded as a source of MSCs for experimental and clinical needs. In addition, as a peculiar source of stem cells, hUCMSCs may play an important role in the treatment of spinal cord injury.

  4. Ependymal cell reactions in spinal cord segments after compression injury in adult rat.

    Science.gov (United States)

    Takahashi, Masaki; Arai, Yasuhisa; Kurosawa, Hisashi; Sueyoshi, Noriyoshi; Shirai, Shunichi

    2003-02-01

    Recently, it has been suggested that neural stem cells and neural progenitor cells exist in the ependyma that forms the central canal of the spinal cord. In this study, we produced various degrees of thoracic cord injury in adult rats using an NYU-weight-drop device, assessed the degree of recovery of lower limb motor function based on a locomotor rating scale, and analyzed the kinetics of ependymal cell proliferation and differentiation by proliferating cell nuclear antigen (PCNA), nestin, glial fibrillary acidic protein (GFAP), or GAP-43 immunostaining. The results showed that the time course of the ependymal cell proliferation and differentiation reactions differed according to the severity of injury, and that the responses occurred not only in the neighborhood of the injury but in the entire spinal cord. An increase in the locomotor rating score was related to an increase in the number of PCNA-positive cells, and the differentiation of ependymal cells into reactive astrocytes was involved in injury repair. No apoptotic cells in the ependyma were detectable by the TUNEL method. These results indicate that the ependymal cells of the spinal central canal are themselves multipotent, can divide and proliferate according to the severity of injury, and differentiate into reactive astrocytes within the ependyma without undergoing apoptosis or cell death.

  5. miR-134 regulates ischemia/reperfusion injury-induced neuronal cell death by regulating CREB signaling.

    Science.gov (United States)

    Huang, Weidong; Liu, Xiaobin; Cao, Jie; Meng, Facai; Li, Min; Chen, Bo; Zhang, Jie

    2015-04-01

    microRNA-134 (miR-134) has been reported to be a brain-specific miRNA and is differently expressed in brain tissues subjected to ischemic injury. However, the underlying mechanism of miR-134 in regulating cerebral ischemic injury remains poorly understood. The current study was designed to delineate the molecular basis of miR-134 in regulating cerebral ischemic injury. Using the oxygen-glucose deprivation (OGD) model of hippocampal neuron ischemia in vitro, we found that the overexpression of miR-134 mediated by recombinant adeno-associated virus (AAV) vector infection significantly promoted neuron death induced by OGD/reoxygenation, whereas the inhibition of miR-134 provided protective effects against OGD/reoxygenation-induced cell death. Moreover, cyclic AMP (cAMP) response element-binding protein (CREB) as a putative target of miR-134 was downregulated and upregulated by miR-134 overexpression or inhibition, respectively. The direct interaction between miR-134 and the 3'-untranslated region (UTR) of CREB mRNA was further confirmed by dual-luciferase reporter assay. Overexpression of miR-134 also inhibited the expression of the downstream gene of CREB, including brain-derived neurotrophic factor (BDNF) and the anti-apoptotic gene Bcl-2, whereas the inhibition of miR-134 upregulated the expression of BDNF and Bcl-2 in neurons after OGD/reoxygenation. Notably, the knockdown of CREB by CREB siRNA apparently abrogated the protective effect of anti-miR-134 on OGD/reoxygenation-induced cell death. Taken together, our study suggests that downregulation of miR-134 alleviates ischemic injury through enhancing CREB expression and downstream genes, providing a promising and potential therapeutic target for cerebral ischemic injury.

  6. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis.

    Science.gov (United States)

    Zambirinis, Constantinos P; Levie, Elliot; Nguy, Susanna; Avanzi, Antonina; Barilla, Rocky; Xu, Yijie; Seifert, Lena; Daley, Donnele; Greco, Stephanie H; Deutsch, Michael; Jonnadula, Saikiran; Torres-Hernandez, Alejandro; Tippens, Daniel; Pushalkar, Smruti; Eisenthal, Andrew; Saxena, Deepak; Ahn, Jiyoung; Hajdu, Cristina; Engle, Dannielle D; Tuveson, David; Miller, George

    2015-11-16

    Modulation of Toll-like receptor (TLR) signaling can have protective or protumorigenic effects on oncogenesis depending on the cancer subtype and on specific inflammatory elements within the tumor milieu. We found that TLR9 is widely expressed early during the course of pancreatic transformation and that TLR9 ligands are ubiquitous within the tumor microenvironment. TLR9 ligation markedly accelerates oncogenesis, whereas TLR9 deletion is protective. We show that TLR9 activation has distinct effects on the epithelial, inflammatory, and fibrogenic cellular subsets in pancreatic carcinoma and plays a central role in cross talk between these compartments. Specifically, TLR9 activation can induce proinflammatory signaling in transformed epithelial cells, but does not elicit oncogene expression or cancer cell proliferation. Conversely, TLR9 ligation induces pancreatic stellate cells (PSCs) to become fibrogenic and secrete chemokines that promote epithelial cell proliferation. TLR9-activated PSCs mediate their protumorigenic effects on the epithelial compartment via CCL11. Additionally, TLR9 has immune-suppressive effects in the tumor microenvironment (TME) via induction of regulatory T cell recruitment and myeloid-derived suppressor cell proliferation. Collectively, our work shows that TLR9 has protumorigenic effects in pancreatic carcinoma which are distinct from its influence in extrapancreatic malignancies and from the mechanistic effects of other TLRs on pancreatic oncogenesis.

  7. Promoting cell proliferation using water dispersible germanium nanowires.

    Directory of Open Access Journals (Sweden)

    Michael Bezuidenhout

    Full Text Available Group IV Nanowires have strong potential for several biomedical applications. However, to date their use remains limited because many are synthesised using heavy metal seeds and functionalised using organic ligands to make the materials water dispersible. This can result in unpredicted toxic side effects for mammalian cells cultured on the wires. Here, we describe an approach to make seedless and ligand free Germanium nanowires water dispersible using glutamic acid, a natural occurring amino acid that alleviates the environmental and health hazards associated with traditional functionalisation materials. We analysed the treated material extensively using Transmission electron microscopy (TEM, High resolution-TEM, and scanning electron microscope (SEM. Using a series of state of the art biochemical and morphological assays, together with a series of complimentary and synergistic cellular and molecular approaches, we show that the water dispersible germanium nanowires are non-toxic and are biocompatible. We monitored the behaviour of the cells growing on the treated germanium nanowires using a real time impedance based platform (xCELLigence which revealed that the treated germanium nanowires promote cell adhesion and cell proliferation which we believe is as a result of the presence of an etched surface giving rise to a collagen like structure and an oxide layer. Furthermore this study is the first to evaluate the associated effect of Germanium nanowires on mammalian cells. Our studies highlight the potential use of water dispersible Germanium Nanowires in biological platforms that encourage anchorage-dependent cell growth.

  8. Survey of Differentially Methylated Promoters in Prostate Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Yipeng Wang

    2005-08-01

    Full Text Available DNA methylation, copy number in the genomes of three immortalized prostate epithelial, five cancer cell lines (LNCaP, PC3, PC3M, PC3M-Pro4, PC3MLN4 were compared using a microarray-based technique. Genomic DNA is cut with a methylation-sensitive enzyme Hpall, followed by linker ligation, polymerase chain reaction (PCR amplification, labeling, hybridization to an array of promoter sequences. Only those parts of the genomic DNA that have unmethylated restriction sites within a few hundred base pairs generate PCR products detectable on an array. Of 2732 promoter sequences on a test array, 504 (18.5% showed differential hybridization between immortalized prostate epithelial, cancer cell lines. Among candidate hypermethylated genes in cancer-derived lines, there were eight (CD44, CDKN1A, ESR1, PLAU, RARB, SFN, TNFRSF6, TSPY previously observed in prostate cancer, 13 previously known methylation targets in other cancers (ARHI, bcl-2, BRCA1, CDKN2C, GADD45A, MTAP, PGR, SLC26A4, SPARC, SYK, TJP2, UCHL1, WIT-1. The majority of genes that appear to be both differentially methylated, differentially regulated between prostate epithelial, cancer cell lines are novel methylation targets, including PAK6, RAD50, TLX3, PIR51, MAP2K5, INSR, FBN1, GG2-1, representing a rich new source of candidate genes used to study the role of DNA methylation in prostate tumors.

  9. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Ji, S.Q.; Cao, J. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Zhang, Q.Y.; Li, Y.Y. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China); Yan, Y.Q. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Yu, F.X. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China)

    2013-09-27

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.

  10. Heterochromatin protein 1 promotes self-renewal and triggers regenerative proliferation in adult stem cells.

    Science.gov (United States)

    Zeng, An; Li, Yong-Qin; Wang, Chen; Han, Xiao-Shuai; Li, Ge; Wang, Jian-Yong; Li, Dang-Sheng; Qin, Yong-Wen; Shi, Yufang; Brewer, Gary; Jing, Qing

    2013-04-29

    Adult stem cells (ASCs) capable of self-renewal and differentiation confer the potential of tissues to regenerate damaged parts. Epigenetic regulation is essential for driving cell fate decisions by rapidly and reversibly modulating gene expression programs. However, it remains unclear how epigenetic factors elicit ASC-driven regeneration. In this paper, we report that an RNA interference screen against 205 chromatin regulators identified 12 proteins essential for ASC function and regeneration in planarians. Surprisingly, the HP1-like protein SMED-HP1-1 (HP1-1) specifically marked self-renewing, pluripotent ASCs, and HP1-1 depletion abrogated self-renewal and promoted differentiation. Upon injury, HP1-1 expression increased and elicited increased ASC expression of Mcm5 through functional association with the FACT (facilitates chromatin transcription) complex, which consequently triggered proliferation of ASCs and initiated blastema formation. Our observations uncover an epigenetic network underlying ASC regulation in planarians and reveal that an HP1 protein is a key chromatin factor controlling stem cell function. These results provide important insights into how epigenetic mechanisms orchestrate stem cell responses during tissue regeneration.

  11. Granulocyte colony-stimulating factor (G-CSF protects oligodendrocyte and promotes hindlimb functional recovery after spinal cord injury in rats.

    Directory of Open Access Journals (Sweden)

    Ryo Kadota

    Full Text Available BACKGROUND: Granulocyte colony-stimulating factor (G-CSF is a protein that stimulates differentiation, proliferation, and survival of cells in the granulocytic lineage. Recently, a neuroprotective effect of G-CSF was reported in a model of cerebral infarction and we previously reported the same effect in studies of murine spinal cord injury (SCI. The aim of the present study was to elucidate the potential therapeutic effect of G-CSF for SCI in rats. METHODS: Adult female Sprague-Dawley rats were used in the present study. Contusive SCI was introduced using the Infinite Horizon Impactor (magnitude: 200 kilodyne. Recombinant human G-CSF (15.0 µg/kg was administered by tail vein injection at 1 h after surgery and daily the next four days. The vehicle control rats received equal volumes of normal saline at the same time points. RESULTS: Using a contusive SCI model to examine the neuroprotective potential of G-CSF, we found that G-CSF suppressed the expression of pro-inflammatory cytokine (IL-1 beta and TNF- alpha in mRNA and protein levels. Histological assessment with luxol fast blue staining revealed that the area of white matter spared in the injured spinal cord was significantly larger in G-CSF-treated rats. Immunohistochemical analysis showed that G-CSF promoted up-regulation of anti-apoptotic protein Bcl-Xl on oligpodendrocytes and suppressed apoptosis of oligodendrocytes after SCI. Moreover, administration of G-CSF promoted better functional recovery of hind limbs. CONCLUSIONS: G-CSF protects oligodendrocyte from SCI-induced cell death via the suppression of inflammatory cytokines and up-regulation of anti-apoptotic protein. As a result, G-CSF attenuates white matter loss and promotes hindlimb functional recovery.

  12. Technologies enabling autologous neural stem cell-based therapies for neurodegenerative disease and injury

    Science.gov (United States)

    Bakhru, Sasha H.

    The intrinsic abilities of mammalian neural stem cells (NSCs) to self-renew, migrate over large distances, and give rise to all primary neural cell types of the brain offer unprecedented opportunity for cell-based treatment of neurodegenerative diseases and injuries. This thesis discusses development of technologies in support of autologous NSC-based therapies, encompassing harvest of brain tissue biopsies from living human patients; isolation of NSCs from harvested tissue; efficient culture and expansion of NSCs in 3D polymeric microcapsule culture systems; optimization of microcapsules as carriers for efficient in vivo delivery of NSCs; genetic engineering of NSCs for drug-induced, enzymatic release of transplanted NSCs from microcapsules; genetic engineering for drug-induced differentiation of NSCs into specific therapeutic cell types; and synthesis of chitosan/iron-oxide nanoparticles for labeling of NSCs and in vivo tracking by cellular MRI. Sub-millimeter scale tissue samples were harvested endoscopically from subventricular zone regions of living patient brains, secondary to neurosurgical procedures including endoscopic third ventriculostomy and ventriculoperitoneal shunt placement. On average, 12,000 +/- 3,000 NSCs were isolated per mm 3 of subventricular zone tissue, successfully demonstrated in 26 of 28 patients, ranging in age from one month to 68 years. In order to achieve efficient expansion of isolated NSCs to clinically relevant numbers (e.g. hundreds of thousands of cells in Parkinson's disease and tens of millions of cells in multiple sclerosis), an extracellular matrix-inspired, microcapsule-based culture platform was developed. Initial culture experiments with murine NSCs yielded unprecedented expansion folds of 30x in 5 days, from initially minute NSC populations (154 +/- 15 NSCs per 450 mum diameter capsule). Within 7 days, NSCs expanded as almost perfectly homogenous populations, with 94.9% +/- 4.1% of cultured cells staining positive for

  13. Endotoxin-induced lung alveolar cell injury causes brain cell damage

    Science.gov (United States)

    Rodríguez-González, Raquel; Ramos-Nuez, Ángela; Martín-Barrasa, José Luis; López-Aguilar, Josefina; Baluja, Aurora; Álvarez, Julián; Rocco, Patricia RM; Pelosi, Paolo

    2015-01-01

    Sepsis is the most common cause of acute respiratory distress syndrome, a severe lung inflammatory disorder with an elevated morbidity and mortality. Sepsis and acute respiratory distress syndrome involve the release of inflammatory mediators to the systemic circulation, propagating the cellular and molecular response and affecting distal organs, including the brain. Since it has been reported that sepsis and acute respiratory distress syndrome contribute to brain dysfunction, we investigated the brain-lung crosstalk using a combined experimental in vitro airway epithelial and brain cell injury model. Conditioned medium collected from an in vitro lipopolysaccharide-induced airway epithelial cell injury model using human A549 alveolar cells was subsequently added at increasing concentrations (no conditioned, 2%, 5%, 10%, 15%, 25%, and 50%) to a rat mixed brain cell culture containing both astrocytes and neurons. Samples from culture media and cells from mixed brain cultures were collected before treatment, and at 6 and 24 h for analysis. Conditioned medium at 15% significantly increased apoptosis in brain cell cultures 24 h after treatment, whereas 25% and 50% significantly increased both necrosis and apoptosis. Levels of brain damage markers S100 calcium binding protein B and neuron-specific enolase, interleukin-6, macrophage inflammatory protein-2, as well as matrix metalloproteinase-9 increased significantly after treating brain cells with ≥2% conditioned medium. Our findings demonstrated that human epithelial pulmonary cells stimulated with bacterial lipopolysaccharide release inflammatory mediators that are able to induce a translational clinically relevant and harmful response in brain cells. These results support a brain-lung crosstalk during sepsis and sepsis-induced acute respiratory distress syndrome. PMID:25135986

  14. Amino acids and metal ions protect endothelial cells from lethal injury

    Energy Technology Data Exchange (ETDEWEB)

    Varani, J.; Ginsburg, I.; Johnson, K.J.; Gibbs, D.F.; Weinberg, J.M.; Ward, P.A. (Univ. of Michigan, Ann Arbor (United States))

    1991-03-11

    Killing of rat pulmonary artery endothelial cells by activated neutrophils is dependent on generation of hydrogen peroxide and its conversion to a highly toxic radical (presumably the hydroxyl radical) in a ferrous iron-dependent reaction. Glycine (as well as several other amino acids) is capable of inhibiting endothelial cell killing in vitro by either activated neutrophils or reagent hydrogen peroxide. Inhibition of killing is enhanced in the presence of micromolar concentrations of manganous ion (Mn2+). The combined effects of glycine and Mn2+ require concomitant presence of bicarbonate ion and is inhibited by high phosphate levels. Glycine can also protect endothelial cells from lethal injury inducted by ionomycin. There appears to be no enhancement with Mn2+, however against this form of lethal injury. The protective effects of glycine, Mn2+ and bicarbonate ion against injury by hydrogen peroxide is associated with a direct disproportionation of the hydrogen peroxide to water with little generation of molecular oxygen. Either glycine or Mn2+ alone does not have this effect. In addition to protecting endothelial cells from hydrogen peroxide-mediated injury, glycine or MN2+ is almost completely protective. Additionally, treatment of rats with concentrations of EDTA that do not by themselves induce injury greatly accentuates lung injury induced by glucose oxidase. These findings suggest that circulating amino acids in combination with Mn2+ and bicarbonate ions may contribute to the normal anti-oxidant barrier. These findings may also form the basis for a possible new therapeutic approach to oxygen radical-mediated injury.

  15. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation

    Science.gov (United States)

    Bennett, Darin C.; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K. K.; McElwee, Kevin J.; Cheng, Kimberly M.

    2015-01-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51 × faster), ostrich oil (1.46 × faster), and rhea oil (1.64 × faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35 × slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. PMID:26217022

  16. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation.

    Science.gov (United States)

    Bennett, Darin C; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K K; McElwee, Kevin J; Cheng, Kimberly M

    2015-09-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51×faster), ostrich oil (1.46×faster), and rhea oil (1.64×faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35×slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions.

  17. State activities that promote fuel cell and hydrogen infrastructure development

    Energy Technology Data Exchange (ETDEWEB)

    Gangi, J. [Fuel Cells 2000, Washington, DC (United States). Breakthrough Technologies Inst.

    2007-07-01

    The fuel cell and hydrogen industry provide environmental benefits in addition to economic benefits in the form of jobs and business. This presentation outlined the initiatives, policy and partnerships that individual states are initiating to promote the commercialization of fuel cells and hydrogen fuels. Multi-state partnerships and regional organizations and initiatives were highlighted along with state programs, regulations, demonstrations and incentives that include hydrogen, fuel cells and zero emission vehicles. It was shown that 47 states and the District of Columbia (DC) are involved in the promotion of fuel cell or hydrogen legislation and funding. Breakthrough Technologies Institute, the parent organization of Fuel Cells 2000, and the U.S. Department of Energy's Hydrogen Program has launched a searchable database that catalogues all stationary installations, hydrogen fueling stations and vehicle demonstration programs in the United States, including cars, buses and specialty vehicles. The database is intended to be a guide for local, state and federal lawmakers to implement similar legislation and initiatives in their jurisdictions. The database includes regulations such as interconnection standards, renewable portfolio standards and net metering as well as legislation such as tax credits, grants, and loans. Roadmaps and funding/support for business incubators and relocation are included. The database is also an important tool for the general public who are trying to learn more about the technology. Although federal research money has mainly focused on transportation and related fuel technologies, individual states are targeting other applications and areas such as materials and components, stationary power and fuel storage.

  18. Saturday-morning television: do sponsors promote high-risk behavior for burn injury?

    Science.gov (United States)

    Palmieri, Tina L; Aoki, Traci; Combs, Elena; Curri, Terese; Garma, Sylvia; Kaulkin, Cammie; Lawless, Mary Beth; Nelson, Kate; Sanders, Johanna; Warden, Nancy; Greenhalgh, David G

    2004-01-01

    Television has become an important tool for learning and socialization in children. Although television violence has been associated with adverse effects, data on depiction of fire and burn injury are lacking. We sought to determine whether Saturday-morning television programming, viewed primarily by children, depicts fire and burn injury as safe or without consequence, thus potentially increasing the incidence of burn injury in children. This was a prospective observational study. Saturday-morning children's television programs were videotaped from 7 AM to 11 AM for eight different television networks during a 6-month period. Tapes were scored for scenes depicting fire or smoke by independent observers. Recorded items included show category, scene type, gender target, context of fire, and outcome after exposure to flame. Fire events were documented during programs and their associated commercials. A total of 108 hours of children's programs, 16 hours per network, were recorded. Scenes depicting fire or smoke were identified 1960 times, with 39% of events occurring during the program itself and 61% in commercials. Fire was depicted as either safe or without consequence in 64% of incidents. Action adventure stories accounted for 56% of flame depictions. Overall, one incident involving flame and fire was portrayed for each 3 minutes of television programming. Saturday-morning television programming frequently depicts fire as safe, empowering, or exciting. The incidence of flame use in programming varies between stations but is most prevalent in action/adventure stories. Television commercials, although brief, provide the majority of the misinformation regarding fire. Medical professional societies should alert the public to this potential hazard and recommend responsible portrayal of fire in children's television programming.

  19. Cell-permeable p38 MAP kinase promotes migration of adult neural stem/progenitor cells

    Science.gov (United States)

    Hamanoue, Makoto; Morioka, Kazuhito; Ohsawa, Ikuroh; Ohsawa, Keiko; Kobayashi, Masaaki; Tsuburaya, Kayo; Akasaka, Yoshikiyo; Mikami, Tetsuo; Ogata, Toru; Takamatsu, Ken

    2016-01-01

    Endogenous neural stem/progenitor cells (NPCs) can migrate toward sites of injury, but the migration activity of NPCs is insufficient to regenerate damaged brain tissue. In this study, we showed that p38 MAP kinase (p38) is expressed in doublecortin-positive adult NPCs. Experiments using the p38 inhibitor SB203580 revealed that endogenous p38 participates in NPC migration. To enhance NPC migration, we generated a cell-permeable wild-type p38 protein (PTD-p38WT) in which the HIV protein transduction domain (PTD) was fused to the N-terminus of p38. Treatment with PTD-p38WT significantly promoted the random migration of adult NPCs without affecting cell survival or differentiation; this effect depended on the cell permeability and kinase activity of the fusion protein. These findings indicate that PTD-p38WT is a novel and useful tool for unraveling the roles of p38, and that this protein provides a reasonable approach for regenerating the injured brain by enhancing NPC migration. PMID:27067799

  20. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury.

    Directory of Open Access Journals (Sweden)

    Srabani Mitra

    Full Text Available Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1 induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury.

  1. Micropatterned bioimplant with guided neuronal cells to promote tissue reconstruction and improve functional recovery after primary motor cortex insult.

    Science.gov (United States)

    Vaysse, L; Beduer, A; Sol, J C; Vieu, C; Loubinoux, I

    2015-07-01

    With the ever increasing incidence of brain injury, developing new tissue engineering strategies to promote neural tissue regeneration is an enormous challenge. The goal of this study was to design and evaluate an implantable scaffold capable of directing neurite and axonal growth for neuronal brain tissue regeneration. We have previously shown in cell culture conditions that engineered micropatterned PDMS surface with straight microchannels allow directed neurite growth without perturbing cell differentiation and neurite outgrowth. In this study, the micropatterned PDMS device pre-seeded with hNT2 neuronal cells were implanted in rat model of primary motor cortex lesion which induced a strong motor deficit. Functional recovery was assessed by the forelimb grip strength test during 3 months post implantation. Results show a more rapid and efficient motor recovery with the hNT2 neuroimplants associated with an increase of neuronal tissue reconstruction and cell survival. This improvement is also hastened when compared to a direct cell graft of ten times more cells. Histological analyses showed that the implant remained structurally intact and we did not see any evidence of inflammatory reaction. In conclusion, PDMS bioimplants with guided neuronal cells seem to be a promising approach for supporting neural tissue reconstruction after central brain injury.

  2. Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration.

    Science.gov (United States)

    Nardini, John T; Chapnick, Douglas A; Liu, Xuedong; Bortz, David M

    2016-07-07

    The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing.

  3. Repair of spinal cord injury by neural stem cells transfected with brain-derived neurotrophic factor-green fluorescent protein in rats A double effect of stem cells and growth factors

    Institute of Scientific and Technical Information of China (English)

    Yansong Wang; Gang Lü

    2010-01-01

    Brain-derived neurotrophic factor(BDNF)can significantly promote nerve regeneration and repair.High expression of the BDNF-green fluorescent protein(GFP)gene persists for a long time after transfection into neural stem cells.Nevertheless,little is known about the biological characteristics of BDNF-GFP modified nerve stem cells in vivo and their ability to induce BDNF expression or repair spinal cord injury.In the present study,we transplanted BDNF-GFP transgenic neural stem cells into a hemisection model of rats.Rats with BDNF-GFP stem cells exhibited significantly increased BDNF expression and better locomotor function compared with stem cells alone.Cellular therapy with BDNF-GFP transgenic stem cells can improve outcomes better than stem cells alone and may have therapeutic potential for spinal cord injury.

  4. Effect of intravenous transplantation of bone marrow mesenchymal stem cells on neurotransmitters and synapsins in rats with spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Shaoqiang Chen; Bilian Wu; Jianhua Lin

    2012-01-01

    Bone marrow mesenchymal stem cells were isolated,purified and cultured in vitro by Percoll density gradient centrifugation combined with the cell adherence method.Passages 3-5 bone marrow mesenchymal stem cells were transplanted into rats with traumatic spinal cord injury via the caudal vein.Basso-Beattie-Bresnahan scores indicate that neurological function of experimental rats was significantly improved over transplantation time (1-5 weeks).Expressions of choline acetyltransferase,glutamic acid decarboxylase and synapsins in the damaged spinal cord of rats was significantly increased after transplantation,determined by immunofluorescence staining and laser confocal scanning microscopy.Bone marrow mesenchymal stem cells that had migrated into the damaged area of rats in the experimental group began to express choline acetyltransferase,glutamic acid decarboxylase and synapsins,3 weeks after transplantation.The Basso-Beattie-Bresnahan scores positively correlated with expression of choline acetyltransferase and synapsins.Experimental findings indicate that intravenously transplanted bone marrow mesenchymal stem cells traverse into the damaged spinal cord of rats,promote expression of choline acetyltransferase,glutamic acid decarboxylase and synapsins,and improve nerve function in rats with spinal cord injury.

  5. P2X7 receptor-mediated purinergic signaling promotes liver injury in acetaminophen hepatotoxicity in mice.

    Science.gov (United States)

    Hoque, Rafaz; Sohail, Muhammed Adnan; Salhanick, Steven; Malik, Ahsan F; Ghani, Ayaz; Robson, Simon C; Mehal, Wajahat Z

    2012-05-15

    Inflammation contributes to liver injury in acetaminophen (APAP) hepatotoxicity in mice and is triggered by stimulation of immune cells. The purinergic receptor P2X7 is upstream of the nod-like receptor family, pryin domain containing-3 (NLRP3) inflammasome in immune cells and is activated by ATP and NAD that serve as damage-associated molecular patterns. APAP hepatotoxicity was assessed in mice genetically deficient in P2X7, the key inflammatory receptor for nucleotides (P2X7-/-), and in wild-type mice. P2X7-/- mice had significantly decreased APAP-induced liver necrosis. In addition, APAP-poisoned mice were treated with the specific P2X7 antagonist A438079 or etheno-NAD, a competitive antagonist of NAD. Pre- or posttreatment with A438079 significantly decreased APAP-induced necrosis and hemorrhage in APAP liver injury in wild-type but not P2X7-/- mice. Pretreatment with etheno-NAD also significantly decreased APAP-induced necrosis and hemorrhage in APAP liver injury. In addition, APAP toxicity in mice lacking the plasma membrane ecto-NTPDase CD39 (CD39-/-) that metabolizes ATP was examined in parallel with the use of soluble apyrase to deplete extracellular ATP in wild-type mice. CD39-/- mice had increased APAP-induced hemorrhage and mortality, whereas apyrase also decreased APAP-induced mortality. Kupffer cells were treated with extracellular ATP to assess P2X7-dependent inflammasome activation. P2X7 was required for ATP-stimulated IL-1β release. In conclusion, P2X7 and exposure to the ligands ATP and NAD are required for manifestations of APAP-induced hepatotoxicity.

  6. SerpinB1 Promotes Pancreatic β Cell Proliferation.

    Science.gov (United States)

    El Ouaamari, Abdelfattah; Dirice, Ercument; Gedeon, Nicholas; Hu, Jiang; Zhou, Jian-Ying; Shirakawa, Jun; Hou, Lifei; Goodman, Jessica; Karampelias, Christos; Qiang, Guifeng; Boucher, Jeremie; Martinez, Rachael; Gritsenko, Marina A; De Jesus, Dario F; Kahraman, Sevim; Bhatt, Shweta; Smith, Richard D; Beer, Hans-Dietmar; Jungtrakoon, Prapaporn; Gong, Yanping; Goldfine, Allison B; Liew, Chong Wee; Doria, Alessandro; Andersson, Olov; Qian, Wei-Jun; Remold-O'Donnell, Eileen; Kulkarni, Rohit N

    2016-01-12

    Although compensatory islet hyperplasia in response to insulin resistance is a recognized feature in diabetes, the factor(s) that promote β cell proliferation have been elusive. We previously reported that the liver is a source for such factors in the liver insulin receptor knockout (LIRKO) mouse, an insulin resistance model that manifests islet hyperplasia. Using proteomics we show that serpinB1, a protease inhibitor, which is abundant in the hepatocyte secretome and sera derived from LIRKO mice, is the liver-derived secretory protein that regulates β cell proliferation in humans, mice, and zebrafish. Small-molecule compounds, that partially mimic serpinB1 effects of inhibiting elastase activity, enhanced proliferation of β cells, and mice lacking serpinB1 exhibit attenuated β cell compensation in response to insulin resistance. Finally, SerpinB1 treatment of islets modulated proteins in growth/survival pathways. Together, these data implicate serpinB1 as an endogenous protein that can potentially be harnessed to enhance functional β cell mass in patients with diabetes.

  7. Tamoxifen Promotes Axonal Preservation and Gait Locomotion Recovery after Spinal Cord Injury in Cats

    Science.gov (United States)

    de la Torre Valdovinos, Braniff; Duenas Jimenez, Judith Marcela; Estrada, Ismael Jimenez; Banuelos Pineda, Jacinto; Franco Rodriguez, Nancy Elizabeth; Lopez Ruiz, Jose Roberto; Osuna Carrasco, Laura Paulina; Candanedo Arellano, Ahiezer; Duenas Jimenez, Sergio Horacio

    2016-01-01

    We performed experiments in cats with a spinal cord penetrating hemisection at T13-L1 level, with and without tamoxifen treatment. The results showed that the numbers of the ipsilateral and contralateral ventral horn neurons were reduced to less than half in the nontreated animals compared with the treated ones. Also, axons myelin sheet was preserved to almost normal values in treated cats. On the contrary, in the untreated animals, their myelin sheet was reduced to 28% at 30 days after injury (DAI), in both the ipsilateral and contralateral regions of the spinal cord. Additionally, we made hindlimb kinematics experiments to study the effects of tamoxifen on cat locomotion after the injury: at 4, 16, and 30 DAI. We observed that the ipsilateral hindlimb angular displacement (AD) of the pendulum-like movements (PLM) during gait locomotion was recovered to almost normal values in treated cats. Contralateral PLM acquired similar values to those obtained in intact cats. At 4 DAI, untreated animals showed a compensatory increment of PLM occurring in the contralateral hindlimb, which was partially recovered at 30 DAI. Our findings indicate that tamoxifen exerts a neuroprotective effect and preserves or produces myelinated axons, which could benefit the locomotion recovery in injured cats. PMID:27006979

  8. Bacterial Respiratory Tract Infections are Promoted by Systemic Hyperglycemia after Severe Burn Injury in Pediatric Patients

    Science.gov (United States)

    Kraft, Robert; Herndon, David N; Mlcak, Ronald P; Finnerty, Celeste C; Cox, Robert A; Williams, Felicia N; Jeschke, Marc G

    2014-01-01

    Background Burn injuries are associated with hyperglycemia leading to increased incidence of infections with pneumonia being one of the most prominent and adverse complication. Recently, various studies in critically ill patients indicated that increased pulmonary glucose levels with airway/blood glucose threshold over 150 mg/dl lead to an overwhelming growth of bacteria in the broncho-pulmonary system, subsequently resulting in an increased risk of pulmonary infections. The aim of the present study was to determine whether a similar cutoff value exists for severely burned pediatric patients. Methods One-hundred six severely burned pediatric patients were enrolled in the study. Patients were divided in two groups: high (H) defined as daily average glucose levels >75% of LOS >150 mg/dl), and low (L) with daily average glucose levels >75% of the LOS pneumonia, atelectasis, and acute respiratory distress syndrome (ARDS) were assessed. Incidence of infections, sepsis, and respiratory parameters were recorded. Blood was analyzed for glucose and insulin levels. Statistical analysis was performed using Student’s t-test and chi-square test. Significance was set at pPatient groups were similar in demographics and injury characteristics. Pneumonia in patients on the mechanical ventilation (L: 21% H: 32%) and off mechanical ventilation (L: 5% H: 15%), as well as ARDS were significantly higher in the high group (L: 3% H: 19%), pPatients in the high group required significantly longer ventilation compared to low patients (ppneumonia confirming the previous studies in critically ill patients. PMID:24074819

  9. Tamoxifen Promotes Axonal Preservation and Gait Locomotion Recovery after Spinal Cord Injury in Cats

    Directory of Open Access Journals (Sweden)

    Braniff de la Torre Valdovinos

    2016-01-01

    Full Text Available We performed experiments in cats with a spinal cord penetrating hemisection at T13-L1 level, with and without tamoxifen treatment. The results showed that the numbers of the ipsilateral and contralateral ventral horn neurons were reduced to less than half in the nontreated animals compared with the treated ones. Also, axons myelin sheet was preserved to almost normal values in treated cats. On the contrary, in the untreated animals, their myelin sheet was reduced to 28% at 30 days after injury (DAI, in both the ipsilateral and contralateral regions of the spinal cord. Additionally, we made hindlimb kinematics experiments to study the effects of tamoxifen on cat locomotion after the injury: at 4, 16, and 30 DAI. We observed that the ipsilateral hindlimb angular displacement (AD of the pendulum-like movements (PLM during gait locomotion was recovered to almost normal values in treated cats. Contralateral PLM acquired similar values to those obtained in intact cats. At 4 DAI, untreated animals showed a compensatory increment of PLM occurring in the contralateral hindlimb, which was partially recovered at 30 DAI. Our findings indicate that tamoxifen exerts a neuroprotective effect and preserves or produces myelinated axons, which could benefit the locomotion recovery in injured cats.

  10. Adenovirus-mediated transfection with glucose transporter 3 suppresses PC12 cell apoptosis following ischemic injury

    Institute of Scientific and Technical Information of China (English)

    Junliang Li; Xinke Xu; Shanyi Zhang; Meiguang Zheng; Zhonghua Wu; Yinlun Weng; Leping Ouyang; Jian Yu; Fangcheng Li

    2012-01-01

    In this study, we investigated the effects of adenovirus-mediated transfection of PC12 cells with glucose transporter 3 after ischemic injury. The results of flow cytometry and TUNEL showed that exogenous glucose transporter 3 significantly suppressed PC12 cell apoptosis induced by ischemic injury. The results of isotopic scintiscan and western blot assays showed that, the glucose uptake rate was significantly increased and nuclear factor kappaB expression was significantly decreased after adenovirus-mediated transfection of ischemic PC12 cells with glucose transporter 3. These results suggest that adenovirus-mediated transfection of cells with glucose transporter 3 elevates the energy metabolism of PC12 cells with ischemic injury, and inhibits cell apoptosis.

  11. Pretreatment with TCDD exacerbates liver injury from Concanavalin A: critical role for NK cells.

    Science.gov (United States)

    Fullerton, Aaron M; Roth, Robert A; Ganey, Patricia E

    2013-11-01

    For many liver diseases, including viral and autoimmune hepatitis, immune cells play an important role in the development and progression of liver injury. Concanavalin A (Con A) administration to rodents has been used as a model of immune-mediated liver injury resembling human autoimmune hepatitis. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been demonstrated to alter the development of immune-mediated diseases. Mice pretreated with TCDD developed exacerbated liver injury in response to administration of a mild dose (6 mg/kg) of Con A. In the present study, we tested the hypothesis that TCDD pretreatment exacerbates Con A-induced liver injury by enhancing the activation and recruitment of accessory cell types including neutrophils, macrophages, and natural killer (NK) cells. Mice were treated with 0, 0.3, 3, or 30 μg/kg TCDD and 4 days later with Con A or saline. TCDD pretreatment with doses of 3 and 30 μg/kg significantly increased liver injury from Con A administration. The plasma concentrations of neutrophil chemokines were significantly increased in TCDD-pretreated mice after Con A administration. NKT cell-deficient (CD1d KO) mice were used to examine whether NKT cells were required for TCDD/Con A-induced liver injury. CD1d KO mice were completely protected from liver injury induced by treatment with Con A alone, whereas the injury from TCDD/Con A treatment was reduced but not eliminated. However, T-cell deficient (RAG1 KO) mice were protected from liver injury induced by Con A irrespective of pretreatment with TCDD. TCDD/Con A treatment increased the percentage of NK cells expressing the activation marker CD69. Depletion of NK cells prior to treatment resulted in significant reductions in plasma interferon-γ and liver injury from TCDD/Con A treatment. In summary, exposure to TCDD exacerbated the immune-mediated liver injury induced by Con A, and our findings suggest that NK cells play a critical role in this response.

  12. PARP activation promotes nuclear AID accumulation in lymphoma cells.

    Science.gov (United States)

    Tepper, Sandra; Jeschke, Julia; Böttcher, Katrin; Schmidt, Angelika; Davari, Kathrin; Müller, Peter; Kremmer, Elisabeth; Hemmerich, Peter; Pfeil, Ines; Jungnickel, Berit

    2016-03-15

    Activation-induced cytidine deaminase (AID) initiates immunoglobulin diversification in germinal center B cells by targeted introduction of DNA damage. As aberrant nuclear AID action contributes to the generation of B cell lymphoma, the protein's activity is tightly regulated, e.g. by nuclear/cytoplasmic shuttling and nuclear degradation. In the present study, we asked whether DNA damage may affect regulation of the AID protein. We show that exogenous DNA damage that mainly activates base excision repair leads to prevention of proteasomal degradation of AID and hence its nuclear accumulation. Inhibitor as well as knockout studies indicate that activation of poly (ADP-ribose) polymerase (PARP) by DNA damaging agents promotes both phenomena. These findings suggest that PARP inhibitors influence DNA damage dependent AID regulation, with interesting implications for the regulation of AID function and chemotherapy of lymphoma.

  13. Stem cell transplantation for treating spinal cord injury A literature comparison between studies of stem cells obtained from various sources

    Institute of Scientific and Technical Information of China (English)

    Liangbi Xiang; Yu Chen

    2012-01-01

    OBJECTIVE: To identify global research trends of stem cell transplantation for treating spinal cord injury using a bibliometric analysis of the Web of Science. DATA RETRIEVAL: We performed a bibliometric analysis of data retrievals for stem cell transplantation for treating spinal cord injury from 2002 to 2011 using the Web of Science. SELECTION CRITERIA: Inclusion criteria: (a) peer-reviewed articles on stem cell transplantation for treating spinal cord injury that were published and indexed in the Web of Science; (b) type of articles: original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial material, and news items; and (c) year of publication: 2002–2011. Exclusion criteria: (a) articles that required manual searching or telephone access; (b) documents that were not published in the public domain; and (c) a number of corrected papers from the total number of articles.MAIN OUTCOME MEASURES: (1) Annual publication output; (2) distribution according to country; (3) distribution according to institution; (4) distribution according to journals; (5) distribution according to funding agencies; and (6) top cited articles over the last 10 years.RESULTS: Bone marrow mesenchymal stem cells and embryonic stem cells have been widely used for treating spinal cord injury. In total, 191 studies of bone marrow mesenchymal stem cell transplantation and 236 studies of embryonic stem cell transplantation for treating spinal cord injury appeared in the Web of Science from 2002 to 2011, and almost half of which were derived from American or Japanese authors and institutes. The number of studies of stem cell transplantation for treating spinal cord injury has gradually increased over the past 10 years. Most papers on stem cell transplantation for treating spinal cord injury appeared in journals with a particular focus on stem cell research, such as Stem Cells and Cell Transplantation. Although umbilical cord blood stem cells and adipose

  14. Stem cell factor improves lung recovery in rats following neonatal hyperoxia-induced lung injury

    Science.gov (United States)

    Miranda, Luis F.; Rodrigues, Claudia O.; Ramachandran, Shalini; Torres, Eneida; Huang, Jian; Klim, Jammie; Hehre, Dorothy; McNiece, Ian; Hare, Joshua M.; Suguihara, Cleide Y.; Young, Karen C.

    2016-01-01

    BACKGROUND Stem cell factor (SCF) and its receptor, c-kit, are modulators of angiogenesis. Neonatal hyperoxia-induced lung injury (HILI) is characterized by disordered angiogenesis. The objective of this study was to determine whether exogenous SCF improves recovery from neonatal HILI by improving angiogenesis. METHODS Newborn rats assigned to normoxia (RA: 20.9% O2) or hyperoxia (90% O2) from postnatal day (P) 2 to 15, received daily injections of SCF 100 µg/kg or placebo (PL) from P15 to P21. Lung morphometry was performed at P28. Capillary tube formation in SCF-treated hyperoxia-exposed pulmonary microvascular endothelial cells (HPMECs) was determined by Matrigel assay. RESULTS As compared with RA, hyperoxic-PL pups had decrease in alveolarization and in lung vascular density, and this was associated with increased right ventricular systolic pressure (RVSP), right ventricular hypertrophy, and vascular remodeling. In contrast, SCF-treated hyperoxic pups had increased angiogenesis, improved alveolarization, and attenuation of pulmonary hypertension as evidenced by decreased RVSP, right ventricular hypertrophy, and vascular remodeling. Moreover, in an in vitro model, SCF increased capillary tube formation in hyperoxia-exposed HPMECs. CONCLUSION Exogenous SCF restores alveolar and vascular structure in neonatal rats with HILI by promoting neoangiogenesis. These findings suggest a new strategy to treat lung diseases characterized by dysangiogenesis. PMID:24153399

  15. Cholesteatoma fibroblasts promote epithelial cell proliferation through overexpression of epiregulin.

    Directory of Open Access Journals (Sweden)

    Mamoru Yoshikawa

    Full Text Available To investigate whether keratinocytes proliferate in response to epiregulin produced by subepithelial fibroblasts derived from middle ear cholesteatoma. Tissue samples were obtained from patients undergoing tympanoplasty. The quantitative polymerase chain reaction and immunohistochemistry were performed to examine epiregulin expression and localization in cholesteatoma tissues and retroauricular skin tissues. Fibroblasts were cultured from cholesteatoma tissues and from normal retroauricular skin. These fibroblasts were used as feeder cells for culture with a human keratinocyte cell line (PHK16-0b. To investigate the role of epiregulin in colony formation by PHK16-0b cells, epiregulin mRNA expression was knocked down in fibroblasts by using short interfering RNA and epiregulin protein was blocked with a neutralizing antibody. Epiregulin mRNA expression was significantly elevated in cholesteatoma tissues compared with that in normal retroauricular skin. Staining for epiregulin was more intense in the epithelial cells and subepithelial fibroblasts of cholesteatoma tissues than in retroauricular skin. When PHK16-0b cells were cultured with cholesteatoma fibroblasts, their colony-forming efficiency was 50% higher than when these cells were cultured with normal skin fibroblasts. Also, knockdown of epiregulin mRNA in cholesteatoma fibroblasts led to greater suppression of colony formation than knockdown in skin fibroblasts. Furthermore, the colony-forming efficiency of PHK16-0b cells was significantly reduced after treatment with an epiregulin neutralizing antibody in co-culture with cholesteatoma fibroblasts, but not in co-culture with skin fibroblasts. These results suggest that keratinocyte hyperproliferation in cholesteatoma is promoted through overexpression of epiregulin by subepithelial fibroblasts via epithelial-mesenchymal interactions, which may play a crucial role in the pathogenesis of middle ear cholesteatoma.

  16. Propofol injection combined with bone marrow mesenchymal stem cell transplantation better improves electrophysiological function in the hindlimb of rats with spinal cord injury than monotherapy

    Institute of Scientific and Technical Information of China (English)

    Yue-xin Wang; Jing-jing Sun; Mei Zhang; Xiao-hua Hou; Jun Hong; Ya-jing Zhou; Zhi-yong Zhang

    2015-01-01

    The repair effects of bone marrow mesenchymal stem cell transplantation on nervous system damage are not satisfactory. Propofol has been shown to protect against spinal cord injury. Therefore, this study sought to explore the therapeutic effects of their combination on spinal cord injury. Rat models of spinal cord injury were established using the weight drop method. Rats were subjected to bone marrow mesenchymal stem cell transplantationvia tail vein injection and/or propofol injectionvia tail vein using an infusion pump. Four weeks after cell transplan-tation and/or propofol treatment, the cavity within the spinal cord was reduced. The numbers of PKH-26-positive cells and horseradish peroxidase-positive nerve ifbers apparently increased in the spinal cord. Latencies of somatosensory evoked potentials and motor evoked potentials in the hindlimb were noticeably shortened, amplitude was increased and hindlimb motor function was obviously improved. Moreover, the combined effects were better than cell transplantation or propofol injection alone. The above data suggest that the combination of propofol injection and bone marrow mesenchymal stem cell transplantation can effectively improve hindlimb electro-physiological function, promote the recovery of motor funtion, and play a neuroprotective role in spinal cord injury in rats.

  17. Propofol combined with bone marrow mesenchymal stem cell transplantation improves electrophysiological function in the hindlimb of rats with spinal cord injury better than monotherapy

    Directory of Open Access Journals (Sweden)

    Yue-xin Wang

    2015-01-01

    Full Text Available The repair effects of bone marrow mesenchymal stem cell transplantation on nervous system damage are not satisfactory. Propofol has been shown to protect against spinal cord injury. Therefore, this study sought to explore the therapeutic effects of their combination on spinal cord injury. Rat models of spinal cord injury were established using the weight drop method. Rats were subjected to bone marrow mesenchymal stem cell transplantation via tail vein injection and/or propofol injection via tail vein using an infusion pump. Four weeks after cell transplantation and/or propofol treatment, the cavity within the spinal cord was reduced. The numbers of PKH-26-positive cells and horseradish peroxidase-positive nerve fibers apparently increased in the spinal cord. Latencies of somatosensory evoked potentials and motor evoked potentials in the hindlimb were noticeably shortened, amplitude was increased and hindlimb motor function was obviously improved. Moreover, the combined effects were better than cell transplantation or propofol injection alone. The above data suggest that the combination of propofol injection and bone marrow mesenchymal stem cell transplantation can effectively improve hindlimb electrophysiological function, promote the recovery of motor funtion, and play a neuroprotective role in spinal cord injury in rats.

  18. CD13 Promotes Mesenchymal Stem Cell-mediated regeneration of ischemic muscle

    Directory of Open Access Journals (Sweden)

    M. Mamunur eRahman

    2014-01-01

    Full Text Available Mesenchymal stem cells (MSCs are multipotent, tissue-resident cells that can facilitate tissue regeneration and thus show great promise as potential therapeutic agents. Functional MSCs have been isolated and characterized from a wide array of adult tissues and are universally identified by the shared expression of a core panel of MSCs markers. One of these markers is the multifunctional cell surface peptidase CD13 that has been shown to be expressed on human and murine MSCs from many tissues. To investigate whether this universal expression indicates a functional role for CD13 in MSC biology we isolated, expanded and characterized MSCs from bone marrow of wild type (WT and CD13KO mice. Characterization of these cells demonstrated that both WT and CD13KO MSCs expressed the full complement of MSC markers (CD29, CD44, CD49e, CD105, Sca1, showed comparable proliferation rates and were capable of differentiating toward the adipogenic and osteogenic lineages. However, MSCs lacking CD13 were unable to differentiate into vascular cells, consistent with our previous characterization of CD13 as an angiogenic regulator. Compared to WT MSCs, adhesion and migration on various extracellular matrices of CD13KO MSCs were significantly impaired, which correlated with decreased phospho-FAK levels and cytoskeletal alterations. Crosslinking human MSCs with activating CD13 antibodies increased cell adhesion to endothelial monolayers and induced FAK activation in a time dependent manner. In agreement with these in vitro data, intramuscular injection of CD13KO MSCs in a model of severe ischemic limb injury resulted in significantly poorer perfusion, decreased ambulation, increased necrosis and impaired vascularization compared to those receiving WT MSCs. This study suggests that CD13 regulates FAK activation to promote MSC adhesion and migration, thus contributing to MSC-mediated tissue repair. CD13 may present a viable target to enhance the efficacy of mesenchymal

  19. The suppressor of cytokine signaling SOCS1 promotes apoptosis of intestinal epithelial cells via p53 signaling in Crohn's disease.

    Science.gov (United States)

    Cui, Xiaopeng; Shan, Xiaohang; Qian, Ji; Ji, Qianqian; Wang, Liang; Wang, Xiaotong; Li, Manhua; Ding, Haifang; Liu, Qingqing; Chen, Lingling; Zhang, Dongmei; Ni, Runzhou

    2016-08-01

    The suppressor of cytokine signaling SOCS1 is a member of the cytokine signaling pathway inhibitor family, which is induced by the IFN-γ induced JAK signaling pathway. The expression of SOCS1 has been found to increase in Crohn's disease (CD) patients, but the role of SOCS1 in intestinal epithelium is unclear. This study was designed to investigate whether SOCS1 has a role in the death of intestinal epithelial cells and intestinal injury. The results showed that the expression of SOCS1 increased in CD patients, and the expression of SOCS1, p-p53 and PUMA increased in the mouse TNBS induced colitis model. Using IFN-γ treated HT-29 cells as an apoptotic model of intestinal epithelial cells in vitro, we confirmed that SOCS1 promoted apoptosis of intestinal epithelial cells by activating p53. In HT-29 cells which were treated with IFN-γ, the interaction between p53 and SOCS1 and phosphorylation of p53 were significantly higher than untreated cells. When knocking SOCS1 down by using SOCS1 siRNA, phosphorylation of p53 and apoptosis of intestinal epithelial cells which was induced by IFN-γ were significantly inhibited. In summary, our findings suggest that SOCS1 may promote apoptosis of intestinal epithelial cells at least partly through mediating p53 signaling.

  20. [Advances in the experimental study of the use of mesenchy- mal stem cells for the treatment of inhalation injury].

    Science.gov (United States)

    Feng, Zhu; Guanghua, Guo

    2015-06-01

    Inhalation injury seriously threatens the survival and quality of life in burn and trauma patients. So far there is no breakthrough in the treatment of inhalation injury. A significant advance has been witnessed in the experimental study of the use of stem cells in the treatment of lung injury in recent years. In this paper, according to the results of our study in the systemic transplantation of bone marrow mesenchymal stem cells for the treatment of inhalation injury, the effect of mesenchymal stem cells on anti-inflammatory process and repair of lung tissues in inhalation injury, and its possible mechanisms are reviewed.

  1. Stress-mediated p38 activation promotes somatic cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Xinxiu Xu; Quan Wang; Yuan Long; Ru Zhang; Xiaoyuan Wei; Mingzhe Xing; Haifeng Gu

    2013-01-01

    Environmental stress-mediated adaptation plays essential roles in the evolution of life.Cellular adaptation mechanisms usually involve the regulation of chromatin structure,transcription,mRNA stability and translation,which eventually lead to efficient changes in gene expression.Global epigenetic change is also involved in the reprogramming of somatic cells into induced pluripotent stem (iPS) cells by defined factors.Here we report that environmental stress such as hyperosmosis not only facilitates four factor-mediated reprogramming,but also enhances two or one factor-induced iPS cell generation.Hyperosmosis-induced p38 activation plays a critical role in this process.Constitutive active p38 mimics the positive effect of hyperosmosis,while dominant negative p38 and p38 inhibitor block the effect of hyperosmosis.Further study indicates stress-mediated p38 activation may promote reprogramming by reducing the global DNA methylation level and enhancing the expression of pluripotency genes.Our results demonstrate how simple environmental stress like hyperosmosis helps to alter the fate of cells via intracellular signaling and epigenetic modulation.

  2. Pelvic Organ Distribution of Mesenchymal Stem Cells Injected Intravenously after Simulated Childbirth Injury in Female Rats

    Directory of Open Access Journals (Sweden)

    Michelle Cruz

    2012-01-01

    Full Text Available The local route of stem cell administration utilized presently in clinical trials for stress incontinence may not take full advantage of the capabilities of these cells. The goal of this study was to evaluate if intravenously injected mesenchymal stem cells (MSCs home to pelvic organs after simulated childbirth injury in a rat model. Female rats underwent either vaginal distension (VD or sham VD. All rats received 2 million GFP-labeled MSCs intravenously 1 hour after injury. Four or 10 days later pelvic organs and muscles were imaged for visualization of GFP-positive cells. Significantly more MSCs home to the urethra, vagina, rectum, and levator ani muscle 4 days after VD than after sham VD. MSCs were present 10 days after injection but GFP intensity had decreased. This study provides basic science evidence that intravenous administration of MSCs could provide an effective route for cell-based therapy to facilitate repair after injury and treat stress incontinence.

  3. Bone marrow mesenchymal stem cells transplantation promotes the release of endogenous erythropoietin after ischemic stroke

    Directory of Open Access Journals (Sweden)

    Wen Lv

    2015-01-01

    Full Text Available This study investigated whether bone marrow mesenchymal stem cell (BMSC transplantation protected ischemic cerebral injury by stimulating endogenous erythropoietin. The model of ischemic stroke was established in rats through transient middle cerebral artery occlusion. Twenty-four hours later, 1 × 10 6 human BMSCs (hBMSCs were injected into the tail vein. Fourteen days later, we found that hBMSCs promoted the release of endogenous erythropoietin in the ischemic region of rats. Simultaneously, 3 μg/d soluble erythropoietin receptor (sEPOR was injected into the lateral ventricle, and on the next 13 consecutive days. sEPOR blocked the release of endogenous erythropoietin. The neurogenesis in the subventricular zone was less in the hBMSCs + sEPOR group than in the hBMSCs + heat-denatured sEPOR group. The adhesive-removal test result and the modified Neurological Severity Scores (mNSS were lower in the hBMSCs + sEPOR group than in the heat-denatured sEPOR group. The adhesive-removal test result and mNSS were similar between the hBMSCs + heat-denatured sEPOR group and the hBMSCs + sEPOR group. These findings confirm that BMSCs contribute to neurogenesis and improve neurological function by promoting the release of endogenous erythropoietin following ischemic stroke.

  4. Bone marrow mesenchymal stem cells transplantation promotes the release of endogenous erythropoietin after ischemic stroke

    Institute of Scientific and Technical Information of China (English)

    Wen Lv; Wen-yu Li; Xiao-yan Xu; Hong Jiang; Oh Yong Bang

    2015-01-01

    This study investigated whether bone marrow mesenchymal stem cell (BMSC) transplantation protected ischemic cerebral injury by stimulating endogenous erythropoietin. The model of isch-emic stroke was established in rats through transient middle cerebral artery occlusion. Twenty-four hours later, 1 × 106 human BMSCs (hBMSCs) were injected into the tail vein. Fourteen days later, we found that hBMSCs promoted the release of endogenous erythropoietin in the ischemic region of rats. Simultaneously, 3 μg/d soluble erythropoietin receptor (sEPOR) was injected into the lateral ventricle, and on the next 13 consecutive days. sEPOR blocked the release of endogenous erythropoietin. The neurogenesis in the subventricular zone was less in the hBMSCs + sEPOR group than in the hBMSCs + heat-denatured sEPOR group. The adhesive-removal test result and the modified Neurological Severity Scores (mNSS) were lower in the hBMSCs + sEPOR group than in the heat-denatured sEPOR group. The adhesive-removal test result and mNSS were similar between the hBMSCs + heat-denatured sEPOR group and the hBMSCs + sEPOR group. These ifndings conifrm that BMSCs contribute to neurogenesis and improve neurological function by promoting the release of endogenous erythropoietin following ischemic stroke.

  5. Functional analysis of Drosophila HSP70 promoter with different HSE numbers in human cells.

    Science.gov (United States)

    Kust, Nadezda; Rybalkina, Ekaterina; Mertsalov, Ilya; Savchenko, Ekaterina; Revishchin, Alexander; Pavlova, Gali

    2014-01-01

    The activation of genetic constructs including the Drosophila hsp70 promoter with four and eight HSE sequences in the regulatory region has been described in human cells. The promoter was shown to be induced at lower temperatures compared to the human hsp70 promoter. The promoter activity increased after a 60-min heat shock already at 38 °C in human cells. The promoter activation was observed 24 h after heat shock for the constructs with eight HSEs, while those with four HSEs required 48 h. After transplantation of in vitro heat-shocked transfected cells, the promoter activity could be maintained for 3 days with a gradual decline. The promoter activation was confirmed in vivo without preliminary heat shock in mouse ischemic brain foci. Controlled expression of the Gdnf gene under a Drosophila hsp70 promoter was demonstrated. This promoter with four and eight HSE sequences in the regulatory region can be proposed as a regulated promoter in genetic therapeutic systems.

  6. Tolbutamide attenuates diazoxide-induced aggravation of hypoxic cell injury.

    Science.gov (United States)

    Pissarek, M; Reichelt, C; Krauss, G J; Illes, P

    1998-11-23

    /ADP, GTP/GDP and UTP/UDP ratios uniformly declined at a low pO2. However, only the ATP/ADP ratio was decreased further by diazoxide (300 microM). The observed alterations in nucleotide contents may be of importance for long- and short-term processes related to acute cerebral hypoxia. Thus, hypoxia-induced alterations of purine and pyrimidine nucleotide levels may influence the open state of KATP-channels during the period of reversible hypoxic cerebral injury. Furthermore, alterations during the irreversible period of cerebral injury may also arise, as a consequence of decreased pyrimidine nucleotide contents affecting cell survival viaprotein and DNA synthesis.

  7. Sevoflurane preconditioning induced endogenous neurogenesis against ischemic brain injury by promoting microglial activation.

    Science.gov (United States)

    Li, Li; Saiyin, Hexige; Xie, Jingmo; Ma, Lixiang; Xue, Lei; Wang, Wei; Liang, Weimin; Yu, Qiong

    2017-02-14

    Brain ischemia causes irreversible damage to functional neurons in cases of infarct. Promoting endogenous neurogenesis to replace necrotic neurons is a promising therapeutic strategy for ischemia patients. The neuroprotective role of sevoflurane preconditioning implies that it might also enhance endogenous neurogenesis and functional restoration in the infarct region. By using a transient middle cerebral artery occlusion (tMCAO) model, we discovered that endogenous neurogenesis was enhanced by sevoflurane preconditioning. This enhancement process is characterized by the promotion of neuroblast proliferation within the subventricular zone (SVZ), migration and differentiation into neurons, and the presence of astrocytes and oligodendrocytes at the site of infarct. The newborn neurons in the sevoflurane preconditioning group showed miniature excitatory postsynaptic currents (mEPSCs), increased synaptophysin and PSD95 staining density, indicating normal neuronal function. Furthermore, long-term behavioral improvement was observed in the sevoflurane preconditioning group consistent with endogenous neurogenesis. Further histological analyses showed that sevoflurane preconditioning accelerated microglial activation, including migration, phagocytosis and secretion of brain-derived neurotrophic factor (BDNF). Intraperitoneal injection of minocycline, a microglial inhibitor, suppressed microglial activation and reversed neurogenesis. Our data showed that sevoflurane preconditioning promoted microglial activities, created a favorable microenvironment for endogenous neurogenesis and accelerated functional reconstruction in the infarct region.

  8. A new three dimensional biomimetic hydrogel to deliver factors secreted by human mesenchymal stem cells in spinal cord injury.

    Science.gov (United States)

    Caron, Ilaria; Rossi, Filippo; Papa, Simonetta; Aloe, Rossella; Sculco, Marika; Mauri, Emanuele; Sacchetti, Alessandro; Erba, Eugenio; Panini, Nicolò; Parazzi, Valentina; Barilani, Mario; Forloni, Gianluigi; Perale, Giuseppe; Lazzari, Lorenza; Veglianese, Pietro

    2016-01-01

    Stem cell therapy with human mesenchymal stem cells (hMSCs) represents a promising strategy in spinal cord injury (SCI). However, both systemic and parenchymal hMSCs administrations show significant drawbacks as a limited number and viability of stem cells in situ. Biomaterials able to encapsulate and sustain hMSCs represent a viable approach to overcome these limitations potentially improving the stem cell therapy. In this study, we evaluate a new agarose/carbomer based hydrogel which combines different strategies to optimize hMSCs viability, density and delivery of paracrine factors. Specifically, we evaluate a new loading procedure on a lyophilized scaffold (soaked up effect) that reduces mechanical stress in encapsulating hMSCs into the hydrogel. In addition, we combine arginine-glycine-aspartic acid (RGD) tripeptide and 3D extracellular matrix deposition to increase the capacity to attach and maintain healthy hMSCs within the hydrogel over time. Furthermore, the fluidic diffusion from the hydrogel toward the injury site is improved by using a cling film that oriented efficaciously the delivery of paracrine factors in vivo. Finally, we demonstrate that an improved combination as here proposed of hMSCs and biomimetic hydrogel is able to immunomodulate significantly the pro-inflammatory environment in a SCI mouse model, increasing M2 macrophagic population and promoting a pro-regenerative environment in situ.

  9. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury.

    Science.gov (United States)

    Yahata, Kenichiro; Kanno, Haruo; Ozawa, Hiroshi; Yamaya, Seiji; Tateda, Satoshi; Ito, Kenta; Shimokawa, Hiroaki; Itoi, Eiji

    2016-12-01

    OBJECTIVE Extracorporeal shock wave therapy (ESWT) is widely used to treat various human diseases. Low-energy ESWT increases expression of vascular endothelial growth factor (VEGF) in cultured endothelial cells. The VEGF stimulates not only endothelial cells to promote angiogenesis but also neural cells to induce neuroprotective effects. A previous study by these authors demonstrated that low-energy ESWT promoted expression of VEGF in damaged neural tissue and improved locomotor function after spinal cord injury (SCI). However, the neuroprotective mechanisms in the injured spinal cord produced by low-energy ESWT are still unknown. In the present study, the authors investigated the cell specificity of VEGF expression in injured spinal cords and angiogenesis induced by low-energy ESWT. They also examined the neuroprotective effects of low-energy ESWT on cell death, axonal damage, and white matter sparing as well as the therapeutic effect for improvement of sensory function following SCI. METHODS Adult female Sprague-Dawley rats were divided into the SCI group (SCI only) and SCI-SW group (low-energy ESWT applied after SCI). Thoracic SCI was produced using a New York University Impactor. Low-energy ESWT was applied to the injured spinal cord 3 times a week for 3 weeks after SCI. Locomotor function was evaluated using the Basso, Beattie, and Bresnahan open-field locomotor score for 42 days after SCI. Mechanical and thermal allodynia in the hindpaw were evaluated for 42 days. Double staining for VEGF and various cell-type markers (NeuN, GFAP, and Olig2) was performed at Day 7; TUNEL staining was also performed at Day 7. Immunohistochemical staining for CD31, α-SMA, and 5-HT was performed on spinal cord sections taken 42 days after SCI. Luxol fast blue staining was performed at Day 42. RESULTS Low-energy ESWT significantly improved not only locomotion but also mechanical and thermal allodynia following SCI. In the double staining, expression of VEGF was observed in Neu

  10. Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injur y by promoting axonal growth and anti-autophagy

    Institute of Scientific and Technical Information of China (English)

    Fei Yin; Chunyang Meng; Rifeng Lu; Lei Li; Ying Zhang; Hao Chen; Yonggang Qin; Li Guo

    2014-01-01

    Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after trans-plantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunolfuorescence with subsequent quantiifcation revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-as-sociated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Fur-thermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was signiifcantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neuro-iflament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mes-enchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury.

  11. Olfactory ensheathing cell transplantation for a patient with chronic sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Zhang F

    2016-12-01

    Full Text Available Feng Zhang,1,2 Xiangzhi Meng,2 Fang Lu,2 Aixian Liu,2 Hongyun Huang1,2 1Cell Therapy Center, Beijing Hongtianji Neuroscience Academy, 2Neurorehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, People’s Republic of China Objective: To observe the result of olfactory ensheathing cell (OEC transplantation in a patient with chronic sciatic nerve injury. Case report: A 53-year-old male patient with chronic (1 year sciatic nerve injury on left side received OEC transplantation at the lesion site. He received follow-up assessment according to the American Spinal Injury Association standard at 10 days, 6 months, and 1 year after OEC therapy. The muscle strength of his left lower limb increased and numbness decreased during the early stage of cell therapy. His motor function improved with each evaluation. His limp walking gait recovered, and numbness sensation got nearly normal after 1 year of follow-up. There were no side effects. Conclusion: OEC transplantation may be an option for chronic peripheral (sciatic nerve injury. Keywords: olfactory ensheathing cell transplantation, sciatic nerve injury, peripheral nerve injury, function improvement, neurorestoration

  12. Hepatocyte-specific NEMO deletion promotes NK/NKT cell- and TRAIL-dependent liver damage.

    Science.gov (United States)

    Beraza, Naiara; Malato, Yann; Sander, Leif E; Al-Masaoudi, Malika; Freimuth, Julia; Riethmacher, Dieter; Gores, Gregory J; Roskams, Tania; Liedtke, Christian; Trautwein, Christian

    2009-08-03

    Nuclear factor kappaB (NF-kappaB) is one of the main transcription factors involved in regulating apoptosis, inflammation, chronic liver disease, and cancer progression. The IKK complex mediates NF-kappaB activation and deletion of its regulatory subunit NEMO in hepatocytes (NEMO(Delta hepa)) triggers chronic inflammation and spontaneous hepatocellular carcinoma development. We show that NEMO(Delta hepa) mice were resistant to Fas-mediated apoptosis but hypersensitive to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as the result of a strong up-regulation of its receptor DR5 on hepatocytes. Additionally, natural killer (NK) cells, the main source of TRAIL, were activated in NEMO(Delta hepa) livers. Interestingly, depletion of the NK1.1(+) cells promoted a significant reduction of liver inflammation and an improvement of liver histology in NEMO(Delta hepa) mice. Furthermore, hepatocyte-specific NEMO deletion strongly sensitized the liver to concanavalin A (ConA)-mediated injury. The critical role of the NK cell/TRAIL axis in NEMO(Delta hepa) livers during ConA hepatitis was further confirmed by selective NK cell depletion and adoptive transfer of TRAIL-deficient(-/-) mononuclear cells. Our results uncover an essential mechanism of NEMO-mediated protection of the liver by preventing NK cell tissue damage via TRAIL/DR5 signaling. As this mechanism is important in human liver diseases, NEMO(Delta hepa) mice are an interesting tool to give insight into liver pathophysiology and to develop future therapeutic strategies.

  13. Hyperbaric oxygen promotes malignant glioma cell growth and inhibits cell apoptosis.

    Science.gov (United States)

    Wang, Yong-Gang; Zhan, Yi-Ping; Pan, Shu-Yi; Wang, Hai-Dong; Zhang, Dun-Xiao; Gao, Kai; Qi, Xue-Ling; Yu, Chun-Jiang

    2015-07-01

    Glioblastoma multiforme (GBM) is the most frequently diagnosed intracranial malignant tumor in adults. Clinical studies have indicated that hyperbaric oxygen may improve the prognosis and reduce complications in glioma patients; however, the specific mechanism by which this occurs remains unknown. The present study investigated the direct effects of hyperbaric oxygen stimulation on glioma by constructing an intracranial transplanted glioma model in congenic C57BL/6J mice. Bioluminescent imaging (BLI) was used to assess the growth of intracranial transplanted GL261-Luc glioma cells in vivo, while flow cytometric and immunohistochemical assays were used to detect and compare the expression of the biomarkers, Ki-67, CD34 and TUNEL, reflecting the cell cycle, apoptosis and angiogenesis. BLI demonstrated that hyperbaric oxygen promoted the growth of intracranially transplanted GL261-Luc glioma cells in vivo. Flow cytometric analysis indicated that hyperbaric oxygen promoted GL261-Luc glioma cell proliferation and also prevented cell cycle arrest. In addition, hyperbaric oxygen inhibited the apoptosis of the transplanted glioma cells. Immunohistochemical analysis also indicated that hyperbaric oxygen increased positive staining for Ki-67 and CD34, while reducing staining for TUNEL (a marker of apoptosis). The microvessel density was significantly increased in the hyperbaric oxygen treatment group compared with the control group. In conclusion, hyperbaric oxygen treatment promoted the growth of transplanted malignant glioma cells in vivo and also inhibited the apoptosis of these cells.

  14. HCdc14A is involved in cell cycle regulation of human brain vascular endothelial cells following injury induced by high glucose, free fatty acids and hypoxia.

    Science.gov (United States)

    Su, Jingjing; Zhou, Houguang; Tao, Yinghong; Guo, Zhuangli; Zhang, Shuo; Zhang, Yu; Huang, Yanyan; Tang, Yuping; Hu, Renming; Dong, Qiang

    2015-01-01

    Cell cycle processes play a vital role in vascular endothelial proliferation and dysfunction. Cell division cycle protein 14 (Cdc14) is an important cell cycle regulatory phosphatase. Previous studies in budding yeast demonstrated that Cdc14 could trigger the inactivation of mitotic cyclin-dependent kinases (Cdks), which are required for mitotic exit and cytokinesis. However, the exact function of human Cdc14 (hCdc14) in cell cycle regulation during vascular diseases is yet to be elucidated. There are two HCdc14 homologs: hCdc14A and hCdc14B. In the current study, we investigated the potential role of hCdc14A in high glucose-, free fatty acids (FFAs)-, and hypoxia-induced injury in cultured human brain vascular endothelial cells (HBVECs). Data revealed that high glucose, FFA, and hypoxia down-regulated hCdc14A expression remarkably, and also affected the expression of other cell cycle-related proteins such as cyclin B, cyclin D, cyclin E, and p53. Furthermore, the combined addition of the three stimuli largely blocked cell cycle progression, decreased cell proliferation, and increased apoptosis. We also determined that hCdc14A was localized mainly to centrosomes during interphase and spindles during mitosis using confocal microscopy, and that it could affect the expression of other cycle-related proteins. More importantly, the overexpression of hCdc14A accelerated cell cycle progression, enhanced cell proliferation, and promoted neoplastic transformation, whereas the knockdown of hCdc14A using small interfering RNA produced the opposite effects. Therefore, these findings provide novel evidence that hCdc14A might be involved in cell cycle regulation in cultured HBVECs during high glucose-, FFA-, and hypoxia-induced injury.

  15. Olfactory ensheathing cell transplantation improves sympathetic skin responses in chronic spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Zuncheng Zheng; Guifeng Liu; Yuexia Chen; Shugang Wei

    2013-01-01

    Forty-three patients with chronic spinal cord injury for over 6 months were transplanted with bryonic olfactory ensheathing cells, 2-4 × 106, into multiple sites in the injured area under the sur-gical microscope. The sympathetic skin response in patients was measured with an electromyo-graphy/evoked potential instrument 1 day before transplantation and 3-8 weeks after trans-tion. Spinal nerve function of patients was assessed using the American Spinal Injury Association impairment scale. The sympathetic skin response was elicited in 32 cases before olfactory en-sheathing celltransplantation, while it was observed in 34 cases after transplantation. tantly, sympathetic skin response latency decreased significantly and amplitude increased cantly after transplantation. Transplantation of olfactory ensheathing cells also improved American Spinal Injury Association scores for movement, pain and light touch. Our findings indicate that factory ensheathing celltransplantation improves motor, sensory and autonomic nerve functions in patients with chronic spinal cord injury.

  16. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kikuta, Kazuhiro [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Masamune, Atsushi, E-mail: amasamune@med.tohoku.ac.jp [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Watanabe, Takashi; Ariga, Hiroyuki; Itoh, Hiromichi; Hamada, Shin; Satoh, Kennichi [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Egawa, Shinichi; Unno, Michiaki [Department of Hepatobiliary-Pancreatic Surgery, Tohoku University Graduate School of Medicine, Sendai (Japan); Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)

    2010-12-17

    Research highlights: {yields} Recent studies have shown that pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. {yields} Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and scattered, fibroblast-like appearance. {yields} PSCs decreased the expression of epithelial markers but increased that of mesenchymal markers, along with increased migration. {yields} This study suggests epithelial-mesenchymal transition as a novel mechanism by which PSCs contribute to the aggressive behavior of pancreatic cancer cells. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Because epithelial-mesenchymal transition (EMT) plays a critical role in the progression of pancreatic cancer, we hypothesized that PSCs promote EMT in pancreatic cancer cells. Panc-1 and SUIT-2 pancreatic cancer cells were indirectly co-cultured with human PSCs isolated from patients undergoing operation for pancreatic cancer. The expression of epithelial and mesenchymal markers was examined by real-time PCR and immunofluorescent staining. The migration of pancreatic cancer cells was examined by scratch and two-chamber assays. Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and a scattered, fibroblast-like appearance. The expression of E-cadherin, cytokeratin 19, and membrane-associated {beta}-catenin was decreased, whereas vimentin and Snail (Snai-1) expression was increased more in cancer cells co-cultured with PSCs than in mono-cultured cells. The migration of pancreatic cancer cells was increased by co-culture with PSCs. The PSC-induced decrease of E-cadherin expression was not altered

  17. 急性缺糖缺氧通过增强胆碱酯酶表达促进肾小管细胞的炎性损伤%Acute oxygen and glucose deprivation promotes inflammatory injury of renal tubular cells by enhancing the expression of cholinesterase

    Institute of Scientific and Technical Information of China (English)

    吴明; 吴乐锋; 李明利; 陆俊福; 赖凯; 徐迹; 刘芬; 冯永文

    2016-01-01

    Objective To investigate the injury mechanism of renal tubular cells induced by acute oxygen and glucose depri-vation. Methods Isolation and culture of rat kidney macrophages and renal epithelial cells,constructing co-cultivating model of lacking Oxygen and sugar(Oxygen and glucose deprivation,OGD),Cells were devided into control group and OGD group,and were given OGD treatment for 1 hour,and then carried out normal culture for up to 24 hours in each group. the expression of TNF al-pha,IL-1 beta,IL-10 in supernatant fluid was detected by ELISA,the viability of renal tubular cells was determined by MTT,the expression of mRNA and protein of acetylcholine esterase (AChE) were determined by RT-qPCR and Western Blot respectively. Results The levels of TNF alpha (pg/ml) in the supernatant fluid in cultivation system were (231.67±36.28) in control group VS (428.67±43.16)(P<0.05) in OGD group,the levels of IL-1β (pg/ml) were (116.67±21.64) in control group VS (219.63±43.86) in OGD group(P<0.05),the levels of IL-10 (pg/ml) were (235.67±39.35) in control group VS (432.67±49.72) in OGD group (P<0. 01). The viability of renal tubular cells was (88.41±18.25) VS (46.98±13.87)(P<0.01);The levels of mRNA and protein of AChE in OGD group were higher than those in control group,they were raised (3.82±0.73) and (2.17±0.46) times respectively (P<0.01). Conclusion Acute oxygen and glucose deprivation enhances the expression of cholinesterase in renal macrophages ,the acute in-jury of renal tubular cells induced by OGD was mediated through inflammatory mediators.%目的:探讨急性缺糖缺氧导致肾小管细胞损伤的机制。方法分离培养大鼠肾内巨噬细胞、肾小管上皮细胞,构建两者共培养(transwell)模型,细胞分成对照组及缺糖缺氧(Oxygen and glucose deprivation,OGD)组,给予缺糖缺氧处理细胞1h后再正常培养24h,ELISA法检测两组上清液TNF-α,IL-1β和IL-10的浓度,噻唑蓝(MTT)检测肾小

  18. The Roles of Innate Immune Cells in Liver Injury and Regeneration

    Institute of Scientific and Technical Information of China (English)

    Zhongjun Dong; Haiming Wei; Rui Sun; Zhigang Tian

    2007-01-01

    For predominant abundance with liver-specific Kupffer cells, natural killer (NK) cells, and natural killer T (NKT)cells and their rapid responses to several stimuli, the liver is considered as an organ with innate immune features.In contrast to their roles in the defense of many infectious agents like hepatitis viruses and parasites, hepatic innate immune cells are also involved in the immunopathogenesis of human clinical liver diseases and several murine hepatitis models such as concanavalin A (Con A), lipopolysaccharide (LPS), or polyinosinic-polycytidylic acid (Poly I:C)-induced liver injury. In this review, the destructive roles of NK cells, NKT cells and Kupffer cells in the processes of immune-mediated liver injury and regeneration will be discussed, and some putative mechanisms involving the impairment of liver regeneration caused by activated hepatic innate immune cells are also proposed.

  19. Neural stem cell transplantation in the repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Neural stem cells are a pronising candidate for neural transplantation aimed at neural cell replacement and repair of the damaged host central nervous system (CNS). Recent studies using neural stem cells have shown that implanted neural stem cells can effectively incorporate into the damaged CNS and differentiate into neurons, astrocytes, and oligodendrocytes. The recent explosion in the field of neural stem cell research has provided insight into the inductive factors influencing neural stem cell differentiation and may yield potential therapies for several neurological disorders, including spinal cord injury. In this review, we summarize recent studies involving neural stem cell biology in both rodents and humans. We also discuss unique advantages and possible mechanisms of using neural stem cell trans plantation in the repair of spinal cord injury.

  20. Plasticity Related Gene 3 (PRG3) overcomes myelin-associated growth inhibition and promotes functional recovery after spinal cord injury

    Science.gov (United States)

    Broggini, Thomas; Schnell, Lisa; Ghoochani, Ali; Mateos, José María; Buchfelder, Michael; Wiendieck, Kurt; Schäfer, Michael K.; Eyupoglu, Ilker Y.; Savaskan, Nicolai E.

    2016-01-01

    The Plasticity Related Gene family covers five, brain-specific, transmembrane proteins (PRG1-5, also termed LPPR1-5) that operate in neuronal plasticity during development, aging and brain trauma. Here we investigated the role of the PRG family on axonal and filopodia outgrowth. Comparative analysis revealed the strongest outgrowth induced by PRG3 (LPPR1). During development, PRG3 is ubiquitously located at the tip of neuronal processes and at the plasma membrane and declines with age. In utero electroporation of PRG3 induced dendritic protrusions and accelerated spine formations in cortical pyramidal neurons. The neurite growth promoting activity of PRG3 requires RasGRF1 (RasGEF1/Cdc25) mediated downstream signaling. Moreover, in axon collapse assays, PRG3-induced neurites resisted growth inhibitors such as myelin, Nogo-A (Reticulon/RTN-4), thrombin and LPA and impeded the RhoA-Rock-PIP5K induced neurite repulsion. Transgenic adult mice with constitutive PRG3 expression displayed strong axonal sprouting distal to a spinal cord lesion. Moreover, fostered PRG3 expression promoted complex motor-behavioral recovery compared to wild type controls as revealed in the Schnell swim test (SST). Thus, PRG3 emerges as a developmental RasGRF1-dependent conductor of filopodia formation and axonal growth enhancer. PRG3-induced neurites resist brain injury-associated outgrowth inhibitors and contribute to functional recovery after spinal cord lesions. Here, we provide evidence that PRG3 operates as an essential neuronal growth promoter in the nervous system. Maintaining PRG3 expression in aging brain may turn back the developmental clock for neuronal regeneration and plasticity. PMID:27744421

  1. The role of mast cells and fibre type in ischaemia reperfusion injury of murine skeletal muscles

    Directory of Open Access Journals (Sweden)

    Bortolotto Susan K

    2004-09-01

    Full Text Available Abstract Background Ischaemia reperfusion (IR injury of skeletal muscle, is a significant cause of morbidity following trauma and surgical procedures, in which muscle fibre types exhibit different susceptibilities. The relative degree of mast cell mediated injury, within different muscle types, is not known. Methods In this study we compared susceptibility of the fast-twitch, extensor digitorum longus (EDL, mixed fast/slow-twitch gastrocnemius and the predominately slow-twitch soleus, muscles to ischemia reperfusion (IR injury in four groups of mice that harbour different mast cell densities; C57/DBA mast cell depleted (Wf/Wf, their heterozygous (Wf/+ and normal littermates (+/+ and control C57BL/6 mice. We determined whether susceptibility to IR injury is associated with mast cell content and/or fibre type and/or mouse strain. In experimental groups, the hind limbs of mice were subjected to 70 minutes warm tourniquet ischemia, followed by 24 h reperfusion, and the muscle viability was assessed on fresh whole-mount slices by the nitroblue tetrazolium (NBT histochemical assay. Results Viability was remarkably higher in the Wf/Wf strain irrespective of muscle type. With respect to muscle type, the predominately slow-twitch soleus muscle was significantly more resistant to IR injury than gastrocnemius and the EDL muscles in all groups. Mast cell density was inversely correlated to muscle viability in all types of muscle. Conclusion These results show that in skeletal muscle, IR injury is dependent upon both the presence of mast cells and on fibre type and suggest that a combination of preventative therapies may need to be implemented to optimally protect muscles from IR injury.

  2. Transplantation of human amniotic epithelial cells improves hindlimb function in rats with spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    WU Zhi-yuan; HUI Guo-zhen; LU Yi; WU Xin; GUO Li-he

    2006-01-01

    Background Human amniotic epithelial cells (HAECs), which have several characteristics similar to stem cells,therefore could possibly be used in cell therapy without creating legal or ethical problems. In this study, we transplanted HEACs into the injured spinal cord of rats to investigate if the cells can improve the rats' hindlimb motor function.Methods HAECs were obtained from a piece of fresh amnion, labeled with Hoechst33342, and transplanted into the site of complete midthoracic spinal transections in adult rats. The rats (n=21) were randomly divided into three groups: Sham-operation group (n=7), cells-graft group (n=7), and PBS group (n=7). One rat of each group was killed for histological analysis at the second week after the transplantation. The other six rats of each group were killed for histological analysis after an 8-week behavioral testing. Hindlimb motor function was assessed by using the open-field BBB scoring system. Survival rate of the graft cells was observed at second and eighth weeks after the transplantation. We also detected the myelin sheath fibers around the lesions and the size of the axotomized red nucleus. A one-way ANOVA was used to compare the means among the groups. The significance level was set at P<0.05.Results The graft HAECs survived for a long time (8 weeks) and integrated into the host spinal cord without immune rejection. Compared with the control group, HAECs can promote the regeneration and sprouting of the axons, improve the hindlimb motor function of the rats (BBB score: cells-graft group 9.0± 0.89 vs PBS group 3.7± 1.03, P<0.01), and inhibit the atrophy of axotomized red nucleus [cells-graft group (526.47 ± 148.42) μm2 vs PBS group (473.69±164.73) μm2, P<0.01].Conclusion Transplantation of HAECs can improve the hindlimb motor function of rats with spinal cord injury.

  3. Neural activity control of neural stem cells and SVZ niche response to brain injury

    OpenAIRE

    Páez González, Patricia

    2014-01-01

    Patricia Paez-Gonzalez Kuo Lab, Dept. of Cell Biology, Duke University Medical Center, NC,USA. Date: 11/16/2014 Utilizing stem cells in the adult brain hold great promise for regenerative medicine. Harnessing ability of adult neural stem cells (NSCs) to generate new neurons or other types of brain cells may provide much needed therapies for patients suffering from brain injuries or neuro-degenerative diseases such as Parkinson’s, Scizophrenia, or Alzheimer’s disease. However...

  4. Overexpression of heme oxygenase-1 protects smooth muscle cells against oxidative injury and inhibits cell proliferation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To investigate whether the expression of exogenous heme oxygenase-1 (HO-l) gene within vascular smooth muscle cells (VSMC) could protect the cells from free radical attack and inhibit cell proliferation,we established an in vitro transfection of human HO-1 gene into rat VSMC mediated by a retroviral vector.The results showed that the profound expression of HO-1 protein as well as HO activity was 1.8- and 2.0-fold increased respectively in the transfected cells compared to the non-transfected ones. The treatment of VSMC with different concentrations of H2O2 led to the remarkable cell damage as indicated by survival rate and LDH leakage. However, the resistance of the HO-1 transfected VSMC against H2O2 was significantly raised. This protective effect was dramatically diminished when the transfected VSMC were pretreated with ZnPP-IX, a specific inhibitor of HO, for 24 h. In addition, we found that the growth potential of the transfected cells was significantly inhibited directly by increased activity of HO-l, and this effect might be related to decreased phosphorylation of MAPK. These results suggest that the overexpression of introduced hHO-1 is potentially able to reduce the risk factors of atherosclerosis, partially due to its cellular protection against oxidative injury and to its inhibitory effect on cellular proliferation.

  5. Amniotic fluid stem cells from EGFP transgenic mice attenuate hyperoxia-induced acute lung injury.

    Directory of Open Access Journals (Sweden)

    Shih-Tao Wen

    Full Text Available High concentrations of oxygen aggravate the severity of lung injury in patients requiring mechanical ventilation. Although mesenchymal stem cells have been shown to effectively attenuate various injured tissues, there is limited information regarding a role for amniotic fluid stem cells (AFSCs in treating acute lung injury. We hypothesized that intravenous delivery of AFSCs would attenuate lung injury in an experimental model of hyperoxia-induced lung injury. AFSCs were isolated from EGFP transgenic mice. The in vitro differentiation, surface markers, and migration of the AFSCs were assessed by specific staining, flow cytometry, and a co-culture system, respectively. The in vivo therapeutic potential of AFSCs was evaluated in a model of acute hyperoxia-induced lung injury in mice. The administration of AFSCs significantly reduced the hyperoxia-induced pulmonary inflammation, as reflected by significant reductions in lung wet/dry ratio, neutrophil counts, and the level of apoptosis, as well as reducing the levels of inflammatory cytokine (IL-1β, IL-6, and TNF-α and early-stage fibrosis in lung tissues. Moreover, EGFP-expressing AFSCs were detected and engrafted into a peripheral lung epithelial cell lineage by fluorescence microscopy and DAPI stain. Intravenous administration of AFSCs may offer a new therapeutic strategy for acute lung injury (ALI, for which efficient treatments are currently unavailable.

  6. Temporal Response of Endogenous Neural Progenitor Cells Following Injury to the Adult Rat Spinal Cord.

    Science.gov (United States)

    Mao, Yilin; Mathews, Kathryn; Gorrie, Catherine A

    2016-01-01

    A pool of endogenous neural progenitor cells (NPCs) found in the ependymal layer and the sub-ependymal area of the spinal cord are reported to upregulate Nestin in response to traumatic spinal cord injury (SCI). These cells could potentially be manipulated within a critical time period offering an innovative approach to the repair of SCI. However, little is known about the temporal response of endogenous NPCs following SCI. This study used a mild contusion injury in rat spinal cord and immunohistochemistry to determine the temporal response of ependymal NPCs following injury and their correlation to astrocyte activation at the lesion edge. The results from the study demonstrated that Nestin staining intensity at the central canal peaked at 24 h post-injury and then gradually declined over time. Reactive astrocytes double labeled by Nestin and glial fibrillary acidic protein (GFAP) were found at the lesion edge and commenced to form the glial scar from 1 week after injury. We conclude that the critical time period for manipulating endogenous NPCs following a spinal cod injury in rats is between 24 h when Nestin expression in ependymal cells is increased and 1 week when astrocytes are activated in large numbers.

  7. Effect of promoter architecture on the cell-to-cell variability in gene expression.

    Directory of Open Access Journals (Sweden)

    Alvaro Sanchez

    2011-03-01

    Full Text Available According to recent experimental evidence, promoter architecture, defined by the number, strength and regulatory role of the operators that control transcription, plays a major role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effort that addresses the question of how changes in promoter architecture affect variability in gene expression in a systematic rather than case-by-case fashion. In this article we make such a systematic investigation, based on a microscopic model of gene regulation that incorporates stochastic effects. In particular, we show how operator strength and operator multiplicity affect this variability. We examine different modes of transcription factor binding to complex promoters (cooperative, independent, simultaneous and how each of these affects the level of variability in transcriptional output from cell-to-cell. We propose that direct comparison between in vivo single-cell experiments and theoretical predictions for the moments of the probability distribution of mRNA number per cell can be used to test kinetic models of gene regulation. The emphasis of the discussion is on prokaryotic gene regulation, but our analysis can be extended to eukaryotic cells as well.

  8. Adult spinal cord ependymal layer: A promising pool of quiescent stem cells to treat spinal cord injury

    Directory of Open Access Journals (Sweden)

    Stavros eMalas

    2013-11-01

    Full Text Available Spinal cord injury is a major health burden and currently there is no effective medical intervention. Research performed over the last decade revealed that cells surrounding the central canal of the adult spinal cord and forming the ependymal layer acquire stem cell properties either in vitro or in response to injury. Following spinal cord injury activated ependymal cells generate progeny cells which migrate to the injury site but fail to produce the appropriate type of cells in sufficient number to limit the damage, rendering this physiological response mainly ineffective. Research is now focusing on the manipulation of ependymal cells to produce cells of the oligodendrocyte lineage which are primarily lost in such a situation leading to secondary neuronal degeneration. Thus, there is a need for a more focused approach to understand the molecular properties of adult ependymal cells in greater detail and develop effective strategies for guiding their response during spinal cord injury.

  9. The experimental observation on the repairing spinal cord injury by olfactory ensheathing cells allograft of different sources

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objecttive To observe the repaired effect of distinct source olfactory ensheathing cells (OECs) on spinal cord injury (SCI) rats. Methods These OECs were dissociated from olfactory bulb and olfactory mucosa of SD rats and transplanted to the injuried region of spinal cord injury rats. The function of nerve, motor evoked potential of hind legs and the histopathlogical diversities of injuried spinal cord were observed. Results The OECs grafts into the SCI area could survive longer time. The BBB scale, incubat...

  10. Production of dopamine by aromatic L-amino acid decarboxylase cells after spinal cord injury

    DEFF Research Database (Denmark)

    Ren, Liqun; Wienecke, Jacob; Hultborn, Hans;

    2016-01-01

    Aromatic L-amino acid decarboxylase (AADC) cells are widely distributed in the spinal cord and their functions are largely unknown. We have previously found that AADC cells in the spinal cord could increase their ability to produce serotonin from 5-hydroxytryptophan after spinal cord injury (SCI)...

  11. Protective effects of Rheum tanguticum polysaccharide against hydrogen peroxide-induced intestinal epithelial cell injury

    Institute of Scientific and Technical Information of China (English)

    Lin-Na Liu; Qi-Bing Mei; Li Liu; Feng Zhang; Zhen-Guo Liu; Zhi-Peng Wang; Ru-Tao Wang

    2005-01-01

    AIM: To describe the effect of Rheum tanguticum polysaccharide (RTP) on hydrogen peroxide-induced human intestinal epithelial cell injury.METHODS: Hydrogen peroxide (100 μmol/L) was introduced to induce human intestinal epithelial cell injury.Cells were pretreated with RTP (30,100,300 μg/mL) for 24 h before exposure to hydrogen peroxide. Cell viability was detected by MTr assay and morphological observation.Acridine orange staining and flow cytometry were performed to assess cell apoptosis. Lactate dehydrogenase (LDH) activity, production of malondialdehyde (MDA) and superoxide dismutase (SOD) activity were measured by spectrophotometry with corresponding assay kits.RESULTS: Following exposure to H2O2, a marked decrease in cell survival and SOD activity, increased production of MDA, LDH leakage and cell apoptosis were found.Pretreatment of the cells with RTP could significantly elevate cell survival, SOD activity and decrease the level of MDA, LDH activity and cell apoptosis.CONCLUSION: RTP may have cytoprotective and antioxidant effects against H2O2-induced intestinal epithelial cell injury by inhibiting cell apoptosis and necrosis. This might be one of the possible mechanisms of RTP for the treatment of ulcerative colitis in rats.

  12. Macrophage migration inhibitory factor promotes cell death and aggravates neurologic deficits after experimental stroke.

    Science.gov (United States)

    Inácio, Ana R; Ruscher, Karsten; Leng, Lin; Bucala, Richard; Deierborg, Tomas

    2011-04-01

    Multiple mechanisms contribute to tissue demise and functional recovery after stroke. We studied the involvement of macrophage migration inhibitory factor (MIF) in cell death and development of neurologic deficits after experimental stroke. Macrophage migration inhibitory factor is upregulated in the brain after cerebral ischemia, and disruption of the Mif gene in mice leads to a smaller infarct volume and better sensory-motor function after transient middle cerebral artery occlusion (tMCAo). In mice subjected to tMCAo, we found that MIF accumulates in neurons of the peri-infarct region, particularly in cortical parvalbumin-positive interneurons. Likewise, in cultured cortical neurons exposed to oxygen and glucose deprivation, MIF levels increase, and inhibition of MIF by (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) protects against cell death. Deletion of MIF in Mif(-/-) mice does not affect interleukin-1β protein levels in the brain and serum after tMCAo. Furthermore, disruption of the Mif gene in mice does not affect CD68, but it is associated with higher galectin-3 immunoreactivity in the brain after tMCAo, suggesting that MIF affects the molecular/cellular composition of the macrophages/microglia response after experimental stroke. We conclude that MIF promotes neuronal death and aggravates neurologic deficits after experimental stroke, which implicates MIF in the pathogenesis of neuronal injury after stroke.

  13. A Systematic Review of Exercise Training To Promote Locomotor Recovery in Animal Models of Spinal Cord Injury

    Science.gov (United States)

    Callister, Robert J.; Callister, Robin; Galea, Mary P.

    2012-01-01

    Abstract In the early 1980s experiments on spinalized cats showed that exercise training on the treadmill could enhance locomotor recovery after spinal cord injury (SCI). In this review, we summarize the evidence for the effectiveness of exercise training aimed at promoting locomotor recovery in animal models of SCI. We performed a systematic search of the literature using Medline, Web of Science, and Embase. Of the 362 studies screened, 41 were included. The adult female rat was the most widely used animal model. The majority of studies (73%) reported that exercise training had a positive effect on some aspect of locomotor recovery. Studies employing a complete SCI were less likely to have positive outcomes. For incomplete SCI models, contusion was the most frequently employed method of lesion induction, and the degree of recovery depended on injury severity. Positive outcomes were associated with training regimens that involved partial weight-bearing activity, commenced within a critical period of 1–2 weeks after SCI, and maintained training for at least 8 weeks. Considerable heterogeneity in training paradigms and methods used to assess or quantify recovery was observed. A 13-item checklist was developed and employed to assess the quality of reporting and study design; only 15% of the studies had high methodological quality. We recommend that future studies include control groups, randomize animals to groups, conduct blinded assessments, report the extent of the SCI lesion, and report sample size calculations. A small battery of objective assessment methods including assessment of over-ground stepping should also be developed and routinely employed. This would allow future meta-analyses of the effectiveness of exercise interventions on locomotor recovery. PMID:22401139

  14. Aldosterone-mineralocorticoid receptor promotes urine prostasin through glomerular barrier injury and not tissue abundance

    DEFF Research Database (Denmark)

    Stolzenburg Oxlund, Christina; Kurt, B.; Schwarzensteiner, I.

    2015-01-01

    Objective: Low salt intake or infusion with the mineralocorticoid hormone aldosterone increases the abundance of proteolytically activated gamma ENaC in rat kidney. Prostasin is a serine proteinase GPI-anchored to the apical membrane of renal principal cells. It was hypothesized that the aldoster......Objective: Low salt intake or infusion with the mineralocorticoid hormone aldosterone increases the abundance of proteolytically activated gamma ENaC in rat kidney. Prostasin is a serine proteinase GPI-anchored to the apical membrane of renal principal cells. It was hypothesized...

  15. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fenxi, E-mail: fxzhang0824@gmail.com [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Hong, Yan; Liang, Wenmei [Department of Histology and Embryology, Guiyang Medical University, Guizhou 550004, People' s Republic of China (China); Ren, Tongming [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Jing, Suhua [ICU Center, The Third Hospital of Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Lin, Juntang [Stem Cell Center, Xinxiang Medical University, Henan 453003, People' s Republic of China (China)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  16. The potential for cell-based therapy in perinatal brain injuries.

    Science.gov (United States)

    Phillips, Andre W; Johnston, Michael V; Fatemi, Ali

    2013-04-01

    Perinatal brain injuries are a leading cause of cerebral palsy worldwide. The potential of stem cell therapy to prevent or reduce these impairments has been widely discussed within the medical and scientific communities and an increasing amount of research is being conducted in this field. Animal studies support the idea that a number of stem cells types, including cord blood and mesenchymal stem cells have a neuroprotective effect in neonatal hypoxia-ischemia. Both these cell types are readily available in a clinical setting. The mechanisms of action appear to be diverse, including immunomodulation, activation of endogenous stem cells, release of growth factors, and anti-apoptotic effects. Here, we review the different types of stem cells and progenitor cells that are potential candidates for therapeutic strategies in perinatal brain injuries, and summarize recent preclinical and clinical studies.

  17. Repair of Ischemic Injury by Pluripotent Stem Cell Based Cell Therapy without Teratoma through Selective Photosensitivity

    Directory of Open Access Journals (Sweden)

    Seung-Ju Cho

    2015-12-01

    Full Text Available Stem-toxic small molecules have been developed to induce selective cell death of pluripotent stem cells (PSCs to lower the risk of teratoma formation. However, despite their high efficacies, chemical-based approaches may carry unexpected toxicities on specific differentiated cell types. Herein, we took advantage of KillerRed (KR as a suicide gene, to selectively induce phototoxicity using visible light via the production of reactive oxygen species. PSCs in an undifferentiated state that exclusively expressed KR (KR-PSCs were eliminated by a single exposure to visible light. This highly selective cell death in KR-PSCs was exploited to successfully inhibit teratoma formation. In particular, endothelial cells from KR-mPSCs remained fully functional in vitro and sufficient to repair ischemic injury in vivo regardless of light exposure, suggesting that a genetic approach in which KR is expressed in a tightly controlled manner would be a viable strategy to inhibit teratoma formation for future safe PSC-based therapies.

  18. Repair of Ischemic Injury by Pluripotent Stem Cell Based Cell Therapy without Teratoma through Selective Photosensitivity.

    Science.gov (United States)

    Cho, Seung-Ju; Kim, So-Yeon; Jeong, Ho-Chang; Cheong, Hyeonsik; Kim, Doseok; Park, Soon-Jung; Choi, Jong-Jin; Kim, Hyongbum; Chung, Hyung-Min; Moon, Sung-Hwan; Cha, Hyuk-Jin

    2015-12-01

    Stem-toxic small molecules have been developed to induce selective cell death of pluripotent stem cells (PSCs) to lower the risk of teratoma formation. However, despite their high efficacies, chemical-based approaches may carry unexpected toxicities on specific differentiated cell types. Herein, we took advantage of KillerRed (KR) as a suicide gene, to selectively induce phototoxicity using visible light via the production of reactive oxygen species. PSCs in an undifferentiated state that exclusively expressed KR (KR-PSCs) were eliminated by a single exposure to visible light. This highly selective cell death in KR-PSCs was exploited to successfully inhibit teratoma formation. In particular, endothelial cells from KR-mPSCs remained fully functional in vitro and sufficient to repair ischemic injury in vivo regardless of light exposure, suggesting that a genetic approach in which KR is expressed in a tightly controlled manner would be a viable strategy to inhibit teratoma formation for future safe PSC-based therapies.

  19. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration.

    Directory of Open Access Journals (Sweden)

    Alessandra Castiglioni

    Full Text Available Muscle injury induces a classical inflammatory response in which cells of the innate immune system rapidly invade the tissue. Macrophages are prominently involved in this response and required for proper healing, as they are known to be important for clearing cellular debris and supporting satellite cell differentiation. Here, we sought to assess the role of the adaptive immune system in muscle regeneration after acute damage. We show that T lymphocytes are transiently recruited into the muscle after damage and appear to exert a pro-myogenic effect on muscle repair. We observed a decrease in the cross-sectional area of regenerating myofibers after injury in Rag2-/- γ-chain-/- mice, as compared to WT controls, suggesting that T cell recruitment promotes muscle regeneration. Skeletal muscle infiltrating T lymphocytes were enriched in CD4+CD25+FOXP3+ cells. Direct exposure of muscle satellite cells to in vitro induced Treg cells effectively enhanced their expansion, and concurrently inhibited their myogenic differentiation. In vivo, the recruitment of Tregs to acutely injured muscle was limited to the time period of satellite expansion, with possibly important implications for situations in which inflammatory conditions persist, such as muscular dystrophies and inflammatory myopathies. We conclude that the adaptive immune system, in particular T regulatory cells, is critically involved in effective skeletal muscle regeneration. Thus, in addition to their well-established role as regulators of the immune/inflammatory response, T regulatory cells also regulate the activity of skeletal muscle precursor cells, and are instrumental for the proper regeneration of this tissue.

  20. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration.

    Science.gov (United States)

    Castiglioni, Alessandra; Corna, Gianfranca; Rigamonti, Elena; Basso, Veronica; Vezzoli, Michela; Monno, Antonella; Almada, Albert E; Mondino, Anna; Wagers, Amy J; Manfredi, Angelo A; Rovere-Querini, Patrizia

    2015-01-01

    Muscle injury induces a classical inflammatory response in which cells of the innate immune system rapidly invade the tissue. Macrophages are prominently involved in this response and required for proper healing, as they are known to be important for clearing cellular debris and supporting satellite cell differentiation. Here, we sought to assess the role of the adaptive immune system in muscle regeneration after acute damage. We show that T lymphocytes are transiently recruited into the muscle after damage and appear to exert a pro-myogenic effect on muscle repair. We observed a decrease in the cross-sectional area of regenerating myofibers after injury in Rag2-/- γ-chain-/- mice, as compared to WT controls, suggesting that T cell recruitment promotes muscle regeneration. Skeletal muscle infiltrating T lymphocytes were enriched in CD4+CD25+FOXP3+ cells. Direct exposure of muscle satellite cells to in vitro induced Treg cells effectively enhanced their expansion, and concurrently inhibited their myogenic differentiation. In vivo, the recruitment of Tregs to acutely injured muscle was limited to the time period of satellite expansion, with possibly important implications for situations in which inflammatory conditions persist, such as muscular dystrophies and inflammatory myopathies. We conclude that the adaptive immune system, in particular T regulatory cells, is critically involved in effective skeletal muscle regeneration. Thus, in addition to their well-established role as regulators of the immune/inflammatory response, T regulatory cells also regulate the activity of skeletal muscle precursor cells, and are instrumental for the proper regeneration of this tissue.

  1. Minocycline Promotes Neurite Outgrowth of PC12 Cells Exposed to Oxygen-Glucose Deprivation and Reoxygenation Through Regulation of MLCP/MLC Signaling Pathways.

    Science.gov (United States)

    Tao, Tao; Feng, Jin-Zhou; Xu, Guang-Hui; Fu, Jie; Li, Xiao-Gang; Qin, Xin-Yue

    2017-04-01

    Minocycline, a semi-synthetic second-generation derivative of tetracycline, has been reported to exert neuroprotective effects both in animal models and in clinic trials of neurological diseases. In the present study, we first investigated the protective effects of minocycline on oxygen-glucose deprivation and reoxygenation-induced impairment of neurite outgrowth and its potential mechanism in the neuronal cell line, PC12 cells. We found that minocycline significantly increased cell viability, promoted neurite outgrowth and enhanced the expression of growth-associated protein-43 (GAP-43) in PC12 cells exposed to oxygen-glucose deprivation/reoxygenation injury. In addition, immunoblots revealed that minocycline reversed the overexpression of phosphorylated myosin light chain (MLC) and the suppression of activated extracellular signal-regulated kinase 1/2 (ERK1/2) caused by oxygen-glucose deprivation/reoxygenation injury. Moreover, the minocycline-induced neurite outgrowth was significantly blocked by Calyculin A (1 nM), an inhibitor of myosin light chain phosphatase (MLCP), but not by an ERK1/2 inhibitor (U0126; 10 μM). These findings suggested that minocycline activated the MLCP/MLC signaling pathway in PC12 cells after oxygen-glucose deprivation/reoxygenation injury, which resulted in the promotion of neurite outgrowth.

  2. Orexin-A promotes Glu uptake by OX1R/PKCα/ERK1/2/GLT-1 pathway in astrocytes and protects co-cultured astrocytes and neurons against apoptosis in anoxia/hypoglycemic injury in vitro.

    Science.gov (United States)

    Shu, Qing; Zhang, Jianhuai; Ma, Wei; Lei, Youying; Zhou, Dan

    2017-01-01

    Orexin-A, which is an endogenous neuropeptide, is reported to have a protective role in ischemic stroke. High-concentration glutamic acid (Glu) induced by hypoxia injury in ischemic stroke can be inhibited by glial glutamate transporter GLT-1 which is only expressed in astroglia cells. A previous study reported that Orexin-A may regulate GLT-1 expression. However, the role of orexin-A in the regulation of GLT-1 in ischemic stroke still remains unclear. In this study, we aimed to investigate the effect and the underlying mechanism of orexin-A on Glu uptake in astrocytes in vitro and this effect on protecting the neurons from anoxia/hypoglycemic injury. The expression of GLT-1 significantly increased in the astrocytes with orexin-A treatment under anoxia/hypoglycemic conditions, promoting the uptake of Glu and inhibiting the apoptosis of co-cultured cells of astrocytes and neurons. However, these effects were significantly weakened by treatment with orexin-A receptor 1 (OX1R) antagonist. Orexin-A significantly up-regulated the expressions of PKCα and ERK1/2 under anoxia/hypoglycemic conditions in astrocytes, whereas the OX1R antagonist markedly reversed the effect. Furthermore, PKCα or ERK1/2 inhibitor significantly constrained the GLT-1 expression in astrocytes and facilitated the apoptosis of co-cultured cells, and GLT-1 overexpression could reverse those effects of PKCα or ERK1/2 inhibitor. Taken together, orexin-A promoted the GLT-1 expression via OX1R/PKCα/ERK1/2 pathway in astrocytes and protected co-cultured cells against anoxia/hypoglycemic injury.

  3. Dynamic Tracking Human Mesenchymal Stem Cells Tropism following Smoke Inhalation Injury in NOD/SCID Mice

    Directory of Open Access Journals (Sweden)

    MeiJuan Song

    2016-01-01

    Full Text Available Multiple preclinical evidences have supported the potential value of mesenchymal stem cells (MSCs for treatment of acute lung injury (ALI. However, few studies focus on the dynamic tropism of MSCs in animals with acute lung injury. In this study, we track systemically transplanted human bone marrow-derived mesenchymal stem cells (hBMSCs in NOD/SCID mice with smoke inhalation injury (SII through bioluminescence imaging (BLI. The results showed that hBMSCs systemically delivered into healthy NOD/SCID mouse initially reside in the lungs and then partially translocate to the abdomen after 24 h. Compared with the uninjured control group treated with hBMSCs, higher numbers of hBMSCs were found in the lungs of the SII NOD/SCID mice. In both the uninjured and SII mice, the BLI signals in the lungs steadily decreased over time and disappeared by 5 days after treatment. hBMSCs significantly attenuated lung injury, elevated the levels of KGF, decreased the levels of TNF-α in BALF, and inhibited inflammatory cell infiltration in the mice with SII. In conclusion, our findings demonstrated that more systemically infused hBMSCs localized to the lungs in mice with SII. hBMSC xenografts repaired smoke inhalation-induced lung injury in mice. This repair was maybe due to the effect of anti-inflammatory and secreting KGF of hMSCs but not associated with the differentiation of the hBMSCs into alveolar epithelial cells.

  4. Repair of spinal cord injury by neural stem cells modified with BDNF gene in rats

    Institute of Scientific and Technical Information of China (English)

    Wei LI; Wen-Qin CAI; Cheng-Ren LI

    2006-01-01

    Objective To explore repair of spinal cord injury by neural stem cells (NSCs) modified with brain derived neurotrophic factor (BDNF) gene (BDNF-NSCs) in rats. Methods Neural stem cells modified with BDNF gene were transplanted into the complete transection site of spinal cord at the lumbar 4 (L4) level in rats. Motor function of rats'hind limbs was observed and HE and X-gal immunocytochemical staining, in situ hybridization, and retrograde HRP tracing were also performed. Results BDNF-NSCs survived and integrated well with host spinal cord. In the transplant group, some X-gal positive, NF-200 positive, GFAP positive, BDNF positive, and BDNF mRNA positive cells, and many NF-200 positive nerve fibers were observed in the injury site. Retrograde HRP tracing through sciatic nerve showed some HRP positive cells and nerve fibers near the rostral side of the injury one month after transplant and with time, they increased in number. Examinations on rats' motor function and behavior demonstrated that motor function of rats' hind limbs improved better in the transplant group than the injury group. Conclusion BDNF-NSCs can survive, differentiate,and partially integrate with host spinal cord, and they significantly ameliorate rats ' motor function of hind limbs, indicating their promising role in repairing spinal cord injury.

  5. Association of HIF- expression and cell apoptosis after traumatic brain injury in the rat

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To explore the expression of hypoxia inducible factor-1α (HIF-1~) and the correlation between HIF-1α and apoptosis after traumatic brain injury.Methods: Using experimental traumatic brain injury in the rats, the expression of HIF-1α was studied by immunohisto-chemistry in cerebral tissue, apoptotic cell death was evaluated with TUNEL (transferase-mediated XdUTP nick end labeling ), and double-labeled immunohistochemistry and TUNEL methods were used to investigate the relationship between HIF-1α and apoptosis.Results: There was remarkable difference in the expression of HIF-1α between the experimental groups and the control groups (P < 0.01), in the experimental groups,the expression of HIF-1α at 48 hours was highest; the evidence of apoptotic cell death after experimental traumatic brain injury was found by TUNEL; the apoptotic percentage increased or decreased according to the changes of the positive expression of HIF-1α (r = 0.99).Conclusions: The results suggest that secondary brain ischemia plays a crucial role in apoptotic cell death after traumatic brain injury; HIF-1α can prompt apoptotic cell death after experimental traumatic brain injury.e expres

  6. The Efficacy of Mesenchymal Stem Cell Transplantation in Caustic Esophagus Injury: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Murat Kantarcioglu

    2014-01-01

    Full Text Available Introduction. Ingestion of corrosive substances may lead to stricture formation in esophagus as a late complication. Full thickness injury seems to exterminate tissue stem cells of esophagus. Mesenchymal stem cells (MSCs can differentiate into specific cell lineages and have the capacity of homing in sites of injury. Aim and Methods. We aimed to investigate the efficacy of MSC transplantation, on prevention of esophageal damage and stricture formation after caustic esophagus injury in rats. 54 rats were allocated into four groups; 4 rats were sacrificed for MSC production. Group 1, untreated controls (n: 10. Group 2, membrane labeled MSCs-treated rats (n: 20. Group 3, biodistribution of fluorodeoxyglucose labeled MSCs via positron emission tomography (PET imaging (n: 10. Group 4, sham operated (n: 10. Standard caustic esophageal burns were created and MSCs were transplanted 24 hours after. All rats were sacrificed at the 21st days. Results. PET scan images revealed the homing behavior of MSCs to the injury site. The histopathology damage score was not significantly different from controls. However, we demonstrated Dil labeled epithelial and muscle cells which were originating from transplanted MSCs. Conclusion. MSC transplantation after caustic esophageal injury may be a helpful treatment modality; however, probably repeated infusions are needed.

  7. Dynamic Tracking Human Mesenchymal Stem Cells Tropism following Smoke Inhalation Injury in NOD/SCID Mice

    Science.gov (United States)

    Song, MeiJuan; Zhang, XiuWei; Sun, ShuLi; Xiao, PeiXin; Hou, ShiKe; Ding, Hui; Liu, ZiQuan; Dong, WenLong; Wang, JinQiang; Wang, Xue; Sun, ZhiGuang

    2016-01-01

    Multiple preclinical evidences have supported the potential value of mesenchymal stem cells (MSCs) for treatment of acute lung injury (ALI). However, few studies focus on the dynamic tropism of MSCs in animals with acute lung injury. In this study, we track systemically transplanted human bone marrow-derived mesenchymal stem cells (hBMSCs) in NOD/SCID mice with smoke inhalation injury (SII) through bioluminescence imaging (BLI). The results showed that hBMSCs systemically delivered into healthy NOD/SCID mouse initially reside in the lungs and then partially translocate to the abdomen after 24 h. Compared with the uninjured control group treated with hBMSCs, higher numbers of hBMSCs were found in the lungs of the SII NOD/SCID mice. In both the uninjured and SII mice, the BLI signals in the lungs steadily decreased over time and disappeared by 5 days after treatment. hBMSCs significantly attenuated lung injury, elevated the levels of KGF, decreased the levels of TNF-α in BALF, and inhibited inflammatory cell infiltration in the mice with SII. In conclusion, our findings demonstrated that more systemically infused hBMSCs localized to the lungs in mice with SII. hBMSC xenografts repaired smoke inhalation-induced lung injury in mice. This repair was maybe due to the effect of anti-inflammatory and secreting KGF of hMSCs but not associated with the differentiation of the hBMSCs into alveolar epithelial cells. PMID:27725837

  8. Role of stem cells during diabetic liver injury

    OpenAIRE

    Wan, Ying; Garner, Jessica; Wu, Nan; Phillip, Levine; Han, Yuyan; McDaniel, Kelly; Annable, Tami; Zhou, Tianhao; Francis, Heather; Glaser, Shannon; Huang, Qiaobing; Alpini, Gianfranco; Meng, Fanyin

    2015-01-01

    Abstract Diabetes mellitus is one of the most severe endocrine metabolic disorders in the world that has serious medical consequences with substantial impacts on the quality of life. Type 2 diabetes is one of the main causes of diabetic liver diseases with the most common being non‐alcoholic fatty liver disease. Several factors that may explain the mechanisms related to pathological and functional changes of diabetic liver injury include: insulin resistance, oxidative stress and endoplasmic r...

  9. MicroRNA 181b promotes vascular smooth muscle cells proliferation through activation of PI3K and MAPK pathways.

    Science.gov (United States)

    Li, Tie-Jun; Chen, Yan-Li; Gua, Chao-Jun; Xue, Sheng-Jiang; Ma, Shu-Mei; Li, Xiao-Dong

    2015-01-01

    Vascular smooth muscle cells (VSMCs) hyperplasia is a common feature of pathologic cardiovascular event such as restenosis and atherosclerosis. The role and mechanisms of microRNAs (miRs) in VSMCs proliferation are poorly understood. Here, we report that miR-181b promotes VSMCs proliferation and migration. In an animal model, miR-181b was significantly increased in the rat carotid artery after balloon catheter injury. Delivery of miR-181b inhibitor to injured artery exhibited a marked inhibition of neointimal hyperplasia. Transfection of miR-181b with "mimics" to A10 cells accelerated cell proliferation, which was accompanied by an increase of cell migration. The induction of A10 cells proliferation by miR-181b appeared to be involved in activation of S and G2/M checkpoint, concomitant with decreases in cell-cycle inhibitors p21 and p27, and increases in cell-cycle activators CDK4 and cyclinD1. In contract, miR-181b inhibition attenuated A10 cells proliferation, inhibited cell migration and arrested cell cycle transition. Moreover, forced miR-181b expression elevated the phosphorylation levels of Akt and Erk1/2, whereas inhibition of miR-181b produced the opposite effects. Additionally, inhibition of PI3K and MAPK signaling pathways with specific inhibitors, but not inhibition of JNK pathway, significantly abolished the effects of miR-181b in promoting cell proliferation. These findings demonstrate that miR-181b enhances the proliferation and migration of VSMCs through activation of PI3K and MAPK pathways.

  10. Anti-inflammatory effects of adult stem cells in sustained lung injury: a comparative study.

    Science.gov (United States)

    Moodley, Yuben; Vaghjiani, Vijesh; Chan, James; Baltic, Svetlana; Ryan, Marisa; Tchongue, Jorge; Samuel, Chrishan S; Murthi, Padma; Parolini, Ornella; Manuelpillai, Ursula

    2013-01-01

    Lung diseases are a major cause of global morbidity and mortality that are treated with limited efficacy. Recently stem cell therapies have been shown to effectively treat animal models of lung disease. However, there are limitations to the translation of these cell therapies to clinical disease. Studies have shown that delayed treatment of animal models does not improve outcomes and that the models do not reflect the repeated injury that is present in most lung diseases. We tested the efficacy of amnion mesenchymal stem cells (AM-MSC), bone marrow MSC (BM-MSC) and human amniotic epithelial cells (hAEC) in C57BL/6 mice using a repeat dose bleomycin-induced model of lung injury that better reflects the repeat injury seen in lung diseases. The dual bleomycin dose led to significantly higher levels of inflammation and fibrosis in the mouse lung compared to a single bleomycin dose. Intravenously infused stem cells were present in the lung in similar numbers at days 7 and 21 post cell injection. In addition, stem cell injection resulted in a significant decrease in inflammatory cell infiltrate and a reduction in IL-1 (AM-MSC), IL-6 (AM-MSC, BM-MSC, hAEC) and TNF-α (AM-MSC). The only trophic factor tested that increased following stem cell injection was IL-1RA (AM-MSC). IL-1RA levels may be modulated by GM-CSF produced by AM-MSC. Furthermore, only AM-MSC reduced collagen deposition and increased MMP-9 activity in the lung although there was a reduction of the pro-fibrogenic cytokine TGF-β following BM-MSC, AM-MSC and hAEC treatment. Therefore, AM-MSC may be more effective in reducing injury following delayed injection in the setting of repeated lung injury.

  11. Anti-inflammatory effects of adult stem cells in sustained lung injury: a comparative study.

    Directory of Open Access Journals (Sweden)

    Yuben Moodley

    Full Text Available Lung diseases are a major cause of global morbidity and mortality that are treated with limited efficacy. Recently stem cell therapies have been shown to effectively treat animal models of lung disease. However, there are limitations to the translation of these cell therapies to clinical disease. Studies have shown that delayed treatment of animal models does not improve outcomes and that the models do not reflect the repeated injury that is present in most lung diseases. We tested the efficacy of amnion mesenchymal stem cells (AM-MSC, bone marrow MSC (BM-MSC and human amniotic epithelial cells (hAEC in C57BL/6 mice using a repeat dose bleomycin-induced model of lung injury that better reflects the repeat injury seen in lung diseases. The dual bleomycin dose led to significantly higher levels of inflammation and fibrosis in the mouse lung compared to a single bleomycin dose. Intravenously infused stem cells were present in the lung in similar numbers at days 7 and 21 post cell injection. In addition, stem cell injection resulted in a significant decrease in inflammatory cell infiltrate and a reduction in IL-1 (AM-MSC, IL-6 (AM-MSC, BM-MSC, hAEC and TNF-α (AM-MSC. The only trophic factor tested that increased following stem cell injection was IL-1RA (AM-MSC. IL-1RA levels may be modulated by GM-CSF produced by AM-MSC. Furthermore, only AM-MSC reduced collagen deposition and increased MMP-9 activity in the lung although there was a reduction of the pro-fibrogenic cytokine TGF-β following BM-MSC, AM-MSC and hAEC treatment. Therefore, AM-MSC may be more effective in reducing injury following delayed injection in the setting of repeated lung injury.

  12. Novel method to dynamically load cells in 3D-hydrogels culture for blast injury studies

    Science.gov (United States)

    Sory, David R.; Areias, Anabela C.; Overby, Darryl R.; Proud, William G.

    2017-01-01

    For at least a century explosive devices have been one of the most important causes of injuries in military conflicts as well as in terrorist attacks. Although significant experimental and modelling efforts have been focussed on blast injuries at the organ or tissue level, few studies have investigated the mechanisms of blast injuries at the cellular level. This paper introduces an in vitro method compatible with living cells to examine the effects of high stress and short-duration pulses relevant to blast loadings and blunt trauma. The experimental phase involves high strain-rate axial compression of cylindrical specimens within an hermetically sealed chamber made of biocompatible polymer. Numerical simulations were performed in order to verify the experimental loading conditions and to characterize the loading path within the sample. A proof of concept is presented so as to establish a new window to address fundamental questions regarding blast injury at the cellular level.

  13. Salvianolic acid B promotes survival of transplanted mesenchymal stem cells in spinal cord-injured rats

    Institute of Scientific and Technical Information of China (English)

    Xiao-bin BI; Yu-bin DENG; Dan-hui GAN; Ya-zhu WANG

    2008-01-01

    Aim: Stem cells hold great promise for brain and spinal cord injuries (SCI), but cell survival following transplantation to adult central nervous system has been poor. Salvianolic acid B (Sal B) has been shown to improve functional recovery in brain-injured rats. The present study was designed to determine whether Sal B could improve transplanted mesenchymal stem cell (MSC) survival in SCI rats. Methods: SCI rats were treated with Sal B. The Basso-Beatie-Bresnahan (BBB) scale was used to test the functional recovery. Sal B was used to protect MSC from being damaged by TNF-α in vitro. Bromodeoxyuridine-labeled MSC were transplanted into SCI rats with Sal B intraperitoneal injection, simul-taneously. MSC were examined, and the functional recovery of the SCI rats was tested. Results: Sal B treatment significantly reduced the lesion area from 0.26±0.05 mm2 to 0.15±0.03 mm2 (P<0.01) and remarkably raised the BBB scores on d 28, post-injury, from 7.3±0.9 to 10.5±1.3 (P<0.05), compared with the phosphate-buffered saline (PBS) control group. MSC were protected from the damage of TNF-α by Sal B. The number of surviving MSC in the MSC plus Sal B groups were 1143.3± 195.6 and 764.0±81.3 on d 7 and 28, post-transplantation, more than those in the MSC group, which was 569.3±72.3 and 237.0±61.3, respectively (P<0.05). Rats with MSC trans-planted and Sal B injected obtained higher BBB scores than those with MSC transplanted alone (P<0.05) and PBS (P<0.01). Conclusion: Sal B provides neuroprotection to SCI and promotes the survival of MSC in vitro and after cell transplantation to the injured spinal cord in vivo.

  14. Safe communities in China as a strategy for injury prevention and safety promotion programmes in the era of rapid economic growth.

    Science.gov (United States)

    Wang, Shu-Mei; Dalal, Koustuv

    2013-02-01

    Due to its rapid economic development, China is facing a huge health, social, and economic burden resulting from injuries. The study's objective was to examine Safe Communities in China as a strategy for injury prevention and safety promotion programmes in the era of rapid economic growth. Literature searches in English and Chinese, which included grey literature, were performed on the Chinese Journal Full-text Search System and Medline, using the words "Safe Community", "injury", "economics", and "prevention". The results showed that the existing 35 recognized members of the International Safe Community Network have not placed due emphasis on suicide prevention, which is one of the leading problems in both rural and urban China. A few groups, such as children, the elderly, cyclists, and pedestrians, have received due emphasis, while other vulnerable groups, such as migrant workers, motorcyclists, students, players, and farmers have not received the necessary attention from the Safe Community perspective. As the evidence describes, Safe Communities in China can be a very effective strategy for injury prevention, but four aspects need to be strengthened in the future: (1) establish and strengthen the policy and regulations in terms of injury prevention at the national level; (2) create a system to involve professional organizations and personnel in projects; (3) consider the economic development status of different parts of China; and (4) intentional injury prevention should receive greater attention.

  15. Traumatic brain injury reveals novel cell lineage relationships within the subventricular zone

    Directory of Open Access Journals (Sweden)

    Gretchen M. Thomsen

    2014-07-01

    Full Text Available The acute response of the rodent subventricular zone (SVZ to traumatic brain injury (TBI involves a physical expansion through increased cell proliferation. However, the cellular underpinnings of these changes are not well understood. Our analyses have revealed that there are two distinct transit-amplifying cell populations that respond in opposite ways to injury. Mash1+ transit-amplifying cells are the primary SVZ cell type that is stimulated to divide following TBI. In contrast, the EGFR+ population, which has been considered to be a functionally equivalent progenitor population to Mash1+ cells in the uninjured brain, becomes significantly less proliferative after injury. Although normally quiescent GFAP+ stem cells are stimulated to divide in SVZ ablation models, we found that the GFAP+ stem cells do not divide more after TBI. We found, instead, that TBI results in increased numbers of GFAP+/EGFR+ stem cells via non-proliferative means—potentially through the dedifferentiation of progenitor cells. EGFR+ progenitors from injured brains only were competent to revert to a stem cell state following brief exposure to growth factors. Thus, our results demonstrate previously unknown changes in lineage relationships that differ from conventional models and likely reflect an adaptive response of the SVZ to maintain endogenous brain repair after TBI.

  16. Proteomic Analysis of Lung Tissue in a Rat Acute Lung Injury Model: Identification of PRDX1 as a Promoter of Inflammation

    Directory of Open Access Journals (Sweden)

    Dongdong Liu

    2014-01-01

    Full Text Available Acute respiratory distress syndrome (ARDS remains a high morbidity and mortality disease entity in critically ill patients, despite decades of numerous investigations into its pathogenesis. To obtain global protein expression changes in acute lung injury (ALI lung tissues, we employed a high-throughput proteomics method to identify key components which may be involved in the pathogenesis of ALI. In the present study, we analyzed lung tissue proteomes of Pseudomonas aeruginosa-induced ALI rats and identified eighteen proteins whose expression levels changed more than twofold as compared to normal controls. In particular, we found that PRDX1 expression in culture medium was elevated by a lipopolysaccharide (LPS challenge in airway epithelial cells in vitro. Furthermore, overexpression of PRDX1 increased the expression of proinflammatory cytokines interleukin-6 (IL-6, interleukin-8 (IL-8, and tumor necrosis factor-α (TNF-α, whereas knockdown of PRDX1 led to downregulated expression of cytokines induced by LPS. In conclusion, our findings provide a global alteration in the proteome of lung tissues in the ALI rat model and indicate that PRDX1 may play a critical role in the pathogenesis of ARDS by promoting inflammation and represent a novel strategy for the development of new therapies against ALI.

  17. Effects of scutellarin on PKCγ in PC12 cell injury induced by oxygen and glucose deprivation

    Institute of Scientific and Technical Information of China (English)

    Wei XU; Ruo-peng ZHA; Wen-yi WANG; Yi-ping WANG

    2007-01-01

    Aim: To evaluate the neuroprotective effect and mechanisms of scutellarin (Scu)against PC12 cell injury after oxygen and glucose deprivation followed by reperfusion (OGD-Rep). Methods: Undifferentiated rat pheochromocytoma PC12 cells, exposed to oxygen and glucose deprivation followed by reperfusion (OGD-Rep), used as an in vitro model of ischemia/reperfusion. Cell survival was evalu-ated by diphenyltetrazolium bromide (MTT) assay and the amount of LDH release was determined using assay kits. [Ca2+]1 was monitored using a fluorescent Ca2+-sensitive dye Fura-2 acetoxymethyl ester. Cell apoptosis was detected by a DNA ladder and by flow cytometric detection. The expression of protein kinase C (PKC)γ was determined using both RT-PCR and Western blotting. The translocation of PKCγ was assayed by subcellular fractionation and Western blotting.Results: OGD-Rep injury significantly elevated the level of LDH release, [Ca2+]1,mRNA expression and the translocation of PKCγ compared in the PC12 cells with those of the normal group. Scu (10-100 μmol/L) exerted a protective effect against OGD-Rep injury by reducing LDH release, [Ca2+]1, the percent of apoptosis, and the translocation of PKCγ. Conclusion: Scu inhibits the increase of [Ca2+]1 and the activation of PKCγ, exerting protective effects against PC12 cell injury induced by OGD-Rep.

  18. IMPACT OF MECHANICAL MYOCARDIAL INJURY PRODUCTS, LPS AND THEIR COMBINATION ON HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS

    Directory of Open Access Journals (Sweden)

    V. G. Matveeva

    2014-01-01

    Full Text Available Complicated systemic inflammatory response (SIR often determines the outcome in patients after cardiac surgery. Systemic endothelial activation plays the most important role in SIR pathogenesis. We have studied the impact of mechanical myocardial injury products, LPS and their combination on human umbilical vein endothelial cells (HUVEC. We have found that HUVEC increase the production of proinflammatory cytokines in response tocardiomyocyte cytosolic fraction responsible for mechanical injury modeling. 2% cytosolic fraction containing 0.204 ng/mL of Hsp70 was a greater stimulus for endothelial cells to produce IL-6 and IL8 than moderateendotoxin concentrations.

  19. Inhibition of BDNF-AS Provides Neuroprotection for Retinal Ganglion Cells against Ischemic Injury

    OpenAIRE

    Xu, Lifang; Zhang, Ziyin; Xie, Tianhua; Zhang, Xiaoyang; Dai, Tu

    2016-01-01

    Background: Brain-derived neurotrophic factor (BDNF) protects retinal ganglion cells against ischemia in ocular degenerative diseases. We aimed to determine the effect of BDNF-AS on the ischemic injury of retinal ganglion cells. Methods: The levels of BDNF and BDNF-AS were measured in retinal ganglion cells subjected to oxygen and glucose deprivation. The lentiviral vectors were constructed to either overexpress or knock out BDNF-AS. The luciferase reporter gene assay was used to determine wh...

  20. Ischemic preconditioning increases endothelial progenitor cell number to attenuate partial nephrectomy-induced ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Hao Liu

    Full Text Available OBJECTIVES: The objective of this study was to investigate the role of endothelial progenitor cells (EPCs in the modulation of ischemia-reperfusion injury (IRI in a partial nephrectomy (PN rat model using early-phase ischemic preconditioning (IPC. MATERIALS AND METHODS: Ninety male Sprague-Dawley rats were randomly divided into three groups following right-side nephrectomy: Sham-operated rats (surgery without vascular clamping; PN rats (renal blood vessels were clamped for 40 min and PN was performed; and IPC rats (pretreated with 15 min ischemia and 10 min reperfusion. At 1, 3, 6, 12, 24 h, and 3 days after reperfusion, the pool of circulating EPCs and kidneys were harvested. The extent of renal injury was assessed, along with EPC number, cell proliferation, angiogenesis, and vascular growth factor expression. RESULTS: Pretreated rats exhibited significant improvements in renal function and morphology. EPC numbers in the kidneys were increased at 12 h following reperfusion in the IPC group as compared to the PN or Sham groups. Cell proliferation (including endothelial and tubular epithelial cells and angiogenesis in peritubular capillaries were markedly increased in kidneys treated with IPC. In addition, vascular endothelial growth factor-A (VEGF-A and stromal cell-derived factor-1α (SDF-1α expression in the kidneys of pretreated rats was increased compared to rats subjected to PN. CONCLUSIONS: OUR INVESTIGATION SUGGESTED THAT: (1 the early phase of IPC may attenuate renal IRI induced by PN; (2 EPCs play an important role in renal protection, involving promotion of cell proliferation and angiogenesis through release of several angiogenic factors.

  1. Dipalmitoyl-phosphatidylcholine biosynthesis is induced by non-injurious mechanical stretch in a model of alveolar type II cells.

    Science.gov (United States)

    Pantazi, Despoina; Kitsiouli, Eirini; Karkabounas, Athanasios; Trangas, Theoni; Nakos, George; Lekka, Marilena E

    2013-08-01

    Dipalmitoylphosphatidylcholine, (DP-PtdCho), the major phospholipid component of lung surfactant is biosynthesized via a de novo pathway, the last step of which is catalyzed by CDP-choline:cholinephosphotransferase (CPT) and two remodeling steps: a deacylation and a reacylation one, catalyzed by an acidic, Ca²⁺-independent phospholipase A₂ (aiPLA₂) and a lyso-phosphatidylcholine acyltransferase (LPCAT), respectively. The aim of our study was to investigate whether a low magnitude, non-injurious static mode of mechanical stretch can induce phosphatidylcholine (PtdCho) biosynthesis and its remodeling to DP-PtdCho in the A549 cell-line, a model of alveolar type II cells. The deformation of A549 cells did not cause any release of lactate dehydrogenase, or phospholipids into the cell culture supernatants. An increase in PtdCho levels was observed after 1 h of static stretching, especially among the DP-PtdCho molecular species, as indicated by targeted lipidomics approach and site-directed fatty acyl-chain analysis. Moreover, although sphingomyelin (CerPCho) levels were unaffected, the DP-PtdCho/CerPCho ratio increased. Induction was observed in CPT, LPCAT and aiPLA₂ enzymatic activities and gene expression. Finally, incubation of the cells with MJ33 suppressed aiPLA₂ activity and DP-PtdCho production. Our data suggest that mild static mechanical stretch can promote the biosynthesis of PtdCho and its remodeling to DP-PtdCho in lung epithelial cells. Thus, low magnitude stretch could contribute to protective mechanisms rather than to injurious ones.

  2. A neonatal mouse spinal cord injury model for assessing post-injury adaptive plasticity and human stem cell integration.

    Directory of Open Access Journals (Sweden)

    Jean-Luc Boulland

    Full Text Available Despite limited regeneration capacity, partial injuries to the adult mammalian spinal cord can elicit variable degrees of functional recovery, mediated at least in part by reorganization of neuronal circuitry. Underlying mechanisms are believed to include synaptic plasticity and collateral sprouting of spared axons. Because plasticity is higher in young animals, we developed a spinal cord compression (SCC injury model in the neonatal mouse to gain insight into the potential for reorganization during early life. The model provides a platform for high-throughput assessment of functional synaptic connectivity that is also suitable for testing the functional integration of human stem and progenitor cell-derived neurons being considered for clinical cell replacement strategies. SCC was generated at T9-T11 and functional recovery was assessed using an integrated approach including video kinematics, histology, tract tracing, electrophysiology, and high-throughput optical recording of descending inputs to identified spinal neurons. Dramatic degeneration of axons and synaptic contacts was evident within 24 hours of SCC, and loss of neurons in the injured segment was evident for at least a month thereafter. Initial hindlimb paralysis was paralleled by a loss of descending inputs to lumbar motoneurons. Within 4 days of SCC and progressively thereafter, hindlimb motility began to be restored and descending inputs reappeared, but with examples of atypical synaptic connections indicating a reorganization of circuitry. One to two weeks after SCC, hindlimb motility approached sham control levels, and weight-bearing locomotion was virtually indistinguishable in SCC and sham control mice. Genetically labeled human fetal neural progenitor cells injected into the injured spinal cord survived for at least a month, integrated into the host tissue and began to differentiate morphologically. This integrative neonatal mouse model provides opportunities to explore early

  3. DRAM1 Protects Neuroblastoma Cells from Oxygen-Glucose Deprivation/Reperfusion-Induced Injury via Autophagy

    Directory of Open Access Journals (Sweden)

    Mengqiang Yu

    2014-10-01

    Full Text Available DNA damage-regulated autophagy modulator protein 1 (DRAM1, a multi-pass membrane lysosomal protein, is reportedly a tumor protein p53 (TP53 target gene involved in autophagy. During cerebral ischemia/reperfusion (I/R injury, DRAM1 protein expression is increased, and autophagy is activated. However, the functional significance of DRAM1 and the relationship between DRAM1 and autophagy in brain I/R remains uncertain. The aim of this study is to investigate whether DRAM1 mediates autophagy activation in cerebral I/R injury and to explore its possible effects and mechanisms. We adopt the oxygen-glucose deprivation and reperfusion (OGD/R Neuro-2a cell model to mimic cerebral I/R conditions in vitro, and RNA interference is used to knock down DRAM1 expression in this model. Cell viability assay is performed using the LIVE/DEAD viability/cytotoxicity kit. Cell phenotypic changes are analyzed through Western blot assays. Autophagy flux is monitored through the tandem red fluorescent protein–Green fluorescent protein–microtubule associated protein 1 light chain 3 (RFP–GFP–LC3 construct. The expression levels of DRAM1 and microtubule associated protein 1 light chain 3II/I (LC3II/I are strongly up-regulated in Neuro-2a cells after OGD/R treatment and peaked at the 12 h reperfusion time point. The autophagy-specific inhibitor 3-Methyladenine (3-MA inhibits the expression of DRAM1 and LC3II/I and exacerbates OGD/R-induced cell injury. Furthermore, DRAM1 knockdown aggravates OGD/R-induced cell injury and significantly blocks autophagy through decreasing autophagosome-lysosome fusion. In conclusion, our data demonstrate that DRAM1 knockdown in Neuro-2a cells inhibits autophagy by blocking autophagosome-lysosome fusion and exacerbated OGD/R-induced cell injury. Thus, DRAM1 might constitute a new therapeutic target for I/R diseases.

  4. Pitx2 expression promotes p21 expression and cell cycle exit in neural stem cells.

    Science.gov (United States)

    Heldring, Nina; Joseph, Bertrand; Hermanson, Ola; Kioussi, Chrissa

    2012-11-01

    Cortical development is a complex process that involves many events including proliferation, cell cycle exit and differentiation that need to be appropriately synchronized. Neural stem cells (NSCs) isolated from embryonic cortex are characterized by their ability of self-renewal under continued maintenance of multipotency. Cell cycle progression and arrest during development is regulated by numerous factors, including cyclins, cyclin dependent kinases and their inhibitors. In this study, we exogenously expressed the homeodomain transcription factor Pitx2, usually expressed in postmitotic progenitors and neurons of the embryonic cortex, in NSCs with low expression of endogenous Pitx2. We found that Pitx2 expression induced a rapid decrease in proliferation associated with an accumulation of NSCs in G1 phase. A search for potential cell cycle inhibitors responsible for such cell cycle exit of NSCs revealed that Pitx2 expression caused a rapid and dramatic (≉20-fold) increase in expression of the cell cycle inhibitor p21 (WAF1/Cip1). In addition, Pitx2 bound directly to the p21 promoter as assessed by chromatin immunoprecipitation (ChIP) in NSCs. Surprisingly, Pitx2 expression was not associated with an increase in differentiation markers, but instead the expression of nestin, associated with undifferentiated NSCs, was maintained. Our results suggest that Pitx2 promotes p21 expression and induces cell cycle exit in neural progenitors.

  5. Animal experiments and clinical application of olfactory ensheathing cell transplantation for treatment of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Nan Liu; Wei Liu; Baiyu Zhou; Jing Wang; Bing Li

    2008-01-01

    BACKGROUND: The olfactory epithelium can still generate new neurons after arresting its growth and development in the human body. Axons can still be generated and pass through peripheral tissue to reach the olfactory bulb. Thus, olfactory cells have been widely used in the repair of spinal cord injury.OBJECTIVE: Using animal experiments in conjunction with a clinical study of olfactory ensheathing cells, this paper was designed to clarify the function and application prospects of olfactory ensheathing cells, as well as the existing problems with their application. RETRIEVAL STRATEGY: Using the terms "olfactory ensheathing cells, spinal cord injury", we retrieved manuscripts published from January 1990 to June 2007. The languages were limited to English and Chinese. Inclusion criteria: studies addressing the characteristics, basic study, clinical application and prospects of olfactory ensheathing cells; studies that were recently published or were published in high-impact journals. Exclusion criteria: repetitive studies.LITERATURE EVALUATION: The included 29 manuscripts were primarily clinical or basic experimental studies. DATA SYNTHESIS: Following spinal cord injury, spinal neurons die, neurotrophic factors are lacking, and the existing glial scar and cavities hinder axonal growth. One method to repair spinal cord injury is to interfere with the above-mentioned factors based on animal experiments. Myelination and axonal regeneration are the keys to spinal cord injury therapy. Olfactory ensheathing cells can secrete several neurotrophic factors, inhibit horizontal cell reactions, have noticeable neuroprotective effects, and possess a very strong reproductive activity, so they have many advantages in the fields of cell transplantation and gene therapy. However, there still exist many questions and uncertainties, such as the best time window and dose, as well as complications of olfactory ensheathing cell transplantation; precise mechanism of action after olfactory

  6. Bach2 represses plasma cell gene regulatory network in B cells to promote antibody class switch.

    Science.gov (United States)

    Muto, Akihiko; Ochiai, Kyoko; Kimura, Yoshitaka; Itoh-Nakadai, Ari; Calame, Kathryn L; Ikebe, Dai; Tashiro, Satoshi; Igarashi, Kazuhiko

    2010-12-01

    Two transcription factors, Pax5 and Blimp-1, form a gene regulatory network (GRN) with a double-negative loop, which defines either B-cell (Pax5 high) or plasma cell (Blimp-1 high) status as a binary switch. However, it is unclear how this B-cell GRN registers class switch DNA recombination (CSR), an event that takes place before the terminal differentiation to plasma cells. In the absence of Bach2 encoding a transcription factor required for CSR, mouse splenic B cells more frequently and rapidly expressed Blimp-1 and differentiated to IgM plasma cells as compared with wild-type cells. Genetic loss of Blimp-1 in Bach2(-/-) B cells was sufficient to restore CSR. These data with mathematical modelling of the GRN indicate that Bach2 achieves a time delay in Blimp-1 induction, which inhibits plasma cell differentiation and promotes CSR (Delay-Driven Diversity model for CSR). Reduction in mature B-cell numbers in Bach2(-/-) mice was not rescued by Blimp-1 ablation, indicating that Bach2 regulates B-cell differentiation and function through Blimp-1-dependent and -independent GRNs.

  7. Effects of normobaric versus hyperbaric oxygen on cell injury induced by oxygen and glucose deprivation in acute brain slices.

    Science.gov (United States)

    Chazalviel, Laurent; Blatteau, Jean-Eric; Vallée, Nicolas; Risso, Jean-Jacques; Besnard, Stéphane; Abraini, Jacques H

    2016-01-01

    Normobaric oxygen (NBO) and hyperbaric oxygen (HBO) are emerging as a possible co-treatment of acute ischemic stroke. Both have been shown to reduce infarct volume, to improve neurologic outcome, to promote endogenous tissue plasminogen activator-induced thrombolysis and cerebral blood flow, and to improve tissue oxygenation through oxygen diffusion in the ischemic areas, thereby questioning the interest of HBO compared to NBO. In the present study, in order to investigate and compare the oxygen diffusion effects of NBO and HBO on acute ischemic stroke independently of their effects at the vascular level, we used acute brain slices exposed to oxygen and glucose deprivation, an ex vivo model of brain ischemia that allows investigating the acute effects of NBO (partial pressure of oxygen (pO2) = 1 atmospheres absolute (ATA) = 0.1 MPa) and HBO (pO2 = 2.5 ATA = 0.25 MPa) through tissue oxygenation on ischemia-induced cell injury as measured by the release of lactate dehydrogenase. We found that HBO, but not NBO, reduced oxygen and glucose deprivation-induced cell injury, indica